
CHAPTER 17

Advanced Coding and
Memory Handling

17.0 Introduction
As you do more with your Arduino, your sketches need to become more efficient. The
techniques in this chapter can help you improve the performance and reduce the code
size of your sketches. If you need to make your sketch run faster or use less RAM, the
recipes here can help. The recipes here are more technical than most of the other recipes
in this book because they cover things that are usually concealed by the friendly Arduino
wrapper.

The Arduino build process was designed to hide complex aspects of C and C++, as
well as the tools used to convert a sketch into the bytes that are uploaded and run on
an Arduino board. But if your project has performance and resource requirements be-
yond the capability of the standard Arduino environment, you should find the recipes
here useful.

The Arduino board uses memory to store information. It has three kinds of memory:
program memory, random access memory (RAM), and EEPROM. Each has different
characteristics and uses. Many of the techniques in this chapter cover what to do if you
do not have enough of one kind of memory.

Program memory (also known as flash) is where the executable sketch code is stored.
The contents of program memory can only be changed by the bootloader in the upload
process initiated by the Arduino software running on your computer. After the upload
process is completed, the memory cannot be changed until the next upload. There is
far more program memory on an Arduino board than RAM, so it can be beneficial to
store values that don’t change while the code runs (e.g., constants) in program memory.
The bootloader takes up some space in program memory. If all other attempts to min-
imize the code to fit in program memory have failed, the bootloader can be removed
to free up space, but an additional hardware programmer is then needed to get code
onto the board.

583

If your code is larger than the program memory space available on the chip, the upload
will not work and the IDE will warn you that the sketch is too big when you compile.

RAM is used by the code as it runs to store the values for the variables used by your
sketch (including variables in the libraries used by your sketch). RAM is volatile, which
means it can be changed by code in your sketch. It also means anything stored in this
memory is lost when power is switched off. Arduino has much less RAM than program
memory. If you run out of RAM while your sketch runs on the board (as variables are
created and destroyed while the code runs) the board will misbehave (crash).

EEPROM (electrically erasable programmable read-only memory) is memory that code
running on Arduino can read and write, but it is nonvolatile memory that retains values
even when power is switched off. EEPROM access is significantly slower than for RAM,
so EEPROM is usually used to store configuration or other data that is read at startup
to restore information from the previous session.

To understand these issues, it is helpful to understand how the Arduino IDE prepares
your code to go onto the chip and how you can inspect the results it produces.

Preprocessor
Some of the recipes here use the preprocessor to achieve the desired result. Preprocessing
is a step in the first stage of the build process in which the source code (your sketch) is
prepared for compiling. Various find and replace functions can be performed. Prepro-
cessor commands are identified by lines that start with #. You have already seen them
in sketches that use a library—#include tells the preprocessor to insert the code from
the named library file. Sometimes the preprocessor is the only way to achieve what is
needed, but its syntax is different from C and C++ code, and it can introduce bugs that
are subtle and hard to track down, so use it with care.

See Also
AVRfreaks is a website for software engineers that is a good source for technical detail
on the controller chips used by Arduino: http://www.avrfreaks.net.

Technical details on the C preprocessor are available at http://gcc.gnu.org/onlinedocs/
gcc-2.95.3/cpp_1.html.

The memory specifications for all of the official boards can be found on the Arduino
website.

17.1 Understanding the Arduino Build Process
Problem
You want to see what is happening under the covers when you compile and upload a
sketch.

584 | Chapter 17: Advanced Coding and Memory Handling

http://www.avrfreaks.net
http://gcc.gnu.org/onlinedocs/gcc-2.95.3/cpp_1.html
http://gcc.gnu.org/onlinedocs/gcc-2.95.3/cpp_1.html
http://www.arduino.cc/en/Main/hardware
http://www.arduino.cc/en/Main/hardware

Solution
You can choose to display all the command-line activity that takes place when compil-
ing or uploading a sketch through the Preferences dialog added in Arduino 1.0. Select
File→Preferences to display the dialog box to check or uncheck the boxes to enable
verbose output for compile or upload messages.

In releases earlier than 1.0, you can hold down the Shift key when you click on Compile
or Upload. The console area at the bottom of the IDE will display details of the compile
process.

In releases earlier than 1.0, you need to change a value in the Arduino preferences.txt
file to make this detail always visible. This file should be in the following locations:

Mac
/Users/<USERNAME>/Library/Arduino/preferences.txt

Windows XP
C:\Documents and Settings\<USERNAME>\Application Data\Arduino\preferen-
ces.txt

Windows Vista
c:\Users\<USERNAME>\AppData\Roaming\Arduino\ preferences.txt

Linux
~/.arduino/preferences.txt

Make sure the Arduino IDE is not running (changes made to preferences.txt will not be
saved if the IDE is running). Open the file and find the line build.verbose=false (it is
near the bottom of the file). Change false to true and save the file.

Discussion
When you click on Compile or Upload, a lot of activity happens that is not usually
displayed on-screen. The command-line tools that the Arduino IDE was built to hide
are used to compile, link, and upload your code to the board.

First your sketch file(s) are transformed into a file suitable for the compiler (AVR-
GCC) to process. All source files in the sketch folder that have no file extension are
joined together to make one file. All files that end in .c or .cpp are compiled separately.
Header files (with an .h extension) are ignored unless they are explicitly included in the
files that are being joined.

#include "Arduino.h" (WProgram.h in previous releases) is added at the top of the file
to include the header file with all the Arduino-specific code definitions, such as digi
talWrite() and analogRead(). If you want to examine its contents, you can find the file
on Windows under the directory where Arduino was installed; from there, you can
navigate to Hardware→Arduino→Cores→Arduino.

17.1 Understanding the Arduino Build Process | 585

On the Mac, Ctrl+click the Arduino application icon and select Show Package Contents
from the drop-down menu. A folder will open; from the folder, navigate to Con-
tents→Resources→Java→Hardware→Arduino→Cores→Arduino.

The Arduino directory structure may change in new releases, so check
the documentation for the release you are using.

To make the code valid C++, the prototypes of any functions declared in your code are
generated next and inserted.

Finally, the setting of the board menu is used to insert values (obtained from the
boards.txt file) that define various constants used for the controller chips on the selected
board.

