
IT 13 002

Examensarbete 30 hp
Januari 2013

M2 Simulator Model

Rahbee Alvee

Institutionen för informationsteknologi
Department of Information Technology

Teknisk- naturvetenskaplig fakultet
UTH-enheten

Besöksadress:
Ångströmlaboratoriet
Lägerhyddsvägen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 – 471 30 03

Telefax:
018 – 471 30 00

Hemsida:
http://www.teknat.uu.se/student

Abstract

M2 Simulator Modul

Rahbee Alvee

M2 is a mixed analog/digital Application Specific Integrated Circuit (ASIC) that is used
as an IO controller at Ruag Space. The thesis aims to develop a simulation model of
an M2 ASIC for using in Ruag simulator and examine how this model can be made
compatible with Simulation Model Portability (SMP) version 2. SMP2 is a standard
developed by the European Space Agency (ESA) to simulate models together with
European companies in the aerospace industry. The purpose of SMP2 is to enable
portability between different simulation platforms. The outcome of this thesis is an
M2 simulation model based on known theories and an investigation of SMP2 that
implies how M2 can be adopted to be SMP2 compliant. The result of the SMP2
investigation also indicates partially how the existing simulation models in the current
Ruag simulator can be converted to SMP2 models.

Tryckt av: Reprocentralen ITC

Sponsor: RUAG Space AB
IT 13 002
Examinator: Philipp Rümmer
Ämnesgranskare: Leif Gustafsson
Handledare: Anders Petersén

4

5

Acknowledgement

First and foremost I would like to offer my sincerest gratitude to my thesis supervisor Anders

Petersén who guided and supported me throughout the whole project. Working under his

supervision was a great pleasure as I had freedom to work and think on my own. I would like

to thank my thesis reviewer Leif Gustafsson for helping me in the report writing.

I am thankful to Jan Georgesson, Olle Martinsson and Patrik Sandin since without their help it

would be impossible to complete the thesis project successfully. Jan Georgesson guided me to

get familiar with the Ruag simulator and to implement the M2 ASIC simulator model. Olle

Martinsson helped me understand the M2 ASIC functionalities. Patrik Sandin helped me to

understand the implications of SMP2 over the current simulator.

Thanks to my parents for encouraging me for the Master studies in Uppsala University, Sweden

and for supporting me throughout my entire life.

6

7

Contents

1 Introduction .. 12

 1.1 Background ... 12

 1.2 Purpose .. 12

2 M2 ASIC .. 12

 2.1 Functional Summary ... 14

3 Implementation of M2 ASIC Model .. 16

 3.1 Modes of M2 ... 18

 3.2 Interrogation ... 18

 3.2.1 Memory Load (ML) Interrogation .. 18

 3.2.2 Data Acquisition (DA) Interrogation ... 19

 3.2.3 On/Off Command (OO) Interrogation ... 19

 3.3 Response ... 20

 3.4 Interrogation Parsing ... 20

 3.4.1 ML Interrogation Parsing .. 21

 3.4.1.1 Write Operation for M2 Configuration Registers ... 22

 3.4.1.2 ML16 Operations ... 24

 3.4.1.3 Write Operation on Output port ... 25

 3.4.1.4 OO Interrogation Parsing ... 27

 3.4.1.5 HLC Command ... 27

 3.4.2 Data handling through TCP/IP .. 28

 3.4.3 DA Interrogation Parsing .. 30

 3.4.3.1 AN/TH Acquisition ... 30

8

 3.4.3.2 DB/DR Acquisition.. 31

 3.4.3.3 DS16 Acquisition ... 32

 3.4.3.4 Input port registers ... 33

 3.4.3.5 Output port registers read operation ... 34

4 Simulation Model Portability ... 34

 4.1 Background ... 34

 4.2 SMP2 Architecture .. 36

 4.2.1 Simulation Environment ... 36

 4.2.2 Operational phases .. 38

 4.3 SMP2 Mechanism .. 39

 4.4 Inter model communication .. 40

 4.4.1 Interface based design ... 40

 4.4.2 Event based design .. 40

 4.4.3 Dataflow based design .. 41

 4.5 SMP2 adaptation of M2 ASIC Model .. 41

 4.6 SMP2 adaptation for the current SMU simulator .. 44

5 Tests and Results .. 45

 5.1 Test Environment .. 45

6 Discussion ... 47

7 Conclusion .. 48

 7.1 M2 Simulator Model .. 48

 7.2 Simulation Modeling Portability ... 48

8 References ... 49

9

Appendix A : Abbreviations... 50

Appendix B: Interrogation List .. 52

Appendix C: Test results ... 57

List of Figures

Figure 1 Functional block diagram of M2 ASIC 13

Figure 2 M2 application example 14

Figure 3 M2 ASIC Environment 17

Figure 4 State diagram of M2 17

Figure 5 Basic Interrogation Format 18

Figure 6 Interrogation format in memory 18

Figure 7 Memory Load Interrogation Format 19

Figure 8 Data Acquisition Interrogation Format 19

Figure 9 On/Off Interrogation Format 19

Figure 10 Response format 13/21 bits 20

Figure 11 Interrogation Parsing 21

Figure 12 ML Interrogation Parsing 22

Figure 13 Write operation for M2 Configuration Registers 23

Figure 14 ML16 operation 25

Figure 15 Write operation Output port 26

Figure 16 Port out 1234 26

Figure 17 Port out 5678 26

Figure 18 OO Interrogation Parsing 27

10

Figure 19 HlcLength$ Config register 27

Figure 20 HLC Command operation 28

Figure 21 DA Interrogation Parsing 30

Figure 22 AN/TH Acquisition 31

Figure 23 DB/DR Acquisition 32

Figure 24 DS16 Acquisition 33

Figure 25 Input port registers 33

Figure 26 Output port registers Read operation 34

Figure 27 SMP2 architecture 36

Figure 28 State Diagram of Simulation Environment 37

Figure 29 SMP2 operational phases 39

Figure 30 SMP2 Mechanism 39

Figure 31 Interface based communication 40

Figure 32 Event based design 41

Figure 33 Dataflow based design 41

Figure 34 SMP Component 42

Figure 35 IObject interface 42

Figure 36 IComponent interface 43

Figure 37 IModel interface 43

Figure 38 SMU core simulator 44

Figure 39 SMP2 compliant SMU core simulator 45

Figure 40 SMU Core Simulator 46

Figure 41 External Application 46

11

Figure 42 Result output for interrogation list 47

Figure 43 Ouput for ML interrogations 59

Figure 44 AN interrogation 60

Figure 45 TH interrogation Results 61

Figure 46 DB/DR Interrogation Results 62

Figure 47 DS16 acquisition 63

Figure 48 OO Interrogations and results 64

Figure 49 ML16 interrogations and results 65

List of Tables

Table 1 IO Group Configuration Table 23

Table 2 TCP/IP Message Data Format 29

12

1 Introduction

1.1 Background

Ruag Space develops and manufactures equipment to use in space, mainly computers and

computer equipment and related software, control systems, antennas and microwave. The

equipments are part of launchers, satellites and other spacecraft. Ruag Space is developing a

data management system software which consists of hardware drivers. To support the

development of this software a simulator is designed based on the Tsim Aeroflex Gaisler [1],

which is a cycle-based simulator for a ERC32 [2] /LEON [3] processor.

The M2 ASIC [4] constitutes a highly integrated, low-power core component for digital I/O and

analog data acquisition in spacecraft data handling systems. M2 contains AD converters, analog

channels for thermistor measurements, digital IO functions for generating command pulses, a

general IO port and a control interface that can be either an OBDH [5] bus or an UART.

