Application Note, V 1.0, April 2005

Microcontrollers

@

(Infineon
technologies

Never stop thinking.

TC1766

Revision History: 2005-04 V1.0
Previous Version: -

Page Subjects (major changes since last revision)

Controller Area Network (CAN): License of Robert Bosch GmbH

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
mcdocu.comments@infineon.com

Edition 2005-04

Published by
Infineon Technologies AG
81726 Miinchen, Germany

© Infineon Technologies AG 2006.
All Rights Reserved.

LEGAL DISCLAIMER

THE INFORMATION GIVEN IN THIS APPLICATION NOTE IS GIVEN AS A HINT FOR THE
IMPLEMENTATION OF THE INFINEON TECHNOLOGIES COMPONENT ONLY AND SHALL NOT BE
REGARDED AS ANY DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR
QUALITY OF THE INFINEON TECHNOLOGIES COMPONENT. THE RECIPIENT OF THIS APPLICATION
NOTE MUST VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION. INFINEON
TECHNOLOGIES HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND
(INCLUDING WITHOUT LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL
PROPERTY RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO ANY AND ALL INFORMATION GIVEN
IN THIS APPLICATION NOTE.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types
in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or
system. Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.

{

(Infineon
technologies

AP32087
MLI Quick Start

Table of Contents

Table of Contents Page
1 S Tefo] o LIS SRR OO PPTR 4
2 Introduction to the Micro Link Interfaceccocceeiiiiiiiie e 5
3 How to set — up an MLI connectioneuvviiiiiiiiiiiiiiiiiiiieeeieeeeveeeeeeveees 10
3.1 €T | SRR 10
3.2 Functional description ... 11
3.2.1 STAMT-UD e 11
3.2.2 Read and Write operations.ccccoooieiiieiiciiecccccese e 19
4 Practical Implementationuueuiiiiiiiiiiiiiiiiieieieeeieieeeeeeeee e 21
41 Hardware CONNECHIONooiiiiiiieiiiee e 21
4.2 Setting UP MCT e s 23
421 Configuration of the local controller.............cccoooiiii i, 23
422 Setting up Tasking environment. ..o 36
4.2.3 Programming of the Local controller............ccovieieiiieiiiee e 45
4.3 Setting UP MC2 ... 52
431 Configuration of the remote controllerccccooeiiiiiiiiiiie e, 52
4.3.2 Setting up Tasking environment.............ccooceiiiiiiiieinie e 57
4.3.3 Programming of the Remote controller.............c.cccoooiiiniiieeee 58
4.4 Running the applications ..o 62
5 Ready-10-USE ilESeeiieiiieeee e 63

Application Note 3

V 1.0, 2005-04

—

@
II'IHHEOH AP32087
technologies MLI Quick Start

Scope

1 Scope

The goal of this document is to provide practical information on how to configure and
program two TC1766 microcontrollers in order to establish a Micro Link Interface (MLI)
link and execute basic read and write transfers.

Some programming examples are included with this application note. The code has
been created using DAVE 2.1" and Tasking 2.2r1%. 1t is strongly recommended to
uses those versions when using the code delivered with this application note.

Two TriBoards for TC1766 and two standard PCs are needed to run the application
described in this document.

Please note that the code given in this application note shall be used for demonstration
purpose only. It aims at giving an example on how to build a functional MLI link. It is
not optimized nor is its robustness guaranteed.

Section 2 gives an overview of the MLI interface. Readers already familiar with the MLI
may want to skip this section. Section 3 gives explanations on how to set-up a basic
MLI link between two microcontrollers, from a functional point of view. In section 4,
step-by-step explanations are given in order to build physically the connection. This
includes hardware set-up, initialization of the microcontrollers, programming of the
start-up procedures and of basic read and write operations. In section 5, some
explanations are given on the ready-to-use files provided with this application note.

DA compatible DavE DIP file is included in the package containing this document.
2 For more information about Tasking Tool Chain and the latest patches, please visit www.tasking.com

Application Note 4 V 1.0, 2005-04

{

II'IHHEOH AP32087
technologies MLI Quick Start

Introduction to the Micro Link Interface

2 Introduction to the Micro Link Interface

MLI is a serial high speed link (up to 40 Mbaud for TC1766), which is based on a
principle similar to the standard serial protocol. Due to its symmetrical structure, it
supports full-duplex transmission. It only requires four signal lines in each data
direction (downstream = transmit and upstream = receive). For each data transfer
direction, there is one clock line (CLK), one data line (DATA) and two handshake lines
(READY, VALID). One MLI transmitter might be connected to up to four scalable MLI
receivers sharing the same Data and Clock line. An individual addressing of receivers
is done by independent sets of handshake lines.

Controller x Controller y
TCLK CLK xy N RCLK
> > >
TREADY P READY_yx RREADY
MLI Transmil [€—————+ < < MLI Receiver
TVAUD VALID_xy ~ RVALD |
TDATA ~ DATA xy > RDATA N
Port Ctri Port Ctri
A= . CLK yx | JOK
RREADY READY_xy _ TREADY
MLI Receiver > > P ML Transmit
RVALID o VALID_yx TVALID
<« < <
2R . DATA yx | TDATA
< <
Figure 1 MLI Transmitter — Receiver connection.

The MLI interface has been developed to meet the following application targets:

e Data and program exchanging without intervention of CPU or PCP between
microcontrollers of the AUDO-NG family. The MLI is connected to the system bus
and can do data move operations independently from the CPU(s).

e The internal architecture of the block allows the communication between
controllers in different clock domains.

e The read mode enables the desired data to be read from the other controller.

e Resources sharing between controllers.

Application Note 5 V 1.0, 2005-04

—

@
II'IHHEOH AP32087
technologies MLI Quick Start

Introduction to the Micro Link Interface

e Capability of triggering interrupts in the receiving controller by sending a
command.

Controller 1 Controller 2
CPU CPU
Peripheral X ()
Peripheral X () () Peripheral Y
PeripheralZ ()
— MLI ML —
System Bus System Bus

Figure 2 MLI in a microcontroller

MLI 1/O-pins are CMOS compliant, allowing microcontrollers from the AUDO-NG family
to be mounted closely together on the same PCB. This target doesn’t necessarily
require cost-extensive LVDS drivers for better EMC behavior. Usage of CMOS MLI I/O
drivers instead of LVDS drivers also has a beneficial impact on the absolute current
consumption and requires less interface pins. Nevertheless there might be
applications, where LVDS drivers are useful for MLI signals; e.g. for electronic valve
train, where the ECU for the valves and the ECU for engine control are separated and
need to communicate via longer MLI cable (up to more than 1 meter might occur). As a
different cable length for the connection leads to a changing loop delay for transmitted
or received messages, the timing of the MLI handshake signals can be adapted via
programming during the startup procedure.

The internal architecture of the MLI interface supports different clock domains for the
transmitter or the receiver module. As the MLI interface is able to act as bus master on
the system bus of the controller itself, it autonomously acts like a DMA controller and

Application Note 6 V 1.0, 2005-04

{

II'IHHEOH AP32087
technologies MLI Quick Start

Introduction to the Micro Link Interface

therefore might work in parallel to the CPU of the system. As a result, the MLI
significantly reduces the CPU load for data transfer tasks. Remote control of
peripherals located in the “other” controller is offered as a feature by this behavior; so
calculation power or peripherals located in different sub-controller systems might be
shared via MLI.

MLI connection is not necessarily restricted to a controller-to-controller connection.
Other products, such as smart companion devices (ASSP) can also be connected
easily. The advantage of these devices is their extended voltage range, so that they
could incorporate e.g. a 5V analog sensor interface or other analog and digital data
preconditioning circuits.

Controller 2

smart
companion T

MLI

8 pins

ADC

I MLI

«— cRT {) Controller 1
8 pins

i
7
]

Eﬁa
P

i
i

Figure 3 Smart companion device with MLI connection.

General Description of MLI

The communication between two participants is based on a pipe structure. A pipe may
be seen as a logical connection between a transmitter and a receiver. In each MLI
module, 4 independent pipes are available. The pipes point to address areas in the
receiver, starting at programmable base addresses. The MLI transmitter only sends a
short offset relative to the base address instead of the full 32-bit address. Each pipe

Application Note 7 V 1.0, 2005-04

{

II'IHHEOH AP32087
technologies MLI Quick Start

Introduction to the Micro Link Interface

defines a buffer in the receiver’'s address map (defined by the base address, the offset
and the length of the offset).

Controller Controller 2
MLI Transmitter MLI Receiver
Size
31 BSO-1 0 Buffer 0 I BSC
T T 2
/'{ BaseAddr0 || 0 q
pipe
31 BS1-1 0
‘ : Buffer *) BS!
/yl Base Addr 0, 0 >
| pipe 1
Base Addresses from the
four pipes | |
BS2
3 BS2-1 0 Basg 2
\A| BaseAddr2 [0, . .0 -~
pipe 2
\ 31 BS3-1 0 Buffer 3 I B
T T
Base Addr 3 0, - 0 >
pipe 3

Figure 4 MLI pipe structure.

In addition to the offset (its bit width defines the buffer size), the MLI transmitter sends
a reference to the pipe in use. When the MLI receiver obtains this data it elaborates
the absolute target address by simply concatenating the received offset to the base
address of the selected pipe.

