
This is advance information on a new product now in development or undergoing evaluation. Details are subject to change without notice.

Ref: ST10FPM

ST10
FAMILY PROGRAMMING MANUAL

ST10 FAMILY PROGRAMMING MANUAL

1/172

1 INTRODUCTION ... 3

2 STANDARD INSTRUCTION SET... 4

2.1 ADDRESSING MODES... 4

2.1.1 Short adressing modes.. 4
2.1.2 Long addressing mode .. 5
2.1.3 DPP override mechanism.. 6
2.1.4 Indirect addressing modes .. 6
2.1.5 Constants .. 7
2.1.6 Branch target addressing modes... 7

2.2 INSTRUCTION EXECUTION TIMES .. 8

2.2.1 Definition of measurement units .. 9
2.2.2 Minimum state times.. 10
2.2.3 Additional state times .. 10

2.3 INSTRUCTION SET SUMMARY... 13

2.4 INSTRUCTION SET ORDERED BY FUNCTIONAL GROUP 15

2.5 INSTRUCTION SET ORDERED BY OPCODES .. 26

2.6 INSTRUCTION CONVENTIONS... 34

2.6.1 Instruction name .. 34
2.6.2 Syntax.. 34
2.6.3 Operation... 34
2.6.4 Data types ... 35
2.6.5 Description... 35
2.6.6 Condition code... 35
2.6.7 Flags.. 36
2.6.8 Addressing modes... 37

2.7 ATOMIC AND EXTENDED INSTRUCTIONS ... 38

2.8 INSTRUCTION DESCRIPTIONS .. 39

3 MAC INSTRUCTION SET... 123

3.1 ADDRESSING MODES... 123

3.2 MAC INSTRUCTION EXECUTION TIME ... 124

3.3 MAC INSTRUCTION SET SUMMARY.. 124

3.4 MAC INSTRUCTION CONVENTIONS.. 126

3.4.1 Operands... 126
3.4.2 Operations ... 126
3.4.3 Abbreviations... 126
3.4.4 Data addressing Modes... 126
3.4.5 Instruction format... 127
3.4.6 Flag states ... 127
3.4.7 Repeated instruction syntax .. 127
3.4.8 Shift value.. 127

3.5 MAC INSTRUCTION DESCRIPTIONS ... 127

4 REVISION HISTORY .. 170

TABLE OF CONTENTS Page

ST10 FAMILY PROGRAMMING MANUAL

2/172

3/172September 2013

1 - INTRODUCTION

This programming manual details the instruction
set for the ST10 family of products. The manual is
arranged in two sections. Section 1 details the
standard instruction set and includes all of the
basic instructions.
Section 2 details the extension to the instruction
set provided by the MAC. The MAC instructions
are only available to devices containing the MAC,
refer to the datasheet for device-specific
information.
In the standard instruction set, addressing modes,
instruction execution times, minimum state times
and the causes of additional state times are
defined. Cross reference tables of instruction
mnemonics, hexadecimal opcode, address
modes and number of bytes, are provided for the
optimization of instruction sequences.
Instruction set tables ordered by functional group,
can be used to identify the best instruction for a
given application. Instruction set tables ordered
by hexadecimal opcode can be used to identify

specific instructions when reading executable
code i.e. during the de-bugging phase. Finally,
each instruction is described individually on a
page of standard format, using the conventions
defined in this manual. For ease of use, the
instructions are listed alphabetically.
The MAC instruction set is divided into its 5
functional groups: Multiply and Multiply-
Accumulate, 32-Bit Arithmetic, Shift, Compare
and Transfer Instructions. Two new addressing
modes supply the MAC with up to 2 new operands
per instruction.
Cross reference tables of MAC instruction
mnemonics by address mode, and MAC
instruction mnemonic by functional code can be
used for quick reference.
As for the standard instruction set, each
instruction has been described individually in a
standard format according to defined conventions.
For convenience, the instructions are described in
alphabetical order.

ST10

ST10 FAMILY PROGRAMMING MANUAL

This is advance information on a new product now in development or undergoing evaluation. Details are subject to change without notice.

DocID5869 Rev 5

ST10 FAMILY PROGRAMMING MANUAL

4/172

2 - STANDARD INSTRUCTION SET

2.1 - Addressing Modes

2.1.1 - Short adressing modes

The ST10 family of devices use several powerful
addressing modes for access to word, byte and bit
data. This section describes short, long and indi-
rect address modes, constants and branch target
addressing modes. Short addressing modes use
an implicit base offset address to specify the
24-bit physical address. Short addressing modes
give access to the GPR, SFR or bit-addressable
memory spacePhysicalAddress = BaseAddress +
∆ x ShortAddress.

Note: ∆ = 1 for byte GPRs, ∆ = 2 for word GPRs
(see Table 1).

Rw, Rb

Specifies direct access to any GPR in the cur-
rently active context (register bank). Both ’Rw’ and
’Rb’ require four bits in the instruction format. The
base address of the current register bank is deter-
mined by the content of register CP. ’Rw’ specifies
a 4-bit word GPR address relative to the base
address (CP), while ’Rb’ specifies a 4 bit byte
GPR address relative to the base address (CP).

reg

Specifies direct access to any (E)SFR or GPR in
the currently active context (register bank). ’reg’
requires eight bits in the instruction format. Short
’reg’ addresses from 00h to EFh always specify
(E)SFRs. In this case, the factor ’∆’ equals 2 and
the base address is 00’F000h for the standard
SFR area, or 00’FE00h for the extended ESFR
area. ‘reg’ accesses to the ESFR area require a
preceding EXT*R instruction to switch the base
address. Depending on the opcode of an instruc-
tion, either the total word (for word operations), or

the low byte (for byte operations) of an SFR can
be addressed via 'reg'. Note that the high byte of
an SFR cannot be accessed by the 'reg' address-
ing mode. Short 'reg' addresses from F0h to FFh
always specify GPRs. In this case, only the lower
four bits of 'reg' are significant for physical
address generation, therefore it can be regarded
as identical to the address generation described
for the 'Rb' and 'Rw' addressing modes.

bitoff

Specifies direct access to any word in the
bit-addressable memory space. 'bitoff' requires
eight bits in the instruction format. Depending on
the specified 'bitoff' range, different base
addresses are used to generate physical
addresses: Short 'bitoff' addresses from 00h to
7Fh use 00’FD00h as a base address, therefore
they specify the 128 highest internal RAM word
locations (00’FD00h to 00’FDFEh).Short 'bitoff'
addresses from 80h to EFh use 00’FF00h as a
base address to specify the highest internal SFR
word locations (00’FF00h to 00’FFDEh) or use
00’F100h as a base address to specify the highest
internal ESFR word locations (00’F100h to
00’F1DEh). ‘bitoff’ accesses to the ESFR area
require a preceding EXT*R instruction to switch
the base address. For short 'bitoff' addresses from
F0h to FFh, only the lowest four bits and the
contents of the CP register are used to generate
the physical address of the selected word GPR.

bitaddr

Any bit address is specified by a word address
within the bit-addressable memory space (see
'bitoff'), and by a bit position ('bitpos') within that
word. Thus, 'bitaddr' requires twelve bits in the
instruction format.

