
Device TC1736
Marking/Step EES-AA, ES-AA, AA
Package PG-LQFP-144-10

01708AERRA

Rel. 1.2, 26.02.2010

Errata Sheet
This Errata Sheet describes the deviations from the current user
documentation.

Make sure you always use the corresponding documentation for this device
(User’s Manual, Data Sheet, Documentation Addendum (if applicable), TriCore
Architecture Manual, Errata Sheet) available in category ’Documents’ at
www.infineon.com/TC1736.

Each erratum identifier follows the pattern Module_Arch.TypeNumber:
• Module: subsystem, peripheral, or function affected by the erratum
• Arch: microcontroller architecture where the erratum was firstly detected

– AI: Architecture Independent
– CIC: Companion ICs
– TC: TriCore
– X: XC166 / XE166 / XC2000 Family
– XC8: XC800 Family
– [none]: C166 Family

• Type: category of deviation
– [none]: Functional Deviation
– P: Parametric Deviation
– H: Application Hint

Table 1 Current Documentation
TC1736 User’s Manual V1.1 October 2009
TC1736 Data Sheet V1.1 August 2009
TriCore 1 Architecture V1.3.8 January 2008
TC1736, EES-AA, ES-AA, AA 1/62 Rel. 1.2, 26.02.2010

http://www.infineon.com/TC1736

Errata Sheet

– D: Documentation Update
• Number: ascending sequential number within the three previous fields. As

this sequence is used over several derivatives, including already solved
deviations, gaps inside this enumeration can occur.

Note: Devices marked with EES or ES are engineering samples which may not
be completely tested in all functional and electrical characteristics,
therefore they should be used for evaluation only.

Note: This device is equipped with a TriCore "TC1.3.1" Core. Some of the errata
have workarounds which are possibly supported by the tool vendors.
Some corresponding compiler switches need possibly to be set. Please
see the respective documentation of your compiler.
For effects of issues related to the on-chip debug system, see also the
documentation of the debug tool vendor.

The specific test conditions for EES and ES are documented in a separate
Status Sheet.
TC1736, EES-AA, ES-AA, AA 2/62 Rel. 1.2, 26.02.2010

Errata Sheet

History List / Change Summary
1 History List / Change Summary

Note: Changes to the previous errata sheet version are particularly marked in
column “Change” in the following tables.

Table 2 History List
Version Date Remark
1.0 28.11.2008
1.1 28.08.2009 - Updated Documentation Reference:

TC1736 User’s Manual V1.0 2008-11
TC1736 Data Sheet V1.1 2009-08
- Removed BROM_TC.H001 (Frequency Ratio
fSYS = fOSC/2 for Bootstrap Loaders): see p.7-3
in TC1736 User’s Manual V1.0.
- Removed DMI_TC.015 (LDRAM Access
Limitations for 2KByte Data Cache
Configurations): no data cache in TC1736.

1.2 26.02.2010 - Updated Documentation Reference:TC1736
User’s Manual V1.1 2009-10
- Removed MSC_TC.H008 (The LVDS pads
require a settling time when coming up from pad
power-down state):TC1736 has no LVDS
functionality.
- Removed PORTS_TC.H004 (Using LVDS
Ports in CMOS Mode):TC1736 has no LVDS
functionality.
- Removed FPI_TC.H001 (FPI bus may be
monopolized despite starvation protection):
TC1736 has no PCP.
TC1736, EES-AA, ES-AA, AA 3/62 Rel. 1.2, 26.02.2010

Errata Sheet

History List / Change Summary
Table 3 Functional Deviations
Functional
Deviation

Short Description Cha
nge

Pa
ge

BCU_TC.006 Polarity of Bit SVM in Register ECON New 9
CPU_TC.105 User / Supervisor mode not staged

correctly for Store Instructions
 9

CPU_TC.106 Incorrect PSW update for certain IP
instructions dual-issued with MTCR PSW

 10

CPU_TC.107 SYSCON.FCDSF may not be set after FCD
Trap

 11

CPU_TC.108 Incorrect Data Size for Circular
Addressing mode instructions with wrap-
around

 11

CPU_TC.109 Circular Addressing Load can overtake
conflicting Store in Store Buffer

 15

CPU_TC.110 Register Banks may be out of sync after
FCU Trap

 18

CPU_TC.111 Imprecise Return Address for FCU Trap 20
CPU_TC.113 Interrupt may be taken during Trap entry

sequence
 20

CPU_TC.114 CAE Trap may be generated by UPDFL
instruction

 24

CPU_TC.115 Interrupt may be taken on exit from Halt
mode with Interrupts disabled

 25

DMA_TC.013 DMA-LMB-Master Access to Reserved
Address Location

 26

DMI_TC.014 Problems with Parity Handling in TriCore
Data Memories

 28

DMI_TC.016 CPU Deadlock possible when Cacheable
access encounters Flash Double-Bit Error

Upd
ate

28

DMI_TC.017 DMI line buffer is not invalidated by a write
to OVC_OCON.DCINVAL if cache off.

 30
TC1736, EES-AA, ES-AA, AA 4/62 Rel. 1.2, 26.02.2010

Errata Sheet

History List / Change Summary
FADC_TC.005 Equidistant multiple channel-timers 32
FIRM_TC.010 Data Flash Erase Suspend Function New 33
FLASH_TC.027 Flash erase time out of specification Upd

ate
35

FLASH_TC.035 Flash programing time out of specification 36
FLASH_TC.036 DFLASH Margin Control Register MARD 36
OCDS_AI.001 DAP restart lost when DAP0 inactive 37
OCDS_AI.002 JTAG Instruction must be 8 bit long 38
OCDS_TC.014 Triggered Transfer does not support half

word bus transactions
 39

OCDS_TC.015 IOCONF register bits affected by
Application Reset

 39

OCDS_TC.016 Triggered Transfer dirty bit repeated by
IO_READ_TRIG

 39

OCDS_TC.018 Startup to Bypass Mode requires more
than five clocks with TMS=1

 40

OCDS_TC.020 ICTTA not used by Triggered Transfer to
External Address

 40

OCDS_TC.021 TriCore breaks on de-assertion instead of
assertion of break bus

 41

OCDS_TC.024 Loss of Connection in DAP three-pin Mode 41
OCDS_TC.025 PC corruption when entering Halt mode

after a MTCR to DBGSR
 42

OCDS_TC.026 PSW.PRS updated too late after a RFM
instruction.

 43

OCDS_TC.027 BAM breakpoints with associated halt
action can potentially corrupt the PC.

 44

Table 3 Functional Deviations (cont’d)
Functional
Deviation

Short Description Cha
nge

Pa
ge
TC1736, EES-AA, ES-AA, AA 5/62 Rel. 1.2, 26.02.2010

Errata Sheet

History List / Change Summary
RESET_TC.001 SCU_RSTSTAT.PORST not set by a
combined Debug / System / Application
Reset

 45

SCU_TC.016 Reset Value of Registers ESRCFG0/1 New 46
SSC_AI.022 Phase error detection switched off too

early at the end of a transmission
 47

SSC_AI.023 Clock phase control causes failing data
transmission in slave mode

 47

SSC_AI.024 SLSO output gets stuck if a reconfig from
slave to master mode happens

 47

SSC_AI.025 First shift clock period will be one PLL
clock too short because not syncronized
to baudrate

 48

SSC_AI.026 Master with highest baud rate set
generates erroneous phase error

 48

Table 4 Deviations from Electrical- and Timing Specification
AC/DC/ADC
Deviation

Short Description Cha
nge

Pa
ge

DTS_TC.P001 Test Conditions for Sensor Accuracy TTSA New 50
FADC_TC.P003 Incorrect test condition specified in

datasheet for FADC parameter “Input
leakage current at VFAGND”.

 50

PLL_TC.P005 PLL Parameters for fVCO > 780 MHz 50

Table 3 Functional Deviations (cont’d)
Functional
Deviation

Short Description Cha
nge

Pa
ge
TC1736, EES-AA, ES-AA, AA 6/62 Rel. 1.2, 26.02.2010

Errata Sheet

History List / Change Summary
Table 5 Application Hints
Hint Short Description Cha

nge
Pa
ge

ADC_AI.H002 Minimizing Power Consumption of an
ADC Module

New 51

CPU_TC.H004 PCXI Handling Differences in
TriCore1.3.1

 51

FIRM_TC.H000 Reading the Flash Microcode Version New 53
HYS_TC.H001 Effective Hysteresis in Application

Environment
 54

MSC_TC.H007 Start Condition for Upstream Channel 54
MultiCAN_AI.H005 TxD Pulse upon short disable request 54
MultiCAN_AI.H006 Time stamp influenced by

resynchronization
 55

MultiCAN_TC.H002 Double Synchronization of receive input 55
MultiCAN_TC.H003 Message may be discarded before

transmission in STT mode
 55

MultiCAN_TC.H004 Double remote request 56
OCDS_TC.H001 IOADDR may increment after aborted

IO_READ_BLOCK
 57

OCDS_TC.H002 Setting IOSR.CRSYNC during Application
Reset

 57

OCDS_TC.H003 Application Reset during host
communication

 58

OCDS_TC.H004 Device Identification by Application
Software

 58

PORTS_TC.H005 Pad Input Registers do not capture
Boundary-Scan data when BSD-mode
signal is set to high

 59

PWR_TC.H005 Current Peak on VDDP during Power-up 59
SSC_AI.H001 Transmit Buffer Update in Slave Mode

after Transmission
 60
TC1736, EES-AA, ES-AA, AA 7/62 Rel. 1.2, 26.02.2010

Errata Sheet

History List / Change Summary
SSC_AI.H002 Transmit Buffer Update in Master Mode
during Trailing or Inactive Delay Phase

 61

SSC_AI.H003 Transmit Buffer Update in Slave Mode
during Transmission

 61

SSC_TC.H003 Handling of Flag STAT.BSY in Master
Mode

 62

Table 5 Application Hints (cont’d)
Hint Short Description Cha

nge
Pa
ge
TC1736, EES-AA, ES-AA, AA 8/62 Rel. 1.2, 26.02.2010

Errata Sheet

Functional Deviations
2 Functional Deviations

BCU_TC.006 Polarity of Bit SVM in Register ECON

The polarity of bit SVM (State of FPI Bus Supervisor Mode Signal) in the SBCU
Error Control Capture register SBCU_ECON is inverted compared to its
description in the User’s Manual.
Actually, it is implemented as follows:
• SVM = 0B: Transfer was initiated in user modes
• SVM = 1B: Transfer was initiated in supervisor mode

CPU_TC.105 User / Supervisor mode not staged correctly for Store In-
structions

Bus transactions initiated by TriCore load or store instructions have a number
of associated attributes such as address, data size etc. derived from the load or
store instruction itself. In addition, bus transactions also have an IO privilege
level status flag (User/Supervisor mode) derived from the PSW.IO bit field.
Unlike attributes derived from the instruction, the User/Supervisor mode status
of TriCore initiated bus transactions is not staged correctly in the TriCore
pipeline and is derived directly from the PSW.IO bit field.
This issue can only cause a problem in certain circumstances, specifically when
a store transaction is outstanding (e.g. held in the CPU store buffer) and the
PSW is modified to switch from Supervisor to User-0 or User-1 mode. In this
case, the outstanding store transaction, executed in Supervisor mode, may be
transferred to the bus in User mode (the bus systems do not discriminate
between User-0 and User-1 modes). Due to the blocking nature of load
transactions and the fact that User mode code cannot modify the PSW, neither
of these other situations can cause a problem.

Example
 ...
TC1736, EES-AA, ES-AA, AA 9/62 Rel. 1.2, 26.02.2010

Errata Sheet

Functional Deviations
 st.w [aX], dX ; Store to Supervisor mode protected SFR
 mtcr #PSW, dY ; Modify PSW.IO to switch to User mode
 ...

Workaround
Any MTCR instruction targeting the PSW, which may change the PSW.IO bit
field, must be preceded by a DSYNC instruction, unless it can be guaranteed
that no store transaction is outstanding.
 ...
 st.w [aX], dX ; Store to Supervisor mode protected SFR
 dsync
 mtcr #PSW, dY ; Modify PSW.IO to switch to User mode
 ...