This file is then compiled by AVR-GCC, which is included within the Arduino main
download (it is in the tools folder).

The compiler produces a number of object files (files with an extension of .o that will
be combined by the link tool). These files are stored in /tmp on Mac and Linux. On
Windows, they are in the applet directory (a folder below the Arduino install directory).

The object files are then linked together to make a hex file to upload to the board.
Avrdude, a utility for transferring files to the Arduino controller, is used to upload to
the board.

The tools used to implement the build process can be found in the hardware\tools
directory.

Another useful tool for experienced programmers is avr-objdump, also in the tools folder.
It lets you see how the compiler turns the sketch into code that the controller chip runs.
This tool produces a disassembly listing of your sketch that shows the object code
intermixed with the source code. It can also display a memory map of all the variables
used in your sketch. To use the tool, compile the sketch and navigate to the folder
containing the Arduino distribution. Then, navigate to the folder with all the inter-
mediate files used in the build process (as explained earlier). The file used by
avr-objdump is the one with the extension .elf. For example, if you compile the Blink
sketch you could view the compiled output (the machine code) by executing the fol-
lowing on the command line:

..\hardware\tools\avr\bin\avr-objdump.exe -S blink.cpp.elf

It is convenient to direct the output to a file that can be read in a text editor. You can
do this as follows:

..\hardware\tools\avr\bin\avr-objdump.exe -S blink.cpp.elf > blink.txt

586 | Chapter 17: Advanced Coding and Memory Handling

This version adds a list of section headers (helpful for determining memory usage):

..\hardware\tools\avr\bin\avr-objdump.exe -S -h blink.cpp.elf > blink.txt

You can create a batch file to dump the listing into a file. Add the path
of your Arduino installation to the following line and save it to a batch
file:

hardware\tools\avr\bin\avr-objdump.exe -S -h -Tdata %1 > %1%.txt

See Also
For information on the Arduino build process, see http://code.google.com/p/arduino/
wiki/BuildProcess.

The AVRfreaks website: http://www.avrfreaks.net/wiki/index.php/Documentation:AVR
_GCC.

17.2 Determining the Amount of Free and Used RAM
Problem
You want to be sure you have not run out of RAM. A sketch will not run correctly if
there is insufficient memory, and this can be difficult to detect.

Solution
This recipe shows you how you can determine the amount of free memory available to
your sketch. This sketch contains a function called memoryFree that reports the amount
of available RAM:

void setup()
{
 Serial.begin(9600);
}

void loop()
{
 Serial.print(memoryFree()); // print the free memory
 Serial.print(' '); // print a space
 delay(1000);
}

// variables created by the build process when compiling the sketch
extern int __bss_end;
extern void *__brkval;

// function to return the amount of free RAM
int memoryFree()

17.2 Determining the Amount of Free and Used RAM | 587

http://code.google.com/p/arduino/wiki/BuildProcess
http://code.google.com/p/arduino/wiki/BuildProcess
http://www.avrfreaks.net/wiki/index.php/Documentation:AVR_GCC
http://www.avrfreaks.net/wiki/index.php/Documentation:AVR_GCC

{
 int freeValue;
 if((int)__brkval == 0)
 freeValue = ((int)&freeValue) - ((int)&__bss_end);
 else
 freeValue = ((int)&freeValue) - ((int)__brkval);

 return freeValue;
}

Discussion
The memoryFree function uses system variables to calculate the amount of RAM. System
variables are not normally visible (they are created by the compiler to manage internal
resources). It is not necessary to understand how the function works to use its output.
The function returns the number of bytes of free memory.

The number of bytes your code uses changes as the code runs. The important thing is
to ensure that you don’t consume more memory than you have.

Here are the main ways RAM memory is consumed:

• When you initialize constants:

#define ERROR_MESSAGE "an error has occurred"

• When you declare global variables:

char myMessage[] = "Hello World";

• When you make a function call:

void myFunction(int value)
{
 int result;
 result = value * 2;
 return result;
}

• When you dynamically allocate memory:

String stringOne = "Arduino String";

The Arduino String class uses dynamic memory to allocate space for strings. You can
see this by adding the following line to the very top of the code in the Solution:

String s = "\n";

and the following lines just before the delay in the loop code:

s = s + "Hello I am Arduino \n";
 Serial.println(s); // print the string value

You will see the memory value reduce as the size of the string is increased each time
through the loop. If you run the sketch long enough, the memory will run out—don’t
endlessly try to increase the size of a string in anything other than a test application.

588 | Chapter 17: Advanced Coding and Memory Handling

Writing code like this that creates a constantly expanding value is a sure way to run
out of memory. You should also be careful not to create code that dynamically creates
different numbers of variables based on some parameter while the code runs, as it will
be very difficult to be sure you will not exceed the memory capabilities of the board
when the code runs.

Constants and global variables are often declared in libraries as well, so you may not
be aware of them, but they still use up RAM. The Serial library, for example, has a 128-
byte global array that it uses for incoming serial data. This alone consumes one-eighth
of the total memory of an old Arduino 168 chip.

See Also
A technical overview of memory usage is available at http://www.gnu.org/savannah
-checkouts/non-gnu/avr-libc/user-manual/malloc.html.

17.3 Storing and Retrieving Numeric Values in
Program Memory
Problem
You have a lot of constant numeric data and don’t want to allocate this to RAM.

Solution
Store numeric variables in program memory (the flash memory used to store Arduino
programs).

This sketch adjusts a fading LED for the nonlinear sensitivity of human vision. It stores
the values to use in a table of 256 values in program memory rather than RAM.

