SYNOPSYS

Simulator Configuration
Guide for Synopsys Models

Simulator Configuration Guide

Copyright © 2001 Synopsys, Inc.
All rights reserved.
Printed in USA.

Information in this document is subject to change without notice.

SmartModel, Model Access, Model Tools, SourceModel Library, LM-1200, and
Synopsys Eaglei are registered trademarks, MemPro, MemSpec, MemScope,
FlexModel, LM-family, LM-1400, Logic Model, Model Source, and SourceModel are
trademarks of Synopsys, Inc.

All company and product names are trademarks or registered trademarks of their
respective owners.

Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Contents

Contents

PrEfaCe ... 11
About ThisManual e e 11
Related DOCUMENES oot e e e e 11

Some HyperlinksMay Not Work 12
Manual OVeIVIBW ... 12
Typographical and Symbol Conventions, 13
GeEtliNg HE D .o 14
The SynopsysWebSIte 15
Synopsys Common Licensing (SCL) Document Set 15
COMMIENES? . o 16

Chapter 1

Using Synopsys Modelswith Simulators o ... 17
(@< = 17
Using SmartModels with SWIFT Simulatorso on... 18

SmartModel SWIFT Parameters 18
Instantiating SmartModels 20
The SWIFT Command Channel i, 21
Fault SIMulationso 23
Using FlexModelswith SWIFT Simulators, 24
flexm_setup Command Reference i, 25
Instantiating FlexModelswith Direct CControl 26
Using MemPro Modelswith VHDL and Verilog Simulators 29
Using MemPro Modelswith VHDL Simulators 31
Using MemPro Modelswith Verilog Simulators t 31
Instantiating MemProModels 32
Controlling MemProModel Messages ...t 33
Controlling MemPro Message OUtpUt 34
MessageLevel Constants ...t 34
Using Hardware Models with Different Simulators 35
Linking Other Supported Simulators 35

Chapter 2

Using VCSwith SynopsysModels i i 37
(@< = 37
Setting Environment Variables 38

July 31, 2001 Synopsys, Inc. 3

Contents Simulator Configuration Guide

Using SmartModelswithVCS 39
Using FlexModelswithVCS 42
VCSHexModel Examples ... 45
Script for Running FlexModel ExamplesinVCS 49
Example Smulator Run Script 51
Using MemPro ModelswithVCS 51
Using Hardware ModelswithVCS 55
Example Using Runtime Option, 57
Example Using DelayRange Parameter 57
VCSULIITIES . 57
Chapter 3
Using Verilog-XL with SynopsysModels 59
VIV B .t e e 59
Setting Environment Variables 59
Using SmartModelswith Verilog-XL i 61
Using SmartModels with Verilog-XL on the IBMRS AIX Platform 62
Verilog-XL Usage Notesfor SmartModels 63
Using FlexModelswith Verilog-XL i 79
FlexModels:PLI Static LinkingwithLMTV oot 81
Using MemPro Modelswith Verilog-XL 81
StaticLinkingwith LMTV ... 82
Using Hardware Modelswith Verilog-XLo 83
I EgUISITES . ..o 83
Using Hardware Models i e 85
$Im_log_test vectorsCommand Reference 94
$Im_loop_instance Command Reference 95
$Im_timing_information Command Reference 96
$Im_timing_measurements Command Reference 96
$Im_unknowns Command Reference 97
Imvsg Command Referencet 99
Chapter 4
Using NC-Verilog with SynopsysModels 101
@< = 101
Setting Environment Variables 101
Using SmartModelswith NC-Verilog 103
StaticLinkingwith LMTV ... 104
Using FlexModelswith NC-Verilog i, 104
StaticLinkingwith LMTV ... 106
Using MemPro Modelswith NC-Verilogon UNIX 107

4 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Contents

StaticLinkingwith LMTV ... 108
Using Hardware ModelswithNC-Verilog 108
NC-VerilogUtilities i e e 109
Chapter 5
Using MTI Verilog with SynopsysModels 111
VIV BV .ot e 111
Setting Environment Variables 111
Using SmartModelswith MTI Verilog o 113
StaticLinkingwWith LMTV ... 114
Using SmartModels with MTI Verilog on the IBMRS AIX Platform 114
Using FlexModelswith MTI Verilog 115
StaticLinkingwith LMTV ... 117
Using MemPro Modelswith MTI Verilog ... 118
StaticLinkingwith LMTV ... 119
Using Hardware ModelswithMTI Verilog i, 120
MTI Verilog Utilities i e e 122
Chapter 6
Using Scirocco with SynopsysModels 123
(@Y= = 123
Setting Environment Variables 124
Using SmartModelswith Scirocco ... 125
create_smartmodel _lib Command Reference 126
Using FlexModelswith Scirocco ... 128
Script for Running FlexModel Examplesin Scirocco 130
Using MemPro Modelswith Scirocco ... 132
Using MemPro ModelsinaTestbench 134
Using Hardware Modelswith Scirocco ... 135
Scirocco Example with TILS299 HardwareModel 135
SCIrocCoO UtIITIES ... oo 136
VHDL Model Genericswith Scirocco ... 136
Chapter 7
Using VSSwith SynopsysModels i 141
VIV BV .o e e e 141
Setting Environment Variables 141
Using SmartModelswithVSS 143
create_smartmodel lib Command Reference 144
Using FlexModelswithVSS 145
Using MemPro ModelswithVSS 148

July 31, 2001 Synopsys, Inc. 5

Contents Simulator Configuration Guide

Using Hardware ModelswithVSS 150
VSS Example with TILS299 HardwareModel 150
VSSULIIIES .o 151
VHDL Model GenericswithVSS i 151

Chapter 8
Using MTI VHDL with SynopsysModels 155

OV IV BV Lt 155

Setting Environment Variables 155

Using SmartModelswith MTIVHDL o 157
sm_entity Command Reference ... 160

Using FlexModelswithMTI VHDL 160

Using MemPro ModelswithMTIVHDL 163

Using Hardware ModelswithMTI VHDL 165
MTI VHDL Example Using TILS299 Hardware Model 166
hm_entity Command Reference i, 167
MTIVHDL UtIlities ... e 169

Chapter 9
Using Cyclonewith SynopsysModels 171

(@< = 171

Setting Environment Variables 171

Using SmartModelswithCyclone 173

Using FlexModelswithCyclone 173

Using MemPro ModelswithCyclone 173

Using Hardware ModelswithCyclone 174
Model Source System Hardware and Software 175
LM-1400/LM-family System Hardware and Software 175
Configuration OPtioNSottt e e 175
Cyclone User SEtUD . ..o e 178
Using Hardware Models with Cycle-Based Simulators 182
geninterface Command Reference 186
Cyclone SImulation e 188
Cyclonegeninterface Setup Files 190
Cyclonegeninterface Processingcovoiii it 191

Chapter 10
Using Leapfrog with SynopsysModels i 195

OV IV BV L 195

Setting Environment Variables 195

Using SmartModelswithLeapfrog i 197

6 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Contents

Using FlexModelswith Leapfrogcc .. 198
Using MemPro ModelswithLeapfrog 198
Using Hardware ModelswithLeapfrog 201
Leapfrog Example with TILS299 HardwareModel 201
Leapfrog UtIlities e e 202
Chapter 11
Using NC-VHDL with SynopsysModels i 205
(@< 1 205
Setting Environment Variables 205
Using SmartModelswith NC-VHDL 206
Using FlexModelswith NC-VHDL i 208
Using MemPro ModelswithNC-VHDL 210
Using Hardware ModelswithNC-VHDL 213
NC-VHDL Example with TILS299 Hardware Model 213
NC-VHDL UtIlities e 214
Chapter 12
Using QuickSim I with SynopsysModels 217
(@< = 217
Setting Environment Variables 217
Using SmartModels and FlexModelswith QuickSim Il 219
Installing the QuickSim |1 SWIFT Interface 219
Using SmartModels/FlexModelswith QuickSm Il 221
Schematic Capture 221
Logic Simulationt e e 228
Custom Symbols 239
Using Hardware Modelswith QuickSim 11 244
Setting up Hardware Modelsin QuickSim Il 245
Using Hardware Modelsin QuickSim Il 247
Model Registrationo i 249
RegisteringaModel withIm_model 250
ModifyingaHardwareModel 255
Simulating with Hardware Modelsin QuickSim Il 256
Im model Command Reference 264
tmg to tsCommand Reference 267
Appendix A
Using VERA with FlexModels i 269
L@ = 269
Using FlexModels with the VERA UDF Interface 270

July 31, 2001 Synopsys, Inc. 7

Contents Simulator Configuration Guide

Linking VERA with Verilog Smulators 271
Linking VERA withthe MTI VHDL Simulator 271
CreatingaVERA Testbench 271
VERA TestbenchExample i 272
Incorporating FlexModelsinaVERA Testbench 274
UsSng VERA WIth VCS e 275
Appendix B
LMTV Command Reference ..., 279
VIV BV .o e e e 279
LMTV Command LineSwitches 279
LMTV Commandsooit e e 281
$Im_command() or $lai_command() 282
$Im_dump _file() or $lai_dump file() 283
BIM help() .o 284
$Im_load file() or $lai_load file() 285
$Im_monitor_enable() or $lai_enable monitor() 286
$Im_monitor_disable() or $lai_disable monitor() 286
$Im_monitor_vec_map() and $Im_monitor_vec unmap() 288
$Im_status() or Blai_status() 290
INOEX . 291

8 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Figures

Figure 1.
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:

Figures
run_flex_examples in_vespl Script 50
Verilog-XL DesignFlow 67
Concept Design Flow oo 69
Thema verilog Software Tree 84
SFI CommunicationwithPLI, 85
run_flex_examples in_scirocco.pl Script 131
Cyclone Configuration Guidelines 177
ModelAccessfor Cyclone Installation Tree 178
ProcessFlow Chart 180
Slang Hardware Model Conceptual Diagram 183
Default synopsys Im_hw.setupFile 184
Sample System-Dependent Setup File (.synopsys Im_hw.setup.hp700) 191
SamplePinand BusSymbols oL 222
Visible Symbol Properties i 223
National Semiconductor DP8429 DRAM Controller 242
Busand PinSymbols 244
Sample Component Interface for aHardwareModel 248
Hardware Model Registrationc.coiiiiiiiiinnenen.. 250

July 31, 2001 Synopsys, Inc. 9

Tables

Table 1:
Table 2:
Table 3:
Table 4.
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:

Table 10:
Table 11:
Table 12:
Table 13:
Table 14:
Table 15:
Table 16:
Table 17:
Table 18:
Table 19:
Table 20:
Table 21:
Table 22:
Table 23:
Table 24
Table 25:
Table 26:
Table 27:
Table 28:
Table 29:
Table 30:
Table 31:
Table 32:
Table 33:
Table 34:
Table 35:

10

Simulator Configuration Guide

Tables

SmartModel SWIFT Parameters, 19
FlexModel SWIFT Parameters ..., 24
FlexModel Direct C Control Files 27
MemPro Generic/Parameter Descriptions coou.... 30
MemPro Supported Simulators 31
MemPro Message Constant Descriptionscoovuvu.... 34
VCS SmartModel Explanation 41
FlexModel VCS VerilogFiles 42
VCS With One FlexModel On Solaris Model Explanation 47
VCSMemPro Model Explanation 54
Characteristics of Historic and SWIFT SmartModel Modes 64
Model.v DIreCtoriest e 66
LMTV/SWIFT and Verilog-XL-specific Libraries 76
FlexModel Verilog-XL Files 79
Test Vector Symbols ... 93
FlexModel NC-VerilogFiles 104
FlexModel MTI VerilogFiles 115
FlexModel SciroccoVHDL Files 128
FlexModel VSSVHDL Files s 146
FlexModel MTIVHDL Files s 161
Rulesfor Special Character Mappingcooiiinanan... 192
FlexModel NC-VHDL Files i 208
Symbol Propertiesused by SWIFT Models 223
Symbol Properties Required for Simulation 224
Optional Symbol Propertiesc.c i, 225
Signal StateValues ... 229
QuickSim Il Command Interaction, 231
Elementsina TIBPAL22V10Deviceo, 237
Mentor Graphics Vendor CPU Operating System Suffixes 245
Sample Component DIrectoryo 251
Shell Software to Technology File Conversion 254
Signal Instance Command Summaryc .. 257
FlexModel Files Containing VERA UDF Information 270
VERA Header Files e 271
FlexModel VERA Files 274

Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Preface

Preface

About This Manual

This manual contains procedures for using Synopsys models with the most widely used
simulators. The scope includes the following types of models:

« SmartModels (including FlexModels)
« MemPro Models
« Hardware Models

Note that this manual containsillustrations of third-party software files solely to
demonstrate the end user modifications needed to get Synopsys models working with
thesetools. Third-party software changes frequently. Refer to the third-party tool
vendor's documentation for definitive information about their licensed software.

Related Documents

For more information about SmartModels (including FlexModels), or to navigate to a
related online document, refer to the Guide to SmartModel Documentation. For
information on supported platforms and simulators, refer to SmartModel Library
Supported Smulators and Platforms.

For detailed information about specific SmartModels (including FlexModels), use the
Browser tool ($LMC_HOME/bin/dl_browser) to access the online model datasheets.

For more information about MemPro, or to navigate to arelated online document, refer
to the Guide to MemPro Documentation.

For more information about hardware models, or to navigate to arelated online
document, refer to the Guide to Hardware Model Documents.

July 31, 2001 Synopsys, Inc. 11

Preface Simulator Configuration Guide

Some Hyperlinks May Not Work

Because this manual is included with multiple product documentation sets, some
hyperlinks do not work properly in all cases. For example, hyperlinks from this manual
to other booksin the hardware model documentation set will only work from ahardware
model installation tree. Similarly, hyperlinks to other booksinstalled in SLMC_HOME
will only work in that location.

To work around this limitation, you can visit the Synopsys Web site and navigate to the
latest documentation for all Synopsys models:

http://www.synopsys.com/products/Im/doc

Manual Overview

This manual contains the following chapters:

Preface

Chapter 1
Using Synopsys Modelswith
Simulators

Chapter 2
Using VCSwith Synopsys Models

Chapter 3
Using Verilog-XL with Synopsys
Models

Chapter 4
Using NC-Verilog with Synopsys
Models

Chapter 5
Using MTI Verilog with Synopsys
Models

Chapter 6

Using Scirocco with Synopsys
Models

Chapter 7
Using VSSwith Synopsys Models

12

Synopsys, Inc.

Describes the manual and lists the typographical
conventions and symbols used in it. Tells how to get
technical assistance.

Basic information for configuring and instantiating
SmartModels, FlexModels, MemPro models, and
hardware models for use in hardware simulators.

How to configure SmartModels, FlexModels,
MemPro models, and hardware models for use with
VCS. Includes a script that you can use to run
FlexModel example testbenchesin VCS.

How to configure SmartModels, FlexModels,
MemPro models, and hardware models for use with
Verilog-XL.

How to configure SmartModels, FlexModels,
MemPro models, and hardware models for use with
NC-Verilog.

How to configure SmartModels, FlexModels,
MemPro models, and hardware models for use with
MTI Verilog.

How to configure SmartModels, FlexModels,
MemPro models, and hardware models for use with
Scirocco. Includes a script that you can useto run
FlexModel example testbenchesin Scirocco.

How to configure SmartModels, FlexModels,
MemPro models, and hardware models for use with
VSS.

July 31, 2001

http://www.synopsys.com/products/lm/doc

Simulator Configuration Guide

Chapter 8
Using MTI VHDL with Synopsys
Models

Chapter 9
Using Cyclone with Synopsys
Models

Chapter 10
Using L eapfrog with Synopsys
Models

Chapter 11
Using NC-VHDL with Synopsys
Models

Chapter 12
Using QuickSim Il with Synopsys
Models

Appendix A
Using VERA with FlexM odels

Appendix B
LMTYV Command Reference

Preface

How to configure SmartModels, FlexModels,
MemPro models, and hardware models for use with
MTI VHDL.

How to configure MemPro models and hardware
models for use with Cyclone.

How to configure SmartModels, FlexModels,
MemPro models, and hardware models for use with

Leapfrog.

How to configure SmartModels, FlexModels,
MemPro models, and hardware models for use with
NC-VHDL.

How to configure SmartModels, FlexModels,
MemPro models, and hardware models for use with
QuickSim II.

How to configure FlexModels for use with Vera.
Includes a separate procedure for using FlexModels
with Veraand VCS.

Reference information for LM TV commands used
with SmartModels and FlexModels on Verilog-XL,
NC-Verilog, and MTI Verilog.

Typographical and Symbol Conventions

« Default UNIX prompt

Represented by a percent sign (%.

. User input (text entered by the user)

Showninbol d type, asin the following command line example:

% cd $LMC_HOME/ hdl

. System-generated text (prompts, messages, files, reports)

Shown asin the following system message:

No M snatches: 66 Vectors processed: 66 Possible

July 31, 2001

Synopsys, Inc.

13

Preface Simulator Configuration Guide

Variables for which you supply a specific value
Shown initalic type, asin the following command line example:
% setenv LMC HOME prod dir

In this example, you substitute a specific name for prod_dir when you enter the
command.

Command syntax

Choice among alter natives is shown with a vertical bar (|) asin the following
syntax example:

-effort_level low | medium | high

In this example, you must choose one of the three possibilities: low, medium, or
high.

Optional parameters are enclosed in square brackets ([]) asin the following
syntax example:

pinl[pin2 ... pinN]

In this example, you must enter at least one pin name (pinl), but others are optional
([pin2 ... pinN]).

Getting Help

If you have a question while using Synopsys products, use the following resources:

14

1.

Start with the available product documentation installed on your network or located
at the root level of your Synopsys CD-ROM. Every documentation set contains
overview information in the intro.pdf file.

Additional Synopsys documentation is available at this URL:
http://www.synopsys.com/products/Im/doc

Datasheets for models are available using the Model Directory:
http://www.synopsys.com/products/|m/model Dir.html

. Visit the online Support Center at this URL:

http://www.synopsys.com/support/lm/support.html

Synopsys, Inc. July 31, 2001

http://www.synopsys.com/products/lm/doc
http://www.synopsys.com/products/lm/modelDir.html
http://www.synopsys.com/support/lm/support.html

Simulator Configuration Guide Preface

This site gives you access to the following resources:
o SOLV-IT!, the Synopsys automated problem resolution system
o product-specific FAQs (frequently asked questions)
o lists of supported simulators and platforms
o the ability to open a support help call
o the ability to submit adelivery request for some product lines
3. If you still have questions, you can call the Support Center:

North American customers:

Call the Synopsys Eaglei and Logic Modeling Products Support Center hotline at
1-800-445-1888 (or 1-503-748-6920) from 6:30 AM to 5 PM Pacific Time, Monday
through Friday.

I nternational customers;
Call your local sales office.

The Synopsys Website
General information about Synopsys and its productsis available at this URL:
http://www.synopsys.com

Synopsys Common Licensing (SCL) Document Set

Synopsys common licensing (SCL) software is delivered on a CD that is separate from
the tools that use this software to authorize their use. The SCL documentation set
includes the following publications, which are located in (root)/docs/scl on the SCL CD
and also available on the Synopsys FTP server (ftp://ftp.synopsys.com):

« Licensing QuickSart—(142K PDF file)
This booklet provides instructions for obtaining an electronic copy of your license
key file and for installing and configuring SCL on UNIX and Windows NT.

« Licensing Installation and Administration Guide—(2.08M PDF file)
This guide provides information about installation and configuration, key concepts,
examples of license key files, migration to SCL, maintenance, and troubleshooting.

You can find general SCL information on the Web at:
http://www.synopsys.com/keys

July 31, 2001 Synopsys, Inc. 15

http://www.synopsys.com
ftp://ftp.synopsys.com/pub/SCL/LQS.pdf
ftp://ftp.synopsys.com/pub/SCL/LIAG.pdf
http://www.synopsys.com/keys

Preface Simulator Configuration Guide

Comments?

To report errors or make suggestions, please send e-mail to:
doc@synopsys.com

To report an error on a specific page, select the entire page (including headers and
footers), and copy to the buffer. Then paste the buffer to the body of your e-mail
message. Thiswill provide us with the information we need to correct the problem.

16 Synopsys, Inc. July 31, 2001

mailto:doc@synopsys.com

Simulator Configuration Guide Chapter 1: Using Synopsys Models with Simulators

1

Using Synopsys Models with
Simulators

Overview

There are avariety of different types of models used in the verification process. This
manual covers the following kinds:

. SmartModels (including FlexModels)
« MemPro models
« Hardware models

SmartModels and FlexModels are binary behavioral model s that connect to over 30
commercial simulators through the SWIFT interface. If you are using a SWIFT
simulator that does not have a separate chapter devoted to it in this manual, refer to this
chapter for the basic information needed to get the models working on your simulator.
For information on SmartModel/FlexModel supported simulators, refer to the
SmartModel Library Supported Platforms and Smulators Manual.

MemPro models are produced in Verilog or VHDL and do not use the SWIFT interface.
They do require simulator-specific PLI/CLI/FLI code that needs to be bound in to the
supported simulator executable. MemPro is supported on the simulators listed in

Table 5.

The hardware modeler uses real silicon in combination with specialized hardware and
software to represent the full functionality of modeled devices in your simulation. It
does not have a standard interface comparable to SWIFT. Hardware models are a
combination of hardware and software, as follows:

. Thehardware consists of the actual silicon of the device being modeled, installed on
a special-purpose Device Adapter and inserted into the hardware modeling system.

July 31, 2001 Synopsys, Inc. 17

Chapter 1: Using Synopsys Models with Simulators Simulator Configuration Guide

. The software consists of a series of ASCII files containing Shell Software that
describes the device interface and initialization, along with optional information
such astiming delays, state tracking, and timing checks.

For simulator-specific information about using hardware models, refer first to “Using
Hardware Models with Different Simulators’ on page 35 for an overview and then
consult the appropriate simul ator-specific chapter in this manual for detailed setup
procedures.

The procedures in this chapter are organized into the following major sections:
« “Using SmartModels with SWIFT Simulators’ on page 18
. “Using FlexModels with SWIFT Simulators’ on page 24
. “Using MemPro Models with VHDL and Verilog Simulators’ on page 29
. “Using Hardware Models with Different Simulators’ on page 35

Using SmartModels with SWIFT Simulators

SWIFT isastandard EDA event-level simulation interface developed by Synopsys. The
SWIFT interface enables multiple simulators with different requirements to use models
from the same SmartModel Library. Each simulator provides a standard model
interface, specified by SWIFT, that allows it to load the same SmartModel Library.

When the simulator encounters a SmartModel during simulation, it uses aset of SWIFT
functionsto create and configure the model, map to its ports, initializeit, and set itstime
units. The SWIFT interface also allows participating simulators to integrate the
SmartModel Library into their particular framework, including application-specific
menus. For more information, refer to the documentation provided by your simulator
vendor.

SmartModel SWIFT Parameters

SmartModel attributes or parameters are model-specific values needed by the simulator
to configure amodel. You configure SmartM odels when you instantiate them in your
design using these SWIFT parameters. This could take the form of Verilog defparams,
VHDL generics, or symbol properties, depending on the simulator you are using. For
details, refer to the documentation for your simulator.

18 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide

Chapter 1: Using Synopsys Models with Simulators

Table 1 lists the SmartModel configuration parameters. All SmartModels require an

InstanceName, TimingVersion, and DelayRange. In addition, some SmartModels need a

MemoryFile, JEDECFile, SCFFile, or PCLFile attribute. FlexModels use a slightly
different set of attributes for configuration, described in “FlexModel SWIFT

Parameters’ on page 24.

Table 1: SmartModel SWIFT Parameters

Parameter Name

Used By

Description

InstanceName

All SmartModels

Specifies an instance name
for a particular instance of a
SmartModel. Usedin
messages to indicate which
instance isissuing the
message; also used in user-
defined timing. Can be set
by the simulator from the
hierarchical namein the
HDL description; or can be
set using the InstanceName
property on the symbol.

TimingVersion

All SmartModels

Specifies the timing
version a SmartM odel
instance should use when
scheduling changes on its
outputs or checking setup
and hold times on its
inputs. The allowed values
are“min,” “typ,” and

“max.”

DelayRange All SmartModels Specifies a propagation
delay range for a particular
instance of a SmartModel.

MemoryFile SmartModelswithinternal | Specifies amemory image

memory such as RAMS, file(MIF) to load for a
ROMss, and processors particular instance of a
and controllers that have | SmartModel.
on-chip RAM or ROM.
JEDECFile JEDEC-based PAL and Specifiesa JEDEC fileto
PLD models load for aparticular instance
of a SmartModel.

SCFFile FPGAs and CPLDs Specifiesamodel command
file (MCF) to load for a
particular instance of a
SmartModsd!.

July 31, 2001 Synopsys, Inc.

19

Chapter 1: Using Synopsys Models with Simulators Simulator Configuration Guide

Table 1: SmartModel SWIFT Parameters (Continued)

Parameter Name Used By Description
PCLFile Processor models (for Specifies a compiled PCL
example, microprocessors | program file to load for a
and microcontrollers); particular instance of a
these are usually hardware | SmartModel.
verification models.

T3> Note
To determine the required configuration file (i.e., MemoryFile, JEDECFile,
SCFFile, or PCLFile) for any SmartModel, refer to the model’s datasheet.

Instantiating SmartModels

If you are using an HDL -based simulator, generate a model wrapper file (model.v or
model .vhd) using your simulator vendor’s procedure. Use the model wrapper to
instantiate the model in your design. The model wrapper must map the model’s ports to
signalsin your design. Modify SWIFT parametersin the model wrapper as needed. Here
are some parameter examples for a SmartModel memory model:

VHDL:

Ul: cyc7150
CGENER C NAP(
Ti m ngVersion => "cy7c¢150",
el ayRange => "NAX',
MenoryFile => "nenl";

Verilog:
def par am
ul. Ti m ngVersi on = "cy7c150",
ul. Del ayRange = "NAX',
ul. MenoryFile = "nmeml";

You can aso instantiate SmartM odels in schemati c-capture based systems by using
model symbols and attaching values to symbol properties. For details on instantiating
SmartModels using symbols with QuickSim |1, refer to “Using QuickSim Il with
Synopsys Models’ on page 217.

20 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 1: Using Synopsys Models with Simulators

The SWIFT Command Channel

The SWIFT interface specification requires that simulator vendors include a minimal
command interface to the SmartModel Library. Thisinterface is called the command
channel. The command channel supports several types of commands:

« “Model Commands’ on page 21
« “SmartBrowser Commands for SmartCircuit Models’ on page 21
. “Session Commands’ on page 22

Model Commands

Model commands affect only a selected model instance. Followingisalist of the
model commands:

DumpMemory output_file
Dumps the current memory image of amodel to the specified output file. If
output_file exists, it is overwritten; otherwise, anew fileis created.

ReportSatus
Prints a message that describes the configuration status of a model.

SetConstraints ON | OFF
Enables or disables timing constraint checksfor amodel. By default, models check
for and warn of timing constraints.

I35 Note
Some simulator vendors supply additional interfaces to the DumpMemory,
ReportStatus, and SetConstraints capabilities.

SmartBrowser Commands for SmartCircuit Models

In addition to the model commands which apply to al SmartModels, the command
channel aso supports the following SmartBrowser commands for SmartCircuit models:

« Analyze Commands

« Assign Commands

« Examine Commands

« List Commands

« Set and Show Commands
« Trace Commands

« General Commands

July 31, 2001 Synopsys, Inc. 21

Chapter 1: Using Synopsys Models with Simulators Simulator Configuration Guide

For more information about these SmartBrowser commands, refer to the SmartModel
Library Users Manual.

Session Commands

Session commands act on all models in the simulation session. You can enable session
commands by setting the LMC_COMMAND environment variable. Hereisan example
that enables tracing of timing files and model versions, followed by alist of al the
Session commands.

% set env LMC_ COMWAND " TraceTi neFil e on; TracePath CON'
I35 Note

The session command strings are case-insensitive, as illustrated above
(ON and on are equivalent).

TraceTimeFile ON | OFF
Enables or disables trace messages that list the timing files loaded at simulation
startup. The default is OFF.

TracePath ON | OFF
Enables or disables tracing of paths to files used to determine versions of models.
The default is OFF.

Verbose ON | OFF
Enables or disables the generation of error messages when a SmartModel instance
cannot be created. The default is OFF.

NoL icenseFatal ON | OFF
When set to ON, causes the SWIFT session to send afatal error message to the
simulator and terminate if any SmartModel in the ssmulation fails to authorize. The
default is OFF.

&) Attention
You must invoke the TraceTimeFile, TracePath, and NoLicenseFatal
commands before the start of the ssmulation run if you want them to take
effect for that session.

22 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 1: Using Synopsys Models with Simulators

Fault Simulations

The SmartModel Library fault ssmulation capability is folded into the logic smulation
SmartModel Library so that only one set of directories and utilities need to be installed
and maintained. Fault simulation availability depends on the:

« Model—Note that the following types of models are incompatible with fault
simulation:

O

O

O

Hardware verification (HV) models are driven by PCL commands rather than
machine instructions and do not respond adequately to propagated faults. Fault
simulation results may not be as accurate when HV models are present in the
circuit.

FlexModels do not support fault simulation.
SmartCircuit models do not support fault simulation.

« Simulator—Fault analysisis supported by Mentor’s QuickFault I1I, VEDA’s
VerdictFault, and Teradyne's LASAR. For more information about fault simulation
support, refer to your simulator documentation.

. Authorization—You need one of the following license features:

O

O

O

O

O

O

simmodel-ultra

simmodel-prem

simmodel -sw-all

simmodel-std

simmodel-base

simmodel-sw-model-model _name (e.g., ssmmodel-sw-ttl00)

In most cases you can use the same circuit description for both logic and fault
simulation. However, you may need to supply different circuit stimuli for each type of
simulation. All model messages except version, copyright, and configuration error
messages are suppressed in fault ssimulation. Usage and timing messages are suspended
because they are meaninglessin afault smulation. In order to work efficiently during a
fault ssmulation, each model manages its own diverge and converge operations.

July 31, 2001 Synopsys, Inc. 23

Chapter 1: Using Synopsys Models with Simulators

Simulator Configuration Guide

Using FlexModels with SWIFT Simulators

Regardless of which simulator you are using, you must configure FlexModels by
defining the required SWIFT parameters or attributes shown in Table 2 for each
FlexModel instance in your design. You configure FlexModels when you instantiate
them in your design using these SWIFT parameters. This could take the form of Verilog
defparams, VHDL generics, or symbol properties, depending on the simulator you are

using.
Table 2: FlexModel SWIFT Parameters
Par ameter @ Data Type Description
FlexTimingMode FLEX_TIMING_MODE_OFF Disables/enables timing simulation.

(defaullt)
FLEX_TIMING_MODE_ON

FLEX_TIMING_MODE_CYCLE

(For Verilog, prepend a back guote
(*) to the constant.)

Note: Direct C Control users can set
this parameter to:

- *0” for timing mode off
- “1” for timing mode on
- “2" for cycle-based timing

TimingVersion

Model timing version

TheFlexModel timing version. Refer
to the individual FlexModel
datasheets for available timing
versions.

DelayRange “MIN", “TYP’, “MAX” (default) If you set FlexTimingMode to on,
you can select MIN, TYP, or MAX
delay values with this parameter.

FlexModelld “instance_name’ A unique name that identifies each

FlexModel instance. Thisnameis
alsoused by theflex_get_inst_handle
command to get an integer instance
handle.

Note: Used only with _fx models

FlexModelld_cmd_stream

“instance_name”

A unigue name that identifies each
FlexModel instance or command
stream. Thisnameisalso used by the
flex_get_inst_handle command to
get an integer instance handle. For
information on cmd_stream names,
refer to the individual FlexModel
datasheets.

Note: Used only with _fz models.

24

Synopsys, Inc.

July 31, 2001

Simulator Configuration Guide

Chapter 1: Using Synopsys Models with Simulators

Table 2: FlexModel SWIFT Parameters (Continued)

Parameter?

Data Type

Description

FlexCFile

“path_to C file-u|-c”

Specifies the path to an executable C
program and whether to start up in
coupled (-c) or uncoupled (-u) mode.
Uncoupled mode is the defaullt.

Note: Used only with _fx modelsfor
Direct C Control.

FlexModelSrc_cmd_stream

“path_to C file-u|-c”

If you want to control a FlexModel
using Direct C Control, change the
default value for cmd_stream (HDL)
to the name of the command stream
defined in the individual FlexModel
datasheets.

Usethis parameter to specify the path
to an executable C program and
whether to start up in coupled (-c) or
uncoupled (-u) mode. Uncoupled
mode is the default.

Note: Used only with _fz modelsfor
Direct C Control.

a. Some FlexModels have additional SWIFT parameters that need to be specified to configure internal
memory (for example, the usbhost_fz). For details, refer to the individual FlexModel datasheets.

flexm_setup Command Reference

In addition to specifying SWIFT parameters, you must run the flexm_setup utility each
timeyou install a new or updated FlexModel into your SLMC_HOME tree. This
ensures that you pick up the latest package files for that version of the model.

Syntax

flexm_setup [-help] [-dir path] model

Argument
model

Switches
-help

July 31, 2001

Pathname to the FlexModel you want to set up.

Prints help information.

Synopsys, Inc.

25

Chapter 1: Using Synopsys Models with Simulators Simulator Configuration Guide

-d[ir] path Copies the contents of the FlexModel’s versioned src/verilog
and src/vhd directoriesinto path/src/verilog and path/src/vhdl.
The directory specified by path must already exist.

Examples

When run without the -dir switch, flexm_setup just prints the name of the versioned
directory of the selected model’s source files

Lists nane of versioned directory containing source files
% fl exmsetup npc860_f x

When run with the -dir switch pointing to your working directory, flexm_setup copies
over al the versioned package files you need to that working directory.

Oreates copy in ‘flexnodel’ directory of nmodel source files

% nkdi r workdir
%flexmsetup -dir workdir npc860_fx

Instantiating FlexModels with Direct C Control

Direct C Control is how you use FlexModels on SWIFT simulators with standard
FlexModel integrations. With Direct C Control, all model commands come from an
external compiled C program that you point to using the FlexCFile SWIFT parameter.
For users familiar with Synopsys Hardware Verification models, thisissimilar to setting
the PCLFile parameter to point to the location of a compiled PCL program. In addition,
you must also set the FlexModelld parameter, which does not have a default value. To
generate model wrappers and instantiate models, you use the same simul ator-specific
procedures as you would for traditional SmartModels.

Note that the individual FlexModel datasheets document the command syntax and
examples for issuing model commands from Verilog, VHDL, VERA, or C, but HDL
control and switching between different command sources from the testbench are only
available to the ssmulators with custom integrations. Other SWIFT simulators must stick
to Direct C Control for issuing commands to FlexModels.

To use Direct C Control, follow these steps:

1. If you are using an HDL -based simulator, generate a model wrapper file
(model_fx.v or model_fx.vhd) using your simulator vendor’s procedure. Use the
model wrapper to instantiate the model in your design. Add the FlexCFile
parameter to the model instantiation and point it to the location of
your_compiled C filethat you create to drive commands into the model. Modify
other SWIFT parameters in the model wrapper as needed. Here are some examples
for how to instantiate a model for use with Direct C Control:

26 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 1: Using Synopsys Models with Simulators

VHDL:

UL: pci master

GENER C MAP(
Fl exModel I1d => "nodel Id_1",
FlexCFile => "./tb. 0",
Fl exTi m nghbde => "1",
Ti m ngVer si on => "pci naster",
Del ayRange => " NAX'

Verilog:

def par am
ul. Fl exModel Id = "nodel 1 d_1",
ul. FlexCFile = "./tbh.o",
ul. Fl exTi m nghbde = "1",
ul. Ti m ngVersion = "pci master"”,
ul. Del ayRange = "NMAX';
For both of these examples, the C testbench file must have the same instance name,
asfollows:

int 1d 1, status;
char *slnstName = "nodel Id_1";

/* Get the instance handl e */
flex_get _inst_handl e(sl nst Nane, & d_1, &status);

2. Create aworking directory and run flexm_setup to make a copy of the model’s C
object file there, as shown in the following example:

% $LMC_HOMWE/ bi n/ fl exm setup -dir workdir nodel _fx

You must run flexm_setup every time you update your FlexModel installation with
anew model version. Table 3 liststhe files that flexm_setup copies to your working

directory.
Table 3: FlexModel Direct C Control Files
File Name Description L ocation
model _pkg.o M odel-specific functions for UNIX. | workdir/src/C/
model _pkg.obj M odel-specific functions for NT. workdir/src/C/

July 31, 2001 Synopsys, Inc. 27

Chapter 1: Using Synopsys Models with Simulators Simulator Configuration Guide

3. Compile the C object filesin with the C program that you write to drive commands
into the model (represented in the following examplesasyour C file.c). Notethat
these examples include creation of a working directory (workdir) and running
flexm_setup, as explained in the previous step. The compile line differs based on
your platform:

a. On HP-UX, you need to link in the -LBSD library as shown in the following
example:

% nkdi r wor kdi r

%flexmsetup -dir workdir nodel fx

%/ bin/c89 -0 executabl e_nane \

your Cfile.c \

wor kdi r/ src/ d hp700/ nodel _pkg. o \
$LMC_HOWE | i b/ hp700. | i b/ f | exmodel _pkg. o \
-1 $LMC HOWE/ sim T src \

-lworkdir/src/C\

-1 BSD

b. On Solaris, you need to link in the -Isocket library as shown in the following
example:

% nkdi r workdir

%flexmsetup -dir workdir nmodel fx

% cc -0 executabl e_nane \

your_C file.c \

wor kdi r/ src/ d sol ari s/ model _pkg. o \

$LMC HOWEH | i b/ sundSol ari s. |ib/fl exnodel _pkg. o \
-1 $LMC HOWE/ simi T src \

-lworkdir/src/C\

-1 socket

c. AIX:

% nkdi r workdir

%flexmsetup -dir workdir nodel fx

%/ bin/cc -0 executabl e_nare \

your_C file.c \

wor kdi r/ src/ d i bnrs/ nodel _pkg. o \

${LMC_ HOME}/ i b/ibnrs. |ib/flexnodel _pkg.o \
-lworkdir/src/C\

-1 ${LMC HOME}/sim T src \

-1 dl

28 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 1: Using Synopsys Models with Simulators

d. Linux:

% nkdi r workdir

%flexmsetup -dir workdir nodel fx

% egcs -0 execut abl e_narre \

your_C file.c \

wor kdi r/ src/ d x86_1 i nux/ nodel _pkg. o \
${LMC_HOME}/ 1'i b/ x86_1 i nux.|ib/fl exnodel _pkg.o \
-lworkdir/src/C\

-1 ${LMC HOME}/sim O src

e. On NT, you need to link in a Windows socket library as shown in the following
example.

> md wor kdi r

> flexmsetup -dir workdir nodel fx

>cl - -M -DVBC - DWN32 - Feexecut abl e_name
your Cfile.c

wor kdi r\ src\ Q pcnt\ nodel _pkg. obj

% MC HOME%A i b\ pent . 1'i b\ f| exnodel _pkg. obj
-1%MC HOVE%Asim Qi src

-lworkdir\src\C

wsock32. i b

T3> Note
The entire compilation expression must appear on the same line. The NT
example was tested using Microsoft’s Visual C++ compiler v5.0.

The C executablefile that you created in this step is the program that you point to using
the FlexCFile SWIFT attribute for the model instance in your design.

Using MemPro Models with VHDL and
Verilog Simulators

Regardless of which simulator you are using, you must configure MemPro models by
defining the required parameters or attributes shown in Table 4 for each MemPro model
instance in your design. You configure MemPro models when you instantiate them in
your design using these generics or parameters.

July 31, 2001 Synopsys, Inc. 29

Chapter 1: Using Synopsys Models with Simulators Simulator Configuration Guide

Table 4. MemPro Generic/Parameter Descriptions

Name

Data Type

Description

model _id

Integer

model_alias

String

Either the model _id or model_alias generic or parameter
specifies aunique user handle for a specified model instance.
This user handle is used to address a memory model using
testbench commands.

Note: You do not haveto assign all MemPro model instances
amodel _id or model_alias, only those instances on which you
wish to use the testbench interface. However, each model
with amodel_id or model_alias must be assigned a unique
handle.

memoryfile

String

Specifies the file name of the memory image file to preload
during model initialization. If memoryfileis set to anull
string (memoryfile=""), memory image preloading during
initialization is disabled. Supported files formats are
SmartModel Memory Image, Motorola S-Record, Intel Hex,
and Verilog $readmemh. Memory models can also be loaded
using the mem_load command.

default_data

String

Specifies the default data returned from all uninitialized
memory addresses.

Note: Modelsin non-volatile memory classes may not have
their Default Memory Value set to anything except all ones.
Any other setting isignored and MemGen issues an warning.

message level

Integer

Specifies the type or types of messages returned by the
model. For adetailed description of message types, refer to
“Controlling MemPro Model Messages’ on page 33

30

Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 1: Using Synopsys Models with Simulators

MemPro models are supported on the ssmulators listed in Table 5.
Table 5: MemPro Supported Simulators

Verilog Simulators VHDL Simulators
VCS Scirocco
Verilog-XL VSS
NC-Verilog Cyclone
MTI Verilog Leapfrog
MTI VHDL
NC-VHDL

Each of the ssmulatorsin Table 5 has its own chapter in this manual that explains the
simulator-specific procedure for using MemPro models in those environments.

Using MemPro Models with VHDL Simulators

This section describes how to include MemPro memory models and testbench interface
commands in your design. The MemPro VHDL interface code is contained in the
following files:

sim_hdlc.vhd Simul ator-specific HDL-to-C interface code.

mempro_pkg.vhd MemPro-specific module containing the VHDL
implementation of the MemPro testbench interface.

rdramd_pkg.vhd RDRAM -specific module.
All of thesefiles are located in the SLMC_HOME/sim/simulator/src directory.

Using MemPro Models with Verilog Simulators

This section describes how to include MemPro memory models and testbench interface
commandsin your design. The following files define MemPro PLI routines and
interface commands:

sim_pli.o PLI routines. Thisfileislocated inthe
$LMC_HOMFE/lib/platform.lib directory.
mempro_pkg.v Verilog testbench task definitions for MemPro interface

commands. Thisfileislocated in the
$LMC_HOME/sim/pli/src directory.

July 31, 2001 Synopsys, Inc. 31

Chapter 1: Using Synopsys Models with Simulators

Simulator Configuration Guide

mempro_c_tb.h C testbench function definitions for MemPro interface
commands. Thisislocated inthe SLMC_HOME/include
directory.

Instantiating MemPro Models
You instantiate MemPro models just like any other HDL models, as shown in the

following DRAM examples.

MemPro Verilog Instantiation

dr anilx64 bankl

(.ras (rasr),
.ucas (ucasr),
.lcas (lcasr),
. We (wer),
. oe (oer),
.a (adrr),
.dq (dataw));

def par am bank1. nodel _id
bankl. menor yfil e
bankl. message_| evel
bankl. defaul t _data

"t bench. bank1",

“dram dat ",

* SLM XHANDLI NG |

64' hxxx;

MemPro VHDL Instantiation

Ul : dranilx64
generic map (nodel _id
nenoryfile
nessage_| evel
default _data
port nap
(a
dqg
ras
| cas
ucas
we
oe

32

=>
=>
=>

10,
"dramdat",

"SLMTIMNG | " SLM WARN NG

(SLM.TIM NG + SLM XHANDLI NG + SLM WARN NG,

X000 ;

adrw,
dat aw,
rasw,

| casw,
ucasw,
wew,
oew);

Synopsys, Inc.

July 31, 2001

Simulator Configuration Guide Chapter 1: Using Synopsys Models with Simulators

Controlling MemPro Model Messages

MemPro model messages are grouped into categories that you can individually enable
or disable for each model instance. Several message categories are applicable to all
models; additional categories may be defined for specific models or model types. The
general categories are:

Fatal

Fatal messages are aways enabled. When afata error is detected, the simulation stops
immediately after reporting the message. For example, referencing an unknown
MemPro model instance handle causes afatal error.

Error

Error messages apply to incorrect situations from which the model is able to recover,
allowing simulation to continue. For example, MemPro generates an error message
when the model receives a command that would put it in anillegal state.

Warning

Warning messages apply to situations that users may want to check, but are not
obviously wrong. For example, MemPro generates awarning message when significant
bits of an address are ignored.

Info

Info messages inform you of the status or behavior of the model. MemPro generates
info messages infrequently. For example, when amemory model isinitialized from a
file, MemPro issues an info message.

Timing
MemPro uses timing messages to report timing constraint violations. Typical situations
that cause timing messages are setup or pulse-width violations.

X-Handling

MemPro generates X-handling messages if a model samples unknowns on input ports
when valid data was expected.

July 31, 2001 Synopsys, Inc. 33

Chapter 1: Using Synopsys Models with Simulators Simulator Configuration Guide

Controlling MemPro Message Output
There are three ways to control messaging for MemPro models:

1. Set individual Message Settings when you specify the model message categories
(except Fatal).

2. Use the message _level generic or parameter. For more information, refer to
“Message Level Constants’ on page 34.

3. Use acommand stream or testbench command.

By default, MemPro models display all the general message categories (Fatal, Error,
Warning, Info, Timing, and X-handling). If you set a generic or parameter for a model
instance, that setting overrides the default behavior. Inturn, if the command stream or
testbench interface is used, it overrides the generic or parameter value.

Message Level Constants

MemPro provides constants for setting message levels on each instantiated model. The
constants described in Table 6 are defined in mempro_pkg.v (for Verilog ssmulators)
and mempro_pkg.vhd (for VHDL simulators).

Table 6: MemPro Message Constant Descriptions

Constant Value? | Description

SLM_ERROR 1 | Fata and error messages generated.
SLM_WARNING 2 | Fatal and warning messages generated.
SLM_TIMING 4 | Fatal and timing messages generated.
SLM_XHANDLING 8 Fatal and X-handling messages generated.
SLM_INFO 16 |Fatal and info messages generated.
SLM_ALL_MSGS 228_1 | All message types generated.

SLM_NO _MSGS 0 | Only fatal messages generated.

a. Note that bits 5 through 27 are unused but reserved.

You can combine these constants to get any combination of messages you desire. The
following Verilog and VHDL code fragments define a model instantiation having
timing, X-handling, and warning (as well as fatal) messages enabled.

34 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 1: Using Synopsys Models with Simulators

Verilog
bankl. nessage level = "SLMXHANDLING | "SLMTIMNG | ~SLM WARN NG

VHDL
nmessage |l evel => (SLM TIM NG + SLM XHANDLI NG + SLM WARN NG,

Using Hardware Models with Different

Simulators

After you install your hardware modeling system, the final task isto link your simulator
with the Synopsys Simulator Function Interface (SFI). Procedures for linking the
simulator with the SFI are specific to the particular ssimulator.

Synopsys provides four Model Access products, supporting QuickSim 11, Cyclone,
Verilog-XL, and NC-Verilog. For usage information, refer to the following sectionsin
this book:

. “Using Hardware Models with QuickSim I1” on page 244
. “Using Hardware Models with Cyclone” on page 174

. “Using Hardware Models with Verilog-XL” on page 83

« “Using Hardware Models with NC-Verilog” on page 108

Linking Other Supported Simulators

Because many hardware modeling features are provided through the SFI software, the
functionality of your environment is determined by the version of the SFI that is
integrated with your simulator. Some simulators can be dynamically or statically linked
on site with the most recent SFI. For the current list of simulators and versions that are
supported for dynamic or static linking on site with the SFI, refer to Hardware Modeling
Supported Platforms and Smulators.

If you use one of the simulators on this|list, you can link your simulator with the most
recent version of the SFI libraries on the distribution media, allowing you to take
advantage of the latest hardware modeling system software enhancements and bug
fixes. Some simulators have additional requirements. For information, refer to your
simulator vendor’s documentation.

July 31, 2001 Synopsys, Inc. 35

Chapter 1: Using Synopsys Models with Simulators Simulator Configuration Guide

If you use asimulator that is not on the list, consult your simulator vendor about which
version of the SFI has been integrated with your simulator. Depending on the version of
the SFI, you should be able to install and use the most recent Runtime Modeler
Software, although you may not be able to take advantage of all hardware modeling
system software enhancements and fixes.

IKOS Voyager

For information on thisinterface, refer to the Voyager/LM Hardware Interface chapter
of the Voyager Series User’s Guide, Volume 4.

Do not install the hardware modeling system software under the $VOYAGER_HOME
directory, or files could be overwritten and the install ation corrupted. The IKOS-created
smsdirectory (under $V OYAGER_HOME) and the Synopsys-created sms directory
must be kept separate.

Teradyne LASAR

You can dynamically link the SFI with LASAR. For complete Teradyne-specific
installation information, refer to Teradyne's LASAR Manager Guide for UNIX Systems.

VEDA Vulcan

You can dynamically link the SFI with Vulcan at ssmulator runtime. For current linking
information, please contact VEDA technical support directly.

Viewlogic Fusion ViewSim

You can statically link the SFI on-site with ViewSim. For information, refer to the
Viewlogic Fusion ViewSim manual or contact Viewlogic technical support directly at 1-
800-223-8439. In addition, Synopsys provides a SOLV-IT! article with some
information. For instructions on accessing SOLV-IT!, refer to “ Getting Help” on

page 14.

36 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 2: Using VCS with Synopsys Models

2

Using VCS with Synopsys Models

Overview

This chapter explains how to use SmartModels, FlexModels, MemPro models, and
hardware models with VCS. These procedures are centered on VCS v5.1, but contain
notes about other versions of VCS aswell. The procedures are organized into the
following major sections:

« “Setting Environment Variables’ on page 38

« “Using SmartModels with VCS’ on page 39

. “Using FlexModels with VCS’ on page 42

. “Using MemPro Modelswith VCS’ on page 51
« “Using Hardware Models with VCS’ on page 55

XJ° Hint
This chapter includes a script that you can useto run any FlexModel
exampl es testbench with minimal setup required. You can cut-and-paste the

script right out of this PDF file. Refer to “ Script for Running FlexM odel
Examplesin VCS’ on page 49.

July 31, 2001 Synopsys, Inc. 37

Chapter 2: Using VCS with Synopsys Models Simulator Configuration Guide

Setting Environment Variables

First, set the basic environment variables. If you are not using one of the model types,
skip that step. In some cases the procedures that follow in this chapter include steps for
setting additional environment variables.

1. Set the LMC_HOME variable to the location of your SmartModel. FlexModel, and
MemPro model installation tree, as shown in the following example:

% setenv LMC HOMVE path_to_nodel s_installation

2. SettheLM_LICENSE_FILE or SNPSLMD_LICENSE_FILE environment variable
to point to the product authorization file, as shown in the following example:

% setenv LM LI CENSE Fl LE pat h_t o_product _aut hori zation_file
% set env SNPSLMD LI CENSE FI LE path_to_product _aut horization_file

You can put license keys for multiple products (for example, SmartModels and
hardware models) into the same authorization file. If you need to keep separate
authorization files for different products, use a colon-separated list (UNIX) or
semicolon-separated list (NT) to specify the search path in your variable setting.

y Caution

Do not include la_dmon-based authorizations in the same file with snpsimd-
based authorizations. If you have authorizations that use la_dmon, keep
them in a separate license file that uses a different license server (Imgrd)
process than the one you use for snpslmd-based authorizations.

3. If you are using the hardware modeler, set the LM_DIR and LM_LIB environment
variables, as shown in the following examples:

% setenv LM D R hardware_rnodel _install _path/sns/Imdir
% setenv LM LI B hardware_rnodel _i nstal | _pat h/ sns/ nodel s: \
har dwar e_nodel _i nstal | _pat h/ sns/ maps

If you put your modelsin adirectory other than the default of /sms/models, modify
the above variable setting accordingly.

4. Depending on your platform, set your load library variable to point to the platform-
specific directory in SLMC_HOME, as shown in the following examples:

Solaris:;

% setenv LD LI BRARY_PATH $LMC HOVE/ | i b/ sun4Sol ari s. |i b: $LD LI BRARY PATH
Linux:

% set env LD _LI BRARY_PATH $LMC_HOVE/ | i b/ x86_I i nux. | i b: $LD LI BRARY_PATH

38 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 2: Using VCS with Synopsys Models

AlX:

% set env LI BPATH $LMC HOME/ | i b/ i bnrs. i b: $LI BPATH
HP-UX:

% set env SHLI B_PATH $LMC_HOVE/ | i b/ hp700. | i b: $SHLI B_PATH
NT:

Make sure that %L MC_HOME%\lib\pcnt.lib isin the Path user variable.

5. Set the VCS_HOME variableto the location of your VCSinstallation tree, as shown
in the following example, and make sure that VCSis set up properly in your
environment:

% setenv VCS HOME VCS install _path
6. Set the VCS_SWIFT_NOTES variable to 1, as shown in the following example:
% setenv VCS SWFT_NOTES 1

Using SmartModels with VCS

To use SmartModels with VCS, follow this procedure:

1. Generate a Verilog model wrapper file by running VCS with the -Imc-swift-
template switch, as shown in the following example:

% $VCS_HOWE/ bi n/ves -1 me-swi ft-tenpl ate nodel
where model is the name of the model you want to use.

Thiswill create amodel.swift.v file. Note that VCS version 5.1 and up generates
bused Verilog wrapper files by default. If you want bit-blasted wrappers, use the
-old switch.

Synopsys provides atool, vcs_sg, that allows you to generate multiple model
wrapper files. You must select VCS as your Verilog ssmulator during the
SmartModel installation in order to have vcs_sg available. It will beinstaled as

$LMC_HOVE bi n/ ves_sg

Thevcs sg tool also extends the usefulness of the model wrapper files generated by
VCSin two ways:

0 it adds statements that allow the DelayRange to be controlled by the VCS
command line +define parameters (or a defparam in your testbench)

o it adds a check for the VCS command line +define+SwiftChecksOff parameter
that turns constraints off.

July 31, 2001 Synopsys, Inc. 39

Chapter 2: Using VCS with Synopsys Models Simulator Configuration Guide

You can change the default name of the generated wrapper files (<model>.swift.v),
as well as the location that the generated wrappers are written to. Invoke

$LMC_HOWEH bi n/vcs_sg -h
to return the usage message for the vcs_sg tool:

HP- UX B. 10. 20 /u/ m kehu [3] ==> $LMC HOWE bi n/ vcs_sg -h
Copyright (C 2001 Logi ¢ Mbdel ing, Synopsys Inc. ALL R GHTS RESERVED
@#) vcs_sg.pl $Revision: /main/5 $ $Date: 2001/03/02 13:42:03 $
HHH R R
CGenerate .v files for VCS for Smartnodel s

Command | i ne options:

-h this message

-1 <path> to specify location of created files
default is current directory

-m <nodel _name> to specify which nodel to process
default is entire library if no -mswitch
mul ti pl e - m <nmodel _name> swi t ches may be used

-u convert file name to uppercase

-t truncate nanme to <nodel >. v

-a add node, generate only nodels without .v file
in specified destination

-o <file_name> create log file fil e_name

-b bit only i/f (no bus i/f if supported)

-v verbose node to see all messages.

-d set debug node.

e
2. Instantiate SmartModels in your design, defining the ports and defparams as
required. For details on the required SWIFT parameters and SmartModel
instantiation examples, refer to “ SmartModel SWIFT Parameters’ on page 18.

3. Invoke the VCS simulator as shown in the following examples:

Solaris:;

% $VCS_HOWE/ bi n/vcs -1 nc-swi ft nmodel . swift.v nmodel _tb.v \
-1 ves_simlog \

-Mipdat e \

-R

HP-UX:

% $VCS_HOWE/ bi n/vcs -1 nc-swi ft nmodel . swift.v nmodel _tb.v \
-1 ves_simlog \

- Mipdat e \

-R\

-LDFLAGS "-a shared -Im-1lc -a archive"

40 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide

AlX:

Chapter 2: Using VCS with Synopsys Models

% $VCS_HOWE/ bi n/vcs -1 ntc-swi ft nmodel . swift.v nmodel _tb.v \

-1 ves_simlog \
-Mipdat e \

-R O\

-LDFLAGS -11d

Linux:

% $VCS_HOWE/ bi n/vcs -1 ntc-swi ft nodel . swift.v model _tbh.v \

-1 ves_simlog \

- Mipdat e \

-R\

- LDFLAGS -rdynam c

where model .swift.v is the template you created in the previous step and model _tb.v
IS the testbench where the model is instantiated. Each model instantiated in the
testbench must have a model.swift.v wrapper file listed on the VCS invocation line.

VCS SmartModel Explanation
Table 7 lists each line in the invocation examples above, along with explanations for

what each one does.

Table 7: VCS SmartModel Explanation

Line Reference

Description

$VCS_HAOWH bi n/ vcs
-l mc-swift rmodel .swift.v nmodel tb.v

Path to the file that starts the VCS simulator, a
switch that causesVCSto load the SWIFT interface,
and then the specified model wrapper and Verilog
testbench files.

-1 vecs_simlog

Specifies alog file where V CS writes compilation
and simulation messages.

- Mipdat e This specifies incremental compilation, which
causes VCS to compile only the modules that have
changed since the last run.

-R Thismakes VCSrun interactively. VCSinvokesthe

XV CS GUI after compilation and pauses the
simulator at time zero.

- LDFLAGS swi t ches

Additional platform-specific switches that may be
needed.

July 31, 2001 Synopsys, Inc. 41

Chapter 2: Using VCS with Synopsys Models Simulator Configuration Guide

Using FlexModels with VCS

To use FlexModels with VCS, follow this procedure. VCS links the external PLI
routines that contain the custom FlexModel integration code during compilation of your
design. This procedure covers users on UNIX and NT. If you are on NT, substitute the
appropriate NT syntax for any UNIX command line examples (percent signs around
variables and backslashes in paths).

T3> Note

1. If you want the improved performance that comes with bused wrappers, generate a

Verilog model wrapper file by running VCS with the -Imc-swift-template switch, as
shown in the following example:

% $VCS_HOVE/ bi n/ves -1 ne-swi ft-tenpl ate nodel
where model is the name of the model you want to use.

This creates amodel.swift.v file. Note that VCS version 5.1 and up generates bused
Verilog wrapper files by default. For bit-blasted wrappers, use the -old switch.

The bused wrappers enable improved performance but do not work with the
examples testbench shipped with the model. To exercise the examples
testbench, use the wrappers shipped with the model (see Table 8), as
explained in the rest of this procedure. If you are using the bused wrappers,
adjust accordingly.

2. Create aworking directory and run flexm_setup to make copies of the model's

interface and example files there, as shown in the following example:
% $LMC_HOMWE/ bi n/ fl exm setup -dir workdir nodel _fx

You must run flexm_setup every time you update your FlexModel installation with
anew model version. Table 8 liststhe files that flexm_setup copies to your working
directory.

Table 8: FlexModel VCS Verilog Files

File Name Description L ocation

model _pkg.inc Verilog task definitions for FlexModel | workdir/src/verilog/

interface commands. Thisfile also
references the flexmodel _pkg.inc and
model_user_pkg.inc files.

model _user_pkg.inc | Clock frequency setup and user workdir/src/verilog/

customizations.

model _fx_vcs.v A SWIFT wrapper that you can use to wor kdir/examples/verilog/

instantiate the moded!.

42

Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 2: Using VCS with Synopsys Models

Table 8: FlexModel VCS Verilog Files (Continued)

File Name Description L ocation

model.v A bus-level wrapper around the SWIFT wor kdir/examples/verilog/
model. This allows you to use vectored
ports for the model in your testbench.

model_tst.v A testbench that instantiates the model and | workdir/examples/verilog/
shows how to use basic model commands.

3. Update the clock frequency supplied in the model _user pkg.inc file to correspond
to the CLK period you want for the model. Thisfileislocated in:

wor kdi r/ src/veril og/ model _user _pkg. i nc

where workdir is your working directory.

4. Add the following line to your Verilog testbench to include FlexModel testbench
interface commands in your design:

“include "nodel pkg.inc"

I35 Note
Be sure to add model _pkg.inc within the module from which you will be
issuing FlexModel commands.

Because the model_pkg.inc file includes references to flexmodel _pkg.inc and
model _user_pkg.inc, you don’t need to add flexmodel _pkg.inc or
model _user pkg.inc to your testbench.

5. Instantiate FlexModels in your design, defining the ports and defparams as required
(refer to the example testbench supplied with the model). You use the supplied bus-
level wrapper (model.v) in the top-level of your design to instantiate the supplied
bit-blasted wrapper (model_fx_vcs.v).