CPU_TC.106 Incorrect PSW update for certain IP instructions dual-issued
with MTCR PSW

In certain situations where an Integer Pipeline (IP) instruction which updates the
PSW user status bits (e.g. PSW.V - Overflow) is followed immediately by an
MTCR instruction targetting the PSW, with the instructions being dual-issued,
the update priority is incorrect. In this case, the PSW user status bits are updated
with the value from the IP instruction rather than the later MTCR instruction.
This situation only occurs in 2 cases:
• MUL/MADD/MSUB instruction followed by MTCR PSW
• RSTV instruction followed by MTCR PSW

Example
 ...
 rstv
 mtcr #PSW, dY ; Modify PSW
 ...
TC1736, EES-AA, ES-AA, AA 10/62 Rel. 1.2, 26.02.2010

Errata Sheet

Functional Deviations
Workaround
Insert one NOP instruction between the MUL/MADD/MSUB/RSTV instruction
and the MTCR instruction updating the PSW.
 ...
 rstv
 nop
 mtcr #PSW, dY ; Modify PSW
 ...

CPU_TC.107 SYSCON.FCDSF may not be set after FCD Trap

Under certain conditions the SYSCON.FCDSF flag may not be set after an FCD
trap is entered. This situation may occur when the CSA (Context Save Area) list
is located in cacheable memory, or, dependent upon the state of the upper
context shadow registers, when the CSA list is located in LDRAM.
The SYSCON.FCDSF flag may be used by other trap handlers, typically those
for asynchronous traps, to determine if an FCD trap handler was in progress
when the another trap was taken.

Workaround
In the case where the CSA list is statically located in memory, asynchronous
trap handlers may detect that an FCD trap was in progress by comparing the
current values of FCX and LCX, thus achieving similar functionality to the
SYSCON.FCDSF flag.
In the case where the CSA list is dynamically managed, no reliable workaround
is possible.

CPU_TC.108 Incorrect Data Size for Circular Addressing mode instruc-
tions with wrap-around

In certain situations where a Load or Store instruction using circular addressing
mode encounters the circular buffer wrap-around condition, the first access to
the circular buffer may be performed using an incorrect data size, causing too
many or too few data bytes to be transferred. The circular buffer wrap-around
TC1736, EES-AA, ES-AA, AA 11/62 Rel. 1.2, 26.02.2010

Errata Sheet

Functional Deviations
condition occurs when a load or store instruction using circular addressing
mode addresses a data item which spans the boundary of a circular buffer, such
that part of the data item is located at the top of the buffer, with the remainder
at the base. The problem may occur in one of two cases:

Case 1
Where a store instruction using circular addressing mode encounters the
circular buffer wrap-around condition, and is preceded in the LS pipeline by a
multi-access load instruction, the first access of the store instruction using
circular addressing mode may incorrectly use the transfer data size from the
second part of the multi-access load instruction. A multi-access load instruction
occurs in one of the following circumstances:
• Unaligned access to LDRAM or cacheable address which spans a 128-bit

boundary.
• Unaligned access to a non-cacheable, non-LDRAM address.
• Circular addressing mode access which encounters the circular buffer wrap-

around condition.
Since half-word store instructions must be half-word aligned, and st.a
instructions must be word aligned, they cannot trigger the circular buffer wrap-
around condition. As such, this case only affects the following instructions using
circular addressing mode: st.w, st.d, st.da.

Example
 ...
 LDA a8, 0xD000000E ; Address of un-aligned load
 LDA a12, 0xD0000820 ; Circular Buffer Base
 LDA a13, 0x00180014 ; Circular Buffer Limit and Index
 ...
 ld.w d6, [a8] ; Un-aligned load, split 16+16
 add d4, d3, d2 ; Optional IP instruction
 st.d [a12/a13+c], d0/d1 ; Circular Buffer wrap, 32+32
 ...

In this example, the word load from address 0xD000000E is split into 2 half-
word accesses, since it spans a 128-bit boundary in LDRAM. The double-word
store encounters the circular buffer wrap condition and should be split into 2
TC1736, EES-AA, ES-AA, AA 12/62 Rel. 1.2, 26.02.2010

Errata Sheet

Functional Deviations
word accesses, to the top and bottom of the circular buffer. However, due to the
bug, the first access takes the transfer data size from the second part of the un-
aligned load and only 16-bits of data are written. Note that the presence of an
optional IP instruction between the load and store transactions does not prevent
the problem, since the load and store transactions are back-to-back in the LS
pipeline.

Case 2
Case 2 is similar to case 1, and occurs where a load instruction using circular
addressing mode encounters the circular buffer wrap-around condition, and is
preceded in the LS pipeline by a multi-access load instruction. However, for
case 2 to be a problem it is necessary that the first access of the load instruction
encountering the circular buffer wrap-around condition (the access to the top of
the circular buffer) also encounters a conflict condition with the contents of the
CPU store buffer. Again, in this case the first access of the load instruction using
circular addressing mode may incorrectly use the transfer data size from the
second part of the multi-access load instruction. Since half-word load
instructions must be half-word aligned, and ld.a instructions must be word
aligned, they cannot trigger the circular buffer wrap-around condition. As such,
this case only affects the following instructions using circular addressing mode:
ld.w, ld.d, ld.da.
Note: In the current TriCore1 CPU implementation, load accesses are initiated

from the DEC pipeline stage whilst store accesses are initiated from the
following EXE pipeline stage. To avoid memory port contention problems
when a load follows a store instruction, the CPU contains a single store
buffer. In the case where a store instruction (in EXE) is immediately
followed by a load instruction (in DEC), the store is directed to the CPU
store buffer and the load operation overtakes the store. The store is then
committed to memory from the store buffer on the next store instruction or
non-memory access cycle. The store buffer is only used for store
accesses to ‘local’ memories - LDRAM or DCache. Store instructions to
bus-based memories are always executed immediately (in-order). A store
buffer conflict is detected when a load instruction is encountered which
targets an address for which at least part of the requested data is currently
held in the CPU store buffer. In this store buffer conflict scenario, the load
instruction is cancelled, the store committed to memory from the store
TC1736, EES-AA, ES-AA, AA 13/62 Rel. 1.2, 26.02.2010

Errata Sheet

Functional Deviations
buffer and then the load re-started. In systems with an enabled MMU and
where either the store buffer or load instruction targets an address
undergoing PTE-based translation, the conflict detection is just performed
on address bits (9:0), since higher order bits may be modified by
translation and a conflict cannot be ruled out. In other systems (no MMU,
MMU disabled), conflict detection is performed on the complete address.

Example
 ...
 LDA a8, 0xD000000E ; Address of un-aligned load
 LDA a12, 0xD0000820 ; Circular Buffer Base
 LDA a13, 0x00180014 ; Circular Buffer Limit and Index
 ...
 st.h [a12]0x14, d7 ; Store causing conflict
 ld.w d6, [a8] ; Un-aligned load, split 16+16
 add d4, d3, d2 ; Optional IP instruction
 ld.d [a12/a13+c], d0/d1 ; Circular Buffer wrap, 32+32
 ; conflict with st.h
 ...

In this example, the half-word store is to address 0xD0000834 and is
immediately followed by a load instruction, so is directed to the store buffer. The
word load from address 0xD000000E is split into 2 half-word accesses, since it
spans a 128-bit boundary in LDRAM. The double-word load encounters the
circular buffer wrap condition and should be split into 2 word accesses, to the
top and bottom of the circular buffer. In addition, the first circular buffer access
conflicts with the store to address 0xD0000834. Due to the bug, after the store
buffer is flushed, the first access takes the transfer data size from the second
part of the un-aligned load and only 16-bits of data are read. Note that the
presence of an optional IP instruction between the two load transactions does
not prevent the problem, since the load transactions are back-to-back in the LS
pipeline.

Workaround
Where it cannot be guaranteed that a word or double-word load or store
instruction using circular addressing mode will not encounter one of the corner
TC1736, EES-AA, ES-AA, AA 14/62 Rel. 1.2, 26.02.2010

Errata Sheet

Functional Deviations
cases detailed above which may lead to incorrect behaviour, one NOP
instruction should be inserted prior to the load or store instruction using circular
addressing mode.
 ...
 LDA a8, 0xD000000E ; Address of un-aligned load
 LDA a12, 0xD0000820 ; Circular Buffer Base
 LDA a13, 0x00180014 ; Circular Buffer Limit and Index
 ...
 ld.w d6, [a8] ; Un-aligned load, split 16+16
 add d4, d3, d2 ; Optional IP instruction
 nop ; Bug workaround
 st.d [a12/a13+c], d0/d1 ; Circular Buffer wrap, 32+32
 ...

CPU_TC.109 Circular Addressing Load can overtake conflicting Store in
Store Buffer

In a specific set of circumstances, a load instruction using circular addressing
mode may overtake a conflicting store held in the TriCore1 CPU store buffer.
The problem occurs in the following situation:
• The CPU store buffer contains a byte store instruction, st.b, targeting the

base address + 0x1 of a circular buffer.
• A word load instruction, ld.w, is executed using circular addressing mode,

targetting the same circular buffer as the buffered byte store.
• This word load is only half-word aligned and encounters the circular buffer

wrap-around condition such that the second, wrapped, access of the load
instruction to the bottom of the circular buffer targets the same address as
the byte store held in the store buffer.

Additionally, one of the following further conditions must also be present for the
problem to occur:
• The circular buffer base address for the word load is double-word but not

quad-word (128-bit) aligned - i.e. the base address has bits (3:0) = 0x8 with
the conflicting byte store having address bits (3:0) = 0x9, OR,

• The circular buffer base address for the word load is quad-word (128-bit)
aligned and the circular buffer size is an odd number of words - i.e. the base
TC1736, EES-AA, ES-AA, AA 15/62 Rel. 1.2, 26.02.2010

Errata Sheet

Functional Deviations
address has bits (3:0) = 0x0 with the conflicting byte store having address
bits (3:0) = 0x1.

In these very specific circumstances the conflict between the load instruction
and store buffer contents is not detected and the load instruction overtakes the
store, returning the data value prior to the store operation.
Note: In the current TriCore1 CPU implementation, load accesses are initiated

from the DEC pipeline stage whilst store accesses are initiated from the
following EXE pipeline stage. To avoid memory port contention problems
when a load follows a store instruction, the CPU contains a single store
buffer. In the case where a store instruction (in EXE) is immediately
followed by a load instruction (in DEC), the store is directed to the CPU
store buffer and the load operation overtakes the store. The store is then
committed to memory from the store buffer on the next store instruction or
non-memory access cycle. The store buffer is only used for store
accesses to ‘local’ memories - LDRAM or DCache. Store instructions to
bus-based memories are always executed immediately (in-order). A store
buffer conflict is detected when a load instruction is encountered which
targets an address for which at least part of the requested data is currently
held in the CPU store buffer. In this store buffer conflict scenario, the load
instruction is cancelled, the store committed to memory from the store
buffer and then the load re-started. In systems with an enabled MMU and
where either the store buffer or load instruction targets an address
undergoing PTE-based translation, the conflict detection is just performed
on address bits (9:0), since higher order bits may be modified by
translation and a conflict cannot be ruled out. In other systems (no MMU,
MMU disabled), conflict detection is performed on the complete address.

Example - Case 1
 ...
 LDA a12, 0xD0001008 ; Circular Buffer Base
 LDA a13, 0x00180016 ; Circular Buffer Limit and Index
 ...
 st.b [a12]0x1, d2 ; Store to byte offset 0x9
 ld.w d6, [a12/a13+c] ; Circular Buffer wrap, 16+16
 ...
TC1736, EES-AA, ES-AA, AA 16/62 Rel. 1.2, 26.02.2010

Errata Sheet

Functional Deviations
In this example the circular buffer base address is double-word but not quad-
word aligned. The byte store to address 0xD0001009 is immediately followed
by a load operation and is placed in the CPU store buffer. The word load
instruction encounters the circular buffer wrap condition and is split into 2 half-
word accesses, to the top (0xD0001016) and bottom (0xD0001008) of the
circular buffer. The first load access completes correctly, but, due to the bug,
the second access overtakes the store operation and returns the previous half-
word from 0xD0001008.

Example - Case 2
 ...
 LDA a12, 0xD0001000 ; Circular Buffer Base
 LDA a13, 0x00140012 ; Circular Buffer Limit and Index
 ...
 st.b [a12]0x1, d2 ; Store to byte offset 0x1
 ld.w d6, [a12/a13+c] ; Circular Buffer wrap, 16+16
 ...