Table 1 : Short addressing mode summary

Mnemo Physical Address Short Address Range Scope of Access

Rw (CP) + 2*Rw Rw = 0...15 GPRs (Word) 16 values

Rb (CP) + 1*Rb Rb = 0...15 GPRs (Byte) 16 values

reg 00’FE00h
00’F000h
(CP)
(CP)

+ 2*reg
+ 2*reg
+ 2*(reg^0Fh)
+ 1*(reg^0Fh)

reg
reg
reg
reg

= 00h...EFh
= 00h...EFh
= F0h...FFh
= F0h...FFh

SFRs
ESFRs
GPRs
GPRs

(Word, Low byte)
(Word, Low byte)
(Word) 16 values
(Bytes) 16 values

bitoff 00’FD00h
00’FF00h
(CP)

+ 2*bitoff
+ 2*(bitoff^FFh)
+ 2*(bitoff^0Fh)

bitoff
bitoff
bitoff

= 00h...7Fh
= 80h...EFh
= F0h...FFh

RAM
SFR
GPR

Bit word offset 128 values
Bit word offset 128 values
Bit word offset 16 values

bitaddr Word offset as with bitoff
Immediate bit position

bitoff
bitpos

= 00h...FFh
= 0...15

Any single bit

ST10 FAMILY PROGRAMMING MANUAL

5/172

2.1.2 - Long addressing mode
Long addressing mode uses one of the four DPP
registers to specify a physical 18-bit or 24-bit
address. Any word or byte data within the entire
address space can be accessed in this mode. All
devices support an override mechanism for the
DPP addressing scheme (see section 2.1.3 - DPP
override mechanism).
Long addresses (16-bit) are treated in two parts.
Bits 13...0 specify a 14-bit data page offset, and
bits 15...14 specify the Data Page Pointer (1 of 4).
The DPP is used to generate the physical 24-bit
address (see Figure 1).

All ST10 devices support an address space of up
to 16MByte, so only the lower ten bits of the
selected DPP register content are concatenated
with the 14-bit data page offset to build the physi-
cal address.

Note: Word accesses on odd byte addresses
are not executed, but rather trigger a
hardware trap. After reset, the DPP regis-
ters are initialized so that all long
addresses are directly mapped onto the
identical physical addresses, within seg-
ment 0.

The long addressing mode is referred to by the mnemonic “mem”.

Figure 1 : Interpretation of a 16-bit long address

Table 2 : Summary of long address modes

Mnemo Physical Address Long Address Range Scope of Access

mem (DPP0) || mem^3FFFh 0000h...3FFFh Any Word or Byte

(DPP1) || mem^3FFFh 4000h...7FFFh

(DPP2) || mem^3FFFh 8000h...BFFFh

(DPP3) || mem^3FFFh C000h...FFFFh

mem pag || mem^3FFFh 0000h...FFFFh (14-bit) Any Word or Byte

mem seg || mem 0000h...FFFFh (16-bit) Any Word or Byte

015 14 13

16-bit Long Address

DPP0
DPP1
DPP2
DPP3

14-bit page offset

24-bit Physical Address

selects Data Page Pointer
09

023 1314

ST10 FAMILY PROGRAMMING MANUAL

6/172

2.1.3 - DPP override mechanism

The DPP override mechanism temporarily
bypasses the DPP addressing scheme. The
EXTP(R) and EXTS(R) instructions override this
addressing mechanism. Instruction EXTP(R)
replaces the content of the respective DPP
register, while instruction EXTS(R) concatenates
the complete 16-bit long address with the
specified segment base address. The overriding
page or segment may be specified directly as a
constant (#pag, #seg) or by a word GPR (Rw)
(see Figure 2).

2.1.4 - Indirect addressing modes

Indirect addressing modes can be considered as a
combination of short and long addressing modes.
In this mode, long 16-bit addresses are specified
indirectly by the contents of a word GPR, which is
specified directly by a short 4-bit address (’Rw’=0
to 15). Some indirect addressing modes add a
constant value to the GPR contents before the
long 16-bit address is calculated. Other indirect
addressing modes allow decrementing or incre-
menting of the indirect address pointers (GPR con-
tent) by 2 or 1 (referring to words or bytes).

In each case, one of the four DPP registers is
used to specify the physical 18-bit or 24-bit
addresses. Any word or byte data within the entire
memory space can be addressed indirectly. Note
that EXTP(R) and EXTS(R) instructions override
the DPP mechanism.

Instructions using the lowest four word GPRs
(R3...R0) as indirect address pointers are speci-
fied by short 2-bit addresses.

Word accesses on odd byte addresses are not
executed, but rather trigger a hardware trap.
After reset, the DPP registers are initialized in a
way that all indirect long addresses are directly
mapped onto the identical physical addresses.
Physical addresses are generated from indirect
address pointers by the following algorithm:
1. Calculate the physical address of the word
GPR which is used as indirect address pointer, by
using the specified short address (’Rw’) and the
current register bank base address (CP).

GPRAddress = (CP) + 2 x ShortAddress
2. Pre-decremented indirect address pointers
(‘-Rw’) are decremented by a data-type-depen-
dent value (∆ = 1 for byte operations, ∆ = 2 for
word operations), before the long 16-bit address
is generated:
(GPRAddress) = (GPRAddress) - ∆ [optional step!]
3. Calculate the long 16-bit (Rw + #data16 if
selected) address by adding a constant value (if
selected) to the content of the indirect address
pointer:

Long Address = (GPR Address) + Constant
4. Calculate the physical 18-bit or 24-bit address
using the resulting long address and the corre-
sponding DPP register content (see long 'mem'
addressing modes).
Physical Address = (DPPi) + Long Address^3FFFh
5. Post-Incremented indirect address pointers
(‘Rw+’) are incremented by a data-type-depen-
dent value (∆ = 1 for byte operations, ∆ = 2 for
word operations):
(GPR Address) = (GPR Address) + ∆ [optional step!]