Example using bus-level wrapper (model.v) without timing:

nmodel U1 (model ports)
def par am
Ul. FHl exModel I d = “TM5_| NST1”;

Example using bus-level wrapper (model.v) with timing:

nmodel U1 (model ports)
def par am
UL. FH exTi m ngMbde = " FLEX_TI M NG MDE_QN
UL. Ti m ngVersi on = “ti mngversion”,
UL. Del ayRange = “range”,
UL. FH exModel | d= “TM5 | NST1”;

July 31, 2001 Synopsys, Inc. 43

Chapter 2: Using VCS with Synopsys Models Simulator Configuration Guide

6. Invoke VCS to compile and simulate your design as shown in the following
examples:

Solaris

%vcs -0 sinv workdir/exanpl es/verilog/ nodel . v \
wor kdi r/ exanpl es/ veri |l og/ nodel _fx_vcs. v \
$LMC HOWE/ | i b/ sund4Sol aris.lib/slmpli.o \
test bench. v \

-P $LMC HOWE/ simipli/src/slmpli.tab \
-Inc-swift \
+i ncdi r+$LMC_ HOME/ simipli/src \
+i ncdi r+wor kdi r/src/verilog
% si nv

HP-UX

%vcs -0 sinv workdir/exanpl es/veril og/ nodel . v \
wor kdi r/ exanpl es/ veri |l og/ nodel _fx_vcs. v \
$LMC_ HOME/ | i b/ hp700. lib/slmpli.o \
test bench. v \

-P $LMC HOWE/ simipli/src/slmpli.tab \
-Inc-swift \

+i ncdi r+$LMC_ HOME/ simipli/src \

+i ncdi r+workdir/src/verilog \

-LDFLAGS "-a shared -Im-1lc -a archive"

% si nv

AlIX

%vcs -0 sinv workdir/exanpl es/veril og/ nodel . v \
wor kdi r/ exanpl es/ veri |l og/ nodel _fx_vcs. v \
$LMC HOWE/ i b/ibms.lib/slmpli.o\
test bench. v \

-P $LMC HOWE/ simipli/src/slmpli.tab \
-l nc-swift \
+i ncdi r+$LMC_ HOME/ simipli/src \
+i ncdi r+workdir/src/verilog \
- LDFLAGS -11d
% si nv

44 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 2: Using VCS with Synopsys Models

Linux

% vcs -0 sinv workdir/exanpl es/ veril og/ nmodel . v \
wor kdi r/ exanpl es/ veri |l og/ nodel _fx_vcs. v \
$LMC HOME/ |1 b/ x86_linux.lib/simpli.o\
testbench. v \

-P $LMC HOWE/ simipli/src/slmpli.tab \
-lnc-swift \
+i ncdi r+$LMC_ HOVE/ sinmipli/src \
+i ncdi r+workdir/src/verilog \
- LDFLAGS - rdynam c
% si nv

NT

> vcs -0 sinv . \exanpl es\veril og\ nodel . v
wor kdi r\ exanpl es\ veril og\ nodel _fx_vcs. v
+i ncdi r+%MC_ HOVE% si mipli\src

+i ncdi r+wor kdi r\'src\veril og

t est bench. v

-Inc-swift -P

%MC HOMB%A simplilsrc\simpli.tab

%MC HOME%A i b\pent.lib\sImpli_ves.lib

> sinv. exe

T3> Note
The entire compilation expression must appear on the same line. The NT
example was tested using Microsoft’s Visual C++ compiler v5.0.

VCS FlexModel Examples

First we present a basic one-model example and then show you how to use more than
one FlexModel in the same simulation in the following sections:

. “OneFlexMode on Solaris’ on page 46
. “Two FlexModels on Solaris’ on page 48
. “Three FlexModels on HP-UX” on page 48

July 31, 2001 Synopsys, Inc. 45

Chapter 2: Using VCS with Synopsys Models

One FlexModel on Solaris

To use one FlexModel with VCS on Solaris, invoke the ssmulator as shown in the
following example:

% $VCS_HOWE bi n/ vcs \

Simulator Configuration Guide

"$LMC_HOWE bi n/ f| exm set up nodel _f x"/ exanpl es/ veril og/ model _tst.v \
“$LMC_HOVE bi n/ f 1 exm set up nodel _f x"/ exanpl es/ veri | og/ nodel . v \
“$LMC_HOWE bi n/ f | exm set up nodel _f x" / exanpl es/ veri | og/ nodel _fx_vcs. v \

+i ncdi r+$LMC_ HOVE/ simipli/src \

+i ncdi r+ $LMC_HOVE bi n/ f|1 exm setup nmodel _fx /src/verilog \
-P $LMC_ HOW/ simpli/src/slmpli.tab \

$LMC HOWH | i b/ sund4Sol aris.lib/sImpli.o \

+i ncdi r+$LMC HOME/ sinmipli/src \

-1 vecs_simlog \

- Mipdat e \

-R\

-l ne-swi ft

where model is the name of the FlexModel you are using.

46

Synopsys, Inc.

July 31, 2001

Simulator Configuration Guide

Chapter 2: Using VCS with Synopsys Models

Table 10 lists each line in the invocation example above, along with explanations for

what each one does.

Table 9: VCS With One FlexModel On Solaris Model Explanation

Line Reference

Description

$VCS_HOWH bi n/ vcs

Path to the file that starts the VCS simulator.

"$LMC_ HOWE/ bi n/ f | exm set up nodel _f x°
/ exanpl es/ veril og/ model _tst.v

Specifiesthe path to the model testbench file.

“$LMC_HOME/ bi n/ f 1 exm set up nodel _fx°
/ exanpl es/ veri | og/ nodel . v

Specifies the path to the model Verilog
wrapper file.

“$LMC_ HOWE/ bi n/ f | exm set up nodel _f x°
/ exanpl es/ veril og/ model _fx_vcs. v

Specifiesthe path to the model VCStemplate
file.

+i ncdi r+$LMC_ HOVE/ sinmipli/src

Includes the path to the flexmodel_pkg.inc
file, which contains Verilog task definitions
for general FlexModel interface
commands.

+i ncdi r+ $LMC_HOWE bi n/ f | exm set up
nodel _fx /src/verilog

Includes the path to the model-specific
Verilog task files, including model_pkg.inc.

-P $LMC HOWE/ simipli/src/slmpli.tab

Specifies the FlexModel/MemPro PLI table
entry file.

$LMC HOME | i b/ sund4Sol aris.lib/sImpli.o

Specifies the platform-specific PL1 object
file.

-1 ves_simlog

Specifiesalog file where VCS writes
compilation and simulation messages.

- Mupdat e

This specifies incremental compilation,
which causes VCS to compile only the
modules that have changed since the last run.

This makes VCS run interactively. VCS
invokesthe XV CS GUI after compilation and
pauses the simulator at time zero.

-l nc-swift

This switch causes VCS to load the SWIFT
interface.

July 31, 2001

Synopsys, Inc. 47

Chapter 2: Using VCS with Synopsys Models Simulator Configuration Guide

Two FlexModels on Solaris

This example shows how to use the mpc740 _fx and mpc750 |12 fx FlexModels together
with VCS on Solaris. Invoke the simulator as shown in the following example:

% $VCS_HOME bi n/ ves \

SLMC_HOME/ bi n/ f1 exm set up npc750_1 2_fx/ exanpl es/ veril og/ npc750_12 tst.v \
T $LMC_HOME/ bi n/ f 1 exm set up npc750_1 2_fx* / exanpl es/ veril og/ npc750_12.v \
$LMC_HOME/ bi n/ f 1 exm set up npc750_1 2_fx/ exanpl es/ veril og/ npc750_1 2 fx_vcs.v \
*SLMC_HOME/ bi n/ f 1 exm set up npc740_f x™ / exanpl es/ veri | og/ npc740. v \
*$LMC_HOME/ bi n/ f 1 exm set up npc740_f x™ / exanpl es/ veri | og/ npc740_fx_vecs. v \

+i ncdi r+$LMC_ HOME/ simd pli/src \

+i ncdi r+ SLMC_HOME/ bi n/ f1 exm set up nmpc750_| 2 fx /src/verilog \

+i ncdi r+ $LMC_HOME/ bi n/ f1 exm set up npc740_fx'/src/verilog \

-P $LMC HOME/ simipli/src/simpli.tab \

SLMC HOME/ li b/ sun4Sol aris.lib/slmpli.o \

+i ncdi r+$LMC_ HOME/ simd pli/src \

-1 ves_simlog \

-Mipdat e \

-R O\

-l me-swi ft

Three FlexModels on HP-UX

This next example shows how to use the PCI system testbench and the pcimaster_fXx,
pcislave fx, and pcimonitor_fx FlexModels together with VCS on HP-UX. Follow
these steps.

1. Set up the PCI system testbench as shown in the following example:

% nkdir pci_tb

%cp -rf “$LMC_HOWE bi n/ fl exm setup pcinmaster_fx'/* pci_tb
%cp -rf “$LMC_HOWE bi n/ fl exm setup pcinonitor_fx'/* pci_tb
%cp -rf “$LMC_HOWE bi n/ fl exm setup pcislave fx /* pci_tb

2. Invoke the VCS simulator as shown in the following example:

% $VCS_HOVE/ bi n/ ves \

./ pci _tb/exanpl es/ verilog/pcisys tst.v \

./ pci _tb/exanpl es/ veril og/ pci master.v \

./ pci _tb/ exanpl es/veril og/ pci master_fx_vcs. v \
./ pci _t b/ exanpl es/ veril og/ pci sl ave. v \

./ pci _tb/exanpl es/ veril og/ pci sl ave fx vcs.v \
./ pci _tb/exanpl es/ verilog/ pcimonitor.v \

./ pci _tb/exanpl es/verilog/ pcimonitor _fx vecs.v \
+i ncdir+./pci _tb/src/verilog \

+i ncdi r+$LMC_ HOVE/ simi pli/src \

$LMC HOME i b/ hp700.1ib/sImpli.o \

-P $LMC HOW/ simipli/src/slmpli.tab \

-1 ves_simlog \

-Mipdat e \

-R\

48 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 2: Using VCS with Synopsys Models

-lme-swift \
-LDFLGS "-a shared -Im-lc -a archive"

Script for Running FlexModel Examples in VCS

On page 50 is a Perl script (Figure 1) that you can useto run VCS on a FlexModel
examples testbench. You can use this script on any installed FlexModel because each
one comes with a prebuilt testbench example that shows how to use the model
commands and all the Verilog wrapper and task definition files that you need. This script
runs on HP-UX, Solaris, and NT.

To invoke VCS on a FlexModel and its example testbench, follow these steps:

1. Use the Acrobat Reader’s text selection tool to select the script shown in Figure 1
and copy the contents to alocal file named run_flex_examples in_vcs.pl.

2. Savethefile and change the permissions so that thefile is executable (chmod 775 in
UNIX).

3. If you areon NT, you also need to copy the following line to a file named
run_flex_examples in_vcs.cmd and put it in your working directory:

%MC HOME% i b\pent. lib\sl _perl.exe run_flex_exanpl e_in_vcs.pl %
On NT you invoke this cmd wrapper, which subinvokes the Perl script.
4. Invoke the script as shown in the following examples:
UNIX
% run_fl ex_exanpl es_i n_vcs. pl nodel _fx
NT
> run_fl ex_exanpl es_in_vcs. cnd nodel _fx
where model_fx is the name of the FlexModel you want to run.

July 31, 2001 Synopsys, Inc. 49

Chapter 2: Using VCS with Synopsys Models Simulator Configuration Guide

I35 Note

This script was developed for internal use and is made available for user
convenience. It is not actively maintained as part of the licensed software.

#!'/usr/ | ocal / bi n/ perl

$Revi si on$

$out put _file = "Exanpl e_Si mul at or_Run_Script";

die "\nERROR running $0: ", "No Fl exMbdel nare given\n\n", unl ess($ARGV 0]);
$LncHone = $ENV{ LMC HOME }; die "ERRCR running $0: ", "The LMC HOME envi r onnent

vari abl e nust be set.\n" unl ess($LntHone);
$VesHome = $ENV{ VCS_HOME };

die "ERROR running $0: ", "The VCS HOME environnent variabl e nust be set.\n" unl ess(
$VesHone) ; $VesSwi ft Notes = $ENV{ VCS_SW FT_NOTES };
die "ERRCR running $0: ", "The VCS_SWFT_NOTES environment variable must be set.\n",

"\nSet VCS SWFT _NOTES to the value 1\n\n", unl ess($VcsSwi ftNotes);
require "$LncHone/ i b/ bi n/1i bndl 01003. pl ";

$Platform= GetP atforn();

$Platformlib = PlatforniloLibDr($P atforn;

%l atformsuffix = (hp700 => "0", solaris => "0", pcnt => "lib");
$suffix = $platformsuffix{ $M atform}; $f| exnodel _nane = $ARGV 0] ;

$nodel _path = $LncHone . "/nodel s/" . $fl exnodel _nane;
if (-e $nodel _path) {}
el se { die "\nERRCR running $0: ", "F exhbdel $flexnmodel name Does not Exist in
Li brary\n\n"; }$version_path = ~$LncHone/ bi n/ f| exm setup $f | exnodel _nane”;
chonp($ver si on_pat h) ;
if ($flexmodel _name =~/ _fx/) { $flexnodel _nane =~ s/_fx//g; $flex or_c ="_fx";}
el sif ($fl exmodel _name =~/ _fz/) {
$f | exmodel _name =~ s/ _fz//g;
$flex_or_c = "_fz";}
else { die "\nERRCR running $0: ", "$flexnodel _nane is not a Fl exMbdel . Model must
have an _fx or fz to be a F exMdel\n\n";}
$execute_conmand = $VcsHorre . "/ bin/vcs -Mipdate -R -1 ves_simlog "
$version_path . "/exanpl es/veril og/"
$fl exnodel _nane . "_tst.v +incdir+"
$version_path . "/src/verilog +libext+.inc "
$version_path . "/exanpl es/verilog/" . $flexnodel name . ".v "
$version_path . "/exanpl es/veril og/"
$fl exnodel _nane . $flex_or_c . "_vcs.v ";

if ($Patformeq "pent") {

$execut e_comand = $execute_command . $LncHome . $P atformlib . "sImpli_ves." .
$suf fi x;}
el se {
s $execut e_conmand = $execute_command . $LncHone . $P atformlib . "sImpli.o" .
suf fix;}
$execut e_command = $execute_command . " -P " . $LntHome . "/sinipli/src/slmpli.tab"
" -lme-swift #incdir+" . $LncHone . “/sinmipli/src"; print "$execute_conmand\n";
open(CFI LE, "> $output _file") || die " Could not create file : $output_file\n";
print CFILE ("# This is an exanple of VCS command line to run the\n");
print CFILE ("# supplied Fl exMbdel testhbench.\n");
print CFILE ("# Note: The model version was cal cul ated using the flexmsetup
command\ n"); print CFI LE ("\n$execute_comand\n");
cl ose(CFI LE); systen($execut e_conmand);

Figure 1: run_flex_examples_in_vcs.pl Script

50 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 2: Using VCS with Synopsys Models

Example Simulator Run Script

Therun_flex_examples in_vcs.pl script also creates an example simulator run scriptin
your current working directory for the specified model. You can use this run script to
invoke V CS after running the run_flex_examples_in_vcs.pl script. The following
example shows the contents of the “Example_Simulator_Run_Script” after running the
run_flex_examples in_vcs.pl script using the mpc860_fx model.

This is an exanple of VCS command line to run the supplied Fl exMdel
t est bench.

Note: The nodel version was cal cul ated using the fl exmsetup comand

/ d/ ves501/ vesh. 0. 1A/ bi n/vcs -Mipdate -R -1 ves_siml og
/d/'l mgga2/instal |l /1 nmc_hone/ nodel s/ npc860_f x/ npc860_f x02009/ exanpl es/ veri
| og/ npc860_tst.v

+i ncdi r+/ d/ 1 mgga2/i nstal | /1 mc_hone/ nodel s/ npc860_f x/ npc860_f x02009/ src/ v
erilog +libext+.inc

/d/'l mgga2/instal |l /1 nmc_hone/ nodel s/ npc860_f x/ npc860_f x02009/ exanpl es/ veri
| og/ npc860. v

/d/'l mgga2/instal |l /1 mc_hone/ nodel s/ npc860_f x/ npc860_f x02009/ exanpl es/ veri
| og/ npc860_fx_vcs.v /d/lmgga2/install /|l nc_hone/lib/hp700.lib/sImpli.o -
P /d/lmgga2/install/lnmc_hone/simpli/src/slmpli.tab -1 nc-swift
+incdir+/d/ I ngga2/install/lnmc_hone/sinmpli/src

Using MemPro Models with VCS

To use MemPro models with VCS, follow this procedure. VCS links external PLI
routines during compilation of your design. You do not need to rebuild the VCS
simulator.

1. To use the MemPro C testbench, add the following line to your local copy of
sim_pli.tab:

$your _t ask_nane cal | =your _f n_name

2. If you are using MemPro testbench interface commands in your design, perform
step 2a or step 2b. If you are not using HDL or C testbenches, skip to step 3.

a. If you are using Verilog testbench calls, add the following line to your Verilog
testbench.

“include "nenpro_pkg. v"

b. If you are using the MemPro C testbench, add the following line to your C
testbench code.

#i ncl ude "nenpro_c_tb. h"

July 31, 2001 Synopsys, Inc. 51

Chapter 2: Using VCS with Synopsys Models

52

Simulator Configuration Guide

For more information on using the MemPro testbench interfaces, refer to the “HDL
Testbench Interface” and “ C Testbench Interface” chaptersin the MemPro User’s

Manual.

3. Invoke VCS to compile and simulate your design:

HP-UX

If you are not using the MemPro C testbench:

% vcs

Veril og_nodul es MenPro_nodel files \

$LMC HOME i b/ hp700.1ib/sImpli.o \

-P $LMC_ HOW/ sim pli/src/slmpli.tab \

+i ncdi r+$LMC HOWE/ sinmipli/src -R '\

-LDFLAGS "-W, -a,default -1dld -lIc -Im-|BSD

If you are using the MemPro C testbench:

% vCcs

Solaris

Veril og_nodul es MenPro_nodel _files \

$LMC HOME i b/ hp700.1ib/sImpli.o \

-Plocal _slmpli.tab your_testbench.c \

- CFLAGS "- 1 $LMC_ HOW i ncl ude" \

+i ncdi r+$LMC HOVE/ sinipli/src -R '\

-LDFLAGS "-W, -a,default -1dld -lc -I m-IBSD'

If you are not using the MemPro C testbench:

% vCcs

Veril og_nodul es MenPro_nodel _files \
$LMC HOWEH | i b/ sund4Sol aris.lib/sImpli.o \
-P $LMC HOW/ simipli/src/slmpli.tab \

+i ncdi r+$LMC HOME/ sinipli/src -R

If you are using the MemPro C testbench:

% vcs

Example:

% vCcs

Veril og_nodul es MenPro_nodel files \
$LMC HOWEH | i b/ sund4Sol aris.lib/sImpli.o \
-Plocal _slmpli.tab your_testbench.c \

- CFLAGS "- 1 $LMC HOW i ncl ude" \

+i ncdi r+$LMC HOME/ sinmipli/src -R

tbench.v nydramv nysramv \

$LMC HOVE i b/ sund4Sol aris.lib/slmpli.o \
-P $LMC HOW/ simipli/src/slmpli.tab \

+i ncdi r+$LMC HOME/ sinipli/src -R

Synopsys, Inc.

July 31, 2001

Simulator Configuration Guide Chapter 2: Using VCS with Synopsys Models

NT

If you are not using the MemPro C testbench:

> vcs Veril og_nodul es MenPro_nodel files
%MC HOMBE% lib\pent.lib\sImpli_vecs.lib
-p %MC HOVEAsimplilsrc\simpli.tab
+i ncdi r+%MC_ HOME% simplilsrc -R

If you are using the MemPro C testbench:

> vcs Veril og_nodul es MenPro_nodel files
%MC HOME% lib\pent.lib\sImpli_vecs.lib
-P local _slmpli.tab your_testbench.c
- CFLAGS "- 1 %MC_HOME% i ncl ude”
+i ncdi r+%MC HOMB% simplilsrc -R
© Attention
If you areusing VCS 5.0 or earlier, add the “-Zp4” switch to your VCS
command and replace the “sim_pli_vcs.lib” library with the
“dm_pli_v4vcslib” library. If you are using VCS 5.1 or later, add the “-Idl”
switch to your VCS command.

Linux

If you are not using the MemPro C testbench:

% vcs Veril og_nodul es MenPro_nodel _files \
$LMC HOWE | i b/ x86_Iinux.lib/slmpli.o \
-P $LMC HOW/ simipli/src/slmpli.tab \
+i ncdi r+$LMC HOVE/ sinipli/src -R '\
- LDFLAGS -rdynam ¢

If you are using the MemPro C testbench:

% vcs Veril og_nodul es MenPro_nodel files \
$LMC HOWE | i b/ x86_Iinux.lib/slmpli.o \
-Plocal _slmpli.tab your_testbench.c \
- CFLAGS "- 1 $LMC HOW i ncl ude" \
+i ncdi r+$LMC HOWE/ sinmipli/src -R '\

- LDFLAGS -rdynam c

4. Instantiate MemPro modelsin your design. Define ports and generics as required.
For information on generics used with MemPro models, refer to “Instantiating
MemPro Models’ on page 32.

July 31, 2001 Synopsys, Inc. 53

Chapter 2: Using VCS with Synopsys Models

5. Compile your design:

Simulator Configuration Guide

If you are using the MemScope Dynamic Data Exchange feature:

%vcs +vesH ic+wait +incdi r+$LMC HOVE/ simipli/src \
desi gn_name $LMC HOWE/ lib/platformlib/sImpli.o \
-Xstrict -P $LMC HOME/ sinmipli/src/sImpli.tab -cc $cc_path

If you are not using the MemScope Dynamic Data Exchange feature:

%vcs +vesH ic+wait +incdi r+$LMC HOVE/ simipli/src \
desi gn_name $LMC HOWE/ lib/platformlib/sImpli.o \
-P $LMC HOW/ simipli/src/sImpli.tab -cc $cc_path

6. Invoke VCS on your design:

% si nv

VCS MemPro Model Explanation
Table 10 lists each line in the invocation examples above, along with explanations for

what each one does.

Table 10: VCS MemPro Model Explanation

Line Reference

Description

$VCS_HOWH bi n/ vcs
nenpr o_nodel . v nenpro_nodel _tb.v

Path to the file that starts the VCS simulator,
followed by the specified model and testbench
Verilog files.

-P $LMC HOWE/ sinmipli/src/slmpli.tab

Specifiesthe MemPro PLI table entry file.

$LMC HOWE | i b/ sund4Sol aris.lib/sImpli.o

Specifies the platform-specific MemPro PLI
object file.

- Mipdat e This specifies incremental compilation, which
causes VCS to compile only the modules that
have changed since the last run.

-R This makes VCS run interactively. VCS invokes

the XVCS GUI after compilation and pauses the
simulator at time zero.

- LDFLAGS swi t ches

Additional platform-specific switches that may
be needed.

54 Synopsys, Inc.

July 31, 2001

Simulator Configuration Guide Chapter 2: Using VCS with Synopsys Models

Using Hardware Models with VCS

To use hardware models with VVCS, follow this procedure:

1. Add the hardware model install tree to your path variable, as shown in the following
example:

%set path=(/install/sns/bin/platform $path)

2. Set the VCS_LMC environment variable to the hm directory in the VCSingtall, as
shown in the following example:

% setenv VCS LMC $VCS HOWH pl at fornd | nc/ hm

3. Setthe LM_SFI environment variable to the SFI directory in the hardware
modeling tree, as shown in the following example:

% setenv LM SFI hardware_nodel er _instal |l _pat h/ sns/1i b/ pl at f or md

4. SettheVCS LMC_HM_ARCH environment variable so that you can later use the
-Imc-hm switch. This variable must be set to find the SFI directory in the smg/lib
tree, as shown in the following examples:

Solaris

% setenv VCS LMC HM ARCH sun4. sol ari s
HP-UX

% set env VCS_LMC HM ARCH pa_hp102

5. Create a Verilog HDL template for the hardware model using the Imvc_template
script provided by VCS, as shown in the following example:

%I nvc_tenplate nodel file
where model_file is the name of the hardware model's .MDL file.

For example, if your model isthe TILS299, enter:

% | nvc_tenpl ate TILS299. MOL

This step produces a TILS299.Imvc.v file that contains the module definition with
al the calls, declarations, and assignments necessary to make the fileavalid VCS
module.

I°5> Note
Thelmvc_template program looks for Shell Software filesin the directories
indicated by the LM _L 1B environment variable. You can modify the port list
generated by the Imvc_template to match the existing model instantiations
by editing the .NAM file.

July 31, 2001 Synopsys, Inc. 55

Chapter 2: Using VCS with Synopsys Models Simulator Configuration Guide

6. Compile your description. Make sure to include the hardware model template and
supporting PLI and library files. To interface the hardware modeler to VCS, add the
-Imc-hm switch to the VCS command line, as shown in the following example:

%vcs +plusarg_save -R test.v TILS299.Invc.v -l nc-hm-0 sinv \
+overri de_nodel del ays +maxdel ays -1 vcs.log &

You can optionally invoke VCS without the -Imc-hm switch by using the -P switch
to point to the $VCS_LMC/Imvc.tab file and including the $VCS_LMC/Imvc.o
object file and $LM_SFI/Im_sfi.alibrary, as shown in the following example:

%vcs +plusarg_save -R test.v TILS299.Invc.v -P $VCS LMZJ I nvc.tab \
$VCS LMI I nvc.o LM SFI/Imsfi.a -0 sinv \
+overri de_nodel del ays +maxdel ays -1 vcs.log &

where:
* vcsisthe compiler
» test.visthefilethat is part of the top level system source files
o TILS299.Imvc.v isthe vcs template for the HW model

* Imvc.tab isthe VCSfilefor Imvc calls for vector logging, and timing
measurement

» Imvc.oisthe object code for LMC C file (Imvc.c), which contains the
definitions for all the Imvc tasks/functions.

* Im_sfi.aisthe simulator function interface software that links the VCS
simulator to the hardware modeler.

» +override_model_delaysisaswitch that allows you to specify timing other
than typical.

275> Note
the -RI option is not required to generate the simv file. It isused to havethe
simulator automatically execute after compilation and to use the xvcs
debugger.

For more information on using the .tab/.c files and options with VCS, refer to the VCS
Users's Guide.

Note that in the previous VCS releases, the hardware model could only be ssmulated
with typical delays. The VCS 5.2 release has removed this restriction, so you can now
either use a runtime option on the command line or make the change in the delayrange
parameter. Note that the runtime option does override any delayrange parameter
specification. The following excerpt is from the VCS 5.2 Release Notes:

56 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 2: Using VCS with Synopsys Models

VCS 5.2 has a new runtime option, +override_model_delays that enables
you to use the +mindelays, typdelays, or +maxdelays runtime option to
specify timing in SWIFT SmartModels or Synopsys hardware models and
in so doing override the DelayRange parameter in the template files for
these models that otherwise specifies the timing for the model.

Example Using Runtime Option
Here is an example using the runtime option:

%vcs +plusarg_save -R test.v TILS299.Invc.v -P $VCS LMIJ I nvc.tab \
$VCS LMT I nvc. o $SLM SFI/I msfi.a -o sinv +overri de_nodel _del ays \
+maxdel ays -1 vcs.log &

Example Using DelayRange Parameter
Here is an example using the DelayRange parameter:

TILS299 hwnl (.\SL (shift_left), .\QLK (clock), .\SR
(shift_right), .\NCLR (clear),
NA-QR (g2), .\-GL (gl), .\Sl (select_1), .\S0O

(select_0),

ADQ@ (bit_4), .\F/Q (bit_6), .\B@ (bit_2),
AT Q (bit_3),

AANQ (bit_ 1), \N\GFQG (bit_7), .\EHCE (bit_5),
AHQH (bit_8),

ANQA (high_bit), .\@H (lowbit));
“ifdef MAX
def par am hwm 1. Del ayRange = " MAX'
“endi f

Run your simulation as usual. After running the vcs compiler, you should see a
compiled simv file. To run your simulation, type in simv.

You need an additional passcode to use the hardware model interface. If you do not have
a passcode, contact VCS Simulation Support at 800-837-4564.

VCS Utilities

If you want to turn on test vector logging or timing measurement, you can invoke tasks
'Im_logd', 'Im_log_off', 'Im_measure_time', or 'lm_measure_time_off".

i nstance_nane. | m neasure_ti e;
i nstance_nane. | m neasure_tine_of f;

where instance_nameisastring that isthe hierarchical path name of theinstance for the
hardware model. For example, assuming that our instance is top.hwm_1 with these
features, it would look like the following example:

July 31, 2001 Synopsys, Inc. 57

Chapter 2: Using VCS with Synopsys Models Simulator Configuration Guide

nmodul e t op;
TILS299 hwm 1();
initial begin
top. hwm 1. I m neasure_ti ne;
top.hwnl.Imlog ("file_nane");
#7000;

top. hwm 1. I m neasure_tine_off;

top. hwm 1. Imlog_ off;
end

58 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

3

Using Verilog-XL with Synopsys
Models

Overview

This chapter explains how to use SmartModels, FlexModels, MemPro models, and
hardware models with Verilog-XL. The procedures are organized into the following
major sections:

. “Setting Environment Variables’ on page 59

. “Using SmartModels with Verilog-XL"” on page 61

« “Using FlexModels with Verilog-XL"” on page 79

. “Using MemPro Models with Verilog-XL” on page 81
. “Using Hardware Models with Verilog-XL” on page 83

Setting Environment Variables

First, set the basic environment variables. If you are not using one of the model types,
skip that step. In some cases the procedures that follow in this chapter include steps for
setting additional environment variables.

1. Set the LMC_HOME variable to the location of your SmartModel. FlexModel, and
MemPro model installation tree, as shown in the following example:

% setenv LMC HOMVE path_to_nodel s_installation

July 31, 2001 Synopsys, Inc. 59

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

2. SettheLM_LICENSE_FILE or SNPSLMD_LICENSE_FILE environment variable
to point to the product authorization file, as shown in the following example:

% setenv LM LI CENSE Fl LE pat h_t o_product _aut hori zation_file
% set env SNPSLMD LI CENSE FI LE path_to_product _authorization_file

You can put license keys for multiple products (for example, SmartModels and
hardware models) into the same authorization file. If you need to keep separate
authorization files for different products, use a colon-separated list (UNIX) or
semicolon-separated list (NT) to specify the search path in your variable setting.

; Caution

Do not include la_dmon-based authorizations in the same file with snpsimd-
based authorizations. If you have authorizations that use la_dmon, keep
them in a separate license file that uses a different license server (Imgrd)
process than the one you use for snpslmd-based authorizations.

3. If you are using the hardware modeler, set the LM_DIR and LM_LIB environment
variables, as shown in the following examples:

% setenv LM D R hardware_rnodel _install _path/sns/Imdir
% setenv LM LI B hardware_nodel _instal |l _path/sns/ nodel s: \
har dwar e_nodel _i nstal | _pat h/ sns/ maps

If you put your modelsin adirectory other than the default of /sms/models, modify
the above variable setting accordingly.

TI5= Note
On NT, these hardware modeler environment variables are set automatically
when you install the software.

4. Set the CDS_INST_DIR variable to the location of your Cadence installation tree,
as shown in the following example, and make sure that Verilog-XL is set up
properly in your environment:

% setenv CDS | NST_DI R pat h_to_Cadence_install ati on

5. Depending on your platform, set your load library variable to point to the platform-
specific directory in LMC_HOME, as shown in the following examples:

Solaris:

% set env LD LI BRARY PATH $LMC HOME/ | i b/ sun4Sol ari s. | i b: $LD LI BRARY PATH
Linux;

% set env LD LI BRARY PATH $LMC HOME/ | i b/ x86_I i nux. | i b: $LD LI BRARY PATH

60 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

AlX:

% set env LI BPATH $LMC HOME/ | i b/ i bnrs. i b: $LI BPATH
HP-UX:

% set env SHLI B_PATH $LMC_HOVE/ | i b/ hp700. | i b: $SHLI B_PATH
NT:

Make sure that %L MC_HOME%\lib\pcnt.lib isin the Path user variable.

Using SmartModels with Verilog-XL

SmartModels work with Verilog-XL using aPLI application called LMTYV that is
delivered in the form of a swiftpli shared library in SLMC_HOME/lib/platform.lib. If
you cannot use the swiftpli, refer to “Using SmartModels with Verilog-XL on the
IBMRS AlIX Platform” on page 62.

To use the prebuilt swiftpli, follow this procedure:

1. Instantiate the SmartModels in your design, defining the ports and defparams as
required. For details on required SmartModel SWIFT parameters and a model
Instantiation example, refer to “Using SmartM odels with SWIFT Simulators” on

page 18.
2. Thereisno need to build a Verilog executable. You can use the one that Cadence
provides at $CDS_INST_DIR/toolg/bin by adding it to your path variable.

3. To use the swiftpli shared library, invoke the Verilog simulator to compile and
simulate your design as shown in the examples below:

UNIX

%verilog testbench nodel.v +H oadplil=swi ftpli:swft_boot \
+i ncdi r+$LMC_ HOME/ sinmipli/src

NT

> verilog testbench nodel.v + oadplil=swi ftpli:swft_boot
+i ncdi r +%AMC HOME% si Mplilsrc

TI°5= Note
For information on LM TV commands that you can use with SmartModels

on Verilog-XL, refer to “LMTV Commands’ on page 281.

July 31, 2001 Synopsys, Inc. 61

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

Using SmartModels with Verilog-XL on the IBMRS AIX
Platform

To use SmartModels and FlexModels on IBM with Verilog-XL, follow this procedure.
The instructions provided here are based on the assumption that you are already using
Verilog-XL.

1. Thefollowing lines are already in the copy of veriuser.c at
$LMC_HOME/sim/pli/src. If you are using another veriuser.c file, copy these lines
into it. They are needed to make the SmartModel C-Pipe interface.

[* meemiie oo cut here - section 1 -------------- */

/* Gpipe interface */

extern int pli_slmpost();

extern int sl mmenpro_handl e();

extern int slmmenpro_w dth_info();

extern int slmtransport();

extern int slmtransport_checktf();

externint siminertial ();

extern int siminertial_checktf();

A LR end section 1 -------------- */

[* meemiee oo cut here - section 2 -------------- */
{ usertask, 0, O, O, pli_slmpost, 0, "$sl mpost_hdl", true },
{ usertask, 0, O, O, pli_slmpost, 0, "$sl mpost", true },
{ usertask, 0, 0, 0, sIlmnenpro_handl e, 0, "$s|l mnenpro_handle",/
true },
{ usertask, 0, 0, 0, simnenpro width info, 0,/
"$sl mnenpro_width_info", true },
{ usertask, 0, sImtransport_checktf, 0, sImtransport, O,/
"$slmtransport”, true },
{ usertask, 0, sIminertial _checktf, 0, sIminertial, O,/
"$sIminertial", true },

[* meemiie e end section 2 -------------- */

2. You will need to edit the veriuser.c file to pick up the LM TV header files asfollows:

a. After #include “vxl_veriuser.h” add:

#i ncl ude “ccl I mtv_include. h”

b. After “/*** add user entries here ***/” add:
#i ncl ude “ccl _| mv_include_code. h”

3. Invoke the Cadence PLI Wizard utility.

The instructions that follow summarize the procedure found in the Cadence PLI
Wi zard User Guide but are not intended to replace the Cadence procedure.

The PLI Wizard utility will present a series of formsfor you to fill out. After you
have completed each window as described in the following steps, click the Next
button at the bottom to invoke the next window.

62 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

4.

S.
6.
7.

In the Select Config Session Name and Directory form,
o Enter the name of your session file in the Config Session Name field.
o Enter the path to the session file in the Config Session Directory field.
Select Verilog-XL asthe Verilog simulator.
Select Stand Alone as the Verilog target.

Select PLI 1.0 Application and SWIFT Interface as your components. Specify
your LMC_HOME path in the Root Path field next to SWIFT Interface.

8. Select Satic Linking for the PL1 Application Linking Mode.
9. Select Existing VERIUSER (sour ce/object file), and enter the path to your edited

10.

11.
12.
13.

veriuser.c sourcefile.

Enter the path to the SLMC_HOMFE/lib/platform.lib/sim_pli.o object filein the PL |
Object Filesfield.

Leave the Select Compiler & Optionsform asis.
When the Session Setup Summary form appears, click Finish.
Click Yeswhen asked whether or not to build targets now.

The new Verilog-XL executable that includesLMTV & the C-Pipe interface will
then be built in the session directory. Add this directory to your PATH statement to
use the new Verilog-XL executable.

Verilog-XL Usage Notes for SmartModels

This section describes the Synopsys Logic Models To Verilog (LMTV) interface. You
canuse LMTYV to instantiate and work with SmartModelsin Verilog-XL, asdescribed in
the following sections:

LMTV Modes of Operation

Capturing and Simulating the Design

Using SmartModel Windows with Verilog-XL
Customizing Model Timing

Simulating an Older Design Using LMTV
Using FlexModels with Verilog-XL

July 31, 2001 Synopsys, Inc. 63

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

LMTV Modes of Operation

To take advantage of the SWIFT SmartModel Library while maintaining compatibility
with the older Verilog-XL-specific SmartModel Library, the LMTV interface has two
modes of operation, SWIFT SmartModel Mode and Historic SmartModel Mode.

SWIFT SmartModel Mode

In SWIFT SmartModel mode, the models you instantiate are SWIFT SmartModels. This
is the mode intended for primary use. Use this modeif you are implementing a new
design using the SWIFT SmartModel Library, if you are anew Verilog-XL user, or if
you want to transition your existing design into this mode.

Two sets of v shells support SWIFT SmartModel mode: swift and swift-uc. With
swift-uc, module names and attribute names are provided in all uppercase. Thetwo sets
of v shells provide compatibility with most third-party tools.

Historic SmartModel Mode

In Historic SmartM odel mode, the models you instantiate have the characteristics of the
Verilog-X L-specific SmartModels. Historic SmartModel mode is provided only for
backward-compatibility for designs that use models from the Verilog-X L -specific
SmartModel Library. Usethe Historic SmartModel mode only if you are continuing
with an older design that was captured using the Verilog-X L -specific SmartM odel
Library.

I Note

You must use the same mode throughout a design. You cannot mix modes
within adesign.

Table 11 lists the different characteristics of the SWIFT and Historic SmartModel
modes.

Table 11: Characteristics of Historic and SWIFT SmartModel Modes

SWIFT SmartM odel Mode
Historic SmartM odel
Differences swift swift-uc Mode
Model Attributes TimingVersion TIMINGVERSION | COMPONENT
Model Type MODELTY PE MODELTY PE
DelayRange DELAYRANGE RANGE
MemoryFile MEMORYFILE MEMORYFILE
JEDECFile JEDECFILE JEDECFILE
SCFFile SCFFILE CGAFILE
PCLFile PCLFILE PCLFILE

64 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide

Chapter 3: Using Verilog-XL with Synopsys Models

Table 11: Characteristics of Historic and SWIFT SmartModel Modes

SWIFT SmartModel M ode

Historic SmartM odel

Differences swift swift-uc Mode
Module Names Alphabetic Alphabetic Alphabetic characters are
characters are characters are uppercase
lowercase uppercase

Port Ordering

Numeric—for example, ports of bus
A[0:11] areinthisorder: AQ, Al, A2, A3,
.., A9, A10, All.

Alphanumeric—for
example, ports of bus
A[0:11] arein thisorder:
AO,A1,A10,AL], ..., A8,
A9)

Command Names Begin with $im_ Begin with $lai_
Switch Names Begin with +Im Begin with +lai
M essage Format Refersto model names and timing version | Refersonly to timing
names. Timing units are in nanoseconds | version names. Notiming
(ns). units specified.
Ignored +laiobj ignored +laiobj ignored
LAl_OBJignored LAl_OBJignored
User-defined model.v files do not have to be modified model.v files must be
Windows modified
Resistive Strength Reports true resistive strength of outputs | Mapsresistive strength of
outputs to “strong”
Memory Windows Supports memory windows Does not support memory
windows.

Implementing SWIFT Mode or Historic SmartModel Mode

Both the SWIFT and the Historic SmartModel modes reference the SWIFT SmartM odel
Library, but they use different sets of model.v files (vshells) to invoke the models. For
each mode, there isa specific directory, shown in Table 12, that contains model.v filesto
be referenced by that mode. You determine the mode that will be used both during
design capture and when you invoke Verilog-XL, asfollows:

1. During design capture, use the appropriate model attributes, port ordering,
command channel, memory access, user-defined windows, module names, and
resistive strength output expectations shown in Table 11.

July 31, 2001

Synopsys, Inc.

65

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

2. When you invoke Verilog-XL, reference the appropriate model .v directory using the
-y switch, as described in “Concept Design Capture” on page 68.

Table 12: model.v Directories

Mode Directory
SWIFT SmartModel Mode $LMC_HOME/special/cds/verilog/swift
SWIFT SmartModel Mode - Uppercase $LMC_HOME/special/cds/verilog/swift-uc
Historic SmartModel Mode $LMC_HOME/specia/cds/verilog/historic

Capturing and Simulating the Design

Capturing and simulating the design in Verilog-XL involvesthe following steps, each of
which is described in detail in this section:

. “Verilog-XL Design Flow” on page 66

. “Preparing to Use Verilog-XL" on page 67
. “Verilog-XL Design Capture” on page 67
. “Concept Design Capture” on page 68

. “Concept Procedure” on page 69

Verilog-XL Design Flow

Figure 2 shows the Verilog-XL design flow, with two paths. You choose one path or the
other based on the task at hand:

e« LMTV SWIFT SmartModel mode—recommended for new designs

« LMTV Historic SmartModel mode—recommended for older designs that use the
Verilog-XL-specific SmartModel Library

You can create adesign file (design.v) textually with an HDL description or graphically
using Concept. FlexModel users should also use the appropriate Verilog wrapper file
from the model _fx/examples/verilog directory. Thisfileis copied to your working
directory using the flexm_setup tool. For information on flexm_setup, refer to
“flexm_setup Command Reference” on page 25.

When Verilog-XL simulates the design, it references either the SWIFT SmartM odel
mode model.v files or the Historic SmartModel mode model.v files. You must specify
one of these directories when you invoke Verilog-XL. A design cannot reference both
directories.

66 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

SWIFT SmartModel Mode

SWIFT]
model.v files

design.v file

Historic
model.v files

verilog.v file

Figure 2: Verilog-XL Design Flow

Preparing to Use Verilog-XL

Before you use Verilog-XL in either mode, make sure that your executable search path
pointsto the Verilog-XL executable that containsthe LMTV interface.

Verilog-XL Design Capture

You instantiate models from the SWIFT SmartModel Library by creating HDL
descriptions for Verilog-XL. The following example shows the Verilog-XL code for
instantiating asimple NAND gate (ttl00) in adesign.v filefor the LMTV SWIFT
SmartModel mode. For instance U1, the TimingVersion and DelayRange parameter
values have both been changed from the defaults. For instance U2, only the
DelayRange attribute value has been changed from the default.

top_nod cont ai ns:

nodul e TCP_MD,

def param
UL. Ti m ngVersion = "54F00- FAl ",
UL. Del ayRange "mn",
2. Del ayRange "typ";

July 31, 2001 Synopsys, Inc. 67

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

tt100 UL(.11(clk), .12(enable), .Ql(output));
tt100 W2(.11(clk), .12(enable), .COl(output));
endnmodul e

The following example shows the Verilog-XL code for the same instantiation, but for
the LMTV Historic SmartModel mode. Notice that the attribute names are different and
that the alphabetic characters in the model name are upper case.

top_nod cont ai ns:
nodul e TCP_MD,

def par am

Ul. COVPONENT= " 54F00- FAI ",
UL. RANGE= "mi n",

U2. RANGE= "typ";

TTLOO UL(.11(clk), .12(enable), .CQL(output));
TTLOO W2(.11(clk), .12(enable), .COL(output));
endnodul e

Concept Design Capture
As an alternative, you can capture a design using the Concept design flow (refer to
Figure 3). First, diagram the design in Concept using a custom symbol library.

Next, execute vloglink to generate the vioglink.v file. Finally, for the SWIFT
SmartModel mode only, execute the mod_param utility provided by Synopsysto
convert model instance parameter names to SWIFT-compliant names in the vlioglink.v
file.

68 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

Create Design
Diagram Using Concept

Y

Execute
vloglink

o T
design.v file

SWIFT E t
SmartModel Xecute
Mode? mod_param

o T
SWIFT-compliant
vloglink.v file

Figure 3: Concept Design Flow

Concept Procedure
To create adesign file graphically using Concept, follow these steps:

1. Merge thefile into your master.local file.
2. Invoke Concept, instantiate the symbols, and write the schematic.
3. Execute vioglink.

4. If you are using the SWIFT SmartModel mode, use one of these methods to prepare
vlioglink.v for simulation:

o Run verilog with the -u switch
--Or--
o Run mod_param on the vloglink.v file

This converts parameter namesto SWIFT-compliant form. (For more information about
the mod_param utility, run mod_param with the -h to display the usage message.)

July 31, 2001 Synopsys, Inc. 69

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

Using SmartModel Windows with Verilog-XL

SmartModel Windows, also referred to as “Windows,” isa SmartModel Library feature
that allows you to view and change the contents of internal registers during simulation,
for models and simulators (including Verilog-XL) that support this feature. For general
information about SmartModel Windows, refer to the SmartModel Library User’s
Manual. This section provides information about using SmartModel windows with
Verilog-XL.

LMTV SmartModel Windows Commands

The following commands allow you to work with SmartModel Windows during
Verilog-XL simulation. Commands are instance-specific, which means that they must
be issued once for each instance. These commands are most often placed in the
testbench, but can also be issued at the command line. For details and examples, refer to
the specific command descriptions.

$Im_monitor_enable(), $lai_enable_monitor()

Enables SmartModel Windows for one or more window elements in a specified model
instance. Can be used in both Historic and SWIFT SmartModel modes, but is
recommended for use only in Historic SmartModel mode.

$Im_monitor_disable(), $lai_disable_monitor()

Disables SmartModel Windows for one or more window elements in a specified model
instance. Can be used in both Historic and SWIFT SmartModel modes, but is
recommended for use only in Historic SmartModel mode.

$Im_monitor_vec_map(), $iIm_monitor_vec_unmap()

Enables or disables a direct mapping between a user-defined variable and a window
element in a specified model instance. The window element can be part of an array.
Can be used only in SWIFT SmartModel mode.

$Im_status(), $lai_status|()

Displays the names and values of internal windows for a specified model instance. Can
be used in both Historic and SWIFT SmartModel modes.

Creating User-Defined Window Elements

You can create user-defined window elements only for SmartCircuit FPGA or CPLD
models. The way you create these window elements depends on whether you will
access the window elements using $Im_monitor_enable(), which can be used in either
the Historic or the SWIFT SmartModel mode; or $im_monitor_vec_map(), which can
be used only in SWIFT SmartModel mode.

70 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

Both $Im_monitor_enable() and $im_monitor_vec_map() need to be given the names of
the model’s window elements. However, these two commands receive the window
element names differently, as follows:

The $Im_monitor_enable() command expects to find the window element namesin
the model.v files. Therefore, before invoking $Im_monitor_enable(), you must use
ccn_report to modify the model.v files so that they contain the window element
names. For details on how to use the ccn_report tool, refer to the SmartModel
Library User’s Manual.

The $Im_monitor_vec_map(), on the other hand, expects to be passed the window
element names through its own window_element argument, and does not look in the
model.v files. Therefore, you do not need to create modified model.v files before
executing the $im_monitor_vec_map() command.

For more information about creating window elements using auto windows, refer to the
SmartModel Library User’s Manual.

In Historic SmartModel Mode

In Historic SmartModel mode, you can access user-defined windows only by using the
$Im_monitor_enable() command. This means that you must create user-defined
windows for SmartCircuit FPGA and CPLD models by creating modified model.v files.

1.

If you do not already have a compiled configuration netlist (CCN) file, generate one
by executing smartccn on your design. For details on how to use the smartcen tool,
refer to the SmartModel Library User’s Manual.

. Generate a windows definition file by executing ccn_report on your CCN file, as

shown in the following example.

%ccn_report ccn_fil ename -m nodel _name - Al wi ndows_file

. Generate amodified model.v file that contains the window information by

executing ccn_report again, as shown in the following example.

%ccn_report ccn_fil ename -m nodel _name -v -w wi ndows_file \
-y $LMC_HOWE speci al / cds/ veril og/ historic \
-m nodul e_name -o nodified nodel . v

. Add the windows definition file to your Model Command File (MCF) in theform of

ado command statement, as follows:

do wi ndows file

. Make sure that your design references the modified_model.v file.

July 31, 2001 Synopsys, Inc. 71

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

In SWIFT SmartModel Mode

In SWIFT SmartModel mode, you can access user-defined windows either through
$Im_monitor_enable() or $Im_monitor_vec_map(). The $Im_monitor_enable()
command is provided in SWIFT SmartModel mode for backward compatibility. We
recommend that you use this command only for existing designs. The
$Im_monitor_vec_map() command isintended for use with new designs.

Follow the same procedure as described in “Historic SmartModel Mode” on page 64
except that in Step 3, when invoking ccn_report, use this value for the -y argument:

-y $LMC_HOWE speci al / cds/ veri | og/ swi ft

Accessing Window Elements

The way you access SmartModel window elements depends on whether you are running
in SWIFT mode or Historic SmartModel mode. The following sections provide
instructions for both modes.

In Historic SmartModel Mode

In Historic SmartModel mode, you can access only scalar window elements. You
cannot access the vectored memory window elements available in SWIFT SmartM odel
mode. You read and write to predefined window elements using the
$Im_monitor_enable() or $lai_enable_monitor() commands. To access window
elements in Historic SmartModel mode, follow these steps.

1. Enable SmartModel Windows for the model instance, either for specific window
elementsor for al window elements. For example, to enable SmartModel Windows
for instance U4 for all window elements, use this command:

$Imnonitor_enable (W);
2. To enable only window elements A_REG and D_REG for U4, use this command:
$Imnonitor_enable (UL, "A REG', "D REG');

3. To read from a specific window element, use the $monitor, $strobe, $write, and
$display Verilog commands. For more information, refer to the Cadence
documentation.

4. To display the contents of all window elements, use $im_status (or $lai_status). For
example, to display all window elements for instance U1, use this command:

$l mstatus("UL");

72 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

The information is returned in the following format:

Note: SmartMdel Wndows St atus:
I NREG "I nput Regi ster": 000
QUTREG " Qut put Regi st er"000
IO INREG "1/0O I nput Register": 000
HREG "H dden Register":0

5. To write to awindow element, assign a value to the window element, in this format:
i nst ance. wi ndow el enent =val ue

For example, to clear Bit 3 of the window element HREG in the instance U1
(assuming that HREG has write access), use this command:

UL. HREG 3] =0;

T Note
Refer to the individual model datasheets for information about the

read/write capabilities of model window elements.

In SWIFT SmartModel Mode

In SWIFT SmartModel mode, you can use the $im_monitor_enable() or
$lai_enable_monitor() commands to monitor scalar windows, in exactly the same way
asdescribed in “In Historic SmartModel Mode” on page 72. However, as before, you
cannot use these commands to access vectored memory windows.

To use memory windows, available in SWIFT but not in Historic SmartModel mode,
you must use the $iIm_monitor_vec_map() command. This command works for both
scalar and vectored windows.

XJ° Hint
" For simplicity, when implementing new designs in SWIFT SmartModel
mode, use the $Im_monitor_vec_map() command for both scalar and
vectored windows applications. It is best not to use the
$Im_monitor_enable() or $lai_enable_monitor() commands at all.

To access window elements using the $im_monitor_vec_map() command, follow these
steps:
1. Define aregister for the window element. You can give the register the same name

as the window element, or adifferent name. For example, to define the register
MY _A_REG to map to the 32-hit register A_REG, you could use this definition:

reg [31:0] MY_A REG

July 31, 2001 Synopsys, Inc. 73

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

2. Enable the window element and map it to the register. For example, to enable the
window element A_REG for instance U1 and map A_REG to the register
MY _A_REG you could use this command:

$Imnonitor_vec_map (M A REG Ul, “A REG);

3. Toread from awindow element, use any appropriate Verilog command to examine
the contents of the register mapped to that window element. For example, to read
the contents of window element A_REG, you could use this command:

$display (“Address is %", W_A REG;

4. To writeto awindow element, assign avalue to the register mapped to that window
element. For example, to set Bit 4 of the window element A_REG you could use
this command:

MY_A REQ 4] =1;

Example 1

The following example shows the predefined scalar window elements w0 and w2, as
they might appear in atypical testbench.

reg \v_VAR VO; // users can choose descriptive variable

reg W VAR W2; // names to fit their applications.

/1 the next two lines map the variable nanes to the

/1 wi ndow el ements and enabl e t he wi ndow el erment s.

$l mnonitor_vec_map(MY_VAR VW, "UL", "w0", 0);

$l mnonitor_vec_map(MY_VAR W2, "UL", "w2", 0);
Once these window elements are set up in your testbench, you can use the graphical or
monitoring capabilities of Verilog-XL to read, write, or trace the variables
MY_VAR WO0and MY_VAR_ W2, which now hold the values of the window elements
w0 and w2.

Example 2

The following example illustrates the use of the $Im_monitor_vec_map() command to
use memory window elements to track transactions on amemory device. Inthe
example, a4K x 8 bit memory model with instance name U1 has these predefined
memory window elements:

« Memory array window element: MEM 4K x 8 bits
« Memory address window element: Mem_addr 12 bits
« Memory read/write window element: Mem_rw 2 bits

For more information about memory windows, refer to the SmartModel Library User’s
Manual.

74 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

The following example code monitors the memory device. If thereisamemory write,
the code checksto see if the write was to any location in the address range between
‘h100 and *h200 (not allowed) and if so, issues an error message.

If the Mem_addr window element (which contains the most recently accessed address)
contains unknown values, no test is performed and another error message is issued.

ram nmodel UL();

/] Declare registers for the address, rw, and nenory data w ndow
el enent s

reg [11:0] ADDR

reg [1:0] RW

reg [7:0] DATA

initial

/1 Nap the ADDR and RWNregisters to the MEM addr and MEM rw w ndows
begi n

$l mnonitor_vec_map (ADDR U1, "MEM addr");

$Imnonitor_vec_map (RW UL, "MEMrw');

end

/1 Whenever there is a nenory transaction, check the address

/] and the direction for an illegal wite, and the address for
/1 unknown val ues.

al ways @RW

begi n
if (ADDR >= 'h100 &% ADDR <= 'h200 & RW1] == 0 &% ADDR != ' hx)
begi n

/1 There was an illegal wite.

[/ Tenporarily map DATA register to address pointed to by ADDR
// and enable MEM array w ndow el ement to get val ue of data

$l mnronitor_vec_map (DATA UL, "MEM, ADDR);

$di splay("Illegal wite of value % at address %", DATA ADDR);
[/ Turn off enabling of nenory array

$l m noni tor_vec_unnap (DATA Ul);

end
i f (ADDR=="hx)

$di spl ay("Warning! Miltiple simltaneous transactions.");
end

July 31, 2001 Synopsys, Inc. 75

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

Customizing Model Timing

You can customize the timing of SmartModels by changing the timescale or creating
custom timing files.

Changing the Timescale

Aswith the Verilog-X L-specific SmartModel Library, you can change the timescale of
SmartM odels from the default of 100 ps (picoseconds) time_units and 100 ps precision,
defined in the module definitions. These values are specified by the first line of the
module definition, as shown in the following example.

‘tinescal e 100 ps / 100 ps

For both the SWIFT and Historic SmartM odel modes, to change the timescal e, you must
copy the affected model.v filesinto a separate directory. Then modify each ‘timescale
compiler directive to the desired value. When invoking the simulator, use the -y switch
to indicate the path to the directory that contains your modified model.v files.

Creating Custom Timing Files

You can create and use custom timing filesin both the SWIFT and Historic SmartModel
modes. The procedure is the same for both. For more information on User-Defined
Timing, refer to the SmartModel Library User’s Manual.

Simulating an Older Design Using LMTV

If you have an older design that was created using the Verilog-X L-specific SmartModel
Library, you can simulate it in either mode:

« Historic SmartModel mode—in this case you do not have to modify the design
« SWIFT SmartModel mode—in this case you must modify the design

In both cases, you must make some modifications to the simulation environment as
described in the following sections.

LMTV/SWIFT and Verilog-XL-Specific SmartModel Libraries

Table 13 lists the differences between the LMTV/SWIFT and Verilog-XL-specific
SmartModel Libraries.

Table 13: LMTV/SWIFT and Verilog-XL-specific Libraries

LMTV/SWIFT SmartModel Library Verilog-XL-specific SmartModel Library

Uses simplified search algorithm for user- | Uses complex search algorithm for user-defined
defined timing files. timing files.

76 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

Table 13: LMTV/SWIFT and Verilog-XL-specific Libraries (Continued)

LMTV/SWIFT SmartModel Library Verilog-XL-specific SmartModel Library

In SWIFT SmartModel mode, reportstrue | Always maps resistive strength of outputs to
resistive strength of outputs; a switch strong.

optionally maps all to strong. In Historic
SmartModel mode, mimics Verilog-XL-
specific SmartModel Library.

Supports the Verilog $reset and $restart Does not support the Verilog $reset and $restart
commands. commands.

Alwaysusesonly $LMC HOMEtofind |Uses+laiobj, $SLAI_OBJ, +lai_lib, SLAI LIB
models; uses no other switches/variables. |aswell as$LMC VLOG to find models.

LMTYV interface does not support Cadence | Supports Cadence fault simulation.
fault simulation.

Environment Modifications

This section describes environment modifications you need to make if you want to
simulate an existing design in either the LMTV SWIFT or Historic SmartModel mode.

Environment Variables

For both modes, set the LMC_PATH and LMC_HOME environment variables instead
of theLMC_VLOG, LAI_OBJ, and LAI_LIB environment variables, which are ignored
by the LM TV interface. For more information about user configuration, refer to the
SmartModel Library Administrator’s Manual.

Command Line Switches

TheLMTYV interfaceignoresthe +laiobj and +lailib switches, regardless of which mode
you are using. However, LMTV does recognize the +laiudtmsg and +lmudtmsg
switches, which are equivalent.

Resistive Strength

For SWIFT SmartModel mode only, the SWIFT interface reports the true resistive
strength of output pins, instead of mapping them all to “strong” asis donein the
Verilog-X L-specific SmartModel Library. You might want to modify your expected
output accordingly. However, if you want only a quick comparison and do not want to
modify your expected output, you can revert to the Verilog-XL-specific behavior by
using the +Imoldstr command switch. For more information about setting switches, refer
to “Using FlexModels with Verilog-XL” on page 79.

July 31, 2001 Synopsys, Inc. 77

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

Edits to Design File

This section describes edits you need to make to your design fileif you want to simulate
an existing design inthe LMTV SWIFT SmartModel mode.

175> Note
Notethat lai_* commands are recognized by the LMTYV interface, so you do
not have to change command names for either mode.

Model Parameter Names

Change the parameter names to the corresponding SWIFT SmartModel mode entries, as
shown in Table 11 on page 64.

Model Names

Change the alphabetic parts of model namesto all lower case. (If you use SWIFT-UC
mode, this step is not required.)

Port Names

If you have used explicit port naming in your module instantiations (that is, if you have
explicitly mapped each net name to the corresponding port name in the model
Instantiation statement), you do not need to do anything about port names.

If, on the other hand, you have used implicit port naming (that is, if you have listed the
nets in the model instantiation statement in the same order as the ports were declared in
the .v file), you need to ensure that your port names conform to the ordering scheme
used in the SWIFT SmartModel mode, as described in Table 11 on page 64.

78 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

Using FlexModels with Verilog-XL

FlexModels work with Verilog-XL using a PLI application called LMTYV that is
delivered in the form of a swiftpli shared library in SLMC_HOME/lib/platform.lib. If
you cannot use the swiftpli, refer to “FlexModels.PLI Static Linking with LMTV” on

page 81.
To use the prebuilt swiftpli, follow this procedure:

1. Create aworking directory and run flexm_setup to make copies of the model's
interface and exampl e files there, as shown in the following example:
% $LMC_HOWE/ bi n/ fl exm setup -dir workdir nodel _fx

You must run flexm_setup every time you update your FlexModel installation with
anew model version. Table 14 lists the files that flexm_setup copies to your
working directory.