A data write access to a pipe in controller 1 leads to an automatic transfer from the MLI
transmitter to the MLI receiver on controller 2. This transfer includes the written data,
the offset address and the pipe number. The received information becomes available
in the MLI receiver. The CPU of controller 2 can read it under SW control or the MLI
can autonomously write it to the given address. In order to avoid write actions to
safety-critical address areas, an access protection scheme has been added.

A read access to a pipe transfers a request to the MLI receiver on controller 2. If
enabled, the MLI executes the read operation autonomously and the requested data
will be sent back to the MLI on controller 1 (by the MLI transmitter on controller 2 to the
MLI receiver of controller 1). When this information is available in the MLI module of

Application Note 8 V 1.0, 2005-04

{

II'IHHEOH AP32087
technologies MLI Quick Start

Introduction to the Micro Link Interface

controller 1, an interrupt can be generated and the CPU (or a DMA, etc.) of controller 1
can read the requested data.

Controller 1 Controller 2
MLI Transmitter MLI Receiver

BSx-1 0
Offset

31 BSx | Size
Pipex Rt N 31 BSx 0

“# BaseAddrx 0, - 0 N
Pipe x
Figure 5 Target address generation.

The kernel MLI includes an optimized mode to transfer data blocks. Whenever the MLI
transmitter detects that the new address and the previous one follow a predictable
scheme, it will send just the data reducing this way the number of transferred bits.

If the complete autonomous feature set of MLI connection is enabled, data transfers
between two participants can take place without any CPU action for data handling. The
transmitting MLI stores the write access to its pipes, does the complete encoding and
transfers the complete move action to the receiving MLI. There, the address and the
data are reconstructed and the write action is executed on the system bus. As a result,
a MLI module can be seen as a fully autonomous module transferring data moves
between the system buses of independent controllers.

Application Note 9 V 1.0, 2005-04

{

II'IHHEOH AP32087
technologies MLI Quick Start

How to set — up an MLI connection

3 How to set — up an MLI connection

3.1 Goal

The goal of this application note is to set-up an MLI link between two microcontrollers
MC1 and MC2, as depicted in Fig. 6.

Memory

Transmitter Reciever Memory
Write
TREADYA RREADYA
Transer

TVALIDA

RVALIDA

Pin 1.0

>
TCLKA | RCLKA

TDATAA RDATAA

Register
P1_0OUT

Reciever Transmitter
Memory Write RDATAA |t TDATAA X w
RVALIDA TVALIDA
=-
RCLKA TCLKA
Mc1 RREADYA = TREADYA Mcz
Figure 6 MLI link between two controllers.

Both microcontrollers run at 80 MHz CPU frequency.
The MLI links runs at 10 Mbaud/s.
Specifically, the following actions will be performed via the MLI link:

- MC1 writes to the register P1_OUT of MC2. The effect is that the LED on the
TriBoard of MC2 is turned on.

- MC1 writes six data words to the address space of MC2 (address
0xd000a000, 0xd000a004,..., 0xd000a014).

- MC1 reads some 6 words in the memory space of MC2 (address
0xd0008000, 0xd0008004,..., 0xd0008014), and stores them in its own
memory space at address 0xd0006000, 0xd0006004,..., 0xd0006014
respectively.

Application Note 10 V 1.0, 2005-04

{

II'IHHEOH AP32087
technologies MLI Quick Start

How to set — up an MLI connection

3.2 Functional description

This section describes from a functional point of view the different steps necessary to
create the MLI link. The principles developed here are general and can be used in
most of the cases. However, practical implementations may differ from the description
below, depending on the specific applications requirements.

3.21 Start-up

When the two controllers are powered on and their respective MLI is statically
initialized (module enabled, pin assignment, etc.), some procedures are needed to
initiate a transmission.

At the beginning, all MLI Service Request Nodes (SRN) of MC1 are disabled. They will
be enabled later on. This solution has been chosen here in order to avoid unwanted
servicing of routines initiated by dummy frames.

On the contrary for MC2, at the beginning, one SRN is enabled (interrupt on received
command frames on pipe 3). All other SRN are disabled.

MC1 is used as local controller during the transmission, MC2 as the remote controller.
Please note that during the start-up procedures described below, MC2 is also used
briefly as local controller, and MC1 as remote.

The initialization procedures are divided into 3 steps:
First step: MC1 initiates the start-up procedures and stands-by.
Second step: getting MC2 ready for communication.

Third step: getting MC1 ready for communication.

3.21.1 Start-up procedure: first step.

During this step, MC1 first configures both local transmitter (MC1) and remote receiver
(MC2) so that the parity error signaling is performed correctly; MC1 also configures the
base address of the remote window and initiates some start-up procedures in MC2. A
flow chart describing step 1 is depicted Fig. 8.

First, the local controller MC1 has to configure its transmitter and the remote receiver
(of MC2) so that parity error signaling is performed correctly. This is performed
according to the set-up procedure described in the User's Manual . For the sake of

') User's Manual, Peripheral Units, V0.2, Dec 2004, section 21.1.9.

Application Note 11 V 1.0, 2005-04

{

II'IHHEOH AP32087
technologies MLI Quick Start

How to set — up an MLI connection

clarity, in order to avoid mismatch between this specific procedure and the rest of the
procedures described here (which are also start-up procedures), the “set-up
procedure” described in the User's Manual will be referred as “parity error start-up
procedure”, or PESP.

PESP
A flow chart describing the PESP is depicted Fig. 7.

MC1 sends a dummy frame to MC2 (in this case, a command frame on pipe 0). It waits
for the transfer to complete and then measures how many cycles have elapsed
between the beginning of the transfer and the moment when the signal Ready toggles
from Low to High. The measurement is done by reading the bit field
MLIO_TSTATR.RDC.

This value represents the overall loop delay, as defined in the PESP description. In the
case of this example, the value RDC+1 is written to bit field MLIO_TCR.MDP.

MC1 then sends a command frame on pipe 1 to write on the remote controller bit field
MLIO_RCR.DPE. In the case of this example, MLIO_RCR.DPE is chosen to be
MLIO_TCR.MDP + 2.

As defined in the user's manual, these settings need to be tested. First, a dummy
frame with parity error is sent (by setting bit MLIO_TCR.TP to 1) and the software
checks if the error is detected by the transmitter (by checking bit MLIO_TSTATR.PE). If
not, special actions must be taken and the start-up procedure must be restarted from
the beginning.

If an error is correctly detected, then MC1 sends a dummy frame with no parity error.
The software checks if no error occurs (by checking bits MLIO_TSTATR.PE and
MLIO_TSTATR.NAE). If an error is detected, special actions must be taken and the
start-up procedure must be restarted from the beginning. If not, this finishes PESP.

End of step 1.

Once the PESP is correctly executed, MC1 enables interrupts on received command
frames on pipe 3 (interrupt source DMA_MLIOSRC1, SRPN = 2 in this example). This
pipe will be used by MC2 to tell MC1 that it is ready for communication.

The MC1 sends then four copy base address frames, in order to configure the remote
window of MC2.

Once this is done, it sends a command frame (pipe 3 / code O in this case) to the
remote controller and stands-by, until the MC2 sends a command frame on pipe 3.

Application Note 12 V 1.0, 2005-04

{

Infineon

technologies

AP32087

MLI Quick Start

How to set — up an MLI connection

Crash action!!

Crash action!!

Crash action!!

Send a dummy
Command Frame
on Pipe C

Y

Read
TSTATR.RDC

Write
TCR.MDP =
TSTATR.RDC + *

v

Sends command

frame on Pipe 1

to set RCR.DPE=
TCR.MDP +3

]

Sends dummy
Command Frame
with parity error on
pipe 0

Parity error
detected?

Sends dummy
Command Frame
with no parity error
on pipe G

Parity error
detected?

Figure 7

Application Note

Parity Error Signaling Procedure (PESP).

13

V 1.0, 2005-04

{

Infineon

technologies

AP32087
MLI Quick Start

How to set — up an MLI connection

no

PESP

v

Enable Interrupt
on pipe 3

v

Send Base
Address Frames
on all pipes.

v

Send Command
Frame on pipe 3

——

Stand- By

Command
Frame on pipe
3 received?

Figure 8 Start-up procedure (MC1): step 1.

Application Note

14 V 1.0, 2005-04

{

II'IHHEOH AP32087
technologies MLI Quick Start

How to set — up an MLI connection

3.2.1.2 Start-up procedure: second step.

This step is needed for two reasons. First, it enables MC2 to know when to clear all its
interrupt flags and its error flags generated by the frames received in the first step.
Secondly, it lets MC1 know when MC2 is ready for transmission. A flow chart
describing step 2 is depicted Fig. 9.

When MC2 receives a command frame on pipe 3, an interrupt routine is started.
During this routine, MC2 will operate as the local controller.

First, a PESP, as described in the User's Manual (and similar to the one described in
step one) is performed. It configures the transmitter of MC2 and the receiver of MC1
for parity error signaling.

Once the PESP is correctly executed, MC2 clears all transmit and receive errors bits
(MLIO_TRSTAR.CNAE, MLIO_TRSTAR.CTPE, MLIO_RCR.PE). It also clears all the
interrupt flags on the receive side (by writing to register MLIO_RIER).

It then enables the automatic move engine (by setting bit MLIO_RCR.MOD).

MC2 sends a command frame to MC1 on pipe 3, in order to indicate it is ready for
transmission.