Figure 2 : Overriding the DPP mechanism

015 14 13

16-bit Long Address

#pag 14-bit page offset

24-bit Physical Address

015

16-bit Long Address

#seg 16-bit segment offset

24-bit Physical Address

EXTP(R):

EXTS(R):

ST10 FAMILY PROGRAMMING MANUAL

7/172

The following indirect addressing modes are pro-
vided:

2.1.5 - Constants
The ST10 Family instruction set supports the use
of wordwide or bytewide immediate constants.
For optimum utilization of the available code stor-
age, these constants are represented in the
instruction formats by either 3, 4, 8 or 16 bits.
Therefore, short constants are always
zero-extended, while long constants can be trun-

cated to match the data format required for the
operation:

Note: Immediate constants are always signified
by a leading number sign “#”.

2.1.6 - Branch target addressing modes

Jump and Call instructions use different address-
ing modes to specify the target address and seg-
ment.

Relative, absolute and indirect modes can be
used to update the Instruction Pointer register
(IP), while the Code Segment Pointer register
(CSP) can only be updated with an absolute
value.

A special mode is provided to address the
interrupt and trap jump vector table situated in the
lowest portion of code segment 0.

Table 3 : Table of indirect address modes

Mnemonic Notes

[Rw] Most instructions accept any GPR
(R15...R0) as indirect address pointer.
Some instructions, however, only
accept the lower four GPRs (R3...R0).

[Rw+] The specified indirect address pointer
is automatically incremented by 2 or 1
(for word or byte data operations) after
the access.

[-Rw] The specified indirect address pointer
is automatically decremented by 2 or 1
(for word or byte data operations)
before the access.

[Rw+#data16] A 16-bit constant and the contents of
the indirect address pointer are added
before the long 16-bit address is calcu-
lated.

Table 4 : Table of constants

Mnemonic Word operation Byte operation

#data3 0000h + data3 00h + data3

#data4 0000h + data4 00h + data4

#data8 0000h + data8 data8

#data16 data16 data16 ^ FFh

#mask 0000h + mask mask

Table 5 : Branch target address summary

Mnemonic Target Address Target Segment Valid Address Range

caddr (IP) = caddr - caddr = 0000h...FFFEh

rel (IP) = (IP) + 2*rel - rel = 00h...7Fh

(IP) = (IP) + 2*(~rel+1) - rel = 80h...FFh

[Rw] (IP) = ((CP) + 2*Rw) - Rw = 0...15

seg - (CSP) = seg seg = 0...255

#trap7 (IP) = 0000h + 4*trap7 (CSP) = 0000h trap7 = 00h...7Fh

ST10 FAMILY PROGRAMMING MANUAL

8/172

caddr

Specifies an absolute 16-bit code address within
the current segment. Branches MAY NOT be
taken to odd code addresses.

Therefore, the least significant bit of ’caddr’ must
always contain a ’0’, otherwise a hardware trap
would occur.

rel

Represents an 8-bit signed word offset address
relative to the current Instruction Pointer contents
which points to the instruction after the branch
instruction.

Depending on the offset address range, either for-
ward (’rel’= 00h to 7Fh) or backward (’rel’= 80h to
FFh) branches are possible.

The branch instruction itself is repeatedly exe-
cuted, when ’rel’ = ’-1’ (FFh) for a word-sized
branch instruction, or ’rel’ = ’-2’ (FEh) for a dou-
ble-word-sized branch instruction.

[Rw]

The 16-bit branch target instruction address is
determined indirectly by the content of a word
GPR. In contrast to indirect data addresses, indi-
rectly specified code addresses are NOT calcu-
lated by additional pointer registers (e.g. DPP
registers).

Branches MAY NOT be taken to odd code
addresses. Therefore, to prevent a hardware trap,
the least significant bit of the address pointer GPR
must always contain a ’0.

seg

Specifies an absolute code segment number. All
devices support 256 different code segments, so
only the eight lower bits of the ’seg’ operand value
are used for updating the CSP register.

#trap7

Specifies a particular interrupt or trap number for
branching to the corresponding interrupt or trap
service routine by a jump vector table.

Trap numbers from 00h to 7Fh can be specified,
which allows access to any double word code
location within the address range
00’0000h...00’01FCh in code segment 0 (i.e. the
interrupt jump vector table).

For further information on the relation between
trap numbers and interrupt or trap sources, refer
to the device user manual section on “Interrupt
and Trap Functions”.

2.2 - Instruction execution times

The instruction execution time depends on where
the instruction is fetched from, and where the
operands are read from or written to.

The fastest processing mode is to execute a pro-
gram fetched from the internal ROM. In this case
most of the instructions can be processed in just
one machine cycle.

All external memory accesses are performed by
the on-chip External Bus Controller (EBC) which
works in parallel with the CPU.

Instructions from external memory cannot be pro-
cessed as fast as instructions from the internal
ROM, because it is necessary to perform data
transfers sequentially via the external interface.

In contrast to internal ROM program execution,
the time required to process an external program
additionally depends on the length of the instruc-
tions and operands, on the selected bus mode,
and on the duration of an external memory cycle.

Processing a program from the internal RAM
space is not as fast as execution from the internal
ROM area, but it is flexible (i.e. for loading tempo-
rary programs into the internal RAM via the chip's
serial interface, or end-of-line programming via
the bootstrap loader).

The following description evaluates the minimum
and maximum program execution times. which is
sufficient for most requirements. For an exact
determination of the instructions' state times, the
facilities provided by simulators or emulators
should be used.

This section defines measurement units, summa-
rizes the minimum (standard) state times of the
16-bit microcontroller instructions, and describes
the exceptions from the standard timing.

ST10 FAMILY PROGRAMMING MANUAL

9/172

2.2.1 - Definition of measurement units
The following measurement units are used to define instruction processing times:

[fCPU]: CPU operating frequency (may vary from 1MHz to 80MHz).

[State]: One state time is specified by one CPU clock period. Therefore, one State is used as the basic
time unit, because it represents the shortest period of time which has to be considered for
instruction timing evaluations.

1 [State] = 1/fCPU[s] ; for fCPU = variable

= 50[ns] ; for fCPU = 20MHz

[ACT]: ALE (Address Latch Enable) Cycle Time specifies the time required to perform one external
memory access. One ALE Cycle Time consists of either two (for demultiplexed external bus
modes) or three (for multiplexed external bus modes) state times plus a number of state times,
which is determined by the number of waitstates programmed in the MCTC (Memory Cycle
Time Control) and MTTC (Memory Tristate Time Control) bit fields of the SYSCON/BUSCONx
registers.

