IT 13 002

Examensarbete 30 hp
Januari 2013

UPPSALA
UNIVERSITET

M2 Simulator Model

Rahbee Alvee

Institutionen for informationsteknologi
Department of Information Technology

UPPSALA
UNIVERSITET

Teknisk- naturvetenskaplig fakultet
UTH-enheten

Besoksadress:
Angstrémlaboratoriet
Lagerhyddsvagen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 — 471 3003

Telefax:
018 — 471 30 00

Hemsida:
http://www.teknat.uu.se/student

Abstract

M2 Simulator Modul

Rahbee Alvee

M2 is a mixed analog/digital Application Specific Integrated Circuit (ASIC) that is used
as an |O controller at Ruag Space. The thesis aims to develop a simulation model of
an M2 ASIC for using in Ruag simulator and examine how this model can be made
compatible with Simulation Model Portability (SMP) version 2. SMP2 is a standard
developed by the European Space Agency (ESA) to simulate models together with
European companies in the aerospace industry. The purpose of SMP2 is to enable
portability between different simulation platforms. The outcome of this thesis is an
M2 simulation model based on known theories and an investigation of SMP2 that
implies how M2 can be adopted to be SMP2 compliant. The result of the SMP2
investigation also indicates partially how the existing simulation models in the current
Ruag simulator can be converted to SMP2 models.

Handledare: Anders Petersén
Amnesgranskare: Leif Gustafsson
Examinator: Philipp Rimmer

IT 13 002

Sponsor: RUAG Space AB

Tryckt av: Reprocentralen ITC

Acknowledgement

First and foremost I would like to offer my sincerest gratitude to my thesis supervisor Anders
Petersén who guided and supported me throughout the whole project. Working under his
supervision was a great pleasure as I had freedom to work and think on my own. I would like

to thank my thesis reviewer Leif Gustafsson for helping me in the report writing.

I am thankful to Jan Georgesson, Olle Martinsson and Patrik Sandin since without their help it
would be impossible to complete the thesis project successfully. Jan Georgesson guided me to
get familiar with the Ruag simulator and to implement the M2 ASIC simulator model. Olle
Martinsson helped me understand the M2 ASIC functionalities. Patrik Sandin helped me to

understand the implications of SMP2 over the current simulator.

Thanks to my parents for encouraging me for the Master studies in Uppsala University, Sweden

and for supporting me throughout my entire life.

Contents

1 INtPOAUCHON ..o 12
1.1 BaCKGIrOUNdoviiiiiiiiiiiccc e 12

L2 PUIPOSE ...t 12

2 M2 ASIC .t 12
2.1 Functional SUMMATYc.ccovuiiiiiiiiiiiii e 14

3 Implementation of M2 ASIC Modelcccoueuiiiiiiiiiiciiiccccc e 16
3.1 MOdES Of M2 ... 18

3.2 INteITOZAtiONvuiiiiiiit e 18
3.2.1 Memory Load (ML) INterrogation.ccceeeeuccueciiiiiiicceeeee e 18

3.2.2 Data Acquisition (DA) INterrogation ... 19

3.2.3 On/Off Command (OO) Interrogation...........ccccceviviiiiiniiiininiiiininiccnicceene 19

3.3 RESPOMSE....cuviiiiiiiiiictc e 20

3.4 Interrogation Parsing ... 20
3.4.1 ML Interrogation Parsing ... 21

3.4.1.1 Write Operation for M2 Configuration Registers............c.coceoeiviviicininiinnnnnen. 22

3.4.1.2 ML16 OPerations.........cccouiuiviiiniiiiiiiiiiiiiciiciicsiee s 24

3.4.1.3 Write Operation on Output POrt.......cccviiiiiiniiiniiiiicee e 25

3.4.1.4 OO Interrogation Parsing...........cccccceeeiiiinininininiecee s 27

3.4.1.5 HLC Commandcccouvuriiiiiiiiiiiiiciciicicccccii s 27

3.4.2 Data handling through TCP/IPccccccviiiiininiiiiiicieiceeeee s 28

3.4.3 DA Interrogation Parsing...........ccccceiiviiiniiiniiiniiiicicc s 30

3.4.3.1 AN/TH ACQUISTHON. c....oviiiiiiiiicci e 30

3.4.3.2 DB/DR ACQUISIHION.....oouiviieiiieietctcicictctciccc s s 31

3.4.3.3 DS16 ACQUISIHIONoouiiiiiiiiiicictetc e 32

3.4.3.4 Input pOrt TEZISTETSooviviiiiiciiic s 33

3.4.3.5 Output port registers read operationccccoeveveieiceniiiiieeeeee, 34

4 Simulation Model Portability ..o 34
4.1 BaCKGTOUNGcoviiiiiiiiiiiiiicic e 34

4.2 SMP2 ATchiteCtUTeoceiiiiiiiiiicicc s 36
4.2.1 Simulation ENVironment ... 36

4.2.2 Operational Phasescccccviviiiiiiiiiiii s 38

4.3 SMP2 MeChaniSm..........ccoueiiiiiiiiiciciciciccccc s 39

4.4 Inter model COMMUNICAIONcviviviuiiiiiiiiii e 40
4.4.1 Interface based deSign........ccceeuiviiiiiiiiniiiiicc s 40

4.4.2 Event based deSigncccoueveveieieiiiiiciccc s 40

4.4.3 Dataflow based deSignccccoueuiiviiiiiiiiiniiiiiiicii s 41

4.5 SMP2 adaptation of M2 ASIC Model ... 41

4.6 SMP2 adaptation for the current SMU simulator............ccococveieiiiiiicnnninccecnes 44

5 Tests and Results..........cooiiiiiiiii s 45
5.1 Test ENVITONMENTcooviiiiiiiiiic e 45

0 DISCUSSION ...oveitttitetcte ettt a bbbt 47
7 CONCIUSION ..ot 48
7.1 M2 Simulator Model ... 48

7.2 Simulation Modeling Portability ... 48

8 REfETENCES ...t 49

Appendix A : Abbreviations
Appendix B: Interrogation List

Appendix C: Test results

List of Figures

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Figure 18

Functional block diagram of M2 ASIC
M2 application example

M2 ASIC Environment

State diagram of M2

Basic Interrogation Format
Interrogation format in memory
Memory Load Interrogation Format
Data Acquisition Interrogation Format
On/Off Interrogation Format
Response format 13/21 bits
Interrogation Parsing

ML Interrogation Parsing

Write operation for M2 Configuration Registers
ML16 operation

Write operation Output port

Port out 1234

Port out 5678

OO Interrogation Parsing

13

14

17

17

18

18

19

19

19

20

21

22

23

25

26

26

26

27

Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37
Figure 38
Figure 39
Figure 40

Figure 41

HlcLength$ Config register

HLC Command operation

DA Interrogation Parsing

AN/TH Acquisition

DB/DR Acquisition

DS16 Acquisition

Input port registers

Output port registers Read operation

SMP2 architecture

State Diagram of Simulation Environment

SMP2 operational phases
SMP2 Mechanism

Interface based communication
Event based design

Dataflow based design

SMP Component

IObject interface

IComponent interface

IModel interface

SMU core simulator

SMP2 compliant SMU core simulator
SMU Core Simulator

External Application

10

27

28

30

31

32

33

33

34

36

37

39

39

40

41

41

42

42

43

43

44

45

46

46

Figure 42 Result output for interrogation list
Figure 43 Ouput for ML interrogations
Figure 44 AN interrogation

Figure 45 TH interrogation Results

Figure 46 DB/DR Interrogation Results
Figure 47 DS16 acquisition

Figure 48 OO Interrogations and results
Figure 49 ML16 interrogations and results
List of Tables

Table 1 IO Group Configuration Table
Table 2 TCP/IP Message Data Format

11

47

59

60

61

62

63

64

65

23

29

1 Introduction

1.1 Background

Ruag Space develops and manufactures equipment to use in space, mainly computers and
computer equipment and related software, control systems, antennas and microwave. The
equipments are part of launchers, satellites and other spacecraft. Ruag Space is developing a
data management system software which consists of hardware drivers. To support the
development of this software a simulator is designed based on the Tsim Aeroflex Gaisler [1],
which is a cycle-based simulator for a ERC32 [2] /[LEON [3] processor.

The M2 ASIC [4] constitutes a highly integrated, low-power core component for digital I/O and
analog data acquisition in spacecraft data handling systems. M2 contains AD converters, analog
channels for thermistor measurements, digital IO functions for generating command pulses, a
general IO port and a control interface that can be either an OBDH [5] bus or an UART.

Simulation Modeling Portability version 2 [6] was released in 2004 and after that it has updated
several times. The purpose of the SMP2 Standard is to promote portability of models among
different simulation environments and operating systems, and to promote the reuse of

simulation models.

1.2 Purpose

The simulator that Ruag Space has developed is written in C++ and executes on a standard
Linux computer. The link to the outside world is done using TCP / IP sockets. Being an internal
tool for software development, the simulator has evolved to become a product for Ruag's
customers. So it is becoming important that peripherals such as IO cards are represented in the
simulator too. To serve this purpose the thesis aims to develop a simulator model of the M2
ASIC using C++ programming language and it also involves investigation of the SMP2
standard. Ruag Space does not have any previous experience on SMP2. Investigation of the
SMP2 standard should give direction on how to make SMP2 compliant simulator models. It

should also indicate how to make the existing SMU simulator SMP2 compliant.

2 M2ASIC

This section focuses on how the M2 ASIC works and it's functionalities that Ruag space uses
right now. The functional block diagram of M2 is given below. The OBDH Remote Terminal
(RT) block receives interrogations from OBDH Central Terminal (CT) and transmits responses
according to the specifications. The OBDH control block compares the Terminal Address Field

12

(TAF) per interrogation to the remote terminal address RtAddr(4:0) inputs. In case of no match,
the Terminal Data Field (TDF) field is ignored and no response is generated. In case of matching
address the interrogation is further handled by the CONFIG AND CMD CTRL block for ML or
OO interrogations, otherwise, i.e. in case of DA, by the ACQ CTRL block. The UART / OBDH
Bridge receive bytes on the UART Rx and convert them into interrogations. Responses are
converted into bytes which are transmitted over the UART Tx. There are 8 IO groups which can
be configured for intended functionalities. Each IO group contains one input and four outputs.
The analogue block is responsible for providing analogue data from sources and then converts
it to digital data.

