
Simulator Configuration
Guide for Synopsys Models

July 31, 2001

To search the entire manual
set, press this toolbar button.
For help, refer to intro.pdf.

Copyright © 2001 Synopsys, Inc.
All rights reserved.
Printed in USA.

Information in this document is subject to change without notice.

SmartModel, ModelAccess, ModelTools, SourceModel Library, LM-1200, and
Synopsys Eaglei are registered trademarks; MemPro, MemSpec, MemScope,
FlexModel, LM-family, LM-1400, Logic Model, ModelSource, and SourceModel are
trademarks of Synopsys, Inc.

All company and product names are trademarks or registered trademarks of their
respective owners.

Simulator ConfigurationGuide

2 Synopsys, Inc. July 31, 2001

Simulator Configuration Guide Contents

July 31, 2001 Synopsys, Inc. 3

Contents

Preface . 11
About This Manual . 11
Related Documents . 11

Some Hyperlinks May Not Work . 12
Manual Overview . 12
Typographical and Symbol Conventions . 13

Getting Help . 14
The Synopsys Website . 15
Synopsys Common Licensing (SCL) Document Set . 15

Comments? . 16

Chapter 1
Using Synopsys Models with Simulators . 17

Overview . 17
Using SmartModels with SWIFT Simulators . 18

SmartModel SWIFT Parameters . 18
Instantiating SmartModels . 20
The SWIFT Command Channel . 21
Fault Simulations . 23

Using FlexModels with SWIFT Simulators . 24
flexm_setup Command Reference . 25
Instantiating FlexModels with Direct C Control . 26

Using MemPro Models with VHDL and Verilog Simulators 29
Using MemPro Models with VHDL Simulators . 31
Using MemPro Models with Verilog Simulators . 31
Instantiating MemPro Models . 32
Controlling MemPro Model Messages . 33
Controlling MemPro Message Output . 34
Message Level Constants . 34

Using Hardware Models with Different Simulators . 35
Linking Other Supported Simulators . 35

Chapter 2
Using VCS with Synopsys Models . 37

Overview . 37
Setting Environment Variables . 38

Contents Simulator ConfigurationGuide

4 Synopsys, Inc. July 31, 2001

Using SmartModels with VCS . 39
Using FlexModels with VCS . 42

VCS FlexModel Examples . 45
Script for Running FlexModel Examples in VCS . 49
Example Simulator Run Script . 51

Using MemPro Models with VCS . 51
Using Hardware Models with VCS . 55

Example Using Runtime Option . 57
Example Using DelayRange Parameter . 57
VCS Utilities . 57

Chapter 3
Using Verilog-XL with Synopsys Models . 59

Overview . 59
Setting Environment Variables . 59
Using SmartModels with Verilog-XL . 61

Using SmartModels with Verilog-XL on the IBMRS AIX Platform 62
Verilog-XL Usage Notes for SmartModels . 63

Using FlexModels with Verilog-XL . 79
FlexModels:PLI Static Linking with LMTV . 81

Using MemPro Models with Verilog-XL . 81
Static Linking with LMTV . 82

Using Hardware Models with Verilog-XL . 83
Prerequisites . 83
Using Hardware Models . 85
$lm_log_test_vectors Command Reference . 94
$lm_loop_instance Command Reference . 95
$lm_timing_information Command Reference . 96
$lm_timing_measurements Command Reference . 96
$lm_unknowns Command Reference . 97
lmvsg Command Reference . 99

Chapter 4
Using NC-Verilog with Synopsys Models . 101

Overview . 101
Setting Environment Variables . 101
Using SmartModels with NC-Verilog . 103

Static Linking with LMTV . 104
Using FlexModels with NC-Verilog . 104

Static Linking with LMTV . 106
Using MemPro Models with NC-Verilog on UNIX . 107

Simulator Configuration Guide Contents

July 31, 2001 Synopsys, Inc. 5

Static Linking with LMTV . 108
Using Hardware Models with NC-Verilog . 108

NC-Verilog Utilities . 109

Chapter 5
Using MTI Verilog with Synopsys Models . 111

Overview . 111
Setting Environment Variables . 111
Using SmartModels with MTI Verilog . 113

Static Linking with LMTV . 114
Using SmartModels with MTI Verilog on the IBMRS AIX Platform 114

Using FlexModels with MTI Verilog . 115
Static Linking with LMTV . 117

Using MemPro Models with MTI Verilog . 118
Static Linking with LMTV . 119

Using Hardware Models with MTI Verilog . 120
MTI Verilog Utilities . 122

Chapter 6
Using Scirocco with Synopsys Models . 123

Overview . 123
Setting Environment Variables . 124
Using SmartModels with Scirocco . 125

create_smartmodel_lib Command Reference . 126
Using FlexModels with Scirocco . 128

Script for Running FlexModel Examples in Scirocco 130
Using MemPro Models with Scirocco . 132

Using MemPro Models in a Testbench . 134
Using Hardware Models with Scirocco . 135

Scirocco Example with TILS299 Hardware Model . 135
Scirocco Utilities . 136
VHDL Model Generics with Scirocco . 136

Chapter 7
Using VSS with Synopsys Models . 141

Overview . 141
Setting Environment Variables . 141
Using SmartModels with VSS . 143

create_smartmodel_lib Command Reference . 144
Using FlexModels with VSS . 145
Using MemPro Models with VSS . 148

Contents Simulator ConfigurationGuide

6 Synopsys, Inc. July 31, 2001

Using Hardware Models with VSS . 150
VSS Example with TILS299 Hardware Model . 150
VSS Utilities . 151
VHDL Model Generics with VSS . 151

Chapter 8
Using MTI VHDL with Synopsys Models . 155

Overview . 155
Setting Environment Variables . 155
Using SmartModels with MTI VHDL . 157

sm_entity Command Reference . 160
Using FlexModels with MTI VHDL . 160
Using MemPro Models with MTI VHDL . 163
Using Hardware Models with MTI VHDL . 165

MTI VHDL Example Using TILS299 Hardware Model 166
hm_entity Command Reference . 167
MTI VHDL Utilities . 169

Chapter 9
Using Cyclone with Synopsys Models . 171

Overview . 171
Setting Environment Variables . 171
Using SmartModels with Cyclone . 173
Using FlexModels with Cyclone . 173
Using MemPro Models with Cyclone . 173
Using Hardware Models with Cyclone . 174

ModelSource System Hardware and Software . 175
LM-1400/LM-family System Hardware and Software 175
Configuration Options . 175
Cyclone User Setup . 178
Using Hardware Models with Cycle-Based Simulators 182
genInterface Command Reference . 186
Cyclone Simulation . 188
Cyclone genInterface Setup Files . 190
Cyclone genInterface Processing . 191

Chapter 10
Using Leapfrog with Synopsys Models . 195

Overview . 195
Setting Environment Variables . 195
Using SmartModels with Leapfrog . 197

Simulator Configuration Guide Contents

July 31, 2001 Synopsys, Inc. 7

Using FlexModels with Leapfrog . 198
Using MemPro Models with Leapfrog . 198
Using Hardware Models with Leapfrog . 201

Leapfrog Example with TILS299 Hardware Model . 201
Leapfrog Utilities . 202

Chapter 11
Using NC-VHDL with Synopsys Models . 205

Overview . 205
Setting Environment Variables . 205
Using SmartModels with NC-VHDL . 206
Using FlexModels with NC-VHDL . 208
Using MemPro Models with NC-VHDL . 210
Using Hardware Models with NC-VHDL . 213

NC-VHDL Example with TILS299 Hardware Model 213
NC-VHDL Utilities . 214

Chapter 12
Using QuickSim II with Synopsys Models . 217

Overview . 217
Setting Environment Variables . 217
Using SmartModels and FlexModels with QuickSim II . 219

Installing the QuickSim II SWIFT Interface . 219
Using SmartModels/FlexModels with QuickSim II . 221
Schematic Capture . 221
Logic Simulation . 228
Custom Symbols . 239

Using Hardware Models with QuickSim II . 244
Setting up Hardware Models in QuickSim II . 245
Using Hardware Models in QuickSim II . 247
Model Registration . 249
Registering a Model with lm_model . 250
Modifying a Hardware Model . 255
Simulating with Hardware Models in QuickSim II . 256
lm_model Command Reference . 264
tmg_to_ts Command Reference . 267

Appendix A
Using VERA with FlexModels . 269

Overview . 269
Using FlexModels with the VERA UDF Interface . 270

Contents Simulator ConfigurationGuide

8 Synopsys, Inc. July 31, 2001

Linking VERA with Verilog Simulators . 271
Linking VERA with the MTI VHDL Simulator . 271

Creating a VERA Testbench . 271
VERA Testbench Example . 272
Incorporating FlexModels in a VERA Testbench . 274
Using VERA with VCS . 275

Appendix B
LMTV Command Reference . 279

Overview . 279
LMTV Command Line Switches . 279
LMTV Commands . 281

$lm_command() or $lai_command() . 282
$lm_dump_file() or $lai_dump_file() . 283
$lm_help() . 284
$lm_load_file() or $lai_load_file() . 285
$lm_monitor_enable() or $lai_enable_monitor() . 286
$lm_monitor_disable() or $lai_disable_monitor() . 286
$lm_monitor_vec_map() and $lm_monitor_vec_unmap() 288
$lm_status() or $lai_status() . 290

Index . 291

Simulator Configuration Guide Figures

July 31, 2001 Synopsys, Inc. 9

Figures

Figure 1: run_flex_examples_in_vcs.pl Script . 50
Figure 2: Verilog-XL Design Flow . 67
Figure 3: Concept Design Flow . 69
Figure 4: The ma_verilog Software Tree . 84
Figure 5: SFI Communication with PLI . 85
Figure 6: run_flex_examples_in_scirocco.pl Script . 131
Figure 7: Cyclone Configuration Guidelines . 177
Figure 8: ModelAccess for Cyclone Installation Tree . 178
Figure 9: Process Flow Chart . 180
Figure 10: Slang Hardware Model Conceptual Diagram . 183
Figure 11: Default synopsys_lm_hw.setup File . 184
Figure 12: Sample System-Dependent Setup File (.synopsys_lm_hw.setup.hp700) 191
Figure 13: Sample Pin and Bus Symbols . 222
Figure 14: Visible Symbol Properties . 223
Figure 15: National Semiconductor DP8429 DRAM Controller 242
Figure 16: Bus and Pin Symbols . 244
Figure 17: Sample Component Interface for a Hardware Model 248
Figure 18: Hardware Model Registration . 250

Tables Simulator ConfigurationGuide

10 Synopsys, Inc. July 31, 2001

Tables

Table 1: SmartModel SWIFT Parameters . 19
Table 2: FlexModel SWIFT Parameters . 24
Table 3: FlexModel Direct C Control Files . 27
Table 4: MemPro Generic/Parameter Descriptions . 30
Table 5: MemPro Supported Simulators . 31
Table 6: MemPro Message Constant Descriptions . 34
Table 7: VCS SmartModel Explanation . 41
Table 8: FlexModel VCS Verilog Files . 42
Table 9: VCS With One FlexModel On Solaris Model Explanation 47
Table 10: VCS MemPro Model Explanation . 54
Table 11: Characteristics of Historic and SWIFT SmartModel Modes 64
Table 12: model.v Directories . 66
Table 13: LMTV/SWIFT and Verilog-XL-specific Libraries 76
Table 14: FlexModel Verilog-XL Files . 79
Table 15: Test Vector Symbols . 93
Table 16: FlexModel NC-Verilog Files . 104
Table 17: FlexModel MTI Verilog Files . 115
Table 18: FlexModel Scirocco VHDL Files . 128
Table 19: FlexModel VSS VHDL Files . 146
Table 20: FlexModel MTI VHDL Files . 161
Table 21: Rules for Special Character Mapping . 192
Table 22: FlexModel NC-VHDL Files . 208
Table 23: Symbol Properties used by SWIFT Models . 223
Table 24: Symbol Properties Required for Simulation . 224
Table 25: Optional Symbol Properties . 225
Table 26: Signal State Values . 229
Table 27: QuickSim II Command Interaction . 231
Table 28: Elements in a TIBPAL22V10 Device . 237
Table 29: Mentor Graphics Vendor CPU Operating System Suffixes 245
Table 30: Sample Component Directory . 251
Table 31: Shell Software to Technology File Conversion . 254
Table 32: Signal Instance Command Summary . 257
Table 33: FlexModel Files Containing VERA UDF Information 270
Table 34: VERA Header Files . 271
Table 35: FlexModel VERA Files . 274

Simulator Configuration Guide Preface

July 31, 2001 Synopsys, Inc. 11

�

Preface

About This Manual
This manual contains procedures for using Synopsys models with the most widely used
simulators. The scope includes the following types of models:

● SmartModels (including FlexModels)

● MemPro Models

● Hardware Models

Note that this manual contains illustrations of third-party software files solely to
demonstrate the end user modifications needed to get Synopsys models working with
these tools. Third-party software changes frequently. Refer to the third-party tool
vendor's documentation for definitive information about their licensed software.

Related Documents
For more information about SmartModels (including FlexModels), or to navigate to a
related online document, refer to the Guide to SmartModel Documentation. For
information on supported platforms and simulators, refer to SmartModel Library
Supported Simulators and Platforms.

For detailed information about specific SmartModels (including FlexModels), use the
Browser tool ($LMC_HOME/bin/sl_browser) to access the online model datasheets.

For more information about MemPro, or to navigate to a related online document, refer
to the Guide to MemPro Documentation.

For more information about hardware models, or to navigate to a related online
document, refer to the Guide to Hardware Model Documents.

Preface Simulator ConfigurationGuide

12 Synopsys, Inc. July 31, 2001

�

Some Hyperlinks May Not Work
Because this manual is included with multiple product documentation sets, some
hyperlinks do not work properly in all cases. For example, hyperlinks from this manual
to other books in the hardware model documentation set will only work from a hardware
model installation tree. Similarly, hyperlinks to other books installed in $LMC_HOME
will only work in that location.

To work around this limitation, you can visit the Synopsys Web site and navigate to the
latest documentation for all Synopsys models:

http://www.synopsys.com/products/lm/doc

Manual Overview
This manual contains the following chapters:

Preface Describes the manual and lists the typographical
conventions and symbols used in it. Tells how to get
technical assistance.

Chapter 1
Using Synopsys Models with
Simulators

Basic information for configuring and instantiating
SmartModels, FlexModels, MemPro models, and
hardware models for use in hardware simulators.

Chapter 2
Using VCS with Synopsys Models

How to configure SmartModels, FlexModels,
MemPro models, and hardware models for use with
VCS. Includes a script that you can use to run
FlexModel example testbenches in VCS.

Chapter 3
Using Verilog-XL with Synopsys
Models

How to configure SmartModels, FlexModels,
MemPro models, and hardware models for use with
Verilog-XL.

Chapter 4
Using NC-Verilog with Synopsys
Models

How to configure SmartModels, FlexModels,
MemPro models, and hardware models for use with
NC-Verilog.

Chapter 5
Using MTI Verilog with Synopsys
Models

How to configure SmartModels, FlexModels,
MemPro models, and hardware models for use with
MTI Verilog.

Chapter 6
Using Scirocco with Synopsys
Models

How to configure SmartModels, FlexModels,
MemPro models, and hardware models for use with
Scirocco. Includes a script that you can use to run
FlexModel example testbenches in Scirocco.

Chapter 7
Using VSS with Synopsys Models

How to configure SmartModels, FlexModels,
MemPro models, and hardware models for use with
VSS.

http://www.synopsys.com/products/lm/doc

Simulator Configuration Guide Preface

July 31, 2001 Synopsys, Inc. 13

�

Typographical and Symbol Conventions
● Default UNIX prompt

Represented by a percent sign (%).

● User input (text entered by the user)

Shown in bold type, as in the following command line example:

% cd $LMC_HOME/hdl

● System-generated text (prompts, messages, files, reports)

Shown as in the following system message:

No Mismatches: 66 Vectors processed: 66 Possible

Chapter 8
Using MTI VHDL with Synopsys
Models

How to configure SmartModels, FlexModels,
MemPro models, and hardware models for use with
MTI VHDL.

Chapter 9
Using Cyclone with Synopsys
Models

How to configure MemPro models and hardware
models for use with Cyclone.

Chapter 10
Using Leapfrog with Synopsys
Models

How to configure SmartModels, FlexModels,
MemPro models, and hardware models for use with
Leapfrog.

Chapter 11
Using NC-VHDL with Synopsys
Models

How to configure SmartModels, FlexModels,
MemPro models, and hardware models for use with
NC-VHDL.

Chapter 12
Using QuickSim II with Synopsys
Models

How to configure SmartModels, FlexModels,
MemPro models, and hardware models for use with
QuickSim II.

Appendix A
Using VERA with FlexModels

How to configure FlexModels for use with Vera.
Includes a separate procedure for using FlexModels
with Vera and VCS.

Appendix B
LMTV Command Reference

Reference information for LMTV commands used
with SmartModels and FlexModels on Verilog-XL,
NC-Verilog, and MTI Verilog.

Preface Simulator ConfigurationGuide

14 Synopsys, Inc. July 31, 2001

�

● Variables for which you supply a specific value

Shown in italic type, as in the following command line example:

% setenv LMC_HOME prod_dir

In this example, you substitute a specific name for prod_dir when you enter the
command.

● Command syntax

Choice among alternatives is shown with a vertical bar (|) as in the following
syntax example:

-effort_level low | medium | high

In this example, you must choose one of the three possibilities: low, medium, or
high.

Optional parameters are enclosed in square brackets ([]) as in the following
syntax example:

pin1 [pin2 … pinN]

In this example, you must enter at least one pin name (pin1), but others are optional
([pin2 … pinN]).

Getting Help
If you have a question while using Synopsys products, use the following resources:

1. Start with the available product documentation installed on your network or located
at the root level of your Synopsys CD-ROM. Every documentation set contains
overview information in the intro.pdf file.

Additional Synopsys documentation is available at this URL:

http://www.synopsys.com/products/lm/doc

Datasheets for models are available using the Model Directory:

http://www.synopsys.com/products/lm/modelDir.html

2. Visit the online Support Center at this URL:

http://www.synopsys.com/support/lm/support.html

http://www.synopsys.com/products/lm/doc
http://www.synopsys.com/products/lm/modelDir.html
http://www.synopsys.com/support/lm/support.html

Simulator Configuration Guide Preface

July 31, 2001 Synopsys, Inc. 15

�

This site gives you access to the following resources:

❍ SOLV-IT!, the Synopsys automated problem resolution system

❍ product-specific FAQs (frequently asked questions)

❍ lists of supported simulators and platforms

❍ the ability to open a support help call

❍ the ability to submit a delivery request for some product lines

3. If you still have questions, you can call the Support Center:

North American customers:
Call the Synopsys Eaglei and Logic Modeling Products Support Center hotline at
1-800-445-1888 (or 1-503-748-6920) from 6:30 AM to 5 PM Pacific Time, Monday
through Friday.

International customers:
Call your local sales office.

The Synopsys Website
General information about Synopsys and its products is available at this URL:

http://www.synopsys.com

Synopsys Common Licensing (SCL) Document Set
Synopsys common licensing (SCL) software is delivered on a CD that is separate from
the tools that use this software to authorize their use. The SCL documentation set
includes the following publications, which are located in (root)/docs/scl on the SCL CD
and also available on the Synopsys FTP server (ftp://ftp.synopsys.com):

● Licensing QuickStart—(142K PDF file)
This booklet provides instructions for obtaining an electronic copy of your license
key file and for installing and configuring SCL on UNIX and Windows NT.

● Licensing Installation and Administration Guide—(2.08M PDF file)
This guide provides information about installation and configuration, key concepts,
examples of license key files, migration to SCL, maintenance, and troubleshooting.

You can find general SCL information on the Web at:

http://www.synopsys.com/keys

http://www.synopsys.com
ftp://ftp.synopsys.com/pub/SCL/LQS.pdf
ftp://ftp.synopsys.com/pub/SCL/LIAG.pdf
http://www.synopsys.com/keys

Preface Simulator ConfigurationGuide

16 Synopsys, Inc. July 31, 2001

�

Comments?
To report errors or make suggestions, please send e-mail to:

doc@synopsys.com

To report an error on a specific page, select the entire page (including headers and
footers), and copy to the buffer. Then paste the buffer to the body of your e-mail
message. This will provide us with the information we need to correct the problem.

mailto:doc@synopsys.com

Simulator Configuration Guide Chapter 1: Using Synopsys Models with Simulators

July 31, 2001 Synopsys, Inc. 17

�

1
Using Synopsys Models with

Simulators

Overview
There are a variety of different types of models used in the verification process. This
manual covers the following kinds:

● SmartModels (including FlexModels)

● MemPro models

● Hardware models

SmartModels and FlexModels are binary behavioral models that connect to over 30
commercial simulators through the SWIFT interface. If you are using a SWIFT
simulator that does not have a separate chapter devoted to it in this manual, refer to this
chapter for the basic information needed to get the models working on your simulator.
For information on SmartModel/FlexModel supported simulators, refer to the
SmartModel Library Supported Platforms and Simulators Manual.

MemPro models are produced in Verilog or VHDL and do not use the SWIFT interface.
They do require simulator-specific PLI/CLI/FLI code that needs to be bound in to the
supported simulator executable. MemPro is supported on the simulators listed in
Table 5.

The hardware modeler uses real silicon in combination with specialized hardware and
software to represent the full functionality of modeled devices in your simulation. It
does not have a standard interface comparable to SWIFT. Hardware models are a
combination of hardware and software, as follows:

● The hardware consists of the actual silicon of the device being modeled, installed on
a special-purpose Device Adapter and inserted into the hardware modeling system.

Chapter 1: Using Synopsys Models with Simulators Simulator ConfigurationGuide

18 Synopsys, Inc. July 31, 2001

�

● The software consists of a series of ASCII files containing Shell Software that
describes the device interface and initialization, along with optional information
such as timing delays, state tracking, and timing checks.

For simulator-specific information about using hardware models, refer first to “Using
Hardware Models with Different Simulators” on page 35 for an overview and then
consult the appropriate simulator-specific chapter in this manual for detailed setup
procedures.

The procedures in this chapter are organized into the following major sections:

● “Using SmartModels with SWIFT Simulators” on page 18

● “Using FlexModels with SWIFT Simulators” on page 24

● “Using MemPro Models with VHDL and Verilog Simulators” on page 29

● “Using Hardware Models with Different Simulators” on page 35

Using SmartModels with SWIFT Simulators
SWIFT is a standard EDA event-level simulation interface developed by Synopsys. The
SWIFT interface enables multiple simulators with different requirements to use models
from the same SmartModel Library. Each simulator provides a standard model
interface, specified by SWIFT, that allows it to load the same SmartModel Library.

When the simulator encounters a SmartModel during simulation, it uses a set of SWIFT
functions to create and configure the model, map to its ports, initialize it, and set its time
units. The SWIFT interface also allows participating simulators to integrate the
SmartModel Library into their particular framework, including application-specific
menus. For more information, refer to the documentation provided by your simulator
vendor.

SmartModel SWIFT Parameters
SmartModel attributes or parameters are model-specific values needed by the simulator
to configure a model. You configure SmartModels when you instantiate them in your
design using these SWIFT parameters. This could take the form of Verilog defparams,
VHDL generics, or symbol properties, depending on the simulator you are using. For
details, refer to the documentation for your simulator.

Simulator Configuration Guide Chapter 1: Using Synopsys Models with Simulators

July 31, 2001 Synopsys, Inc. 19

�

Table 1 lists the SmartModel configuration parameters. All SmartModels require an
InstanceName, TimingVersion, and DelayRange. In addition, some SmartModels need a
MemoryFile, JEDECFile, SCFFile, or PCLFile attribute. FlexModels use a slightly
different set of attributes for configuration, described in “FlexModel SWIFT
Parameters” on page 24.

Table 1: SmartModel SWIFT Parameters

Parameter Name Used By Description

InstanceName All SmartModels Specifies an instance name
for a particular instance of a
SmartModel. Used in
messages to indicate which
instance is issuing the
message; also used in user-
defined timing. Can be set
by the simulator from the
hierarchical name in the
HDL description; or can be
set using the InstanceName
property on the symbol.

TimingVersion All SmartModels Specifies the timing
version a SmartModel
instance should use when
scheduling changes on its
outputs or checking setup
and hold times on its
inputs. The allowed values
are “min,” “typ,” and
“max.”

DelayRange All SmartModels Specifies a propagation
delay range for a particular
instance of a SmartModel.

MemoryFile SmartModels with internal
memory such as RAMs,
ROMs, and processors
and controllers that have
on-chip RAM or ROM.

Specifies a memory image
file (MIF) to load for a
particular instance of a
SmartModel.

JEDECFile JEDEC-based PAL and
PLD models

Specifies a JEDEC file to
load for a particular instance
of a SmartModel.

SCFFile FPGAs and CPLDs Specifies a model command
file (MCF) to load for a
particular instance of a
SmartModel.

Chapter 1: Using Synopsys Models with Simulators Simulator ConfigurationGuide

20 Synopsys, Inc. July 31, 2001

�

Note�
To determine the required configuration file (i.e., MemoryFile, JEDECFile,
SCFFile, or PCLFile) for any SmartModel, refer to the model’s datasheet.

Instantiating SmartModels
If you are using an HDL-based simulator, generate a model wrapper file (model.v or
model.vhd) using your simulator vendor’s procedure. Use the model wrapper to
instantiate the model in your design. The model wrapper must map the model’s ports to
signals in your design. Modify SWIFT parameters in the model wrapper as needed. Here
are some parameter examples for a SmartModel memory model:

VHDL:

U1: cyc7150
GENERIC MAP(
TimingVersion => "cy7c150",
DelayRange => "MAX",
MemoryFile => "mem1";

Verilog:

defparam
u1.TimingVersion = "cy7c150",
u1.DelayRange = "MAX",
u1.MemoryFile = "mem1";

You can also instantiate SmartModels in schematic-capture based systems by using
model symbols and attaching values to symbol properties. For details on instantiating
SmartModels using symbols with QuickSim II, refer to “Using QuickSim II with
Synopsys Models” on page 217.

PCLFile Processor models (for
example, microprocessors
and microcontrollers);
these are usually hardware
verification models.

Specifies a compiled PCL
program file to load for a
particular instance of a
SmartModel.

Table 1: SmartModel SWIFT Parameters (Continued)

Parameter Name Used By Description

Simulator Configuration Guide Chapter 1: Using Synopsys Models with Simulators

July 31, 2001 Synopsys, Inc. 21

�

The SWIFT Command Channel
The SWIFT interface specification requires that simulator vendors include a minimal
command interface to the SmartModel Library. This interface is called the command
channel. The command channel supports several types of commands:

● “Model Commands” on page 21

● “SmartBrowser Commands for SmartCircuit Models” on page 21

● “Session Commands” on page 22

Model Commands
Model commands affect only a selected model instance. Following is a list of the
model commands:

DumpMemory output_file
Dumps the current memory image of a model to the specified output file. If
output_file exists, it is overwritten; otherwise, a new file is created.

ReportStatus
Prints a message that describes the configuration status of a model.

SetConstraints ON | OFF
Enables or disables timing constraint checks for a model. By default, models check
for and warn of timing constraints.

Note�
Some simulator vendors supply additional interfaces to the DumpMemory,
ReportStatus, and SetConstraints capabilities.

SmartBrowser Commands for SmartCircuit Models
In addition to the model commands which apply to all SmartModels, the command
channel also supports the following SmartBrowser commands for SmartCircuit models:

● Analyze Commands

● Assign Commands

● Examine Commands

● List Commands

● Set and Show Commands

● Trace Commands

● General Commands

Chapter 1: Using Synopsys Models with Simulators Simulator ConfigurationGuide

22 Synopsys, Inc. July 31, 2001

�

For more information about these SmartBrowser commands, refer to the SmartModel
Library Users Manual.

Session Commands
Session commands act on all models in the simulation session. You can enable session
commands by setting the LMC_COMMAND environment variable. Here is an example
that enables tracing of timing files and model versions, followed by a list of all the
session commands.

% setenv LMC_COMMAND "TraceTimeFile on;TracePath ON"

Note�
The session command strings are case-insensitive, as illustrated above
(ON and on are equivalent).

TraceTimeFile ON | OFF
Enables or disables trace messages that list the timing files loaded at simulation
startup. The default is OFF.

TracePath ON | OFF
Enables or disables tracing of paths to files used to determine versions of models.
The default is OFF.

Verbose ON | OFF
Enables or disables the generation of error messages when a SmartModel instance
cannot be created. The default is OFF.

NoLicenseFatal ON | OFF
When set to ON, causes the SWIFT session to send a fatal error message to the
simulator and terminate if any SmartModel in the simulation fails to authorize. The
default is OFF.

Attention�
You must invoke the TraceTimeFile, TracePath, and NoLicenseFatal
commands before the start of the simulation run if you want them to take
effect for that session.

Simulator Configuration Guide Chapter 1: Using Synopsys Models with Simulators

July 31, 2001 Synopsys, Inc. 23

�

Fault Simulations
The SmartModel Library fault simulation capability is folded into the logic simulation
SmartModel Library so that only one set of directories and utilities need to be installed
and maintained. Fault simulation availability depends on the:

● Model—Note that the following types of models are incompatible with fault
simulation:

❍ Hardware verification (HV) models are driven by PCL commands rather than
machine instructions and do not respond adequately to propagated faults. Fault
simulation results may not be as accurate when HV models are present in the
circuit.

❍ FlexModels do not support fault simulation.

❍ SmartCircuit models do not support fault simulation.

● Simulator—Fault analysis is supported by Mentor’s QuickFault II, VEDA’s
VerdictFault, and Teradyne’s LASAR. For more information about fault simulation
support, refer to your simulator documentation.

● Authorization—You need one of the following license features:

❍ simmodel-ultra

❍ simmodel-prem

❍ simmodel-sw-all

❍ simmodel-std

❍ simmodel-base

❍ simmodel-sw-model-model_name (e.g., simmodel-sw-ttl00)

In most cases you can use the same circuit description for both logic and fault
simulation. However, you may need to supply different circuit stimuli for each type of
simulation. All model messages except version, copyright, and configuration error
messages are suppressed in fault simulation. Usage and timing messages are suspended
because they are meaningless in a fault simulation. In order to work efficiently during a
fault simulation, each model manages its own diverge and converge operations.

Chapter 1: Using Synopsys Models with Simulators Simulator ConfigurationGuide

24 Synopsys, Inc. July 31, 2001

�

Using FlexModels with SWIFT Simulators
Regardless of which simulator you are using, you must configure FlexModels by
defining the required SWIFT parameters or attributes shown in Table 2 for each
FlexModel instance in your design. You configure FlexModels when you instantiate
them in your design using these SWIFT parameters. This could take the form of Verilog
defparams, VHDL generics, or symbol properties, depending on the simulator you are
using.

Table 2: FlexModel SWIFT Parameters

Parametera Data Type Description

FlexTimingMode FLEX_TIMING_MODE_OFF
(default)
FLEX_TIMING_MODE_ON
FLEX_TIMING_MODE_CYCLE

Disables/enables timing simulation.
(For Verilog, prepend a back quote
(‘) to the constant.)
Note: Direct C Control users can set
this parameter to:

- “0” for timing mode off
- “1” for timing mode on
- “2” for cycle-based timing

TimingVersion Model timing version The FlexModel timing version. Refer
to the individual FlexModel
datasheets for available timing
versions.

DelayRange “MIN”, “TYP”, “MAX” (default) If you set FlexTimingMode to on,
you can select MIN, TYP, or MAX
delay values with this parameter.

FlexModelId “instance_name” A unique name that identifies each
FlexModel instance. This name is
also used by the flex_get_inst_handle
command to get an integer instance
handle.
Note: Used only with _fx models

FlexModelId_cmd_stream “instance_name” A unique name that identifies each
FlexModel instance or command
stream. This name is also used by the
flex_get_inst_handle command to
get an integer instance handle. For
information on cmd_stream names,
refer to the individual FlexModel
datasheets.
Note: Used only with _fz models.

Simulator Configuration Guide Chapter 1: Using Synopsys Models with Simulators

July 31, 2001 Synopsys, Inc. 25

�

flexm_setup Command Reference
In addition to specifying SWIFT parameters, you must run the flexm_setup utility each
time you install a new or updated FlexModel into your $LMC_HOME tree. This
ensures that you pick up the latest package files for that version of the model.

Syntax
flexm_setup [-help] [-dir path] model

Argument
model Pathname to the FlexModel you want to set up.

Switches
-help Prints help information.

FlexCFile “path_to_C_file -u | -c” Specifies the path to an executable C
program and whether to start up in
coupled (-c) or uncoupled (-u) mode.
Uncoupled mode is the default.
Note: Used only with _fx models for
Direct C Control.

FlexModelSrc_cmd_stream “path_to_C_file -u | -c” If you want to control a FlexModel
using Direct C Control, change the
default value for cmd_stream (HDL)
to the name of the command stream
defined in the individual FlexModel
datasheets.
Use this parameter to specify the path
to an executable C program and
whether to start up in coupled (-c) or
uncoupled (-u) mode. Uncoupled
mode is the default.
Note: Used only with _fz models for
Direct C Control.

a. Some FlexModels have additional SWIFT parameters that need to be specified to configure internal
memory (for example, the usbhost_fz). For details, refer to the individual FlexModel datasheets.

Table 2: FlexModel SWIFT Parameters (Continued)

Parametera Data Type Description

Chapter 1: Using Synopsys Models with Simulators Simulator ConfigurationGuide

26 Synopsys, Inc. July 31, 2001

�

-d[ir] path Copies the contents of the FlexModel’s versioned src/verilog
and src/vhd directories into path/src/verilog and path/src/vhdl.
The directory specified by path must already exist.

Examples
When run without the -dir switch, flexm_setup just prints the name of the versioned
directory of the selected model’s source files

Lists name of versioned directory containing source files
% flexm_setup mpc860_fx

When run with the -dir switch pointing to your working directory, flexm_setup copies
over all the versioned package files you need to that working directory.

Creates copy in ‘flexmodel’ directory of model source files
% mkdir workdir
% flexm_setup -dir workdir mpc860_fx

Instantiating FlexModels with Direct C Control
Direct C Control is how you use FlexModels on SWIFT simulators with standard
FlexModel integrations. With Direct C Control, all model commands come from an
external compiled C program that you point to using the FlexCFile SWIFT parameter.
For users familiar with Synopsys Hardware Verification models, this is similar to setting
the PCLFile parameter to point to the location of a compiled PCL program. In addition,
you must also set the FlexModelId parameter, which does not have a default value. To
generate model wrappers and instantiate models, you use the same simulator-specific
procedures as you would for traditional SmartModels.

Note that the individual FlexModel datasheets document the command syntax and
examples for issuing model commands from Verilog, VHDL, VERA, or C, but HDL
control and switching between different command sources from the testbench are only
available to the simulators with custom integrations. Other SWIFT simulators must stick
to Direct C Control for issuing commands to FlexModels.

To use Direct C Control, follow these steps:

1. If you are using an HDL-based simulator, generate a model wrapper file
(model_fx.v or model_fx.vhd) using your simulator vendor’s procedure. Use the
model wrapper to instantiate the model in your design. Add the FlexCFile
parameter to the model instantiation and point it to the location of
your_compiled_C_file that you create to drive commands into the model. Modify
other SWIFT parameters in the model wrapper as needed. Here are some examples
for how to instantiate a model for use with Direct C Control:

Simulator Configuration Guide Chapter 1: Using Synopsys Models with Simulators

July 31, 2001 Synopsys, Inc. 27

�

VHDL:

U1: pcimaster
GENERIC MAP(
FlexModelId => "modelId_1",
FlexCFile => "./tb.o",
FlexTimingMode => "1",
TimingVersion => "pcimaster",
DelayRange => "MAX"

Verilog:

defparam
u1.FlexModelId = "modelId_1",
u1.FlexCFile = "./tb.o",
u1.FlexTimingMode = "1",
u1.TimingVersion = "pcimaster",
u1.DelayRange = "MAX";

For both of these examples, the C testbench file must have the same instance name,
as follows:

int Id_1, status;
char *sInstName = "modelId_1";

/* Get the instance handle */

flex_get_inst_handle(sInstName,&Id_1, &status);

2. Create a working directory and run flexm_setup to make a copy of the model’s C
object file there, as shown in the following example:

% $LMC_HOME/bin/flexm_setup -dir workdir model_fx

You must run flexm_setup every time you update your FlexModel installation with
a new model version. Table 3 lists the files that flexm_setup copies to your working
directory.

Table 3: FlexModel Direct C Control Files

File Name Description Location

model_pkg.o Model-specific functions for UNIX. workdir/src/C/

model_pkg.obj Model-specific functions for NT. workdir/src/C/

Chapter 1: Using Synopsys Models with Simulators Simulator ConfigurationGuide

28 Synopsys, Inc. July 31, 2001

�

3. Compile the C object files in with the C program that you write to drive commands
into the model (represented in the following examples as your_C_file.c). Note that
these examples include creation of a working directory (workdir) and running
flexm_setup, as explained in the previous step. The compile line differs based on
your platform:

a. On HP-UX, you need to link in the -LBSD library as shown in the following
example:

% mkdir workdir
% flexm_setup -dir workdir model_fx
% /bin/c89 -o executable_name \
your_C_file.c \
workdir/src/C/hp700/model_pkg.o \
$LMC_HOME/lib/hp700.lib/flexmodel_pkg.o \
-I$LMC_HOME/sim/C/src \
-Iworkdir/src/C \
-lBSD

b. On Solaris, you need to link in the -lsocket library as shown in the following
example:

% mkdir workdir
% flexm_setup -dir workdir model_fx
% cc -o executable_name \
your_C_file.c \
workdir/src/C/solaris/model_pkg.o \
$LMC_HOME/lib/sun4Solaris.lib/flexmodel_pkg.o \
-I$LMC_HOME/sim/C/src \
-Iworkdir/src/C \
-lsocket

c. AIX:

% mkdir workdir
% flexm_setup -dir workdir model_fx
% /bin/cc -o executable_name \
your_C_file.c \
workdir/src/C/ibmrs/model_pkg.o \
${LMC_HOME}/lib/ibmrs.lib/flexmodel_pkg.o \
-Iworkdir/src/C \
-I${LMC_HOME}/sim/C/src \
-ldl

Simulator Configuration Guide Chapter 1: Using Synopsys Models with Simulators

July 31, 2001 Synopsys, Inc. 29

�

d. Linux:

% mkdir workdir
% flexm_setup -dir workdir model_fx
% egcs -o executable_name \
your_C_file.c \
workdir/src/C/x86_linux/model_pkg.o \
${LMC_HOME}/lib/x86_linux.lib/flexmodel_pkg.o \
-Iworkdir/src/C \
-I${LMC_HOME}/sim/C/src

e. On NT, you need to link in a Windows socket library as shown in the following
example.

> md workdir
> flexm_setup -dir workdir model_fx
> cl -O2 -MD -DMSC -DWIN32 -Feexecutable_name
your_C_file.c
workdir\src\C\pcnt\model_pkg.obj
%LMC_HOME%\lib\pcnt.lib\flexmodel_pkg.obj
-I%LMC_HOME%\sim\C\src
-Iworkdir\src\C
wsock32.lib

Note�
The entire compilation expression must appear on the same line. The NT
example was tested using Microsoft’s Visual C++ compiler v5.0.

The C executable file that you created in this step is the program that you point to using
the FlexCFile SWIFT attribute for the model instance in your design.

Using MemPro Models with VHDL and
Verilog Simulators

Regardless of which simulator you are using, you must configure MemPro models by
defining the required parameters or attributes shown in Table 4 for each MemPro model
instance in your design. You configure MemPro models when you instantiate them in
your design using these generics or parameters.

Chapter 1: Using Synopsys Models with Simulators Simulator ConfigurationGuide

30 Synopsys, Inc. July 31, 2001

�

Table 4: MemPro Generic/Parameter Descriptions

Name Data Type Description

model_id Integer Either the model_id or model_alias generic or parameter
specifies a unique user handle for a specified model instance.
This user handle is used to address a memory model using
testbench commands.
Note: You do not have to assign all MemPro model instances
a model_id or model_alias, only those instances on which you
wish to use the testbench interface. However, each model
with a model_id or model_alias must be assigned a unique
handle.

model_alias String

memoryfile String Specifies the file name of the memory image file to preload
during model initialization. If memoryfile is set to a null
string (memoryfile = “”), memory image preloading during
initialization is disabled. Supported files formats are
SmartModel Memory Image, Motorola S-Record, Intel Hex,
and Verilog $readmemh. Memory models can also be loaded
using the mem_load command.

default_data String Specifies the default data returned from all uninitialized
memory addresses.
Note: Models in non-volatile memory classes may not have
their Default Memory Value set to anything except all ones.
Any other setting is ignored and MemGen issues an warning.

message_level Integer Specifies the type or types of messages returned by the
model. For a detailed description of message types, refer to
“Controlling MemPro Model Messages” on page 33

Simulator Configuration Guide Chapter 1: Using Synopsys Models with Simulators

July 31, 2001 Synopsys, Inc. 31

�

MemPro models are supported on the simulators listed in Table 5.

Each of the simulators in Table 5 has its own chapter in this manual that explains the
simulator-specific procedure for using MemPro models in those environments.

Using MemPro Models with VHDL Simulators
This section describes how to include MemPro memory models and testbench interface
commands in your design. The MemPro VHDL interface code is contained in the
following files:

slm_hdlc.vhd Simulator-specific HDL-to-C interface code.

mempro_pkg.vhd MemPro-specific module containing the VHDL
implementation of the MemPro testbench interface.

rdramd_pkg.vhd RDRAM-specific module.

All of these files are located in the $LMC_HOME/sim/simulator/src directory.

Using MemPro Models with Verilog Simulators
This section describes how to include MemPro memory models and testbench interface
commands in your design. The following files define MemPro PLI routines and
interface commands:

slm_pli.o PLI routines. This file is located in the
$LMC_HOME/lib/platform.lib directory.

mempro_pkg.v Verilog testbench task definitions for MemPro interface
commands. This file is located in the
$LMC_HOME/sim/pli/src directory.

Table 5: MemPro Supported Simulators

Verilog Simulators VHDL Simulators

VCS Scirocco

Verilog-XL VSS

NC-Verilog Cyclone

MTI Verilog Leapfrog

MTI VHDL

NC-VHDL

Chapter 1: Using Synopsys Models with Simulators Simulator ConfigurationGuide

32 Synopsys, Inc. July 31, 2001

�

mempro_c_tb.h C testbench function definitions for MemPro interface
commands. This is located in the $LMC_HOME/include
directory.

Instantiating MemPro Models
You instantiate MemPro models just like any other HDL models, as shown in the
following DRAM examples.

MemPro Verilog Instantiation
dram1x64 bank1

(.ras (rasr),
.ucas (ucasr),
.lcas (lcasr),
.we (wer),
.oe (oer),
.a (adrr),
.dq (dataw));

defparam bank1.model_id = "tbench.bank1",
bank1.memoryfile = "dram.dat",
bank1.message_level = `SLM_XHANDLING | `SLM_TIMING | `SLM_WARNING,
bank1.default_data = 64'hxxx;

MemPro VHDL Instantiation
U1 : dram1x64
generic map (model_id => 10,

memoryfile => "dram.dat",
message_level => (SLM_TIMING + SLM_XHANDLING + SLM_WARNING),
default_data => "XXXX");

port map
(a => adrw,
dq => dataw,
ras => rasw,
lcas => lcasw,
ucas => ucasw,
we => wew,
oe => oew);

Simulator Configuration Guide Chapter 1: Using Synopsys Models with Simulators

July 31, 2001 Synopsys, Inc. 33

�

Controlling MemPro Model Messages
MemPro model messages are grouped into categories that you can individually enable
or disable for each model instance. Several message categories are applicable to all
models; additional categories may be defined for specific models or model types. The
general categories are:

Fatal
Fatal messages are always enabled. When a fatal error is detected, the simulation stops
immediately after reporting the message. For example, referencing an unknown
MemPro model instance handle causes a fatal error.

Error
Error messages apply to incorrect situations from which the model is able to recover,
allowing simulation to continue. For example, MemPro generates an error message
when the model receives a command that would put it in an illegal state.

Warning
Warning messages apply to situations that users may want to check, but are not
obviously wrong. For example, MemPro generates a warning message when significant
bits of an address are ignored.

Info
Info messages inform you of the status or behavior of the model. MemPro generates
info messages infrequently. For example, when a memory model is initialized from a
file, MemPro issues an info message.

Timing
MemPro uses timing messages to report timing constraint violations. Typical situations
that cause timing messages are setup or pulse-width violations.

X-Handling
MemPro generates X-handling messages if a model samples unknowns on input ports
when valid data was expected.

Chapter 1: Using Synopsys Models with Simulators Simulator ConfigurationGuide

34 Synopsys, Inc. July 31, 2001

�

Controlling MemPro Message Output
There are three ways to control messaging for MemPro models:

1. Set individual Message Settings when you specify the model message categories
(except Fatal).

2. Use the message_level generic or parameter. For more information, refer to
“Message Level Constants” on page 34.

3. Use a command stream or testbench command.

By default, MemPro models display all the general message categories (Fatal, Error,
Warning, Info, Timing, and X-handling). If you set a generic or parameter for a model
instance, that setting overrides the default behavior. In turn, if the command stream or
testbench interface is used, it overrides the generic or parameter value.

Message Level Constants
MemPro provides constants for setting message levels on each instantiated model. The
constants described in Table 6 are defined in mempro_pkg.v (for Verilog simulators)
and mempro_pkg.vhd (for VHDL simulators).

You can combine these constants to get any combination of messages you desire. The
following Verilog and VHDL code fragments define a model instantiation having
timing, X-handling, and warning (as well as fatal) messages enabled.

Table 6: MemPro Message Constant Descriptions

Constant Valuea

a. Note that bits 5 through 27 are unused but reserved.

Description

SLM_ERROR 1 Fatal and error messages generated.

SLM_WARNING 2 Fatal and warning messages generated.

SLM_TIMING 4 Fatal and timing messages generated.

SLM_XHANDLING 8 Fatal and X-handling messages generated.

SLM_INFO 16 Fatal and info messages generated.

SLM_ALL_MSGS 228−1 All message types generated.

SLM_NO_MSGS 0 Only fatal messages generated.

Simulator Configuration Guide Chapter 1: Using Synopsys Models with Simulators

July 31, 2001 Synopsys, Inc. 35

�

Verilog
bank1.message_level = `SLM_XHANDLING | `SLM_TIMING | `SLM_WARNING,

VHDL
message_level => (SLM_TIMING + SLM_XHANDLING + SLM_WARNING),

Using Hardware Models with Different
Simulators

After you install your hardware modeling system, the final task is to link your simulator
with the Synopsys Simulator Function Interface (SFI). Procedures for linking the
simulator with the SFI are specific to the particular simulator.

Synopsys provides four ModelAccess products, supporting QuickSim II, Cyclone,
Verilog-XL, and NC-Verilog. For usage information, refer to the following sections in
this book:

● “Using Hardware Models with QuickSim II” on page 244

● “Using Hardware Models with Cyclone” on page 174

● “Using Hardware Models with Verilog-XL” on page 83

● “Using Hardware Models with NC-Verilog” on page 108

Linking Other Supported Simulators
Because many hardware modeling features are provided through the SFI software, the
functionality of your environment is determined by the version of the SFI that is
integrated with your simulator. Some simulators can be dynamically or statically linked
on site with the most recent SFI. For the current list of simulators and versions that are
supported for dynamic or static linking on site with the SFI, refer to Hardware Modeling
Supported Platforms and Simulators.

If you use one of the simulators on this list, you can link your simulator with the most
recent version of the SFI libraries on the distribution media, allowing you to take
advantage of the latest hardware modeling system software enhancements and bug
fixes. Some simulators have additional requirements. For information, refer to your
simulator vendor’s documentation.

Chapter 1: Using Synopsys Models with Simulators Simulator ConfigurationGuide

36 Synopsys, Inc. July 31, 2001

�

If you use a simulator that is not on the list, consult your simulator vendor about which
version of the SFI has been integrated with your simulator. Depending on the version of
the SFI, you should be able to install and use the most recent Runtime Modeler
Software, although you may not be able to take advantage of all hardware modeling
system software enhancements and fixes.

IKOS Voyager
For information on this interface, refer to the Voyager/LM Hardware Interface chapter
of the Voyager Series User’s Guide, Volume 4.

Do not install the hardware modeling system software under the $VOYAGER_HOME
directory, or files could be overwritten and the installation corrupted. The IKOS-created
sms directory (under $VOYAGER_HOME) and the Synopsys-created sms directory
must be kept separate.

Teradyne LASAR
You can dynamically link the SFI with LASAR. For complete Teradyne-specific
installation information, refer to Teradyne's LASAR Manager Guide for UNIX Systems.

VEDA Vulcan
You can dynamically link the SFI with Vulcan at simulator runtime. For current linking
information, please contact VEDA technical support directly.

Viewlogic Fusion ViewSim
You can statically link the SFI on-site with ViewSim. For information, refer to the
Viewlogic Fusion ViewSim manual or contact Viewlogic technical support directly at 1-
800-223-8439. In addition, Synopsys provides a SOLV-IT! article with some
information. For instructions on accessing SOLV-IT!, refer to “Getting Help” on
page 14.

Simulator Configuration Guide Chapter 2: Using VCS with Synopsys Models

July 31, 2001 Synopsys, Inc. 37

�

2
Using VCS with Synopsys Models

Overview
This chapter explains how to use SmartModels, FlexModels, MemPro models, and
hardware models with VCS. These procedures are centered on VCS v5.1, but contain
notes about other versions of VCS as well. The procedures are organized into the
following major sections:

● “Setting Environment Variables” on page 38

● “Using SmartModels with VCS” on page 39

● “Using FlexModels with VCS” on page 42

● “Using MemPro Models with VCS” on page 51

● “Using Hardware Models with VCS” on page 55

Hint�
This chapter includes a script that you can use to run any FlexModel
examples testbench with minimal setup required. You can cut-and-paste the
script right out of this PDF file. Refer to “Script for Running FlexModel
Examples in VCS” on page 49.

Chapter 2: Using VCS with Synopsys Models Simulator ConfigurationGuide

38 Synopsys, Inc. July 31, 2001

�

Setting Environment Variables
First, set the basic environment variables. If you are not using one of the model types,
skip that step. In some cases the procedures that follow in this chapter include steps for
setting additional environment variables.

1. Set the LMC_HOME variable to the location of your SmartModel. FlexModel, and
MemPro model installation tree, as shown in the following example:

% setenv LMC_HOME path_to_models_installation

2. Set the LM_LICENSE_FILE or SNPSLMD_LICENSE_FILE environment variable
to point to the product authorization file, as shown in the following example:

% setenv LM_LICENSE_FILE path_to_product_authorization_file

% setenv SNPSLMD_LICENSE_FILE path_to_product_authorization_file

You can put license keys for multiple products (for example, SmartModels and
hardware models) into the same authorization file. If you need to keep separate
authorization files for different products, use a colon-separated list (UNIX) or
semicolon-separated list (NT) to specify the search path in your variable setting.

Caution�
Do not include la_dmon-based authorizations in the same file with snpslmd-
based authorizations. If you have authorizations that use la_dmon, keep
them in a separate license file that uses a different license server (lmgrd)
process than the one you use for snpslmd-based authorizations.

3. If you are using the hardware modeler, set the LM_DIR and LM_LIB environment
variables, as shown in the following examples:

% setenv LM_DIR hardware_model_install_path/sms/lm_dir
% setenv LM_LIB hardware_model_install_path/sms/models: \
hardware_model_install_path/sms/maps

If you put your models in a directory other than the default of /sms/models, modify
the above variable setting accordingly.

4. Depending on your platform, set your load library variable to point to the platform-
specific directory in $LMC_HOME, as shown in the following examples:

Solaris:

% setenv LD_LIBRARY_PATH $LMC_HOME/lib/sun4Solaris.lib:$LD_LIBRARY_PATH

Linux:

% setenv LD_LIBRARY_PATH $LMC_HOME/lib/x86_linux.lib:$LD_LIBRARY_PATH

Simulator Configuration Guide Chapter 2: Using VCS with Synopsys Models

July 31, 2001 Synopsys, Inc. 39

�

AIX:

% setenv LIBPATH $LMC_HOME/lib/ibmrs.lib:$LIBPATH

HP-UX:

% setenv SHLIB_PATH $LMC_HOME/lib/hp700.lib:$SHLIB_PATH

NT:

Make sure that %LMC_HOME%\lib\pcnt.lib is in the Path user variable.

5. Set the VCS_HOME variable to the location of your VCS installation tree, as shown
in the following example, and make sure that VCS is set up properly in your
environment:

% setenv VCS_HOME VCS_install_path

6. Set the VCS_SWIFT_NOTES variable to 1, as shown in the following example:

% setenv VCS_SWIFT_NOTES 1

Using SmartModels with VCS
To use SmartModels with VCS, follow this procedure:

1. Generate a Verilog model wrapper file by running VCS with the -lmc-swift-
template switch, as shown in the following example:

% $VCS_HOME/bin/vcs -lmc-swift-template model

where model is the name of the model you want to use.

This will create a model.swift.v file. Note that VCS version 5.1 and up generates
bused Verilog wrapper files by default. If you want bit-blasted wrappers, use the
-old switch.

Synopsys provides a tool, vcs_sg, that allows you to generate multiple model
wrapper files. You must select VCS as your Verilog simulator during the
SmartModel installation in order to have vcs_sg available. It will be installed as

$LMC_HOME/bin/vcs_sg

The vcs_sg tool also extends the usefulness of the model wrapper files generated by
VCS in two ways:

❍ it adds statements that allow the DelayRange to be controlled by the VCS
command line +define parameters (or a defparam in your testbench)

❍ it adds a check for the VCS command line +define+SwiftChecksOff parameter
that turns constraints off.

Chapter 2: Using VCS with Synopsys Models Simulator ConfigurationGuide

40 Synopsys, Inc. July 31, 2001

�

You can change the default name of the generated wrapper files (<model>.swift.v),
as well as the location that the generated wrappers are written to. Invoke

$LMC_HOME/bin/vcs_sg -h

to return the usage message for the vcs_sg tool:

HP-UX B.10.20 /u/mikehu [3]==> $LMC_HOME/bin/vcs_sg -h
Copyright(C)2001 Logic Modeling, Synopsys Inc. ALL RIGHTS RESERVED
@(#) vcs_sg.pl $Revision: /main/5 $ $Date: 2001/03/02 13:42:03 $
##
Generate .v files for VCS for Smartmodels

Command line options:
-h this message
-l <path> to specify location of created files

default is current directory
-m <model_name> to specify which model to process

default is entire library if no -m switch
multiple -m <model_name> switches may be used

-u convert file name to uppercase
-t truncate name to <model>.v
-a add mode, generate only models without .v file

in specified destination
-o <file_name> create log file file_name
-b bit only i/f (no bus i/f if supported)
-v verbose mode to see all messages.
-d set debug mode.

##
2. Instantiate SmartModels in your design, defining the ports and defparams as

required. For details on the required SWIFT parameters and SmartModel
instantiation examples, refer to “SmartModel SWIFT Parameters” on page 18.

3. Invoke the VCS simulator as shown in the following examples:

Solaris:

% $VCS_HOME/bin/vcs -lmc-swift model.swift.v model_tb.v \
-l vcs_sim.log \
-Mupdate \
-RI

HP-UX:

% $VCS_HOME/bin/vcs -lmc-swift model.swift.v model_tb.v \
-l vcs_sim.log \
-Mupdate \
-RI \
-LDFLAGS "-a shared -lm -lc -a archive"

Simulator Configuration Guide Chapter 2: Using VCS with Synopsys Models

July 31, 2001 Synopsys, Inc. 41

�

AIX:

% $VCS_HOME/bin/vcs -lmc-swift model.swift.v model_tb.v \
-l vcs_sim.log \
-Mupdate \
-RI \
-LDFLAGS -lld

Linux:

% $VCS_HOME/bin/vcs -lmc-swift model.swift.v model_tb.v \
-l vcs_sim.log \
-Mupdate \
-RI \
-LDFLAGS -rdynamic

where model.swift.v is the template you created in the previous step and model_tb.v
is the testbench where the model is instantiated. Each model instantiated in the
testbench must have a model.swift.v wrapper file listed on the VCS invocation line.

VCS SmartModel Explanation
Table 7 lists each line in the invocation examples above, along with explanations for
what each one does.

Table 7: VCS SmartModel Explanation

Line Reference Description

$VCS_HOME/bin/vcs
-lmc-swift model.swift.v model_tb.v

Path to the file that starts the VCS simulator, a
switch that causes VCS to load the SWIFT interface,
and then the specified model wrapper and Verilog
testbench files.

-l vcs_sim.log Specifies a log file where VCS writes compilation
and simulation messages.

-Mupdate This specifies incremental compilation, which
causes VCS to compile only the modules that have
changed since the last run.

-RI This makes VCS run interactively. VCS invokes the
XVCS GUI after compilation and pauses the
simulator at time zero.

-LDFLAGS switches Additional platform-specific switches that may be
needed.

Chapter 2: Using VCS with Synopsys Models Simulator ConfigurationGuide

42 Synopsys, Inc. July 31, 2001

�

Using FlexModels with VCS
To use FlexModels with VCS, follow this procedure. VCS links the external PLI
routines that contain the custom FlexModel integration code during compilation of your
design. This procedure covers users on UNIX and NT. If you are on NT, substitute the
appropriate NT syntax for any UNIX command line examples (percent signs around
variables and backslashes in paths).

1. If you want the improved performance that comes with bused wrappers, generate a
Verilog model wrapper file by running VCS with the -lmc-swift-template switch, as
shown in the following example:

% $VCS_HOME/bin/vcs -lmc-swift-template model

where model is the name of the model you want to use.

This creates a model.swift.v file. Note that VCS version 5.1 and up generates bused
Verilog wrapper files by default. For bit-blasted wrappers, use the -old switch.

Note�
The bused wrappers enable improved performance but do not work with the
examples testbench shipped with the model. To exercise the examples
testbench, use the wrappers shipped with the model (see Table 8), as
explained in the rest of this procedure. If you are using the bused wrappers,
adjust accordingly.

2. Create a working directory and run flexm_setup to make copies of the model's
interface and example files there, as shown in the following example:

% $LMC_HOME/bin/flexm_setup -dir workdir model_fx

You must run flexm_setup every time you update your FlexModel installation with
a new model version. Table 8 lists the files that flexm_setup copies to your working
directory.

Table 8: FlexModel VCS Verilog Files

File Name Description Location

model_pkg.inc Verilog task definitions for FlexModel
interface commands. This file also
references the flexmodel_pkg.inc and
model_user_pkg.inc files.

workdir/src/verilog/

model_user_pkg.inc Clock frequency setup and user
customizations.

workdir/src/verilog/

model_fx_vcs.v A SWIFT wrapper that you can use to
instantiate the model.

workdir/examples/verilog/

Simulator Configuration Guide Chapter 2: Using VCS with Synopsys Models

July 31, 2001 Synopsys, Inc. 43

�

3. Update the clock frequency supplied in the model_user_pkg.inc file to correspond
to the CLK period you want for the model. This file is located in:

workdir/src/verilog/model_user_pkg.inc

where workdir is your working directory.

4. Add the following line to your Verilog testbench to include FlexModel testbench
interface commands in your design:

`include "model_pkg.inc"

Note�
Be sure to add model_pkg.inc within the module from which you will be
issuing FlexModel commands.

Because the model_pkg.inc file includes references to flexmodel_pkg.inc and
model_user_pkg.inc, you don’t need to add flexmodel_pkg.inc or
model_user_pkg.inc to your testbench.