For demultiplexed external bus modes:

1*ACT = (2 + (15 – MCTC) + (1 – MTTC)) * States

= 100 n... 900 ns ; for fCPU = 20MHz

For multiplexed external bus modes:

1*ACT = (3 + (15 – MCTC) + (1 – MTTC)) * States

= 150ns ... 950ns ; for fCPU = 20MHz

Ttot The total time (Ttot) taken to process a particular part of a program can be calculated by the
sum of the single instruction processing times (TIn) of the considered instructions plus an offset
value of 6 state times which takes into account the solitary filling of the pipeline:

Ttot =TI1 + TI2 + ... + TIn + 6 * States

TIn The time (TIn) taken to process a single instruction, consists of a minimum number (TImin)
plus an additional number (TIadd) of instruction state times and/or ALE Cycle Times:

TIn =TImin + TIadd

ST10 FAMILY PROGRAMMING MANUAL

10/172

2.2.2 - Minimum state times

The table below shows the minimum number of
state times required to process an instruction
fetched from the internal ROM (TImin (ROM)).
This table can also be used to calculate the mini-
mum number of state times for instructions
fetched from the internal RAM (TImin (RAM)), or
ALE Cycle Times for instructions fetched from the
external memory (TImin (ext)).

Most of the 16-bit microcontroller instructions
(except some branch, multiplication, division and
a special move instructions) require a minimum of
two state times. For internal ROM program execu-
tion, execution time has no dependence on
instruction length, except for some special branch
situations.

To evaluate the execution time for the injected tar-
get instruction of a cache jump instruction, it can
be considered as if it was executed from the inter-
nal ROM, regardless of which memory area the
rest of the current program is really fetched from.

For some of the branch instructions the table
below represents both the standard number of
state times (i.e. the corresponding branch is
taken) and an additional TImin value in parenthe-
ses, which refers to the case where, either the
branch condition is not met, or a cache jump is
taken.

Instructions executed from the internal RAM
require the same minimum time as they would if

they were fetched from the internal ROM, plus an
instruction-length dependent number of state
times, as follows:

– For 2-byte instructions:
TImin(RAM) = TImin(ROM) + 4 * States

– For 4-byte instructions:
TImin(RAM) = TImin(ROM) + 6 * States

Unlike internal ROM program execution, the mini-
mum time TImin(ext) to process an external
instruction also depends on instruction length.
TImin(ext) is either 1 ALE Cycle Time for most of
the 2-byte instructions, or 2 ALE Cycle Times for
most of the 4-byte instructions.

The following formula represents the minimum
execution time of instructions fetched from an
external memory via a 16-bit wide data bus:

– For 2-byte instructions:
TImin(ext) = 1*ACT + (TImin(ROM) - 2) * States

– For 4-byte instructions:
TImin(ext) = 2*ACTs + (TImin(ROM) - 2) * States

Note: For instructions fetched from an external
memory via an 8-bit wide data bus, the
minimum number of required ALE Cycle
Times is twice the number for those of a
16-bit wide bus.

2.2.3 - Additional state times

Some operand accesses can extend the execu-
tion time of an instruction TIn. Since the additional
time TIadd is generally caused by internal instruc-
tion pipelining, it may be possible to minimize the
effect by rearranging the instruction sequences.
Simulators and emulators offer a high level of pro-
grammer support for program optimization.

The following operands require additional state
times:

Internal ROM operand reads:TIadd = 2 * States
Both byte and word operand reads always require
2 additional state times.

Table 6 : Minimum instruction state times [Unit = ns]

Instruction
TImin
(ROM)

[States]

TImin (ROM)
(20MHz

CPU clk)

CALLI, CALLA

CALLS, CALLR, PCALL

JB, JBC, JNB, JNBS

JMPS

JMPA, JMPI, JMPR

MUL, MULU

DIV, DIVL, DIVU, DIVLU

MOV[B] Rn, [Rm + #data16]

RET, RETI, RETP, RETS

TRAP

All other instructions

4

4

4

4

4

10

20

4

4

4

2

(2)

(2)

(2)

200

200

200

200

200

500

1000

200

200

200

100

(100)

(100)

(100)

ST10 FAMILY PROGRAMMING MANUAL

11/172

Internal RAM operand reads via indirect addressing modes: TIadd = 0 or 1 * State
Reading a GPR or any other directly addressed operand within the internal RAM space does NOT cause
additional state time. However, reading an indirectly addressed internal RAM operand will extend the pro-
cessing time by 1 state time, if the preceding instruction auto-increments or auto-decrements a GPR, as
shown in the following example:

In this case, the additional time can be avoided by putting another suitable instruction before the instruc-
tion In+1 indirectly reading the internal RAM.

Internal SFR operand reads: TIadd = 0, 1 * State or 2 * States
SFR read accesses do NOT usually require additional processing time. In some rare cases, however,
either one or two additional state times will be caused by particular SFR operations:

– Reading an SFR immediately after an instruction, which writes to the internal SFR space, as shown in
the following example:

– Reading the PSW register immediately after an instruction which implicitly updates the flags as shown
in the following example:

– Implicitly incrementing or decrementing the SP register immediately after an instruction which explicitly
writes to the SP register, as shown in the following example:

In each of these above cases, the extra state times can be avoided by putting other suitable instructions
before the instruction In+1 reading the SFR.

External operand reads: TIadd = 1 * ACT
Any external operand reading via a 16-bit wide data bus requires one additional ALE Cycle Time. Read-
ing word operands via an 8-bit wide data bus takes twice as much time (2 ALE Cycle Times) as the read-
ing of byte operands.

External operand writes: TIadd = 0 * State ... 1 * ACT
Writing an external operand via a 16-bit wide data bus takes one additional ALE Cycle Time. For timing
calculation of the external program parts, this extra time must always be considered. The value of TIadd
which must be considered for timing evaluations of internal program parts, may fluctuate between 0 state
times and 1 ALE Cycle Time. This is because external writes are normally performed in parallel to other
CPU operations. Thus, TIadd could already have been considered in the standard processing time of
another instruction. Writing a word operand via an 8-bit wide data bus requires twice as much time (2 ALE
Cycle Times) as the writing of a byte operand.