Table 14: FlexModel Verilog-XL Files

File Name Description L ocation

model_pkg.inc Verilog task definitions for FlexModel workdir/src/verilog/
interface commands. Thisfile also references
the flexmodel_pkg.inc and
model_user_pkg.inc files.

model_user_pkg.inc | Clock frequency setup and user customizations. | workdir/src/verilog/

model_fx_vxl.v A SWIFT wrapper that you can use to instantiate | wor kdir/examples/verilog/
the model.
model.v A bus-level wrapper around the SWIFT model. | workdir/examples/verilog/

This allows you to use vectored portsfor the
model in your testbench.

model_tst.v A testbench that instantiates the model and shows | wor kdir/examples/verilog/
how to use basic model commands.

2. Thereisno need to build a Verilog executable. You can use the one from
$CDS_INST_DIR/tools/bin by adding $CDS_INST_DIR/tools/bin to your path
Statement.

3. Update the clock frequency supplied in the model _user pkg.inc file to correspond
to the CLK period you want for the model. Thisfileislocated in:

wor kdi r/ src/veril og/ model _user _pkg.inc
where workdir is your working directory.

July 31, 2001 Synopsys, Inc. 79

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

TI5= Note

80

4. Add the following line to your Verilog testbench to include FlexModel testbench

interface commands in your design:

“include "nodel pkg.inc"

Be sure to add model _pkg.inc within the module from which you will be
issuing FlexModel commands.

Because the model_pkg.inc file includes references to flexmodel _pkg.inc and
model _user pkg.inc, you don’t need to add flexmodel _pkg.inc or
model _user_pkg.inc to your testbench.

. Instantiate the FlexModel in your design, defining the ports and defparams as

required (refer to the example testbench supplied with the model). You use the
supplied bus-level wrapper (model.v) in the top-level of your design to instantiate
the supplied bit-blasted wrapper (model_fx_vxl.v).

Example using bus-level wrapper (model.v) without timing:

nodel Ul (nodel ports)
def par am
UL. FHl exModel I|d = “TMB | NST1”;

Example using supplied bus-level wrapper (model.v) with timing:

nodel Ul (nodel ports)
def par am
UL. Fl exTi m nghbde = "~ FLEX_TI M NG MODE_ON,
UL. Ti m ngVersi on = “ti n ngversi on“,
UL. Del ayRange = “range, “
Ul. Fl exModel | d= “TM5_| NST1”;

. Invoke the Verilog-XL simulator to compile and simulate your design as shown in

the examples below:
UNIX

%verilog testbench + oadpli 1=sw ftpli:sw ft_boot \
./ wor kdi r/ exanpl es/ veri |l og/ model . v \
./ wor kdi r/ exanpl es/ veril og/ model _fx_vxl.v \
+i ncdi r+$LMC_ HOME/ simipli/src \
+i ncdi r+wor kdi r/ src/veril og

NT

> verilog testbench + oadpli 1=swiftpli:sw ft_boot
wor kdi r\ exanpl es\ veri | og\ nodel . v
wor kdi r\ exanpl es\ veril og\ nodel _fx_vxl.v
+i ncdi r+%MC_ HOVE% si mipli\src
+i ncdi r+wor kdi r\'src\veril og

Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

I°5= Note
For information on LM TV commands that you can use with FlexModels on

Verilog-XL, refer to “LMTV Commands’ on page 281.

FlexModels:PLI Static Linking with LMTV

To use FlexModels on IBM with Verilog-XL, follow the procedure in “ Using
SmartModels with Verilog-XL on the IBMRS AlX Platform” on page 62.

Using MemPro Models with Verilog-XL

MemPro models work with Verilog-XL using aPLI application called LMTV that is
delivered in the form of a swiftpli shared library in 3LMC_HOMFE/lib/platform.lib. If
you cannot use the swiftpli, refer to “ Static Linking with LMTV” on page 82.

To use the prebuilt swiftpli, follow this procedure:
1. If you are on NT, make sure %L MC_HOME%\bin isin your Path variable.

2. To include MemPro testbench interface commands in your design, add one of the
following lines to your testbench:

Verilog testbench:

“include "nenpro_pkg. v"
C testbench:

#i ncl ude "nenpro_c_tb. h"

For more information on using the MemPro testbench interfaces, refer to the “HDL
Testbench Interface” and “C Testbench Interface” chaptersin the MemPro User’s
Manual.

3. Instantiate MemPro models in your design. Define ports and generics as required.
For information on generics used with MemPro models, refer to “Instantiating
MemPro Models’ on page 32. For information on message level s and message level
constants, refer to “Controlling MemPro Model Messages” on page 33.

4. There is no need to build a Verilog executable. You can use the one from
$CDS _INST_DIR/tools/bin by adding $CDS_INST_DIR/tools/bin to your path
statement.

5. Invoke the Verilog-XL simulator to compile and simulate your design as shown in
the examples below:

July 31, 2001 Synopsys, Inc. 81

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

UNIX

%verilog testbench Veril og nodul es MenPro _nodel files \
+i ncdi r+$LMC_ HOVE/ si i pli/src \
+ oadpl i 1=swi ftpli:sw ft_boot

NT

> verilog testbench Veril og_nodul es MenPro_nodel files
+i ncdi r+%MC_ HOVE% si mipli\src
+ oadpl i 1=swi ftpli:sw ft_boot

I35 Note
If you are also using SmartModels or FlexModelsin your design, you do not

need to load the swiftpli again, since the same library is used to enable all
three types of modelsin Verilog-XL.

Static Linking with LMTV

If you cannot use the Synopsys-supplied swiftpli shared library, refer to the Cadence
documentation for information on using the PLIWizard to build your own PLI library.
Synopsys still ships the files needed to build your own PLI. These include:

. edited copy of veriuser.cinthe SLMC_HOME/sim/pli/src directory
« LMTV object (Imtv.0) in the SLMC_HOME/lib/platform.lib directory

« C-Pipeshared library (m_pli_dyn.ext), in the SLMC_HOME/lib/platform.lib
directory

If you build your own PLI, you will need to edit the veriuser.c fileto pick up the LMTV
header files asfollows:

a. After #include “vxl _veriuser.h” add:

#i ncl ude “ccl | mtv_include. h”

b. After “/*** add user entries here ***/” add:
#i ncl ude “ccl _| mv_incl ude_code. h”

82 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

Using Hardware Models with Verilog-XL

This section describes how to configure Release 3.5a of Model Access for Verilog.
Model Access is the software you use to interface hardware models with the simulator.
To dynamically link the SFI with Verilog-XL, you must have version 2.8 or later of
Verilog-XL on UNIX and version 3.0 on NT. You also need Release 3.5a of

Model Access for Verilog. The hardware modeling information is presented in the
following sections of this chapter:

. “Prerequisites’ on page 83
. “Thema verilog Software Tree” on page 84

. “Using Hardware Models’ on page 85

Prerequisites
If you have not already done so, perform these tasks:

. Install the Verilog-XL simulator according to instructions provided by Cadence
Design Systems, Inc.

« Perform the complete installation and configuration of the hardware modeling
system, including hardware and software (R3.5a or later) as outlined in the Quick
Reference in Chapter 1 of either the Model Source Hardware Installation Guide or
the LM-family Hardware Installation Guide.

. Boot the modeler if it isnot aready booted.

July 31, 2001 Synopsys, Inc. 83

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

The ma_verilog Software Tree

The ModelAccessfor Verilog (ma verilog) directory structureisillustrated in Figure 4.

ma_verilog/
{ | !
lib/ include/ bin/

sun4_5.6/ mav_include.h sun4_5.6/
mav.o mav_include_code.h Imvsg
mav.sl mav.imp

pa_hpl102/ pa_hp102/
mav.o Imvsg
mav.sl

pa_hpll/ pa_hpll/
mav.o Imvsg
mav.sl

rs6000_4.1.5/ rs6000_4.1.5/
mav.o Imvsg
mav.so

pcent/ pent/
mav.lib Imvsg.exe
mav.dll
mav_mti.lib
mav_mti.dll Im_vconfig
mav_static.lib -

Figure 4. The ma_verilog Software Tree

Generating the Verilog-XL Model Shell

You must use the Logic Modeling Verilog Shell Generator (Imvsg) to generate new
Verilog HDL shells (model.v files) for the hardware models you are using. Note that
you cannot use any model.v files that might have existed prior to your use of
ModelAccessfor Verilog. All model.v files must be newly generated.

For each hardware model, both UNIX and Windows NT users issue thiscommand at the
operating system prompt:

%I nvsg -d destinati on_nodel . ML

The complete syntax of the Imvsg command is provided in “Imvsg Command
Reference” on page 99.

84 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

Using Hardware Models

To instantiate hardware modelsin Verilog-XL, Model Access for Verilog maps the
Cadence PLI to the Simulator Function Interface (SFI), as shown in Figure 5. For
information about the SFI, refer to the Smulator Integration Manual.

ModelSource
System

SFI
Interface

ModelAccess for
Verilog-XL

PLI
Interface

- Synopsys #

|:| Cadence Verilog-XL

Figure 5: SFI Communication with PLI

ModelAccess for Verilog Methodology

To simulate with hardware models using Model Access for Verilog consists of these
tasks:

“Simulation Example” on page 86

“Creating the Model Shell” on page 86
“Instantiating the Hardware Model” on page 88
“Performance Monitoring” on page 89

“Compiling and Simulating” on page 89
“Examining the Output verilog.log File’ on page 90

July 31, 2001 Synopsys, Inc. 85

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

Simulation Example

This simulation example illustrates how to use hardware modelsin a Verilog-XL
simulation using Model Access for Verilog. This example assumesthat all Model Access
for Verilog configuration tasks have been accomplished.

Creating the Model Shell

If you use Model Access for Verilog, you cannot use existing model.v files that were
generated by crshell; you must regenerate the model.v files as described.

Thetask of creating amodel shell should have been accomplished by executing Imvsg,
as described in “Generating the Verilog-XL Model Shell” on page 84. For example, to

create the model shell (model.v file) for the TIL S299 hardware model (an 8-bit universal
shift/storage register with 3-state outputs) in the current working directory, execute the
following:

%1 nvsg TILS299. ML

(By default, if no destination is specified, the current working directory isthe
destination directory for the TILS299.v file. For complete syntax of the Imvsg script,
refer to “Imvsg Command Reference” on page 99.)

Thefollowing illustration showsthe TILS299.v file that contains alisting of the model’s
pin names, pin declarations, parameter declarations, and the model invocation, which
references the model MDL file (in thiscase, TILS299.MDL).

[/ Generated by I nvsg 1.000
[/ Copyright (c) 1984-1996 Synopsys Inc. ALL R GHTS RESERVED

‘timescale 1 ns/ 1 ns
‘ expand_vect or net s

nmodul e TI LS299(
K, OR, a1, &, S0, S1, SL, SR, A, H, A, B,
cC, D, E, F, G, H);

/! Pin declarations

i nput CLK ;

i nput CLR ;

i nput a ;

i nput @ ;

i nput 0 ;

i nput Sl

i nput SL ;

i nput SR ;
output A ;

reg QA PUL ;

reg QA__STRONG ;
assign (pullO, pulll) QA= QA PUL ;

86 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

assign QA = QA STRONG;

output H;

reg H_PUL ;

reg H_STRONG ;

assign (pullO, pulll) (H= @_PUL ;
assign H = CH_STRONG;

i nout A

reg A PUL ;

reg A STRONG ;

assign (pullO, pulll) A= A PUL ;
assign A=A STRONG;

i nout B ;

reg B PUL ;

reg B STRONG ;

assign (pullO, pulll B= B_PUL ;
assign B =B _STRONG;

i nout C;

reg C_PUL ;

reg C_STRONG ;

assign (pullO, pulll) C= C_PUL ;
assign C = C_STRONG;

i nout D;

reg D PUL ;

reg D _STRONG ;

assign (pullO, pulll) D= D_PUL ;
assign D= D_STRONG;

i nout E;

reg E_ PUL ;

reg E STRONG ;

assign (pullO, pulll) E= E_PUL ;
assign E = E_STRONG;

i nout F;

reg F_PUL ;

reg F__STRONG ;

assign (pullO, pulll) F= F_PUL ;
assign F = F__STRONG;

i nout G;

reg G_PUL ;

reg G_STRONG ;

assign (pullQ, pulll) G= G_PUL ;

assign G= G_STRONG;

i nout H ;
reg H PUL ;
reg H STRONG ;

assign (pullO, pulll) H= H_PUL ;
assign H=H_STRONG;

/1 Parameter declarations
paraneter Mdel Type = “HARDWARE;

July 31, 2001 Synopsys, Inc. 87

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

par anet er
par anet er

Ti m ngVersion = “TI LS299. MDL";
Del ayRange = “Max”;

/! I nvoke the nodel

initial
begi n
$Inhw_n0de|(
“TI LS299. MOL™,
M)deIType
“attr” tlmngverS| on”, Ti m ngVer sion,
“attr, “del ayr ange”, Del ayRange ,
“in", K,
“in", AR,
“in", G,
“in", @,
“in", SO,
“in", S1,
“in", SL,
“in", SR,
“out”, A, QA STRONG, QA PULL ,
“out”, H, (H_STRONG, (H_PULL ,
“io”", A, A_STRONG, A PUL ,
“i0o”, B, B_STRONG, B_PUL ,
“io”, C, C_STRONG, C_PUL ,
“i0", D, D_STRONG, D_PUL ,
“io", E, E_STRONG, E_PUL ,
“io", F, F_STRONG, F_PUL ,
“io", G, G_STRONG, G_PUL ,
“i0”", H, H_STRONG, H_Pu_L)
end
endnodul e

‘ aut oexpand_vect or net s

Instantiating the Hardware Model

Before instantiating a hardware model, you first examine the model.v file you created, to
get the port names to use in the instantiation, and also to see whether you want to change
any of the model’s default parameters. The model.v files contain default values for the

model parameters, which you can override using the “defparam” statement in the model

instanti ation.

88

Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

The following example shows how to instantiation a hardware model (TILS299 in this
case) in atestbench. Notice the two “defparam” statements; the definitions of the
TimingVersion (TILS299A.MDL) and DelayRange (MIN) parametersin the
Instantiation override the default definitions in the model.v file (TILS299.MDL and
MAX, respectively). Inthisexample, TILS299A.MDL represents a custom timing
version that the designer wants to use instead of the default timing version
TILS299.MDL.

/ Instantiate WT : Mdel Source TILS299 hardware nodel : Ul
def par am UL. Ti m ngVer si on="TI LS299A. MDL" ;
def par am UL. Del ayRange = “M N’;

TILS299 UL(.AK (clkw,
AR (clrw,

(iolw[0]),

(ioiwnf1]),

(iolwf 2]),

(iolwf 3]),

(iolwf4]),

(iolw 9]),

(iolwnf6]),

(iow[7]),

(91w,

(92w,

(qalw),

(ghlw),

(sOw,

(s1lw,

(slw,

(srw);

Performance Monitoring

You can monitor the performance of a hardware model and append the results to the
simulator log file after smulation. To enable performance monitoring, in the window
where you are running the ssmulator, enter the following:

PP LELSLELER

% set env LM CPTI ON “noni t or _per f or nance”
For more information, refer to “Performance Monitoring” in the Model Source User’s
Manual.
Compiling and Simulating

UNIX users accomplish thistask by executing the Verilog-XL executable previously
built, referencing the testbench and the model.v file, asin the following example:

%verilog TILS299.v tbench.v + oadpli 1=rmav: mav_boot

July 31, 2001 Synopsys, Inc. 89

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

As Verilog executes, it outputs progress, status, and error messages to the screen and
saves the transcript to afile named verilog.log, which you can examine if necessary for
troubl eshooting.

Examining the Output verilog.log File

After echoing the command that invoked Verilog, and the copyright and source
information, Verilog announces its progress as it compiles the input files. When the
prompt C1> isissued, the simulator iswaiting at time O for you to enter acommand.
Typing aperiod (.), which means* continue”, startsthe simulation run. Typing “ $finish;”
at the prompt terminates the ssmulation session.

Notice in particular these lines, which state the release numbers of Model Access for
Verilog and SFI:

Runtime, Model Access for Verilog-XL R3.5a
SFI Copyright 1988-2000 Synopsys, |ncorporated.; 08/ 30/00; R3.5a

If you are troubleshooting and call Synopsys Technica Support for help, you will be
asked for the SFI release number (in this case, R3.5a). (For instructions on contacting
Synopsys Technical Support, refer to “ Getting Help” on page 14.) The following
Illustration shows an example verilog.log file without errors.

Host command: verilog. | nv
Comrand ar gunent s:
-S

TI LS299. v

t bench. v
VERILOG XL 2.2.1 log file created Jan 8, 1997 14:14:00
VERILOG XL 2.2.1 Jan 8, 1997 14:14:00

Conpi ling source file “TILS299. v”
Conpi ling source file “tbench.v”

Runti me, Model Access for Verilog R2.0

SFI Copyright 1988-1996 Synopsys, |ncorporated.; 05 Sep 1996;
R3. 3a
Type ? for help
ClL > .

L47 “tbench.v”: $stop at simulation time 4200
Cl > $finish;

Cl: $finish at sinmulation tinme 4200

54 simul ation events + 10 accel erated events

90 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

CPUtine: 0.4 secs to conpile + 0.2 secs to link + 0.5 secs in
Si nul ati on
End of VERILOG XL 2.2.1 Jan 8, 1997 14:15:09

Optional Capabilities During Simulation

During simulation, you can optionally enable timing measurement and test vector
logging.

Timing Measurement

L M-family modeling systems can measure input-to-output propagation delays on a
hardware model. You enable timing measurement using the command
$Im_timing_measurements(), described in “$Im_timing_measurements Command
Reference” on page 96.

T3> Note
Timing measurement is not supported for M odel Source 3200 and 3400.

The following illustration shows an example of timing measurement for the TIL S299
model. The six lines of code following “SIMULATION run time duration” turn on
timing measurement, measure for 4200 timing units, then turn off timing measurement.
The timing information is saved in the file TILS299.TIM.

Test Vector Logging

M odel Source and LM-family modeling systems can capture and write to afile the input
stimuli presented to a hardware model, as well as the resulting sampled output values.

Test vectors are useful for debugging a simulation and for verifying the functionality of
ahardware model. You enable test vector logging by using the command
$Im_log_test_vectors(), described in “$Im_log_test_vectors Command Reference” on

page 94.

The following illustration also shows an example of test vector logging for the model
TILS299. The six lines of code following the timing measurement enable test vector
logging, implement the logging for 4200 time units (the duration of the simulation), and
then disable the logging. The test vectors are saved in afile named hwm?299.vec.

/!l Instantiate UJT : Mbdel Source TILS299 hardware nodel : Ul
TILS299 UL(.AK (clkw,

.CLR (clrw,

A (iolw[0]),
B (iolw[1]),
.C (ioln 2]),
.D (iolw 3]),
.E (101w 4]),

July 31, 2001 Synopsys, Inc. 91

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

(iolw 9]),
(iolw6]),
(iolw 7]),
(91w,
(92w,
(galw,
(ghlw,
(sOw),
(s1iw,
(slw,
(srw);

giiisegnn=on

/1 SIMLATION run tine duration
initial

begi n

$Imtimng _neasurenments (“tbench. UL, 1, “TILS299.TIM);
#4200

$Imtimng _neasurenments (“tbench.Ul, 0, “TILS299.TIM);
end

initial

begi n

$Imlog test vectors(“tbench. U1”, 1, " hwn299. vec”);
#4200 $st op;

$Imlog test vectors(“tbench. Ul”, 0, " hwn299. vec”);
end

The Test Vector Log File
This next illustration shows part of atest vector log file, hwm299.vec.

test _vector format 2

test TILS299

time stanp = 1 nanosecond

runtime_nodel er_software R3. 3a

simulator_function_interface R3. 3a

SR 1 |
SL 2 |
#patterns { I1111111BBBBBRBRCD }
{ }
{ SSSSOEECHEFEDCBAQ }
{ RLIOL21L/// /1111 HA '}
{ K RQQQQQAXR '}
{ HGFEDCBA }
INT DDDDDUUDTTTTTTIT
777777771 L
0 DDDDUDDDTTTTTTIT
LLLLLLLLLL

92

30 DDDDUBDDDDDDDEDD
50 DDDDDBDDDDDDDEED
100 DDDDUPDDDDDDDDDD

Synopsys, Inc. July 31, 2001

Simulator Configuration Guide

150

200

250
300

350

355

Chapter 3: Using Verilog-XL with Synopsys Models

LLLLLLLLLL
LLLLLLLLLL
LLLLLLLLLL
DDDDDEDUDDDDDDDD
LLLLLLLLLL
zzzzzz77L L
zzzzzzzzlLL

Understanding the Test Vector File

The test vector fileiswritten in Logic Modeling test vector format. Symbols for input

and output values are defined in Table 15.

Table 15: Test Vector Symbols
Symbol I nput/Output Definition

U Input Drive hard 1

D Input Drive hard O

u Input Drive soft (resistive) 1

d I nput Drive soft (resistive) O

T Input Drive floating level

N Input Drive unknown level

H Output Sense hard 1

L Output Sense hard O

h Output Sense soft (resistive) 1

I Output Sense soft (resistive) 0

Z Output Sensefloating level. Used for an /O pinin
the input state whose last driven value was
1 (either U or u)

z Output Sense floating level. Used in two cases:
for an 1/0O pinin the input state whose last
driven valuewas 0 (either D or d), or for an
output pin that is not driving.

July 31, 2001

Synopsys, Inc.

93

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

Table 15: Test Vector Symbols (Continued)

Symbol I nput/Output Definition

X Output Sense unknown value. Unknowns on
outputs are generated by unknown
propagation, value forcing, voltage
unknowns, or inconsistent unknowns.

? Output Sense any level (“don’'t care”).

Saving and Restarting the Simulation State

The Verilog-XL $save() task saves the complete simulation data structure into a
specified file. The saved data structure includes the pattern memory for each hardware
model simulation instance.

The $restart() task restores the complete Verilog-XL simulation from the specified file.
The pattern memory for each hardware model simulation instance is restored into the
hardware modeler’s pattern memory.

Linking the SFI Debug Library

By default, Model Access for Verilog dynamically links the non-debug version of the
SFI library. If you want to use the SFI library’s debug version for troubleshooting,
define the environment variable HOSTDEBUG. For information about setting and using
HOSTDEBUG refer to the Smulator Integration Manual. For troubleshooting
assistance, contact Synopsys Technical Support (for instructions, refer to “ Getting Help”
on page 14).

$Im_log_test vectors Command Reference

The$Im_log_test_vectors command enablestest vector logging for a specified instance,
and specifies afile name for the test vector log.

Syntax

$Im_log_test_vectors (“instance_path”, on_off, “filename”)

Arguments

instance_path Specifies the pathname of the model instance for which test
vector logging isto be enabled or disabled.

on_off Indicates whether test vector logging isto be enabled or

disabled. Allowed valuesare 1 to enable logging, or O (the
default) to disable logging.

94 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

filename Specifies the file name to be used for the test vector log.

Description

Enables test vector logging for a specified instance and specifies a filename for the test
vector log. By default, test vector logging is not performed. When test vector loggingis
on, the pin value information created during the simulation for the specified device
instance is written in test vector file format to filename.

For detailed information about test vector logging, refer to the Model Source User’s
Manual or the LM-family Modeler Manual.

Example

The following example enables test vector logging for the instance “U1”, and saves the
test vector log in thefile“U1.log”.

$Imlog_test_vectors (“Tbench.Ul”, 1, “Ul.log");

$Im _loop_instance Command Reference
The $Im_loop_instance command enabl es the loop mode for a specified model instance.

Syntax

$Im_loop_instance (“instance_path”)

Arguments

instance_path Specifies the pathname of the model instance for which the
loop mode is to be enabled.

Description

Enables the loop mode for a specified instance. Inloop mode, the hardware model er
repeatedly plays to the physical device the pattern history of the specified device
instance. This command is most often used to analyze the behavior of adevice and its
pattern history with an oscilloscope or logic analyzer connected to the device.

Once in loop mode, the interface prompts you to press the Return key to exit the loop
mode.

Examples
The following example turns on loop mode for the “U1” model instance.

$l mloop_instance (“ULl");

July 31, 2001 Synopsys, Inc. 95

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

The following message is displayed while the instance is in loop mode.

Entering | oop node for hardware nodel instance UL
Press Return to terminate | oop node.

$Im_timing_information Command Reference

The $Im_timing_information command lets you override the hardware modeler’s
default handling of timing information for a specified model instance.

Syntax

$Im_timing_information (“instance_path” , “timing_option”);

Arguments

instance_path Specifies the Verilog pathname of the instance whose timing
information is to be modified.

timing_option Allowed values are “nodelay” to ignore all delay information,
“delay” to process all delay information, “notimingchecks’ to
ignore all timing checks, and “timingchecks’ to apply all
timing checks. The defaults are “delay” and “timingchecks”.

Description

The $Im_timing_information command allows you to override the hardware modeler’s
default handling of timing information for a specified model instance. By default, the
hardware modeler processes all delay information and applies all timing checks. You
can decrease model evaluation time by disabling these activities. The hardware modeler
does not process information that is not needed by the simulator.

Example
The following example disables timing checks for the “U1” model instance.

$Imtimng_information (“ULl”, “notim ngchecks”);

$Im_timing_measurements Command Reference

The $Im_timing_measurements command enables timing measurements for a specified
model instance. It is nhot supported for Model Source 3200 and 3400.

Syntax
$Im_timing_measurements (“instance_path” , on_off, “filename”)

96 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

Arguments

instance_path Specifiesthe pathname of the model instance for which timing
measurement is to be enabled or disabled.

on_off Indicates whether test vector logging isto be enabled or
disabled. Allowed values are 1 to enable logging, or O (the
default) to disable logging.

filename Specifies the file name to be used for the test vector log.

Description

The $Im_timing_measurements command enables timing measurement for a specified
model instance. By default, timing measurement is not performed. Instead, the
hardware modeler usesthe delay values provided inthe .DLY filein the Shell Software.
When timing measurement is enabled, the hardware modeler returns to the simulator
and logs to the specified file the actual delays measured from the device.

Example

The following example enables timing measurements for the” U1” model instance and
saves the timing measurement log in the “Ul.1og” file.

$Imtimng neasurenents (“Tbench. UL, 1, “Ul.log");

$Im_unknowns Command Reference

The $Im_unknowns command lets you override the hardware modeler’s default
handling of unknown values for specified instances or pins, or for all hardware model
Instances in the simulation.

Syntax
$Im_unknowns (“option=value’ [,” option=value”,...] [, “device_or_pin"])

Arguments
You can use the following values for “option=value’:

propagate=yes | no When “yes’ (the default), enables the “on_unknown
propagate” statement, if thereis one, in the model’s options
file (for example, TILS299.0PT) for the specified instance or
pin, or for all hardware model instancesin the simulation. Set

July 31, 2001 Synopsys, Inc. 97

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

propagate=no if you want to disable or override the
“on_unknown propagate”’ statement in the .OPT filefor a
specific instance or pin.

T3> Note

If thereis no “on_unknown propagate” statement in the model’s .OPT file,
unknown propagation is disabled even if you use” $Im_unknowns
propagate=yes’. For the “ propagate=yes’ option to have an effect, there
must be an “on_unknown propagate”’ statement in the model’s .OFT file. For
more information about the on_unknown statement, refer to the Shell
Software Reference Manual.

value=previous | high | low | float

Specifies the value to be passed to the device when an
unknown value is passed to the modeler. The default is
“previous’, meaning that if the smulator sets an input pin to
“unknown”, the modeler drives the input to its previous val ue.
For more information, refer to the description of set_previous
in the on_unknown reference pages in the Shell Software
Reference Manual.

sequence_count=num_Sequences

Specifies the number of random sequences to propagate
unknowns through the hardware model. The num_sequences
setting is an integer of value O (the default) through 20. The
default value, 0, is usually sufficient; setting a higher value
ensures that unknowns will be propagated, but uses more
pattern memory.

random_seed=seed value

device or_pin

98

Specifies the initial seed for the random sequence generator.
seed valueisan integer of value O (the default) through
65535.

Specifies the Verilog pathname of a device or pin whose
unknown values are to be translated i nto the val ue specified by
value. The default isto apply the statement to all hardware
model instancesin the ssimulation.

Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

Description

The $Im_unknowns command lets you override the hardware modeler’s default
handling of unknown values for specified model instances or pins, or for all hardware
model instances in the simulation. By default, the hardware modeler trand ates all
unknown values to “previous’ before passing them to the device. Using this command,
you can specify values of high (1), low (0) or float (?), or disable unknown propagation,
for aspecified instance or pin, or for al hardware model instances in the ssmulation if no
instance or pin is given. For detailed information about unknown handling, refer to the
Shell Software Reference Manual.

Examples

The following example disables unknown propagation and causes alow value to be
passed to the device when an unknown value is passed to the hardware modeler for the
instance “ Thench.U1.”

$l m unknowns (“propagate=no”, “val ue=low', “Tbench.UL")

The following exampl e disables unknown propagation, causes a high value to be passed
to the device when an unknown value is passed to the modeler, specifies 20 random
sequences to propagate unknowns through the hardware model, and specifies 200 as the
seed for the random sequence generator, for all hardware model instancesin the
simulation.
$I m unknowns (“propagat e=yes”, “val ue=hi gh”, “sequence_count=20",
“random seed=200")

Imvsg Command Reference

For a specified hardware model the Imsvg script creates a model.v file and placesit in
the specified destination directory.

Syntax

Imvsg [-d destination] [-i] [-w] [-V vector_path] [-h] model.MDL
Arguments

-d destination Specifies the destination directory in which to store the

generated model.v file. The default isthe current directory.

-i Generates awarning if apin nameisanillegal Verilog
identifier. By default, no warning isissued.

July 31, 2001 Synopsys, Inc. 99

Chapter 3: Using Verilog-XL with Synopsys Models Simulator Configuration Guide

-W Specifies pullup and pulldown signal strength of weak1 and
weakO instead of the default pul | 1 and pul | O, respectively.
Thiswill provide compatibility with Cadence's hardware
modeler interface.

-v vector_path Specifies the pathname to the file containing alist of vectors.
-h Displays the online help for this command.
model.MDL Specifies the name of the MDL file of the hardware model

whose model.v fileisto be generated.

Description

The Imvsg script creates a model.v, in the destination directory. The model’s pin names
may not be legal Verilog identifiers. If apin nameisfound that isnot alegal Verilog
identifier, Imvsg escapesthe illegal name (for example, the pin name “-CLR” becomes
“\-CLR”.) and, if the -i switch wasissued, displays awarning message.

If apin aliasisdefined in the model.NAM file, the pin aliasis used asthe pin name. For
information about editing the model.NAM file, refer to the Model Source User’s Manual.

By default, Imvsg generates a module that contains a port for each logical pin. If you
want the module to use vectors for buses, you can provide afile containing alist of the
vectors. For example, if a device contains a 32-bit address bus, the default behavior of
Imvsg is to generate a module with aport list containing the ports AQ, A1, ..., A31. You
can use the -v switch to name afile containing the statement “A[31:0]”. Imvsg then
generates the module using a 32-bit vector for the address bus.

100 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 4: Using NC-Verilog with Synopsys Models

A

Using NC-Verilog with Synopsys
Models

Overview

This chapter explains how to use SmartModels, FlexModels, MemPro models, and
hardware models with NC-Verilog. The procedures are organized into the following
major sections:

. “Setting Environment Variables” on page 101

. “Using SmartModels with NC-Verilog” on page 103

. “Using FlexModels with NC-Verilog” on page 104

. “Using MemPro Models with NC-Verilog on UNIX” on page 107
« “Using Hardware Models with NC-Verilog” on page 108

Setting Environment Variables

First, set the basic environment variables. If you are not using one of the model types,
skip that step. In some cases the procedures that follow in this chapter include steps for
setting additional environment variables.

1. Set the LMC_HOME variable to the location of your SmartModel. FlexModel, and
MemPro model installation tree, as shown in the following example:

% setenv LMC HOMVE path_to_nodel s_installation

July 31, 2001 Synopsys, Inc. 101

Chapter 4: Using NC-Verilog with Synopsys Models Simulator Configuration Guide

; Caution

102

2. SettheLM_LICENSE_FILE or SNPSLMD_LICENSE_FILE environment variable

to point to the product authorization file, as shown in the following example:

% setenv LM LI CENSE Fl LE pat h_t o_product _aut hori zation_file
% set env SNPSLMD LI CENSE FI LE path_to_product _authorization_file

You can put license keys for multiple products (for example, SmartModels and
hardware models) into the same authorization file. If you need to keep separate
authorization files for different products, use a colon-separated list (UNIX) or
semicolon-separated list (NT) to specify the search path in your variable setting.

Do not include la_dmon-based authorizations in the same file with snpsimd-
based authorizations. If you have authorizations that use la_dmon, keep
them in a separate license file that uses a different license server (Imgrd)
process than the one you use for snpslmd-based authorizations.

. If you are using the hardware modeler, set the LM_DIR and LM_LIB environment

variables, as shown in the following examples:

% setenv LM D R hardware_rnodel _install _path/sns/Imdir
% setenv LM LI B hardware_nodel _instal |l _path/sns/ nodel s: \
har dwar e_nodel _i nstal | _pat h/ sns/ maps

If you put your modelsin adirectory other than the default of /sms/models, modify
the above variable setting accordingly.

. Set the CDS_INST_DIR variable to the location of your Cadence installation tree,

as shown in the following example, and make sure that NC-Verilog is set up
properly in your environment:

% setenv CDS | NST DR path_to_Cadence_install ation

. Depending on your platform, set your load library variable to point to the platform-

specific directory in SLMC_HOME, as shown in the following examples:

Solaris:

% setenv LD LI BRARY_PATH $LMC HOVE/ | i b/ sun4Sol ari s. i b: $LD LI BRARY_PATH
Linux:

% setenv LD LI BRARY_PATH $LMC HOVE/ | i b/ x86_l i nux. | i b: $LD LI BRARY_PATH
AlX:

% set env LI BPATH $LMC HOME/ | i b/ i bnrs. i b: $LI BPATH

Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 4: Using NC-Verilog with Synopsys Models

HP-UX:
% set env SHLI B_PATH $LMC HOVE | i b/ hp700. | i b: $SHLI B_PATH
NT:

Make sure that %L MC_HOME%\lib\pcnt.lib isin the Path user variable.

Using SmartModels with NC-Verilog

SmartModels work with NC-Verilog using a PLI application called LMTV that is
delivered in the form of a swiftpli shared library in SLMC_HOME/lib/platform.lib. If
you cannot use the swiftpli, refer to “ Static Linking with LMTV” on page 104.

To use the prebuilt swiftpli, follow this procedure:

1. Instantiate SmartModels in your design, defining the ports and defparams as
required. For details on required SmartModel SWIFT parameters and model
Instantiation examples, refer to “Using SmartM odels with SWIFT Simulators’ on

page 18.

2. Thereis no need to build a Verilog executable. You can use the one from
$CDS INST_DIR/toolg/bin by adding it to your path statement.

3. To use the swiftpli shared library, invoke the NC-Verilog simulator to compile and
simulate your design as shown in the following examples:

UNIX

% ncveril og testbench nodel .v +l oadplil=swiftpli:sw ft_boot \
+i ncdi r+$LMC_ HOVE/ sinmi pli/src

NT

> ncveril og testbench nodel .v +l oadplil=swi ftpli:sw ft_boot
+i ncdi r +%AMC HOME% si Mplilsrc

T3> Note
If you are using ncelab and ncsim, use the -loadplil switch instead of the
+loadplil switch.

For information on LM TV commands that you can use with SmartModels on
NC-Verilog, refer to “LMTV Command Reference” on page 279.

July 31, 2001 Synopsys, Inc. 103

Chapter 4: Using NC-Verilog with Synopsys Models Simulator Configuration Guide

Static Linking with LMTV

If you cannot use the Synopsys-supplied swiftpli shared library, refer to the Cadence
documentation for information on using the PLIWizard to build your own PLI library.
Synopsys still ships the files needed to build your own PLI. These include:

. edited copy of veriuser.cin the SLMC_HOME/sim/pli/src directory
« LMTV object (Imtv.0) in the SLMC_HOME/lib/platform.lib directory

If you build your own PLI, you will need to edit the veriuser.c fileto pick up the LMTV
header files asfollows:

a. After #include “vxl_veriuser.h” add:

#i ncl ude “ccl _| miv_incl ude. h”

b. After “/*** add user entries here ***/” add:
#i ncl ude “ccl I mv_include_code. h”

Using FlexModels with NC-Verilog

FlexModels work with NC-Verilog using a PLI application called LMTV that is
delivered in the form of a swiftpli shared library in 3LMC_HOMFE/lib/platform.lib. If
you cannot use the swiftpli, refer to “Static Linking with LMTV” on page 106.

To use the prebuilt swiftpli, follow this procedure:

1. Create aworking directory and run flexm_setup to make copies of the model's
interface and example files there, as shown in the following example:
% $LMC_HOMWE/ bi n/ fl exm setup -dir workdir nodel _fx

You must run flexm_setup every time you update your FlexModel installation with
anew model version. Table 16 lists the files that flexm_setup copies to your
working directory.

Table 16: FlexModel NC-Verilog Files

File Name Description L ocation

model_pkg.inc Verilog task definitions for FlexModel workdir/src/verilog/
interface commands. Thisfile also references
the flexmodel _pkg.inc and

model _user_pkg.inc files.

model_user_pkg.inc | Clock frequency setup and user customizations. | workdir/src/verilog/

model_fx_vxl.v A SWIFT wrapper that you can use to instantiate | workdir/examples/verilog/
the moddl.

104 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 4: Using NC-Verilog with Synopsys Models

Table 16: FlexModel NC-Verilog Files (Continued)

File Name Description L ocation

model.v A bus-level wrapper around the SWIFT model. | workdir/examples/verilog/
This allows you to use vectored ports for the
model in your testbench.

model_tst.v A testbench that instantiates the model and shows | wor kdir/examples/verilog/
how to use basic model commands.

2. Update the clock frequency supplied in the model _user pkg.inc file to correspond
to the CLK period you want for the model. Thisfileislocated in:

wor kdi r/ src/veril og/ model _user _pkg. i nc

where workdir is your working directory.

3. Add the following line to your Verilog testbench to include FlexModel testbench
interface commands in your design:

“include "nodel pkg.inc"

I35 Note
Be sure to add model _pkg.inc within the module from which you will be
issuing FlexModel commands.

Because the model_pkg.inc file includes references to flexmodel _pkg.inc and
model _user_pkg.inc, you don’t need to add flexmodel _pkg.inc or
model _user pkg.inc to your testbench.

4. Instantiate FlexModels in your design, defining the ports and defparams as required
(refer to the example testbench supplied with the model). You use the supplied bus-
level wrapper (model.v) in the top-level of your design to instantiate the supplied
bit-blasted wrapper (model_fx_vxl.v).

Example using bus-level wrapper (model.v) without timing:

nmodel U1 (model ports)
def par am
Ul. FHl exModel I d = “TM5_| NST1”;

Example using bus-level wrapper (model.v) with timing:

nmodel U1 (model ports)
def par am
UL. FH exTi m ngMbde = " FLEX_TI M NG MDE_QN
UL. Ti m ngVersi on = “ti mngversion“,
UL. Del ayRange = “range“,
UL. FH exModel | d= “TM5 | NST1”;

July 31, 2001 Synopsys, Inc. 105

Chapter 4: Using NC-Verilog with Synopsys Models Simulator Configuration Guide

5. Thereisno need to build a Verilog executable. You can use the one from
$CDS_INST_DIR/toolg/bin by adding it to your path statement.

6. Invoke the NC-Verilog simulator to compile and simulate your design as shown in
the following examples:

UNIX

% ncveril og testbench +l oadpli 1=sw ftpli:sw ft_boot \
./ wor kdi r/ exanpl es/ veri | og/ nodel . v \
./ wor kdi r/ exanpl es/ veril og/ model _fx_vxl.v \
+i ncdi r+$LMC HOVE/ sinipli/src \
+i ncdi r+wor kdi r/ src/veril og

NT

> ncveril og testbench + oadpli 1=sw ftpli:swift_boot
wor kdi r\ exanpl es\ veri | og\ nodel . v
wor kdi r\ exanpl es\ veril og\ nodel _fx vxl.v
+i ncdi r+%MC_ HOVE% si mipli\src
+i ncdi r+wor kdi r\'src\veril og

T3> Note

If you are using ncelab and ncsim, use the -loadplil switch instead of the
+loadplil switch.

For information on LM TV commands that you can use with FlexModels on NC-Verilog,
refer to “LMTV Command Reference” on page 279.

Static Linking with LMTV

If you cannot use the Synopsys-supplied swiftpli shared library, refer to the Cadence
documentation for information on using the PLIWizard to build your own PLI library.
Synopsys still ships the files needed to build your own PLI. These include:

. edited copy of veriuser.cinthe SLMC_HOME/sim/pli/src directory
« LMTV object (Imtv.0) in the SLMC_HOME/lib/platform.lib directory

« C-Pipe shared library (m_pli_dyn.ext), inthe 3LMC_HOMFE/lib/platform.lib
directory

If you build your own PLI, you will need to edit the veriuser.c fileto pick up the LMTV
header files as follows:

a. After #include “vxl _veriuser.h” add:

#i ncl ude “ccl I nmtv_include. h”

b. After “/*** add user entries here ***/” add:
#i ncl ude “ccl _| mv_incl ude_code. h”

106 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 4: Using NC-Verilog with Synopsys Models

Using MemPro Models with NC-Verilog on
UNIX

MemPro models work with NC-Verilog using aPLI application called LMTYV that is
delivered in the form of a swiftpli shared library in 3LMC_HOMFE/lib/platform.lib. If
you cannot use the swiftpli, refer to “Static Linking with LMTV” on page 108.

To use the prebuilt swiftpli, follow this procedure:

1. To include MemPro testbench interface commands in your design, add one of the
following lines to your testbench:

Verilog testbench:

“incl ude "menpro_pkg. v"
C testbench:

#i ncl ude "nenpro_c_tb. h"

For more information on using the MemPro testbench interfaces, refer to the “HDL
Testbench Interface” and “ C Testbench Interface” chaptersin the MemPro User’s
Manual.

2. Instantiate MemPro models in your design. Define ports and generics as required.
For information on generics used with MemPro models, refer to “Instantiating
MemPro Models’ on page 32. For information on message level s and message level
constants, refer to “Controlling MemPro Model Messages” on page 33.

3. Thereisno need to build a Verilog executable. You can use the one from
$CDS_INST_DIR/toolg/bin by adding it to your path statement.

4. Invoke the NC-Verilog ssmulator to compile and simulate your design as shown in
the example below:

% ncveril og testbench Verilog nodul es MenPro_nodel files \

+i ncdi r+$LMC HOME/ sinmipli/src \
+ oadpl i 1=swi ftpli:sw ft_boot

175> Note
If you are using ncelab and ncsim, use the -loadplil switch instead of the
+loadplil switch.

July 31, 2001 Synopsys, Inc. 107

Chapter 4: Using NC-Verilog with Synopsys Models Simulator Configuration Guide

Static Linking with LMTV

If you cannot use the Synopsys-supplied swiftpli shared library, refer to the Cadence
documentation for information on using the PLIWizard to build your own PLI library.
Synopsys still ships the files needed to build your own PLI. These include:

. edited copy of veriuser.cin the SLMC_HOME/sim/pli/src directory
« LMTV object (Imtv.0) in the SLMC_HOME/lib/platform.lib directory

« C-Pipeshared library (m_pli_dyn.ext), in the SLMC_HOME/lib/platform.lib
directory

If you build your own PLI, you will need to edit the veriuser.c fileto pick up the LMTV
header files as follows:

a. After #include “vxl_veriuser.h” add:

#i ncl ude “ccl _| miv_incl ude. h”

b. After “/*** add user entries here ***/” add:
#i nclude “ccl I mv_include_code. h”

Using Hardware Models with NC-Verilog

This section explains how to use Release 3.5a of Model Access for Verilog to interface
hardware models with NC-Verilog. It is not necessary to edit and use the Makefile.nc to
build a standalone version of the simulator to link to the hardware modeler. Note that
dynamic linking is only supported on version 2.8 and above of NC-Verilog on HP-UX
and Solaris, and version 3.0 on NT.

1. Thereisno need to build a Verilog executable. You can use the one from
$CDS _INST_DIR/toolg/bin by adding it to your path statement.

2. Setyour SHLIB_PATH or LD_LIBRARY_PATH variableto point to the directories
that contain the Model Access libraries. Solaris users also need to add the
/usr/dt/lib and /usr/openwin/lib libraries.

HP-UX

% setenv SHLI B PATH \
har dwar e_nodel _iinstal | _pat h/sns/ ma_verilog/lib/pa_hpl02:
$CDS INST_ DIR'tools/lib

Solaris

% setenv LD LI BRARY_PATH \
har dwar e_nodel _i nstal | _pat h/ sns/ ma_veril og/lib/sund. sol ari s:\
$CDS INST_DIR/tool s/lib:/usr/dt/lib:/usr/openwin/lib

For NT, add this path to the PATH user variable:

har dwar e_nodel _i nstal | _pat h\ sns\ nma_veril og\|i b\ pcnt

108 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 4: Using NC-Verilog with Synopsys Models

3. Invoke the simulator as shown in the following example:

% ncveril og testbench.v nodel.v + oadpli 1=mav: nav_boot

NC-Verilog Utilities
The following hardware model utilities are supported in NC-Verilog:
$Im_log_test_vectors (“instance_path”, on_off, “filename”)

The $Im_log_test_vectors command enables test vector logging for a specified instance,
and specifies afile name for the test vector log. For a detailed syntax description, refer
to “$Im_log_test vectors Command Reference” on page 94.

$im_loop_instance (“instance_path”)

The $Im_loop_instance command enables the loop mode for a specified model instance.
For adetailed syntax description, refer to “$Im_loop_instance Command Reference” on

page 95.
$Im_timing_information (“instance_path” , “timing_option”)
The $Im_timing_information command lets you override the hardware modeler’s

default handling of timing information for a specified model instance. For a detailed
syntax description, refer to “$Im_timing_information Command Reference” on page 96.

$Im_timing_measurements (“instance_path” , on_off, “filename”)

The $Im_timing_measurements command enables timing measurements for a specified
model instance. It is not supported for Model Source 3200 and 3400. For a detailed
syntax description, refer to “$Im_timing_measurements Command Reference” on

page 96.
$Im_unknowns (“option=value” [,” option=value’,...] [, “device_or_pin”])

The $Im_unknowns command lets you override the hardware modeler’s default
handling of unknown values for specified instances or pins, or for all hardware model
instances in the simulation. For a detailed syntax description, refer to “$Im_unknowns
Command Reference’ on page 97.

July 31, 2001 Synopsys, Inc. 109

Chapter 4: Using NC-Verilog with Synopsys Models Simulator Configuration Guide

110 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 5: Using MTI Verilog with Synopsys Models

5

Using MTI Verilog with Synopsys
Models

Overview

This chapter explains how to use SmartModels, FlexModels, MemPro models, and
hardware models with MTI Verilog (Model Sim/VLOG.). The procedures are organized
into the following major sections:

. “Setting Environment Variables’ on page 111

« “Using SmartModels with MTI Verilog” on page 113

. “Using FlexModels with MTI Verilog” on page 115

. “Using MemPro Modelswith MTI Verilog” on page 118
. “Using Hardware Models with MTI Verilog” on page 120

Setting Environment Variables

First, set the basic environment variables. If you are not using one of the model types,
skip that step. In some cases the procedures that follow in this chapter include steps for
setting additional environment variables.

1. Set the LMC_HOME variable to the location of your SmartModel. FlexModel, and
MemPro model installation tree, as shown in the following example:

% setenv LMC HOMVE path_to_nodel s_installation
2. Make sure MTI Verilog is set up properly in your environment.

July 31, 2001 Synopsys, Inc. 111

Chapter 5: Using MTI Verilog with Synopsys Models Simulator Configuration Guide

; Caution

112

3. SettheLM_LICENSE_FILE or SNPSLMD_LICENSE_FILE environment variable

to point to the product authorization file, as shown in the following example:

% setenv LM LI CENSE Fl LE pat h_t o_product _aut hori zation_file
% set env SNPSLMD LI CENSE FI LE path_to_product _authorization_file

You can put license keys for multiple products (for example, SmartModels and
hardware models) into the same authorization file. If you need to keep separate
authorization files for different products, use a colon-separated list (UNIX) or
semicolon-separated list (NT) to specify the search path in your variable setting.

Do not include la_dmon-based authorizations in the same file with snpsimd-
based authorizations. If you have authorizations that use la_dmon, keep
them in a separate license file that uses a different license server (Imgrd)
process than the one you use for snpslmd-based authorizations.

4. If you are using the hardware modeler, set the LM_DIR and LM_LIB environment

variables, as shown in the following examples:

% setenv LM D R hardware_rnodel _install _path/sns/Imdir
% setenv LM LI B hardware_nodel _instal |l _path/sns/ nodel s: \
har dwar e_nodel _i nstal | _pat h/ sns/ maps

If you put your modelsin adirectory other than the default of /sms/models, modify
the above variable setting accordingly.

. Depending on your platform, set your load library variable to point to the platform-

specific directory in LMC_HOME, as shown in the following examples:
Solaris:

% setenv LD LI BRARY_PATH $LMC HOVE/ | i b/ sun4Sol ari s. |i b: $LD LI BRARY PATH
Linux:

% set env LD LI BRARY_PATH $LMC_HOVE/ | i b/ x86_I i nux. | i b: $LD LI BRARY_PATH
AlX:

% set env LI BPATH $LMC HOWE/ | i b/ i bnrs. i b: $LI BPATH
HP-UX:

% set env SHLI B_PATH $LMC HOVE | i b/ hp700. | i b: $SHLI B_PATH
NT:

Make sure that LM C_HOME%\lib\pcnt.lib isin the Path user variable.

Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 5: Using MTI Verilog with Synopsys Models

Using SmartModels with MTI Verilog

SmartModels work with MTI Verilog using a PLI application called LMTV that is
delivered in the form of aswiftpli_mti shared library in $LMC_HOME/lib/platform.lib.
If you cannot use the swiftpli_miti, refer to “ Static Linking with LMTV” on page 114.

Synopsys does not currently ship aswiftpli_mti file for use on the IBMRS AIX
platform. If you are using this platform, refer to “Using SmartModels with M TI Verilog
onthe IBMRS AlX Platform” on page 114.

To use SmartM odels with the prebuilt swiftpli_miti, follow this procedure:

1. Instantiate SmartModels in your design, defining the ports and defparams as
required. For details on the required SWIFT parameters and SmartModel
instantiation examples, refer to “ Using SmartM odels with SWIFT Simulators’ on

page 18.
2. Compile your code as shown in the following examples:
UNIX
% vl og testbench nodel .v +i ncdir+$LMC HOVE/ si i pli/src
NT
> vl og testbench nodel .v +incdir+%MC HOVE% simMiplilsrc

where the model.v files are located at $LMC_HOM E/special/cds/verilog/swift.
These .v files are installed during the SmartModel installation if the customer
selects either Cadence or MTI for an EDAV option.

3. Invoke the simulator as shown in the following examples:

HP-UX
%vsi m-pli $LMC HOVE/ |i b/ hp700.1ib/sw ftpli_nti.sl design
Solaris
%vsi m-pli $LMC HOW |i b/ sund4Sol aris.lib/swftpli_nti.so design
Linux
%vsim-pli $LMC HOW/ i b/ x86_linux.lib/swiftpli_nti.so design
NT
> vsim%MC HOME% i b\pent. lib\sw ftpli_nti.dl | design

I°5> Note

For information on LM TV commands that you can use with SmartM odels
on MTI Verilog, refer to “LMTV Command Reference” on page 279.

July 31, 2001 Synopsys, Inc. 113

Chapter 5: Using MTI Verilog with Synopsys Models Simulator Configuration Guide

Static Linking with LMTV

If you cannot use the Synopsys-supplied swiftpli shared library, refer to the MTI
documentation for information on building your own PLI and locating it for the

simulator. Synopsys still ships the files needed to build your own PLI. These include:
. edited copy of veriuser.cin the SLMC_HOME/sim/pli/src directory
« LMTV object (Imtv.0) in the SLMC_HOME/lib/platform.lib directory

If you build your own PLI, you will need to edit the veriuser.c fileto pick up the LMTV
header files asfollows:

a. After #include “vxl_veriuser.h” add:

#i ncl ude “ccl _| miv_incl ude. h”

b. After “/*** add user entries here ***/” add:
#i ncl ude “ccl I mv_include_code. h”

Using SmartModels with MTI Verilog on the IBMRS AIX
Platform

1. Open the modelsim.ini file in atext editor and locate this line:

: Veriuser = veriuser.o

2. Replace the line with the following. The following expressions should all appear on
one line with the PLI entry separated by a space.

Veriuser = $LMC HOME i b/ hp700.1ib/sImpli_mi.sl \
$MODEL_TECH |'i bswi ftpli. sl

3. Compile your code as shown in the following example:

% nti_path/bin/vlog testbench +incdir+$LMC HOME/ sinmipli/src \
+i ncdi r+wor kdi r/ src/veril og

4. Invoke the simulator as shown in the following example:
% nti _pat h/ bi n/vsi m desi gn

Note that the -loadpli switch is not supported on this platform.

114 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 5: Using MTI Verilog with Synopsys Models

Using FlexModels with MTI Verilog

FlexModels work with Verilog-XL using a PLI application called LMTYV that is
delivered in the form of aswiftpli_mti shared library in $LMC_HOME/lib/platform.lib.
If you cannot use the swiftpli_miti, refer to “ Static Linking with LMTV” on page 117.

To use the prebuilt swiftpli_miti, follow this procedure:

1. Create aworking directory and run flexm_setup to make copies of the model's
interface and example files there, as shown in the following example:

% $LMC_HOMWE/ bi n/ fl exm setup -dir workdir nodel _fx

You must run flexm_setup every time you update your FlexModel installation with
anew model version. Table 17 lists the files that flexm_setup copies to your
working directory.

Table 17: FlexModel MTI Verilog Files

File Name Description L ocation

model _pkg.inc Verilog task definitions for FlexModel workdir/src/verilog/
interface commands. Thisfile also references
the flexmodel _pkg.inc and

model _user_pkg.inc files.

model_user pkg.inc | Clock frequency setup and user customizations. | workdir/src/verilog/

model_fx_mti.v A SWIFT wrapper that you can use to instantiate | workdir/examples/verilog/
the model.
model.v A bus-level wrapper around the SWIFT model. | workdir/examples/verilog/

This allows you to use vectored ports for the
model in your testbench.

model_tst.v A testbench that instantiates the model and shows | wor kdir/examples/verilog/
how to use basic model commands.

2. Update the clock frequency supplied in the model _user pkg.inc file to correspond
to the CLK period you want for the model. Thisfileislocated in:

wor kdi r/src/veril og/ model _user pkg.inc
where workdir is your working directory.

3. Add the following line to your Verilog testbench to include FlexModel testbench
Interface commands in your design:

“include "nodel pkg.inc"

July 31, 2001 Synopsys, Inc. 115

Chapter 5: Using MTI Verilog with Synopsys Models Simulator Configuration Guide

I35 Note
Be sure to add model _pkg.inc within the module from which you will be
issuing FlexModel commands.

Because the model_pkg.inc file includes references to flexmodel _pkg.inc and
model _user_pkg.inc, you don’t need to add flexmodel _pkg.inc or
model _user pkg.inc to your testbench.

4. Instantiate FlexModels in your design, defining the ports and defparams as required
(refer to the example testbench supplied with the model). You use the supplied bus-
level wrapper (model.v) in the top-level of your design to instantiate the supplied
bit-blasted wrapper (model_fx_mti.v).

Example using bus-level wrapper (model.v) without timing:

nmodel U1 (model ports)
def par am
Ul. FHl exModel I d = “TM5_| NST1”;

Example using bus-level wrapper (model.v) with timing:

nmodel U1 (model ports)
def par am
UL. FH exTi m ngMbde = " FLEX_TI M NG MDE_QN
UL. Ti m ngVersi on = “ti mngversion“,
UL. Del ayRange = “range”,
UL. FH exModel | d= “TM5 | NST1”;

5. Compile your code as shown in the following examples:
UNIX

% vl og testbench \
wor kdi r/ exanpl es/ veri |l og/ nodel . v \
wor kdi r/ exanpl es/ veril og/ nodel _fx_ nti.v \
+i ncdi r+$LMC HOVE/ simipli/src \
+i ncdi r+wor kdi r/ src/veril og

NT

> vl og testbench
wor kdi r\ exanpl es\ veri | og\ nodel . v
wor kdi r\ exanpl es\ veril og\ nodel _fx_nmnti.v
+i ncdi r +9%AMC HOME% si Mplilsrc
+i ncdi r+wor kdi r\'src\veril og

6. Invoke the ssimulator as shown in the following examples.
HP-UX
%vsim-pli $LMC HOVE/ |i b/ hp700.1ib/sw ftpli_nti.sl design

116 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 5: Using MTI Verilog with Synopsys Models

Solaris

%vsi m-pli $LMC HOW |i b/ sund4Sol aris.lib/swftpli_nti.so design
Linux

%vsim-pli $LMC HOW/ i b/ x86_linux.lib/swiftpli_nti.so design
NT
>vsim-pli %MC HOVE% I ib\pent.lib\swiftpli_mi.dl | design

I35 Note

For information on LM TV commands that you can use with FlexModels on
MTI-Verilog, refer to “LMTV Command Reference” on page 279.

Static Linking with LMTV

If you cannot use the Synopsys-supplied swiftpli shared library, refer to the MTI
documentation for information on building your own PLI and locating it for the

simulator. Synopsys still ships the files needed to build your own PLI. These include:
. edited copy of veriuser.c inthe SLMC_HOME/sim/pli/src directory
« LMTV object (Imtv.0) in the SLMC_HOME/lib/platform.lib directory

« C-Pipeshared library (m_pli_dyn.ext), in the SLMC_HOME/lib/platform.lib
directory

If you build your own PLI, you will need to edit the veriuser.c fileto pick up the LMTV
header files asfollows:

a. After #include “vxl _veriuser.h” add:

#i ncl ude “ccl | mtv_include. h”

b. After “/*** add user entries here ***/” add:
#i ncl ude “ccl _| mv_include_code. h”

July 31, 2001 Synopsys, Inc. 117

Chapter 5: Using MTI Verilog with Synopsys Models Simulator Configuration Guide

Using MemPro Models with MTI Verilog

MemPro models work with MTI Verilog (ModelSim) using a PLI application called
LMTYV that isdelivered in the form of a swiftpli_miti shared library in
$LMC_HOME/lib/platform.lib. If you cannot use the swiftpli_mti, refer to “ Static
Linking with LMTV” on page 119.

To use the prebuilt swiftpli_miti, follow this procedure:

118

1.

4,

To include MemPro testbench interface commands in your design, add one of the
following lines to your testbench:

Verilog testbench:
“incl ude "menpro_pkg. v"
C testbench:

#i ncl ude "nenpro_c_tbh. h"

For more information on using the MemPro testbench interfaces, refer to the “HDL
Testbench Interface” and “ C Testbench Interface” chaptersin the MemPro User’s
Manual.

. Instantiate MemPro models in your design. Define ports and generics as required.

For information on generics used with MemPro models, refer to “Instantiating
MemPro Models’ on page 32. For information on message level s and message level
constants, refer to “Controlling MemPro Model Messages” on page 33.

. Compile your code as shown in the following examples:

UNIX

% vl og testbench nodel.v \
+i ncdi r+$LMC_ HOVE/ sinmipli/src

NT

> vl og testhbench nodel .v
+i ncdi r +%AMC HOME% si Mplilsrc

Invoke the simulator as shown in the following examples:

HP-UX

%vsim-pli $LMC HOVE/ |i b/ hp700.1ib/sw ftpli_nti.sl design
Solaris

%vsi m-pli $LMC HOWE |i b/ sun4Sol aris.lib/swftpli_nti.so design

Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 5: Using MTI Verilog with Synopsys Models

Linux

%vsim-pli $LMC HOW/ i b/ x86_linux.lib/swiftpli_nti.so design
NT

>vsim-pli %MC HOVE% Il ib\pent.lib\swiftpli_mi.dl | design

175> Note
If you are also using SmartModels or FlexModelsin your design, you do not

need to load the swiftpl_mti again, since the same library is used to enable
all three types of modelsin MTI-Verilog.