The sketch is based on Recipe 7.2; see Chapter 7 for a wiring diagram and discussion
on driving LEDs. Running this sketch results in a smooth change in brightness with the
LED on pin 5 compared to the LED on pin 3:

/*
 * ProgmemCurve sketch
 * uses table in program memory to convert linear to exponential output
 * See Recipe 7.2 and Figure 7-2
 */

#include <avr/pgmspace.h> // needed for PROGMEM

// table of exponential values
// generated for values of i from 0 to 255 -> x=round(pow(2.0, i/32.0) - 1);

const byte table[]PROGMEM = {
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

17.3 Storing and Retrieving Numeric Values in Program Memory | 589

http://www.gnu.org/savannah-checkouts/non-gnu/avr-libc/user-manual/malloc.html
http://www.gnu.org/savannah-checkouts/non-gnu/avr-libc/user-manual/malloc.html

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2,
 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3,
 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5,
 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7,
 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10,
 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15,
 15, 15, 16, 16, 16, 17, 17, 18, 18, 18, 19, 19, 20, 20, 21, 21,
 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 28, 28, 29, 30, 30,
 31, 32, 32, 33, 34, 35, 35, 36, 37, 38, 39, 40, 40, 41, 42, 43,
 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 58, 59, 60, 62,
 63, 64, 66, 67, 69, 70, 72, 73, 75, 77, 78, 80, 82, 84, 86, 88,
 90, 91, 94, 96, 98, 100, 102, 104, 107, 109, 111, 114, 116, 119, 122, 124,
 127, 130, 133, 136, 139, 142, 145, 148, 151, 155, 158, 161, 165, 169, 172, 176,
 180, 184, 188, 192, 196, 201, 205, 210, 214, 219, 224, 229, 234, 239, 244, 250
};

const int rawLedPin = 3; // this LED is fed with raw values
const int adjustedLedPin = 5; // this LED is driven from table

int brightness = 0;
int increment = 1;

void setup()
{
 // pins driven by analogWrite do not need to be declared as outputs
}

void loop()
{
 if (brightness > 254)
 {
 increment = -1; // count down after reaching 255
 }
 else if (brightness < 1)
 {
 increment = 1; // count up after dropping back down to 0
 }
 brightness = brightness + increment; // increment (or decrement sign is minus)

 // write the brightness value to the LEDs
 analogWrite(rawLedPin, brightness); // this is the raw value
 int adjustedBrightness = pgm_read_byte(&table[brightness]); // adjusted value
 analogWrite(adjustedLedPin, adjustedBrightness);

 delay(10); // 10ms for each step change means 2.55 secs to fade up or down
}

Discussion
When you need to use a complex expression to calculate a range of values that regularly
repeat, it is often better to precalculate the values and include them in a table of values
(usually as an array) in the code. This saves the time needed to calculate the values
repeatedly when the code runs. The disadvantage concerns the memory needed to place
these values in RAM. RAM is limited on Arduino and the much larger program memory

590 | Chapter 17: Advanced Coding and Memory Handling

space can be used to store constant values. This is particularly helpful for sketches that
have large arrays of numbers.

At the top of the sketch, the table is defined with the following expression:

const byte table[]PROGMEM = {
 0, . . .

PROGMEM tells the compiler that the values are to be stored in program memory rather
than RAM. The remainder of the expression is similar to defining a conventional array
(see Chapter 2).

The low-level definitions needed to use PROGMEM are contained in a file named
pgmspace.h and the sketch includes this as follows:

#include <avr/pgmspace.h>

To adjust the brightness to make the fade look uniform, this recipe adds the following
lines to the LED output code used in Recipe 7.2:

 int adjustedBrightness = pgm_read_byte(&table[brightness]);
 analogWrite(adjustedLedPin, adjustedBrightness);

The variable adjustedBrightness is set from a value read from program memory. The
expression pgm_read_byte(&table[brightness]); means to return the address of the
entry in the table array at the index position given by brightness. Each entry in the
table is one byte, so another way to write this expression is:

pgm_read_byte(table + brightness);

If it is not clear why &table[brightness] is equivalent to table + brightness, don’t
worry; use whichever expression makes more sense to you.

Another example is from Recipe 6.5, which used a table for converting an infrared
sensor reading into distance. Here is the sketch from that recipe converted to use a table
in program memory instead of RAM:

/* ir-distance_Progmem sketch
 * prints distance & changes LED flash rate depending on distance from IR sensor
 * uses progmem for table
 */

#include <avr/pgmspace.h> // needed when using Progmem

// table entries are distances in steps of 250 millivolts
const int TABLE_ENTRIES = 12;
const int firstElement = 250; // first entry is 250 mV
const int interval = 250; // millivolts between each element
// the following is the definition of the table in Program Memory
const int distanceP[TABLE_ENTRIES] PROGMEM = { 150,140,130,100,60,50,
40,35,30,25,20,15 };

// This function reads from Program Memory at the given index
int getTableEntry(int index)
{

17.3 Storing and Retrieving Numeric Values in Program Memory | 591

 int value = pgm_read_word(&distanceP[index]);
 return value;
}

The remaining code is similar to Recipe 6.5, except that the getTableEntry function is
used to get the value from program memory instead of accessing a table in RAM. Here
is the revised getDistance function from that recipe:

int getDistance(int mV)
{
 if(mV > interval * TABLE_ENTRIES)
 return getTableEntry(TABLE_ENTRIES-1); // the minimum distance
 else
 {
 int index = mV / interval;
 float frac = (mV % 250) / (float)interval;
 return getTableEntry(index) - ((getTableEntry(index) -
getTableEntry(index+1)) * frac);
 }
}

See Also
See Recipe 17.4 for the technique introduced in Arduino 1.0 to store strings in flash
memory.

17.4 Storing and Retrieving Strings in Program Memory
Problem
You have lots of strings and they are consuming too much RAM. You want to move
string constants, such as menu prompts or debugging statements, out of RAM and into
program memory.

Solution
This sketch creates a string in program memory and prints its value to the Serial Monitor
using the F("text") expression introduced in Arduino 1.0. The technique for printing
the amount of free RAM is described in Recipe 17.2:

/*
 * Write strings using Program memory (Flash)
 */

void setup()
{
 Serial.begin(9600);
}

void loop()
{
 Serial.print(memoryFree()); // print the free memory

592 | Chapter 17: Advanced Coding and Memory Handling

 Serial.print(' '); // print a space

 Serial.print(F("arduino duemilanove ")); // print the string
 delay(1000);
}

// variables created by the build process when compiling the sketch
extern int __bss_end;
extern void *__brkval;

// function to return the amount of free RAM
int memoryFree()
{
 int freeValue;

 if ((int)__brkval == 0)
 freeValue = ((int)&freeValue) - ((int)&__bss_end);
 else
 freeValue = ((int)&freeValue) - ((int)__brkval);

 return freeValue;
}

Discussion
Strings are particularly hungry when it comes to RAM. Each character uses a byte, so
it is easy to consume large chunks of RAM if you have lots of words in strings in your
sketch. Inserting your text in the F("text") expression stores the text in the much larger
flash memory instead of RAM.