Simulation Modeling Portability version 2 [6] was released in 2004 and after that it has updated

several times. The purpose of the SMP2 Standard is to promote portability of models among

different simulation environments and operating systems, and to promote the reuse of

simulation models.

1.2 Purpose

The simulator that Ruag Space has developed is written in C++ and executes on a standard

Linux computer. The link to the outside world is done using TCP / IP sockets. Being an internal

tool for software development, the simulator has evolved to become a product for Ruag’s

customers. So it is becoming important that peripherals such as IO cards are represented in the

simulator too. To serve this purpose the thesis aims to develop a simulator model of the M2

ASIC using C++ programming language and it also involves investigation of the SMP2

standard. Ruag Space does not have any previous experience on SMP2. Investigation of the

SMP2 standard should give direction on how to make SMP2 compliant simulator models. It

should also indicate how to make the existing SMU simulator SMP2 compliant.

2 M2 ASIC

This section focuses on how the M2 ASIC works and it’s functionalities that Ruag space uses

right now. The functional block diagram of M2 is given below. The OBDH Remote Terminal

(RT) block receives interrogations from OBDH Central Terminal (CT) and transmits responses

according to the specifications. The OBDH control block compares the Terminal Address Field

13

(TAF) per interrogation to the remote terminal address RtAddr(4:0) inputs. In case of no match,

the Terminal Data Field (TDF) field is ignored and no response is generated. In case of matching

address the interrogation is further handled by the CONFIG AND CMD CTRL block for ML or

OO interrogations, otherwise, i.e. in case of DA, by the ACQ CTRL block. The UART / OBDH

Bridge receive bytes on the UART Rx and convert them into interrogations. Responses are

converted into bytes which are transmitted over the UART Tx. There are 8 IO groups which can

be configured for intended functionalities. Each IO group contains one input and four outputs.

The analogue block is responsible for providing analogue data from sources and then converts

it to digital data.

Figure 1 Functional block diagram of M2 ASIC

The hardware configuration for a typical application for the M2 ASIC on a standard IO board

should look like following diagram. This is an example where it is shown how the M2 ASIC

should be connected along with its support circuits on a standard IO board.

14

Figure 2 M2 application example

2.1 Functional Summary

The M2 ASIC hardware is capable of doing the following functions. But the software model is

only capable to perform those functions which are currently used by Ruag Space. In this section

all the functionalities of the M2 ASIC are briefly described with the limitations of the software

model.

OBDH-RT for OBDH bus control of the M2

When M2 gets an interrogation from the OBDH-CT the OBDH-RT takes control the OBDH bus

and sends response according to the interrogation. After that bus control transfers to OBDH-CT.

This functionality is implemented for M2 ASIC model.

UART / OBDH bridge for UART control of the M2

In the UART mode interrogation and responses are handled by the UART / OBDH bridge block.

It receives bytes from the OBDH-CT by the UART Rx which is interpreted as interrogation and

then respective response is generated and converted into bytes which are transmitted over

UART Tx. This functionality is not implemented as the software model does not support the

UART mode of operation. The UART is not used in any application of M2 ASIC used by Ruag

Space.

15

12 bit ADC for AN and TH channels

The real M2 ASIC hardware deals with analogue data from the analogue channels. The

Analogue to Digital Converter (ADC) converts the analogue data to 12bit digital data. But in the

simulator we deal with only digital data.

Comparator for DB and DR channels

The comparator is used specially to compare the values of two different source of the same

type. In the software model implementation traditional comparison operator is used to compare

values.

Switchable resistive conditioning for TH and DR channels

In M2 ASIC resistive conditioning of the reference resistance values is possible. The same

facility is available in the software model as well.

Control of external multiplexer for AN and DB channels

The real M2 ASIC uses internal signals to control external multiplexing functionalities. The IO

groups need to be configured to get desired multiplexer. The software model reads the

multiplexing configuration from the IO group configuration registers and uses programming

techniques instead of using internal signals.

Generation of control signals for HLC

High Level Command (HLC) is a pulse command and its width is programmable. In the

software implementation the pulse width is calculated and appropriate response is sent back to

the OBDH-CT.

ML/DS channel interfaces

Memory Load (ML) and Digital Serial (DS) interfaces involve IO Groups configured in ML/DS

operation where data is sent or received serially through these interfaces. Serial operation is not

supported by the software model as the outer interface is connected through TCP/IP. Data is

sent or received through TCP/IP.

Broadcast pulse generation

A broadcast pulse is used in the UART operation to broadcast a byte to all the UART channels

configured to receive broadcast messages. This function is not implemented as UART is not

used.

16

UART as user I/O interface

As the UART is not a concern for this software model implementation the user interface for I/O

in the UART is also skipped.

Support function for HLC matrix commands, HLCM

The software model supports parallel generation of HLC commands but it supports up to 64

channels where the real M2 ASIC supports up to 256 channels.

Support function for DR matrix acquisition, DRM

A Digital Relay (DR) matrix is used to acquire up to 256 channels for DR acquisition. It is

supported by the software model.

General purpose port

A general purpose port is supported by the model where there are eight IO groups and each IO

group contains four outputs and one input. IO groups can be configured by the IO group

configuration registers.

Pulse counter, possible to latch by external signal or BCP

A pulse counter is not supported by the software but the registers for the counters can be

configured for the future use.

Digital part of first order ΣΔ DAC

Since we are dealing with only digital data Digital to Analogue Converter (DAC) is not used.

Timer for e.g. valve control, possible to trigger by external signal or BCP

Timers are signal generators and are not implemented in the software. But the configuration

registers are there for future use.

3 Implementation of M2 ASIC Model

The model for the M2 ASIC is developed based on the specification of the real hardware. The

software model does not support all the features. But it is made in such a fashion that additional

functionalities can be added later depending on the requirements. Since the software model

does not represent the complete model of real M2, it does not support all the functionalities

described above. It does not support UART, ADC or DAC, pulse counter, broadcast pulse

generation and Timer.

17

The following environment is considered for the implemented M2 ASIC:

Figure 3 M2 ASIC Environment

M2 is a part of an IO board that is shown in Figure 2. M2 contains OBDH RT that is connected

to the OBDH CT. M2 communicates to the outer world through TCP/IP. An application

(Extrenal Application) is implemented that sends or receives data over TCP/IP. M2 does its

operation in a very simple manner. It receives interrogations through OBDH bus from the

OBDH CT, performs operations accordingly, generates responses and gives it back to the

OBDH CT through OBDH bus.

Here is the state diagram of M2 model:

Figure 4 State diagram of M2

18

3.1 Modes of M2

M2 can be operated in one of the three modes: OBDH mode, UART mode and Test mode. The

M2 model supports only OBDH mode since the UART and Test mode are not used by the

current Ruag Simulator.

3.2 Interrogation

An interrogation is an instruction or a command from OBDH CT to one of the OBDH RTs to

perform a specific operation. Interrogations are stored in a block of memory [7]. Each

interrogation is a 32 bits word. The basic interrogation format is given below:

Figure 5 Basic Interrogation Format

The sync field is used for synchronization purpose of an Interrogation in the hardware

implementation. Since the OBDH bus software model also supports sync field so it is kept in

this implementation but not used. BF field conveys information to all terminals simultaneously.

TAF field contains the address of the remote terminal. TDF contains the data required for the

remote terminal to perform its given task. Even parity is used for the preceding 28 bits in the

parity bit field.

An interrogation is stored in the memory location in the following manner:

Figure 6 Interrogation format in memory

3.2.1 Memory Load (ML) Interrogation

Memory load interrogation is used for write operation either in M2 registers or IO port. It has

the following format:

19

Figure 7 Memory Load Interrogation Format

The terminal data field is divided into two parts: MLA and MLD. MLA defines the address and

MLD defines the data to be written.