Static Linking with LMTV

If you cannot use the Synopsys-supplied swiftpli shared library, refer to the MTI
documentation for information on building your own PLI and locating it for the
simulator. Synopsys still ships the files needed to build your own PLI. These include:

. edited copy of veriuser.cin the SLMC_HOME/sim/pli/src directory
« LMTV object (Imtv.0) in the SLMC_HOME/lib/platform.lib directory

« C-Pipeshared library (m_pli_dyn.ext), in the SLMC_HOME/lib/platform.lib
directory

If you build your own PLI, you will need to edit the veriuser.c fileto pick up the LMTV
header files as follows:

a. After #include “vxl_veriuser.h” add:

#i ncl ude “ccl I nmtv_include. h”

b. After “/*** add user entries here ***/” add:
#i nclude “ccl I mv_include_code. h”

July 31, 2001 Synopsys, Inc. 119

Chapter 5: Using MTI Verilog with Synopsys Models Simulator Configuration Guide

Using Hardware Models with MTI Verilog

To use hardware modelswith MTI Verilog, follow this procedure. This procedure covers
userson UNIX and NT. If you are on NT, substitute the appropriate NT syntax for any
UNIX command line examples (percent signs around variables and backslashesin
paths). Note that hardware models are supported on MTI Verilog v5.4c and up.

1. MTI Verilog only supports dynamic linking of PLI libraries. The three waysto
specify the required Model Access shared library, and the order in which the
simulator looks for PLI libraries, islisted below. Choose one of the following
methods:

a. Add the platform-specific shared library to the Veriuser entry in the
modelsim.ini file:

Solaris

Veriuser = nav.Sso
AlX

Veriuser = nav.Sso
HP-UX

Veriuser = nav. sl
NT

Veriuser = mav_nti.dll
b. Add an item in the PLIOBJS environment variable list:
% setenv PLI ABJS “nmav. ext”

c. Usethe -pli switch on the simulator invocation line:

%vsim-pli mav. ext

T3> Note
For steps b and ¢, fill in the correct extension for your platform.

2. Regardless of the option you choose, you must locate the Model Access PLI library
for the simulator using a platform-specific environment variable or by specifying
the full path to the library in Step 1. Here are examples for setting the environment
variables which show the full pathsto the libraries:

Solaris

% setenv LD LI BRARY_PATH \
har dwar e_nodel _i nstal | _pat h/ sns/ ma_verilog/lib/sun4_5. 6/ mav. so

120 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 5: Using MTI Verilog with Synopsys Models

HP-UX

% setenv SHLI B PATH \
har dwar e_nodel _i nstal | _pat h/ sns/ ma_veril og/ i b/ pa_hpl02/ nav. sl

AlX

% setenv LI BPATH \
har dwar e_nodel _instal | _path/sns/ ma_verilog/lib/rs6000 4.1.5/ mav. so

For NT, add this path to the PATH user variable:

har dwar e_nodel _i nstal | _pat h\ sns\ nma_veril og\!i b\ pcnt

3. Generate a Verilog module definition or shell for each hardware model that you
want to use by running the Synopsys-provided Imvsg script, as shown in the
following example:

% | nvsg destination_nodel . MOL

For thisto work, the hardware_model_install _path/sms//ma_verilog/bin/platform
directory must be in your PATH. For details on the complete syntax of the Imvsg
command, refer to “Imvsg Command Reference” on page 99.

4. Use the Verilog module definitions to instantiate the hardware models in your
testbench. The following example shows an example instantiation for the TIL S299
hardware model Notice the two “defparam” statements; the definitions of the
TimingVersion (TILS299A.MDL) and DelayRange (MIN) parametersin the
instantiation override the default definitionsin the model.v file (TILS299.MDL and
MAX, respectively). Inthisexample, TILS299A.MDL represents a custom timing
version that the designer wants to use instead of the default timing version
TILS299.MDL.

/ Instantiate WIT : Mdel Source Tl LS299 hardware nodel : Ul
def par am UL. Ti m ngVer si on="TI LS299A. MDL" ;
def par am UL. Del ayRange = “M N’;

TILS299 UL(. ALK (cl kw,
AR (clrw,

(iolw[0]),

(iolw[1]),

(iolwf 2]),

(iolwf3]),

(iolwnf4]),

(iolw 9]),

(iolwn6]),

(iolw[7]),

(91w,

(92w,

(galw),

(ghlw),

(sOw,

GOQRRIGTMUO®>

July 31, 2001 Synopsys, Inc. 121

Chapter 5: Using MTI Verilog with Synopsys Models Simulator Configuration Guide

.S1 (slw),
.SL (slw,
.SR (srw);

5. Invoke the MTI Verilog ssmulator as shown in the following example, which
illustrates the use of the -pli switch to specify the PLI library.

%vsim-pli mav_library

MTI Verilog Utilities
The following hardware model utilities are supported in MTI Verilog:
$Im_log_test_vectors (“instance_path”, on_off, “filename™)

The $Im_log_test_vectors command enables test vector logging for a specified instance,
and specifies afile name for the test vector log. For a detailed syntax description, refer
to “$Im_log_test vectors Command Reference” on page 94.

$im_loop_instance (“instance_path”)

The $Im_loop_instance command enables the loop mode for a specified model instance.
For adetailed syntax description, refer to “$Im_loop_instance Command Reference” on

page 95.
$Im_timing_information (“instance_path” , “timing_option”)

The $Im_timing_information command lets you override the hardware modeler’s
default handling of timing information for a specified model instance. For a detailed
syntax description, refer to “$Im_timing_information Command Reference” on page 96.

$Im_timing_measurements (“instance_path” , on_off, “filename”)

The $Im_timing_measurements command enables timing measurements for a specified
model instance. It is not supported for Model Source 3200 and 3400. For adetailed
syntax description, refer to “$Im_timing_measurements Command Reference” on

page 96.
$Im_unknowns (“option=value” [,” option=value’,...] [, “device_or_pin"])

The $Im_unknowns command lets you override the hardware modeler’s default
handling of unknown values for specified instances or pins, or for all hardware model
instances in the simulation. For a detailed syntax description, refer to “$Im_unknowns
Command Reference” on page 97.

122 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 6: Using Scirocco with Synopsys Models

6

Using Scirocco with Synopsys
Models

Overview

This chapter explains how to use SmartModels, FlexModels, MemPro models, and
hardware models with Scirocco. The procedures are organized into the following major
sections:

. “Setting Environment Variables’ on page 124

. “Using SmartModels with Scirocco” on page 125

. “Using FlexModels with Scirocco” on page 128

. “Using MemPro Models with Scirocco” on page 132

. “Using Hardware Models with Scirocco” on page 135

XJ° Hint

This chapter includes a script that you can useto run any FlexModel
examples testbench with minimal setup required. You can cut-and-paste the

script right out of this PDF file. Refer to “ Script for Running FlexM odel
Examplesin Scirocco” on page 130 for details.

July 31, 2001 Synopsys, Inc. 123

Chapter 6: Using Scirocco with Synopsys Models Simulator Configuration Guide

Setting Environment Variables

First, set the basic environment variables. If you are not using one of the model types,
skip that step. In some cases the procedures that follow in this chapter include steps for
setting additional environment variables.

1. Set the LMC_HOME variable to the location of your SmartModel. FlexModel, and
MemPro model installation tree, as follows:
% setenv LMC HOMVE path_to_nodel s_installation
2. Set the SYNOPSY S_SIM variable to point to the Scirocco installation directory as
follows:
% set env SYNCPSYS SI M Scirocco_installation_directory
3. Source the environ.csh Scirocco environment file.

% source $SYNOPSYS_SI M adm n/instal | / set up/ envi ron. csh

4. SettheLM_LICENSE_FILE or SNPSLMD_LICENSE_FILE environment variable
to point to the product authorization file, as shown in the following example:

% setenv LM LI CENSE Fl LE pat h_t o_product _aut hori zation_file
% set env SNPSLMD LI CENSE FI LE path_to_product _authorization_file

You can put license keys for multiple products (for example, SmartModels and
hardware models) into the same authorization file. If you need to keep separate
authorization files for different products, use a colon-separated list (UNIX) or
semicolon-separated list (NT) to specify the search path in your variable setting.

; Caution

Do not include la_dmon-based authorizations in the same file with snpsimd-
based authorizations. If you have authorizations that use la_dmon, keep
them in a separate license file that uses a different license server (Imgrd)
process than the one you use for snpslmd-based authorizations.

5. If you are using the hardware modeler, set the LM_DIR and LM_LIB environment
variables, as shown in the following examples:

% setenv LM D R hardware_rnodel _install _path/sns/Imdir
% setenv LM LI B hardware_rnodel _i nstal | _pat h/ sns/ nodel s: \
har dwar e_nodel _i nstal | _pat h/ sns/ maps

If you put your modelsin adirectory other than the default of /sms/models, modify
the above variable setting accordingly.

6. Depending on your platform, set your load library variable to point to the platform-
specific directory in SLMC_HOME, as shown in the following examples:

124 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 6: Using Scirocco with Synopsys Models

Solaris:

% setenv LD LI BRARY_PATH $LMC HOME/ | i b/ sun4Sol ari s. |ib: $LD LI BRARY_PATH
Linux:

% setenv LD LI BRARY_PATH $LMC HOME/ | i b/ x86_| i nux. i b: $LD_LI BRARY_PATH
AlX:

% set env LI BPATH $LMC HOWE/ | i b/ i bnrs. i b: $LI BPATH

HP-UX:

% set env SHLI B_PATH $LMC_HOME/ | i b/ hp700. | i b: $SH.I B_PATH

NT:

Make sure that %L MC_HOME%\lib\pcnt.lib isin the Path user variable.

Using SmartModels with Scirocco

To use SmartM odels with Scirocco, follow this procedure:

1. To create SmartModel VHDL templates, check to seeif you have write permission
for SLMC_HOME/synopsys/smartmodel; if so skip to Step 4. Otherwise, open the
.synopsys_vss.setup file in your current working directory and search for the string
SMARTMODEL. By default, thelogical library name SMARTMODEL is mapped
to SLMC_HOME/synopsys/smartmodel, as follows:

SVARTMCDEL : $LMC_HOWE/ synopsys/ snar t nodel

2. Change the directory to one for which you have write permission, as shown in the
following example:

SVARTMCDEL : ~/ snar t nodel

3. Generate aVHDL model wrapper file by invoking create_smartmodel_lib with any
optional arguments. For information on the syntax for this command, refer to
“create_smartmodel_lib Command Reference” on page 126.

% $SYNCOPSYS_SI M si m bi n/ creat e_smartnodel _|i b argunents

4. 1f you changed the SMARTMODEL mapping in Step 2, you must use the -srcdir
option to specify that directory. Also, you can save time by using the -model or
-modelfile option to specify the models you want. Otherwise, the script processes all
installed SmartM odels. For example, here is arecommended set of optionsto use
for one SmartModel (ttI00 in this example).:

% $SYNCOPSYS_SI M si m bin/create_snmartnodel _|ib -nmodel ttl100\
-srcdir ~/ smart nodel

July 31, 2001 Synopsys, Inc. 125

Chapter 6: Using Scirocco with Synopsys Models Simulator Configuration Guide

5.

10.

After create_smartmodel_lib hasfinished executing, verify that the VHDL template
files have been created in the appropriate directory.

. To use SmartModels in the VHDL source file of your design, specify the

SMARTMODEL library and instantiate each SmartModel component. IntheVHDL
design file that uses SmartModel components, enter the following library and use
clauses:

library SMARTMODEL;
use SMARTMODEL. conponents. al |

Thelibrary logical name SMARTMODEL must be mapped to appropriate
directories in your .synopsys_vss.setup file, as described on page 125.

. Add the following line to your .synopsys_vss.setup file:

TI MEBASE : PS

. Instantiate SmartModels in your VHDL design. For information on required

configuration parameters and instantiation examples, refer to “Using SmartModels
with SWIFT Simulators’ on page 18.

. Compile your testbench as shown in the following example:

% vhdl an t est bench
Invoke the Scirocco simulator as shown in the following example:

% scsi m desi gn

For information about scsim and the VHDL debugger, refer to the Scirocco User’s
Guide.

create_smartmodel lib Command Reference
The command reference for create_smarmodel_lib is asfollows:

Syntax
create_smartmodel_lib [--] [-nc] [-create] [-srcdir dirpath] [-analyze] [-nowarn]

[-modelfilefile] {-model model_name}

Arguments
-- Displays the usage message and lists the command line
options.
-nc Suppresses the Synopsys copyright message.
126 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 6: Using Scirocco with Synopsys Models

-create

-src_dir dirpath

-analyze

-nowarn

-modeifilefile

-model model_name

Description

Createsthe VHDL sourcefiles (.vhd files) for the
SMARTMODEL library and saves the source filesin the
$LMC_HOME/synopsys directory.

L ets you specify the location of the VHDL source files that
you create. The default location is $LMC_HOME/synopsys.

Anayzesthe SMARTMODEL library sourcefiles (.vhd files)
by invoking vhdlan. The analyzed files (.ssm and .mrafiles)
are saved in the 3LMC_HOME/synopsys/smartmodel
directory. Thisdirectory is specified by SMARTMODEL
logical name mapping in the setup file.

Suppresses the generation of warning messages that notify
you of any port name mappings.

A list of SMARTMODEL component namesisread from file.
Names are separated by spaces. Only the specified component
names are included in the SMARTMODEL component
library.

The model _nameisincluded in the resulting SMARTMODEL
component library. Repest this option to specify multiple
models. Only specified component names are included in the
SMARTMODEL component library.

When issued without options, the create_smartmodel _lib command takes all of the files
in the SLMC_HOME/models directory, creates and analyzes the VHDL template files,
and saves them in the $LMC_HOME/synopsys/smartmodel directory. If you do not
have write permission for SLMC_HOME/synopsys/smartmodel, the command
terminates with an error message. In that case, you must use the -src_dir option to
specify awritable directory in which to place the VHDL templates. You must also
specify that directory through the SMARTMODEL library mapping in the
.synopsys_vss.setup file in your current working directory.

July 31, 2001

Synopsys, Inc. 127

Chapter 6: Using Scirocco with Synopsys Models

Using FlexModels with Scirocco

To use FlexModels with Scirocco, follow this procedure:

Simulator Configuration Guide

1. If you want the improved performance that comes with bused wrappers, generate a
VHDL model wrapper file by invoking create_smartmodel_|lib with any optional
arguments. For more information on the syntax for this command, refer to

“create_smartmodel_lib Command Reference” on page 126.

% $SYNCOPSYS_SI M si m bi n/ creat e_smartnodel _|i b argunents

T3> Note

The bused wrappers enable improved performance but do not work with the
exampl es testbench shipped with the model. To exercise the examples
testbench, use the wrappers shipped with the model (see Table 18), as
explained in the rest of this procedure. If you are using the bused wrappers,
adjust accordingly.

2. Create aworking directory and run flexm_setup to make copies of the model's
Interface and exampl e files there, as shown in the following example:

% $LMC_HOVE/ bi n/ fl exm setup -dir workdir nodel _fx

You must run flexm_setup every time you update your FlexModel installation with
anew model version. Table 18 describes the FlexModel Scirocco interface and
example files that the flexm_setup tool copies.

Table 18: FlexModel Scirocco VHDL Files

File Name Description L ocation
model _pkg.vhd Model command procedure callsfor HDL | workdir/src/vhdl/
Command Mode.
model _user pkg.vhd | Clock frequency setup and user workdir/src/vhdl/
customizations.
model_fx_vss.vhd A SWIFT wrapper for the model. wor kdir/examples/vhdl/
model_fx_comp.vhd | Component definition for use with the model | workdir/examples/vhdl/

entity defined in the SWIFT wrapper file. This
is put in a package named “COMPONENTS’
when compiled.

model .vhd

A bus-level wrapper around the SWIFT model.
This allows you to use vectored ports for the
model in your testbench. Thisfile assumes that
the*“COMPONENTS’ package has been
installed inthe logical library “dm_lib”.

wor kdir/examples/vhdl/

128

Synopsys, Inc.

July 31, 2001

Simulator Configuration Guide Chapter 6: Using Scirocco with Synopsys Models

Table 18: FlexModel Scirocco VHDL Files (Continued)

File Name Description L ocation

model_tst.vhd A testbench that instantiates the model and wor kdir/examples/vhdl/
shows how to use basic model commands.

3. Update the clock frequency supplied in the model _user_pkg.vhd file in your
working directory to correspond to the desired clock period for the model. After you
run flexm_setup thisfileislocated in:

wor kdi r/ src/ vhdl / model _user_pkg. vhd
where workdir is your working directory.

4. Add the following line to your .synopsys vss.setup file:

SLIMLIB : SLMLIB_PATH
TIMEBASE : PS

5. Compile the FlexModel VHDL filesinto logical library Ssim_lib as follows:

% vhdl an -noevent -w sIlmlib $LMC HOWE si mi vhpi / src/ sl mhdl c. vhd
%vhdl an -event -wslmlib $LMC_ HOW si ni vhpi / src/ fl exnodel _pkg. vhd
% vhdlan -event -w sl mlib workdir/src/vhdl/nodel _user_pkg. vhd

% vhdlan -event -w sl mlib workdir/src/vhdl/nodel _pkg. vhd

%vhdlan -event -w sl mlib workdir/src/vhdl/nodel _fx_conp. vhd

% vhdl an -event -w sIlmlib workdir/src/vhdl/nodel fx_ vss.vhd

% vhdl an -event -w sl mlib workdir/src/vhdl/nodel . vhd

6. Add LIBRARY and USE statements to your testbench:

library sImlib;

use slmlib.flexnodel pkg.all;
use sl mlib. model pkg.all;

use sl mlib. model user pkg.all;

For example, you would use the following statement for the tms320c6201_fx
model:

use slmlib.tns320c6201_pkg. al | ;
use slmlib.tns320c6201_user _pkg. al | ;

July 31, 2001 Synopsys, Inc. 129

Chapter 6: Using Scirocco with Synopsys Models Simulator Configuration Guide

7. Instantiate FlexModels in your design, defining the ports and generics as required
(refer to the example testbench supplied with the model). You use the supplied
bus-level wrapper (model.vhd) in the top-level of your design to instantiate the
supplied bit-blasted wrapper (model_fx_vss.vhd).

Example using bus-level wrapper (model.vhd) without timing:

Ul: nodel
generic nmap (Fl exMdel ID => “TM5 | NST1")
port map (model ports);

Example using bus-level wrapper (model.vhd) with timing:

Ul: nodel
generic nmap (Fl exModel | D => “TMB_| NST1",
Fl exTi m ngvbde => FLEX TI M NG MCDE_ON,
Ti mngVersion => “timngversion”,
Del ayRange => “range”)
port map (nodel ports);

8. Compile your testbench as shown in the following example:

% vhdl an t est bench

9. Invoke the Scirocco simulator as shown in the following example:

% scsi m-vhpi sl mvhpi: forei gnl N Tel ab: cpi pe desi gn

Script for Running FlexModel Examples in Scirocco

On page 131 is a Perl script (Figure 6) that you can use to run Scirocco on a FlexModel
examples testbench. You can use this script on any installed FlexModel because each
one comes with a prebuilt testbench example that shows how to use the model
commands and all the VHDL wrapper and procedure definition files that you need. This
script runs on HP-UX and Solaris.

To invoke Scirocco on a FlexModel and its example testbench, follow these steps:

1. Make aworking directory and set the TMPDIR variable to that location as shown in
the following example:

% setenv TMPDIR path_to_workdir

2. Use the Acrobat Reader’s text selection tool to select the script shown in Figure 6
and copy the contents to alocal file named run_flex_examples_in_scirocco.pl.

3. Save thefile and change the permissions so that thefile is executable (chmod 775 in
UNIX).

4. Invoke the script as shown in the following example:

% run_fl ex_exanpl es_in_scirocco. pl nodel fx

130 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide

where model_fx isthe name of the FlexModel you want to run.

I Note

This script was developed for internal use and is made available for customer
convenience. It is not actively maintained as part of the licensed software.

Chapter 6: Using Scirocco with Synopsys Models

#!/usr/1 ocal / bi n/ perl

$Revision: 1.4 $

die "\nERRCR running $0: ", "No Fl exMdel nane given\n\n",

$TnpDir = $EN{ TMPDIR }; di e "ERRCR runni ng $0: ",
unl ess($TnpDir);

$LnmcHome = $ENV{ LMC_HOME

die "ERROR running $0: ", "The LMC HOME envi ronnent variabl e nust be set.\n"

$SynopsysHore = SENV{ SYNCPSYS Sl M};

die ERRCR running $0: ", "The SYNCPSYS Sl Menvironment variabl e nust be set.\n"

require "$LncHore/ | i b/ bi n/1i bl 01003. pI™; $Platform = Get Pl atforn();

$Platformlib = PlatforniToLi bD r($P atfornj;

unl ess($ARGV 0]);

"The TMPDI R envi ronnent variabl e nust be set.\n"

unl ess($LnctHone);

unl ess($SynopsysHone);

$f | exnodel _name = $ARGV[0] ; $DirSep ="/";

$output _file = $TnpDr . $DirSep . "Exanpl e_Sinul ator _Run_Script_" . $flexnmodel _name . ".txt";
$rmodel _path = $LncHone . "/ nodel s/ . $fl exnodel _nane;

if (-e $nodel _path) { }

else { die "\nERROR running $0: ", "Fl exMdel $flexnodel _name Does not Exist in Library\n\n"; }

$version_path = ~$LncHone/ bi n/ f| exm set up $f | exnodel
chonp($ver si on_pat h) ;
if ($flexmodel _nane =~ /_fx/) { $fl exnodel
) { $flexnodel _nane =~ s/ fz//g $flex_or_c
die "\nERRCR running $0: ", "$fl exmodel
Fl exModel \ n\ n)
$setup_file = $T Dir . $DrSep . synopsys_vss. setup”;
open(CFI LE, "> $setup file") || dle " Could not create file :
print CFILE (" Exanpl e Smroccollbrary setupflle\n)'
pr|nt CFI LE ("work > DEFAULT\n"); prlnt CFI LE (" DEFAULT :
("TIMEBASE = PS\n"); print OFl LE(\n) cl ose(CFILE);

_hane’;

nane =~ s/ _fxl/lg;, $flex_or_c = _nane =~/ _fz/
";Yel se

_nane | |s not a Fl exhbdel .

"_fx";}elsif ($flexnodel

Mbdel nust have an _fx or _fz to be a

$setup_file\n";

work\n");print GFILE ("SLMLIB : sImlib\n");print CFILE

{$source_setup_file =

$work_dir = $TnpDir . $DrSep . ;$simlib dir = $TnpDir . $DirSep . "sImlib";
nkdi r ($work_dir, 0777); nkdlr($s|m||b dir, 0777);
if ($H atformeq "pent") { $source_setup file ="cnd /c " . $SynopsysHone . "/admi n/setup/environ.bat"} el se

"sour ce

. $SynopsysHone . "/adnmi n/setup/ environ. csh"

$anal yze_sl mhdl ¢ = "vhdl an -noevent -wslmlib " . $LncHome . "/sim vhpi/src/sl mhdlc. vhd";

$anal yze_f1 exnodel _pkg = vhdl an -event -wslmlib " . $LncHone . "/sinivss/src/flexmodel _pkg. vhd";

$anal yze_nodel _user_pkg = "vhdlan -event -wslmlib " . $version_path . "/src/vhdl/" . $flexnodel _nane .

' _user _pkg. vhd™;

$anal yze_nodel _pkg = vhdI an -event -wslmlib " . $version_path . "/src/vhdl/" . $flexnodel _name . "_pkg.vhd";
ianal yze_nodel pr| m= "vhdlan -event -wslmlib " . $version_path . "/exanples/vhdl /" . $flexnodel _nane .
flex_or_c . " vhd";

$anal yze_nodel corrp = "vhdlan -event -wslmlib " . $version_path . "/exanples/vhdl /" . $flexnodel _nane .
$flex_or_c . "_conp.vhd";

$anal yze_nodel = "vhdlan -event -wslmlib " . $version_path . "/exanpl es/vhdl/" . $flexmodel _nane . ".vhd";
$anal yze_nodel _tst = "vhdlan -event " . $version_path . "/exanpl es/vhdl /" . $flexnodel name . "_tst.vhd";

if ($Platformeq "pcnt”) {$run_file = $TnpDir . $DirSep . "run_scirocco_" . $flexnodel _name . ".cnd";}el se {
$run_file = $TnpDir . $DrSep . "run_scirocco " . $flexnodel _nare;}

open(CFILE, "> $run_file") || die " Could not create file : $run_file\n";

if ($Platformeq "pcnt") { } else { print GFILE ("#!/bin/csh -f\n");}

print CFILE ("$source_set up_fi le\n");print CFILE ("$anal yze_sI mhdic\n®);print CFILE

(" $anal yze_fl exmodel _pkg\ n"); prl nt CFI LE ("$anal yze_nodel _user pkg\n);print CFILE ($anal yze_nodel _pkg\n); print
CFI LE ("$anal yze_nodel _pri mn);print CFILE ("$anal yze_nodel _conp\n");print CFILE ("$anal yze model \n"); print CFI LE
("$anal yze_nodel _tst\n");

$vi rsi m conmand = "virsim+si mype+Sci rocco +si margs+"
", print” CFILE ("$virsi mcommand\n");
close(CFILE);if ($Platformeq "pcnt”)

-vhpi sl mvhpi:foreignl N Tel ab: cpi pe cfgtest\"
{ } else { chnod(0777, $run_file);}

if ($P|atformeq “pent”) { #$run_it = "wstart /d $TnpDr “; # Means not hi ng until Scirocco is on PONT $run_it =
"t $runit = $runit . $run file}
else { $run_it ="cd " . $TnpDir . " ; "; $run_it = $run_it . $run file;}

print("\n $run_it \n") systen{$run it);

Figure 6: run_flex_examples_in_scirocco.pl Script

July 31, 2001 Synopsys, Inc

131

Chapter 6: Using Scirocco with Synopsys Models Simulator Configuration Guide

Example Simulator Run Script

Therun_flex_examples in_scirocco.pl script also creates an example C Shell ssmulator
run script for the specified model in your $TMPDIR directory. You can use this run
script to invoke Scirocco after running the run_flex_examples in_scirocco.pl script.
Here is what the script looks like for the mpc860_fx model.

#!/bin/csh -f

sour ce /d/ edavs/ snps-2000. 02PRCD adm n/ set up/ envi r on. csh

vhdl an -noevent -w slmlib /d/l ngga2/dal ew flex/| nt_hone/ si mi vhpi / src/ sl m hdl c. vhd

vhdl an -event -wsimlib /d/l myqa2/ dal ew fl ex/ | nt_home/ si m vss/ src/ fl exnodel _pkg. vhd
vhdl an -event -wsimlib

/ d/ | ngga2/ dal ew f1 ex/ | nc_hone/ model s/ mpc860_f x/ npc860_f x02012/ src/ vhdl / npc860_user _pkg. v
hd

vhdl an -event -wsimlib

[d/' | ngga2/ dal ew f1 ex/ | ntc_hone/ nodel s/ mpc860_f x/ npc860_f x02012/ sr ¢/ vhdl / npc860_pkg. vhd
vhdl an -event -wsimlib

/ d/ | ngga2/ dal ew f 1 ex/ | nmc_hone/ model s/ npc860_f x/ npc860_f x02012/ exanpl es/ vhdl / mpc860_f x_vs
s. vhd

vhdl an -event -wsimlib

/ d/ | ngga2/ dal ew f1 ex/ | nt_hone/ nodel s/ mpc860_f x/ npc860_f x02012/ exanpl es/ vhdl / npc860_f x_co
np. vhd

vhdl an -event -wsimlib

/ d/ | ngga2/ dal ew f1 ex/ | nc_hone/ model s/ mpc860_f x/ npc860_f x02012/ exanpl es/ vhdl / npc860. vhd
vhdl an -event

[d/' | ngga2/ dal ew f1 ex/ | nt_hone/ nodel s/ mpc860_f x/ npc860_f x02012/ exanpl es/ vhdl / npc860_tst. v
hd

vi rsi m+si ntype+Scirocco +si margs+" -vhpi sl mvhpi:forei gnl N Tel ab: cpi pe cfgtest”

Using MemPro Models with Scirocco

You must have MemPro version 2000.04 or higher to use MemPro models with
Scirocco. To use Scirocco with MemPro models, follow this procedure.

132

1. Add the Scirocco library path to your library path environment variable.

HP-UX:

% setenv SHLI B PATH \
$SYNOPSYS_SI M hpux10/ si mi | i b: $SH.I B_PATH

Solaris:

% set env LD LI BRARY PATH \
$SYNOPSYS_SI M spar cC85/ si ni | i b: $LD LI BRARY_PATH

2. Add the Scirocco executable to your search path:

%set path = ($SYNCPSYS S| M pl at f ornd si mi bi n $pat h)
where platformis hpux10 or sparcOS5.

Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 6: Using Scirocco with Synopsys Models

3. Createalogical library named sikm_lib. The default physical library mapping for this
iIs$LMC_HOME/sim/vhpi/lib. If you do not wish to install the library in the
LMC_HOME tree, you can create it in any other location.

4. Add thefollowing line to your .synopsys vss.setup file:
SLMLIB : $LMC HOME/ sinivhpi/lib
TIMEBASE : PS

5. Compile the MemPro VHDL filesinto logical library Ssm_lib. Note that
rdramd_pkg.vhd is not required unless you are ssmulating RDRAM MemPro
models.

% vhdl an -noevent -w sIlmlib $LMC HOWE si mi vhpi / src/ sl mhdl c. vhd
% vhdlan -event -w slmlib $LMC HOW si ni vhpi / src/ menpro_pkg. vhd
% vhdlan -event -wslmlib $LMC_ HOW si ni vhpi / src/rdrand_pkg. vhd

6. After generating amodel using MemPro, compile the VHDL code for the model, as
shown in the following example:

% vhdl an nymem vhd

7. If you compiled the model to alibrary (SLM_MODELS in these examples), add a
LIBRARY statement to your testbench:

LI BRARY SLM MCDELS

This makes modelsin SLM_MODELS accessible from your design. You can refer
to the model using a standard VHDL convention, such asa CONFIGURATION

Statement:
CONFI GRATI QN nymem a CF nynemtst IS
FOR at est
FOR ALL : nynem use CONFI GURATI ON SLM MODELS. nynmem behav;
END FCR,
END FCR,
END nyrmem a;

8. Add LIBRARY and USE statements to your testbench:

LI BRARY SLM LI B
USE SLM LI B. nenpr o_pkg. al |

This aso provides access to MemPro testbench commands.

For more information on using the MemPro testbench interfaces, refer to the “HDL
Testbench Interface” and “C Testbench Interface” chaptersin the MemPro User’s
Manual.

9. Instantiate MemPro models in your design. Define ports and generics as required.
For information on generics used with MemPro models, refer to “Instantiating
MemPro Models’ on page 32. For information on message level s and message level
constants, refer to “Controlling MemPro Model Messages” on page 33.

July 31, 2001 Synopsys, Inc. 133

Chapter 6: Using Scirocco with Synopsys Models Simulator Configuration Guide

10. Compile your design as shown in the following example

% vhdl an desi gn_nane

11. Invoke Scirocco on your design, making sureto include al libraries, as shown in the
following example:

% scsi m-debug_al | -vhpi sl mvhpi:forei gnl N Tel ab: cpi pe desi gn_namne

I°5= Note
The -debug_all switch is only needed on Scirocco rel ease 2000.02.

Using MemPro Models in a Testbench

To use aMemPro model in atestbench, follow this procedure. If you already created
scsim when using a MemPro model or FlexModel, skip to Step 4.

1. Create aMemPro VHDL model using MemSpec. Generate code for Cyclone or
VSS.

2. Instantiate the MemPro component in your testbench.

3. Set your UNIX search path so that it points to the new vhdlsim executable you just
created.

4. Run the following commands to compile the required MemPro VHDL packages:

%nkdir simlib MW _WRK
% vhdl an -noevent -w sIlmlib $LMC HOWE si mi vhpi / src/ sl mhdl c. vhd
% vhdlan -event -wslmlib $LMC_HOW si ni vhpi / src/ menpro_pkg. vhd

5. Compile the model and testbench that you just created:

% vhdl an -event -w MY_WRK upd4516161. vhd
% vhdl an -event -w MY_WRK upd_t est bench. vhd

6. Run the ssimulation:

% ./scsim-vhpi sl mvhpi: Foreignl N Tel ab: cpi pe your _testbench

134 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 6: Using Scirocco with Synopsys Models

Using Hardware Models with Scirocco

To use Scirocco with hardware models, follow this procedure. Note that your design can
include a mix of event-based and cycle-based, but hardware models simulate only as
event-based.

1. Make sure Scirocco is set up properly and all required environment variables are
set, as explained in “ Setting Environment Variables’ on page 124.

2. Add the hardware model install tree to your path variable, as shown in the following
example:

% set path=(/install/sns/bin/your_platform $path)

3. Create the model.vhd wrapper file for your hardware model. You can use the nawk
script provided in “ Scirocco Template Generator Script for Hardware Models’ on
page 138 to generate thisfile. Copy the script and paste it into an executable file
called hwm2vhdl.nawk.

4. If you generate the wrapper by hand, you must provide:

o an entity-architecture pair declaration so Scirocco can referenceit in alater
component instantiation statement.

o apackage for defining constants, declaring components, and instantiating
components.

Scirocco Example with TILS299 Hardware Model

The following example uses the TILS299 hardware model to show how to set up
hardware models for use with Scirocco:

1. After creating the wrapper .vhd file, analyze the file using vhdlan, as shown in the
following example:

% vhl dan -event TILS299. vhd
2. Place the hardware model in the testbench file and invoke the simulator, as follows:
% scsim-t ns TB Tl LS299
The ns argument invokes the simulator with nanosecond time steps.
@ Attention
When using hardware models with Scirocco, your design can include a mix

of event-based and cycle-based, but hardware models simulate only as
event-based.

July 31, 2001 Synopsys, Inc. 135

Chapter 6: Using Scirocco with Synopsys Models Simulator Configuration Guide

Scirocco Utilities
The following hardware modeler simulator commands are supported in Scirocco.
#imsi list devices|ids

You can use the Imsi list devices command to list al hardware model instances by
device name, and the Imsi list ids command to list all hardware model instances by id
name. For example:

lnsi list devices

devi ce name id# instance nane | oggi ng
TI LS299 0 / TB_TI LS299/ WO O f

1nsi list ids

id# device nane i nst ance nane | oggi ng
0 TI LS299 / TB_TI LS299/ WO O f

You can aso log test vectors for the hardware model. To log by 1D number, specify an
id# and a filename. The extension .TST is appended to the vector file name. If nofile
name is specified, VSS writes to a file named device_name.id#.TST. For example:

#lmsi logon id# filename

To log vectors by instance name, specify an instance_name and filename. The extension
.TST is appended to the output file name. For example:

#lmsi logon instance_name filename

To log vectorsfor all hardware model device instances, specify all. A log fileis created
for each instance. The output files are named device_name.id#.TST. For example:

#lmsi logon all

To turn off vector logging, replace logon with logoff and omit the file name in the above
examples.

VHDL Model Generics with Scirocco

You can aso control hardware model behavior using VHDL genericsin your hardware
model instantiations. The nawk script on page 138 creates VHDL wrappers for
hardware models with these VHDL generics set to values that are reasonable for most
simulations. However, you can modify the values of the VHDL genericsin your
model.vhd files to suit your verification needs. For more information on supported
VHDL generics, refer to the Synopsys VHDL Smulation Interfaces Manual. Following
are descriptions of some of the most useful generics:

LMSI_TIMING_MEASUREMENT

You can usethe LMSI_TIMING_MEASUREMENT generic to direct where timing
values for your simulation session come from. There are two legal values:

136 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 6: Using Scirocco with Synopsys Models

ENABLED The hardware model er measures and records actual pin-to-pin
timing values and passes them to the ssimulator.

DISABLED The hardware model ers passes to the simulator the pin-to-pin
timing values from the . TMG file. Thisis the default value.

LMSI_DELAY_TYPE

You can usethe LMSI_DELAY _TY PE generic to specify whether the hardware
modeler returns pin values to the ssimulator with minimum, typical, or maximum delays,
asyou can seein the following legal values:

MINIMUM Return minimum delays for pin values to the simulator.

TYPICAL Return typical delays for pin valuesto the ssmulator. Thisis
the default.

MAXIMUM Return maximum delays for pin values to the simulator.

LMSI_LOG

You can usethe LM SI_LOG generic to specify whether the hardware modeler logs test
vector or not. There are two legal values:

ENABLED The hardware modeler logs test vectors.
DISABLED The hardware modelers does not log test vectors. Thisisthe
default value.

July 31, 2001 Synopsys, Inc. 137

Chapter 6: Using Scirocco with Synopsys Models Simulator Configuration Guide

Scirocco Template Generator Script for Hardware Models

Hereisthe nawk script that you can use to generate VHDL wrappers for the hardware
models. Because of the length this script, you will have to cut-and-paste one page a a
time from this PDF file to get the whole thing copied to your environment.

B

In your design directory type:
#
nawk -f hwnRvhdl . nank $HW/ <rmodel >. NAM > <out fi | e>. vhd
#
(where "$HW is the full path to your hardware nodeling directory)
Instantiate .vhd into your design.
#
THE SCR PT:
#
Script to generate a VSS/ Scirocco VHDL shell for a hardware nodel
using the <nodel >. NAMfile
BEG N {
pin_type =0
is_it_a vector = "No"
data_type = ""
prev_signal =""
prev_test =""
prev_nunber = ""
prev_dir =""
ending = ";"
printf "library SYNOPSYS;\n"
printf " use SYNCPSYS. ATTR BUTES. al | ;\n"
printf "library | EEE\n"
printf " use | EEE std_logic_1164.all;\n\n"
}
$2 ~ /generic_devi ce_nane/ {
device = $3
printf "entity " device " is\n"
printf " generic\n"
printf " (\n"
printf " timng : LMSI_TI M NG MEASUREMENT ;= DI SABLED, \ n"
printf " del ay_type : LMSI_DELAY _TYPE ;= TYPI CAL; \ n"
printf " del ay : LMSI _DELAY 1= ENABLED, \ n"
printf " log : LMBI_LGG ;= DI SABLED, \ n"
printf " timng_violations : LMSI _TIM NGV QLATICNS : = DI SABLED, \ n"
printf " xprop : LMl _XPRCP := D SABLED, \ n
printf " xprop_net hod : LMl _XPRCP_METHCD = HG\N"
printf ");\n\n"
printf " port\n"
printf " (\n"
}

$4 ~ /\(in_pin\)/ || $4 ~ /\(out_pin\)/ || $4 ~/\(io_pin\)/ \
|| $4 ~ /\(power_pin\)/ {
pi n_type++

$2 ~/\=/ || ($0 ~ /"$/ & pin_type ~ /3/) {
if (pin_type == 1) {
direction = "in

}
else if (pin type == 2) {
direction = "out

}
else if (pin_type == 3) {

direction = "inout"
}
el se {

next
}
current_signal = $1 " "
gsub(/\{/, "", current_signal)
gsub(/\"'/, "", current_signal)

current _test = current_signal

138 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 6: Using Scirocco with Synopsys Models

gsub(/[0-9]+ /, " ", current_test)

n = split(current_signal, array_a, "[a-zA-Z]")
current _nunber = array_a[n]
gsub(/ /, "", current_nunber)

if (prev_signal ~/[0-9]+ /) {
if (current_test == prev_test) {
if (is_it_a vector == "No") {
data_start = prev_nunber

if ((current_nunber == prev_nunber - 1) || (current_nunber == prev_nunber + 1))

is_it_a vector = "Yes"
prev_signal = current_signal
prev_test = current_test
prev_nunber = current_nunber
next

el se {
if (is_it_a_vector == "Yes") {
total = prev_nunber + data start
if (prev_nunber > data_start) {
data_end = data_start
data_start = prev_nunber

el se {
data_end = prev_nunber
}
data_type = "_vector (" data start " " "downto " data_end ")"
prev_signal = prev_test
}
}
if (prev_signal !="") {
gsub(/ /, "", prev_signal)
n =split(prev_signal, array_c, "[a-zA-z0-9_]")
y =20 - n
if (y>0 {

for (i =1; i <= 20-n; i++) {
prev_signal = prev_signal

}
if (($0 ~ /A$/.) &% (pin_type == 3)) {

ending = "'
}
printf " " prev_signal " : " prev_dir " std_logic" data_type ending "\n"
}
data_type = ""
is_it_a vector = "No"
updown = ""

prev_signal = current_signal
prev_test = current_test
prev_dir = direction
prev_nunber = current_nunber

}
END {
printf ");\n"
printf "end " device ";\n\n"
printf "architecture LMSl of " device " is\n"
printf " attribute FCREIGN of LMBlI : architecture is \"Synopsys: LMSI\";\n"
printf " begi n\ n"
printf "end LMSI;\n\n"
}

July 31, 2001 Synopsys, Inc. 139

Chapter 6: Using Scirocco with Synopsys Models Simulator Configuration Guide

140 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 7: Using VSS with Synopsys Models

7

Using VSS with Synopsys Models

Overview

This chapter explains how to use SmartModels, FlexModels, MemPro models, and
hardware models with VSS. The procedures are organized into the following major
sections:

. “Setting Environment Variables’ on page 141

. “Using SmartModels with VSS’ on page 143

. “Using FlexModels with VSS’ on page 145

. “Using MemPro Modelswith VSS’ on page 148
. “Using Hardware Models with VSS’ on page 150

Setting Environment Variables

First, set the basic environment variables. If you are not using one of the model types,
skip that step. In some cases the procedures that follow in this chapter include steps for
setting additional environment variables.

1. Set the LMC_HOME variableto the location of your SmartModel. FlexModel, and
MemPro model installation tree, as follows:

% setenv LMC HOME path_to _nodel s_installation
2. Set the SYNOPSY S variable to point to the VSS installation directory as follows:
% set env SYNOPSYS VSS installation directory
3. Source the environ.csh VSS environment file.
For VSS version 1998.08-1 and earlier, use this path:

% sour ce $SYNOPSYS adm n/install/sin/environ. csh

July 31, 2001 Synopsys, Inc. 141

Chapter 7: Using VSS with Synopsys Models Simulator Configuration Guide

For VSS version 1999.05 and later, use this path:

% sour ce $SYNOPSYS/ adm n/ set up/ envi ron. csh

4. SettheLM_LICENSE_FILE or SNPSLMD_LICENSE_FILE environment variable
to point to the product authorization file, as shown in the following example:

% setenv LM LI CENSE Fl LE pat h_t o_product _aut hori zation_file
% set env SNPSLMD LI CENSE FI LE path_to_product _aut horization_file

You can put license keys for multiple products (for example, SmartModels and
hardware models) into the same authorization file. If you need to keep separate
authorization files for different products, use a colon-separated list (UNIX) or
semicolon-separated list (NT) to specify the search path in your variable setting.

; Caution

Do not include la_dmon-based authorizations in the same file with snpsimd-
based authorizations. If you have authorizations that use la_dmon, keep
them in a separate license file that uses a different license server (Imgrd)
process than the one you use for snpslmd-based authorizations.

5. If you are using the hardware modeler, set the LM_DIR and LM_LIB environment
variables, as shown in the following examples:

% setenv LM D R hardware_rnodel _install _path/sns/Imdir
% setenv LM LI B hardware_rnodel _i nstal | _pat h/ sns/ nodel s: \
har dwar e_nodel _i nstal | _pat h/ sns/ maps

If you put your modelsin adirectory other than the default of /sms/models, modify
the above variable setting accordingly.

6. Depending on your platform, set your load library variable to point to the platform-
specific directory in $LMC_HOME, as shown in the following examples:

Solaris:

% setenv LD LI BRARY PATH $LMC HOME/ | i b/ sun4Sol ari s. | i b: $LD LI BRARY PATH
Linux:

% set env LD LI BRARY_PATH $LMC_HOVE/ | i b/ x86_I i nux. | i b: $LD LI BRARY_PATH

AlX:

% set env LI BPATH $LMC HOME/ | i b/ i bnrs. i b: $LI BPATH
HP-UX:

% set env SHLI B_PATH $LMC_HOVE/ | i b/ hp700. | i b: $SHLI B_PATH
NT:

Make sure that %L MC_HOME%\lib\pcnt.lib isin the Path user variable.

142 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 7: Using VSS with Synopsys Models

Using SmartModels with VSS

To use SmartModels with VSS, follow this procedure:

1. To create SmartModel VHDL templates, check to seeif you have write permission
for SLMC_HOME/synopsys/smartmodel; if so skip to Step 3. Otherwise, open the
.synopsys_vss.setup file in your current working directory and search for the string
SMARTMODEL. By default, thelogical library name SMARTMODEL is mapped
to SLMC_HOME/synopsys/smartmodel, as follows:

SVARTMCDEL : $LMC_HOWE/ synopsys/ snar t nodel
2. Change the directory to one for which you have write permission, asin the
following example:
SVARTMXDEL : ~/ smart nodel

3. To generate VHDL model wrapper files, invoke create_smartmodel_lib with any
optional arguments. For information on the syntax for this command, refer to
“create_smartmodel_lib Command Reference” on page 144.

% $SYNCOPSYS_SI M si m bi n/ creat e_smartnodel _|i b argunents

4. 1f you changed the SMARTMODEL mapping in Step 3, you must use the -srcdir
option to specify that directory. Also, you can save time by using the -model or
-modelfile option to specify the models you want. Otherwise, the script processes all
installed SmartM odels. For example, here is arecommended set of optionsto use
for one SmartModel (ttI00 in this example).:

% $SYNCOPSYS_SI M si m bin/create_snmartnodel _|ib -nmodel tt100\
-srcdir ~/ smart nodel

5. After create_smartmodel_lib has finished executing, verify that the VHDL template
files have been created in the appropriate directory.

6. To use SmartModelsin the VHDL source file of your design, specify the
SMARTMODEL library and instantiate each SmartModel component. Inthe VHDL
design file that uses SmartModel components, enter the following library and use
clauses:

library SMARTMODEL;
use SMARTMODEL. conponents. al |

Thelibrary logical name SMARTMODEL must be mapped to appropriate
directories in your .synopsys_vss.setup file.

7. Add the following line to your .synopsys vss.setup file:
TIMEBASE : PS

July 31, 2001 Synopsys, Inc. 143

Chapter 7: Using VSS with Synopsys Models Simulator Configuration Guide

8. Instantiate SmartModels in your VHDL design. For information on required
configuration parameters and instantiation examples, refer to “Using SmartModels
with SWIFT Simulators’ on page 18.

9. Compile your testbench as shown in the following example:

% vhdl an t est bench

10. Invoke the VSS simulator as shown in the following example:

% vhdl si m desi gn
For information about vhdlsim and the VHDL debugger, refer to the VSSUser’s

Guide.

create_smartmodel_lib Command Reference
The command reference for create_smartmodel_lib is asfollows.

Syntax

create_ smartmodel_lib [--] [-nc] [-create] [-srcdir dirpath] [-analyze] [-nowarn]
[-modelfilefile] {-model model_name}

Arguments

-NCc
-create

-src_dir dir

-analyze

-nowarn

144

Displays the usage and all the command line options of the
utility.

Suppresses the Synopsys copyright message.

Creates the VHDL sourcefiles (.vhd files) for the
SMARTMODEL library and saves the source filesin the
$LMC_HOME/synopsys directory.

Lets you specify the location of the VHDL source files that
you create. The default location is SLMC_HOME/synopsys.

Analyzesthe SMARTMODEL library sourcefiles (.vhd files)
by invoking vhdlan. The analyzed files (.ssm and .mrafiles)
are saved in the SLMC_HOME/synopsys/'smartmodel
directory. Thisdirectory is specified by the SMARTMODEL
logical name mapping in the setup file.

Suppresses the generation of warning messages that notify
you of any port name mappings. See “VHDL Reserved Port
and Window Names’ in the VSS Expert Interface Manual for
more information about port name mappings.

Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 7: Using VSS with Synopsys Models

-modelfilefile A list of SMARTMODEL component namesisread from file.
Names are separated by spaces. Only those component names
specified are included in the SMARTMODEL component
library.

-model modelname Each specified modelname is included in the resulting
SMARTMODEL component library. Repeat this option to
specify multiple models. Only those component names
specified are included in the SMARTMODEL component
library.

Description

The create_smartmodel _lib command, if issued without options, uses as input al of the
filesinthe SLMC_HOME/models directory, creates and analyzes the template files, and
saves them in the SLMC_HOME/synopsys/smartmodel directory. If you do not have
write permission for SLMC_HOM E/synopsys/smartmodel, the command terminates
with an error message. In that case, you must use the -src_dir option to specify a
writable directory in which to place the VHDL templates. You must also specify that
directory through the SMARTMODEL library mapping in the .synopsys_vss.setup file
in your current working directory.

Using FlexModels with VSS

To use FlexModels with VSSin UNIX, follow this procedure. Thereis no custom
integration for VSS on NT, but you can use Direct C Control. For information on using
Direct C Control, refer to “Instantiating FlexModels with Direct C Control” on page 26.

1. If you want the improved performance that comes with bused wrappers, you can
generate VHDL model wrapper files by invoking create_smartmodel_lib with any
optiona arguments. For more information on the syntax for this command, refer to
“create_smartmodel_|lib Command Reference” on page 144.

% $SYNCOPSYS_SI M si m bi n/ creat e_smartnodel _|i b argunents

I°5> Note
The bused wrappers enable improved performance but do not work with the
examples testbench shipped with the model. To exercise the examples
testbench, use the wrappers shipped with the model (see Table 19), as
explained in the rest of this procedure. If you are using the bused wrappers,
adjust accordingly.

July 31, 2001 Synopsys, Inc. 145

Chapter 7: Using VSS with Synopsys Models Simulator Configuration Guide

2. Create aworking directory and run flexm_setup to make copies of the model's
Interface and exampl e files there, as shown in the following example:
% $LMC HOME/ bi n/ fl exm setup -dir workdir nodel fx

You must run flexm_setup every time you update your FlexModel installation with
anew model version. Table 19 describes the FlexModel V SSinterface and example
filesthat the flexm_setup tool copies.

Table 19: FlexModel VSS VHDL Files

File Name Description L ocation

model_pkg.vhd Model command procedure callsfor HDL | workdir/src/vhdl/
Command Mode.

model _user pkg.vhd | Clock frequency setup and user workdir/src/vhdl/
customizations.

model_fx_vss.vhd A SWIFT wrapper for the model. wor kdir/examples/vhdl/

model_fx_comp.vhd | Component definition for use with the model | workdir/examples/vhdl/
entity defined in the SWIFT wrapper file. This
is put in a package named “COMPONENTS’
when compiled.

model.vhd A bus-level wrapper around the SWIFT model. | workdir/examples/vhdl/
This allows you to use vectored ports for the
model in your testbench. Thisfile assumes that
the“COMPONENTS’ package has been
installed inthe logical library “dm_lib”.

model_tst.vhd A testbench that instantiates the model and wor kdir/examples/vhdl/
shows how to use basic model commands.

3. Update the clock frequency supplied in the model _user pkg.vhd file in your
working directory to correspond to the desired clock period for the model. After
running flexm_setup thisfile will be located in:

wor kdi r/ src/ vhdl / model _user _pkg. vhd
where workdir is your working directory.

4. Compile adummy moduleto force linking of CLI library functions, as shown in the
following example:

% cp $LMC_ HOME si mvss/ src/vss_dummy_calls.c ./vss_dumy_calls.c
%cli -ansi -s -add -cf vss _dummy_calls.c vss_dummy calls

146 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 7: Using VSS with Synopsys Models

5. Link the FlexModel binary into the vhdlsim simulation executable:
%cli -ansi -s -build -libs $LMC HOWE/ i b/ platformlib/sl mvss.o
where platformis hp700 or sundSolaris.

The new version of vhdlsim you just created must be used when you simulate a
design that includes FlexModels. This vhdlsim must be defined as the first vhdlsim
in your UNIX search path.

6. Add the following line to your .synopsys vss.setup file:

SLIMLIB : SLMLIB PATH
TIMEBASE : PS

7. Compile the FlexModel VHDL filesinto logical library Sim_lib as follows:

%vhdlan -c -wsIlmlib $LMC HOW si m vss/ src/ sl m hdl c. vhd
%vhdlan -c -wsIlmlib $LMC HOW si mi vss/ src/ fl exnodel _pkg. vhd
%vhdlan -¢c -w sl mlib workdir/src/vhdl / model _user pkg. vhd
%vhdlan -c -w sl mlib workdir/src/vhdl / model _pkg. vhd

%vhdlan -c -w slmlib workdir/src/vhdl /model _fx_conp. vhd
%vhdlan -c¢c -w sl mlib workdir/src/vhdl / model _fx_vss. vhd
%vhdlan -¢c -w sl mlib workdir/src/vhdl /nmodel . vhd

8. Add LIBRARY and USE statements to your testbench:

library sImlib;

use slmlib.flexnodel _pkg.all;
use sl mlib. model pkg.all;

use sl mlib. model user pkg.all;

For example, you would use the following statement for the tms320c6201_fx
model:

use slmlib.tns320c6201 pkg. al | ;
use slmlib.tns320c6201_user _pkg. al | ;

9. Instantiate FlexModels in your design, defining the ports and generics as required
(refer to the example testbench supplied with the model). You use the supplied
bus-level wrapper (model.vhd) in the top-level of your design to instantiate the
supplied bit-blasted wrapper (model_fx_vss.vhd).

Example using bus-level wrapper (model.vhd) without timing:

Ul: nodel
generic map (Fl exMdel ID => “TM5 | NST1")
port map (model ports);

July 31, 2001 Synopsys, Inc. 147

Chapter 7: Using VSS with Synopsys Models Simulator Configuration Guide

Example using bus-level wrapper (model.vhd) with timing:

Ul: nodel
generic nmap (Fl exModel | D => “TMB_| NST1",
Fl exTi m ngvbde => FLEX_TI M NG MCDE_ON,
Timng\Version => “timngversion”,
Del ayRange => “range”)
port map (nodel ports);

10. Compile your testbench as shown in the following example:
% vhdl an t est bench
11. Invoke the VSS ssimulator as shown in the following example:

% vhdl si m desi gn

Using MemPro Models with VSS

To use MemPro models with VSS, follow this procedure. Note that on Solaris, VSS
requires the Sunsoft compiler and Solaris 2.5 or later.

1. Compile adummy module to force linking of CLI library functions:

%cli -ansi -s -add -cf \
$LMC_ HOMH si M vss/ src/vss_dummy_cal |l s. ¢ vss_dummy_cal | s

2. Link the MemPro binary into the vhdlsim simulation executable:
%cli -ansi -s -build -libs $LMC HOME/ i b/ platformlib/sl mvss. o
where platformis hp700 or sundSolaris.

The new version of vhdlsim you just created must be used when you simulate a
design that includes MemPro memory models. In order to use vhdldbx on adesign
that includes MemPro models, the vhdlsim you just created must be defined as the
first vhdlsim in your UNIX search path.

3. For Solaris, set the LD _LIBRARY _DATA environment variable as follows:

% set env LD_LI BRARY_DATA $SYNCPSYS/ sparcC85/sinmlib

4. Createalogical library named sm_lib. The default physical library mapping for this
iIsSLMC_HOME/sim/vsg/lib; however, you can create Ssm_lib any where you want.

Add the following line to your .synopsys _vss.setup file:

SLIMLIB $LMC HOWE simivss/ i b
TI MEBASE PS

148 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 7: Using VSS with Synopsys Models

5. Compile the MemPro VHDL filesinto logical library sm_lib. Note that
rdramd_pkg.vhd is not required unless you are ssmulating RDRAM MemPro
models.

%vhdlan -c -wslmlib $LMC HOW si m vss/ src/ sl m hdl c. vhd
%vhdlan -¢c -wslmlib $LMC HOW si ni vss/ src/ menpr o_pkg. vhd
%vhdlan -¢c -wslmlib $LMC HOW si i vss/ src/ rdrand_pkg. vhd

I Note
The vhdlan program returns an “Error compiling file” warning message for
rdramd_pkg.vhd and revertsto interpreted code for the file. Your designs
containing MemPro RDRAMs will ssmulate properly, however.

6. After generating amodel using MemPro, compile the VHDL code for the model, as
shown in the following example:

% vhdl an -¢ nymem vhd

7. If you compiled the model to alibrary (SLM_MODELS in these examples), add a
LIBRARY statement to your testbench:

LI BRARY SLM MCDELS

Thismakes modelsin SLM_MODELS accessible from your design. You can refer
to the model using a standard VHDL convention, such asa CONFIGURATION
Statement:

QONFI GRATI ON nymem a CF nynemtst IS
FOR at est
FOR ALL : nynem use CONFI GURATI ON SLM MODELS. nynmem behav;
END FCR
END FCR,
END nynmem a;

8. Add LIBRARY and USE statements to your testbench:

LI BRARY SLM LI B
USE SLM LI B. nenpr o_pkg. al |

This aso provides access to MemPro testbench commands.

For more information on using the MemPro testbench interfaces, refer to the “HDL
Testbench Interface” and “ C Testbench Interface” chaptersin the MemPro User’s
Manual.

9. Instantiate MemPro models in your design. Define ports and generics as required.
For information on generics used with MemPro models, refer to “Instantiating
MemPro Models’ on page 32. For information on message level s and message level
constants, refer to “Controlling MemPro Model Messages” on page 33.

July 31, 2001 Synopsys, Inc. 149

Chapter 7: Using VSS with Synopsys Models Simulator Configuration Guide

10. Compile your design as shown in the following example:
% vhdl an desi gn_nane
11. Invoke VSS on your design as shown in the following example:

% vhdl si m desi gn_nane

Using Hardware Models with VSS

To use hardware models with VSS, follow this procedure:

1. Make sure VSSis set up properly and al required environment variables are set, as
explained in “ Setting Environment Variables” on page 141. Also, make sure you
have the VSS-LMSI key in your license file for the interface licensing.

2. Add the hardware model install tree to your path variable, as shown in the following
example:

% set path=(/install/sns/bin/your_platfornm $path)

3. Create the model .vhd wrapper file for your hardware model. You can use the nawk
script provided in “V SS Template Generator Script for Hardware Models’ on
page 153 to generate this file. Copy the script and paste it into an executable file
called hwm2vhdl.nawk.

4. If you generate the wrapper by hand, you must provide:

o an entity-architecture pair declaration so VSS can referenceit in alater
component instantiation statement.

o apackage for defining constants, declaring components, and instantiating
components.

VSS Example with TILS299 Hardware Model

The following example uses the TILS299 hardware model to show how to set up
hardware models for use with VSS:

1. After creating the wrapper .vhd file, analyze the TIL S299.vhd using vhdlan, as
shown in the following example:

% vhl dan Tl LS299. vhd

2. Place the hardware model in the testbench file and invoke the ssimulator. For this
TILS299 example, we used the Synopsys VHDL Debugger, as follows:

% vhdl dbx -t ns TB_TI LS299
The ns argument invokes the simulator with nanosecond timesteps.

150 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 7: Using VSS with Synopsys Models

VSS Utilities

The following hardware modeler simulator commands are supported in VSS.
Imsi list devices|ids

You can use the Imsi list devices command to list al hardware model instances by
device name, and the Imsi list ids command to list all hardware model instances by id
name. For example:

lnsi list devices

devi ce name id# instance nane | oggi ng
TI LS299 0 / TB_TI LS299/ WO O f

1nsi list ids

id# device nane i nst ance nane | oggi ng
0 TI LS299 / TB_TI LS299/ WO O f

You can aso log test vectors for the hardware model. To log by 1D number, specify an
id# and a filename. The extension .TST is appended to the vector file name. If nofile
name is specified, VSS writes to a file named device_name.id#.TST. For example:

#lmsi logon id# filename

To log vectors by instance name, specify an instance_name and filename. The extension
.TST is appended to the output file name. For example:

#lmsi logon instance_name filename

To log vectorsfor all hardware model device instances, specify all. A log fileis created
for each instance. The output files are named device_name.id#.TST. For example:

#lmsi logon all

To turn off vector logging, replace logon with logoff and omit the filename in the above
examples.