If you are using an earlier Arduino release you can still store text in program memory,
but you need to add a little more code to your sketch. Here is the same functionality
implemented for releases earlier than 1.0:

 #include <avr/pgmspace.h> // for progmem

//create a string of 20 characters in progmem
const prog_uchar myText[] PROGMEM = "arduino duemilanove ";

void setup()
{
 Serial.begin(9600);
}

void loop()
{
 Serial.print(memoryFree()); // print the free memory
 Serial.print(' '); // print a space

 printP(myText); // print the string
 delay(1000);
}

// function to print a PROGMEM string

17.4 Storing and Retrieving Strings in Program Memory | 593

void printP(const prog_uchar *str)
{
char c;

 while((c = pgm_read_byte(str++)))
 Serial.write(c);
}

// variables created by the build process when compiling the sketch
extern int __bss_end;
extern void *__brkval;

// function to return the amount of free RAM
int memoryFree(){
 int freeValue;

 if((int)__brkval == 0) freeValue = ((int)&freeValue) - ((int)&__bss_end);
 else freeValue = ((int)&freeValue) - ((int)__brkval);
 return freeValue;
}

See Also
See Recipe 15.11 for an example of flash memory used to store web page strings.

17.5 Using #define and const Instead of Integers
Problem
You want to minimize RAM usage by telling the compiler that the value is constant and
can be optimized.

Solution
Use const to declare values that are constant throughout the sketch.

For example, instead of:

int ledPin=13;

use:

const int ledPin=13;

Discussion
We often want to use a constant value in different areas of code. Just writing the number
is a really bad idea. If you later want to change the value used, it’s difficult to work out
which numbers scattered throughout the code also need to be changed. It is best to use
named references.

594 | Chapter 17: Advanced Coding and Memory Handling

Here are three different ways to define a value that is a constant:

int ledPin = 13; // a variable, but this wastes RAM
const int ledPin = 13; // a const does not use RAM
#define ledPin 13 // using a #define
 // the preprocessor replaces ledPin with 13

pinMode(ledPin, OUTPUT);

Although the first two expressions look similar, the term const tells the compiler not
to treat ledPin as an ordinary variable. Unlike the ordinary int, no RAM is reserved to
hold the value for the const, as it is guaranteed not to change. The compiler will produce
exactly the same code as if you had written:

pinMode(13, OUTPUT);

You will sometimes see #define used to define constants in older Arduino code, but
const is a better choice than #define. This is because a const variable has a type, which
enables the compiler to verify and report if the variable is being used in ways not ap-
propriate for that type. The compiler will also respect C rules for the scope of a const
variable. A #define value will affect all the code in the sketch, which may be more than
you intended. Another benefit of const is that it uses familiar syntax—#define does not
use the equals sign, and no semicolon is used at the end.

See Also
See this chapter’s introduction section for more on the preprocessor.

17.6 Using Conditional Compilations
Problem
You want to have different versions of your code that can be selectively compiled. For
example, you may need code to work differently when debugging or when running
with different boards.

Solution
You can use the conditional statements aimed at the preprocessor to control how your
sketch is built.

This example from sketches in Chapter 15 includes the SPI.h library file that is only
available for and needed with Arduino versions released after 0018:

#if ARDUINO > 18
#include <SPI.h> // needed for Arduino versions later than 0018
#endif

17.6 Using Conditional Compilations | 595

This example, using the sketch from Recipe 5.6, displays some debug statements only
if DEBUG is defined:

/*
 Pot_Debug sketch
 blink an LED at a rate set by the position of a potentiometer
 Uses Serial port for debug if DEBUG is defined
 */

const int potPin = 0; // select the input pin for the potentiometer
const int ledPin = 13; // select the pin for the LED
int val = 0; // variable to store the value coming from the sensor

#define DEBUG

void setup()
{
 Serial.begin(9600);
 pinMode(ledPin, OUTPUT); // declare the ledPin as an OUTPUT
}

void loop() {
 val = analogRead(potPin); // read the voltage on the pot
 digitalWrite(ledPin, HIGH); // turn the ledPin on
 delay(val); // blink rate set by pot value
 digitalWrite(ledPin, LOW); // turn the ledPin off
 delay(val); // turn LED off for same period as it was turned on
#if defined DEBUG
 Serial.println(val);
#endif
}

Discussion
This recipe uses the preprocessor used at the beginning of the compile process to change
what code is compiled. The first example tests if the value of the constant ARDUINO is
greater than 18, and if so, the file SPI.h is included. The value of the ARDUINO constant
is defined in the build process and corresponds to the Arduino release version. The
syntax for this expression is not the same as that used for writing a sketch. Expressions
that begin with the # symbol are processed before the code is compiled—see this chap-
ter’s introduction section for more on the preprocessor.

You have already come across #include:

#include <library.h>

The < > brackets tell the compiler to look for the file in the location for standard
libraries:

#include "header.h"

The compiler will also look in the sketch folder.

596 | Chapter 17: Advanced Coding and Memory Handling

You can have a conditional compile based on the controller chip selected in the IDE.
For example, the following code will produce different code when compiled for a Mega
board that reads the additional analog pins that it has:

/*
 * ConditionalCompile sketch
 * This sketch recognizes the controller chip using conditional defines
 */

int numberOfSensors;
int val = 0; // variable to store the value coming from the sensor

void setup()
{
 Serial.begin(9600);

#if defined(__AVR_ATmega1280__) // defined when selecting Mega in the IDE
 numberOfSensors = 16; // the number of analog inputs on the Mega
#else // if not Mega then assume a standard board
 numberOfSensors = 6; // analog inputs on a standard Arduino board
#endif

 Serial.print("The number of sensors is ");
 Serial.println(numberOfSensors);
}

void loop() {
 for(int sensor = 0; sensor < numberOfSensors; sensor++)
 {
 val = analogRead(sensor); // read the sensor value
 Serial.println(val); // display the value
 }
 Serial.println();
 delay(1000); // delay a second between readings
}

See Also
Technical details on the C preprocessor are available at http://gcc.gnu.org/onlinedocs/
gcc-2.95.3/cpp_1.html.