In this example the circular buffer base address is quad-word aligned but the
buffer size is an odd number of words (0x14 = 5 words). The byte store to
address 0xD0001001 is immediately followed by a load operation and is placed
in the CPU store buffer. The word load instruction encounters the circular buffer
wrap condition and is split into 2 half-word accesses, to the top (0xD0001012)
and bottom (0xD0001000) of the circular buffer. The first load access completes
correctly, but, due to the bug, the second access overtakes the store operation
and returns the previous half-word from 0xD0001000.

Workaround
For any circular buffer data structure, if byte store operations (st.b) are not used
targeting the circular buffer, or if the circular buffer has a quad-word aligned
base address and is an even number of words in depth, then this problem
cannot occur. If these restrictions and the other conditions required to trigger
the problem cannot be ruled out, then any load word instruction (ld.w) targeting
the buffer using circular addressing mode, and which may encounter the
circular buffer wrap condition, must be preceded by a single NOP instruction.
 ...
TC1736, EES-AA, ES-AA, AA 17/62 Rel. 1.2, 26.02.2010

Errata Sheet

Functional Deviations
 LDA a12, 0xD0001000 ; Circular Buffer Base
 LDA a13, 0x00140012 ; Circular Buffer Limit and Index
 ...
 st.b [a12]0x1, d2 ; Store to byte offset 0x1
 nop ; Workaround
 ld.w d6, [a12/a13+c] ; Circular Buffer wrap, 16+16
 ...

CPU_TC.110 Register Banks may be out of sync after FCU Trap

In order to improve the performance of Upper Context Save and Restore
operations (Call, Interrupt etc.) the current TriCore1 CPU implementation
contains shadow registers for the upper context General Purpose Registers
(GPRs), D8-D15 and A10-A15, forming a foreground and a background bank.
In normal operation read and write accesses to the upper context registers
target the same bank, with read and write accesses targetting different banks
just during upper context save and restore operations.
However, in a certain corner case where an FCU trap is taken, read and write
accesses to the register banks remain out of synchronisation in the FCU trap
handler and cannot be easily re-synchronised. Since FCU traps are non-
recoverable system errors, with some system state already lost, maintaining
correct behaviour is not critical. However, due to the bug, it is no longer straight-
forward to discriminate FCU traps from other context management (Class 3)
traps. Since the read and write pointers to the register banks are incorrect in the
bug situation, the update of D15 with the Trap Identification Number (TIN) will
write to one bank whilst the read of D15 in the trap handler will read the other
(incorrect) bank, returning an invalid TIN. For similar reasons, the upper context
GPRs are unusable in an FCU trap handler, since register read and write
operations may target different banks.
The problem occurs in the following situation:
• FCX (Free Context Pointer) points to an invalid location (Null - End of CSA

list, Invalid Segment - Virtual or Peripheral segment).
• CALL / CALLA / CALLI instruction is in the decode pipeline stage and would

generate an FCU trap due to the invalid FCX pointer.
TC1736, EES-AA, ES-AA, AA 18/62 Rel. 1.2, 26.02.2010

Errata Sheet

Functional Deviations
• Instruction in the Load-Store pipeline execute stage encounters a
synchronous trap condition (VAF-D, VAP-D, MPR, MPW, MPP, MPN, ALN,
MEM, DSE, SOVF, OVF), which would also be converted into an FCU trap.

Workaround
The LCX (Free Context List Limit) pointer should be initialised in order to trap
impending context list overflow before the FCU condition is encountered.
However, in order to maintain some system function in the case of an FCU trap,
the following workaround is required, split into two parts.
Firstly, the Context Management (Class 3) trap handler must be modified to
discriminate FCU traps that incorrectly appear to have a TIN pertaining to
another Class 3 trap due to the bug. This is done by checking for the correct
behaviour of the upper context registers and jumping to the FCU trap handler if
the register file behaviour is found to be in error:
_class3_handler:
 mov d12, #7
 nop
 nop
 jne d12, #7, _fcu_handler
 mov d12, #-8
 nop
 nop
 jne d12, #-8, _fcu_handler
 ; Now read valid D15 to obtain TIN
 ...

Since the initial contents of the upper context registers are unknown, it is
necessary to check one of the upper context registers twice, with different
values, in case the initial contents match the first value to be checked.
Note: The NOP instructions in the above code are mandatory to ensure that

reads from the GPRs target the register file directly, rather than the
forwarding paths which always function correctly.

Secondly, within the FCU trap handler itself, only the global and lower context
registers may be used, D0-D7 and A0-A9. Since the upper context information
TC1736, EES-AA, ES-AA, AA 19/62 Rel. 1.2, 26.02.2010

Errata Sheet

Functional Deviations
is already lost in an FCU trap condition, usage of the global and lower context
registers without previously saving this information is acceptable.

CPU_TC.111 Imprecise Return Address for FCU Trap

The FCU trap is taken when a context save operation is attempted but the free
context list is found to be empty, or when an error is encountered during a
context save or restore operation. In failing to complete the context operation,
architectural state is lost, so the occurrence of an FCU trap is a non-recoverable
system error.
Since FCU traps are non-recoverable system errors, having a precise return
address is not important, but can be useful in establishing the cause of the FCU
trap. The TriCore1 CPU does not generate a precise return address for an FCU
trap if the cause of the FCU trap was one of the following trap types: FCD, DAE,
DIE, CAE or NMI.
In each of these circumstances the return address may be invalid.

Workaround
None

CPU_TC.113 Interrupt may be taken during Trap entry sequence

A problem exists whereby interrupts are not correctly disabled at the very
beginning of a trap entry sequence, and under certain circumstances an
interrupt may be taken at the start of a trap handler. The problem occurs when
an interrupt request is received by the TriCore CPU within a window spanning
a single clock cycle either side of a trap condition being detected, and where
interrupts are enabled and the interrupt priority number is higher than the
current CPU priority number (CCPN). In this case the trap entry sequence
begins and the upper context registers are stored to the appropriate CSA.
However, before the first instruction of the trap handler is executed the interrupt
condition is detected and the interrupt handler entered at a time when interrupts
should be disabled. This problem affects all trap types but does not affect
TC1736, EES-AA, ES-AA, AA 20/62 Rel. 1.2, 26.02.2010

Errata Sheet

Functional Deviations
interrupts - an interrupt cannot be taken during the entry sequence of another
interrupt.
It should be noted that no state information is lost when this issue occurs. When
the interrupt handler completes and the RFE instruction is executed, program
execution restarts with the first instruction of the interrupted trap handler and the
trap handler then continues as normal.
The main issue associated with this problem is that the handling of the interrupt
will delay the start of the trap handler. For the majority of trap types associated
with the program flow this is not a problem. However, where the interrupted trap
type denotes a serious system problem, such as an NMI trap, the delay in
servicing the trap may be of concern. In addition, if interrupts are re-enabled
within the interrupt handler then the delay in returning to the trap handler will be
further extended by the handling of any additional higher priority interrupt
requests which may occur. However, once processing of the initial interrupt
handler is complete and the RFE instruction executed to return to the trap
handler, interrupts are correctly disabled immediately and the trap handler will
continue, even if further interrupts are pending when the RFE instruction is
executed.
Another point to note is that this issue can cause some assumptions made in
system software to be invalid. For example, if a system does not allow interrupts
or traps to re-enable interrupts - then it would have been safe to assume that
whenever a trap or interrupt is entered, that the code that has been suspended
(and hence the state information saved in the CSA) is for a user task and
typically non-privileged. Unfortunately, with this issue that premise no longer
holds - the code interrupted and state saved in a CSA can be that of a privileged
trap handler. Dealing with this changed circumstance is easy, provided it is
considered whenever CSA's are examined or manipulated.

Workaround
As described previously, the main problem associated with this erratum is the
delay that may be incurred before the servicing of certain critical trap types,
such as NMI, if no additional action is taken. If this is an issue for a system, then
in order to minimize the impact of this erratum it is necessary to adapt the
interrupt handlers to check for the occurrence of this issue and react
accordingly.
TC1736, EES-AA, ES-AA, AA 21/62 Rel. 1.2, 26.02.2010

Errata Sheet

Functional Deviations
The occurrence of this issue may be checked for by one of two methods,
dependent upon whether all trap classes or just a limited set are considered
timing critical.
If it is required to check for the occurrence of this issue for all trap classes, then
this may be performed by checking the value of the PCXI.PIE register bit within
the interrupt handlers, before any further context operations (such as BISR) are
performed. If PCXI.PIE is clear, such that no interrupt should have been taken,
then this indicates the occurrence of this issue. Although when this method is
used then it is preferred to check the value of PCXI.PIE before any further
context operations are performed, it is possible to use this method after
additional context operations have been performed. In this case it is necessary
to traverse the CSA list to check the required PCXI.PIE value from the
appropriate saved context.
If it is necessary within a system to check for the occurrence of this issue just
for specific, timing critical, trap classes, then this may be performed by
examination of the return address, held in the A11 register, within the interrupt
handler and comparing this return address against the trap vector address(es).
For example, if only the NMI trap is a system issue requiring immediate action,
the following code may be added to the interrupt handler to determine if the
interrupt was taken at the start of the NMI handler:
 ...
 < Timing critical section of Interrupt Handler >
 movh.a a12, #@his(NMITrapAddress) ; BTV OR 0xE0
 lea a12, [a12]@los(NMITrapAddress) ; BTV OR 0xE0
 eq.a d13, a12, a11 ; Compare with A11, result in d13
 < Call / Branch to NMI handler based on d13 result >

Note that this code segment assumes that the BTV CSFR is static during
runtime. If this is not the case then it would be necessary to determine the trap
offset address during runtime by reading the BTV CSFR and ORing with the
TCN offset of the trap of interest. If more than one trap class is considered
timing critical within a system, it is possible to adapt the previous code to check
the return address of the interrupt handler against a number (or range) of trap
class entry addresses.
If the interrupted traps are considered recoverable, and are not time sensitive,
the interrupt handler can simply complete and it's terminating RFE will correctly
TC1736, EES-AA, ES-AA, AA 22/62 Rel. 1.2, 26.02.2010

Errata Sheet

Functional Deviations
return execution to the first instruction of the trap handler - where it will now
execute to completion without undesired interruption. If the interrupted traps are
considered recoverable but are time sensitive and need to be executed
immediately, then some method of deferring the interrupt processing is
required. If the test of the situation (e.g. checking the PCXI.PIE bit is clear) is
at the start of the Interrupt handler, then there are two simple methods to
consider:
The first method would be to re-request the interrupt, by writing the appropriate
Service Request Control Register with the SETR bit set to one, and then
executing an RFE which will be taken back to the trap handler. The interrupt will
now be pending again, but will not be taken until the trap handler executes its
RFE to re-enable interrupts. This method is simple if the device (and hence it's
SRC register address) generating the interrupt is known. If this is not easy to
determine (statically or dynamically), the second method might be preferred.
The second method would be to jump to the trap handler, after setting the trap
identification number (TIN) and the return address (which the trap handler will
use) to be the next instruction in the interrupt handler. This relies on the fact that
the CSA saved away by the preemption of the trap handler is equally valid as
an execution context for the interrupt handler. The code for this method is as
follows:
interruptN:
 mfcr d15, PCXI
 jnz.t d15, 23, interruptReal
 ; force CSA into memory
 dsync
 sh.h d14, d15, #12
 insert d15, d14, d15, #6, #16
 mov.a a15, d15
 ; load trap value of d15 from CSA
 ld.w d15, [a15]0x3C
 mov.a a15, a11
 movh.a a11, #@his(interuptReal)
 lea a11, [a11]@los(interruptReal)
 ; jump to trap handler, will return to interruptReal
 ji a15
TC1736, EES-AA, ES-AA, AA 23/62 Rel. 1.2, 26.02.2010

Errata Sheet

Functional Deviations
 ; the remaining part of the interrupt handler
interruptReal:
 ...

Again it is preferred that this method be used immediately at the beginning of
the interrupt handler, since this approach works straightforwardly provided
there is no state in the Upper Context registers or on the interrupt stack that is
required by the interrupt handler when it returned to. Although it is possible to
adapt this approach to operate later during interrupt handling, additional steps
need to be taken to ensure the correct state is maintained when returning to the
interrupt handler.