5. Instantiate FlexModels in your design, defining the ports and defparams as required
(refer to the example testbench supplied with the model). You use the supplied bus-
level wrapper (model.v) in the top-level of your design to instantiate the supplied
bit-blasted wrapper (model_fx_vcs.v).

Example using bus-level wrapper (model.v) without timing:

model U1 (model ports)
defparam

U1.FlexModelId = “TMS_INST1”;

Example using bus-level wrapper (model.v) with timing:

model U1 (model ports)
defparam

U1.FlexTimingMode = `FLEX_TIMING_MODE_ON,
U1.TimingVersion = “timingversion”,
U1.DelayRange = “range”,
U1.FlexModelId= “TMS_INST1”;

model.v A bus-level wrapper around the SWIFT
model. This allows you to use vectored
ports for the model in your testbench.

workdir/examples/verilog/

model_tst.v A testbench that instantiates the model and
shows how to use basic model commands.

workdir/examples/verilog/

Table 8: FlexModel VCS Verilog Files (Continued)

File Name Description Location

Chapter 2: Using VCS with Synopsys Models Simulator ConfigurationGuide

44 Synopsys, Inc. July 31, 2001

�

6. Invoke VCS to compile and simulate your design as shown in the following
examples:

Solaris

% vcs -o simv workdir/examples/verilog/model.v \
workdir/examples/verilog/model_fx_vcs.v \
$LMC_HOME/lib/sun4Solaris.lib/slm_pli.o \
testbench.v \
-P $LMC_HOME/sim/pli/src/slm_pli.tab \
-lmc-swift \
+incdir+$LMC_HOME/sim/pli/src \
+incdir+workdir/src/verilog

% simv

HP-UX

% vcs -o simv workdir/examples/verilog/model.v \
workdir/examples/verilog/model_fx_vcs.v \
$LMC_HOME/lib/hp700.lib/slm_pli.o \
testbench.v \
-P $LMC_HOME/sim/pli/src/slm_pli.tab \
-lmc-swift \
+incdir+$LMC_HOME/sim/pli/src \
+incdir+workdir/src/verilog \
-LDFLAGS "-a shared -lm -lc -a archive"

% simv

AIX

% vcs -o simv workdir/examples/verilog/model.v \
workdir/examples/verilog/model_fx_vcs.v \
$LMC_HOME/lib/ibmrs.lib/slm_pli.o \
testbench.v \
-P $LMC_HOME/sim/pli/src/slm_pli.tab \
-lmc-swift \
+incdir+$LMC_HOME/sim/pli/src \
+incdir+workdir/src/verilog \
-LDFLAGS -lld

% simv

Simulator Configuration Guide Chapter 2: Using VCS with Synopsys Models

July 31, 2001 Synopsys, Inc. 45

�

Linux

% vcs -o simv workdir/examples/verilog/model.v \
workdir/examples/verilog/model_fx_vcs.v \
$LMC_HOME/lib/x86_linux.lib/slm_pli.o \
testbench.v \
-P $LMC_HOME/sim/pli/src/slm_pli.tab \
-lmc-swift \
+incdir+$LMC_HOME/sim/pli/src \
+incdir+workdir/src/verilog \
-LDFLAGS -rdynamic

% simv

NT

> vcs -o simv .\examples\verilog\model.v
workdir\examples\verilog\model_fx_vcs.v
+incdir+%LMC_HOME%\sim\pli\src
+incdir+workdir\src\verilog
testbench.v
-lmc-swift -P
%LMC_HOME%\sim\pli\src\slm_pli.tab
%LMC_HOME%\lib\pcnt.lib\slm_pli_vcs.lib

> simv.exe

Note�
The entire compilation expression must appear on the same line. The NT
example was tested using Microsoft’s Visual C++ compiler v5.0.

VCS FlexModel Examples
First we present a basic one-model example and then show you how to use more than
one FlexModel in the same simulation in the following sections:

● “One FlexModel on Solaris” on page 46

● “Two FlexModels on Solaris” on page 48

● “Three FlexModels on HP-UX” on page 48

Chapter 2: Using VCS with Synopsys Models Simulator ConfigurationGuide

46 Synopsys, Inc. July 31, 2001

�

One FlexModel on Solaris
To use one FlexModel with VCS on Solaris, invoke the simulator as shown in the
following example:

% $VCS_HOME/bin/vcs \
`$LMC_HOME/bin/flexm_setup model_fx`/examples/verilog/model_tst.v \
`$LMC_HOME/bin/flexm_setup model_fx`/examples/verilog/model.v \
`$LMC_HOME/bin/flexm_setup model_fx`/examples/verilog/model_fx_vcs.v \
+incdir+$LMC_HOME/sim/pli/src \
+incdir+`$LMC_HOME/bin/flexm_setup model_fx`/src/verilog \
-P $LMC_HOME/sim/pli/src/slm_pli.tab \
$LMC_HOME/lib/sun4Solaris.lib/slm_pli.o \
+incdir+$LMC_HOME/sim/pli/src \
-l vcs_sim.log \
-Mupdate \
-RI \
-lmc-swift

where model is the name of the FlexModel you are using.

Simulator Configuration Guide Chapter 2: Using VCS with Synopsys Models

July 31, 2001 Synopsys, Inc. 47

�

Table 10 lists each line in the invocation example above, along with explanations for
what each one does.

Table 9: VCS With One FlexModel On Solaris Model Explanation

Line Reference Description

$VCS_HOME/bin/vcs Path to the file that starts the VCS simulator.

`$LMC_HOME/bin/flexm_setup model_fx`
/examples/verilog/model_tst.v

Specifies the path to the model testbench file.

`$LMC_HOME/bin/flexm_setup model_fx`
/examples/verilog/model.v

Specifies the path to the model Verilog
wrapper file.

`$LMC_HOME/bin/flexm_setup model_fx`
/examples/verilog/model_fx_vcs.v

Specifies the path to the model VCS template
file.

+incdir+$LMC_HOME/sim/pli/src Includes the path to the flexmodel_pkg.inc
file, which contains Verilog task definitions
for general FlexModel interface
commands.

+incdir+`$LMC_HOME/bin/flexm_setup
model_fx`/src/verilog

Includes the path to the model-specific
Verilog task files, including model_pkg.inc.

-P $LMC_HOME/sim/pli/src/slm_pli.tab Specifies the FlexModel/MemPro PLI table
entry file.

$LMC_HOME/lib/sun4Solaris.lib/slm_pli.o Specifies the platform-specific PLI object
file.

-l vcs_sim.log Specifies a log file where VCS writes
compilation and simulation messages.

-Mupdate This specifies incremental compilation,
which causes VCS to compile only the
modules that have changed since the last run.

-RI This makes VCS run interactively. VCS
invokes the XVCS GUI after compilation and
pauses the simulator at time zero.

-lmc-swift This switch causes VCS to load the SWIFT
interface.

Chapter 2: Using VCS with Synopsys Models Simulator ConfigurationGuide

48 Synopsys, Inc. July 31, 2001

�

Two FlexModels on Solaris
This example shows how to use the mpc740_fx and mpc750_l2_fx FlexModels together
with VCS on Solaris. Invoke the simulator as shown in the following example:

% $VCS_HOME/bin/vcs \
`$LMC_HOME/bin/flexm_setup mpc750_l2_fx`/examples/verilog/mpc750_l2_tst.v \
`$LMC_HOME/bin/flexm_setup mpc750_l2_fx`/examples/verilog/mpc750_l2.v \
`$LMC_HOME/bin/flexm_setup mpc750_l2_fx`/examples/verilog/mpc750_l2_fx_vcs.v \
`$LMC_HOME/bin/flexm_setup mpc740_fx`/examples/verilog/mpc740.v \
`$LMC_HOME/bin/flexm_setup mpc740_fx`/examples/verilog/mpc740_fx_vcs.v \
+incdir+$LMC_HOME/sim/pli/src \
+incdir+`$LMC_HOME/bin/flexm_setup mpc750_l2_fx`/src/verilog \
+incdir+`$LMC_HOME/bin/flexm_setup mpc740_fx`/src/verilog \
-P $LMC_HOME/sim/pli/src/slm_pli.tab \
$LMC_HOME/lib/sun4Solaris.lib/slm_pli.o \
+incdir+$LMC_HOME/sim/pli/src \
-l vcs_sim.log \
-Mupdate \
-RI \
-lmc-swift

Three FlexModels on HP-UX
This next example shows how to use the PCI system testbench and the pcimaster_fx,
pcislave_fx, and pcimonitor_fx FlexModels together with VCS on HP-UX. Follow
these steps:

1. Set up the PCI system testbench as shown in the following example:

% mkdir pci_tb
% cp -rf `$LMC_HOME/bin/flexm_setup pcimaster_fx`/* pci_tb
% cp -rf `$LMC_HOME/bin/flexm_setup pcimonitor_fx`/* pci_tb
% cp -rf `$LMC_HOME/bin/flexm_setup pcislave_fx`/* pci_tb

2. Invoke the VCS simulator as shown in the following example:

% $VCS_HOME/bin/vcs \
./pci_tb/examples/verilog/pcisys_tst.v \
./pci_tb/examples/verilog/pcimaster.v \
./pci_tb/examples/verilog/pcimaster_fx_vcs.v \
./pci_tb/examples/verilog/pcislave.v \
./pci_tb/examples/verilog/pcislave_fx_vcs.v \
./pci_tb/examples/verilog/pcimonitor.v \
./pci_tb/examples/verilog/pcimonitor_fx_vcs.v \
+incdir+./pci_tb/src/verilog \
+incdir+$LMC_HOME/sim/pli/src \
$LMC_HOME/lib/hp700.lib/slm_pli.o \
-P $LMC_HOME/sim/pli/src/slm_pli.tab \
-l vcs_sim.log \
-Mupdate \
-RI \

Simulator Configuration Guide Chapter 2: Using VCS with Synopsys Models

July 31, 2001 Synopsys, Inc. 49

�

-lmc-swift \
-LDFLGS "-a shared -lm -lc -a archive"

Script for Running FlexModel Examples in VCS
On page 50 is a Perl script (Figure 1) that you can use to run VCS on a FlexModel
examples testbench. You can use this script on any installed FlexModel because each
one comes with a prebuilt testbench example that shows how to use the model
commands and all the Verilog wrapper and task definition files that you need. This script
runs on HP-UX, Solaris, and NT.

To invoke VCS on a FlexModel and its example testbench, follow these steps:

1. Use the Acrobat Reader’s text selection tool to select the script shown in Figure 1
and copy the contents to a local file named run_flex_examples_in_vcs.pl.

2. Save the file and change the permissions so that the file is executable (chmod 775 in
UNIX).

3. If you are on NT, you also need to copy the following line to a file named
run_flex_examples_in_vcs.cmd and put it in your working directory:

%LMC_HOME%\lib\pcnt.lib\sl_perl.exe run_flex_example_in_vcs.pl %*

On NT you invoke this cmd wrapper, which subinvokes the Perl script.

4. Invoke the script as shown in the following examples:

UNIX

% run_flex_examples_in_vcs.pl model_fx

NT

> run_flex_examples_in_vcs.cmd model_fx

where model_fx is the name of the FlexModel you want to run.

Chapter 2: Using VCS with Synopsys Models Simulator ConfigurationGuide

50 Synopsys, Inc. July 31, 2001

�

Note�
This script was developed for internal use and is made available for user
convenience. It is not actively maintained as part of the licensed software.

Figure 1: run_flex_examples_in_vcs.pl Script

#!/usr/local/bin/perl
$Revision$
$output_file = "Example_Simulator_Run_Script";
die "\nERROR running $0: ", "No FlexModel name given\n\n", unless($ARGV[0]);
$LmcHome = $ENV{ LMC_HOME }; die "ERROR running $0: ", "The LMC_HOME environment
variable must be set.\n" unless($LmcHome);
$VcsHome = $ENV{ VCS_HOME };
die "ERROR running $0: ", "The VCS_HOME environment variable must be set.\n" unless(
$VcsHome);$VcsSwiftNotes = $ENV{ VCS_SWIFT_NOTES };
die "ERROR running $0: ", "The VCS_SWIFT_NOTES environment variable must be set.\n",
"\nSet VCS_SWIFT_NOTES to the value 1\n\n", unless($VcsSwiftNotes);
require "$LmcHome/lib/bin/libmdl01003.pl";
$Platform = GetPlatform();
$Platform_lib = PlatformToLibDir($Platform);
%platform_suffix = (hp700 => "o", solaris => "o", pcnt => "lib");
$suffix = $platform_suffix{ $Platform };$flexmodel_name = $ARGV[0];
$model_path = $LmcHome . "/models/" . $flexmodel_name;
if (-e $model_path) {}
else { die "\nERROR running $0: ", "FlexModel $flexmodel_name Does not Exist in
Library\n\n"; }$version_path = `$LmcHome/bin/flexm_setup $flexmodel_name`;
chomp($version_path);
if ($flexmodel_name =~ /_fx/) { $flexmodel_name =~ s/_fx//g; $flex_or_c = "_fx";}
elsif ($flexmodel_name =~ /_fz/) {

$flexmodel_name =~ s/_fz//g;
$flex_or_c = "_fz";}

else { die "\nERROR running $0: ", "$flexmodel_name is not a FlexModel. Model must
have an _fx or _fz to be a FlexModel\n\n";}
$execute_command = $VcsHome . "/bin/vcs -Mupdate -RI -l vcs_sim.log "

. $version_path . "/examples/verilog/"

. $flexmodel_name . "_tst.v +incdir+"

. $version_path . "/src/verilog +libext+.inc "

. $version_path . "/examples/verilog/" . $flexmodel_name . ".v "

. $version_path . "/examples/verilog/"

. $flexmodel_name . $flex_or_c . "_vcs.v ";
if ($Platform eq "pcnt") {

$execute_command = $execute_command . $LmcHome . $Platform_lib . "slm_pli_vcs." .
$suffix;}
else {
$execute_command = $execute_command . $LmcHome . $Platform_lib . "slm_pli.o" .

$suffix;}
$execute_command = $execute_command . " -P " . $LmcHome . "/sim/pli/src/slm_pli.tab"
. " -lmc-swift +incdir+" . $LmcHome . "/sim/pli/src"; print "$execute_command\n";
open(OFILE,"> $output_file") || die " Could not create file : $output_file\n";
print OFILE ("# This is an example of VCS command line to run the\n");
print OFILE ("# supplied FlexModel testbench.\n");
print OFILE ("# Note: The model version was calculated using the flexm_setup
command\n");print OFILE ("\n$execute_command\n");
close(OFILE); system($execute_command);

Simulator Configuration Guide Chapter 2: Using VCS with Synopsys Models

July 31, 2001 Synopsys, Inc. 51

�

Example Simulator Run Script
The run_flex_examples_in_vcs.pl script also creates an example simulator run script in
your current working directory for the specified model. You can use this run script to
invoke VCS after running the run_flex_examples_in_vcs.pl script. The following
example shows the contents of the “Example_Simulator_Run_Script” after running the
run_flex_examples_in_vcs.pl script using the mpc860_fx model.

This is an example of VCS command line to run the supplied FlexModel
testbench.
Note: The model version was calculated using the flexm_setup command

/d/vcs501/vcs5.0.1A/bin/vcs -Mupdate -RI -l vcs_sim.log
/d/lmgqa2/install/lmc_home/models/mpc860_fx/mpc860_fx02009/examples/veri
log/mpc860_tst.v
+incdir+/d/lmgqa2/install/lmc_home/models/mpc860_fx/mpc860_fx02009/src/v
erilog +libext+.inc
/d/lmgqa2/install/lmc_home/models/mpc860_fx/mpc860_fx02009/examples/veri
log/mpc860.v
/d/lmgqa2/install/lmc_home/models/mpc860_fx/mpc860_fx02009/examples/veri
log/mpc860_fx_vcs.v /d/lmgqa2/install/lmc_home/lib/hp700.lib/slm_pli.o -
P /d/lmgqa2/install/lmc_home/sim/pli/src/slm_pli.tab -lmc-swift
+incdir+/d/lmgqa2/install/lmc_home/sim/pli/src

Using MemPro Models with VCS
To use MemPro models with VCS, follow this procedure. VCS links external PLI
routines during compilation of your design. You do not need to rebuild the VCS
simulator.

1. To use the MemPro C testbench, add the following line to your local copy of
slm_pli.tab:

$your_task_name call=your_fn_name

2. If you are using MemPro testbench interface commands in your design, perform
step 2a or step 2b. If you are not using HDL or C testbenches, skip to step 3.

a. If you are using Verilog testbench calls, add the following line to your Verilog
testbench.

`include "mempro_pkg.v"

b. If you are using the MemPro C testbench, add the following line to your C
testbench code.

#include "mempro_c_tb.h"

Chapter 2: Using VCS with Synopsys Models Simulator ConfigurationGuide

52 Synopsys, Inc. July 31, 2001

�

For more information on using the MemPro testbench interfaces, refer to the “HDL
Testbench Interface” and “C Testbench Interface” chapters in the MemPro User’s
Manual.

3. Invoke VCS to compile and simulate your design:

HP-UX

If you are not using the MemPro C testbench:

% vcs Verilog_modules MemPro_model_files \
$LMC_HOME/lib/hp700.lib/slm_pli.o \
-P $LMC_HOME/sim/pli/src/slm_pli.tab \
+incdir+$LMC_HOME/sim/pli/src -RI \
-LDFLAGS "-Wl,-a,default -ldld -lc -lm -lBSD"

If you are using the MemPro C testbench:

% vcs Verilog_modules MemPro_model_files \
$LMC_HOME/lib/hp700.lib/slm_pli.o \
-P local_slm_pli.tab your_testbench.c \
-CFLAGS "-I$LMC_HOME/include" \
+incdir+$LMC_HOME/sim/pli/src -RI \
-LDFLAGS "-Wl,-a,default -ldld -lc -lm -lBSD"

Solaris

If you are not using the MemPro C testbench:

% vcs Verilog_modules MemPro_model_files \
$LMC_HOME/lib/sun4Solaris.lib/slm_pli.o \
-P $LMC_HOME/sim/pli/src/slm_pli.tab \
+incdir+$LMC_HOME/sim/pli/src -RI

If you are using the MemPro C testbench:

% vcs Verilog_modules MemPro_model_files \
$LMC_HOME/lib/sun4Solaris.lib/slm_pli.o \
-P local_slm_pli.tab your_testbench.c \
-CFLAGS "-I$LMC_HOME/include" \
+incdir+$LMC_HOME/sim/pli/src -RI

Example:

% vcs tbench.v mydram.v mysram.v \
$LMC_HOME/lib/sun4Solaris.lib/slm_pli.o \
-P $LMC_HOME/sim/pli/src/slm_pli.tab \
+incdir+$LMC_HOME/sim/pli/src -RI

Simulator Configuration Guide Chapter 2: Using VCS with Synopsys Models

July 31, 2001 Synopsys, Inc. 53

�

NT

If you are not using the MemPro C testbench:

> vcs Verilog_modules MemPro_model_files
%LMC_HOME%\lib\pcnt.lib\slm_pli_vcs.lib
-p %LMC_HOME%\sim\pli\src\slm_pli.tab
+incdir+%LMC_HOME%\sim\pli\src -RI

If you are using the MemPro C testbench:

> vcs Verilog_modules MemPro_model_files
%LMC_HOME%\lib\pcnt.lib\slm_pli_vcs.lib
-P local_slm_pli.tab your_testbench.c
-CFLAGS "-I%LMC_HOME%\include"
+incdir+%LMC_HOME%\sim\pli\src -RI

Attention�
If you are using VCS 5.0 or earlier, add the “-Zp4” switch to your VCS
command and replace the “slm_pli_vcs.lib” library with the
“slm_pli_v4vcs.lib” library. If you are using VCS 5.1 or later, add the “-ldl”
switch to your VCS command.

Linux

If you are not using the MemPro C testbench:

% vcs Verilog_modules MemPro_model_files \
$LMC_HOME/lib/x86_linux.lib/slm_pli.o \
-P $LMC_HOME/sim/pli/src/slm_pli.tab \
+incdir+$LMC_HOME/sim/pli/src -RI \
-LDFLAGS -rdynamic

If you are using the MemPro C testbench:

% vcs Verilog_modules MemPro_model_files \
$LMC_HOME/lib/x86_linux.lib/slm_pli.o \
-P local_slm_pli.tab your_testbench.c \
-CFLAGS "-I$LMC_HOME/include" \
+incdir+$LMC_HOME/sim/pli/src -RI \
-LDFLAGS -rdynamic

4. Instantiate MemPro models in your design. Define ports and generics as required.
For information on generics used with MemPro models, refer to “Instantiating
MemPro Models” on page 32.

Chapter 2: Using VCS with Synopsys Models Simulator ConfigurationGuide

54 Synopsys, Inc. July 31, 2001

�

5. Compile your design:

If you are using the MemScope Dynamic Data Exchange feature:

% vcs +vcs+lic+wait +incdir+$LMC_HOME/sim/pli/src \
design_name $LMC_HOME/lib/platform.lib/slm_pli.o \
-Xstrict -P $LMC_HOME/sim/pli/src/slm_pli.tab -cc $cc_path

If you are not using the MemScope Dynamic Data Exchange feature:

% vcs +vcs+lic+wait +incdir+$LMC_HOME/sim/pli/src \
design_name $LMC_HOME/lib/platform.lib/slm_pli.o \
-P $LMC_HOME/sim/pli/src/slm_pli.tab -cc $cc_path

6. Invoke VCS on your design:

% simv

VCS MemPro Model Explanation
Table 10 lists each line in the invocation examples above, along with explanations for
what each one does.

Table 10: VCS MemPro Model Explanation

Line Reference Description

$VCS_HOME/bin/vcs
mempro_model.v mempro_model_tb.v

Path to the file that starts the VCS simulator,
followed by the specified model and testbench
Verilog files.

-P $LMC_HOME/sim/pli/src/slm_pli.tab Specifies the MemPro PLI table entry file.

$LMC_HOME/lib/sun4Solaris.lib/slm_pli.o Specifies the platform-specific MemPro PLI
object file.

-Mupdate This specifies incremental compilation, which
causes VCS to compile only the modules that
have changed since the last run.

-RI This makes VCS run interactively. VCS invokes
the XVCS GUI after compilation and pauses the
simulator at time zero.

-LDFLAGS switches Additional platform-specific switches that may
be needed.

Simulator Configuration Guide Chapter 2: Using VCS with Synopsys Models

July 31, 2001 Synopsys, Inc. 55

�

Using Hardware Models with VCS
To use hardware models with VCS, follow this procedure:

1. Add the hardware model install tree to your path variable, as shown in the following
example:

% set path=(/install/sms/bin/platform/ $path)

2. Set the VCS_LMC environment variable to the hm directory in the VCS install, as
shown in the following example:

% setenv VCS_LMC $VCS_HOME/platform/lmc/hm

3. Set the LM_SFI environment variable to the SFI directory in the hardware
modeling tree, as shown in the following example:

% setenv LM_SFI hardware_modeler_install_path/sms/lib/platform/

4. Set the VCS_LMC_HM_ARCH environment variable so that you can later use the
-lmc-hm switch. This variable must be set to find the SFI directory in the sms/lib
tree, as shown in the following examples:

Solaris

% setenv VCS_LMC_HM_ARCH sun4.solaris

HP-UX

% setenv VCS_LMC_HM_ARCH pa_hp102

5. Create a Verilog HDL template for the hardware model using the lmvc_template
script provided by VCS, as shown in the following example:

% lmvc_template model_file

where model_file is the name of the hardware model's .MDL file.

For example, if your model is the TILS299, enter:

% lmvc_template TILS299.MDL

This step produces a TILS299.lmvc.v file that contains the module definition with
all the calls, declarations, and assignments necessary to make the file a valid VCS
module.

Note�
The lmvc_template program looks for Shell Software files in the directories
indicated by the LM_LIB environment variable. You can modify the port list
generated by the lmvc_template to match the existing model instantiations
by editing the .NAM file.

Chapter 2: Using VCS with Synopsys Models Simulator ConfigurationGuide

56 Synopsys, Inc. July 31, 2001

�

6. Compile your description. Make sure to include the hardware model template and
supporting PLI and library files. To interface the hardware modeler to VCS, add the
-lmc-hm switch to the VCS command line, as shown in the following example:

% vcs +plusarg_save -RI test.v TILS299.lmvc.v -lmc-hm -o simv \
+override_model_delays +maxdelays -l vcs.log &

You can optionally invoke VCS without the -lmc-hm switch by using the -P switch
to point to the $VCS_LMC/lmvc.tab file and including the $VCS_LMC/lmvc.o
object file and $LM_SFI/lm_sfi.a library, as shown in the following example:

% vcs +plusarg_save -RI test.v TILS299.lmvc.v -P $VCS_LMC/lmvc.tab \
$VCS_LMC/lmvc.o $LM_SFI/lm_sfi.a -o simv \
+override_model_delays +maxdelays -l vcs.log &

where:

• vcs is the compiler

• test.v is the file that is part of the top level system source files

• TILS299.lmvc.v is the vcs template for the HW model

• lmvc.tab is the VCS file for lmvc calls for vector logging, and timing
measurement

• lmvc.o is the object code for LMC C file (lmvc.c), which contains the
definitions for all the lmvc tasks/functions.

• lm_sfi.a is the simulator function interface software that links the VCS
simulator to the hardware modeler.

• +override_model_delays is a switch that allows you to specify timing other
than typical.

Note�
the -RI option is not required to generate the simv file. It is used to have the
simulator automatically execute after compilation and to use the xvcs
debugger.

For more information on using the .tab/.c files and options with VCS, refer to the VCS
Users's Guide.

Note that in the previous VCS releases, the hardware model could only be simulated
with typical delays. The VCS 5.2 release has removed this restriction, so you can now
either use a runtime option on the command line or make the change in the delayrange
parameter. Note that the runtime option does override any delayrange parameter
specification. The following excerpt is from the VCS 5.2 Release Notes:

Simulator Configuration Guide Chapter 2: Using VCS with Synopsys Models

July 31, 2001 Synopsys, Inc. 57

�

VCS 5.2 has a new runtime option, +override_model_delays that enables
you to use the +mindelays, typdelays, or +maxdelays runtime option to
specify timing in SWIFT SmartModels or Synopsys hardware models and
in so doing override the DelayRange parameter in the template files for
these models that otherwise specifies the timing for the model.

Example Using Runtime Option
Here is an example using the runtime option:

% vcs +plusarg_save -RI test.v TILS299.lmvc.v -P $VCS_LMC/lmvc.tab \
$VCS_LMC/lmvc.o $LM_SFI/lm_sfi.a -o simv +override_model_delays \
+maxdelays -l vcs.log &

Example Using DelayRange Parameter
Here is an example using the DelayRange parameter:

TILS299 hwm_1 (.\SL (shift_left), .\CLK (clock), .\SR
(shift_right), .\NCLR (clear),

.\-G2 (g2), .\-G1 (g1), .\S1 (select_1), .\S0
(select_0),

.\D/QD (bit_4), .\F/QF (bit_6), .\B/QB (bit_2),
.\C/QC (bit_3),

.\A/QA (bit_1), .\G/QG (bit_7), .\E/QE (bit_5),
.\H/QH (bit_8),

.\QA (high_bit), .\QH (low_bit));
`ifdef MAX
defparam hwm_1.DelayRange = "MAX" ;
`endif

Run your simulation as usual. After running the vcs compiler, you should see a
compiled simv file. To run your simulation, type in simv.

You need an additional passcode to use the hardware model interface. If you do not have
a passcode, contact VCS Simulation Support at 800-837-4564.

VCS Utilities
If you want to turn on test vector logging or timing measurement, you can invoke tasks
'lm_log', 'lm_log_off', 'lm_measure_time', or 'lm_measure_time_off'.

instance_name.lm_measure_time;
instance_name.lm_measure_time_off;

where instance_name is a string that is the hierarchical path name of the instance for the
hardware model. For example, assuming that our instance is top.hwm_1 with these
features, it would look like the following example:

Chapter 2: Using VCS with Synopsys Models Simulator ConfigurationGuide

58 Synopsys, Inc. July 31, 2001

�

module top;
TILS299 hwm_1();

initial begin
top.hwm_1.lm_measure_time;
top.hwm_1.lm_log ("file_name");
#7000;

top.hwm_1.lm_measure_time_off;
top.hwm_1.lm_log_off;

end

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

July 31, 2001 Synopsys, Inc. 59

�

3
Using Verilog-XL with Synopsys

Models

Overview
This chapter explains how to use SmartModels, FlexModels, MemPro models, and
hardware models with Verilog-XL. The procedures are organized into the following
major sections:

● “Setting Environment Variables” on page 59

● “Using SmartModels with Verilog-XL” on page 61

● “Using FlexModels with Verilog-XL” on page 79

● “Using MemPro Models with Verilog-XL” on page 81

● “Using Hardware Models with Verilog-XL” on page 83

Setting Environment Variables
First, set the basic environment variables. If you are not using one of the model types,
skip that step. In some cases the procedures that follow in this chapter include steps for
setting additional environment variables.

1. Set the LMC_HOME variable to the location of your SmartModel. FlexModel, and
MemPro model installation tree, as shown in the following example:

% setenv LMC_HOME path_to_models_installation

Chapter 3: Using Verilog-XL with Synopsys Models Simulator ConfigurationGuide

60 Synopsys, Inc. July 31, 2001

�

2. Set the LM_LICENSE_FILE or SNPSLMD_LICENSE_FILE environment variable
to point to the product authorization file, as shown in the following example:

% setenv LM_LICENSE_FILE path_to_product_authorization_file

% setenv SNPSLMD_LICENSE_FILE path_to_product_authorization_file

You can put license keys for multiple products (for example, SmartModels and
hardware models) into the same authorization file. If you need to keep separate
authorization files for different products, use a colon-separated list (UNIX) or
semicolon-separated list (NT) to specify the search path in your variable setting.

Caution�
Do not include la_dmon-based authorizations in the same file with snpslmd-
based authorizations. If you have authorizations that use la_dmon, keep
them in a separate license file that uses a different license server (lmgrd)
process than the one you use for snpslmd-based authorizations.

3. If you are using the hardware modeler, set the LM_DIR and LM_LIB environment
variables, as shown in the following examples:

% setenv LM_DIR hardware_model_install_path/sms/lm_dir
% setenv LM_LIB hardware_model_install_path/sms/models: \
hardware_model_install_path/sms/maps

If you put your models in a directory other than the default of /sms/models, modify
the above variable setting accordingly.

Note�
On NT, these hardware modeler environment variables are set automatically
when you install the software.

4. Set the CDS_INST_DIR variable to the location of your Cadence installation tree,
as shown in the following example, and make sure that Verilog-XL is set up
properly in your environment:

% setenv CDS_INST_DIR path_to_Cadence_installation

5. Depending on your platform, set your load library variable to point to the platform-
specific directory in $LMC_HOME, as shown in the following examples:

Solaris:

% setenv LD_LIBRARY_PATH $LMC_HOME/lib/sun4Solaris.lib:$LD_LIBRARY_PATH

Linux:

% setenv LD_LIBRARY_PATH $LMC_HOME/lib/x86_linux.lib:$LD_LIBRARY_PATH

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

July 31, 2001 Synopsys, Inc. 61

�

AIX:

% setenv LIBPATH $LMC_HOME/lib/ibmrs.lib:$LIBPATH

HP-UX:

% setenv SHLIB_PATH $LMC_HOME/lib/hp700.lib:$SHLIB_PATH

NT:

Make sure that %LMC_HOME%\lib\pcnt.lib is in the Path user variable.

Using SmartModels with Verilog-XL
SmartModels work with Verilog-XL using a PLI application called LMTV that is
delivered in the form of a swiftpli shared library in $LMC_HOME/lib/platform.lib. If
you cannot use the swiftpli, refer to “Using SmartModels with Verilog-XL on the
IBMRS AIX Platform” on page 62.

To use the prebuilt swiftpli, follow this procedure:

1. Instantiate the SmartModels in your design, defining the ports and defparams as
required. For details on required SmartModel SWIFT parameters and a model
instantiation example, refer to “Using SmartModels with SWIFT Simulators” on
page 18.

2. There is no need to build a Verilog executable. You can use the one that Cadence
provides at $CDS_INST_DIR/tools/bin by adding it to your path variable.

3. To use the swiftpli shared library, invoke the Verilog simulator to compile and
simulate your design as shown in the examples below:

UNIX

% verilog testbench model.v +loadpli1=swiftpli:swift_boot \
+incdir+$LMC_HOME/sim/pli/src

NT

> verilog testbench model.v +loadpli1=swiftpli:swift_boot
+incdir+%LMC_HOME%\sim\pli\src

Note�
For information on LMTV commands that you can use with SmartModels
on Verilog-XL, refer to “LMTV Commands” on page 281.

Chapter 3: Using Verilog-XL with Synopsys Models Simulator ConfigurationGuide

62 Synopsys, Inc. July 31, 2001

�

Using SmartModels with Verilog-XL on the IBMRS AIX
Platform

To use SmartModels and FlexModels on IBM with Verilog-XL, follow this procedure.
The instructions provided here are based on the assumption that you are already using
Verilog-XL.

1. The following lines are already in the copy of veriuser.c at
$LMC_HOME/sim/pli/src. If you are using another veriuser.c file, copy these lines
into it. They are needed to make the SmartModel C-Pipe interface.

/* ------------- cut here - section 1 -------------- */
/* C-pipe interface */
extern int pli_slm_post();
extern int slm_mempro_handle();
extern int slm_mempro_width_info();
extern int slm_transport();
extern int slm_transport_checktf();
extern int slm_inertial();
extern int slm_inertial_checktf();
/* ------------- end section 1 -------------- */
/* ------------- cut here - section 2 -------------- */

{ usertask, 0, 0, 0, pli_slm_post, 0, "$slm_post_hdl", true },
{ usertask, 0, 0, 0, pli_slm_post, 0, "$slm_post", true },
{ usertask, 0, 0, 0, slm_mempro_handle, 0, "$slm_mempro_handle",/
true },
{ usertask, 0, 0, 0, slm_mempro_width_info, 0,/
"$slm_mempro_width_info", true },
{ usertask, 0, slm_transport_checktf, 0, slm_transport, 0,/
"$slm_transport", true },
{ usertask, 0, slm_inertial_checktf, 0, slm_inertial, 0,/
"$slm_inertial", true },

/* ------------- end section 2 -------------- */

2. You will need to edit the veriuser.c file to pick up the LMTV header files as follows:

a. After #include “vxl_veriuser.h” add:
#include “ccl_lmtv_include.h”
b. After “/*** add user entries here ***/” add:
#include “ccl_lmtv_include_code.h”

3. Invoke the Cadence PLI Wizard utility.

The instructions that follow summarize the procedure found in the Cadence PLI
Wizard User Guide but are not intended to replace the Cadence procedure.

The PLI Wizard utility will present a series of forms for you to fill out. After you
have completed each window as described in the following steps, click the Next
button at the bottom to invoke the next window.

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

July 31, 2001 Synopsys, Inc. 63

�

4. In the Select Config Session Name and Directory form,

❍ Enter the name of your session file in the Config Session Name field.

❍ Enter the path to the session file in the Config Session Directory field.

5. Select Verilog-XL as the Verilog simulator.

6. Select Stand Alone as the Verilog target.

7. Select PLI 1.0 Application and SWIFT Interface as your components. Specify
your LMC_HOME path in the Root Path field next to SWIFT Interface.

8. Select Static Linking for the PLI Application Linking Mode.

9. Select Existing VERIUSER (source/object file), and enter the path to your edited
veriuser.c source file.

10. Enter the path to the $LMC_HOME/lib/platform.lib/slm_pli.o object file in the PLI
Object Files field.

11. Leave the Select Compiler & Options form as is.

12. When the Session Setup Summary form appears, click Finish.

13. Click Yes when asked whether or not to build targets now.

The new Verilog-XL executable that includes LMTV & the C-Pipe interface will
then be built in the session directory. Add this directory to your PATH statement to
use the new Verilog-XL executable.

Verilog-XL Usage Notes for SmartModels
This section describes the Synopsys Logic Models To Verilog (LMTV) interface. You
can use LMTV to instantiate and work with SmartModels in Verilog-XL, as described in
the following sections:

● LMTV Modes of Operation

● Capturing and Simulating the Design

● Using SmartModel Windows with Verilog-XL

● Customizing Model Timing

● Simulating an Older Design Using LMTV

● Using FlexModels with Verilog-XL

Chapter 3: Using Verilog-XL with Synopsys Models Simulator ConfigurationGuide

64 Synopsys, Inc. July 31, 2001

�

LMTV Modes of Operation
To take advantage of the SWIFT SmartModel Library while maintaining compatibility
with the older Verilog-XL-specific SmartModel Library, the LMTV interface has two
modes of operation, SWIFT SmartModel Mode and Historic SmartModel Mode.

SWIFT SmartModel Mode
In SWIFT SmartModel mode, the models you instantiate are SWIFT SmartModels. This
is the mode intended for primary use. Use this mode if you are implementing a new
design using the SWIFT SmartModel Library, if you are a new Verilog-XL user, or if
you want to transition your existing design into this mode.

Two sets of v shells support SWIFT SmartModel mode: swift and swift-uc. With
swift-uc, module names and attribute names are provided in all uppercase. The two sets
of v shells provide compatibility with most third-party tools.

Historic SmartModel Mode
In Historic SmartModel mode, the models you instantiate have the characteristics of the
Verilog-XL-specific SmartModels. Historic SmartModel mode is provided only for
backward-compatibility for designs that use models from the Verilog-XL-specific
SmartModel Library. Use the Historic SmartModel mode only if you are continuing
with an older design that was captured using the Verilog-XL-specific SmartModel
Library.

Note�
You must use the same mode throughout a design. You cannot mix modes
within a design.

Table 11 lists the different characteristics of the SWIFT and Historic SmartModel
modes.

Table 11: Characteristics of Historic and SWIFT SmartModel Modes

Differences

SWIFT SmartModel Mode
Historic SmartModel

Modeswift swift-uc

Model Attributes TimingVersion
ModelType
DelayRange
MemoryFile
JEDECFile
SCFFile
PCLFile

TIMINGVERSION
MODELTYPE
DELAYRANGE
MEMORYFILE
JEDECFILE
SCFFILE
PCLFILE

COMPONENT
MODELTYPE
RANGE
MEMORYFILE
JEDECFILE
CGAFILE
PCLFILE

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

July 31, 2001 Synopsys, Inc. 65

�

Implementing SWIFT Mode or Historic SmartModel Mode
Both the SWIFT and the Historic SmartModel modes reference the SWIFT SmartModel
Library, but they use different sets of model.v files (vshells) to invoke the models. For
each mode, there is a specific directory, shown in Table 12, that contains model.v files to
be referenced by that mode. You determine the mode that will be used both during
design capture and when you invoke Verilog-XL, as follows:

1. During design capture, use the appropriate model attributes, port ordering,
command channel, memory access, user-defined windows, module names, and
resistive strength output expectations shown in Table 11.

Module Names Alphabetic
characters are
lowercase

Alphabetic
characters are
uppercase

Alphabetic characters are
uppercase

Port Ordering Numeric—for example, ports of bus
A[0:11] are in this order: A0, A1, A2, A3,
..., A9, A10, A11.

Alphanumeric—for
example, ports of bus
A[0:11] are in this order:
A0, A1, A10, A11, ..., A8,
A9)

Command Names Begin with $lm_ Begin with $lai_

Switch Names Begin with +lm Begin with +lai

Message Format Refers to model names and timing version
names. Timing units are in nanoseconds
(ns).

Refers only to timing
version names. No timing
units specified.

Ignored +laiobj ignored
LAI_OBJ ignored

+laiobj ignored
LAI_OBJ ignored

User-defined
Windows

model.v files do not have to be modified model.v files must be
modified

Resistive Strength Reports true resistive strength of outputs Maps resistive strength of
outputs to “strong”

Memory Windows Supports memory windows Does not support memory
windows.

Table 11: Characteristics of Historic and SWIFT SmartModel Modes

Differences

SWIFT SmartModel Mode
Historic SmartModel

Modeswift swift-uc

Chapter 3: Using Verilog-XL with Synopsys Models Simulator ConfigurationGuide

66 Synopsys, Inc. July 31, 2001

�

2. When you invoke Verilog-XL, reference the appropriate model.v directory using the
-y switch, as described in “Concept Design Capture” on page 68.

Capturing and Simulating the Design
Capturing and simulating the design in Verilog-XL involves the following steps, each of
which is described in detail in this section:

● “Verilog-XL Design Flow” on page 66

● “Preparing to Use Verilog-XL” on page 67

● “Verilog-XL Design Capture” on page 67

● “Concept Design Capture” on page 68

● “Concept Procedure” on page 69

Verilog-XL Design Flow
Figure 2 shows the Verilog-XL design flow, with two paths. You choose one path or the
other based on the task at hand:

● LMTV SWIFT SmartModel mode—recommended for new designs

● LMTV Historic SmartModel mode—recommended for older designs that use the
Verilog-XL-specific SmartModel Library

You can create a design file (design.v) textually with an HDL description or graphically
using Concept. FlexModel users should also use the appropriate Verilog wrapper file
from the model_fx/examples/verilog directory. This file is copied to your working
directory using the flexm_setup tool. For information on flexm_setup, refer to
“flexm_setup Command Reference” on page 25.

When Verilog-XL simulates the design, it references either the SWIFT SmartModel
mode model.v files or the Historic SmartModel mode model.v files. You must specify
one of these directories when you invoke Verilog-XL. A design cannot reference both
directories.

Table 12: model.v Directories

Mode Directory

SWIFT SmartModel Mode $LMC_HOME/special/cds/verilog/swift

SWIFT SmartModel Mode - Uppercase $LMC_HOME/special/cds/verilog/swift-uc

Historic SmartModel Mode $LMC_HOME/special/cds/verilog/historic

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

July 31, 2001 Synopsys, Inc. 67

�

Figure 2: Verilog-XL Design Flow

Preparing to Use Verilog-XL
Before you use Verilog-XL in either mode, make sure that your executable search path
points to the Verilog-XL executable that contains the LMTV interface.

Verilog-XL Design Capture
You instantiate models from the SWIFT SmartModel Library by creating HDL
descriptions for Verilog-XL. The following example shows the Verilog-XL code for
instantiating a simple NAND gate (ttl00) in a design.v file for the LMTV SWIFT
SmartModel mode. For instance U1, the TimingVersion and DelayRange parameter
values have both been changed from the defaults. For instance U2, only the
DelayRange attribute value has been changed from the default.

top_mod contains:
module TOP_MOD;
defparam
U1.TimingVersion = "54F00-FAI",
U1.DelayRange = "min",
U2.DelayRange = "typ";

SWIFT
model.v files design.v file

verilog.v file

Verilog-XL

SWIFT SmartModel Mode

Historic
model.v files design.v file

verilog.v file

Verilog-XL

Historic SmartModel Mode

Chapter 3: Using Verilog-XL with Synopsys Models Simulator ConfigurationGuide

68 Synopsys, Inc. July 31, 2001

�

ttl00 U1(.I1(clk), .I2(enable), .O1(output));
ttl00 U2(.I1(clk), .I2(enable), .O1(output));
endmodule

The following example shows the Verilog-XL code for the same instantiation, but for
the LMTV Historic SmartModel mode. Notice that the attribute names are different and
that the alphabetic characters in the model name are upper case.

top_mod contains:
module TOP_MOD;
defparam
U1.COMPONENT= "54F00-FAI",
U1.RANGE= "min",
U2.RANGE= "typ";

TTL00 U1(.I1(clk), .I2(enable), .O1(output));
TTL00 U2(.I1(clk), .I2(enable), .O1(output));
endmodule

Concept Design Capture
As an alternative, you can capture a design using the Concept design flow (refer to
Figure 3). First, diagram the design in Concept using a custom symbol library.

Next, execute vloglink to generate the vloglink.v file. Finally, for the SWIFT
SmartModel mode only, execute the mod_param utility provided by Synopsys to
convert model instance parameter names to SWIFT-compliant names in the vloglink.v
file.

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

July 31, 2001 Synopsys, Inc. 69

�

Figure 3: Concept Design Flow

Concept Procedure
To create a design file graphically using Concept, follow these steps:

1. Merge the file into your master.local file.

2. Invoke Concept, instantiate the symbols, and write the schematic.

3. Execute vloglink.

4. If you are using the SWIFT SmartModel mode, use one of these methods to prepare
vloglink.v for simulation:

❍ Run verilog with the -u switch

--or--

❍ Run mod_param on the vloglink.v file

This converts parameter names to SWIFT-compliant form. (For more information about
the mod_param utility, run mod_param with the -h to display the usage message.)

design.v file

SWIFT-compliant
vloglink.v file

Create Design
Diagram Using Concept

Execute
vloglink

Execute
mod_param

SWIFT
SmartModel

Mode?

Done

Chapter 3: Using Verilog-XL with Synopsys Models Simulator ConfigurationGuide

70 Synopsys, Inc. July 31, 2001

�

Using SmartModel Windows with Verilog-XL
SmartModel Windows, also referred to as “Windows,” is a SmartModel Library feature
that allows you to view and change the contents of internal registers during simulation,
for models and simulators (including Verilog-XL) that support this feature. For general
information about SmartModel Windows, refer to the SmartModel Library User’s
Manual. This section provides information about using SmartModel windows with
Verilog-XL.

LMTV SmartModel Windows Commands
The following commands allow you to work with SmartModel Windows during
Verilog-XL simulation. Commands are instance-specific, which means that they must
be issued once for each instance. These commands are most often placed in the
testbench, but can also be issued at the command line. For details and examples, refer to
the specific command descriptions.

$lm_monitor_enable(), $lai_enable_monitor()
Enables SmartModel Windows for one or more window elements in a specified model
instance. Can be used in both Historic and SWIFT SmartModel modes, but is
recommended for use only in Historic SmartModel mode.

$lm_monitor_disable(), $lai_disable_monitor()
Disables SmartModel Windows for one or more window elements in a specified model
instance. Can be used in both Historic and SWIFT SmartModel modes, but is
recommended for use only in Historic SmartModel mode.

$lm_monitor_vec_map(), $lm_monitor_vec_unmap()
Enables or disables a direct mapping between a user-defined variable and a window
element in a specified model instance. The window element can be part of an array.
Can be used only in SWIFT SmartModel mode.

$lm_status(), $lai_status()
Displays the names and values of internal windows for a specified model instance. Can
be used in both Historic and SWIFT SmartModel modes.

Creating User-Defined Window Elements
You can create user-defined window elements only for SmartCircuit FPGA or CPLD
models. The way you create these window elements depends on whether you will
access the window elements using $lm_monitor_enable(), which can be used in either
the Historic or the SWIFT SmartModel mode; or $lm_monitor_vec_map(), which can
be used only in SWIFT SmartModel mode.

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

July 31, 2001 Synopsys, Inc. 71

�

Both $lm_monitor_enable() and $lm_monitor_vec_map() need to be given the names of
the model’s window elements. However, these two commands receive the window
element names differently, as follows:

● The $lm_monitor_enable() command expects to find the window element names in
the model.v files. Therefore, before invoking $lm_monitor_enable(), you must use
ccn_report to modify the model.v files so that they contain the window element
names. For details on how to use the ccn_report tool, refer to the SmartModel
Library User’s Manual.

● The $lm_monitor_vec_map(), on the other hand, expects to be passed the window
element names through its own window_element argument, and does not look in the
model.v files. Therefore, you do not need to create modified model.v files before
executing the $lm_monitor_vec_map() command.

For more information about creating window elements using auto windows, refer to the
SmartModel Library User’s Manual.

In Historic SmartModel Mode
In Historic SmartModel mode, you can access user-defined windows only by using the
$lm_monitor_enable() command. This means that you must create user-defined
windows for SmartCircuit FPGA and CPLD models by creating modified model.v files.

1. If you do not already have a compiled configuration netlist (CCN) file, generate one
by executing smartccn on your design. For details on how to use the smartccn tool,
refer to the SmartModel Library User’s Manual.

2. Generate a windows definition file by executing ccn_report on your CCN file, as
shown in the following example.

% ccn_report ccn_filename -m model_name -A1 windows_file

3. Generate a modified model.v file that contains the window information by
executing ccn_report again, as shown in the following example.

% ccn_report ccn_filename -m model_name -v -w windows_file \
-y $LMC_HOME/special/cds/verilog/historic \
-mn module_name -o modified_model.v

4. Add the windows definition file to your Model Command File (MCF) in the form of
a do command statement, as follows:

do windows_file

5. Make sure that your design references the modified_model.v file.

Chapter 3: Using Verilog-XL with Synopsys Models Simulator ConfigurationGuide

72 Synopsys, Inc. July 31, 2001

�

In SWIFT SmartModel Mode
In SWIFT SmartModel mode, you can access user-defined windows either through
$lm_monitor_enable() or $lm_monitor_vec_map(). The $lm_monitor_enable()
command is provided in SWIFT SmartModel mode for backward compatibility. We
recommend that you use this command only for existing designs. The
$lm_monitor_vec_map() command is intended for use with new designs.

Follow the same procedure as described in “Historic SmartModel Mode” on page 64
except that in Step 3, when invoking ccn_report, use this value for the -y argument:

-y $LMC_HOME/special/cds/verilog/swift

Accessing Window Elements
The way you access SmartModel window elements depends on whether you are running
in SWIFT mode or Historic SmartModel mode. The following sections provide
instructions for both modes.

In Historic SmartModel Mode
In Historic SmartModel mode, you can access only scalar window elements. You
cannot access the vectored memory window elements available in SWIFT SmartModel
mode. You read and write to predefined window elements using the
$lm_monitor_enable() or $lai_enable_monitor() commands. To access window
elements in Historic SmartModel mode, follow these steps.

1. Enable SmartModel Windows for the model instance, either for specific window
elements or for all window elements. For example, to enable SmartModel Windows
for instance U4 for all window elements, use this command:

$lm_monitor_enable (U4);

2. To enable only window elements A_REG and D_REG for U4, use this command:

$lm_monitor_enable (U1, "A_REG", "D_REG");

3. To read from a specific window element, use the $monitor, $strobe, $write, and
$display Verilog commands. For more information, refer to the Cadence
documentation.

4. To display the contents of all window elements, use $lm_status (or $lai_status). For
example, to display all window elements for instance U1, use this command:

$lm_status("U1");

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

July 31, 2001 Synopsys, Inc. 73

�

The information is returned in the following format:

Note: SmartModel Windows Status:
INREG "Input Register":000
OUTREG "Output Register"000
IO_INREG "I/O Input Register":000
HREG "Hidden Register":0

5. To write to a window element, assign a value to the window element, in this format:

instance.window_element=value

For example, to clear Bit 3 of the window element HREG in the instance U1
(assuming that HREG has write access), use this command:

U1.HREG[3]=0;

Note�
Refer to the individual model datasheets for information about the
read/write capabilities of model window elements.

In SWIFT SmartModel Mode
In SWIFT SmartModel mode, you can use the $lm_monitor_enable() or
$lai_enable_monitor() commands to monitor scalar windows, in exactly the same way
as described in “In Historic SmartModel Mode” on page 72. However, as before, you
cannot use these commands to access vectored memory windows.

To use memory windows, available in SWIFT but not in Historic SmartModel mode,
you must use the $lm_monitor_vec_map() command. This command works for both
scalar and vectored windows.

Hint�
For simplicity, when implementing new designs in SWIFT SmartModel
mode, use the $lm_monitor_vec_map() command for both scalar and
vectored windows applications. It is best not to use the
$lm_monitor_enable() or $lai_enable_monitor() commands at all.

To access window elements using the $lm_monitor_vec_map() command, follow these
steps:

1. Define a register for the window element. You can give the register the same name
as the window element, or a different name. For example, to define the register
MY_A_REG to map to the 32-bit register A_REG, you could use this definition:

reg [31:0] MY_A_REG;

Chapter 3: Using Verilog-XL with Synopsys Models Simulator ConfigurationGuide

74 Synopsys, Inc. July 31, 2001

�

2. Enable the window element and map it to the register. For example, to enable the
window element A_REG for instance U1 and map A_REG to the register
MY_A_REG, you could use this command:

$lm_monitor_vec_map (MY_A_REG, U1, “A_REG”);

3. To read from a window element, use any appropriate Verilog command to examine
the contents of the register mapped to that window element. For example, to read
the contents of window element A_REG, you could use this command:

$display (“Address is %b”, MY_A_REG);

4. To write to a window element, assign a value to the register mapped to that window
element. For example, to set Bit 4 of the window element A_REG you could use
this command:

MY_A_REG[4]=1;

Example 1
The following example shows the predefined scalar window elements w0 and w2, as
they might appear in a typical testbench.

reg MY_VAR_W0; // users can choose descriptive variable
reg MY_VAR_W2; // names to fit their applications.
// the next two lines map the variable names to the
// window elements and enable the window elements.
$lm_monitor_vec_map(MY_VAR_W0, "U1", "w0", 0);
$lm_monitor_vec_map(MY_VAR_W2, "U1", "w2", 0);

Once these window elements are set up in your testbench, you can use the graphical or
monitoring capabilities of Verilog-XL to read, write, or trace the variables
MY_VAR_W0 and MY_VAR_W2, which now hold the values of the window elements
w0 and w2.

Example 2
The following example illustrates the use of the $lm_monitor_vec_map() command to
use memory window elements to track transactions on a memory device. In the
example, a 4K x 8 bit memory model with instance name U1 has these predefined
memory window elements:

● Memory array window element: MEM 4K x 8 bits

● Memory address window element: Mem_addr 12 bits

● Memory read/write window element: Mem_rw 2 bits

For more information about memory windows, refer to the SmartModel Library User’s
Manual.

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

July 31, 2001 Synopsys, Inc. 75

�

The following example code monitors the memory device. If there is a memory write,
the code checks to see if the write was to any location in the address range between
‘h100 and ‘h200 (not allowed) and if so, issues an error message.

If the Mem_addr window element (which contains the most recently accessed address)
contains unknown values, no test is performed and another error message is issued.

ram_model U1();
// Declare registers for the address, rw, and memory data window
elements
reg [11:0] ADDR;
reg [1:0] RW;
reg [7:0] DATA;
initial
// Map the ADDR and RW registers to the MEM_addr and MEM_rw windows
begin
$lm_monitor_vec_map (ADDR, U1, "MEM_addr");
$lm_monitor_vec_map (RW, U1, "MEM_rw");
end
// Whenever there is a memory transaction, check the address
// and the direction for an illegal write, and the address for
// unknown values.
always @(RW)
begin
if (ADDR >= 'h100 && ADDR <= 'h200 && RW[1] == 0 && ADDR != 'hx)
begin
// There was an illegal write.
// Temporarily map DATA register to address pointed to by ADDR
// and enable MEM array window element to get value of data

$lm_monitor_vec_map (DATA, U1, "MEM", ADDR);
$display("Illegal write of value %h at address %h", DATA, ADDR);

// Turn off enabling of memory array
$lm_monitor_vec_unmap (DATA, U1);

end
if (ADDR==‘hx)

$display("Warning! Multiple simultaneous transactions.");
end

Chapter 3: Using Verilog-XL with Synopsys Models Simulator ConfigurationGuide

76 Synopsys, Inc. July 31, 2001

�

Customizing Model Timing
You can customize the timing of SmartModels by changing the timescale or creating
custom timing files.

Changing the Timescale
As with the Verilog-XL-specific SmartModel Library, you can change the timescale of
SmartModels from the default of 100 ps (picoseconds) time_units and 100 ps precision,
defined in the module definitions. These values are specified by the first line of the
module definition, as shown in the following example.

‘timescale 100 ps / 100 ps

For both the SWIFT and Historic SmartModel modes, to change the timescale, you must
copy the affected model.v files into a separate directory. Then modify each ‘timescale
compiler directive to the desired value. When invoking the simulator, use the -y switch
to indicate the path to the directory that contains your modified model.v files.

Creating Custom Timing Files
You can create and use custom timing files in both the SWIFT and Historic SmartModel
modes. The procedure is the same for both. For more information on User-Defined
Timing, refer to the SmartModel Library User’s Manual.

Simulating an Older Design Using LMTV
If you have an older design that was created using the Verilog-XL-specific SmartModel
Library, you can simulate it in either mode:

● Historic SmartModel mode—in this case you do not have to modify the design

● SWIFT SmartModel mode—in this case you must modify the design

In both cases, you must make some modifications to the simulation environment as
described in the following sections.

LMTV/SWIFT and Verilog-XL-Specific SmartModel Libraries
Table 13 lists the differences between the LMTV/SWIFT and Verilog-XL-specific
SmartModel Libraries.

Table 13: LMTV/SWIFT and Verilog-XL-specific Libraries

LMTV/SWIFT SmartModel Library Verilog-XL-specific SmartModel Library

Uses simplified search algorithm for user-
defined timing files.

Uses complex search algorithm for user-defined
timing files.

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

July 31, 2001 Synopsys, Inc. 77

�

Environment Modifications
This section describes environment modifications you need to make if you want to
simulate an existing design in either the LMTV SWIFT or Historic SmartModel mode.

Environment Variables
For both modes, set the LMC_PATH and LMC_HOME environment variables instead
of the LMC_VLOG, LAI_OBJ, and LAI_LIB environment variables, which are ignored
by the LMTV interface. For more information about user configuration, refer to the
SmartModel Library Administrator’s Manual.

Command Line Switches
The LMTV interface ignores the +laiobj and +lailib switches, regardless of which mode
you are using. However, LMTV does recognize the +laiudtmsg and +lmudtmsg
switches, which are equivalent.

Resistive Strength
For SWIFT SmartModel mode only, the SWIFT interface reports the true resistive
strength of output pins, instead of mapping them all to “strong” as is done in the
Verilog-XL-specific SmartModel Library. You might want to modify your expected
output accordingly. However, if you want only a quick comparison and do not want to
modify your expected output, you can revert to the Verilog-XL-specific behavior by
using the +lmoldstr command switch. For more information about setting switches, refer
to “Using FlexModels with Verilog-XL” on page 79.

In SWIFT SmartModel mode, reports true
resistive strength of outputs; a switch
optionally maps all to strong. In Historic
SmartModel mode, mimics Verilog-XL-
specific SmartModel Library.

Always maps resistive strength of outputs to
strong.

Supports the Verilog $reset and $restart
commands.

Does not support the Verilog $reset and $restart
commands.

Always uses only $LMC_HOME to find
models; uses no other switches/variables.

Uses +laiobj, $LAI_OBJ, +lai_lib, $LAI_LIB
as well as $LMC_VLOG to find models.

LMTV interface does not support Cadence
fault simulation.

Supports Cadence fault simulation.

Table 13: LMTV/SWIFT and Verilog-XL-specific Libraries (Continued)

LMTV/SWIFT SmartModel Library Verilog-XL-specific SmartModel Library

Chapter 3: Using Verilog-XL with Synopsys Models Simulator ConfigurationGuide

78 Synopsys, Inc. July 31, 2001

�

Edits to Design File
This section describes edits you need to make to your design file if you want to simulate
an existing design in the LMTV SWIFT SmartModel mode.

Note�
Note that lai_* commands are recognized by the LMTV interface, so you do
not have to change command names for either mode.

Model Parameter Names
Change the parameter names to the corresponding SWIFT SmartModel mode entries, as
shown in Table 11 on page 64.

Model Names
Change the alphabetic parts of model names to all lower case. (If you use SWIFT-UC
mode, this step is not required.)

Port Names
If you have used explicit port naming in your module instantiations (that is, if you have
explicitly mapped each net name to the corresponding port name in the model
instantiation statement), you do not need to do anything about port names.

If, on the other hand, you have used implicit port naming (that is, if you have listed the
nets in the model instantiation statement in the same order as the ports were declared in
the .v file), you need to ensure that your port names conform to the ordering scheme
used in the SWIFT SmartModel mode, as described in Table 11 on page 64.