VHDL Model Generics with VSS

You can aso control hardware model behavior using VHDL genericsin your hardware
model instantiations. The nawk script on page 153 creates VHDL wrappers for
hardware models with these VHDL generics set to values that are reasonable for most
simulations. However, you can modify the values of the VHDL genericsin your
model.vhd files to suit your verification needs. For more information on supported
VHDL generics, refer to the Synopsys VHDL Smulation Interfaces Manual. Following
are descriptions of some of the most useful generics:

July 31, 2001 Synopsys, Inc. 151

Chapter 7: Using VSS with Synopsys Models Simulator Configuration Guide

LMSI_TIMING_MEASUREMENT

You can usethe LMSI_TIMING_MEASUREMENT generic to direct wheretiming
values for your simulation session come from. There are two legal values:

ENABLED The hardware model er measures and records actual pin-to-pin
timing values and passes them to the ssimulator.

DISABLED The hardware modeler passes to the simulator the pin-to-pin
timing values from the . TMG file. Thisis the default value.

LMSI_DELAY_TYPE

You can usethe LMSI_DELAY _TY PE generic to specify whether the hardware
modeler returns pin values to the ssimulator with minimum, typical, or maximum delays,
asyou can seein the following legal values:

MINIMUM Return minimum delays for pin valuesto the simulator.

TYPICAL Return typical delays for pin valuesto the ssmulator. Thisis
the default.

MAXIMUM Return maximum delays for pin values to the simulator.

LMSI_LOG

You can usethe LMSI_LOG generic to specify whether the hardware modeler logs test
vector or not. There are two legal values:

ENABLED The hardware modeler logs test vectors.
DISABLED The hardware modelers does not log test vectors. Thisisthe
default value.

152 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 7: Using VSS with Synopsys Models

VSS Template Generator Script for Hardware Models

Hereisthe nawk script that you can use to generate VHDL wrappers for the hardware
models. Because of the length this script, you will have to cut-and-paste one page a a
time from this PDF file to get the whole thing copied to your environment.

B

In your design directory type:
#
nawk -f hwnRvhdl . nank $HW/ <rmodel >. NAM > <out fi | e>. vhd
#
(where "$HW is the full path to your hardware nodeling directory)
Instantiate .vhd into your design.
#
THE SCR PT:
#
Script to generate a VSS/ Scirocco VHDL shell for a hardware nodel
using the <nodel >. NAMfile
BEG N {
pin_type =0
is_it_a vector = "No"
data_type = ""
prev_signal =""
prev_test =""
prev_nunber = ""
prev_dir =""
ending = ";"

printf "library SYNOPSYS;\n"

printf " use SYNCPSYS. ATTR BUTES. al | ;\n"
printf "library | EEE\n"
printf " use | EEE std_l ogi c_1164.al | ;\n\n"

}

$2 ~ /generic_devi ce_nane/ {
device = $3
printf "entity " device " is\n"
printf " generic\n"
printf " (\n"
printf " timng : LMSI_TI M NG MEASUREMENT ;= DI SABLED, \ n"
printf " del ay_type : LMSI_DELAY _TYPE ;= TYPI CAL; \ n"
printf " del ay : LMSI _DELAY 1= ENABLED, \ n"
printf " log : LMBI_LGG ;= DI SABLED, \ n"
printf " timng_violations : LMSI _TIM NGV QLATICNS : = DI SABLED, \ n"
printf " xprop : LMl _XPRCP := D SABLED, \ n
printf " xprop_net hod : LMl _XPRCP_METHCD = HG\N"
printf ");\n\n"
printf " port\n"
printf " (\n"

}

$4 ~ /\(in_pin\)/ || $4 ~ /\(out_pin\)/ || $4 ~/\(io_pin\)/ \
|| $4 ~ /\(power_pin\)/ {
pi n_type++

$2 ~ /\=/ || ($0 ~ /"$/ && pin_type ~ /3/) {

if (pin_type == 1) {
direction = "in

}
else if (pin type == 2) {
direction = "out

}
else if (pin_type == 3) {

direction = "inout"
}
el se {

next
}
current_signal = $1 " "
gsub(/\{/, "", current_signal)
gsub(/\"'/, "", current_signal)

current _test = current_signal

July 31, 2001 Synopsys, Inc. 153

Chapter 7: Using VSS with Synopsys Models Simulator Configuration Guide

gsub(/[0-9]+ /, " ", current_test)

n = split(current_signal, array_a, "[a-zA-Z]")
current _nunber = array_a[n]
gsub(/ /, "", current_nunber)

if (prev_signal ~/[0-9]+ /) {
if (current_test == prev_test) {
if (is_it_a vector == "No") {
data_start = prev_nunber

if ((current_nunber == prev_nunber - 1) || (current_nunber == prev_nunber + 1))

is_it_a vector = "Yes"
prev_signal = current_signal
prev_test = current_test
prev_nunber = current_nunber
next

el se {
if (is_it_a_vector == "Yes") {
total = prev_nunber + data start
if (prev_nunber > data_start) {
data_end = data_start
data_start = prev_nunber

el se {
data_end = prev_nunber
}
data_type = "_vector (" data start " " "downto " data_end ")"
prev_signal = prev_test
}
}
if (prev_signal !="") {
gsub(/ /, "", prev_signal)
n =split(prev_signal, array_c, "[a-zA-z0-9_]")
y=20-n
if (y>0 {

for (i =1; i <= 20-n; i++) {
prev_signal = prev_signal

}
if (($0 ~ /A$/.) &% (pin_type == 3)) {

ending = "'
}
printf " " prev_signal " : " prev_dir " std_logic" data_type ending "\n"
}
data_type = ""
is_it_a vector = "No"
updown = ""

prev_signal = current_signal
prev_test = current_test
prev_dir = direction
prev_nunber = current_nunber

}
END {
printf ");\n"
printf "end " device ";\n\n"
printf "architecture LMSl of " device " is\n"
printf " attribute FCREIGN of LMBlI : architecture is \"Synopsys: LMSI\";\n"
printf " begi n\ n"
printf "end LMSI;\n\n"
}

154 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 8: Using MTI VHDL with Synopsys Models

8

Using MTI VHDL with Synopsys Models

Overview

This chapter explains how to use SmartModels, FlexModels, MemPro models, and
hardware models with MTI VHDL. The procedures are organized into the following
major sections:

. “Setting Environment Variables’ on page 155

. “Using SmartModels with MTI VHDL” on page 157

. “Using FlexModelswith MTI VHDL” on page 160

. “Using MemPro Modelswith MTI VHDL” on page 163
. “Using Hardware Models with MTI VHDL” on page 165

Setting Environment Variables

First, set the basic environment variables. If you are not using one of the model types,
skip that step. In some cases the procedures that follow in this chapter include steps for
setting additional environment variables.

1. Set the LMC_HOME variable to the location of your SmartModel. FlexModel, and
MemPro model installation tree, as follows:

% setenv LMC HOMVE path_to_nodel s_installation
2. Make surethat MT1 VHDL is set up properly in your environment.

3. SettheLM_LICENSE_FILE or SNPSLMD_LICENSE_FILE environment variable
to point to the product authorization file, as shown in the following example:

% setenv LM LI CENSE Fl LE pat h_t o_product _aut hori zation_file
% set env SNPSLMD LI CENSE FI LE path_to_product _authorization_file

July 31, 2001 Synopsys, Inc. 155

Chapter 8: Using MTI VHDL with Synopsys Models Simulator Configuration Guide

y Caution

156

You can put license keys for multiple products (for example, SmartModels and
hardware models) into the same authorization file. If you need to keep separate
authorization files for different products, use a colon-separated list (UNIX) or
semicolon-separated list (NT) to specify the search path in your variable setting.

Do not include la_dmon-based authorizations in the same file with snpsimd-
based authorizations. If you have authorizations that use la_dmon, keep
them in a separate license file that uses a different license server (Imgrd)
process than the one you use for snpslmd-based authorizations.

4. If you are using the hardware modeler, set the LM_DIR and LM_LIB environment

variables, as shown in the following examples:

% setenv LM D R hardware_rnodel _install _path/sns/Imdir
% setenv LM LI B hardware_rnodel _i nstal | _pat h/ sns/ nodel s: \
har dwar e_nodel _i nstal | _pat h/ sns/ maps

If you put your modelsin adirectory other than the default of /sms/models, modify
the above variable setting accordingly.

. Depending on your platform, set your load library variable to point to the platform-

specific directory in $LMC_HOME, as shown in the following examples:
Solaris:

% setenv LD LI BRARY PATH $LMC HOVE/ | i b/ sun4Sol ari s. |i b: $LD LI BRARY PATH
Linux:

% set env LD LI BRARY_PATH $LMC_HOVE/ | i b/ x86_I i nux. | i b: $LD LI BRARY_PATH
AlX:

% set env LI BPATH $LMC HOWE/ | i b/ i bnrs. i b: $LI BPATH
HP-UX:

% set env SHLI B_PATH $LMC HOVE | i b/ hp700. | i b: $SH.I B_PATH
NT:

Make sure that %L MC_HOME%\lib\pcnt.lib isin the Path user variable.

Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 8: Using MTI VHDL with Synopsys Models

Using SmartModels with MTI VHDL

To use SmartModels with MTI VHDL, follow this procedure:

1. Open the modelsim.ini filein atext editor and uncomment the lines corresponding
to the platform you are using:

; Mdel Simis interface to Logic Mdeling s Snart Model SWFT software
;libsm= $MDEL TECH | i bsm sl
; Mddel Simis interface to Logic Mddeling s Srart Model SWFT software
(Wndows NI)
l'ibsm= $MDEL_TECH | i bsm dI |
; Logic Mddeling s Smart Model SWFT software (HP 9000 Series 700)
; libswift = $LMC HOME i b/ hp700. 1ib/libswift. sl
; Logic Modeling s Smart Model SWFT software (1 BM R SC Syst end 6000)
; libswift = $LMC HOW/ lib/ibnmrs.lib/swft.o
; Logic Mddeling s SmartModel SWFT software (Sun4 Sol ari s)
libswift = $LMC HOW/ |i b/sun4Sol aris.lib/libswft.so
; Logic Mddeling s SmartModel SWFT software (Sund4 Sun(Cy)
; do setenv LD LI BRARY_PATH $LMC HOWE |i b/ sun4SunGCs. |i b
;and run "vsimsw ft".
; Logic Modeling s SmartMdel SWFT software (Wndows NI)
; libswift = $LMC HOWE lib/pent.lib/libswft.dll

2. To create the SmartModel Library VHDL wrappers or templates, run the MTI
sm_entity script with any optional arguments. The sm_entity script takes
SmartModel names as input and writes the VHDL output to STDOUT. You can
redirect the output to afile. Run sm_entity as follows. For more information, refer
to “sm_entity Command Reference” on page 160.

%smentity -c nodel > nodel . vhd
For example:
%smentity -c tt1373 > ttl373.vhd

generates the following VHDL file, which has both entity and component
declarations for the model. Edit the resulting VHDL file to add the portions of text
that are highlighted in the following example:

library | EEE;

use | EEE std |l ogic 1164.all;

entity tt1373 is

generic (TimngVersion : STRING:= "SN74LS373";
Del ayRange : STR NG : = "MAX';

Model MapVersion : STRING : = "01008");
port (C: in std_logic;

in std_|ogic;

in std_|logic;

in std_|logic;

in std_|logic;

EBBE

July 31, 2001 Synopsys, Inc. 157

Chapter 8: Using MTI VHDL with Synopsys Models Simulator Configuration Guide

in std |ogic;
in std |ogic;
in std_|ogic;
in std_|ogic;
in std_|ogic;
out std_| ogic;
out std_| ogic;
out std_| ogic;
out std | ogic;
out std | ogic;
out std | ogic;
out std_| ogic;
out std_logic);

BABLRRBBREBIURH

®
=
2

architecture Srart Model of ttl373 is
attribute FOCREIGN : STRING
attribute FCREIGN of SmartMdel : architecture is "sminit
$MODEL_TECH i bsm sl ; ttl373";
begi n
end Smart Model ;
library ieee; use ieee.std |ogic_1164.all; package conp is
conponent ttl 373
generic (TimngVersion : STRING:= "SN74LS373";
Del ayRange : STR NG : = "MAX';
Model MapVersion @ STRING : = "01008");
port (C: in std_|ogic;
: in std_logic;
std_| ogic;
std_I ogi c;
std_I ogi c;
std_I ogi c;
std_| ogic;
std_| ogic;
std_| ogic;
std_I ogi c;
out std_ | ogic;
out std_ | ogic;
out std_ | ogic;
out std_ | ogic;
out std_ | ogic;
out std_ | ogic;
out std_| ogic;
out std logic);
end conponent ;
end conp;

505 53 3 33 3 3 335

BABKRRVBBRGBIEHRIRR

158 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 8: Using MTI VHDL with Synopsys Models

3. Compile the model .vhd into alibrary called Sim_lib, asfollows:

%vlib slmlib
%vmap slmlib simlib
%vcom-work simlib nodel.vhd

4. Instantiate the SmartModel component in your testbench by specifying the required
SWIFT parameters in the generic map. Here is an example instantiation for the
TTL373 model, with the library and use statements, the instance (U1), and the
TimingVersion and DelayRange options specified in the generic map for the
TTL373 SmartModel Library component.

Use the SmartModel Library (sim_lib) just as you would use any other VHDL
resource library. Here is an example:

library | EEE

use | EEE STD LOd C 1164. ALL;
library SLMLIB;

use SLM LI B. COMPONENTS. ALL;

entity TestBench is
end Test Bench;

archi tecture ArchTest Bench of TestBench is
signal AL B, C STD LCAC

UL : TTL373 generic map (Tinm ngVersion => "SN74LS373",
Del ayRange => "Typ")
port map (A=>Dl, B=>D2, C= Q);

Pl : process
begi n

For more information on SmartModel configuration parameters, refer to “Using
SmartModels with SWIFT Simulators’ on page 18.

5. Compile the top-level testbench to awork library (MYWORK) as shown in the
following example:

%vlib MWRK
% vcom -wor k MYWORK t op. vhd

6. Invoke the simulator by running vsim, as shown in the following example:
%vsim-lib MWWRK CFGTEST
For information on how to use MTI VHDL, refer to the“ModelSm User’'s Manual .”

July 31, 2001 Synopsys, Inc. 159

Chapter 8: Using MTI VHDL with Synopsys Models Simulator Configuration Guide

sm_entity Command Reference
The command reference for sm_entity is asfollows.

Syntax

sm_entity [options] [SmartModel |

Arguments

-read Read SmartModel names from standard input.
-xe Do not generate entity declarations.

-xa Do not generate architecture bodies.

-C Generate component declarations.

-al Select all modelsin the SmartModel Library.
-V Display progress messages.

By default, sm_entity generates an entity and architecture. Optionally, you can include
the component declaration (-c), exclude the entity (-xe), or exclude the architecture
(-xa).

Using FlexModels with MTI VHDL

To use FlexModelswith MTI VHDL, follow this procedure. This procedure covers
userson UNIX and NT. If you are on NT, substitute the appropriate NT syntax for any
UNIX command line examples (percent signs around variables and backslashes in
paths).

1. Create aworking directory and run flexm_setup to make copies of the model's
interface and example files there, as shown in the following example:

% $LMC_HOMWE/ bi n/ fl exm setup -dir workdir nodel _fx

160 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide

Chapter 8: Using MTI VHDL with Synopsys Models

You must run flexm_setup every time you update your FlexModel installation with
anew model version. Table 20 describes the FlexModel interface and examplefiles
that the flexm_setup tool copies.

Table 20: FlexModel MTI VHDL Files

File Name Description L ocation

model _pkg.vhd Model command procedure callsfor HDL | workdir/src/vhdl/
Command Mode.

model _user_pkg.vhd | Clock frequency setup and user wor kdir/src/vhdl/
customizations.

model_fx_mti.vhd A SWIFT wrapper for the UNIX model. wor kdir/examples/vhdl/

model_fx_mti_nt.vhd A SWIFT wrapper for the NT model. wor kdir/examples/vhadl/

model _fx_comp.vhd Component definition for use with the model | workdir/examples/vhdl/

entity defined in the above SWIFT wrapper
file. Thisis put in a package named
“COMPONENTS” when compiled.

model .vhd

A bus-level wrapper around the SWIFT model.
This allows you to use vectored ports for the
model in your testbench. Thisfile assumes that
the “COMPONENTS’ package has been
installed in the logical library “sm_lib”.

wor kdir/examples/vhdl/

model_tst.vhd

A testbench that instantiates the model and
shows how to use basic model commands.

wor kdir/examples/vhdl/

2. On NT, add the following to your modelsim.ini file:
i bsm= $MDEL_TECH | i bsm dl |
and add the following to your PATH:
% MC_ HOVE% | i b\pent. i b
Thisisso MTI can find the sm_mti.dll file.

3. Update the clock frequency supplied in the model _user pkg.vhd file to correspond
to the desired clock period for the model. After running flexm_setup, thisfileis

located in:

wor kdi r/ src/ vhdl / model _user _pkg. vhd
where workdir is your working directory.

July 31, 2001

Synopsys, Inc.

161

Chapter 8: Using MTI VHDL with Synopsys Models Simulator Configuration Guide

4. Add the following to your vsystem.ini or modelsim.ini file.

sl mlib=$LMC_HOVE/ si minti/lib
VHDL93 = 1

5. Compile the FlexModel VHDL filesinto logical library Ssim_lib as follows:

%nti_path/bin/vlib $LMC_ HOME/ siminti/lib

%nti_path/bin/vcom-work slmlib $LMC HOWE/ siminmi/src/sl mhdlc.vhd (UN X)
%nti_path/bin/vcom-work slmlib $LMC HOW simnmi/src/sl mhdlc_nt.vhd (NT)
%nti_path/bin/vcom-work slmlib $LMC HOW si minmii/src/fl exmodel _pkg. vhd

% nti_path/bin/vcom-work slmlib workdir/src/vhdl /model user pkg. vhd

% nti_path/bin/vcom-work slmlib workdir/src/vhdl /model _pkg. vhd

% nti_path/bin/vcom-work slmlib workdir/exanpl es/ vhdl / nodel _fx_conp. vhd

% i _path/bin/vcom-work slmlib workdir/exanpl es/vhdl /nodel _fx_nti.vhd (UN X)
% nti_path/bin/vcom-work slmlib workdir/exanpl es/vhdl /model fx_mti_nt.vhd (NT)
% nti_path/bin/vcom-work slmlib workdir/exanpl es/vhdl / nodel . vhd

6. Add LIBRARY and USE statements to your testbench:

library sImlib;

use slmlib.flexnodel _pkg.all;
use sl mlib. model _pkg.all;

use sl mlib.model user pkg.all;

For example, you would use the following statement for the tms320c6201_fx
model:

use slmlib.tns320c6201 pkg. al | ;
use slmlib.tns320c6201 user pkg. al | ;

7. Instantiate FlexModels in your design, defining the ports and generics as required
(refer to the example testbench supplied with the model). You use the supplied
bus-level wrapper (model.vhd) in the top-level of your design to instantiate the
supplied bit-blasted wrapper (model_fx_mti.vhd for UNIX or model_fx_mti_nt.vhd
for NT).

Example using bus-level wrapper (model.vhd) without timing:

Ul: nodel
generic map (Fl exMdel ID => “TM5 | NST1")
port map (nodel ports);

Example using bus-level wrapper (model.vhd) with timing:

Ul: nodel
generic map (Fl exModel | D => “TM5_| NST1",
Fl exTi m ngvbde => FLEX_TI M NG MDE_ON,
Ti mngVersion => “timngversion”,
Del ayRange => “range”)
port map (nmodel ports);

8. Compile the testbench as shown in the following example:

% vcom t est bench

162 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 8: Using MTI VHDL with Synopsys Models

9. Invoke the MTI VHDL simulator as shown in the following example:

% vsi m desi gn

Using MemPro Models with MTI VHDL

To use MemPro modelswith MTI VHDL, follow this procedure:
1. Perform one of these platform-dependent steps.

a. On NT platforms, verify that the shared library is visible from the current
working directory. The path to the shared library
(%LMC_HOME%\lib\pcnt.lib) was set at MemPro installation.

b. On UNIX and Linux platforms, append the MemPro shared library location to
the library search path environment variable setting.

On Solarisor Linux workstations:

% set env LD LI BRARY PATH \
$LMC_HOVE/ 1i b/ pl at. i b: $LD LI BRARY_PATH

where plat is sundSolaris or x86_linux, respectively.
On HP-UX workstations:

% setenv SHLI B PATH \
$LMC_ HOWE | i b/ hp700. | i b: $LD_LI BRARY_PATH

2. Create alocal copy of modelsim.ini in the current working directory and alocal
logical library named sim_lib:

%vlib slmlib
Y%vmap slmlib ./sImlib

3. Open the modelsim.ini file in atext editor, uncomment the line that enables VHDL-
1993, and uncomment the lines that enable SWIFT; uncomment only the lines that
correspond to the platform you are using:

; Turn on VHDL-1993 as the default. Nornally is off.
; VHDLO3 = 1

; Model Simis interface to Logic Mdeling s Srart Model SWFT software
;1ibsm= $MDEL_TECH | i bsm sl
; Model Sims interface to Logic Mddeling s Srart Model SWFT software
(Wndows NI)
; libsm= $MDEL_TECH | i bsm dI |
; Logic Modeling s Smart Model SWFT software (HP 9000 Series 700)
; libswift = $LMC HOME i b/ hp700. 1ib/1ibswift. sl
Logi c Mbdeling' s Smart Mdel SWFT software (I BM R SC Syst erd 6000)

July 31, 2001 Synopsys, Inc. 163

Chapter 8: Using MTI VHDL with Synopsys Models Simulator Configuration Guide

; libswift = $LMC HOW/ lib/ibnmrs.lib/swft.o

; Logic Mdeling s Snmart Model SWFT software (Sun4 Sol ari s)
libsw ft = $LMC HOW/ |i b/ sun4Sol aris.lib/libswft.so

; Logic Modeling s Smart Model SWFT software (Sun4 SunQs)

;[7Cdo setenv LD LI BRARY_PATH $LMC HOWE | i b/ sun4SunCs. |i b

;[7Cand run "vsimsw ft".

; Logic Modeling s Srart Model SWFT sof tware (Wndows NT)

; libswift = $SLMC HOWE lib/pent.lib/libswft.dll

T3> Note
This“UNIX-like” syntax isvalid on NT workstations as well asall UNIX
platforms.

4. Compile the MemPro VHDL filesinto your local sim_lib.

a. If you are smulating RDRAM MemPro models:

%vcom-work slmlib $LMC HOME siminti/src/ sl mhdlc.vhd
%vcom-work slmlib $LMC HOWE si minti/src/ menpro_pkg. vhd
%vcom-work simlib $LMC HOW siminti/src/rdramd_pkg. vhd

b. If you are not ssmulating RDRAM MemPro models:

%vcom-work slmlib $LMC HOME siminti/src/ sl mhdlc.vhd
%vcom-work slmlib $LMC HOWE si minti/src/ menpro_pkg. vhd

5. After generating a model using MemPro, compile the VHDL code for the model.

a. If you are smulating SDRAM Module MemPro models, you must compile
these three filesin the following order:

% vcom -wor k sl m nodel s nodel _eepr om vhd
% vcom -wor k sl m nodel s nodel _sdram vhd
% vcom -wor k sl m nodel s nodel . vhd
b. If you are not smulating SDRAM Module MemPro models:

% vcom -wor k sl m nodel s nodel . vhd

6. If you compiled the model to alibrary (SLM_MODELS in these examples), add a
LIBRARY statement to your testbench:

LI BRARY SLM MCDELS

164 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 8: Using MTI VHDL with Synopsys Models

This makes modelsin SLM_MODELS accessible from your design. You can refer
to the model using a standard VHDL convention, such asa CONFIGURATION

Statement:
CONFI GRATI ON nymem a CF nynemtst IS
FOR at est
FOR ALL : nynem use CONFI GURATI ON SLM MODELS. nyrmem behav;
END FCR,
END FCR,
END nynmem a;

7. Add LIBRARY and USE statements to your testbench:

LI BRARY SLM LI B
USE SLM LI B. nenpro_pkg. al |

This aso provides access to MemPro testbench commands.

For more information on using the MemPro testbench interfaces, refer to the “HDL
Testbench Interface” and “C Testbench Interface” chaptersin the MemPro User’s
Manual.

8. Instantiate MemPro models in your design. Define ports and generics as required.
For information on generics used with MemPro models, refer to “Instantiating
MemPro Models’ on page 32. For information on message level s and message level
constants, refer to “Controlling MemPro Model Messages” on page 33.

9. Compile your design as shown in the following example:
% vcom desi gn_nane
10. Invoke the simulator on your design as shown in the following example:

% vsi m desi gn_nane

Using Hardware Models with MTI VHDL

To use hardware models with MTI VHDL, follow this procedure:

1. MakesureMTI VHDL isset up properly and all required environment variables are
set, as explained in “ Setting Environment Variables’ on page 155.

2. Add the hardware model install tree to your path variable, as shown in the following
example:

% set path=(/install/sns/bin/your_platfornm $path)

3. Modify the modelsim.ini or project_name.mpf file to include the hardware
modeling information. Locate the line:

[1 nc]

July 31, 2001 Synopsys, Inc. 165

Chapter 8: Using MTI VHDL with Synopsys Models Simulator Configuration Guide

4.

5.

Remove the semicolons from the libhm line and the libsfi line you will be changing
for your platform. Provide the correct path for the SFI. For example:

; Mdel Simis interface to Logic Mdeling s hardware nodel er SFl software
l'i bhm = $MODEL_TECH | i bhm sl

; Logi c Model i ng' s hardware nodel er SFI software (HP 9000 Series 700)
libsfi = hardware _nodel install_path/lib/platformnlibsfi.ext

; Logic Model ing' s hardware nodel er SH software (I BM R SC Syst emi 6000)

; libsfi = <sfi_dir>/1ib/rs6000/!1ibsfi.a

; Logic Modeling' s hardware nodel er SFHI software (Sun4 Sol ari s)

; libsfi = <sfi_dir>/lib/sund.solaris/libsfi.so
; Logi c Model i ng' s hardware nodel er SFI software (Sun4 SunCs)
; libsfi = <sfi_dir>/1ib/sund.sunos/libsfi.so

; Logi c Mbdeling s hardware nodel er SFI software (Wndow NT)
; libsfi = <sfi_dir>/lib/pcnt/Imsfi.dll

where ext isso for Solaris. afor AlX, or §l for HP-UX.

Run the hm_entity script to generate a .vhd file for the hardware model as shown in
the following example. For details on hm_entity, refer to “hm_entity Command
Reference” on page 167.

You are now ready to use the model in your simulation.

MTI VHDL Example Using TILS299 Hardware Model

Hereis an example that uses the TIL S299 hardware model. Follow these steps:

166

1.
2.

Put the TILS299 hardware moddl in the testbench.

Create aworking library directory by invoking vsim -gui and selecting
Library/Create. This creates a working directory called work.

. Compile the .vhd files, as shown in the following example:

% vcom -wor k work TI LS299. vhd TB_TI LS299. vhd

This step compilesthe two VHDL files and puts them in the specified work library.
Note that the TIL S299.vhd file must be specified first or you get an error because
the TB_TILS299.vhd utilizes the TIL S299 entity.

. Invoke the simulator as shown in the following example:

% vSsi m

5. When the window comes up, select the testbench to load.

6. Use the View/Wave pull-down menu to get the wave window. In the wave window,

use File/Load Format wave.do to get the waveforms. After the waveform viewer
comes up and the vsim prompt appears, enter “run 10000".

Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 8: Using MTI VHDL with Synopsys Models

7. You can aso use some of the hardware model utilities listed below, but the
commands must be entered at the simulator command prompt because they are not
VHDL statements. For the TIL S299 exampl e, you can also put these commandsinto
the .do file. Hereis an example wave.do file:

Imvectors on /tbh_tils299/ W0 TEST. VEC

add wave -logic {/clk}
add wave ~-logic {/clr}
add wave -logic {/sl}
add wave -logic {/s0}

add wave -logic {/g1}
add wave -logic {/g2}

add wave -logic {/sr}
add wave ~-logic {/sl}
add wave -logic {/qa}

add wave -logic {/qgh}
add wave -literal {/t}

hm_entity Command Reference
The hm_entity script creates .vhd files for hardware models.

Syntax

hm_entity [options] shell_software_filename

Arguments

-xe Do not generate entity declaration.

-xa Do not generate architecture body.

-C Generate component declaration

-93 Use extended identifiers where needed

July 31, 2001 Synopsys, Inc. 167

Chapter 8: Using MTI VHDL with Synopsys Models Simulator Configuration Guide

Example

For example, the following hm_entity invocation:
% hmentity TILS299. MOL > TI LS299. vhd

generates a .vhd file that looks like the following:

library ieee;
use ieee.std | ogic 1164. all
entity TILS299 is
generic(DelayRange : STRING:= "Max");
port (& : in std_logic;
CLR : in std_|l ogic;
SR : in std_logic;
K: in std_|logic;
in std_logic;
in std_|logic;
in std_|logic;
in std_|ogic;
out std | ogic;
out std | ogic;
nout std_l ogic;
nout std_l ogic;
nout std_l ogic;
nout std_l ogic;
nout std_l ogic;
nout std_l ogic;
nout std_l ogic;
nout std_logic);

PRBE

UTIWO:DG)ITIIQQ(£

end;

architecture Hardware of TILS299 is
attribute FOREIGN : STR NG
attribute FCREIGN of Hardware : architecture is "hminit
$MODEL TECH | i bhm sl ; TILS299. MOL"
begi n
end Har dwar €;

168 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 8: Using MTI VHDL with Synopsys Models

MTI VHDL Utilities
The following hardware modeler simulator commands are supported in MTI VHDL.:
Im_vectorson | off instance_name filename

The Im_vectors utility turns on vector logging for the hardware model instance. The
vectors record stimulus to the input and 1/0 pins and responses from the output and 1/0
pins during simulation.

Im_measure_timing on | off instance_name filename

TheIm_measure_timing utility causes the modeler to measure timing between an input
transition and resulting output transition on the hardware model. Note that thisis only
supported on LM-family systems.

Im_timing_checkson | off instance_name

The Im_timing_checks utility allows you to enable or disable timing checks such as
setups and holds.

Im_loop_patternson | off instance_name

Thelm_loop_patterns utility causes the hardware modeler to continually replay the
pattern history of a specified device instance.

Im_unknowns on | off instance_name

The Im_unknowns utility turns off unknown propagation. This“on_unknown” feature
Isalso inthe .OPT filefor hardware models. It modifies the system's default handling of
device input and 1/0 pinsthat are set to unknown by the simulator. This utility does not
turn on unknown propagation unlessit is also turned on in the .OPT file, but it can
override the setting in the .OPT file to turn this feature off when it is set to on in the
.OFT file.

July 31, 2001 Synopsys, Inc. 169

Chapter 8: Using MTI VHDL with Synopsys Models Simulator Configuration Guide

170 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

9

Using Cyclone with Synopsys
Models

Overview

This chapter explains how to use MemPro models and hardware models with Cyclone.
The procedures are organized into the following major sections:

. “Setting Environment Variables’ on page 171

. “Using SmartModels with Cyclone” on page 173

. “Using FlexModels with Cyclone” on page 173

. “Using SmartModels with Cyclone” on page 173

. “Using Hardware Models with Cyclone” on page 174

Setting Environment Variables

First, set the basic environment variables. If you are not using one of the model types,
skip that step. In some cases the procedures that follow in this chapter include steps for
setting additional environment variables.

1. Set the LMC_HOME variable to the location of your MemPro installation tree, as
shown in the following example:

% setenv LMC HOME path_to _nodel s_installation

2. SettheLM_LICENSE _FILE or SNPSLMD_LICENSE_FILE environment variable
to point to the product authorization file, as shown in the following example:

% setenv LM LI CENSE Fl LE pat h_t o_product _aut hori zation_file
% set env SNPSLMD LI CENSE FI LE path_to_product _authorization_file

July 31, 2001 Synopsys, Inc. 171

Chapter 9: Using Cyclone with Synopsys Models Simulator Configuration Guide

y Caution

172

You can put license keys for multiple products (for example, MemPro models and
hardware models) into the same authorization file. If you need to keep separate
authorization files for different products, use a colon-separated list (UNIX) or
semicolon-separated list (NT) to specify the search path in your variable setting.

Do not include la_dmon-based authorizations in the same file with snpsimd-
based authorizations. If you have authorizations that use la_dmon, keep
them in a separate license file that uses a different license server (Imgrd)
process than the one you use for snpslmd-based authorizations.

. Set the SYNOPSY S_CY environment variable to point to the Cyclone installation

tree, as shown in the following example:
% set env SYNCPSYS_CY Cyclone_install _path

. Set the MA_CY environment variable to point to the ma_cyclone directory, as

shown in the following example:
% setenv MA_CY Model Access_install _path

. If you are using the hardware modeler, set the LM_DIR and LM_LIB environment

variables, as shown in the following examples:

% setenv LM D R hardware_rnodel _install _path/sns/Imdir
% setenv LM LI B hardware_nodel _instal |l _path/sns/ nodel s: \
har dwar e_nodel _i nstal | _pat h/ sns/ maps

If you put your modelsin adirectory other than the default of /sms/models, modify
the above variable setting accordingly.

. Depending on your platform, set your load library variable to point to the platform-

specific directory in LMC_HOME, as shown in the following examples:
Solaris:

% set env LD LI BRARY _PATH $LMC HOME/ | i b/ sun4Sol ari s. | i b: $LD LI BRARY PATH
Linux;

% set env LD LI BRARY PATH $LMC HOME/ | i b/ x86_I i nux. | i b: $LD LI BRARY PATH
AlX:

% set env LI BPATH $LMC HOWE/ | i b/i bnrs. |i b: $LI BPATH
HP-UX:

% set env SHLI B_PATH $LMC_HOME/ | i b/ hp700. | i b: $SH.I B_PATH
NT:

Make sure that %L MC_HOME%\lib\pcnt.lib isin the Path user variable.

Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

Using SmartModels with Cyclone

For information on using SmartM odelswith Cyclone, refer to “Using SmartModels with
SWIFT Simulators’ on page 18.

Using FlexModels with Cyclone

To use FlexModels with Cyclone, you use Direct C Control. For information on the
required SWIFT parameters for FlexModels (which differ from regular SmartModels)
and how to use Direct C Control, refer to “Using FlexModels with SWIFT Simulators’
on page 24.

Using MemPro Models with Cyclone

To use MemPro models with Cyclone, follow this procedure. Note that RDRAM models
are not supported on Cyclone.

1

For HP-UX, Cyclone incorrectly uses “hpux10.lib” in paths to platform-specific
directories. The correct path leaf should be “hp700.lib.” Correct the paths by
creating symbolic links as follows:

%In -s $LMC HOW/ |i b/ hp700.1ib $LMC HOW |i b/ hpux10.1ib
%Iln -s $LMC_ HOME nenpro/ | i b/ hp700.1ib $LMC HOVE menpro/ | i b/ hpux10.lib

. Createalogical library named silm_lib. The default physical library mapping for this

isSLMC_HOME/sim/cyclone/lib, but you can put the silm_lib anywhere you want.
Add the following line to your .synopsys_vss.setup file, and adjust accordantly if
you put skm_lib anywhere but the default location:

SLIMLIB $LMC HOWE si ni cyclone/lib

. Compile the MemPro VHDL filesinto logical library sim_lib.

%cyan -nc -synthoff -lang vhdl -wslmlib\
$LMC_HOWH si i cycl one/ src/ sl m hdl c. vhd

%cyan -nc -synthoff -lang vhdl -wslmlib\
$LMC_HOWH si i cycl one/ src/ menpr o_pkg. vhd

. After generating amodel using MemPro, compile the VHDL code for the model, as

shown in the following example:
% cyan -nc -synthoff -lang vhdl nynem vhd

. If you compiled the model to alibrary (SLM_MODELS in these examples), add a

LIBRARY statement to your testbench:
LI BRARY SLM MODELS

July 31, 2001 Synopsys, Inc. 173

Chapter 9: Using Cyclone with Synopsys Models Simulator Configuration Guide

This makes modelsin SLM_MODELS accessible from your design. You can refer
to the model using a standard VHDL convention, such asa CONFIGURATION
Statement:

CONFI GRATI ON nymem a CF nynemtst IS
FOR at est
FOR ALL : nynem use CONFI GURATI ON SLM MODELS. nyrmem behav;
END FCR,
END FCR,
END nynmem a;

. Add LIBRARY and USE statements to your testbench:

LI BRARY SLM LI B
USE SLM LI B. nenpro_pkg. al |

This also provides access to MemPro testbench commands.
For more information on using the MemPro testbench interfaces, refer to the “HDL

Testbench Interface” and “C Testbench Interface” chaptersin the MemPro User’s
Manual.

. Instantiate MemPro models in your design. Define ports and generics as required.

For information on generics used with MemPro models, refer to “Instantiating
MemPro Models’ on page 32. For information on message level s and message level
constants, refer to “Controlling MemPro Model Messages” on page 33.

. Compile your design as shown in the following example:

% cyan desi gn_nane. vhd

9. Invoke Cyclone on your design as shown in the following example:

%cysim(-4state | -2state) -i design_name

Using Hardware Models with Cyclone

This section describes how to set up and configure Release 3.5a of Model Access for
Cyclone. After completing the setup tasks, for usage information refer to “Using
Hardware Models with Cycle-Based Simulators’ on page 182.

The hardware modeling configuration you choose affects the performance you get when
running hardware models in Cyclone simulations. This section reviews the
fundamentals of the M odel Source and L M-family hardware modeling systems, and then
provides guidelines for a number of possible configurations.

174

Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

ModelSource System Hardware and Software

If you are using a Model Source system, your hardware modeling system configuration
consists of one or more MS-3400 or M S-3200 units, plus a M odel Source Processor. (For
adescription of a Model Source Processor, refer to the Model Source Hardware
Installation Guide. For information about the software, refer to the Model Source User’s
Manual.) The Model Source Processor is connected to the rest of your network via
Ethernet, and to the M S-3400/M S-3200 units viafiber-optic cable.

The Model Source Processor provides the CPU for the Model Source units, and at a
minimum, it executes the runtime modeler software (RMS) for the modeling system.
However, you might decide to run your simulation from the M odel Source Processor
workstation as well, unless you are using an LM-1400 as the M odel Source Processor.

The R3.3aand later Model Source RM S has been enhanced to deliver higher
performance in al configurations, and has been optimized to generate the maximum
performance gain over previous rel eases of the RM S when used by asingle user running
the simulation from the M odel Source Processor workstation. This enhanced rel ease of
the RMSisavailable for Sun Solaris and HP 700 Model Source Processor workstations.

LM-1400/LM-family System Hardware and Software

If you are using one of the LM-family hardware model servers (LM-1200 or LM-1400),
your hardware modeling system configuration consists of the LM-family unit. This
family of modelersincludes a dedicated CPU within the modeling system chassis. The
L M-family system connects to the rest of your network via Ethernet. The LM-family
CPU runsthe standard RMS. You run your simulations from other workstations on the
Ethernet network.

Configuration Options

Figure 7 on page 177 illustrates some of the supported Cyclone configurations, labeled
from A (the highest performance choice) to D (lower performance options).

Option A

The recommended configuration for highest performance in cycle-based smulation is
an MS-3400 or MS-3200 hardware modeling system with the simulation executing on
the M odel Source Processor workstation (which has the SBus or EISA card connection
to the modeling systems). This configuration eliminates network overhead in the
communication between the modeling system processor and the simulation.

July 31, 2001 Synopsys, Inc. 175

Chapter 9: Using Cyclone with Synopsys Models Simulator Configuration Guide

Option B
In this configuration, the Cyclone simulation is executing on a different workstation

from the M odel Source Processor workstation. In this case, the Ssmulation workstation
and the M odel Source Processor workstation must be on the same Ethernet subnet.

Option C
Because the LM-1400 has its own dedicated CPU within the LM-1400 chassis, the
simulation must be run on a separate workstation. For best performance with an

LM-1400 (or any of the LM-family hardware model servers), keep the simulation
workstation and the LM-1400 on the same Ethernet subnet.

Option D

In this configuration, the hardware modeling system (which can be either a

M odel Source system or an LM-family hardware model server) exists on a different
Ethernet subnet from the workstation on which the Cyclone simulation is running.
Because of the extra overhead of the router, thisis alower performance configuration.

176 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

ModelSource Processor
(Sun SPARC or HP700
with SBus or EISA card)
running Cyclone and MS-3400/MS-3200

ModelSource RMS

BEST Fiber link
PERFORMANCE
OPTION
High-performance ModelSource Processor
workstation running (Sun SPARC or HP700)
| running ModelSource RMS
Cycope 9 400/MS-3200
Ethernet Fiber link
(Same subnet)
. LM-1400
High-performance .
workstation running runnlng LM-1400 RMS
Cyclone
Ethernet *
(Same subnet)
High-performance ModelSource Processor
workstation running (Sun SPARC or HP700)
Cyclone running ModelSource RMS
D Router Fiber link
Eth . MS-3400/MS-3200
erne ——
(different subnets)
LM-1400
running LM-1400 RMS |

Figure 7: Cyclone Configuration Guidelines

July 31, 2001 Synopsys, Inc. 177

Chapter 9: Using Cyclone with Synopsys Models Simulator Configuration Guide

Cyclone User Setup
Before proceeding with the setup instructions that follow, perform these tasks:

. Install the Cyclone simulator package as described in the Cyclone Installation
Guide.

. Install and configure the hardware modeling system, including hardware and
software (R3.5a or later), as outlined in the Quick Referencein Chapter 1 of either
the Model Source Hardware Installation Guide or the LM-family Hardware
Installation Guide.

. |If necessary, boot the modeler.

. Makesureall required environment variables are set, as explained in “ Setting
Environment Variables’ on page 171

The ma_cyclone Software Tree

The ModelAccess for Cyclone (ma_cyclone) directory structureisillustrated in
Figure 8.

ma_cyclone/

C/ setup/
sun5.5.1/ Im_hw_slang.c setup.csh
gemnterface Im_hw_slang.h setup.sh
\r/]erlfyS}etulo synopsys_Im_hw.setup
pa_hpl102 synopsys_Im_hw.setup.hp700

genlinterface

verifySetup synopsys_Im_hw.setup.solaris

Figure 8: ModelAccess for Cyclone Installation Tree

The setup process consists of the following tasks:
« “Setting Up Your Environment” on page 179
« “Running verifySetup” on page 179
« “Running geninterface” on page 179.
« “Confirming License File Settings (Model Source Only)” on page 18L1.

178 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

Setting Up Your Environment

Make sure all required environment variables are set properly, as explained in “ Setting
Environment Variables’ on page 171. If any of the required environment variables are
not defined, the source command will fail, with an error message indicating the cause of
the error.

Running verifySetup

Run the provided verifySetup program. This verifies that your environment is set up
correctly so that genlnterface can run.

1. To run verifySetup, change directory to /tmp, then execute verifySetup, as follows:

%cd /tnp
% veri fySetup

The verifySetup program returns messages confirming the setup information that
will be used (both the environment setup information, and the genl nterface setup
options taken from the synopsys Im_hw.setup file). For example, if the hardware
modeling system is not booted and available on the network, verifySetup reports the
error.

% verifySetup
Copyright 1988-1996 Synopsys, Incorporated.; 05 Sep 1996; RL.0

**%% Fnvironment Setup *rr*

User horme: /hone/ kit

MA CY: /tool s/l nc/sms/ ma_cycl one

LMinclude directory: /tools/|nt/sns/include

LMlibrary directory: /tools/lnt/sns/lib/sund.solaris

CY include directory: /tools/cycl one/ sparcC85/ cycl one/ i ncl ude

xx Setup Files **
Model er: engi neeringl
SFI ERROR nodel er not respondi ng (Message Nunber: 972)

Running geninterface

The genlnterface program takes hardware model Shell Software files as input, and
creates the following files:

« A VHDL shell for each hardware model you specified

« A dynamically-linkable C library, which is used in communicating simulator
requirements to/from the hardware modeling system (via the hardware modeling
Simulator Function Interface software)

July 31, 2001 Synopsys, Inc. 179

Chapter 9: Using Cyclone with Synopsys Models Simulator Configuration Guide

With the output of geninterface, you proceed as with any other VHDL input by
compiling the hardware model VHDL files (elaborate and analyze) along with your
other VHDL design files and then simulating the design. Figure 9 gives an overview of
the entire process, and the following sections describe each step in detail.

Invoke geninterface from the directory in which you want the interface filesto be
created. On the command line, specify the hardware models you want to use with

Cyclone. For details on genlnterface syntax, refer to “genlnterface Command
Reference” on page 186

175> Note
The genlnterface program relies on the software described in “ Cyclone

geninterface Setup Files’ on page 190. The verifySetup program helpsyou
verify that these prerequisites have been set up correctly.

Confirm
environment
setup

Y

Edit setup file,

if needed
ModelAccess *

for Cyclone

Confirm setup
(verifySetup)

Y

Create interface
(geninterface)

Analyze
(cyan)

Y

Cyclone Elaborate
(cylab)

Y

Simulate
(cyclone or cysim)

Figure 9: Process Flow Chart

180 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

Confirming License File Settings (ModelSource Only)

The genlnterface program is not license-protected. However, in order to use the output
of geninterface to run Cyclone simulations with M odel Source hardware models, several
licenses are required:

. MSCBS licenses the use of hardware models with cycle-based simulators.
« MS3400 or MS3200 specifies the number of MS-3400 or MS-3200 units licensed.
In addition, you need the appropriate licenses to run Cyclone.

I°5> Note
The LM-family hardware model servers (LM-1400 and LM-1200) are not
license-protected and do not have alicensefile. This step is required only
for Model Source systems (M S-3400, M S-3200).

For information about installing hardware model licenses or updating an existing license
file, refer to the Hardware Modeling Release Notes. To confirm that your licenses are
working correctly, follow these steps:

1. Invoke the Im utilities:

%1 m

Copyright 1988-1996 Synopsys, Incorporated.; 17 Aug 1998; R3.4a
Def ault Model er is "venkat"

LMUWilities Menu

1) Ceate Logic Mdel s

2) Verify Logic Mdels

3) Perform Maint enance

4) Run D agnostics

5) Show Model er Configuration

h) Help
Q) Quit
sel ecti on:

2. Select item 5, “Show Modeler Configuration”.

sel ection: 5
Mobdel er Configuration
1) Show Model ers
2) Show Logi ¢ Model s
3) Show Wsers
4) Show Versi ons
5) Show Mddel Users
6) Show Li censes

h) Help
q Qit
sel ecti on:

July 31, 2001 Synopsys, Inc. 181

Chapter 9: Using Cyclone with Synopsys Models Simulator Configuration Guide

3. Select item 6, “Show Licenses’.

sel ection: 6
Model er Name (* = ALL) [venkat]:
Li cense Server set to: 5300@al
"venkat" Licenses Used
No |icenses being used on the nodel er
"venkat" Total Licenses Present in the License File
Feature # |icenses Ver si on Exp. Date
MBFAULTYes3. 400 31- Dec- 1999
MBCBSYes 3.400 31- Dec-1999
M53400100 3. 400 31- Dec- 1999
M53200100 3. 400 31- Dec- 1999
e e L T T T B n

Using Hardware Models with Cycle-Based Simulators

Model Access for Cyclone allows you to prepare your hardware modelsfor usein a
Cyclone cycle-based simulation. This section describes how to use hardware modelsin
a Cyclone simulation. We begin with an overview of hardware modeling in the Cyclone
environment and then provide instructions for using genlnterface.

Timing Delays

Synopsys hardware models typically include pin-to-pin delay information and can
optionally include timing checks. However, in cycle-based simulation, the simulator
ignores delay information and timing checks in the hardware models.

Cycle-Based Simulation Constraints

Before using a hardware model in cycle-based simulation, review the design, coding,
and testbench guidelines provided in the Cyclone documentation set. Although there are
no inherent limitations because of hardware modeling technology (when compared to a
VHDL model or C-language model of the same device), you must follow the same
usage guidelines for a circuit using hardware models as you would follow for a circuit
using any other types of models, when creating a cycle-based simulation testbench.

182 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

How Hardware Models Interface with Cyclone

Cyclone provides the Slang C-language interface to enable you to integrate external C
and C++ models into the Cyclone runtime environment. Hardware models are also
integrated into the Cyclone environment using a special-purpose implementation of the
Slang interface.

A Slang C (or C++) software model consists of a collection of C language entry points,
compiled into a shared object library, plusaVHDL shell that determines which entry
points are called at runtime. A Slang hardware model requires a shared object library,
one VHDL shell per model, the hardware model’s Shell Software, and the model itself,
installed in the hardware modeler. A conceptual diagram of a Slang hardware model is
shown in Figure 10.

SFI

Hardware Model Silicon in
Shell Software Hardware
(.MDL File) Modeler

[Files created by genlnterface

Hardware Model

Figure 10: Slang Hardware Model Conceptual Diagram

T3> Note
The geninterface program createsthe C library and VHDL shell files needed

by Cyclone to evaluate hardware models.

July 31, 2001 Synopsys, Inc. 183

Chapter 9: Using Cyclone with Synopsys Models Simulator Configuration Guide

Editing the Setup File

The geninterface program hasits own setup file (synopsys_Im_hw.setup) that you useto
specify various options to be applied to the entire genlnterface session, or to particular
model s within the session, including:

. Deéleting intermediate files
« Overwriting existing files
« Overwriting pin names (per model)

Default values are provided for al required items, so you only need to edit thisfile if
you want to alter the default values. If you decide to edit the file, copy it from
SMA_CY/setup/synopsys Im_hw.setup to your own local working directory. The copy
must be renamed to .synopsys Im_hw.setup. Now you can edit and customize the local
.synopsys_Im_hw.setup file appropriately for your session.

If you want to change the global settings on a Solaris system, you must edit the
following file:

SMA_CY/setup/synopsys Im_hw.setup.solaris
(The other file extension is .hp700.)

To change thefile, copy lines from the default synopsys Im_hw_setup file shown in
Figure 11 and uncomment the lines.

delete files yes # default yes
overwite files no # default no

for PPCA03CGA use

delete files yes

overwite files no

pi n_name_ovr "-DSR - CTS' "NSRSCTS'
pi n_name_ovr "-HALT" "NHALT"

Figure 11: Default synopsys_Im_hw.setup File

Deleting Intermediate Files

delete files {yes|no} # default yes
By default, genlnterface deletes the intermediate filesit creates. If you want to retain the
intermediate files, specify “delete filesno” in the setup file and delete the leading *#
character. (Typically, you need to save these files only for debugging purposes; thefiles
are not used by Cyclone.)

184 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

Overwriting Existing Files
overwite_files {yes|no} # default no

By default, geninterface does not overwrites filesin the target directory. Thisisto
protect you from accidentally overwriting earlier versions of .vhd files that you might
have customized. If genlnterface detects a file with the same name in the target
directory, it generates the following warning:

genlnterface warning: retaining ol der version of ./nmodel _name.vhd file

If you receive this warning, you must choose one of the following:

. If youwant to save the old .vhd files, rename them, and then run genlnterface again.
You can add your custom code to the newly-updated .vhd files.

. |If you don't want to save the old .vhd files, delete them from the target directory or
change the overwrite files setting to yes before you run geninterface/

@ Attention
Whenever you receive this warning, you must correct the situation and re-
run genlnterface so that a complete, integrated set of .vhd files and the
corresponding C library are created. The genlnterface program keys the
results of each session, so if you attempt to mix files from different
geninterface sessionsin your Cyclone simulation, you receive a fatal
simulation error (LM_HW integration error: Keys do not match).

Selecting Options Per Model

The synopsys_Im_hw.setup file allows you to set specific options per model, including
the following:

. delete files

. overwrite files

. cflags-DLM_HW_DEBUG
« pin_name_ovr

The cflags debugging options are intended for system administrators, and are explained
in“cflags’ on page 191.

The pin_name_ovr statement, which enablesthe overwriting of automatically-generated
pin names, is only available on a per-model basis, as explained below.

July 31, 2001 Synopsys, Inc. 185

Chapter 9: Using Cyclone with Synopsys Models Simulator Configuration Guide

Overwriting Pin Names Per Model

The Shell Software syntax for hardware model pin names uses special characters and
VHDL keywords that are not allowed in legal VHDL signal names. Therefore, when
geninterface creates VHDL shellsfor each model, it convertsillegal VHDL signa
names to legal equivalents. Thisprocessisexplainedin “Rulesfor Signal Renaming” on
page 192. If you prefer to use your own VHDL signal names, you can use the
pin_name_ovr statement to specify the mapping from the original name to the new
name.

The syntax for this statement is:

for nodel _nanme use
pi n_name_ovr "shell _sw nanmel" "VHDLnanmel"
pi n_narre_ovr "shell _sw _nanme2" "VHDLnane2"
end

For example, the pin name -ALE isalowed in the Shell Software, but not in VHDL. By
default, genlnterface removesthe leading hyphen (-) and replacesit with the string NE_,
creating the new pin name NE_ALE. If you prefer the alternate legal name NALE, add
the following lines to your setup file:

for 180960M use
pi n_name_ovr "-ALE' "NALE'
end

geninterface Command Reference

After successfully running verifySetup, you can run geninterface, specifying the
hardware models you want to include in Cyclone simulation.

Syntax

genlnterface {-m modeler_name} [mdlfilel mdlfile2 ... | -f model_list | -a]
Arguments

-m modeler_name This optional switch specifies the hardware modeling system

for geninterface to use. The modeler must be installed on the
network and be booted and running. If amodeler_nameis not
specified, genlnterface searches the modelers.lisfile for the
name of an available modeler.

The modeler does not need to have the hardware model
installed; it must only be booted and running Runtime
Modeler Software v3.3 or later.

186 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

mdifilel You can list individual models by their Model (.MDL) file
name, such as IPENTIUM.MDL. \Separate multiplefile
names with a blank (space) character.

-f model_list You can create afile listing the Model (.MDL) filesto be
included. Create the file with one .MDL file name per line.

-a The -aoption alows you to generate an interface that includes
all available model files found in directories specified by the
LM _LIB environment variable.

= Hint
The -aoption is convenient when you want to create one interface
incorporating al hardware modelsin your environment. However,
depending on how your LM _LIB environment variableis set, thiscould be a
largefile.

s
wQ);

Examples

The following example creates interface files for the hardware models listed in the
“my.models’ file:

% genlnterface -f my.nodels

The following example creates interface files for all hardware modelsinthe LM_LIB
search path, using the hardware modeling system named “engineeringl”:

% genlnterface -m engineeringl -a

The following example createsinterface filesfor the hardware models IPENTIUMPRO,
182451GX, 182452GX, 182453GX, and 182454GX:

% genl nterface | PENTI UMPRO. MDL | 82451GX. MDL | 82452GX. MDL \
| 82453GX. MDL | 82454GX. MDL

Assuming that all setup files have been left at their default values, the geninterface
command creates the following files in the current directory:

o liblm_hw.so (Solaris only)
« IPENTIUMPRO.vhd

. 182451GX.vhd

. 182452GX.vhd
 182453GX.vhd

. 182454GX.vhd

July 31, 2001 Synopsys, Inc. 187

Chapter 9: Using Cyclone with Synopsys Models Simulator Configuration Guide

The following example shows genlnterface executed on the ID3052EA hardware model
(Model file ID3052EA.MDL):

% genl nterface -m engi neeri ngl | D3052EA. MDL
Copyright 1988-1996 Synopsys, Incorporated.; 05 Sep 1996; RL.0

Processi ng Common files..... Done
Processi ng | DB0O52EA. MOL file...... Done
Runni ng make. . .. Done

Runni ng cl ean. ... Done

This command creates one dynamic library and a*“.vhd” file for each model specified in
the command line. For the Solaris example shown above, the liblm_hw.so library and
ID3052E.vhd file are created.

The genlnterface program requires an ANSI C compiler. If you receive compiler errors
while attempting to run genlnterface, for information about updating setup files, refer to
“Cyclone genlnterface Setup Files’ on page 190.

Cyclone Simulation

After successfully running verifySetup and genlnterface, you can simulate using
Cyclone. For detailed information on using Cyclone, refer to the Cyclone Reference
Manual. Following are some Cyclone usage notes for hardware models.

Analyzing the Design

You analyze the generated VHDL files (created by genlinterface), just as you would any
other filesin your design.

Elaborating and Simulating the Design

Performance Monitoring

You can monitor the performance of the hardware modeler and append the results to the
simulator log file after smulation. To enable performance monitoring, in the window
where you are running the simulator, enter the following:

% set env LM CPTI ON “noni t or _per f or nance”

For more information, refer to “Performance Monitoring” in the Model Source User’s
Manual.

188 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

2-state and 4-state Simulation

If you are using Release 1.1 or later of Model Access for Cyclone with Cyclone Release
1998.02 or later, you can specify either 2-state (0, 1) or 4-state (O, 1, X, Z) simulation.
However, for earlier releases, 2-state simulation is not supported; when running cylab,
you must specify -4state to create 4-state (0, 1, X, Z) code. Similarly, for earlier releases
you must specify -4state for 4-state simulation with cysim.

Defining LD_LIBRARY_PATH
When using the output of geninterface with Cyclone, the LD_LIBRARY _PATH

environment variable must include “.” (the current directory). Thisis also required by
Cyclone, soif you have set LD_LIBRARY_PATH as documented in the Cyclone user

documentation, LD_LIBRARY _PATH will be correct for geninterface.

Cyclone Elaboration Warnings

Cycloneissuestwo elaborations warnings for each hardware model in your design. This
Is because Cyclone divides the circuit into two types of blocks, sequential and
combinatorial. At every clock edge the sequential blocks get executed first, and then the
combinatorial blocks get executed. The hardware model is neither fully sequential nor
fully combinatorial, so Cyclone declaresit as a specia block. Cyclone discourages you
from using special blocks by issuing warnings; however, special blocks are fine for
hardware models, so you can ignore the warnings for hardware models.

“Keys Do Not Match” Error Message
If you receive the following error message during Cyclone simulation:

LM HWintegration error: Keys do not natch

this indicates that you do not have a consistent set of genlnterface output; for example,
the liblm_hw.so file was not generated in the same genlnterface session as one or more
of the .vhd files, so the information is not valid for simulation. This can occur if you run
genlnterface more than once on the same hardware model files with the overwrite files
option left at its default setting of “no.”

To correct this error, refer to “ Overwriting Existing Files” on page 185; then rerun
genlnterface on the complete set of hardware models you want to use in the Cyclone
simulation. Analyze and elaborate the new genlnterface output before proceeding with
your simulation.

July 31, 2001 Synopsys, Inc. 189

Chapter 9: Using Cyclone with Synopsys Models Simulator Configuration Guide

Cyclone geninterface Setup Files
This section describes the Model Access for Cyclone setup file syntax and usage.

Setup File Definition
Two sets of setup files are provided for genlnterface:
1. Model-dependent setup information is stored in the following file:

$MA_CY/ set up/ synopsys_| m hw. set up

Thisfileistypically copied by each user from this central location into the their own
directory, where it can be edited for a particular session. Use of this setup fileis
described in “Editing the Setup File’ on page 184.

2. System-dependent setup information is stored in these three platform-specific files:
o $MA_CY/setup/synopsys Im_hw.setup.hp700
o $MA_CY/setup/.synopsys Im_hw.setup.solaris

Thesefiles are provided to alow a system administrator to update compiler and
linker information, if necessary. If the ANSI C compiler (acc) is used, then no
editing of these files should be required.

Search Path

Upon invocation, the genlnterface program searches for the synopsys Im_hw.setup file
and the.synopsys Im_hw.setup.platform filesin the following locations, in the order
listed:

1. Current working directory (files preceded by “.”)
2. User’'s home directory (files preceded by “.”)
3. SMA_CY/setup (fileswithout a“.” prefix).

System-Dependent Setup Options

The system-dependent setup files allow you to change default settings for genlnterface.
A sample of the HP-UX version of thefileis shown in Figure 12.

190 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

conpil er acc # default acc

cflags val ues are cumul ative

cflags +z +DA1.1 +DS2.0

cflags -fPIC # default -fPIC
cflags - DLM HW DEBUG

cflags - DLM HW Pl N DEBUG

linker |d # default 1d

| flag val ues are cumul ati ve
1flags -b # default -b

Figure 12: Sample System-Dependent Setup File
(.synopsys_Im_hw.setup.hp700)

compiler

The genlnterface program requires access to a C compiler. The ANSI C compiler (acc),
which is required for use with Cyclone, is also recommended for genlnterface.