3.2.2 Data Acquisition (DA) Interrogation

Data acquisition is a read operation. In this case the TDF is divided into few parts where the

least significant 8 bits are kept for the analogue channel addresses. MOP defines the operating

mode. The next bit beside MOP is 1 to identify that it is a DA interrogation. DEA is the

destination address where the response should be sent and in this case it is always 0000 which

is the address of the OBDH CT.

Figure 8 Data Acquisition Interrogation Format

3.2.3 On/Off Command (OO) Interrogation

OO interrogation is used to generate a special kind of command called High Level Command

(HLC). It has similar instruction format like DA interrogation but the only difference is that the

next bit beside MOP is 0.

Figure 9 On/Off Interrogation Format

20

3.3 Response

A response is a reply from the OBDH RT to the OBDH CT for an interrogation. A response can

be 13 bits or 21 bits of length depending on the kind of interrogation.

Figure 10 Response format 13/21 bits

The OBDH CT Response Register is a 32 bit register where the least significant 16 bits are used

as response data field (RDF). So in the implementation only RDF is sent as response.

3.4 Interrogation Parsing

Each interrogation has a specific function. So it is important to parse an interrogation correctly

and map to a correct function for that interrogation. When an interrogation is received by the

OBDH RT it checks if the interrogation is 32 bits long. Then it checks for the Terminal Address

and if 00000 is found then it is a dummy interrogation and no response will be generated. If the

TAF matches then MLA is checked. If MLA is greater than 0 then it is an ML interrogation. But

if MLA is 000 then it can be either OO or DA interrogation. Then the 11th bit from LSB is

checked. If 1 is found then it is a DA interrogation otherwise it is an OO interrogation. The

following diagram describes how an interrogation can be decided:

21

Figure 11 Interrogation Parsing

3.4.1 ML Interrogation Parsing

After it is decided as an ML interrogation then OBDH RT will check for the MLD field to map

an appropriate function. According to the diagram below, MLA = 000 does not exist. But for

MLA ‘001’, ‘010’, ‘011’, ‘100’, ’101’, ‘110’ it can be either ML16, IO port or UART operation

depending on the configuration of the intended IO group.

22

Figure 12 ML Interrogation Parsing

MLA = ‘111’ is used to configure M2 registers. Depending on the value of MLD (15:12) different

registers are selected for desired configurations.

3.4.1.1 Write Operation for M2 Configuration Registers

A valid ML interrogation with MLA ‘111’ and MLD (15:12) ‘1110’ can be used to configure the

configuration registers of M2 ASIC.

23

Figure 13 Write operation for M2 Configuration Registers

There are 15 configuration registers and a parity register. MLD (11:8) bits are used to select a

register and MLD (7:0) contains the configuration data. Each IO group can be configured as one

of the following configurations.

Configuration IO Function

0000 Disabled

0001 Port

0010 SyncClkStr

0011 DacTimer1234

0100 ML161DS161

0101 DacTimer5678

0110 DS163

0111 UART

1000 BCP

24

1001 Mx16

1010 Mx128

1011 Mx256

1100 HlcSer

1101 HlcPar4

1110 HlcPar64/ML162

1111 HlcPar256

Table 1 IO Group Configuration Table

SyncClkStr is used to control the IO synchronization. DacTimer is used for either DAC or Timer

functionality. ML161DS161 is used for both ML16 and DS16 operation. Only IOGroup1 to

IOGroup6 can be configured in ML161DS161. ML162 supports only ML16 operation. DS163 is

used for DS16 operation only. The UART and BCP are not used. Mx16, Mx128 and Mx256 are

used to control external multiplexers for up to 256 channels. There are two HLC Length

registers which can be configured. Other registers can be configured but are not used for

operational purpose as the UART is skipped in this implementation. Hlc can be serial or parallel

operation. The model can handle up to 64 channels whereas the real M2 can handle up to 256

channels. Hlcpar64 applies to group 4 to 7 and ML162 applies to group1 to group3.

3.4.1.2 ML16 Operations

An ML16 operation requires an IO Group to be configured first. An IO Group can be configured

as either ML161DS161 or ML162 depending on the operation of choice. ML161DS161 supports

both ML16 and DS16 operation while ML162 supports only ML16 operation. IO Group 1 to IO

Group 6 can be configured as ML161DS161 for MLA = 1 to MLA = 6 respectively but for ML162

configuration two channels will map to the same IO Group such as MLA = ‘001’ and ‘100’ map

to IO Group1, for MLA = ‘010’ and ‘101’ IO map to Group2, MLA = ‘011’ and ‘110’ map to IO

Group3. ML16 is a serial operation but it is implemented as a parallel operation as there is no

external circuitry used in this case.

25

Figure 14 ML16 operation

ML16 command is sent to the TCP/IP port using the configured IO group. There should be a

user defined application that receives the data and take necessary action according to the

command received.

3.4.1.3 Write Operation on Output port

For an ML interrogation with MLA ‘001’, ‘010’, ‘011’, ‘100’, ‘101’, ‘110’ and an IO group

configured other than ML161DS161, ML162 or UART is considered output port write operation

for that IO group.

26

Figure 15 Write operation Output port

There are two 16 bits output port registers Port out 1234 and Port out 5678. Values are written

directly to the registers.

Figure 16 Port out 1234

Figure 17 Port out 5678

27

3.4.1.4 OO Interrogation Parsing

An OO interrogation contains MLA = ‘000’, destination address of OBDH CT which is ‘0000’

and the 11th bit from LSB is always 0. HLC commands will be issued only for MOP ‘011’ and

‘100’. CA field may contain channel addresses for getting signals from interfacing circuits.

Figure 18 OO Interrogation Parsing

3.4.1.5 HLC Command

M2 can control the width of a HLC command pulse. When MOP = ‘011’ then HlcLength1 Config

register will be selected and pulse length of HLC will be calculated based on the value of that

register. But if MOP = ‘100’ then pulse length of HLC will be calculated from HlcLength2 Config

register.

Figure 19 HlcLength$ Config register

HLC command can be a serial or a parallel operation depending on the configuration of the IO

groups. IO group 5 to 8 can be configured as HlcSer and HlcPar4. But IO group 4 to 7 can be

configured as HlcPar64.

28

Figure 20 HLC Command operation

The HLC pulse length is calculated using the following rule:

TPulse = 2(N1+5)(N2+8)TOBDH, N1∈[0, 15] , N2∈[0, 7]

Where N1 = HlcLength$(3: 0); N2 = HlcLength$(6: 4) and TOBDH is the period of an IO clock. In

actual hardware implementation HLC operation involves several necessary signals for

synchronization purpose where in the software model they are not used as the synchronization

is ensured by the OBDH CT.

3.4.2 Data handling through TCP/IP

There is an external application for handling external data to the system. It sends and receives

data through TCP/IP to simulate the data for analogue channels and IO ports. Data can be for

DA/DB, AN/TH, ML/DS operation. Data transfer through TCP/IP is done through messages

where, Message = (Message ID + Data length + Data). Message ID is a number that represents a

specific operation e.g. ‘01’ for analogue channel (AN) acquisition. Data length is the length of

data in number of bytes. Data can be different based on the type of operation. Data should be

prepared in the following structure:

29

Operation Data format Description

AN acquisition 0106300500

01 = Message ID for AN

06 = Length of data in bytes

30 = Analogue channel number

0500 = value for 5.00

TH acquisition 0206300500

02 = Message ID for TH

06 = Length of data in bytes

30 = TH channel number

0500 = value for 5.00

DB acquisition 03103001001110

03 = Message ID for DB

10 = Length of data in bytes

30 = DB channel number

001001110 = digital values for 8

channels

DR acquisition 04103001110011

04 = Message ID for DR

10 = Length of data in bytes

30 = DR channel number

001110011= digital values for 8

channels

DS16 acquisition 05161111000011110000

05 = Message ID for DS16

16 = Length of data in bytes

0xF0F0 = DS16 value

Single Channel

Digital Data
0603641

06 = Message ID

03 = Length of data in bytes

64 = Channel Address

1 = value

Table 2 TCP/IP Message Data Format

30

3.4.3 DA Interrogation Parsing

A DA interrogation differs from an OO interrogation by 11th bit and it is 1. DA operation is

mainly read operation. Depending on the mode of operation values it can request for

analogue/thermistor values, DS16 acquisitions and different register values.