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

July 31, 2001 Synopsys, Inc. 79

�

Using FlexModels with Verilog-XL
FlexModels work with Verilog-XL using a PLI application called LMTV that is
delivered in the form of a swiftpli shared library in $LMC_HOME/lib/platform.lib. If
you cannot use the swiftpli, refer to “FlexModels:PLI Static Linking with LMTV” on
page 81.

To use the prebuilt swiftpli, follow this procedure:

1. Create a working directory and run flexm_setup to make copies of the model's
interface and example files there, as shown in the following example:

% $LMC_HOME/bin/flexm_setup -dir workdir model_fx

You must run flexm_setup every time you update your FlexModel installation with
a new model version. Table 14 lists the files that flexm_setup copies to your
working directory.

2. There is no need to build a Verilog executable. You can use the one from
$CDS_INST_DIR/tools/bin by adding $CDS_INST_DIR/tools/bin to your path
statement.

3. Update the clock frequency supplied in the model_user_pkg.inc file to correspond
to the CLK period you want for the model. This file is located in:

workdir/src/verilog/model_user_pkg.inc

where workdir is your working directory.

Table 14: FlexModel Verilog-XL Files

File Name Description Location

model_pkg.inc Verilog task definitions for FlexModel
interface commands. This file also references
the flexmodel_pkg.inc and
model_user_pkg.inc files.

workdir/src/verilog/

model_user_pkg.inc Clock frequency setup and user customizations. workdir/src/verilog/

model_fx_vxl.v A SWIFT wrapper that you can use to instantiate
the model.

workdir/examples/verilog/

model.v A bus-level wrapper around the SWIFT model.
This allows you to use vectored ports for the
model in your testbench.

workdir/examples/verilog/

model_tst.v A testbench that instantiates the model and shows
how to use basic model commands.

workdir/examples/verilog/

Chapter 3: Using Verilog-XL with Synopsys Models Simulator ConfigurationGuide

80 Synopsys, Inc. July 31, 2001

�

4. Add the following line to your Verilog testbench to include FlexModel testbench
interface commands in your design:

`include "model_pkg.inc"

Note�
Be sure to add model_pkg.inc within the module from which you will be
issuing FlexModel commands.

Because the model_pkg.inc file includes references to flexmodel_pkg.inc and
model_user_pkg.inc, you don’t need to add flexmodel_pkg.inc or
model_user_pkg.inc to your testbench.

5. Instantiate the FlexModel in your design, defining the ports and defparams as
required (refer to the example testbench supplied with the model). You use the
supplied bus-level wrapper (model.v) in the top-level of your design to instantiate
the supplied bit-blasted wrapper (model_fx_vxl.v).

Example using bus-level wrapper (model.v) without timing:

model U1 (model ports)
defparam

U1.FlexModelId = “TMS_INST1”;

Example using supplied bus-level wrapper (model.v) with timing:

model U1 (model ports)
defparam

U1.FlexTimingMode = `FLEX_TIMING_MODE_ON,
U1.TimingVersion = “timingversion“,
U1.DelayRange = “range,“
U1.FlexModelId= “TMS_INST1”;

6. Invoke the Verilog-XL simulator to compile and simulate your design as shown in
the examples below:

UNIX

% verilog testbench +loadpli1=swiftpli:swift_boot \
./workdir/examples/verilog/model.v \
./workdir/examples/verilog/model_fx_vxl.v \
+incdir+$LMC_HOME/sim/pli/src \
+incdir+workdir/src/verilog

NT

> verilog testbench +loadpli1=swiftpli:swift_boot
workdir\examples\verilog\model.v
workdir\examples\verilog\model_fx_vxl.v
+incdir+%LMC_HOME%\sim\pli\src
+incdir+workdir\src\verilog

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

July 31, 2001 Synopsys, Inc. 81

�

Note�
For information on LMTV commands that you can use with FlexModels on
Verilog-XL, refer to “LMTV Commands” on page 281.

FlexModels:PLI Static Linking with LMTV
To use FlexModels on IBM with Verilog-XL, follow the procedure in “Using
SmartModels with Verilog-XL on the IBMRS AIX Platform” on page 62.

Using MemPro Models with Verilog-XL
MemPro models work with Verilog-XL using a PLI application called LMTV that is
delivered in the form of a swiftpli shared library in $LMC_HOME/lib/platform.lib. If
you cannot use the swiftpli, refer to “Static Linking with LMTV” on page 82.

To use the prebuilt swiftpli, follow this procedure:

1. If you are on NT, make sure %LMC_HOME%\bin is in your Path variable.

2. To include MemPro testbench interface commands in your design, add one of the
following lines to your testbench:

Verilog testbench:

`include "mempro_pkg.v"

C testbench:

#include "mempro_c_tb.h"

For more information on using the MemPro testbench interfaces, refer to the “HDL
Testbench Interface” and “C Testbench Interface” chapters in the MemPro User’s
Manual.

3. Instantiate MemPro models in your design. Define ports and generics as required.
For information on generics used with MemPro models, refer to “Instantiating
MemPro Models” on page 32. For information on message levels and message level
constants, refer to “Controlling MemPro Model Messages” on page 33.

4. There is no need to build a Verilog executable. You can use the one from
$CDS_INST_DIR/tools/bin by adding $CDS_INST_DIR/tools/bin to your path
statement.

5. Invoke the Verilog-XL simulator to compile and simulate your design as shown in
the examples below:

Chapter 3: Using Verilog-XL with Synopsys Models Simulator ConfigurationGuide

82 Synopsys, Inc. July 31, 2001

�

UNIX

% verilog testbench Verilog_modules MemPro_model_files \
+incdir+$LMC_HOME/sim/pli/src \
+loadpli1=swiftpli:swift_boot

NT

> verilog testbench Verilog_modules MemPro_model_files
+incdir+%LMC_HOME%\sim\pli\src
+loadpli1=swiftpli:swift_boot

Note�
If you are also using SmartModels or FlexModels in your design, you do not
need to load the swiftpli again, since the same library is used to enable all
three types of models in Verilog-XL.

Static Linking with LMTV
If you cannot use the Synopsys-supplied swiftpli shared library, refer to the Cadence
documentation for information on using the PLIWizard to build your own PLI library.
Synopsys still ships the files needed to build your own PLI. These include:

● edited copy of veriuser.c in the $LMC_HOME/sim/pli/src directory

● LMTV object (lmtv.o) in the $LMC_HOME/lib/platform.lib directory

● C-Pipe shared library (slm_pli_dyn.ext), in the $LMC_HOME/lib/platform.lib
directory

If you build your own PLI, you will need to edit the veriuser.c file to pick up the LMTV
header files as follows:

a. After #include “vxl_veriuser.h” add:
#include “ccl_lmtv_include.h”
b. After “/*** add user entries here ***/” add:
#include “ccl_lmtv_include_code.h”

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

July 31, 2001 Synopsys, Inc. 83

�

Using Hardware Models with Verilog-XL
This section describes how to configure Release 3.5a of ModelAccess for Verilog.
ModelAccess is the software you use to interface hardware models with the simulator.
To dynamically link the SFI with Verilog-XL, you must have version 2.8 or later of
Verilog-XL on UNIX and version 3.0 on NT. You also need Release 3.5a of
ModelAccess for Verilog. The hardware modeling information is presented in the
following sections of this chapter:

● “Prerequisites” on page 83

● “The ma_verilog Software Tree” on page 84

● “Using Hardware Models” on page 85

Prerequisites
If you have not already done so, perform these tasks:

● Install the Verilog-XL simulator according to instructions provided by Cadence
Design Systems, Inc.

● Perform the complete installation and configuration of the hardware modeling
system, including hardware and software (R3.5a or later) as outlined in the Quick
Reference in Chapter 1 of either the ModelSource Hardware Installation Guide or
the LM-family Hardware Installation Guide.

● Boot the modeler if it is not already booted.

Chapter 3: Using Verilog-XL with Synopsys Models Simulator ConfigurationGuide

84 Synopsys, Inc. July 31, 2001

�

The ma_verilog Software Tree
The ModelAccess for Verilog (ma_verilog) directory structure is illustrated in Figure 4.

Figure 4: The ma_verilog Software Tree

Generating the Verilog-XL Model Shell
You must use the Logic Modeling Verilog Shell Generator (lmvsg) to generate new
Verilog HDL shells (model.v files) for the hardware models you are using. Note that
you cannot use any model.v files that might have existed prior to your use of
ModelAccess for Verilog. All model.v files must be newly generated.

For each hardware model, both UNIX and Windows NT users issue this command at the
operating system prompt:

% lmvsg -d destination_model.MDL

The complete syntax of the lmvsg command is provided in “lmvsg Command
Reference” on page 99.

sun4_5.6/

pa_hp102/

include/
mav_include.h
mav_include_code.h

bin/

mav.o

rs6000_4.1.5/

mav.o

mav.o
mav.so

sun4_5.6/
lmvsg

lmvsg

pa_hp11/
lmvsg

rs6000_4.1.5/
lmvsg

mav.imp

ma_verilog/

pcnt/ pcnt/
lmvsg.exemav.lib

mav.dll

lm_vconfig

lib/

mav.sl

mav.sl

mav.o
mav.sl

mav_mti.lib
mav_mti.dll
mav_static.lib

pa_hp102/

pa_hp11/

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

July 31, 2001 Synopsys, Inc. 85

�

Using Hardware Models
To instantiate hardware models in Verilog-XL, ModelAccess for Verilog maps the
Cadence PLI to the Simulator Function Interface (SFI), as shown in Figure 5. For
information about the SFI, refer to the Simulator Integration Manual.

Figure 5: SFI Communication with PLI

ModelAccess for Verilog Methodology
To simulate with hardware models using ModelAccess for Verilog consists of these
tasks:

● “Simulation Example” on page 86

● “Creating the Model Shell” on page 86

● “Instantiating the Hardware Model” on page 88

● “Performance Monitoring” on page 89

● “Compiling and Simulating” on page 89

● “Examining the Output verilog.log File” on page 90

SFI
Interface

ModelAccess for
Verilog-XL

PLI
Interface

Verilog-XL

ModelSource
System

Synopsys

Cadence

Chapter 3: Using Verilog-XL with Synopsys Models Simulator ConfigurationGuide

86 Synopsys, Inc. July 31, 2001

�

Simulation Example
This simulation example illustrates how to use hardware models in a Verilog-XL
simulation using ModelAccess for Verilog. This example assumes that all ModelAccess
for Verilog configuration tasks have been accomplished.

Creating the Model Shell
If you use ModelAccess for Verilog, you cannot use existing model.v files that were
generated by crshell; you must regenerate the model.v files as described.

The task of creating a model shell should have been accomplished by executing lmvsg,
as described in “Generating the Verilog-XL Model Shell” on page 84. For example, to
create the model shell (model.v file) for the TILS299 hardware model (an 8-bit universal
shift/storage register with 3-state outputs) in the current working directory, execute the
following:

% lmvsg TILS299.MDL

(By default, if no destination is specified, the current working directory is the
destination directory for the TILS299.v file. For complete syntax of the lmvsg script,
refer to “lmvsg Command Reference” on page 99.)

The following illustration shows the TILS299.v file that contains a listing of the model’s
pin names, pin declarations, parameter declarations, and the model invocation, which
references the model.MDL file (in this case, TILS299.MDL).

// Generated by lmvsg 1.000
// Copyright (c) 1984-1996 Synopsys Inc. ALL RIGHTS RESERVED

‘timescale 1 ns / 1 ns
‘expand_vectornets

module TILS299(
CLK , CLR , G1 , G2 , S0 , S1 , SL , SR , QA , QH , A , B ,
C , D , E , F , G , H);

// Pin declarations
input CLK ;
input CLR ;
input G1 ;
input G2 ;
input S0 ;
input S1 ;
input SL ;
input SR ;
output QA ;
reg QA__PULL ;
reg QA__STRONG ;
assign (pull0, pull1) QA = QA__PULL ;

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

July 31, 2001 Synopsys, Inc. 87

�

assign QA = QA__STRONG ;
output QH ;
reg QH__PULL ;
reg QH__STRONG ;
assign (pull0, pull1) QH = QH__PULL ;
assign QH = QH__STRONG ;
inout A ;
reg A__PULL ;
reg A__STRONG ;
assign (pull0, pull1) A = A__PULL ;
assign A = A__STRONG ;
inout B ;
reg B__PULL ;
reg B__STRONG ;
assign (pull0, pull1) B = B__PULL ;
assign B = B__STRONG ;
inout C ;
reg C__PULL ;
reg C__STRONG ;
assign (pull0, pull1) C = C__PULL ;
assign C = C__STRONG ;
inout D ;
reg D__PULL ;
reg D__STRONG ;
assign (pull0, pull1) D = D__PULL ;
assign D = D__STRONG ;
inout E ;
reg E__PULL ;
reg E__STRONG ;
assign (pull0, pull1) E = E__PULL ;
assign E = E__STRONG ;
inout F ;
reg F__PULL ;
reg F__STRONG ;
assign (pull0, pull1) F = F__PULL ;
assign F = F__STRONG ;
inout G ;
reg G__PULL ;
reg G__STRONG ;
assign (pull0, pull1) G = G__PULL ;
assign G = G__STRONG ;
inout H ;
reg H__PULL ;
reg H__STRONG ;
assign (pull0, pull1) H = H__PULL ;
assign H = H__STRONG ;

// Parameter declarations
parameter ModelType = “HARDWARE”;

Chapter 3: Using Verilog-XL with Synopsys Models Simulator ConfigurationGuide

88 Synopsys, Inc. July 31, 2001

�

parameter TimingVersion = “TILS299.MDL”;
parameter DelayRange = “Max”;

// Invoke the model
initial
begin
$lmhw_model(

“TILS299.MDL”,
ModelType,
“attr”, “timingversion”, TimingVersion,
“attr”, “delayrange”, DelayRange ,
“in”, CLK ,
“in”, CLR ,
“in”, G1 ,
“in”, G2 ,
“in”, S0 ,
“in”, S1 ,
“in”, SL ,
“in”, SR ,
“out”, QA , QA__STRONG , QA__PULL ,
“out”, QH , QH__STRONG , QH__PULL ,
“io”, A , A__STRONG , A__PULL ,
“io”, B , B__STRONG , B__PULL ,
“io”, C , C__STRONG , C__PULL ,
“io”, D , D__STRONG , D__PULL ,
“io”, E , E__STRONG , E__PULL ,
“io”, F , F__STRONG , F__PULL ,
“io”, G , G__STRONG , G__PULL ,
“io”, H , H__STRONG , H__PULL);

end
endmodule

‘autoexpand_vectornets
.

Instantiating the Hardware Model
Before instantiating a hardware model, you first examine the model.v file you created, to
get the port names to use in the instantiation, and also to see whether you want to change
any of the model’s default parameters. The model.v files contain default values for the
model parameters, which you can override using the “defparam” statement in the model
instantiation.

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

July 31, 2001 Synopsys, Inc. 89

�

The following example shows how to instantiation a hardware model (TILS299 in this
case) in a testbench. Notice the two “defparam” statements; the definitions of the
TimingVersion (TILS299A.MDL) and DelayRange (MIN) parameters in the
instantiation override the default definitions in the model.v file (TILS299.MDL and
MAX, respectively). In this example, TILS299A.MDL represents a custom timing
version that the designer wants to use instead of the default timing version
TILS299.MDL.

/ Instantiate UUT : ModelSource TILS299 hardware model : U1
defparam U1.TimingVersion=”TILS299A.MDL”;
defparam U1.DelayRange = “MIN”;
TILS299 U1(.CLK (clkw),

.CLR (clrw),

.A (io1w[0]),

.B (io1w[1]),

.C (io1w[2]),

.D (io1w[3]),

.E (io1w[4]),

.F (io1w[5]),

.G (io1w[6]),

.H (io1w[7]),

.G1 (g1w),

.G2 (g2w),

.QA (qa1w),

.QH (qh1w),

.S0 (s0w),

.S1 (s1w),

.SL (slw),

.SR (srw));

Performance Monitoring
You can monitor the performance of a hardware model and append the results to the
simulator log file after simulation. To enable performance monitoring, in the window
where you are running the simulator, enter the following:

% setenv LM_OPTION “monitor_performance”

For more information, refer to “Performance Monitoring” in the ModelSource User’s
Manual.

Compiling and Simulating
UNIX users accomplish this task by executing the Verilog-XL executable previously
built, referencing the testbench and the model.v file, as in the following example:

% verilog TILS299.v tbench.v +loadpli1=mav:mav_boot

Chapter 3: Using Verilog-XL with Synopsys Models Simulator ConfigurationGuide

90 Synopsys, Inc. July 31, 2001

�

As Verilog executes, it outputs progress, status, and error messages to the screen and
saves the transcript to a file named verilog.log, which you can examine if necessary for
troubleshooting.

Examining the Output verilog.log File
After echoing the command that invoked Verilog, and the copyright and source
information, Verilog announces its progress as it compiles the input files. When the
prompt C1> is issued, the simulator is waiting at time 0 for you to enter a command.
Typing a period (.), which means “continue”, starts the simulation run. Typing “$finish;”
at the prompt terminates the simulation session.

Notice in particular these lines, which state the release numbers of ModelAccess for
Verilog and SFI:

Runtime, ModelAccess for Verilog-XL R3.5a
SFI Copyright 1988-2000 Synopsys, Incorporated.; 08/30/00; R3.5a

If you are troubleshooting and call Synopsys Technical Support for help, you will be
asked for the SFI release number (in this case, R3.5a). (For instructions on contacting
Synopsys Technical Support, refer to “Getting Help” on page 14.) The following
illustration shows an example verilog.log file without errors.

Host command: verilog.lmv
Command arguments:

-s
TILS299.v
tbench.v

VERILOG-XL 2.2.1 log file created Jan 8, 1997 14:14:00
VERILOG-XL 2.2.1 Jan 8, 1997 14:14:00

...

...
Compiling source file “TILS299.v”
Compiling source file “tbench.v”

Runtime, ModelAccess for Verilog R2.0
SFI Copyright 1988-1996 Synopsys, Incorporated.; 05 Sep 1996;

R3.3a
Type ? for help
C1 > .
...
...
L47 “tbench.v”: $stop at simulation time 4200
C1 > $finish;
C1: $finish at simulation time 4200
54 simulation events + 10 accelerated events

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

July 31, 2001 Synopsys, Inc. 91

�

CPU time: 0.4 secs to compile + 0.2 secs to link + 0.5 secs in
simulation
End of VERILOG-XL 2.2.1 Jan 8, 1997 14:15:09

Optional Capabilities During Simulation
During simulation, you can optionally enable timing measurement and test vector
logging.

Timing Measurement
LM-family modeling systems can measure input-to-output propagation delays on a
hardware model. You enable timing measurement using the command
$lm_timing_measurements(), described in “$lm_timing_measurements Command
Reference” on page 96.

Note�
Timing measurement is not supported for ModelSource 3200 and 3400.

The following illustration shows an example of timing measurement for the TILS299
model. The six lines of code following “SIMULATION run time duration” turn on
timing measurement, measure for 4200 timing units, then turn off timing measurement.
The timing information is saved in the file TILS299.TIM.

Test Vector Logging
ModelSource and LM-family modeling systems can capture and write to a file the input
stimuli presented to a hardware model, as well as the resulting sampled output values.

Test vectors are useful for debugging a simulation and for verifying the functionality of
a hardware model. You enable test vector logging by using the command
$lm_log_test_vectors(), described in “$lm_log_test_vectors Command Reference” on
page 94.

The following illustration also shows an example of test vector logging for the model
TILS299. The six lines of code following the timing measurement enable test vector
logging, implement the logging for 4200 time units (the duration of the simulation), and
then disable the logging. The test vectors are saved in a file named hwm299.vec.

// Instantiate UUT : ModelSource TILS299 hardware model : U1
TILS299 U1(.CLK (clkw),

.CLR (clrw),

.A (io1w[0]),

.B (io1w[1]),

.C (io1w[2]),

.D (io1w[3]),

.E (io1w[4]),

Chapter 3: Using Verilog-XL with Synopsys Models Simulator ConfigurationGuide

92 Synopsys, Inc. July 31, 2001

�

.F (io1w[5]),

.G (io1w[6]),

.H (io1w[7]),

.G1 (g1w),

.G2 (g2w),

.QA (qa1w),

.QH (qh1w),

.S0 (s0w),

.S1 (s1w),

.SL (slw),

.SR (srw));
// SIMULATION run time duration
initial
begin
$lm_timing_measurements (“tbench.U1, 1, “TILS299.TIM”);
#4200
$lm_timing_measurements (“tbench.U1, 0, “TILS299.TIM”);
end
initial
begin
$lm_log_test_vectors(“tbench.U1”,1,”hwm299.vec”);
#4200 $stop;
$lm_log_test_vectors(“tbench.U1”,0,”hwm299.vec”);
end

.

The Test Vector Log File
This next illustration shows part of a test vector log file, hwm299.vec.

test_vector_format 2
test TILS299
time stamp = 1 nanosecond
runtime_modeler_software R3.3a
simulator_function_interface R3.3a
SR 1 I
SL 2 I
...
#patterns { IIIIIIIIBBBBBBBBOO }
{ --- }
{ SSSSCGGCHGFEDCBAQQ }
{ RL10L21L////////HA }
{ K RQQQQQQQQ }
{ HGFEDCBA }

INIT DDDDDUUDTTTTTTTT
ZZZZZZZZLL

0 DDDDUDDDTTTTTTTT
LLLLLLLLLL

30 DDDDUDDDDDDDDDDD
50 DDDDDDDDDDDDDDDD
100 DDDDUDDDDDDDDDDD

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

July 31, 2001 Synopsys, Inc. 93

�

LLLLLLLLLL
150 DDDDDDDUDDDDDDDD

LLLLLLLLLL
200 DDDDUDDUDDDDDDDD

LLLLLLLLLL
250 DDDDDDDUDDDDDDDD
300 DDDDUDDUDDDDDDDD

LLLLLLLLLL
350 DDUUDDDUDDDDDDDD

zzzzzzzzLL
355 DDUUDUUUDDDDDDDD

zzzzzzzzLL
...
...

Understanding the Test Vector File
The test vector file is written in Logic Modeling test vector format. Symbols for input
and output values are defined in Table 15.

Table 15: Test Vector Symbols

Symbol Input/Output Definition

U Input Drive hard 1

D Input Drive hard 0

u Input Drive soft (resistive) 1

d Input Drive soft (resistive) 0

T Input Drive floating level

N Input Drive unknown level

H Output Sense hard 1

L Output Sense hard 0

h Output Sense soft (resistive) 1

l Output Sense soft (resistive) 0

Z Output Sense floating level. Used for an I/O pin in
the input state whose last driven value was
1 (either U or u)

z Output Sense floating level. Used in two cases:
for an I/O pin in the input state whose last
driven value was 0 (either D or d), or for an
output pin that is not driving.

Chapter 3: Using Verilog-XL with Synopsys Models Simulator ConfigurationGuide

94 Synopsys, Inc. July 31, 2001

�

Saving and Restarting the Simulation State
The Verilog-XL $save() task saves the complete simulation data structure into a
specified file. The saved data structure includes the pattern memory for each hardware
model simulation instance.

The $restart() task restores the complete Verilog-XL simulation from the specified file.
The pattern memory for each hardware model simulation instance is restored into the
hardware modeler’s pattern memory.

Linking the SFI Debug Library
By default, ModelAccess for Verilog dynamically links the non-debug version of the
SFI library. If you want to use the SFI library’s debug version for troubleshooting,
define the environment variable HOSTDEBUG. For information about setting and using
HOSTDEBUG, refer to the Simulator Integration Manual. For troubleshooting
assistance, contact Synopsys Technical Support (for instructions, refer to “Getting Help”
on page 14).

$lm_log_test_vectors Command Reference
The $lm_log_test_vectors command enables test vector logging for a specified instance,
and specifies a file name for the test vector log.

Syntax
$lm_log_test_vectors (“instance_path”, on_off, “filename”)

Arguments
instance_path Specifies the pathname of the model instance for which test

vector logging is to be enabled or disabled.

on_off Indicates whether test vector logging is to be enabled or
disabled. Allowed values are 1 to enable logging, or 0 (the
default) to disable logging.

X Output Sense unknown value. Unknowns on
outputs are generated by unknown
propagation, value forcing, voltage
unknowns, or inconsistent unknowns.

? Output Sense any level (“don’t care”).

Table 15: Test Vector Symbols (Continued)

Symbol Input/Output Definition

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

July 31, 2001 Synopsys, Inc. 95

�

filename Specifies the file name to be used for the test vector log.

Description
Enables test vector logging for a specified instance and specifies a filename for the test
vector log. By default, test vector logging is not performed. When test vector logging is
on, the pin value information created during the simulation for the specified device
instance is written in test vector file format to filename.

For detailed information about test vector logging, refer to the ModelSource User’s
Manual or the LM-family Modeler Manual.

Example
The following example enables test vector logging for the instance “U1”, and saves the
test vector log in the file “U1.log”.

$lm_log_test_vectors (“Tbench.U1”, 1, “U1.log”);

$lm_loop_instance Command Reference
The $lm_loop_instance command enables the loop mode for a specified model instance.

Syntax
$lm_loop_instance (“instance_path”)

Arguments
instance_path Specifies the pathname of the model instance for which the

loop mode is to be enabled.

Description
Enables the loop mode for a specified instance. In loop mode, the hardware modeler
repeatedly plays to the physical device the pattern history of the specified device
instance. This command is most often used to analyze the behavior of a device and its
pattern history with an oscilloscope or logic analyzer connected to the device.

Once in loop mode, the interface prompts you to press the Return key to exit the loop
mode.

Examples
The following example turns on loop mode for the “U1” model instance.

$lm_loop_instance (“U1”);

Chapter 3: Using Verilog-XL with Synopsys Models Simulator ConfigurationGuide

96 Synopsys, Inc. July 31, 2001

�

The following message is displayed while the instance is in loop mode.

Entering loop mode for hardware model instance U1
Press Return to terminate loop mode.

$lm_timing_information Command Reference
The $lm_timing_information command lets you override the hardware modeler’s
default handling of timing information for a specified model instance.

Syntax
$lm_timing_information (“instance_path”, “timing_option”);

Arguments
instance_path Specifies the Verilog pathname of the instance whose timing

information is to be modified.

timing_option Allowed values are “nodelay” to ignore all delay information,
“delay” to process all delay information, “notimingchecks” to
ignore all timing checks, and “timingchecks” to apply all
timing checks. The defaults are “delay” and “timingchecks”.

Description
The $lm_timing_information command allows you to override the hardware modeler’s
default handling of timing information for a specified model instance. By default, the
hardware modeler processes all delay information and applies all timing checks. You
can decrease model evaluation time by disabling these activities. The hardware modeler
does not process information that is not needed by the simulator.

Example
The following example disables timing checks for the “U1” model instance.

$lm_timing_information (“U1”, “notimingchecks”);

$lm_timing_measurements Command Reference
The $lm_timing_measurements command enables timing measurements for a specified
model instance. It is not supported for ModelSource 3200 and 3400.

Syntax
$lm_timing_measurements (“instance_path”, on_off, “filename”)

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

July 31, 2001 Synopsys, Inc. 97

�

Arguments
instance_path Specifies the pathname of the model instance for which timing

measurement is to be enabled or disabled.

on_off Indicates whether test vector logging is to be enabled or
disabled. Allowed values are 1 to enable logging, or 0 (the
default) to disable logging.

filename Specifies the file name to be used for the test vector log.

Description
The $lm_timing_measurements command enables timing measurement for a specified
model instance. By default, timing measurement is not performed. Instead, the
hardware modeler uses the delay values provided in the .DLY file in the Shell Software.
When timing measurement is enabled, the hardware modeler returns to the simulator
and logs to the specified file the actual delays measured from the device.

Example
The following example enables timing measurements for the”U1” model instance and
saves the timing measurement log in the “U1.log” file.

$lm_timing_measurements (“Tbench.U1”, 1, “U1.log”);

$lm_unknowns Command Reference
The $lm_unknowns command lets you override the hardware modeler’s default
handling of unknown values for specified instances or pins, or for all hardware model
instances in the simulation.

Syntax
$lm_unknowns (“option=value” [,”option=value”,...] [, “device_or_pin”])

Arguments
You can use the following values for “option=value”:

propagate=yes | no When “yes” (the default), enables the “on_unknown
propagate” statement, if there is one, in the model’s options
file (for example, TILS299.OPT) for the specified instance or
pin, or for all hardware model instances in the simulation. Set

Chapter 3: Using Verilog-XL with Synopsys Models Simulator ConfigurationGuide

98 Synopsys, Inc. July 31, 2001

�

propagate=no if you want to disable or override the
“on_unknown propagate” statement in the .OPT file for a
specific instance or pin.

Note�
If there is no “on_unknown propagate” statement in the model’s .OPT file,
unknown propagation is disabled even if you use” $lm_unknowns
propagate=yes”. For the “propagate=yes” option to have an effect, there
must be an “on_unknown propagate” statement in the model’s .OPT file. For
more information about the on_unknown statement, refer to the Shell
Software Reference Manual.

value=previous | high | low | float
Specifies the value to be passed to the device when an
unknown value is passed to the modeler. The default is
“previous”, meaning that if the simulator sets an input pin to
“unknown”, the modeler drives the input to its previous value.
For more information, refer to the description of set_previous
in the on_unknown reference pages in the Shell Software
Reference Manual.

sequence_count=num_sequences
Specifies the number of random sequences to propagate
unknowns through the hardware model. The num_sequences
setting is an integer of value 0 (the default) through 20. The
default value, 0, is usually sufficient; setting a higher value
ensures that unknowns will be propagated, but uses more
pattern memory.

random_seed=seed_value
Specifies the initial seed for the random sequence generator.
seed_value is an integer of value 0 (the default) through
65535.

device_or_pin Specifies the Verilog pathname of a device or pin whose
unknown values are to be translated into the value specified by
value. The default is to apply the statement to all hardware
model instances in the simulation.

Simulator Configuration Guide Chapter 3: Using Verilog-XL with Synopsys Models

July 31, 2001 Synopsys, Inc. 99

�

Description
The $lm_unknowns command lets you override the hardware modeler’s default
handling of unknown values for specified model instances or pins, or for all hardware
model instances in the simulation. By default, the hardware modeler translates all
unknown values to “previous” before passing them to the device. Using this command,
you can specify values of high (1), low (0) or float (?), or disable unknown propagation,
for a specified instance or pin, or for all hardware model instances in the simulation if no
instance or pin is given. For detailed information about unknown handling, refer to the
Shell Software Reference Manual.

Examples
The following example disables unknown propagation and causes a low value to be
passed to the device when an unknown value is passed to the hardware modeler for the
instance “Tbench.U1.”

$lm_unknowns (“propagate=no”, “value=low”, “Tbench.U1”)

The following example disables unknown propagation, causes a high value to be passed
to the device when an unknown value is passed to the modeler, specifies 20 random
sequences to propagate unknowns through the hardware model, and specifies 200 as the
seed for the random sequence generator, for all hardware model instances in the
simulation.

$lm_unknowns (“propagate=yes”, “value=high”, “sequence_count=20”,
“random_seed=200”)

lmvsg Command Reference
For a specified hardware model the lmsvg script creates a model.v file and places it in
the specified destination directory.

Syntax
lmvsg [-d destination] [-i] [-w] [-v vector_path] [-h] model.MDL

Arguments
-d destination Specifies the destination directory in which to store the

generated model.v file. The default is the current directory.

-i Generates a warning if a pin name is an illegal Verilog
identifier. By default, no warning is issued.

Chapter 3: Using Verilog-XL with Synopsys Models Simulator ConfigurationGuide

100 Synopsys, Inc. July 31, 2001

�

-w Specifies pullup and pulldown signal strength of weak1 and
weak0 instead of the default pull1 and pull0, respectively.
This will provide compatibility with Cadence's hardware
modeler interface.

-v vector_path Specifies the pathname to the file containing a list of vectors.

-h Displays the online help for this command.

model.MDL Specifies the name of the MDL file of the hardware model
whose model.v file is to be generated.

Description
The lmvsg script creates a model.v, in the destination directory. The model’s pin names
may not be legal Verilog identifiers. If a pin name is found that is not a legal Verilog
identifier, lmvsg escapes the illegal name (for example, the pin name “-CLR” becomes
“\-CLR”.) and, if the -i switch was issued, displays a warning message.

If a pin alias is defined in the model.NAM file, the pin alias is used as the pin name. For
information about editing the model.NAM file, refer to the ModelSource User’s Manual.

By default, lmvsg generates a module that contains a port for each logical pin. If you
want the module to use vectors for buses, you can provide a file containing a list of the
vectors. For example, if a device contains a 32-bit address bus, the default behavior of
lmvsg is to generate a module with a port list containing the ports A0, A1, ..., A31. You
can use the -v switch to name a file containing the statement “A[31:0]”. lmvsg then
generates the module using a 32-bit vector for the address bus.

Simulator Configuration Guide Chapter 4: Using NC-Verilog with Synopsys Models

July 31, 2001 Synopsys, Inc. 101

�

4
Using NC-Verilog with Synopsys

Models

Overview
This chapter explains how to use SmartModels, FlexModels, MemPro models, and
hardware models with NC-Verilog. The procedures are organized into the following
major sections:

● “Setting Environment Variables” on page 101

● “Using SmartModels with NC-Verilog” on page 103

● “Using FlexModels with NC-Verilog” on page 104

● “Using MemPro Models with NC-Verilog on UNIX” on page 107

● “Using Hardware Models with NC-Verilog” on page 108

Setting Environment Variables
First, set the basic environment variables. If you are not using one of the model types,
skip that step. In some cases the procedures that follow in this chapter include steps for
setting additional environment variables.

1. Set the LMC_HOME variable to the location of your SmartModel. FlexModel, and
MemPro model installation tree, as shown in the following example:

% setenv LMC_HOME path_to_models_installation

Chapter 4: Using NC-Verilog with Synopsys Models Simulator ConfigurationGuide

102 Synopsys, Inc. July 31, 2001

�

2. Set the LM_LICENSE_FILE or SNPSLMD_LICENSE_FILE environment variable
to point to the product authorization file, as shown in the following example:

% setenv LM_LICENSE_FILE path_to_product_authorization_file

% setenv SNPSLMD_LICENSE_FILE path_to_product_authorization_file

You can put license keys for multiple products (for example, SmartModels and
hardware models) into the same authorization file. If you need to keep separate
authorization files for different products, use a colon-separated list (UNIX) or
semicolon-separated list (NT) to specify the search path in your variable setting.

Caution�
Do not include la_dmon-based authorizations in the same file with snpslmd-
based authorizations. If you have authorizations that use la_dmon, keep
them in a separate license file that uses a different license server (lmgrd)
process than the one you use for snpslmd-based authorizations.

3. If you are using the hardware modeler, set the LM_DIR and LM_LIB environment
variables, as shown in the following examples:

% setenv LM_DIR hardware_model_install_path/sms/lm_dir
% setenv LM_LIB hardware_model_install_path/sms/models: \
hardware_model_install_path/sms/maps

If you put your models in a directory other than the default of /sms/models, modify
the above variable setting accordingly.

4. Set the CDS_INST_DIR variable to the location of your Cadence installation tree,
as shown in the following example, and make sure that NC-Verilog is set up
properly in your environment:

% setenv CDS_INST_DIR path_to_Cadence_installation

5. Depending on your platform, set your load library variable to point to the platform-
specific directory in $LMC_HOME, as shown in the following examples:

Solaris:

% setenv LD_LIBRARY_PATH $LMC_HOME/lib/sun4Solaris.lib:$LD_LIBRARY_PATH

Linux:

% setenv LD_LIBRARY_PATH $LMC_HOME/lib/x86_linux.lib:$LD_LIBRARY_PATH

AIX:

% setenv LIBPATH $LMC_HOME/lib/ibmrs.lib:$LIBPATH

Simulator Configuration Guide Chapter 4: Using NC-Verilog with Synopsys Models

July 31, 2001 Synopsys, Inc. 103

�

HP-UX:

% setenv SHLIB_PATH $LMC_HOME/lib/hp700.lib:$SHLIB_PATH

NT:

Make sure that %LMC_HOME%\lib\pcnt.lib is in the Path user variable.

Using SmartModels with NC-Verilog
SmartModels work with NC-Verilog using a PLI application called LMTV that is
delivered in the form of a swiftpli shared library in $LMC_HOME/lib/platform.lib. If
you cannot use the swiftpli, refer to “Static Linking with LMTV” on page 104.

To use the prebuilt swiftpli, follow this procedure:

1. Instantiate SmartModels in your design, defining the ports and defparams as
required. For details on required SmartModel SWIFT parameters and model
instantiation examples, refer to “Using SmartModels with SWIFT Simulators” on
page 18.

2. There is no need to build a Verilog executable. You can use the one from
$CDS_INST_DIR/tools/bin by adding it to your path statement.

3. To use the swiftpli shared library, invoke the NC-Verilog simulator to compile and
simulate your design as shown in the following examples:

UNIX

% ncverilog testbench model.v +loadpli1=swiftpli:swift_boot \
+incdir+$LMC_HOME/sim/pli/src

NT

> ncverilog testbench model.v +loadpli1=swiftpli:swift_boot
+incdir+%LMC_HOME%\sim\pli\src

Note�
If you are using ncelab and ncsim, use the -loadpli1 switch instead of the
+loadpli1 switch.

For information on LMTV commands that you can use with SmartModels on
NC-Verilog, refer to “LMTV Command Reference” on page 279.

Chapter 4: Using NC-Verilog with Synopsys Models Simulator ConfigurationGuide

104 Synopsys, Inc. July 31, 2001

�

Static Linking with LMTV
If you cannot use the Synopsys-supplied swiftpli shared library, refer to the Cadence
documentation for information on using the PLIWizard to build your own PLI library.
Synopsys still ships the files needed to build your own PLI. These include:

● edited copy of veriuser.c in the $LMC_HOME/sim/pli/src directory

● LMTV object (lmtv.o) in the $LMC_HOME/lib/platform.lib directory

If you build your own PLI, you will need to edit the veriuser.c file to pick up the LMTV
header files as follows:

a. After #include “vxl_veriuser.h” add:
#include “ccl_lmtv_include.h”
b. After “/*** add user entries here ***/” add:
#include “ccl_lmtv_include_code.h”

Using FlexModels with NC-Verilog
FlexModels work with NC-Verilog using a PLI application called LMTV that is
delivered in the form of a swiftpli shared library in $LMC_HOME/lib/platform.lib. If
you cannot use the swiftpli, refer to “Static Linking with LMTV” on page 106.

To use the prebuilt swiftpli, follow this procedure:

1. Create a working directory and run flexm_setup to make copies of the model's
interface and example files there, as shown in the following example:

% $LMC_HOME/bin/flexm_setup -dir workdir model_fx

You must run flexm_setup every time you update your FlexModel installation with
a new model version. Table 16 lists the files that flexm_setup copies to your
working directory.

Table 16: FlexModel NC-Verilog Files

File Name Description Location

model_pkg.inc Verilog task definitions for FlexModel
interface commands. This file also references
the flexmodel_pkg.inc and
model_user_pkg.inc files.

workdir/src/verilog/

model_user_pkg.inc Clock frequency setup and user customizations. workdir/src/verilog/

model_fx_vxl.v A SWIFT wrapper that you can use to instantiate
the model.

workdir/examples/verilog/

Simulator Configuration Guide Chapter 4: Using NC-Verilog with Synopsys Models

July 31, 2001 Synopsys, Inc. 105

�

2. Update the clock frequency supplied in the model_user_pkg.inc file to correspond
to the CLK period you want for the model. This file is located in:

workdir/src/verilog/model_user_pkg.inc

where workdir is your working directory.

3. Add the following line to your Verilog testbench to include FlexModel testbench
interface commands in your design:

`include "model_pkg.inc"

Note�
Be sure to add model_pkg.inc within the module from which you will be
issuing FlexModel commands.

Because the model_pkg.inc file includes references to flexmodel_pkg.inc and
model_user_pkg.inc, you don’t need to add flexmodel_pkg.inc or
model_user_pkg.inc to your testbench.

4. Instantiate FlexModels in your design, defining the ports and defparams as required
(refer to the example testbench supplied with the model). You use the supplied bus-
level wrapper (model.v) in the top-level of your design to instantiate the supplied
bit-blasted wrapper (model_fx_vxl.v).

Example using bus-level wrapper (model.v) without timing:

model U1 (model ports)
defparam

U1.FlexModelId = “TMS_INST1”;

Example using bus-level wrapper (model.v) with timing:

model U1 (model ports)
defparam

U1.FlexTimingMode = `FLEX_TIMING_MODE_ON,
U1.TimingVersion = “timingversion“,
U1.DelayRange = “range“,
U1.FlexModelId= “TMS_INST1”;

model.v A bus-level wrapper around the SWIFT model.
This allows you to use vectored ports for the
model in your testbench.

workdir/examples/verilog/

model_tst.v A testbench that instantiates the model and shows
how to use basic model commands.

workdir/examples/verilog/

Table 16: FlexModel NC-Verilog Files (Continued)

File Name Description Location

Chapter 4: Using NC-Verilog with Synopsys Models Simulator ConfigurationGuide

106 Synopsys, Inc. July 31, 2001

�

5. There is no need to build a Verilog executable. You can use the one from
$CDS_INST_DIR/tools/bin by adding it to your path statement.

6. Invoke the NC-Verilog simulator to compile and simulate your design as shown in
the following examples:

UNIX

% ncverilog testbench +loadpli1=swiftpli:swift_boot \
./workdir/examples/verilog/model.v \
./workdir/examples/verilog/model_fx_vxl.v \
+incdir+$LMC_HOME/sim/pli/src \
+incdir+workdir/src/verilog

NT

> ncverilog testbench +loadpli1=swiftpli:swift_boot
workdir\examples\verilog\model.v
workdir\examples\verilog\model_fx_vxl.v
+incdir+%LMC_HOME%\sim\pli\src
+incdir+workdir\src\verilog

Note�
If you are using ncelab and ncsim, use the -loadpli1 switch instead of the
+loadpli1 switch.

For information on LMTV commands that you can use with FlexModels on NC-Verilog,
refer to “LMTV Command Reference” on page 279.

Static Linking with LMTV
If you cannot use the Synopsys-supplied swiftpli shared library, refer to the Cadence
documentation for information on using the PLIWizard to build your own PLI library.
Synopsys still ships the files needed to build your own PLI. These include:

● edited copy of veriuser.c in the $LMC_HOME/sim/pli/src directory

● LMTV object (lmtv.o) in the $LMC_HOME/lib/platform.lib directory

● C-Pipe shared library (slm_pli_dyn.ext), in the $LMC_HOME/lib/platform.lib
directory

If you build your own PLI, you will need to edit the veriuser.c file to pick up the LMTV
header files as follows:

a. After #include “vxl_veriuser.h” add:
#include “ccl_lmtv_include.h”
b. After “/*** add user entries here ***/” add:
#include “ccl_lmtv_include_code.h”

Simulator Configuration Guide Chapter 4: Using NC-Verilog with Synopsys Models

July 31, 2001 Synopsys, Inc. 107

�

Using MemPro Models with NC-Verilog on
UNIX

MemPro models work with NC-Verilog using a PLI application called LMTV that is
delivered in the form of a swiftpli shared library in $LMC_HOME/lib/platform.lib. If
you cannot use the swiftpli, refer to “Static Linking with LMTV” on page 108.

To use the prebuilt swiftpli, follow this procedure:

1. To include MemPro testbench interface commands in your design, add one of the
following lines to your testbench:

Verilog testbench:

`include "mempro_pkg.v"

C testbench:

#include "mempro_c_tb.h"

For more information on using the MemPro testbench interfaces, refer to the “HDL
Testbench Interface” and “C Testbench Interface” chapters in the MemPro User’s
Manual.

2. Instantiate MemPro models in your design. Define ports and generics as required.
For information on generics used with MemPro models, refer to “Instantiating
MemPro Models” on page 32. For information on message levels and message level
constants, refer to “Controlling MemPro Model Messages” on page 33.

3. There is no need to build a Verilog executable. You can use the one from
$CDS_INST_DIR/tools/bin by adding it to your path statement.

4. Invoke the NC-Verilog simulator to compile and simulate your design as shown in
the example below:

% ncverilog testbench Verilog_modules MemPro_model_files \
+incdir+$LMC_HOME/sim/pli/src \
+loadpli1=swiftpli:swift_boot

Note�
If you are using ncelab and ncsim, use the -loadpli1 switch instead of the
+loadpli1 switch.

Chapter 4: Using NC-Verilog with Synopsys Models Simulator ConfigurationGuide

108 Synopsys, Inc. July 31, 2001

�

Static Linking with LMTV
If you cannot use the Synopsys-supplied swiftpli shared library, refer to the Cadence
documentation for information on using the PLIWizard to build your own PLI library.
Synopsys still ships the files needed to build your own PLI. These include:

● edited copy of veriuser.c in the $LMC_HOME/sim/pli/src directory

● LMTV object (lmtv.o) in the $LMC_HOME/lib/platform.lib directory

● C-Pipe shared library (slm_pli_dyn.ext), in the $LMC_HOME/lib/platform.lib
directory

If you build your own PLI, you will need to edit the veriuser.c file to pick up the LMTV
header files as follows:

a. After #include “vxl_veriuser.h” add:
#include “ccl_lmtv_include.h”
b. After “/*** add user entries here ***/” add:
#include “ccl_lmtv_include_code.h”

Using Hardware Models with NC-Verilog
This section explains how to use Release 3.5a of ModelAccess for Verilog to interface
hardware models with NC-Verilog. It is not necessary to edit and use the Makefile.nc to
build a standalone version of the simulator to link to the hardware modeler. Note that
dynamic linking is only supported on version 2.8 and above of NC-Verilog on HP-UX
and Solaris, and version 3.0 on NT.

1. There is no need to build a Verilog executable. You can use the one from
$CDS_INST_DIR/tools/bin by adding it to your path statement.

2. Set your SHLIB_PATH or LD_LIBRARY_PATH variable to point to the directories
that contain the ModelAccess libraries. Solaris users also need to add the
/usr/dt/lib and /usr/openwin/lib libraries.

HP-UX

% setenv SHLIB_PATH \
hardware_model_iinstall_path/sms/ma_verilog/lib/pa_hp102:
$CDS_INST_DIR/tools/lib

Solaris

% setenv LD_LIBRARY_PATH \
hardware_model_install_path/sms/ma_verilog/lib/sun4.solaris:\
$CDS_INST_DIR/tools/lib:/usr/dt/lib:/usr/openwin/lib

For NT, add this path to the PATH user variable:

hardware_model_install_path\sms\ma_verilog\lib\pcnt

Simulator Configuration Guide Chapter 4: Using NC-Verilog with Synopsys Models

July 31, 2001 Synopsys, Inc. 109

�

3. Invoke the simulator as shown in the following example:

% ncverilog testbench.v model.v +loadpli1=mav:mav_boot

NC-Verilog Utilities
The following hardware model utilities are supported in NC-Verilog:

$lm_log_test_vectors (“instance_path”, on_off, “filename”)

The $lm_log_test_vectors command enables test vector logging for a specified instance,
and specifies a file name for the test vector log. For a detailed syntax description, refer
to “$lm_log_test_vectors Command Reference” on page 94.

$lm_loop_instance (“instance_path”)

The $lm_loop_instance command enables the loop mode for a specified model instance.
For a detailed syntax description, refer to “$lm_loop_instance Command Reference” on
page 95.

$lm_timing_information (“instance_path”, “timing_option”)

The $lm_timing_information command lets you override the hardware modeler’s
default handling of timing information for a specified model instance. For a detailed
syntax description, refer to “$lm_timing_information Command Reference” on page 96.

$lm_timing_measurements (“instance_path”, on_off, “filename”)

The $lm_timing_measurements command enables timing measurements for a specified
model instance. It is not supported for ModelSource 3200 and 3400. For a detailed
syntax description, refer to “$lm_timing_measurements Command Reference” on
page 96.

$lm_unknowns (“option=value” [,”option=value”,...] [, “device_or_pin”])

The $lm_unknowns command lets you override the hardware modeler’s default
handling of unknown values for specified instances or pins, or for all hardware model
instances in the simulation. For a detailed syntax description, refer to “$lm_unknowns
Command Reference” on page 97.

Chapter 4: Using NC-Verilog with Synopsys Models Simulator ConfigurationGuide

110 Synopsys, Inc. July 31, 2001

�

Simulator Configuration Guide Chapter 5: Using MTI Verilog with Synopsys Models

July 31, 2001 Synopsys, Inc. 111

�

5
Using MTI Verilog with Synopsys

Models

Overview
This chapter explains how to use SmartModels, FlexModels, MemPro models, and
hardware models with MTI Verilog (ModelSim/VLOG.). The procedures are organized
into the following major sections:

● “Setting Environment Variables” on page 111

● “Using SmartModels with MTI Verilog” on page 113

● “Using FlexModels with MTI Verilog” on page 115

● “Using MemPro Models with MTI Verilog” on page 118

● “Using Hardware Models with MTI Verilog” on page 120

Setting Environment Variables
First, set the basic environment variables. If you are not using one of the model types,
skip that step. In some cases the procedures that follow in this chapter include steps for
setting additional environment variables.

1. Set the LMC_HOME variable to the location of your SmartModel. FlexModel, and
MemPro model installation tree, as shown in the following example:

% setenv LMC_HOME path_to_models_installation

2. Make sure MTI Verilog is set up properly in your environment.

Chapter 5: Using MTI Verilog with Synopsys Models Simulator ConfigurationGuide

112 Synopsys, Inc. July 31, 2001

�

3. Set the LM_LICENSE_FILE or SNPSLMD_LICENSE_FILE environment variable
to point to the product authorization file, as shown in the following example:

% setenv LM_LICENSE_FILE path_to_product_authorization_file

% setenv SNPSLMD_LICENSE_FILE path_to_product_authorization_file

You can put license keys for multiple products (for example, SmartModels and
hardware models) into the same authorization file. If you need to keep separate
authorization files for different products, use a colon-separated list (UNIX) or
semicolon-separated list (NT) to specify the search path in your variable setting.

Caution�
Do not include la_dmon-based authorizations in the same file with snpslmd-
based authorizations. If you have authorizations that use la_dmon, keep
them in a separate license file that uses a different license server (lmgrd)
process than the one you use for snpslmd-based authorizations.

4. If you are using the hardware modeler, set the LM_DIR and LM_LIB environment
variables, as shown in the following examples:

% setenv LM_DIR hardware_model_install_path/sms/lm_dir
% setenv LM_LIB hardware_model_install_path/sms/models: \
hardware_model_install_path/sms/maps

If you put your models in a directory other than the default of /sms/models, modify
the above variable setting accordingly.

5. Depending on your platform, set your load library variable to point to the platform-
specific directory in $LMC_HOME, as shown in the following examples:

Solaris:

% setenv LD_LIBRARY_PATH $LMC_HOME/lib/sun4Solaris.lib:$LD_LIBRARY_PATH

Linux:

% setenv LD_LIBRARY_PATH $LMC_HOME/lib/x86_linux.lib:$LD_LIBRARY_PATH

AIX:

% setenv LIBPATH $LMC_HOME/lib/ibmrs.lib:$LIBPATH

HP-UX:

% setenv SHLIB_PATH $LMC_HOME/lib/hp700.lib:$SHLIB_PATH

NT:

Make sure that %LMC_HOME%\lib\pcnt.lib is in the Path user variable.

Simulator Configuration Guide Chapter 5: Using MTI Verilog with Synopsys Models

July 31, 2001 Synopsys, Inc. 113

�

Using SmartModels with MTI Verilog
SmartModels work with MTI Verilog using a PLI application called LMTV that is
delivered in the form of a swiftpli_mti shared library in $LMC_HOME/lib/platform.lib.
If you cannot use the swiftpli_mti, refer to “Static Linking with LMTV” on page 114.

Synopsys does not currently ship a swiftpli_mti file for use on the IBMRS AIX
platform. If you are using this platform, refer to “Using SmartModels with MTI Verilog
on the IBMRS AIX Platform” on page 114.

To use SmartModels with the prebuilt swiftpli_mti, follow this procedure:

1. Instantiate SmartModels in your design, defining the ports and defparams as
required. For details on the required SWIFT parameters and SmartModel
instantiation examples, refer to “Using SmartModels with SWIFT Simulators” on
page 18.

2. Compile your code as shown in the following examples:

UNIX

% vlog testbench model.v +incdir+$LMC_HOME/sim/pli/src

NT

> vlog testbench model.v +incdir+%LMC_HOME%\sim\pli\src

where the model.v files are located at $LMC_HOME/special/cds/verilog/swift.
These .v files are installed during the SmartModel installation if the customer
selects either Cadence or MTI for an EDAV option.

3. Invoke the simulator as shown in the following examples:

HP-UX

% vsim -pli $LMC_HOME/lib/hp700.lib/swiftpli_mti.sl design

Solaris

% vsim -pli $LMC_HOME/lib/sun4Solaris.lib/swiftpli_mti.so design

Linux

% vsim -pli $LMC_HOME/lib/x86_linux.lib/swiftpli_mti.so design

NT

> vsim %LMC_HOME%\lib\pcnt.lib\swiftpli_mti.dll design

Note�
For information on LMTV commands that you can use with SmartModels
on MTI Verilog, refer to “LMTV Command Reference” on page 279.

Chapter 5: Using MTI Verilog with Synopsys Models Simulator ConfigurationGuide

114 Synopsys, Inc. July 31, 2001

�

Static Linking with LMTV
If you cannot use the Synopsys-supplied swiftpli shared library, refer to the MTI
documentation for information on building your own PLI and locating it for the
simulator. Synopsys still ships the files needed to build your own PLI. These include:

● edited copy of veriuser.c in the $LMC_HOME/sim/pli/src directory

● LMTV object (lmtv.o) in the $LMC_HOME/lib/platform.lib directory

If you build your own PLI, you will need to edit the veriuser.c file to pick up the LMTV
header files as follows:

a. After #include “vxl_veriuser.h” add:
#include “ccl_lmtv_include.h”
b. After “/*** add user entries here ***/” add:
#include “ccl_lmtv_include_code.h”

Using SmartModels with MTI Verilog on the IBMRS AIX
Platform

1. Open the modelsim.ini file in a text editor and locate this line:

; Veriuser = veriuser.o

2. Replace the line with the following. The following expressions should all appear on
one line with the PLI entry separated by a space.

Veriuser = $LMC_HOME/lib/hp700.lib/slm_pli_mti.sl \

$MODEL_TECH/libswiftpli.sl

3. Compile your code as shown in the following example:

% mti_path/bin/vlog testbench +incdir+$LMC_HOME/sim/pli/src \

+incdir+workdir/src/verilog

4. Invoke the simulator as shown in the following example:

% mti_path/bin/vsim design

Note that the -loadpli switch is not supported on this platform.

Simulator Configuration Guide Chapter 5: Using MTI Verilog with Synopsys Models

July 31, 2001 Synopsys, Inc. 115

�

Using FlexModels with MTI Verilog
FlexModels work with Verilog-XL using a PLI application called LMTV that is
delivered in the form of a swiftpli_mti shared library in $LMC_HOME/lib/platform.lib.
If you cannot use the swiftpli_mti, refer to “Static Linking with LMTV” on page 117.

To use the prebuilt swiftpli_mti, follow this procedure:

1. Create a working directory and run flexm_setup to make copies of the model's
interface and example files there, as shown in the following example:

% $LMC_HOME/bin/flexm_setup -dir workdir model_fx

You must run flexm_setup every time you update your FlexModel installation with
a new model version. Table 17 lists the files that flexm_setup copies to your
working directory.

Table 17: FlexModel MTI Verilog Files

2. Update the clock frequency supplied in the model_user_pkg.inc file to correspond
to the CLK period you want for the model. This file is located in:

workdir/src/verilog/model_user_pkg.inc

where workdir is your working directory.

3. Add the following line to your Verilog testbench to include FlexModel testbench
interface commands in your design:

`include "model_pkg.inc"

File Name Description Location

model_pkg.inc Verilog task definitions for FlexModel
interface commands. This file also references
the flexmodel_pkg.inc and
model_user_pkg.inc files.

workdir/src/verilog/

model_user_pkg.inc Clock frequency setup and user customizations. workdir/src/verilog/

model_fx_mti.v A SWIFT wrapper that you can use to instantiate
the model.

workdir/examples/verilog/

model.v A bus-level wrapper around the SWIFT model.
This allows you to use vectored ports for the
model in your testbench.

workdir/examples/verilog/

model_tst.v A testbench that instantiates the model and shows
how to use basic model commands.

workdir/examples/verilog/

Chapter 5: Using MTI Verilog with Synopsys Models Simulator ConfigurationGuide

116 Synopsys, Inc. July 31, 2001

�

Note�
Be sure to add model_pkg.inc within the module from which you will be
issuing FlexModel commands.

Because the model_pkg.inc file includes references to flexmodel_pkg.inc and
model_user_pkg.inc, you don’t need to add flexmodel_pkg.inc or
model_user_pkg.inc to your testbench.

4. Instantiate FlexModels in your design, defining the ports and defparams as required
(refer to the example testbench supplied with the model). You use the supplied bus-
level wrapper (model.v) in the top-level of your design to instantiate the supplied
bit-blasted wrapper (model_fx_mti.v).

Example using bus-level wrapper (model.v) without timing:

model U1 (model ports)
defparam

U1.FlexModelId = “TMS_INST1”;

Example using bus-level wrapper (model.v) with timing:

model U1 (model ports)
defparam

U1.FlexTimingMode = `FLEX_TIMING_MODE_ON,
U1.TimingVersion = “timingversion“,
U1.DelayRange = “range“,
U1.FlexModelId= “TMS_INST1”;

5. Compile your code as shown in the following examples:

UNIX

% vlog testbench \
workdir/examples/verilog/model.v \
workdir/examples/verilog/model_fx_mti.v \
+incdir+$LMC_HOME/sim/pli/src \
+incdir+workdir/src/verilog

NT

> vlog testbench
workdir\examples\verilog\model.v
workdir\examples\verilog\model_fx_mti.v
+incdir+%LMC_HOME%\sim\pli\src
+incdir+workdir\src\verilog

6. Invoke the simulator as shown in the following examples:

HP-UX

% vsim -pli $LMC_HOME/lib/hp700.lib/swiftpli_mti.sl design

Simulator Configuration Guide Chapter 5: Using MTI Verilog with Synopsys Models

July 31, 2001 Synopsys, Inc. 117

�

Solaris

% vsim -pli $LMC_HOME/lib/sun4Solaris.lib/swiftpli_mti.so design

Linux

% vsim -pli $LMC_HOME/lib/x86_linux.lib/swiftpli_mti.so design

NT

> vsim -pli %LMC_HOME%\lib\pcnt.lib\swiftpli_mti.dll design

Note�
For information on LMTV commands that you can use with FlexModels on
MTI-Verilog, refer to “LMTV Command Reference” on page 279.

Static Linking with LMTV
If you cannot use the Synopsys-supplied swiftpli shared library, refer to the MTI
documentation for information on building your own PLI and locating it for the
simulator. Synopsys still ships the files needed to build your own PLI. These include:

● edited copy of veriuser.c in the $LMC_HOME/sim/pli/src directory

● LMTV object (lmtv.o) in the $LMC_HOME/lib/platform.lib directory

● C-Pipe shared library (slm_pli_dyn.ext), in the $LMC_HOME/lib/platform.lib
directory

If you build your own PLI, you will need to edit the veriuser.c file to pick up the LMTV
header files as follows:

a. After #include “vxl_veriuser.h” add:
#include “ccl_lmtv_include.h”
b. After “/*** add user entries here ***/” add:
#include “ccl_lmtv_include_code.h”

Chapter 5: Using MTI Verilog with Synopsys Models Simulator ConfigurationGuide

118 Synopsys, Inc. July 31, 2001

�

Using MemPro Models with MTI Verilog
MemPro models work with MTI Verilog (ModelSim) using a PLI application called
LMTV that is delivered in the form of a swiftpli_mti shared library in
$LMC_HOME/lib/platform.lib. If you cannot use the swiftpli_mti, refer to “Static
Linking with LMTV” on page 119.