By default, geninterface searches for the acc compiler. If thisis not correct for your
environment, update the information following the compiler keyword, as follows:

conpi l er gcc

cflags

The-DLM_HW_DEBUG and -DLM_HW_PIN_DEBUG flags create a special, debug
version of the Cyclone interface. By default, these options are always commented out
(preceded by a#). There is no need to enable these options unless you are requested to
do so by the Synopsys Technical Support Center.

linker and Iflags

By default, geninterface uses the |d linker with the flags specified in each platform-
dependent setup file. If you choose to use another linker, contact the Synopsys Technical
Support Center. For instructions, refer to “ Getting Help” on page 14.

Cyclone geninterface Processing

This section describes how genlnterface processes input Shell Software to create the
VHDL shell needed by Cyclone. Note that genlnterface ignores .NAM files when
processing pin names.

July 31, 2001 Synopsys, Inc. 191

Chapter 9: Using Cyclone with Synopsys Models Simulator Configuration Guide

Rules for Signal Renaming

Because certain characters and keywords are permitted in Shell Software pin names but
areillegal as VHDL signal names, genlnterface must convert these signal namesin
order to generate correct VHDL. The rules that genlnterface uses to map the signal
names to legal values are explained in the following sections.

The following rules are applied by default. You can explicitly specify the mapping for
any signal name by using the pin_name_ovr statement in the geninterface setup file, as
described in “Overwriting Pin Names Per Model” on page 186.

Renaming Buses

The genlnterface program sorts all pins in ascending order. Groups of pins having the
same basename are combined into buses. If part of the busisin a different mode (for
example, inout and out), then the busis split by mode, and the basenames are made
unigue.

For example, consider the following bus, described in the Shell Software:

out_pin

A 21:12] = 110, 109, 108, 107 106, 105, 104, 103, 99, 98
io_pin

A 11: 6] = 97, 96, 95, 94, 93, 92

Al 29: 22] = 119, 118, 117, 116, 115, 114, 113, 112

Thisis converted as follows in the generated VHDL file:

A : INQUT std_logic_vector(11l downto 6);
AA : QUT std | ogic_vector(21 dowto 12);
AB : I NQUT std_|ogic_vector(29 downto 22);

Replacing Special Characters

Cyclone alows only alphanumeric characters and underscores (_) in the generation of
valid signal names. Hardware model Shell Software allows special characters such as
dlash (/), asterisk (*), minus (-), and underscore ().

The genlnterface program follows the conversion rules specified in Table 21.
Table 21: Rules for Special Character Mapping

Conversion when
Character in Shell | Conversionwhenat| appearing within | Conversion when at
Software beginning of name name end of name
Slash (/) SL_ _SL_ _SL
Star (*) ST _ST_ _ST
Minus (-) NE _NE_ _NE
192 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide

Table 21: Rules for Special Character Mapping (Continued)

Conversion when
Character in Shell | Conversionwhenat| appearing within | Conversion when at
Software beginning of name name end of name
Underscore () UN_ _ (no conversion) _UN
Any other specia Random Random Random
character a phanumeric a phanumeric a phanumeric

Chapter 9: Using Cyclone with Synopsys Models

For every generated name, genlnterface then compares the name with the present list of
names. If there is amatch, arandom string is added at the end of the name until itis
unique.

The following examplesiillustrate how genlnterface converts existing Shell Software
names in the generated VHDL file.

'-CS is converted to: NE_CS
'-BMD/ BYTE' is converted to: NE_BMD_SL_BYTE
'DT/-R is converted to: DT_SL_NE R

'-TOUT2/-1R@'is converted to: NE _TQUT2_SL_NE_| R
"1 094 _- RCLK_-BUSY/ RDY'is converted to:1 04 _NE_RCLK_NE_BUSY_SL_RDY

Keyword Replacement

Certain VHDL keywords cannot be used as signal names (for example, IN, OUT,
PROCESS). The genlnterface program scans the list of signal names replaces
disallowed keyword is found, that nameisreplaced by S _keyword. If another signal
aready exists by this name, arandom string is appended to the end of the present signal
name.

For example, the Shell Software notation:
I N[6: 1]
would be converted as follows.

SIN: INstd |logic_vector(6 downto 1);

July 31, 2001 Synopsys, Inc. 193

Chapter 9: Using Cyclone with Synopsys Models Simulator Configuration Guide

194 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 10: Using Leapfrog with Synopsys Models

10

Using Leapfrog with Synopsys
Models

Overview

This chapter explains how to use SmartModels, FlexModels, MemPro models, and
hardware models with Leapfrog. The procedures are organized into the following major
sections:

. “Setting Environment Variables’ on page 195

« “Using SmartModels with Leapfrog” on page 197

. “Using FlexModels with Leapfrog” on page 198

. “Using MemPro Models with Leapfrog” on page 198
. “Using Hardware Models with Leapfrog” on page 201

Setting Environment Variables

First, set the basic environment variables. If you are not using one of the model types,
skip that step. In some cases the procedures that follow in this chapter include steps for
setting additional environment variables.

1. Set the LMC_HOME variable to the location of your SmartModel. FlexModel, and
MemPro model installation tree, as follows:

% setenv LMC HOMVE path_to_nodel s_installation

July 31, 2001 Synopsys, Inc. 195

Chapter 10: Using Leapfrog with Synopsys Models Simulator Configuration Guide

; Caution

196

2. SettheLM_LICENSE_FILE or SNPSLMD_LICENSE_FILE environment variable

to point to the product authorization file, as shown in the following example:

% setenv LM LI CENSE Fl LE pat h_t o_product _aut hori zation_file
% set env SNPSLMD LI CENSE FI LE path_to_product _authorization_file

You can put license keys for multiple products (for example, SmartModels and
hardware models) into the same authorization file. If you need to keep separate
authorization files for different products, use a colon-separated list (UNIX) or
semicolon-separated list (NT) to specify the search path in your variable setting.

Do not include la_dmon-based authorizations in the same file with snpsimd-
based authorizations. If you have authorizations that use la_dmon, keep
them in a separate license file that uses a different license server (Imgrd)
process than the one you use for snpslmd-based authorizations.

3. If you are using the hardware modeler, set the LM_DIR and LM_LIB environment

variables, as shown in the following examples:

% setenv LM D R hardware_rnodel _install _path/sns/Imdir
% setenv LM LI B hardware_nodel _instal |l _path/sns/ nodel s: \
har dwar e_nodel _i nstal | _pat h/ sns/ maps

If you put your modelsin adirectory other than the default of /sms/models, modify
the above variable setting accordingly.

. Set the CDS_VHDL variable to the location of your Leapfrog installation and make

sure that Leapfrog is set up properly in your environment.

. Depending on your platform, set your load library variable to point to the platform-

specific directory in LMC_HOME, as shown in the following examples:
Solaris:

% set env LD LI BRARY _PATH $LMC HOME/ | i b/ sun4Sol ari s. | i b: $LD LI BRARY PATH
Linux;

% set env LD LI BRARY PATH $LMC HOME/ | i b/ x86_I i nux. | i b: $LD LI BRARY PATH
AlX:

% set env LI BPATH $LMC HOWE/ | i b/i bnrs. |i b: $LI BPATH
HP-UX:

% set env SHLI B_PATH $LMC_HOME/ | i b/ hp700. | i b: $SH.I B_PATH
NT:

Make sure that %L MC_HOME%\lib\pcnt.lib isin the Path user variable.

Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 10: Using Leapfrog with Synopsys Models

Using SmartModels with Leapfrog

To use SmartModels with Leapfrog, follow this procedure:

1. To build the SmartModel interface, first cd to the lib directory in the Cadence tree
and execute the IfsmGen command:

%cd $CDS VHDL/li b
% | f smEn

This step produces aliblfsm.so.1.1 file on SunOS, liblfsm.so on Solaris, liblfsm.dl
on HP-UX, and liblfsm.aon Al X.

2. To build the VHDL libraries needed to simulate with SmartModels, cd to the
$CDS VHDL/bin directory and execute the IfsmLibPckGen command:

% cd $CDS VHDL/ bin
% | f snbLi bPckGen

This step produces alfsmLibPck file.

3. Determine where you want the SmartModel VHDL librariesto go and cd to that
location. Then execute the IfsmLibPck you built in the previous step.

% | f snii bPck

This step can take 30 minutes or more. When the process completes you get the
following two VHDL files that you need to analyze in LeapFrog:

» SMILibrary.vhd
» SMpackage.vhd

The SMILibrary.vhd file contains entity-architecture pairs for all SmartModelsin
your 3LMC_HOME tree. These include the generics used to configure SmartM odel
SWIFT parameters.

Note that SmartModels are identified as follows:

attribute FOREI AN of SnartModel : architecture is
“LFSM LFSnar t Model s”;

The SMpackage.vhd file contains component declarations for the SmartModels.
You must specify required SWIFT parametersfor every generic in acomponent that
you want to simulate within Leapfrog. For more information on required SWIFT
parameters, refer to “Using SmartModels with SWIFT Simulators’ on page 18.

July 31, 2001 Synopsys, Inc. 197

Chapter 10: Using Leapfrog with Synopsys Models Simulator Configuration Guide

; Caution

On the HP platform all users must use the same $LMC_HOME in order to
prevent erroneous simulation results or fatal ssimulation errors. This
precaution is necessary because the IfsmGen command modifies the
liblfsm.dl file to require 3LMC_HOME, and on the HP platform the
liblfsm.dl file references an absolute path name to libswift.sl, the SWIFT
library. When the absol ute path name is not the same as the user’s
$LMC_HOME, theresult is the loading of two different versions of
libswift.dl during the simulation.

Using FlexModels with Leapfrog

To use Leapfrog with FlexModels, follow the same stepslaid out for SmartModelsin
“Using SmartModels with Leapfrog” on page 197. On Leapfrog, you use FlexModels
with Direct C Control. For information on the required SWIFT parameters for
FlexModels (which differ from regular SmartModels) and how to use Direct C Control,
refer to “Using FlexModels with SWIFT Simulators’ on page 24.

Using MemPro Models with Leapfrog

To use MemPro models with Leapfrog, follow this procedure:

1. If you have built your own Foreign Model Interface (FMI) shared library, you need
to perform this step in order to combine your shared library with the MemPro FMI
shared library.

CQV)Q Attention
If you do not build your own FMI library, skip to Step 3.

Leapfrog bindsin only one shared FMI library at runtime. If your design uses FMI,
you need to build anew FMI shared library that contains your library and the
MemPro library. A MemPro archive library can be found at:

HP-UX
$LMC_HOVE/ | i b/ hp700. lib/1ibfm ar.a
Solaris

$LMC_ HOWH |i b/ sund4Sol aris.lib/libfm_ar.a

198 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 10: Using Leapfrog with Synopsys Models

You must create a new archive that includes the MemPro archive, library table file
declaration object file, and your archive. Detailed instructions for this process can
be found in “Foreign Model Integration” in the Cadence Leapfrog C Interface User
Guide.

As shown in the following example, you must combine the contents of the MemPro
library table file with your own FMI application library table:

#include <fmlib. h>

ext ern fm Model Tabl eT Qoi peModel Tabl e;
extern fm Model Tabl eT nyFM Tabl e;

fmLibraryTabl eT fmLibraryTable = {
{" Cpi pe", i peMbdel Tabl e},

{"nyFM i b", nyFM Tabl e},

{o, 0}

b
Link the MemPro archive library with the new library table object file and any other
FMI application object files you wish to include, following the instructionsin the
Cadence C Interface User Guide.

The following examples show compiling the library table object files and linking
MemPro libfm_ar.awith the library table object file and the FMI application you
developed, shown in the examples as new_FMI_table.o and your_archive.a

HP-UX

% /bin/cc -D NOPROTO -c +Z -1$CDS_VHDL/ i ncl ude new FM _table. c
%/bin/ld -b -0 libfn.sl new FM _table.o your_archive.a \
$LMC HOME | i b/ hp700. 1ib/1ibfm _ar.a

Solaris

% / opt / SU\Wpro/ bin/cc -c -KPIC -1$CDS VHDL/ i ncl ude new FM _table.c
% / opt/ SU\Vgpro/bin/cc -G-o |ibfm.so new FM _table.o \
your _archive.a $LMC HOW/ i b/sund4Sol aris.lib/libfm _ar.a

2. Set up the library search path to locate the MemPro shared library.

& Attention
You must add the MemPro shared library to the beginning of your
SHLIB_PATH or LD_LIBRARY _PATH contents. If the MemPro shared
library is added to the tail of the path list, the library search order will be
incorrect and Leapfrog will not simulate properly.

HP-UX
% set env SHLI B_PATH $LMC_HOVE/ | i b/ hp700. | i b: $SH.I B_PATH

July 31, 2001 Synopsys, Inc. 199

Chapter 10: Using Leapfrog with Synopsys Models Simulator Configuration Guide

200

Solaris

% setenv LD LI BRARY PATH \
$LMC_HOVE/ 1 i b/ sundSol ari s. | i b: $LD LI BRARY_PATH

3. Createalogical library named sikm_lib. The default physical library mapping for this

is$LMC_HOME/sim/leapfrog/lib. If you do not want to install the library in the
LMC_HOME tree, you can create it in any other location.

Add the following line to your cds.lib file:
define simlib $LMC HOW sini | eapfrog/lib

. Compile the MemPro VHDL filesinto logical library sm_lib. Note that

rdramd_pkg.vhd is not required unless you are ssmulating RDRAM MemPro
models.

%cv -wslmlib $LMC HOW si ni | eapfrog/ src/ sl mhdl c. vhd
%cv -wslmlib $LMC HOW si ni | eapf rog/ src/ menpr o_pkg. vhd
%cv -wslmlib $LMC HOW si ni | eapf rog/ src/ rdranmd_pkg. vhd

. After generating amodel using MemPro, compile the VHDL code for the model, as

shown in the following example:

% cv nynmem vhd

. If you compiled the model to alibrary (SLM_MODELS in these examples), add a

LIBRARY statement to your testbench:

LI BRARY SLM MCDELS

Thismakes modelsin SLM_MODELS accessible from your design. You can refer
to the model using a standard VHDL convention, such asa CONFIGURATION
Statement:

QONFI GRATI ON nymem a CF nynemtst IS
FOR at est
FOR ALL : nynem use CONFI GURATI ON SLM MODELS. nymem behav;
END FCR
END FCR,
END nynmem a;

. Add LIBRARY and USE statements to your testbench:

LI BRARY SLM LI B
USE SLM LI B. nenpr o_pkg. al |

This a'so provides access to MemPro testbench commands.

For more information on using the MemPro testbench interfaces, refer to the “HDL
Testbench Interface” and “ C Testbench Interface” chaptersin the MemPro User’s
Manual.

Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 10: Using Leapfrog with Synopsys Models

8. Instantiate MemPro models in your design. Define ports and generics as required.
For information on generics used with MemPro models, refer to “Instantiating
MemPro Models’ on page 32. For information on message level s and message |level
constants, refer to “Controlling MemPro Model Messages” on page 33.

9. Compile your design as shown in the following example:
% cv -w work desi gn_name
10. Invoke Leapfrog on your design as shown in the following example:

% sv desi gn_nane

Using Hardware Models with Leapfrog

To use hardware models with Leapfrog, follow this procedure. For the latest information
on supported features, refer to the Cadence documentation.

1. Make sure Leapfrog is set up properly and all required environment variables are
set, as explained in “ Setting Environment Variables’ on page 195.

2. Add the hardware model install tree to your path variable, as shown in the following
example:

% set path=(/install/sns/bin/platform S$path)

3. Run the install.sh script so that the hardware models option is turned on and the
LMlibrary.vhd, LM package.vhd, and LMproc.vhd are created. Also make sure the
cds.lib file pointsto the correct libraries, including LM SFI, which is located in the
install area.

4. Create your own library directory for filesthat will be generated for the hardware
model. In the Leapfrog Notebook, you can set up the directory so that the library
files get placed in there by using the Library menu.

5. Generate a custom Leapfrog simulator executable (sv) to work with the hardware
model and imported Verilog model. Thisis donein the install.sh. Theinstall
generates a new svvlog.exe. When this completes, you are ready to run using the
custom sv executable.

Leapfrog Example with TILS299 Hardware Model

The following example uses the TILS299 hardware model to show how to set up
hardware models for use with Leapfrog:

1. Create atestbench to instantiate the hardware model (for example,
TB_TILS299.vhd).

July 31, 2001 Synopsys, Inc. 201

Chapter 10: Using Leapfrog with Synopsys Models Simulator Configuration Guide

2. Invoke Leapfrog. This brings up the Notebook window, where you can compile,
elaborate, and simulate your VHDL testbench. Type “leapfrog&”.

3. In the Notebook window, select your .vhd testbench file and click on the compile
button.

4. Once compiled, use the Unit menu and select elaborate. Fill inthe Design Unit with
your compiled information and fill the snapshot with SIM. For example, mywork is
the directory specified to place compiled work, so we use mywork. TB.TIL S299.

5. To simulate, select smulate from the Unit menu and fill in the information for
simulating in the snapshot line. For example: mywork.th_tils299:test/sim. This
syntax can aso be found at the end of the elaborate.

6. To see waveforms, use the simulator window to select Tools > Navigator. When
you select the hardware model instance in the subscopes, the signal pinscome up in
the Object window. Select all the signals to be traced in the waveforms and right-
click to select Set trace simple.

7. Go back to the ssmulator window and select Tools > Waveview. When the cwaves
window comes up with all your signal pins, click on run on the ssmulator window to
simulate.

Leapfrog Utilities
The following hardware modeler simulator commands are supported in L eapfrog:
Im_log_test vectors (“ instance_name”, 1/0, “ filename”);
enables (1) or disables (0) vector logging for hardware models.
Im_timing_measurements (“ instance_name’ , 1/0, “ filename”);
Enables (1) or disables (0) timing measurements for hardware models.
Im_enable_timing_checks ([device_name(s)....])
Enables timing checks for hardware models.
Im_disable timing_checks ([device_name(s)....])
Disables timing checks for hardware models.
Im_unknowns (“ option=value’ ,device_or_pin);

Determines how unknown values are handled by hardware models. Supported options
include:

« propagate=yes/no
« vaue=previoushigh/low

202 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 10: Using Leapfrog with Synopsys Models

« Seguence_count=0-20

. random_seed=0-65535

« device or_pin
Im_loop_instance ([instance_name]);

Makes the hardware modeler enter loop mode, where it continually replays the pattern
history of the specified instance.

Im_pam_shortage(* actions=save/sleep/finish/free/suspend/drop_faults’,

"dleep_minutes=n, “sleep_count=n", “save file=filename”);

L ets you specify the action the hardware modeler is to take when it has used up most of
the available pattern memory.

Im_pattern_history ([device_name(s)....])
Saves the pattern memory for a private device instance.

Examples

You can use any of these utilities by calling them from VHDL code or invoking them
from the debugger prompt with an Im_procedure call.

Example call from VHDL code:

Variable ret : Natural;

ret :=Imlog test vectors(":Ul",1,"UL VEC');
wait for 800 ns;
ret :=Imlog test vectors(":UL",O0,"UL VEC');

Example invocation from the debugger prompt with Im_procedure call:
> call Imlog_test vectors(UL, 1, UL. VEQ

July 31, 2001 Synopsys, Inc. 203

Chapter 10: Using Leapfrog with Synopsys Models Simulator Configuration Guide

204 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 11: Using NC-VHDL with Synopsys Models

11
Using NC-VHDL with Synopsys
Models

Overview

This chapter explains how to use SmartModels, FlexModels, and MemPro models with
NC-VHDL. The procedures are organized into the following major sections:

. “Setting Environment Variables’ on page 205

. “Using SmartModels with NC-VHDL” on page 206

. “Using FlexModels with NC-VHDL"” on page 208

« “Using MemPro Models with NC-VHDL"” on page 210
. “Using Hardware Models with NC-VHDL” on page 213

Setting Environment Variables

First, set the basic environment variables. If you are not using one of the model types,
skip that step. In some cases the procedures that follow in this chapter include steps for
setting additional environment variables.

1. Set the LMC_HOME variable to the location of your SmartModel, FlexModel, and
MemPro model installation tree, asfollows:

% setenv LMC HOME path_to _nodel s_installation

2. SettheLM_LICENSE _FILE or SNPSLMD_LICENSE_FILE environment variable
to point to the product authorization file, as shown in the following example:

% setenv LM LI CENSE FI LE pat h_t o_product _aut hori zation_file
% set env. SNPSLMD LI CENSE FI LE path_t o_product _aut horization_file

July 31, 2001 Synopsys, Inc. 205

Chapter 11: Using NC-VHDL with Synopsys Models Simulator Configuration Guide

You can put license keys for multiple products (for example, FlexModels and
MemPro models) into the same authorization file. If you need to keep separate
authorization files for different products, use a colon-separated list (UNIX) or
semicolon-separated list (NT) to specify the search path in your variable setting.

y Caution

Do not include la_dmon-based authorizations in the same file with snpsimd-
based authorizations. If you have authorizations that use la_dmon, keep
them in a separate license file that uses a different license server (Imgrd)
process than the one you use for snpslmd-based authorizations.

3. Make sure that NC-VHDL is set up properly in your environment.

4. Depending on your platform, set your load library variable to point to the platform-
specific directory in SLMC_HOME, as shown in the following examples:

Solaris:;

% setenv LD LI BRARY PATH $LMC HOVE/ | i b/ sun4Sol ari s. |i b: $LD LI BRARY PATH
Linux:

% set env LD LI BRARY_PATH $LMC HOME/ | i b/ x86_1 i nux. | i b: $LD LI BRARY_PATH
AlX:

% set env LI BPATH $LMC HOME/ | i b/ i bnrs. i b: $LI BPATH

HP-UX:

% set env SHLI B_PATH $LMC_HOVE/ | i b/ hp700. | i b: $SHLI B_PATH

NT:

Make sure that %0LMC_HOME%\lib\pcnt.lib isin the Path user variable.

Using SmartModels with NC-VHDL

To use SmartModels with NC-VHDL, follow this procedure:

1. Add the following lineto your cds.lib file to specify the logical library sm_library
for SmartModels, as shown in the following example:

DEFINE smlibrary ./smlibrary

2. Run the ncshell utility to generate a wrapper for the model that you want to use, as
shown in the following example:

%ncshell -inport swift into vhdl nodel -work smlibrary

This step produces awrapper file (model.vhd) and a component declaration
(model _comp.vhd) for the specified model in the sm_library work directory.

206 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 11: Using NC-VHDL with Synopsys Models

If you want to generate wrappers for all SmartModelsin your SLMC_HOME tree,
add the -all switch to the ncshell invocation. In this case, ncshell creates onefile
(shell.vhd) that contains al the model wrappers and another file (component.vhd)
that contains the component declarations.

XJ° Hint
NC-VHDL aso works with wrappers created for Leapfrog. If you want to
reuse SmartModel wrappers created for Leapfrog, use ncvhdl to recompile
the SMLibrary.vhd and SMpackage.vhd files. For more information on
using SmartModels with Leapfrog, refer to “Using SmartM odels with
Leapfrog” on page 197.

3. Add LIBRARY and USE statements to your testbench:

library smlibrary;
use smlibrary. conponent. all;

4. Instantiate SmartM odelsin your design using the wrapper filesthat you generatedin
Step 2. For information on required configuration parameters and instantiation
examples, refer to “Using SmartModels with SWIFT Simulators’ on page 18.

5. Compile the other VHDL filesinto the work library, as shown in the following
example:

% ncvhdl -w work testbench. vhd
6. Elaborate your design as shown in the following example:
% ncel ab cf gt est

7. If you are using any SmartCircuit modelsin your design, set the LMC_TIMEUNIT
environment variable to -12 for 1 ps resolution, as shown in the following example:

%setenv LMC TIMEINT -12

This sets aglobal timing resolution for all SmartModelsin your simulation. If this
variable is not set, the default timing resolution is 100 ps, which is the resolution
used by most SmartModels. To see if amodel isa SmartCircuit model, refer to the
model datasheet. For more information on the LMC_TIMEUNIT environment
variable, refer to the Cadence documentation for NC-VHDL.

8. Invoke the NC-VHDL simulator on your design as shown in the following example:

% ncsi m desi gn

July 31, 2001 Synopsys, Inc. 207

Chapter 11: Using NC-VHDL with Synopsys Models Simulator Configuration Guide

Using FlexModels with NC-VHDL

To use FlexModels with NC-VHDL, follow this procedures:
1. Add the following lines to your cds.lib file:

define simlib simlib_path
define work work lib_path

2. Generate aVHDL wrapper file for the model by invoking ncshell, as shown in the
following example:

%ncshell -inport swift -into vhdl nodel fx -noconpile -work simlib

3. Create aworking directory and run flexm_setup to make copies of the model's
Interface and exampl e files there, as shown in the following example:
% $LMC_HOVE/ bi n/ fl exm setup -dir workdir nodel _fx

You must run flexm_setup every time you update your FlexModel installation with
anew model version. Table 22 describes the FlexModel NC-VHDL interface and
example files that the flexm_setup tool copies.

Table 22: FlexModel NC-VHDL Files

File Name Description L ocation

model _pkg.vhd Model command procedure callsfor HDL | workdir/src/vhdl/
Command Mode.

model_user_pkg.vhd | Clock frequency setup and user workdir/src/vhdl/
customizations,

model _fx_comp.vhd | Component definition for use with the model | workdir/examples/vhdl/
entity defined in the SWIFT wrapper file. This
is put in a package named “COMPONENTS’
when compiled.

model.vhd A bus-level wrapper around the SWIFT model. | workdir/examples/vhdl/
This allows you to use vectored ports for the
model in your testbench. Thisfile assumes that
the“COMPONENTS’ package has been
installed inthe logical library “dm_lib”.

model_tst.vhd A testbench that instantiates the model and wor kdir/examples/vhdl/
shows how to use basic model commands.

208 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 11: Using NC-VHDL with Synopsys Models

4. Update the clock frequency supplied in the model_user_pkg.vhd file in your
working directory to correspond to the desired clock period for the model. After you
run flexm_setup thisfileislocated in:

wor kdi r/ src/ vhdl / model _user _pkg. vhd
where workdir is your working directory.

5. Createalogical library named slm_lib. The default physical library mapping for this
is$LMC_HOME/sim/simulator/lib; however, you can put the physical library
anywhere you want.

6. Add LIBRARY and USE statements to your testbench:

library simlib;

use slmlib.flexnodel pkg.all;
use sl mlib. model _pkg.all;

use sl mlib. model _user_pkg.all;

For example, you would use the following statement for the tms320c6201_fx
model:

use slmlib.tns320c6201 pkg. al | ;
use slmlib.tns320c6201 user pkg. al | ;

7. Instantiate FlexModels in your design, defining the ports and generics as required
(refer to the example testbench supplied with the model). You use the supplied
bus-level wrapper (model.vhd) in the top-level of your design to instantiate the
bit-blasted wrapper generated in Step 2 (model_fx.vhd) using ncshell.

Example using bus-level wrapper (model.vhd) without timing:

Ul: nodel
generic map (Fl exMdel ID => “TM5 | NST1")
port map (nmodel ports);

Example using bus-level wrapper (model.vhd) with timing:

Ul: nodel
generic map (Fl exMdel ID => “TM5 | NST1”,
Fl exTi m ngMbde => FLEX_TI M NG MDE_ON,
Timng\Version => “timngversion”,
Del ayRange => “range”)
port map (nodel ports);

July 31, 2001 Synopsys, Inc. 209

Chapter 11: Using NC-VHDL with Synopsys Models Simulator Configuration Guide

8. Compile the FlexModel VHDL filesinto logical library Ssim_lib as follows:

%ncvhdl -w slmlib $LMC HOW si mi ncvhdl / src/ sl m hdl c. vhd

% ncvhdl -wslmlib $LMC HOWH si mi ncvhdl / src/ f1 exnodel _pkg. vhd
% ncvhdl -w sl mlib workdir/src/vhdl /model _user_pkg. vhd

% ncvhdl -w sl mlib workdir/src/vhdl /model _pkg. vhd

% ncvhdl -w sl mlib workdir/exanpl es/ vhdl / model _fx_conp. vhd

% ncvhdl -w sl mlib nodel fx.vhd

% ncvhdl -w sl mlib workdir/exanpl es/ vhdl / nodel . vhd

% ncvhdl -w wor k t est bench

9. Elaborate your design as shown in the following example:

% ncel ab cf gt est
10. Invoke the NC-VHDL simulator as shown in the following example:

% ncsi m desi gn

Using MemPro Models with NC-VHDL

To use MemPro models with NC-VHDL, follow this procedure:

1. If you have built your own Foreign Model Interface (FMI) shared library, perform
this step.

(vV)Q Attention
If you do not build your own FMI library, skip to Step 2.

NC-VHDL bindsin only one shared FMI library at runtime. If your design uses
FMI, you need to build anew FMI shared library that contains your library and the
MemPro library. A MemPro archive library can be found at:

HP-UX

$LMC HOVE |i b/ hp700. 1ib/1ibfm _ar.a
Solaris

$LMC HOME | i b/ sund4Sol aris.lib/libfm_ar.a

You must create a new archive that includes the MemPro archive, library tablefile
declaration object file, and your archive. Detailed instructions for this process can
be found in the “ Foreign Model Integration” chapter of the Affirma NC VHDL
Smulator C Interface User Guide.

210 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 11: Using NC-VHDL with Synopsys Models

As shown in the following example, you must combine the contents of the MemPro
library table file with your own FMI application library table:

#include <fmlib. h>

ext ern fm Model Tabl eT Qoi peModel Tabl €;
ext ern fm Model Tabl eT nyFM Tabl €;

fmLibraryTabl eT fmLibraryTable = {
{" Cpi pe", Opi peMbdel Tabl e},

{"nyFM i b", nyFM Tabl e},

{0, 0}

H
Link the MemPro archive library with the new library table object file and any other
FMI application object files you wish to include, following the instructionsin the
Cadence C Interface User Guide.

The following examples show compiling the library table object files and linking
MemPro libfm_ar.awith the library table object file and the FMI application you
developed, shown in the examples asnew_FMI_table.o and your_archive.a:

HP-UX

% /bin/cc -D NOPROTO -c +Z -1$CDS_VHDL/ i ncl ude new FM _tabl e. c
%/bin/ld-b -0 libfnm.sl new FM table.o your_archive.a \
$LMC HOME | i b/ hp700. 1ib/1ibfm _ar.a

Solaris

% / opt/ SUN\Vépro/ bin/cc -c -KPIC -1$CDS_VHDL/ i ncl ude new FM _table. c
% /opt/ SU\W¢pro/bin/cc -G-o libfm.so new FM table.o \
your _archive.a $LMC HOW/ i b/sund4Sol aris.lib/libfm _ar.a

2. Createalogical library named sikm_lib. The default physical library mapping for this
isSLMC_HOME/sim/ncvhdl/lib. If you do not want to install the library in the
LMC_HOME tree, you can create it in any other location.

Add the following line to your cds.lib file:
define simlib $LMC HOME simincvhdl /1i b

3. Compile the MemPro VHDL filesinto logical library skm_lib. Note that
rdramd_pkg.vhd is not required unless you are ssmulating RDRAM MemPro
models.

% ncvhdl -w slmlib $LMC HOWH si mi ncvhdl / src/ sl m hdl c. vhd
% ncvhdl -w slmlib $LMC HOWE si mi ncvhdl / src/ menpr o_pkg. vhd
% ncvhdl -w slmlib $LMC HOWE si mi ncvhdl / src/ rdrand_pkg. vhd

July 31, 2001 Synopsys, Inc. 211

Chapter 11: Using NC-VHDL with Synopsys Models Simulator Configuration Guide

212

4. After generating amodel using MemPro, compile the VHDL code for the model, as

shown in the following example:
% ncvhdl nynem vhd

. If you compiled the model to alibrary (SLM_MODELS in these examples), add a

LIBRARY statement to your testbench:
LI BRARY SLM MODELS

Thismakes modelsin SLM_MODELS accessible from your design. You can refer
to the model using a standard VHDL convention, such asa CONFIGURATION
Statement:

QONFI GRATI ON nymem a CF nynemtst IS
FOR at est
FOR ALL : nynem use CONFI GURATI ON SLM MODELS. nynmem behav;
END FCR
END FCR
END nyrmem a;

. Add LIBRARY and USE statements to your testbench:

LI BRARY SLM LI B
USE SLM LI B. nenpro_pkg. al |

This aso provides access to MemPro testbench commands.
For more information on using the MemPro testbench interfaces, refer to the “HDL

Testbench Interface” and “ C Testbench Interface” chaptersin the MemPro User’s
Manual.

. Instantiate MemPro models in your design. Define ports and generics as required.

For information on generics used with MemPro models, refer to “Instantiating
MemPro Models’ on page 32. For information on message level s and message level
constants, refer to “Controlling MemPro Model Messages” on page 33.

. Compile your design as shown in the following example:

% ncel ab -w wor k desi gn_name

. Invoke NC-VHDL on your design as shown in the following example:

% ncsi m desi gn_nane

Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 11: Using NC-VHDL with Synopsys Models

Using Hardware Models with NC-VHDL

To use hardware models with NC-VHDL, follow this procedure. For the latest
information on supported features, refer to the Cadence documentation.

1. Make sure NC-VHDL is set up properly and all required environment variables are
set, as explained in “ Setting Environment Variables’ on page 205.

2. Add the hardware model install tree to your path variable, as shown in the following
example:
% set path=(/install/sns/bin/platform S$path)
3. Create your own library directory for files that will be generated for the hardware

model.
4. Run the ncshell command to generate .vhd wrapper files, as shown in the following
example:
%ncshell -inport Insfi -into vhdl nodel s/ TI LS299/ TI LS299. ML

You can aso use the -all switch to create .vhd files for multiple hardware models.

NC-VHDL Example with TILS299 Hardware Model

The following example uses the TILS299 hardware model to show how to set up
hardware models for use with NC-VHDL :

1. Create atestbench to instantiate the hardware model (for example
TB_TILS299.vhd).

2. Run ncvhdl to compile your .vhd files, as shown in the following example:
% ncvhdl TI LS299. vhd TI LS299 conp. vhd TB_TI LS299. vhd
3. Elaborate the design, as shown in the following example:

% ncel ab -nmessages work.tb til s299:test
4. Invoke the NC-VHDL simulator, as shown in the following example:

% ncsim-gui work.tb tils299:test

July 31, 2001 Synopsys, Inc. 213

Chapter 11: Using NC-VHDL with Synopsys Models Simulator Configuration Guide

NC-VHDL Utilities

The following hardware modeler simulator commands are supported in NC-VHDL.:
Im_log_test vectors (“ instance_name”, 1/0, “ filename”);

Enables (1) or disables (0) vector logging for hardware models.
Im_timing_measurements (“ instance_name’ , 1/0, “ filename”);

Enables (1) or disables (0) timing measurements for hardware models.
Im_enable_timing_checks ([device_name(s)....])

Enables timing checks for hardware models.

Im_disable timing_checks ([device_name(s)....])

Disables timing checks for hardware models.

Im_unknowns (“ option=value’ ,device_or_pin);

Determines how unknown values are handled by hardware models. Supported options
include:

« propagate=yes/no

. vaue=previoushigh/low

« Seguence_count=0-20

« random seed=0-65535
 device or_pin
Im_loop_instance ([instance_name));

Makes the hardware modeler enter loop mode, where it continually replays the pattern
history of the specified instance.

Im_pam_shortage(* actions=save/sleep/finish/free/suspend/drop_faults’,

"deep_minutes=n, “sleep_count=n", “save file=filename”);

L ets you specify the action the hardware modeler is to take when it has used up most of
the available pattern memory.

Im_pattern_history ([device_name(s)....])
Saves the pattern memory for a private device instance.

214 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 11: Using NC-VHDL with Synopsys Models

Examples

You can use any of these utilities by calling them from VHDL code or invoking them
from the debugger prompt with an Im_procedure call.

Example call from VHDL code:

Variable ret : Natural;

ret :=Imlog test vectors(":Ul",1,"UL VEC');
wait for 800 ns;
ret :=Imlog test vectors(":UL",O0,"UL VEC');

Example invocation from the debugger prompt with Im_procedure call:

%ncsink call Imlog test vectors : W0 1 299. VEC

July 31, 2001 Synopsys, Inc. 215

Chapter 11: Using NC-VHDL with Synopsys Models Simulator Configuration Guide

216 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 12: Using QuickSim Il with Synopsys Models

12

Using QuickSim Il with Synopsys
Models

Overview

This chapter explains how to use SmartModels, FlexM odel's, and hardware models with
QuickSim 1. The procedures are organized into the following major sections:

. “Setting Environment Variables’ on page 217
. “Using SmartModels and FlexM odels with QuickSim [1” on page 219
. “Using Hardware Models with QuickSim |1” on page 244

175> Note
MemPro models are not supported on QuickSim I1.

Setting Environment Variables

First, set the basic environment variables. If you are not using one of the model types,
skip that step. In some cases the procedures that follow in this chapter include steps for
setting additional environment variables.

1. Set the LMC_HOME variable to the location of your SmartModel. FlexModel, and
MemPro model installation tree, as shown in the following example:

% setenv LMC HOME path_to _nodel s_installation

2. SettheLM_LICENSE _FILE or SNPSLMD_LICENSE_FILE environment variable
to point to the product authorization file, as shown in the following example:

% setenv LM LI CENSE FI LE path_to_product _aut horization file
% setenv SNPSLMD LI CENSE FI LE path_to _product _authorization file

July 31, 2001 Synopsys, Inc. 217

Chapter 12: Using QuickSim Il with Synopsys Models Simulator Configuration Guide

y Caution

218

You can put license keys for multiple products (for example, SmartModels and
hardware models) into the same authorization file. If you need to keep separate
authorization files for different products, use a colon-separated list (UNIX) or
semicolon-separated list (NT) to specify the search path in your variable setting.

Do not include la_dmon-based authorizations in the same file with snpsimd-
based authorizations. If you have authorizations that use la_dmon, keep
them in a separate license file that uses a different license server (Imgrd)
process than the one you use for snpslmd-based authorizations.

3. Set MGC_HOME to the location of your Mentor installation and make sure

QuickSim |1 is set up properly in your environment.
% setenv M3C HOME path_to_Mentor_installation

4. If you are using the hardware modeler, set the LM_DIR and LM_LIB environment

variables, as shown in the following examples:

% setenv LM D R hardware_rnodel _install _path/sns/Imdir
% setenv LM LI B hardware_nodel _instal |l _path/sns/ nodel s: \
har dwar e_nodel _i nstal | _pat h/ sns/ maps

If you put your modelsin adirectory other than the default of /sms/models, modify
the above variable setting accordingly.

. Depending on your platform, set your load library variable to point to the platform-

specific directory in LMC_HOME, as shown in the following examples:
Solaris:

% setenv LD LI BRARY_PATH $LMC HOVE/ | i b/ sun4Sol ari s. |i b: $LD LI BRARY PATH
Linux:

% set env LD _LI BRARY_PATH $LMC_HOVE/ | i b/ x86_I i nux. | i b: $LD LI BRARY_PATH
AlX:

% set env LI BPATH $LMC HOWE/ | i b/ i bnrs. i b: $LI BPATH
HP-UX:

% set env SHLI B_PATH $LMC HOVE | i b/ hp700. | i b: $SHLI B_PATH
NT:

Make sure that %L MC_HOME%\lib\pcnt.lib isin the Path user variable.

Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 12: Using QuickSim Il with Synopsys Models

Using SmartModels and FlexModels with
QuickSim Il

This section explains how to use SmartModels and FlexModels with QuickSim 11. To
use FlexModels with QuickSim I, you use Direct C Control. For information on Direct
C Control, refer to “Using FlexModelswith SWIFT Simulators’ on page 24. The rest of
this section explains required installation steps and how to use model symbolsin the
schematic capture front-end to the simulator. Thisinformation is organized in the
following major subsections:

Installing the QuickSim Il SWIFT Interface

Synopsys shipsthe part of QuickSim |1 that communicates with the SWIFT interface for
versions of QuickSim Il prior to the D.1 release. If you are using aversion of QuickSim
[l prior to D.1, you must install the Mentor Graphics application software for each
Mentor Graphics user tree.

© Attention
Beginning with version D.1 of QuickSim II, Mentor Graphics assumed
responsibility for their integration of the SWIFT interface. If you are using
version D.1 or higher, refer to the Mentor Graphics documentation for
information about using SWIFT.

Every timeyou install or update Mentor Graphics application software, you must create
auser tree for the SWIFT SmartModel Library. Use the MGC install tool to create
duplicate Mentor Graphics user trees. User treestypically require between 10-20 MB of
disk space. For questions about creating Mentor Graphics user trees, refer to the Mentor
Graphics documentation. Follow these steps:

1. If you are using a version of QuickSim Il prior to D1, for each Mentor Graphics
home directory (user or master tree) that requires access to the SWIFT interface,
execute the following command:

UNIX
% $LMC_HOVE/ bi n/ ngc_i ns - m $M3C_ HOME -1 $LMC_HOME
NT

You will berunning amkns shell in the MGC environment; for more information on
the mkns shell, refer to Mentor Graphics QuickSim |1 documentation.

July 31, 2001 Synopsys, Inc. 219

Chapter 12: Using QuickSim Il with Synopsys Models Simulator Configuration Guide

In the Control Panel, set the following drivesto the appropriate system environment
variables:

DR VE: /port LMC_HOVE
DR VE /port M3C HOME

2. Add “$LMC_HOME” followed by ablank line to your location map file.

3. Add SmartModel Library Menus to Design Architect. Normally, as part of
installation, the Admin tool automatically adds SmartModel menus to Design
Architect for the models you installed. Use theinstructionsin this section to add the
SmartModel menus only if, after installation, you do not find SmartModel menu
entries under the Design Architect “Libraries’ pull-down menu. To include
SmartModel menu selections in the Design Architect (DA) menus, follow these

steps:

a. Setthe AMPLE_PATH environment variable. If thisvariable already exists, use
one of these commands as appropriate:

UNIX

% set env. AWPLE_PATH ${ AWPLE PATH;: $LMC_HOWE speci al / gsi ni nenus

If you have a custom userware directory, you can create links that point to
“$LMC_HOME/specia/gqsim/menus/des_arch.”

NT
DRIVE:/path_to_menus/

b. If the AMPLE_PATH environment variable does not exist, use one of these
commands as appropriate:

UNIX

% set env. AVPLE_PATH $LMC_HOW speci al / gsi ni menus

If you have a custom userware directory, you can create links that point to
“$LMC_HOME/special/gsim/menus/des_arch.”

NT
DRIVE:/path_to_menus/
4. Generate the menus as shown in the appropriate example:
UNIX
% $LMC_HQOWE/ bi n/ ngc_menu. pl
NT
> LMC_HOMEA bi n\ ngc_nenu. cnd

220 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 12: Using QuickSim Il with Synopsys Models

Menu entries are created for the models that you have installed. If menu entries are
missing for models you believe you have in your library, use the Admin tool to verify
your installed models. If you change your model installation, rerun mgc_menu to update
the menu to reflect the new model list.

After successful menu activation, the “Libraries’ pull-down menu of the Schematic
Editor contains an entry for “Logic Modeling SmartModel Library.” If you have
SimuBus modelsinstalled, the pull-down menu also contains an entry for “Logic
Modeling SimuBus Products.”

Using SmartModels/FlexModels with QuickSim Il

This chapter provides information about using SmartModels (including FlexModels)
with Mentor Graphics (MGC) tools. Thisinformation is organized in the following
major sections:

« Schematic Capture
« Logic Simulation
« Custom Symbols

Schematic Capture

Adding a SmartModel Library model to a design schematic involves identifying the
desired symbol, instantiating it, and then editing its properties as necessary. Synopsys
supplies a complete Schematic Editor menu system in the QuickSim Il environment that
you can use to identify and instantiate a component. You can also instantiate symbols
from the command line and edit property values interactively using Design Architect.
This chapter providesinformation about both approachesto building adesign, following
an introductory discussion of the symbols and their properties.

For more information about Design Architect and the Schematic Editor, refer to the
Mentor Graphics documentation.

Symbols

Synopsys provides symbols representing default package pinouts for each SmartModel.
Some models have more than one symbol associated with them. Thisistruefor:

. Models of ssimplelogic gates, which are supplied with DeM organ equivalent
negative logic symbolsin addition to standard symbols

« Modelsthat offer both pin and bus symbols

For information about symbol compatibility with different versions of the Design
Architect software, refer to the SmartModel Library Release Notes.

July 31, 2001 Synopsys, Inc. 221

Chapter 12: Using QuickSim Il with Synopsys Models Simulator Configuration Guide

Pin and Bus Symbols

For many high pin-count parts, you get pin and bus symbols. Bus symbols may be more
convenient to use than their pin equivalents, because they take up less real estate on the
schematic and are easier to connect and to read. Figure 13 illustrates the differences

between pin and bus symbols.

Pin Syrnbal Buz Syrmbal
L3N Eds e BRRN NS B8 n e pagen s I
i b A ded 13315843 S

g 3333333333 & ICBE00-20
i Bifne BUS
L Bafer —{ a1 CA[E1:2)
i S —|CR(7:0) CaAS [~
i S CFETCH |-
gj;;g —D{a1:0) DA(31:2) |
fieie i A — DR1:0) DS =
i e Dz DRAV —
el e, 0L ACK B
Bt e —NT DEE(z:0) |—
E’E :;’ ["3 RET
e e — PEE FRR |-
e il — PLLEN
S it b iR

WULL_PINFILE

Figure 13: Sample Pin and Bus Symbols

Symbol Properties

Assigning specific values to symbol properties completes the definition of a
SmartModel. The properties used on the symbols provided for the Mentor Graphics
Design Architect environment include:

« Symbol properties used by SWIFT interface models
« Symbol properties required for simulation
« Optional symbol properties

222 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 12: Using QuickSim Il with Synopsys Models

You can edit symbol property values either with the Schematic Editor pop-up menu or
by using the QuickSim Il CHANGE TEXT VALUE command. These properties are
hidden or visible depending on the visibility attributes selected by your library manager.
Figure 14 illustrates the positions of the visible properties on a symbol supplied by
Synopsys.

U7 «———REF

TIMING o 7 crapooe a5
WeErEion

DI —
i— o oo i

P

Pl — &AL
&— A
F Az
843
- a4
A
o A
i3 A7
fd—AE
i5{Ag

3 A5 -—— FIN_NAME
fe]cAs
2L WRITE e COMP

LTS3 D0is -5

iz mrocrye =——— hilemoryFile

Figure 14: Visible Symbol Properties

Symbol Properties used by SWIFT Models
Table 23 lists symbol properties that are used by SWIFT interface models.
Table 23: Symbol Properties used by SWIFT Models

Property Description

TimingVersion | Timing version to use with amodel. Any value
assigned to the TimingVersion property must be a
valid timing version for that model.

MemoryFile | Nameand path of amemory image file.

July 31, 2001 Synopsys, Inc. 223

Chapter 12: Using QuickSim Il with Synopsys Models Simulator Configuration Guide

Table 23: Symbol Properties used by SWIFT Models (Continued)

Property Description

PCLFile Name and path of a compiled PCL file.

JEDECFile Name and path of a JEDEC fuse map file.

SCFFile Name and path of an MCF file for SmartCircuit
models.

275> Note
FlexModelsuse adlightly different set of symbol properties. For information
on the required configuration properties for FlexModels, refer to “Using
FlexModels with SWIFT Simulators’ on page 24.

You can use either an absolute or relative path name to point to afile. If you usea
relative path name it isresolved relative to the value of SMGC_WD.

Symbol Properties Required for Simulation
Table 24 lists symbol properties that are required for simulation.
Table 24: Symbol Properties Required for Simulation

Property Description
MODEL The MODEL property containsalabel registered as
type “SWIFT”.
PIN L ogic simulation requiresthat each pin on asymbol

have a property. A PIN property has two values
associated with it:

« User pin name
« Compiled pin name

You can change the user pin nameto adhereto
drafting standards, but you must not change the
compiled pin name.

PINTYPE Each model pin has an associated PINTY PE
property, which describes the pin entry point type
(i.e, IN, OUT, IXO, or 10). QuickSim Il requires
this property.

SWIFT_TEMPLATE | The SWIFT_TEMPLATE property always has a
value that specifiesthe model name. This property
cannot be changed.

224 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide

Table 24: Symbol Properties Required for Simulation (Continued)

Chapter 12: Using QuickSim Il with Synopsys Models

Property

Description

PKG

Each model has a PK G property equal to the
physical packagetype (for example, DIP, LCC) that
the symbol's pin numbers match. When using the
bus symbol for a component, the PKG property is

set to thevalue “BUS".

Optional Symbol Properties

Table 25 lists optional symbol properties.
Table 25: Optional Symbol Properties

Property

Description

COMP

The COMP property provides an interface to layout
or other applications. Synopsys does not use this
property.

The COMP property is assigned the default value
“TimingVersion” with the property attribute
“expression”. This causes the COMP property to
track the value of the TimingVersion property for
Synopsys symbols.

PIN_NAME

The PIN_NAME property isthe visible text on a
symbol representing a pin's name. Changing this
text has no effect on the model's operation.

PIN_NO

The PIN_NO property value matches the physical
pin number of the component for the default
package. Changing the value of this property has
no effect on the model's operation.

REF

The REF (reference) property providesan identifier
for use in Advanced Verification messages.
Changing the value of this property has no effect on
the model's operation.

Building a Design Using the Menus

The Synopsys entriesin the Design Architect menu system can be useful when building
adesign for the first time because all of the alternatives at each menu level are apparent.

To add SmartModels to a design using the menus, follow these steps:

1. Identify the desired model using the Schematic Editor menu system to traverse the

menus.

July 31, 2001

Synopsys, Inc.

225

Chapter 12: Using QuickSim Il with Synopsys Models Simulator Configuration Guide

2. Instantiate the model's symbol on the schematic sheet.
3. Edit property values as necessary using Design Architect or the Schematic Editor.

The Menu System

The menu system consists of several levels, starting with the pull-down menu that is
accessed with the Libraries choice from the Design Architect menu bar. At that point,
the following menu choices are available:

. Logic Modeling SmartModel Library

. Logic Modeling SimuBus Products (this entry is present only if you have installed
SimuBus models)

275> Note
Normally, the Admin tool installs the Logic Modeling entriesin the Design
Architect Libraries menu automatically, as part of model installation. If,
after installing your models, you do not find at least the Logic Modeling
SmartModel Library entry, you can perform the menu installation yourself.
For moreinformation, refer to “ Installing the QuickSim II SWIFT Interface”
on page 219.

Following are descriptions of the relevant menu levels:

Top-level
The top-level menu offers a number of choices, including component libraries and
the first SmartModel product menu.

Function
Thefirst SmartModel product menu offers a choice of functions, as follows:

o General purpose logic menu
o Logic block menu

o Memories menu

o Processor menu

o Programmable logic menu

O

Support peripheral menu

Subfunction
Each item on the function menu has its own subfunction menu, which is used to
further specify the symbol for the model being instantiated.

226 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 12: Using QuickSim Il with Synopsys Models

Vendor
Each subfunction menu selection has an associated vendor menu, which displays a
list of part manufacturers for that subfunctional group of models.

Part
Each vendor menu selection has an associated part menu, which displays alist of
all SmartModels for the selected subfunction class and vendor.

Component
Each part menu selection has an associated component menu, which displays alist
of all the timing and/or symbol versions available for a particular model.

Example
The following sequence of menu selections activates a M otorola M C88100:

SmartModel Library > Processor > Microprocessor > Motorola >
88100 > M C88100-20 (BUS)

Choosing the function, subfunction, and vendor brings up the part menu, which shows
al the Motorola microprocessor models. Choosing the MC88100 brings up the
component menu, which shows both the component and the symbol.

Building a Design Without the Menus

Userswho are familiar with the SmartModel Library may prefer to use Schematic Editor
commands to build designs. This approach can be faster than using the menu system.
The basic steps are the same:

1. Identify the model you need.
2. Instantiate the model's symbol on the schematic sheet.
3. Use Design Architect or the Schematic Editor to edit property values, as necessary.

Creating An Instance

Use the $add_instance command to instantiate a part in the Schematic Editor, as shown
in the following minimal command:

% $add_i nst ance (“$LMC_HOWE speci al / gsi ml synbol s/ ™)

The symbol name and TimingVersion property value can also be included on the same
line, asfollows. (All punctuation marks are required.)

% $add_i nst ance \
(“$LMC_HOWE speci al / gsi mi synbol s/”,“”,,, [“Ti mi ngVersion”,”"])

July 31, 2001 Synopsys, Inc. 227

Chapter 12: Using QuickSim Il with Synopsys Models Simulator Configuration Guide

If the TimingVersion property value is not specified, the default timing versionis
activated. If asymbol isnot specified when applicable, the default isused. The defaults
are “positive” for logic version, and “pin” for symbol type.

Selecting Alternate Symbols

When there are DeMorgan equivalent symbols, the positive version is the default.
Specify “NEG” as the symbol name to get the negative logic symbol (if desired), as
follows:

% $add_i nst ance (“$LMC_HOME speci al / gsi mi synbol s/ttl 00", " NEG',,, \
[“Ti m ngVersion”,” SN74AS00"])

When activating parts manually, remember that the pin symbol is the default when both
pin and bus symbols are available. Specify the bus symbol (if desired), as follows:

% $add_i nst ance (“$LMC_HOWE speci al / gsi ni synbol s/ nc68030_hv”,”"BUS",,, \
[“Ti m ngVersi on”, ” M68030- 33"])

Use the Mentor Graphics Design Viewpoint Editor (DVE) to set the primitive type for
SWIFT in DVE. To ensure that SWIFT instances are evaluated as primitives, you can
add to the primitive rule using the add primitive command within DVE. Inthe
following example, the add primitive command causes all instances of the MODEL
property value “SWIFT” to be evaluated as primitives by QuickSim 1.

%add primtive “nmodel ” -noexcept -string “SWFT”

The string “SWIFT” can be substituted with any other labels that you have registered
with the model type of “swift”.

Logic Simulation

The following sections in this chapter provide information about using SmartModels for
logic simulation in the Mentor Graphics's QuickSim Il environment. For related
information, refer to the following Mentor Graphics manuals:

« Common Smulation User's and Reference Manual
. Getting Sarted with QuickSm 11 Training Workbook
o QuickSmII User's Manual

228 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide

Chapter 12: Using QuickSim Il with Synopsys Models

Current Support Levels

Please note the following important items before starting a simulation. SmartM odel
Library models currently:

Do support the implementation of location maps. You can use location maps to
install alibrary anywhere on the system. Set an environment variable and alocation
map variable before using location maps.

« Do support extended-time (64-bit) simulations.
« Do not support the unit delay timing mode.

Default Timing Mode

The default timing mode for SWIFT SmartModelsis “typ”. You can use the
timing-mode switch at QuickSim invocation time to force the timing mode to be “min”,
“typ”, or “max”.

Signal Levels and Drive Strengths

SmartM odel s recognize the nine signal levels and drive strengths listed in Table 26.
QuickSim Il maps indeterminate strengths to unknowns for “ 12-state” simulations.

The models generate strong and resistive states. The high-impedance unknown state
(XZ) isused when amodel places an output in the high-impedance state.

Table 26: Signal State Values

The state values shown in bold type are generated by the models. All values are

Signal Level
Drive Strength Low (0) High (1) Unknown (x)
Strong (S) 0S 1S XS
Resistive (R) OR 1R XR
High Impedance (2) 0z 1z XZ

recognized.

July 31, 2001

Synopsys, Inc.

229

Chapter 12: Using QuickSim Il with Synopsys Models Simulator Configuration Guide

QuickSim Il Command Line Switches

When QuickSim Il is invoked from the command line, the following switches are the
only ones recognized by SmartModels.

Timing Mode Switch

Use the -timing_mode switch to set the global timing mode to minimum, maximum, or
typical. Unit delay timing mode is not currently supported. Use the following syntax
when setting this switch:

-tinming_node { mn| max | typ }

275> Note
SmartCircuit models override settings made with the timing mode switch by
means of the model command file (M CF) when the MCF is configured with
aparticular timing mode. For more information about configuring
SmartCircuit models of FPGA and CPLD devices, refer to the SmartModel
Library User’s Manual.

Time Scale Switch

Usethe -time_scale switch to adjust time values (delays and checks) to the desired
resolution by specifying the time scale in nanoseconds (ns). The defaultis0.1 ns. Use
the following syntax when setting this switch:

-time_scale tinescal e

Constraint Mode Switch

Use the -constraint_mode switch to enable or disable timing constraint checking. The
default is“off”. Any value other than “ off” causes amodel to perform constraint
checking. Usethe following syntax when setting this switch:

-constraint_node { off | state_only | messages }

230 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide

Chapter 12: Using QuickSim Il with Synopsys Models

QuickSim Il Command Interaction
There are many QuickSim |l ssimulator commands that interact with SmartModelsin a

design. Table 27 lists some of the QuickSim || commands that affect SmartM odels.

Table 27: QuickSim Il Command Interaction

QuickSim II Command

Effect on SmartM odels

INITIALIZE

Causes amodel to reevaluate until the ssimulation
reaches DC stability. It will not reset the model or
set internal values to the “ state_value” specified.

SIGNAL INSTANCE

Reports the status of selected instances with the
“swift_dump” parameter.

REPORT OBJECT

Not supported by SmartModels. Use the SIGNAL
INSTANCE command to query a model and report
its status.

REREAD MODELFILE

Reloads any of the configuration files used by a
model, including memory image, JEDEC, MCF,
SCF, and PCL command files. Configuration files
are only re-read if the simulation has changed the
configuration.

RESET STATE Causes al modelsto reinitialize their states to the
original time zero (power-up) conditions.

RESTORE STATE Restores all of the model'sinternal states as part of
the operation.

SAVE STATE Records al of the model'sinterna states as part of

the operation.

WRITE MODELFILE

Causes amodel to “dump” its memory imageto a
file.

SWIFT Command Channel

You can use the SWIFT command channel to pass commands directly through to
SmartModels. Use the QuickSim Il SIGNAL INSTANCE command to access the

command channel.

To issue acommand for selected instances, use the following:

signal instance swi ft_nodel -p “command_name [argurents]”

July 31, 2001

Synopsys, Inc.

231

Chapter 12: Using QuickSim Il with Synopsys Models

To issue acommand for a session, use the following:

si gnal

i nstance swift_session -p “command_name [argurents]”

Simulator Configuration Guide

For more information on using the SWIFT command channel, refer to “ The SWIFT
Command Channel” on page 21.

Checking the Model's Status

Use the QuickSim Il SIGNAL INSTANCE command to query amodel directly. Select
one or more instances in the design and then issue the command to display the internal
element status of all selected instances, as shown in the example below.

si gnal

/181"
1181
AR A
AR YA
AR YA
1181
AR A
AR A
AR A
1181

1181
1181
1181
AR A
1181
1181
1181
ALY

VALY

i nstance swi ft_dunp

"Note: <<Status Report>>'

' Model tenplate: pal 20r4i'

Version: not avail abl e

| nst anceName: /1$2742'

Ti m ngVer si on: MM _20R4A- CCM

Del ayRange: TYP

JEDECFi | e: /user/bobb/ desi gn/ schemati ¢/ sel ack. j edec'
Timng Constraints: Of'

of schematic at tine 0.00 nsec'

"Note: SmartMdel Wndows Description:'

' @O0 “PAL Internal Register connected to pin 20"
Q9 “PAL Internal Register connected to pin 19"
QL8 “PAL Internal Register connected to pin 18"
QL7 “PAL Internal Register connected to pin 17"’
Snart Model Wndows not enabled for this nodel .’

of testbed/schenmatic at tine 0.00 nsec'

Reconfiguring Models for Simulation
You can use QuickSim Il to reconfigure models for additional simulations by:

. Editing properties

« Changing timing modes of model instances

. Enabling or disabling constraint checking

232

Synopsys, Inc.

Snart Model | nstance /1$2742(UL03: MM _20R4A- CQV), sheet 1

Snart Model | nstance /1$2742(UL03: MM _20R4A- COV), sheet 1

July 31, 2001

Simulator Configuration Guide Chapter 12: Using QuickSim Il with Synopsys Models

Editing Properties
Adding or changing the value of a JEDECFile, SCFFile, PCLFile, or MemoryFile

property causes the simulator to read the file and initialize the model to the power-up
state. Select the following menu choices to change a property:

Edit > Properties > Add, Edit > Properties > Change, and Edit > Properties

Changing Timing Modes

SmartM odel s support minimum, typical, and maximum timing modes. Unit-delay
mode is not supported. Select the following menu choices to display the form for
changing the timing mode of specific model instances:

Setup > Kernel >Change > Timing Mode
You can aso use instance names to specify which instance to change.