(. A
Config(1-0) Configuration
UART / HieStri
OBDH [] CONFIG N
Bridge AND L%c'&.
— CMD Fg&r, Out |—§ Grp10ut(30)
BusAENg—»] — CTRL it —» IOGRP1 N
BusBENg—w — OBDH foj)—b;nfr le—8§ Groiin
RyAPg—»| CTRL U 3
RiAN |OGRP2 |—@ Grp20ut(3:0)
e
RxEFg—» — |—8 Grp2in
BBl . —]
BUS OBDH [Vo
TxAPge— SEL RT P
TxAN—] > [
THAEnfe—] — fe— [
TxAlnh [
o s 1]
Fort In .
TuBM [] 8 Grp8Out(3:0)
(DS16, Uart Rx,
I‘ng' o Pulse Counter) > IOGRP8 DI -
RiAddr{4:0) T]‘ | MuxCl |
RtPar ACQ
RstAN
RetBN Reset CTRL Analog
«—§ VddAn
l l «+—4§ VssAn
le——g viert
ADC/ le—— Viefl
et 1 [e—1 [«——4§ Rref(3:0)
COMP Buff MUX [R o
\, J

Figure 1 Functional block diagram of M2 ASIC

The hardware configuration for a typical application for the M2 ASIC on a standard 10 board
should look like following diagram. This is an example where it is shown how the M2 ASIC

should be connected along with its support circuits on a standard IO board.

13

One half of standard 1/O board
“cefig Examples of configuration {SW corfrolisd):
e ML16 D516 BCP AT Pori)
el £ 4 |
Prwr prot ' ™ b R
™ = M2 E:: 7 3 ‘ i 215
5.2 Ex 5 4
10Gp1
o —_—
= . [:<]> p
10Gp3 I-t-J—bJ
2
| I:> 1 Pwr 54 g
—| <:| t— r = OCDs
F B4 HLC ~
Dig buf
10Gps I[+ [> |
10Gm6 H— | 7
10G7 Dig buf]
L Dose? = 1 NE
— e | 2
—_— &4 AN or DB
Ar{ 8764} <] le—1
ADC ™~
AEI 64 THor DR
SN

Figure 2 M2 application example

2.1 Functional Summary

The M2 ASIC hardware is capable of doing the following functions. But the software model is
only capable to perform those functions which are currently used by Ruag Space. In this section
all the functionalities of the M2 ASIC are briefly described with the limitations of the software

model.
OBDH-RT for OBDH bus control of the M2

When M2 gets an interrogation from the OBDH-CT the OBDH-RT takes control the OBDH bus
and sends response according to the interrogation. After that bus control transfers to OBDH-CT.

This functionality is implemented for M2 ASIC model.
UART / OBDH bridge for UART control of the M2

In the UART mode interrogation and responses are handled by the UART / OBDH bridge block.
It receives bytes from the OBDH-CT by the UART Rx which is interpreted as interrogation and
then respective response is generated and converted into bytes which are transmitted over
UART Tx. This functionality is not implemented as the software model does not support the
UART mode of operation. The UART is not used in any application of M2 ASIC used by Ruag
Space.

14

12 bit ADC for AN and TH channels

The real M2 ASIC hardware deals with analogue data from the analogue channels. The
Analogue to Digital Converter (ADC) converts the analogue data to 12bit digital data. But in the
simulator we deal with only digital data.

Comparator for DB and DR channels

The comparator is used specially to compare the values of two different source of the same
type. In the software model implementation traditional comparison operator is used to compare

values.
Switchable resistive conditioning for TH and DR channels

In M2 ASIC resistive conditioning of the reference resistance values is possible. The same

facility is available in the software model as well.
Control of external multiplexer for AN and DB channels

The real M2 ASIC uses internal signals to control external multiplexing functionalities. The IO
groups need to be configured to get desired multiplexer. The software model reads the
multiplexing configuration from the IO group configuration registers and uses programming

techniques instead of using internal signals.
Generation of control signals for HLC

High Level Command (HLC) is a pulse command and its width is programmable. In the
software implementation the pulse width is calculated and appropriate response is sent back to
the OBDH-CT.

ML/DS channel interfaces

Memory Load (ML) and Digital Serial (DS) interfaces involve IO Groups configured in ML/DS
operation where data is sent or received serially through these interfaces. Serial operation is not
supported by the software model as the outer interface is connected through TCP/IP. Data is
sent or received through TCP/IP.

Broadcast pulse generation

A broadcast pulse is used in the UART operation to broadcast a byte to all the UART channels
configured to receive broadcast messages. This function is not implemented as UART is not
used.

15

UART as user 1/O interface

As the UART is not a concern for this software model implementation the user interface for I/O
in the UART is also skipped.

Support function for HLC matrix commands, HLCM

The software model supports parallel generation of HLC commands but it supports up to 64
channels where the real M2 ASIC supports up to 256 channels.

Support function for DR matrix acquisition, DRM

A Digital Relay (DR) matrix is used to acquire up to 256 channels for DR acquisition. It is
supported by the software model.

General purpose port

A general purpose port is supported by the model where there are eight IO groups and each 10
group contains four outputs and one input. IO groups can be configured by the IO group

configuration registers.
Pulse counter, possible to latch by external signal or BCP

A pulse counter is not supported by the software but the registers for the counters can be
configured for the future use.

Digital part of first order XA DAC
Since we are dealing with only digital data Digital to Analogue Converter (DAC) is not used.
Timer for e.g. valve control, possible to trigger by external signal or BCP

Timers are signal generators and are not implemented in the software. But the configuration

registers are there for future use.

3 Implementation of M2 ASIC Model
The model for the M2 ASIC is developed based on the specification of the real hardware. The

software model does not support all the features. But it is made in such a fashion that additional
functionalities can be added later depending on the requirements. Since the software model
does not represent the complete model of real M2, it does not support all the functionalities
described above. It does not support UART, ADC or DAC, pulse counter, broadcast pulse
generation and Timer.

16

The following environment is considered for the implemented M2 ASIC:

OBDHCT e +—| OBDHRT M2 | _| Exteral
' OBDH bus TCPIP Application

Figure 3 M2 ASIC Environment

M2 is a part of an IO board that is shown in Figure 2. M2 contains OBDH RT that is connected
to the OBDH CT. M2 communicates to the outer world through TCP/IP. An application
(Extrenal Application) is implemented that sends or receives data over TCP/IP. M2 does its
operation in a very simple manner. It receives interrogations through OBDH bus from the

OBDH CT, performs operations accordingly, generates responses and gives it back to the
OBDH CT through OBDH bus.

Here is the state diagram of M2 model:

RESET

v

- All 10 groups are forced low
Halt State
- HicStrN is set to High Impedence (2)

ML Interrogation
RST MLA=111; MLD(15:12)=1110

5 - All 10 groups are forced low
Erogramming State Jo Can only access M2 config reg

RESET

- All OBDH interrogation possible

- All M2 functions shall be specifie
Operation State || - Conti y check parity register

Incorrect Parity of M2 Config registers

BitErr State

- All 10 groups are forced low
- Can only access M2 config reg

Figure 4 State diagram of M2

17

3.1 Modes of M2

M2 can be operated in one of the three modes: OBDH mode, UART mode and Test mode. The
M2 model supports only OBDH mode since the UART and Test mode are not used by the

current Ruag Simulator.

3.2 Interrogation

An interrogation is an instruction or a command from OBDH CT to one of the OBDH RTs to
perform a specific operation. Interrogations are stored in a block of memory [7]. Each

interrogation is a 32 bits word. The basic interrogation format is given below:

Sync BF TAF TDF P

3 bits 4 bits 5 bits 19 bits 1 bit

Syne Broadcast Terminal Address Terminal Data Parity

el Fielg Field Field Field
Figure 5 Basic Interrogation Format

The sync field is used for synchronization purpose of an Interrogation in the hardware
implementation. Since the OBDH bus software model also supports sync field so it is kept in
this implementation but not used. BF field conveys information to all terminals simultaneously.
TAF field contains the address of the remote terminal. TDF contains the data required for the
remote terminal to perform its given task. Even parity is used for the preceding 28 bits in the

parity bit field.

An interrogation is stored in the memory location in the following manner:

0 Sync BF TAF TDF
3 bits 4 bits 5 bits 19 bits
Sync Broadcast Terminal Address Terminal Data
Field Field Field Field
Figure 6 Interrogation format in memory

3.21 Memory Load (ML) Interrogation

Memory load interrogation is used for write operation either in M2 registers or 10 port. It has

the following format:

18

0 Sync BF TAF MLA MLD
3 bits 4 bits 5 bits 3 bits 16 bits
S_ync Broadcast Terminal Address Memory Load Memory Load
Field Field Field Address Data
Figure 7 Memory Load Interrogation Format

The terminal data field is divided into two parts: MLA and MLD. MLA defines the address and
MLD defines the data to be written.

3.2.2 Data Acquisition (DA) Interrogation

Data acquisition is a read operation. In this case the TDF is divided into few parts where the
least significant 8 bits are kept for the analogue channel addresses. MOP defines the operating
mode. The next bit beside MOP is 1 to identify that it is a DA interrogation. DEA is the
destination address where the response should be sent and in this case it is always 0000 which
is the address of the OBDH CT.

0 Sync BF TAF 000 DEA 1 MOP CA
3 bits 4 bits 5 bits 3 bits 4 bits 3 bits 8 bits
Sync Brogdcast Terminal Address Destination Mode of Channel Address
Field Field Field Address Operation

Figure 8 Data Acquisition Interrogation Format

3.2.3 On/Off Command (OO) Interrogation

OO interrogation is used to generate a special kind of command called High Level Command
(HLC). It has similar instruction format like DA interrogation but the only difference is that the
next bit beside MOP is 0.

(o | syne BF TAF 000 DEA MOP CA
3 bits 4 bits 5 bits 3 bits 4 bits 3 bits 8 bits
Sync Brogdcast Terminal Address Destination Mode of Channel Address
Field Field Field Address Operation
Figure 9 On/Off Interrogation Format

19

3.3 Response

A response is a reply from the OBDH RT to the OBDH CT for an interrogation. A response can
be 13 bits or 21 bits of length depending on the kind of interrogation.

DEA RDF EOR
4 bits 8/16 bits 1pit)

! ! !

Destination Response Data End of
Address Field Response Bit
Field

Figure 10 Response format 13/21 bits

The OBDH CT Response Register is a 32 bit register where the least significant 16 bits are used
as response data field (RDF). So in the implementation only RDF is sent as response.