In : MOV R1, [R0+] ; auto-increment R0

In+1 : MOV [R3], [R2] ; if R2 points into the internal RAM space:

; TIadd = 1 * State

In : MOV T0, #1000h ; write to Timer 0

In+1 : ADD R3, T1 ; read from Timer 1: TIadd = 1 * State

In : ADD R0, #1000h ; implicit modification of PSW flags

In+1 : BAND C, Z ; read from PSW: TIadd = 2 * States

In : MOV SP, #0FB00h ; explicit update of the stack pointer

In+1 : SCXT R1, #1000h ; implicit decrement of the stack pointer:

; TIadd = 2 * States

ST10 FAMILY PROGRAMMING MANUAL

12/172

Jumps into the internal ROM space: TIadd = 0 or 2 * States
The minimum time of 4 state times for standard jumps into the internal ROM space will be extended by 2
additional state times, if the branch target instruction is a double word instruction at a non-aligned double
word location (xxx2h, xxx6h, xxxAh, xxxEh), as shown in the following example:

A cache jump, which normally requires just 2 state times, will be extended by 2 additional state times, if
both the cached jump target instruction and the following instruction are non-aligned double word instruc-
tions, as shown in the following example:

If necessary, these extra state times can be avoided by allocating double word jump target instructions to
aligned double word addresses (xxx0h, xxx4h, xxx8h, xxxCh).
Testing Branch Conditions: TIadd = 0 or 1 * States
NO extra time is usually required for a conditional branch instructions to decide whether a branch condi-
tion is met or not. However, an additional state time is required if the preceding instruction writes to the
PSW register, as shown in the following example:

In this case, the extra state time can be intercepted by putting another suitable instruction before the con-
ditional branch instruction.

label : ; any non-aligned double word instruction

; (e.g. at location 0FFEh)

.... :

In+1 : JMPA cc_UC, label ; if a standard branch is taken:

; TIadd = 2 * States (TIn = 6 * States)

label : ; any non-aligned double word instruction

; (e.g. at location 12FAh)

In+1 : ; any non-aligned double word instruction

; (e.g. at location 12FEh)

In+2 : JMPR cc_UC, label ; provided that a cache jump is taken:

; TIadd = 2 * States (TIn = 4 * States)

In : BSET USR0 ; implicit modification of PSW flags

In+1 : JMPR cc_Z, label ; test condition flag in PSW: TIadd= 1 * State

ST10 FAMILY PROGRAMMING MANUAL

13/172

H
ig

h
i

 L
o

w
xF

xE
xD

xC
xB

xA
x9

x8
x7

x6
x5

x4
x3

x2
x1

x0

0x

BSET BITaddrQ.q

BCLR BITaddrQ.q

JMPR cc, rel

R
O

L
M

U
L

B
F

LD
L

A
D

D
B

A
D

D
A

D
D

B
A

D
D

A
D

D
B

A
D

D
A

D
D

B
A

D
D

A
D

D
B

A
D

D

R
w

n,
 R

w
m

R
w

n
, R

w
m

B
IT

O
FF

, M
A

S
K

,
#d

at
a 3

R
w

n
, [

R
w

i]
R

w
n,

 [R
w

i+
]

R
w

n
, #

da
ta

3

R
E

G
, #

da
ta

16
M

E
M

, R
E

G
R

E
G

, M
E

M
R

w
n
, R

w
m

1x
R

O
L

R
w

n,
 #

d 4
M

U
LU

B
F

LD
H

A
D

D
C

B
A

D
D

C
A

D
D

C
B

A
D

D
C

A
D

D
C

B
A

D
D

C
A

D
D

C
B

A
D

D
C

A
D

D
C

B
A

D
D

C

2x
R

O
R

P
R

IO
R

B
C

M
P

S
U

B
B

S
U

B
S

U
B

B
S

U
B

S
U

B
B

S
U

B
S

U
B

B
S

U
B

S
U

B
B

S
U

B

R
w

n,
 R

w
m

R
w

n
, R

w
m

B
IT

ad
d,

 B
IT

ad
d

R
w

n
, [

R
w

i]
R

w
n,

 [R
w

i+
]

R
w

n
, #

da
ta

3

R
E

G
, #

da
ta

16
M

E
M

, R
E

G
R

E
G

, M
E

M
R

w
n
, R

w
m

3x
R

O
R

_
B

M
O

V
N

R
w

n,
 #

d 4
B

IT
ad

d,
 B

IT
ad

d
S

U
B

C
B

S
U

B
C

S
U

B
C

B
S

U
B

C
S

U
B

C
B

S
U

B
C

S
U

B
C

B
S

U
B

C
S

U
B

C
B

S
U

B
C

4x
S

H
L

D
IV

B
M

O
V

C
M

P
B

C
M

P
C

M
P

B
C

M
P

_
_

C
M

P
B

C
M

P
C

M
P

B
C

M
P

R
w

n,
 R

w
m

R
w

n
B

IT
ad

d,
 B

IT
ad

d
R

w
n
, [

R
w

i]
R

w
n,

 [R
w

i+
]

R
w

n
, #

da
ta

3

R
E

G
, #

da
ta

16
M

E
M

, R
E

G
R

E
G

, M
E

M
R

w
n
, R

w
m

5x
S

H
L

D
IV

U
B

O
R

R
w

n,
 #

d 4
R

w
n

B
IT

ad
d,

 B
IT

ad
d

X
O

R
B

X
O

R
X

O
R

B
X

O
R

X
O

R
B

X
O

R
X

O
R

B
X

O
R

X
O

R
B

X
O

R

6x
S

H
R

D
IV

L
B

A
N

D
A

N
D

B
A

N
D

A
N

D
B

A
N

D
A

N
D

B
A

N
D

A
N

D
B

A
N

D
A

N
D

B
A

N
D

R
w

n,
 R

w
m

R
w

n
B

IT
ad

d,
 B

IT
ad

d
R

w
n
, [

R
w

i]
R

w
n,

 [R
w

i+
]

R
w

n
, #

da
ta

3

R
E

G
, #

da
ta

16
M

E
M

, R
E

G
R

E
G

, M
E

M
R

w
n
, R

w
m

7x
S

H
R

D
IV

LU
B

X
O

R

R
w

n,
 #

d 4
R

w
n

B
IT

ad
d,

 B
IT

ad
d

O
R

B
O

R
O

R
B

O
R

O
R

B
O

R
O

R
B

O
R

O
R

B
O

R

8x
_

_
JB

M
O

V
B

M
O

V
ID

LE
C

M
P

I1
_

M
O

V
C

oX
X

X
C

M
P

I
N

E
G

C
M

P
I1

B
IT

ad
d,

 R
E

L
[-

R
w

m
],

R
w

n
R

w
n
, #

d 1
6

[R
w

n
],

M
E

M
R

w
n
, [

R
w

m
⊗

]
R

w
n
, M

E
M

R
w

n
R

w
n,

 #
d 4

9x
JM

P
I

TR
A

P
M

O
V

B
M

O
V

P
W

R
D

N
_

M
O

V
C

oX
X

X

cc
, [

R
w

n
]