CPU_TC.114 CAE Trap may be generated by UPDFL instruction

UPDFL is a User mode instruction implemented as part of the TriCore1
Floating-Point Unit (FPU), which allows individual bits of the PSW user status
bits, PSW[31:24], to be set or cleared. Contrary to early revisions of the
TriCore1.3.1 architecture manual, and in contrast to most other FPU
instructions, the UPDFL instruction should not generate Co-Processor
Asynchronous Error (CAE) traps. However, in certain circumstances the
TriCore1.3.1 FPU will generate CAE traps for UPDFL instructions.
The TriCore1.3.1 FPU will generate a CAE trap upon execution of the UPDFL
instruction in the following situation:
• After execution of the UPDFL instruction, one or more of the PSW[31:26]

bits are set - either the PSW bit(s) are set by UPDFL or were set prior to
execution and not cleared by the UPDFL instruction.

• FPU traps are enabled for one of the asserted PSW[31:26] bits, via the
corresponding FPU_TRAP_CON.FxE bit being set.

• The FPU_TRAP_CON.TST CSFR bit is clear - no previous FPU trap has
been generated without the subsequent clearing of FPU_TRAP_CON.TST.

Workaround
The UPDFL instruction is normally used in one of two situations:
• Clearing the FPU sticky flags held in PSW[30:26].
• Setting the FPU rounding mode bits in PSW[25:24].
TC1736, EES-AA, ES-AA, AA 24/62 Rel. 1.2, 26.02.2010

Errata Sheet

Functional Deviations
In the first case, if all the PSW[31:26] bits are cleared by UPDFL, no CAE trap
will be generated.
In the second case, UPDFL may still be used to set the FPU rounding mode,
but in this case the remaining PSW bits, [31:26], must be cleared by UPDFL in
order to avoid generation of an unexpected CAE trap.
In all other cases, where FPU traps are enabled, some other method of
manipulating the PSW user status bits must be used in order to avoid
extraneous CAE trap generation. For instance, if in Supervisor mode the PSW
may be read using the MFCR instruction, the high order PSW bits modified and
written back using the MTCR instruction.

CPU_TC.115 Interrupt may be taken on exit from Halt mode with Inter-
rupts disabled

A problem exists whereby an interrupt may be taken by the TriCore CPU upon
exiting Halt mode, even if interrupts are disabled at that point.
The problem occurs when an interrupt request is received by the TriCore CPU,
with the pending interrupt priority number (PIPN) higher than the current CPU
priority number (CCPN), and interrupts are enabled. In this case, where only the
CPU pipeline status is preventing the interrupt from being taken immediately,
the interrupt is latched and taken as soon as the pipeline can accept an
interrupt. This may cause unexpected behavior whilst debugging, where
interrupts are enabled before entry to Halt mode, or where interrupts are
temporarily enabled during Halt mode. In this case an interrupt may be latched
whilst the CPU is in Halt mode, and subsequently disabling interrupts during
Halt mode, by setting ICR.IE = 0B, will not prevent the interrupt from being
serviced immediately upon exit from Halt mode.
It should be noted that no corruption of the program flow is associated with this
issue and that it affects debugging only, primarily the debugger single-stepping
functionality. The problem may or may not be visible whilst debugging,
dependent upon the implementation of single-stepping by the debugger. If
single-stepping is implemented by the debugger setting Break-Before-Make
(BBM) breakpoints on all instructions except the next to be executed, then if this
problem occurs the next instruction when single-stepping will be the first
instruction of the interrupt handler. However, if single-stepping is implemented
TC1736, EES-AA, ES-AA, AA 25/62 Rel. 1.2, 26.02.2010

Errata Sheet

Functional Deviations
by setting a Break-After-Make (BAM) breakpoint on the next instruction to be
executed, or a BBM breakpoint on the next but one instruction, the problem will
not be visible. In this case, when single-stepping, the interrupt handler will be
executed in its entirety before returning to the interrupted program flow and the
breakpoint being taken after the next instruction to be single-stepped.

Workaround
As described previously, this problem affects debug only and in this case the
taking of the interrupt immediately upon exit from Halt mode cannot be avoided
if the conditions to trigger the problem occur. However, the debugger single-
stepping functionality may be implemented in such a way that this problem does
not directly affect the user, as follows:
Upon first hitting a breakpoint, the debugger should read and hold the current
interrupt enable status from ICR.IE. Interrupts should then be disabled by
setting ICR.IE = 0B.
If the next debugger action is to single-step, a BAM breakpoint should be placed
on the next instruction to be executed and the CPU re-started. In this case a
previously latched interrupt may be serviced, but will not result in a further
breakpoint being flagged until the interrupt handler returns and the next
instruction intended to be single-stepped is executed.
Subsequent single-step operations may be implemented using any appropriate
method, since interrupts will be disabled before Halt mode is entered.
If the debugger action is to re-start normal execution, the interrupt enable status
should be restored from the value read upon hitting the initial breakpoint and the
CPU re-started.

DMA_TC.013 DMA-LMB-Master Access to Reserved Address Location

DMA-LMB-Master goes into an unintentional lock-up state when a Read or
Write access is made to a reserved memory location with an unrecognised
slave.
Subsequent Read/Write accesses from a DMA Channel, MLI, Cerberus or the
DMA-FPI-Slave to all memory locations mapped to the DMA-LMB-Master
TC1736, EES-AA, ES-AA, AA 26/62 Rel. 1.2, 26.02.2010

Errata Sheet

Functional Deviations
(80000000H to DFFFFFFFH) will be halted until control of the DMA-LMB-Master
is regained.
In the case of a lock-up DMA-LMB-Master Read access, the next LMB access
and associated response will have the following effect:
• ERROR Response: The DMA-LMB-Master will treat this error response as

its own. It will clear the lock-up state and return an error to the DMA access
requester. Normal operation will then continue. Halted DMA access
requests will resume. There is no corruption of the data flow.

• NSC (No Special Condition) Acknowledge: The DMA-LMB-Master will treat
this response as its own and again clear the lock-up state. The correct
response to an unrecognised slave is an ERROR. Therefore the DMA-LMB-
Master has signalled an invalid response back to the DMA access requester
resulting in a corruption of the data flow.

• RETRY Response: The DMA-LMB-Master will treat the retry response as its
own and again clear the lock-up state. The access will be repeated to the
same reserved address location again resulting in a lock-up condition. The
sequence is broken by the first ERROR response or NSC acknowledge.

The effect of a DMA-LMB-Master Write accesses to an unrecognised slave is
the same as above with one exception:
• If the next access is a Read access from the EBU-LMB-Slave then the DMA-

LMB-Master will clear the lock-up state and respond as above. The EBU
read completes but the data read by the Originator (e.g. TriCore) will be the
write data of the DMA-LMB-Master Write access.

The following should be noted:
• At all times the DMA-FPI-Master and DMA-FPI-Slave remain accessible.
• If the LMB-DMA-Master is in the lock-up state then accesses can still be

made to the LMB bus by all other LMB-Masters (e.g. LFI-LMB-Master).

Hint
Do not perform a DMA channel, MLI, Cerberus or DMA-FPI-Slave access to a
reserved address: all areas specified as reserved in the Memory Map Chapter,
LMB Address Map Table must not be accessed by the DMA (ME, MLI,
Cerberus).
TC1736, EES-AA, ES-AA, AA 27/62 Rel. 1.2, 26.02.2010

Errata Sheet

Functional Deviations
Workaround
The LMB-Bus-Control-Unit can recognise a DMA-LMB-Master access to an
unrecognised slave. It can be programmed to raise an interrupt and then
generate a Class 3 Application Reset to clear the lock-up state.

DMI_TC.014 Problems with Parity Handling in TriCore Data Memories

A small number of cases exist in which the handling of parity errors in the
TriCore data memories (LDRAM, DCache and Data Cache Tag) does not
function correctly, potentially leading to data corruption for accesses to these
memories. This data corruption may occur whether the access to one of these
memories is from the TriCore CPU, or, in the case of LDRAM, from another bus
master access via the LMB.

Workaround
In systems where the Data Memory parity handling must be enabled, the
following is required to guarantee correct behaviour:
• Compatibility mode must be selected for the TriCore Data side memories by

setting COMPAT.DIE = 1B. In this case parity errors are signalled to the SCU
and returned to the CPU as an NMI trap, rather than as a DIE trap directly
to the CPU.

AND
• If the system has a data cache, the data cache must be used to cache read-

only data only (such as Flash contents). Writes to cacheable locations must
not be used with the Data Cache enabled.

Note that this does not concern the program side which works as expected.

DMI_TC.016 CPU Deadlock possible when Cacheable access encounters
Flash Double-Bit Error

A problem exists whereby the TriCore CPU may become deadlocked when
attempting a mis-aligned load access to a cacheable address. The problem will
be triggered in the following situation:
TC1736, EES-AA, ES-AA, AA 28/62 Rel. 1.2, 26.02.2010

Errata Sheet

Functional Deviations
• The TriCore CPU executes a load instruction whose target address is not
naturally aligned - a data word access which targets an address which is not
word aligned, or a data / address double-word access which is not double-
word aligned.

• The mis-aligned load access targets a cacheable address, whether the
device is configured with a data cache or not.

• The mis-aligned load access spans two halves of the same 128-bit cache
line. For instance, a data word access with address offset 6H.

• The mis-aligned load access results in a cache miss, which will refill the 128-
bit cache line / Data Line Buffer (DLB) via a Block Transfer 2 (BTR2) read
transaction on the LMB, and this LMB read encounters a bus error condition
in the second beat of the block transfer.

It should be noted that under normal operation, LMB block transfers will not
result in a bus error condition being flagged on the second beat of a block
transfer. However, such a condition may be encountered when accessing the
on-chip Flash, if the second double-word of data accessed from the Flash (for
the second half of the cache line) contains an uncorrectable double-bit error.
When this condition is triggered, the first part of the requested data is obtained
from the valid first beat of the BTR2 transfer, and the second part is required
from the errored second beat. In this case, no error is flagged to the TriCore
CPU and the transaction is incorrectly re-started on the LMB. In the case of a
Flash double-bit error, this transaction will be re-tried continuously on the LMB
by the DMI LMB master and the CPU become deadlocked. This situation would
then only be recoverable by a Watchdog reset.
The problem exists within the DMI DLB, which is used as a single cache line
when no data cache is configured, and as a streaming buffer when data cache
is present. As such the problem affects all load accesses to cacheable
locations, whether data cache is configured or not, since the DLB is used in both
cases.
Note: This problem affects load accesses to the on-chip Flash only. Instruction

fetches which encounter a similar condition (bus error on later beat of
block transfer) behave as expected and will return a PSE trap upon any
attempt to execute an instruction from a Flash location containing a
double-bit error.
TC1736, EES-AA, ES-AA, AA 29/62 Rel. 1.2, 26.02.2010

Errata Sheet

Functional Deviations
Workaround
As described previously, this problem should not be encountered during normal
operation and will only be triggered in the case of a double-bit error being
detected in an access to the on-chip Flash.
However, in order to remove the possibility of encountering this issue, all load
accesses to cacheable addresses within the on-chip Flash should be made
using natural alignment - word transfers should be word aligned, double-word
transfers double-word aligned.
It is also possible to check for the occurrence of this problem by having some
other master, such as the PCP, periodically poll the LBCU LEATT register to
check for the occurrence of LMB error conditions, specifically if one is detected
during a BTR2 read transfer from the DMI, as reported by LEATT.OPC and
LEATT.TAG.

DMI_TC.017 DMI line buffer is not invalidated by a write to
OVC_OCON.DCINVAL if cache off.

A problem exists whereby the DMI line buffer is not invalidated by a write to
OVC_OCON.DCINVAL when operating with the D-cache turned off. This
means that the user cannot rely on a write to OVC_OCON.DCINVAL to make
sure that any stale data in the DMI line buffer is invalidated. This can be a
problem for users who want to use the OVC_OCON.DCINVAL bit to ensure
coherency between the DMI and background memory.
It should be noted that this problem is not encountered when the D-cache is
turned on. When the D-cache is turned on, writing a one to
OVC_OCON.DCINVAL will correctly invalidate all clean cache entries and
invalidate the DMI line buffer. The problem only concerns systems with no
cache or systems where the cache is turned off.