3.4 Interrogation Parsing

Each interrogation has a specific function. So it is important to parse an interrogation correctly
and map to a correct function for that interrogation. When an interrogation is received by the
OBDH RT it checks if the interrogation is 32 bits long. Then it checks for the Terminal Address
and if 00000 is found then it is a dummy interrogation and no response will be generated. If the
TAF matches then MLA is checked. If MLA is greater than 0 then it is an ML interrogation. But
if MLA is 000 then it can be either OO or DA interrogation. Then the 11* bit from LSB is
checked. If 1 is found then it is a DA interrogation otherwise it is an OO interrogation. The
following diagram describes how an interrogation can be decided:

20

Interrogation

otal length = 32 bits

Yes

— Dummy
TAF = 00000 Yes_)i interrogation |—)| No response

No
TAF match % No

es

Y
Check MLA
Valid ML Yes 4@
o

N

MLA (2:0) = 000

Bit 11 frol
LSB=1 No Valid 0O
?

Ye

s
A4

Figure 11 Interrogation Parsing

3.4.1 ML Interrogation Parsing

After it is decided as an ML interrogation then OBDH RT will check for the MLD field to map
an appropriate function. According to the diagram below, MLA = 000 does not exist. But for
MLA ‘001’,°0107, ‘011", “100’, "101’, “110" it can be either ML16, IO port or UART operation
depending on the configuration of the intended IO group.

(mipaon y—>{ MLA 2:0) [MLD (15:12)]
oy | : — T
o) b]
fe] =
LI I 00 S S —
T e R —
o0}
oo p——{ -)
otio._} o]

o b =]

Figure12 ML Interrogation Parsing
MLA =“111" is used to configure M2 registers. Depending on the value of MLD (15:12) different

registers are selected for desired configurations.

3.4.1.1 Write Operation for M2 Configuration Registers

A valid ML interrogation with MLA ‘111" and MLD (15:12) “1110" can be used to configure the
configuration registers of M2 ASIC.

22

MLA(2:0) [MLD (15:12) [MLD (11:8) [MLD (7:0) |

1112 1110: v v
00012

10Group12 Config Register

0010:

10Group34 Config Register

00 1 1 2 10Group56 Config Register
0100 10Group78 Config Register

01012 HicLength1 Config Register

|
|
|
|
|
‘ &' HicLength2 Config Register |
|
|
|
|

01112 Latch/UART Config Register

10002
10012

1 0 1 02 Counter34 Config Register |

10112 - - ';
DACITimer12 Config Register |\

1100:

11012

1110 |

11112

4| Parity Register |

I BCP and isiti onfig Register

Counter12 Config Register

DAC/Timer34 Config Register I

DAC/Timer56 Config Register

DAC/Timer78 Config Register

Figure 13 Write operation for M2 Configuration Registers

There are 15 configuration registers and a parity register. MLD (11:8) bits are used to select a
register and MLD (7:0) contains the configuration data. Each IO group can be configured as one
of the following configurations.

Configuration IO Function
0000 Disabled
0001 Port
0010 SyncClkStr
0011 DacTimer1234
0100 ML16:DS161
0101 DacTimer5678
0110 DS16s
0111 UART
1000 BCP

23

1001 Mx16

1010 Mx128

1011 Mx256
1100 HlcSer

1101 HlcPar4
1110 HlcPar64/ML162
1111 HlcPar256

Table 1 10 Group Configuration Table

SyncClkStr is used to control the IO synchronization. DacTimer is used for either DAC or Timer
functionality. ML16:DS161 is used for both ML16 and DS16 operation. Only IOGroupl to
IOGroup6 can be configured in ML161DS161. ML162 supports only ML16 operation. DS16s is
used for DS16 operation only. The UART and BCP are not used. Mx16, Mx128 and Mx256 are
used to control external multiplexers for up to 256 channels. There are two HLC Length
registers which can be configured. Other registers can be configured but are not used for
operational purpose as the UART is skipped in this implementation. Hlc can be serial or parallel
operation. The model can handle up to 64 channels whereas the real M2 can handle up to 256

channels. Hlcpar64 applies to group 4 to 7 and ML162 applies to groupl to group3.

3.4.1.2 ML16 Operations

An ML16 operation requires an 10 Group to be configured first. An IO Group can be configured
as either ML16:DS161 or ML16:2 depending on the operation of choice. ML161DS161 supports
both ML16 and DS16 operation while ML162 supports only ML16 operation. IO Group 1 to 1O
Group 6 can be configured as ML16:DS16:1 for MLA =1 to MLA = 6 respectively but for ML162
configuration two channels will map to the same IO Group such as MLA =‘001" and ‘100" map
to IO Groupl, for MLA = ‘010" and ‘101" IO map to Group2, MLA = ‘011" and ‘110" map to IO
Group3. ML16 is a serial operation but it is implemented as a parallel operation as there is no

external circuitry used in this case.

24

ML Interrogation with
| MLA = 001 - 110 I

10 Group
ML162 onfiguration = 27
ML164DS161
001/ 100 @ 011/110

010/101

ML16 on
I0Grp$(MLA)

ML16 on I0Grp1 | | ML16 on I0Grp2 | | ML16 on I0Grp3

Response 13bits
All 0's

Figure 14 ML16 operation

ML16 command is sent to the TCP/IP port using the configured IO group. There should be a
user defined application that receives the data and take necessary action according to the

command received.

3.4.1.3 Write Operation on Output port

For an ML interrogation with MLA ‘001’, ‘010", ‘011", ‘100", ‘101", ‘110" and an IO group
configured other than ML161DS161, ML162 or UART is considered output port write operation
for that IO group.

25

ML Interrogation with
MOP = 010

001, 010,

011 101, 110

s IOGrp$(MLA) in
L161DS161", "ML162, oF
'UART

S I0GrpS(MLA) i

€ 10Grp$(MLA) i
1D§16+, "ML167, or !

L161DS16¢', "ML162', O

o oo
de? or IOGrpS$(MLA - 3) in 2
. ML1p62[dee?l ML16zmode?

Write access to | Write access to
Port Out 1234 register || Port Out 5678 register
|

Response 13bits
All0's

Figure15 Write operation Output port

There are two 16 bits output port registers Port out 1234 and Port out 5678. Values are written
directly to the registers.

15----12 11----8 7----4 3----0
[oPRT1 | OPRT2 | OPRT3 | OPRT4 |

! I Lo

10 Grp1 10 Grp2 10 Grp3 10 Grp4
Output port Output port Outputport Output port

Figure 16 Port out 1234

15----12 11----8 T7----4 3----0

| oPRT5 | OPRT6 | OPRT7 | OPRTS |
10 Grp5 10 Grp6 10 Grp7 10 Grp8
Output port Output port Output port Output port

Figure 17 Port out 5678

26

34.14 OO Interrogation Parsing

An OO interrogation contains MLA = ‘000", destination address of OBDH CT which is ‘0000
and the 11t bit from LSB is always 0. HLC commands will be issued only for MOP ‘011" and
“100". CA field may contain channel addresses for getting signals from interfacing circuits.

31 30---27 26--- 23 22----19 18-4615----12 11 10----8 7----4 3----0

0 [Sync (2:0)] BF (3:0) [TAF (4:0) | 000 | DEA (3:0)] 0 | MOP (2:0)] CA (7:4) | CA(3:0) |
A
[-} [oo
[- k[oot
- [oo

|

|

|
IHLCCommands l(—i 0112 |
| HLC Commands I(—' 100: |
|

|

|

[- k1 1o%
- K
[- k{ 11%

Figure18 OO Interrogation Parsing

3.4.1.5 HLC Command

M2 can control the width of a HLC command pulse. When MOP =‘011" then HlcLengthl Config
register will be selected and pulse length of HLC will be calculated based on the value of that
register. But if MOP = ‘100" then pulse length of HLC will be calculated from HlcLength2 Config
register.

7 6----4 3----0
lo| N | Nt |

Figure 19 HlcLength$ Config register

HLC command can be a serial or a parallel operation depending on the configuration of the IO
groups. IO group 5 to 8 can be configured as HlcSer and HlcPar4. But IO group 4 to 7 can be
configured as HlcPar64.

27

00 Interrogation

Select HicLength1
MOP (2:0) ='100" register .
Yes EE—

Select HicLength2
register

Calchiate e

Length

Yes

IWrong Interrogation l |

Generate Pulse on
HicStrN pin
Generate response
13bits, all 0's

Figure 20 HLC Command operation
The HLC pulse length is calculated using the following rule:

Truse = 2N#9)(N2+8) Toson, N1€[0, 15] , N2€[0, 7]

Where N1 = HlcLength$(3: 0); N2 = HlcLength$(6: 4) and Tospn is the period of an IO clock. In
actual hardware implementation HLC operation involves several necessary signals for
synchronization purpose where in the software model they are not used as the synchronization
is ensured by the OBDH CT.

3.4.2 Data handling through TCP/IP

There is an external application for handling external data to the system. It sends and receives
data through TCP/IP to simulate the data for analogue channels and IO ports. Data can be for
DA/DB, AN/TH, ML/DS operation. Data transfer through TCP/IP is done through messages
where, Message = (Message ID + Data length + Data). Message ID is a number that represents a
specific operation e.g. ‘01" for analogue channel (AN) acquisition. Data length is the length of
data in number of bytes. Data can be different based on the type of operation. Data should be

prepared in the following structure:

28

Operation Data format Description

01 = Message ID for AN

06 = Length of data in bytes

30 = Analogue channel number
0500 = value for 5.00

AN acquisition 0106300500

02 = Message ID for TH

06 = Length of data in bytes
30 = TH channel number
0500 = value for 5.00

TH acquisition 0206300500

03 = Message ID for DB

10 = Length of data in bytes
DB acquisition 03103001001110 30 = DB channel number
001001110 = digital values for 8

channels

04 = Message ID for DR

10 = Length of data in bytes
DR acquisition 04103001110011 30 = DR channel number
001110011= digital values for 8

channels

05 = Message ID for DS16
DS16 acquisition 05161111000011110000 | 16 = Length of data in bytes
OxFOFO = DS16 value

06 = Message ID

Single Channel 0603641 03 = Length of data in bytes
Digital Data 64 = Channel Address
1 =value
Table 2 TCP/IP Message Data Format

29

3.4.3 DA Interrogation Parsing

A DA interrogation differs from an OO interrogation by 11t bit and it is 1. DA operation is
mainly read operation. Depending on the mode of operation values it can request for

analogue/thermistor values, DS16 acquisitions and different register values.