Figure 21 DA Interrogation Parsing

3.4.3.1 AN/TH Acquisition

The analogue or thermistor values are supposed to be converted into digital values. But in this

implementation the ADC part is skipped since we are dealing with digital data. For the sake of

this specific application AN/TH data is sent through the TCP/IP and when there is an AN/TH

interrogation then the received data is analyzed and send back as response. But first when a DA

interrogation is arrived it is checked against the MOP field to decide that either the

interrogation is an AN or TH acquisition. Then appropriate data is expected for the channel

number specified in the interrogation. Interrogation parsing is done according to the diagram

below:

31

Figure 22 AN/TH Acquisition

3.4.3.2 DB/DR Acquisition

Digital Bilevel (DB) / Digital Relay(DR) acquisition is similar to AN/TH acquisition. When MOP

is ‘110’ then the DIGDB field of BCP and Acquisition Config register is used for DB acquisition.

When DIGDB = 0 then DB acquisition works in Digital Relay Matrix (DRM) mode. In DRM

mode only first 16 channels are used. For DIGDB = 1 CompIn input is used to receive 8 bit serial

data. CompIn input is the input port of an IO group that is configured as Mx16. Only group 8

can be configured as Mx16.

32

Figure 23 DB/DR Acquisition

3.4.3.3 DS16 Acquisition

DS16 is serial data transfer operation where the external circuit sends data serially to the

configured IO groups of the M2 ASIC using handshaking method. But it is simulated in a

different way since data is sent or received over TCP/IP according to the data format specified

in table 1.

33

Figure 24 DS16 Acquisition

3.4.3.4 Input port registers

PortIn register is readable while the MOP field of a DA interrogation is ‘010’ and the 8 bit

channel address field contains ‘10110000’.

Figure 25 Input port registers

34

After reading the value of that register the response is generated accordingly and sent back to

the OBDH bus.

3.4.3.5 Output port registers read operation

There are two output port registers: Port out 1234 and Port out 5678. Both can be read by DA

interrogation with MOP > 0 and no IO groups configured to either ML16DS16 or ML16 or

UART.

Figure 26 Output port registers Read operation

Generated response for both cases is 21bits.

4 Simulation Model Portability

4.1 Background

The European Space Agency has been working for space simulation development for a number

of years. They are developing simulations for a variety of applications and this involves

analysis, engineering operations preparation and training. There are different departments

working on simulation and they may use different platforms and different computer languages

as well. It is difficult to adapt the same model in different platforms and the communication

among different platforms is also difficult. To address these issues a Simulation Model

Portability study was performed and a standard was defined to ease the portability and reuse of

simulation models in different environments. The SMP1 Handbook [8] was published to

describe the main SMP1 scope and SMP usage. A software implementation of SMP1 was

introduced which is called Simulation Model Interface (SMI).

35

SMP1 was achieved via four objectives:

- Minimize interaction between models and environment

- Standardization of inter model interfaces

- Simplify intra model interfaces

- Models are simple enough for other developers

SMP1 was successfully applied to several space projects. But at the same time some limitations

of SMP1/SMI has been noticed:

- Inter-model communication was built on the basis of dynamic invocation. That means

models could not communicate directly but by the help of the environment.

- Did not support object oriented design.

- Publication calls were done manually which is error prone.

- Scheduling mechanism was primitive.

- Did not support additional metadata for models.

- Could not properly handle initial values of models

- Does not provide access or change to simulation state

- Does not support dynamic simulation.

To overcome these limitations SMP2 was introduced and it came up with few objectives:

- Portability of models among different platforms

- Interoperability and reusability of models

SMP2 has several advantages over SMP1 which made SMP2 to be more acceptable for space

project simulation:

- Developed models are platform independent

- Portability of models is now easier

- Models are more reusable as there is less dependency among models

36

- Model integration is simplified

- Support Object Oriented technologies

- Support for metadata

- Support dynamic simulation

4.2 SMP2 Architecture

SMP2 consists of models and a simulation environment. It defines how the models

communicate with each other and how the models communicate with the simulation

environment. SMP2 defines the interfaces for the inter model communication and it also defines

the interfaces so that the models can communicate with the simulation environment in a

controlled way. In this way models are not dependent upon each other. It ensures models are

portable and can be reused in various environments.

Figure 27 SMP2 architecture

Simulation environment provides services necessary for simulation. There are mandatory

services such as Logger, Scheduler, Timekeeper and Event manager. On the other hand there

may be optional services like Link Registry or Resolver and user defined services are also

possible.

4.2.1 Simulation Environment

A simulation environment contains a native simulation environment to make it SMP2

compliant and simulation services [9]. Simulation services can be of two types, mandatory and

optional services. There are four mandatory services: Logger, Scheduler, Time Keeper and

37

Event Manager. Optional services are resolver and link registry. User defined services can also

be added.

Logger: This service is used to log event, warning and error messages. Both models and services

use logger to log messages.

Scheduler: Scheduler calls the entry points based on cyclic or timed events.

Time Keeper: Time keeper service provides four types of time, a relative simulation time, an

absolute epoch time, a relative mission time and Zulu time which represents current computer

time.

Event manager: Event manager service provides mechanism for handling global events. Events

can be registered and broadcasted. User defined event type is also supported.

Resolver: Resolver provides reference to the other models in the simulation.

Link Registry: If a model instance is deleted then Link registry service notifies other models

holding reference to this model.

Figure 28 State Diagram of Simulation Environment [6]

After the creation of simulation services the simulation environment automatically enters into

building state. In this state it creates model instances and builds model hierarchies, asks to

publish their fields, operations and properties.

38

In the end of building state Connect() method of every model in the model hierarchy is called to

enter into connecting state. ISimulator interface is passed so that every model can use the

simulation services.

After connecting state the simulation environment automatically enters into initializing state

but from standby state initialize() method call is required to enter in this state. In this state all

the entry points are called to guarantee that all the models have their initial values and are

properly linked together.

Standby state is automatically achieved after initializing state or from storing and restoring state

and using a hold() method from executing state. In this state simulation time does not progress

even though the Zulu time still progresses.

Executing state can be entered from the standby state using the run() method. In this state

simulation time progresses as well as the other time kinds registered with entry points.

Storing state can be entered using the Store() method from Standby state. The current state of

the simulation environment is saved during this state.

This state is entered from Standby state using Restore() method. The state of the simulation

environment can be restored from the storage.

To properly terminate a running simulation the Exit() method is called from the Standby state.

To perform a abnormal simulation shutdown Abort() method is called from any other state.

After aborting the simulation environment is in an undefined state.

4.2.2 Operational phases

There are three phases of SMP2 simulation operation. In the set up phase model instances are

created and configured by the simulation environment. Models publish their states to the

simulation environment and then models are connected to the simulation services and other

models.

39

Figure 29 SMP2 operational phases

In the execution phase the models are scheduled by the scheduler and they start interacting

with each other. In the termination phase models may free all the occupied resources and then

simulation is stopped.