Detailed description
D-Cache turned on:
When D-cache is turned on, the DMI line buffer is only used as a performance
enhancement mechanism with no logical existence to the user. It is therefore
not operating as a micro-cache and the current issue does not apply. When the
TC1736, EES-AA, ES-AA, AA 30/62 Rel. 1.2, 26.02.2010

Errata Sheet

Functional Deviations
dcache is turned on, writing to OVC_OCON.DCINVAL will always invalidate all
clean lines in the dcache. No stale data will subsist in the DMI line buffer.
D-Cache turned off:
The problem occurs when the dcache is turned off. When the dcache is turned
off (or non-existent) the DMI line buffer operates as a 16-byte cache. Writing a
one to the OVC_OCON.DCINVAL register should invalidate the data inside the
DMI line buffer as long as the data is not dirty. This invalidation mechanism
does not work on AUDO-Future devices. Writing to OVC_OCON.DCINVAL will
have no effect at all. Any cache line which was previously loaded into the DMI
line buffer will not be invalidated (whether it was dirty or not).

Workaround
The workaround consists in executing a cachei.wi instruction with an operand
register containing a random non-protected cacheable address. The DMI line
buffer will respond to cachei.wi instructions regardless of the content of its
operand, provided that the operand contains a cacheable address which is not
protected. On execution of cachei.wi, the DMI line buffer will flush and invalidate
itself. For example, executing the following two instructions should flush and
invalidate the DMI line buffer in any circumstance. Note that the current
workaround always invalidates the entry regardless of whether it was dirty or
not.
movh.a a0, #0x8000 ;; Cachei operand is random non-
protected cacheable address.
cachei.wi [a0] ;; The DLB gets invalidated regardless
of the value in a0.

If the user is not concerned in invalidating the DMI line buffer but simply
guaranteeing its coherency with external memory then there is another simple
workaround. This consists in issueing a read to a dummy cacheable address
pointing outside the 16-byte block containing the next required data. Access to
the next required data will then necessarily result in a refill and the resulting data
will be coherent. This is what the following code does (a0 contains a dummy
address and a1 contains the address for the user's required data).
movh.a a0, #0x8000 ;; Dummy address is 0x80000000.
ld.w d0, [a0] ;; a0 has to point to different 16-byte
block than a1.
TC1736, EES-AA, ES-AA, AA 31/62 Rel. 1.2, 26.02.2010

Errata Sheet

Functional Deviations
ld.w d0, [a1] ;; This load will be executed fresh from
memory with a refill.
 ;; Read data will be coherent with rest
of memory.

FADC_TC.005 Equidistant multiple channel-timers

The description is an example for timer_1 and timer_2, but can also affect all
other combinations of timers.
Timer_1 and Timer_2 are running with different reload-values. Both timers
should start conversions with the requirement of equidistant timing.
Problem description:
Timer_1 becomes zero and starts a conversion. Timer_2 becomes zero during
this conversion is running and sets the conversion-request-bit of channel_2. At
the end of the conversion for channel_1 this request initiates a start for
channel_2. But the Timer_2 is reloaded only when setting the request-bit for
channel_2 and is decremented during the conversion of channel_1.
The correct behavior would be a reload when the requested conversion (of
channel_2) is started.
Therefore the start of conversion for channel_2 is delayed by maximum one
conversion-time. After this delay it will be continued with equidistant conversion-
starts. Please refer to the following figure.
TC1736, EES-AA, ES-AA, AA 32/62 Rel. 1.2, 26.02.2010

Errata Sheet

Functional Deviations
Figure 1 Timing concerning equidistant multiple timers

Workaround
Use one timer base in combination with neighboring trigger and selection by
software which result has to be taken into account.

FIRM_TC.010 Data Flash Erase Suspend Function

This problem affects devices with microcode version V11 (see FIRM_TC.H000
for identification of the microcode version):
A sector DFx in the Data Flash may not be correctly erased when two
successive erase operations are executed without any programming between

Tim er_1 0

R = T im er loaded w ith R eload-va lue

R

0 = T im er becom es zero

R0D EC R 0 R D E C RD EC R

00 RRR 0 D EC RD EC RD E C RD E C R

0 RR 0 D E C RD EC RD E C R

Tim er_2

T im er_2

R

R

R

R00D EC R

D EC R

Start_chan1

S tart_chan2

B usy1

00

1.) In hardw are im plem ented feature

2.) S pec com form feature

S tart sh ifted

S tart sh ifted

progr. tim er ra te progr. tim er ra te

prog. tim er ra te prog. tim er ra te

N ote: the program m ed tim er ra te is m uch longer than the conversion tim e,
th is m eans that the fau lt is m uch sm aller than in the p icture

conversion tim e
TC1736, EES-AA, ES-AA, AA 33/62 Rel. 1.2, 26.02.2010

Errata Sheet

Functional Deviations
the erase operations, as described in the following sequence (x, y = 0 or 1,
x ≠ y):
1. A Program Flash sector or a Data Flash sector (DFy or DFx) has been

erased.
2. An erase command on Data Flash sector DFx is issued.
3. While the erase operation on sector DFx is in progress, during a certain

critical time window a programming command on sector DFy is issued, i.e.
the erase operation on sector DFx is suspended.

In other words, potentially critical sequences are:
• Erase PFLASH --> erase DFx --> program DFy (suspend erase DFx), or
• Erase DFy --> erase DFx --> program DFy (suspend erase DFx), or
• Erase DFx --> erase DFx --> program DFy (suspend erase DFx).
As a consequence, sector DFx may not be correctly erased after the suspended
erase has been completed (i.e. DFx may be weakly programmed). The effect is
non-permanent, i.e. erasing DFx again will solve the issue.
Note: Sector DFy is always correctly programmed.

Therefore, both Data Flash sectors or a Program and a Data Flash sector must
not be erased one after the other if the second erase operation might be
suspended.

Workaround 1
Additionally program (a page of) Data Flash sector DFx or DFy, before starting
the erase of DFx, e.g.:
1. Erase PFLASH or DFx or DFy
2. Additional step: Program DFx or DFy (specified rules for Data Flash page

programming must remain valid), check for completion of programming
(busy)

3. ... (any operation except erase of DFx, DFy, or PFLASH)...
4. Erase DFx
5. Concurrent programming of DFy may be triggered.

Workaround 2
After starting the erase of Data Flash sector DFx, delay the start of the
programing of sector DFy by at least 250 ms, e.g.:
TC1736, EES-AA, ES-AA, AA 34/62 Rel. 1.2, 26.02.2010

Errata Sheet

Functional Deviations
1. Erase DFx
2. Additional step: Wait > 250 ms
3. Concurrent programming of DFy may be triggered.

Workaround 3
Issue a reset in case of two consecutive erase operations without intermediate
programming, e.g.:
1. Erase DFx
2. Erase DFy
3. Additional step: Reset
4. Erase DFx (if needed)
5. Concurrent programming of DFy may be triggered.

Workaround 4
After a concurrent erase on Data Flash sector DFx has been triggered, verify
the state of DFx.
In case of weak programming, re-erase DFx (Additional step).

Workaround 5
Do not use concurrent erase/program operations on Data Flash.

FLASH_TC.027 Flash erase time out of specification

As per specification following are the flash erase timings .

Table 6 Flash erase timings as per spec.
Flash Micro

code
version

Erase Time

P-Flash, 1 MByte V11 20s [at cold and room
temperature]

D-Flash, 32 Kbyte [Both
Data Flash]

V11 1.25s [at cold temperature]
TC1736, EES-AA, ES-AA, AA 35/62 Rel. 1.2, 26.02.2010

Errata Sheet

Functional Deviations
Flash erase timings measured on actual device are as below

Maximum erase time at various CPU operating frequencies can be calculated
according to the following table

FLASH_TC.035 Flash programing time out of specification

As per specification flash programing time specified is per page 5msec
Where as actual programing time measured on the device is per page 5.5msec

FLASH_TC.036 DFLASH Margin Control Register MARD

The margin for the two banks of the Data Flash module (DFLASH) can only be
selected for the complete DFLASH, and not separately for each DFLASH bank.
Therefore, the correct description representing the actual behavior of bit
BNKSEL in register MARD is as follows:

Table 7 Actual Flash erase timings.
Flash Micro

code
version

Erase Time

P-Flash, 1 MByte V11 26s [at cold temperature]
 22.5s [at room and above
temperature]

D-Flash, 32 Kbyte [Both
Data Flash]

V11 1.6s [at all temperature]

Table 8 Relative erase time increments.
Frequency[MHz] Increment
40 5%
66 1%
80 0%
TC1736, EES-AA, ES-AA, AA 36/62 Rel. 1.2, 26.02.2010

Errata Sheet

Functional Deviations
• BNKSEL = 0B: The active read margin for both DFLASH banks is determined
by bit fields MARGIN0 and MARGIN1.

• BNKSEL = 1B: Both DFLASH banks are read with standard (default) margin
independently of bit fields MARGIN0 and MARGIN1.

Workaround
According to the above description,
• in order to allow reading from DFLASH bank 1 with high margin, bit BNKSEL

must be set to 0B.
• in order to read different DFLASH banks with different read margins

(standard/high), reconfiguration of register MARD is required in between.

OCDS_AI.001 DAP restart lost when DAP0 inactive

To speed up the resynchronization after a loss of connection, the DAP module
can be forced back to the “Enabled” (not yet “Active”) state by a control signal
(“restart”) driven by the on-chip debug logic (e.g. CBS_OSTATE) and actuated
by higher-level on-chip tool firmware.
In the current design this feature is implemented as synchronous reset, i.e. it
requires clock edges inside the DAP module to work properly. As DAP0 is the
only clock source used by DAP, the reset is not sensed if DAP0 is not toggled
by the host at least once while restart is asserted.

Workaround
There is no workaround available.
Attention: Do not assert restart for longer periods of time unless the

interface shall be functionally “locked”. The bug-fixed version
of future devices will also reset DAP as long as restart is
asserted, but will additionally store the rising edge until at least
two DAP0 clock edges have been seen.
TC1736, EES-AA, ES-AA, AA 37/62 Rel. 1.2, 26.02.2010

Errata Sheet

Functional Deviations
OCDS_AI.002 JTAG Instruction must be 8 bit long

The JTAG TAP controller implemented in all Infineon devices strictly adheres to
the standard IEEE 1149-1-2001. One side effect of this standard requires
special awareness, as it can cause severe errors.
Upon entry to the Capture-IR state the internal shift register is preloaded with
a constant, namely 01H.
In the Shift-IR state the bits from the host are prepended, i.e. for each incoming
bit the old LSB is dropped, the remaining 7 bits are shifted right one bit position
and the incoming bit becomes the new MSB.
Upon entry to the Update-IR state the content of the internal shift register is
copied into the INSTRUCTION register unconditionally.
If the final state of the shift register happens to be a valid, but unintended
instruction, the device may enter a state very detrimental to the application. An
extreme example is the INTEST instruction, which turns off all outputs of the
device and is activated by instruction 01H, i.e. if no bit at all is shifted in by the
host!

Recommendations
• Always shift in at least as many bits as the INSTRUCTION register holds.

This means 8 bit for Infineon devices.
• Check the bits returned via TDO: Must be 01H followed by any data shifted

in excluding the last eight bits. This allows to “check the pipe” by shifting in
more than the required 8 bits.

• Use the protection offered by IOPATH: Keeping IOPATH different from 00B
whenever possible will block all Boundary Scan functions.

• Do not use the DAP telegrams jtag_setIR and jtag_swapIR with n less than
eight.

• Use the CRC protected DAP interface if the application environment may
cause transmission errors on the JTAG signals.
TC1736, EES-AA, ES-AA, AA 38/62 Rel. 1.2, 26.02.2010

Errata Sheet

Functional Deviations
OCDS_TC.014 Triggered Transfer does not support half word bus trans-
actions

The register bit CBS_IOCONF.EX_BUS_HW does not have any influence on
the transaction width; only word wide transfer (32 bit) is implemented.

Workaround
No workaround possible. Choose source (IOADDR) and destination (ICTTA)
addresses in word wide areas only.

OCDS_TC.015 IOCONF register bits affected by Application Reset

The IOCONF register is erroneously cleared by each Application Reset.
Therefore Communication Mode is entered whenever the TriCore is reset.
As the interaction with the tool is suspended anyway due to Error State of the
IOClient, no immediate damage is done.
To resume interaction after leaving the Error State (IO_SUPERVISOR
instruction) however the required mode must be restored by rewriting the
IOCONF register (IO_CONFIG instruction).

Workaround
After detecting an Application Reset (IOINFO.BUS_RST set) the IOCONF
register should be rewritten by the tool after the Error State is left.