31 30---27 26--- 23 22----19 18-4615----12 11 10----8 7----4 3----0

0] Sync (2:0)] BF (3:0) | TAF (4:0) | 000 | DEA (3:0)] 1 | MOP (2:0)] CA (7:4) | CA(3:0) |
|

| DB and DR Acquisitions H 0002 I
| Alland T Acquisitions H . 001.] _| 00-—2 ' N DS16 Acquisitions ﬂ
| 0102 I-—)—' 01002 H UART Tx registers]
= —{ 01012 }—— UART Rx]
| AN and TH Acquisitions H 01 12 I _| 01102 H DAC/Timer registers n
| AN and TH Acquisitions H 1002 I [01112 }—— Pulse counter registers]
— L ["10002 }— -]
| AN and TH Acquisitions H 1012 I | oot o T i
| DB and DR Acquisitions |(_| 110 | {10102 }— - |

10112 }—] Input port regist

| AN and TH Acquisitions H , 1 1 12 I :: 11002 nput pol -regls ers P
— 11012 }—— - |
{11102 }—] M2 Configuration registers]
— 11112 }—— M2 Status registers]

Figure 21 DA Interrogation Parsing

3.4.3.1 AN/TH Acquisition

The analogue or thermistor values are supposed to be converted into digital values. But in this
implementation the ADC part is skipped since we are dealing with digital data. For the sake of
this specific application AN/TH data is sent through the TCP/IP and when there is an AN/TH
interrogation then the received data is analyzed and send back as response. But first when a DA
interrogation is arrived it is checked against the MOP field to decide that either the
interrogation is an AN or TH acquisition. Then appropriate data is expected for the channel
number specified in the interrogation. Interrogation parsing is done according to the diagram
below:

30

AN Acquisition

CA[7:6] = 00
No Yes

o

DA Interrogation

(— 100/101

001/011

111

Not Implemented

No

Differential AN with
An(ch-1) - An(ch)

No @ Yes

CA[7:6] = 00 Yes

TH Acquisition with
An(ch) and Ref(0)
ch = CA[5:0]

ch = CA[5:0]

o

TH Acquisition with
An(ch) and Ref(1)
ch = CA[5:0]

TH Acquisition with TH Acquisition

Single ended AN with
An(ch) - VrefH
ch = CA[5:0]

An(ch) and Ref(3)
ch = CA[5:0]

An(ch) and Ref(2)
ch = CA[5:0]

with

No a
Yes
Differential AN with
An(84) - An(65)

Differential AN with
An(84) - An(65)

Figure 22

3.4.3.2

data. Compln input is the input port of an IO group that is configured as Mx16. Only group 8

can be configured as Mx16.

Response
21bits for MOP = 001
13bits for MOP = 011
21bits for MOP = 101
13bits for MOP = 100

AN/TH Acquisition

DB/DR Acquisition

Digital Bilevel (DB) / Digital Relay(DR) acquisition is similar to AN/TH acquisition. When MOP
is “110” then the DIGDB field of BCP and Acquisition Config register is used for DB acquisition.
When DIGDB = 0 then DB acquisition works in Digital Relay Matrix (DRM) mode. In DRM
mode only first 16 channels are used. For DIGDB =1 Compln input is used to receive 8 bit serial

31

DA Interrogation

DB using
An(ch) - VrefL
ch = CA[3:0]
DB Acquisition
with An - VrefL
Yes

No
—
DB Acquisition with DB Acquisition with
An(66) -An(67) | An(84) - An(85)

Response 13bits

Figure 23 DB/DR Acquisition

3.4.3.3 DS16 Acquisition

DS16 is serial data transfer operation where the external circuit sends data serially to the
configured IO groups of the M2 ASIC using handshaking method. But it is simulated in a
different way since data is sent or received over TCP/IP according to the data format specified
in table 1.

32

DA Interrogation

010

oo
' 10 Groups | [Confisuration) [CA(5:0) J

[1] [wuseseiosie] [Oto7 |
[>] [ML1s:Ds16: 7 DS16: | [8to 15 |
[3] [mLispsiei /b6 [16 to 23]
[4] [ML1s:Ds16:/ DS16: || [24 to 31]
[=3 | [wcisosisipsie: | [32 to 39]
[6]| [waeosieiosis] [40%0 47
[7] [o= | [48tc55]
[8] [Ds16: | [56 to 63]

{}

Response 21bits

Figure 24 DS16 Acquisition

3.4.3.4 Input port registers

PortIn register is readable while the MOP field of a DA interrogation is ‘010" and the 8 bit
channel address field contains “10110000".

DA Interrogation
With MOP = 010

1011

<>

0000

Read access to |
Port In I
| Response 21bits |

Figure 25 Input port registers

33

After reading the value of that register the response is generated accordingly and sent back to
the OBDH bus.

3.4.3.5 Output port registers read operation

There are two output port registers: Port out 1234 and Port out 5678. Both can be read by DA
interrogation with MOP > 0 and no IO groups configured to either ML16DS16 or ML16 or
UART.

(Interrogation ’
DA Interrogation with
CA[7:4] = 1001

0000 CA[3:0] =2 0001

Read access to Read access to
Port Out 1234 register Port Out 5678 register

| J

Response 21bits
All 0's

Figure 26 Output port registers Read operation

Generated response for both cases is 21bits.

4 Simulation Model Portability

4.1 Background

The European Space Agency has been working for space simulation development for a number
of years. They are developing simulations for a variety of applications and this involves
analysis, engineering operations preparation and training. There are different departments
working on simulation and they may use different platforms and different computer languages
as well. It is difficult to adapt the same model in different platforms and the communication
among different platforms is also difficult. To address these issues a Simulation Model
Portability study was performed and a standard was defined to ease the portability and reuse of
simulation models in different environments. The SMP1 Handbook [8] was published to
describe the main SMP1 scope and SMP usage. A software implementation of SMP1 was
introduced which is called Simulation Model Interface (SMI).

34

SMP1 was achieved via four objectives:

- Minimize interaction between models and environment
- Standardization of inter model interfaces

- Simplify intra model interfaces

- Models are simple enough for other developers

SMP1 was successfully applied to several space projects. But at the same time some limitations
of SMP1/SMI has been noticed:

- Inter-model communication was built on the basis of dynamic invocation. That means

models could not communicate directly but by the help of the environment.
- Did not support object oriented design.

- Publication calls were done manually which is error prone.

- Scheduling mechanism was primitive.

- Did not support additional metadata for models.

- Could not properly handle initial values of models

- Does not provide access or change to simulation state

- Does not support dynamic simulation.

To overcome these limitations SMP2 was introduced and it came up with few objectives:
- Portability of models among different platforms

- Interoperability and reusability of models

SMP2 has several advantages over SMP1 which made SMP2 to be more acceptable for space

project simulation:
- Developed models are platform independent
- Portability of models is now easier

- Models are more reusable as there is less dependency among models

35

- Model integration is simplified
- Support Object Oriented technologies
- Support for metadata

- Support dynamic simulation

4.2 SMP2 Architecture

SMP2 consists of models and a simulation environment. It defines how the models
communicate with each other and how the models communicate with the simulation
environment. SMP2 defines the interfaces for the inter model communication and it also defines
the interfaces so that the models can communicate with the simulation environment in a
controlled way. In this way models are not dependent upon each other. It ensures models are

portable and can be reused in various environments.

Simulation

Model | }—{ Model2 J— =+« ModeIN

Simulation Environment
Simulation Services

| Logger | | Scheduler |
|Event Manager| | Link Registry |

Native Simulation Environment

Figure 27 SMP2 architecture

Simulation environment provides services necessary for simulation. There are mandatory
services such as Logger, Scheduler, Timekeeper and Event manager. On the other hand there
may be optional services like Link Registry or Resolver and user defined services are also
possible.

4,21 Simulation Environment

A simulation environment contains a native simulation environment to make it SMP2
compliant and simulation services [9]. Simulation services can be of two types, mandatory and

optional services. There are four mandatory services: Logger, Scheduler, Time Keeper and

36

Event Manager. Optional services are resolver and link registry. User defined services can also
be added.

Logger: This service is used to log event, warning and error messages. Both models and services

use logger to log messages.
Scheduler: Scheduler calls the entry points based on cyclic or timed events.

Time Keeper: Time keeper service provides four types of time, a relative simulation time, an
absolute epoch time, a relative mission time and Zulu time which represents current computer

time.

Event manager: Event manager service provides mechanism for handling global events. Events

can be registered and broadcasted. User defined event type is also supported.
Resolver: Resolver provides reference to the other models in the simulation.

Link Registry: If a model instance is deleted then Link registry service notifies other models

holding reference to this model.

Configure() = Tpublishp

Setup

(automatic)
Initialising

Initialise() (automatic)

(automatic) (automatic)

[Sto‘ring } StoreL(\LSland'Jy‘J{] Flestore(;[Fbslloring]
Run() | Hald()
Executing

Execution Abort() can be

Exit() called from any
state.

—
@ = Eiting | (Aborting |

Abort()

Figure 28 State Diagram of Simulation Environment [6]

After the creation of simulation services the simulation environment automatically enters into
building state. In this state it creates model instances and builds model hierarchies, asks to

publish their fields, operations and properties.

In the end of building state Connect() method of every model in the model hierarchy is called to
enter into connecting state. ISimulator interface is passed so that every model can use the

simulation services.

After connecting state the simulation environment automatically enters into initializing state
but from standby state initialize() method call is required to enter in this state. In this state all
the entry points are called to guarantee that all the models have their initial values and are
properly linked together.

Standby state is automatically achieved after initializing state or from storing and restoring state
and using a hold() method from executing state. In this state simulation time does not progress

even though the Zulu time still progresses.

Executing state can be entered from the standby state using the run() method. In this state

simulation time progresses as well as the other time kinds registered with entry points.

Storing state can be entered using the Store() method from Standby state. The current state of

the simulation environment is saved during this state.

This state is entered from Standby state using Restore() method. The state of the simulation

environment can be restored from the storage.
To properly terminate a running simulation the Exit() method is called from the Standby state.

To perform a abnormal simulation shutdown Abort() method is called from any other state.

After aborting the simulation environment is in an undefined state.

4.2.2 Operational phases

There are three phases of SMP2 simulation operation. In the set up phase model instances are
created and configured by the simulation environment. Models publish their states to the
simulation environment and then models are connected to the simulation services and other

models.

38

Models:
- are created and configured

Setup - publishes it's filed and operations

- are connected to simulation
services and other models

- Scheduler calls model entry points

> Execution - Models interact with each other

- Models call any simulation services

- Models free any resources
ermination

v,

- Simulation is stopped and closed

Figure 29 SMP2 operational phases

In the execution phase the models are scheduled by the scheduler and they start interacting
with each other. In the termination phase models may free all the occupied resources and then

simulation is stopped.

4.3 SMP2 Mechanism

The simulation environment has two containers: Model container and Service container. Model
Container contains root models. A root model is a model that does not have a parent in the

model hierarchy or model tree.

Simulation
Environment

Models
Container

Services
Container

Root Model 1 Logger

Root Model 2 Scheduler _

Time Keeper

Root Model N

Event Manager

Figure 30 SMP2 Mechanism

39

A root model may contain other models in the model hierarchy. Service container contains the

services. Services are also a kind of root models as they don’t have any parent.