See the Discussion section of Recipe 16.4 for an example of conditional compilation
used to handle differences between Arduino 1.0 and previous releases.

17.6 Using Conditional Compilations | 597

http://gcc.gnu.org/onlinedocs/gcc-2.95.3/cpp_1.html
http://gcc.gnu.org/onlinedocs/gcc-2.95.3/cpp_1.html

	Table of Contents
	Preface
	Who This Book Is For
	How This Book Is Organized
	What Was Left Out
	Code Style (About the Code)
	Arduino Platform Release Notes
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments
	Notes on the Second Edition

	Chapter 1. Getting Started
	1.0 Introduction
	Arduino Software
	Arduino Hardware
	See Also

	1.1 Installing the Integrated Development Environment (IDE)
	Problem
	Solution
	Discussion
	See Also

	1.2 Setting Up the Arduino Board
	Problem
	Solution
	Discussion
	See Also

	1.3 Using the Integrated Development Environment (IDE) to Prepare an Arduino Sketch
	Problem
	Solution
	Discussion
	See Also

	1.4 Uploading and Running the Blink Sketch
	Problem
	Solution
	Discussion
	See Also

	1.5 Creating and Saving a Sketch
	Problem
	Solution
	Discussion
	See Also

	1.6 Using Arduino
	Problem
	Solution
	Discussion
	See Also

	Chapter 2. Making the Sketch Do Your Bidding
	2.0 Introduction
	2.1 Structuring an Arduino Program
	Problem
	Solution
	Discussion
	See Also

	2.2 Using Simple Primitive Types (Variables)
	Problem
	Solution
	Discussion
	See Also

	2.3 Using Floating-Point Numbers
	Problem
	Solution
	Discussion
	See Also

	2.4 Working with Groups of Values
	Problem
	Solution
	Discussion
	See Also

	2.5 Using Arduino String Functionality
	Problem
	Solution
	Discussion
	Choosing between Arduino Strings and C character arrays

	See Also

	2.6 Using C Character Strings
	Problem
	Solution
	Discussion
	See Also

	2.7 Splitting Comma-Separated Text into Groups
	Problem
	Solution
	Discussion
	See Also

	2.8 Converting a Number to a String
	Problem
	Solution
	Discussion

	2.9 Converting a String to a Number
	Problem
	Solution
	Discussion
	See Also

	2.10 Structuring Your Code into Functional Blocks
	Problem
	Solution
	Discussion
	See Also

	2.11 Returning More Than One Value from a Function
	Problem
	Solution
	Discussion

	2.12 Taking Actions Based on Conditions
	Problem
	Solution
	Discussion
	See Also

	2.13 Repeating a Sequence of Statements
	Problem
	Solution
	Discussion
	See Also

	2.14 Repeating Statements with a Counter
	Problem
	Solution
	Discussion
	See Also

	2.15 Breaking Out of Loops
	Problem
	Solution
	Discussion
	See Also

	2.16 Taking a Variety of Actions Based on a Single Variable
	Problem
	Solution
	Discussion
	See Also

	2.17 Comparing Character and Numeric Values
	Problem
	Solution
	Discussion
	See Also

	2.18 Comparing Strings
	Problem
	Solution
	Discussion
	See Also

	2.19 Performing Logical Comparisons
	Problem
	Solution
	Discussion

	2.20 Performing Bitwise Operations
	Problem
	Solution
	Discussion
	See Also

	2.21 Combining Operations and Assignment
	Problem
	Solution
	Discussion
	See Also

	Chapter 3. Using Mathematical Operators
	3.0 Introduction
	3.1 Adding, Subtracting, Multiplying, and Dividing
	Problem
	Solution
	Discussion
	See Also

	3.2 Incrementing and Decrementing Values
	Problem
	Solution
	Discussion
	See Also

	3.3 Finding the Remainder After Dividing Two Values
	Problem
	Solution
	Discussion
	See Also

	3.4 Determining the Absolute Value
	Problem
	Solution
	Discussion
	See Also

	3.5 Constraining a Number to a Range of Values
	Problem
	Solution
	Discussion
	See Also

	3.6 Finding the Minimum or Maximum of Some Values
	Problem
	Solution
	Discussion
	See Also

	3.7 Raising a Number to a Power
	Problem
	Solution
	Discussion

	3.8 Taking the Square Root
	Problem
	Solution
	Discussion

	3.9 Rounding Floating-Point Numbers Up and Down
	Problem
	Solution
	Discussion

	3.10 Using Trigonometric Functions
	Problem
	Solution
	Discussion
	See Also

	3.11 Generating Random Numbers
	Problem
	Solution
	Discussion
	See Also

	3.12 Setting and Reading Bits
	Problem
	Solution
	Discussion
	See Also

	3.13 Shifting Bits
	Problem
	Solution
	Discussion
	See Also

	3.14 Extracting High and Low Bytes in an int or long
	Problem
	Solution
	Discussion
	See Also

	3.15 Forming an int or long from High and Low Bytes
	Problem
	Solution
	Discussion
	See Also

	Chapter 4. Serial Communications
	4.0 Introduction
	Serial Hardware
	Software Serial
	Serial Message Protocol
	New in Arduino 1.0
	See Also

	4.1 Sending Debug Information from Arduino to Your Computer
	Problem
	Solution
	Discussion
	See Also

	4.2 Sending Formatted Text and Numeric Data from Arduino
	Problem
	Solution
	Discussion
	See Also

	4.3 Receiving Serial Data in Arduino
	Problem
	Solution
	Discussion
	See Also

	4.4 Sending Multiple Text Fields from Arduino in a Single Message
	Problem
	Solution
	Discussion
	See Also

	4.5 Receiving Multiple Text Fields in a Single Message in Arduino
	Problem
	Solution
	Discussion
	See Also

	4.6 Sending Binary Data from Arduino
	Problem
	Solution
	Discussion
	See Also

	4.7 Receiving Binary Data from Arduino on a Computer
	Problem
	Solution
	Discussion
	See Also

	4.8 Sending Binary Values from Processing to Arduino
	Problem
	Solution
	Discussion

	4.9 Sending the Value of Multiple Arduino Pins
	Problem
	Solution
	Discussion
	See Also

	4.10 How to Move the Mouse Cursor on a PC or Mac
	Problem
	Solution
	Discussion
	See Also

	4.11 Controlling Google Earth Using Arduino
	Problem
	Solution
	Discussion
	See Also

	4.12 Logging Arduino Data to a File on Your Computer
	Problem
	Solution
	Discussion
	See Also

	4.13 Sending Data to Two Serial Devices at the Same Time
	Problem
	Solution
	Discussion
	See Also

	4.14 Receiving Serial Data from Two Devices at the Same Time
	Problem
	Solution
	Discussion
	Receiving data from multiple SoftwareSerial ports