Constraint Checking

Select the following menu choi ces to enabl e/disabl e the various timing constraint checks
(for example, setup, hold):

Setup > Kernel > Constraint Mode > Change

To enable constraint checking, select either “ State Only” or “Messages’ on the Change
Constraint Mode form. To disable constraint checking, select “Off” on the Change
Constraint Mode form.

SmartModel Library Message Formats

SmartModels issue four different kinds of messages to provide relevant information to
users during ssimulations. These include:

« Error messages

« Warning messages
. Trace messages

« Notes

Error messages can be generated by timing or usage checks. Warning messages, error
messages, and notes can all be generated by usage checks, depending on the situation.
Hardware verification models also issue trace messages, if enabled.

Error messages itemize selected information. For example, a setup time violation
causes an error message that documents:

o Pinname

. Part (by instance), reference designator, and component name

July 31, 2001 Synopsys, Inc. 233

Chapter 12: Using QuickSim Il with Synopsys Models Simulator Configuration Guide

Sheet name

Design name

Simulation time

Signals and edges, as appropriate

Setup times (as they occurred and as required by vendor data sheet)

Here are some sample messages:

234

“/1$2751" !

“/1$2751' :* ? Error: Unknown signal level on CLK pin.'

“/1$2751' :*? This will probably cause problens [ater in the

sinul ation.'
“/1$2751' ;. *? Smart Model |nstance /1$2751(UL02: M68030- 20), sheet1 of
schematic at time 0.0

“/1$2790": * !

“/1$2790': ‘Note: Loading the nenory image file “/user/bobb/design/
schenati c/romi mage. 0_7""

“/1$2790' : ‘ Srart Model | nstance /1$2790(U201: | 27512), sheet 2 of
schematic at time 0.0

“/1$2790': * --- 14 values have been initialized."'
“/1$2751" ;¢
“/1$2751' : ‘! Warning: Unknown signal |evel on DSACKO_PIN
Assumng DSACKO PINis 1.'
“/1$2751' : ‘! SmartModel |nstance /1$2751(UL02: MXB8030-20), sheetl of

schematic at time 200.0
“/1$2751': *Trace: Returning read data to PCL program'
“/1$2751': * [0] =00000BFE, [1] =00000000, [2] =00000000, [3]=00000000'
“/1$2751': * [4]=00000000, [5]=00000000, [6]=00000000, [7]=00000000,
[8] =00000000
“/1$2751' . * SmartMdel |nstance /1$2751(U102: MC368030- 20), sheet1 of
schematic at time 1750.0

“/1$2751 ;¢
“/1$2751': ‘Trace: PCL Bus Ond: Read. Control =06, Addr=00000004,
Byt es=4."'
“/1$2751' . * SmartMdel |nstance /1$2751(U102: MC368030- 20), sheet1 of

schematic at time 1750.0

Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 12: Using QuickSim Il with Synopsys Models

Using SmartModel Windows with QuickSim Il

SmartModel Windowsisa SmartModel Library feature that can be used for more
efficient system-level verification and debugging by allowing you to view window
elements during simulation runs for microprocessor, PLD, memory, and peripheral
models.

Window elements that can be viewed include registers, pointers, states, or latches (for
example), depending on the part being modeled. This section provides information
about how to interact with SmartModel Windows using QuickSim Il. SmartM odel
Windows can be used to:

« Review window element values and set breakpoints
« Single-step through simulations
Change window element values before proceeding with a simulation

« Traceinstruction execution
« Renameinstances
. Combineregister el ements

Most SmartModels contain predefined window elements that correspond to the
manufacturer's specifications. In addition, SmartCircuit models alow users to define
their own window elements so that the actual structure of the device can be examined.
To determine if a specific model is equipped with SmartModel Windows, check the
model's online datasheet.

How SmartModel Windows Works

SmartM odel Windows couples the models and the simulator so that model elements can
be used almost asif they were nets in the design. Normal QuickSim Il commands are
used with SmartModel Windows, except that an instance designator must be added to a
QuickSim Il command to address a model's window elements (even at the top level).
The general format for using QuickSim Il commands with SmartModel Windowsiis:

command nodel _i nst ance/ el ement _nane
Use any of the following commands to enable window elements with the simulator:

ADD LI STS nodel _i nst ance/ el emrent _nane
ADD MCN TGRS nodel _i nst ance/ el errent _nane
ADD TRACES nodel _i nst ance/ el ement _nane

July 31, 2001 Synopsys, Inc. 235

Chapter 12: Using QuickSim Il with Synopsys Models Simulator Configuration Guide

Window elements must be activated with one of the preceding commands in order for
SmartModel Windows to begin displaying data. Each model's online datasheet listsits
predefined window el ements, which are available during simulation. Using windows
you can read or display elements, force new values onto them, and stop the ssmulation
based on their values.

Tracing Instruction Execution

SmartModel Windows provides the ability to trace peripheral component activity in a
design. Most larger peripherals and microprocessors equipped for SmartM odel
Windows have a 1-bit element named TRACE_ENABLE. Setting TRACE_ENABLE
to one (1) causes trace messages to display in the transcript window.

Use the following command to enable instruction tracing for a model:
FORCE nodel _i nst ance/ TRACE ENABLE 1
Some trace message examples follow:

“1$2752': ‘Trace: Logical Mster witing to PMMJ perand Address AR

“1$2752' : * Smart Model | nstance /1$2752(UL03: M68851-12), sheetl1 of
ny_design at tine 819500.0

“1$2752': ‘Trace: MX®b8851 is starting a table search using CRP.

“1$2752': ‘ Smart Model | nstance /1$2752(U103: M368851- 12), sheet 1 of
ny_design at tine 822150.0

Setting Breakpoints and Word Triggering

Usethe ADD REAKPOINT command to stop the simulation at critical points and
examine internal window elements. You can set breakpoints based on the contents of
specific elements inside components within the design. For example, the following
command causes the simulation to stop at the breakpoint when the specified conditionis
met.

ADD BREAKPA NT (nodel _i nst ance/ TC==0B)

You can use Boolean expressions with the Add Breakpoint command to set up complex
word triggers that provide alogic analyzer during smulation. For example, the
following command causes the simulation to stop at the breakpoint when both of the two
specified conditions are met.

ADD BREAKPA NT ((nodel _i nst ance/ SCO =0) &&(model _i nst ance/ TC==B))
Trigger terms do not have to refer to the same instance or model. 1n addition, net values
and window element contents can be combined to make trigger terms.
Single-Step Simulation

The ADD BREAKPOINT command defaults to stopping the simulator when asignal or
expression in awindow element changes state. Asaresult, you can usethe ADD
BREAKPOINT command to single-step through a simulation.

236 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 12: Using QuickSim Il with Synopsys Models

Renaming Instances

Usethe ADD SYNONY M command to rename instances with easier-to-remember
substitute names. For example, to rename a model for an MC68851 with an instance
name of “1$289” to an easier-to-remember name such as“PMMU,” use the following
command:

ADD SYNONYM ' PMW | $289

Once you add a synonym you can use it in place of the original instance namein
commands. For example, thefollowing command lists the MC68851 translation control
register.

ADD LI STS HEX PMW TC

Combining Register Elements

You can use the ADD BUS command to combine meaningful 1-bit elements of aPLD
into asingle bus that can be viewed or changed after the PLD has been programmed.
This saves effort compared to dealing with each 1-bit element one at atime. Table 28
shows the elements of a sample device, the Texas Instruments TIBPAL22V 10. All
window elements for this example are 1-bit wide with read and write access.

Table 28: Elements in a TIBPAL22V10 Device

Element Description

Q23 PAL Internal Register connected to pin 23

Q22 PAL Internal Register connected to pin 22

Q21 PAL Internal Register connected to pin 21

Q20 PAL Internal Register connected to pin 20

Q19 PAL Internal Register connected to pin 19

Q18 PAL Internal Register connected to pin 18

Q17 PAL Internal Register connected to pin 17

Q16 PAL Internal Register connected to pin 16

Q15 PAL Internal Register connected to pin 15

Q14 PAL Internal Register connected to pin 14

July 31, 2001 Synopsys, Inc. 237

Chapter 12: Using QuickSim Il with Synopsys Models Simulator Configuration Guide

275> Note
Because the block diagram of this part does not denote specific names for
the elements, their names reflect the output pin numbers on the DIP symbol
(for example, pin 23 maps to Q23).

For example, to program thefirst six elementslisted in Table 28 as counters and register
the last four elements as data pins from an 1/O port, you would use the following
commands:

ADD BUS ONTR | $230/ @3, 1$230/ @2, 1$230/ @1, |$230/ @0, |$230/ QL9,
| $230/ QL8

ADD BUS DATA |$230/ QL7, |1$230/ Q16, |1$230/ QL5, |$230/ QL4

ADD LI STS CNTR DATA - C - HEX

Changing Program Flow by Setting Values

You can use the SmartModel Windows feature to shorten large repetitive loops. For
example, if aDMA controller hasinitiated a DMA transfer of 1,024 wordsto main
memory, you can view the transfer of the first couple of words before stopping the
simulation. By artificially setting the value of the DMA's transfer control register, you
can control which part of the transfer to view. You can then view the last few words as
they are transferred without having to wait for the entire process.

Be careful when inserting values into window elements, especially when forcing data
into program counters and instruction registers. This SmartModel Windows feature is
recommended only for users who completely understand the implications of what is
being inserted into an element.

When forcing a value onto an element, the FORCE command is always interpreted as if
the -CHARGED switch were present. This means that the forced value vanishes when

another event attempts to update the window element. It isnot possibleto FIX or WIRE
aforced value on awindow element.

SmartModel Window Elements

SmartModel Window elements for SmartCircuit models can be defined only at
simulator startup. This affects the way several QuickSim || commands interact with
SmartCircuit models:

. The SAVE STATE and RESTORE STATE commands produce unpredictable effects
if any SmartCircuit window elements are defined after saving the state.

« For SmartModel Windows to work with the SAVE STATE and RESTORE STATE
commands, the window elements defined at SAVE STATE must exactly match
those defined at the start of the current simulation session.

238 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 12: Using QuickSim Il with Synopsys Models

. The REREAD MODELFILE command does not redefine window el ements for
SmartCircuit models. Using this command to redefine window el ements after
simulation startup disables the window el ements.

Custom Symbols

Synopsys provides symbols representing default package pinouts for SmartModels.
However, you may need to create custom symbols for some of the following reasons:

. Toconform to internal drafting requirements
« To make a symbol match a component's pinout
. To match external drafting specifications (for example, military specifications)

Users who choose to create custom symbols as an alternative to using the symbols
provided can:

« Modify a SmartModel Symbol. Start with the SmartModel symbol and modify it
to match your drafting requirements. The value of the user PIN property can now
be changed without corrupting the value of the compiled PIN property.

. CreateaNew Symbol. Create the symbol with your pin values, figure out the
corresponding pin names used by the model, and change the user pin valuesto those
names.

To create custom symbols, follow these steps:
1. Provide required SWIFT properties on the symbol.
2. Register the component.
3. Map pin names to standard SWIFT pin names.

SWIFT Properties
The following symbol properties are required to interface with a SWIFT model:
« model
. TimingVersion
e pin
. pintype
. sSwift_template
Refer to Table 23 and Table 24 for information about other required symbol properties.

July 31, 2001 Synopsys, Inc. 239

Chapter 12: Using QuickSim Il with Synopsys Models Simulator Configuration Guide

Component Registration

When creating new symbols, you must add the SWIFT model to the component
interface by “registering” the model with atype of “SWIFT”.

For example, suppose you have created a new component called “my_ttl00” and you
want to use the SmartModel Library “ttl00” binary asthe simulation model. You would
register the ttl00 model as follows:

reg_nodel $W DR/ ny_conp_lib/ny_ttl00 -type SWFT -1abel 'ny_|abel'

PIN_NAME Mapping

The two methods for creating custom symbols described in “ Custom Symbols” on page
239 cannot be used to map bus symbol pinsto model pins. You must use apin_map file
to accomplish this sort of custom symbol creation, as explained in the following
sections.

PIN Property
A PIN property can have two distinct values in Design Architect, asfollows:

« Compiled pin value
« User pinvalue

The compiled pin value must be the same value that is used in the model. When initialy
adding a pin to a symbol, both these values are set to the specified value. For example,
naming apin “A” causes both its user pin value and the compiled pin value to be “A”.

Changing a PIN property value causes the compiled pin value to track the user pin
value. Specifically changing the compiled PIN property value disables this tracking
mechanism. To re-enable tracking, set the value of the compiled PIN property to null

")

PIN_NAME Property

SmartModel Library symbolsinclude a property called PIN_NAME that is used purely
for graphical purposes. The PIN_NAME property is provided because SmartM odel
Library symbols do not completely match the Mentor Graphics requirements for pin
names. Deleting a PIN_NAME property does not affect model functionality in any way.

& Attention
Do not confuse the PIN property with the PIN_NAME property on
SmartModel symbols.

240 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 12: Using QuickSim Il with Synopsys Models

Purpose of the pin_map File

Usethe pin_map file to map custom symbol pinsto model pins. If your symbol does not
have buses, then you can use the “user pin value” and “compiled pin value’
combinations previously described to do this mapping without using the pin_map file.
If you have bus pins on your symbol, then you need to use a pin_map file and ensure
that the PKG symbol property is set to the value “BUS’. Following is ageneral
description of the pin_map file which describes both cases.

175> Note
Error messages cite the pin names used by the model, not those on the
symbol or in the pin_map file.

How the pin_map File Works
At startup, a PKG symbol value of “BUS’ triggers the simulator to look for apin_map
filefor that model. The pin_map cross-reference fileisafree-format ASCII file. It
contains statements that use the following syntax:

pin_type synbol _pin [=] nodel _pin_names ; [# comrent _text]
Following are descriptions of the fields and options.
pin_type Must be the same value as the PINTY PE property of the

model. Valid valuesareIN, OUT, IXO, and 10. Do not
change this value.

symbol_pin The new pin name you want to use on your symbol. Thisis
the symbol's user PIN property, not its PIN_NAME property.

= Optional.

model_pin_names A statement can have from 0 to 767 model_pin_names,

separated by spaces, tabs, or new lines. The
model_pin_names are ordered from most significant to least
significant and refer to the PIN property, not the PIN_NAME

property.
Ends a statement.
Starts a comment, which runs to the end of theline.

July 31, 2001 Synopsys, Inc. 241

Chapter 12: Using QuickSim Il with Synopsys Models

Example of a pin_map File

The following example pin_map file customizes the standard symbol supplied with the
model of the National Semiconductor DP8429 DRAM controller shown in Figure 15.

Simulator Configuration Guide

:‘J‘I:IEI:I'N[II:I]_'I'—-mb
AR NEERE
mOr- O o] —
[e Bk kiece Ceck ok i
S Iy 7| I
18 e oI
JEI_[? I.'.IE_"H
1Tl o
13 {r=, EL3
o My
Bl S
I ra L=
g w7 pal
3 |y DPF42870 e
Bley PP g
wEzhE
G wsaf
[‘953,5”
WE [
a
I I =
A A Ao
yanr g L
Nd=L=bLds
[N T R 1 el 1
EREL NN
W In

Figure 15: National Semiconductor DP8429 DRAM Controller

In the example pin_map file shown below, the names that are changed on the first
symbol arelabeled CS, RASIN, R/C, CASIN, WIN, RA, RB, RC, RD, and M2. They
will have an “L” added to the name to denote that they are asserted low. Notice that a
bus has been defined for each of these sets of pins. QO through Q9, RO through R9, CO
through C9, and BO through B1.

242

#

DP8429 PI N NAVE CHANGES

#

INCSL = CS ;

IN RASINL = RASIN

IN CASINL = CASIN

INRCL = RC ;

INWN = WN

INRFSH = M ;

INR = RRBRRRPRRBRMRBRR R

Synopsys, Inc.

July 31, 2001

Simulator Configuration Guide Chapter 12: Using QuickSim Il with Synopsys Models

OB BBOGGEABRCA
Bl BO;
VE.

z 2
@O

RAS3
RAS2
RAS1 ;
RASO ;
PABIX BDABQERA Q;

Conditional Pin Mapping

Use a conditional clausein the pin_map file to cause the model to use different parts of
apin_map file based on the value of a certain property. The syntax is:

EEEEE
dBERR,

ar Q

% property _nane property val ue

This method is used by the models to map the pins from the BUS symbols to the model.

The pin map parser searches for the property_name in the design database and then
compares the property_value. If the property isnot present, or if the actual value of the
property does not match the property value exactly, everything in the file until the next
percent sign (%) isignored.

The following example shows the pin_map file that provides mapping from the pin to
the bus symbols for the Logic Devices LSH32 32-bit barrel shifter.

#

Bus Package for the LSH32

#

% PKG BUS

IN I =131130129 128 127 126 125124 123 122121120119 118

117116 115114 113 112 111 11019181716 1514131211 ;
QUT Y = Y15 Y14 Y13 Y12 Y11 Y10 Y9 Y8 Y7 Y6 Y5 Y4 Y3 Y2 Y1 YO ,
IN S Sl4 S13 82 SI1 S0 ;
QJr SO= SO SAB S sO1 S

July 31, 2001 Synopsys, Inc. 243

Chapter 12: Using QuickSim Il with Synopsys Models Simulator Configuration Guide

Figure 16 illustrates both symbol types.

Buz Symbol Pin Symbol
L
LS HIEC 4
BUS R L e ey L L AL e L L
— N3y YUEsO g . -l
. 5L Sl Je&
—-ShH0y g _5_}";_' Lhoe E-E&
LERZT @ -
— AL I jlrll:l LIk
— FAW e
— WA M ﬁﬁéx&LE
3
—.5IFN SO O — [
— M5iLs L =g LS h e REa T
S ARG lg
e R T e
TIPS

Figure 16: Bus and Pin Symbols

T3> Note
The properties on custom symbols must be the same as those on standard
SmartModel symbols.

Using Hardware Models with QuickSim Il

This section describes how to configure Release 3.5a of Model Access for QuickSim I1.
Model Access is the software you use to interface hardware models with the simulator.
Before you begin, review the release notes for Model Access for QuickSim in the
Hardware Modeling Release Notes. If you are using the C-series releases of QuickSim
[1, you must use R3.0 or better of the Model Access for QuickSim |1 interface software.

These instructions assume that you have aready installed the following software:

« Mentor Graphics software, including QuickSim Il V8.6 or later; and the Design
Data Port package, as described by Mentor Graphics Corporation.

. R3.1aor later of Model Source or LM-family hardware modeling software.

244 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 12: Using QuickSim Il with Synopsys Models

Setting up Hardware Models in QuickSim I

To set up the LM-family Model Access interface software for QuickSim |1, complete the
following steps:

1. “Running Imc_hm_install” on page 245
2. “Rebuilding the Mentor Graphics Tree” on page 246

Running Imc_hm_install

To run the Model Access install ation script, enter the following commands. If you are on
NT, execute these commandsin aMGC “mkns” shell.

%cd install _dir/sns/mags_30/1 nc_hm $vco/ bi n
%I nc_hminstall -mngc_home -1 I mhonme -p ma_hone

where;

« $vcoisthe vendor CPU operating system suffix that corresponds to your platform,
as shown in Table 29.

. mgc_homeisthe directory path that contains the Mentor Graphics software tree.
You can use SMGC_HOME if you have set it, or a pathname such as
/home/mentor.

« Im_homeisthedirectory path that contains the LM-family and M odel Source system
software; for example, /home/Im.

. ma_homeisthedirectory path that contains the M odel Accessinterface software; for
example, /home/Imc_hm.sss.

Table 29: Mentor Graphics Vendor CPU Operating System Suffixes

Vendor CPU
Host Operating System Suffix ($vco)
Sun SPARC (Solaris) ss5
HP 9000 Series 700 hpu
Intel Pentium (Windows NT) IXn

When the script completes, the following message appears on the screen:

1. Invoke the Mentor Installation tool
> cd /an_idea tree/install8
> install

July 31, 2001 Synopsys, Inc. 245

Chapter 12: Using QuickSim Il with Synopsys Models Simulator Configuration Guide

2. Fromthe "Mentor Gaphics Install" tool w ndow
> Adm n
> Rebui | d M Tree

3. Inthe "Pronpt" wi ndow enter the proper path to the
M3C HOME to be rebuilt. dick on
> K

4. "Rebuild MC Tree Results" wi ndow appears. AFTER Rebuild

conpl etes. dick on
> K

5. Fromthe "Mentor Gaphics Install" tool w ndow

> File
> Exit
6. "Install Warning" w ndow appears. dick on
> K
275> Note

This process rebuilds the Mentor tree with the newly installed hardware
modeler package.

Rebuilding the Mentor Graphics Tree

Thefinal step isto rebuild the Mentor Graphics tree using the Mentor Graphics
installation script.

Using install, version C.1

246

1. To invoke this program, enter the following:

%cd ngc_home/install8 ./install

2. When the install tool appears, use the mouse to select the Admin > Rebuild MGC

Tree pull-down menu item. The program prompts you to enter the MGC tree
pathname.

. If you have defined $SMGC_HOME, that path will appear; otherwise, enter the full

pathname of the Mentor Graphics tree that you want to rebuild, such asthe
mgc_home pathname described in “Rebuilding the Mentor Graphics Tree” on
page 246.

. Click on OK or press the Return key to accept this pathname. Theinstall program

takes several minutes to rebuild the Mentor Graphics tree. The program prints a
number of messages to the Results screen. You should ensure that no errors or
warnings are printed, especially warnings generated by the Imc_hm package
indicating that you are missing certain Mentor Graphics software packages.

Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 12: Using QuickSim Il with Synopsys Models

5. When the rebuild is complete, click on OK to delete the Results screen.
6. Use the mouse to select the File > Exit pull-down menu item.

This completes the Model Access installation procedure. You are now ready to begin
model registration and simulation.

Using Hardware Models in QuickSim Il

This section describes how to prepare and use hardware models in QuickSim 11. We
begin with an overview of the Mentor Graphics design environment that describes why
models must be registered in order to function in this environment. The section also
describes how to use the Im_model utility to register hardware models.

The operation of the hardware modeling system during simulation is transparent to the
user in most respects. However, a number of signal instance commands are available to
enable or disable QuickSim |1 or hardware modeling features for selected instances
during ssimulation. This section provides descriptions and examples of those commands.

The Mentor Graphics Design Environment

In the post-V 8.0 QuickSim-family environment, an instance of a component placed on a
schematic references a component interface. A component interface contains a set of
descriptors that define aspects of a component, such as its functionality, graphical
representation (symbol), and timing constraints.

There can be several variations of each descriptor for a component, such as:

« Several functional descriptions of the component using different modeling methods
such asBLM, VHDL, or hardware models.

. Several graphical descriptions (symbols) of the component such as ANSI,
MG_STD, or your company standard.

« Several technology descriptions (timing constraints) of the component with
different timing grades.

The Mentor Graphics analysis tools use the value of the MODEL property asalabel to
identify the descriptors that define the model. For example, Figure 17 shows an instance
with aMODEL property of $Im. The $Im label is the default label for the functional
description of a hardware model. By examining the model table of the component
interface, a match can be found between the MODEL property and the files that
comprise the functional description of the hardware model.

July 31, 2001 Synopsys, Inc. 247

Chapter 12: Using QuickSim Il with Synopsys Models Simulator Configuration Guide

Mentor Graphics Schematic
— ASIC1 —
—lInstance|—
—{ MODEL —
— =%$Im —
Functional Description
ASICl.rss 1
Component ASIC1.mgc_Im.attr
v
Interface
] e
$im
default_sym p Graphical Description
def_tech ASICl.smbl_1

ASIC1.mgc_symbol.attr
v

e

Technology Description

technology.ts
technology.tecf 1

technology.Tf_tfile_do.attr
k—/’/

Figure 17: Sample Component Interface for a Hardware Model

Mentor Graphics analysis tools use the following rules to determine the appropriate
descriptors:

1. If alabel match isfound, the analysistool uses the descriptor identified by the label.

2. If alabel match isnot found, the analysis tool uses the default label for the
descriptor.

3. If alabel match is not found and there is no default l1abel, the descriptor is optional
and is not used.

248 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 12: Using QuickSim Il with Synopsys Models

Model Registration

Because multiple descriptions can exist for the same component, you must register each
model to specify the model’s component interface and descriptors. The Im_model utility
isatool for registering hardware models. If a QuickSim II component does not already
exist, Im_model creates one, along with a component interface that specifies the
functional, graphical, and technology descriptions for the model.

Thelm_model utility registers a hardware model in three steps, using the model’s Shell
Software as source files:

1. Creates a symbol for the model and registersit with the component interface.

2. Creates, compiles, and registers atechnology File, which contains the timing
description of the model in a Mentor Graphics proprietary format. The user can
choose to use either this technology file or the Shell Software timing files during
simulation. For more information, refer to “ Timing Shell Selection” on page 258.

3. Registers the functional description with the component interface.

TheIm_model command, asillustrated in Figure 18, calls anumber of other utilities.
Thereg_model utility and Technology Compiler (tc) are Mentor Graphics utilities; for
more information about these utilities, refer to your Mentor Graphics documentation.
For more information on the tmg_to_ts converter, refer to “Im_model Command
Reference” on page 264. For more information on the Im_model utility, refer to
“tmg_to_ts Command Reference” on page 267.

July 31, 2001 Synopsys, Inc. 249

Chapter 12: Using QuickSim Il with Synopsys Models Simulator Configuration Guide

Shell Software

ASIC1.MDL
ASIC1.DEV ASIC1.DCL
PGA.PKG ASIC1.TCK
PGA160.ADP| —| | ASIC1.TRK
ASIC1.0PT ASIC1.DLY
ASIC1.NAM ASIC1.FRC

technology.ts Technology

Compiler

I

I

I
- S - | Technology

)] Description
| Functional Graphical | |
| Description Description | I
| | | | technology. <
tecf 1
I | Asic1. AsiClmge | | ! - !
	mgc_Im.attr symbol.attr		technology.
		Tf tile	
ASICl.rss_1 ASIC1.		do.attr	
smbl_1

| = | I I
| | Sl -
L —_- — - - — S -

Figure 18: Hardware Model Registration

Registering a Model with Im_model

All hardware models, whether user-created or purchased from Synopsys, must be
registered with the Im_model utility before you can use them in the QuickSim 11
simulation environment. The following list shows the basic stepsinvolved in preparing
a hardware model for ssimulation:

1. Running the Im_model Utility, discussed next.
2. Checking the Transcript for any errors or warnings.

250 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 12: Using QuickSim Il with Synopsys Models

3. Editing the Symbol to meet any additional symbol conventions (optional).

4. Verifying the Technology File(not required if Shell Softwaretiming filesare used in
place of thisfile; for more information, refer to “ Timing Shell Selection” on
page 258).

Running the Im_model Utility

You can use the Im_model shell command to register a hardware model. To run
Im_model, use the following syntax.

Syntax
Im_model input_dir [output_path] [-Dir name] [-LAbel 1abel]
[-Mdl mdl_filename] [-Step Register|Symbol |[Timing|Update] [-Replace]

For a complete description of Im_model syntax and options, refer to “Im_model
Command Reference” on page 264.

Example

The following example shows how you might register a 74L S74 model which has a
model file named 74L S74A.MDL. This example assumes that SMGC_WD is set to
/user/models, which contains a Shell Software directory called 741s74.

| m nmodel 741 s74 -m 74LS74A

This command creates a/user/model s/74LS74 component directory—if one did not
already exist—containing the files shown in Table 30.

Table 30: Sample Component Directory

File Description
74LS74A rss 1 Registered Shell Software
74LS74A.mgc_Im.attr Compiled and registered Shell Software
part.part_1 EDDM part
part.Eddm_part.attr EDDM part
74L.S74.smbl_1 Symbol graphics
74L.S74.mgc_symbol .attr Symbol graphics
74LS74A _tech.ts Source technology file
TALS74A tech.tecf 1 Compiled technology file
7T4LS74A_tech.Tf _tfile do.attr | Versioned technology file

July 31, 2001 Synopsys, Inc. 251

Chapter 12: Using QuickSim Il with Synopsys Models Simulator Configuration Guide

275> Note
Previous versions of Im_model copied Shell Software source filesinto the
component directory and registered thesefiles. However, the current version
registers only areference pathname to the Shell Software files and does not
copy thefiles.

Checking the Transcript

The transcript displays information about the progress of the registration, in addition to
notes, warnings, and errors.

Thelm_model utility checks that the Shell Software is syntactically and semantically
correct; thisis equivaent to running the Im Check Shell Software utility. If Im_model
encounters an error condition, it stops execution and prints a message describing the

source of the error. Warning and information messages print to the screen, but do not
halt the execution of Im_mode!.

If you get an error, you should fix the problem in the Shell Software and then run
Im_model again to complete the registration.

Thefollowing isan Im_model transcript for the 74LS74 mode!:

/1 Model Access for QuickSmll v2.0, (a.k.a. |nc_hmyv2.0)
/1 Imnodel v8.5 2.1 Fri Cct 18 18:32:32 PDT 1996
// Note: Input directory "74ls74"

/1 resolves to "/user/johnd/ | nc/ ga/l nc_hmiwor k. sss/ 741 s74".
/1 Note: Qutput directory "74LS74"

/1 resolves to "/user/johnd/ | nc/ ga/l nc_hmiwor k. sss/ 74LS74" .
/1

/1 Note: sing "74LS74A MDL" file for conversion.

/1 Note: Conpiling synbol generator program

/1 Note: Linking synbol generator program

/1 Note: Qeating synbol.

/1 trng_to_ts v8.5 2.1 Sat Cct 19 20:18:24 PDT 1996

// Falcon Framework v8.5 2.5 Thu May 30 17:31:43 PDI 1996

/1

[/l Copyright (c) Mentor G aphics Corporation, 1982-1995, Al R ghts Reserved.
/1 UNPUBLI SHED, LI CENSED SCFTWARE.

/1 QONFI DENTI AL AND PRCPRI ETARY | NFCRVATI ON VH CH | S THE

/1 PRCPERTY OF MENTCR GRAPH CS CCRPCRATI ON CR I TS LI CENSCRS.

/1

/1 Mentor G aphics software executing under Sun SPARC SunCs.

/1

/1 TC - The Technol ogy Conpil er v8.5 2.2 Sat Jun 22 10:56:50 PDT 1996
// Falcon Framework v8.5 2.5 Thu May 30 17:31:43 PDI 1996

/1
/1 Copyright (c) Mentor G aphics Corporation, 1982-1995, Al R ghts Reserved.
/1 UNPUBLI SHED, LI CENSED SCFTWARE.

252 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 12: Using QuickSim Il with Synopsys Models

/1 CONFI DENTI AL AND PRCPRI ETARY | NFCRVATION WH CH IS THE
/1 PRCPERTY COF MENTCR GRAPH CS CCRPCRATION CR | TS LI CENSCRS.

/1
/1 Mentor G aphics software executing under Sun SPARC SunCs.

/1

/1
/1 Note: Imunodel conpleted successfully
Editing the Symbol

During registration, the Im_model utility reads the Shell Software to determine the
device'sinput, output, and 1/0 pin names. The utility then flattens all buses to individual
bits and generates a Mentor Graphics Design Architect script that creates the symbol.

The process uses the following rules to create the symbol:
« All input pins are placed starting in the lower left corner and proceeding upwards.
All output pins are placed starting in the lower right corner and proceeding upwards.

« 1/O pins are placed for minimizing the symbol’s height.

« All buses are grouped with the least significant bit placed lower on the symbol than
the most significant bit.

« A single grid spacing is left between buses, grouped scalar pins, input and 1/0 pins,
and output and 1/O pins.

Since symbol standards vary, you may need to use the Symbol Editor in Design
Architect to modify the appearance of the automatically-generated symbol. For more
information, refer to your Design Architect documentation.

Verifying the Technology File

During registration, Im_model calls the tmg_to_ts converter. This converter extracts
timing information from the following Shell Software filesto create a Technology File:

. Variable declarations (.DCL) file
« Timing checks (.TCK) file

. Statetracking (.TRK) file

. Delays(.DLY) file

. Forcevalues (.FRC) file

The technology file specifies propagation delays and some timing checks, as well as
technol ogy-dependent data for the simulation model. Table 31 shows how Shell
Software timing statements are converted into technology file statements.

July 31, 2001 Synopsys, Inc. 253

Chapter 12: Using QuickSim Il with Synopsys Models

I35 Note

Simulator Configuration Guide

Many Shell Software statements have no technology file equivalents. The
tmg_to_ts converter includes each “untrandatable’ statement in the
technology file as a comment and/or generates a warning message. For this
reason, we recommend that you use the Shell Software timing files instead
of the technology file during simulation. For instructions, refer to “Timing

Shell Selection” on page 258.

Table 31: Shell Software to Technology File Conversion

Shell Software Satements

Technology File Satements

cycle _time input_state (storage pin) =
timing_spec

fMIN = min_freg on storage pin (input_trans)
fMAX = max_freq on storage pin (input_trans)

decrement name

default_delay timing_spec

tP = timing_spec on eval_storage pin
(input_trans) to output_pin (output_trans)

delay from input_state (eval_storage pin) to
output_state (output_pin) = timing_spec

tP = timing_spec on eval_storage pin
(input_trans) to output_pin (output_trans)

force value output_pin = pin_value

hold after input_state1 (storage pin) of
input_state2 (input_pin) = timing_spec

tH = timing_spec on input_pin (i nput_statez) to
storage pin (i nput_transl)

if (condition) { statements}
else if (condition) { statements}
else { statements}

end_if

increment name

print (severity, arguments)

pulse width input_state (storage pin) = timing_speq

tW = timing_spec on storage pin (input_state)
No equivalent to maximum pulse width time.

254

Synopsys, Inc.

July 31, 2001

Simulator Configuration Guide

Chapter 12: Using QuickSim Il with Synopsys Models

Table 31: Shell Software to Technology File Conversion (Continued)

Shell Software Satements

Technology File Satements

recovery after (condition)
during (condition)
before input_state(storage pin) =
timing_spec
else_during (condition)
before input_state(storage pin) =
timing_spec
else
before input_state(storage pin) =
timing_spec
end_during

set name = value

setup before input_state1 (storage pin) of
input_state2 (input_pin) = timing_spec

tS = timing_spec on input_pin (i nput_statez) to
storage pin (i nput_transl)

stable valid (input_pin) while (store_pin =
input_state)

tSTAB = 0: O on input_pin (V) to store_pin (transl,
trans2)

var enumerated _list name = identifier

var counter name = number

when (condition) { statements}
else_when (condition) { statements}

else { statements}
end_when

with condition
No equivalentsto else when and else clauses

Modifying a Hardware Model

Whenever you change a hardware model’s Shell Software, you need to rerun Im_model.
However, you may be able to use the -Step option to perform just the steps you need.
The following list provides some guidelines about how to take advantage of the -Step

option:

. If you change, add, or delete a pin name in the Shell Software, then you must rerun
all three steps of Im_model (the default). Because you are recreating the symbol,
you must also use the -Replace option. For example:

| m nodel 741 s74 -r

. If you change, add, or delete atiming specification in the Shell Softwaretiming files
and you are using the Technology File in QuickSim 11, you should use Im_model
with the -Step Timing switch. For example:

| mnodel 74ls74 -s t

July 31, 2001

Synopsys, Inc. 255

Chapter 12: Using QuickSim Il with Synopsys Models Simulator Configuration Guide

This step is equivalent to running tmg_to_tsto create the technology file and then
running tc to compile and register it with the component interface.

. |If you make any changes to the Shell Software other than changing pin names and
timing information, you should use Im_model with the -Step Register switch; for
example:

| mnodel 741s74 -s r
This step is equivalent to running reg_model.

. If you have not changed any pin names and want to run both the registration and
timing steps, you can use Im_model with the -Step Update switch to update the
component interface without recreating the symbol. For example:

| mnodel 74ls74 -s u

This switch is particularly useful, because symbol generation is the most time-
consuming step of registration and you lose al manual edits you have made to a
symbol when you regenerate it.

. If you aready have aworking symbol, you can use -Step Update to register the
hardware model functionality with the existing component. For example, you would
use -Step Update if you have adifferent type of model for the same component. You
can then change the MODEL property in the schematic in order to specify whether
you want to use the hardware model or another type of model for an instance.

Simulating with Hardware Models in QuickSim Il

Once you have registered each hardware model in your design and set the MODEL
property to the appropriate label for instances that reference those models, you are ready
to simulate. You can use the SIGna INSTance command to turn on and off anumber of
QuickSim |1 or hardware modeling features for selected instances during simulation.

Signal Instance Command Summary

Table 32 provides a summary of these features and the specific commands used to
implement them; the subsections that follow describe the features in more depth. Some
features can also be implemented through Shell Software statements or the Im utilities;
for details, refer to the Shell Software Reference Manual. For instructions on how to
select one or more instances, refer to your QuickSim I documentation.

T3> Note
If the smulator is reset with the $reset_state function, any prior Signal
I nstance commands are lost because the simulator isreset to the same state it
was at invocation.

256 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide

Chapter 12: Using QuickSim Il with Synopsys Models

Table 32: Signal Instance Command Summary

Feature Command Description
Model evaluation | enable Enables evaluation of the instance by
QuickSim 11 (default)
disable Disables evaluation of the instance by
QuickSim 11
Timing shell Ist [-p all] Selects hardware model Shell Software filesto
selection describe the instance’ s timing
nolst [-p all] Selects the Technology File to describe the
instance’stiming (Default)
Unknown Xp [-p pin_name] Maps an unknown input state to the previous
handling and state (Default)
propagation _ . ;
X0 [-p pin_name] Maps an unknown input state to alogic zero
State
x1[-p pin_name] Maps an unknown input state to alogic one
State
Xz [-p pin_name] Maps an unknown input state to afloat state
propagate Propagates unknowns through the hardware
model
nopropagate Turns off unknown propagation (default)
default_ propagation Sets the number of additional sequencesto be
-p number played to the instance when unknown
propagation is enabled (default = 0)
random_seed Sets the value of the seed for the random
-p seed sequence generator when unknown propagation
is enabled (default = 0)
Indeterminate is Maps an indeterminate strength (i) to a strong
strength mapping strength (s) (default)
iz Maps an indeterminate strength (i) to a high-
impedance strength (z)
Test vector logvectors Turns on test vector logging
logging -p filename
nologvectors Turns off test vector logging (default)

July 31, 2001

Synopsys, Inc. 257

Chapter 12: Using QuickSim Il with Synopsys Models Simulator Configuration Guide

Table 32: Signal Instance Command Summary (Continued)

Feature Command Description
Timing tm [-p filename] Turns on timing measurement: returns the
measurement actual measured delaysto QuickSim 11
notm Turns off timing measurement: uses the delay

values specified in the Shell Software or in the
technology file (default)

Loop mode loop Turns on loop mode: the modeling system
repeatedly plays a pattern history to the
physical device

noloop Turns off loop mode (default)
Information dump Reports all available information about the
selected instance of a hardware modeled device
Imc Reportsthe type of timing shell (Shell Software
[-p shell|allshell] or technology file) for the selected instance
vector Reports the runtime vector count of the selected
instance

Model Evaluation

By default, all component instances are evaluated in QuickSim I1. If you want to disable
evaluation of models for selected instances, you can use the SIGnal INSTance disable
command. This command isolates sections of the design and shortens the simulation
time for debugging purposes. To turn model evaluation on again for selected instances,
you can use SIGnal INSTance enable.

Timing Shell Selection

The SIGnal INSTance Ist command lets you use the hardware model’s Shell Software
timing files instead of the default technology file during evaluation of the selected
Instances. You can use the SIGnal INSTance nolst command to switch back to the
technology file for selected instances.

The optional -p all argument enables you to choose the type of timing shell for all
hardware modelsin the design, if you have at least one instance selected. For example,
you could use the following command before simulating:

siginst Ist -p all

258 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 12: Using QuickSim Il with Synopsys Models

QuickSim |1 ignores the technology files for all hardware models in the design and take
the timing (delays and timing checks) directly from the Shell Software. If you decided
you wanted to use the technology filesinstead for all hardware models, you could use
the following command to switch back to the default timing shell without having to
select every instance:

siginst nolst -p all

To select Shell Software timing every time you invoke QuickSim Il with a particular
design, you can create or edit a quicksim.startup file under the design viewpoint. Add
the following line to the file to directly call the function that implements this Signal
Instance command:

$signal _instances("lst", "all", "/1$1");
Substitute the instance name of any hardware modeled device for /I$1.

You can aso use the actual measured delays from the device as an alternative timing
option with hardware models. For more information about this feature, refer to “Timing
Measurement” on page 261.

Performance Monitoring

You can monitor the performance of the hardware modeler and append the results to the
simulator log file after smulation. To enable performance monitoring, in the window
where you are running the ssmulator, enter the following:

% set env LM CPTI ON “noni t or _per f or mance”

For more information, refer to “Performance Monitoring” in the Model Source User’s
Manual.

Unknown Handling and Propagation

The unknown handling and propagation commands enable you to modify the hardware
modeling system’s default handling of device input and I/O pins that the simulator sets
to unknown.

Unknown Mapping

Since the hardware modeling system cannot present an unknown logic level to a
physical device, unknown values presented to inputs of hardware models must be
mapped to known values. The SIGnal INSTance xp, x0, x1, and xz commands map
unknowns for all instances of the selected components to the previous state, logic zero,
logic one, or high-impedance (float), respectively. By default, unknowns are mapped to
the previous state. Unknowns mapped to high-impedance are also mapped to the
previous state.

July 31, 2001 Synopsys, Inc. 259

Chapter 12: Using QuickSim Il with Synopsys Models Simulator Configuration Guide

You can customize unknown handling per pin by using the -p pin_name argument. For
example, you can issue the following:

sig inst x0
siginst x1 -p clkl

These commands map all unknowns for the selected components—except for unknowns
received on the clk1 pin—to logic zero (0). Any unknowns received on clk1 are mapped
tologic one (1).

These Signal Instance commands perform the same function as the Shell Software
on_unknown statement, and the set_previous, set_low, set_high, and set_float attributes
of thein_pin and io_pin statements. For more information, refer to the Shell Software
Reference Manual. Note that explicit Shell Software settings override any Signal
Instance commands.

Unknown Propagation

The SIGnal INSTance propagate command turns on unknown propagation for all
Instances of the selected components. The modeling system propagates the unknowns
through the model using multi-sequence pattern play. The SIGna INSTance
nopropagate command turns off unknown propagation for al instances of the currently
selected component, which is the default behavior.

When unknown propagation is on, two pattern sequences are used by default. However,
you can specify up to twenty additional sequences with the default_propagation -p
number command, for atotal of 22 sequences. You can aso specify the value of the seed
for the random sequence generator with the random_seed -p seed command. The value
of the seed is 0 by default, but any number from 0 to 65,535 can be used.

For example, you can issue the following:
sig inst propagate

sig inst default_propagation -p 8
sig inst randomseed -p 7896

These commands turn unknown propagation on for al instances of the selected
components. The modeling system plays atotal of ten sequences (the primary,
secondary, and eight additional sequences) per instance to the device, and uses the
random sequence seed 7,896.

These Signal Instance commands perform the same function as the Shell Software
on_unknown statement. Note that explicit Shell Software settings override any Signal
Instance commands, except for when the SIGnal INSTance nopropagate command is
used. This exception allows the simulator to turn off unknown propagation if the
modeling system is running out of pattern memory. For more information about
unknown propagation, refer to the Shell Software Reference Manual and the LM-family
Modeler Manual or the Model Source User’s Manual.

260 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 12: Using QuickSim Il with Synopsys Models

Indeterminate Strength Mapping

The SIGnal INSTance isand SIGnal INSTance iz commands enable you to map
Indeterminate strength pin values received on inputs of hardware modelsto either strong
(hard) or high-impedance (float) strengths. The modeling system treats high-impedance
strength pin values as unknowns and maps or propagates them accordingly. By default,
the system maps indeterminate strengths to strong strengths.

Test Vector Logging

The SIGnal INSTance logvectors -p filename command turns on modeling system test
vector logging for the selected instance. With test vector logging enabled, the inputsto
the device and sensed outputs from the device are stored to filename. By convention, the
filename used for the test vector output is device_ name.VEC. The SIGnal INSTance
nologvectors command turns off test vector logging for the selected instance, which is
the default behavior.

For example, consider the following commands:

sig inst logvectors -p ' $ASI 2/ vect ors/vector 11. VEC
dofile ' $ASI 2/ dofi | es/runll. do'
sig inst nol ogvectors

In this example, the modeling system creates a test vector file called vector11.VEC.
Thisfile contains the vectors played to and sensed from the selected instance during the
simulation run by the dofile. The SIGnal INSTance nologvectors command turns off the
modeling system test vector logging capability.

After logging vectors, you can replay them directly to the device and note any
discrepancies using the Im Play Vectors utility. This utility is particularly useful for
ASIC verification. For more information about ASIC verification and test vector (.\VEC)
file format, refer to the LM-family Modeler Manual or the Model Source User’s Manual.

Timing Measurement

The SIGnal INSTance tm [-p filename] command turns on the modeling system timing
measurement for the selected instance. The system then returns to the simulator the
actual measured delay values for that instance. If you provide an optional filename, the
system al so saves the measured delays to atiming measurement (.TIM) file. By
convention, device_name.TIM is the filename used for the timing measurement output.

The SIGnal INSTance notm command turns off timing measurement for the selected
instance, which is the default behavior. If timing measurement is disabled, the
Technology File delays (or the Shell Software delaysif SIGnal INSTancelst is
specified) are returned to the simulator.

July 31, 2001 Synopsys, Inc. 261

Chapter 12: Using QuickSim Il with Synopsys Models Simulator Configuration Guide

For example, consider the following commands:

siginst tm-p '$ASICQ/timng/timngll. TIM
dofil e ' $ASI C2/ dofi | es/runll. do'
sig inst notm

In this example, the modeling system creates a timing measurement file called
timingl1.TIM. Thisfile contains the delays of the selected instance measured during the
simulation run created by the dofile. The SIGnal INSTance notm command turns off the
modeling system timing measurement capability.

This Signal Instance command performs asimilar function to that of the Im Measure
Timing utility. Timing measurement is particularly useful for ASIC verification. For
more information about ASIC verification and timing measurement (.TIM) file format,
refer to the LM-family Modeler Manual or the Model Source User’s Manual.

I°5> Note
The timing measurement (.TIM) file can be converted to a Shell Software
delays (.DLY) file by using the Im Create Timing File utility. (For more
information, refer to the LM-family Modeler Manual or the Model Source
User’sManual.) The delaysfile can then be converted into atechnology file,
if desired, by using the Im_model utility with the -Step Timing option.

Loop Mode

The SIGnal INSTance loop command turns on the modeling system pattern looping
capability (loop mode) for the currently selected instance. In loop mode, the modeling
system continually replays the complete pattern history of the selected instance to the
device. The SIGnal INSTance noloop command turns off pattern looping.

Pattern looping is amodel development feature useful for analyzing the device behavior
and pattern history with an oscilloscope or logic analyzer connected to the device.
However, while loop mode is enabled, no other user can access the modeling system;
patterns are replayed to the selected device exclusively until loop modeis disabled. For
this reason, QuickSim |1 returns an error if this command is specified when more than
one user is accessing the modeling system.

262 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 12: Using QuickSim Il with Synopsys Models

Printing Model Information

A number of Signal Instance commands are available for printing information about the
selected model instances. The SIGnal INSTance dump command prints all information
available about the currently selected instances, including:

« Instance D

. Name of the modeling system in which the hardware model is located
« Setting for test vector logging (On or Off)

« Setting for indeterminate strength mapping (S or Z)

« Setting for Shell Software timing (On or Off)

. Model name, as specified in the Shell Software device_name

« Setting for timing measurement (On or Off)

« Setting for loop mode (On or Off)

« Runtime vector count

. Evaluation status (Enabled or Disabled)

The SIGnal INSTance Imc and SIGnal INSTance vector commands print subsets of the
information provided by SIGnal INSTance dump:

« The SIGnal INSTance Imc -p shell command prints the Shell Software timing
setting (On if you have specified SIGnal INSTance Ist; Off if you have not) for the
selected instances. SIGnal INSTancelmc -p alshell printsthe Shell Software timing
setting for all hardware model instances, if you have at | east one instance selected. If
you do not specify one of the -p arguments, this command will print alist of the
available subcommands.

. The SIGnal INSTance vector command prints the runtime vector count of the
selected instances.

Performance Monitoring

You can monitor the performance of the hardware modeler and append the results to the
simulator log file after smulation. To enable performance monitoring, in the window
where you are running the simulator, enter the following:

% set env LM CPTI ON “noni t or _per f or nance”

For more information, refer to “Performance Monitoring” in the Model Source User’s
Manual.

July 31, 2001 Synopsys, Inc. 263

Chapter 12: Using QuickSim Il with Synopsys Models Simulator Configuration Guide

Ending the Simulation Session

Termination of a normal simulation session notifies the hardware modeling system that
the simulation session has ended. All modeling system resources being used by that
simulation are then made available for other users.

If the ssmulation exits abnormally, “orphaned” processes may exist on the modeling
system, even though the simulation has terminated. If Imdaemon is running on your
workstation, it automatically deletes orphaned processes. You can aso use the Im Abort
User utility to remove the unwanted processes manually. Both of these methods release
modeling system resources. (For more information about Imdaemon and the Im utilities,
refer to the LM-family Modeler Manual or the Model Source User’s Manual.)

L M-family and Model Source modeling systems support simulation save and restore
capabilities. When a save simulation state is performed, the state of all hardware models
being used by the smulation session is automatically saved into a QuickSim |1 save
directory. Similarly, restoring the simulation state automatically restores the state of the
model as used by the saved simulation, including all stored pattern history.

@ Attention
If you are using Shell Software that contains enhanced features—such as
model state tracking or “when” conditions—the translation to the resulting
technology file may be incomplete and contain “ compromise” statements. If
you elect to use the technology file instead of the Shell Software during
simulation, the device may exhibit incorrect timing and/or behavior. To
eliminate this possibility, translate the technology file from pre-R2.0 Shell
Software, which does not contain these statements, or use the Shell Software
directly during simulation by issuing the SIGnal INSTance |st command on
the hardware model instance. For more information about this procedure,
refer to “ Timing Shell Selection” on page 258.

Im_model Command Reference
TheIm_model shell command registers a hardware model by invoking hardware model
registration and conversion programs.
Syntax

Im_model input_dir [output_path] [-Dir name] [-1fc interface] [-LAbel label]
[-Mdl mdl_filename] [-Step Register|Symbol|Timing|Update] [-Replace]
[-VERBos¢g] [-Help] [-Usage] [-VERSIon] [-Old] [-LM]

264 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 12: Using QuickSim Il with Synopsys Models

Required Argument

input_dir

Specifies the pathname to the directory containing the filesto
be registered. Thisargument is required and must appear first.
All pathname specifications use the following location
convention:

If the pathname is relative, the input_dir isassumed to bein
the working directory, as specified by SMGC_WD. If
$MGC_WD isnot set, theinput_dir is assumed to bein the
current working directory.

If the pathname starts with adollar sign ($), the input_dir is
assumed to be in the location of the location map variable
specified after the dollar sign.

If the pathname is an absolute pathname, the input_dir is
assumed to be in the location of the absolute pathname.

Optional Arguments

output_path

-Dir name

-Ifc interface

-LAbel label

-Mdl mdl_filename

July 31, 2001

Specifies the pathname to the directory that contains the
component information. If an output_path is not specified,
then it defaults to the parent directory of the input_dir.

Specifiesjust the new name of the output component directory
within the output_path; for example, MC68020. By defaullt,
the name is created from the base name of input_dir by
removing any leading dollar ($) characters and converting all
lowercase characters to uppercase. If the output component
directory name is the same as the input directory name,
Im_model will generate an error and fail rather than overwrite
the input directory.

Specifies the component interface(s) with which to register the
model. Multiple component interfaces can be specified. By
default, the model is registered with all component interfaces.

Specifies the label (s) to register with the component interface.
Multiple labels can be specified. By default, the model is
registered with the $Im label, which corresponds to the
functional description.

Specifies a particular model (.MDL) file within the input_dir.
By default, the system uses the model file with the same base
name as the output component directory, which is defined by
the -Dir switch.

Synopsys, Inc. 265

Chapter 12: Using QuickSim Il with Synopsys Models Simulator Configuration Guide

-Step Register|Symbol [Timing|Update

-Replace

-VERBoOse
-Help

-Usage

-VERSIon
-Old

-LM

Examples

Selects particular registration step(s):
- Step Register registers the model’s functional description.
- Step Symbol creates and registers the symbol.

- Step Timing creates, compiles, and registers the technology
file.

- Step Update is equivalent to -Step Register and -Step
Timing.

By default, Im_model performs all the registration steps.

Deletes the existing component directory and then recreatesit.
If you try to overwrite an existing symbol without using this
switch, Im_model fails and generates an error message.

Prints additional messages while Im_model is executing.

Prints help information on each of the available options, then
immediately exits.

Expands the command line and displays each argument and
switch. After printing the usage message, Im_model
iImmediately exits.

Prints the single-line version message, then immediately exits.

Registers the model using the pre-V 8.3 method, for
compatibility purposes.

Does not affect Im_model execution. The system accepts this
argument for compatibility purposes.

Thelm_model utility provides several ways of specifying input and output files and
directories. The following exampleslist agiven input directory (model file) and desired
output component directory, and then show the Im_model command line you would use

to get this result.

Example 1

Input directory: /user/models/741s74 (M GC_WD is set to /user/models)
Model file: 74LS74.MDL (same as the component name)

266

Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Chapter 12: Using QuickSim Il with Synopsys Models

Component (output) directory: /user/models/74LS74 (default output path and
directory)

Command: | m nodel 74l s74

Example 2

Input directory: /user/model§/74ls74 (SMGC_WD is set to adirectory other than
/user/models)

Model file: 74LS74A .MDL (different from the component name)

Component (output) directory: /user/models/74L S74 (default output path and
directory)

Command: | m nodel /user/nodel s/ 741 s74 -m 74LS74A

Example 3
Input directory: /user/models/741s74 (SMGC_WD is set to /user/models)

Model file: 74LS74.MDL (same as the component name)

Component (output) directory: /user/project_xyz/74LS74 (default directory; non-
default path)

Command: | m nodel 74l s74 /user/ project_xyz

Example 4
Input directory: /user/models/741s74 ($MGC_WD is set to /user/models)

Model file: 74LS74.MDL (same as the component name)

Component (output) directory: /user/project_xyz/latch_7474 (non-default path and
directory)

Command: | m nodel 741 s74 /user/project_xyz -d |atch_ 7474

tmg _to_ts Command Reference

Thetmg_to tsutility reads the Shell Software timing filesto create a technology file.
Comments from the Shell Software timing statements are not copied to the technology
file. You must use the technology compiler (tc) to compile the technology file that is
created by thetmg_to_ts utility before using the technology filein QuickSim 1.

In general, you should run the Im_model utility—which calls both tmg_to tsand tc—
rather than running the stand-alone tmg_to_ts utility. If you just want to update a

model’s Technology File, you can run Im_model with the -Step Timing option. For more
information on Technology File creation, refer to “Verifying the Technology File’ on
page 253.

July 31, 2001 Synopsys, Inc. 267

Chapter 12: Using QuickSim Il with Synopsys Models Simulator Configuration Guide

Syntax

tmg_to_tsinput_dir [-Out filename] [-Replace] [-Help] [-Usage] [-Version]

Required Arguments

input_dir

Specifies the pathname to the Shell Software timing files that
you want to convert. If theinput_dir isnot afull path, it is
assumed to be relative to the current directory, specified by
$MGC_WD.

Optional Arguments

-Out filename

-Replace

-Help

-Usage

-Version

268

Specifies an alternative filename for the output file. By
default, the output fileis called technology.ts. All pathname
specifications use the following location convention:

If the pathname is arelative pathname, the output fileis placed
relative to the component directory.

If the pathname starts with period and slash (./), the output file
Is placed in the current working directory as specified by
SMGC_WD, if it exigts.

If the pathname starts with adollar sign ($), the output fileis
placed in the location of the location map variable specified
after the dollar sign.

If the pathname is an absolute pathname, the output fileis
placed in the location of the absol ute pathname.

Replaces the existing contents of the output directory with the
new output.

Prints help information on each of the available options, then
immediately exits.

Expands the command line and displays each argument and
switch. After printing the usage message, tmg_to_ts
iImmediately exits.

Prints the single-line version message, then immediately exits.

Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Appendix A: Using VERA with FlexModels

A

Using VERA with FlexModels

Overview

VERA is atestbench automation tool that works as a front-end to Verilog or VHDL
simulators. For general information on VERA, refer to:

http://www.synopsys.com/products/ivera

This appendix explains how to use VERA with FlexModels, including a special section
on how to use VERA with FlexModels with VCS. Thisinformation is presented in the
following sections:

. “Using FlexModels with the VERA UDF Interface” on page 270
. “Creating a VERA Testbench” on page 271
. “VERA Testbench Example” on page 272
« “Incorporating FlexModelsin a VERA Testbench” on page 274
. “Using VERA with VCS’ on page 275

5> Note

For information on using MemPro models with VERA, refer to the “VERA
Testbench Interface” chapter in the MemPro User’s Manual.

July 31, 2001 Synopsys, Inc. 269

http://www.synopsys.com/products/vera

Appendix A: Using VERA with FlexModels Simulator Configuration Guide

Using FlexModels with the VERA UDF

Interface

FlexModels use the VERA UDF interface. To use FlexModels with Vera, you need to
build the VERA dynamic library. Table 33 lists the files containing the Vera UDF
information for FlexModels.

Table 33: FlexModel Files Containing VERA UDF Information

File Name Description L ocation

vera user.c Source file containing table of UDF $LMC _HOME/sim/veralsrc
functions used by FlexModels.

vera sim_pli.o | Object filefor VCS and Verilog-XL. This | $LMC_HOME/lib/platform.lib
file contains the compiled code for the UDF
functions used by FlexModels.

vera sm_mti.o | Object filefor MTI Verilog and MTI $LMC_HOME/lib/platform.lib
VHDL. Thisfile containsthe compiled code
for the UDF functions used by FlexModels.

When building the VERA dynamic library, you need to compile the vera_user.c file and
link the object file (vera_sim_pli.o or vera ssm_mti.o) for the ssmulator you are using.

© Attention
If you are building the VERA dynamic library for Verilog on Solaris, do not
use the -B symbolic. Using this switch resultsin unresolved symbol
warnings.

For more information on building the VERA dynamic library, refer to the UDF
information in the VERA System Verifier User Manual.

270 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Appendix A: Using VERA with FlexModels

Linking VERA with Verilog Simulators

For details on how to link Verawith Verilog simulators using the PLI, refer to the
README filein the VERA installation directory:

$VERA HOVE/ | i b/ vl og/ READVE

In the instructions for “Including Your Own C-Code (UDF) with VERA” at the end of
the README file:

1. Substitute the edited copy of vera_user.cin LMC_HOME/sim/vera/src on the
compile line.

2. Substitute vera_slm_pli.ofor <UDF_o_fil es> onthelink lineif you areusing VCS
or Verilog-XL. For MTI Verilog, substitute vera_slm_miti.o.

Linking VERA with the MTI VHDL Simulator

For information on how to link VERA with MTI VHDL, refer to the README filein
the VERA installation directory:

$VERA HOWE |'i b/ mii / README

In the instructions for “Linking in VERA UDFsInto The MTI-VHDL Simulator” at the
beginning of the README file:

1. Substitute the edited copy of vera_user.cin 3LMC_HOME/sim/veralsrc on the
compileline.

2. Substitute vera_ Silm_mti.o for <o_fi |l es> onthelink line.

Creating a VERA Testbench

To create a VERA testbench to use with FlexModels, follow these steps:

1. Include the header files.
Table 34 lists the two required header files.

Table 34: VERA Header Files

File Name Description L ocation

flexmodel_pkg.vrh | Contains definitions for generic constants | $LMC_HOME/sim/vera/src
useful in FlexModel commands.

model_pkg.vrh Contains definitions for model classand | $LMC_HOME/models'/model
model-specific constants useful in _fx/model _fxversion/src/vera
FlexModel commands.