#t
ra

p
JN

B
R

w
n
, [

R
w

m
+]

C
M

P
I2

M
E

M
, [

R
w

n]
[ID

X
I⊗

],
[R

w
m

⊗
]

C
M

P
D

2
C

P
LB

C
M

P
D

2

A
x

A
S

H
R

C
A

LL
I

JB
C

M
O

V
B

M
O

V
S

R
V

W
D

T
C

M
P

D
1

D
IS

W
D

T
M

O
V

B
C

oX
X

X
C

M
P

D
1

N
E

G
B

C
M

P
D

1

R
w

n,
 R

w
m

cc
, [

R
w

n
]

B
IT

ad
d,

 B
IT

ad
d

[R
w

n
],

R
w

m
R

w
n
, #

d 1
6

[R
w

n
],

M
E

M
R

w
n
, R

w
m

R
w

n
, M

E
M

R
w

n
R

w
n,

 #
d 4

B
x

A
S

H
R

C
A

L
LR

M
O

V
B

M
O

V
S

R
S

T
E

IN
IT

M
O

V
B

C
oS

T
O

R
E

R
w

n,
 #

d 4
R

E
L

JN
B

S
[R

w
m

],
R

w
n

C
M

P
D

2
[R

w
m

 +
 #

d 1
6
],

R
w

n

R
w

n,
 C

oR
E

G
C

M
P

D
2

C
P

LB
C

M
P

D
2

C
x

N
O

P
R

E
T

C
A

LL
A

M
O

V
B

M
O

V
_

S
C

X
T

M
O

V
B

Z
M

O
V

C
oS

T
O

R
E

M
O

V
B

Z
_

M
O

V
B

Z

C
C

, C
A

D
D

R
[R

w
n
],

[R
w

m
]

R
E

G
, #

d 1
6

M
E

M
, R

E
G

R
w

n
, [

R
w

m
 +

 #
d 1

6]
[R

w
n

 ⊗
],

C
oR

E
G

R
E

G
, M

E
M

R
w

n,
 R

w
m

D
x

E
X

T
P

(R
)/

R
E

T
S

C
A

LL
S

M
O

V
B

M
O

V
E

X
T

P
(R

)/
S

C
X

T
M

O
V

C
oM

O
V

AT
O

M
IC

/E
X

T
R

E
X

T
S

(R
)

E
X

T
S

(R
)

R
E

G
, M

E
M

[R
w

m
 +

 #
d 1

6
],

R
w

n
[ID

X
I⊗

],
[R

w
m

⊗
]

#d
at

a 2

R
w

m
, #

d 2
S

E
G

, C
A

D
D

D
R

[R
w

n+
],

[R
w

m
]

#
pa

g,
 #

da
ta

2
M

O
V

B
S

M
O

V
B

S
M

O
V

B
S

E
x

P
U

S
H

R
E

T
P

JM
PA

M
O

V
B

M
O

V
M

O
V

B
M

O
V

_
M

O
V

B
_

P
C

A
LL

M
O

V
B

M
O

V

R
E

G
R

E
G

C
C

, C
A

D
D

R
[R

w
n
],

[R
w

m
+]

R
E

G
, D

at
a#

16
R

w
n
, [

R
w

m
 +

 #
d 1

6]
R

E
G

, C
A

D
D

R
R

w
n
, #

da
ta

4

F
x

JM
P

S
_

_
M

O
V

B
M

O
V

_
M

O
V

B
M

O
V

B
M

O
V

M
O

V
B

M
O

V

P
O

P
R

E
T

I
S

E
G

, C
A

D
D

R
M

E
M

, R
E

G
[R

w
m

 +
 #

d 1
6
],

R
w

n
R

E
G

, M
E

M
R

w
n
, #

da
ta

4

2.3 - Instruction set summary

The following table lists the instruction mnemonic by hex-code with operand.

Table 7 : Instruction mnemonic by hex-code with operand

ST10 FAMILY PROGRAMMING MANUAL

14/172

Table 8 lists the instructions by their mnemonic and identifies the addressing modes that may be used with
a specific instruction and the instruction length, depending on the selected addressing mode (in bytes).

Table 8 : Mnemonic vs address mode & number of bytes

Mnemonic Addressing Modes Bytes Mnemonic Addressing Modes Bytes

ADD[B] Rwn
1, Rwm 1 2 CPL[B] Rwn

1 2

ADDC[B] Rwn
1, [Rwi]

2 NEG[B]

AND[B] Rwn
1, [Rwi+] 2 DIV Rwn 2

OR[B] Rwn
1, #data3

2 DIVL

SUB[B] reg, #data16 4 DIVLU

SUBC[B] reg, mem 4 DIVU
XOR[B] mem, reg 4 MUL Rwn, Rwm 2

MULU
ASHR Rwn, Rwm 2 CMPD1/2 Rwn, #data4 2

ROL / ROR Rwn, #data4 2 CMPI1/2 Rwn, #data16 4

SHL / SHR Rwn, mem 4

BAND bitaddrZ.z, bitaddrQ.q 4 CMP[B] Rwn, Rwm 1

BCMP Rwn, [Rwi]
1 2

BMOV Rwn, [Rwi+]1 2

BMOVN Rwn, #data3
1 2

BOR / BXOR reg, #data16 4

reg, mem 4
BCLR bitaddrQ.q, 2 CALLA cc, caddr 4

BSET JMPA
BFLDH bitoffQ, #mask8, #data8 4 CALLI cc, [Rwn] 2

BFLDL JMPI

MOV[B] Rwn
1, Rwm

1 2 CALLS seg, caddr 4

Rwn
1, #data4

2 JMPS

Rwn
1, [Rwm] 2 CALLR rel 2

Rwn
1, [Rwm+] 2 JMPR cc, rel 2

[Rwm], Rwn
1 2 JB bitaddrQ.q, rel 4

[-Rwm], Rwn 1 2 JBC

[Rwn], [Rwm] 2 JNB

[Rwn+], [Rwm] 2 JNBS

[Rwn], [Rwm+] 2 PCALL reg, caddr 4

reg, #data16 4 POP reg 2

Rwn, [Rwm+#data16]1 4 PUSH

[Rwm+#data16], Rwn 1 4 RETP

[Rwn], mem 4 SCXT reg, #data16 4

mem, [Rwn] 4 reg, mem 4

reg, mem 4 PRIOR Rwn, Rwm 2

mem, reg 4

ST10 FAMILY PROGRAMMING MANUAL

15/172

Note 1. Byte oriented instructions (suffix ‘B’) use Rb instead of Rw (not with [Rwi]!).