	4.15 Setting Up Processing on Your Computer to Send and Receive Serial Data
	Problem
	Solution

	Chapter 5. Simple Digital and Analog Input
	5.0 Introduction
	5.1 Using a Switch
	Problem
	Solution
	Discussion
	See Also

	5.2 Using a Switch Without External Resistors
	Problem
	Solution
	Discussion

	5.3 Reliably Detecting the Closing of a Switch
	Problem
	Solution
	Discussion
	See Also

	5.4 Determining How Long a Switch Is Pressed
	Problem
	Solution
	Discussion

	5.5 Reading a Keypad
	Problem
	Solution
	Discussion
	See Also

	5.6 Reading Analog Values
	Problem
	Solution
	Discussion
	See Also

	5.7 Changing the Range of Values
	Problem
	Solution
	Discussion
	See Also

	5.8 Reading More Than Six Analog Inputs
	Problem
	Solution
	Discussion
	See Also

	5.9 Displaying Voltages Up to 5V
	Problem
	Solution
	Discussion

	5.10 Responding to Changes in Voltage
	Problem
	Solution
	Discussion

	5.11 Measuring Voltages More Than 5V (Voltage Dividers)
	Problem
	Solution
	Discussion

	Chapter 6. Getting Input from Sensors
	6.0 Introduction
	See Also

	6.1 Detecting Movement
	Problem
	Solution
	Discussion
	See Also

	6.2 Detecting Light
	Problem
	Solution
	Discussion
	See Also

	6.3 Detecting Motion (Integrating Passive Infrared Detectors)
	Problem
	Solution
	Discussion

	6.4 Measuring Distance
	Problem
	Solution
	Discussion
	See Also

	6.5 Measuring Distance Accurately
	Problem
	Solution
	Discussion
	See Also

	6.6 Detecting Vibration
	Problem
	Solution
	Discussion

	6.7 Detecting Sound
	Problem
	Solution
	Discussion

	6.8 Measuring Temperature
	Problem
	Solution
	Discussion
	See Also

	6.9 Reading RFID Tags
	Problem
	Solution
	Discussion

	6.10 Tracking Rotary Movement
	Problem
	Solution
	Discussion

	6.11 Tracking the Movement of More Than One Rotary Encoder
	Problem
	Solution
	Discussion

	6.12 Tracking Rotary Movement in a Busy Sketch
	Problem
	Solution
	Discussion

	6.13 Using a Mouse
	Problem
	Solution
	Discussion
	See Also

	6.14 Getting Location from a GPS
	Problem
	Solution
	Discussion
	See Also

	6.15 Detecting Rotation Using a Gyroscope
	Problem
	Solution
	Discussion
	Using the older LISY300AL gyro
	Measuring rotation in three dimensions using the ITG-3200 sensor

	See Also

	6.16 Detecting Direction
	Problem
	Solution
	Discussion

	6.17 Getting Input from a Game Control Pad (PlayStation)
	Problem
	Solution
	Discussion
	See Also

	6.18 Reading Acceleration
	Problem
	Solution
	Discussion
	See Also

	Chapter 7. Visual Output
	7.0 Introduction
	Digital Output
	Analog Output
	Controlling Light
	LED specifications
	Multiplexing
	Maximum pin current

	7.1 Connecting and Using LEDs
	Problem
	Solution
	Discussion
	See Also

	7.2 Adjusting the Brightness of an LED
	Problem
	Solution
	Discussion
	See Also

	7.3 Driving High-Power LEDs
	Problem
	Solution
	Discussion
	How to Exceed 40 mA per Pin

	See Also

	7.4 Adjusting the Color of an LED
	Problem
	Solution
	Discussion
	See Also

	7.5 Sequencing Multiple LEDs: Creating a Bar Graph
	Problem
	Solution
	Discussion
	See Also

	7.6 Sequencing Multiple LEDs: Making a Chase Sequence (Knight Rider)
	Problem
	Solution
	Discussion

	7.7 Controlling an LED Matrix Using Multiplexing
	Problem
	Solution
	Discussion

	7.8 Displaying Images on an LED Matrix
	Problem
	Solution
	Discussion
	See Also

	7.9 Controlling a Matrix of LEDs: Charlieplexing
	Problem
	Solution
	Discussion
	See Also

	7.10 Driving a 7-Segment LED Display
	Problem
	Solution
	Discussion

	7.11 Driving Multidigit, 7-Segment LED Displays: Multiplexing
	Problem
	Solution
	Discussion

	7.12 Driving Multidigit, 7-Segment LED Displays Using MAX7221 Shift Registers
	Problem
	Solution
	Solution

	7.13 Controlling an Array of LEDs by Using MAX72xx Shift Registers
	Problem
	Solution
	Discussion
	See Also

	7.14 Increasing the Number of Analog Outputs Using PWM Extender Chips (TLC5940)
	Problem
	Solution
	Discussion
	See Also

	7.15 Using an Analog Panel Meter as a Display
	Problem
	Solution
	Discussion
	See Also

	Chapter 8. Physical Output
	8.0 Introduction
	Motion Control Using Servos
	Solenoids and Relays
	Brushed and Brushless Motors
	Stepper Motors
	Troubleshooting Motors