To use the prebuilt swiftpli_mti, follow this procedure:

1. To include MemPro testbench interface commands in your design, add one of the
following lines to your testbench:

Verilog testbench:

`include "mempro_pkg.v"

C testbench:

#include "mempro_c_tb.h"

For more information on using the MemPro testbench interfaces, refer to the “HDL
Testbench Interface” and “C Testbench Interface” chapters in the MemPro User’s
Manual.

2. Instantiate MemPro models in your design. Define ports and generics as required.
For information on generics used with MemPro models, refer to “Instantiating
MemPro Models” on page 32. For information on message levels and message level
constants, refer to “Controlling MemPro Model Messages” on page 33.

3. Compile your code as shown in the following examples:

UNIX

% vlog testbench model.v \
+incdir+$LMC_HOME/sim/pli/src

NT

> vlog testbench model.v
+incdir+%LMC_HOME%\sim\pli\src

4. Invoke the simulator as shown in the following examples:

HP-UX

% vsim -pli $LMC_HOME/lib/hp700.lib/swiftpli_mti.sl design

Solaris

% vsim -pli $LMC_HOME/lib/sun4Solaris.lib/swiftpli_mti.so design

Simulator Configuration Guide Chapter 5: Using MTI Verilog with Synopsys Models

July 31, 2001 Synopsys, Inc. 119

�

Linux

% vsim -pli $LMC_HOME/lib/x86_linux.lib/swiftpli_mti.so design

NT

> vsim -pli %LMC_HOME%\lib\pcnt.lib\swiftpli_mti.dll design

Note�
If you are also using SmartModels or FlexModels in your design, you do not
need to load the swiftpl_mti again, since the same library is used to enable
all three types of models in MTI-Verilog.

Static Linking with LMTV
If you cannot use the Synopsys-supplied swiftpli shared library, refer to the MTI
documentation for information on building your own PLI and locating it for the
simulator. Synopsys still ships the files needed to build your own PLI. These include:

● edited copy of veriuser.c in the $LMC_HOME/sim/pli/src directory

● LMTV object (lmtv.o) in the $LMC_HOME/lib/platform.lib directory

● C-Pipe shared library (slm_pli_dyn.ext), in the $LMC_HOME/lib/platform.lib
directory

If you build your own PLI, you will need to edit the veriuser.c file to pick up the LMTV
header files as follows:

a. After #include “vxl_veriuser.h” add:
#include “ccl_lmtv_include.h”
b. After “/*** add user entries here ***/” add:
#include “ccl_lmtv_include_code.h”

Chapter 5: Using MTI Verilog with Synopsys Models Simulator ConfigurationGuide

120 Synopsys, Inc. July 31, 2001

�

Using Hardware Models with MTI Verilog
To use hardware models with MTI Verilog, follow this procedure. This procedure covers
users on UNIX and NT. If you are on NT, substitute the appropriate NT syntax for any
UNIX command line examples (percent signs around variables and backslashes in
paths). Note that hardware models are supported on MTI Verilog v5.4c and up.

1. MTI Verilog only supports dynamic linking of PLI libraries. The three ways to
specify the required ModelAccess shared library, and the order in which the
simulator looks for PLI libraries, is listed below. Choose one of the following
methods:

a. Add the platform-specific shared library to the Veriuser entry in the
modelsim.ini file:

Solaris

Veriuser = mav.so

AIX

Veriuser = mav.so

HP-UX

Veriuser = mav.sl

NT

Veriuser = mav_mti.dll

b. Add an item in the PLIOBJS environment variable list:

% setenv PLIOBJS “mav.ext”

c. Use the -pli switch on the simulator invocation line:

% vsim -pli mav.ext

Note�
For steps b and c, fill in the correct extension for your platform.

2. Regardless of the option you choose, you must locate the ModelAccess PLI library
for the simulator using a platform-specific environment variable or by specifying
the full path to the library in Step 1. Here are examples for setting the environment
variables which show the full paths to the libraries:

Solaris

% setenv LD_LIBRARY_PATH \
hardware_model_install_path/sms/ma_verilog/lib/sun4_5.6/mav.so

Simulator Configuration Guide Chapter 5: Using MTI Verilog with Synopsys Models

July 31, 2001 Synopsys, Inc. 121

�

HP-UX

% setenv SHLIB_PATH \
hardware_model_install_path/sms/ma_verilog/lib/pa_hp102/mav.sl

AIX

% setenv LIBPATH \
hardware_model_install_path/sms/ma_verilog/lib/rs6000_4.1.5/mav.so

For NT, add this path to the PATH user variable:

hardware_model_install_path\sms\ma_verilog\lib\pcnt

3. Generate a Verilog module definition or shell for each hardware model that you
want to use by running the Synopsys-provided lmvsg script, as shown in the
following example:

% lmvsg destination_model.MDL

For this to work, the hardware_model_install_path/sms//ma_verilog/bin/platform
directory must be in your PATH. For details on the complete syntax of the lmvsg
command, refer to “lmvsg Command Reference” on page 99.

4. Use the Verilog module definitions to instantiate the hardware models in your
testbench. The following example shows an example instantiation for the TILS299
hardware model Notice the two “defparam” statements; the definitions of the
TimingVersion (TILS299A.MDL) and DelayRange (MIN) parameters in the
instantiation override the default definitions in the model.v file (TILS299.MDL and
MAX, respectively). In this example, TILS299A.MDL represents a custom timing
version that the designer wants to use instead of the default timing version
TILS299.MDL.

/ Instantiate UUT : ModelSource TILS299 hardware model : U1
defparam U1.TimingVersion=”TILS299A.MDL”;
defparam U1.DelayRange = “MIN”;
TILS299 U1(.CLK (clkw),

.CLR (clrw),

.A (io1w[0]),

.B (io1w[1]),

.C (io1w[2]),

.D (io1w[3]),

.E (io1w[4]),

.F (io1w[5]),

.G (io1w[6]),

.H (io1w[7]),

.G1 (g1w),

.G2 (g2w),

.QA (qa1w),

.QH (qh1w),

.S0 (s0w),

Chapter 5: Using MTI Verilog with Synopsys Models Simulator ConfigurationGuide

122 Synopsys, Inc. July 31, 2001

�

.S1 (s1w),

.SL (slw),

.SR (srw));

5. Invoke the MTI Verilog simulator as shown in the following example, which
illustrates the use of the -pli switch to specify the PLI library.

% vsim -pli mav_library

MTI Verilog Utilities
The following hardware model utilities are supported in MTI Verilog:

$lm_log_test_vectors (“instance_path”, on_off, “filename”)

The $lm_log_test_vectors command enables test vector logging for a specified instance,
and specifies a file name for the test vector log. For a detailed syntax description, refer
to “$lm_log_test_vectors Command Reference” on page 94.

$lm_loop_instance (“instance_path”)

The $lm_loop_instance command enables the loop mode for a specified model instance.
For a detailed syntax description, refer to “$lm_loop_instance Command Reference” on
page 95.

$lm_timing_information (“instance_path”, “timing_option”)

The $lm_timing_information command lets you override the hardware modeler’s
default handling of timing information for a specified model instance. For a detailed
syntax description, refer to “$lm_timing_information Command Reference” on page 96.

$lm_timing_measurements (“instance_path”, on_off, “filename”)

The $lm_timing_measurements command enables timing measurements for a specified
model instance. It is not supported for ModelSource 3200 and 3400. For a detailed
syntax description, refer to “$lm_timing_measurements Command Reference” on
page 96.

$lm_unknowns (“option=value” [,”option=value”,...] [, “device_or_pin”])

The $lm_unknowns command lets you override the hardware modeler’s default
handling of unknown values for specified instances or pins, or for all hardware model
instances in the simulation. For a detailed syntax description, refer to “$lm_unknowns
Command Reference” on page 97.

Simulator Configuration Guide Chapter 6: Using Scirocco with Synopsys Models

July 31, 2001 Synopsys, Inc. 123

�

6
Using Scirocco with Synopsys

Models

Overview
This chapter explains how to use SmartModels, FlexModels, MemPro models, and
hardware models with Scirocco. The procedures are organized into the following major
sections:

● “Setting Environment Variables” on page 124

● “Using SmartModels with Scirocco” on page 125

● “Using FlexModels with Scirocco” on page 128

● “Using MemPro Models with Scirocco” on page 132

● “Using Hardware Models with Scirocco” on page 135

Hint�
This chapter includes a script that you can use to run any FlexModel
examples testbench with minimal setup required. You can cut-and-paste the
script right out of this PDF file. Refer to “Script for Running FlexModel
Examples in Scirocco” on page 130 for details.

Chapter 6: Using Scirocco with Synopsys Models Simulator ConfigurationGuide

124 Synopsys, Inc. July 31, 2001

�

Setting Environment Variables
First, set the basic environment variables. If you are not using one of the model types,
skip that step. In some cases the procedures that follow in this chapter include steps for
setting additional environment variables.

1. Set the LMC_HOME variable to the location of your SmartModel. FlexModel, and
MemPro model installation tree, as follows:

% setenv LMC_HOME path_to_models_installation

2. Set the SYNOPSYS_SIM variable to point to the Scirocco installation directory as
follows:

% setenv SYNOPSYS_SIM Scirocco_installation_directory

3. Source the environ.csh Scirocco environment file.

% source $SYNOPSYS_SIM/admin/install/setup/environ.csh

4. Set the LM_LICENSE_FILE or SNPSLMD_LICENSE_FILE environment variable
to point to the product authorization file, as shown in the following example:

% setenv LM_LICENSE_FILE path_to_product_authorization_file

% setenv SNPSLMD_LICENSE_FILE path_to_product_authorization_file

You can put license keys for multiple products (for example, SmartModels and
hardware models) into the same authorization file. If you need to keep separate
authorization files for different products, use a colon-separated list (UNIX) or
semicolon-separated list (NT) to specify the search path in your variable setting.

Caution�
Do not include la_dmon-based authorizations in the same file with snpslmd-
based authorizations. If you have authorizations that use la_dmon, keep
them in a separate license file that uses a different license server (lmgrd)
process than the one you use for snpslmd-based authorizations.

5. If you are using the hardware modeler, set the LM_DIR and LM_LIB environment
variables, as shown in the following examples:

% setenv LM_DIR hardware_model_install_path/sms/lm_dir
% setenv LM_LIB hardware_model_install_path/sms/models: \
hardware_model_install_path/sms/maps

If you put your models in a directory other than the default of /sms/models, modify
the above variable setting accordingly.

6. Depending on your platform, set your load library variable to point to the platform-
specific directory in $LMC_HOME, as shown in the following examples:

Simulator Configuration Guide Chapter 6: Using Scirocco with Synopsys Models

July 31, 2001 Synopsys, Inc. 125

�

Solaris:

% setenv LD_LIBRARY_PATH $LMC_HOME/lib/sun4Solaris.lib:$LD_LIBRARY_PATH

Linux:

% setenv LD_LIBRARY_PATH $LMC_HOME/lib/x86_linux.lib:$LD_LIBRARY_PATH

AIX:

% setenv LIBPATH $LMC_HOME/lib/ibmrs.lib:$LIBPATH

HP-UX:

% setenv SHLIB_PATH $LMC_HOME/lib/hp700.lib:$SHLIB_PATH

NT:

Make sure that %LMC_HOME%\lib\pcnt.lib is in the Path user variable.

Using SmartModels with Scirocco
To use SmartModels with Scirocco, follow this procedure:

1. To create SmartModel VHDL templates, check to see if you have write permission
for $LMC_HOME/synopsys/smartmodel; if so skip to Step 4. Otherwise, open the
.synopsys_vss.setup file in your current working directory and search for the string
SMARTMODEL. By default, the logical library name SMARTMODEL is mapped
to $LMC_HOME/synopsys/smartmodel, as follows:

SMARTMODEL : $LMC_HOME/synopsys/smartmodel

2. Change the directory to one for which you have write permission, as shown in the
following example:

SMARTMODEL : ~/smartmodel

3. Generate a VHDL model wrapper file by invoking create_smartmodel_lib with any
optional arguments. For information on the syntax for this command, refer to
“create_smartmodel_lib Command Reference” on page 126.

% $SYNOPSYS_SIM/sim/bin/create_smartmodel_lib arguments

4. If you changed the SMARTMODEL mapping in Step 2, you must use the -srcdir
option to specify that directory. Also, you can save time by using the -model or
-modelfile option to specify the models you want. Otherwise, the script processes all
installed SmartModels. For example, here is a recommended set of options to use
for one SmartModel (ttl00 in this example).:

% $SYNOPSYS_SIM/sim/bin/create_smartmodel_lib -model ttl00 \
-srcdir ~/smartmodel

Chapter 6: Using Scirocco with Synopsys Models Simulator ConfigurationGuide

126 Synopsys, Inc. July 31, 2001

�

5. After create_smartmodel_lib has finished executing, verify that the VHDL template
files have been created in the appropriate directory.

6. To use SmartModels in the VHDL source file of your design, specify the
SMARTMODEL library and instantiate each SmartModel component. In the VHDL
design file that uses SmartModel components, enter the following library and use
clauses:

library SMARTMODEL;
use SMARTMODEL.components.all

The library logical name SMARTMODEL must be mapped to appropriate
directories in your .synopsys_vss.setup file, as described on page 125.

7. Add the following line to your .synopsys_vss.setup file:

TIMEBASE : PS

8. Instantiate SmartModels in your VHDL design. For information on required
configuration parameters and instantiation examples, refer to “Using SmartModels
with SWIFT Simulators” on page 18.

9. Compile your testbench as shown in the following example:

% vhdlan testbench

10. Invoke the Scirocco simulator as shown in the following example:

% scsim design

For information about scsim and the VHDL debugger, refer to the Scirocco User’s
Guide.

create_smartmodel_lib Command Reference
The command reference for create_smarmodel_lib is as follows:

Syntax
create_smartmodel_lib [--] [-nc] [-create] [-srcdir dirpath] [-analyze] [-nowarn]

[-modelfile file] {-model model_name}

Arguments
-- Displays the usage message and lists the command line

options.

-nc Suppresses the Synopsys copyright message.

Simulator Configuration Guide Chapter 6: Using Scirocco with Synopsys Models

July 31, 2001 Synopsys, Inc. 127

�

-create Creates the VHDL source files (.vhd files) for the
SMARTMODEL library and saves the source files in the
$LMC_HOME/synopsys directory.

-src_dir dirpath Lets you specify the location of the VHDL source files that
you create. The default location is $LMC_HOME/synopsys.

-analyze Analyzes the SMARTMODEL library source files (.vhd files)
by invoking vhdlan. The analyzed files (.sim and .mra files)
are saved in the $LMC_HOME/synopsys/smartmodel
directory. This directory is specified by SMARTMODEL
logical name mapping in the setup file.

-nowarn Suppresses the generation of warning messages that notify
you of any port name mappings.

-modelfile file A list of SMARTMODEL component names is read from file.
Names are separated by spaces. Only the specified component
names are included in the SMARTMODEL component
library.

-model model_name The model_name is included in the resulting SMARTMODEL
component library. Repeat this option to specify multiple
models. Only specified component names are included in the
SMARTMODEL component library.

Description
When issued without options, the create_smartmodel_lib command takes all of the files
in the $LMC_HOME/models directory, creates and analyzes the VHDL template files,
and saves them in the $LMC_HOME/synopsys/smartmodel directory. If you do not
have write permission for $LMC_HOME/synopsys/smartmodel, the command
terminates with an error message. In that case, you must use the -src_dir option to
specify a writable directory in which to place the VHDL templates. You must also
specify that directory through the SMARTMODEL library mapping in the
.synopsys_vss.setup file in your current working directory.

Chapter 6: Using Scirocco with Synopsys Models Simulator ConfigurationGuide

128 Synopsys, Inc. July 31, 2001

�

Using FlexModels with Scirocco
To use FlexModels with Scirocco, follow this procedure:

1. If you want the improved performance that comes with bused wrappers, generate a
VHDL model wrapper file by invoking create_smartmodel_lib with any optional
arguments. For more information on the syntax for this command, refer to
“create_smartmodel_lib Command Reference” on page 126.

% $SYNOPSYS_SIM/sim/bin/create_smartmodel_lib arguments

Note�
The bused wrappers enable improved performance but do not work with the
examples testbench shipped with the model. To exercise the examples
testbench, use the wrappers shipped with the model (see Table 18), as
explained in the rest of this procedure. If you are using the bused wrappers,
adjust accordingly.

2. Create a working directory and run flexm_setup to make copies of the model's
interface and example files there, as shown in the following example:

% $LMC_HOME/bin/flexm_setup -dir workdir model_fx

You must run flexm_setup every time you update your FlexModel installation with
a new model version. Table 18 describes the FlexModel Scirocco interface and
example files that the flexm_setup tool copies.

Table 18: FlexModel Scirocco VHDL Files

File Name Description Location

model_pkg.vhd Model command procedure calls for HDL
Command Mode.

workdir/src/vhdl/

model_user_pkg.vhd Clock frequency setup and user
customizations.

workdir/src/vhdl/

model_fx_vss.vhd A SWIFT wrapper for the model. workdir/examples/vhdl/

model_fx_comp.vhd Component definition for use with the model
entity defined in the SWIFT wrapper file. This
is put in a package named “COMPONENTS”
when compiled.

workdir/examples/vhdl/

model.vhd A bus-level wrapper around the SWIFT model.
This allows you to use vectored ports for the
model in your testbench. This file assumes that
the “COMPONENTS” package has been
installed in the logical library “slm_lib”.

workdir/examples/vhdl/

Simulator Configuration Guide Chapter 6: Using Scirocco with Synopsys Models

July 31, 2001 Synopsys, Inc. 129

�

3. Update the clock frequency supplied in the model_user_pkg.vhd file in your
working directory to correspond to the desired clock period for the model. After you
run flexm_setup this file is located in:

workdir/src/vhdl/model_user_pkg.vhd

where workdir is your working directory.

4. Add the following line to your .synopsys_vss.setup file:

SLM_LIB : SLM_LIB_PATH

TIMEBASE : PS

5. Compile the FlexModel VHDL files into logical library slm_lib as follows:

% vhdlan -noevent -w slm_lib $LMC_HOME/sim/vhpi/src/slm_hdlc.vhd
% vhdlan -event -w slm_lib $LMC_HOME/sim/vhpi/src/flexmodel_pkg.vhd
% vhdlan -event -w slm_lib workdir/src/vhdl/model_user_pkg.vhd
% vhdlan -event -w slm_lib workdir/src/vhdl/model_pkg.vhd
% vhdlan -event -w slm_lib workdir/src/vhdl/model_fx_comp.vhd
% vhdlan -event -w slm_lib workdir/src/vhdl/model_fx_vss.vhd
% vhdlan -event -w slm_lib workdir/src/vhdl/model.vhd

6. Add LIBRARY and USE statements to your testbench:

library slm_lib;
use slm_lib.flexmodel_pkg.all;
use slm_lib.model_pkg.all;
use slm_lib.model_user_pkg.all;

For example, you would use the following statement for the tms320c6201_fx
model:

use slm_lib.tms320c6201_pkg.all;
use slm_lib.tms320c6201_user_pkg.all;

model_tst.vhd A testbench that instantiates the model and
shows how to use basic model commands.

workdir/examples/vhdl/

Table 18: FlexModel Scirocco VHDL Files (Continued)

File Name Description Location

Chapter 6: Using Scirocco with Synopsys Models Simulator ConfigurationGuide

130 Synopsys, Inc. July 31, 2001

�

7. Instantiate FlexModels in your design, defining the ports and generics as required
(refer to the example testbench supplied with the model). You use the supplied
bus-level wrapper (model.vhd) in the top-level of your design to instantiate the
supplied bit-blasted wrapper (model_fx_vss.vhd).

Example using bus-level wrapper (model.vhd) without timing:

U1: model
generic map (FlexModelID => “TMS_INST1”)
port map (model ports);

Example using bus-level wrapper (model.vhd) with timing:

U1: model
generic map (FlexModelID => “TMS_INST1”,
FlexTimingMode => FLEX_TIMING_MODE_ON,
TimingVersion => “timingversion”,
DelayRange => “range”)
port map (model ports);

8. Compile your testbench as shown in the following example:

% vhdlan testbench

9. Invoke the Scirocco simulator as shown in the following example:

% scsim -vhpi slm_vhpi:foreignINITelab:cpipe design

Script for Running FlexModel Examples in Scirocco
On page 131 is a Perl script (Figure 6) that you can use to run Scirocco on a FlexModel
examples testbench. You can use this script on any installed FlexModel because each
one comes with a prebuilt testbench example that shows how to use the model
commands and all the VHDL wrapper and procedure definition files that you need. This
script runs on HP-UX and Solaris.

To invoke Scirocco on a FlexModel and its example testbench, follow these steps:

1. Make a working directory and set the TMPDIR variable to that location as shown in
the following example:

% setenv TMPDIR path_to_workdir

2. Use the Acrobat Reader’s text selection tool to select the script shown in Figure 6
and copy the contents to a local file named run_flex_examples_in_scirocco.pl.

3. Save the file and change the permissions so that the file is executable (chmod 775 in
UNIX).

4. Invoke the script as shown in the following example:

% run_flex_examples_in_scirocco.pl model_fx

Simulator Configuration Guide Chapter 6: Using Scirocco with Synopsys Models

July 31, 2001 Synopsys, Inc. 131

�

where model_fx is the name of the FlexModel you want to run.

Note�
This script was developed for internal use and is made available for customer
convenience. It is not actively maintained as part of the licensed software.

Figure 6: run_flex_examples_in_scirocco.pl Script

#!/usr/local/bin/perl
$Revision: 1.4 $
die "\nERROR running $0: ", "No FlexModel name given\n\n", unless($ARGV[0]);
$TmpDir = $ENV{ TMPDIR };die "ERROR running $0: ", "The TMPDIR environment variable must be set.\n"

unless($TmpDir);
$LmcHome = $ENV{ LMC_HOME };
die "ERROR running $0: ", "The LMC_HOME environment variable must be set.\n" unless($LmcHome);
$SynopsysHome = $ENV{ SYNOPSYS_SIM };
die "ERROR running $0: ", "The SYNOPSYS_SIM environment variable must be set.\n" unless($SynopsysHome);
require "$LmcHome/lib/bin/libmdl01003.pl";$Platform = GetPlatform();
$Platform_lib = PlatformToLibDir($Platform);
$flexmodel_name = $ARGV[0];$DirSep ="/";
$output_file = $TmpDir . $DirSep . "Example_Simulator_Run_Script_" . $flexmodel_name . ".txt";
$model_path = $LmcHome . "/models/" . $flexmodel_name;
if (-e $model_path) { }
else { die "\nERROR running $0: ", "FlexModel $flexmodel_name Does not Exist in Library\n\n"; }
$version_path = `$LmcHome/bin/flexm_setup $flexmodel_name`;
chomp($version_path);
if ($flexmodel_name =~ /_fx/) { $flexmodel_name =~ s/_fx//g; $flex_or_c = "_fx";}elsif ($flexmodel_name =~ /_fz/
) { $flexmodel_name =~ s/_fz//g; $flex_or_c = "_fz";}else {

die "\nERROR running $0: ", "$flexmodel_name is not a FlexModel. Model must have an _fx or _fz to be a
FlexModel\n\n";}
$setup_file = $TmpDir . $DirSep . ".synopsys_vss.setup";
open(OFILE,"> $setup_file") || die " Could not create file : $setup_file\n";
print OFILE ("-- Example Scirocco library setup file\n");
print OFILE ("work > DEFAULT\n");print OFILE ("DEFAULT : work\n");print OFILE ("SLM_LIB : slm_lib\n");print OFILE
("TIMEBASE = PS\n");print OFILE ("\n");close(OFILE);
$work_dir = $TmpDir . $DirSep . "work";$slm_lib_dir = $TmpDir . $DirSep . "slm_lib";
mkdir($work_dir, 0777);mkdir($slm_lib_dir, 0777);
if ($Platform eq "pcnt") { $source_setup_file = "cmd /c " . $SynopsysHome . "/admin/setup/environ.bat"} else
{$source_setup_file = "source " . $SynopsysHome . "/admin/setup/environ.csh"}
$analyze_slm_hdlc = "vhdlan -noevent -w slm_lib " . $LmcHome . "/sim/vhpi/src/slm_hdlc.vhd";
$analyze_flexmodel_pkg = "vhdlan -event -w slm_lib " . $LmcHome . "/sim/vss/src/flexmodel_pkg.vhd";
$analyze_model_user_pkg = "vhdlan -event -w slm_lib " . $version_path . "/src/vhdl/" . $flexmodel_name .
"_user_pkg.vhd";
$analyze_model_pkg = "vhdlan -event -w slm_lib " . $version_path . "/src/vhdl/" . $flexmodel_name . "_pkg.vhd";
$analyze_model_prim = "vhdlan -event -w slm_lib " . $version_path . "/examples/vhdl/" . $flexmodel_name .
$flex_or_c . "_vss.vhd";
$analyze_model_comp = "vhdlan -event -w slm_lib " . $version_path . "/examples/vhdl/" . $flexmodel_name .
$flex_or_c . "_comp.vhd";
$analyze_model = "vhdlan -event -w slm_lib " . $version_path . "/examples/vhdl/" . $flexmodel_name . ".vhd";
$analyze_model_tst = "vhdlan -event " . $version_path . "/examples/vhdl/" . $flexmodel_name . "_tst.vhd";
if ($Platform eq "pcnt") {$run_file = $TmpDir . $DirSep . "run_scirocco_" . $flexmodel_name . ".cmd";}else {
$run_file = $TmpDir . $DirSep . "run_scirocco_" . $flexmodel_name;}
open(OFILE,"> $run_file") || die " Could not create file : $run_file\n";
if ($Platform eq "pcnt") { } else { print OFILE ("#!/bin/csh -f\n");}
print OFILE ("$source_setup_file\n");print OFILE ("$analyze_slm_hdlc\n");print OFILE
("$analyze_flexmodel_pkg\n");print OFILE ("$analyze_model_user_pkg\n");print OFILE ("$analyze_model_pkg\n");print
OFILE ("$analyze_model_prim\n");print OFILE ("$analyze_model_comp\n");print OFILE ("$analyze_model\n");print OFILE
("$analyze_model_tst\n");
$virsim_command = "virsim +simtype+Scirocco +simargs+\" -vhpi slm_vhpi:foreignINITelab:cpipe cfgtest\"
";print OFILE ("$virsim_command\n");
close(OFILE);if ($Platform eq "pcnt") { } else { chmod(0777, $run_file);}
if ($Platform eq "pcnt") { #$run_it = "wstart /d $TmpDir "; # Means nothing until Scirocco is on PCNT $run_it =
""; $run_it = $run_it . $run_file;}
else { $run_it = "cd " . $TmpDir . " ; "; $run_it = $run_it . $run_file;}
print("\n $run_it \n");system($run_it);

Chapter 6: Using Scirocco with Synopsys Models Simulator ConfigurationGuide

132 Synopsys, Inc. July 31, 2001

�

Example Simulator Run Script
The run_flex_examples_in_scirocco.pl script also creates an example C Shell simulator
run script for the specified model in your $TMPDIR directory. You can use this run
script to invoke Scirocco after running the run_flex_examples_in_scirocco.pl script.
Here is what the script looks like for the mpc860_fx model.

#!/bin/csh -f
source /d/edavs/snps-2000.02PROD/admin/setup/environ.csh
vhdlan -noevent -w slm_lib /d/lmgqa2/dalew/flex/lmc_home/sim/vhpi/src/slm_hdlc.vhd
vhdlan -event -w slm_lib /d/lmgqa2/dalew/flex/lmc_home/sim/vss/src/flexmodel_pkg.vhd
vhdlan -event -w slm_lib
/d/lmgqa2/dalew/flex/lmc_home/models/mpc860_fx/mpc860_fx02012/src/vhdl/mpc860_user_pkg.v
hd
vhdlan -event -w slm_lib
/d/lmgqa2/dalew/flex/lmc_home/models/mpc860_fx/mpc860_fx02012/src/vhdl/mpc860_pkg.vhd
vhdlan -event -w slm_lib
/d/lmgqa2/dalew/flex/lmc_home/models/mpc860_fx/mpc860_fx02012/examples/vhdl/mpc860_fx_vs
s.vhd
vhdlan -event -w slm_lib
/d/lmgqa2/dalew/flex/lmc_home/models/mpc860_fx/mpc860_fx02012/examples/vhdl/mpc860_fx_co
mp.vhd
vhdlan -event -w slm_lib
/d/lmgqa2/dalew/flex/lmc_home/models/mpc860_fx/mpc860_fx02012/examples/vhdl/mpc860.vhd
vhdlan -event
/d/lmgqa2/dalew/flex/lmc_home/models/mpc860_fx/mpc860_fx02012/examples/vhdl/mpc860_tst.v
hd
virsim +simtype+Scirocco +simargs+" -vhpi slm_vhpi:foreignINITelab:cpipe cfgtest"

Using MemPro Models with Scirocco
You must have MemPro version 2000.04 or higher to use MemPro models with
Scirocco. To use Scirocco with MemPro models, follow this procedure.

1. Add the Scirocco library path to your library path environment variable.

HP-UX:

% setenv SHLIB_PATH \
$SYNOPSYS_SIM/hpux10/sim/lib:$SHLIB_PATH

Solaris:

% setenv LD_LIBRARY_PATH \
$SYNOPSYS_SIM/sparcOS5/sim/lib:$LD_LIBRARY_PATH

2. Add the Scirocco executable to your search path:

% set path = ($SYNOPSYS_SIM/platform/sim/bin $path)

where platform is hpux10 or sparcOS5.

Simulator Configuration Guide Chapter 6: Using Scirocco with Synopsys Models

July 31, 2001 Synopsys, Inc. 133

�

3. Create a logical library named slm_lib. The default physical library mapping for this
is $LMC_HOME/sim/vhpi/lib. If you do not wish to install the library in the
LMC_HOME tree, you can create it in any other location.

4. Add the following line to your .synopsys_vss.setup file:

SLM_LIB : $LMC_HOME/sim/vhpi/lib

TIMEBASE : PS

5. Compile the MemPro VHDL files into logical library slm_lib. Note that
rdramd_pkg.vhd is not required unless you are simulating RDRAM MemPro
models.

% vhdlan -noevent -w slm_lib $LMC_HOME/sim/vhpi/src/slm_hdlc.vhd
% vhdlan -event -w slm_lib $LMC_HOME/sim/vhpi/src/mempro_pkg.vhd
% vhdlan -event -w slm_lib $LMC_HOME/sim/vhpi/src/rdramd_pkg.vhd

6. After generating a model using MemPro, compile the VHDL code for the model, as
shown in the following example:

% vhdlan mymem.vhd

7. If you compiled the model to a library (SLM_MODELS in these examples), add a
LIBRARY statement to your testbench:

LIBRARY SLM_MODELS

This makes models in SLM_MODELS accessible from your design. You can refer
to the model using a standard VHDL convention, such as a CONFIGURATION
statement:

CONFIGURATION mymem_a OF mymem_tst IS
FOR atest

FOR ALL : mymem use CONFIGURATION SLM_MODELS.mymem_behav;
END FOR;

END FOR;
END mymem_a;

8. Add LIBRARY and USE statements to your testbench:

LIBRARY SLM_LIB
USE SLM_LIB.mempro_pkg.all

This also provides access to MemPro testbench commands.

For more information on using the MemPro testbench interfaces, refer to the “HDL
Testbench Interface” and “C Testbench Interface” chapters in the MemPro User’s
Manual.

9. Instantiate MemPro models in your design. Define ports and generics as required.
For information on generics used with MemPro models, refer to “Instantiating
MemPro Models” on page 32. For information on message levels and message level
constants, refer to “Controlling MemPro Model Messages” on page 33.

Chapter 6: Using Scirocco with Synopsys Models Simulator ConfigurationGuide

134 Synopsys, Inc. July 31, 2001

�

10. Compile your design as shown in the following example

% vhdlan design_name

11. Invoke Scirocco on your design, making sure to include all libraries, as shown in the
following example:

% scsim -debug_all -vhpi slm_vhpi:foreignINITelab:cpipe design_name

Note�
The -debug_all switch is only needed on Scirocco release 2000.02.

Using MemPro Models in a Testbench
To use a MemPro model in a testbench, follow this procedure. If you already created
scsim when using a MemPro model or FlexModel, skip to Step 4.

1. Create a MemPro VHDL model using MemSpec. Generate code for Cyclone or
VSS.

2. Instantiate the MemPro component in your testbench.

3. Set your UNIX search path so that it points to the new vhdlsim executable you just
created.

4. Run the following commands to compile the required MemPro VHDL packages:

% mkdir slm_lib MY_WORK
% vhdlan -noevent -w slm_lib $LMC_HOME/sim/vhpi/src/slm_hdlc.vhd
% vhdlan -event -w slm_lib $LMC_HOME/sim/vhpi/src/mempro_pkg.vhd

5. Compile the model and testbench that you just created:

% vhdlan -event -w MY_WORK upd4516161.vhd
% vhdlan -event -w MY_WORK upd_testbench.vhd

6. Run the simulation:

% ./scsim -vhpi slm_vhpi:ForeignINITelab:cpipe your_testbench

Simulator Configuration Guide Chapter 6: Using Scirocco with Synopsys Models

July 31, 2001 Synopsys, Inc. 135

�

Using Hardware Models with Scirocco
To use Scirocco with hardware models, follow this procedure. Note that your design can
include a mix of event-based and cycle-based, but hardware models simulate only as
event-based.

1. Make sure Scirocco is set up properly and all required environment variables are
set, as explained in “Setting Environment Variables” on page 124.

2. Add the hardware model install tree to your path variable, as shown in the following
example:

% set path=(/install/sms/bin/your_platform/ $path)

3. Create the model.vhd wrapper file for your hardware model. You can use the nawk
script provided in “Scirocco Template Generator Script for Hardware Models” on
page 138 to generate this file. Copy the script and paste it into an executable file
called hwm2vhdl.nawk.

4. If you generate the wrapper by hand, you must provide:

❍ an entity-architecture pair declaration so Scirocco can reference it in a later
component instantiation statement.

❍ a package for defining constants, declaring components, and instantiating
components.

Scirocco Example with TILS299 Hardware Model
The following example uses the TILS299 hardware model to show how to set up
hardware models for use with Scirocco:

1. After creating the wrapper .vhd file, analyze the file using vhdlan, as shown in the
following example:

% vhldan -event TILS299.vhd

2. Place the hardware model in the testbench file and invoke the simulator, as follows:

% scsim -t ns TB_TILS299

The ns argument invokes the simulator with nanosecond time steps.

Attention�
When using hardware models with Scirocco, your design can include a mix
of event-based and cycle-based, but hardware models simulate only as
event-based.

Chapter 6: Using Scirocco with Synopsys Models Simulator ConfigurationGuide

136 Synopsys, Inc. July 31, 2001

�

Scirocco Utilities
The following hardware modeler simulator commands are supported in Scirocco.

#lmsi list devices | ids

You can use the lmsi list devices command to list all hardware model instances by
device name, and the lmsi list ids command to list all hardware model instances by id
name. For example:

lmsi list devices
device name id# instance name logging
TILS299 0 /TB_TILS299/U0 Off
lmsi list ids
id# device name instance name logging
0 TILS299 /TB_TILS299/U0 Off

You can also log test vectors for the hardware model. To log by ID number, specify an
id# and a filename. The extension .TST is appended to the vector file name. If no file
name is specified, VSS writes to a file named device_name.id#.TST. For example:

#lmsi logon id# filename

To log vectors by instance name, specify an instance_name and filename. The extension
.TST is appended to the output file name. For example:

#lmsi logon instance_name filename

To log vectors for all hardware model device instances, specify all. A log file is created
for each instance. The output files are named device_name.id#.TST. For example:

#lmsi logon all

To turn off vector logging, replace logon with logoff and omit the file name in the above
examples.

VHDL Model Generics with Scirocco
You can also control hardware model behavior using VHDL generics in your hardware
model instantiations. The nawk script on page 138 creates VHDL wrappers for
hardware models with these VHDL generics set to values that are reasonable for most
simulations. However, you can modify the values of the VHDL generics in your
model.vhd files to suit your verification needs. For more information on supported
VHDL generics, refer to the Synopsys VHDL Simulation Interfaces Manual. Following
are descriptions of some of the most useful generics:

LMSI_TIMING_MEASUREMENT

You can use the LMSI_TIMING_MEASUREMENT generic to direct where timing
values for your simulation session come from. There are two legal values:

Simulator Configuration Guide Chapter 6: Using Scirocco with Synopsys Models

July 31, 2001 Synopsys, Inc. 137

�

ENABLED The hardware modeler measures and records actual pin-to-pin
timing values and passes them to the simulator.

DISABLED The hardware modelers passes to the simulator the pin-to-pin
timing values from the .TMG file. This is the default value.

LMSI_DELAY_TYPE

You can use the LMSI_DELAY_TYPE generic to specify whether the hardware
modeler returns pin values to the simulator with minimum, typical, or maximum delays,
as you can see in the following legal values:

MINIMUM Return minimum delays for pin values to the simulator.

TYPICAL Return typical delays for pin values to the simulator. This is
the default.

MAXIMUM Return maximum delays for pin values to the simulator.

LMSI_LOG

You can use the LMSI_LOG generic to specify whether the hardware modeler logs test
vector or not. There are two legal values:

ENABLED The hardware modeler logs test vectors.

DISABLED The hardware modelers does not log test vectors. This is the
default value.

Chapter 6: Using Scirocco with Synopsys Models Simulator ConfigurationGuide

138 Synopsys, Inc. July 31, 2001

�

Scirocco Template Generator Script for Hardware Models
Here is the nawk script that you can use to generate VHDL wrappers for the hardware
models. Because of the length this script, you will have to cut-and-paste one page at a
time from this PDF file to get the whole thing copied to your environment.

**
In your design directory type:
#
nawk -f hwm2vhdl.nawk $HWM/<model>.NAM > <outfile>.vhd
#
(where "$HWM" is the full path to your hardware modeling directory)
Instantiate .vhd into your design.
#
THE SCRIPT:
#
Script to generate a VSS/Scirocco VHDL shell for a hardware model
using the <model>.NAM file

BEGIN {
pin_type = 0
is_it_a_vector = "No"
data_type = ""
prev_signal = ""
prev_test = ""
prev_number = ""
prev_dir = ""
ending = ";"

printf "library SYNOPSYS;\n"
printf " use SYNOPSYS.ATTRIBUTES.all;\n"
printf "library IEEE;\n"
printf " use IEEE.std_logic_1164.all;\n\n"

}

$2 ~ /generic_device_name/ {
device = $3
printf "entity " device " is\n"
printf " generic\n"
printf " (\n"
printf " timing : LMSI_TIMING_MEASUREMENT := DISABLED;\n"
printf " delay_type : LMSI_DELAY_TYPE := TYPICAL;\n"
printf " delay : LMSI_DELAY := ENABLED;\n"
printf " log : LMSI_LOG := DISABLED;\n"
printf " timing_violations : LMSI_TIMING_VIOLATIONS := DISABLED;\n"
printf " xprop : LMSI_XPROP := DISABLED;\n"
printf " xprop_method : LMSI_XPROP_METHOD := HIGH\n"
printf ");\n\n"
printf " port\n"
printf " (\n"

}

$4 ~ /\(in_pin\)/ || $4 ~ /\(out_pin\)/ || $4 ~ /\(io_pin\)/ \
|| $4 ~ /\(power_pin\)/ {

pin_type++
}

$2 ~ /\=/ || ($0 ~ /^$/ && pin_type ~ /3/) {
if (pin_type == 1) {

direction = "in "
}
else if (pin_type == 2) {

direction = "out "
}
else if (pin_type == 3) {

direction = "inout"
}
else {

next
}
current_signal = $1 " "
gsub(/\{/, "", current_signal)
gsub(/\'/, "", current_signal)

current_test = current_signal

Simulator Configuration Guide Chapter 6: Using Scirocco with Synopsys Models

July 31, 2001 Synopsys, Inc. 139

�

gsub(/[0-9]+ /, " ", current_test)

n = split(current_signal, array_a, "[a-zA-Z]")
current_number = array_a[n]
gsub(/ /, "", current_number)

if (prev_signal ~ /[0-9]+ /) {
if (current_test == prev_test) {

if (is_it_a_vector == "No") {
data_start = prev_number

}
if ((current_number == prev_number - 1) || (current_number == prev_number + 1))
{

is_it_a_vector = "Yes"
}
prev_signal = current_signal
prev_test = current_test
prev_number = current_number
next

}
else {

if (is_it_a_vector == "Yes") {
total = prev_number + data_start
if (prev_number > data_start) {

data_end = data_start
data_start = prev_number

}
else {

data_end = prev_number
}
data_type = "_vector (" data_start " " "downto " data_end ")"
prev_signal = prev_test

}
}

}
if (prev_signal != "") {

gsub(/ /, "", prev_signal)
n = split(prev_signal, array_c, "[a-zA-z0-9_]")
y = 20 - n
if (y > 0) {

for (i = 1; i <= 20-n; i++) {
prev_signal = prev_signal " "

}
}
if (($0 ~ /^$/) && (pin_type == 3)) {

ending = ""
}
printf " " prev_signal " : " prev_dir " std_logic" data_type ending "\n"

}
data_type = ""
is_it_a_vector = "No"
updown = ""
prev_signal = current_signal
prev_test = current_test
prev_dir = direction
prev_number = current_number

}

END {
printf ");\n"
printf "end " device ";\n\n"
printf "architecture LMSI of " device " is\n"
printf " attribute FOREIGN of LMSI : architecture is \"Synopsys:LMSI\";\n"
printf " begin\n"
printf "end LMSI;\n\n"

}

Chapter 6: Using Scirocco with Synopsys Models Simulator ConfigurationGuide

140 Synopsys, Inc. July 31, 2001

�

Simulator Configuration Guide Chapter 7: Using VSS with Synopsys Models

July 31, 2001 Synopsys, Inc. 141

�

7
Using VSS with Synopsys Models

Overview
This chapter explains how to use SmartModels, FlexModels, MemPro models, and
hardware models with VSS. The procedures are organized into the following major
sections:

● “Setting Environment Variables” on page 141

● “Using SmartModels with VSS” on page 143

● “Using FlexModels with VSS” on page 145

● “Using MemPro Models with VSS” on page 148

● “Using Hardware Models with VSS” on page 150

Setting Environment Variables
First, set the basic environment variables. If you are not using one of the model types,
skip that step. In some cases the procedures that follow in this chapter include steps for
setting additional environment variables.

1. Set the LMC_HOME variable to the location of your SmartModel. FlexModel, and
MemPro model installation tree, as follows:

% setenv LMC_HOME path_to_models_installation

2. Set the SYNOPSYS variable to point to the VSS installation directory as follows:

% setenv SYNOPSYS VSS_installation_directory

3. Source the environ.csh VSS environment file.

For VSS version 1998.08-1 and earlier, use this path:

% source $SYNOPSYS/admin/install/sin/environ.csh

Chapter 7: Using VSS with Synopsys Models Simulator ConfigurationGuide

142 Synopsys, Inc. July 31, 2001

�

For VSS version 1999.05 and later, use this path:

% source $SYNOPSYS/admin/setup/environ.csh

4. Set the LM_LICENSE_FILE or SNPSLMD_LICENSE_FILE environment variable
to point to the product authorization file, as shown in the following example:

% setenv LM_LICENSE_FILE path_to_product_authorization_file

% setenv SNPSLMD_LICENSE_FILE path_to_product_authorization_file

You can put license keys for multiple products (for example, SmartModels and
hardware models) into the same authorization file. If you need to keep separate
authorization files for different products, use a colon-separated list (UNIX) or
semicolon-separated list (NT) to specify the search path in your variable setting.

Caution�
Do not include la_dmon-based authorizations in the same file with snpslmd-
based authorizations. If you have authorizations that use la_dmon, keep
them in a separate license file that uses a different license server (lmgrd)
process than the one you use for snpslmd-based authorizations.

5. If you are using the hardware modeler, set the LM_DIR and LM_LIB environment
variables, as shown in the following examples:

% setenv LM_DIR hardware_model_install_path/sms/lm_dir
% setenv LM_LIB hardware_model_install_path/sms/models: \
hardware_model_install_path/sms/maps

If you put your models in a directory other than the default of /sms/models, modify
the above variable setting accordingly.

6. Depending on your platform, set your load library variable to point to the platform-
specific directory in $LMC_HOME, as shown in the following examples:

Solaris:

% setenv LD_LIBRARY_PATH $LMC_HOME/lib/sun4Solaris.lib:$LD_LIBRARY_PATH

Linux:

% setenv LD_LIBRARY_PATH $LMC_HOME/lib/x86_linux.lib:$LD_LIBRARY_PATH

AIX:

% setenv LIBPATH $LMC_HOME/lib/ibmrs.lib:$LIBPATH

HP-UX:

% setenv SHLIB_PATH $LMC_HOME/lib/hp700.lib:$SHLIB_PATH

NT:

Make sure that %LMC_HOME%\lib\pcnt.lib is in the Path user variable.

Simulator Configuration Guide Chapter 7: Using VSS with Synopsys Models

July 31, 2001 Synopsys, Inc. 143

�

Using SmartModels with VSS
To use SmartModels with VSS, follow this procedure:

1. To create SmartModel VHDL templates, check to see if you have write permission
for $LMC_HOME/synopsys/smartmodel; if so skip to Step 3. Otherwise, open the
.synopsys_vss.setup file in your current working directory and search for the string
SMARTMODEL. By default, the logical library name SMARTMODEL is mapped
to $LMC_HOME/synopsys/smartmodel, as follows:

SMARTMODEL : $LMC_HOME/synopsys/smartmodel

2. Change the directory to one for which you have write permission, as in the
following example:

SMARTMODEL : ~/smartmodel

3. To generate VHDL model wrapper files, invoke create_smartmodel_lib with any
optional arguments. For information on the syntax for this command, refer to
“create_smartmodel_lib Command Reference” on page 144.

% $SYNOPSYS_SIM/sim/bin/create_smartmodel_lib arguments

4. If you changed the SMARTMODEL mapping in Step 3, you must use the -srcdir
option to specify that directory. Also, you can save time by using the -model or
-modelfile option to specify the models you want. Otherwise, the script processes all
installed SmartModels. For example, here is a recommended set of options to use
for one SmartModel (ttl00 in this example).:

% $SYNOPSYS_SIM/sim/bin/create_smartmodel_lib -model ttl00 \
-srcdir ~/smartmodel

5. After create_smartmodel_lib has finished executing, verify that the VHDL template
files have been created in the appropriate directory.

6. To use SmartModels in the VHDL source file of your design, specify the
SMARTMODEL library and instantiate each SmartModel component. In the VHDL
design file that uses SmartModel components, enter the following library and use
clauses:

library SMARTMODEL;
use SMARTMODEL.components.all

The library logical name SMARTMODEL must be mapped to appropriate
directories in your .synopsys_vss.setup file.

7. Add the following line to your .synopsys_vss.setup file:

TIMEBASE : PS

Chapter 7: Using VSS with Synopsys Models Simulator ConfigurationGuide

144 Synopsys, Inc. July 31, 2001

�

8. Instantiate SmartModels in your VHDL design. For information on required
configuration parameters and instantiation examples, refer to “Using SmartModels
with SWIFT Simulators” on page 18.

9. Compile your testbench as shown in the following example:

% vhdlan testbench

10. Invoke the VSS simulator as shown in the following example:

% vhdlsim design

For information about vhdlsim and the VHDL debugger, refer to the VSS User’s
Guide.

create_smartmodel_lib Command Reference
The command reference for create_smartmodel_lib is as follows.

Syntax
create_smartmodel_lib [--] [-nc] [-create] [-srcdir dirpath] [-analyze] [-nowarn]

[-modelfile file] {-model model_name}

Arguments
-- Displays the usage and all the command line options of the

utility.

-nc Suppresses the Synopsys copyright message.

-create Creates the VHDL source files (.vhd files) for the
SMARTMODEL library and saves the source files in the
$LMC_HOME/synopsys directory.

-src_dir dir Lets you specify the location of the VHDL source files that
you create. The default location is $LMC_HOME/synopsys.

-analyze Analyzes the SMARTMODEL library source files (.vhd files)
by invoking vhdlan. The analyzed files (.sim and .mra files)
are saved in the $LMC_HOME/synopsys/smartmodel
directory. This directory is specified by the SMARTMODEL
logical name mapping in the setup file.

-nowarn Suppresses the generation of warning messages that notify
you of any port name mappings. See “VHDL Reserved Port
and Window Names” in the VSS Expert Interface Manual for
more information about port name mappings.

Simulator Configuration Guide Chapter 7: Using VSS with Synopsys Models

July 31, 2001 Synopsys, Inc. 145

�

-modelfile file A list of SMARTMODEL component names is read from file.
Names are separated by spaces. Only those component names
specified are included in the SMARTMODEL component
library.

-model modelname Each specified modelname is included in the resulting
SMARTMODEL component library. Repeat this option to
specify multiple models. Only those component names
specified are included in the SMARTMODEL component
library.

Description
The create_smartmodel_lib command, if issued without options, uses as input all of the
files in the $LMC_HOME/models directory, creates and analyzes the template files, and
saves them in the $LMC_HOME/synopsys/smartmodel directory. If you do not have
write permission for $LMC_HOME/synopsys/smartmodel, the command terminates
with an error message. In that case, you must use the -src_dir option to specify a
writable directory in which to place the VHDL templates. You must also specify that
directory through the SMARTMODEL library mapping in the .synopsys_vss.setup file
in your current working directory.

Using FlexModels with VSS
To use FlexModels with VSS in UNIX, follow this procedure. There is no custom
integration for VSS on NT, but you can use Direct C Control. For information on using
Direct C Control, refer to “Instantiating FlexModels with Direct C Control” on page 26.

1. If you want the improved performance that comes with bused wrappers, you can
generate VHDL model wrapper files by invoking create_smartmodel_lib with any
optional arguments. For more information on the syntax for this command, refer to
“create_smartmodel_lib Command Reference” on page 144.

% $SYNOPSYS_SIM/sim/bin/create_smartmodel_lib arguments

Note�
The bused wrappers enable improved performance but do not work with the
examples testbench shipped with the model. To exercise the examples
testbench, use the wrappers shipped with the model (see Table 19), as
explained in the rest of this procedure. If you are using the bused wrappers,
adjust accordingly.

Chapter 7: Using VSS with Synopsys Models Simulator ConfigurationGuide

146 Synopsys, Inc. July 31, 2001

�

2. Create a working directory and run flexm_setup to make copies of the model's
interface and example files there, as shown in the following example:

% $LMC_HOME/bin/flexm_setup -dir workdir model_fx

You must run flexm_setup every time you update your FlexModel installation with
a new model version. Table 19 describes the FlexModel VSS interface and example
files that the flexm_setup tool copies.

3. Update the clock frequency supplied in the model_user_pkg.vhd file in your
working directory to correspond to the desired clock period for the model. After
running flexm_setup this file will be located in:

workdir/src/vhdl/model_user_pkg.vhd

where workdir is your working directory.

4. Compile a dummy module to force linking of CLI library functions, as shown in the
following example:

% cp $LMC_HOME/sim/vss/src/vss_dummy_calls.c ./vss_dummy_calls.c
% cli -ansi -s -add -cf vss_dummy_calls.c vss_dummy_calls

Table 19: FlexModel VSS VHDL Files

File Name Description Location

model_pkg.vhd Model command procedure calls for HDL
Command Mode.

workdir/src/vhdl/

model_user_pkg.vhd Clock frequency setup and user
customizations.

workdir/src/vhdl/

model_fx_vss.vhd A SWIFT wrapper for the model. workdir/examples/vhdl/

model_fx_comp.vhd Component definition for use with the model
entity defined in the SWIFT wrapper file. This
is put in a package named “COMPONENTS”
when compiled.

workdir/examples/vhdl/

model.vhd A bus-level wrapper around the SWIFT model.
This allows you to use vectored ports for the
model in your testbench. This file assumes that
the “COMPONENTS” package has been
installed in the logical library “slm_lib”.

workdir/examples/vhdl/

model_tst.vhd A testbench that instantiates the model and
shows how to use basic model commands.

workdir/examples/vhdl/

Simulator Configuration Guide Chapter 7: Using VSS with Synopsys Models

July 31, 2001 Synopsys, Inc. 147

�

5. Link the FlexModel binary into the vhdlsim simulation executable:

% cli -ansi -s -build -libs $LMC_HOME/lib/platform.lib/slm_vss.o

where platform is hp700 or sun4Solaris.

The new version of vhdlsim you just created must be used when you simulate a
design that includes FlexModels. This vhdlsim must be defined as the first vhdlsim
in your UNIX search path.

6. Add the following line to your .synopsys_vss.setup file:

SLM_LIB : SLM_LIB_PATH

TIMEBASE : PS

7. Compile the FlexModel VHDL files into logical library slm_lib as follows:

% vhdlan -c -w slm_lib $LMC_HOME/sim/vss/src/slm_hdlc.vhd
% vhdlan -c -w slm_lib $LMC_HOME/sim/vss/src/flexmodel_pkg.vhd
% vhdlan -c -w slm_lib workdir/src/vhdl/model_user_pkg.vhd
% vhdlan -c -w slm_lib workdir/src/vhdl/model_pkg.vhd
% vhdlan -c -w slm_lib workdir/src/vhdl/model_fx_comp.vhd
% vhdlan -c -w slm_lib workdir/src/vhdl/model_fx_vss.vhd
% vhdlan -c -w slm_lib workdir/src/vhdl/model.vhd

8. Add LIBRARY and USE statements to your testbench:

library slm_lib;
use slm_lib.flexmodel_pkg.all;
use slm_lib.model_pkg.all;
use slm_lib.model_user_pkg.all;

For example, you would use the following statement for the tms320c6201_fx
model:

use slm_lib.tms320c6201_pkg.all;
use slm_lib.tms320c6201_user_pkg.all;

9. Instantiate FlexModels in your design, defining the ports and generics as required
(refer to the example testbench supplied with the model). You use the supplied
bus-level wrapper (model.vhd) in the top-level of your design to instantiate the
supplied bit-blasted wrapper (model_fx_vss.vhd).

Example using bus-level wrapper (model.vhd) without timing:

U1: model
generic map (FlexModelID => “TMS_INST1”)
port map (model ports);

Chapter 7: Using VSS with Synopsys Models Simulator ConfigurationGuide

148 Synopsys, Inc. July 31, 2001

�

Example using bus-level wrapper (model.vhd) with timing:

U1: model
generic map (FlexModelID => “TMS_INST1”,
FlexTimingMode => FLEX_TIMING_MODE_ON,
TimingVersion => “timingversion”,
DelayRange => “range”)
port map (model ports);

10. Compile your testbench as shown in the following example:

% vhdlan testbench

11. Invoke the VSS simulator as shown in the following example:

% vhdlsim design

Using MemPro Models with VSS
To use MemPro models with VSS, follow this procedure. Note that on Solaris, VSS
requires the Sunsoft compiler and Solaris 2.5 or later.

1. Compile a dummy module to force linking of CLI library functions:

% cli -ansi -s -add -cf \
$LMC_HOME/sim/vss/src/vss_dummy_calls.c vss_dummy_calls

2. Link the MemPro binary into the vhdlsim simulation executable:

% cli -ansi -s -build -libs $LMC_HOME/lib/platform.lib/slm_vss.o

where platform is hp700 or sun4Solaris.

The new version of vhdlsim you just created must be used when you simulate a
design that includes MemPro memory models. In order to use vhdldbx on a design
that includes MemPro models, the vhdlsim you just created must be defined as the
first vhdlsim in your UNIX search path.

3. For Solaris, set the LD_LIBRARY_DATA environment variable as follows:

% setenv LD_LIBRARY_DATA $SYNOPSYS/sparcOS5/sim/lib

4. Create a logical library named slm_lib. The default physical library mapping for this
is $LMC_HOME/sim/vss/lib; however, you can create slm_lib any where you want.

Add the following line to your .synopsys_vss.setup file:

SLM_LIB : $LMC_HOME/sim/vss/lib

TIMEBASE : PS

Simulator Configuration Guide Chapter 7: Using VSS with Synopsys Models

July 31, 2001 Synopsys, Inc. 149

�

5. Compile the MemPro VHDL files into logical library slm_lib. Note that
rdramd_pkg.vhd is not required unless you are simulating RDRAM MemPro
models.

% vhdlan -c -w slm_lib $LMC_HOME/sim/vss/src/slm_hdlc.vhd
% vhdlan -c -w slm_lib $LMC_HOME/sim/vss/src/mempro_pkg.vhd
% vhdlan -c -w slm_lib $LMC_HOME/sim/vss/src/rdramd_pkg.vhd

Note�
The vhdlan program returns an “Error compiling file” warning message for
rdramd_pkg.vhd and reverts to interpreted code for the file. Your designs
containing MemPro RDRAMs will simulate properly, however.

6. After generating a model using MemPro, compile the VHDL code for the model, as
shown in the following example:

% vhdlan -c mymem.vhd

7. If you compiled the model to a library (SLM_MODELS in these examples), add a
LIBRARY statement to your testbench:

LIBRARY SLM_MODELS

This makes models in SLM_MODELS accessible from your design. You can refer
to the model using a standard VHDL convention, such as a CONFIGURATION
statement:

CONFIGURATION mymem_a OF mymem_tst IS
FOR atest

FOR ALL : mymem use CONFIGURATION SLM_MODELS.mymem_behav;
END FOR;

END FOR;
END mymem_a;

8. Add LIBRARY and USE statements to your testbench:

LIBRARY SLM_LIB
USE SLM_LIB.mempro_pkg.all

This also provides access to MemPro testbench commands.

For more information on using the MemPro testbench interfaces, refer to the “HDL
Testbench Interface” and “C Testbench Interface” chapters in the MemPro User’s
Manual.

9. Instantiate MemPro models in your design. Define ports and generics as required.
For information on generics used with MemPro models, refer to “Instantiating
MemPro Models” on page 32. For information on message levels and message level
constants, refer to “Controlling MemPro Model Messages” on page 33.

Chapter 7: Using VSS with Synopsys Models Simulator ConfigurationGuide

150 Synopsys, Inc. July 31, 2001

�

10. Compile your design as shown in the following example:

% vhdlan design_name

11. Invoke VSS on your design as shown in the following example:

% vhdlsim design_name

Using Hardware Models with VSS
To use hardware models with VSS, follow this procedure:

1. Make sure VSS is set up properly and all required environment variables are set, as
explained in “Setting Environment Variables” on page 141. Also, make sure you
have the VSS-LMSI key in your license file for the interface licensing.

2. Add the hardware model install tree to your path variable, as shown in the following
example:

% set path=(/install/sms/bin/your_platform/ $path)

3. Create the model.vhd wrapper file for your hardware model. You can use the nawk
script provided in “VSS Template Generator Script for Hardware Models” on
page 153 to generate this file. Copy the script and paste it into an executable file
called hwm2vhdl.nawk.

4. If you generate the wrapper by hand, you must provide:

❍ an entity-architecture pair declaration so VSS can reference it in a later
component instantiation statement.

❍ a package for defining constants, declaring components, and instantiating
components.

VSS Example with TILS299 Hardware Model
The following example uses the TILS299 hardware model to show how to set up
hardware models for use with VSS:

1. After creating the wrapper .vhd file, analyze the TILS299.vhd using vhdlan, as
shown in the following example:

% vhldan TILS299.vhd

2. Place the hardware model in the testbench file and invoke the simulator. For this
TILS299 example, we used the Synopsys VHDL Debugger, as follows:

% vhdldbx -t ns TB_TILS299

The ns argument invokes the simulator with nanosecond timesteps.