4.3 SMP2 Mechanism

The simulation environment has two containers: Model container and Service container. Model

Container contains root models. A root model is a model that does not have a parent in the

model hierarchy or model tree.

Figure 30 SMP2 Mechanism

40

A root model may contain other models in the model hierarchy. Service container contains the

services. Services are also a kind of root models as they don’t have any parent.

4.4 Inter model communication

Inter model communication depends on the design approach followed by the developer. SMP2

supports three model interaction approaches:

1. Interface based design

2. Event based design

3. Dataflow based design

4.4.1 Interface based design

An interface is a set of public features, such as fields and operations. One model provides

interface so that outer world can communicate with the model through provided interfaces. The

model that provides interface is called the provider.

Figure 31 Interface based communication

Another model consumes the information provided by the provider. It is called the consumer.

Consumer has to implement the features provided by the interface.

4.4.2 Event based design

In an event based design one model will trigger an event and other models which are

dependent on that model will be notified. In this case the model (Provider) that triggers an

event acts as an event source. On the other hand the models (Consumer) which consume event

acts as event sink.

41

Figure 32 Event based design

Consumer defines event handler to handle events triggered by the provider. To distinguish

various kinds of events, every event is assigned an event type.

4.4.3 Dataflow based design

In a data flow based design inter model communication is done based on data dependency. The

model that provides data is called the source and the model that consumes data is called the

target.

Figure 33 Dataflow based design

Data transfer is normally done by other component(s) which reads the data from the source’s

output field and store it into the input field of the target model.

4.5 SMP2 adaptation of M2 ASIC Model

In this section it is assumed that the models will be developed using standard C++ and it is also

assumed that an SMP2 compliant tool is used for development. The first step of SMP2

development is to describe the intended models using Simulation Model Definition Language

(SMDL) which is also called SMP2 Metamodel [10][11]. This is not a mandatory step. Then by

using the selected tool one can generate catalogues for the models so that these catalogues can

be validated against SMP2 rules. Catalogue is an xml document that contains namespaces as a

primary ordering mechanism and namespace can contain types such as structure, class and

interface. Catalogues can also be made by hand using a catalogue editor. The next step is to

42

generate assemblies and schedules. An assembly contains model instances and the links among

them and schedule defines how the model instances of an assembly are scheduled. The

catalogue, assembly, schedule files should be validated by appropriate tools. Then a code

generator is used to make model code from catalogue, assembly and schedule [12][13]. It is

important to adapt the current simulator so that it can accept SMP2 models. So despite of

starting from the beginning it is advised to start the implementation directly. An SMP2

compliant Model Development Kit (MDK) [14] can be used as a starting point. The MDK

contains the necessary C++ source files that describe SMP2 rules. SMP2 supports interface

hierarchy and component based infrastructure [15] [16]. Structural dependency is based upon

interface hierarchy.

Figure 34 SMP Component

Every component in SMP is derived from IObject. An object is the base entity that must be

derived by every component. IObject interface has the following structure:

Figure 35 IObject interface

GetName() method returns the name and GetDescription() methods returns description of the

object. Most of the SMP elements are components and they derive IComponent interface.

Components can be a model, service or simulator.

43

Figure 36 IComponent interface

IComponent interface defines GetParent() method that returns the parent of the component. All

models implement IModel interface. Since models communicate with the simulation

environment IModel interface has dependencies on IPublication and ISimulator interfaces.

Figure 37 IModel interface

GetState() method returns current state of a model. Publish() method requests the model to

publish its field, properties or operation against the publication receiver. Configure() method

requests the model to perform any custom configuration. Connect() method is called to connect

the model to the simulation environment.

To convert the M2 model to an SMP2 compliant model M2ASIC class (in the implementation)

has to implement IModel interface. The next step is publishing model data to the simulation

environment. This is done by the function Publish() described above. Publish() method takes a

parameter Smp::IPublication *receiver, where IPublication interface provides a PublishField()

method that is used to publish the field data to the simulation environment.

Then services need to be prepared for the models. When calling the Connect() method by the

simulation environment a parameter is passed of ISimulator type. Using this parameter a model

can use any service provided by the simulation environment. Then the model should be added

to the scheduler. But before that an entry point should be created for that model. An entry point

is a method that does not take any parameter and it does not return any value. Then this entry

point should be scheduled by the scheduler. To register the model with a global event the event

manager service can be used. An event can be subscribed or unsubscribed to the event manager.

44

4.6 SMP2 adaptation for the current SMU simulator

The SMU core simulator of Ruag space has three components: TSIM, SimKernel and SimModel

[17]. TSIM is a processor emulator for ERC32/LEON processor. SimKernel contains the start up

routines, simulator infrastructure and services such as logger, scheduler etc. SimModel contains

the model for different IO boards, ASICs and buses.

Figure 38 SMU core simulator

To make the current simulator SMP2 compliant the first step is to make the simulation

environment. As the simulation environment contains services, it is necessary to take out the

services described in figure 28 from SimKernel and TSIM to a new entity called simulation

environment. TSIM contains the time keeper and the event manager services, where the

SimKernel contains the rest. But TSIM cannot be changed as the source code for TSIM is not

available. This problem can be solved by making a new component that will wrap the current

TSIM and will work as an SMP2 model. The services from the SimKernel will be taken out and

then put it in the simulation environment. TSIM will share its services with the simulation

environment which means that calls to the services in simulation environment that belong to

TSIM will be redirected to TSIM. There are some trade offs for this solution. First, the simulation

environment is not independent which violates SMP2 constraints. Second, there may be

unexpected delay due to service calls that belongs to TSIM. The IO boards in the SimModel can

be converted separately to SMP2 models or the SimModel can be wrapped as a single model to

minimize the effort.

45

Figure 39 SMP2 compliant SMU core simulator

In both cases the simulator will be able to accept new SMP2 compliant models. There is another

solution to wrap the whole simulator as one model and use a simulation environment that

contains all the services. Since there will be two time keepers and two event managers,

synchronization among TSIM and simulation environment can be a problem.

5 Tests and Results

For an interrogation M2 generates correct response and it does some IO operations if it requires.

First a set of interrogations is written in a batch file. Then the file is loaded in the simulator.

These interrogations are then sent to OBDH RT by the OBDH CT. OBDH CT sends one

interrogation at a time and waits for the response. The M2 does some operations according to

the interrogation and generates response that is given back to the OBDH CT.

5.1 Test Environment

The M2 ASIC model is built and tested in a small environment as described in Figure 3. After

creating M2 it was connected to the OBDH CT and to TCP/IP link. First task is to start the

simulator. Then the following three windows will open and among them the Sim Interface

window is used to load a batch file that contains interrogation list.

46

Figure 40 SMU Core Simulator

Outputs are also generated in the Sim Interface window for the purpose of the report writing

though there is a log file that keeps track of operations. To start the IO operation the external

application is needed that can send and receive data through TCP/IP. A simple interface is used

for this application. It is written in C language. Here is a screenshot of the external application

while sending DS16 data to the TCP/IP port.

Figure 41 External Application

The interrogations are listed in appendix B and the test results are provided in appendix C.

Here is an example for a list of interrogations in a batch file.

write 40180000 0x000FE100 // Both IOGroup1 and IOGroup2 are configured as

disabled

write 40180004 0x00080AE1 // Read IOGrp12 Config register

47

write 40180008 0x000FE110 // IOGroup1 is configured as port and IOGroup2

disabled

write 4018000C 0x00080AE1 // Read IOGrp12 Config register

write 40180010 0x000FE200 // Both IOGroup3 and IOGroup4 are configured as

disabled

write 40180014 0x00080AE2 // Read IOGrp34 Config register

Every line starts with the ‘write’ command, then the memory location where the interrogation

will be written and then the interrogation is written in hexadecimal format. Interrogations are

written as a block of memory and there must be even number of interrogations.