	8.1 Controlling the Position of a Servo
	Problem
	Solution
	Discussion

	8.2 Controlling One or Two Servos with a Potentiometer or Sensor
	Problem
	Solution
	Discussion

	8.3 Controlling the Speed of Continuous Rotation Servos
	Problem
	Solution
	Discussion

	8.4 Controlling Servos Using Computer Commands
	Problem
	Solution
	Discussion
	See Also

	8.5 Driving a Brushless Motor (Using a Hobby Speed Controller)
	Problem
	Solution
	Discussion

	8.6 Controlling Solenoids and Relays
	Problem
	Solution
	Discussion

	8.7 Making an Object Vibrate
	Problem
	Solution
	Discussion

	8.8 Driving a Brushed Motor Using a Transistor
	Problem
	Solution
	Discussion

	8.9 Controlling the Direction of a Brushed Motor with an H-Bridge
	Problem
	Solution
	Discussion

	8.10 Controlling the Direction and Speed of a Brushed Motor with an H-Bridge
	Problem
	Solution
	Discussion

	8.11 Using Sensors to Control the Direction and Speed of Brushed Motors (L293 H-Bridge)
	Problem
	Solution
	Discussion
	See Also

	8.12 Driving a Bipolar Stepper Motor
	Problem
	Solution
	Discussion
	See Also

	8.13 Driving a Bipolar Stepper Motor (Using the EasyDriver Board)
	Problem
	Solution
	Discussion

	8.14 Driving a Unipolar Stepper Motor (ULN2003A)
	Problem
	Solution
	Discussion

	Chapter 9. Audio Output
	9.0 Introduction
	9.1 Playing Tones
	Problem
	Solution
	See Also

	9.2 Playing a Simple Melody
	Problem
	Solution

	9.3 Generating More Than One Simultaneous Tone
	Problem
	Solution
	Discussion

	9.4 Generating Audio Tones and Fading an LED
	Problem
	Solution
	Discussion
	See Also

	9.5 Playing a WAV File
	Problem
	Solution
	Discussion
	See Also

	9.6 Controlling MIDI
	Problem
	Solution
	Discussion
	See Also

	9.7 Making an Audio Synthesizer
	Problem
	Solution
	Discussion
	See Also

	Chapter 10. Remotely Controlling External Devices
	10.0 Introduction
	10.1 Responding to an Infrared Remote Control
	Problem
	Solution
	Discussion

	10.2 Decoding Infrared Remote Control Signals
	Problem
	Solution
	Discussion
	See Also

	10.3 Imitating Remote Control Signals
	Problem
	Solution
	Discussion
	See Also

	10.4 Controlling a Digital Camera
	Problem
	Solution
	Discussion
	See Also

	10.5 Controlling AC Devices by Hacking a Remote-Controlled Switch
	Problem
	Solution
	Discussion
	See Also

	Chapter 11. Using Displays
	11.0 Introduction
	11.1 Connecting and Using a Text LCD Display
	Problem
	Solution
	Discussion
	See Also

	11.2 Formatting Text
	Problem
	Solution
	Discussion
	See Also

	11.3 Turning the Cursor and Display On or Off
	Problem
	Solution
	Discussion

	11.4 Scrolling Text
	Problem
	Solution
	Discussion

	11.5 Displaying Special Symbols
	Problem
	Solution
	Discussion
	See Also

	11.6 Creating Custom Characters
	Problem
	Solution
	Discussion

	11.7 Displaying Symbols Larger Than a Single Character
	Problem
	Solution
	Discussion
	See Also

	11.8 Displaying Pixels Smaller Than a Single Character
	Problem
	Solution
	Discussion

	11.9 Connecting and Using a Graphical LCD Display
	Problem
	Solution
	Discussion

	11.10 Creating Bitmaps for Use with a Graphical Display
	Problem
	Solution
	See Also

	11.11 Displaying Text on a TV
	Problem
	Solution
	Discussion
	See Also

	Chapter 12. Using Time and Dates
	12.0 Introduction
	12.1 Creating Delays
	Problem
	Solution
	Discussion
	See Also

	12.2 Using millis to Determine Duration
	Problem
	Solution
	Discussion
	See Also

	12.3 More Precisely Measuring the Duration of a Pulse
	Problem
	Solution
	Discussion
	See Also

	12.4 Using Arduino as a Clock
	Problem
	Solution
	Discussion
	See Also

	12.5 Creating an Alarm to Periodically Call a Function
	Problem
	Solution
	Discussion

	12.6 Using a Real-Time Clock
	Problem
	Solution
	Discussion
	See Also

	Chapter 13. Communicating Using I2C and SPI
	13.0 Introduction
	I2C
	Migrating Wire code to Arduino 1.0

	Using 3.3 Volt Devices with 5 Volt Boards
	SPI
	See Also

	13.1 Controlling an RGB LED Using the BlinkM Module
	Problem
	Solution
	Discussion
	See Also

	13.2 Using the Wii Nunchuck Accelerometer
	Problem
	Solution
	Discussion
	See Also

	13.3 Interfacing to an External Real-Time Clock
	Problem
	Solution
	See Also

	13.4 Adding External EEPROM Memory
	Problem
	Solution
	Discussion
	See Also

	13.5 Reading Temperature with a Digital Thermometer
	Problem
	Solution
	Discussion
	See Also

	13.6 Driving Four 7-Segment LEDs Using Only Two Wires
	Problem
	Solution
	Discussion
	See Also

	13.7 Integrating an I2C Port Expander
	Problem
	Solution
	Discussion
	See Also

	13.8 Driving Multidigit, 7-Segment Displays Using SPI
	Problem
	Solution
	Discussion

	13.9 Communicating Between Two or More Arduino Boards
	Problem
	Solution
	Discussion
	See Also

	Chapter 14. Wireless Communication
	14.0 Introduction
	14.1 Sending Messages Using Low-Cost Wireless Modules
	Problem
	Solution
	Discussion
	See Also

	14.2 Connecting Arduino to a ZigBee or 802.15.4 Network
	Problem
	Solution
	Discussion
	Series 2 configuration
	Series 1 configuration
	Talking to the Arduino

	See Also

	14.3 Sending a Message to a Particular XBee
	Problem
	Solution
	Discussion
	See Also

	14.4 Sending Sensor Data Between XBees
	Problem
	Solution
	Discussion
	Series 2 XBees
	Series 1 XBees

	See Also

	14.5 Activating an Actuator Connected to an XBee
	Problem
	Solution
	Discussion
	Series 2 XBees
	Series 1 XBees

	See Also

	14.6 Sending Messages Using Low-Cost Transceivers
	Problem
	Solution
	Discussion
	See Also

	14.7 Communicating with Bluetooth Devices
	Problem
	Solution
	Discussion
	See Also

	Chapter 15. Ethernet and Networking
	15.0 Introduction
	Arduino 1.0 Enhancements
	Alternative Hardware for Low Cost Networking