Simulator Configuration Guide Chapter 7: Using VSS with Synopsys Models

July 31, 2001 Synopsys, Inc. 151

�

VSS Utilities
The following hardware modeler simulator commands are supported in VSS.

lmsi list devices | ids

You can use the lmsi list devices command to list all hardware model instances by
device name, and the lmsi list ids command to list all hardware model instances by id
name. For example:

lmsi list devices
device name id# instance name logging
TILS299 0 /TB_TILS299/U0 Off
lmsi list ids
id# device name instance name logging
0 TILS299 /TB_TILS299/U0 Off

You can also log test vectors for the hardware model. To log by ID number, specify an
id# and a filename. The extension .TST is appended to the vector file name. If no file
name is specified, VSS writes to a file named device_name.id#.TST. For example:

#lmsi logon id# filename

To log vectors by instance name, specify an instance_name and filename. The extension
.TST is appended to the output file name. For example:

#lmsi logon instance_name filename

To log vectors for all hardware model device instances, specify all. A log file is created
for each instance. The output files are named device_name.id#.TST. For example:

#lmsi logon all

To turn off vector logging, replace logon with logoff and omit the filename in the above
examples.

VHDL Model Generics with VSS
You can also control hardware model behavior using VHDL generics in your hardware
model instantiations. The nawk script on page 153 creates VHDL wrappers for
hardware models with these VHDL generics set to values that are reasonable for most
simulations. However, you can modify the values of the VHDL generics in your
model.vhd files to suit your verification needs. For more information on supported
VHDL generics, refer to the Synopsys VHDL Simulation Interfaces Manual. Following
are descriptions of some of the most useful generics:

Chapter 7: Using VSS with Synopsys Models Simulator ConfigurationGuide

152 Synopsys, Inc. July 31, 2001

�

LMSI_TIMING_MEASUREMENT

You can use the LMSI_TIMING_MEASUREMENT generic to direct where timing
values for your simulation session come from. There are two legal values:

ENABLED The hardware modeler measures and records actual pin-to-pin
timing values and passes them to the simulator.

DISABLED The hardware modeler passes to the simulator the pin-to-pin
timing values from the .TMG file. This is the default value.

LMSI_DELAY_TYPE

You can use the LMSI_DELAY_TYPE generic to specify whether the hardware
modeler returns pin values to the simulator with minimum, typical, or maximum delays,
as you can see in the following legal values:

MINIMUM Return minimum delays for pin values to the simulator.

TYPICAL Return typical delays for pin values to the simulator. This is
the default.

MAXIMUM Return maximum delays for pin values to the simulator.

LMSI_LOG

You can use the LMSI_LOG generic to specify whether the hardware modeler logs test
vector or not. There are two legal values:

ENABLED The hardware modeler logs test vectors.

DISABLED The hardware modelers does not log test vectors. This is the
default value.

Simulator Configuration Guide Chapter 7: Using VSS with Synopsys Models

July 31, 2001 Synopsys, Inc. 153

�

VSS Template Generator Script for Hardware Models
Here is the nawk script that you can use to generate VHDL wrappers for the hardware
models. Because of the length this script, you will have to cut-and-paste one page at a
time from this PDF file to get the whole thing copied to your environment.

**
In your design directory type:
#
nawk -f hwm2vhdl.nawk $HWM/<model>.NAM > <outfile>.vhd
#
(where "$HWM" is the full path to your hardware modeling directory)
Instantiate .vhd into your design.
#
THE SCRIPT:
#
Script to generate a VSS/Scirocco VHDL shell for a hardware model
using the <model>.NAM file

BEGIN {
pin_type = 0
is_it_a_vector = "No"
data_type = ""
prev_signal = ""
prev_test = ""
prev_number = ""
prev_dir = ""
ending = ";"

printf "library SYNOPSYS;\n"
printf " use SYNOPSYS.ATTRIBUTES.all;\n"
printf "library IEEE;\n"
printf " use IEEE.std_logic_1164.all;\n\n"

}

$2 ~ /generic_device_name/ {
device = $3
printf "entity " device " is\n"
printf " generic\n"
printf " (\n"
printf " timing : LMSI_TIMING_MEASUREMENT := DISABLED;\n"
printf " delay_type : LMSI_DELAY_TYPE := TYPICAL;\n"
printf " delay : LMSI_DELAY := ENABLED;\n"
printf " log : LMSI_LOG := DISABLED;\n"
printf " timing_violations : LMSI_TIMING_VIOLATIONS := DISABLED;\n"
printf " xprop : LMSI_XPROP := DISABLED;\n"
printf " xprop_method : LMSI_XPROP_METHOD := HIGH\n"
printf ");\n\n"
printf " port\n"
printf " (\n"

}

$4 ~ /\(in_pin\)/ || $4 ~ /\(out_pin\)/ || $4 ~ /\(io_pin\)/ \
|| $4 ~ /\(power_pin\)/ {

pin_type++
}

$2 ~ /\=/ || ($0 ~ /^$/ && pin_type ~ /3/) {
if (pin_type == 1) {

direction = "in "
}
else if (pin_type == 2) {

direction = "out "
}
else if (pin_type == 3) {

direction = "inout"
}
else {

next
}
current_signal = $1 " "
gsub(/\{/, "", current_signal)
gsub(/\'/, "", current_signal)

current_test = current_signal

Chapter 7: Using VSS with Synopsys Models Simulator ConfigurationGuide

154 Synopsys, Inc. July 31, 2001

�

gsub(/[0-9]+ /, " ", current_test)

n = split(current_signal, array_a, "[a-zA-Z]")
current_number = array_a[n]
gsub(/ /, "", current_number)

if (prev_signal ~ /[0-9]+ /) {
if (current_test == prev_test) {

if (is_it_a_vector == "No") {
data_start = prev_number

}
if ((current_number == prev_number - 1) || (current_number == prev_number + 1))
{

is_it_a_vector = "Yes"
}
prev_signal = current_signal
prev_test = current_test
prev_number = current_number
next

}
else {

if (is_it_a_vector == "Yes") {
total = prev_number + data_start
if (prev_number > data_start) {

data_end = data_start
data_start = prev_number

}
else {

data_end = prev_number
}
data_type = "_vector (" data_start " " "downto " data_end ")"
prev_signal = prev_test

}
}

}
if (prev_signal != "") {

gsub(/ /, "", prev_signal)
n = split(prev_signal, array_c, "[a-zA-z0-9_]")
y = 20 - n
if (y > 0) {

for (i = 1; i <= 20-n; i++) {
prev_signal = prev_signal " "

}
}
if (($0 ~ /^$/) && (pin_type == 3)) {

ending = ""
}
printf " " prev_signal " : " prev_dir " std_logic" data_type ending "\n"

}
data_type = ""
is_it_a_vector = "No"
updown = ""
prev_signal = current_signal
prev_test = current_test
prev_dir = direction
prev_number = current_number

}

END {
printf ");\n"
printf "end " device ";\n\n"
printf "architecture LMSI of " device " is\n"
printf " attribute FOREIGN of LMSI : architecture is \"Synopsys:LMSI\";\n"
printf " begin\n"
printf "end LMSI;\n\n"

}

Simulator Configuration Guide Chapter 8: Using MTI VHDL with Synopsys Models

July 31, 2001 Synopsys, Inc. 155

�

8
Using MTI VHDL with Synopsys Models

Overview
This chapter explains how to use SmartModels, FlexModels, MemPro models, and
hardware models with MTI VHDL. The procedures are organized into the following
major sections:

● “Setting Environment Variables” on page 155

● “Using SmartModels with MTI VHDL” on page 157

● “Using FlexModels with MTI VHDL” on page 160

● “Using MemPro Models with MTI VHDL” on page 163

● “Using Hardware Models with MTI VHDL” on page 165

Setting Environment Variables
First, set the basic environment variables. If you are not using one of the model types,
skip that step. In some cases the procedures that follow in this chapter include steps for
setting additional environment variables.

1. Set the LMC_HOME variable to the location of your SmartModel. FlexModel, and
MemPro model installation tree, as follows:

% setenv LMC_HOME path_to_models_installation

2. Make sure that MTI VHDL is set up properly in your environment.

3. Set the LM_LICENSE_FILE or SNPSLMD_LICENSE_FILE environment variable
to point to the product authorization file, as shown in the following example:

% setenv LM_LICENSE_FILE path_to_product_authorization_file

% setenv SNPSLMD_LICENSE_FILE path_to_product_authorization_file

Chapter 8: Using MTI VHDL with Synopsys Models Simulator ConfigurationGuide

156 Synopsys, Inc. July 31, 2001

�

You can put license keys for multiple products (for example, SmartModels and
hardware models) into the same authorization file. If you need to keep separate
authorization files for different products, use a colon-separated list (UNIX) or
semicolon-separated list (NT) to specify the search path in your variable setting.

Caution�
Do not include la_dmon-based authorizations in the same file with snpslmd-
based authorizations. If you have authorizations that use la_dmon, keep
them in a separate license file that uses a different license server (lmgrd)
process than the one you use for snpslmd-based authorizations.

4. If you are using the hardware modeler, set the LM_DIR and LM_LIB environment
variables, as shown in the following examples:

% setenv LM_DIR hardware_model_install_path/sms/lm_dir
% setenv LM_LIB hardware_model_install_path/sms/models: \
hardware_model_install_path/sms/maps

If you put your models in a directory other than the default of /sms/models, modify
the above variable setting accordingly.

5. Depending on your platform, set your load library variable to point to the platform-
specific directory in $LMC_HOME, as shown in the following examples:

Solaris:

% setenv LD_LIBRARY_PATH $LMC_HOME/lib/sun4Solaris.lib:$LD_LIBRARY_PATH

Linux:

% setenv LD_LIBRARY_PATH $LMC_HOME/lib/x86_linux.lib:$LD_LIBRARY_PATH

AIX:

% setenv LIBPATH $LMC_HOME/lib/ibmrs.lib:$LIBPATH

HP-UX:

% setenv SHLIB_PATH $LMC_HOME/lib/hp700.lib:$SHLIB_PATH

NT:

Make sure that %LMC_HOME%\lib\pcnt.lib is in the Path user variable.

Simulator Configuration Guide Chapter 8: Using MTI VHDL with Synopsys Models

July 31, 2001 Synopsys, Inc. 157

�

Using SmartModels with MTI VHDL
To use SmartModels with MTI VHDL, follow this procedure:

1. Open the modelsim.ini file in a text editor and uncomment the lines corresponding
to the platform you are using:

; ModelSim’s interface to Logic Modeling’s SmartModel SWIFT software
;libsm = $MODEL_TECH/libsm.sl
; ModelSim’s interface to Logic Modeling’s SmartModel SWIFT software
(Windows NT)
; libsm = $MODEL_TECH/libsm.dll
; Logic Modeling’s SmartModel SWIFT software (HP 9000 Series 700)
; libswift = $LMC_HOME/lib/hp700.lib/libswift.sl
; Logic Modeling’s SmartModel SWIFT software (IBM RISC System/6000)
; libswift = $LMC_HOME/lib/ibmrs.lib/swift.o
; Logic Modeling’s SmartModel SWIFT software (Sun4 Solaris)
; libswift = $LMC_HOME/lib/sun4Solaris.lib/libswift.so
; Logic Modeling’s SmartModel SWIFT software (Sun4 SunOS)
; do setenv LD_LIBRARY_PATH $LMC_HOME/lib/sun4SunOS.lib
; and run "vsim.swift".
; Logic Modeling’s SmartModel SWIFT software (Windows NT)
; libswift = $LMC_HOME/lib/pcnt.lib/libswift.dll

2. To create the SmartModel Library VHDL wrappers or templates, run the MTI
sm_entity script with any optional arguments. The sm_entity script takes
SmartModel names as input and writes the VHDL output to STDOUT. You can
redirect the output to a file. Run sm_entity as follows. For more information, refer
to “sm_entity Command Reference” on page 160.

% sm_entity -c model > model.vhd

For example:

% sm_entity -c ttl373 > ttl373.vhd

generates the following VHDL file, which has both entity and component
declarations for the model. Edit the resulting VHDL file to add the portions of text
that are highlighted in the following example:

library IEEE;
use IEEE.std_logic_1164.all;
entity ttl373 is
generic (TimingVersion : STRING := "SN74LS373";
DelayRange : STRING := "MAX";
ModelMapVersion : STRING := "01008");
port (C : in std_logic;
D1 : in std_logic;
D2 : in std_logic;
D3 : in std_logic;
D4 : in std_logic;

Chapter 8: Using MTI VHDL with Synopsys Models Simulator ConfigurationGuide

158 Synopsys, Inc. July 31, 2001

�

D5 : in std_logic;
D6 : in std_logic;
D7 : in std_logic;
D8 : in std_logic;
OC : in std_logic;
Q1 : out std_logic;
Q2 : out std_logic;
Q3 : out std_logic;
Q4 : out std_logic;
Q5 : out std_logic;
Q6 : out std_logic;
Q7 : out std_logic;
Q8 : out std_logic);
end;

architecture SmartModel of ttl373 is
attribute FOREIGN : STRING;
attribute FOREIGN of SmartModel : architecture is "sm_init
$MODEL_TECH/libsm.sl ; ttl373";
begin
end SmartModel;
library ieee; use ieee.std_logic_1164.all; package comp is
component ttl373
generic (TimingVersion : STRING := "SN74LS373";
DelayRange : STRING := "MAX";
ModelMapVersion : STRING := "01008");
port (C : in std_logic;
D1 : in std_logic;
D2 : in std_logic;
D3 : in std_logic;
D4 : in std_logic;
D5 : in std_logic;
D6 : in std_logic;
D7 : in std_logic;
D8 : in std_logic;
OC : in std_logic;
Q1 : out std_logic;
Q2 : out std_logic;
Q3 : out std_logic;
Q4 : out std_logic;
Q5 : out std_logic;
Q6 : out std_logic;
Q7 : out std_logic;
Q8 : out std_logic);
end component;
end comp;

Simulator Configuration Guide Chapter 8: Using MTI VHDL with Synopsys Models

July 31, 2001 Synopsys, Inc. 159

�

3. Compile the model.vhd into a library called slm_lib, as follows:

% vlib slm_lib
% vmap slm_lib slm_lib
% vcom -work slm_lib model.vhd

4. Instantiate the SmartModel component in your testbench by specifying the required
SWIFT parameters in the generic map. Here is an example instantiation for the
TTL373 model, with the library and use statements, the instance (U1), and the
TimingVersion and DelayRange options specified in the generic map for the
TTL373 SmartModel Library component.

Use the SmartModel Library (slm_lib) just as you would use any other VHDL
resource library. Here is an example:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
library SLM_LIB;
use SLM_LIB.COMPONENTS.ALL;

entity TestBench is
end TestBench;

architecture ArchTestBench of TestBench is

signal A, B, C: STD_LOGIC;

U1 : TTL373 generic map (TimingVersion => "SN74LS373",
DelayRange => "Typ")
port map (A => D1, B => D2, C => Q1);

P1 : process
begin

For more information on SmartModel configuration parameters, refer to “Using
SmartModels with SWIFT Simulators” on page 18.

5. Compile the top-level testbench to a work library (MYWORK) as shown in the
following example:

% vlib MYWORK
% vcom -work MYWORK top.vhd

6. Invoke the simulator by running vsim, as shown in the following example:

% vsim -lib MYWORK CFGTEST

For information on how to use MTI VHDL, refer to the “ModelSim User’s Manual.”

Chapter 8: Using MTI VHDL with Synopsys Models Simulator ConfigurationGuide

160 Synopsys, Inc. July 31, 2001

�

sm_entity Command Reference
The command reference for sm_entity is as follows.

Syntax
sm_entity [options] [SmartModels]

Arguments
-read Read SmartModel names from standard input.

-xe Do not generate entity declarations.

-xa Do not generate architecture bodies.

-c Generate component declarations.

-all Select all models in the SmartModel Library.

-v Display progress messages.

By default, sm_entity generates an entity and architecture. Optionally, you can include
the component declaration (-c), exclude the entity (-xe), or exclude the architecture
(-xa).

Using FlexModels with MTI VHDL
To use FlexModels with MTI VHDL, follow this procedure. This procedure covers
users on UNIX and NT. If you are on NT, substitute the appropriate NT syntax for any
UNIX command line examples (percent signs around variables and backslashes in
paths).

1. Create a working directory and run flexm_setup to make copies of the model's
interface and example files there, as shown in the following example:

% $LMC_HOME/bin/flexm_setup -dir workdir model_fx

Simulator Configuration Guide Chapter 8: Using MTI VHDL with Synopsys Models

July 31, 2001 Synopsys, Inc. 161

�

You must run flexm_setup every time you update your FlexModel installation with
a new model version. Table 20 describes the FlexModel interface and example files
that the flexm_setup tool copies.

2. On NT, add the following to your modelsim.ini file:

libsm = $MODEL_TECH/libsm.dll

and add the following to your PATH:

%LMC_HOME%\lib\pcnt.lib

This is so MTI can find the slm_mti.dll file.

3. Update the clock frequency supplied in the model_user_pkg.vhd file to correspond
to the desired clock period for the model. After running flexm_setup, this file is
located in:

workdir/src/vhdl/model_user_pkg.vhd

where workdir is your working directory.

Table 20: FlexModel MTI VHDL Files

File Name Description Location

model_pkg.vhd Model command procedure calls for HDL
Command Mode.

workdir/src/vhdl/

model_user_pkg.vhd Clock frequency setup and user
customizations.

workdir/src/vhdl/

model_fx_mti.vhd A SWIFT wrapper for the UNIX model. workdir/examples/vhdl/

model_fx_mti_nt.vhd A SWIFT wrapper for the NT model. workdir/examples/vhdl/

model_fx_comp.vhd Component definition for use with the model
entity defined in the above SWIFT wrapper
file. This is put in a package named
“COMPONENTS” when compiled.

workdir/examples/vhdl/

model.vhd A bus-level wrapper around the SWIFT model.
This allows you to use vectored ports for the
model in your testbench. This file assumes that
the “COMPONENTS” package has been
installed in the logical library “slm_lib”.

workdir/examples/vhdl/

model_tst.vhd A testbench that instantiates the model and
shows how to use basic model commands.

workdir/examples/vhdl/

Chapter 8: Using MTI VHDL with Synopsys Models Simulator ConfigurationGuide

162 Synopsys, Inc. July 31, 2001

�

4. Add the following to your vsystem.ini or modelsim.ini file.

slm_lib=$LMC_HOME/sim/mti/lib
VHDL93 = 1

5. Compile the FlexModel VHDL files into logical library slm_lib as follows:

% mti_path/bin/vlib $LMC_HOME/sim/mti/lib
% mti_path/bin/vcom -work slm_lib $LMC_HOME/sim/mti/src/slm_hdlc.vhd (UNIX)
% mti_path/bin/vcom -work slm_lib $LMC_HOME/sim/mti/src/slm_hdlc_nt.vhd (NT)
% mti_path/bin/vcom -work slm_lib $LMC_HOME/sim/mti/src/flexmodel_pkg.vhd
% mti_path/bin/vcom -work slm_lib workdir/src/vhdl/model_user_pkg.vhd
% mti_path/bin/vcom -work slm_lib workdir/src/vhdl/model_pkg.vhd
% mti_path/bin/vcom -work slm_lib workdir/examples/vhdl/model_fx_comp.vhd
% mti_path/bin/vcom -work slm_lib workdir/examples/vhdl/model_fx_mti.vhd (UNIX)
% mti_path/bin/vcom -work slm_lib workdir/examples/vhdl/model_fx_mti_nt.vhd (NT)
% mti_path/bin/vcom -work slm_lib workdir/examples/vhdl/model.vhd

6. Add LIBRARY and USE statements to your testbench:

library slm_lib;
use slm_lib.flexmodel_pkg.all;
use slm_lib.model_pkg.all;
use slm_lib.model_user_pkg.all;

For example, you would use the following statement for the tms320c6201_fx
model:

use slm_lib.tms320c6201_pkg.all;
use slm_lib.tms320c6201_user_pkg.all;

7. Instantiate FlexModels in your design, defining the ports and generics as required
(refer to the example testbench supplied with the model). You use the supplied
bus-level wrapper (model.vhd) in the top-level of your design to instantiate the
supplied bit-blasted wrapper (model_fx_mti.vhd for UNIX or model_fx_mti_nt.vhd
for NT).

Example using bus-level wrapper (model.vhd) without timing:

U1: model
generic map (FlexModelID => “TMS_INST1”)
port map (model ports);

Example using bus-level wrapper (model.vhd) with timing:

U1: model
generic map (FlexModelID => “TMS_INST1”,
FlexTimingMode => FLEX_TIMING_MODE_ON,
TimingVersion => “timingversion”,
DelayRange => “range”)
port map (model ports);

8. Compile the testbench as shown in the following example:

% vcom testbench

Simulator Configuration Guide Chapter 8: Using MTI VHDL with Synopsys Models

July 31, 2001 Synopsys, Inc. 163

�

9. Invoke the MTI VHDL simulator as shown in the following example:

% vsim design

Using MemPro Models with MTI VHDL
To use MemPro models with MTI VHDL, follow this procedure:

1. Perform one of these platform-dependent steps.

a. On NT platforms, verify that the shared library is visible from the current
working directory. The path to the shared library
(%LMC_HOME%\lib\pcnt.lib) was set at MemPro installation.

b. On UNIX and Linux platforms, append the MemPro shared library location to
the library search path environment variable setting.

On Solaris or Linux workstations:

% setenv LD_LIBRARY_PATH \
$LMC_HOME/lib/plat.lib:$LD_LIBRARY_PATH

where plat is sun4Solaris or x86_linux, respectively.

On HP-UX workstations:

% setenv SHLIB_PATH \
$LMC_HOME/lib/hp700.lib:$LD_LIBRARY_PATH

2. Create a local copy of modelsim.ini in the current working directory and a local
logical library named slm_lib:

% vlib slm_lib
% vmap slm_lib ./slm_lib

3. Open the modelsim.ini file in a text editor, uncomment the line that enables VHDL-
1993, and uncomment the lines that enable SWIFT; uncomment only the lines that
correspond to the platform you are using:

; Turn on VHDL-1993 as the default. Normally is off.
; VHDL93 = 1
...
...

; ModelSim's interface to Logic Modeling's SmartModel SWIFT software
;libsm = $MODEL_TECH/libsm.sl
; ModelSim's interface to Logic Modeling's SmartModel SWIFT software
(Windows NT)
; libsm = $MODEL_TECH/libsm.dll
; Logic Modeling's SmartModel SWIFT software (HP 9000 Series 700)
; libswift = $LMC_HOME/lib/hp700.lib/libswift.sl
; Logic Modeling's SmartModel SWIFT software (IBM RISC System/6000)

Chapter 8: Using MTI VHDL with Synopsys Models Simulator ConfigurationGuide

164 Synopsys, Inc. July 31, 2001

�

; libswift = $LMC_HOME/lib/ibmrs.lib/swift.o
; Logic Modeling's SmartModel SWIFT software (Sun4 Solaris)
; libswift = $LMC_HOME/lib/sun4Solaris.lib/libswift.so
; Logic Modeling's SmartModel SWIFT software (Sun4 SunOS)
;[7Cdo setenv LD_LIBRARY_PATH $LMC_HOME/lib/sun4SunOS.lib
;[7Cand run "vsim.swift".
; Logic Modeling's SmartModel SWIFT software (Windows NT)
; libswift = $LMC_HOME/lib/pcnt.lib/libswift.dll

Note�
This “UNIX-like” syntax is valid on NT workstations as well as all UNIX
platforms.

4. Compile the MemPro VHDL files into your local slm_lib.

a. If you are simulating RDRAM MemPro models:

% vcom -work slm_lib $LMC_HOME/sim/mti/src/slm_hdlc.vhd
% vcom -work slm_lib $LMC_HOME/sim/mti/src/mempro_pkg.vhd
% vcom -work slm_lib $LMC_HOME/sim/mti/src/rdramd_pkg.vhd

b. If you are not simulating RDRAM MemPro models:

% vcom -work slm_lib $LMC_HOME/sim/mti/src/slm_hdlc.vhd
% vcom -work slm_lib $LMC_HOME/sim/mti/src/mempro_pkg.vhd

5. After generating a model using MemPro, compile the VHDL code for the model.

a. If you are simulating SDRAM Module MemPro models, you must compile
these three files in the following order:

% vcom -work slm_models model_eeprom.vhd
% vcom -work slm_models model_sdram.vhd
% vcom -work slm_models model.vhd

b. If you are not simulating SDRAM Module MemPro models:

% vcom -work slm_models model.vhd

6. If you compiled the model to a library (SLM_MODELS in these examples), add a
LIBRARY statement to your testbench:

LIBRARY SLM_MODELS

Simulator Configuration Guide Chapter 8: Using MTI VHDL with Synopsys Models

July 31, 2001 Synopsys, Inc. 165

�

This makes models in SLM_MODELS accessible from your design. You can refer
to the model using a standard VHDL convention, such as a CONFIGURATION
statement:

CONFIGURATION mymem_a OF mymem_tst IS
FOR atest

FOR ALL : mymem use CONFIGURATION SLM_MODELS.mymem_behav;
END FOR;

END FOR;
END mymem_a;

7. Add LIBRARY and USE statements to your testbench:

LIBRARY SLM_LIB
USE SLM_LIB.mempro_pkg.all

This also provides access to MemPro testbench commands.

For more information on using the MemPro testbench interfaces, refer to the “HDL
Testbench Interface” and “C Testbench Interface” chapters in the MemPro User’s
Manual.

8. Instantiate MemPro models in your design. Define ports and generics as required.
For information on generics used with MemPro models, refer to “Instantiating
MemPro Models” on page 32. For information on message levels and message level
constants, refer to “Controlling MemPro Model Messages” on page 33.

9. Compile your design as shown in the following example:

% vcom design_name

10. Invoke the simulator on your design as shown in the following example:

% vsim design_name

Using Hardware Models with MTI VHDL
To use hardware models with MTI VHDL, follow this procedure:

1. Make sure MTI VHDL is set up properly and all required environment variables are
set, as explained in “Setting Environment Variables” on page 155.

2. Add the hardware model install tree to your path variable, as shown in the following
example:

% set path=(/install/sms/bin/your_platform/ $path)

3. Modify the modelsim.ini or project_name.mpf file to include the hardware
modeling information. Locate the line:

[lmc]

Chapter 8: Using MTI VHDL with Synopsys Models Simulator ConfigurationGuide

166 Synopsys, Inc. July 31, 2001

�

Remove the semicolons from the libhm line and the libsfi line you will be changing
for your platform. Provide the correct path for the SFI. For example:

; ModelSim's interface to Logic Modeling's hardware modeler SFI software
libhm = $MODEL_TECH/libhm.sl
; Logic Modeling's hardware modeler SFI software (HP 9000 Series 700)
libsfi = hardware_model_install_path/lib/platform/libsfi.ext
; Logic Modeling's hardware modeler SFI software (IBM RISC System/6000)
; libsfi = <sfi_dir>/lib/rs6000/libsfi.a
; Logic Modeling's hardware modeler SFI software (Sun4 Solaris)
; libsfi = <sfi_dir>/lib/sun4.solaris/libsfi.so
; Logic Modeling's hardware modeler SFI software (Sun4 SunOS)
; libsfi = <sfi_dir>/lib/sun4.sunos/libsfi.so
; Logic Modeling's hardware modeler SFI software (Window NT)
; libsfi = <sfi_dir>/lib/pcnt/lm_sfi.dll

where ext is so for Solaris. a for AIX, or sl for HP-UX.

4. Run the hm_entity script to generate a .vhd file for the hardware model as shown in
the following example. For details on hm_entity, refer to “hm_entity Command
Reference” on page 167.

5. You are now ready to use the model in your simulation.

MTI VHDL Example Using TILS299 Hardware Model
Here is an example that uses the TILS299 hardware model. Follow these steps:

1. Put the TILS299 hardware model in the testbench.

2. Create a working library directory by invoking vsim -gui and selecting
Library/Create. This creates a working directory called work.

3. Compile the .vhd files, as shown in the following example:

% vcom -work work TILS299.vhd TB_TILS299.vhd

This step compiles the two VHDL files and puts them in the specified work library.
Note that the TILS299.vhd file must be specified first or you get an error because
the TB_TILS299.vhd utilizes the TILS299 entity.

4. Invoke the simulator as shown in the following example:

% vsim

5. When the window comes up, select the testbench to load.

6. Use the View/Wave pull-down menu to get the wave window. In the wave window,
use File/Load Format wave.do to get the waveforms. After the waveform viewer
comes up and the vsim prompt appears, enter “run 10000".

Simulator Configuration Guide Chapter 8: Using MTI VHDL with Synopsys Models

July 31, 2001 Synopsys, Inc. 167

�

7. You can also use some of the hardware model utilities listed below, but the
commands must be entered at the simulator command prompt because they are not
VHDL statements. For the TILS299 example, you can also put these commands into
the .do file. Here is an example wave.do file:

lm_vectors on /tb_tils299/U0 TEST.VEC
add wave -logic {/clk}
add wave -logic {/clr}
add wave -logic {/s1}
add wave -logic {/s0}
add wave -logic {/g1}
add wave -logic {/g2}
add wave -logic {/sr}
add wave -logic {/sl}
add wave -logic {/qa}
add wave -logic {/qh}
add wave -literal {/t}

hm_entity Command Reference
The hm_entity script creates .vhd files for hardware models.

Syntax
hm_entity [options] shell_software_filename

Arguments
-xe Do not generate entity declaration.

-xa Do not generate architecture body.

-c Generate component declaration

-93 Use extended identifiers where needed

Chapter 8: Using MTI VHDL with Synopsys Models Simulator ConfigurationGuide

168 Synopsys, Inc. July 31, 2001

�

Example
For example, the following hm_entity invocation:

% hm_entity TILS299.MDL > TILS299.vhd

generates a .vhd file that looks like the following:

library ieee;
use ieee.std_logic_1164.all;
entity TILS299 is

generic(DelayRange : STRING := "Max");
port (G2 : in std_logic;

CLR : in std_logic;
SR : in std_logic;
CLK : in std_logic;
S0 : in std_logic;
G1 : in std_logic;
SL : in std_logic;
S1 : in std_logic;
QA : out std_logic;
QH : out std_logic;
H : inout std_logic;
E : inout std_logic;
G : inout std_logic;
A : inout std_logic;
C : inout std_logic;
B : inout std_logic;
F : inout std_logic;
D : inout std_logic);

end;

architecture Hardware of TILS299 is
attribute FOREIGN : STRING;
attribute FOREIGN of Hardware : architecture is "hm_init

$MODEL_TECH/libhm.sl; TILS299.MDL";
begin
end Hardware;

Simulator Configuration Guide Chapter 8: Using MTI VHDL with Synopsys Models

July 31, 2001 Synopsys, Inc. 169

�

MTI VHDL Utilities
The following hardware modeler simulator commands are supported in MTI VHDL:

lm_vectors on | off instance_name filename

The lm_vectors utility turns on vector logging for the hardware model instance. The
vectors record stimulus to the input and I/O pins and responses from the output and I/O
pins during simulation.

lm_measure_timing on | off instance_name filename

The lm_measure_timing utility causes the modeler to measure timing between an input
transition and resulting output transition on the hardware model. Note that this is only
supported on LM-family systems.

lm_timing_checks on | off instance_name

The lm_timing_checks utility allows you to enable or disable timing checks such as
setups and holds.

lm_loop_patterns on | off instance_name

The lm_loop_patterns utility causes the hardware modeler to continually replay the
pattern history of a specified device instance.

lm_unknowns on | off instance_name

The lm_unknowns utility turns off unknown propagation. This “on_unknown” feature
is also in the .OPT file for hardware models. It modifies the system's default handling of
device input and I/O pins that are set to unknown by the simulator. This utility does not
turn on unknown propagation unless it is also turned on in the .OPT file, but it can
override the setting in the .OPT file to turn this feature off when it is set to on in the
.OPT file.

Chapter 8: Using MTI VHDL with Synopsys Models Simulator ConfigurationGuide

170 Synopsys, Inc. July 31, 2001

�

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

July 31, 2001 Synopsys, Inc. 171

�

9
Using Cyclone with Synopsys

Models

Overview
This chapter explains how to use MemPro models and hardware models with Cyclone.
The procedures are organized into the following major sections:

● “Setting Environment Variables” on page 171

● “Using SmartModels with Cyclone” on page 173

● “Using FlexModels with Cyclone” on page 173

● “Using SmartModels with Cyclone” on page 173

● “Using Hardware Models with Cyclone” on page 174

Setting Environment Variables
First, set the basic environment variables. If you are not using one of the model types,
skip that step. In some cases the procedures that follow in this chapter include steps for
setting additional environment variables.

1. Set the LMC_HOME variable to the location of your MemPro installation tree, as
shown in the following example:

% setenv LMC_HOME path_to_models_installation

2. Set the LM_LICENSE_FILE or SNPSLMD_LICENSE_FILE environment variable
to point to the product authorization file, as shown in the following example:

% setenv LM_LICENSE_FILE path_to_product_authorization_file

% setenv SNPSLMD_LICENSE_FILE path_to_product_authorization_file

Chapter 9: Using Cyclone with Synopsys Models Simulator ConfigurationGuide

172 Synopsys, Inc. July 31, 2001

�

You can put license keys for multiple products (for example, MemPro models and
hardware models) into the same authorization file. If you need to keep separate
authorization files for different products, use a colon-separated list (UNIX) or
semicolon-separated list (NT) to specify the search path in your variable setting.

Caution�
Do not include la_dmon-based authorizations in the same file with snpslmd-
based authorizations. If you have authorizations that use la_dmon, keep
them in a separate license file that uses a different license server (lmgrd)
process than the one you use for snpslmd-based authorizations.

3. Set the SYNOPSYS_CY environment variable to point to the Cyclone installation
tree, as shown in the following example:

% setenv SYNOPSYS_CY Cyclone_install_path

4. Set the MA_CY environment variable to point to the ma_cyclone directory, as
shown in the following example:

% setenv MA_CY ModelAccess_install_path

5. If you are using the hardware modeler, set the LM_DIR and LM_LIB environment
variables, as shown in the following examples:

% setenv LM_DIR hardware_model_install_path/sms/lm_dir
% setenv LM_LIB hardware_model_install_path/sms/models: \
hardware_model_install_path/sms/maps

If you put your models in a directory other than the default of /sms/models, modify
the above variable setting accordingly.

6. Depending on your platform, set your load library variable to point to the platform-
specific directory in $LMC_HOME, as shown in the following examples:

Solaris:

% setenv LD_LIBRARY_PATH $LMC_HOME/lib/sun4Solaris.lib:$LD_LIBRARY_PATH

Linux:

% setenv LD_LIBRARY_PATH $LMC_HOME/lib/x86_linux.lib:$LD_LIBRARY_PATH

AIX:

% setenv LIBPATH $LMC_HOME/lib/ibmrs.lib:$LIBPATH

HP-UX:

% setenv SHLIB_PATH $LMC_HOME/lib/hp700.lib:$SHLIB_PATH

NT:

Make sure that %LMC_HOME%\lib\pcnt.lib is in the Path user variable.

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

July 31, 2001 Synopsys, Inc. 173

�

Using SmartModels with Cyclone
For information on using SmartModels with Cyclone, refer to “Using SmartModels with
SWIFT Simulators” on page 18.

Using FlexModels with Cyclone
To use FlexModels with Cyclone, you use Direct C Control. For information on the
required SWIFT parameters for FlexModels (which differ from regular SmartModels)
and how to use Direct C Control, refer to “Using FlexModels with SWIFT Simulators”
on page 24.

Using MemPro Models with Cyclone
To use MemPro models with Cyclone, follow this procedure. Note that RDRAM models
are not supported on Cyclone.

1. For HP-UX, Cyclone incorrectly uses “hpux10.lib” in paths to platform-specific
directories. The correct path leaf should be “hp700.lib.” Correct the paths by
creating symbolic links as follows:

% ln -s $LMC_HOME/lib/hp700.lib $LMC_HOME/lib/hpux10.lib
% ln -s $LMC_HOME/mempro/lib/hp700.lib $LMC_HOME/mempro/lib/hpux10.lib

2. Create a logical library named slm_lib. The default physical library mapping for this
is $LMC_HOME/sim/cyclone/lib, but you can put the slm_lib anywhere you want.
Add the following line to your .synopsys_vss.setup file, and adjust accordantly if
you put slm_lib anywhere but the default location:

SLM_LIB : $LMC_HOME/sim/cyclone/lib

3. Compile the MemPro VHDL files into logical library slm_lib.

% cyan -nc -synthoff -lang vhdl -w slm_lib \
$LMC_HOME/sim/cyclone/src/slm_hdlc.vhd

% cyan -nc -synthoff -lang vhdl -w slm_lib \
$LMC_HOME/sim/cyclone/src/mempro_pkg.vhd

4. After generating a model using MemPro, compile the VHDL code for the model, as
shown in the following example:

% cyan -nc -synthoff -lang vhdl mymem.vhd

5. If you compiled the model to a library (SLM_MODELS in these examples), add a
LIBRARY statement to your testbench:

LIBRARY SLM_MODELS

Chapter 9: Using Cyclone with Synopsys Models Simulator ConfigurationGuide

174 Synopsys, Inc. July 31, 2001

�

This makes models in SLM_MODELS accessible from your design. You can refer
to the model using a standard VHDL convention, such as a CONFIGURATION
statement:

CONFIGURATION mymem_a OF mymem_tst IS
FOR atest

FOR ALL : mymem use CONFIGURATION SLM_MODELS.mymem_behav;
END FOR;

END FOR;
END mymem_a;

6. Add LIBRARY and USE statements to your testbench:

LIBRARY SLM_LIB
USE SLM_LIB.mempro_pkg.all

This also provides access to MemPro testbench commands.

For more information on using the MemPro testbench interfaces, refer to the “HDL
Testbench Interface” and “C Testbench Interface” chapters in the MemPro User’s
Manual.

7. Instantiate MemPro models in your design. Define ports and generics as required.
For information on generics used with MemPro models, refer to “Instantiating
MemPro Models” on page 32. For information on message levels and message level
constants, refer to “Controlling MemPro Model Messages” on page 33.

8. Compile your design as shown in the following example:

% cyan design_name.vhd

9. Invoke Cyclone on your design as shown in the following example:

% cysim (-4state | -2state) -i design_name

Using Hardware Models with Cyclone
This section describes how to set up and configure Release 3.5a of ModelAccess for
Cyclone. After completing the setup tasks, for usage information refer to “Using
Hardware Models with Cycle-Based Simulators” on page 182.

The hardware modeling configuration you choose affects the performance you get when
running hardware models in Cyclone simulations. This section reviews the
fundamentals of the ModelSource and LM-family hardware modeling systems, and then
provides guidelines for a number of possible configurations.

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

July 31, 2001 Synopsys, Inc. 175

�

ModelSource System Hardware and Software
If you are using a ModelSource system, your hardware modeling system configuration
consists of one or more MS-3400 or MS-3200 units, plus a ModelSource Processor. (For
a description of a ModelSource Processor, refer to the ModelSource Hardware
Installation Guide. For information about the software, refer to the ModelSource User’s
Manual.) The ModelSource Processor is connected to the rest of your network via
Ethernet, and to the MS-3400/MS-3200 units via fiber-optic cable.

The ModelSource Processor provides the CPU for the ModelSource units, and at a
minimum, it executes the runtime modeler software (RMS) for the modeling system.
However, you might decide to run your simulation from the ModelSource Processor
workstation as well, unless you are using an LM-1400 as the ModelSource Processor.

The R3.3a and later ModelSource RMS has been enhanced to deliver higher
performance in all configurations, and has been optimized to generate the maximum
performance gain over previous releases of the RMS when used by a single user running
the simulation from the ModelSource Processor workstation. This enhanced release of
the RMS is available for Sun Solaris and HP 700 ModelSource Processor workstations.

LM-1400/LM-family System Hardware and Software
If you are using one of the LM-family hardware model servers (LM-1200 or LM-1400),
your hardware modeling system configuration consists of the LM-family unit. This
family of modelers includes a dedicated CPU within the modeling system chassis. The
LM-family system connects to the rest of your network via Ethernet. The LM-family
CPU runs the standard RMS. You run your simulations from other workstations on the
Ethernet network.

Configuration Options
Figure 7 on page 177 illustrates some of the supported Cyclone configurations, labeled
from A (the highest performance choice) to D (lower performance options).

Option A
The recommended configuration for highest performance in cycle-based simulation is
an MS-3400 or MS-3200 hardware modeling system with the simulation executing on
the ModelSource Processor workstation (which has the SBus or EISA card connection
to the modeling systems). This configuration eliminates network overhead in the
communication between the modeling system processor and the simulation.

Chapter 9: Using Cyclone with Synopsys Models Simulator ConfigurationGuide

176 Synopsys, Inc. July 31, 2001

�

Option B
In this configuration, the Cyclone simulation is executing on a different workstation
from the ModelSource Processor workstation. In this case, the simulation workstation
and the ModelSource Processor workstation must be on the same Ethernet subnet.

Option C
Because the LM-1400 has its own dedicated CPU within the LM-1400 chassis, the
simulation must be run on a separate workstation. For best performance with an
LM-1400 (or any of the LM-family hardware model servers), keep the simulation
workstation and the LM-1400 on the same Ethernet subnet.

Option D
In this configuration, the hardware modeling system (which can be either a
ModelSource system or an LM-family hardware model server) exists on a different
Ethernet subnet from the workstation on which the Cyclone simulation is running.
Because of the extra overhead of the router, this is a lower performance configuration.

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

July 31, 2001 Synopsys, Inc. 177

�

Figure 7: Cyclone Configuration Guidelines

ModelSource Processor
(Sun SPARC or HP700
with SBus or EISA card)
running Cyclone and
ModelSource RMS

Fiber link

ModelSource Processor
(Sun SPARC or HP700)

running ModelSource RMS

MS-3400/MS-3200

High-performance
workstation running

Cyclone

Ethernet
(Same subnet)

Fiber link

High-performance
workstation running

Cyclone

Ethernet
(Same subnet)

ModelSource Processor
(Sun SPARC or HP700)

running ModelSource RMS

High-performance
workstation running

Cyclone

Ethernet
(different subnets)

Fiber linkRouter

MS-3400/MS-3200

MS-3400/MS-3200

BEST
PERFORMANCE

OPTION

LM-1400
running LM-1400 RMS

LM-1400
running LM-1400 RMS

A

B

C

D

Chapter 9: Using Cyclone with Synopsys Models Simulator ConfigurationGuide

178 Synopsys, Inc. July 31, 2001

�

Cyclone User Setup
Before proceeding with the setup instructions that follow, perform these tasks:

● Install the Cyclone simulator package as described in the Cyclone Installation
Guide.

● Install and configure the hardware modeling system, including hardware and
software (R3.5a or later), as outlined in the Quick Reference in Chapter 1 of either
the ModelSource Hardware Installation Guide or the LM-family Hardware
Installation Guide.

● If necessary, boot the modeler.

● Make sure all required environment variables are set, as explained in “Setting
Environment Variables” on page 171

The ma_cyclone Software Tree
The ModelAccess for Cyclone (ma_cyclone) directory structure is illustrated in
Figure 8.

Figure 8: ModelAccess for Cyclone Installation Tree

The setup process consists of the following tasks:

● “Setting Up Your Environment” on page 179

● “Running verifySetup” on page 179

● “Running geninterface” on page 179.

● “Confirming License File Settings (ModelSource Only)” on page 181.

ma_cyclone/

synopsys_lm_hw.setup

bin/
sun5.5.1/

pa_hp102/

C/
lm_hw_slang.c
lm_hw_slang.h

setup/
setup.csh
setup.sh

genInterface
verifySetup

geninterface
verifySetup

synopsys_lm_hw.setup.hp700
synopsys_lm_hw.setup.solaris

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

July 31, 2001 Synopsys, Inc. 179

�

Setting Up Your Environment
Make sure all required environment variables are set properly, as explained in “Setting
Environment Variables” on page 171. If any of the required environment variables are
not defined, the source command will fail, with an error message indicating the cause of
the error.

Running verifySetup
Run the provided verifySetup program. This verifies that your environment is set up
correctly so that genInterface can run.

1. To run verifySetup, change directory to /tmp, then execute verifySetup, as follows:

% cd /tmp
% verifySetup

The verifySetup program returns messages confirming the setup information that
will be used (both the environment setup information, and the genInterface setup
options taken from the synopsys_lm_hw.setup file). For example, if the hardware
modeling system is not booted and available on the network, verifySetup reports the
error.

% verifySetup
Copyright 1988-1996 Synopsys, Incorporated.; 05 Sep 1996; R1.0

**** Environment Setup ****
User home: /home/klt
MA_CY: /tools/lmc/sms/ma_cyclone
LM include directory: /tools/lmc/sms/include
LM library directory: /tools/lmc/sms/lib/sun4.solaris
CY include directory: /tools/cyclone/sparcOS5/cyclone/include

**** Setup Files ****
Modeler: engineering1
SFI ERROR: modeler not responding (Message Number: 972)

Running geninterface
The genInterface program takes hardware model Shell Software files as input, and
creates the following files:

● A VHDL shell for each hardware model you specified

● A dynamically-linkable C library, which is used in communicating simulator
requirements to/from the hardware modeling system (via the hardware modeling
Simulator Function Interface software)

Chapter 9: Using Cyclone with Synopsys Models Simulator ConfigurationGuide

180 Synopsys, Inc. July 31, 2001

�

With the output of genInterface, you proceed as with any other VHDL input by
compiling the hardware model VHDL files (elaborate and analyze) along with your
other VHDL design files and then simulating the design. Figure 9 gives an overview of
the entire process, and the following sections describe each step in detail.

Invoke genInterface from the directory in which you want the interface files to be
created. On the command line, specify the hardware models you want to use with
Cyclone. For details on genInterface syntax, refer to “genInterface Command
Reference” on page 186

Note�
The genInterface program relies on the software described in “Cyclone
genInterface Setup Files” on page 190. The verifySetup program helps you
verify that these prerequisites have been set up correctly.

Figure 9: Process Flow Chart

Confirm
environment

setup

Edit setup file,
if needed

Confirm setup
(verifySetup)

Create interface
(genInterface)

Analyze
(cyan)

Elaborate
(cylab)

Simulate
(cyclone or cysim)

ModelAccess
for Cyclone

Cyclone

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

July 31, 2001 Synopsys, Inc. 181

�

Confirming License File Settings (ModelSource Only)
The genInterface program is not license-protected. However, in order to use the output
of genInterface to run Cyclone simulations with ModelSource hardware models, several
licenses are required:

● MSCBS licenses the use of hardware models with cycle-based simulators.

● MS3400 or MS3200 specifies the number of MS-3400 or MS-3200 units licensed.

In addition, you need the appropriate licenses to run Cyclone.

Note�
The LM-family hardware model servers (LM-1400 and LM-1200) are not
license-protected and do not have a license file. This step is required only
for ModelSource systems (MS-3400, MS-3200).

For information about installing hardware model licenses or updating an existing license
file, refer to the Hardware Modeling Release Notes. To confirm that your licenses are
working correctly, follow these steps:

1. Invoke the lm utilities:

% lm

Copyright 1988-1996 Synopsys, Incorporated.; 17 Aug 1998; R3.4a
Default Modeler is "venkat"

LM Utilities Menu
1) Create Logic Models
2) Verify Logic Models
3) Perform Maintenance
4) Run Diagnostics
5) Show Modeler Configuration
h) Help
q) Quit

selection:

2. Select item 5, “Show Modeler Configuration”.

selection: 5
Modeler Configuration
1) Show Modelers
2) Show Logic Models
3) Show Users
4) Show Versions
5) Show Model Users
6) Show Licenses
h) Help
q) Quit

selection:

Chapter 9: Using Cyclone with Synopsys Models Simulator ConfigurationGuide

182 Synopsys, Inc. July 31, 2001

�

3. Select item 6, “Show Licenses”.

selection: 6
Modeler Name (* = ALL) [venkat]:
License Server set to: 5300@hal
"venkat" Licenses Used
No licenses being used on the modeler
"venkat" Total Licenses Present in the License File
Feature # licenses Version Exp. Date
MSFAULTYes3.400 31-Dec-1999
MSCBSYes 3.400 31-Dec-1999
MS3400100 3.400 31-Dec-1999
MS3200100 3.400 31-Dec-1999
+++

Using Hardware Models with Cycle-Based Simulators
ModelAccess for Cyclone allows you to prepare your hardware models for use in a
Cyclone cycle-based simulation. This section describes how to use hardware models in
a Cyclone simulation. We begin with an overview of hardware modeling in the Cyclone
environment and then provide instructions for using genInterface.

Timing Delays
Synopsys hardware models typically include pin-to-pin delay information and can
optionally include timing checks. However, in cycle-based simulation, the simulator
ignores delay information and timing checks in the hardware models.

Cycle-Based Simulation Constraints
Before using a hardware model in cycle-based simulation, review the design, coding,
and testbench guidelines provided in the Cyclone documentation set. Although there are
no inherent limitations because of hardware modeling technology (when compared to a
VHDL model or C-language model of the same device), you must follow the same
usage guidelines for a circuit using hardware models as you would follow for a circuit
using any other types of models, when creating a cycle-based simulation testbench.

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

July 31, 2001 Synopsys, Inc. 183

�

How Hardware Models Interface with Cyclone
Cyclone provides the Slang C-language interface to enable you to integrate external C
and C++ models into the Cyclone runtime environment. Hardware models are also
integrated into the Cyclone environment using a special-purpose implementation of the
Slang interface.

A Slang C (or C++) software model consists of a collection of C language entry points,
compiled into a shared object library, plus a VHDL shell that determines which entry
points are called at runtime. A Slang hardware model requires a shared object library,
one VHDL shell per model, the hardware model’s Shell Software, and the model itself,
installed in the hardware modeler. A conceptual diagram of a Slang hardware model is
shown in Figure 10.

Figure 10: Slang Hardware Model Conceptual Diagram

Note�
The genInterface program creates the C library and VHDL shell files needed
by Cyclone to evaluate hardware models.

VHDL Shell

C Functions

Silicon in
Hardware
Modeler

SFI
S

F
IHardware Model

Shell Software
(.MDL File)

Files created by genInterface

Hardware Model

Chapter 9: Using Cyclone with Synopsys Models Simulator ConfigurationGuide

184 Synopsys, Inc. July 31, 2001

�

Editing the Setup File
The genInterface program has its own setup file (synopsys_lm_hw.setup) that you use to
specify various options to be applied to the entire genInterface session, or to particular
models within the session, including:

● Deleting intermediate files

● Overwriting existing files

● Overwriting pin names (per model)

Default values are provided for all required items, so you only need to edit this file if
you want to alter the default values. If you decide to edit the file, copy it from
$MA_CY/setup/synopsys_lm_hw.setup to your own local working directory. The copy
must be renamed to .synopsys_lm_hw.setup. Now you can edit and customize the local
.synopsys_lm_hw.setup file appropriately for your session.

If you want to change the global settings on a Solaris system, you must edit the
following file:

$MA_CY/setup/synopsys_lm_hw.setup.solaris

(The other file extension is .hp700.)

To change the file, copy lines from the default synopsys_lm_hw_setup file shown in
Figure 11 and uncomment the lines.

Figure 11: Default synopsys_lm_hw.setup File

Deleting Intermediate Files
delete_files {yes|no} # default yes

By default, genInterface deletes the intermediate files it creates. If you want to retain the
intermediate files, specify “delete_files no” in the setup file and delete the leading ‘#’
character. (Typically, you need to save these files only for debugging purposes; the files
are not used by Cyclone.)

delete_files yes # default yes

overwrite_files no # default no

for PPC403GA use
delete_files yes
overwrite_files no
pin_name_ovr "-DSR/-CTS" "NSRSCTS"
pin_name_ovr "-HALT" "NHALT"

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

July 31, 2001 Synopsys, Inc. 185

�

Overwriting Existing Files
overwrite_files {yes|no} # default no

By default, genInterface does not overwrites files in the target directory. This is to
protect you from accidentally overwriting earlier versions of .vhd files that you might
have customized. If genInterface detects a file with the same name in the target
directory, it generates the following warning:

genInterface warning: retaining older version of ./model_name.vhd file

If you receive this warning, you must choose one of the following:

● If you want to save the old .vhd files, rename them, and then run genInterface again.
You can add your custom code to the newly-updated .vhd files.

● If you don’t want to save the old .vhd files, delete them from the target directory or
change the overwrite_files setting to yes before you run genInterface/

Attention�
Whenever you receive this warning, you must correct the situation and re-
run genInterface so that a complete, integrated set of .vhd files and the
corresponding C library are created. The genInterface program keys the
results of each session, so if you attempt to mix files from different
genInterface sessions in your Cyclone simulation, you receive a fatal
simulation error (LM_HW integration error: Keys do not match).

Selecting Options Per Model
The synopsys_lm_hw.setup file allows you to set specific options per model, including
the following:

● delete_files

● overwrite_files

● cflags -DLM_HW_DEBUG

● pin_name_ovr

The cflags debugging options are intended for system administrators, and are explained
in “cflags” on page 191.

The pin_name_ovr statement, which enables the overwriting of automatically-generated
pin names, is only available on a per-model basis, as explained below.

Chapter 9: Using Cyclone with Synopsys Models Simulator ConfigurationGuide

186 Synopsys, Inc. July 31, 2001

�

Overwriting Pin Names Per Model
The Shell Software syntax for hardware model pin names uses special characters and
VHDL keywords that are not allowed in legal VHDL signal names. Therefore, when
genInterface creates VHDL shells for each model, it converts illegal VHDL signal
names to legal equivalents. This process is explained in “Rules for Signal Renaming” on
page 192. If you prefer to use your own VHDL signal names, you can use the
pin_name_ovr statement to specify the mapping from the original name to the new
name.

The syntax for this statement is:

for model_name use
pin_name_ovr "shell_sw_name1" "VHDLname1"
pin_name_ovr "shell_sw_name2" "VHDLname2"

end

For example, the pin name -ALE is allowed in the Shell Software, but not in VHDL. By
default, genInterface removes the leading hyphen (-) and replaces it with the string NE_,
creating the new pin name NE_ALE. If you prefer the alternate legal name NALE, add
the following lines to your setup file:

for I80960M use
pin_name_ovr "-ALE" "NALE"

end

genInterface Command Reference
After successfully running verifySetup, you can run genInterface, specifying the
hardware models you want to include in Cyclone simulation.

Syntax
genInterface {-m modeler_name} [mdlfile1 mdlfile2 ... | -f model_list | -a]

Arguments
-m modeler_name This optional switch specifies the hardware modeling system

for genInterface to use. The modeler must be installed on the
network and be booted and running. If a modeler_ name is not
specified, genInterface searches the modelers.lis file for the
name of an available modeler.

The modeler does not need to have the hardware model
installed; it must only be booted and running Runtime
Modeler Software v3.3 or later.

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

July 31, 2001 Synopsys, Inc. 187

�

mdlfile1 You can list individual models by their Model (.MDL) file
name, such as IPENTIUM.MDL. \Separate multiple file
names with a blank (space) character.

-f model_list You can create a file listing the Model (.MDL) files to be
included. Create the file with one .MDL file name per line.

-a The -a option allows you to generate an interface that includes
all available model files found in directories specified by the
LM_LIB environment variable.

Hint�
The -a option is convenient when you want to create one interface
incorporating all hardware models in your environment. However,
depending on how your LM_LIB environment variable is set, this could be a
large file.

Examples
The following example creates interface files for the hardware models listed in the
“my.models” file:

% genInterface -f my.models

The following example creates interface files for all hardware models in the LM_LIB
search path, using the hardware modeling system named “engineering1”:

% genInterface -m engineering1 -a

The following example creates interface files for the hardware models IPENTIUMPRO,
I82451GX, I82452GX, I82453GX, and I82454GX:

% genInterface IPENTIUMPRO.MDL I82451GX.MDL I82452GX.MDL \
I82453GX.MDL I82454GX.MDL

Assuming that all setup files have been left at their default values, the genInterface
command creates the following files in the current directory:

● liblm_hw.so (Solaris only)

● IPENTIUMPRO.vhd

● I82451GX.vhd

● I82452GX.vhd

● I82453GX.vhd

● I82454GX.vhd

Chapter 9: Using Cyclone with Synopsys Models Simulator ConfigurationGuide

188 Synopsys, Inc. July 31, 2001

�

The following example shows genInterface executed on the ID3052EA hardware model
(Model file ID3052EA.MDL):

% genInterface -m engineering1 ID3052EA.MDL
Copyright 1988-1996 Synopsys, Incorporated.; 05 Sep 1996; R1.0

Processing Common files.....Done
Processing ID3052EA.MDL file......Done
Running make....Done
Running clean....Done

This command creates one dynamic library and a “.vhd” file for each model specified in
the command line. For the Solaris example shown above, the liblm_hw.so library and
ID3052E.vhd file are created.

The genInterface program requires an ANSI C compiler. If you receive compiler errors
while attempting to run genInterface, for information about updating setup files, refer to
“Cyclone genInterface Setup Files” on page 190.

Cyclone Simulation
After successfully running verifySetup and genInterface, you can simulate using
Cyclone. For detailed information on using Cyclone, refer to the Cyclone Reference
Manual. Following are some Cyclone usage notes for hardware models.

Analyzing the Design
You analyze the generated VHDL files (created by genInterface), just as you would any
other files in your design.

Elaborating and Simulating the Design

Performance Monitoring
You can monitor the performance of the hardware modeler and append the results to the
simulator log file after simulation. To enable performance monitoring, in the window
where you are running the simulator, enter the following:

% setenv LM_OPTION “monitor_performance”

For more information, refer to “Performance Monitoring” in the ModelSource User’s
Manual.

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

July 31, 2001 Synopsys, Inc. 189

�

2-state and 4-state Simulation
If you are using Release 1.1 or later of ModelAccess for Cyclone with Cyclone Release
1998.02 or later, you can specify either 2-state (0, 1) or 4-state (0, 1, X, Z) simulation.
However, for earlier releases, 2-state simulation is not supported; when running cylab,
you must specify -4state to create 4-state (0, 1, X, Z) code. Similarly, for earlier releases
you must specify -4state for 4-state simulation with cysim.

Defining LD_LIBRARY_PATH
When using the output of genInterface with Cyclone, the LD_LIBRARY_PATH
environment variable must include “.” (the current directory). This is also required by
Cyclone, so if you have set LD_LIBRARY_PATH as documented in the Cyclone user
documentation, LD_LIBRARY_PATH will be correct for genInterface.

Cyclone Elaboration Warnings
Cyclone issues two elaborations warnings for each hardware model in your design. This
is because Cyclone divides the circuit into two types of blocks, sequential and
combinatorial. At every clock edge the sequential blocks get executed first, and then the
combinatorial blocks get executed. The hardware model is neither fully sequential nor
fully combinatorial, so Cyclone declares it as a special block. Cyclone discourages you
from using special blocks by issuing warnings; however, special blocks are fine for
hardware models, so you can ignore the warnings for hardware models.

“Keys Do Not Match” Error Message
If you receive the following error message during Cyclone simulation:

LM_HW integration error: Keys do not match

this indicates that you do not have a consistent set of genInterface output; for example,
the liblm_hw.so file was not generated in the same genInterface session as one or more
of the .vhd files, so the information is not valid for simulation. This can occur if you run
genInterface more than once on the same hardware model files with the overwrite_files
option left at its default setting of “no.”

To correct this error, refer to “Overwriting Existing Files” on page 185; then rerun
genInterface on the complete set of hardware models you want to use in the Cyclone
simulation. Analyze and elaborate the new genInterface output before proceeding with
your simulation.