Finally, it clears transmit interrupt flags (by writing to register MLIO_TIER).

Application Note 15 V 1.0, 2005-04

{

Infineon

technologies

AP32087
MLI Quick Start

How to set — up an MLI connection

Y

Stand- By

no

Command
Frame on pipe

PESP

v

Clear all errors

v

Clear receive
interrupt flags

v

Enable Move
Engine

v

Send Command
Frame on pipe 3

v

Clear transmit
interrupt flags

v

Stand - By

End of
Mc2
start-up
proc.

Figure 9 Start-up procedure (MC2): step 2.

Application Note 16 V 1.0, 2005-04

{

II'IHHEOH AP32087
technologies MLI Quick Start

How to set — up an MLI connection

3.2.1.3 Start-up procedure: third step.

This step finalizes the start-up of MC1. When MC1 acknowledges the command frame
on pipe 3, it will initiate an interrupt routine, where several actions are performed. A
flow chart describing step 3 is depicted Fig. 10.

First, all errors flags are cleared (bits MLIO_TRSTAR.CNAE, MLIO_TRSTAR.CTPE,
MLIO_RCR.PE).Then the interrupt flags (registers MLIO_RIER and MLIO_TIER) are
reset. Interrupts are besides enabled on the reception of normal frames (interrupt
source DMA_MLIOSRCO, SRPN = 1 in this example). This interrupt source is used
when answer frames are received.

Optimized frame mode is then enabled (by setting MLIO_TCR.NO)

Finally a flag will be set, which will trigger the read / write operations (in this example,
the flag is a global variable called MLI_Remote_Ready).

Application Note 17 V 1.0, 2005-04

{

Infineon

technologies

AP32087
MLI Quick Start

How to set — up an MLI connection

no

o Stand- By

Command
Frame on pipe
3 received?

Enable Optimized
Frames

v

Clear all errors

v

Clear receive and
transmit interrupt
flags

v

Enable Interrupts
on received
normal frames.

v

Set
Remote_Ready
flag

End of
McC1
start-up
proc.

Figure 10 Start-up procedure (MC1): step 3.

Application Note

18 V 1.0, 2005-04

{

II'IHHEOH AP32087
technologies MLI Quick Start

How to set — up an MLI connection

3.2.2 Read and Write operations.

At this point, all errors or interrupt flags generated in both controllers by the start-up
procedure have been cleared. The parity error signaling has been checked and is
functional, and the remote window of MC2 has been configured. Besides, both
controllers are now ready to communicate with each other. MC1 can now start read
and write operations.

The write and read operations are triggered by the fact the flag MLI_Remote_Ready is
setto 1.

Write operation 1.

The local controller MC1 sends a Write frame on pipe 3. It writes the value
0x00000000 to register P1_OUT of MC2. The effect is that the LED on the remote
TriBoard is switched on as soon as the transfer is completed.

Write operation 2.

The local controller MC1 sends 6 Write frames on pipe 1 in a row. In a row means here
that it sends frame 0, waits for bit MLIO_TRSTATR.DV1 to be set to 1 and then to get
cleared, then it sends frame 1, etc. It writes the words Oxaaaa0000, Oxaaaa0001, ...,
Oxaaaa0005 respectively to the following memory locations in the memory space of
MC2: 0xd000a000, 0xd000a004,..., 0xd000a014.

Note: Actually, the write operation is not performed directly on the DMI memory but on
ist image. That is why, in the code, the base address of pipe 1 is configured to
be 0xe8408000 (and not 0xd0008000.,

On the remote controller side, the transfer is handled automatically by the move
engine.

Read operation.

The local controller MC1 sends 6 Read frames on pipe 0 in a row. In a row means here
that it sends frame 0, waits for bit MLIO_TRSTATR.RPO to be set to 1 and then to get
cleared, then it sends frame 1, etc. It reads the words O0xffff0000, Oxffff0001, ...,
0xffff0005 respectively to the following memory locations in the memory space of MC2:
0xd0008000, 0xd0008004,..., 0xd0008014.

On the remote controller side, since the move engine is activated, it will automatically
pass the wanted data to its transmit buffer as soon as a read frame is received. The
remote controller sends then the corresponding answer frames to MC2.

Application Note 19 V 1.0, 2005-04

{

II'IHHEOH AP32087
technologies MLI Quick Start

How to set — up an MLI connection

When MC1 receives the answer frame, an interrupt request is generated and the CPU
services the routine. The data word of answer frame 0 (Oxffff0000) is written to
0xd0006000, the data word of frame 1 (Oxffff0001) to 0xd0006004, etc.

Application Note 20 V 1.0, 2005-04

{

II'IHHEOH AP32087
technologies MLI Quick Start

Practical Implementation

4 Practical Implementation

The following items are necessary to realize the set-up described below:
e Two TriBoard Evaluation board for TC1766.
e Two TriBoard Logic Analyzer Extension Board.

e Tasking Tool Chain (TriCore Compiler, Assembler, Linker/Locator,
CrossView Pro Debugger) version 2.2r1.

Note: The Quick Start may not work with a demo version of the Tasking Tool Chain.
Please contact Tasking a full featured version for demo purpose (time limited).
For more information, please visit www.tasking.com.

o DAVE, the Digital Application Engineer, version 2.1. Please install the DIP file
for TC1766 included in the package containing this document.

e 2 standard PC (with Windows NT, XP or Windows 2000).

4.1 Hardware connection

The required MLI connection between the two controllers is described in Table 1:

Local Controller Remote Controller
Signal Pin Signal Pin
TCLKA P2.0 RCLKA P2.4
TREADYA P2.1 RREADYA P2.5
TVALIDA P2.2 RVALIDA P2.6
TDATAA P2.3 RDATAA P2.7
RCLKA P2.4 TCLKA P2.0
RREADYA P2.5 TREADYA P2.1
RVALIDA P2.6 TVALIDA P2.2
RDATAA P2.7 TDATAA P2.3
Table 1 Physical MLI connections between remote and local controllers

For example, pin P2.0 of the local controller is connected to pin P2.4 of the remote
controller, etc. All the other pins will not be used and thus may remain open. The
connection between the two TriBoards is depicted Fig. 11.

Application Note 21 V 1.0, 2005-04

@

Infineon AP32087
'echno‘egy MLI Quick Start

Practical Implementation

Figure 11 Hardware connection overview.

Note: Make sure that the following resistances (0 Ohm) are removed from both
TriBoards: R531, R532, R533, R534, R535 and R536 (please refer to TriBoard
manual).

Application Note 22 V 1.0, 2005-04

{

(Infineon
technologies

AP32087

MLI Quick Start

4.2 Setting up MC1

All the operations below shall be performed on the PC connected to MC1.

Practical Implementation

421 Configuration of the local controller

The local controller MC1 can be configured using DAVE (v2.1).

Open a new project for TC1766.
Project settings:

1. General Settings.

- Rename the Main Source File into Main_Local.c.
- Rename the Main Header File into Main_Local.h.

- Select Tasking 2.0.

& Project Settings x|
| -| 2
General I Syztem Elockl Intermupt Systeml FCP Systeml Pad Driverl Startup Eonfigurationl Notesl
— Controller Type
Tupe TC1786 |
Mar. system clock IBD MHz
r— Main Source File hain Header File
File name MaIN_Local o ’V File name talM_Local b
— Compiler Settings
" GNU
" Tasking 1.5
Application Note 23 V 1.0, 2005-04

{

Infineon

technologies

AP32087
MLI Quick Start

Practical Implementation

2. System Clock

- Change external clock frequency to 15 MHz .
- Change input divider PDIV to 2.

- Change VCOSEL to 400MHz — 500 MHz.

- Change feedback divider NDIV to 64.

- Change output divider KDIV to 6.

& Project Settings
sl -| 2

General Spstem Clock I Interrupt Systeml FCF S_l,lsteml Pad Dliverl Startup Eonfigurationl Notesl

— External Clock Freguency

Esternal clock frequen PLL Bypass operation [fopu = fose)
[MHz] 15 I {pnBYPASS = 1]
Input divider [FDIV] fp = fosc 4 2 = 7,500 MHz -

—oltage Controlled Oscillator [WCO)
[~ %CO Bypass mods (VCOBYF)

VCO range VCOSELT [400 MHz - 500 MH2 v
Feedback divider | frco o foso /P " B4 = 480000 MHz ™ Cﬂugggu[mz] |

r— Output Divider
Output divider (KD

0000 MHz

hU Clack B0,00000000

Hz]

€ Tihe ratio fopuf fsps s 241 Syztem Clock IBD,DDDDDDUD
[MHz]

% The ratio fepu / fsys iz 1 41

Application Note 24 V 1.0, 2005-04

{

Infineon

technologies

AP32087
MLI Quick Start

Practical Implementation

3. Interrupt system
- Enable the Interrupt System globally.

& Project Settings

: x|
28 @ta -| 2

Generall Spstem Clock Interrupt System | PCP S_I,Jsteml Pad Dliverl Startup Eonfigurationl Notesl
— CPU Global Interupt Enable:

< v Enable globally the interrpt spstem (IE

— Murmber of Arbitration Cycles [CARBCYLT)

' Four arbitration cycles (max. 255 interupt sources)
= Three arbitration cycles [max. 63 intemupt sources)
© Two arbiration cycles [max. 15 interupt sowces)

" One arbitration cycle [max. 3 interupt sources)

— Mumber of Clocks per Arbitration Cpcle [COMELCYT)
@& Two clocks per arbitration cycle

” One clock per arbitration cycle [for low frequency)

Application Note 25 V 1.0, 2005-04

{

Infineon

technologies

AP32087

MLI Quick Start

Practical Implementation

MLIO:

4. Module clock
- Change Divider Mode Control to “Select normal divider mode”.
- Change “Required Module Clock” to 20 MHz.