	15.1 Setting Up the Ethernet Shield
	Problem
	Solution
	Discussion
	See Also

	15.2 Obtaining Your IP Address Automatically
	Problem
	Solution
	Discussion

	15.3 Resolving Hostnames to IP Addresses (DNS)
	Problem
	Solution
	Discussion

	15.4 Requesting Data from a Web Server
	Problem
	Solution
	Discussion

	15.5 Requesting Data from a Web Server Using XML
	Problem
	Solution

	15.6 Setting Up an Arduino to Be a Web Server
	Problem
	Solution
	Discussion

	15.7 Handling Incoming Web Requests
	Problem
	Solution
	Discussion

	15.8 Handling Incoming Requests for Specific Pages
	Problem
	Solution
	Discussion

	15.9 Using HTML to Format Web Server Responses
	Problem
	Solution
	Discussion
	See Also

	15.10 Serving Web Pages Using Forms (POST)
	Problem
	Solution
	Discussion

	15.11 Serving Web Pages Containing Large Amounts of Data
	Problem
	Solution
	Discussion
	See Also

	15.12 Sending Twitter Messages
	Problem
	Solution
	Discussion
	See Also

	15.13 Sending and Receiving Simple Messages (UDP)
	Problem
	Solution
	Discussion

	15.14 Getting the Time from an Internet Time Server
	Problem
	Solution
	Discussion
	See Also

	15.15 Monitoring Pachube Feeds
	Problem
	Solution
	Discussion
	See Also

	15.16 Sending Information to Pachube
	Problem
	Solution
	Discussion

	Chapter 16. Using, Modifying, and Creating
 Libraries
	16.0 Introduction
	16.1 Using the Built-in Libraries
	Problem
	Solution
	Discussion
	See Also

	16.2 Installing Third-Party Libraries
	Problem
	Solution
	Discussion

	16.3 Modifying a Library
	Problem
	Solution
	Discussion
	See Also

	16.4 Creating Your Own Library
	Problem
	Solution
	Discussion
	See Also

	16.5 Creating a Library That Uses Other Libraries
	Problem
	Solution
	Discussion

	16.6 Updating Third-Party Libraries for Arduino 1.0
	Problem
	Solution
	Discussion
	See Also

	Chapter 17. Advanced Coding and Memory
 Handling
	17.0 Introduction
	Preprocessor
	See Also

	17.1 Understanding the Arduino Build Process
	Problem
	Solution
	Discussion
	See Also

	17.2 Determining the Amount of Free and Used RAM
	Problem
	Solution
	Discussion
	See Also

	17.3 Storing and Retrieving Numeric Values in Program Memory
	Problem
	Solution
	Discussion
	See Also

	17.4 Storing and Retrieving Strings in Program Memory
	Problem
	Solution
	Discussion
	See Also

	17.5 Using #define and const Instead of Integers
	Problem
	Solution
	Discussion
	See Also

	17.6 Using Conditional Compilations
	Problem
	Solution
	Discussion
	See Also

	Chapter 18. Using the Controller Chip Hardware
	18.0 Introduction
	Registers
	Interrupts
	Timers
	Analog and Digital Pins
	See Also

	18.1 Storing Data in Permanent EEPROM Memory
	Problem
	Solution
	Discussion
	See Also

	18.2 Using Hardware Interrupts
	Problem
	Solution
	Discussion
	See Also

	18.3 Setting Timer Duration
	Problem
	Solution
	Discussion
	See Also

	18.4 Setting Timer Pulse Width and Duration
	Problem
	Solution
	Discussion
	See Also

	18.5 Creating a Pulse Generator
	Problem
	Solution
	Discussion
	See Also

	18.6 Changing a Timer’s PWM Frequency
	Problem
	Solution
	Discussion
	See Also

	18.7 Counting Pulses
	Problem
	Solution
	Discussion
	See Also

	18.8 Measuring Pulses More Accurately
	Problem
	Solution
	Discussion
	See Also

	18.9 Measuring Analog Values Quickly
	Problem
	Solution
	Discussion
	See Also

	18.10 Reducing Battery Drain
	Problem
	Solution
	Discussion
	See Also

	18.11 Setting Digital Pins Quickly
	Problem
	Solution
	Discussion

	18.12 Uploading Sketches Using a Programmer
	Problem
	Solution
	Discussion
	See Also

	18.13 Replacing the Arduino Bootloader
	Problem
	Solution
	Discussion
	See Also

	18.14 Reprogram the Uno to Emulate a Native USB device
	Problem
	Solution
	Discussion
	See Also

	Appendix A. Electronic Components
	Capacitor
	Diode
	Integrated Circuit
	Keypad
	LED
	Motor (DC)
	Optocoupler
	Photocell (Photoresistor)
	Piezo
	Pot (Potentiometer)
	Relay
	Resistor
	Solenoid
	Speaker
	Stepper Motor
	Switch
	Transistor
	See Also

	Appendix B. Using Schematic Diagrams and Data
 Sheets
	How to Read a Data Sheet
	Choosing and Using Transistors for Switching

	Appendix C. Building and Connecting the Circuit
	Using a Breadboard
	Connecting and Using External Power Supplies and Batteries
	Using Capacitors for Decoupling
	Using Snubber Diodes with Inductive Loads
	Working with AC Line Voltages

	Appendix D. Tips on Troubleshooting Software
 Problems
	Code That Won’t Compile
	Code That Compiles but Does Not Work as Expected

	Appendix E. Tips on Troubleshooting Hardware
 Problems
	Still Stuck?

	Appendix F. Digital and Analog Pins
	Appendix G. ASCII and Extended Character Sets
	Appendix H. Migrating to Arduino 1.0
	Migrating Print Statements
	Migrating Wire (I2C) Statements
	Migrating Ethernet Statements
	Migrating Libraries
	New Stream Parsing Functions

	Index