4.4 Inter model communication

Inter model communication depends on the design approach followed by the developer. SMP2

supports three model interaction approaches:

1. Interface based design
2. Event based design
3. Dataflow based design

4.4.1 Interface based design

An interface is a set of public features, such as fields and operations. One model provides
interface so that outer world can communicate with the model through provided interfaces. The

model that provides interface is called the provider.

Interface
Feature
Declaration

Provider Consumer
Feature —O L Feature

Implementation Access

Provided Reference
Interface Interface
(Interface) (Reference)

Figure 31 Interface based communication

Another model consumes the information provided by the provider. It is called the consumer.

Consumer has to implement the features provided by the interface.

4.4.2 Eventbased design

In an event based design one model will trigger an event and other models which are
dependent on that model will be notified. In this case the model (Provider) that triggers an
event acts as an event source. On the other hand the models (Consumer) which consume event

acts as event sink.

40

Event Type

Event Data
Provider Consumer
- ...
Event Trigger Event Handler
Event Source Event Sink

for Event type for Event type

Figure 32 Event based design

Consumer defines event handler to handle events triggered by the provider. To distinguish

various kinds of events, every event is assigned an event type.

4.4.3 Dataflow based design

In a data flow based design inter model communication is done based on data dependency. The
model that provides data is called the source and the model that consumes data is called the

target.

Value Type

Defines Data

Source Target
mEELTEN

Provides Data Consumes Data

Output Field that Input Field tha

provides data consumes data

Figure 33 Dataflow based design

Data transfer is normally done by other component(s) which reads the data from the source’s
output field and store it into the input field of the target model.

4.5 SMP2 adaptation of M2 ASIC Model

In this section it is assumed that the models will be developed using standard C++ and it is also
assumed that an SMP2 compliant tool is used for development. The first step of SMP2
development is to describe the intended models using Simulation Model Definition Language
(SMDL) which is also called SMP2 Metamodel [10][11]. This is not a mandatory step. Then by
using the selected tool one can generate catalogues for the models so that these catalogues can
be validated against SMP2 rules. Catalogue is an xml document that contains namespaces as a
primary ordering mechanism and namespace can contain types such as structure, class and

interface. Catalogues can also be made by hand using a catalogue editor. The next step is to

41

generate assemblies and schedules. An assembly contains model instances and the links among
them and schedule defines how the model instances of an assembly are scheduled. The
catalogue, assembly, schedule files should be validated by appropriate tools. Then a code
generator is used to make model code from catalogue, assembly and schedule [12][13]. It is
important to adapt the current simulator so that it can accept SMP2 models. So despite of
starting from the beginning it is advised to start the implementation directly. An SMP2
compliant Model Development Kit (MDK) [14] can be used as a starting point. The MDK
contains the necessary C++ source files that describe SMP2 rules. SMP2 supports interface
hierarchy and component based infrastructure [15] [16]. Structural dependency is based upon
interface hierarchy.

10bject

IComponent

IModel IComposite

ISimulator

Figure 34 SMP Component

Every component in SMP is derived from IObject. An object is the base entity that must be

derived by every component. IObject interface has the following structure:

(IObject)
[+GetName()

+GetDescription()

Figure 35 IObject interface

GetName() method returns the name and GetDescription() methods returns description of the
object. Most of the SMP elements are components and they derive IComponent interface.

Components can be a model, service or simulator.

42

IObject

(__IComponent)

+GetParent(): ICompositeJ

Figure 36 IComponent interface

IComponent interface defines GetParent() method that returns the parent of the component. All
models implement IModel interface. Since models communicate with the simulation

environment IModel interface has dependencies on IPublication and ISimulator interfaces.

? IComponent

[IModel)
+GetState(): ModelStateKind
+Publish (receiver: IPublication)
+Configure (logger: ILogger)
+Connect (simulator: ISimulator)

Figure 37 IModel interface

GetState() method returns current state of a model. Publish() method requests the model to
publish its field, properties or operation against the publication receiver. Configure() method
requests the model to perform any custom configuration. Connect() method is called to connect

the model to the simulation environment.

To convert the M2 model to an SMP2 compliant model M2ASIC class (in the implementation)
has to implement IModel interface. The next step is publishing model data to the simulation
environment. This is done by the function Publish() described above. Publish() method takes a
parameter Smp::IPublication *receiver, where IPublication interface provides a PublishField()

method that is used to publish the field data to the simulation environment.

Then services need to be prepared for the models. When calling the Connect() method by the
simulation environment a parameter is passed of ISimulator type. Using this parameter a model
can use any service provided by the simulation environment. Then the model should be added
to the scheduler. But before that an entry point should be created for that model. An entry point
is a method that does not take any parameter and it does not return any value. Then this entry
point should be scheduled by the scheduler. To register the model with a global event the event

manager service can be used. An event can be subscribed or unsubscribed to the event manager.

43

4.6 SMP2 adaptation for the current SMU simulator

The SMU core simulator of Ruag space has three components: TSIM, SimKernel and SimModel
[17]. TSIM is a processor emulator for ERC32/LEON processor. SimKernel contains the start up
routines, simulator infrastructure and services such as logger, scheduler etc. SimModel contains
the model for different IO boards, ASICs and buses.

TSIM

- Processor emulator module

A

SimKernel SimModel

- Startup routines and simulation
infrastructures

- Models of Asics, buses and
other hardware

Figure 38 SMU core simulator

To make the current simulator SMP2 compliant the first step is to make the simulation
environment. As the simulation environment contains services, it is necessary to take out the
services described in figure 28 from SimKernel and TSIM to a new entity called simulation
environment. TSIM contains the time keeper and the event manager services, where the
SimKernel contains the rest. But TSIM cannot be changed as the source code for TSIM is not
available. This problem can be solved by making a new component that will wrap the current
TSIM and will work as an SMP2 model. The services from the SimKernel will be taken out and
then put it in the simulation environment. TSIM will share its services with the simulation
environment which means that calls to the services in simulation environment that belong to
TSIM will be redirected to TSIM. There are some trade offs for this solution. First, the simulation
environment is not independent which violates SMP2 constraints. Second, there may be
unexpected delay due to service calls that belongs to TSIM. The IO boards in the SimModel can
be converted separately to SMP2 models or the SimModel can be wrapped as a single model to

minimize the effort.

44

Tsim
- not SMP2

Tsim_New SimModel

- SMP2 compliant \3[Mode/1 Jes Moderz |

— —

Simulation Environment (SimKernel)

I Logger " Scheduler " Time Keeper “ EventManager[

Figure 39 SMP2 compliant SMU core simulator

In both cases the simulator will be able to accept new SMP2 compliant models. There is another
solution to wrap the whole simulator as one model and use a simulation environment that
contains all the services. Since there will be two time keepers and two event managers,

synchronization among TSIM and simulation environment can be a problem.

5 Tests and Results

For an interrogation M2 generates correct response and it does some IO operations if it requires.
First a set of interrogations is written in a batch file. Then the file is loaded in the simulator.
These interrogations are then sent to OBDH RT by the OBDH CT. OBDH CT sends one
interrogation at a time and waits for the response. The M2 does some operations according to

the interrogation and generates response that is given back to the OBDH CT.

5.1 Test Environment

The M2 ASIC model is built and tested in a small environment as described in Figure 3. After
creating M2 it was connected to the OBDH CT and to TCP/IP link. First task is to start the
simulator. Then the following three windows will open and among them the Sim Interface
window is used to load a batch file that contains interrogation list.

45

| B Sim Interface

(oJ[=/E| & Sim Target sTDIN/OUT 17950 aEE

Script started, file is stdout.log

Starting SHU Sinulator

Entered Sparchion! 1)
Hode = Hominal node

TRSH for PANTHES

R
Build tine: 20111010 140143
TSIN init paramsters: -nouart —banks 4 —ram B4000 —Freq B5 —logfile Corsalelog.log —rowd —rom 32 -d

sets 2 -dosize 8 -dlsize 16 —drepl lru -issts 4 -icsize B -ilsize 32 -irepl lru Confreas Dxd0250000

monitor’
TSIM/LEON SPARC simulator, version 2,0,13 (professional version)

Copuright (0} 2001, Gaisler Research - all rights reserved.
For latest updatss, go to httpi//um,gaisler,con’
Comments or bug-reports to tsingaisier.con

1lacated 32768 k RAM nemory, in 4 hank(s)

Y
t 4 * 8 kbytes, 32 butes/line (32 kbutes total)
12 * 8 kbutes, 16 butes/line (16 kbutes total)

ection; ,text, addri 0x40000000, size 312360 butes
ection: .data, addr: 0x4004c630, size 9152 bytes

oglevel for TTR_B.CROME_DET is set ta info
oglevel for TTR_B.RM is set to info
esuming at Ox40000000

|sin> bateh hlc.batchll

B8 Sim Main Log ERRORS

Figure 40 SMU Core Simulator

Outputs are also generated in the Sim Interface window for the purpose of the report writing
though there is a log file that keeps track of operations. To start the IO operation the external
application is needed that can send and receive data through TCP/IP. A simple interface is used

for this application. It is written in C language. Here is a screenshot of the external application
while sending DS16 data to the TCP/IP port.

Drom Gmordva iy LOE

[aa0B80E]ocalhost “/ExternalAppl$.Aclient localhost 17368
Please enter data: OG1611110000111100110

Figure 41 External Application

The interrogations are listed in appendix B and the test results are provided in appendix C.
Here is an example for a list of interrogations in a batch file.

write 40180000 O0x000FE100 // Both IOGroupl and IOGroup2 are configured as
disabled
write 40180004 0x00080AE1l // Read IO0OGrpl2 Config register

46

write 40180008 0x000FE110 // I0Groupl is configured as port and IOGroup2

disabled

write 4018000C 0x00080AE1l // Read IOGrpl2 Config register

write 40180010 0x000FE200 // Both IOGroup3 and IOGroup4 are configured as
disabled

write 40180014 0x00080AE2 // Read IOGrp34 Config register

Every line starts with the ‘write’” command, then the memory location where the interrogation
will be written and then the interrogation is written in hexadecimal format. Interrogations are

written as a block of memory and there must be even number of interrogations.

The results are shown in the same window for convenience and look like the following

diagram.