Chapter 9: Using Cyclone with Synopsys Models Simulator ConfigurationGuide

190 Synopsys, Inc. July 31, 2001

�

Cyclone genInterface Setup Files
This section describes the ModelAccess for Cyclone setup file syntax and usage.

Setup File Definition
Two sets of setup files are provided for genInterface:

1. Model-dependent setup information is stored in the following file:

$MA_CY/setup/synopsys_lm_hw.setup

This file is typically copied by each user from this central location into the their own
directory, where it can be edited for a particular session. Use of this setup file is
described in “Editing the Setup File” on page 184.

2. System-dependent setup information is stored in these three platform-specific files:

❍ $MA_CY/setup/synopsys_lm_hw.setup.hp700

❍ $MA_CY/setup/.synopsys_lm_hw.setup.solaris

These files are provided to allow a system administrator to update compiler and
linker information, if necessary. If the ANSI C compiler (acc) is used, then no
editing of these files should be required.

Search Path
Upon invocation, the genInterface program searches for the synopsys_lm_hw.setup file
and the.synopsys_lm_hw.setup.platform files in the following locations, in the order
listed:

1. Current working directory (files preceded by “.”)

2. User’s home directory (files preceded by “.”)

3. $MA_CY/setup (files without a “.” prefix).

System-Dependent Setup Options
The system-dependent setup files allow you to change default settings for genInterface.
A sample of the HP-UX version of the file is shown in Figure 12.

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

July 31, 2001 Synopsys, Inc. 191

�

Figure 12: Sample System-Dependent Setup File
(.synopsys_lm_hw.setup.hp700)

compiler
The genInterface program requires access to a C compiler. The ANSI C compiler (acc),
which is required for use with Cyclone, is also recommended for genInterface.

By default, genInterface searches for the acc compiler. If this is not correct for your
environment, update the information following the compiler keyword, as follows:

compiler gcc

cflags
The -DLM_HW_DEBUG and -DLM_HW_PIN_DEBUG flags create a special, debug
version of the Cyclone interface. By default, these options are always commented out
(preceded by a #). There is no need to enable these options unless you are requested to
do so by the Synopsys Technical Support Center.

linker and lflags
By default, genInterface uses the ld linker with the flags specified in each platform-
dependent setup file. If you choose to use another linker, contact the Synopsys Technical
Support Center. For instructions, refer to “Getting Help” on page 14.

Cyclone genInterface Processing
This section describes how genInterface processes input Shell Software to create the
VHDL shell needed by Cyclone. Note that genInterface ignores .NAM files when
processing pin names.

compiler acc # default acc

cflags values are cumulative
cflags +z +DA1.1 +DS2.0
cflags -fPIC # default -fPIC
cflags -DLM_HW_DEBUG
cflags -DLM_HW_PIN_DEBUG

linker ld # default ld

lflag values are cumulative
lflags -b # default -b

Chapter 9: Using Cyclone with Synopsys Models Simulator ConfigurationGuide

192 Synopsys, Inc. July 31, 2001

�

Rules for Signal Renaming
Because certain characters and keywords are permitted in Shell Software pin names but
are illegal as VHDL signal names, genInterface must convert these signal names in
order to generate correct VHDL. The rules that genInterface uses to map the signal
names to legal values are explained in the following sections.

The following rules are applied by default. You can explicitly specify the mapping for
any signal name by using the pin_name_ovr statement in the genInterface setup file, as
described in “Overwriting Pin Names Per Model” on page 186.

Renaming Buses
The genInterface program sorts all pins in ascending order. Groups of pins having the
same basename are combined into buses. If part of the bus is in a different mode (for
example, inout and out), then the bus is split by mode, and the basenames are made
unique.

For example, consider the following bus, described in the Shell Software:

out_pin
A[21:12] = 110,109,108,107 106,105,104,103,99,98

....
io_pin
A[11:6] = 97, 96, 95, 94, 93, 92
A[29:22] = 119,118,117,116,115,114,113,112

This is converted as follows in the generated VHDL file:

A : INOUT std_logic_vector(11 downto 6);
AA : OUT std_logic_vector(21 downto 12);
AB : INOUT std_logic_vector(29 downto 22);

Replacing Special Characters
Cyclone allows only alphanumeric characters and underscores (_) in the generation of
valid signal names. Hardware model Shell Software allows special characters such as
slash (/), asterisk (*), minus (-), and underscore (_).

The genInterface program follows the conversion rules specified in Table 21.

Table 21: Rules for Special Character Mapping

Character in Shell
Software

Conversion when at
beginning of name

Conversion when
appearing within

name
Conversion when at

end of name

Slash (/) SL_ _SL_ _SL

Star (*) ST_ _ST_ _ST

Minus (-) NE_ _NE_ _NE

Simulator Configuration Guide Chapter 9: Using Cyclone with Synopsys Models

July 31, 2001 Synopsys, Inc. 193

�

For every generated name, genInterface then compares the name with the present list of
names. If there is a match, a random string is added at the end of the name until it is
unique.

The following examples illustrate how genInterface converts existing Shell Software
names in the generated VHDL file.

'-CS' is converted to: NE_CS

'-BM0/BYTE' is converted to: NE_BM0_SL_BYTE

'DT/-R' is converted to: DT_SL_NE_R

'-TOUT2/-IRQ3'is converted to: NE_TOUT2_SL_NE_IRQ3

'IO94_-RCLK_-BUSY/RDY'is converted to:IO94_NE_RCLK_NE_BUSY_SL_RDY

Keyword Replacement
Certain VHDL keywords cannot be used as signal names (for example, IN, OUT,
PROCESS). The genInterface program scans the list of signal names replaces
disallowed keyword is found, that name is replaced by S_keyword. If another signal
already exists by this name, a random string is appended to the end of the present signal
name.

For example, the Shell Software notation:

IN[6:1]

would be converted as follows:

S_IN : IN std_logic_vector(6 downto 1);

Underscore (_) UN_ _ (no conversion) _UN

Any other special
character

Random
alphanumeric

Random
alphanumeric

Random
alphanumeric

Table 21: Rules for Special Character Mapping (Continued)

Character in Shell
Software

Conversion when at
beginning of name

Conversion when
appearing within

name
Conversion when at

end of name

Chapter 9: Using Cyclone with Synopsys Models Simulator ConfigurationGuide

194 Synopsys, Inc. July 31, 2001

�

Simulator Configuration Guide Chapter 10: Using Leapfrog with Synopsys Models

July 31, 2001 Synopsys, Inc. 195

�

10
Using Leapfrog with Synopsys

Models

Overview
This chapter explains how to use SmartModels, FlexModels, MemPro models, and
hardware models with Leapfrog. The procedures are organized into the following major
sections:

● “Setting Environment Variables” on page 195

● “Using SmartModels with Leapfrog” on page 197

● “Using FlexModels with Leapfrog” on page 198

● “Using MemPro Models with Leapfrog” on page 198

● “Using Hardware Models with Leapfrog” on page 201

Setting Environment Variables
First, set the basic environment variables. If you are not using one of the model types,
skip that step. In some cases the procedures that follow in this chapter include steps for
setting additional environment variables.

1. Set the LMC_HOME variable to the location of your SmartModel. FlexModel, and
MemPro model installation tree, as follows:

% setenv LMC_HOME path_to_models_installation

Chapter 10: Using Leapfrog with Synopsys Models Simulator ConfigurationGuide

196 Synopsys, Inc. July 31, 2001

�

2. Set the LM_LICENSE_FILE or SNPSLMD_LICENSE_FILE environment variable
to point to the product authorization file, as shown in the following example:

% setenv LM_LICENSE_FILE path_to_product_authorization_file

% setenv SNPSLMD_LICENSE_FILE path_to_product_authorization_file

You can put license keys for multiple products (for example, SmartModels and
hardware models) into the same authorization file. If you need to keep separate
authorization files for different products, use a colon-separated list (UNIX) or
semicolon-separated list (NT) to specify the search path in your variable setting.

Caution�
Do not include la_dmon-based authorizations in the same file with snpslmd-
based authorizations. If you have authorizations that use la_dmon, keep
them in a separate license file that uses a different license server (lmgrd)
process than the one you use for snpslmd-based authorizations.

3. If you are using the hardware modeler, set the LM_DIR and LM_LIB environment
variables, as shown in the following examples:

% setenv LM_DIR hardware_model_install_path/sms/lm_dir
% setenv LM_LIB hardware_model_install_path/sms/models: \
hardware_model_install_path/sms/maps

If you put your models in a directory other than the default of /sms/models, modify
the above variable setting accordingly.

4. Set the CDS_VHDL variable to the location of your Leapfrog installation and make
sure that Leapfrog is set up properly in your environment.

5. Depending on your platform, set your load library variable to point to the platform-
specific directory in $LMC_HOME, as shown in the following examples:

Solaris:

% setenv LD_LIBRARY_PATH $LMC_HOME/lib/sun4Solaris.lib:$LD_LIBRARY_PATH

Linux:

% setenv LD_LIBRARY_PATH $LMC_HOME/lib/x86_linux.lib:$LD_LIBRARY_PATH

AIX:

% setenv LIBPATH $LMC_HOME/lib/ibmrs.lib:$LIBPATH

HP-UX:

% setenv SHLIB_PATH $LMC_HOME/lib/hp700.lib:$SHLIB_PATH

NT:

Make sure that %LMC_HOME%\lib\pcnt.lib is in the Path user variable.

Simulator Configuration Guide Chapter 10: Using Leapfrog with Synopsys Models

July 31, 2001 Synopsys, Inc. 197

�

Using SmartModels with Leapfrog
To use SmartModels with Leapfrog, follow this procedure:

1. To build the SmartModel interface, first cd to the lib directory in the Cadence tree
and execute the lfsmGen command:

% cd $CDS_VHDL/lib
% lfsmGen

This step produces a liblfsm.so.1.1 file on SunOS, liblfsm.so on Solaris, liblfsm.sl
on HP-UX, and liblfsm.a on AIX.

2. To build the VHDL libraries needed to simulate with SmartModels, cd to the
$CDS_VHDL/bin directory and execute the lfsmLibPckGen command:

% cd $CDS_VHDL/bin
% lfsmLibPckGen

This step produces a lfsmLibPck file.

3. Determine where you want the SmartModel VHDL libraries to go and cd to that
location. Then execute the lfsmLibPck you built in the previous step.

% lfsmLibPck

This step can take 30 minutes or more. When the process completes you get the
following two VHDL files that you need to analyze in LeapFrog:

• SMILibrary.vhd

• SMpackage.vhd

The SMILibrary.vhd file contains entity-architecture pairs for all SmartModels in
your $LMC_HOME tree. These include the generics used to configure SmartModel
SWIFT parameters.

Note that SmartModels are identified as follows:

attribute FOREIGN of SmartModel : architecture is
“LFSM:LFSmartModels”;

The SMpackage.vhd file contains component declarations for the SmartModels.
You must specify required SWIFT parameters for every generic in a component that
you want to simulate within Leapfrog. For more information on required SWIFT
parameters, refer to “Using SmartModels with SWIFT Simulators” on page 18.

Chapter 10: Using Leapfrog with Synopsys Models Simulator ConfigurationGuide

198 Synopsys, Inc. July 31, 2001

�

Caution�
On the HP platform all users must use the same $LMC_HOME in order to
prevent erroneous simulation results or fatal simulation errors. This
precaution is necessary because the lfsmGen command modifies the
liblfsm.sl file to require $LMC_HOME, and on the HP platform the
liblfsm.sl file references an absolute path name to libswift.sl, the SWIFT
library. When the absolute path name is not the same as the user’s
$LMC_HOME, the result is the loading of two different versions of
libswift.sl during the simulation.

Using FlexModels with Leapfrog
To use Leapfrog with FlexModels, follow the same steps laid out for SmartModels in
“Using SmartModels with Leapfrog” on page 197. On Leapfrog, you use FlexModels
with Direct C Control. For information on the required SWIFT parameters for
FlexModels (which differ from regular SmartModels) and how to use Direct C Control,
refer to “Using FlexModels with SWIFT Simulators” on page 24.

Using MemPro Models with Leapfrog
To use MemPro models with Leapfrog, follow this procedure:

1. If you have built your own Foreign Model Interface (FMI) shared library, you need
to perform this step in order to combine your shared library with the MemPro FMI
shared library.

Attention�
If you do not build your own FMI library, skip to Step 3.

Leapfrog binds in only one shared FMI library at runtime. If your design uses FMI,
you need to build a new FMI shared library that contains your library and the
MemPro library. A MemPro archive library can be found at:

HP-UX

$LMC_HOME/lib/hp700.lib/libfmi_ar.a

Solaris

$LMC_HOME/lib/sun4Solaris.lib/libfmi_ar.a

Simulator Configuration Guide Chapter 10: Using Leapfrog with Synopsys Models

July 31, 2001 Synopsys, Inc. 199

�

You must create a new archive that includes the MemPro archive, library table file
declaration object file, and your archive. Detailed instructions for this process can
be found in “Foreign Model Integration” in the Cadence Leapfrog C Interface User
Guide.

As shown in the following example, you must combine the contents of the MemPro
library table file with your own FMI application library table:

#include <fmilib.h>

extern fmiModelTableT CpipeModelTable;
extern fmiModelTableT myFMITable;

fmiLibraryTableT fmiLibraryTable = {
{"Cpipe", CpipeModelTable},
{"myFMIlib", myFMITable},
{0, 0}

};

Link the MemPro archive library with the new library table object file and any other
FMI application object files you wish to include, following the instructions in the
Cadence C Interface User Guide.

The following examples show compiling the library table object files and linking
MemPro libfm_ar.a with the library table object file and the FMI application you
developed, shown in the examples as new_FMI_table.o and your_archive.a:

HP-UX

% /bin/cc -D_NO_PROTO -c +Z -I$CDS_VHDL/include new_FMI_table.c
% /bin/ld -b -o libfmi.sl new_FMI_table.o your_archive.a \

$LMC_HOME/lib/hp700.lib/libfmi_ar.a

Solaris

% /opt/SUNWspro/bin/cc -c -KPIC -I$CDS_VHDL/include new_FMI_table.c
% /opt/SUNWspro/bin/cc -G -o libfmi.so new_FMI_table.o \

your_archive.a $LMC_HOME/lib/sun4Solaris.lib/libfmi_ar.a

2. Set up the library search path to locate the MemPro shared library.

Attention�
You must add the MemPro shared library to the beginning of your
SHLIB_PATH or LD_LIBRARY_PATH contents. If the MemPro shared
library is added to the tail of the path list, the library search order will be
incorrect and Leapfrog will not simulate properly.

HP-UX

% setenv SHLIB_PATH $LMC_HOME/lib/hp700.lib:$SHLIB_PATH

Chapter 10: Using Leapfrog with Synopsys Models Simulator ConfigurationGuide

200 Synopsys, Inc. July 31, 2001

�

Solaris

% setenv LD_LIBRARY_PATH \
$LMC_HOME/lib/sun4Solaris.lib:$LD_LIBRARY_PATH

3. Create a logical library named slm_lib. The default physical library mapping for this
is $LMC_HOME/sim/leapfrog/lib. If you do not want to install the library in the
LMC_HOME tree, you can create it in any other location.

Add the following line to your cds.lib file:

define slm_lib $LMC_HOME/sim/leapfrog/lib

4. Compile the MemPro VHDL files into logical library slm_lib. Note that
rdramd_pkg.vhd is not required unless you are simulating RDRAM MemPro
models.

% cv -w slm_lib $LMC_HOME/sim/leapfrog/src/slm_hdlc.vhd
% cv -w slm_lib $LMC_HOME/sim/leapfrog/src/mempro_pkg.vhd
% cv -w slm_lib $LMC_HOME/sim/leapfrog/src/rdramd_pkg.vhd

5. After generating a model using MemPro, compile the VHDL code for the model, as
shown in the following example:

% cv mymem.vhd

6. If you compiled the model to a library (SLM_MODELS in these examples), add a
LIBRARY statement to your testbench:

LIBRARY SLM_MODELS

This makes models in SLM_MODELS accessible from your design. You can refer
to the model using a standard VHDL convention, such as a CONFIGURATION
statement:

CONFIGURATION mymem_a OF mymem_tst IS
FOR atest

FOR ALL : mymem use CONFIGURATION SLM_MODELS.mymem_behav;
END FOR;

END FOR;
END mymem_a;

7. Add LIBRARY and USE statements to your testbench:

LIBRARY SLM_LIB
USE SLM_LIB.mempro_pkg.all

This also provides access to MemPro testbench commands.

For more information on using the MemPro testbench interfaces, refer to the “HDL
Testbench Interface” and “C Testbench Interface” chapters in the MemPro User’s
Manual.

Simulator Configuration Guide Chapter 10: Using Leapfrog with Synopsys Models

July 31, 2001 Synopsys, Inc. 201

�

8. Instantiate MemPro models in your design. Define ports and generics as required.
For information on generics used with MemPro models, refer to “Instantiating
MemPro Models” on page 32. For information on message levels and message level
constants, refer to “Controlling MemPro Model Messages” on page 33.

9. Compile your design as shown in the following example:

% cv -w work design_name

10. Invoke Leapfrog on your design as shown in the following example:

% sv design_name

Using Hardware Models with Leapfrog
To use hardware models with Leapfrog, follow this procedure. For the latest information
on supported features, refer to the Cadence documentation.

1. Make sure Leapfrog is set up properly and all required environment variables are
set, as explained in “Setting Environment Variables” on page 195.

2. Add the hardware model install tree to your path variable, as shown in the following
example:

% set path=(/install/sms/bin/platform/ $path)

3. Run the install.sh script so that the hardware models option is turned on and the
LMlibrary.vhd, LMpackage.vhd, and LMproc.vhd are created. Also make sure the
cds.lib file points to the correct libraries, including LMSFI, which is located in the
install area.

4. Create your own library directory for files that will be generated for the hardware
model. In the Leapfrog Notebook, you can set up the directory so that the library
files get placed in there by using the Library menu.

5. Generate a custom Leapfrog simulator executable (sv) to work with the hardware
model and imported Verilog model. This is done in the install.sh. The install
generates a new svvlog.exe. When this completes, you are ready to run using the
custom sv executable.

Leapfrog Example with TILS299 Hardware Model
The following example uses the TILS299 hardware model to show how to set up
hardware models for use with Leapfrog:

1. Create a testbench to instantiate the hardware model (for example,
TB_TILS299.vhd).

Chapter 10: Using Leapfrog with Synopsys Models Simulator ConfigurationGuide

202 Synopsys, Inc. July 31, 2001

�

2. Invoke Leapfrog. This brings up the Notebook window, where you can compile,
elaborate, and simulate your VHDL testbench. Type “leapfrog&”.

3. In the Notebook window, select your .vhd testbench file and click on the compile
button.

4. Once compiled, use the Unit menu and select elaborate. Fill in the Design Unit with
your compiled information and fill the snapshot with SIM. For example, mywork is
the directory specified to place compiled work, so we use mywork.TB.TILS299.

5. To simulate, select simulate from the Unit menu and fill in the information for
simulating in the snapshot line. For example: mywork.tb_tils299:test/sim. This
syntax can also be found at the end of the elaborate.

6. To see waveforms, use the simulator window to select Tools > Navigator. When
you select the hardware model instance in the subscopes, the signal pins come up in
the Object window. Select all the signals to be traced in the waveforms and right-
click to select Set trace simple.

7. Go back to the simulator window and select Tools > Waveview. When the cwaves
window comes up with all your signal pins, click on run on the simulator window to
simulate.

Leapfrog Utilities
The following hardware modeler simulator commands are supported in Leapfrog:

lm_log_test_vectors (“instance_name”, 1/0, “filename”);

enables (1) or disables (0) vector logging for hardware models.

lm_timing_measurements (“instance_name”, 1/0, “filename”);

Enables (1) or disables (0) timing measurements for hardware models.

lm_enable_timing_checks ([device_name(s)....])

Enables timing checks for hardware models.

lm_disable_timing_checks ([device_name(s)....])

Disables timing checks for hardware models.

lm_unknowns (“option=value”,device_or_pin);

Determines how unknown values are handled by hardware models. Supported options
include:

● propagate=yes/no

● value=previous/high/low

Simulator Configuration Guide Chapter 10: Using Leapfrog with Synopsys Models

July 31, 2001 Synopsys, Inc. 203

�

● sequence_count=0-20

● random_seed=0-65535

● device_or_pin

lm_loop_instance ([instance_name]);

Makes the hardware modeler enter loop mode, where it continually replays the pattern
history of the specified instance.

lm_pam_shortage(“actions=save/sleep/finish/free/suspend/drop_faults”,
”sleep_minutes=n, “sleep_count=n”, “save_file=filename”);

Lets you specify the action the hardware modeler is to take when it has used up most of
the available pattern memory.

lm_pattern_history ([device_name(s)....])

Saves the pattern memory for a private device instance.

Examples
You can use any of these utilities by calling them from VHDL code or invoking them
from the debugger prompt with an lm_procedure call.

Example call from VHDL code:

Variable ret : Natural;
...
ret := lm_log_test_vectors(":U1",1,"U1.VEC");
wait for 800 ns;
ret := lm_log_test_vectors(":U1",0,"U1.VEC");

Example invocation from the debugger prompt with lm_procedure call:

> call lm_log_test_vectors(U1,1,U1.VEC)

Chapter 10: Using Leapfrog with Synopsys Models Simulator ConfigurationGuide

204 Synopsys, Inc. July 31, 2001

�

Simulator Configuration Guide Chapter 11: Using NC-VHDL with Synopsys Models

July 31, 2001 Synopsys, Inc. 205

�

11
Using NC-VHDL with Synopsys

Models

Overview
This chapter explains how to use SmartModels, FlexModels, and MemPro models with
NC-VHDL. The procedures are organized into the following major sections:

● “Setting Environment Variables” on page 205

● “Using SmartModels with NC-VHDL” on page 206

● “Using FlexModels with NC-VHDL” on page 208

● “Using MemPro Models with NC-VHDL” on page 210

● “Using Hardware Models with NC-VHDL” on page 213

Setting Environment Variables
First, set the basic environment variables. If you are not using one of the model types,
skip that step. In some cases the procedures that follow in this chapter include steps for
setting additional environment variables.

1. Set the LMC_HOME variable to the location of your SmartModel, FlexModel, and
MemPro model installation tree, as follows:

% setenv LMC_HOME path_to_models_installation

2. Set the LM_LICENSE_FILE or SNPSLMD_LICENSE_FILE environment variable
to point to the product authorization file, as shown in the following example:

% setenv LM_LICENSE_FILE path_to_product_authorization_file

% setenv SNPSLMD_LICENSE_FILE path_to_product_authorization_file

Chapter 11: Using NC-VHDL with Synopsys Models Simulator ConfigurationGuide

206 Synopsys, Inc. July 31, 2001

�

You can put license keys for multiple products (for example, FlexModels and
MemPro models) into the same authorization file. If you need to keep separate
authorization files for different products, use a colon-separated list (UNIX) or
semicolon-separated list (NT) to specify the search path in your variable setting.

Caution�
Do not include la_dmon-based authorizations in the same file with snpslmd-
based authorizations. If you have authorizations that use la_dmon, keep
them in a separate license file that uses a different license server (lmgrd)
process than the one you use for snpslmd-based authorizations.

3. Make sure that NC-VHDL is set up properly in your environment.

4. Depending on your platform, set your load library variable to point to the platform-
specific directory in $LMC_HOME, as shown in the following examples:

Solaris:

% setenv LD_LIBRARY_PATH $LMC_HOME/lib/sun4Solaris.lib:$LD_LIBRARY_PATH

Linux:

% setenv LD_LIBRARY_PATH $LMC_HOME/lib/x86_linux.lib:$LD_LIBRARY_PATH

AIX:

% setenv LIBPATH $LMC_HOME/lib/ibmrs.lib:$LIBPATH

HP-UX:

% setenv SHLIB_PATH $LMC_HOME/lib/hp700.lib:$SHLIB_PATH

NT:

Make sure that %LMC_HOME%\lib\pcnt.lib is in the Path user variable.

Using SmartModels with NC-VHDL
To use SmartModels with NC-VHDL, follow this procedure:

1. Add the following line to your cds.lib file to specify the logical library sm_library
for SmartModels, as shown in the following example:

DEFINE sm_library ./sm_library

2. Run the ncshell utility to generate a wrapper for the model that you want to use, as
shown in the following example:

% ncshell -import swift into vhdl model -work sm_library

This step produces a wrapper file (model.vhd) and a component declaration
(model_comp.vhd) for the specified model in the sm_library work directory.

Simulator Configuration Guide Chapter 11: Using NC-VHDL with Synopsys Models

July 31, 2001 Synopsys, Inc. 207

�

If you want to generate wrappers for all SmartModels in your $LMC_HOME tree,
add the -all switch to the ncshell invocation. In this case, ncshell creates one file
(shell.vhd) that contains all the model wrappers and another file (component.vhd)
that contains the component declarations.

Hint�
NC-VHDL also works with wrappers created for Leapfrog. If you want to
reuse SmartModel wrappers created for Leapfrog, use ncvhdl to recompile
the SMLibrary.vhd and SMpackage.vhd files. For more information on
using SmartModels with Leapfrog, refer to “Using SmartModels with
Leapfrog” on page 197.

3. Add LIBRARY and USE statements to your testbench:

library sm_library;
use sm_library.component.all;

4. Instantiate SmartModels in your design using the wrapper files that you generated in
Step 2. For information on required configuration parameters and instantiation
examples, refer to “Using SmartModels with SWIFT Simulators” on page 18.

5. Compile the other VHDL files into the work library, as shown in the following
example:

% ncvhdl -w work testbench.vhd

6. Elaborate your design as shown in the following example:

% ncelab cfgtest

7. If you are using any SmartCircuit models in your design, set the LMC_TIMEUNIT
environment variable to -12 for 1 ps resolution, as shown in the following example:

% setenv LMC_TIMEUNIT -12

This sets a global timing resolution for all SmartModels in your simulation. If this
variable is not set, the default timing resolution is 100 ps, which is the resolution
used by most SmartModels. To see if a model is a SmartCircuit model, refer to the
model datasheet. For more information on the LMC_TIMEUNIT environment
variable, refer to the Cadence documentation for NC-VHDL.

8. Invoke the NC-VHDL simulator on your design as shown in the following example:

% ncsim design

Chapter 11: Using NC-VHDL with Synopsys Models Simulator ConfigurationGuide

208 Synopsys, Inc. July 31, 2001

�

Using FlexModels with NC-VHDL
To use FlexModels with NC-VHDL, follow this procedures:

1. Add the following lines to your cds.lib file:

define slm_lib slm_lib_path
define work work_lib_path

2. Generate a VHDL wrapper file for the model by invoking ncshell, as shown in the
following example:

% ncshell -import swift -into vhdl model_fx -nocompile -work slm_lib

3. Create a working directory and run flexm_setup to make copies of the model's
interface and example files there, as shown in the following example:

% $LMC_HOME/bin/flexm_setup -dir workdir model_fx

You must run flexm_setup every time you update your FlexModel installation with
a new model version. Table 22 describes the FlexModel NC-VHDL interface and
example files that the flexm_setup tool copies.

Table 22: FlexModel NC-VHDL Files

File Name Description Location

model_pkg.vhd Model command procedure calls for HDL
Command Mode.

workdir/src/vhdl/

model_user_pkg.vhd Clock frequency setup and user
customizations.

workdir/src/vhdl/

model_fx_comp.vhd Component definition for use with the model
entity defined in the SWIFT wrapper file. This
is put in a package named “COMPONENTS”
when compiled.

workdir/examples/vhdl/

model.vhd A bus-level wrapper around the SWIFT model.
This allows you to use vectored ports for the
model in your testbench. This file assumes that
the “COMPONENTS” package has been
installed in the logical library “slm_lib”.

workdir/examples/vhdl/

model_tst.vhd A testbench that instantiates the model and
shows how to use basic model commands.

workdir/examples/vhdl/

Simulator Configuration Guide Chapter 11: Using NC-VHDL with Synopsys Models

July 31, 2001 Synopsys, Inc. 209

�

4. Update the clock frequency supplied in the model_user_pkg.vhd file in your
working directory to correspond to the desired clock period for the model. After you
run flexm_setup this file is located in:

workdir/src/vhdl/model_user_pkg.vhd

where workdir is your working directory.

5. Create a logical library named slm_lib. The default physical library mapping for this
is $LMC_HOME/sim/simulator/lib; however, you can put the physical library
anywhere you want.

6. Add LIBRARY and USE statements to your testbench:

library slm_lib;
use slm_lib.flexmodel_pkg.all;
use slm_lib.model_pkg.all;
use slm_lib.model_user_pkg.all;

For example, you would use the following statement for the tms320c6201_fx
model:

use slm_lib.tms320c6201_pkg.all;
use slm_lib.tms320c6201_user_pkg.all;

7. Instantiate FlexModels in your design, defining the ports and generics as required
(refer to the example testbench supplied with the model). You use the supplied
bus-level wrapper (model.vhd) in the top-level of your design to instantiate the
bit-blasted wrapper generated in Step 2 (model_fx.vhd) using ncshell.

Example using bus-level wrapper (model.vhd) without timing:

U1: model
generic map (FlexModelID => “TMS_INST1”)
port map (model ports);

Example using bus-level wrapper (model.vhd) with timing:

U1: model
generic map (FlexModelID => “TMS_INST1”,
FlexTimingMode => FLEX_TIMING_MODE_ON,
TimingVersion => “timingversion”,
DelayRange => “range”)

port map (model ports);

Chapter 11: Using NC-VHDL with Synopsys Models Simulator ConfigurationGuide

210 Synopsys, Inc. July 31, 2001

�

8. Compile the FlexModel VHDL files into logical library slm_lib as follows:

% ncvhdl -w slm_lib $LMC_HOME/sim/ncvhdl/src/slm_hdlc.vhd
% ncvhdl -w slm_lib $LMC_HOME/sim/ncvhdl/src/flexmodel_pkg.vhd
% ncvhdl -w slm_lib workdir/src/vhdl/model_user_pkg.vhd
% ncvhdl -w slm_lib workdir/src/vhdl/model_pkg.vhd
% ncvhdl -w slm_lib workdir/examples/vhdl/model_fx_comp.vhd
% ncvhdl -w slm_lib model_fx.vhd
% ncvhdl -w slm_lib workdir/examples/vhdl/model.vhd
% ncvhdl-w work testbench

9. Elaborate your design as shown in the following example:

% ncelab cfgtest

10. Invoke the NC-VHDL simulator as shown in the following example:

% ncsim design

Using MemPro Models with NC-VHDL
To use MemPro models with NC-VHDL, follow this procedure:

1. If you have built your own Foreign Model Interface (FMI) shared library, perform
this step.

Attention�
If you do not build your own FMI library, skip to Step 2.

NC-VHDL binds in only one shared FMI library at runtime. If your design uses
FMI, you need to build a new FMI shared library that contains your library and the
MemPro library. A MemPro archive library can be found at:

HP-UX

$LMC_HOME/lib/hp700.lib/libfmi_ar.a

Solaris

$LMC_HOME/lib/sun4Solaris.lib/libfmi_ar.a

You must create a new archive that includes the MemPro archive, library table file
declaration object file, and your archive. Detailed instructions for this process can
be found in the “Foreign Model Integration” chapter of the Affirma NC VHDL
Simulator C Interface User Guide.

Simulator Configuration Guide Chapter 11: Using NC-VHDL with Synopsys Models

July 31, 2001 Synopsys, Inc. 211

�

As shown in the following example, you must combine the contents of the MemPro
library table file with your own FMI application library table:

#include <fmilib.h>

extern fmiModelTableT CpipeModelTable;
extern fmiModelTableT myFMITable;

fmiLibraryTableT fmiLibraryTable = {
{"Cpipe", CpipeModelTable},
{"myFMIlib", myFMITable},
{0, 0}

};

Link the MemPro archive library with the new library table object file and any other
FMI application object files you wish to include, following the instructions in the
Cadence C Interface User Guide.

The following examples show compiling the library table object files and linking
MemPro libfm_ar.a with the library table object file and the FMI application you
developed, shown in the examples as new_FMI_table.o and your_archive.a:

HP-UX

% /bin/cc -D_NO_PROTO -c +Z -I$CDS_VHDL/include new_FMI_table.c
% /bin/ld -b -o libfmi.sl new_FMI_table.o your_archive.a \

$LMC_HOME/lib/hp700.lib/libfmi_ar.a

Solaris

% /opt/SUNWspro/bin/cc -c -KPIC -I$CDS_VHDL/include new_FMI_table.c
% /opt/SUNWspro/bin/cc -G -o libfmi.so new_FMI_table.o \

your_archive.a $LMC_HOME/lib/sun4Solaris.lib/libfmi_ar.a

2. Create a logical library named slm_lib. The default physical library mapping for this
is $LMC_HOME/sim/ncvhdl/lib. If you do not want to install the library in the
LMC_HOME tree, you can create it in any other location.

Add the following line to your cds.lib file:

define slm_lib $LMC_HOME/sim/ncvhdl/lib

3. Compile the MemPro VHDL files into logical library slm_lib. Note that
rdramd_pkg.vhd is not required unless you are simulating RDRAM MemPro
models.

% ncvhdl -w slm_lib $LMC_HOME/sim/ncvhdl/src/slm_hdlc.vhd
% ncvhdl -w slm_lib $LMC_HOME/sim/ncvhdl/src/mempro_pkg.vhd
% ncvhdl -w slm_lib $LMC_HOME/sim/ncvhdl/src/rdramd_pkg.vhd

Chapter 11: Using NC-VHDL with Synopsys Models Simulator ConfigurationGuide

212 Synopsys, Inc. July 31, 2001

�

4. After generating a model using MemPro, compile the VHDL code for the model, as
shown in the following example:

% ncvhdl mymem.vhd

5. If you compiled the model to a library (SLM_MODELS in these examples), add a
LIBRARY statement to your testbench:

LIBRARY SLM_MODELS

This makes models in SLM_MODELS accessible from your design. You can refer
to the model using a standard VHDL convention, such as a CONFIGURATION
statement:

CONFIGURATION mymem_a OF mymem_tst IS
FOR atest

FOR ALL : mymem use CONFIGURATION SLM_MODELS.mymem_behav;
END FOR;

END FOR;
END mymem_a;

6. Add LIBRARY and USE statements to your testbench:

LIBRARY SLM_LIB
USE SLM_LIB.mempro_pkg.all

This also provides access to MemPro testbench commands.

For more information on using the MemPro testbench interfaces, refer to the “HDL
Testbench Interface” and “C Testbench Interface” chapters in the MemPro User’s
Manual.

7. Instantiate MemPro models in your design. Define ports and generics as required.
For information on generics used with MemPro models, refer to “Instantiating
MemPro Models” on page 32. For information on message levels and message level
constants, refer to “Controlling MemPro Model Messages” on page 33.

8. Compile your design as shown in the following example:

% ncelab -w work design_name

9. Invoke NC-VHDL on your design as shown in the following example:

% ncsim design_name

Simulator Configuration Guide Chapter 11: Using NC-VHDL with Synopsys Models

July 31, 2001 Synopsys, Inc. 213

�

Using Hardware Models with NC-VHDL
To use hardware models with NC-VHDL, follow this procedure. For the latest
information on supported features, refer to the Cadence documentation.

1. Make sure NC-VHDL is set up properly and all required environment variables are
set, as explained in “Setting Environment Variables” on page 205.

2. Add the hardware model install tree to your path variable, as shown in the following
example:

% set path=(/install/sms/bin/platform/ $path)

3. Create your own library directory for files that will be generated for the hardware
model.

4. Run the ncshell command to generate .vhd wrapper files, as shown in the following
example:

% ncshell -import lmsfi -into vhdl models/TILS299/TILS299.MDL

You can also use the -all switch to create .vhd files for multiple hardware models.

NC-VHDL Example with TILS299 Hardware Model
The following example uses the TILS299 hardware model to show how to set up
hardware models for use with NC-VHDL:

1. Create a testbench to instantiate the hardware model (for example
TB_TILS299.vhd).

2. Run ncvhdl to compile your .vhd files, as shown in the following example:

% ncvhdl TILS299.vhd TILS299_comp.vhd TB_TILS299.vhd

3. Elaborate the design, as shown in the following example:

% ncelab -messages work.tb_tils299:test

4. Invoke the NC-VHDL simulator, as shown in the following example:

% ncsim -gui work.tb_tils299:test

Chapter 11: Using NC-VHDL with Synopsys Models Simulator ConfigurationGuide

214 Synopsys, Inc. July 31, 2001

�

NC-VHDL Utilities
The following hardware modeler simulator commands are supported in NC-VHDL:

lm_log_test_vectors (“instance_name”, 1/0, “filename”);

Enables (1) or disables (0) vector logging for hardware models.

lm_timing_measurements (“instance_name”, 1/0, “filename”);

Enables (1) or disables (0) timing measurements for hardware models.

lm_enable_timing_checks ([device_name(s)....])

Enables timing checks for hardware models.

lm_disable_timing_checks ([device_name(s)....])

Disables timing checks for hardware models.

lm_unknowns (“option=value”,device_or_pin);

Determines how unknown values are handled by hardware models. Supported options
include:

● propagate=yes/no

● value=previous/high/low

● sequence_count=0-20

● random_seed=0-65535

● device_or_pin

lm_loop_instance ([instance_name]);

Makes the hardware modeler enter loop mode, where it continually replays the pattern
history of the specified instance.

lm_pam_shortage(“actions=save/sleep/finish/free/suspend/drop_faults”,
”sleep_minutes=n, “sleep_count=n”, “save_file=filename”);

Lets you specify the action the hardware modeler is to take when it has used up most of
the available pattern memory.

lm_pattern_history ([device_name(s)....])

Saves the pattern memory for a private device instance.

Simulator Configuration Guide Chapter 11: Using NC-VHDL with Synopsys Models

July 31, 2001 Synopsys, Inc. 215

�

Examples
You can use any of these utilities by calling them from VHDL code or invoking them
from the debugger prompt with an lm_procedure call.

Example call from VHDL code:

Variable ret : Natural;
...
ret := lm_log_test_vectors(":U1",1,"U1.VEC");
wait for 800 ns;
ret := lm_log_test_vectors(":U1",0,"U1.VEC");

Example invocation from the debugger prompt with lm_procedure call:

% ncsim> call lm_log_test_vectors :U0 1 299.VEC

Chapter 11: Using NC-VHDL with Synopsys Models Simulator ConfigurationGuide

216 Synopsys, Inc. July 31, 2001

�

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

July 31, 2001 Synopsys, Inc. 217

�

12
Using QuickSim II with Synopsys

Models

Overview
This chapter explains how to use SmartModels, FlexModels, and hardware models with
QuickSim II. The procedures are organized into the following major sections:

● “Setting Environment Variables” on page 217

● “Using SmartModels and FlexModels with QuickSim II” on page 219

● “Using Hardware Models with QuickSim II” on page 244

Note�
MemPro models are not supported on QuickSim II.

Setting Environment Variables
First, set the basic environment variables. If you are not using one of the model types,
skip that step. In some cases the procedures that follow in this chapter include steps for
setting additional environment variables.

1. Set the LMC_HOME variable to the location of your SmartModel. FlexModel, and
MemPro model installation tree, as shown in the following example:

% setenv LMC_HOME path_to_models_installation

2. Set the LM_LICENSE_FILE or SNPSLMD_LICENSE_FILE environment variable
to point to the product authorization file, as shown in the following example:

% setenv LM_LICENSE_FILE path_to_product_authorization_file

% setenv SNPSLMD_LICENSE_FILE path_to_product_authorization_file

Chapter 12: Using QuickSim II with Synopsys Models Simulator ConfigurationGuide

218 Synopsys, Inc. July 31, 2001

�

You can put license keys for multiple products (for example, SmartModels and
hardware models) into the same authorization file. If you need to keep separate
authorization files for different products, use a colon-separated list (UNIX) or
semicolon-separated list (NT) to specify the search path in your variable setting.

Caution�
Do not include la_dmon-based authorizations in the same file with snpslmd-
based authorizations. If you have authorizations that use la_dmon, keep
them in a separate license file that uses a different license server (lmgrd)
process than the one you use for snpslmd-based authorizations.

3. Set MGC_HOME to the location of your Mentor installation and make sure
QuickSim II is set up properly in your environment.

% setenv MGC_HOME path_to_Mentor_installation

4. If you are using the hardware modeler, set the LM_DIR and LM_LIB environment
variables, as shown in the following examples:

% setenv LM_DIR hardware_model_install_path/sms/lm_dir
% setenv LM_LIB hardware_model_install_path/sms/models: \
hardware_model_install_path/sms/maps

If you put your models in a directory other than the default of /sms/models, modify
the above variable setting accordingly.

5. Depending on your platform, set your load library variable to point to the platform-
specific directory in $LMC_HOME, as shown in the following examples:

Solaris:

% setenv LD_LIBRARY_PATH $LMC_HOME/lib/sun4Solaris.lib:$LD_LIBRARY_PATH

Linux:

% setenv LD_LIBRARY_PATH $LMC_HOME/lib/x86_linux.lib:$LD_LIBRARY_PATH

AIX:

% setenv LIBPATH $LMC_HOME/lib/ibmrs.lib:$LIBPATH

HP-UX:

% setenv SHLIB_PATH $LMC_HOME/lib/hp700.lib:$SHLIB_PATH

NT:

Make sure that %LMC_HOME%\lib\pcnt.lib is in the Path user variable.

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

July 31, 2001 Synopsys, Inc. 219

�

Using SmartModels and FlexModels with
QuickSim II

This section explains how to use SmartModels and FlexModels with QuickSim II. To
use FlexModels with QuickSim II, you use Direct C Control. For information on Direct
C Control, refer to “Using FlexModels with SWIFT Simulators” on page 24. The rest of
this section explains required installation steps and how to use model symbols in the
schematic capture front-end to the simulator. This information is organized in the
following major subsections:

Installing the QuickSim II SWIFT Interface
Synopsys ships the part of QuickSim II that communicates with the SWIFT interface for
versions of QuickSim II prior to the D.1 release. If you are using a version of QuickSim
II prior to D.1, you must install the Mentor Graphics application software for each
Mentor Graphics user tree.

Attention�
Beginning with version D.1 of QuickSim II, Mentor Graphics assumed
responsibility for their integration of the SWIFT interface. If you are using
version D.1 or higher, refer to the Mentor Graphics documentation for
information about using SWIFT.

Every time you install or update Mentor Graphics application software, you must create
a user tree for the SWIFT SmartModel Library. Use the MGC install tool to create
duplicate Mentor Graphics user trees. User trees typically require between 10–20 MB of
disk space. For questions about creating Mentor Graphics user trees, refer to the Mentor
Graphics documentation. Follow these steps:

1. If you are using a version of QuickSim II prior to D1, for each Mentor Graphics
home directory (user or master tree) that requires access to the SWIFT interface,
execute the following command:

UNIX

% $LMC_HOME/bin/mgc_ins -m $MGC_HOME -l $LMC_HOME

NT

You will be running a mkns shell in the MGC environment; for more information on
the mkns shell, refer to Mentor Graphics QuickSim II documentation.

Chapter 12: Using QuickSim II with Synopsys Models Simulator ConfigurationGuide

220 Synopsys, Inc. July 31, 2001

�

In the Control Panel, set the following drives to the appropriate system environment
variables:

DRIVE:/port LMC_HOME
DRIVE:/port MGC_HOME

2. Add “$LMC_HOME” followed by a blank line to your location map file.

3. Add SmartModel Library Menus to Design Architect. Normally, as part of
installation, the Admin tool automatically adds SmartModel menus to Design
Architect for the models you installed. Use the instructions in this section to add the
SmartModel menus only if, after installation, you do not find SmartModel menu
entries under the Design Architect “Libraries” pull-down menu. To include
SmartModel menu selections in the Design Architect (DA) menus, follow these
steps:

a. Set the AMPLE_PATH environment variable. If this variable already exists, use
one of these commands as appropriate:

UNIX

% setenv AMPLE_PATH ${AMPLE_PATH}:$LMC_HOME/special/qsim/menus

If you have a custom userware directory, you can create links that point to
“$LMC_HOME/special/qsim/menus/des_arch.”

NT

DRIVE:/path_to_menus/

b. If the AMPLE_PATH environment variable does not exist, use one of these
commands as appropriate:

UNIX

% setenv AMPLE_PATH $LMC_HOME/special/qsim/menus

If you have a custom userware directory, you can create links that point to
“$LMC_HOME/special/qsim/menus/des_arch.”

NT

DRIVE:/path_to_menus/

4. Generate the menus as shown in the appropriate example:

UNIX

% $LMC_HOME/bin/mgc_menu.pl

NT

> LMC_HOME%\bin\mgc_menu.cmd

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

July 31, 2001 Synopsys, Inc. 221

�

Menu entries are created for the models that you have installed. If menu entries are
missing for models you believe you have in your library, use the Admin tool to verify
your installed models. If you change your model installation, rerun mgc_menu to update
the menu to reflect the new model list.

After successful menu activation, the “Libraries” pull-down menu of the Schematic
Editor contains an entry for “Logic Modeling SmartModel Library.” If you have
SimuBus models installed, the pull-down menu also contains an entry for “Logic
Modeling SimuBus Products.”

Using SmartModels/FlexModels with QuickSim II
This chapter provides information about using SmartModels (including FlexModels)
with Mentor Graphics (MGC) tools. This information is organized in the following
major sections:

● Schematic Capture

● Logic Simulation

● Custom Symbols

Schematic Capture
Adding a SmartModel Library model to a design schematic involves identifying the
desired symbol, instantiating it, and then editing its properties as necessary. Synopsys
supplies a complete Schematic Editor menu system in the QuickSim II environment that
you can use to identify and instantiate a component. You can also instantiate symbols
from the command line and edit property values interactively using Design Architect.
This chapter provides information about both approaches to building a design, following
an introductory discussion of the symbols and their properties.

For more information about Design Architect and the Schematic Editor, refer to the
Mentor Graphics documentation.

Symbols
Synopsys provides symbols representing default package pinouts for each SmartModel.
Some models have more than one symbol associated with them. This is true for:

● Models of simple logic gates, which are supplied with DeMorgan equivalent
negative logic symbols in addition to standard symbols

● Models that offer both pin and bus symbols

For information about symbol compatibility with different versions of the Design
Architect software, refer to the SmartModel Library Release Notes.

Chapter 12: Using QuickSim II with Synopsys Models Simulator ConfigurationGuide

222 Synopsys, Inc. July 31, 2001

�

Pin and Bus Symbols
For many high pin-count parts, you get pin and bus symbols. Bus symbols may be more
convenient to use than their pin equivalents, because they take up less real estate on the
schematic and are easier to connect and to read. Figure 13 illustrates the differences
between pin and bus symbols.

Figure 13: Sample Pin and Bus Symbols

Symbol Properties
Assigning specific values to symbol properties completes the definition of a
SmartModel. The properties used on the symbols provided for the Mentor Graphics
Design Architect environment include:

● Symbol properties used by SWIFT interface models

● Symbol properties required for simulation

● Optional symbol properties

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

July 31, 2001 Synopsys, Inc. 223

�

You can edit symbol property values either with the Schematic Editor pop-up menu or
by using the QuickSim II CHANGE TEXT VALUE command. These properties are
hidden or visible depending on the visibility attributes selected by your library manager.
Figure 14 illustrates the positions of the visible properties on a symbol supplied by
Synopsys.

Figure 14: Visible Symbol Properties

Symbol Properties used by SWIFT Models
Table 23 lists symbol properties that are used by SWIFT interface models.

Table 23: Symbol Properties used by SWIFT Models

Property Description

TimingVersion Timing version to use with a model. Any value
assigned to the TimingVersion property must be a
valid timing version for that model.

MemoryFile Name and path of a memory image file.

Chapter 12: Using QuickSim II with Synopsys Models Simulator ConfigurationGuide

224 Synopsys, Inc. July 31, 2001

�

Note�
FlexModels use a slightly different set of symbol properties. For information
on the required configuration properties for FlexModels, refer to “Using
FlexModels with SWIFT Simulators” on page 24.

You can use either an absolute or relative path name to point to a file. If you use a
relative path name it is resolved relative to the value of $MGC_WD.

Symbol Properties Required for Simulation
Table 24 lists symbol properties that are required for simulation.

PCLFile Name and path of a compiled PCL file.

JEDECFile Name and path of a JEDEC fuse map file.

SCFFile Name and path of an MCF file for SmartCircuit
models.

Table 24: Symbol Properties Required for Simulation

Property Description

MODEL The MODEL property contains a label registered as
type “SWIFT”.

PIN Logic simulation requires that each pin on a symbol
have a property. A PIN property has two values
associated with it:

● User pin name

● Compiled pin name

You can change the user pin name to adhere to
drafting standards, but you must not change the
compiled pin name.

PINTYPE Each model pin has an associated PINTYPE
property, which describes the pin entry point type
(i.e., IN, OUT, IXO, or IO). QuickSim II requires
this property.

SWIFT_TEMPLATE The SWIFT_TEMPLATE property always has a
value that specifies the model name. This property
cannot be changed.

Table 23: Symbol Properties used by SWIFT Models (Continued)

Property Description

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

July 31, 2001 Synopsys, Inc. 225

�

Optional Symbol Properties
Table 25 lists optional symbol properties.

Building a Design Using the Menus
The Synopsys entries in the Design Architect menu system can be useful when building
a design for the first time because all of the alternatives at each menu level are apparent.

To add SmartModels to a design using the menus, follow these steps:

1. Identify the desired model using the Schematic Editor menu system to traverse the
menus.

PKG Each model has a PKG property equal to the
physical package type (for example, DIP, LCC) that
the symbol's pin numbers match. When using the
bus symbol for a component, the PKG property is
set to the value “BUS”.

Table 25: Optional Symbol Properties

Property Description

COMP The COMP property provides an interface to layout
or other applications. Synopsys does not use this
property.
The COMP property is assigned the default value
“TimingVersion” with the property attribute
“expression”. This causes the COMP property to
track the value of the TimingVersion property for
Synopsys symbols.

PIN_NAME The PIN_NAME property is the visible text on a
symbol representing a pin's name. Changing this
text has no effect on the model's operation.

PIN_NO The PIN_NO property value matches the physical
pin number of the component for the default
package. Changing the value of this property has
no effect on the model's operation.

REF The REF (reference) property provides an identifier
for use in Advanced Verification messages.
Changing the value of this property has no effect on
the model's operation.

Table 24: Symbol Properties Required for Simulation (Continued)

Property Description

Chapter 12: Using QuickSim II with Synopsys Models Simulator ConfigurationGuide

226 Synopsys, Inc. July 31, 2001

�

2. Instantiate the model's symbol on the schematic sheet.

3. Edit property values as necessary using Design Architect or the Schematic Editor.

The Menu System
The menu system consists of several levels, starting with the pull-down menu that is
accessed with the Libraries choice from the Design Architect menu bar. At that point,
the following menu choices are available:

● Logic Modeling SmartModel Library

● Logic Modeling SimuBus Products (this entry is present only if you have installed
SimuBus models)

Note�
Normally, the Admin tool installs the Logic Modeling entries in the Design
Architect Libraries menu automatically, as part of model installation. If,
after installing your models, you do not find at least the Logic Modeling
SmartModel Library entry, you can perform the menu installation yourself.
For more information, refer to “Installing the QuickSim II SWIFT Interface”
on page 219.

Following are descriptions of the relevant menu levels:

Top-level
The top-level menu offers a number of choices, including component libraries and
the first SmartModel product menu.

Function
The first SmartModel product menu offers a choice of functions, as follows:

❍ General purpose logic menu

❍ Logic block menu

❍ Memories menu

❍ Processor menu

❍ Programmable logic menu

❍ Support peripheral menu

Subfunction
Each item on the function menu has its own subfunction menu, which is used to
further specify the symbol for the model being instantiated.

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

July 31, 2001 Synopsys, Inc. 227

�

Vendor
Each subfunction menu selection has an associated vendor menu, which displays a
list of part manufacturers for that subfunctional group of models.

Part
Each vendor menu selection has an associated part menu, which displays a list of
all SmartModels for the selected subfunction class and vendor.

Component
Each part menu selection has an associated component menu, which displays a list
of all the timing and/or symbol versions available for a particular model.

Example
The following sequence of menu selections activates a Motorola MC88100:

SmartModel Library > Processor > Microprocessor > Motorola >

88100 > MC88100-20 (BUS)

Choosing the function, subfunction, and vendor brings up the part menu, which shows
all the Motorola microprocessor models. Choosing the MC88100 brings up the
component menu, which shows both the component and the symbol.

Building a Design Without the Menus
Users who are familiar with the SmartModel Library may prefer to use Schematic Editor
commands to build designs. This approach can be faster than using the menu system.
The basic steps are the same:

1. Identify the model you need.

2. Instantiate the model's symbol on the schematic sheet.

3. Use Design Architect or the Schematic Editor to edit property values, as necessary.

Creating An Instance
Use the $add_instance command to instantiate a part in the Schematic Editor, as shown
in the following minimal command:

% $add_instance (“$LMC_HOME/special/qsim/symbols/”)

The symbol name and TimingVersion property value can also be included on the same
line, as follows. (All punctuation marks are required.)

% $add_instance \
(“$LMC_HOME/special/qsim/symbols/”,“”,,,[“TimingVersion”,””])

Chapter 12: Using QuickSim II with Synopsys Models Simulator ConfigurationGuide

228 Synopsys, Inc. July 31, 2001

�

If the TimingVersion property value is not specified, the default timing version is
activated. If a symbol is not specified when applicable, the default is used. The defaults
are “positive” for logic version, and “pin” for symbol type.

Selecting Alternate Symbols
When there are DeMorgan equivalent symbols, the positive version is the default.
Specify “NEG” as the symbol name to get the negative logic symbol (if desired), as
follows:

% $add_instance (“$LMC_HOME/special/qsim/symbols/ttl00”,”NEG”,,, \
[“TimingVersion”,”SN74AS00”])

When activating parts manually, remember that the pin symbol is the default when both
pin and bus symbols are available. Specify the bus symbol (if desired), as follows:

% $add_instance (“$LMC_HOME/special/qsim/symbols/mc68030_hv”,”BUS”,,, \
[“TimingVersion”,”MC68030-33”])

Use the Mentor Graphics Design Viewpoint Editor (DVE) to set the primitive type for
SWIFT in DVE. To ensure that SWIFT instances are evaluated as primitives, you can
add to the primitive rule using the add primitive command within DVE. In the
following example, the add primitive command causes all instances of the MODEL
property value “SWIFT” to be evaluated as primitives by QuickSim II.

% add primitive “model” -noexcept -string “SWIFT”

The string “SWIFT” can be substituted with any other labels that you have registered
with the model type of “swift”.

Logic Simulation
The following sections in this chapter provide information about using SmartModels for
logic simulation in the Mentor Graphics’s QuickSim II environment. For related
information, refer to the following Mentor Graphics manuals:

● Common Simulation User's and Reference Manual

● Getting Started with QuickSim II Training Workbook

● QuickSim II User's Manual

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

July 31, 2001 Synopsys, Inc. 229

�

Current Support Levels
Please note the following important items before starting a simulation. SmartModel
Library models currently:

● Do support the implementation of location maps. You can use location maps to
install a library anywhere on the system. Set an environment variable and a location
map variable before using location maps.

● Do support extended-time (64-bit) simulations.

● Do not support the unit delay timing mode.

Default Timing Mode
The default timing mode for SWIFT SmartModels is “typ”. You can use the
timing-mode switch at QuickSim invocation time to force the timing mode to be “min”,
“typ”, or “max”.

Signal Levels and Drive Strengths
SmartModels recognize the nine signal levels and drive strengths listed in Table 26.
QuickSim II maps indeterminate strengths to unknowns for “12-state” simulations.

The models generate strong and resistive states. The high-impedance unknown state
(XZ) is used when a model places an output in the high-impedance state.

The state values shown in bold type are generated by the models. All values are
recognized.

Table 26: Signal State Values

Signal Level

Drive Strength Low (0) High (1) Unknown (x)

Strong (S) 0S 1S XS

Resistive (R) 0R 1R XR

High Impedance (Z) 0Z 1Z XZ

Chapter 12: Using QuickSim II with Synopsys Models Simulator ConfigurationGuide

230 Synopsys, Inc. July 31, 2001

�

QuickSim II Command Line Switches
When QuickSim II is invoked from the command line, the following switches are the
only ones recognized by SmartModels.

Timing Mode Switch
Use the -timing_mode switch to set the global timing mode to minimum, maximum, or
typical. Unit delay timing mode is not currently supported. Use the following syntax
when setting this switch:

-timing_mode { min | max | typ }

Note�
SmartCircuit models override settings made with the timing mode switch by
means of the model command file (MCF) when the MCF is configured with
a particular timing mode. For more information about configuring
SmartCircuit models of FPGA and CPLD devices, refer to the SmartModel
Library User’s Manual.

Time Scale Switch
Use the -time_scale switch to adjust time values (delays and checks) to the desired
resolution by specifying the time scale in nanoseconds (ns). The default is 0.1 ns. Use
the following syntax when setting this switch:

-time_scale timescale

Constraint Mode Switch
Use the -constraint_mode switch to enable or disable timing constraint checking. The
default is “off”. Any value other than “off” causes a model to perform constraint
checking. Use the following syntax when setting this switch:

-constraint_mode { off | state_only | messages }

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

July 31, 2001 Synopsys, Inc. 231

�

QuickSim II Command Interaction
There are many QuickSim II simulator commands that interact with SmartModels in a
design. Table 27 lists some of the QuickSim II commands that affect SmartModels.

SWIFT Command Channel
You can use the SWIFT command channel to pass commands directly through to
SmartModels. Use the QuickSim II SIGNAL INSTANCE command to access the
command channel.

To issue a command for selected instances, use the following:

signal instance swift_model -p “command_name [arguments]”

Table 27: QuickSim II Command Interaction

QuickSim II Command Effect on SmartModels

INITIALIZE Causes a model to reevaluate until the simulation
reaches DC stability. It will not reset the model or
set internal values to the “state_value” specified.

SIGNAL INSTANCE Reports the status of selected instances with the
“swift_dump” parameter.

REPORT OBJECT Not supported by SmartModels. Use the SIGNAL
INSTANCE command to query a model and report
its status.

REREAD MODELFILE Reloads any of the configuration files used by a
model, including memory image, JEDEC, MCF,
SCF, and PCL command files. Configuration files
are only re-read if the simulation has changed the
configuration.

RESET STATE Causes all models to reinitialize their states to the
original time zero (power-up) conditions.

RESTORE STATE Restores all of the model's internal states as part of
the operation.

SAVE STATE Records all of the model's internal states as part of
the operation.

WRITE MODELFILE Causes a model to “dump” its memory image to a
file.

Chapter 12: Using QuickSim II with Synopsys Models Simulator ConfigurationGuide

232 Synopsys, Inc. July 31, 2001

�

To issue a command for a session, use the following:

signal instance swift_session -p “command_name [arguments]”

For more information on using the SWIFT command channel, refer to “The SWIFT
Command Channel” on page 21.