@ Micro Link Serial Bus Interface 0 (MLID)

o8 ot - 2

Module Clack I Te Lines | R Lines | Contral | Ti Intemupts | R Intemupts | Memary | SEN | Intermupts | Functior 4| » |

Mate: The DMA clock is alzo used for the ML modules a5 a
common clock that can be individually divided for the ML modules.

— Divider Mode Control (Db) — Digable Clock Control
~ Digable module clack, - (DISCLK)

Output clock becomes inactive after initialization

*_Select nomal divider mode — Enable Hardware Clock Contral

: o Bit DISCLE iz reset by Hw while input signal
= Select fractional divider mode - ECEN [CAN_INT_075]is high level (ENHWw]

r Module Clack Cantral

Required module clock [MH2] (20,000 Real module clock [MHz] I2D’DUU

Minimal moduls clock [KHz] I?EH 20 Percentage of deviation [%] IU,DDD
Maximal module clock [MHz] IBD,DDD Step value [STEP) ID;.GFC

Application Note 26 V1

.0, 2005-04

{

II'IﬁﬂEOﬂ AP32087
technologies MLI Quick Start

Practical Implementation

5. Tx Lines / TCLKA
- TCLKA pin selection: Use pin P2.0.
- Driver Mode: Medium Driver.

& Configure Alternate Pin Functions X
[e 2

TCLEA |

— TCLKA Pin Selection
= Mo pin as TCLEA selected

<\u§e_MD &5 MLIT tramsrnit channel clock 0@

— Push Pull / Dpen Dirain — Diiver Mode

[~ &ctivate open drain function for P2.0 Drriver of F2.0 t edium driver >
— Emergency Stop — Emergency Output Yalue

[~ Enable emergency stop function for P2.0 [~ Set P2.0to high level in emergency case

6. Tx Lines / TREADYA
TREADYA pin selection: Use pin P2.1.
Driver Mode: Medium Driver.

7. Tx Lines / TVALIDA
TVALIDA pin selection: Use pin P2.2.

8. Tx Lines / TDATAA
- TDATAA pin selection: Use pin P2.3.

Application Note 27 V 1.0, 2005-04

{

Infineon

technologies

AP32087
MLI Quick Start

9. Tx Lines
- Change Transmitter Ready Selector to T

READYA.

Practical Implementation

- Enable output signal TCLK, input signal TREADY, output signal TVALIDA.

@ Micro Link Serial Bus Interface 0 (MLID)

EX =R

Module Clock T Lines I R Linesl Eontloll T:-clntenuptsl Hxlnterruptsl Memoryl SEN | Interruptsl Functior 4 | L4

— Configure Alternate Port Function:

TCLKA (= P2.0) TREADYA (= P21

TWALIDA [=P2.2)

TDATAA = P2.3)

TCLKE [= hone) TREADYE (= naone]

TVALIDE (= nhane]

TDATAE [= none)

;T_L.w itber-Heady Selector (TRS
< [rResDva -

—Enable State OF Transmitter Signals After |nibialization——

[v \Enable output sighal TCLK. [TCE)

v [Enable input signal TREADY [TRE]

v [Enable output signal TWALIDA, [TYEAE
[” Enable output sighal TYALIDE [TYEE)
[” Enable output signal TYALIDD (TYED)

— Polarity OF Transmitter Signals—————————————————————
[TDATA inverted [TDF)

[TCLE inverted (passive level = 1 [TCP)

[~ TREADY inverted [passive level = 1Y [TRP)
[~ TWALIDA inverted [passive level = 1] [TYPA)
[~ TWALIDE inverted [passive level = 1) [TYPE)
[~ TYALIDD inverted [passive level = 1] [TYPD)

Application Note 28

V 1.0, 2005-04

{

Infineon

technologies

AP32087
MLI Quick Start

Practical Implementation

10. Rx Lines

- Configure Alternate Port Function to RCLKA=P24, RREADYA=P2.5,
RVALIDA=P2.6, RDATA=P2.7.

- Change Receiver Data Selector to RDATAA.

- Change Receiver Clock Selector to RCLKA.

- Change Receiver Ready Selector to RREADYA.

- Change Receiver Valid Selector to RVALIDA.

- Enable input signals RCLK and RVALID.

§ Micro Link Serial Bus Interface 0 (MLID)

|

IEX=EE

Module Clockl TuLines RxLines I Controll THIntelruptsl F!Hlntelruptsl Memoryl SRM I Intenuptsl Functior 4 | ’l

— Configure Alternate Port Functions

RCLEE [= none] RREADYE [= none] RYALIDE [= none) ROATAE (= none]
—Receiver Data Selector [RDS]————————— ~Receiver Valid Selector [BWS]————

RDAT A hd RvaLIDA b
—Receiver Clock Selector (RCS]————— [~ Receiver Ready Selector (HRS)

RCLKA 2 RREADYA 2

—Enable State OF Recerver Signals After Initialization

— Polanty OF Receiver Signal
[~ RDATA inverted (RDF)

nable input signal RCLE [RCE] [~ {RCLK inverted [passive level = 1'] [RCPE

nable input signal BWALID [RWE] [~ RWALID inverted [passive level = "1') [RWP)

[~ RREADYY inverted [passive level = 1] [RRPA)
[~ RREADYE irverted [passive level = 1] [RRPB)
[~ RREADYD inverted [passive level = 1 [RRFPD)

Application Note 29 V 1.0, 2005-04

{

Infineon

technologies

AP32087

MLI Quick Start

11. Control
- Select MLI Transmitter ON.
- Disable optimized frames.

Practical Implementation

& Micro Link Serial Bus Interface 0 (MLID)

o8] @t - 2

Module Clockl Tx Linesl Fx Linez Control I Txlnterruptsl Fixlnterluptsl Memor_l,ll SRM | Interruptsl Functior 4 I 4

[V MLI transmitter on

— b agimum Non Acknowledge Ermors [MMAE]

ITimeout enor flag iz zet after 1 emor

=

¥ Dizable optimized readfwnte frames

— Mawimum Delap for Parity Eror [FMODF)

ID clock periods

— Twpe OF Parity [TP)

[~ Farce the MLI receiver to produce parity enors

— Masirunn Parity Errars far Tranzmiteer (MPE]

IParit_l,l enor flag is get after 1 emor

— Data Line Lewvel In [die State [DMT)

* DATA line level in idle state iz '0"
" DATA line level in idle state iz "'

r— b aximum Parity Errors for Receiver (MPE]

I Each parity emor will generate the intermupt

— Break Out Enable [EEM]

r Reception of break pulze command
generates pulse in BREAKOUT line

Application Note

30

V 1.0, 2005-04

{

Infineon

technologies

AP32087
MLI Quick Start

12. Rx Interrupt
- Normal Frame Received Interrupt Enable: an interrupt is generated each time a

normal frame is correctly received.

& Micro Link Serial Bus Interface 0 {(MLIO)
il - 9

Module Elockl Tx Linesl Rx Linesl Eontroll Tx Interupts R Intermupts I Memolyl SRN I Intenuptsl Functior 4 | 4

— Mormal Frame Received Intermupt Enable [NFRIE]——
" The intermupt generation is dizabled
mingernupt is generated each time a
fiormal frame is comectly received

An interrupt iz generated each time a
normal frame iz comectly received that is
not automatically handled

Practical Implementation

- Normal Frame Received Interrupt Pointer: select Service Request Node 0.
- Command Frame Received Interrupt Enable: enable interrupts for pipe 3.
- Command Frame Received Interrupt Pointer: select Service Request Node 1.

— Command Frame Received Interrupt Enable [CFRIEx]—

[~ Pipe 0 interrupt enabled [interrupt command)
[Pipe 1 interrupt enabled [delay command)
[~ Pipe 2 interrupt enabled [mode command)
@Pipe Jinterrupt enabled [user command)

~MNa Fl—

< Service Request Mode 0 hd

— Comma

Interrupt Command Enable [ICE]
’7 [Interrupt generation enabled
— Discarded Read Answer Interupt Enable [DRAIE]——

[~ Interrupt generation enabled

— hemory Pratection or Parity Eror Interupt Enable [MPPIE]

A interrupt iz generated each time a memarny
pratection efmor ocours

-
r

A interrupt iz generated each time the parity
IO COuUnter in receiver side has reached O

— Digcarded Read Answer [ntermupt Pointer [DRAIF]—

— Memory Pratection or Parity Eror Interupt Pointer [MPPEIP

El

ISewice Feguest Hode

[~

I Service Request Mode 0

Application Note

31

V 1.0, 2005-04

{

Infineon

technologies

AP32087
MLI Quick Start

Practical Implementation

13. Memory
- Enable all address ranges.

& Micro Link Serial Bus Interface 0 (MLID) x|

?