Valid ML interrogation
Configure MZConfig registers
=% I0Groupl? Config register: O

Read Configuration registers
I0Grpl2Config: O
responseRin

Walid ML interrogation
Configure MZConfig registers
——» I0Groupl? Config register: 10

Read Configuration registers
I0Grpl2Config: 10
responzeRi 10

Valid ML interrogation
Configure MZConfig registers
——» I0Group3d4 Config register: O

Read Configuration registers
I0Grp34Config: O
responzeR 0

Figure 42 Result output for interrogation list

6 Discussion

The M2 ASIC software model was created and tested in the source code of Ruag’s SMU
simulator. It generates correct output for all the interrogations listed in Appendix A. Only the
M2 ASIC is tested in this environment. There was an idea to test the M2 model in such a way
that the actual hardware is tested. To create such real test environment requires a dedicated
person from Ruag’s side for a certain amount of time to train and help loading the Model in the

simulator. So the plan was cancelled for that time being and left for future development.

47

The customers of Ruag space are interested to have SMP2 compliant simulator due to its
advantages. So the thesis involves studies of SMP2. After the successful studies it is turned out
that Ruag simulator can be made in such a way that it can accept SMP2 models. But to
investigate more one should start using a tool for SMP2 development. We studied and found a
tool called SimSat4 MIE and it costs €4000. But it is a preliminary cost and costs will increase
much more in the future if the whole simulator is made SMP2 compliant. For the first step a
small project of SMP2 development is proposed to get hands on experience on SMP2 tools and
the SMP2 protocol. Then the next step is to convert the existing simulator SMP2 compliant.

7 Conclusion

7.1 M2 Simulator Model

The M2 Simulator model does not represent a complete model of the M2 ASIC as it does not
support some functions described in section 2.1. In the M2 ASIC IO operation is serial i.e. data is
sent or received one bit at a time so data synchronization is required. For the software model
data synchronization is not required at bit level as data transfer through TCP/IP port contains 8
or 16 bit of information. Results are satisfactory for the environment it is tested in. It could be
interesting to test the model in a real test environment discussed in section 6. Then it could be

observed how the M2 model behaves in real environment.

7.2 Simulation Modeling Portability

SMP2 compliancy for M2 ASIC is achievable using SMP2 MDK only. The MDK comes up with
the tool and it’s not for free. A good tool for SMP2 model development is SIMSAT4 [18] which
can generate and validate catalogues, assemblies and schedules. It has a code generator that
creates wrapper code for the models. But creating an SMP2 model will not make any difference
as the current system is not ready to accept SMP2 models. Now the challenge is to change the
current SMU simulator such that it can accept SMP2 compliant models. But TSIM contains some
services i.e. time keeper and event manager which belongs to the simulation environment. It is
hard to separate these services from TSIM to simulation environment. On the other hand there
is timing constraint as there are some operations which need to be done with no delays. It is
unknown that how much delay will be introduced if simulation environment plays the role of

TSIM. Other processor emulators should be considered for fully compliant SMP2 simulator.

48

8 References
[1] TSIM ERC32/LEON simulator

http://www.gaisler.com/cms/index.php?option=com content&task=view&id=38&Itemid=56

[2] ERC32 http://en.wikipedia.org/wiki/ERC32

[3] LEON

http://www.gaisler.com/cms/index.php?option=com content&task=section&id=4&Itemid=33

[4] M2 ASIC Specification, Document ID: P-ASIC-SPC-00052-SE, Issue no 12

[5] Data bus Interface System Standard, Document ID: TTC.B.01, Issue no 1

[6] SMP 2.0 Handbook, Document ID: EGOS-SIM-GEN-TN-0099, Issue no 1, Revision 2
[7]1 OBDH User’s manual, Document ID: P-ASIC-NOT-00100-SE, Issue no 2

[8] Simulation Model Portability Handbook, EWP-2080, Issue 1, Revision 4

[9] Simulation modelling platform - Volume 1: Principles and Requirements, ECSS-E-TM-40-07
Volume 1A

[10] SMP 2.0 Metamodel, EGOS-SIM-GEN-TN-0100, Issue 1, Revision 2

[11] Simulation modelling platform - Volume 2: Metamodel, ECSS-E-TM-40-07 Volume 2A
[12] SMP 2.0 C++ Mapping, EGOS-SIM-GEN-TN-0102 Issue 1, Revision 2

[13] Simulation modelling platform - Volume 4: C++ Mapping, ECSS-E-TM-40-07 Volume 4A
[14] SMP 2.0 C++ Model Development Kit, EGOS-SIM-GEN-TN-1001, Issue 1, Revision 2

[15] SMP 2.0 Component Model, EGOS-SIM-GEN-TN-0101, Issue 1, Revision 2

[16] Simulation modelling platform - Volume 3: Component Model, ECSS-E-TM-40-07 Volume

3A, Issueno 1
[17] Basic Software Validation Facility Systems Specification, P-CBSW-SPC-00003-SE, Issue no 3

[18] Simulation modelling platform -Volume 5: SMP usage, ECSS-E-TM-40-07 Volume 5A, Issue
nol

49

http://www.gaisler.com/cms/index.php?option=com_content&task=view&id=38&Itemid=56
http://en.wikipedia.org/wiki/ERC32
http://www.gaisler.com/cms/index.php?option=com_content&task=section&id=4&Itemid=33

Appendix A : Abbreviations

ACQ
ADC
AN
ASIC
BCP
BF

CA
CMD
COMP
CONFIG
CONV
CT
Ctrl
DA
DAC
DB
DEA
DR
DRM
DS
DS16
HLC
HLCM
I/F

10, I/O
LSB
ML
ML16
MLA
MLD
MOP
MSB
MUX
OBDH
OCD

Acquisition
Analog to Digital Converter
Analog (channel)
Application Specific Integrated Circuit
Broadcast Pulse
Broadcast Field
Channel Address
Command
Comparator
Configuration
Converter
Central Terminal
Control
Data Acquisition (type of OBDH interrogation)
Digital to Analog Converter
Digital Bilevel
Destination Address
Digital Relay
Digital Relay in Matrix configuration
Digital Serial
Digital Serial 16 bits format
High Level Command
High Level Command in Matrix configuration
Interface
Input/output
Least Significant Bit
Memory Load (type of OBDH interrogation)
Memory Load 16 bit serial interface
Memory Load Address
Memory Load Data
Mode of Operation
Most Significant Bit
Multiplexer
On Board Data Handling
Output Command Driver
50

00
RDF
Ref
Resp
RF
RT
RTU

SEL
Sync
TAF
TDF
TH

Tx
UART
Z

API
ESA
EuroSim
HITL
MDK
SIMSAT
SMDL
SMP
SMP1
SMP2
UML
UUID
XML

On/Off (type of OBDH interrogation)
Response Data Field

Reference

Response

Radio Frequency

Remote Terminal

Remote Terminal Unit

Receive

Select

Synchronization

Terminal Address Field

Terminal Data Field

Thermistor channel

Transmit

Universal Asynchronous Receiver Transmitter
High impedance

Application Programming Interface
European Space Agency

European Real-time Operations Simulator
Hardware-In-The-Loop

Model Development Kit

Software Infrastructure for the Modeling of Satellites
Simulation Model Definition Language
Simulation Model Portability

Simulation Model Portability 1
Simulation Model Portability 2

Unified Modeling Language

Universally Unique Identifier

Extensible Markup Language

51

Appendix B: Interrogation List

The following interrogations are used in section 5 for testing the M2 ASIC model.

DA Interrogation list

Operation

Interrogation

DR acquisition with An(ch)
and Ref(0), ch = CA[5:0]

0000 0000 0000 1000 0000 1000 00xx xxxx

DB acquisition with An - VrefL

0000 0000 0000 1000 0000 1000 01xx xxXx

DB acquisition with
An(64) — An(65)

0000 0000 0000 1000 0000 1000 10xx xxXx

DB acquisition with
An(66) — An(67)

0000 0000 0000 1000 0000 1000 T1xx xxXx

DB acquisition using
An(ch) — VrefL, ch = CA[3:0]

0000 0000 0000 1000 0000 1110 0000 xxxx
[DIGDB = 0]

DB using Compln

0000 0000 0000 1000 0000 1110 xxXXX XXXX
[DIGDB = 1]

Differential AN with An(ch-1) —
An(ch), ch = CA[5:0]

0000 0000 0000 1000 0000 110x 00xx xxxx

Single ended AN with An(ch) -

VrefH, ch = CA[5:0]

0000 0000 0000 1000 0000 110x 01xx xxxX

Differential AN with An(64) -

An(65)

0000 0000 0000 1000 0000 110x TOxx xxxX

Differential AN with An(66) -

An(67)

0000 0000 0000 1000 0000 110x T1xx xxXX

TH acquisition with An(ch)

and Ref(0), ch = CA[5:0]

0000 0000 0000 1000 0000 10x1 00xx xxxx

52

TH acquisition with An(ch)

and Ref(1), ch = CA[5:0]

0000 0000 0000 1000 0000 10x1 01xx xxxx

TH acquisition with An(ch)

and Ref(2), ch = CA[5:0]

0000 0000 0000 1000 0000 10x1 T0xx xxxx

TH acquisition with An(ch)

and Ref(3), ch = CA[5:0]

0000 0000 0000 1000 0000 10x1 T1xx xxxx

DS16 Acquisition 0000 0000 0000 1000 0000 1010 00xx xxXX
Read UART Tx registers 0000 0000 0000 1000 0000 1010 0100 xxxx
Read UART Rx registers 0000 0000 0000 1000 0000 1010 0101 xxxx

Read DAC/Timer registers

00 00000 1000 0000 1010 0110 xxxx

ML Interrogation list

Operation

Interrogation

ML16 Operation / Write
Operation on
PortOut1234Register

0000 0000 0000 T00T xXXX XXXX XXXX XXXX

ML16 Operation / Write
Operation on
PortOut1234Register

0000 0000 0000 10710 xXXX XXXX XXXX XXXX

ML16 Operation / Write
Operation on
PortOut1234Register

0000 0000 0000 TOTT XXXX XXXX XXXX XXXX

ML16 Operation / Write
Operation on
PortOut1234Register

0000 0000 0000 1700 XXXX XXXX XXXX XXXX

ML16 Operation / Write
Operation on

0000 0000 0000 TT0T XXXX XXXX XXXX XXXX

53

PortOut5678Register

ML16 Operation / Write
Operation on
PortOut5678Register

0000 0000 0000 TTT0 XXXX XXXX XXXX XXXX

Write Operation on UART Tx
Registers

0000 0000 0000 11171 0100 XXXX XXXX XXXX

Write operation on Prolonged
Settings register

0000 0000 0000 1111 0101 XXXX XXXX XXXX

Write Operation on DAC/Timer

Registers

0000 0000 0000 11171 0110 XXXX XXXX XXXX

Write Operation on DAC/Timer

Registers

0000 0000 0000 11171 OTTT XXXX XXXX XXXX

Write Operation on DAC/Timer

Registers

0000 0000 0000 1111 1000 XXXX XXXX XXXX

Write Operation on DAC/Timer

Registers

0000 0000 0000 1117 100T XXXX XXXX XXXX

Write Operation on DAC/Timer

Registers

0000 0000 0000 1111 1070 xXXX XXXX XXXX

Write Operation on DAC/Timer

Registers

0000 0000 0000 1117 10T XXXX XXXX XXXX

Write Operation on DAC/Timer

Registers

0000 0000 0000 1111 1700 xXXXX XXXX XXXX

Write Operation on DAC/Timer

Registers

0000 0000 0000 1111 1101 XXXX XXXX XXXX

Write Operation on M2

configuration registers

0000 0000 0000 1111 1110 XXXX XXXX XXXX

54

Write Operation on M2 Configuration Registers

Operation Interrogation
IOGrp12 Config 0000 0000 0000 1111 1110 0001 XXXX XXXX
IOGrp34 Config 0000 0000 0000 1111 1110 0010 XXXX XXXX
IOGrp56 Config 0000 0000 0000 1111 1110 0011 XXXX XXXX
IOGrp78 Config 0000 0000 0000 1111 1110 0100 XXXX XXXX