2.4 - Instruction set ordered by functional
group
The minimum number of state times required for
instruction execution are given for the following
configurations: internal ROM, internal RAM, exter-
nal memory with a 16-bit demultiplexed and multi-
plexed bus or an 8-bit demultiplexed and
multiplexed bus. These state time figures do not
take into account possible wait states on external
busses or possible additional state times induced
by operand fetches. The following notes apply to
this summary:

Data addressing modes
Rw: Word GPR (R0, R1, … , R15).
Rb: Byte GPR (RL0, RH0, …, RL7, RH7).

reg: SFR or GPR (in case of a byte operation
on an SFR, only the low byte can be
accessed via ‘reg’).

mem: Direct word or byte memory location.
[…]: Indirect word or byte memory location.

(Any word GPR can be used as indirect
address pointer, except for the arithmetic,
logical and compare instructions, where
only R0 to R3 are allowed).

bitaddr: Direct bit in the bit-addressable memory
area.

bitoff: Direct word in the bit-addressable mem-
ory area.

#datax: Immediate constant (the number of signif-
icant bits that can be user-specified is
given by the appendix “x”).

#mask8:Immediate 8-bit mask used for bit-field
modifications.

Multiply and divide operations
The MDL and MDH registers are implicit source
and/or destination operands of the multiply and
divide instructions.

Branch target addressing modes
caddr: Direct 16-bit jump target address

(Updates the Instruction Pointer).
seg: Direct 8-bit segment address (Updates

the Code Segment Pointer).
rel: Signed 8-bit jump target word offset

address relative to the Instruction
Pointer of the following instruction.

#trap7: Immediate 7-bit trap or interrupt number.

Extension operations
The EXT* instructions override the standard DPP
addressing scheme:
#pag: Immediate 10-bit page address.
#seg: Immediate 8-bit segment address.

MOVBS Rwn, Rbm 2 TRAP #trap7 2

MOVBZ reg, mem 4 ATOMIC #data2 2

mem, reg 4 EXTR

EXTS Rwm, #data2 2 EXTP Rwm, #data2 2

EXTSR #seg, #data2 4 EXTPR #pag, #data2 4

NOP - 2 SRST/IDLE - 4

RET PWRDN
RETI SRVWDT
RETS = DISWDT

EINIT

Table 8 : Mnemonic vs address mode & number of bytes (continued)

Mnemonic Addressing Modes Bytes Mnemonic Addressing Modes Bytes

ST10 FAMILY PROGRAMMING MANUAL

16/172

Branch condition codes
cc: Symbolically specifiable condition codes

cc_UC Unconditional
cc_Z Zero
cc_NZ Not Zero
cc_V Overflow
cc_NV No Overflow
cc_N Negative
cc_NN Not Negative
cc_C Carry
cc_NC No Carry
cc_EQ Equal

cc_NE Not Equal
cc_ULT Unsigned Less Than
cc_ULE Unsigned Less Than or Equal
cc_UGE Unsigned Greater Than or Equal
cc_UGT Unsigned Greater Than
cc_SLE Signed Less Than or Equal
cc_SLT Signed Less Than
cc_SGE Signed Greater Than or Equal
cc_SGT Signed Greater Than
cc_NET Not Equal and Not End-of-Table

Table 9 : Arithmetic instructions

Mnemonic Description

In
t.

R
O

M

In
t.

R
A

M

16
-b

it
 N

-M
u

x

16
-b

it
 M

u
x

8-
b

it
 N

-M
u

x

8-
b

it
 M

u
x

B
yt

es

ADD Rw, Rw Add direct word GPR to direct GPR 2 6 2 3 4 6 2

ADD Rw, [Rw] Add indirect word memory to direct GPR 2 6 2 3 4 6 2

ADD Rw, [Rw+] Add indirect word memory to direct GPR and post-
increment source pointer by 2

2 6 2 3 4 6 2

ADD Rw, #data3 Add immediate word data to direct GPR 2 6 2 3 4 6 2

ADD reg, #data16 Add immediate word data to direct register 2 8 4 6 8 12 4

ADD reg, mem Add direct word memory to direct register 2 8 4 6 8 12 4

ADD mem, reg Add direct word register to direct memory 2 8 4 6 8 12 4

ADDB Rb, Rb Add direct byte GPR to direct GPR 2 6 2 3 4 6 2

ADDB Rb, [Rw] Add indirect byte memory to direct GPR 2 6 2 3 4 6 2

ADDB Rb, [Rw+] Add indirect byte memory to direct GPR and post-increment
source pointer by 1

2 6 2 3 4 6 2

ADDB Rb, #data3 Add immediate byte data to direct GPR 2 6 2 3 4 6 2

ADDB reg, #data16 Add immediate byte data to direct register 2 8 4 6 8 12 4

ADDB reg, mem Add direct byte memory to direct register 2 8 4 6 8 12 4

ADDB mem, reg Add direct byte register to direct memory 2 8 4 6 8 12 4

ADDC Rw, Rw Add direct word GPR to direct GPR with Carry 2 6 2 3 4 6 2

ADDC Rw, [Rw] Add indirect word memory to direct GPR with Carry 2 6 2 3 4 6 2

ADDC Rw, [Rw+] Add indirect word memory to direct GPR with Carry and
post-increment source pointer by 2

2 6 2 3 4 6 2

ADDC Rw, #data3 Add immediate word data to direct GPR with Carry 2 6 2 3 4 6 2

ADDC reg, #data16 Add immediate word data to direct register with Carry 2 8 4 6 8 12 4

ADDC reg, mem Add direct word memory to direct register with Carry 2 8 4 6 8 12 4

ADDC mem, reg Add direct word register to direct memory with Carry 2 8 4 6 8 12 4

ST10 FAMILY PROGRAMMING MANUAL

17/172

ADDCB Rb, Rb Add direct byte GPR to direct GPR with Carry 2 6 2 3 4 6 2

ADDCB Rb, [Rw] Add indirect byte memory to direct GPR with Carry 2 6 2 3 4 6 2

ADDCB Rb, [Rw+] Add indirect byte memory to direct GPR with Carry and
post-increment source pointer by 1