OCDS_TC.016 Triggered Transfer dirty bit repeated by IO_READ_TRIG

The dirty bit appended to the data of an IO_READ_WORD instruction during
Triggered Transfer mode indicates that there was at least one extra trigger
event missed prior to capturing the transmitted data. The dirty bit is therefore
cleared after each IO_READ_WORD. A consecutive IO_READ_TRIG
instruction however will erroneously undo the clear. The next
IO_READ_WORD will then again see a set dirty bit even if no trigger was
missed.
TC1736, EES-AA, ES-AA, AA 39/62 Rel. 1.2, 26.02.2010

Errata Sheet

Functional Deviations
Workaround
Do not issue an IO_READ_TRIG instruction after an IO_READ_WORD
returned a set dirty bit.

OCDS_TC.018 Startup to Bypass Mode requires more than five clocks
with TMS=1

If the DAP state machine is brought to Enabled state by Power On Reset, the
TAP controller is fed 0B bits on its TMS input. When the special sequence for
Startup in Bypass Mode is detected by DAP the TAP controller already has left
the Test-Logic-Reset state.

Workaround
Shifting in more than five 1B bits (recommendation: 10) will securely bring the
TAP state machine back to Test-Logic-Reset.

OCDS_TC.020 ICTTA not used by Triggered Transfer to External Address

In “Triggered Transfer to External Address” Mode bits 24…0 of the target
address are fixed to the reset value of ICTTA. Only the most significant byte can
by changed by IO_SET_TRADDR (or by writing to ICTTA).
Note: This is the behavior of the Cerberus implemented prior to AudoNG.

It is therefore not possible to use Cerberus as “DMA” work-alike to move trace
data to the outside world via an interface like ASC.

Workaround
No workaround in “Triggered Transfer to External Address” mode possible, only
the fixed address xx10F068H can be used.
In “Internal Mode” however ICTTA is working as specified, so for certain use
cases the intended DMA functionality can be activated by a code snippet
executed by the TriCore or PCP as long as the Debug Interface is not needed
concurrently.
TC1736, EES-AA, ES-AA, AA 40/62 Rel. 1.2, 26.02.2010

Errata Sheet

Functional Deviations
OCDS_TC.021 TriCore breaks on de-assertion instead of assertion of
break bus

The central OCDS building block “Cerberus” provides two Break Buses. All
break sources can be individually enabled to assert one of these buses, while
all break targets can be programmed to react on the assertion of one of the
break buses.
The break target TriCore however does not react on the assertion (transition 0
to 1) of the break bus (as seen in the associated status bit MCDBBSS.BBSx)
like all the other break targets, but on the deassertion (transition 1 to 0 of the
status bit).
It is therefore not possible to:
• Stop the TriCore together with another core (e.g. PCP) at the same instant.
• Use a single transition of an external signal connected to any BRKIN pin to

cleanly break the whole SoC.

Workaround
• All internal break sources can be programmed in a manner so that the break

event is encoded as a pulse. For simple sources (e.g. SBCU) this is trivial,
for complex sources (e.g. MCDS) a different trigger logic may be required.
The temporal distance of the break requests to different targets can thus be
kept low relative to the intrinsic core specific delays (e.g. caused by pipeline
flushing).

• External break sources may be redesigned to deliver an active low pulse
also.

OCDS_TC.024 Loss of Connection in DAP three-pin Mode

Devices of the Audo Future family allow tool access via dedicated pins in two
basic protocol modes: DAP and JTAG. To avoid changes to the application
environment, the tool selects the protocol to be used by signalling over the
same pins later used for communication.
Default startup mode is two-pin DAP. Other modes (JTAG or three-pin DAP) are
selected by specific telegrams which need to be sent to the device.
TC1736, EES-AA, ES-AA, AA 41/62 Rel. 1.2, 26.02.2010

Errata Sheet

Functional Deviations
One of the major advantages of DAP versus JTAG within a harsh automotive
environment is its robustness regarding bit errors in the telegram transmission.
This is achieved by adding checksums (CRC) to all telegrams. The only
exception is the telegram to switch from DAP to JTAG (see jtag_mode
telegram), as this telegram is potentially sent by legacy JTAG-only tools not
able to generate properly formatted DAP telegrams.
A method has been implemented to prevent the following safety hole: If bit
errors (e.g. caused by EMC) change another DAP telegram to the telegram
meaning “switch to JTAG mode”, a tool using DAP pins only would loose
connection in an unrecoverable manner. Therefore the DAP module can be
configured by the tool via SFR CBS_OSTATE.DJMODE to ignore the “switch to
JTAG mode” (also called BYPASS) telegram.
Due to an imperfection within the design the intended protection via
CBS_OSTATE.DJMODE does not become effective in three-pin DAP mode
(CBS_OSTATE.DJMODE = 11B).
Note: Two-pin DAP mode is not affected.

Workaround
None for three-pin DAP mode.
It is recommended to select the protected two-pin DAP mode
(CBS_OSTATE.DJMODE = 01B) instead if unintentional and non recoverable
loss of the tool connection (e.g. due to EMC) shall be prevented safely.

OCDS_TC.025 PC corruption when entering Halt mode after a MTCR to
DBGSR

In cases where the CPU is forced into HALT mode by a MTCR instruction to the
DBGSR register, there is a possibility of PC corruption just before HALT mode
is entered. This can happen for MTCR instructions injected via the CPS as well
as for user program MTCR instructions being fetched by the CPU. In both cases
the PC is potentially corrupted before entering HALT mode. Any subsequent
read of the PC during HALT will yield an erroneous value. Moreover, on exiting
HALT mode the CPU will resume execution from an erroneous location. .
TC1736, EES-AA, ES-AA, AA 42/62 Rel. 1.2, 26.02.2010

Errata Sheet

Functional Deviations
The corruption occurs when the MTCR instruction is immediately followed by a
mis-predicted LS branch or loop instruction. The forcing of the CPU into HALT
takes priority over the branch resolution and the PC will erroneously be
assigned the mispredicted target address before going into HALT.
• Problem sequence 1:
• 1) CPS-injected MTCR instruction to DBGSR sets HALT Mode
• 2) LS-based branch/loop instruction
• 3) LS-based branch/loop is mispredicted but resolution is overridden by

HALT.
• Problem sequence 2:
• 1) User code MTCR instruction to DBGSR sets HALT Mode
• 2) LS-based branch/loop instruction
• 3) LS-based branch/loop is mispredicted but resolution is overridden by

HALT.

Workaround
External agents should halt the CPU using the BRKIN pin instead of using CPS
injected writes to the CSFR register. Alternatively, the CPU can always be
halted by using the debug breakpoints. Any user software write to the DBGSR
CSFR should be followed by a dsync.

OCDS_TC.026 PSW.PRS updated too late after a RFM instruction.

When a breakpoint with an associated TRAP action occurs, the Tricore will
enter a special trap called a ’debug monitor’. The RFM instruction (return from
monitor) is used to return from the debug monitor trap. After the RFM, the CPU
should resume execution at the point where it left it when the breakpoint
happened.On execution of the RFM instruction, a light-weight debug context is
restored and the PSW CSFR is loaded with its new value. The updated value
of the PSW.PRS field should then be used to select the appropriate protection
register set for all subsequently fetched instructions. Because PSW.PRS can
be updated too late after an RFM instruction, the instruction following an RFM
potentially sees the old value of the PSW.PRS field as opposed to the new
one.This can be problematic since the PSW.PRS field is crucial in terms of code
protection and debug. Indeed there is a possibility that the instruction
TC1736, EES-AA, ES-AA, AA 43/62 Rel. 1.2, 26.02.2010

Errata Sheet

Functional Deviations
immediately following the RFM be submitted to inadequate protection rules (as
defined by the old PSW.PRS field).
• Problem sequence:
• instr (monitor)
• instr (monitor)
• instr (monitor)
• RFM (monitor)
• Instruction1 // Uses debug monitor’s PSW.PRS field as opposed to newly

restored one.
• instruction2

Workaround
To fix this the user needs to do the following before exiting the monitor using
RFM:
.
• > Retrieve the old value of PSW from location DCX+4
• > Do a MFCR and a MTCR to copy the old value of PSW.PRS into PSW

without changing other PSW fields.
• > DSYNC
• > RFM
This sequence will guarantee that all instructions fetched subsequently to the
RFM will be submitted to the new PSW.PRS field.

OCDS_TC.027 BAM breakpoints with associated halt action can poten-
tially corrupt the PC.

BAM breakpoints can be programmed to trigger a halt action. When such a
breakpoint is taken the CPU will go into HALT mode immediately after the
instruction is executed. This mechanism is broken in the case of conditional
jumps. When a BAM breakpoint with halt action is triggered on a conditional
jump, the PC for the next instruction will potentially be corrupted before the CPU
goes into HALT mode. On exiting HALT mode the CPU will see the corrupted
value of the PC and hence resume code execution from an erroneous location.
Reading the PC CSFR whilst in HALT mode will also yield a faulty value.
TC1736, EES-AA, ES-AA, AA 44/62 Rel. 1.2, 26.02.2010

Errata Sheet

Functional Deviations
Workaround
In order to avoid PC corruption the user should avoid placing BAM breakpoints
with HALT action on random code which could contain conditional jumps.The
simplest thing to do is to avoid BAM breakpoints with HALT action altogether. A
combination of BBM breakpoints and other types of breakpoint actions can be
used to achieve the desired functionality.:
Workaround for single-stepping:
An ’intuitive’ way of implementing single-stepping mode is to place a halt-action
BAM breakpoint on the address range from 0x00000000 to 0xFFFFFFFF.
Every time the CPU is woken up via the CERBERUS it will execute the next
instruction and go back to HALT mode. Unfortunately this will trigger the bug
described by the current ERRATA.
The solution is to implement single-stepping using BBM breakpoints:
• 1) Create two debug trigger ranges:
• First range: 0x00000000 to current_instruction_pc (not included)
• Second range: current_instuction_pc (not included) to 0xFFFFFFFF
• 2) Associate the two debug ranges with BBM breakpoints.
• 3) Associate the BBM breakpoints with a HALT action.
• 4) Wake up the CPU via CERBERUS
• 5) CPU will execute the next instruction, update the PC and go to HALT

mode.
• 6) Start again (go back to 1)

RESET_TC.001 SCU_RSTSTAT.PORST not set by a combined
Debug / System / Application Reset

Causing simultaneously a System, Application, and Debug Reset via
CBS_OSTATE.RSTCL0…3 in most cases does not leave the
SCU_RSTSTAT.PORST bit set as specified. Bit SCU_RSTSTAT.PORST stays
set only if reset source ESR0 was configured not to generate any reset
(SCU_RSTCON.ESR0 = 00B). If the ESR0 reset source is configured to
generate a reset, bit SCU_RSTSTAT.PORST is cleared and bit
SCU_RSTSTAT.ESR0 is set instead.
TC1736, EES-AA, ES-AA, AA 45/62 Rel. 1.2, 26.02.2010

Errata Sheet

Functional Deviations
Bits CBS_OSTATE.RSTCL0…3 are either set by setting bits
CBS_OCNTRL.OJC4…7 or CBS_OJCONF.OJC4…7.
Debugging of “PORST-only” application software under debugger control is
therefore not working if the ESR0 reset source generates a reset.

Workaround
Before triggering a simultaneous System, Application, and Debug Reset by the
OCDS system bit field SCU_RSTSTAT.ESR0 should be cleared. In addition it
should be checked that bit field SCU_RSTSTAT.ESR1 is also cleared.
If bit field SCU_RSTSTAT.ESR0 needs to contain a value different from 00B
instead of checking bit SCU_RSTSTAT.PORST the three bits
SCU_RSTSTATCB0, SCU_RSTSTATCB1, and SCU_RSTSTATCB3 should
be checked to be set.

SCU_TC.016 Reset Value of Registers ESRCFG0/1

The reset value of register SCU_ESRCFG0 is 0x00000100 (instead of
0x00000110).
The reset value of register SCU_ESRCFG1 is 0x00000080 (instead of
0x00000090).
This means that bit DFEN = 0B, i.e. the digital 3-stage median filter is disabled
after a System Reset.
Note: The 3-stage median filter operates on the FPI-Bus frequency. All input

spikes lasting less than one FPI-Bus cycle are reliably suppressed. Any
request lasting at least 2 FPI-Bus cycles is reliably recognized.