HlcLengthl Config

0000 0000 0000 11171 1110 0101 XXXX XXXX

HlcLength2 Config

0000 0000 0000 11171 1110 0110 XXXX XXXX

Latch/UART Config

0000 0000 0000 1111 1110 0111 XXXX XXXX

BCP and Acquisition Config

0000 0000 0000 11171 1110 1000 XXXX XXXX

Counter12 Config 0000 0000 0000 1111 1110 1001 XXXX XXXX
Counter34 Config 0000 0000 0000 1111 1110 1010 XXXX XXXX
DAC/Timer12 Contfig 0000 0000 0000 1111 1110 1011 XXXX XXXX
DAC/Timer34 Config 0000 0000 0000 1111 1110 1100 XXXX XXXX
DAC/Timer56 Config 0000 0000 0000 1111 1110 1101 xxXXX XXXX
DAC/Timer78 Config 0000 0000 0000 1111 1110 1110 XXXX XXXX
Parity 0000 0000 0000 1111 1110 1111 xXXX XXXX

Read Operation on M2 Configuration Registers

Operation Interrogation
IOGrp12 Config 0000 0000 0000 1000 0000 1010 1110 0001
IOGrp34 Config 0000 0000 0000 1000 0000 1010 1110 0010

55

IOGrp56 Contig

0000 0000 0000 1000 0000 1010 1110 0011

I0Grp78 Contig

0000 0000 0000 1000 0000 1010 1110 0100

HlcLengthl Config

0000 0000 0000 1000 0000 1010 1110 0101

HlcLength2 Config

0000 0000 0000 1000 0000 1010 1110 0110

Latch/UART Config

0000 0000 0000 1000 0000 1010 1110 0111

BCP and Acquisition Config

0000 0000 0000 1000 0000 1010 1110 1000

Counter12 Config 0000 0000 0000 1000 0000 1010 1110 1001
Counter34 Config 0000 0000 0000 1000 0000 1010 1110 1010
DAC/Timer12 Config 0000 0000 0000 1000 0000 1010 1110 1011
DAC/Timer34 Config 0000 0000 0000 1000 0000 1010 1110 1100
DAC/Timer56 Config 0000 0000 0000 1000 0000 1010 1110 1101
DAC/Timer78 Config 0000 0000 0000 1000 0000 1010 1110 1110
Parity 0000 0000 0000 1000 0000 1010 1110 1111

OO Interrogation list

Operation

Interrogation

HLC command using
HlcLengthl register

0000 0000 0000 1000 0000 0011 xXXX XXXX

HLC command using
HlcLength2 register

0000 0000 0000 1000 0000 0100 XXXX XXXX

56

Appendix C: Test results

Testing ML interrogations

Interrogations are written as a block of memory and there must be even number of

interrogations. Below there is a list of ML interrogations related to register configuration. Each

interrogation is commented with brief description.

write 40180000 0x000FE100 // Both IOGroupl and IOGroup2 are configured as
disabled

write 40180004 0x00080AE1l // Read IOGrpl2 Config register

write 40180008 0x000FE110 // I0Groupl is configured as port and IOGroup2

disabled

write 4018000C 0x00080AE1l // Read I0Grpl2 Config register

write 40180010 0x000FE200 // Both IOGroup3 and IOGroup4 are configured as
disabled

write 40180014 0x00080AE2 // Read I0Grp34 Config register

write 40180018 0x000FE210 // I0Group3 is configured as port and IOGroupé

disabled

write 4018001C 0x00080AE2 // Read IOGrp34 Config register

write 40180020 0x000FE300 // Both IOGroup5 and IOGroup6 are configured as
disabled

write 40180024 0x00080AE3 // Read IOGrp56 Config register

write 40180028 0x000FE310 // I0Groupb5 is configured as port and IOGroupb6

disabled

write 4018002C 0x00080AE3 // Read IOGrp56 Config register

write 40180030 0x000FE400 // Both IOGroup7 and IOGroup8 are configured as
disabled

write 40180034 0x00080AE4 // Read IOGrp78 Config register

write 40180038 0x000FE410 // I0Group7 is configured as port and IOGroupS8

disabled

write 4018003C 0x00080AE4 // Read IO0OGrp78 Config register

write 40180040 0x000FE554 // HlcLengthl Configuration, N2 = 5 and N1 = 4

57

write

write

write

write

write

write

write

write

write

write

write

write

write

write

write

write

write

write

write

write 40180090 OxOOOFEF11

40180044

40180048

4018004cC

40180050

40180054

40180058

4018005C

40180060

40180064

40180068

4018006C

40180070

40180074

40180078

4018007C

40180080

40180084

40180088

4018008C

0x00080AES

0x000FE60A

0x00080AE6

0x000FE808

0x00080AES8

0x000FE701

0x00080AE7

0x000FE990

0x00080AE9

0x000FEAO9

0x00080AEA

0x000FEB11

0x00080AEB

0x000FEC11

0x00080AEC

0x000FED11

0x00080AED

0x000FEE11l

0x00080AEE

//
//
//
//

/7

/7

//
//
//
//
//
//

//

//
//
//
//
//
//
//

Read HlcLengthl register
HlcLength2 Configuration, N2 = 0 and N1 = A
Read HlcLength2 register

BCP and Acquisition Config register

Read BCP and Acquisition Config register

Latch/UART Config register

Read Latch/UART Config register
Counterl2 Config
Read Counterl2 Config register
Counter34 Config
Read Counter34 Config register

DAC/Timerl2 Config

Read DAC/Timerl2 Config register

DAC/Timer34 Config
Read DAC/Timer34 Config register
DAC/Timer56 Config
Read DAC/Timer56 Config register
DAC/Timer78 Config
Read DAC/Timer78 Config register

Parity register configuration

The output for the given script looks like this:

58

Valid ML interrogation
Configure M2Config registers
—=» 10Groupl? Config register:

Read Configuration registers
10Grp12Config: O
responzeR 0

VYalid ML interrogation
Configure M2Config registers
——» I0Groupl2 Config regizter:

Read Configuration registers
I0Grp12Configy 10
responseRil0

Yalid ML interrogation
Configure M2Config registers
—=% I0Group34 Config register:

Read Configuration registers
I0Grp34Config: O
responzefR sl

Valid ML interrogation
Configure M2Config registers
—=» I0Group24 Config register:

Read Configuration registers
10Grp34Config: 10
rezponzeRs10

VYalid ML interrogation
Configure M2Config registers
——# I0GrowpbE Config register:

Read Configuration registers
I0GrpaEConfFig: O
responzeR sl

Valid ML interrogation
Configure M2Config registers
—=% I0GroupSE Config register:

Read Configuration registers
10GrpaEConfigy 10
responzefi 10

Valid ML interrogation
Configure M2Config registers
—=» I0Group?d Config regizter:

Read Configuration registers
I0Grp7EConfig: O
responseRil

Yalid ML interrogation
Configure M2Config registers
—=» I0Group?d Config register:

Read Configuration registers
I0Grp7EConfigy 10
responzeRsl0

f=3

f=3

E=3

=

Yalid ML interrogation
Configure MZ2Config regizters
- HLC Length 1 config register: 04

Fead Configuration registers
HlclengthlConfig: 54
responsel s hd

Valid ML interrogation
Configure M2Config registers
——» HLC Length 2 config register: a

Read Configuration regizters
HlclengthZ2Config: a
rezponzeRia

Yalid ML interrogation
Configure MZ2Config regizters
——» BCP and Acquisition config register: 8

Read Configuration regizters
BCPandAcglonfig: 8
responseR ;8

Valid ML interrogation
Configure MZ2Config regizters
- Latch/UART config register: 1

Fead Configuration registers
LatchOrUARTConfig: 1
responseR 1l

Yalid ML interrogation
Configure M2Config registers
——» Counterl? Config Regizter: 90

Read Configuration regizters
Counter12Config: 90
responzeR: 90

Yalid ML interrogation
Configure MZ2Config regizters
—=» Counter34 Config Register: 9

Fead Configuration registers
Counter34Config: 9
responseR ;9

Valid ML interrogation
Configure M2Config registers
——» DAC/Timerl? Config Register: 11

Read Configuration registers
DACOrTimer12Config: 11
rezponzeR:1l

Figure 43

59

Walid ML interrogation
Configure M2Config registers
—=» DACATimer34 Config Register: 11

Read Configuration registers
DACOrTimer34Config: 11
responzeR:1ll

Walid ML interrogation
Configure M2Config registers
——» DAC/TimerS6 Config Register: 11

Read Configuration registers
DACOrTimerSBConfig: 11
responzeR:ll

Yalid ML interrogation
Configure H2Config registers
—=» DAC/Timer?8 Config Register: 11

Read Configuration registers
DACOrTimer78Config: 11
responzeRi1ll

Walid ML interrogation
Configure M2Config registers
-—» Config Parity Register: 11

Read Configuration registers
Parity: 11
responzeRsll

Ouput for ML interrogations

Testing DA interrogations

Tests for different types of DA interrogations are given below.