Checking the Model's Status
Use the QuickSim II SIGNAL INSTANCE command to query a model directly. Select
one or more instances in the design and then issue the command to display the internal
element status of all selected instances, as shown in the example below.

signal instance swift_dump
'/I$1': ' '
'/I$1': 'Note: <<Status Report>>'
'/I$1': ' Model template: pal20r4i'
'/I$1': ' Version: not available'
'/I$1': ' InstanceName: /I$2742'
'/I$1': ' TimingVersion: MMI_20R4A-COM'
'/I$1': ' DelayRange: TYP'
'/I$1': ' JEDECFile: /user/bobb/design/schematic/selack.jedec'
'/I$1': ' Timing Constraints: Off'
'/I$1': ' SmartModel Instance /I$2742(U103:MMI_20R4A-COM), sheet1

of schematic at time 0.00 nsec'
'/I$1': ' '
'/I$1': 'Note: SmartModel Windows Description:'
'/I$1': ' Q20 “PAL Internal Register connected to pin 20”'
'/I$1': ' Q19 “PAL Internal Register connected to pin 19”'
'/I$1': ' Q18 “PAL Internal Register connected to pin 18”'
'/I$1': ' Q17 “PAL Internal Register connected to pin 17”'
'/I$1': ' SmartModel Windows not enabled for this model.'
'/I$1': ' SmartModel Instance /I$2742(U103:MMI_20R4A-COM), sheet1

of testbed/schematic at time 0.00 nsec'
'/I$1': ' ''

Reconfiguring Models for Simulation
You can use QuickSim II to reconfigure models for additional simulations by:

● Editing properties

● Changing timing modes of model instances

● Enabling or disabling constraint checking

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

July 31, 2001 Synopsys, Inc. 233

�

Editing Properties
Adding or changing the value of a JEDECFile, SCFFile, PCLFile, or MemoryFile
property causes the simulator to read the file and initialize the model to the power-up
state. Select the following menu choices to change a property:

Edit > Properties > Add, Edit > Properties > Change, and Edit > Properties

Changing Timing Modes
SmartModels support minimum, typical, and maximum timing modes. Unit-delay
mode is not supported. Select the following menu choices to display the form for
changing the timing mode of specific model instances:

Setup > Kernel > Change > Timing Mode

You can also use instance names to specify which instance to change.

Constraint Checking
Select the following menu choices to enable/disable the various timing constraint checks
(for example, setup, hold):

Setup > Kernel > Constraint Mode > Change

To enable constraint checking, select either “State Only” or “Messages” on the Change
Constraint Mode form. To disable constraint checking, select “Off” on the Change
Constraint Mode form.

SmartModel Library Message Formats
SmartModels issue four different kinds of messages to provide relevant information to
users during simulations. These include:

● Error messages

● Warning messages

● Trace messages

● Notes

Error messages can be generated by timing or usage checks. Warning messages, error
messages, and notes can all be generated by usage checks, depending on the situation.
Hardware verification models also issue trace messages, if enabled.

Error messages itemize selected information. For example, a setup time violation
causes an error message that documents:

● Pin name

● Part (by instance), reference designator, and component name

Chapter 12: Using QuickSim II with Synopsys Models Simulator ConfigurationGuide

234 Synopsys, Inc. July 31, 2001

�

● Sheet name

● Design name

● Simulation time

● Signals and edges, as appropriate

● Setup times (as they occurred and as required by vendor data sheet)

Here are some sample messages:

‘/I$2751':‘ '
‘/I$2751':‘? Error: Unknown signal level on CLK pin.'
‘/I$2751':‘? This will probably cause problems later in the

simulation.'
‘/I$2751': ‘? SmartModel Instance /I$2751(U102:MC68030-20), sheet1 of

schematic at time 0.0'
‘/I$2790': ‘ '
‘/I$2790': ‘Note: Loading the memory image file “/user/bobb/design/

schematic/rom_image.0_7”'
‘/I$2790': ‘SmartModel Instance /I$2790(U201:I27512), sheet2 of

schematic at time 0.0'
‘/I$2790': ‘ --- 14 values have been initialized.'
‘/I$2751': ‘ '
‘/I$2751': ‘! Warning: Unknown signal level on DSACK0_PIN.

Assuming DSACK0_PIN is 1.'
‘/I$2751': ‘! SmartModel Instance /I$2751(U102:MC68030-20), sheet1 of

schematic at time 200.0'
‘/I$2751': ‘Trace: Returning read data to PCL program:'
‘/I$2751': ‘ [0]=00000BFE, [1]=00000000, [2]=00000000, [3]=00000000'
‘/I$2751': ‘ [4]=00000000, [5]=00000000, [6]=00000000, [7]=00000000,

[8]=00000000'
‘/I$2751': ‘ SmartModel Instance /I$2751(U102:MC68030-20), sheet1 of

schematic at time 1750.0'
‘/I$2751': ‘ '
‘/I$2751': ‘Trace: PCL Bus Cmd: Read. Control=06, Addr=00000004,

Bytes=4.'
‘/I$2751': ‘ SmartModel Instance /I$2751(U102:MC68030-20), sheet1 of

schematic at time 1750.0'

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

July 31, 2001 Synopsys, Inc. 235

�

Using SmartModel Windows with QuickSim II
SmartModel Windows is a SmartModel Library feature that can be used for more
efficient system-level verification and debugging by allowing you to view window
elements during simulation runs for microprocessor, PLD, memory, and peripheral
models.

Window elements that can be viewed include registers, pointers, states, or latches (for
example), depending on the part being modeled. This section provides information
about how to interact with SmartModel Windows using QuickSim II. SmartModel
Windows can be used to:

● Review window element values and set breakpoints

● Single-step through simulations

● Change window element values before proceeding with a simulation

● Trace instruction execution

● Rename instances

● Combine register elements

Most SmartModels contain predefined window elements that correspond to the
manufacturer's specifications. In addition, SmartCircuit models allow users to define
their own window elements so that the actual structure of the device can be examined.
To determine if a specific model is equipped with SmartModel Windows, check the
model's online datasheet.

How SmartModel Windows Works
SmartModel Windows couples the models and the simulator so that model elements can
be used almost as if they were nets in the design. Normal QuickSim II commands are
used with SmartModel Windows, except that an instance designator must be added to a
QuickSim II command to address a model's window elements (even at the top level).
The general format for using QuickSim II commands with SmartModel Windows is:

command model_instance/element_name

Use any of the following commands to enable window elements with the simulator:

ADD LISTS model_instance/element_name

ADD MONITORS model_instance/element_name

ADD TRACES model_instance/element_name

Chapter 12: Using QuickSim II with Synopsys Models Simulator ConfigurationGuide

236 Synopsys, Inc. July 31, 2001

�

Window elements must be activated with one of the preceding commands in order for
SmartModel Windows to begin displaying data. Each model's online datasheet lists its
predefined window elements, which are available during simulation. Using windows
you can read or display elements, force new values onto them, and stop the simulation
based on their values.

Tracing Instruction Execution
SmartModel Windows provides the ability to trace peripheral component activity in a
design. Most larger peripherals and microprocessors equipped for SmartModel
Windows have a 1-bit element named TRACE_ENABLE. Setting TRACE_ENABLE
to one (1) causes trace messages to display in the transcript window.

Use the following command to enable instruction tracing for a model:

FORCE model_instance/TRACE_ENABLE 1

Some trace message examples follow:

‘I$2752': ‘Trace: Logical Master writing to PMMU Operand Address CIR.
‘I$2752': ‘SmartModel Instance /I$2752(U103:MC68851-12), sheet1 of

my_design at time 819500.0
‘I$2752': ‘Trace: MC68851 is starting a table search using CRP.
‘I$2752': ‘SmartModel Instance /I$2752(U103:MC68851-12), sheet1 of

my_design at time 822150.0

Setting Breakpoints and Word Triggering
Use the ADD REAKPOINT command to stop the simulation at critical points and
examine internal window elements. You can set breakpoints based on the contents of
specific elements inside components within the design. For example, the following
command causes the simulation to stop at the breakpoint when the specified condition is
met.

ADD BREAKPOINT (model_instance/TC==0B)

You can use Boolean expressions with the Add Breakpoint command to set up complex
word triggers that provide a logic analyzer during simulation. For example, the
following command causes the simulation to stop at the breakpoint when both of the two
specified conditions are met.

ADD BREAKPOINT ((model_instance/SCC!=0)&&(model_instance/TC==B))

Trigger terms do not have to refer to the same instance or model. In addition, net values
and window element contents can be combined to make trigger terms.

Single-Step Simulation
The ADD BREAKPOINT command defaults to stopping the simulator when a signal or
expression in a window element changes state. As a result, you can use the ADD
BREAKPOINT command to single-step through a simulation.

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

July 31, 2001 Synopsys, Inc. 237

�

Renaming Instances
Use the ADD SYNONYM command to rename instances with easier-to-remember
substitute names. For example, to rename a model for an MC68851 with an instance
name of “I$289” to an easier-to-remember name such as “PMMU,” use the following
command:

ADD SYNONYM 'PMMU' I$289

Once you add a synonym you can use it in place of the original instance name in
commands. For example, the following command lists the MC68851 translation control
register.

ADD LISTS HEX PMMU/TC

Combining Register Elements
You can use the ADD BUS command to combine meaningful 1-bit elements of a PLD
into a single bus that can be viewed or changed after the PLD has been programmed.
This saves effort compared to dealing with each 1-bit element one at a time. Table 28
shows the elements of a sample device, the Texas Instruments TIBPAL22V10. All
window elements for this example are 1-bit wide with read and write access.

Table 28: Elements in a TIBPAL22V10 Device

Element Description

Q23 PAL Internal Register connected to pin 23

Q22 PAL Internal Register connected to pin 22

Q21 PAL Internal Register connected to pin 21

Q20 PAL Internal Register connected to pin 20

Q19 PAL Internal Register connected to pin 19

Q18 PAL Internal Register connected to pin 18

Q17 PAL Internal Register connected to pin 17

Q16 PAL Internal Register connected to pin 16

Q15 PAL Internal Register connected to pin 15

Q14 PAL Internal Register connected to pin 14

Chapter 12: Using QuickSim II with Synopsys Models Simulator ConfigurationGuide

238 Synopsys, Inc. July 31, 2001

�

Note�
Because the block diagram of this part does not denote specific names for
the elements, their names reflect the output pin numbers on the DIP symbol
(for example, pin 23 maps to Q23).

For example, to program the first six elements listed in Table 28 as counters and register
the last four elements as data pins from an I/O port, you would use the following
commands:

ADD BUS CNTR I$230/Q23, I$230/Q22, I$230/Q21, I$230/Q20, I$230/Q19,
I$230/Q18

ADD BUS DATA I$230/Q17, I$230/Q16, I$230/Q15, I$230/Q14
ADD LISTS CNTR DATA -C -HEX

Changing Program Flow by Setting Values
You can use the SmartModel Windows feature to shorten large repetitive loops. For
example, if a DMA controller has initiated a DMA transfer of 1,024 words to main
memory, you can view the transfer of the first couple of words before stopping the
simulation. By artificially setting the value of the DMA's transfer control register, you
can control which part of the transfer to view. You can then view the last few words as
they are transferred without having to wait for the entire process.

Be careful when inserting values into window elements, especially when forcing data
into program counters and instruction registers. This SmartModel Windows feature is
recommended only for users who completely understand the implications of what is
being inserted into an element.

When forcing a value onto an element, the FORCE command is always interpreted as if
the -CHARGED switch were present. This means that the forced value vanishes when
another event attempts to update the window element. It is not possible to FIX or WIRE
a forced value on a window element.

SmartModel Window Elements
SmartModel Window elements for SmartCircuit models can be defined only at
simulator startup. This affects the way several QuickSim II commands interact with
SmartCircuit models:

● The SAVE STATE and RESTORE STATE commands produce unpredictable effects
if any SmartCircuit window elements are defined after saving the state.

● For SmartModel Windows to work with the SAVE STATE and RESTORE STATE
commands, the window elements defined at SAVE STATE must exactly match
those defined at the start of the current simulation session.

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

July 31, 2001 Synopsys, Inc. 239

�

● The REREAD MODELFILE command does not redefine window elements for
SmartCircuit models. Using this command to redefine window elements after
simulation startup disables the window elements.

Custom Symbols
Synopsys provides symbols representing default package pinouts for SmartModels.
However, you may need to create custom symbols for some of the following reasons:

● To conform to internal drafting requirements

● To make a symbol match a component's pinout

● To match external drafting specifications (for example, military specifications)

Users who choose to create custom symbols as an alternative to using the symbols
provided can:

● Modify a SmartModel Symbol. Start with the SmartModel symbol and modify it
to match your drafting requirements. The value of the user PIN property can now
be changed without corrupting the value of the compiled PIN property.

● Create a New Symbol. Create the symbol with your pin values, figure out the
corresponding pin names used by the model, and change the user pin values to those
names.

To create custom symbols, follow these steps:

1. Provide required SWIFT properties on the symbol.

2. Register the component.

3. Map pin names to standard SWIFT pin names.

SWIFT Properties
The following symbol properties are required to interface with a SWIFT model:

● model

● TimingVersion

● pin

● pintype

● swift_template

Refer to Table 23 and Table 24 for information about other required symbol properties.

Chapter 12: Using QuickSim II with Synopsys Models Simulator ConfigurationGuide

240 Synopsys, Inc. July 31, 2001

�

Component Registration
When creating new symbols, you must add the SWIFT model to the component
interface by “registering” the model with a type of “SWIFT”.

For example, suppose you have created a new component called “my_ttl00” and you
want to use the SmartModel Library “ttl00” binary as the simulation model. You would
register the ttl00 model as follows:

reg_model $MY_DIR/my_comp_lib/my_ttl00 -type SWIFT -label 'my_label'

PIN_NAME Mapping
The two methods for creating custom symbols described in “Custom Symbols” on page
239 cannot be used to map bus symbol pins to model pins. You must use a pin_map file
to accomplish this sort of custom symbol creation, as explained in the following
sections.

PIN Property
A PIN property can have two distinct values in Design Architect, as follows:

● Compiled pin value

● User pin value

The compiled pin value must be the same value that is used in the model. When initially
adding a pin to a symbol, both these values are set to the specified value. For example,
naming a pin “A” causes both its user pin value and the compiled pin value to be “A”.

Changing a PIN property value causes the compiled pin value to track the user pin
value. Specifically changing the compiled PIN property value disables this tracking
mechanism. To re-enable tracking, set the value of the compiled PIN property to null
(“”).

PIN_NAME Property
SmartModel Library symbols include a property called PIN_NAME that is used purely
for graphical purposes. The PIN_NAME property is provided because SmartModel
Library symbols do not completely match the Mentor Graphics requirements for pin
names. Deleting a PIN_NAME property does not affect model functionality in any way.

Attention�
Do not confuse the PIN property with the PIN_NAME property on
SmartModel symbols.

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

July 31, 2001 Synopsys, Inc. 241

�

Purpose of the pin_map File
Use the pin_map file to map custom symbol pins to model pins. If your symbol does not
have buses, then you can use the “user pin value” and “compiled pin value”
combinations previously described to do this mapping without using the pin_map file.
If you have bus pins on your symbol, then you need to use a pin_map file and ensure
that the PKG symbol property is set to the value “BUS”. Following is a general
description of the pin_map file which describes both cases.

Note�
Error messages cite the pin names used by the model, not those on the
symbol or in the pin_map file.

How the pin_map File Works
At startup, a PKG symbol value of “BUS” triggers the simulator to look for a pin_map
file for that model. The pin_map cross-reference file is a free-format ASCII file. It
contains statements that use the following syntax:

pin_type symbol_pin [=] model_pin_names ; [# comment_text]

Following are descriptions of the fields and options.

pin_type Must be the same value as the PINTYPE property of the
model. Valid values are IN, OUT, IXO, and IO. Do not
change this value.

symbol_pin The new pin name you want to use on your symbol. This is
the symbol's user PIN property, not its PIN_NAME property.

= Optional.

model_pin_names A statement can have from 0 to 767 model_pin_names,
separated by spaces, tabs, or new lines. The
model_pin_names are ordered from most significant to least
significant and refer to the PIN property, not the PIN_NAME
property.

; Ends a statement.

Starts a comment, which runs to the end of the line.

Chapter 12: Using QuickSim II with Synopsys Models Simulator ConfigurationGuide

242 Synopsys, Inc. July 31, 2001

�

Example of a pin_map File
The following example pin_map file customizes the standard symbol supplied with the
model of the National Semiconductor DP8429 DRAM controller shown in Figure 15.

Figure 15: National Semiconductor DP8429 DRAM Controller

In the example pin_map file shown below, the names that are changed on the first
symbol are labeled CS, RASIN, R/C, CASIN, WIN, RA, RB, RC, RD, and M2. They
will have an “L” added to the name to denote that they are asserted low. Notice that a
bus has been defined for each of these sets of pins: Q0 through Q9, R0 through R9, C0
through C9, and B0 through B1.

#
DP8429 PIN NAME CHANGES
#
IN CSL = CS ;
IN RASINL = RASIN ;
IN CASINL = CASIN ;
IN RCL = R/C ;
IN WINL = WIN ;
IN RFSH = M2 ;
IN R = R9 R8 R7 R6 R5 R4 R3 R2 R1 R0;

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

July 31, 2001 Synopsys, Inc. 243

�

IN C = C9 C8 C7 C6 C5 C4 C3 C2 C1 C0;
IN B = B1 B0;
OUT WEL = WE ;
OUT RAL = RAS3 ;
OUT RBL = RAS2 ;
OUT RCL = RAS1 ;
OUT RDL = RAS0 ;
OUT Q = Q9 Q8 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0;

Conditional Pin Mapping
Use a conditional clause in the pin_map file to cause the model to use different parts of
a pin_map file based on the value of a certain property. The syntax is:

% property_name property_value

This method is used by the models to map the pins from the BUS symbols to the model.

The pin map parser searches for the property_name in the design database and then
compares the property_value. If the property is not present, or if the actual value of the
property does not match the property_value exactly, everything in the file until the next
percent sign (%) is ignored.

The following example shows the pin_map file that provides mapping from the pin to
the bus symbols for the Logic Devices LSH32 32-bit barrel shifter.

#
Bus Package for the LSH32
#
% PKG BUS
IN I = I31 I30 I29 I28 I27 I26 I25 I24 I23 I22 I21 I20 I19 I18

I17 I16 I15 I14 I13 I12 I11 I10 I9 I8 I7 I6 I5 I4 I3 I2 I1 ;
OUT Y = Y15 Y14 Y13 Y12 Y11 Y10 Y9 Y8 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 ;
IN SI = SI4 SI3 SI2 SI1 SI0 ;
OUT SO = SO4 SO3 SO2 SO1 SO0

Chapter 12: Using QuickSim II with Synopsys Models Simulator ConfigurationGuide

244 Synopsys, Inc. July 31, 2001

�

Figure 16 illustrates both symbol types.

Figure 16: Bus and Pin Symbols

Note�
The properties on custom symbols must be the same as those on standard
SmartModel symbols.

Using Hardware Models with QuickSim II
This section describes how to configure Release 3.5a of ModelAccess for QuickSim II.
ModelAccess is the software you use to interface hardware models with the simulator.
Before you begin, review the release notes for ModelAccess for QuickSim in the
Hardware Modeling Release Notes. If you are using the C-series releases of QuickSim
II, you must use R3.0 or better of the ModelAccess for QuickSim II interface software.

These instructions assume that you have already installed the following software:

● Mentor Graphics software, including QuickSim II V8.6 or later; and the Design
Data Port package, as described by Mentor Graphics Corporation.

● R3.1a or later of ModelSource or LM-family hardware modeling software.

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

July 31, 2001 Synopsys, Inc. 245

�

Setting up Hardware Models in QuickSim II
To set up the LM-family ModelAccess interface software for QuickSim II, complete the
following steps:

1. “Running lmc_hm_install” on page 245

2. “Rebuilding the Mentor Graphics Tree” on page 246

Running lmc_hm_install
To run the ModelAccess installation script, enter the following commands. If you are on
NT, execute these commands in a MGC “mkns” shell.

% cd install_dir/sms/maqs_30/lmc_hm.$vco/bin
% lmc_hm_install -m mgc_home -l lm_home -p ma_home

where:

● $vco is the vendor CPU operating system suffix that corresponds to your platform,
as shown in Table 29.

● mgc_home is the directory path that contains the Mentor Graphics software tree.
You can use $MGC_HOME if you have set it, or a pathname such as
/home/mentor.

● lm_home is the directory path that contains the LM-family and ModelSource system
software; for example, /home/lm.

● ma_home is the directory path that contains the ModelAccess interface software; for
example, /home/lmc_hm.sss.

When the script completes, the following message appears on the screen:

1. Invoke the Mentor Installation tool
> cd /an_idea_tree/install8
> install

Table 29: Mentor Graphics Vendor CPU Operating System Suffixes

Host
Vendor CPU

Operating System Suffix ($vco)

Sun SPARC (Solaris) ss5

HP 9000 Series 700 hpu

Intel Pentium (Windows NT) ixn

Chapter 12: Using QuickSim II with Synopsys Models Simulator ConfigurationGuide

246 Synopsys, Inc. July 31, 2001

�

2. From the "Mentor Graphics Install" tool window
> Admin
> Rebuild MGC Tree

3. In the "Prompt" window enter the proper path to the
MGC_HOME to be rebuilt. Click on
> OK

4. "Rebuild MGC Tree Results" window appears. AFTER Rebuild
completes. Click on
> OK

5. From the "Mentor Graphics Install" tool window
> File
> Exit

6. "Install Warning" window appears. Click on
> OK

Note�
This process rebuilds the Mentor tree with the newly installed hardware
modeler package.

Rebuilding the Mentor Graphics Tree
The final step is to rebuild the Mentor Graphics tree using the Mentor Graphics
installation script.

Using install, version C.1
1. To invoke this program, enter the following:

% cd mgc_home/install8 ./install

2. When the install tool appears, use the mouse to select the Admin > Rebuild MGC
Tree pull-down menu item. The program prompts you to enter the MGC tree
pathname.

3. If you have defined $MGC_HOME, that path will appear; otherwise, enter the full
pathname of the Mentor Graphics tree that you want to rebuild, such as the
mgc_home pathname described in “Rebuilding the Mentor Graphics Tree” on
page 246.

4. Click on OK or press the Return key to accept this pathname. The install program
takes several minutes to rebuild the Mentor Graphics tree. The program prints a
number of messages to the Results screen. You should ensure that no errors or
warnings are printed, especially warnings generated by the lmc_hm package
indicating that you are missing certain Mentor Graphics software packages.

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

July 31, 2001 Synopsys, Inc. 247

�

5. When the rebuild is complete, click on OK to delete the Results screen.

6. Use the mouse to select the File > Exit pull-down menu item.

This completes the ModelAccess installation procedure. You are now ready to begin
model registration and simulation.

Using Hardware Models in QuickSim II
This section describes how to prepare and use hardware models in QuickSim II. We
begin with an overview of the Mentor Graphics design environment that describes why
models must be registered in order to function in this environment. The section also
describes how to use the lm_model utility to register hardware models.

The operation of the hardware modeling system during simulation is transparent to the
user in most respects. However, a number of signal instance commands are available to
enable or disable QuickSim II or hardware modeling features for selected instances
during simulation. This section provides descriptions and examples of those commands.

The Mentor Graphics Design Environment
In the post-V8.0 QuickSim-family environment, an instance of a component placed on a
schematic references a component interface. A component interface contains a set of
descriptors that define aspects of a component, such as its functionality, graphical
representation (symbol), and timing constraints.

There can be several variations of each descriptor for a component, such as:

● Several functional descriptions of the component using different modeling methods
such as BLM, VHDL, or hardware models.

● Several graphical descriptions (symbols) of the component such as ANSI,
MG_STD, or your company standard.

● Several technology descriptions (timing constraints) of the component with
different timing grades.

The Mentor Graphics analysis tools use the value of the MODEL property as a label to
identify the descriptors that define the model. For example, Figure 17 shows an instance
with a MODEL property of $lm. The $lm label is the default label for the functional
description of a hardware model. By examining the model table of the component
interface, a match can be found between the MODEL property and the files that
comprise the functional description of the hardware model.

Chapter 12: Using QuickSim II with Synopsys Models Simulator ConfigurationGuide

248 Synopsys, Inc. July 31, 2001

�

Figure 17: Sample Component Interface for a Hardware Model

Mentor Graphics analysis tools use the following rules to determine the appropriate
descriptors:

1. If a label match is found, the analysis tool uses the descriptor identified by the label.

2. If a label match is not found, the analysis tool uses the default label for the
descriptor.

3. If a label match is not found and there is no default label, the descriptor is optional
and is not used.

ASIC1.rss_1
ASIC1.mgc_lm.attr

Functional Description

ASIC1.smbl_1
ASIC1.mgc_symbol.attr

Graphical Description

technology.ts
technology.tecf_1

Technology Description

technology.Tf_tfile_do.attr

Component
Interface

$lm
default_sym

def_tech

Mentor Graphics Schematic

ASIC1
Instance

MODEL
= $lm

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

July 31, 2001 Synopsys, Inc. 249

�

Model Registration
Because multiple descriptions can exist for the same component, you must register each
model to specify the model’s component interface and descriptors. The lm_model utility
is a tool for registering hardware models. If a QuickSim II component does not already
exist, lm_model creates one, along with a component interface that specifies the
functional, graphical, and technology descriptions for the model.

The lm_model utility registers a hardware model in three steps, using the model’s Shell
Software as source files:

1. Creates a symbol for the model and registers it with the component interface.

2. Creates, compiles, and registers a technology File, which contains the timing
description of the model in a Mentor Graphics proprietary format. The user can
choose to use either this technology file or the Shell Software timing files during
simulation. For more information, refer to “Timing Shell Selection” on page 258.

3. Registers the functional description with the component interface.

The lm_model command, as illustrated in Figure 18, calls a number of other utilities.
The reg_model utility and Technology Compiler (tc) are Mentor Graphics utilities; for
more information about these utilities, refer to your Mentor Graphics documentation.
For more information on the tmg_to_ts converter, refer to “lm_model Command
Reference” on page 264. For more information on the lm_model utility, refer to
“tmg_to_ts Command Reference” on page 267.

Chapter 12: Using QuickSim II with Synopsys Models Simulator ConfigurationGuide

250 Synopsys, Inc. July 31, 2001

�

Figure 18: Hardware Model Registration

Registering a Model with lm_model
All hardware models, whether user-created or purchased from Synopsys, must be
registered with the lm_model utility before you can use them in the QuickSim II
simulation environment. The following list shows the basic steps involved in preparing
a hardware model for simulation:

1. Running the lm_model Utility, discussed next.

2. Checking the Transcript for any errors or warnings.

technology.
tecf_1

ASIC1.DCL

ASIC1.TCK

ASIC1.TRK

ASIC1.DLY

ASIC1.FRC

ASIC1.MDL

ASIC1.DEV

PGA.PKG

PGA160.ADP

ASIC1.OPT

ASIC1.NAM

Shell Software

technology.ts

ASIC1.
mgc_lm.attr

ASIC1.rss_1

ASIC1.mgc_
symbol.attr

ASIC1.
smbl_1

technology.
Tf_tfile_
do.attr

Functional
Description

Graphical
Description

Technology
Description

tmg_to_tslm_modelreg_model
Technology

Compiler
(tc)

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

July 31, 2001 Synopsys, Inc. 251

�

3. Editing the Symbol to meet any additional symbol conventions (optional).

4. Verifying the Technology File(not required if Shell Software timing files are used in
place of this file; for more information, refer to “Timing Shell Selection” on
page 258).

Running the lm_model Utility
You can use the lm_model shell command to register a hardware model. To run
lm_model, use the following syntax.

Syntax
lm_model input_dir [output_path] [-Dir name] [-LAbel label]

[-Mdl mdl_filename] [-Step Register|Symbol|Timing|Update] [-Replace]

For a complete description of lm_model syntax and options, refer to “lm_model
Command Reference” on page 264.

Example
The following example shows how you might register a 74LS74 model which has a
model file named 74LS74A.MDL. This example assumes that $MGC_WD is set to
/user/models, which contains a Shell Software directory called 74ls74.

lm_model 74ls74 -m 74LS74A

This command creates a /user/models/74LS74 component directory—if one did not
already exist—containing the files shown in Table 30.

Table 30: Sample Component Directory

File Description

74LS74A.rss_1 Registered Shell Software

74LS74A.mgc_lm.attr Compiled and registered Shell Software

part.part_1 EDDM part

part.Eddm_part.attr EDDM part

74LS74.smbl_1 Symbol graphics

74LS74.mgc_symbol.attr Symbol graphics

74LS74A_tech.ts Source technology file

74LS74A_tech.tecf_1 Compiled technology file

74LS74A_tech.Tf_tfile_do.attr Versioned technology file

Chapter 12: Using QuickSim II with Synopsys Models Simulator ConfigurationGuide

252 Synopsys, Inc. July 31, 2001

�

Note�
Previous versions of lm_model copied Shell Software source files into the
component directory and registered these files. However, the current version
registers only a reference pathname to the Shell Software files and does not
copy the files.

Checking the Transcript
The transcript displays information about the progress of the registration, in addition to
notes, warnings, and errors.

The lm_model utility checks that the Shell Software is syntactically and semantically
correct; this is equivalent to running the lm Check Shell Software utility. If lm_model
encounters an error condition, it stops execution and prints a message describing the
source of the error. Warning and information messages print to the screen, but do not
halt the execution of lm_model.

If you get an error, you should fix the problem in the Shell Software and then run
lm_model again to complete the registration.

The following is an lm_model transcript for the 74LS74 model:

// ModelAccess for QuickSim II v2.0, (a.k.a. lmc_hm v2.0)
// lm_model v8.5_2.1 Fri Oct 18 18:32:32 PDT 1996
// Note: Input directory "74ls74"
// resolves to "/user/johnd/lmc/qa/lmc_hm/work.sss/74ls74".
// Note: Output directory "74LS74"
// resolves to "/user/johnd/lmc/qa/lmc_hm/work.sss/74LS74".
//
// Note: Using "74LS74A.MDL" file for conversion.
// Note: Compiling symbol generator program.
// Note: Linking symbol generator program.
// Note: Creating symbol.
// tmg_to_ts v8.5_2.1 Sat Oct 19 20:18:24 PDT 1996
// Falcon Framework v8.5_2.5 Thu May 30 17:31:43 PDT 1996
//
// Copyright (c) Mentor Graphics Corporation, 1982-1995, All Rights Reserved.
// UNPUBLISHED, LICENSED SOFTWARE.
// CONFIDENTIAL AND PROPRIETARY INFORMATION WHICH IS THE
// PROPERTY OF MENTOR GRAPHICS CORPORATION OR ITS LICENSORS.
//
// Mentor Graphics software executing under Sun SPARC SunOS.
//

// TC - The Technology Compiler v8.5_2.2 Sat Jun 22 10:56:50 PDT 1996
// Falcon Framework v8.5_2.5 Thu May 30 17:31:43 PDT 1996
//
// Copyright (c) Mentor Graphics Corporation, 1982-1995, All Rights Reserved.
// UNPUBLISHED, LICENSED SOFTWARE.

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

July 31, 2001 Synopsys, Inc. 253

�

// CONFIDENTIAL AND PROPRIETARY INFORMATION WHICH IS THE
// PROPERTY OF MENTOR GRAPHICS CORPORATION OR ITS LICENSORS.
//
// Mentor Graphics software executing under Sun SPARC SunOS.
//

//
// Note: lm_model completed successfully

Editing the Symbol
During registration, the lm_model utility reads the Shell Software to determine the
device’s input, output, and I/O pin names. The utility then flattens all buses to individual
bits and generates a Mentor Graphics Design Architect script that creates the symbol.

The process uses the following rules to create the symbol:

● All input pins are placed starting in the lower left corner and proceeding upwards.

● All output pins are placed starting in the lower right corner and proceeding upwards.

● I/O pins are placed for minimizing the symbol’s height.

● All buses are grouped with the least significant bit placed lower on the symbol than
the most significant bit.

● A single grid spacing is left between buses, grouped scalar pins, input and I/O pins,
and output and I/O pins.

Since symbol standards vary, you may need to use the Symbol Editor in Design
Architect to modify the appearance of the automatically-generated symbol. For more
information, refer to your Design Architect documentation.

Verifying the Technology File
During registration, lm_model calls the tmg_to_ts converter. This converter extracts
timing information from the following Shell Software files to create a Technology File:

● Variable declarations (.DCL) file

● Timing checks (.TCK) file

● State tracking (.TRK) file

● Delays (.DLY) file

● Force values (.FRC) file

The technology file specifies propagation delays and some timing checks, as well as
technology-dependent data for the simulation model. Table 31 shows how Shell
Software timing statements are converted into technology file statements.

Chapter 12: Using QuickSim II with Synopsys Models Simulator ConfigurationGuide

254 Synopsys, Inc. July 31, 2001

�

Note�
Many Shell Software statements have no technology file equivalents. The
tmg_to_ts converter includes each “untranslatable” statement in the
technology file as a comment and/or generates a warning message. For this
reason, we recommend that you use the Shell Software timing files instead
of the technology file during simulation. For instructions, refer to “Timing
Shell Selection” on page 258.

.

Table 31: Shell Software to Technology File Conversion

Shell Software Statements Technology File Statements

cycle_time input_state (storage_pin) =
timing_spec

fMIN = min_freq on storage_pin (input_trans)

fMAX = max_freq on storage_pin (input_trans)

decrement name —

default_delay timing_spec tP = timing_spec on eval_storage_pin
(input_trans) to output_pin (output_trans)

delay from input_state (eval_storage_pin) to
output_state (output_pin) = timing_spec

tP = timing_spec on eval_storage_pin
(input_trans) to output_pin (output_trans)

force_value output_pin = pin_value —

hold after input_state1 (storage_pin) of

input_state2 (input_pin) = timing_spec

tH = timing_spec on input_pin (input_state2) to

storage_pin (input_trans1)

if (condition) {statements}
else_if (condition) {statements}
else {statements}
end_if

—

increment name —

print (severity, arguments) —

pulse_width input_state (storage_pin) = timing_spec tW = timing_spec on storage_pin (input_state)

No equivalent to maximum pulse width time.

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

July 31, 2001 Synopsys, Inc. 255

�

Modifying a Hardware Model
Whenever you change a hardware model’s Shell Software, you need to rerun lm_model.
However, you may be able to use the -Step option to perform just the steps you need.
The following list provides some guidelines about how to take advantage of the -Step
option:

● If you change, add, or delete a pin name in the Shell Software, then you must rerun
all three steps of lm_model (the default). Because you are recreating the symbol,
you must also use the -Replace option. For example:

lm_model 74ls74 -r

● If you change, add, or delete a timing specification in the Shell Software timing files
and you are using the Technology File in QuickSim II, you should use lm_model
with the -Step Timing switch. For example:

lm_model 74ls74 -s t

recovery after (condition)
during (condition)

before input_state(storage_pin) =
timing_spec

else_during (condition)
before input_state(storage_pin) =

timing_spec
else

before input_state(storage_pin) =
timing_spec

end_during

—

set name = value —

setup before input_state1 (storage_pin) of

input_state2 (input_pin) = timing_spec

tS = timing_spec on input_pin (input_state2) to

storage_pin (input_trans1)

stable valid (input_pin) while (store_pin =
input_state)

tSTAB = 0 : 0 on input_pin (V) to store_pin (trans1,
trans2)

var enumerated_list name = identifier —

var counter name = number —

when (condition) {statements}
else_when (condition) {statements}
else {statements}
end_when

with condition
No equivalents to else_when and else clauses

Table 31: Shell Software to Technology File Conversion (Continued)

Shell Software Statements Technology File Statements

Chapter 12: Using QuickSim II with Synopsys Models Simulator ConfigurationGuide

256 Synopsys, Inc. July 31, 2001

�

This step is equivalent to running tmg_to_ts to create the technology file and then
running tc to compile and register it with the component interface.

● If you make any changes to the Shell Software other than changing pin names and
timing information, you should use lm_model with the -Step Register switch; for
example:

lm_model 74ls74 -s r

This step is equivalent to running reg_model.

● If you have not changed any pin names and want to run both the registration and
timing steps, you can use lm_model with the -Step Update switch to update the
component interface without recreating the symbol. For example:

lm_model 74ls74 -s u

This switch is particularly useful, because symbol generation is the most time-
consuming step of registration and you lose all manual edits you have made to a
symbol when you regenerate it.

● If you already have a working symbol, you can use -Step Update to register the
hardware model functionality with the existing component. For example, you would
use -Step Update if you have a different type of model for the same component. You
can then change the MODEL property in the schematic in order to specify whether
you want to use the hardware model or another type of model for an instance.

Simulating with Hardware Models in QuickSim II
Once you have registered each hardware model in your design and set the MODEL
property to the appropriate label for instances that reference those models, you are ready
to simulate. You can use the SIGnal INSTance command to turn on and off a number of
QuickSim II or hardware modeling features for selected instances during simulation.

Signal Instance Command Summary
Table 32 provides a summary of these features and the specific commands used to
implement them; the subsections that follow describe the features in more depth. Some
features can also be implemented through Shell Software statements or the lm utilities;
for details, refer to the Shell Software Reference Manual. For instructions on how to
select one or more instances, refer to your QuickSim II documentation.

Note�
If the simulator is reset with the $reset_state function, any prior Signal
Instance commands are lost because the simulator is reset to the same state it
was at invocation.

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

July 31, 2001 Synopsys, Inc. 257

�

Table 32: Signal Instance Command Summary

Feature Command Description

Model evaluation enable Enables evaluation of the instance by
QuickSim II (default)

disable Disables evaluation of the instance by
QuickSim II

Timing shell
selection

lst [-p all] Selects hardware model Shell Software files to
describe the instance’s timing

nolst [-p all] Selects the Technology File to describe the
instance’s timing (Default)

Unknown
handling and
propagation

xp [-p pin_name] Maps an unknown input state to the previous
state (Default)

x0 [-p pin_name] Maps an unknown input state to a logic zero
state

x1 [-p pin_name] Maps an unknown input state to a logic one
state

xz [-p pin_name] Maps an unknown input state to a float state

propagate Propagates unknowns through the hardware
model

nopropagate Turns off unknown propagation (default)

default_ propagation
-p number

Sets the number of additional sequences to be
played to the instance when unknown
propagation is enabled (default = 0)

random_seed
-p seed

Sets the value of the seed for the random
sequence generator when unknown propagation
is enabled (default = 0)

Indeterminate
strength mapping

is Maps an indeterminate strength (i) to a strong
strength (s) (default)

iz Maps an indeterminate strength (i) to a high-
impedance strength (z)

Test vector
logging

logvectors
-p filename

Turns on test vector logging

nologvectors Turns off test vector logging (default)

Chapter 12: Using QuickSim II with Synopsys Models Simulator ConfigurationGuide

258 Synopsys, Inc. July 31, 2001

�

Model Evaluation
By default, all component instances are evaluated in QuickSim II. If you want to disable
evaluation of models for selected instances, you can use the SIGnal INSTance disable
command. This command isolates sections of the design and shortens the simulation
time for debugging purposes. To turn model evaluation on again for selected instances,
you can use SIGnal INSTance enable.

Timing Shell Selection
The SIGnal INSTance lst command lets you use the hardware model’s Shell Software
timing files instead of the default technology file during evaluation of the selected
instances. You can use the SIGnal INSTance nolst command to switch back to the
technology file for selected instances.

The optional -p all argument enables you to choose the type of timing shell for all
hardware models in the design, if you have at least one instance selected. For example,
you could use the following command before simulating:

sig inst lst -p all

Timing
measurement

tm [-p filename] Turns on timing measurement: returns the
actual measured delays to QuickSim II

notm Turns off timing measurement: uses the delay
values specified in the Shell Software or in the
technology file (default)

Loop mode loop Turns on loop mode: the modeling system
repeatedly plays a pattern history to the
physical device

noloop Turns off loop mode (default)

Information dump Reports all available information about the
selected instance of a hardware modeled device

lmc
[-p shell|allshell]

Reports the type of timing shell (Shell Software
or technology file) for the selected instance

vector Reports the runtime vector count of the selected
instance

Table 32: Signal Instance Command Summary (Continued)

Feature Command Description

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

July 31, 2001 Synopsys, Inc. 259

�

QuickSim II ignores the technology files for all hardware models in the design and take
the timing (delays and timing checks) directly from the Shell Software. If you decided
you wanted to use the technology files instead for all hardware models, you could use
the following command to switch back to the default timing shell without having to
select every instance:

sig inst nolst -p all

To select Shell Software timing every time you invoke QuickSim II with a particular
design, you can create or edit a quicksim.startup file under the design viewpoint. Add
the following line to the file to directly call the function that implements this Signal
Instance command:

$signal_instances("lst", "all", "/I$1");

Substitute the instance name of any hardware modeled device for /I$1.

You can also use the actual measured delays from the device as an alternative timing
option with hardware models. For more information about this feature, refer to “Timing
Measurement” on page 261.

Performance Monitoring
You can monitor the performance of the hardware modeler and append the results to the
simulator log file after simulation. To enable performance monitoring, in the window
where you are running the simulator, enter the following:

% setenv LM_OPTION “monitor_performance”

For more information, refer to “Performance Monitoring” in the ModelSource User’s
Manual.

Unknown Handling and Propagation
The unknown handling and propagation commands enable you to modify the hardware
modeling system’s default handling of device input and I/O pins that the simulator sets
to unknown.

Unknown Mapping
Since the hardware modeling system cannot present an unknown logic level to a
physical device, unknown values presented to inputs of hardware models must be
mapped to known values. The SIGnal INSTance xp, x0, x1, and xz commands map
unknowns for all instances of the selected components to the previous state, logic zero,
logic one, or high-impedance (float), respectively. By default, unknowns are mapped to
the previous state. Unknowns mapped to high-impedance are also mapped to the
previous state.

Chapter 12: Using QuickSim II with Synopsys Models Simulator ConfigurationGuide

260 Synopsys, Inc. July 31, 2001

�

You can customize unknown handling per pin by using the -p pin_name argument. For
example, you can issue the following:

sig inst x0
sig inst x1 -p clk1

These commands map all unknowns for the selected components—except for unknowns
received on the clk1 pin—to logic zero (0). Any unknowns received on clk1 are mapped
to logic one (1).

These Signal Instance commands perform the same function as the Shell Software
on_unknown statement, and the set_previous, set_low, set_high, and set_float attributes
of the in_pin and io_pin statements. For more information, refer to the Shell Software
Reference Manual. Note that explicit Shell Software settings override any Signal
Instance commands.

Unknown Propagation
The SIGnal INSTance propagate command turns on unknown propagation for all
instances of the selected components. The modeling system propagates the unknowns
through the model using multi-sequence pattern play. The SIGnal INSTance
nopropagate command turns off unknown propagation for all instances of the currently
selected component, which is the default behavior.

When unknown propagation is on, two pattern sequences are used by default. However,
you can specify up to twenty additional sequences with the default_propagation -p
number command, for a total of 22 sequences. You can also specify the value of the seed
for the random sequence generator with the random_seed -p seed command. The value
of the seed is 0 by default, but any number from 0 to 65,535 can be used.

For example, you can issue the following:

sig inst propagate
sig inst default_propagation -p 8
sig inst random_seed -p 7896

These commands turn unknown propagation on for all instances of the selected
components. The modeling system plays a total of ten sequences (the primary,
secondary, and eight additional sequences) per instance to the device, and uses the
random sequence seed 7,896.

These Signal Instance commands perform the same function as the Shell Software
on_unknown statement. Note that explicit Shell Software settings override any Signal
Instance commands, except for when the SIGnal INSTance nopropagate command is
used. This exception allows the simulator to turn off unknown propagation if the
modeling system is running out of pattern memory. For more information about
unknown propagation, refer to the Shell Software Reference Manual and the LM-family
Modeler Manual or the ModelSource User’s Manual.

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

July 31, 2001 Synopsys, Inc. 261

�

Indeterminate Strength Mapping
The SIGnal INSTance is and SIGnal INSTance iz commands enable you to map
indeterminate strength pin values received on inputs of hardware models to either strong
(hard) or high-impedance (float) strengths. The modeling system treats high-impedance
strength pin values as unknowns and maps or propagates them accordingly. By default,
the system maps indeterminate strengths to strong strengths.

Test Vector Logging
The SIGnal INSTance logvectors -p filename command turns on modeling system test
vector logging for the selected instance. With test vector logging enabled, the inputs to
the device and sensed outputs from the device are stored to filename. By convention, the
filename used for the test vector output is device_name.VEC. The SIGnal INSTance
nologvectors command turns off test vector logging for the selected instance, which is
the default behavior.

For example, consider the following commands:

sig inst logvectors -p '$ASIC2/vectors/vector11.VEC'
dofile '$ASIC2/dofiles/run11.do'
sig inst nologvectors

In this example, the modeling system creates a test vector file called vector11.VEC.
This file contains the vectors played to and sensed from the selected instance during the
simulation run by the dofile. The SIGnal INSTance nologvectors command turns off the
modeling system test vector logging capability.

After logging vectors, you can replay them directly to the device and note any
discrepancies using the lm Play Vectors utility. This utility is particularly useful for
ASIC verification. For more information about ASIC verification and test vector (.VEC)
file format, refer to the LM-family Modeler Manual or the ModelSource User’s Manual.

Timing Measurement
The SIGnal INSTance tm [-p filename] command turns on the modeling system timing
measurement for the selected instance. The system then returns to the simulator the
actual measured delay values for that instance. If you provide an optional filename, the
system also saves the measured delays to a timing measurement (.TIM) file. By
convention, device_name.TIM is the filename used for the timing measurement output.

The SIGnal INSTance notm command turns off timing measurement for the selected
instance, which is the default behavior. If timing measurement is disabled, the
Technology File delays (or the Shell Software delays if SIGnal INSTance lst is
specified) are returned to the simulator.

Chapter 12: Using QuickSim II with Synopsys Models Simulator ConfigurationGuide

262 Synopsys, Inc. July 31, 2001

�

For example, consider the following commands:

sig inst tm -p '$ASIC2/timing/timing11.TIM'
dofile '$ASIC2/dofiles/run11.do'
sig inst notm

In this example, the modeling system creates a timing measurement file called
timing11.TIM. This file contains the delays of the selected instance measured during the
simulation run created by the dofile. The SIGnal INSTance notm command turns off the
modeling system timing measurement capability.

This Signal Instance command performs a similar function to that of the lm Measure
Timing utility. Timing measurement is particularly useful for ASIC verification. For
more information about ASIC verification and timing measurement (.TIM) file format,
refer to the LM-family Modeler Manual or the ModelSource User’s Manual.

Note�
The timing measurement (.TIM) file can be converted to a Shell Software
delays (.DLY) file by using the lm Create Timing File utility. (For more
information, refer to the LM-family Modeler Manual or the ModelSource
User’s Manual.) The delays file can then be converted into a technology file,
if desired, by using the lm_model utility with the -Step Timing option.

Loop Mode
The SIGnal INSTance loop command turns on the modeling system pattern looping
capability (loop mode) for the currently selected instance. In loop mode, the modeling
system continually replays the complete pattern history of the selected instance to the
device. The SIGnal INSTance noloop command turns off pattern looping.

Pattern looping is a model development feature useful for analyzing the device behavior
and pattern history with an oscilloscope or logic analyzer connected to the device.
However, while loop mode is enabled, no other user can access the modeling system;
patterns are replayed to the selected device exclusively until loop mode is disabled. For
this reason, QuickSim II returns an error if this command is specified when more than
one user is accessing the modeling system.

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

July 31, 2001 Synopsys, Inc. 263

�

Printing Model Information
A number of Signal Instance commands are available for printing information about the
selected model instances. The SIGnal INSTance dump command prints all information
available about the currently selected instances, including:

● Instance ID

● Name of the modeling system in which the hardware model is located

● Setting for test vector logging (On or Off)

● Setting for indeterminate strength mapping (S or Z)

● Setting for Shell Software timing (On or Off)

● Model name, as specified in the Shell Software device_name

● Setting for timing measurement (On or Off)

● Setting for loop mode (On or Off)

● Runtime vector count

● Evaluation status (Enabled or Disabled)

The SIGnal INSTance lmc and SIGnal INSTance vector commands print subsets of the
information provided by SIGnal INSTance dump:

● The SIGnal INSTance lmc -p shell command prints the Shell Software timing
setting (On if you have specified SIGnal INSTance lst; Off if you have not) for the
selected instances. SIGnal INSTance lmc -p allshell prints the Shell Software timing
setting for all hardware model instances, if you have at least one instance selected. If
you do not specify one of the -p arguments, this command will print a list of the
available subcommands.

● The SIGnal INSTance vector command prints the runtime vector count of the
selected instances.

Performance Monitoring
You can monitor the performance of the hardware modeler and append the results to the
simulator log file after simulation. To enable performance monitoring, in the window
where you are running the simulator, enter the following:

% setenv LM_OPTION “monitor_performance”

For more information, refer to “Performance Monitoring” in the ModelSource User’s
Manual.

Chapter 12: Using QuickSim II with Synopsys Models Simulator ConfigurationGuide

264 Synopsys, Inc. July 31, 2001

�

Ending the Simulation Session
Termination of a normal simulation session notifies the hardware modeling system that
the simulation session has ended. All modeling system resources being used by that
simulation are then made available for other users.

If the simulation exits abnormally, “orphaned” processes may exist on the modeling
system, even though the simulation has terminated. If lmdaemon is running on your
workstation, it automatically deletes orphaned processes. You can also use the lm Abort
User utility to remove the unwanted processes manually. Both of these methods release
modeling system resources. (For more information about lmdaemon and the lm utilities,
refer to the LM-family Modeler Manual or the ModelSource User’s Manual.)

LM-family and ModelSource modeling systems support simulation save and restore
capabilities. When a save simulation state is performed, the state of all hardware models
being used by the simulation session is automatically saved into a QuickSim II save
directory. Similarly, restoring the simulation state automatically restores the state of the
model as used by the saved simulation, including all stored pattern history.

Attention�
If you are using Shell Software that contains enhanced features—such as
model state tracking or “when” conditions—the translation to the resulting
technology file may be incomplete and contain “compromise” statements. If
you elect to use the technology file instead of the Shell Software during
simulation, the device may exhibit incorrect timing and/or behavior. To
eliminate this possibility, translate the technology file from pre-R2.0 Shell
Software, which does not contain these statements, or use the Shell Software
directly during simulation by issuing the SIGnal INSTance lst command on
the hardware model instance. For more information about this procedure,
refer to “Timing Shell Selection” on page 258.

lm_model Command Reference
The lm_model shell command registers a hardware model by invoking hardware model
registration and conversion programs.

Syntax
lm_model input_dir [output_path] [-Dir name] [-Ifc interface] [-LAbel label]

[-Mdl mdl_filename] [-Step Register|Symbol|Timing|Update] [-Replace]
[-VERBose] [-Help] [-Usage] [-VERSion] [-Old] [-LM]

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

July 31, 2001 Synopsys, Inc. 265

�

Required Argument
input_dir Specifies the pathname to the directory containing the files to

be registered. This argument is required and must appear first.
All pathname specifications use the following location
convention:

If the pathname is relative, the input_dir is assumed to be in
the working directory, as specified by $MGC_WD. If
$MGC_WD is not set, the input_dir is assumed to be in the
current working directory.

If the pathname starts with a dollar sign ($), the input_dir is
assumed to be in the location of the location map variable
specified after the dollar sign.

If the pathname is an absolute pathname, the input_dir is
assumed to be in the location of the absolute pathname.

Optional Arguments
output_path Specifies the pathname to the directory that contains the

component information. If an output_path is not specified,
then it defaults to the parent directory of the input_dir.

-Dir name Specifies just the new name of the output component directory
within the output_path; for example, MC68020. By default,
the name is created from the base name of input_dir by
removing any leading dollar ($) characters and converting all
lowercase characters to uppercase. If the output component
directory name is the same as the input directory name,
lm_model will generate an error and fail rather than overwrite
the input directory.

-Ifc interface Specifies the component interface(s) with which to register the
model. Multiple component interfaces can be specified. By
default, the model is registered with all component interfaces.

-LAbel label Specifies the label(s) to register with the component interface.
Multiple labels can be specified. By default, the model is
registered with the $lm label, which corresponds to the
functional description.

-Mdl mdl_filename Specifies a particular model (.MDL) file within the input_dir.
By default, the system uses the model file with the same base
name as the output component directory, which is defined by
the -Dir switch.

Chapter 12: Using QuickSim II with Synopsys Models Simulator ConfigurationGuide

266 Synopsys, Inc. July 31, 2001

�

-Step Register|Symbol|Timing|Update

Selects particular registration step(s):

- Step Register registers the model’s functional description.

- Step Symbol creates and registers the symbol.

- Step Timing creates, compiles, and registers the technology
file.

- Step Update is equivalent to -Step Register and -Step
Timing.

By default, lm_model performs all the registration steps.

-Replace Deletes the existing component directory and then recreates it.
If you try to overwrite an existing symbol without using this
switch, lm_model fails and generates an error message.

-VERBose Prints additional messages while lm_model is executing.

-Help Prints help information on each of the available options, then
immediately exits.

-Usage Expands the command line and displays each argument and
switch. After printing the usage message, lm_model
immediately exits.

-VERSion Prints the single-line version message, then immediately exits.

-Old Registers the model using the pre-V8.3 method, for
compatibility purposes.

-LM Does not affect lm_model execution. The system accepts this
argument for compatibility purposes.

Examples
The lm_model utility provides several ways of specifying input and output files and
directories. The following examples list a given input directory (model file) and desired
output component directory, and then show the lm_model command line you would use
to get this result.

Example 1
Input directory: /user/models/74ls74 ($MGC_WD is set to /user/models)

Model file: 74LS74.MDL (same as the component name)

Simulator Configuration Guide Chapter 12: Using QuickSim II with Synopsys Models

July 31, 2001 Synopsys, Inc. 267

�

Component (output) directory: /user/models/74LS74 (default output path and
directory)

Command: lm_model 74ls74

Example 2
Input directory: /user/models/74ls74 ($MGC_WD is set to a directory other than
/user/models)

Model file: 74LS74A.MDL (different from the component name)

Component (output) directory: /user/models/74LS74 (default output path and
directory)

Command: lm_model /user/models/74ls74 -m 74LS74A

Example 3
Input directory: /user/models/74ls74 ($MGC_WD is set to /user/models)

Model file: 74LS74.MDL (same as the component name)

Component (output) directory: /user/project_xyz/74LS74 (default directory; non-
default path)

Command: lm_model 74ls74 /user/project_xyz

Example 4
Input directory: /user/models/74ls74 ($MGC_WD is set to /user/models)

Model file: 74LS74.MDL (same as the component name)

Component (output) directory: /user/project_xyz/latch_7474 (non-default path and
directory)

Command: lm_model 74ls74 /user/project_xyz -d latch_7474

tmg_to_ts Command Reference
The tmg_to_ts utility reads the Shell Software timing files to create a technology file.
Comments from the Shell Software timing statements are not copied to the technology
file. You must use the technology compiler (tc) to compile the technology file that is
created by the tmg_to_ts utility before using the technology file in QuickSim II.

In general, you should run the lm_model utility—which calls both tmg_to_ts and tc—
rather than running the stand-alone tmg_to_ts utility. If you just want to update a
model’s Technology File, you can run lm_model with the -Step Timing option. For more
information on Technology File creation, refer to “Verifying the Technology File” on
page 253.

Chapter 12: Using QuickSim II with Synopsys Models Simulator ConfigurationGuide

268 Synopsys, Inc. July 31, 2001

�

Syntax
tmg_to_ts input_dir [-Out filename] [-Replace] [-Help] [-Usage] [-Version]

Required Arguments
input_dir Specifies the pathname to the Shell Software timing files that

you want to convert. If the input_dir is not a full path, it is
assumed to be relative to the current directory, specified by
$MGC_WD.

Optional Arguments
-Out filename Specifies an alternative filename for the output file. By

default, the output file is called technology.ts. All pathname
specifications use the following location convention:

If the pathname is a relative pathname, the output file is placed
relative to the component directory.

If the pathname starts with period and slash (./), the output file
is placed in the current working directory as specified by
$MGC_WD, if it exists.

If the pathname starts with a dollar sign ($), the output file is
placed in the location of the location map variable specified
after the dollar sign.

If the pathname is an absolute pathname, the output file is
placed in the location of the absolute pathname.

-Replace Replaces the existing contents of the output directory with the
new output.

-Help Prints help information on each of the available options, then
immediately exits.

-Usage Expands the command line and displays each argument and
switch. After printing the usage message, tmg_to_ts
immediately exits.

-Version Prints the single-line version message, then immediately exits.

Simulator Configuration Guide Appendix A: Using VERA with FlexModels

July 31, 2001 Synopsys, Inc. 269

�

A
Using VERA with FlexModels

Overview
VERA is a testbench automation tool that works as a front-end to Verilog or VHDL
simulators. For general information on VERA, refer to:

http://www.synopsys.com/products/vera

This appendix explains how to use VERA with FlexModels, including a special section
on how to use VERA with FlexModels with VCS. This information is presented in the
following sections:

● “Using FlexModels with the VERA UDF Interface” on page 270

● “Creating a VERA Testbench” on page 271

● “VERA Testbench Example” on page 272

● “Incorporating FlexModels in a VERA Testbench” on page 274

● “Using VERA with VCS” on page 275

Note�
For information on using MemPro models with VERA, refer to the “VERA
Testbench Interface” chapter in the MemPro User’s Manual.

http://www.synopsys.com/products/vera

Appendix A: Using VERA with FlexModels Simulator ConfigurationGuide

270 Synopsys, Inc. July 31, 2001

�

Using FlexModels with the VERA UDF
Interface

FlexModels use the VERA UDF interface. To use FlexModels with Vera, you need to
build the VERA dynamic library. Table 33 lists the files containing the Vera UDF
information for FlexModels.

:

When building the VERA dynamic library, you need to compile the vera_user.c file and
link the object file (vera_slm_pli.o or vera_slm_mti.o) for the simulator you are using.

Attention�
If you are building the VERA dynamic library for Verilog on Solaris, do not
use the -B symbolic. Using this switch results in unresolved symbol
warnings.

For more information on building the VERA dynamic library, refer to the UDF
information in the VERA System Verifier User Manual.

Table 33: FlexModel Files Containing VERA UDF Information

File Name Description Location

vera_user.c Source file containing table of UDF
functions used by FlexModels.

$LMC_HOME/sim/vera/src

vera_slm_pli.o Object file for VCS and Verilog-XL. This
file contains the compiled code for the UDF
functions used by FlexModels.

$LMC_HOME/lib/platform.lib

vera_slm_mti.o Object file for MTI Verilog and MTI
VHDL. This file contains the compiled code
for the UDF functions used by FlexModels.

$LMC_HOME/lib/platform.lib

Simulator Configuration Guide Appendix A: Using VERA with FlexModels

July 31, 2001 Synopsys, Inc. 271

�

Linking VERA with Verilog Simulators
For details on how to link Vera with Verilog simulators using the PLI, refer to the
README file in the VERA installation directory:

$VERA_HOME/lib/vlog/README

In the instructions for “Including Your Own C-Code (UDF) with VERA” at the end of
the README file:

1. Substitute the edited copy of vera_user.c in $LMC_HOME/sim/vera/src on the
compile line.

2. Substitute vera_slm_pli.o for <UDF_o_files> on the link line if you are using VCS
or Verilog-XL. For MTI Verilog, substitute vera_slm_mti.o.

Linking VERA with the MTI VHDL Simulator
For information on how to link VERA with MTI VHDL, refer to the README file in
the VERA installation directory:

$VERA_HOME/lib/mti/README

In the instructions for “Linking in VERA UDFs Into The MTI-VHDL Simulator” at the
beginning of the README file:

1. Substitute the edited copy of vera_user.c in $LMC_HOME/sim/vera/src on the
compile line.

2. Substitute vera_slm_mti.o for <o_files> on the link line.

Creating a VERA Testbench
To create a VERA testbench to use with FlexModels, follow these steps:

1. Include the header files.
Table 34 lists the two required header files.

Table 34: VERA Header Files

File Name Description Location

flexmodel_pkg.vrh Contains definitions for generic constants
useful in FlexModel commands.

$LMC_HOME/sim/vera/src

model_pkg.vrh Contains definitions for model class and
model-specific constants useful in
FlexModel commands.

$LMC_HOME/models/model
_fx/model_fxversion/src/vera

Appendix A: Using VERA with FlexModels Simulator ConfigurationGuide

272 Synopsys, Inc. July 31, 2001

�

2. Create an instance of the ModelFx class.
Before using FlexModel commands, you must create an instance of the ModelFx
class in the VERA testbench.