EXEE

Module Clockl Tu Linesl Rx Linesl Controll Txlntenuptsl R Interupts Memory I SRM I Intenuptsl Functior 4 I ’l

— Enabled Address Fanges [AEM:] —Size of OWRAM Address Slice [SIZE1)——

|512I3_I,Jtes 'l

CUincl WDT, MEMCHE

ECU
Th v MILIO Module/Tr. Windows)

o3 W MLIT Module/Tr, Windows | [DYRAM Address Slice [SLICET)
500

0=xEB000000 - 0<E80001FF j

¥ Fiogram Flash Space

v DitaFlash Space

KRR AR R AR R AR

A
A
FO,
P4, ¥ Emulation Device
GFTAD W Egat ROM
D —Size of DM| RAk Address Slice (SIZE2]—
MLICAN ¥ DMl Image
PCF Registers/Data Memory W PRI Image |5-I 2 Bytes :Iv
IFIEIP Lo ifenven: CPS. CPU SFRs/PGRS,
£o ¥ FMLI, Flash Riegs, DML, — DI RAM Address Slics [SLICEZ)
5C1 BCU, DMI, PMI, PECU, LFI
[0:E8400000 - O:EB40MFF 7]
I LU Image (incl. DWRAM)
\V/ \V4

Application Note 32 V 1.0, 2005-04

{

Infineon

technologies

AP32087
MLI Quick Start

Practical Implementation

14. SRN
- Enable Service Request 0 and 1

& Micro Link Serial Bus Interface 0 (MLID)

X
sl - 2
M adule Clockl Tu Linesl Rz Linesl Eontroll THInterruptsI Hxlnterruptsl Memory SRN Ilnterruptsl Funictior 4 | 'I
—Service Bequest Enable [SRE]

Enable service request 0 [= Mormal frame received |

nable service request [= Command frame received]

[” Enable service request 2 [= no events enabled |

[~ Enable service request 3 [= no events enabled |

Application Note 33 V 1.0, 2005-04

{

Infineon

technologies

AP32087
MLI Quick Start

15. Interrupts

- Drag and drop SRNO to CPU — Level1
- Drag and drop SRN1 to CPU — Level2

@ Micro Link Serial Bus Interface O (MLID)

E=E

?

Madule Elockl Tx Linesl R Lines' Eontrol' Txlnterruptsl Hxlnlerrupts' Memoryl SREM Interupts IFunctiot h I L4

Practical Implementation

Ix

CPU Intermupt [max. 255]

| FPCF Interrupt [max. 255)

Level 15
Lewvel 14
Level 13
Lewvel 12
Lewel 11
Lewvel 10
Level9
Lewel 8
Level 7
Level B
Level &
Level 4

Level 3
Lewel 2 fMLIOSAN 1
Lewel1 \MLIOSRN O

I

-

Lew

on intermptin

Mate: To change the level and the group of an intermupt source, click o it, drag it to its new position and drop it
To set an interrupt source to the non intermpting lesel (Level 0) click onit, drag it to the Level 0° list and drop it

Application Note

34

V 1.0, 2005-04

{

Infineon

technologies

AP32087
MLI Quick Start

16. Functions

Select all

Practical Implementation

|5

ﬂ Micro Link Serial Bus Interface O (MLID)}
|8 @t | 2
Rx Linesl Controll THIntenuptsI F!xlntenuptsl Memoryl SRM I Intermupts Functions | Functions2| Parameteﬂ_’l
r Initialization Function r— Source File
W\ MLID vinit File name |MLID.:
Funttion Library (Part 1] —Fynction Libramy [Part 2)

MLIO_vEnableSignal

[|M LI0_wResetCommunication

LI0_vDizableSignal

IM LI0_wResetE mors

LI0_wTrangmitterdn

MLID ubTxCmdReady

LIO_wTrangmitter0 i

MLIO_ubTxDataReady

LI0_vReceivertiodeduto

MLIO_ubTxB azedddiReady

LI0_vR eceivertdodelisten

MLID_wSendCmdint

LI0_wParityM ormaltd ode

MLIO_wSendCmdD elay

LI0_wParityErortd ode

MLIO_ S endCrmdDummy

LI0_ubGetDelay

MLID_wSendCrmdi adelisten

MLIO_ wSetDelay

MLIO_wSendCmdi odeduto

MLIO_ubTsdckErar

MLID_wSendCmdBreakPulse

MLIO_ubT =ParityErrar

MLIO_wSendCrdU ser

AR AA

MLIO_ubRx«ParityEmor

IR B B RV Y B B R T |

MLIO_wSendB asedddr

17. Saving and generating code

Now, the configuration of the Local controller is finished. Create a new folder on your
hard drive (for example C:\MLI_TC1766_QuickStart\MLI_Local \) and save there DAVE
project (for example local.dav).

Code can now be generated with DAVE. The following files will be created:

Application Note

TC1766REGS.H
MAIN_LOCAL.H
MAIN_LOCAL.C
MLIO.H
MLIO.C

35

V 1.0, 2005-04

{

II'IHHEOH AP32087
technologies MLI Quick Start

Practical Implementation

4.2.2 Setting up Tasking environment.
18. Start Tasking v2.2.r1

19. Create a new project space

'File’ -> 'New Project Space’
Enter a path (for example C:\MLI_TC1766_QuickStart\) and a name (for example
TC1766).

20. Create a new project

Right - click once on the project space TC1766 (window on the left).

Select ’Add New Project’.

Enter a path (for example C:\ MLI_TC1766_QuickStart \MLI_Local) and a name (for
example MLI_Local).

Click OK

21. Add DAVE generated files to the project

Right - click once on the project MLI_Local (window on the left).

Select 'Add existing files’'.

Add TC1766REGS.H, MAIN_LOCAL.H, MAIN_LOCAL.C, MLIO.H, MLI0.C
Click OK

22. Add two new files to the projects

Right - click once on the project MLI_Local (window on the left).
Select 'Add new files’.

Add “MLIO_Config_Local.c”

Click OK

Repeat the previous steps and add “MLIO_Config_Local.h”.

Application Note 36 V 1.0, 2005-04

{

Infineon

technologies

AP32087
MLI Quick Start

Setting up the project options

23. Open the project option dialog box

- ’'Project’ -> 'Project Options’

24. Processor -> Processor Definition

- Select TC1766

TriCore ¥X-toolset Project Options [

[=1- Processar
Proceszor Definition
Bypasges
Startup
[+ Bus Configuration
- C++ Campiler
- = Compiler
- Azzembler
H- PCP Azzembler
H- Linker
- CrozsView Pro

s I e O O g B e B

Application Note

Practical Implementation

x|
r Proceszor Definition
Target processor: @
The FPU and MU options are only relevant for user defined processars.
A possible FPU MU in the selected CPU will be supported regardless
the state of the grayed checkbos.
I~ FEU present
I~ ML present
Ok I Cancel Default... Help
¥
37 V 1.0, 2005-04

{

Infineon

technologies

AP32087
MLI Quick Start

25. Processor -> Bypasses
- Select All bypasses.

Practical Implementation

TriCore ¥X-toolset Project Options

= Processor

- Pracessor D efinition
- Bypasses

- Startup

Bl Bus Configuration
H- C++ Compiler
H- = Compiler
H- Azzembler
H
]
t]

- PCP &zsembler
- Linker
- CrozgView Pro

ey I e O o Oy B

Application Note

il

— CPU Functional Problem Bypasses TC1 766
v &l bypazses TC1766

1 CPU_TC.013 [ze2 nate]
1 CPU_TC.048
(] CPU_TC.0BO
1 CPU_TC.0B5
1 CPU_TC.0BE
1 CPU_TC.0BS
1 CPU_TC.O70
(1 CPU_TC.071
] CPU_TC.O72

Mote: The system startup code (libherchestart asm) must have been

added to pour project,

L

OK I Cancel Default...

Help

38 V 1.0, 2005-04

{

Infineon

technologies

AP32087
MLI Quick Start

Practical Implementation

26. C Compiler -> Preprocessing
- Disable automatic inclusion of .sfr files.

TriCore ¥¥-toolset Project Options EENEEG_—_— x|
- Processor — Preproceszing
+]- C++ Compiler [~ Stare the C compiler preprocess output [<file> . pre)
[=I- C Compiler @Automatic incluzion of ' sfr' file [e.g. dizable for DAVE projects]
- Preprocessing
-languags Define user macros, e.0.: VALUE=100.5ERIAL
- Diebug Information
- Code Generation I
- Optimization
- Allocation Include this file before source:
W amings | Browse... |
- MISRA-C
- Miscellaneous

H- Azzembler

H- PCP Azzembler
H- Linker

H- Crogs\fiew Pro

T T [T

Optiong string:

AW e--no-tasking-sfr -Chcl 766D -wo-c99 WAk -We-g —-switch=auto ;l
Ao-align=1 Weo-02 et -inline-mas-incr=35 --inline-mas-size=10
Ac-ME "$PRODDIR Nnclude" --zilicon-bug=all-tc1 766

ak I Cancel Default... Help |

Application Note 39 V 1.0, 2005-04

{

Infineon

technologies

AP32087
MLI Quick Start

Practical Implementation

27. C Compiler -> Optimization
- Select no optimization.

TriCore ¥X-toolset Project Dptions D : |

[+ Processor — D ptimization
C++ Compiler

Optimization lewvel

=L Compiler . Size/zpeed rade-off:
- Preprocessing
. Language Custom optimization:
- Diebug Information Coalezcer remove unneceszam moves -
- Code Generation Common subespression elimination [C5E)
- Optimization Ewpression simplification
- Allozation Control flow optimization and code reordering
- W arnings Generic assembly optimizations
- MISRA-C 1 Function inlining
- Mizcelaneous Irstruction scheduler j
[&zzembler § .
[PCP Asserbler [~ All addresses available for CSE evaluation
[+ Linker 4 aximum size increment inlining: |35
£

o} CrossView Pro I awirun size for functions ta always inline: |1 i

Options string:

Awfo--no-tasking-sfr -Che1 7EBD AwWo-o99 Aot W o-g —switch=auto ;I
Ae--align=1 -wc-00 -inline-mas-incr=35 -inline-rmax-size=10 -#c-Na
{"$[PRODDIRMinclude’" —silicon-bug=altc1 766

QK. I Cancel Drefault. .. Help |

Application Note 40 V 1.0, 2005-04

{

Infineon

technologies

AP32087
MLI Quick Start

Practical Implementation

28. C Compiler -> Allocation.
- Disable Default __near allocation.

TriCore ¥X-toolset Project Options [|
Processor Allocation

C++ Compiler @efault __near allocation for objects below threshold IB

E| C Compiler
- Preprocessing [~ Default __a0 allocation for abjects below threshold IU

- Language [~ Default __al allocation for objects below threshald ID

- Debug Information
- Code Generation
- O ptirnization

- Allocation

- W arnings

- MISRA-C

- Miscelansous

H- fggembler

H- PCP Assembler

H- Linker

H- Crossview Pro

[rn i

Optiohs string:

Mfc--no-tazking-=fr -Chel 7EED We-c89 Wo-bdw We-g —switch=auto ﬂ
fc--align=1 “w'c-00 --inline-max-incr=35 -inline-max-size=10 Awic-h0
1"$[PRODOIR Minclude” --silicon-bug=all-tc1 766

QK. I Cancel Drefault... Help |

Application Note 41 V 1.0, 2005-04

{

Infineon

technologies

AP32087
MLI Quick Start

29. Linker -> Script file -> internal memory SPRAM.

- Alloc: select ON.
- Type: select ROM

TriCore ¥¥-toolset Project Dptions_

Processor

C++ Compiler

C Compiler

Azzembler

PCP &ssembler

[=- Lirker

Cutput Format
=1+ Script File

- Special Areaz

- Intemal Memary
- External Memamy
- Sechions

- Output Sections
- Reserved

- Map File

- Libraries

- Optimization

- W arnings

- Miscellaneous

[#- Crozgyfiew Pro

Application Note

- Defines/Stack/Heap

Practical Implementation

X
r— Internal kdemary
M amne | Alloc | Type | Size | Address |
bram OFF ROM 16k Or&FFFCO00
avram oM Rt 8k (=C0000000
Idram i Ei, 5k OxCr0000000
spam < ON _ ROM > 1Bk (4D4000000
pram oM FCPRAM 8k (0=F 0050000
pcode oM FCPCODE 12k 0xFO0E0000
Options string:
~format=elf -o"'pep_1.elf" -d"_pop2 1.lsl" -Ctcl FEED ;l
--gilicon-bug=all-tc17EE -k A -mcflikd oS
L"$HFRODDIR MBS PROTECTED]" M-OCLTY _|
Ok I Cancel Drefault... Help |
7]
42 V 1.0, 2005-04

{

Infineon

technologies

AP32087
MLI Quick Start

Practical Implementation

30. Linker -> Script file -> Sections.
- Space: select linear.

- Sections: type .text.*.main

- Group: select order.

- Copy: select NO.

- Alloc: select intmem

- Location: select spram.

TriCore ¥X-toolset Project Options NN x|

- Processor ~ Section
- C#+ Compiler
- C Compiler
- Azzembler
-PCP Assembler
=) Linker
Output Format
Script File

- Special &reas
Defines/Stack Heap
nternal Memary
Extemnal Memary
Sections
Output Sections
Resered

- Map File 4| | |

- Libraries

Space | Secti lloc: Location
A inear Jtet.®.main ordered WO intrnern spram

- Optimization
- W armings Options string:
- Mizcellaneous —format=elf -0"pep2_1.el" -d"_pep2_1 15" -Ctel 7EED o]

- Crozshiew Pro --siicon-bug=all-tc1 766 “wl-M Awl-mofkIbd olirS L
L"$IPRODDIR MBS PROTECTED)" MA-OCLT Y

QK. I Cancel Drefault... Help |

Application Note 43 V 1.0, 2005-04

{

Infineon

technologies

AP32087
MLI Quick Start

Practical Implementation

31. CrossView Pro -> Execution environment
- Execution environment: Select TriBoard TC1766 with SRAM.

TriCore ¥X-toolset Project Options [PCPZ_1.P1T] x|
[+ Processor r Execution Enviranment
-+ Compiler Execution environment: Board TC17EEE) viaDAS = >
- C Compiler . FBoad (1T —J—
DAS TCPAP Settings [host.part): localhost,23
- Agzembler
- PCP Assembler
Linker Target configuration file [%.cfg):

I Browse,.. I

Simulator
Logging
RADM

Lo Migzellaneous

Optiohs string:

-tckq infineon_triboard_tcl766b_das cfg -0 topip localhost, 23 -C tel7EER -i;l
-lnad_application_gato_main=true -aync_on_halt=on -a 100 -b 500 -3 26

ak I Cancel Drefault... Help |

]

Application Note 44 V 1.0, 2005-04

{

II'IHHEOH AP32087
technologies MLI Quick Start

Practical Implementation

4.2.3 Programming of the Local controller

In addition to the code automatically generated by DAVE, the following code shall be
added. It is recommended to add this code in the dedicated area between the two
comments:

// USER CODE BEGIN
//add code
// USER CODE END

All the files containing this code are attached and can be used directly. Comments are
also included there.

4231 MLIO.C

Section Imported Global Variables

// USER CODE BEGIN (MLIO_ General,6)
extern uword volatile *target read store;
// USER CODE END

void MLIO_vlinit(void)

e End of the routine:

// USER CODE BEGIN (Init,3)
MLIO RCR = 0x00010000;
// USER CODE END

void INTERRUPT (MLIO_INTO) MLIO_viSRNO(void)

e Beginning of the routine:

// USER CODE BEGIN (SRNO,2)
uword volatile *pl;

uword volatile dummy;

// USER CODE END

Application Note 45 V 1.0, 2005-04

{

Infineon

technologies

AP32087
MLI Quick Start

Practical Implementation

e Case3l:
// USER CODE BEGIN (SRNO,133)
pl = target read store;
*pl = MLIO_RDATAR;
dummy =*pl;

//USER CODE END

e End of the routine:

// USER CODE BEGIN (SRNO,13)
while (MLIO_RISR & MLIO_RISR_NFRI);
// USER CODE END

e void INTERRUPT (MLIO_INT1) MLIO_viSRN1(void)

// USER CODE BEGIN (SRN1,17)

Initiate Transmission() ;
while(MLIO_RISR & MLIO_RISR_CFRI3!:O);
// USER CODE END

4.2.3.2 MLIO_Config_Local.H

// Start of file

#define remote pipeO base 0xe8408000
#define remote_ pipel base 0xe840a000
#define remote pipe2 base 0xe840c000
#define remote pipe3 base 0x£0000d00

#define MLIO ubTxAllDataReady() ((ubyte) ((MLIO TRSTATR & \
(MLIO TRSTATR DVO | MLIO TRSTATR DV1 | MLIO TRSTATR DV2 | \
MLIO TRSTATR DV3)) == 0))

#define MLIO ubTxAllPendingReadReady () ((ubyte) ((MLIO TRSTATR & \
(MLIO TRSTATR_RPO | MLIO TRSTATR_RP1 | MLIO_TRSTATR RP2 | \
MLIO_TRSTATR_RP3)) == 0))

#define wait_bf while (MLIO_ubTxBaseAddrReady ()==0)
#define wait_bf neg while (MLIO_ubTxBaseAddrReady () !=0)
#define wait cf while (MLIO ubTxCmdReady ()==0)

#define wait_cf neg while (MLIO_ubTxCmdReady () !=0)

#define wait_df while (MLIO_ubTxAllDataReady ()==0)
#define wait df neg while (MLIO ubTxAllDataReady () !=0)
#define wait_rf while (MLIO_ubTxAllPendingReadReady ()==0)
#define wait_rf neg while (MLIO_ubTxAllPendingReadReady () !=0)

Application Note 46 V 1.0, 2005-04

{

Infineon

technologies

AP32087
MLI Quick Start

#define NOP

__asm("nop \n")

#define wait_states 10000

void MLIO config local n standby (void) ;
void MLIO_startup procedure (void) ;
void Initiate Transmission (void) ;

void wait (int 1) ;
// End of file

4.2.3.3 MLIO_Config_Local.C

// Start of file

#include "MAIN Local.h"

extern uword volatile MLI Remote Ready;
uword volatile pel flag, pe2_ flag;

void MLIO_config local_n_standby (void)

{

MLIO startup_procedure() ;

MLIO _RIER = 0x00000020;
DMA MLIOSRC1 = 0x00004002;
DMA MLIOSRC1 = 0x00001002;