Workaround
In case the digital 3-stage median filter shall be enabled, bit DFEN must be set
to 1B by software.
TC1736, EES-AA, ES-AA, AA 46/62 Rel. 1.2, 26.02.2010

Errata Sheet

Functional Deviations
SSC_AI.022 Phase error detection switched off too early at the end of a
transmission

The phase error detection will be switched off too early at the end of a
transmission. If the phase error occurs at the last bit to be transmitted, the
phase error is lost.

Workaround
Don’t use the phase error detection.

SSC_AI.023 Clock phase control causes failing data transmission in
slave mode

If SSC_CON.PH = 1 and no leading delay is issued by the master, the data
output of the slave will be corrupted. The reason is that the chip select of the
master enables the data output of the slave. As long as the chip is inactive the
slave data output is also inactive.

Workaround
A leading delay should be used by the master.
A second possibility would be to initialize the first bit to be sent to the same
value as the content of PISEL.STIP.

SSC_AI.024 SLSO output gets stuck if a reconfig from slave to master
mode happens

The slave select output SLSO gets stuck if the SSC will be re-configured from
slave to master mode. The SLSO will not be deactivated and therefore not
correct for the 1st transmission in master mode. After this 1st transmission the
chip select will be deactivated and working correctly for the following
transmissions.
TC1736, EES-AA, ES-AA, AA 47/62 Rel. 1.2, 26.02.2010

Errata Sheet

Functional Deviations
Workaround
Ignore the 1st data transmission of the SSC when changed from slave to master
mode.

SSC_AI.025 First shift clock period will be one PLL clock too short be-
cause not syncronized to baudrate

The first shift clock signal duration of the master is one PLL clock cycle shorter
than it should be after a new transmit request happens at the end of the
previous transmission. In this case the previous transmission had a trailing
delay and an inactive delay.

Workaround
Use at least one leading delay in order to avoid this problem.

SSC_AI.026 Master with highest baud rate set generates erroneous phase
error

If the SSC is in master mode, the highest baud rate is initialized and CON.PO =
1 and CON.PH = 0 there will be a phase error on the MRST line already on the
shift edge and not on the latching edge of the shift clock.
• Phase error already at shift edge

The master runs with baud rate zero. The internal clock is derived from the
rising and the falling edge. If the baud rate is different from zero there is a
gap between these pulses of these internal generated clocks.
However, if the baud rate is zero there is no gap which causes that the edge
detection is to slow for the "fast" changing input signal. This means that the
input data is already in the first delay stage of the phase detection when the
delayed shift clock reaches the condition for a phase error check. Therefore
the phase error signal appears.

• Phase error pulse at the end of transmission
The reason for this is the combination of point 1 and the fact that the end of
the transmission is reached. Thus the bit counter SSCBC reaches zero and
the phase error detection will be switched off.
TC1736, EES-AA, ES-AA, AA 48/62 Rel. 1.2, 26.02.2010

Errata Sheet

Functional Deviations
Workaround
Don’t use a phase error in master mode if the baud rate register is programmed
to zero (SSCBR = 0) which means that only the fractional divider is used.
Or program the baud rate register to a value different from zero (SSCBR > 0)
when the phase error should be used in master mode.
TC1736, EES-AA, ES-AA, AA 49/62 Rel. 1.2, 26.02.2010

Errata Sheet

Deviations from Electrical- and Timing Specification
3 Deviations from Electrical- and Timing
Specification

DTS_TC.P001 Test Conditions for Sensor Accuracy TTSA

Parameter “Sensor Accuracy” (symbol TTSA) is not subject to production test, it
is verified by design / characterization.
The corresponding note will be added in the next revisions of the Data Sheet.

FADC_TC.P003 Incorrect test condition specified in datasheet for FADC
parameter “Input leakage current at VFAGND”.

In datasheet the test condition for FADC parameter “Input leakage current at
VFAGND” is specified as: 0V < VIN < VDDMF.
The actual test condition is: VIN = 0V.
It is not allowed to raise VFAGND above 1.5V when the FADC is in power down
mode, in order not to damage the device.

PLL_TC.P005 PLL Parameters for fVCO > 780 MHz

When the PLL is configured for VCO frequencies fVCO > 780 MHz, the specified
PLL parameters may be exceeded.

Workaround
Select the values for the P-, N- and K2-dividers such that the desired target
frequency fPLL is achieved with fVCO ≤ 780 MHz.
TC1736, EES-AA, ES-AA, AA 50/62 Rel. 1.2, 26.02.2010

Errata Sheet

Application Hints
4 Application Hints

ADC_AI.H002 Minimizing Power Consumption of an ADC Module

For a given number of A/D conversions during a defined period of time, the total
energy (power over time) required by the ADC analog part during these
conversions via supply VDDM is approximately proportional to the converter
active time.

Recommendation for Minimum Power Consumption:
In order to minimize the contribution of A/D conversions to the total power
consumption, it is recommended
1. to select the internal operating frequency of the analog part (fADCI or fANA,

respectively)1) near the maximum value specified in the Data Sheet, and
2. to switch the ADC to a power saving state (via ANON) while no conversions

are performed. Note that a certain wake-up time is required before the next
set of conversions when the power saving state is left.

Note: The selected internal operating frequency of the analog part that
determines the conversion time will also influence the sample time tS. The
sample time tS can individually be adapted for the analog input channels
via bit field STC.

CPU_TC.H004 PCXI Handling Differences in TriCore1.3.1

The TriCore1.3.1 core implements the improved architecture definition detailed
in the TriCore Architecture Manual V1.3.8. This architecture manual version
continues the process of removing ambiguities in the description of context
save and restore operations, a process started in Architecture Manual V1.3.6
(released October 2005).

1) Symbol used depends on product family: e.g. fANA is used in the documentation of
devices of the AUDO-NextGeneration family.
TC1736, EES-AA, ES-AA, AA 51/62 Rel. 1.2, 26.02.2010

Errata Sheet

Application Hints
Several previous inconsistencies regarding the updating of the PCXI and the
storing of PCXI fields in the first word of a CSA are now removed.
• CALL has always placed the full PCXI into the CSA
• BISR has always placed the full PCXI into the CSA
• SVLCX has always placed the full PCXI into the CSA
• RET has always restored the full PCXI from the CSA
• RFE has always restored the full PCXI from the CSA
From the TriCore V1.3.8 architecture manuals onwards it is also made explicit
that:
• CALL, BISR and SVLCX now explicitly update the PCXI.PCPN, PCXI.PIE,

PCXI.UL, PCXI.PCXS and PCXI.PCXO fields after storing the previous
PCXI contents to memory.

• RSLCX now restores the full PCXI from the CSA.
However, prior to the TriCore V1.3.6 architecture manual, and as implemented
by the TriCore1.3 core, the following behaviour was present:
• BISR and SVLCX previously only updated the PCXI.UL, PCXI.PCXS and

PCXI.PCXO fields after storing the previous PCXI contents to memory.
PCXI.PCPN and PCXI.PIE were not updated.

• RSLCX previously restored only the PCXI.UL, PCXI.PCXS and
PCXI.PCXO fields of the PCXI.

The main implication of this change is that the value held in the PCXI.PCPN and
PCXI.PIE fields following a BISR, SVLCX or RSLCX instruction may be
different between the TriCore1.3.1 and TriCore1.3 cores. If it is necessary to
determine the priority number of an interrupted task after performing a BISR or
SVLCX instruction, and before the corresponding RSLCX instruction, then
either of the following access methods may be used.

Method #1
For applications where the time prior to execution of the BISR instruction is not
critical, the priority number of the interrupted task may be read from the PCXI
before execution of the BISR instruction.
...
mfcr d15, #0xFE00
bisr #<New Priority Number>
TC1736, EES-AA, ES-AA, AA 52/62 Rel. 1.2, 26.02.2010

Errata Sheet

Application Hints
...

Method #2
For applications where the time prior to execution of the BISR instruction is
critical, the priority number of the interrupted task may be read from the CSA
pointed to by the PCXI after execution of the BISR instruction.
...
bisr #<New Priority Number>
mfcr d15, #0xFE00 ; Copy PCXI to d15
sh.h d14, d15, #12 ; Extract PCX seg to d14
insert d15, d14, d15, #6, #16 ; Merge PCX offset to d15
mov.a a15, d15 ; Copy to address reg
ld.bu d15, [a15]0x3 ; Load byte containing PCPN
...

Note that contrary to the TriCore architecture specification, no DSYNC
instruction is stricly necessary after the BISR (or SVLCX) instruction, in either
the TriCore1.3 or TriCore1.3.1, to ensure the previous CSA contents are
flushed to memory. In both TriCore1.3 and TriCore1.3.1, any lower context save
operation (BISR or SVLCX) will automatically flush any cached upper context
to memory before the lower context is saved.

FIRM_TC.H000 Reading the Flash Microcode Version

The 1-byte Flash microcode version number is stored at the bit locations 103-
96 of the LDRAM address D000 000CH after each reset, and subject to be
overwritten by user data at any time.
The version number is defined as “Vsn”, contained in the byte as:
• s = highest 4 bit, hex number
• n = lowest 4 bit, hex number
Example: V21, V23, V3A, V3F, etc.
TC1736, EES-AA, ES-AA, AA 53/62 Rel. 1.2, 26.02.2010

Errata Sheet

Application Hints
HYS_TC.H001 Effective Hysteresis in Application Environment

Pad hysteresis values are specified for a noise-free environment. The
methodology of measuring the hysteresis on product level comprises noise due
to clock signals, program execution and device activity, etc. This can lead to a
measurable hysteresis that is smaller than it really is. Therefore hysteresis
should be checked again in the real target application, at system level.
The measured hysteresis in a noise-free environment is within the specified
product limits.

MSC_TC.H007 Start Condition for Upstream Channel

The reception of the upstream frame is started when a falling edge (1-to-0
transition) is detected on the SDI line.
In addition, reception is also started when a low level is detected on the SDI line
while the upstream channel was in idle state, i.e.
• when the upstream channel is switched on (bit field URR in register USR is

set to a value different from 000B) and the SDI line is already on a low level,
or

• after a frame has been received, and the SDI line is on a low level at the end
of the last stop bit time slot (e.g. when the SDI line is permanently held low).

Therefore, make sure that the SDI line is pulled high (e.g. with an internal or
external pull-up) while no transmission is performed.

MultiCAN_AI.H005 TxD Pulse upon short disable request

If a CAN disable request is set and then canceled in a very short time (one bit
time or less) then a dominant transmit pulse may be generated by MultiCAN
module, even if the CAN bus is in the idle state.
Example for setup of the CAN disable request:
CAN_CLC.DISR = 1 and then CAN_CLC.DISR = 0
TC1736, EES-AA, ES-AA, AA 54/62 Rel. 1.2, 26.02.2010

Errata Sheet

Application Hints
Workaround
Set all INIT bits to 1 before requesting module disable.

MultiCAN_AI.H006 Time stamp influenced by resynchronization

The time stamp measurement feature is not based on an absolute time
measurement, but on actual CAN bit times which are subject to the CAN
resynchronization during CAN bus operation.The time stamp value merely
indicates the number of elapsed actual bit times. Those actual bit times can be
shorter or longer than nominal bit time length due to the CAN resynchronization
events.

Workaround
None.

MultiCAN_TC.H002 Double Synchronization of receive input

The MultiCAN module has a double synchronization stage on the CAN receive
inputs. This double synchronization delays the receive data by 2 module clock
cycles. If the MultiCAN is operating at a low module clock frequency and high
CAN baudrate, this delay may become significant and has to be taken into
account when calculating the overall physical delay on the CAN bus
(transceiver delay etc.).

MultiCAN_TC.H003 Message may be discarded before transmission in
STT mode

If MOFCRn.STT=1 (Single Transmit Trial enabled), bit TXRQ is cleared
(TXRQ=0) as soon as the message object has been selected for transmission
and, in case of error, no retransmission takes places.
Therefore, if the error occurs between the selection for transmission and the
real start of frame transmission, the message is actually never sent.
TC1736, EES-AA, ES-AA, AA 55/62 Rel. 1.2, 26.02.2010

Errata Sheet

Application Hints
Workaround
In case the transmission shall be guaranteed, it is not suitable to use the STT
mode. In this case, MOFCRn.STT shall be 0.