July 31, 2001 Synopsys, Inc. 271

Appendix A: Using VERA with FlexModels Simulator Configuration Guide

2.

Create an instance of the Model Fx class.

Before using FlexModel commands, you must create an instance of the Model Fx
classin the VERA testbench.

. Send commandsto a FlexM odel through the model’s methods.

In VERA Command Mode, you can use the same FlexModel features and
commands that you use in HDL Command Mode. There are afew differencesin
command usage, however; refer to “Command Syntax Differencesin VERA
Command Model” in the FlexModel User’s Manual. For details on specific
commands, refer to “FlexModel Command Reference” in the FlexModel User’s
Manual.

VERA Testbench Example

The following example shows how to incorporate FlexModelsin a VERA testbench.

272

#i ncl ude <vera_defines. vr h> /1 Vera Defines

#i ncl ude “fl exnodel _pkg. vrh” /1 Fl exModel generic constants defined
her e

#i ncl ude “nodel _pkg. vrh” /1 Model class, and nodel -specific

constants defi ned here

progr am nodel _t est

{

Create an instance of the nodel, argunment 1 to the
constructor is the string name of the instance in
top level Verilog/ VHDL testbench.

argument 2 is the path to the nodel s cl ock pin
Here the assunption nade is that the nodel is
instantiated in a Verilog testbench

* Since the constructor has been called, this wll

* return at the next posedge of ul. (LK

*/

Model Fx nodel _1 = new(“nodel | nstNane_1", “ul. OLK’);

* % Xk ¥ X %

// Create another instance, since tine has already el apsed
// above, this call will return i mmediately.
Model Fx nodel _2 = new(“nodel | nst Nane_2", “u2. QLK’);

/1 NOTE : This exanpl e assunmes that the aguments to the
Il nmet hods have been defined in the VERA testbench.

/! Check that no errors have occured

if (nodel _1.showStatus() == FLEX VERA FATAL ||
nodel _2. showSt atus() == FLEX VERA FATAL) {

Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Appendix A: Using VERA with FlexModels

/]l BErrors exist, take suitable action

}
fork
{
/1 Send commands to the Fl exMbdel Instance 1
/1 Note that the id is encapsul ated in the nodel
/1l class and thus is not an argunment to the commands.
nodel _1.wite(addressl, datal, ‘FLEX WAIT_F, status);
nodel _1.wite(address2, data2, ‘FLEX WAIT_F, status);
nodel _1.wite(address3, data3, ‘FLEX WA T_F, status);
nodel _1.wite(address4, datad4, ‘'FLEX WA T_F, status);
/'l Read Back
nodel _1.read_req(addressl, ‘FLEX WA T_F, status);
nodel _1.read_req(address2, ‘FLEX WA T_F, status);
nodel _1.read_req(address3, ‘FLEX WA T_F, status);
nodel _1.read req(address4, ‘FLEX WA T _F, status);
/1 Check Results
nodel _1.read_rslt(addressl, tag, resultl, status);
nodel _1.read_rslt(address2, tag, result2, status);
nodel _1.read_rslt(address3, tag, result3, status);
nodel _1.read rslt(address4, tag, result4, status);
/1 Synchroni ze Instance 1 & 2
/1 Note that the generic comrands are al so sent to
[/ through the nodel ' s instance.
nodel _1. synchroni ze(2, “synch_2", ‘timeout, status);
}
{
/1 Send commands to the Fl exMbdel Instance 2
nodel _2. wite(addressl, datal, ‘'FLEX WAIT_F, status);
nodel 2. wite(address2, data2, ‘FLEX WA T_F, status);
nodel 2. wite(address3, data3, ‘FLEX WA T_F, status);
/1 Synchroni ze Instance 1 & 2
nodel _2. synchroni ze(2, “synch_2", ‘tineout, status);
}

join // End of fork

} // End of program nodel _test

July 31, 2001 Synopsys, Inc. 273

Appendix A: Using VERA with FlexModels Simulator Configuration Guide

Incorporating FlexModels in a VERA

Testbench

To incorporate FlexModelsin your VERA testbench, use the following procedure. For
more information on creating VERA interface files and using modelsin VERA, refer to
the VERA System \erifier User Manual.

1. Createaworking directory and run flexm_setup to make copies of the model's
interface and examplefilesthere, as shown in the following example:
% $LMC_HOMWE/ bi n/ fl exm setup -dir workdir nodel _fx

You must run flexm_setup every time you update your FlexModel installation with
anew model version. Table 35 liststhe files that flexm_setup copies to your
working directory.

Table 35: FlexModel VERA Files

File Name Description L ocation
model_pkg.vr Contains FlexModel VERA class and | workdir/src/vera
method definitions.
model_pkg.vrh Contains model definitionsfor usein workdir/src/vera
VERA testbenches.

2. Compilethe VERA sourcefilesinthe LMC_HOME tree.
You need to compile three files: Istmodel.vr, swiftmodel.vr, and flexmodel _pkg.vr.
The following is a sample compile script:

%vera -cnp | stnodel . vr -1 $LMC_ HOME si mivera/ src
%vera -cnp swiftnodel .vr -1$LMC HOME si mlveral/src
%vera -cnp flexnmodel _pkg.vr -1 $LMC HOME siniveral/src

If you are using VERA version 4.0 or earlier, you must compile the
flexmodel _pkg.vr object with a“VERA_4" preprocessor flag. Your compile line
would therefore look like the following example:

%vera -cnp flexnodel _pkg.vr -1$LMC_HOWE si mlvera/ src - DVERA 4

3. Compilethe model’s VERA sourcefile, model_pkg.vr
Thisfile includes the flexmodel_pkg.vrh file, but the VERA compiler needs to find
the other header files too; therefore, you must include the path to the other header
files. The following is a sample compile script:

%vera -cnp nodel _pkg.vr -1$LMC_ HOW si nivera/ src workdir/src/vera

4. Create a VERA testbench.
For details, refer to “ Creating a VERA Testbench” on page 271.

274 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Appendix A: Using VERA with FlexModels

5. Compilethe VERA testbench.

Although you need to include only the flexmodel _pkg.vrh and model _pkg.vrh files
in your VERA testbench, the VERA compiler needs to find the other header files
too; therefore, you need to include the path to the VERA header filesincluded in
LMC_HOME. Thefollowing is a sample compile script:

%vera -cnp vera_testbench -1 $LMC_ HOWE si i vera/ src workdir/src/vera

6. Run the VERA testbench in a Verilog or VHDL simulation environment.

When you run the Verilog or VHDL simulator, the VERA simulator needs to |oad
your compiled VERA object files. You also need to load the following VERA object
files:

* Istmodel.vro

» swiftmodel.vro

» flexmodel _pkg.vro

* model_pkg.vro

* testbench.vro
For more information on loading VERA object files, refer to the VERA System
Verifier User Manual.

© Attention
To prevent your simulation from ending prematurely in cases where the
VERA testbench completes before the Verilog/VHDL testbench, use the
+vera finish_on_end switch on your simulator invocation line.

Using VERA with VCS

The following steps show how to use FlexModelswith VERA and VCS. Thisisjust one
way of using the VERA simulator's UDF, multiple .vro files, and so on. For more
information, refer to the VERA System \erifier User Manual. All steps shown here are
also documented in that manual.

1. Compilethe VERA sourcefiles:
%vera -cnp \
-1 $LMC_ HOWE/ si miveral/ src \
$LMC_HOWH si nd ver a/ src/ | st model . vr

%vera -cnp \

-1 $LMC_ HOVE/ si i vera/ src \
$LMC_HOVE si mi ver a/ src/ swi f t nodel . vr

July 31, 2001 Synopsys, Inc. 275

Appendix A: Using VERA with FlexModels Simulator Configuration Guide

%vera -cnp \
-1 $LMC_ HOWE simiveral/ src \
$LMC_HOWH si mi ver a/ src/ f | exnmodel _pkg. vr

If you are using VERA version 4.0 or earlier, you must compile the
flexmodel _pkg.vr object with a“VERA _4” preprocessor flag. Your compile would
therefore look like this:

% vera -cnp flexnmodel _pkg.vr -1$LMC HOWE si miveral/src - DVERA 4

%vera -cnp \
-1 $LMC_ HOWE/ si miveral/ src \
-lworkdir/src/vera \
wor kdi r/ src/ veral model _pkg. vr

T3> Note
If you are building the VERA dynamic library on Solaris, do not use the -B

symbolic switch. Using this switch results in unresolved symbol warnings.

2. Compileyour VERA testbench:

%vera -cnp \
-1 $LMC_ HOWE simiveral/ src \
-lworkdir/src/vera \
t est bench. vr

This step produces two files: testbench.vro and testbench.vshell.

3. Build vera_local .dl:
o Compile SLMC _HOME/sim/vera/src/vera_user.c

HP-UX

%/bin/c89 -c +z -1$VERA HOW/ | ib \
$LMC_HOWH si i ver a/ src/vera_user. c

Solaris
%cc -Kpic -c -1$VERA HOWE/ i b \
$LMC_HOWE simi vera/ src/vera_user.c
o Link in $LMC_HOMFE/lib/platform.lib/vera_sim_pli.o and vera_user.o during
the link stage of building the vera local.dl.
HP-UX

%Ild -b +e syssci_prod_entry +e errno -o vera_local.dl \
vera_user.o \
$LMC HOWE | i b/ hp700. 1ib/vera slmpli.o \
$VERA HOME/ i b/ vl og/libvl og_br.a \
$VERA HOW/ lib/libVERA a -Im-Ilc

276 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Appendix A: Using VERA with FlexModels

Solaris

%Ild-G-z text -o vera_ local.dl \
vera_user.o \
$LMC HOWEH | i b/ sundsol aris.lib/vera_simpli.o \
$VERA HOME/ i b/ vl og/ i bvl og_br.a \
$VERA HOWE i b/ 11 bVERA a

4. Set the VERA_HOME variableto point to the location of your VERA
installation directory:
% setenv VERA HOME path_to VERA installation
5. Setthe SSI_LIB_FILESvariableto point to thevera local.dl that you built in
Sep 3
%setenv SSI _LIB FILES ./vera_local.dl

T3> Note
If you are using multiple dynamic libraries (.dl files), use a colon-separated

list to specify the search path.

6. Modify the simv build.
Modify the ssmv build by adding the following:

o -P${VERA_HOME}/lib/vera pli_dyn.tab
o §{VERA_HOME}/lib/libSysSciTask.a
o thevshell file created in Step 2

T Note
For HP-UX, add -LDFLAGS -E.

For more information, refer to the installation and setup chapter in the VERA System
Verifier User Manual.

7. Createafilefor VERA toload at runtime.
This step assumesthat the vro files are in the current working directory. You need to
create afile that looks like the following example. The file name for this example
fileisfiles to load:
./l strodel . vro
./swiftmodel . vro
./ fl exmodel _pkg. vro

./ model _pkg. vro
./ testbench. vro

For more information, refer to the documentation on vera_mload in the VERA
System Verifier User Manual.

July 31, 2001 Synopsys, Inc. 277

Appendix A: Using VERA with FlexModels Simulator Configuration Guide

8. Run the simv executable
Add the +vera_mload switch as shown in the following example:

%sinv +vera_moad = files_to | oad +vera finish_on_end

I°5> Note
The +vera finish_on_end switch prevents your simulation from ending
prematurely in cases where the VERA testbench completes before the
Verilog testbench.

278 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide

Appendix B: LMTV Command Reference

B

LMTV Command Reference

Overview

LMTV isaPLI application that is used to interface SmartModels and FlexModels with
Verilog-XL, NC-Verilog, and MTI Verilog. Note that VCS uses the SWIFT interface
and not LMTV. You can control the features of the LMTV interface by using:

e “LMTV Command Line Switches’” on page 279
« “LMTV Commands’ on page 281

LMTV Command Line Switches

LMTV command line switches have a session-wide scope that impacts all SmartModel

instances. Notice that the +laiobj switch, used by the LAI interface, is not used in either
mode of the LM TV interface. Following are brief descriptionsfor each of the command
line switches that you can use withthe LM TV interface:

+notimingchecks

+[min | typ | max]delays

+Imudtmsg or +laiudtmsg

July 31, 2001

Disables timing checks (for example, setup and hold
times) and their accompanying messages. The default
isto perform the timing checks.

Specifies asingle delay range for all SmartModel
instances. The default isto use the delay range in the
SmartModel’s DelayRange or RANGE attributes.

Generates alist of the timing files loaded at simulation
startup. Thisis equivalent to setting the command
channel command TraceTimeFileto ON. The default
Isnot to list the timing files. For more information
about the command channel. refer to the SmartModel
Library User’s Manual.

Synopsys, Inc. 279

Appendix B: LMTV Command Reference Simulator Configuration Guide

+Imoldstr

+Imoldtrans

+Imresstr

280

Maps al SmartModel Library signal strengths to
“strong” for all output events that have resistive
strength. The default isto use resistive strength to
reflect the true state of the SWIFT pin. Usethisswitch
if you have a design that was created in the Verilog-
XL-specific SmartMode Library environment and you
want simulation conditions to match the Verilog-XL -
specific SmartModel Library.

Indicates that the historic styleisto be used for
transcribing messages. The historic style message
contains references only to timing version names and
does not specify any time units. The default isthat
messages contain references to both timing version
names and model names. Timing valuesarein
nanoseconds (ns). Usethisswitch if you want to match
the Verilog-XL-specific SmartModel Library
simulation conditions.

Disables mapping of SmartModel Library signal
strengths to “strong” strength, even if a historic model
model.v file (vshell) is detected. Usethisswitch if you
want your historic-mode design to use true resistive
strengths. This switch only works with the SWIFT
interface.

Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Appendix B: LMTV Command Reference

LMTV Commands

LMTV commands are predefined tasks that you place within your testbench or design.
LMTV commands al begin with an $im_ prefix. Some of them have historic
counterparts, which begin with an $lai_ prefix. You can use any or all commandsin
either the SWIFT or the Historic SmartModel modes, except for the
$Im_monitor_vec_map() command, which can be used only in SWIFT SmartModel
mode.

T3> Note

The $lai_ commands are provided to support older designs. Therefore, you
do not have to convert $lai_ commandsto $Im_ commands. However,
when starting anew design it is best to use the $Im_ commands and not the
$lai_ commands.

Hereisalist of the LMTV interface commands:

“$Im_command() or $lai_command()” on page 282

“$Im_dump_file() or $lai_dump_file()” on page 283

“$Im_help()” on page 284

“$Im_load_file() or $lai_load file()” on page 285
“$Im_monitor_enable() or $lai_enable_monitor()” on page 286
“$Im_monitor_disable() or $lai_disable_monitor()” on page 286
“$Im_monitor_vec_map() and $im_monitor_vec_unmap()” on page 288
“$Im_status() or $lai_status()” on page 290

July 31, 2001 Synopsys, Inc. 281

Appendix B: LMTV Command Reference Simulator Configuration Guide

$Im_command() or $lai_command|()

These commands provide access to the SWIFT command channel. You can usethem to
send a command to the session or to a model instance.

Syntax

$Im_command (“session_cmmd_string”);
$Im_command (inst_path, “model_cmmd_string”);
$lai_command (“session_cmmd_string”);
$lai_command (inst_path, “model_cmmd_string”);

Arguments

session_cmmd_string The SWIFT interface command to be sent to the
session.

inst_path The path name to the SmartModel instance to send the
command to. Used only with model commands.

model _cmmd_string The SWIFT interface command to be sent to the model

instance.
For more information about the SWIFT command channel, refer to “ The SMFT
Command Channel” on page 21.

Examples

The following example sends the ReportStatus command to the instance “U1”, causing
It to generate a message reporting its configuration status.

% $l m command ("ULl", "ReportStatus");

The following example sends the TraceTimeFile off command to the session, causing it
to stop issuing trace messages. Note that the absence of an instance name identifies the
command as session-specific.

% $l mcomrand (“TraceTinmeFile off")

282 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Appendix B: LMTV Command Reference

$Im_dump_file() or $lai_dump_file()

Use these commands to dump the memory contents of the instanceinst_path into thefile
filename. Thisworks only for memory models. If the specified file already exists, it is
overwritten. Using this command eliminates the read cycles required to verify the
success of atest.

You can reload the dumped file into amemory model using the $Im_load_file()
command. The format of the dumped file is the same as the Synopsys memory image
file format required by a memory model at initialization.

Syntax
$Im_dump_file (inst_path, “ filename” [,“file_type']);
$lai_dump_file (inst_path, “filename’ [,"file_type']);

Arguments

inst_path The path name to the SmartModel instance whose
memory information isto be dumped.

filename The path name to the file that is to receive the dumped
memory information from the model instance.

file_type The type of configuration file to be dumped. The only

adlowed valueis MEMORY, which is also the default.
Thisargument is provided for compatibility with the
historic environment.

July 31, 2001 Synopsys, Inc. 283

Appendix B: LMTV Command Reference Simulator Configuration Guide

$Im_help()

Use this command to display the syntax for all of the SWIFT interface commands.

Syntax
$im_help();

Examples
The following example shows the results of issuing the command $Im_help.

Q2 > $I mhel p;

LMIV commands:
I m command("sessi on_command"): execute a sessi on conmand.
I m command(inst_path, "nmodel _command”):
execut e a nodel command.
Imdunp _file(inst_path, "file_name", ["file_type"]):
dunp nenory into file.
Imload file(inst_path, ["file_name", "file type"]):
load file of programmabl e devi ce or menory.

| mnonitor_enable(inst_path [, "win_element” [,...]]):
enabl e wi ndow Moni tor.
I mnoni tor_disable(inst_path [, "win_elenment” [,...]]):

di sabl e wi ndow Moni t or
I mnonitor_vec_nap(var_nane, inst_path, "win element" [, index]):
map window to a variable for nonitoring.
| m noni tor_vec_unmap([var_nane,] inst_path):
unmap w ndow to stop nonitoring.
I mstatus(inst_path): dunp instance st at us.

Commands conpatible with old rel ease :

lai _enable nmonitor("inst_path", [win_elenent],...):
enabl e wi ndow Moni t or.
| ai _disable_monitor("inst_path", [win_elenent],...):

di sabl e wi ndow Moni t or.

lai _dunp file("inst_path", "file name", "file_type"):
dunp nmenory into file.

lai load file("inst_path", "file name", "file_ type"):
load file of programrabl e device or menory.

lai _status("inst_path"): dunp instance data.

284 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Appendix B: LMTV Command Reference

$Im_load file() or $lai_load_file()

Use these commands to |oad the memory contents of the file filename into the instance
inst_path, which can be either a programmable device or amemory model. Using these
commands eliminates the write cycles required to set up the contents of the model.

Theload_file operation causes the selected model to reset itsinternal state to simulation
startup conditions and then read the specified file. After thefileisread, the model is
evaluated as a function of the new internal state and the current inputs and outputs are
scheduled with zero delay. After thisinitial evaluation phase, the model behaves as it
would normally.

You can load amodel with any file type that would normally be accepted by the model
at initialization. Additionally, the new configuration file you load is used for the
specified model instance after any subsequent command to reset or reinitialize.

Syntax
$Im_load_file (inst_path [, “filename”, “file_type’]);
$lai_load_file (inst_path [, “filename’, “file_type’]);

Arguments

inst_path The path nameto the SmartM odel instance into which
the contents of filename is to be loaded.

filename The path name to the configuration file that is to be
loaded for the model instance specified by inst_path.
The default isto use a path name defined with the
defparam statement in the design.

file_type The type of fileto be loaded. Allowed values are

MEMORY, JEDEC, PCL, and SCF. The defaultisto
use the file type of the file defined with the defparam
statement in the design.

July 31, 2001 Synopsys, Inc. 285

Appendix B: LMTV Command Reference Simulator Configuration Guide

$Im_monitor_enable() or $lai_enable_monitor()

$Im_monitor_disable() or $lai_disable_monitor()

Use these commands to enable or disable SmartModel Windows for one or more
window elements of a model instance specified by inst_path. The SmartModel
Windows feature allows you to view and change the contents of a model's internal
registers through predefined windows, which usually reflect the model's internal state.
After enabling SmartModel Windows, you can read from the register using an
appropriate Verilog command or by adding the path name to the list of signals being
traced. If you attempt to read from an internal register without enabling SmartM odel
Windows the window content is not read.

The $Im_monitor_enable() and $Im_monitor_disable() commands are provided for
compatibility with the historic environment. You cannot access arrays of registers, asin
memory window elements, using these commands. In addition, you cannot create
dynamic windows needed for SmartCircuit modelsif you define awindow in a
configuration file. The $Im_monitor_vec_map() and $Im_monitor_vec_unmap()
commands provide these capabilities.

175> Note
Accessing internal statesis memory-intensive, so you may notice some
performance degradation when SmartModel Windows is enabled.

Syntax
$Im_monitor_enable (inst_path [, “window_element” [,...]]);

$Im_monitor_disable (inst_path [, “window_element” [,...]]);
$lai_enable_monitor (inst_path [, “window_element” [,...]]);
$lai_disable_monitor (inst_path [, “window_element” [,...]]);

Arguments

inst_path The path name to the SmartModel instance for which
SmartModel Windowsiis to be enabled.

window_element The name of the internal register to read. Thiscan be a

singlevaueor alist. Thedefaultistoread all internal
registers of the instance.

286 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Appendix B: LMTV Command Reference

Examples

The following example enables SmartModel Windows for all windows in instance
“U1”, then reads from the predefined window element IENA. Notice that you must
enable SmartModel Windows before attempting to read from the window element.

/] somewhere in the testbench ...

/] enabl e access to all wi ndows in instance Ul
$I m noni tor_enabl e(UL);

/1 display contents of w ndow el enment | ENA

$di splay("Value of register |ENAis %", $IENAY;

The following example disables the window explicitly for the register IENA.
% $I m noni tor_di sabl e(UL, "IENA");

The following example disables all windows in instance U1.
% $l m noni tor_di sable(UL);

The following example does not read the register IENA, because SmartModel Windows
was not enabled.

/1 somewhere in the testbench ...
$di splay("Value of register |ENAis %", $IENA);

July 31, 2001 Synopsys, Inc. 287

Appendix B: LMTV Command Reference Simulator Configuration Guide

$Im_monitor_vec_map() and
$Im_monitor_vec_unmap()

Use these commands to enable or disable direct mapping between the user-defined
variable var_name and amodel instance's internal register window_element. This
mapping allows you to read from, write to, or trace the internal register through your
user-defined variable. You must define this variable with awidth corresponding to that
of the predefined window somewhere in the design hierarchy (typically in the testbench)
before using these commands. Note that these commands only work in SWIFT
SmartModel mode.

Using $Im_monitor_vec_map(), you can access arrays of registers, which is useful for
addressing specific memory locations, asin the memory window elements feature. In
addition, $Im_monitor_vec_map() allows dynamic window creation. Thus, if a
SmartCircuit model changesits configuration file so that more windows are created, you
can add those names to your testbench, and enable tracing directly.

Syntax
$Im_monitor_vec_map (var_name, inst_path, “window_element” [,index]);

$Im_monitor_vec_unmap ([var_name,] inst_path);

Arguments

var_name The name of a user-defined variable to map to
window_element. The variable must be already
defined somewhere in the design hierarchy. The
default for $iIm_monitor_vec_unmap() isto unmap all
mapped variables for that instance.

inst_path The path name to the SmartModel instance whose
internal register isto be mapped to the user-defined
variable var_name.

window_element The name of the interna register to be mapped to
var_name. Can be part of an array.

index Theindex of the array, if the window element isa
memory window. The default isO.

Examples

The following example defines three variables and maps them to specific memory
locations in the memory array UMEM for memory model instance “U1”. Note that
these tasks cannot be performed using $Im_monitor_enable(). Although the example
features an array of registers, the tasks are equally useful for scalar windows, where you
can omit the index option or set it to O.

288 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide

Appendix B: LMTV Command Reference

/1 Assume a 4Kx8 nenory nodel, on a controller board.
/1 Such a nodel woul d typically have one w ndow cal | ed UVEM

/!l This windowis

a 4K deep array of 8 bit registers. In

// particular, the user is interested in these 3 |ocations:
/!l Interrupt service routine, LONADDRESS: 100
[/l Interrupt service routine, HGH ADDRESS: 101

// Control store : 200

/1l that are significant to the design.
[/ variable to map to location 100
[/ variable to map to location 101
[/ variable to map to location 200
/1 enable nonitoring of these variabl es

$I mopronitor_vec_map(| SR LON U1, "UVEM,
$Imnonitor_vec_map(ISRHGH UL, "UMEM,

reg [7:0] ISR LON
reg [7:0] ISR HGH
reg [7: 0] OONTRQL;

100);
101);

$l mnoni tor_vec_map(OCONTRCL, UL, "UMVEM, 200);

// ... at this time, you can read, wite, or trace these

/1 vari abl es.
/] service routine to be 0x5000

I SR LON= 0x00 ;
ISR H&H = 0x50 ;

For exanpl e, assign the address of the interrupt

// or the sane assignment can be done as foll ows:

define 1SR {I SR H GH | SR LO¥
I SR = 16h5000 ;
/] this one statenment will

access two different

/1 and i ndependent nmenory | ocations at once.
// later in the simulation, you can disable nonitoring

/1 for the * CONTRCL' register:
$I m noni t or _vec_unnap(OCONTRCL, UL);

/1 or you can disable nmonitoring of all w ndows in that instance:

$l m noni tor_vec_unmap(UL);

July 31, 2001

Synopsys, Inc.

289

Appendix B: LMTV Command Reference Simulator Configuration Guide

$Im_status() or $lai_status()

Use these commands to report the current status of the model instance inst_path. The
report includes the names and values of internal windows.

Syntax
$Im_status (inst_path)
$lai_status (inst_path);

Arguments

inst_path The path name to the SmartModel instance whose
statusis to be reported.

Examples

The following example shows the output of the $Im_status() command for model
instance “U1".

ClL > $imstatus(Ul);

Note: <>

Model tenpl ate: nmem

Version: not avail abl e

I nst anceNane: DES|I G\ UL

Ti m ngVersi on: MEM O

Del ayRange: NAX

MenoryFile: nenory. 1

Timng Constraints: n

Smart Model | nstance DESI GN UL(nem MEM0), at tine 1000.0 ns

Note: Smart Mbdel Wndows Descri ption:

UMVEM 2048] "2K x 8 Static RAM:

Smart Model Wndows not enabl ed for this nodel .

Smart Model | nstance DESI GN UL(nem MEM0), at tine 1000.0 ns

290 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide

Index

Index

Symbols

$add_instance command 227, 228
$display command 74

$lai_command command 282
$lai_disable_ monitor command 70, 286
$lai_dump_file command 283

$lai_enable_monitor command 70, 72, 73,
286

$lai_load_file command 285
$lai_status command 70, 72, 290
$Im_command command 282
$Im_dump_file command 283
$Im_help command 284

$Im load file command 285
$im_log_test_vectors 94

$Im_loop _instance 95
$Im_monitor_disable command 70, 286

$Im_monitor_enable command 70, 71, 72,
73, 286

$Im_monitor_vec_map command 70, 71,
74, 288

$Im_monitor_vec_unmap command 70,
288

$Im_status command 70, 72, 290
$Im_timing_information 96
$Im_timing_measurements 96
$Im_unknowns 97

+vera finish_on_end switch 275

A

add breakpoint command 236
add bus command 237

add lists command 235, 237
add monitors command 235
add primitive command 228
add synonym command 237
add traces command 235
Admin tool 220

AlX

July 31, 2001

compiling C files 28
AMPLE_PATH environment variable 220
Analysistools
Mentor Graphics 247
rules to determine descriptors 248
ANSI C compiler
with Cyclone 191
Attributes
SmartModel 18

B

Breakpoints
setting with SmartModels 236
Bus symbols
SmartModel 222
Buses
renaming with hardware models 192

C

C compiler 191
ccn_report command 71
cds.lib file 200, 211
cds.lib path 208

CDS IN 1SJZ_D| R environment variable
CDS VHDL environment variable 196
cflags 191
Characters, mapping 192
Characters, replacing special 192
Check Shell Software utility 252
Command Channel

SWIFT 231
Command interaction

QuickSim 11 231
Command line

switches, LMTV 77

switches, QuickSim 11 230
Commands

$add_instance 227, 228

Synopsys, Inc. 291

292

Index

Sdisplay 74

$lai_command 282

$lai_disable monitor 70, 286
$lai_dump file 283
$lai_enable_monitor 70, 72, 73, 286
$lai_load file 285

$lai_status 70, 72, 290
$Im_command 282

$Im_dump file 283

$im_help 284

$Im_load file 285
$Im_log_test_vectors 94
$Im_loop_instance 95
$Im_monitor_disable 70, 286
$Im_monitor_enable 70, 71, 72, 73, 286
$Im_monitor_vec_map 70, 71, 74, 288
$Im_monitor_vec_unmap 70, 288
$im_status 70, 72, 290
$Im_timing_information 96
$Im_timing_measurements 96
$Im_unknowns 97

add breakpoint 236

add bus 237

add lists 235, 237

add monitors 235

add primitive 228

add synonym 237

add traces 235

ccn_report 71

command channel 21
create_smartmodel lib 126, 145
cyan 173

cysm1l/74

flexm_setup 25

force 236

geninterface 186

Im_disable timing_checks 202, 214
Im_enable_timing_checks 202, 214
Im_log_test_vectors 202
Im_loop_instance 203, 214
Im_mcnzoéeé 247,249, 250, 252, 253, 255,
Im_model, syntax 264
Im_pam_shortage 203, 214
Im_pattern_history 203, 214

Synopsys, Inc.

Simulator Configuration Guide

Im_timing_measurements 202, 214
Im_unknowns 202, 214
Im_vconfig 99
-Imc_swift_templates 39, 42
Imsi list 136

Imsi logon 136

Imsvg 99

LMTV 279

LMTV SmartModel windows 70
Imvc_template 55

ncelab 210

ncshell 206

ncsim 207

ncverilog 109

ncvhdl 207

nologvectors signal instance 261
propagation 259

reg_model 240, 249, 256
reread modelfile 239

restore state 238

save state 238

scsim 134

signal instance 231, 256, 261, 262, 264
simv 278

sm_entity 157, 160

tmg_to_ts 249

tmg_to_ts, syntax 267

unknown handling 259

vcom 159, 162

VERA 275

vhdlan 129, 134

vhdlsim 147

vlib 159

vaim 159, 163

Comments

submitting 16

COMP property 225
Compiling Cfiles

AlX 28
HP-UX 28
Linux 29
NT 29
Solaris 28

July 31, 2001

Simulator Configuration Guide

Component interface 249
Component registration 240
Concept
procedure 69
Constraint mode switch 230
Conversions
shell software 254
technology file 254
Converter
tmg_to_ts 249
create_smartmodel _lib command 126, 145
Custom symbols 239
mapping 241
cyan command 173
Cyclone
elaboration warnings with hardware
models 189
setup options with hardware models 190
with FlexMocdels 173
with MemPro models 173
with SmartModels 173
cylab, -4-statein 189
cysim command 174
cysim, -4 statein 189

D

-debug_all switch 134
Declarations, variable 253
defparam statement
with hardware models 88
Delay files 253
DelayRange 24
Delays, propagation 253
Descriptions
functional 247, 249
graphical 247, 249
technology 249
timing 249
Descriptors, determining for hardware
models 248
Design
capture, Verilog-XL 67
flow, Verilog-XL 66

July 31, 2001

Index

Design Architect
SmartModél library menus to 220
with SmartModels 220
Design Architect menus
building designs with SmartM odels 225
levels 226
system 226
Design environment, MGC 247
Designs
building, using menus 225
building, without menus 227
Direct C Control
compiling C files 28
with FlexModels 26
-DLM_HW_DEBUG flag 191
-DLM_HW_PIN_DEBUG flag 191
Drive strengths 229

E

Environment variables

AMPLE_PATH 220

CDS INST DIR 102

CDS VHDL 196

LAl LIB 77

LAl OBJ77

LD LIBRARY _PATH 38, 39, 60, 61,
102, 112, 125, 142, 156, 172,
196, 206, 218

LM _DIR 38, 60, 112, 142, 156, 196

LM _LIB 38, 60, 112, 142, 156, 196

LM_LICENSE FILE 38, 60, 102, 112,
124,142, 155,171, 196, 205, 217

LM_OPTION 89, 188

LMC HOME 38, 59, 77

LMC PATH 77

LMC _SFI 55

LMC _TIMEUNIT 207

LMC VLOG 77

MA _CY 179

setting for LMTV 77

SHLIB_PATH 39, 61, 103, 112, 125,
142, 156, 172, 196, 206, 218

SNPSLMD_LICENSE FILE 38, 60,
102, 112, 124, 142, 155, 171,
196, 205, 217

Synopsys, Inc. 293

Index

SSI_LIB_FILES 277

SYNOPSY S 141

SYNOPSYS SIM 124, 141

VCS HOME 39, 42

VCS LMC55

VCS LMC _HM_ARCH 55

VCS SWIFT_NOTES 39
Error message "Keys do not match" 189
Errors

messages 233

registration 252
Evaluation

hardware modelsin QucikSim |1 258
Examples

FlexModel VHDL instantiation 43, 80,

105, 116, 130, 147, 162
FlexModels with VCS 45

F

Fault smulation
with SmartModels 23

Files
cds.lib 200, 208, 211
delay (.DLY) 253
force value (.FRC) 253
IfsmLibPck 197
Imtv.o 82, 104, 106, 108, 114, 117, 119
mapping, pin 241
MCF 230
model.vhd 105, 115, 161
model_fx_comp.vhd 161
model_fx_sim.vhd 104, 115, 161
model_tst.vhd 105, 115, 161
modelsim.ini 157, 162, 163
ncshell 208
ncsim 210
pin_map 241
pin_map, example 242
SMiLibrary.vhd 197
SMLibrary.vhd 207
SMpackage.vhd 197
state tracking (.TRK) 253
synopsys _vss.setup 129
technology 249, 253, 264

294

Synopsys, Inc.

Simulator Configuration Guide

technology, types 253
timing 251
timing check (.TCK) 253
variable declaration (.DCL) 253
veriuser.c 62, 82, 104, 106, 108, 114,
117,119
vhdisim 148
vsystem.ini 162
FlexCFile 25
flexm_setup 25, 27
FlexModel
attributes 19
examples with VCS 45
fault smulation 23
FlexModel SWIFT parameters 24
FlexModelld 24
FlexModels
dynamic linking with PLI 104, 115
example isnatiations 207, 209
model.vhd 79
model_fx_sim.vhd 79
model_pkg.inc 79
model_tst.vhd 79
PLI static linking 81, 106, 117
using with MTI VHDL 160
VHDL instantiation 207, 209
with Cyclone 173
with Leapfrog 173, 198
with MTI-Verilog 115
with NC-VHDL 208
with Scirocco 128
withVCS 42
with VERA 269
with VSS 145
FlexModel Src 25
FlexTimingMode 24
FMI libary 198, 210
Force command 236
Force valuesfile 253

G

genilterface command 186
geninterface
deleting intermediate files 184

July 31, 2001

July 31, 2001

Simulator Configuration Guide

example 188

examples 187

how it works 179
options per model 185
overwriting files 185
overwriting pin names per model 186
processing 191

running 186

syntax 186

Getting help 14

Graphical descriptions 249

H

Hardware model functional descriptions
with QuickSim 11 249

Hardware models

dynamic linking with PL1 89, 108, 120
elaborating and simulating design 188

functional descriptionswith QuickSim 11
247

installation prerequisites 178

instantiating 88

instantiating in Verilog-XL 88

keyword replacement 193

linking simulators 35

linking with SFI 35

loop mode 262

modifying 255

performance monitoring 89, 188, 259,
263, 264

propagation delays 253

registering 249, 250

registration 249

rules for determining descriptors 248

script for Scirocco 138

SFI 85

shell timing 258

test vector symbols 93

timing

measurement 261

timing checks 253

timing checks with Cyclone 182

timing delays with Cyclone 182

understanding test vector files 93

unknown propagation 260

Index

variable declarations 253

verilog.log file example 90

with Cyclone 183

with IKOS Voyager 36

with Leapfrog 201

with MTI Verilog 120

with MTI VHDL 165

with NC-Verilog 108

with QuickSim |1 247, 256

with Scirocco 135

with Teradyne LASAR 36

with VEDA Vulcan 36

with ViewLogic Fusion 36
HP-UX

compiling C files 28

Iflags 191
IKOS Voyager 36

with hardware models 36
| ndeterminate strength mapping 261
Information, signal instance 263
Installation prerequisites

hardware model 178
Instantiation

FlexModel VHDL 40, 43, 61, 80, 103,
105, 113, 116, 130, 147, 162

Instruction

tracing, execution 236
Intel NT

using MTI Verilog 115

using MTI VHDL 160
Interfaces

hardware model component 249

Synopsys, Inc. 295

Index

J
JEDECFile property 224

K
Keys do not match, error message 189

L

LAI_LIB environment variable 77
LAI_OBJenvironment variable 77
Id linker 191

LD LIBRARY_PATH environment

variable 38, 39, 60, 61, 102, 112,

125, 142, 156, 172, 189, 196,
206, 218
-LDFLAGS -E switch 277
L eapfrog
with FlexModels 173, 198
with hardware models 201
with MemPro 198, 210
Lespfrog utilities
with hardware models 202
IfsmLibPck file 197
Libraries
CLI functions 146
FMI 198, 210
model_pkg.inc 42, 115
model_pkg.o 27
model_pkg.vhd 161
model_pkg.vr 274
model_pkg.vrh 274
model_user pkg.vhd 161
sm_lib 129, 147, 162, 210
sim_pli.o 27
sim_pli_dyn 82, 106, 108, 117, 119
SmartModel Library menus 220
SmartModel, LMTV/SWIFT 76
SmartModel, Verilog-XL 76
SMpackage.vhd 207
swiftpli 61, 79, 80, 81, 103, 104, 106,
107, 113, 115, 118
vera loca _dll 276

296 Synopsys, Inc.

Simulator Configuration Guide

LIBRARY statement 129, 147, 162, 207,
209

license file settings
Model Source 181

linker 191

Linux
compiling C files 29
with MemPro 163

LM_DIR environment variable 38, 60,
112, 142, 156, 196

Im_disable timing_checks command 202,
214

Im_enable_timing_checks ommand 202,
214

LM_LIB environment variable 38, 60,
112, 142, 156, 196

LM _LICENSE_FILE environment
variable 38, 60, 102, 112, 124,
142, 155,171, 196, 205, 217

Im_log_test vectors command 202
Im_loop_instance command 203, 214

Im_model command 247, 249, 250, 252,
253, 255, 256, 264

Im_model symbol generation 253

LM_OPTION environment variable 89,
188

Im_pam_shortage command 203, 214
Im_pattern_history command 203, 214

Im_timing_measurements command 202,
214

Im_unknowns command 202, 214
Im_vconfig command 99
LM-1200 175
LM-1400 175
LMC_COMMAND
setting SWIFT session commands 22

July 31, 2001

Simulator Configuration Guide

LMC_HOME environment variable 38, 59,
77,101,111, 124, 141, 155, 171,

195, 205, 217
LMC_PATH environment variable 77
LMC_SFI environment variable 55
LMC. T I2I\(/I)7EU NIT environment variable
LMC_VLOG environment variable 77
LMC_VLOG environment variables 77
Imc-swift-template command 39, 42
Immsi logon command 136
Imsi list command 136
LMSI_DELAY_TYPE VHDL generic
137, 152
LMSI_LOG VHDL generic 137, 152
LMSI_TIMING_MEASUREMENT
VHDL generic 136, 152
LMTV
command reference 279
command-line switches 77, 279
historic SmartModel mode for Verilog-
XL 64
modes of operation for Verilog-XL 64
simulating older designs with Verilog-
XL 76
static linking with PL1 81, 82, 83, 106,
108, 117

SWIFT SmartModel mode with Verilog-

XL 64

Imvc_template command 55
Imvsg command 84
Imvsg commnd 99
L ocation maps

variables, Mentor Graphics 220
Logging test vectors 261
Logic simulation 228

with SmartModels 228

Index

Loop mode, with hardware modelsin
QuickSim |1 262

M

MA_CY environment variable 179
ma_cyclone software tree 178
Manual overview 11
Mapping

indeterminate strength 261

pin 241

PIN_NAME 240

pins, conditional 243

rules for special characters 192

unknowns 259
MCF file 230

with SmartModels 230
Measurement, timing 261
MemoryFile property 223
MemPro

with NC-VHDL 210
MemPro models

controlling message output 34

dynamic linking with PL1 81, 108, 118

error messages 33

fatal messages 33

generics 29

info messages 33

instantiating 32

message level constants 34

parameters 29

PLI static linking 82, 83, 108, 119

timing messages 33

using in testbench 134

using with simulators 29

warning messages 33

with Cyclone 173

with Leapfrog 198, 210

with MTI Verilog 118

with MTI VHDL 163

with NC-Verilog 108

with Scirocco 132

with VCS 51

with Verilog-XL 81

with VSS 148

July 31, 2001 Synopsys, Inc. 297

Index

X-handling messages 33
Mentor Graphics

analysistools 247

design environment 247

location map variables 220

user tree management 219
Messages

constants, level with MemPro 34

controlling output with MemPro 34

MemPro error 33

MemPro fatal 33

MemPro info 33

MemPro timing 33

MemPro warning 33

MemPro X-handling 33

SmartModel error 233

SmartModel format 233

SmartModel note 233

SmartModel trace 233

SmartModel warning 233
MGC component interface 247
Model Access

Cycolne configuration options 175
Model directory 14
Model files

model_fx_sim.vhd 161
MODEL property 224
model.v files generated by crshell 86
model.v files, generating 84
model.vhd 115, 161
model.vhd file 105
model_fx_comp.vhd 161
model_fx_sim.vhd 115, 161
model_fx_sim.vhd file 104
model_pkg.o 27
model _pkg.vhd 161
model_tst.vhd 115, 161
model_tst.vhd file 105
model _user pkg.vhd 161
Model Access

for Cyclone 174

for QuickSim |1 244

for Verilog 85

298

Simulator Configuration Guide

ModelAccess for Cyclone
version number 174
Model Access for QuickSim |1
version number 244
ModelAccess for Verilog
version number 90
modelsim.ini file 157, 162, 163
Model Source
license file settings 181
system hardware and software 175
MS-3200 175
MS-3400 175
MTI Verilog
simulatingusing LMTV 113
with FlexModels 115
with Hardware models 120
with MemPro models 118
MTI VHDL
with FlexModels 160
with hardware models 165
with MemPro models 163
with SmartModels 157, 197

N

ncshell command 206
ncshell file 208
ncsim command 207
ncsim file 210
NC-Verilog
simulating with LMTV 103
with hardware models 108
with MemPro models 108
with SmartModels 103
ncverilog command 109
NC-VHDL
with FlexModels 208
with MemPro 210
with SmartModels 206
ncvhdl command 207
nologvectors signal instance command 261
NT
compiling C files 29

Synopsys, Inc. July 31, 2001

Simulator Configuration Guide

P

Parameters
also called attributes 18
DelayRange 24
FlexCFile 25
FlexModelld 24
FlexModel Src 25
FlexTimingMode 24
TimingVersion 24
PCLFile property 224
pin names, overwriting by genlnterface 186
PIN property 224, 240
Pin symbols 222
pin_map file 241
example 242
PIN_NAME mapping 240
PIN_NAME property 225, 240
pin_name_ovr statement 186
PIN_NO property 225
Pins
mapping 241
mapping, conditional 243
PINTY PE property 224
PK G property 225
PLI
communication with Simulator Function
Interface (SFI) 85
dynamic linking with FlexModels 115
dynamic linking with Hardware models

dynamic linking with MemPro models
108, 118

dynamic linking with SmartModels 61,
113

static linking with FlexModels 106, 117

static I|1nll8 ng with MemPro models 108,

static linking with SmartModels 114
PLIWizard 62, 82, 104, 106, 108
Properties

COMP 225

editing 233

JEDECFile 224

MemoryFile 223

July 31, 2001

Index

MODEL 224, 247

PCLFile 224

PIN 224, 240

PIN_NAME 225, 240

PIN_NO 225

PINTYPE 224

PKG 225

REF 225

SCFFile 224

SWIFT 239

SWIFT_TEMPLATE 224

symbol 222

symbol, required for simulation 224

TimingVersion 223
propogation command 259

Q

QuickSim 11
changing timing 233
command interaction 231
command line switches 230
component interface 247
constraint checking 233
constraint, switch 230
default timing 229
installing SWIFT interface 219
interactive commands 231
managing user trees 219
model symbol properties 224
simulating logic models 256
SmartM odel windows with 235
SWIFT interface 219
-time_scale switch 230
timing,switch 230
with hardware models 247

R

Reconfiguration
models, for smulation 232
REF property 225
reg_model command 240, 249, 256
Register elements
combining with SmartModels 237

Synopsys, Inc.

299

Index

Registration 256

component 240

errors, dealing with 252

hardware models 249

logic models 249, 250

models 249
Registration tools, reference 264
Related documents 11
reread modelfile command 239
restore state command 238
run_flex_examples_in_scirocco.pl 130
run_flex_examples in_vcs.pl Script 51
running verifySetup 179

S

save state command 238
SCFFile property 224
Schematic capture
adding SmartModel to schematic 221
Schematic Editor
creating instances 227, 228
Scirocco
hardware model utilities 136
script for hardware models 138
VHDL generics 136
with FlexModels 128
with hardware models 135
with MemPro models 132
with SmartModels 125
Scripts
run_flex_examples_in_scirocco.pl 130
run_flex_examples in_vcs.pl 51
scsim command 134
Selection, timing shell 258
Session, ending the simulation 264
setup file, editing 184
SHI
linking hardware models 35
SFI. see Simulator Function Interface
Shell Software
conversion to VHDL 193
names 193

300 Synopsys, Inc.

Simulator Configuration Guide

Shell Software Cconversions with
hardware models 254
Shell, timing
with hardware models 258
SHLIB_PATH environment variable 39,
61,103, 112, 125, 142, 156, 172,
196, 206, 218
signal instance command 231, 256, 261,
262, 264
signal renaming, rules 192
Signal strength
with SmartModels 77
Simulation session, ending 264
Simulations
fault 23
reconfiguring models for 232
single-step 236
Simulator Function Interface (SFI) 85
version number 90
Simulator integration
Cyclone 173
Leapfrog 198, 210
ModelSim 160
ModelSim VHDL 163
MTI VHDL 160
V-System 5.0 160
simv command 278
Slang hardware model 183
Slang interface 183
sm_entity command 157, 160
SmartCirctuit models
Models
SmartCircuit 207
SmartCircuit models
with SWIFT Cxmmand Channel 21
SmartModel Library
documentation 11
fault simulation 23
message formats 233
SmartModel Windows
in SWIFT SmartModel mode 72
in Verilog-XL historic mode 71
SmartModel windows
elements 238

July 31, 2001

Simulator Configuration Guide

how they work 235
LMTV, commands 70
tracing instruction execution 236
with QuickSim Il 235
with Verilog-XL 70
SmartModels
adding to schematic 221
attributes, required 19
changing program flow 238
changing program flows 238
changing timescale 76
creating instances in QuickSim 227
customizing timing 76
drive strengths 229
dynamic linking with PL1 61, 103, 113
editing properties 233
evaluation 258
fault simulation 23
functional descriptionsin Quickim Il 247
graphi gal descriptions with QuickSim |1
47

instantiating 20

library menus, to Design Architect 220

LMTV/SWIFT libraries 76

logic simulation 228

message format 233

message formats 233

pin and bus symbols 222

PLI static linking 104, 114

reconfiguring for smulation 232

renaming instancesin QuickSIM 237

signal levels 229

status checking 232

support levels 229

SWIFT usage notes for MGC users 221

symbol properties used by SWIFT 223

symboals, creating new 239

symbols, modifying 239

technology descriptions with QuickSim
[247

timing constraint checks 233

trace messages 233

user-defined window elements 70

using with SWIFT simulators 18

Verilog-XL libraries 76

July 31, 2001

Index

warning messages 233

Windows, SWIFT mode 72

with Cyclone 173

with MTI VHDL 157, 197

with NC-Verilog 103

with NC-VHDL 206

with Scirocco 125

with VCS 39

with Verilog-XL 61, 63

with VSS 143
SMILibrary.vhd file 197
SMLibrary.vhd 207
SMpackage.vhd 207
SMpackage.vhd file 197
SNPSLMD_LICENSE_FILE environment

variable 38, 60, 102, 112, 124,
142, 155, 171, 196, 205, 217

Solaris

compiling C files 28
SOLV-IT! 15
Special characters

mapping rules 192

replacing 192
SSI_LIB_FILES environment variable 277
State tracking 253
Statements

technology file 253
SunOS, changing global settings on 184
Support center

contacting 14
Support levels

SmartModels 229
SWIFT 17
SWIFT Command Channel 21, 231
SWIFT interface

properties 239

QuickSim 1, installing 219

symbol properties 222

usage notes for MGC users 221
SWIFT parameters

with FlexModels 24

with SmartModels 18

Synopsys, Inc. 301

Index

SWIFT_TEMPLATE property 224
swiftpli 61, 79, 80, 81, 103, 104, 106,
107, 113, 115, 118

Switches

+vera finish_on_end 275

command line, QuickSim Il 230

constraint mode 230

-debug_all 134

-LDFLAGS-E. 277

time scale 230

timing mode 230

VCS-Zp4 53
Symbol properties

required for ssimulation 224
Symbols 221, 256

aternate, selecting 228

buses 222

creation 249

custom 239

editing 253

pins 222

properties 222

registration 249

rules for creating 253

SmartModel, creating new 239

SmartModel, modifying 239
SYNOPSY S environment variable 141
synopsys _Im_hw.setup file 184
synopsys_Im_hw.setup.sunosfile 184
SYNOPSY S SIM environment variable

124,141

synopsys_vss.setup file 129, 147

T

Technology descriptions 249
Technology files 249, 253, 264
conversions 254
types 253
Teradyne LASAR
with hardware models 36

302 Synopsys, Inc.

Simulator Configuration Guide

Test vector logging 261
Test vector logging, hardware model
example 91
Timescale
changing with SmartModels 76
switch with SmartModels 230
Timing checks
with hardware models 253
Timing descriptions 249
Timing files 251
Timing measurement
with hardware models 91
Timing modes
changing 233
default 229
switch 230
Timing shell selection 258
TimingVersion 24
TimingVersion property 223
tmg_to_ts command 267
tmg_to_ts converter 249
Tools
Admin 220
analysis, Mentor Graphics 247
flexm_setup 25, 27
Im_moz%eé 247,249, 250, 252, 253, 255,
Im_model, syntax 264
reg_model 240, 249, 256
registration, reference 264
tmg_to_ts 249
tmg_to_ts, syntax 267
Tracing
instruction, execution 236
Tracking, state 253
Transcript, registration - checking 252
Trees
management, Mentor Graphics 219
Triggering
word, setting 236

July 31, 2001

Simulator Configuration Guide

Typographical conventions 13

U

Unknown mapping
with hardware models 259
Unknown propagation
with hardware models 260
USE statement 129, 147, 162, 207, 209
Using 83
Using FlexModels
with Direct C Control 26
with SWIFT simulators 26
Using MemPro models
with Verilog simulators 31
with VHDL simulators 31
Utilities
called by Im_model command 249
Check Shell Software 252
Im_mozdeelS 247,249, 250, 252, 253, 255,
5

V

Variables
location map, Mentor Graphics 220
vcom command 159, 162
VCS
FlexModel examples run script 49
invoking on AlX 41
invoking on HP-UX 40
invoking on Linux 41
invoking on Solaris 40
with FlexModels 42
with MemPro models 51
with SmartModels 39
with VERA 275
VCS utilities
with hardware models 57

July 31, 2001

Index

VCS HOME environment variable 39, 42
VCS_LMC environment variable 55
VCS LMC_HM_ARCH environment
variable 55
VCS_SWIFT_NOTES environment
variable 39
Vectors, test, logging 261
VEDA Vulcan
with hardware models 36
VERA
compiling source files 274
compiling testbench 275
testbench creation 271
testbench example 272
UDF interface 270
with FlexModels 269
with FlexModelsin testbench 272
with VCS 275
VERA command 275
vera local.dll library 276
verifySetup
error message 179
executing 179
Verilog
include pkgs 115
sim_pli.o 27
Verilog-XL
capturing designs 66
compiling and simulating 89
Concept procedure 69
design
capture with Concept 68
design capture 67
design flow 66
design flow with SmartModels 67
executable 89
save and restore 94
simulating and compiling 89
simulating using LMTV 76
using SmartModel windows with 70
using with SmartModels 63
with MemPro 81
with SmartModels 61

Synopsys, Inc. 303

Index

Version numbers, finding 90
VHDL generics
LMSI_DELAY_TYPE 137, 152
LMSI_LOG 137, 152
LMSI_TIMING_MEASUREMENT
136, 152
with Scirocco 136
with VSS 151
VHDL keywords, unacceptable as signal
names 193
VHDL shell, creating for Cyclone 191
vhdlan command 129, 134
vhdlsim command 147
vhdlsim file 148
ViewLogic Fusion
with hardware models 36
Visual C++ 29, 45
vlib command 159
vsim command 159, 163
VSS
VHDL generics 151
with FlexModels 145
with MemPro models 148
with SmartModels 143
V-System 160
vsystem.ini file 162

W

Windows
LMTV SmartModel commands 70
SmartModel, elements 238
SmartModel, tracing instruction
execution 236
SmartM odels, how they work 235
SmartModels, with QuickSim |1 235
Word triggering

setting 236
Wrappers
SWIFT 104
Z
-Zp4 switch for VCS 53

304 Synopsys, Inc.

Simulator Configuration Guide

July 31, 2001

	Contents
	Figures
	Tables
	Preface
	About This Manual
	Related Documents
	Some Hyperlinks May Not Work
	Manual Overview
	Typographical and Symbol Conventions

	Getting Help
	The Synopsys Website
	Synopsys Common Licensing (SCL) Document Set

	Comments?

	1 Using Synopsys Models with Simulators
	Overview
	Using SmartModels with SWIFT Simulators
	SmartModel SWIFT Parameters
	Instantiating SmartModels
	The SWIFT Command Channel
	Fault Simulations

	Using FlexModels with SWIFT Simulators
	flexm_setup Command Reference
	Instantiating FlexModels with Direct C Control

	Using MemPro Models with VHDL and Verilog Simulators
	Using MemPro Models with VHDL Simulators
	Using MemPro Models with Verilog Simulators
	Instantiating MemPro Models
	Controlling MemPro Model Messages
	Controlling MemPro Message Output
	Message Level Constants

	Using Hardware Models with Different Simulators
	Linking Other Supported Simulators

	2 Using VCS with Synopsys Models
	Overview
	Setting Environment Variables
	Using SmartModels with VCS
	Using FlexModels with VCS
	VCS FlexModel Examples
	Script for Running FlexModel Examples in VCS
	Example Simulator Run Script

	Using MemPro Models with VCS
	Using Hardware Models with VCS
	Example Using Runtime Option
	Example Using DelayRange Parameter
	VCS Utilities

	3 Using Verilog-XL with Synopsys Models
	Overview
	Setting Environment Variables
	Using SmartModels with Verilog-XL
	Using SmartModels with Verilog-XL on the IBMRS AIX Platform
	Verilog-XL Usage Notes for SmartModels

	Using FlexModels with Verilog�XL
	FlexModels:PLI Static Linking with LMTV

	Using MemPro Models with Verilog�XL
	Static Linking with LMTV

	Using Hardware Models with Verilog-XL
	Prerequisites
	Using Hardware Models
	$lm_log_test_vectors Command Reference
	$lm_loop_instance Command Reference
	$lm_timing_information Command Reference
	$lm_timing_measurements Command Reference
	$lm_unknowns Command Reference
	lmvsg Command Reference

	4 Using NC-Verilog with Synopsys Models
	Overview
	Setting Environment Variables
	Using SmartModels with NC-Verilog
	Static Linking with LMTV

	Using FlexModels with NC�Verilog
	Static Linking with LMTV

	Using MemPro Models with NC�Verilog on UNIX
	Static Linking with LMTV

	Using Hardware Models with NC-Verilog
	NC-Verilog Utilities

	5 Using MTI Verilog with Synopsys Models
	Overview
	Setting Environment Variables
	Using SmartModels with MTI Verilog
	Static Linking with LMTV
	Using SmartModels with MTI Verilog on the IBMRS AIX Platform

	Using FlexModels with MTI Verilog
	Static Linking with LMTV

	Using MemPro Models with MTI Verilog
	Static Linking with LMTV

	Using Hardware Models with MTI Verilog
	MTI Verilog Utilities

	6 Using Scirocco with Synopsys Models
	Overview
	Setting Environment Variables
	Using SmartModels with Scirocco
	create_smartmodel_lib Command Reference

	Using FlexModels with Scirocco
	Script for Running FlexModel Examples in Scirocco

	Using MemPro Models with Scirocco
	Using MemPro Models in a Testbench

	Using Hardware Models with Scirocco
	Scirocco Example with TILS299 Hardware Model
	Scirocco Utilities
	VHDL Model Generics with Scirocco

	7 Using VSS with Synopsys Models
	Overview
	Setting Environment Variables
	Using SmartModels with VSS
	create_smartmodel_lib Command Reference

	Using FlexModels with VSS
	Using MemPro Models with VSS
	Using Hardware Models with VSS
	VSS Example with TILS299 Hardware Model
	VSS Utilities
	VHDL Model Generics with VSS

	8 Using MTI VHDL with Synopsys Models
	Overview
	Setting Environment Variables
	Using SmartModels with MTI VHDL
	sm_entity Command Reference

	Using FlexModels with MTI VHDL
	Using MemPro Models with MTI VHDL
	Using Hardware Models with MTI VHDL
	MTI VHDL Example Using TILS299 Hardware Model
	hm_entity Command Reference
	MTI VHDL Utilities

	9 Using Cyclone with Synopsys Models
	Overview
	Setting Environment Variables
	Using SmartModels with Cyclone
	Using FlexModels with Cyclone
	Using MemPro Models with Cyclone
	Using Hardware Models with Cyclone
	ModelSource System Hardware and Software
	LM-1400/LM-family System Hardware and Software
	Configuration Options
	Cyclone User Setup
	Using Hardware Models with Cycle-Based Simulators
	genInterface Command Reference
	Cyclone Simulation
	Cyclone genInterface Setup Files
	Cyclone genInterface Processing

	10 Using Leapfrog with Synopsys Models
	Overview
	Setting Environment Variables
	Using SmartModels with Leapfrog
	Using FlexModels with Leapfrog
	Using MemPro Models with Leapfrog
	Using Hardware Models with Leapfrog
	Leapfrog Example with TILS299 Hardware Model
	Leapfrog Utilities

	11 Using NC�VHDL with Synopsys Models
	Overview
	Setting Environment Variables
	Using SmartModels with NC-VHDL
	Using FlexModels with NC-VHDL
	Using MemPro Models with NC�VHDL
	Using Hardware Models with NC-VHDL
	NC-VHDL Example with TILS299 Hardware Model
	NC-VHDL Utilities

	12 Using QuickSim II with Synopsys Models
	Overview
	Setting Environment Variables
	Using SmartModels and FlexModels with QuickSim II
	Installing the QuickSim II SWIFT Interface
	Using SmartModels/FlexModels with QuickSim II
	Schematic Capture
	Logic Simulation
	Custom Symbols

	Using Hardware Models with QuickSim II
	Setting up Hardware Models in QuickSim II
	Using Hardware Models in QuickSim II
	Model Registration
	Registering a Model with lm_model
	Modifying a Hardware Model
	Simulating with Hardware Models in QuickSim II
	lm_model Command Reference
	tmg_to_ts Command Reference

	A Using VERA with FlexModels
	Overview
	Using FlexModels with the VERA UDF Interface
	Linking VERA with Verilog Simulators
	Linking VERA with the MTI VHDL Simulator

	Creating a VERA Testbench
	VERA Testbench Example
	Incorporating FlexModels in a VERA Testbench
	Using VERA with VCS

	B LMTV Command Reference
	Overview
	LMTV Command Line Switches
	LMTV Commands
	$lm_command() or $lai_command()
	$lm_dump_file() or $lai_dump_file()
	$lm_help()
	$lm_load_file() or $lai_load_file()
	$lm_monitor_enable() or $lai_enable_monitor()
	$lm_monitor_disable() or $lai_disable_monitor()
	$lm_monitor_vec_map() and $lm_monitor_vec_unmap()
	$lm_status() or $lai_status()

	Index