The results are shown in the same window for convenience and look like the following

diagram.

Figure 42 Result output for interrogation list

6 Discussion

The M2 ASIC software model was created and tested in the source code of Ruag’s SMU

simulator. It generates correct output for all the interrogations listed in Appendix A. Only the

M2 ASIC is tested in this environment. There was an idea to test the M2 model in such a way

that the actual hardware is tested. To create such real test environment requires a dedicated

person from Ruag’s side for a certain amount of time to train and help loading the Model in the

simulator. So the plan was cancelled for that time being and left for future development.

48

The customers of Ruag space are interested to have SMP2 compliant simulator due to its

advantages. So the thesis involves studies of SMP2. After the successful studies it is turned out

that Ruag simulator can be made in such a way that it can accept SMP2 models. But to

investigate more one should start using a tool for SMP2 development. We studied and found a

tool called SimSat4 MIE and it costs €4000. But it is a preliminary cost and costs will increase

much more in the future if the whole simulator is made SMP2 compliant. For the first step a

small project of SMP2 development is proposed to get hands on experience on SMP2 tools and

the SMP2 protocol. Then the next step is to convert the existing simulator SMP2 compliant.

7 Conclusion

7.1 M2 Simulator Model

The M2 Simulator model does not represent a complete model of the M2 ASIC as it does not

support some functions described in section 2.1. In the M2 ASIC IO operation is serial i.e. data is

sent or received one bit at a time so data synchronization is required. For the software model

data synchronization is not required at bit level as data transfer through TCP/IP port contains 8

or 16 bit of information. Results are satisfactory for the environment it is tested in. It could be

interesting to test the model in a real test environment discussed in section 6. Then it could be

observed how the M2 model behaves in real environment.

7.2 Simulation Modeling Portability

SMP2 compliancy for M2 ASIC is achievable using SMP2 MDK only. The MDK comes up with

the tool and it’s not for free. A good tool for SMP2 model development is SIMSAT4 [18] which

can generate and validate catalogues, assemblies and schedules. It has a code generator that

creates wrapper code for the models. But creating an SMP2 model will not make any difference

as the current system is not ready to accept SMP2 models. Now the challenge is to change the

current SMU simulator such that it can accept SMP2 compliant models. But TSIM contains some

services i.e. time keeper and event manager which belongs to the simulation environment. It is

hard to separate these services from TSIM to simulation environment. On the other hand there

is timing constraint as there are some operations which need to be done with no delays. It is

unknown that how much delay will be introduced if simulation environment plays the role of

TSIM. Other processor emulators should be considered for fully compliant SMP2 simulator.

49

8 References

[1] TSIM ERC32/LEON simulator

http://www.gaisler.com/cms/index.php?option=com_content&task=view&id=38&Itemid=56

[2] ERC32 http://en.wikipedia.org/wiki/ERC32

[3] LEON

http://www.gaisler.com/cms/index.php?option=com_content&task=section&id=4&Itemid=33

[4] M2 ASIC Specification, Document ID: P-ASIC-SPC-00052-SE, Issue no 12

[5] Data bus Interface System Standard, Document ID: TTC.B.01, Issue no 1

[6] SMP 2.0 Handbook, Document ID: EGOS-SIM-GEN-TN-0099, Issue no 1, Revision 2

[7] OBDH User’s manual, Document ID: P-ASIC-NOT-00100-SE, Issue no 2

[8] Simulation Model Portability Handbook, EWP-2080, Issue 1, Revision 4

[9] Simulation modelling platform - Volume 1: Principles and Requirements, ECSS-E-TM-40-07

Volume 1A

[10] SMP 2.0 Metamodel, EGOS-SIM-GEN-TN-0100, Issue 1, Revision 2

[11] Simulation modelling platform - Volume 2: Metamodel, ECSS-E-TM-40-07 Volume 2A

[12] SMP 2.0 C++ Mapping, EGOS-SIM-GEN-TN-0102 Issue 1, Revision 2

[13] Simulation modelling platform - Volume 4: C++ Mapping, ECSS-E-TM-40-07 Volume 4A

[14] SMP 2.0 C++ Model Development Kit, EGOS-SIM-GEN-TN-1001, Issue 1, Revision 2

[15] SMP 2.0 Component Model, EGOS-SIM-GEN-TN-0101, Issue 1, Revision 2

[16] Simulation modelling platform - Volume 3: Component Model, ECSS-E-TM-40-07 Volume

3A, Issue no 1

[17] Basic Software Validation Facility Systems Specification, P-CBSW-SPC-00003-SE, Issue no 3

[18] Simulation modelling platform -Volume 5: SMP usage, ECSS‐E‐TM‐40‐07 Volume 5A, Issue

no 1

http://www.gaisler.com/cms/index.php?option=com_content&task=view&id=38&Itemid=56
http://en.wikipedia.org/wiki/ERC32
http://www.gaisler.com/cms/index.php?option=com_content&task=section&id=4&Itemid=33

50

Appendix A : Abbreviations

ACQ Acquisition

ADC Analog to Digital Converter

AN Analog (channel)

ASIC Application Specific Integrated Circuit

BCP Broadcast Pulse

BF Broadcast Field

CA Channel Address

CMD Command

COMP Comparator

CONFIG Configuration

CONV Converter

CT Central Terminal

Ctrl Control

DA Data Acquisition (type of OBDH interrogation)

DAC Digital to Analog Converter

DB Digital Bilevel

DEA Destination Address

DR Digital Relay

DRM Digital Relay in Matrix configuration

DS Digital Serial

DS16 Digital Serial 16 bits format

HLC High Level Command

HLCM High Level Command in Matrix configuration

I/F Interface

IO, I/O Input/output

LSB Least Significant Bit

ML Memory Load (type of OBDH interrogation)

ML16 Memory Load 16 bit serial interface

MLA Memory Load Address

MLD Memory Load Data

MOP Mode of Operation

MSB Most Significant Bit

MUX Multiplexer

OBDH On Board Data Handling

OCD Output Command Driver

51

OO On/Off (type of OBDH interrogation)

RDF Response Data Field

Ref Reference

Resp Response

RF Radio Frequency

RT Remote Terminal

RTU Remote Terminal Unit

Rx Receive

SEL Select

Sync Synchronization

TAF Terminal Address Field

TDF Terminal Data Field

TH Thermistor channel

Tx Transmit

UART Universal Asynchronous Receiver Transmitter

Z High impedance

API Application Programming Interface

ESA European Space Agency

EuroSim European Real-time Operations Simulator

HITL Hardware-In-The-Loop

MDK Model Development Kit

SIMSAT Software Infrastructure for the Modeling of Satellites

SMDL Simulation Model Definition Language

SMP Simulation Model Portability

SMP1 Simulation Model Portability 1

SMP2 Simulation Model Portability 2

UML Unified Modeling Language

UUID Universally Unique Identifier

XML Extensible Markup Language

52

Appendix B: Interrogation List

The following interrogations are used in section 5 for testing the M2 ASIC model.