MultiCAN_TC.H004 Double remote request

Assume the following scenario: A first remote frame (dedicated to a message
object) has been received. It performs a transmit setup (TXRQ is set) with
clearing NEWDAT. MultiCAN starts to send the receiver message object (data
frame), but loses arbitration against a second remote request received by the
same message object as the first one (NEWDAT will be set).
When the appropriate message object (data frame) triggered by the first remote
frame wins the arbitration, it will be sent out and NEWDAT is not reset. This leads
to an additional data frame, that will be sent by this message object (clearing
NEWDAT).
There will, however, not be more data frames than there are corresponding
remote requests.

Figure 2 Loss of Arbitration

re m o te
re q u e s t

d a ta
o b je c t

C A N B u s

M u ltiC A N se tu p

c le a r
N E W D A T

d a ta
o b je c t

lo s s o f
a rb itra tio n

s e tu p

se t
N E W D A T

s e tu p d a ta
o b je c t

c le a r
N E W D A T

re m o te
re q u e s t

b y H W b y H W b y H W

d a ta d a ta

c le a r
TC1736, EES-AA, ES-AA, AA 56/62 Rel. 1.2, 26.02.2010

Errata Sheet

Application Hints
OCDS_TC.H001 IOADDR may increment after aborted IO_READ_BLOCK

If an IO_READ_BLOCK instruction is aborted by the host (switching the TAP
controller to the update-DR state before enough data bits have been shifted out)
it may happen under certain clock ratios that the IOADDR register is
incremented nevertheless. This will result in an access to the wrong data in the
succeeding IO_READ_* or IO_WRITE_* instruction.

Workaround
As the host is actively causing the abort, it should be fully aware of the situation.
The workaround now simply is to rewrite the IOADDR register (using the
IO_SET_ADDRESS instruction) after each aborted block transfer.
Note: This usually is done anyway at the beginning of the next transaction.

OCDS_TC.H002 Setting IOSR.CRSYNC during Application Reset

If the host is shifting in a Communication Mode IO_READ_WORD instruction in
the very moment an Application Reset happens, the read request flag
(CBS_IOSR.CRSYNC) may be already set after the execution of the startup
software. A monitor program may be confused by this and drop out of the higher
level communication protocol, especially if the host posts an instruction (with
the IO_WRITE_WORD instruction) after detecting the reset.

Workaround
Two correlated activities should be incorporated in the tool software:
• After each reset the host should explicitly use CBS_IOCONF.COM_RST to

reset any erroneously pending requests.
• The higher level protocol should require a specific answer to the very first

command sent from the host to the device. Erroneous read requests then
can be detected and skipped.
TC1736, EES-AA, ES-AA, AA 57/62 Rel. 1.2, 26.02.2010

Errata Sheet

Application Hints
OCDS_TC.H003 Application Reset during host communication

Not only the host is able to cause resets of the device: External pins driven by
the application, the internal watchdog and even the application program itself
can trigger the reset generation process.
The only way to communicate reset events to the host is for Cerberus to reject
the next instruction with “never-ending busy”, which should lead to
communication time out on the host side.
The decision to accept or reject an instruction is done very early in the bit stream
of the instruction. If an Application Reset happens after this point of time, the
instruction will complete in most cases, and only the next one will be rejected.
As the temporal distance from reset event and instruction rejection is not fixed
(apart from being sequential), it is highly recommended to check the IOINFO
register (using the IO_SUPERVISOR instruction) each time an abnormally long
busy period is experienced by the host. Especially a repetition of the rejected
instruction should only be attempted if the possibility of Cerberus being in Error
State has been excluded.

Workaround
Use IO_SUPERVISOR whenever a (too) long busy bit is observed.

OCDS_TC.H004 Device Identification by Application Software

While each device type can easily be recognized by test equipment using the
JTAG ID, over the years each device family has had a proprietary way to
provide the same information to application software running on the device.
When reusing software for another device family the algorithm had to be
adapted.
To worsen things, using the wrong algorithm may cause fatal errors, e.g. traps
when accessing illegal addresses.
Starting with the Audo Future family the JTAG ID as available as a standard
SFR (CBS_JTAGID) at a fixed address, namely in the address space of the
“main” Cerberus. The value found in this register unambiguously defines where
additional information (e.g. CHIPID) can be found in the device on hand.
TC1736, EES-AA, ES-AA, AA 58/62 Rel. 1.2, 26.02.2010

Errata Sheet

Application Hints
Older devices obviously do not have the CBS_JTAGID, so accessing its
address may cause problems.

Workaround
Each Cerberus module ever implemented has a version number mapped into a
register (CBS_JDPID) at a fixed address (0xF0000408).
Note: This register is not published in all user manual versions.

• If the version number found in this register (CBS_JDPID[7:0]) is less than
0x50, no CBS_JTAGID register is provided. The original software algorithm
shall be employed by the reused software.

• If the version number found in this register (CBS_JDPID[7:0]) is 0x50 or
higher, the content of the CBS_JTAGID register shall be used to select the
proper algorithm.

PORTS_TC.H005 Pad Input Registers do not capture Boundary-Scan data
when BSD-mode signal is set to high

The principle of Boundary-Scan is that the BSD-cells can overrule the input and
output data for all functional system components (including port-input
registers).
In current implementation the peripheral port input registers(P<n>_IN) are
however capturing the direct pad-input data even when the BSD-mode signal is
set to high.
This limits the usage of INTEST.

Work around:
In case of INTEST, do not read port input registers.

PWR_TC.H005 Current Peak on VDDP during Power-up

During power-up, a current peak may be observed on VDDP. It is caused by
internal cross currents generated by level shifters whose state is undefined until
the core voltage reaches at least 0.5V. This effect is statistical and may vary
TC1736, EES-AA, ES-AA, AA 59/62 Rel. 1.2, 26.02.2010

Errata Sheet

Application Hints
from one device to the other, upon operating conditions, etc. This effect may
only occur during power-up. It can not happen during power-down or power-fail.
The following table classifies the VDD/VDDP ranges with respect to peak severity.

Even under worst case conditions, this effect has no impact on lifetime nor
reliability

SSC_AI.H001 Transmit Buffer Update in Slave Mode after Transmission

If the Transmit Buffer register TB is written in slave mode in a time window of
one SCLK cycle after the last SCLK edge (i.e. after the last data bit) of a
transmission, the first bit to be transmitted may not appear correctly on line
MRST.
Note: This effect only occurs if a configuration with PH = 1B (shift data on trailing

edge) is selected.

It is therefore recommended to update the Transmit Buffer in slave mode after
the transmit interrupt (TIR) has been generated (after first SCLK phase of first
bit), and before the current transmission is completed (before last SCLK phase
of last bit).
As this may be difficult to achieve in systems with high baud rates and long
interrupt latencies, alternatively the receive interrupt at the end of a
transmission may be used. A delay of 1.5 SCLK cycles (bit times) after the
receive interrupt (last SCLK edge of transmission) should be provided before
updating the Transmit Buffer of the slave. The master must provide a pause that
is sufficient to allow updating of the slave Transmit Buffer before starting the
next transmission.

Table 9 Worst Case Power-up Cross Current
VDD VDDP Comment
> 0.5 V don’t care normal operation
< 0.5 V < 0.8 V IDDP < 1 mA
< 0.5 V 0.8 V < VDDP < 1.0 V IDDP < 3 mA
< 0.5 V = 3.6 V IDDP < 112 mA
TC1736, EES-AA, ES-AA, AA 60/62 Rel. 1.2, 26.02.2010

Errata Sheet

Application Hints
SSC_AI.H002 Transmit Buffer Update in Master Mode during Trailing or
Inactive Delay Phase

When the Transmit Buffer register TB is written in master mode after a previous
transmission has been completed, the start of the next transmission (generation
of SCLK pulses) may be delayed in the worst case by up to 6 SCLK cycles (bit
times) under the following conditions:
• a trailing delay (SSOTC.TRAIL) > 0 and/or an inactive delay

(SSOTC.INACT) > 0 is configured
• the Transmit Buffer is written in the last module clock cycle (fSSC or fCLC) of

the inactive delay phase (if INACT > 0), or of the trailing delay phase (if
INACT = 0).

No extended leading delay will occur when both TRAIL = 0 and INACT = 0.
This behaviour has no functional impact on data transmission, neither on
master nor slave side, only the data throughput (determined by the master) may
be slightly reduced.
To avoid the extended leading delay, it is recommended to update the Transmit
Buffer after the transmit interrupt has been generated (i.e. after the first SCLK
phase), and before the end of the trailing or inactive delay, respectively.
Alternatively, bit BSY may be polled, and the Transmit Buffer may be written
after a waiting time corresponding to 1 SCLK cycle after BSY has returned to 0B.
After reset, the Transmit Buffer may be written at any time.

SSC_AI.H003 Transmit Buffer Update in Slave Mode during Transmission

After reset, data written to the Transmit Buffer register TB are directly copied
into the shift register. Further data written to TB are stored in the Transmit Buffer
while the shift register is not yet empty, i.e. transmission has not yet started or
is in progress.
If the Transmit Buffer is written in slave mode during the first phase of the shift
clock SCLK supplied by the master, the contents of the shift register are
overwritten with the data written to TB, and the first bit currently transmitted on
line MRST may be corrupted. No Transmit Error is detected in this case.
TC1736, EES-AA, ES-AA, AA 61/62 Rel. 1.2, 26.02.2010

Errata Sheet

Application Hints
It is therefore recommended to update the Transmit Buffer in slave mode after
the transmit interrupt (TIR) has been generated (i.e. after the first SCLK phase).
After reset, the Transmit Buffer may be written at any time.

SSC_TC.H003 Handling of Flag STAT.BSY in Master Mode

In register STAT of the High-Speed Synchronous Serial Interface (SSC), some
flags have been made available that reflect module status information (e.g.
error, busy) closely coupled to internal state transitions. In particular, flag
STAT.BSY will change twice during data transmission: from 0B to 1B at the start,
and from 1B to 0B at the end of a transmission. This requires some special
considerations e.g. when polling for the end of a transmission:
In master mode, when register TB has been written while no transfer was in
progress, flag STAT.BSY is set to 1B after a constant delay of 5 FPI bus clock
cycles. When software is polling STAT.BSY after TB was written, and it finds
that STAT.BSY = 0B, this may have two different meanings: either the transfer
has not yet started, or it is already completed.

Recommendations
In order to poll for the end of an SSC transfer, the following alternative methods
may be used:
• either test flag RSRC.SRR (receive interrupt request flag) instead of

STAT.BSY
• or use a software semaphore that is set when TB is written, and which is

cleared e.g. in the SSC receive interrupt service routine.
TC1736, EES-AA, ES-AA, AA 62/62 Rel. 1.2, 26.02.2010

	1 History List / Change Summary
	2 Functional Deviations
	BCU_TC.006
	CPU_TC.105
	CPU_TC.106
	CPU_TC.107
	CPU_TC.108
	CPU_TC.109
	CPU_TC.110
	CPU_TC.111
	CPU_TC.113
	CPU_TC.114
	CPU_TC.115
	DMA_TC.013
	DMI_TC.014
	DMI_TC.016
	DMI_TC.017
	FADC_TC.005
	FIRM_TC.010
	FLASH_TC.027
	FLASH_TC.035
	FLASH_TC.036
	OCDS_AI.001
	OCDS_AI.002
	OCDS_TC.014
	OCDS_TC.015
	OCDS_TC.016
	OCDS_TC.018
	OCDS_TC.020
	OCDS_TC.021
	OCDS_TC.024
	OCDS_TC.025
	OCDS_TC.026
	OCDS_TC.027
	RESET_TC.001
	SCU_TC.016
	SSC_AI.022
	SSC_AI.023
	SSC_AI.024
	SSC_AI.025
	SSC_AI.026

	3 Deviations from Electrical- and Timing Specification
	DTS_TC.P001
	FADC_TC.P003
	PLL_TC.P005

	4 Application Hints
	ADC_AI.H002
	CPU_TC.H004
	FIRM_TC.H000
	HYS_TC.H001
	MSC_TC.H007
	MultiCAN_AI.H005
	MultiCAN_AI.H006
	MultiCAN_TC.H002
	MultiCAN_TC.H003
	MultiCAN_TC.H004
	OCDS_TC.H001
	OCDS_TC.H002
	OCDS_TC.H003
	OCDS_TC.H004
	PORTS_TC.H005
	PWR_TC.H005
	SSC_AI.H001
	SSC_AI.H002
	SSC_AI.H003
	SSC_TC.H003