MLIO_vSendBaseAddr (0,
wait_bf neg;

wait bf;
MLIO_vSendBaseAddr (1,
wait_bf neg;

wait bf;
MLIO_vSendBaseAddr (2,
wait_bf neg;

wait bf;
MLIO_vSendBaseAddr (3,
wait_bf neg;

wait bf;
MLIO_vSendCmdUser (0) ;
wait_cf_neg;

wait_cf;

}

Application Note

remote_pipe0_base,

remote_pipel base,

remote_pipe2 base,

remote_pipe3_base,

47

12);

12);

12);

12);

Practical Implementation

V 1.0, 2005-04

{

Infineon

technologies

AP32087
MLI Quick Start

Practical Implementation

void Initiate Transmission (void)

{

MLIO TCR = MLIO_TCR & ~MLIO_TCR_NO;
MLIO vResetErrors() ;

MLIO TIER = MLIO TIER | 0x03FF0000;
while (MLIO_TISR!=0) ;

MLIO RIER = MLIO RIER | 0x03FF0000;
while (MLIO _RISR!=0) ;

MLIO_RIER 0x00000021;

DMA MLIOSRCO = 0x00004001;

DMA MLIOSRCO = 0x00001001;
MLI_Remote_ Ready=0x00000001;

}

void MLIO_startup procedure (void)

{

int k=0;
unsigned int line delay;
line delay = 0;
pel_flag =0;
pe2_flag =0x00000001;
MLIO TCR |= MLIO TCR_RTY ;
MLIO_vResetCommunication() ;
MLIO_vSendCmdInt (0) ;
MLIO SCR = MLIO_SCR_CCVO;
wait (wait_states) ;
MLIO_vResetCommunication() ;
line delay = MLIO_ ubGetDelay()+1;
if (line delay < 0xC)
MLIO_vSetDelay(line_delay) ;
else
NOP;
MLIO_vSendCmdDelay (line_delay+3) ;
MLIO SCR = MLIO_ SCR _CCV1;
wait (wait_states) ;

MLIO SCR = MLIO SCR_CTPE | MLIO_ SCR CNAE;
while ((MLIO TSTATR & MLIO TSTATR NAE) & (MLIO TSTATR & MLIO TSTATR PE)
1=0);

MLIO_vParityErrorMode () ;

Application Note 48 V 1.0, 2005-04

{

Infineon

technologies

AP32087
MLI Quick Start

Practical Implementation

MLIO_ vSendCmdInt (0) ;
MLIO SCR = MLIO_SCR_CCVO;
wait (wait_states) ;
pel flag= (MLIO TSTATR & MLIO TSTATR PE) ;
if (pel flag==0)
NOP;

MLIO_ vParityNormalMode () ;

MLIO SCR = MLIO_SCR_CTPE | MLIO_SCR _CNAE;

while((MLIOiTSTATR & MLIOiTSTATRiNAE) & (MLIOiTSTATR & MLIOiTSTATRiPE)
1=0);

MLIO_ vSendCmdInt (0) ;
MLIO SCR = MLIO_SCR_CCVO;
wait (wait_states) ;
pe2 flag= (MLIO TSTATR & MLIO TSTATR PE) | (MLIO_ TSTATR &
MLIO TSTATR_NAE) ;
if (pe2_flag!=0)
NOP;

void wait (int i)

{

int j;

for (Jj=0; Jj<=i;j++)
{
NOP;
1

}

//End of file

Application Note 49 V 1.0, 2005-04

{

Infineon

technologies

AP32087
MLI Quick Start

Practical Implementation

4.2.3.4 Main_Local.H

At the end of the file

// USER CODE BEGIN (MAIN_Header,10)
#include "MLIO_ Config Local.h"
// USER CODE END

4.2.3.5 Main_Local.C

Section Global Variables

// USER CODE BEGIN (MAIN General,7)

uword volatile *target write, *target read, *target read store;
uword volatile MLI_Remote Ready;

// USER CODE END

Main function

// USER CODE BEGIN (Main,9)
int 1i;
uword volatile xread;

DMA MLIOSRCO = 0x00000001;
DMA MLIOSRC1 = 0x00000002;

MLI_ Remote Ready=0;

MLIO config local_n_standby () ;
while (MLI_Remote_ Ready==0) ;
target write = MLIO_ SWIN3+0xd0O0;
*target _write = 0x0000000;
wait_df neg;

wait df;

target_write = MLIO_SWINI;
for(i=0;1i<=5;1i++)

{

*target_write=0xaaaa0000+i;

Application Note 50 V 1.0, 2005-04

{

Infineon

technologies

AP32087
MLI Quick Start

Practical Implementation

wait df neg;
wait df;
target_write=target write+l;

}

target_read = MLIO_SWINO;
target read store = 0xd0006000;
for(i=0;i<=5;1i++)

xread = *target read;

wait_rf neg;

wait_rf;

target read= target read+1;

target read store = target read store+l;
while (1) ;

// USER CODE END

Application Note 51 V 1.0, 2005-04

{

II'IHHEOH AP32087
technologies MLI Quick Start

Practical Implementation

4.3 Setting up MC2

All the operations below shall be performed on the PC connected to MC2.

4.31 Configuration of the remote controller

The remote controller MC2 can be configured using DAVE (v2.1). Most of the actions
below are similar to the ones described in section 4.2.

Open a new project for TC1766.

Project settings:

1. General Settings

- Rename the Main Source File into Main_Remote.c.
- Rename the Main Header File into Main_Remote.h.
- Select Tasking 2.0.

2. System Clock

- Change external clock frequency to 15 MHz .
- Change input divider PDIV to 2.

- Change VCOSEL to 400MHz — 500 MHz.

- Change feedback divider NDIV to 64.

- Change output divider KDIV to 6.

3. Interrupt system
- Enable the Interrupt System globally.

MLIO:

4. Module clock
- Change Divider Mode Control to “Select normal divider mode”.
- Change “Required Module Clock” to 20MHz.

5. Tx Lines

- Configure Alternate Port Function to TCLKA=P2.0, TREADYA=P2.1,
TVALIDA=P2.2, TDATA=P2.3. (Select medium driver)

- Change Transmitter Ready Selector to TREADYA.

- Enable output signal TCLK, input signal TREADY, output signal TVALIDA.

Application Note 52 V 1.0, 2005-04

{

II'IHHEOH AP32087
technologies MLI Quick Start

Practical Implementation

6. Rx Lines

- Configure Alternate Port Function to RCLKA=2.4, RREADYA=P2.5, RVALIDA=P2.6,
RDATA=P2.7.

- Change Receiver Data Selector to RDATAA.

- Change Receiver Clock Selector to RCLKA.

- Change Receiver Ready Selector to RREADYA.

- Change Receiver Valid Selector to RVALIDA.

- Enable input signal RCLK and RVALID.

7. Control
- Select MLI Transmitter ON
- Disable optimized frames

8. Rx Interrupt
- Command Frame Received Interrupt Enable: enable interrupts for pipe 3.
- Command Frame Received Interrupt Pointer: select Service Request Node 1.

Application Note 53 V 1.0, 2005-04

{

Infineon

technologies

AP3
MLI Quick

2087
Start

9. Memory
- Enable all address ranges.

- Size of DMI RAM Address Slice: 64 kBytes.

Module Elockl Tx Linesl Rix Linesl Controll Txlntenuptsl Fix Interupts Memary I SRM I Interruptsl Functior 4 | L4

— Enabled Address Ranges [AEM=]

Practical Implementation

— Size of 0VRAM Address Slice (SIZE1]——

CU incl. "D T, MEMCHE FADC |512 Bytes 'I
v SECU W\aoco
v STHM ¥ \MLID ModuleTr. ‘wWindaws X
¥ dcos % ML ModulerTr. Windows ~ OYRAM Address Slice (SLICET)
¥ MSCO =
¥ asco T S — 0xE 8000000 - 0<E 8000 FF =l
v EC
¥ FD,F1.P2, P2 ¥ Data Flash Space
¥ P4, PS5 v Emulation Device
¥ GFTAD ¥ Boot ROM
v it — Size of DMI RAM Address Slice [SIZE2)—
¥ MuliCAM ¥ DM Image
¥ HCP Feqisters/Data Memor| W PMI Image (!84 kEptes Z‘ >
'f ggﬂwe MzaTy CPS, CPU SFRs/PRR:,
¥ PMU. Flash Regs, DML, — DMl RéM Address Slice (SLICEZ)
v E5C1 DBCL, DI, PHI, PECLL, LFI
[0:E8400000 - D:EB4OFFFF ~|
¥ LU Image (incl OWF&b)
\Vj
Application Note 54 V 1.0, 2005-04

{

II'IHHEOH AP32087
technologies MLI Quick Start

Practical Implementation

10. SRN
- Enable Service Request 1

11. Interrupts
- Drag and drop SRN1 to CPU — Level2

12. Functions
- Select all

Application Note 55 V 1.0, 2005-04

{

Infineon

technologies

AP32087
MLI Quick Start

Practical Implementation

PORT:

13. Ports -> Configure Port 1
- Use P1.0 as general IO

- General Description: Out

- Output value : high

& Configure Port 1 x|
E=EE
Part 1 |Input Characteristicl Output Characteristicl Parametersl Notesl
nctionality: GenerghBHrection: Puzh Pull / Open Drain: Output Y alue:
@Jse P1.0 az general 10 C |"t [~ Open drain h
[~ Use P1.1 as gereral IO & in € Dut [~ Open drain I~ high
I~ UseP1.2 a3 general 10 =) dut I~ [pen drain I~ Fhigh
[~ Use P1.2 as general [0 & n € dut I~ Open drait I Figh
[~ Use F1.4 as gereral (D & in € dut I~ Open drain I~ high
[~ Use P1.5 as general [0 & in € Ot [~ Open drain I~ high
[~ Use P1.6 as general IO & in € Dut [~ Open drain I high
I~ UseP1.7 a3 general 10 =) dut I~ [pen drain I~ Fhigh
[~ Use P1.8 as gereral [0 & n € dut I~ Open drait I Figh
[~ Use F1.9 as gereral [0 & in € dut I~ Open drain I~ high
[~ Usze P1.10 as general 10 & in € Ot [~ Open drain I~ high
[~ UzeP1.11 as general 10 & in € Dut [~ Open drain I high
[~ Use P1.12 as general 10 & O mut I~ Open drait I~ Figh
[~ UseP1.13 as general 10 & n € dut I~ Open drain I high
[~ UszeP1.14 as general 10 & in € dut [~ Open drain I~ high

14. Functions
- Select 10_vinit.

15. Saving and generating code

Now, the configuration of the Remote controller is finished. Create a new folder on
your hard drive (for example C:\MLI_TC1766_QuickStart\MLI_Remote\) and save
there DAVE project (for example MLI_Remote.dav).