3. Send commands to a FlexModel through the model’s methods.
In VERA Command Mode, you can use the same FlexModel features and
commands that you use in HDL Command Mode. There are a few differences in
command usage, however; refer to “Command Syntax Differences in VERA
Command Model” in the FlexModel User’s Manual. For details on specific
commands, refer to “FlexModel Command Reference” in the FlexModel User’s
Manual.

VERA Testbench Example
The following example shows how to incorporate FlexModels in a VERA testbench.

#include <vera_defines.vrh> // Vera Defines
#include “flexmodel_pkg.vrh” // FlexModel generic constants defined
here
#include “model_pkg.vrh” // Model class, and model-specific
constants defined here

program model_test
{

/*
* Create an instance of the model, argument 1 to the
* constructor is the string name of the instance in
* top level Verilog/VHDL testbench.
* argument 2 is the path to the models clock pin
* Here the assumption made is that the model is
* instantiated in a Verilog testbench
* Since the constructor has been called, this will
* return at the next posedge of u1.CLK.
*/
ModelFx model_1 = new(“modelInstName_1”, “u1.CLK”);

// Create another instance, since time has already elapsed
// above, this call will return immediately.
ModelFx model_2 = new(“modelInstName_2”, “u2.CLK”);

// NOTE : This example assumes that the aguments to the
// methods have been defined in the VERA testbench.

// Check that no errors have occured
if (model_1.showStatus() == FLEX_VERA_FATAL ||

model_2.showStatus() == FLEX_VERA_FATAL) {

Simulator Configuration Guide Appendix A: Using VERA with FlexModels

July 31, 2001 Synopsys, Inc. 273

�

// Errors exist, take suitable action
}

fork
{

// Send commands to the FlexModel Instance 1

// Note that the id is encapsulated in the model
// class and thus is not an argument to the commands.

model_1.write(address1, data1, ‘FLEX_WAIT_F, status);
model_1.write(address2, data2, ‘FLEX_WAIT_F, status);
model_1.write(address3, data3, ‘FLEX_WAIT_F, status);
model_1.write(address4, data4, ‘FLEX_WAIT_F, status);

// Read Back
model_1.read_req(address1, ‘FLEX_WAIT_F, status);
model_1.read_req(address2, ‘FLEX_WAIT_F, status);
model_1.read_req(address3, ‘FLEX_WAIT_F, status);
model_1.read_req(address4, ‘FLEX_WAIT_F, status);

// Check Results
model_1.read_rslt(address1, tag, result1, status);
model_1.read_rslt(address2, tag, result2, status);
model_1.read_rslt(address3, tag, result3, status);
model_1.read_rslt(address4, tag, result4, status);

// Synchronize Instance 1 & 2

// Note that the generic commands are also sent to
// through the model’s instance.

model_1.synchronize(2, “synch_2”, ‘timeout, status);
}
{

// Send commands to the FlexModel Instance 2
model_2.write(address1, data1, ‘FLEX_WAIT_F, status);
model_2.write(address2, data2, ‘FLEX_WAIT_F, status);
model_2.write(address3, data3, ‘FLEX_WAIT_F, status);

// Synchronize Instance 1 & 2
model_2.synchronize(2, “synch_2”, ‘timeout, status);

}
join // End of fork

} // End of program model_test

Appendix A: Using VERA with FlexModels Simulator ConfigurationGuide

274 Synopsys, Inc. July 31, 2001

�

Incorporating FlexModels in a VERA
Testbench

To incorporate FlexModels in your VERA testbench, use the following procedure. For
more information on creating VERA interface files and using models in VERA, refer to
the VERA System Verifier User Manual.

1. Create a working directory and run flexm_setup to make copies of the model's
interface and example files there, as shown in the following example:

% $LMC_HOME/bin/flexm_setup -dir workdir model_fx

You must run flexm_setup every time you update your FlexModel installation with
a new model version. Table 35 lists the files that flexm_setup copies to your
working directory.

2. Compile the VERA source files in the LMC_HOME tree.
You need to compile three files: lstmodel.vr, swiftmodel.vr, and flexmodel_pkg.vr.
The following is a sample compile script:

% vera -cmp lstmodel.vr -I$LMC_HOME/sim/vera/src
% vera -cmp swiftmodel.vr -I$LMC_HOME/sim/vera/src
% vera -cmp flexmodel_pkg.vr -I$LMC_HOME/sim/vera/src

If you are using VERA version 4.0 or earlier, you must compile the
flexmodel_pkg.vr object with a “VERA_4” preprocessor flag. Your compile line
would therefore look like the following example:

% vera -cmp flexmodel_pkg.vr -I$LMC_HOME/sim/vera/src -DVERA_4

3. Compile the model’s VERA source file, model_pkg.vr
This file includes the flexmodel_pkg.vrh file, but the VERA compiler needs to find
the other header files too; therefore, you must include the path to the other header
files. The following is a sample compile script:

% vera -cmp model_pkg.vr -I$LMC_HOME/sim/vera/src workdir/src/vera

4. Create a VERA testbench.
For details, refer to “Creating a VERA Testbench” on page 271.

Table 35: FlexModel VERA Files

File Name Description Location

model_pkg.vr Contains FlexModel VERA class and
method definitions.

workdir/src/vera

model_pkg.vrh Contains model definitions for use in
VERA testbenches.

workdir/src/vera

Simulator Configuration Guide Appendix A: Using VERA with FlexModels

July 31, 2001 Synopsys, Inc. 275

�

5. Compile the VERA testbench.
Although you need to include only the flexmodel_pkg.vrh and model_pkg.vrh files
in your VERA testbench, the VERA compiler needs to find the other header files
too; therefore, you need to include the path to the VERA header files included in
LMC_HOME. The following is a sample compile script:

% vera -cmp vera_testbench -I$LMC_HOME/sim/vera/src workdir/src/vera

6. Run the VERA testbench in a Verilog or VHDL simulation environment.
When you run the Verilog or VHDL simulator, the VERA simulator needs to load
your compiled VERA object files. You also need to load the following VERA object
files:

• lstmodel.vro

• swiftmodel.vro

• flexmodel_pkg.vro

• model_pkg.vro

• testbench.vro

For more information on loading VERA object files, refer to the VERA System
Verifier User Manual.

Attention�
To prevent your simulation from ending prematurely in cases where the
VERA testbench completes before the Verilog/VHDL testbench, use the
+vera_finish_on_end switch on your simulator invocation line.

Using VERA with VCS
The following steps show how to use FlexModels with VERA and VCS. This is just one
way of using the VERA simulator's UDF, multiple .vro files, and so on. For more
information, refer to the VERA System Verifier User Manual. All steps shown here are
also documented in that manual.

1. Compile the VERA source files:
% vera -cmp \

-I$LMC_HOME/sim/vera/src \
$LMC_HOME/sim/vera/src/lstmodel.vr

% vera -cmp \
-I$LMC_HOME/sim/vera/src \
$LMC_HOME/sim/vera/src/swiftmodel.vr

Appendix A: Using VERA with FlexModels Simulator ConfigurationGuide

276 Synopsys, Inc. July 31, 2001

�

% vera -cmp \
-I$LMC_HOME/sim/vera/src \
$LMC_HOME/sim/vera/src/flexmodel_pkg.vr

If you are using VERA version 4.0 or earlier, you must compile the
flexmodel_pkg.vr object with a “VERA_4” preprocessor flag. Your compile would
therefore look like this:

% vera -cmp flexmodel_pkg.vr -I$LMC_HOME/sim/vera/src -DVERA_4

% vera -cmp \
-I$LMC_HOME/sim/vera/src \
-Iworkdir/src/vera \
workdir/src/vera/model_pkg.vr

Note�
If you are building the VERA dynamic library on Solaris, do not use the -B
symbolic switch. Using this switch results in unresolved symbol warnings.

2. Compile your VERA testbench:
% vera -cmp \

-I$LMC_HOME/sim/vera/src \
-Iworkdir/src/vera \
testbench.vr

This step produces two files: testbench.vro and testbench.vshell.

3. Build vera_local.dl:
❍ Compile $LMC_HOME/sim/vera/src/vera_user.c

HP-UX

% /bin/c89 -c +z -I$VERA_HOME/lib \
$LMC_HOME/sim/vera/src/vera_user.c

Solaris

% cc -K pic -c -I$VERA_HOME/lib \
$LMC_HOME/sim/vera/src/vera_user.c

❍ Link in $LMC_HOME/lib/platform.lib/vera_slm_pli.o and vera_user.o during
the link stage of building the vera_local.dl.

HP-UX

% ld -b +e syssci_prod_entry +e errno -o vera_local.dl \
vera_user.o \
$LMC_HOME/lib/hp700.lib/vera_slm_pli.o \
$VERA_HOME/lib/vlog/libvlog_br.a \
$VERA_HOME/lib/libVERA.a -lm -lc

Simulator Configuration Guide Appendix A: Using VERA with FlexModels

July 31, 2001 Synopsys, Inc. 277

�

Solaris

% ld -G -z text -o vera_local.dl \
vera_user.o \
$LMC_HOME/lib/sun4solaris.lib/vera_slm_pli.o \
$VERA_HOME/lib/vlog/libvlog_br.a \
$VERA_HOME/lib/libVERA.a

4. Set the VERA_HOME variable to point to the location of your VERA
installation directory:

% setenv VERA_HOME path_to_VERA_installation

5. Set the SSI_LIB_FILES variable to point to the vera_local.dl that you built in
Step 3:

% setenv SSI_LIB_FILES ./vera_local.dl

Note�
If you are using multiple dynamic libraries (.dl files), use a colon-separated
list to specify the search path.

6. Modify the simv build.
Modify the simv build by adding the following:

❍ -P ${VERA_HOME}/lib/vera_pli_dyn.tab

❍ ${VERA_HOME}/lib/libSysSciTask.a

❍ the vshell file created in Step 2

Note�
For HP-UX, add -LDFLAGS -E.

For more information, refer to the installation and setup chapter in the VERA System
Verifier User Manual.

7. Create a file for VERA to load at runtime.
This step assumes that the vro files are in the current working directory. You need to
create a file that looks like the following example. The file name for this example
file is files_to_load:

./lstmodel.vro

./swiftmodel.vro

./flexmodel_pkg.vro

./model_pkg.vro

./testbench.vro

For more information, refer to the documentation on vera_mload in the VERA
System Verifier User Manual.

Appendix A: Using VERA with FlexModels Simulator ConfigurationGuide

278 Synopsys, Inc. July 31, 2001

�

8. Run the simv executable
Add the +vera_mload switch as shown in the following example:

% simv +vera_mload = files_to_load +vera_finish_on_end

Note�
The +vera_finish_on_end switch prevents your simulation from ending
prematurely in cases where the VERA testbench completes before the
Verilog testbench.

Simulator Configuration Guide Appendix B: LMTV Command Reference

July 31, 2001 Synopsys, Inc. 279

�

B
LMTV Command Reference

Overview
LMTV is a PLI application that is used to interface SmartModels and FlexModels with
Verilog-XL, NC-Verilog, and MTI Verilog. Note that VCS uses the SWIFT interface
and not LMTV. You can control the features of the LMTV interface by using:

● “LMTV Command Line Switches” on page 279

● “LMTV Commands” on page 281

LMTV Command Line Switches
LMTV command line switches have a session-wide scope that impacts all SmartModel
instances. Notice that the +laiobj switch, used by the LAI interface, is not used in either
mode of the LMTV interface. Following are brief descriptions for each of the command
line switches that you can use with the LMTV interface:

+notimingchecks Disables timing checks (for example, setup and hold
times) and their accompanying messages. The default
is to perform the timing checks.

+[min | typ | max]delays Specifies a single delay range for all SmartModel
instances. The default is to use the delay range in the
SmartModel’s DelayRange or RANGE attributes.

+lmudtmsg or +laiudtmsg Generates a list of the timing files loaded at simulation
startup. This is equivalent to setting the command
channel command TraceTimeFile to ON. The default
is not to list the timing files. For more information
about the command channel. refer to the SmartModel
Library User’s Manual.

Appendix B: LMTV Command Reference Simulator ConfigurationGuide

280 Synopsys, Inc. July 31, 2001

�

+lmoldstr Maps all SmartModel Library signal strengths to
“strong” for all output events that have resistive
strength. The default is to use resistive strength to
reflect the true state of the SWIFT pin. Use this switch
if you have a design that was created in the Verilog-
XL-specific SmartModel Library environment and you
want simulation conditions to match the Verilog-XL-
specific SmartModel Library.

+lmoldtrans Indicates that the historic style is to be used for
transcribing messages. The historic style message
contains references only to timing version names and
does not specify any time units. The default is that
messages contain references to both timing version
names and model names. Timing values are in
nanoseconds (ns). Use this switch if you want to match
the Verilog-XL-specific SmartModel Library
simulation conditions.

+lmresstr Disables mapping of SmartModel Library signal
strengths to “strong” strength, even if a historic model
model.v file (vshell) is detected. Use this switch if you
want your historic-mode design to use true resistive
strengths. This switch only works with the SWIFT
interface.

Simulator Configuration Guide Appendix B: LMTV Command Reference

July 31, 2001 Synopsys, Inc. 281

�

LMTV Commands
LMTV commands are predefined tasks that you place within your testbench or design.
LMTV commands all begin with an $lm_ prefix. Some of them have historic
counterparts, which begin with an $lai_ prefix. You can use any or all commands in
either the SWIFT or the Historic SmartModel modes, except for the
$lm_monitor_vec_map() command, which can be used only in SWIFT SmartModel
mode.

Note�
The $lai_ commands are provided to support older designs. Therefore, you
do not have to convert $lai_ commands to $lm_ commands. However,
when starting a new design it is best to use the $lm_ commands and not the
$lai_ commands.

Here is a list of the LMTV interface commands:

● “$lm_command() or $lai_command()” on page 282

● “$lm_dump_file() or $lai_dump_file()” on page 283

● “$lm_help()” on page 284

● “$lm_load_file() or $lai_load_file()” on page 285

● “$lm_monitor_enable() or $lai_enable_monitor()” on page 286

● “$lm_monitor_disable() or $lai_disable_monitor()” on page 286

● “$lm_monitor_vec_map() and $lm_monitor_vec_unmap()” on page 288

● “$lm_status() or $lai_status()” on page 290

Appendix B: LMTV Command Reference Simulator ConfigurationGuide

282 Synopsys, Inc. July 31, 2001

�

$lm_command() or $lai_command()
These commands provide access to the SWIFT command channel. You can use them to
send a command to the session or to a model instance.

Syntax
$lm_command (“session_cmmd_string”);

$lm_command (inst_path, “model_cmmd_string”);

$lai_command (“session_cmmd_string”);

$lai_command (inst_path, “model_cmmd_string”);

Arguments
session_cmmd_string The SWIFT interface command to be sent to the

session.

inst_path The path name to the SmartModel instance to send the
command to. Used only with model commands.

model_cmmd_string The SWIFT interface command to be sent to the model
instance.

For more information about the SWIFT command channel, refer to “The SWIFT
Command Channel” on page 21.

Examples
The following example sends the ReportStatus command to the instance “U1”, causing
it to generate a message reporting its configuration status.

% $lm_command ("U1", "ReportStatus");

The following example sends the TraceTimeFile off command to the session, causing it
to stop issuing trace messages. Note that the absence of an instance name identifies the
command as session-specific.

% $lm_command ("TraceTimeFile off")

Simulator Configuration Guide Appendix B: LMTV Command Reference

July 31, 2001 Synopsys, Inc. 283

�

$lm_dump_file() or $lai_dump_file()
Use these commands to dump the memory contents of the instance inst_path into the file
filename. This works only for memory models. If the specified file already exists, it is
overwritten. Using this command eliminates the read cycles required to verify the
success of a test.

You can reload the dumped file into a memory model using the $lm_load_file()
command. The format of the dumped file is the same as the Synopsys memory image
file format required by a memory model at initialization.

Syntax
$lm_dump_file (inst_path, “filename” [,“file_type”]);

$lai_dump_file (inst_path, “filename” [,”file_type”]);

Arguments
inst_path The path name to the SmartModel instance whose

memory information is to be dumped.

filename The path name to the file that is to receive the dumped
memory information from the model instance.

file_type The type of configuration file to be dumped. The only
allowed value is MEMORY, which is also the default.
This argument is provided for compatibility with the
historic environment.

Appendix B: LMTV Command Reference Simulator ConfigurationGuide

284 Synopsys, Inc. July 31, 2001

�

$lm_help()
Use this command to display the syntax for all of the SWIFT interface commands.

Syntax
$lm_help();

Examples
The following example shows the results of issuing the command $lm_help.

C2 > $lm_help;

LMTV commands:
lm_command("session_command"): execute a session command.
lm_command(inst_path, "model_command"):
execute a model command.

lm_dump_file(inst_path, "file_name", ["file_type"]):
dump memory into file.

lm_load_file(inst_path, ["file_name", "file_type"]):
load file of programmable device or memory.

lm_monitor_enable(inst_path [, "win_element" [,...]]):
enable window Monitor.

lm_monitor_disable(inst_path [, "win_element" [,...]]):
disable window Monitor
lm_monitor_vec_map(var_name, inst_path, "win_element" [, index]):
map window to a variable for monitoring.

lm_monitor_vec_unmap([var_name,] inst_path):
unmap window to stop monitoring.

lm_status(inst_path): dump instance status.

Commands compatible with old release :
lai_enable_monitor("inst_path", [win_element],...):
enable window Monitor.

lai_disable_monitor("inst_path", [win_element],...):
disable window Monitor.

lai_dump_file("inst_path", "file_name", "file_type"):
dump memory into file.

lai_load_file("inst_path", "file_name", "file_type"):
load file of programmable device or memory.

lai_status("inst_path"): dump instance data.

Simulator Configuration Guide Appendix B: LMTV Command Reference

July 31, 2001 Synopsys, Inc. 285

�

$lm_load_file() or $lai_load_file()
Use these commands to load the memory contents of the file filename into the instance
inst_path, which can be either a programmable device or a memory model. Using these
commands eliminates the write cycles required to set up the contents of the model.

The load_file operation causes the selected model to reset its internal state to simulation
startup conditions and then read the specified file. After the file is read, the model is
evaluated as a function of the new internal state and the current inputs and outputs are
scheduled with zero delay. After this initial evaluation phase, the model behaves as it
would normally.

You can load a model with any file type that would normally be accepted by the model
at initialization. Additionally, the new configuration file you load is used for the
specified model instance after any subsequent command to reset or reinitialize.

Syntax
$lm_load_file (inst_path [, “filename”, “file_type”]);

$lai_load_file (inst_path [, “filename”, “file_type”]);

Arguments
inst_path The path name to the SmartModel instance into which

the contents of filename is to be loaded.

filename The path name to the configuration file that is to be
loaded for the model instance specified by inst_path.
The default is to use a path name defined with the
defparam statement in the design.

file_type The type of file to be loaded. Allowed values are
MEMORY, JEDEC, PCL, and SCF. The default is to
use the file type of the file defined with the defparam
statement in the design.

Appendix B: LMTV Command Reference Simulator ConfigurationGuide

286 Synopsys, Inc. July 31, 2001

�

$lm_monitor_enable() or $lai_enable_monitor()

$lm_monitor_disable() or $lai_disable_monitor()
Use these commands to enable or disable SmartModel Windows for one or more
window elements of a model instance specified by inst_path. The SmartModel
Windows feature allows you to view and change the contents of a model's internal
registers through predefined windows, which usually reflect the model's internal state.
After enabling SmartModel Windows, you can read from the register using an
appropriate Verilog command or by adding the path name to the list of signals being
traced. If you attempt to read from an internal register without enabling SmartModel
Windows the window content is not read.

The $lm_monitor_enable() and $lm_monitor_disable() commands are provided for
compatibility with the historic environment. You cannot access arrays of registers, as in
memory window elements, using these commands. In addition, you cannot create
dynamic windows needed for SmartCircuit models if you define a window in a
configuration file. The $lm_monitor_vec_map() and $lm_monitor_vec_unmap()
commands provide these capabilities.

Note�
Accessing internal states is memory-intensive, so you may notice some
performance degradation when SmartModel Windows is enabled.

Syntax
$lm_monitor_enable (inst_path [, “window_element” [,...]]);

$lm_monitor_disable (inst_path [, “window_element” [,...]]);

$lai_enable_monitor (inst_path [, “window_element” [,...]]);

$lai_disable_monitor (inst_path [, “window_element” [,...]]);

Arguments
inst_path The path name to the SmartModel instance for which

SmartModel Windows is to be enabled.

window_element The name of the internal register to read. This can be a
single value or a list. The default is to read all internal
registers of the instance.

Simulator Configuration Guide Appendix B: LMTV Command Reference

July 31, 2001 Synopsys, Inc. 287

�

Examples
The following example enables SmartModel Windows for all windows in instance
“U1”, then reads from the predefined window element IENA. Notice that you must
enable SmartModel Windows before attempting to read from the window element.

// somewhere in the testbench ...
// enable access to all windows in instance U1
$lm_monitor_enable(U1);
// display contents of window element IENA
$display("Value of register IENA is %h", $IENA);

The following example disables the window explicitly for the register IENA.

% $lm_monitor_disable(U1, "IENA");

The following example disables all windows in instance U1.

% $lm_monitor_disable(U1);

The following example does not read the register IENA, because SmartModel Windows
was not enabled.

// somewhere in the testbench ...
$display("Value of register IENA is %h", $IENA);

Appendix B: LMTV Command Reference Simulator ConfigurationGuide

288 Synopsys, Inc. July 31, 2001

�

$lm_monitor_vec_map() and
$lm_monitor_vec_unmap()

Use these commands to enable or disable direct mapping between the user-defined
variable var_name and a model instance's internal register window_element. This
mapping allows you to read from, write to, or trace the internal register through your
user-defined variable. You must define this variable with a width corresponding to that
of the predefined window somewhere in the design hierarchy (typically in the testbench)
before using these commands. Note that these commands only work in SWIFT
SmartModel mode.

Using $lm_monitor_vec_map(), you can access arrays of registers, which is useful for
addressing specific memory locations, as in the memory window elements feature. In
addition, $lm_monitor_vec_map() allows dynamic window creation. Thus, if a
SmartCircuit model changes its configuration file so that more windows are created, you
can add those names to your testbench, and enable tracing directly.

Syntax
$lm_monitor_vec_map (var_name, inst_path, “window_element” [,index]);

$lm_monitor_vec_unmap ([var_name,] inst_path);

Arguments
var_name The name of a user-defined variable to map to

window_element. The variable must be already
defined somewhere in the design hierarchy. The
default for $lm_monitor_vec_unmap() is to unmap all
mapped variables for that instance.

inst_path The path name to the SmartModel instance whose
internal register is to be mapped to the user-defined
variable var_name.

window_element The name of the internal register to be mapped to
var_name. Can be part of an array.

index The index of the array, if the window element is a
memory window. The default is 0.

Examples
The following example defines three variables and maps them to specific memory
locations in the memory array UMEM for memory model instance “U1”. Note that
these tasks cannot be performed using $lm_monitor_enable(). Although the example
features an array of registers, the tasks are equally useful for scalar windows, where you
can omit the index option or set it to 0.

Simulator Configuration Guide Appendix B: LMTV Command Reference

July 31, 2001 Synopsys, Inc. 289

�

// Assume a 4Kx8 memory model, on a controller board.
// Such a model would typically have one window called UMEM.
// This window is a 4K deep array of 8 bit registers. In
// particular, the user is interested in these 3 locations:
// Interrupt service routine, LOW ADDRESS: 100
// Interrupt service routine, HIGH ADDRESS: 101
// Control store : 200
// that are significant to the design.
reg [7:0] ISR_LOW; // variable to map to location 100
reg [7:0] ISR_HIGH; // variable to map to location 101
reg [7:0] CONTROL; // variable to map to location 200
// enable monitoring of these variables
$lm_monitor_vec_map(ISR_LOW, U1, "UMEM", 100);
$lm_monitor_vec_map(ISR_HIGH, U1, "UMEM", 101);
$lm_monitor_vec_map(CONTROL, U1, "UMEM", 200);

// ... at this time, you can read, write, or trace these
// variables. For example, assign the address of the interrupt
// service routine to be 0x5000

ISR_LOW = 0x00 ;
ISR_HIGH = 0x50 ;

// or the same assignment can be done as follows:
define ISR {ISR_HIGH,ISR_LOW}
ISR = 16h5000 ;
// this one statement will access two different
// and independent memory locations at once.
// later in the simulation, you can disable monitoring
// for the ‘CONTROL' register:
$lm_monitor_vec_unmap(CONTROL, U1);
// or you can disable monitoring of all windows in that instance:
$lm_monitor_vec_unmap(U1);

Appendix B: LMTV Command Reference Simulator ConfigurationGuide

290 Synopsys, Inc. July 31, 2001

�

$lm_status() or $lai_status()
Use these commands to report the current status of the model instance inst_path. The
report includes the names and values of internal windows.

Syntax
$lm_status (inst_path)

$lai_status (inst_path);

Arguments
inst_path The path name to the SmartModel instance whose

status is to be reported.

Examples
The following example shows the output of the $lm_status() command for model
instance “U1”.

C1 > $lm_status(U1);

Note: <>
Model template: mem
Version: not available
InstanceName: DESIGN.U1
TimingVersion: MEM-0
DelayRange: MAX
MemoryFile: memory.1
Timing Constraints: On
SmartModel Instance DESIGN.U1(mem:MEM-0), at time 1000.0 ns

Note: SmartModel Windows Description:
UMEM[2048] "2K x 8 Static RAM":
SmartModel Windows not enabled for this model.
SmartModel Instance DESIGN.U1(mem:MEM-0), at time 1000.0 ns

Simulator Configuration Guide Index

July 31, 2001 Synopsys, Inc. 291

Index

Symbols
$add_instance command 227, 228
$display command 74
$lai_command command 282
$lai_disable_monitor command 70, 286
$lai_dump_file command 283
$lai_enable_monitor command 70, 72, 73,

286
$lai_load_file command 285
$lai_status command 70, 72, 290
$lm_command command 282
$lm_dump_file command 283
$lm_help command 284
$lm_load_file command 285
$lm_log_test_vectors 94
$lm_loop_instance 95
$lm_monitor_disable command 70, 286
$lm_monitor_enable command 70, 71, 72,

73, 286
$lm_monitor_vec_map command 70, 71,

74, 288
$lm_monitor_vec_unmap command 70,

288
$lm_status command 70, 72, 290
$lm_timing_information 96
$lm_timing_measurements 96
$lm_unknowns 97
+vera_finish_on_end switch 275

A
add breakpoint command 236
add bus command 237
add lists command 235, 237
add monitors command 235
add primitive command 228
add synonym command 237
add traces command 235
Admin tool 220
AIX

compiling C files 28
AMPLE_PATH environment variable 220
Analysis tools

Mentor Graphics 247
rules to determine descriptors 248

ANSI C compiler
with Cyclone 191

Attributes
SmartModel 18

B
Breakpoints

setting with SmartModels 236
Bus symbols

SmartModel 222
Buses

renaming with hardware models 192

C
C compiler 191
ccn_report command 71
cds.lib file 200, 211
cds.lib path 208
CDS_INST_DIR environment variable

102
CDS_VHDL environment variable 196
cflags 191
Characters, mapping 192
Characters, replacing special 192
Check Shell Software utility 252
Command Channel

SWIFT 231
Command interaction

QuickSim II 231
Command line

switches, LMTV 77
switches, QuickSim II 230

Commands
$add_instance 227, 228

Index Simulator ConfigurationGuide

292 Synopsys, Inc. July 31, 2001

$display 74
$lai_command 282
$lai_disable_monitor 70, 286
$lai_dump_file 283
$lai_enable_monitor 70, 72, 73, 286
$lai_load_file 285
$lai_status 70, 72, 290
$lm_command 282
$lm_dump_file 283
$lm_help 284
$lm_load_file 285
$lm_log_test_vectors 94
$lm_loop_instance 95
$lm_monitor_disable 70, 286
$lm_monitor_enable 70, 71, 72, 73, 286
$lm_monitor_vec_map 70, 71, 74, 288
$lm_monitor_vec_unmap 70, 288
$lm_status 70, 72, 290
$lm_timing_information 96
$lm_timing_measurements 96
$lm_unknowns 97
add breakpoint 236
add bus 237
add lists 235, 237
add monitors 235
add primitive 228
add synonym 237
add traces 235
ccn_report 71
command channel 21
create_smartmodel_lib 126, 145
cyan 173
cysim 174
flexm_setup 25
force 236
genInterface 186
lm_disable_timing_checks 202, 214
lm_enable_timing_checks 202, 214
lm_log_test_vectors 202
lm_loop_instance 203, 214
lm_model 247, 249, 250, 252, 253, 255,

256
lm_model, syntax 264
lm_pam_shortage 203, 214
lm_pattern_history 203, 214

lm_timing_measurements 202, 214
lm_unknowns 202, 214
lm_vconfig 99
-lmc_swift_templates 39, 42
lmsi list 136
lmsi logon 136
lmsvg 99
LMTV 279
LMTV SmartModel windows 70
lmvc_template 55
ncelab 210
ncshell 206
ncsim 207
ncverilog 109
ncvhdl 207
nologvectors signal instance 261
propagation 259
reg_model 240, 249, 256
reread modelfile 239
restore state 238
save state 238
scsim 134
signal instance 231, 256, 261, 262, 264
simv 278
sm_entity 157, 160
tmg_to_ts 249
tmg_to_ts, syntax 267
unknown handling 259
vcom 159, 162
VERA 275
vhdlan 129, 134
vhdlsim 147
vlib 159
vsim 159, 163

Comments
submitting 16

COMP property 225
Compiling C files

AIX 28
HP-UX 28
Linux 29
NT 29
Solaris 28

Simulator Configuration Guide Index

July 31, 2001 Synopsys, Inc. 293

Component interface 249
Component registration 240
Concept

procedure 69
Constraint mode switch 230
Conversions

shell software 254
technology file 254

Converter
tmg_to_ts 249

create_smartmodel_lib command 126, 145
Custom symbols 239

mapping 241
cyan command 173
Cyclone

elaboration warnings with hardware
models 189

setup options with hardware models 190
with FlexMocdels 173
with MemPro models 173
with SmartModels 173

cylab, -4-state in 189
cysim command 174
cysim, -4 state in 189

D
-debug_all switch 134
Declarations, variable 253
defparam statement

with hardware models 88
Delay files 253
DelayRange 24
Delays, propagation 253
Descriptions

functional 247, 249
graphical 247, 249
technology 249
timing 249

Descriptors, determining for hardware
models 248

Design
capture, Verilog-XL 67
flow, Verilog-XL 66

Design Architect
SmartModel library menus to 220
with SmartModels 220

Design Architect menus
building designs with SmartModels 225
levels 226
system 226

Design environment, MGC 247
Designs

building, using menus 225
building, without menus 227

Direct C Control
compiling C files 28
with FlexModels 26

-DLM_HW_DEBUG flag 191
-DLM_HW_PIN_DEBUG flag 191
Drive strengths 229

E
Environment variables

AMPLE_PATH 220
CDS_INST_DIR 102
CDS_VHDL 196
LAI_LIB 77
LAI_OBJ 77
LD_LIBRARY_PATH 38, 39, 60, 61,

102, 112, 125, 142, 156, 172,
196, 206, 218

LM_DIR 38, 60, 112, 142, 156, 196
LM_LIB 38, 60, 112, 142, 156, 196
LM_LICENSE_FILE 38, 60, 102, 112,

124, 142, 155, 171, 196, 205, 217
LM_OPTION 89, 188
LMC_HOME 38, 59, 77
LMC_PATH 77
LMC_SFI 55
LMC_TIMEUNIT 207
LMC_VLOG 77
MA_CY 179
setting for LMTV 77
SHLIB_PATH 39, 61, 103, 112, 125,

142, 156, 172, 196, 206, 218
SNPSLMD_LICENSE_FILE 38, 60,

102, 112, 124, 142, 155, 171,
196, 205, 217

Index Simulator ConfigurationGuide

294 Synopsys, Inc. July 31, 2001

SSI_LIB_FILES 277
SYNOPSYS 141
SYNOPSYS_SIM 124, 141
VCS_HOME 39, 42
VCS_LMC 55
VCS_LMC_HM_ARCH 55
VCS_SWIFT_NOTES 39

Error message "Keys do not match" 189
Errors

messages 233
registration 252

Evaluation
hardware models in QucikSim II 258

Examples
FlexModel VHDL instantiation 43, 80,

105, 116, 130, 147, 162
FlexModels with VCS 45

F
Fault simulation

with SmartModels 23
Files

cds.lib 200, 208, 211
delay (.DLY) 253
force value (.FRC) 253
lfsmLibPck 197
lmtv.o 82, 104, 106, 108, 114, 117, 119
mapping, pin 241
MCF 230
model.vhd 105, 115, 161
model_fx_comp.vhd 161
model_fx_sim.vhd 104, 115, 161
model_tst.vhd 105, 115, 161
modelsim.ini 157, 162, 163
ncshell 208
ncsim 210
pin_map 241
pin_map, example 242
SMILibrary.vhd 197
SMLibrary.vhd 207
SMpackage.vhd 197
state tracking (.TRK) 253
synopsys_vss.setup 129
technology 249, 253, 264

technology, types 253
timing 251
timing check (.TCK) 253
variable declaration (.DCL) 253
veriuser.c 62, 82, 104, 106, 108, 114,

117, 119
vhdlsim 148
vsystem.ini 162

FlexCFile 25
flexm_setup 25, 27
FlexModel

attributes 19
examples with VCS 45
fault simulation 23

FlexModel SWIFT parameters 24
FlexModelId 24
FlexModels

dynamic linking with PLI 104, 115
example isnatiations 207, 209
model.vhd 79
model_fx_sim.vhd 79
model_pkg.inc 79
model_tst.vhd 79
PLI static linking 81, 106, 117
using with MTI VHDL 160
VHDL instantiation 207, 209
with Cyclone 173
with Leapfrog 173, 198
with MTI-Verilog 115
with NC-VHDL 208
with Scirocco 128
with VCS 42
with VERA 269
with VSS 145

FlexModelSrc 25
FlexTimingMode 24
FMI libary 198, 210
Force command 236
Force values file 253

G
geniIterface command 186
genInterface

deleting intermediate files 184

Simulator Configuration Guide Index

July 31, 2001 Synopsys, Inc. 295

example 188
examples 187
how it works 179
options per model 185
overwriting files 185
overwriting pin names per model 186
processing 191
running 186
syntax 186

Getting help 14
Graphical descriptions 249

H
Hardware model functional descriptions

with QuickSim II 249
Hardware models

dynamic linking with PLI 89, 108, 120
elaborating and simulating design 188
functional descriptions with QuickSim II

247
installation prerequisites 178
instantiating 88
instantiating in Verilog-XL 88
keyword replacement 193
linking simulators 35
linking with SFI 35
loop mode 262
modifying 255
performance monitoring 89, 188, 259,

263, 264
propagation delays 253
registering 249, 250
registration 249
rules for determining descriptors 248
script for Scirocco 138
SFI 85
shell timing 258
test vector symbols 93
timing

measurement 261
timing checks 253
timing checks with Cyclone 182
timing delays with Cyclone 182
understanding test vector files 93
unknown propagation 260

variable declarations 253
verilog.log file example 90
with Cyclone 183
with IKOS Voyager 36
with Leapfrog 201
with MTI Verilog 120
with MTI VHDL 165
with NC-Verilog 108
with QuickSim II 247, 256
with Scirocco 135
with Teradyne LASAR 36
with VEDA Vulcan 36
with ViewLogic Fusion 36

HP-UX
compiling C files 28

I
Iflags 191
IKOS Voyager 36

with hardware models 36
Indeterminate strength mapping 261
Information, signal instance 263
Installation prerequisites

hardware model 178
Instantiation

FlexModel VHDL 40, 43, 61, 80, 103,
105, 113, 116, 130, 147, 162

Instruction
tracing, execution 236

Intel NT
using MTI Verilog 115
using MTI VHDL 160

Interfaces
hardware model component 249

Index Simulator ConfigurationGuide

296 Synopsys, Inc. July 31, 2001

J
JEDECFile property 224

K
Keys do not match, error message 189

L
LAI_LIB environment variable 77
LAI_OBJ environment variable 77
ld linker 191
LD_LIBRARY_PATH environment

variable 38, 39, 60, 61, 102, 112,
125, 142, 156, 172, 189, 196,
206, 218

-LDFLAGS -E switch 277
Leapfrog

with FlexModels 173, 198
with hardware models 201
with MemPro 198, 210

Lespfrog utilities
with hardware models 202

lfsmLibPck file 197
Libraries

CLI functions 146
FMI 198, 210
model_pkg.inc 42, 115
model_pkg.o 27
model_pkg.vhd 161
model_pkg.vr 274
model_pkg.vrh 274
model_user_pkg.vhd 161
slm_lib 129, 147, 162, 210
slm_pli.o 27
slm_pli_dyn 82, 106, 108, 117, 119
SmartModel Library menus 220
SmartModel, LMTV/SWIFT 76
SmartModel, Verilog-XL 76
SMpackage.vhd 207
swiftpli 61, 79, 80, 81, 103, 104, 106,

107, 113, 115, 118
vera_local_dll 276

LIBRARY statement 129, 147, 162, 207,
209

license file settings
ModelSource 181

linker 191
Linux

compiling C files 29
with MemPro 163

LM_DIR environment variable 38, 60,
112, 142, 156, 196

lm_disable_timing_checks command 202,
214

lm_enable_timing_checks ommand 202,
214

LM_LIB environment variable 38, 60,
112, 142, 156, 196

LM_LICENSE_FILE environment
variable 38, 60, 102, 112, 124,
142, 155, 171, 196, 205, 217

lm_log_test_vectors command 202
lm_loop_instance command 203, 214
lm_model command 247, 249, 250, 252,

253, 255, 256, 264
lm_model symbol generation 253
LM_OPTION environment variable 89,

188
lm_pam_shortage command 203, 214
lm_pattern_history command 203, 214
lm_timing_measurements command 202,

214
lm_unknowns command 202, 214
lm_vconfig command 99
LM-1200 175
LM-1400 175
LMC_COMMAND

setting SWIFT session commands 22

Simulator Configuration Guide Index

July 31, 2001 Synopsys, Inc. 297

LMC_HOME environment variable 38, 59,
77, 101, 111, 124, 141, 155, 171,
195, 205, 217

LMC_PATH environment variable 77
LMC_SFI environment variable 55
LMC_TIMEUNIT environment variable

207
LMC_VLOG environment variable 77
LMC_VLOG environment variables 77
lmc-swift-template command 39, 42
lmmsi logon command 136
lmsi list command 136
LMSI_DELAY_TYPE VHDL generic

137, 152
LMSI_LOG VHDL generic 137, 152
LMSI_TIMING_MEASUREMENT

VHDL generic 136, 152
LMTV

command reference 279
command-line switches 77, 279
historic SmartModel mode for Verilog-

XL 64
modes of operation for Verilog-XL 64
simulating older designs with Verilog-

XL 76
static linking with PLI 81, 82, 83, 106,

108, 117
SWIFT SmartModel mode with Verilog-

XL 64
lmvc_template command 55
lmvsg command 84
lmvsg commnd 99
Location maps

variables, Mentor Graphics 220
Logging test vectors 261
Logic simulation 228

with SmartModels 228

Loop mode, with hardware models in
QuickSim II 262

M
MA_CY environment variable 179
ma_cyclone software tree 178
Manual overview 11
Mapping

indeterminate strength 261
pin 241
PIN_NAME 240
pins, conditional 243
rules for special characters 192
unknowns 259

MCF file 230
with SmartModels 230

Measurement, timing 261
MemoryFile property 223
MemPro

with NC-VHDL 210
MemPro models

controlling message output 34
dynamic linking with PLI 81, 108, 118
error messages 33
fatal messages 33
generics 29
info messages 33
instantiating 32
message level constants 34
parameters 29
PLI static linking 82, 83, 108, 119
timing messages 33
using in testbench 134
using with simulators 29
warning messages 33
with Cyclone 173
with Leapfrog 198, 210
with MTI Verilog 118
with MTI VHDL 163
with NC-Verilog 108
with Scirocco 132
with VCS 51
with Verilog-XL 81
with VSS 148

Index Simulator ConfigurationGuide

298 Synopsys, Inc. July 31, 2001

X-handling messages 33
Mentor Graphics

analysis tools 247
design environment 247
location map variables 220
user tree management 219

Messages
constants, level with MemPro 34
controlling output with MemPro 34
MemPro error 33
MemPro fatal 33
MemPro info 33
MemPro timing 33
MemPro warning 33
MemPro X-handling 33
SmartModel error 233
SmartModel format 233
SmartModel note 233
SmartModel trace 233
SmartModel warning 233

MGC component interface 247
Model Access

Cycolne configuration options 175
Model directory 14
Model files

model_fx_sim.vhd 161
MODEL property 224
model.v files generated by crshell 86
model.v files, generating 84
model.vhd 115, 161
model.vhd file 105
model_fx_comp.vhd 161
model_fx_sim.vhd 115, 161
model_fx_sim.vhd file 104
model_pkg.o 27
model_pkg.vhd 161
model_tst.vhd 115, 161
model_tst.vhd file 105
model_user_pkg.vhd 161
ModelAccess

for Cyclone 174
for QuickSim II 244
for Verilog 85

ModelAccess for Cyclone
version number 174

ModelAccess for QuickSim II
version number 244

ModelAccess for Verilog
version number 90

modelsim.ini file 157, 162, 163
ModelSource

license file settings 181
system hardware and software 175

MS-3200 175
MS-3400 175
MTI Verilog

simulating using LMTV 113
with FlexModels 115
with Hardware models 120
with MemPro models 118

MTI VHDL
with FlexModels 160
with hardware models 165
with MemPro models 163
with SmartModels 157, 197

N
ncshell command 206
ncshell file 208
ncsim command 207
ncsim file 210
NC-Verilog

simulating with LMTV 103
with hardware models 108
with MemPro models 108
with SmartModels 103

ncverilog command 109
NC-VHDL

with FlexModels 208
with MemPro 210
with SmartModels 206

ncvhdl command 207
nologvectors signal instance command 261
NT

compiling C files 29

Simulator Configuration Guide Index

July 31, 2001 Synopsys, Inc. 299

P
Parameters

also called attributes 18
DelayRange 24
FlexCFile 25
FlexModelId 24
FlexModelSrc 25
FlexTimingMode 24
TimingVersion 24

PCLFile property 224
pin names, overwriting by genInterface 186
PIN property 224, 240
Pin symbols 222
pin_map file 241

example 242
PIN_NAME mapping 240
PIN_NAME property 225, 240
pin_name_ovr statement 186
PIN_NO property 225
Pins

mapping 241
mapping, conditional 243

PINTYPE property 224
PKG property 225
PLI

communication with Simulator Function
Interface (SFI) 85

dynamic linking with FlexModels 115
dynamic linking with Hardware models

108
dynamic linking with MemPro models

108, 118
dynamic linking with SmartModels 61,

113
static linking with FlexModels 106, 117
static linking with MemPro models 108,

119
static linking with SmartModels 114

PLIWizard 62, 82, 104, 106, 108
Properties

COMP 225
editing 233
JEDECFile 224
MemoryFile 223

MODEL 224, 247
PCLFile 224
PIN 224, 240
PIN_NAME 225, 240
PIN_NO 225
PINTYPE 224
PKG 225
REF 225
SCFFile 224
SWIFT 239
SWIFT_TEMPLATE 224
symbol 222
symbol, required for simulation 224
TimingVersion 223

propogation command 259

Q
QuickSim II

changing timing 233
command interaction 231
command line switches 230
component interface 247
constraint checking 233
constraint, switch 230
default timing 229
installing SWIFT interface 219
interactive commands 231
managing user trees 219
model symbol properties 224
simulating logic models 256
SmartModel windows with 235
SWIFT interface 219
-time_scale switch 230
timing,switch 230
with hardware models 247

R
Reconfiguration

models, for simulation 232
REF property 225
reg_model command 240, 249, 256
Register elements

combining with SmartModels 237

Index Simulator ConfigurationGuide

300 Synopsys, Inc. July 31, 2001

Registration 256
component 240
errors, dealing with 252
hardware models 249
logic models 249, 250
models 249

Registration tools, reference 264
Related documents 11
reread modelfile command 239
restore state command 238
run_flex_examples_in_scirocco.pl 130
run_flex_examples_in_vcs.pl Script 51
running verifySetup 179

S
save state command 238
SCFFile property 224
Schematic capture

adding SmartModel to schematic 221
Schematic Editor

creating instances 227, 228
Scirocco

hardware model utilities 136
script for hardware models 138
VHDL generics 136
with FlexModels 128
with hardware models 135
with MemPro models 132
with SmartModels 125

Scripts
run_flex_examples_in_scirocco.pl 130
run_flex_examples_in_vcs.pl 51

scsim command 134
Selection, timing shell 258
Session, ending the simulation 264
setup file, editing 184
SFI

linking hardware models 35
SFI. see Simulator Function Interface
Shell Software

conversion to VHDL 193
names 193

Shell Software Cconversions with
hardware models 254

Shell, timing
with hardware models 258

SHLIB_PATH environment variable 39,
61, 103, 112, 125, 142, 156, 172,
196, 206, 218

signal instance command 231, 256, 261,
262, 264

signal renaming, rules 192
Signal strength

with SmartModels 77
Simulation session, ending 264
Simulations

fault 23
reconfiguring models for 232
single-step 236

Simulator Function Interface (SFI) 85
version number 90

Simulator integration
Cyclone 173
Leapfrog 198, 210
ModelSim 160
ModelSim VHDL 163
MTI VHDL 160
V-System 5.0 160

simv command 278
Slang hardware model 183
Slang interface 183
sm_entity command 157, 160
SmartCirctuit models

Models
SmartCircuit 207

SmartCircuit models
with SWIFT Cxmmand Channel 21

SmartModel Library
documentation 11
fault simulation 23
message formats 233

SmartModel Windows
in SWIFT SmartModel mode 72
in Verilog-XL historic mode 71

SmartModel windows
elements 238

Simulator Configuration Guide Index

July 31, 2001 Synopsys, Inc. 301

how they work 235
LMTV, commands 70
tracing instruction execution 236
with QuickSim II 235
with Verilog-XL 70

SmartModels
adding to schematic 221
attributes, required 19
changing program flow 238
changing program flows 238
changing timescale 76
creating instances in QuickSim 227
customizing timing 76
drive strengths 229
dynamic linking with PLI 61, 103, 113
editing properties 233
evaluation 258
fault simulation 23
functional descriptions in Quickim II 247
graphical descriptions with QuickSim II

247
instantiating 20
library menus, to Design Architect 220
LMTV/SWIFT libraries 76
logic simulation 228
message format 233
message formats 233
pin and bus symbols 222
PLI static linking 104, 114
reconfiguring for simulation 232
renaming instances in QuickSIM 237
signal levels 229
status checking 232
support levels 229
SWIFT usage notes for MGC users 221
symbol properties used by SWIFT 223
symbols, creating new 239
symbols, modifying 239
technology descriptions with QuickSim

II 247
timing constraint checks 233
trace messages 233
user-defined window elements 70
using with SWIFT simulators 18
Verilog-XL libraries 76

warning messages 233
Windows, SWIFT mode 72
with Cyclone 173
with MTI VHDL 157, 197
with NC-Verilog 103
with NC-VHDL 206
with Scirocco 125
with VCS 39
with Verilog-XL 61, 63
with VSS 143

SMILibrary.vhd file 197
SMLibrary.vhd 207
SMpackage.vhd 207
SMpackage.vhd file 197
SNPSLMD_LICENSE_FILE environment

variable 38, 60, 102, 112, 124,
142, 155, 171, 196, 205, 217

Solaris
compiling C files 28

SOLV-IT! 15
Special characters

mapping rules 192
replacing 192

SSI_LIB_FILES environment variable 277
State tracking 253
Statements

technology file 253
SunOS, changing global settings on 184
Support center

contacting 14
Support levels

SmartModels 229
SWIFT 17
SWIFT Command Channel 21, 231
SWIFT interface

properties 239
QuickSim II, installing 219
symbol properties 222
usage notes for MGC users 221

SWIFT parameters
with FlexModels 24
with SmartModels 18

Index Simulator ConfigurationGuide

302 Synopsys, Inc. July 31, 2001

SWIFT_TEMPLATE property 224
swiftpli 61, 79, 80, 81, 103, 104, 106,

107, 113, 115, 118
Switches

+vera_finish_on_end 275
command line, QuickSim II 230
constraint mode 230
-debug_all 134
-LDFLAGS -E. 277
time scale 230
timing mode 230
VCS -Zp4 53

Symbol properties
required for simulation 224

Symbols 221, 256
alternate, selecting 228
buses 222
creation 249
custom 239
editing 253
pins 222
properties 222
registration 249
rules for creating 253
SmartModel, creating new 239
SmartModel, modifying 239

SYNOPSYS environment variable 141
synopsys_lm_hw.setup file 184
synopsys_lm_hw.setup.sunos file 184
SYNOPSYS_SIM environment variable

124, 141
synopsys_vss.setup file 129, 147

T
Technology descriptions 249
Technology files 249, 253, 264

conversions 254
types 253

Teradyne LASAR
with hardware models 36

Test vector logging 261
Test vector logging, hardware model

example 91
Timescale

changing with SmartModels 76
switch with SmartModels 230

Timing checks
with hardware models 253

Timing descriptions 249
Timing files 251
Timing measurement

with hardware models 91
Timing modes

changing 233
default 229
switch 230

Timing shell selection 258
TimingVersion 24
TimingVersion property 223
tmg_to_ts command 267
tmg_to_ts converter 249
Tools

Admin 220
analysis, Mentor Graphics 247
flexm_setup 25, 27
lm_model 247, 249, 250, 252, 253, 255,

256
lm_model, syntax 264
reg_model 240, 249, 256
registration, reference 264
tmg_to_ts 249
tmg_to_ts, syntax 267

Tracing
instruction, execution 236

Tracking, state 253
Transcript, registration - checking 252
Trees

management, Mentor Graphics 219
Triggering

word, setting 236

Simulator Configuration Guide Index

July 31, 2001 Synopsys, Inc. 303

Typographical conventions 13

U
Unknown mapping

with hardware models 259
Unknown propagation

with hardware models 260
USE statement 129, 147, 162, 207, 209
Using 83
Using FlexModels

with Direct C Control 26
with SWIFT simulators 26

Using MemPro models
with Verilog simulators 31
with VHDL simulators 31

Utilities
called by lm_model command 249
Check Shell Software 252
lm_model 247, 249, 250, 252, 253, 255,

256

V
Variables

location map, Mentor Graphics 220
vcom command 159, 162
VCS

FlexModel examples run script 49
invoking on AIX 41
invoking on HP-UX 40
invoking on Linux 41
invoking on Solaris 40
with FlexModels 42
with MemPro models 51
with SmartModels 39
with VERA 275

VCS utilities
with hardware models 57

VCS_HOME environment variable 39, 42
VCS_LMC environment variable 55
VCS_LMC_HM_ARCH environment

variable 55
VCS_SWIFT_NOTES environment

variable 39
Vectors, test, logging 261
VEDA Vulcan

with hardware models 36
VERA

compiling source files 274
compiling testbench 275
testbench creation 271
testbench example 272
UDF interface 270
with FlexModels 269
with FlexModels in testbench 272
with VCS 275

VERA command 275
vera_local.dll library 276
verifySetup

error message 179
executing 179

Verilog
include pkgs 115
slm_pli.o 27

Verilog-XL
capturing designs 66
compiling and simulating 89
Concept procedure 69
design

capture with Concept 68
design capture 67
design flow 66
design flow with SmartModels 67
executable 89
save and restore 94
simulating and compiling 89
simulating using LMTV 76
using SmartModel windows with 70
using with SmartModels 63
with MemPro 81
with SmartModels 61

Index Simulator ConfigurationGuide

304 Synopsys, Inc. July 31, 2001

Version numbers, finding 90
VHDL generics

LMSI_DELAY_TYPE 137, 152
LMSI_LOG 137, 152
LMSI_TIMING_MEASUREMENT

136, 152
with Scirocco 136
with VSS 151

VHDL keywords, unacceptable as signal
names 193

VHDL shell, creating for Cyclone 191
vhdlan command 129, 134
vhdlsim command 147
vhdlsim file 148
ViewLogic Fusion

with hardware models 36
Visual C++ 29, 45
vlib command 159
vsim command 159, 163
VSS

VHDL generics 151
with FlexModels 145
with MemPro models 148
with SmartModels 143

V-System 160
vsystem.ini file 162

W
Windows

LMTV SmartModel commands 70
SmartModel, elements 238
SmartModel, tracing instruction

execution 236
SmartModels, how they work 235
SmartModels, with QuickSim II 235

Word triggering
setting 236

Wrappers
SWIFT 104

Z
-Zp4 switch for VCS 53

	Contents
	Figures
	Tables
	Preface
	About This Manual
	Related Documents
	Some Hyperlinks May Not Work
	Manual Overview
	Typographical and Symbol Conventions

	Getting Help
	The Synopsys Website
	Synopsys Common Licensing (SCL) Document Set

	Comments?

	1 Using Synopsys Models with Simulators
	Overview
	Using SmartModels with SWIFT Simulators
	SmartModel SWIFT Parameters
	Instantiating SmartModels
	The SWIFT Command Channel
	Fault Simulations

	Using FlexModels with SWIFT Simulators
	flexm_setup Command Reference
	Instantiating FlexModels with Direct C Control

	Using MemPro Models with VHDL and Verilog Simulators
	Using MemPro Models with VHDL Simulators
	Using MemPro Models with Verilog Simulators
	Instantiating MemPro Models
	Controlling MemPro Model Messages
	Controlling MemPro Message Output
	Message Level Constants

	Using Hardware Models with Different Simulators
	Linking Other Supported Simulators

	2 Using VCS with Synopsys Models
	Overview
	Setting Environment Variables
	Using SmartModels with VCS
	Using FlexModels with VCS
	VCS FlexModel Examples
	Script for Running FlexModel Examples in VCS
	Example Simulator Run Script

	Using MemPro Models with VCS
	Using Hardware Models with VCS
	Example Using Runtime Option
	Example Using DelayRange Parameter
	VCS Utilities

	3 Using Verilog-XL with Synopsys Models
	Overview
	Setting Environment Variables
	Using SmartModels with Verilog-XL
	Using SmartModels with Verilog-XL on the IBMRS AIX Platform
	Verilog-XL Usage Notes for SmartModels

	Using FlexModels with Verilog�XL
	FlexModels:PLI Static Linking with LMTV

	Using MemPro Models with Verilog�XL
	Static Linking with LMTV

	Using Hardware Models with Verilog-XL
	Prerequisites
	Using Hardware Models
	$lm_log_test_vectors Command Reference
	$lm_loop_instance Command Reference
	$lm_timing_information Command Reference
	$lm_timing_measurements Command Reference
	$lm_unknowns Command Reference
	lmvsg Command Reference

	4 Using NC-Verilog with Synopsys Models
	Overview
	Setting Environment Variables
	Using SmartModels with NC-Verilog
	Static Linking with LMTV

	Using FlexModels with NC�Verilog
	Static Linking with LMTV

	Using MemPro Models with NC�Verilog on UNIX
	Static Linking with LMTV

	Using Hardware Models with NC-Verilog
	NC-Verilog Utilities

	5 Using MTI Verilog with Synopsys Models
	Overview
	Setting Environment Variables
	Using SmartModels with MTI Verilog
	Static Linking with LMTV
	Using SmartModels with MTI Verilog on the IBMRS AIX Platform

	Using FlexModels with MTI Verilog
	Static Linking with LMTV

	Using MemPro Models with MTI Verilog
	Static Linking with LMTV

	Using Hardware Models with MTI Verilog
	MTI Verilog Utilities

	6 Using Scirocco with Synopsys Models
	Overview
	Setting Environment Variables
	Using SmartModels with Scirocco
	create_smartmodel_lib Command Reference

	Using FlexModels with Scirocco
	Script for Running FlexModel Examples in Scirocco

	Using MemPro Models with Scirocco
	Using MemPro Models in a Testbench

	Using Hardware Models with Scirocco
	Scirocco Example with TILS299 Hardware Model
	Scirocco Utilities
	VHDL Model Generics with Scirocco

	7 Using VSS with Synopsys Models
	Overview
	Setting Environment Variables
	Using SmartModels with VSS
	create_smartmodel_lib Command Reference

	Using FlexModels with VSS
	Using MemPro Models with VSS
	Using Hardware Models with VSS
	VSS Example with TILS299 Hardware Model
	VSS Utilities
	VHDL Model Generics with VSS

	8 Using MTI VHDL with Synopsys Models
	Overview
	Setting Environment Variables
	Using SmartModels with MTI VHDL
	sm_entity Command Reference

	Using FlexModels with MTI VHDL
	Using MemPro Models with MTI VHDL
	Using Hardware Models with MTI VHDL
	MTI VHDL Example Using TILS299 Hardware Model
	hm_entity Command Reference
	MTI VHDL Utilities

	9 Using Cyclone with Synopsys Models
	Overview
	Setting Environment Variables
	Using SmartModels with Cyclone
	Using FlexModels with Cyclone
	Using MemPro Models with Cyclone
	Using Hardware Models with Cyclone
	ModelSource System Hardware and Software
	LM-1400/LM-family System Hardware and Software
	Configuration Options
	Cyclone User Setup
	Using Hardware Models with Cycle-Based Simulators
	genInterface Command Reference
	Cyclone Simulation
	Cyclone genInterface Setup Files
	Cyclone genInterface Processing

	10 Using Leapfrog with Synopsys Models
	Overview
	Setting Environment Variables
	Using SmartModels with Leapfrog
	Using FlexModels with Leapfrog
	Using MemPro Models with Leapfrog
	Using Hardware Models with Leapfrog
	Leapfrog Example with TILS299 Hardware Model
	Leapfrog Utilities

	11 Using NC�VHDL with Synopsys Models
	Overview
	Setting Environment Variables
	Using SmartModels with NC-VHDL
	Using FlexModels with NC-VHDL
	Using MemPro Models with NC�VHDL
	Using Hardware Models with NC-VHDL
	NC-VHDL Example with TILS299 Hardware Model
	NC-VHDL Utilities

	12 Using QuickSim II with Synopsys Models
	Overview
	Setting Environment Variables
	Using SmartModels and FlexModels with QuickSim II
	Installing the QuickSim II SWIFT Interface
	Using SmartModels/FlexModels with QuickSim II
	Schematic Capture
	Logic Simulation
	Custom Symbols

	Using Hardware Models with QuickSim II
	Setting up Hardware Models in QuickSim II
	Using Hardware Models in QuickSim II
	Model Registration
	Registering a Model with lm_model
	Modifying a Hardware Model
	Simulating with Hardware Models in QuickSim II
	lm_model Command Reference
	tmg_to_ts Command Reference

	A Using VERA with FlexModels
	Overview
	Using FlexModels with the VERA UDF Interface
	Linking VERA with Verilog Simulators
	Linking VERA with the MTI VHDL Simulator

	Creating a VERA Testbench
	VERA Testbench Example
	Incorporating FlexModels in a VERA Testbench
	Using VERA with VCS

	B LMTV Command Reference
	Overview
	LMTV Command Line Switches
	LMTV Commands
	$lm_command() or $lai_command()
	$lm_dump_file() or $lai_dump_file()
	$lm_help()
	$lm_load_file() or $lai_load_file()
	$lm_monitor_enable() or $lai_enable_monitor()
	$lm_monitor_disable() or $lai_disable_monitor()
	$lm_monitor_vec_map() and $lm_monitor_vec_unmap()
	$lm_status() or $lai_status()

	Index