Testing AN acquisition

The following test contains analogue channel (AN) acquisitions. In this case the channel values
are set by the external application. The external application sends data to the corresponding
channel and these are user defined. In this case channel 29, 30, 64, 65, 66, 67 gets 1,1, 1,0, 0, 0

respectively.

write 40180000 0x00080C1E // Differential AN with An (29)-An(30)
write 40180004 0x00080D1E // Differential AN with An(29)-An(30)
write 40180008 0x00080C5E // Single Ended AN with An (30)-VrefH
write 4018000C 0x00080D5E // Single Ended AN with An (30)-VrefH
write 40180010 0x00080C9E // Differential An with An(64)-An(65)
write 40180014 0x00080D9E // Differential An with An(64)-An(65)
write 40180018 0x00080CDE // Differential An with An(66)-An(67)
write 4018001C 0x00080DDE // Differential An with An(66)-An(67)
Test results for the AN acquisition are given below:

Differential AM with [AN(29) - AR(3S0)]

An[z9]: 1

An[30]: 1

responseR: 0

Differential AM with [AN(239) - AN{30)]

Aan[29]: 1

AnC30]: 1

responssR: 0

Single ended AM with [AR(3E0) — YeefH]

responseR: 1

Single ended AM with [AR(30) — YeefH]

responssR: 1

Differential AM with [AN(E4) - AN{ES5)]

responseR: 1

Differential AM with [AR(E4) — ANR(ES)]

responseR: 1

Differential AM with [AN(EE) — AN(EF)]

responseR; 0

Differential AM with [AN(EE) — AN{GEF)]

responssR: O

Figure 44 AN interrogation

60

Testing TH acquisition

write 40180020

write 40180024

write 40180028

write 4018002C

write 40180030

write 40180034

write 40180038

write 4018003C

0x0008091E

0x00080B1E

0x0008095E

0x00080B5E

0x0008099E

0x00080BYE

0x000809DE

0x00080BDE

//
//
//
//
/7
//

/7

TH

TH

TH

TH

TH

TH

TH

Acquisition
Acquisition
Acquisition
Acquisition
Acquisition
Acquisition

Acquisition

// TH Acquisition

Results of TH acquisition look like the following:

with

with

with

with

with

with

with

with

An (30)
An (30)
An (30)
An (30)
An (30)
An (30)
An (30)

An (30)

TH acquisition with An(30) and Rref(0) where ch = CA[S:0]

An[30]: 1
Rref[0]: O

responzeR: 1

TH acquisition with An(30) and Rref(0) where ch = CA[S:0]
An[30]: 1

Rref[0]: O

responzeR: 1

TH acquisition with An(20) and Rref(l) where ch = CA[G:0]

An[30]: 1
Rref[1]: o

responzeR: 1

TH acquisition with An(30) and Rref(l) where ch = CA[S:0]

An[30]: 1
Rref[1]: o

responzeR: 1

TH acquisition with An(30) and Rrefi2) where ch = CA[S:0]

An[30]: 1
Rref[2]: 0

responseR: 1

TH acquisition with An(30) and Rref(2) where ch = CA[S:0]

An[30]; 1
Rref[2]: o

rezponzeR; 1

TH acquisition with An(30) and Rref(3) where ch = CA[S:0]

An[30]: 1
Rref[3]1: 0

responzeR: 1

TH acquisition with An(30) and Rref(2) where ch = CA[G:0]

An[30]: 1
Rref[2]: 0

responzeR: 1

Figure 45

TH interrogation Results

Testing DB/DR acquisitions

Here is a set of interrogations for DB/DR acquisition and the test results as well.

write 40180040

0x0008081E

// DR acquisition with An(30)

61

and

and

and

and

and

and

and

and

and

Rref (0)

Rref (0)

Rref (1)

Rref (1)

Rref (2)

Rref (2)

Rref (3)

Rref (3)

Ref (0)

write

write

write

write

write

write

write

write

write

40180044 0x0008085E

40180048 0x0008089E

4018004C 0x000808DE

40180050 0xO000FES800

40180054 0x00080EOD

40180058 0x00080EOQOE

4018005C 0x0O00FE808

40180060 0xO00FE409

40180064 0x00080EDE

IR with An(30) and Ref(0)
- MN[30] =1
- B3] = 0
- MN[1R] = 0
-=» AN[AF] = 0
- (18] = 1
- MN[19] = 1
== BN[20] = 0

1=0
R0

Responze I 0110001

IB with An(30) - Vrefl
- AN[30]
- AN[3L]
- AN[1R]
--» AN[17]
- AN[18]
--» N[19]
- AN[20]
--» N[21]
R

Responze I

B T R T T TR TR T BT R T

1
0
i
0
1
1
0
0
i

110001

IB with An(B4) - ANIES) response ¢ OODOO0CL

IB with Bn(fE) - ANCEY) responseR:)

Figure 46

DS16 acquisition testing

// DB with An (30)-VreflL

// DB with An(64)-An(65)

// DB with An(66)-An(67)

// Set DIGDB = 0

// DB with DIGDB = 0

// DB with DIGDB = 0

// set DIGDB = 1

// Configure IO Group8 as Mx16
// DB with DIGDB = 1

Walid ML interrogation

DB on channel :d
- A

=
=
=
=
=
=
-
DIGDE=0

SRRPRoRoRE

AL nnnnnn

onseRieb

H
+
o

L T o T T T

PRERSR O

DIGDE=0 responzeR:ifS

Walid ML interrogation

Walid ML interrogation

CompIn DIGDE=1 responszeR:ab

Configure M2ZConfig registers
——» BCP and Acquizition config register: O

Configure M2Config registers
——» BCP and Acquisition config register: 8

Configure M2ZConfig registers
—=> I0Group?8 Config register: 9

DB/DR Interrogation Results

Interrogations and results for DS16 testing are given below:

write

write

write

write

40180068 0x000FE140

4018006C 0x00080A03

40180070 O0x000FE160

40180074 0x00080A03

// Configure IO Groupl
// DS16 Acquisition on
// Configure IO Groupl

// DS16 Acquisition on

62

as

I0

as

I0

ML161DS161
Groupl
DS16

Groupl

write 40180078 0x000FE460

write 4018007C 0x00080A30

// Configure IO Group7 as DS16

// DS16 Acquisition on IO Group?

Yalid HL interrogation
Configure M2Config registers
—=% I0Groupl? Config register: 40

05 16 acquizition
[0Grpl .. DS1E; FOF3

Walid ML interrogation
Configure M2Config registers
——» 10Groupl2 Config regizter: BO

IS 1B acquizition
[0Grpl L., DS1E: FOF3

Yalid HL interrogation
Configure M2Config regizters
—=» [0Group?d Config register: GO0

IS 16 acguizition
[0Grp? ... DS163 fOf3

Testing OO interrogations

Figure 47

DS16 acquisition

OO interrogations are listed below with brief description.

write

write

write

write

write

write

write

write

write

write

write

write

write

40180000

40180004

40180008

4018000C

40180010

40180014

40180018

4018001C

40180020

40180024

40180028

4018002C

40180030

0x000FE554

0x000FE645

0x000FE3CO

0x000803FF

0x000FE30C

0x000803FF

0x000FE4CO

0x000804FF

0x000FE40C

0x000804FF

0x000D2EBC

0x000FE3EO

0x000FE4DO

//
//
//
//
//
//
//
//
//
//
//
//
//

HlcLengthl Configuration,

HlcLength2 Configuration,

Set

HLC

Set

HLC

Set

HLC

Set

HLC

N2
N2
IO Groupb5 as HlcSer
command using HlcLengthl
IO Groupb as HlcSer
command using HlcLengthl
IO Group7 as HlcSer
command using HlcLength?2
IO Group8 as HlcSer

command using HlcLength?2

Write 2EBC to PortOut5678

Set

Set

IO Groupb5 as HlcSer4

IO Group7 as HlcSer64

63

5 and N1

5 and N1

register

register

register

register

Register

write 40180034 0x000803FF // HLC command using HlcLengthl register

write 40180038 0x000804FF // HLC command using HlcLength2 register
write 4018003C 0x000FE40D // Set IO Group8 as HlcSer64

write 40180040 0x000804FF // HLC command using HlcLength2 register
write 40180044 0x000804FF // To make even number of interrogation

Here is the output for the above interrogations:

00 Interrogation
Hlclength2Config >» nl: © n2: 4

weili GiL, SRR hleStr length: 19286 using hlcSerial

Configure M2Config registers

—=» HLC Length 1 config register: 54 Yalid HL interrogation

Configure M2Config registers

Yalid ML interrogation —=» 10Group?d Config register: c

Configure M2Config registers

—=» HLC Length 2 config register: 45 T Terremsm

HlclengthZConfig »» nl: & n2: 4

e (L Aerremean hlcStr length: 12288 using hlcSerial

Configure M2Canfig regizters

—=» I0GroupBE Config register: ci Yalid ML interrogation

Write access to output port register 5678 ———- HLA

00 Interrogation Walid ML interrogation

. . . Configure MZConfig regizters
HlcLengthlConfig >> nl: 4 n2: & = . : R
hlcStr length: BESE using hlcSerial # 106roupSE Config register: el

VYalid HL interrogation
Configure M2Config registers
—=» I0GroupSE Config register: c

Valid HL interrogation
Configure M2Config registers
—=» I0Group?d Config register: di

00 Interrogation 00 Tnterrogation
HlclengthiConfig »» nl: 4 n2: & -

i : . HlclengthlConfig >» nl: 4 n2: &
hicstaglencthtsobiu=iolhlcsegial hlcStr length: BESE using hlcParBd on channel 2e

Walid ML interrogation 10 Tierramsie

Configure M2Config registers -
— ; : . Hlclength2Config »» nl: § n2:
2 10GroupT8 Config register: cf hlcStr lengthy 12288 uzing hlcPar4 on channel 2e
Figure 48 OO Interrogations and results

Testing ML16 interrogations

ML16 interrogations are special kind of ML interrogations where IO operations are also

involved. Here are some ml16 interrogations:

write 40180000 0x000FE140 // IOGroupl configured as ML161DS161
write 40180004 0x00091234 // ML16 operation on IO Groupl
write 40180008 0x000FE1IDO // IOGroupl configured as ML16
write 4018000C 0x000FE20D // IOGroup4 configured as ML16

write 40180010 0x00091234 // ML16 operation on IO Groupl and IO
Group4

64

write 40180014 0x00091234 // ML16 operation on IO Groupl and IO
Group4

Outputs after executing the instructions:

Walid HL interraogation
Configure MZConfig registers
== I0Groupl? Config register: 40

Walid HL interrogation
I0GRPL = Q100 —— ML1EDS1E and ML Data: 1234
Walid HL interrogation

Configure MZConfig regizters
——» I0Groupl? Config register: dO

Walid HL interrogation
Configure MZConfig regizters
——» I0Group3d Config reqister: d

Yalid ML interraogation
I0GRPL and IOGRP4 = ML1G and HL Data; 1234

Walid HL interrogation
I0GRPL and IOGRP4 = ML1G and ML Datai 1234

Figure 49 ML16 interrogations and results

65