Code can now be generated with DAVE. The following files will be created:

- MAIN_REMOTE.H
- MAIN_REMOTE.C

Application Note 56 V 1.0, 2005-04

{

II'IHHEOH AP32087
technologies MLI Quick Start

Practical Implementation

- MLIO.H
- MLIo.C
- 10.C
- IOH

4.3.2 Setting up Tasking environment
16. Start Tasking v2.2.r1

17. Create a new project space

- ’File’ ->’New Project Space’

- Enter a path (for example C:\MLI_TC1766_QuickStart\) and a name (for example
TC1766).

18. Create a new project

- Right - click once on the project space TC1766 (window on the left).

- Select 'Add New project'.

- Enter a path (for example C:\MLI_TC1766_QuickStart\MLI_Remote) and a name
(for example MLI_Remote).

- Click OK

19. Add DAVE generated files to the project

- Right - click once on the project MLI_Remote (window on the left).

- Select 'Add existing files’.

- Add TC1766REGS.H, MAIN_Remote.H, MAIN_Remote.C, MLIO.H, MLIO.C, 10.C,
I0.H.

- Click OK

20. Add two new files to the projects

- Right - click once on the project MLI_Remote (window on the left).
- Select 'Add new files’.

- Add “MLIO_Config_Remote.c”

- Click OK

- Repeat the previous steps and add “MLI0_Config_Remote.h”

Setting up the project options.
21. Repeat the same steps as for the Local controller

Application Note 57 V 1.0, 2005-04

{

Infineon

technologies

AP32087
MLI Quick Start

Practical Implementation

4.3.3 Programming of the Remote controller

In addition to the code automatically generated by DAVE, the following code shall be
added. It is recommended to add this code in the dedicated area between the two
comments:

// USER CODE BEGIN
//add code
// USER CODE BEGIN

All the files containing this code are attached and can be used directly. Comments are
also included there.

4331 MLIO.C

void MLIO_vinit(void)

e End of the routine:

// USER CODE BEGIN (Init,3)
MLIO RCR = 0x00010000;
// USER CODE END

void INTERRUPT (MLIO_INT1) MLIO_viSRN1(void)

// USER CODE BEGIN (SRN1,17)

MLIO config remote n ready() ;

while (MLIO RISR & MLIO RISR CFRI3 != 0);
// USER CODE END

4.3.3.2 MLIO_Config_Remote.H
// Start of file

#define remote pipeO base 0xd0008000

#define wait_cf while (MLIO_ubTxCmdReady ()==0)
#define wait cf neg while (MLIO ubTxCmdReady () !=0)
#define NOP __asm("nop \n")

#define wait states 10000

void MLIO_startup_ procedure (void) ;
void MLIO config remote n ready (void) ;

Application Note 58 V 1.0, 2005-04

{

Infineon

technologies

AP32087
MLI Quick Start

void wait (int) ;
// End of file

4.3.3.3 MLIO_Config_Remote.C

// Start of file
#include "MAIN Remote.h"
uword volatile pel flag, pe2_ flag;

void MLIO config remote n ready (void)

{

MLIO startup_ procedure() ;
MLIO_ vResetErrors() ;

MLIO RIER = MLIO RIER | 0x03££0000;
while (MLIO RISR!= 0);

MLIO SCR = MLIO SCR | MLIO SCR SMOD;

MLIO_vSendCmdUser (0) ;

wait cf neg;

wait_cf;

MLIO TIER = MLI1 TIER | 0x03FF0000;

while (MLIO _TISR!= 0);

}

void MLIO_ startup procedure (void)
{

int k=0;

unsigned int line delay;

line delay = 0;

pel_flag =0;

pe2_flag =0x00000001;

MLIO TCR |= MLIO_TCR RTY ;
MLIO_ vResetCommunication() ;
MLIO_vSendCmdInt (0) ;

MLIO SCR = MLIO_SCR_CCVO;
wait (wait_states) ;

Application Note 59

Practical Implementation

V 1.0, 2005-04

{

Infineon

technologies

AP32087
MLI Quick Start

Practical Implementation

MLIO vResetCommunication() ;
line delay = MLIO_ ubGetDelay()+1;
if (line_delay < 0xC)
MLIO vSetDelay (line delay) ;
else
NOP;
MLIO vSendCmdDelay (line delay+3) ;
MLIO SCR = MLIO_SCR_CCV1;
wait (wait_states) ;
MLIO SCR = MLIO SCR CTPE | MLIO SCR_CNAE;
while ((MLIO_ TSTATR & MLIO TSTATR NAE) & (MLIO TSTATR & MLIO_ TSTATR_PE)
1=0);

MLIO_ vParityErrorMode () ;
MLIO_vSendCmdInt (0) ;
MLIO SCR = MLIO_SCR_CCVO;
wait (wait_states) ;
pel flag= (MLIO TSTATR & MLIO TSTATR PE);
if (pel flag==0)

NOP;

MLIO_ vParityNormalMode () ;
MLIO SCR = MLIO SCR CTPE | MLIO_SCR_CNAE;
while ((MLIO_TSTATR & MLIO_TSTATR NAE) & (MLIO_TSTATR & MLIO_TSTATR_PE)
1=0) ;
MLIO_vSendCmdInt (0) ;
MLIO SCR = MLIO_SCR_CCVO;
wait (wait_states);
pe2 flag= (MLIO_TSTATR & MLIO TSTATR PE) | (MLIO_TSTATR &
MLIO TSTATR NAE) ;
if (pe2_flag!=0)
NOP;

void wait (int 1)

{

int j;

for (j=0; Jj<=i;j++) // wait until MDCstops
NOP;
}

}//End of file

Application Note 60 V 1.0, 2005-04

{

Infineon

technologies

AP32087
MLI Quick Start

Practical Implementation

4.3.3.4 Main_Remote.H

At the end of the file

// USER CODE BEGIN (MAIN_Header,10)
#include "MLIO Config Remote.h"
// USER CODE END

4.3.3.5 Main_Remote.C

Main function

// USER CODE BEGIN (Main,9)
int i;

uword volatile *p;

p= remote pipeO_base;

for(i=0;i<=5;1i++)
{

*p=0xfEE£0000 +1i;
p=p + 1;

}

while (1) ;

// USER CODE END

Application Note 61 V 1.0, 2005-04

{

II'IHHEOH AP32087
technologies MLI Quick Start

Practical Implementation

44 Running the applications

Once both programs below have been compiled successfully, 2 distinct debugger
sessions (one for MC1, the other for MC2) can be started. The two programs can now
be downloaded to MC1 and MC2.

The application in MC2 should be started first, then the application of MC1.
The following should be observed:
e The LED of the TriBoard of MC2 switches on.

e The values Oxaaaa0000, Oxaaaa0001,..., 0xaaaa0005 (which are defined in
the main function of the application of MC1) can be read on MC2 at the
following memory locations: 0xd000a000, 0xd000a004,..., 0xd000a014.

e The values 0xffff0000, Oxffff0001,..., 0xffff0005 (which are defined in the main
function of the application of MC2) can be read on MC1 at the following
memory locations: d0006000, 0xd0006004,..., 0xd0006014.

Application Note 62 V 1.0, 2005-04

{

II'IHHEOH AP32087
technologies MLI Quick Start

Ready-to-use files

5 Ready-to-use files

The files attached with this application note can directly be used to run the application
described in this document.

The attached .zip file contains especially the following files:

Folder MLI_local

- Local.dav (DAVE file)

- options.opt (project option file for Tasking v2.2)
- Main_Local.h

- Main_Local.c

- MLIO.h

- MLIO.c

- MLIO_Config_Local.h

- MLIO_Config_Local.c

- TC1766Regs.h

Folder MLI_Remote

- Remote.dav (DAVE file)
- options.opt (project option file for Tasking v2.2)
- Main_Remote.h

- Main_Remote.c

- MLIO.h

- MLIO.c

- MLIO_Config_Remote.h
- MLIO_Config_Remote.c
- I0.c

- 10.h

- TC1766Regs.h

Application Note 63 V 1.0, 2005-04