DA Interrogation list

Operation Interrogation

DR acquisition with An(ch)

and Ref(0), ch = CA[5:0]

0000 0000 0000 1000 0000 1000 00xx xxxx

DB acquisition with An - VrefL 0000 0000 0000 1000 0000 1000 01xx xxxx

DB acquisition with

An(64) – An(65)

0000 0000 0000 1000 0000 1000 10xx xxxx

DB acquisition with

An(66) – An(67)

0000 0000 0000 1000 0000 1000 11xx xxxx

DB acquisition using

An(ch) – VrefL, ch = CA[3:0]

0000 0000 0000 1000 0000 1110 0000 xxxx

[DIGDB = 0]

DB using CompIn 0000 0000 0000 1000 0000 1110 xxxx xxxx

[DIGDB = 1]

Differential AN with An(ch-1) –

An(ch), ch = CA[5:0]

0000 0000 0000 1000 0000 110x 00xx xxxx

Single ended AN with An(ch) –

VrefH, ch = CA[5:0]

0000 0000 0000 1000 0000 110x 01xx xxxx

Differential AN with An(64) –

An(65)

0000 0000 0000 1000 0000 110x 10xx xxxx

Differential AN with An(66) –

An(67)

0000 0000 0000 1000 0000 110x 11xx xxxx

TH acquisition with An(ch)

and Ref(0), ch = CA[5:0]

0000 0000 0000 1000 0000 10x1 00xx xxxx

53

TH acquisition with An(ch)

and Ref(1), ch = CA[5:0]

0000 0000 0000 1000 0000 10x1 01xx xxxx

TH acquisition with An(ch)

and Ref(2), ch = CA[5:0]

0000 0000 0000 1000 0000 10x1 10xx xxxx

TH acquisition with An(ch)

and Ref(3), ch = CA[5:0]

0000 0000 0000 1000 0000 10x1 11xx xxxx

DS16 Acquisition 0000 0000 0000 1000 0000 1010 00xx xxxx

Read UART Tx registers 0000 0000 0000 1000 0000 1010 0100 xxxx

Read UART Rx registers 0000 0000 0000 1000 0000 1010 0101 xxxx

Read DAC/Timer registers 00 0 0000 1000 0000 1010 0110 xxxx

ML Interrogation list

Operation Interrogation

ML16 Operation / Write

Operation on

PortOut1234Register

0000 0000 0000 1001 xxxx xxxx xxxx xxxx

ML16 Operation / Write

Operation on

PortOut1234Register

0000 0000 0000 1010 xxxx xxxx xxxx xxxx

ML16 Operation / Write

Operation on

PortOut1234Register

0000 0000 0000 1011 xxxx xxxx xxxx xxxx

ML16 Operation / Write

Operation on

PortOut1234Register

0000 0000 0000 1100 xxxx xxxx xxxx xxxx

ML16 Operation / Write

Operation on

0000 0000 0000 1101 xxxx xxxx xxxx xxxx

54

PortOut5678Register

ML16 Operation / Write

Operation on

PortOut5678Register

0000 0000 0000 1110 xxxx xxxx xxxx xxxx

Write Operation on UART Tx

Registers

0000 0000 0000 1111 0100 xxxx xxxx xxxx

Write operation on Prolonged

Settings register

0000 0000 0000 1111 0101 xxxx xxxx xxxx

Write Operation on DAC/Timer

Registers

0000 0000 0000 1111 0110 xxxx xxxx xxxx

Write Operation on DAC/Timer

Registers

0000 0000 0000 1111 0111 xxxx xxxx xxxx

Write Operation on DAC/Timer

Registers

0000 0000 0000 1111 1000 xxxx xxxx xxxx

Write Operation on DAC/Timer

Registers

0000 0000 0000 1111 1001 xxxx xxxx xxxx

Write Operation on DAC/Timer

Registers

0000 0000 0000 1111 1010 xxxx xxxx xxxx

Write Operation on DAC/Timer

Registers

0000 0000 0000 1111 1011 xxxx xxxx xxxx

Write Operation on DAC/Timer

Registers

0000 0000 0000 1111 1100 xxxx xxxx xxxx

Write Operation on DAC/Timer

Registers

0000 0000 0000 1111 1101 xxxx xxxx xxxx

Write Operation on M2

configuration registers

0000 0000 0000 1111 1110 xxxx xxxx xxxx

55

Write Operation on M2 Configuration Registers

Operation Interrogation

IOGrp12 Config 0000 0000 0000 1111 1110 0001 xxxx xxxx

IOGrp34 Config 0000 0000 0000 1111 1110 0010 xxxx xxxx

IOGrp56 Config 0000 0000 0000 1111 1110 0011 xxxx xxxx

IOGrp78 Config 0000 0000 0000 1111 1110 0100 xxxx xxxx

HlcLength1 Config 0000 0000 0000 1111 1110 0101 xxxx xxxx

HlcLength2 Config 0000 0000 0000 1111 1110 0110 xxxx xxxx

Latch/UART Config 0000 0000 0000 1111 1110 0111 xxxx xxxx

BCP and Acquisition Config 0000 0000 0000 1111 1110 1000 xxxx xxxx

Counter12 Config 0000 0000 0000 1111 1110 1001 xxxx xxxx

Counter34 Config 0000 0000 0000 1111 1110 1010 xxxx xxxx

DAC/Timer12 Config 0000 0000 0000 1111 1110 1011 xxxx xxxx

DAC/Timer34 Config 0000 0000 0000 1111 1110 1100 xxxx xxxx

DAC/Timer56 Config 0000 0000 0000 1111 1110 1101 xxxx xxxx

DAC/Timer78 Config 0000 0000 0000 1111 1110 1110 xxxx xxxx

Parity 0000 0000 0000 1111 1110 1111 xxxx xxxx

Read Operation on M2 Configuration Registers

Operation Interrogation

IOGrp12 Config 0000 0000 0000 1000 0000 1010 1110 0001

IOGrp34 Config 0000 0000 0000 1000 0000 1010 1110 0010

56

IOGrp56 Config 0000 0000 0000 1000 0000 1010 1110 0011

IOGrp78 Config 0000 0000 0000 1000 0000 1010 1110 0100

HlcLength1 Config 0000 0000 0000 1000 0000 1010 1110 0101

HlcLength2 Config 0000 0000 0000 1000 0000 1010 1110 0110

Latch/UART Config 0000 0000 0000 1000 0000 1010 1110 0111

BCP and Acquisition Config 0000 0000 0000 1000 0000 1010 1110 1000

Counter12 Config 0000 0000 0000 1000 0000 1010 1110 1001

Counter34 Config 0000 0000 0000 1000 0000 1010 1110 1010

DAC/Timer12 Config 0000 0000 0000 1000 0000 1010 1110 1011

DAC/Timer34 Config 0000 0000 0000 1000 0000 1010 1110 1100

DAC/Timer56 Config 0000 0000 0000 1000 0000 1010 1110 1101

DAC/Timer78 Config 0000 0000 0000 1000 0000 1010 1110 1110

Parity 0000 0000 0000 1000 0000 1010 1110 1111

OO Interrogation list

Operation Interrogation

HLC command using

HlcLength1 register

0000 0000 0000 1000 0000 0011 xxxx xxxx

HLC command using

HlcLength2 register

0000 0000 0000 1000 0000 0100 xxxx xxxx

57

Appendix C: Test results

Testing ML interrogations

Interrogations are written as a block of memory and there must be even number of

interrogations. Below there is a list of ML interrogations related to register configuration. Each

interrogation is commented with brief description.

write 40180000 0x000FE100 // Both IOGroup1 and IOGroup2 are configured as

disabled

write 40180004 0x00080AE1 // Read IOGrp12 Config register

write 40180008 0x000FE110 // IOGroup1 is configured as port and IOGroup2

disabled

write 4018000C 0x00080AE1 // Read IOGrp12 Config register

write 40180010 0x000FE200 // Both IOGroup3 and IOGroup4 are configured as

disabled

write 40180014 0x00080AE2 // Read IOGrp34 Config register

write 40180018 0x000FE210 // IOGroup3 is configured as port and IOGroup4

disabled

write 4018001C 0x00080AE2 // Read IOGrp34 Config register

write 40180020 0x000FE300 // Both IOGroup5 and IOGroup6 are configured as

disabled

write 40180024 0x00080AE3 // Read IOGrp56 Config register

write 40180028 0x000FE310 // IOGroup5 is configured as port and IOGroup6

disabled

write 4018002C 0x00080AE3 // Read IOGrp56 Config register

write 40180030 0x000FE400 // Both IOGroup7 and IOGroup8 are configured as

disabled

write 40180034 0x00080AE4 // Read IOGrp78 Config register

write 40180038 0x000FE410 // IOGroup7 is configured as port and IOGroup8

disabled

write 4018003C 0x00080AE4 // Read IOGrp78 Config register

write 40180040 0x000FE554 // HlcLength1 Configuration, N2 = 5 and N1 = 4

58

write 40180044 0x00080AE5 // Read HlcLength1 register

write 40180048 0x000FE60A // HlcLength2 Configuration, N2 = 0 and N1 = A

write 4018004C 0x00080AE6 // Read HlcLength2 register

write 40180050 0x000FE808 // BCP and Acquisition Config register

write 40180054 0x00080AE8 // Read BCP and Acquisition Config register

write 40180058 0x000FE701 // Latch/UART Config register

write 4018005C 0x00080AE7 // Read Latch/UART Config register

write 40180060 0x000FE990 // Counter12 Config

write 40180064 0x00080AE9 // Read Counter12 Config register

write 40180068 0x000FEA09 // Counter34 Config

write 4018006C 0x00080AEA // Read Counter34 Config register

write 40180070 0x000FEB11 // DAC/Timer12 Config

write 40180074 0x00080AEB // Read DAC/Timer12 Config register

write 40180078 0x000FEC11 // DAC/Timer34 Config

write 4018007C 0x00080AEC // Read DAC/Timer34 Config register

write 40180080 0x000FED11 // DAC/Timer56 Config

write 40180084 0x00080AED // Read DAC/Timer56 Config register

write 40180088 0x000FEE11 // DAC/Timer78 Config

write 4018008C 0x00080AEE // Read DAC/Timer78 Config register

write 40180090 0x000FEF11 // Parity register configuration

The output for the given script looks like this:

59

Figure 43 Ouput for ML interrogations

60

Testing DA interrogations

Tests for different types of DA interrogations are given below.

Testing AN acquisition

The following test contains analogue channel (AN) acquisitions. In this case the channel values

are set by the external application. The external application sends data to the corresponding

channel and these are user defined. In this case channel 29, 30, 64, 65, 66, 67 gets 1, 1, 1, 0, 0, 0

respectively.

write 40180000 0x00080C1E // Differential AN with An(29)-An(30)

write 40180004 0x00080D1E // Differential AN with An(29)-An(30)

write 40180008 0x00080C5E // Single Ended AN with An(30)-VrefH

write 4018000C 0x00080D5E // Single Ended AN with An(30)-VrefH

write 40180010 0x00080C9E // Differential An with An(64)-An(65)

write 40180014 0x00080D9E // Differential An with An(64)-An(65)

write 40180018 0x00080CDE // Differential An with An(66)-An(67)

write 4018001C 0x00080DDE // Differential An with An(66)-An(67)

Test results for the AN acquisition are given below:

Figure 44 AN interrogation

61

Testing TH acquisition
write 40180020 0x0008091E // TH Acquisition with An(30) and Rref(0)

write 40180024 0x00080B1E // TH Acquisition with An(30) and Rref(0)

write 40180028 0x0008095E // TH Acquisition with An(30) and Rref(1)

write 4018002C 0x00080B5E // TH Acquisition with An(30) and Rref(1)

write 40180030 0x0008099E // TH Acquisition with An(30) and Rref(2)

write 40180034 0x00080B9E // TH Acquisition with An(30) and Rref(2)

write 40180038 0x000809DE // TH Acquisition with An(30) and Rref(3)

write 4018003C 0x00080BDE // TH Acquisition with An(30) and Rref(3)

Results of TH acquisition look like the following:

Figure 45 TH interrogation Results

Testing DB/DR acquisitions

Here is a set of interrogations for DB/DR acquisition and the test results as well.

write 40180040 0x0008081E // DR acquisition with An(30) and Ref(0)

62

write 40180044 0x0008085E // DB with An(30)-VrefL

write 40180048 0x0008089E // DB with An(64)-An(65)

write 4018004C 0x000808DE // DB with An(66)-An(67)

write 40180050 0x000FE800 // Set DIGDB = 0

write 40180054 0x00080E0D // DB with DIGDB = 0

write 40180058 0x00080E0E // DB with DIGDB = 0

write 4018005C 0x000FE808 // set DIGDB = 1

write 40180060 0x000FE409 // Configure IO Group8 as Mx16

write 40180064 0x00080EDE // DB with DIGDB = 1

Figure 46 DB/DR Interrogation Results

DS16 acquisition testing

Interrogations and results for DS16 testing are given below:

write 40180068 0x000FE140 // Configure IO Group1 as ML161DS161

write 4018006C 0x00080A03 // DS16 Acquisition on IO Group1

write 40180070 0x000FE160 // Configure IO Group1 as DS16

write 40180074 0x00080A03 // DS16 Acquisition on IO Group1

63

write 40180078 0x000FE460 // Configure IO Group7 as DS16

write 4018007C 0x00080A30 // DS16 Acquisition on IO Group7

Figure 47 DS16 acquisition

Testing OO interrogations

OO interrogations are listed below with brief description.

write 40180000 0x000FE554 // HlcLength1 Configuration, N2 = 5 and N1 = 4

write 40180004 0x000FE645 // HlcLength2 Configuration, N2 = 5 and N1 = 4

write 40180008 0x000FE3C0 // Set IO Group5 as HlcSer

write 4018000C 0x000803FF // HLC command using HlcLength1 register

write 40180010 0x000FE30C // Set IO Group5 as HlcSer

write 40180014 0x000803FF // HLC command using HlcLength1 register

write 40180018 0x000FE4C0 // Set IO Group7 as HlcSer

write 4018001C 0x000804FF // HLC command using HlcLength2 register

write 40180020 0x000FE40C // Set IO Group8 as HlcSer

write 40180024 0x000804FF // HLC command using HlcLength2 register

write 40180028 0x000D2EBC // Write 2EBC to PortOut5678 Register

write 4018002C 0x000FE3E0 // Set IO Group5 as HlcSer4

write 40180030 0x000FE4D0 // Set IO Group7 as HlcSer64

64

write 40180034 0x000803FF // HLC command using HlcLength1 register

write 40180038 0x000804FF // HLC command using HlcLength2 register

write 4018003C 0x000FE40D // Set IO Group8 as HlcSer64

write 40180040 0x000804FF // HLC command using HlcLength2 register

write 40180044 0x000804FF // To make even number of interrogation

Here is the output for the above interrogations:

Figure 48 OO Interrogations and results

Testing ML16 interrogations

ML16 interrogations are special kind of ML interrogations where IO operations are also

involved. Here are some ml16 interrogations:

write 40180000 0x000FE140 // IOGroup1 configured as ML161DS161

write 40180004 0x00091234 // ML16 operation on IO Group1

write 40180008 0x000FE1D0 // IOGroup1 configured as ML16

write 4018000C 0x000FE20D // IOGroup4 configured as ML16

write 40180010 0x00091234 // ML16 operation on IO Group1 and IO

Group4

65

write 40180014 0x00091234 // ML16 operation on IO Group1 and IO

Group4

Outputs after executing the instructions:

Figure 49 ML16 interrogations and results