2 6 2 3 4 6 2

ADDCB Rb, #data3 Add immediate byte data to direct GPR with Carry 2 6 2 3 4 6 2

ADDCB reg, #data16 Add immediate byte data to direct register with Carry 2 8 4 6 8 12 4

ADDCB reg, mem Add direct byte memory to direct register with Carry 2 8 4 6 8 12 4

ADDCB mem, reg Add direct byte register to direct memory with Carry 2 8 4 6 8 12 4

CPL Rw Complement direct word GPR 2 6 2 3 4 6 2

CPLB Rb Complement direct byte GPR 2 6 2 3 4 6 2

DIV Rw Signed divide register MDL by direct GPR
(16-/16-bit)

20 24 20 21 22 24 2

DIVL Rw Signed long divide register MD by direct GPR
(32-/16-bit)

20 24 20 21 22 24 2

DIVLU Rw Unsigned long divide register MD by direct GPR
(32-/16-bit)

20 24 20 21 22 24 2

DIVU Rw Unsigned divide register MDL by direct GPR
(16-/16-bit)

20 24 20 21 22 24 2

MUL Rw, Rw Signed multiply direct GPR by direct GPR (16-16-bit) 10 14 10 11 12 14 2

MULU Rw, Rw Unsigned multiply direct GPR by direct GPR (16-16-bit) 10 14 10 11 12 14 2

NEG Rw Negate direct word GPR 2 6 2 3 4 6 2

NEGB Rb Negate direct byte GPR 2 6 2 3 4 6 2

SUB Rw, Rw Subtract direct word GPR from direct GPR 2 6 2 3 4 6 2

SUB Rw, [Rw] Subtract indirect word memory from direct GPR 2 6 2 3 4 6 2

SUB Rw, [Rw+] Subtract indirect word memory from direct GPR &
post-increment source pointer by 2

2 6 2 3 4 6 2

SUB Rw, #data3 Subtract immediate word data from direct GPR 2 6 2 3 4 6 2

SUB reg, #data16 Subtract immediate word data from direct register 2 8 4 6 8 12 4

SUB reg, mem Subtract direct word memory from direct register 2 8 4 6 8 12 4

SUB mem, reg Subtract direct word register from direct memory 2 8 4 6 8 12 4

SUBB Rb, Rb Subtract direct byte GPR from direct GPR 2 6 2 3 4 6 2

SUBB Rb, [Rw] Subtract indirect byte memory from direct GPR 2 6 2 3 4 6 2

SUBB Rb, [Rw+] Subtract indirect byte memory from direct GPR &
post-increment source pointer by 1

2 6 2 3 4 6 2

SUBB Rb, #data3 Subtract immediate byte data from direct GPR 2 6 2 3 4 6 2

SUBB reg, #data16 Subtract immediate byte data from direct register 2 8 4 6 8 12 4

Table 9 : Arithmetic instructions (continued)

Mnemonic Description

In
t.

R
O

M

In
t.

R
A

M

16
-b

it
 N

-M
u

x

16
-b

it
 M

u
x

8-
b

it
 N

-M
u

x

8-
b

it
 M

u
x

B
yt

es

ST10 FAMILY PROGRAMMING MANUAL

18/172

SUBB reg, mem Subtract direct byte memory from direct register 2 8 4 6 8 12 4

SUBB mem, reg Subtract direct byte register from direct memory 2 8 4 6 8 12 4

SUBC Rw, Rw Subtract direct word GPR from direct GPR with Carry 2 6 2 3 4 6 2

SUBC Rw, [Rw] Subtract indirect word memory from direct GPR with Carry 2 6 2 3 4 6 2

SUBC Rw, [Rw+] Subtract indirect word memory from direct GPR with Carry
and post-increment source pointer by 2

2 6 2 3 4 6 2

SUBC Rw, #data3 Subtract immediate word data from direct GPR with Carry 2 6 2 3 4 6 2

SUBC reg, #data16 Subtract immediate word data from direct register with
Carry

2 8 4 6 8 12 4

SUBC reg, mem Subtract direct word memory from direct register with Carry 2 8 4 6 8 12 4

SUBC mem, reg Subtract direct word register from direct memory with Carry 2 8 4 6 8 12 4

SUBCB Rb, Rb Subtract direct byte GPR from direct GPR with Carry 2 6 2 3 4 6 2

SUBCB Rb, [Rw] Subtract indirect byte memory from direct GPR with Carry 2 6 2 3 4 6 2

SUBCB Rb, [Rw+] Subtract indirect byte memory from direct GPR with Carry
and post-increment source pointer by 1

2 6 2 3 4 6 2

SUBCB Rb, #data3 Subtract immediate byte data from direct GPR with Carry 2 6 2 3 4 6 2

SUBCB reg, #data16 Subtract immediate byte data from direct register with Carry 2 8 4 6 8 12 4

SUBCB reg, mem Subtract direct byte memory from direct register with Carry 2 8 4 6 8 12 4

SUBCB mem, reg Subtract direct byte register from direct memory with Carry 2 8 4 6 8 12 4

Table 9 : Arithmetic instructions (continued)

Mnemonic Description

In
t.

R
O

M

In
t.

R
A

M

16
-b

it
 N

-M
u

x

16
-b

it
 M

u
x

8-
b

it
 N

-M
u

x

8-
b

it
 M

u
x

B
yt

es

Table 10 : Logical instructions

Mnemonic Description

In
t

R
O

M

In
t.

 R
A

M

16
-b

it
 N

-M
u

x

16
-b

it
 M

u
x

8-
b

it
 N

-M
u

x

8-
b

it
 M

U
X

B
yt

es

AND Rw, Rw Bitwise AND direct word GPR with direct GPR 2 6 2 3 4 6 2

AND Rw, [Rw] Bitwise AND indirect word memory with direct GPR 2 6 2 3 4 6 2

AND Rw, [Rw+] Bitwise AND indirect word memory with direct GPR and
post-increment source pointer by 2

2 6 2 3 4 6 2

AND Rw, #data3 Bitwise AND immediate word data with direct GPR 2 6 2 3 4 6 2

AND reg, #data16 Bitwise AND immediate word data with direct register 2 8 4 6 8 12 4

AND reg, mem Bitwise AND direct word memory with direct register 2 8 4 6 8 12 4

AND mem, reg Bitwise AND direct word register with direct memory 2 8 4 6 8 12 4

ANDB Rb, Rb Bitwise AND direct byte GPR with direct GPR 2 6 2 3 4 6 2

ANDB Rb, [Rw] Bitwise AND indirect byte memory with direct GPR 2 6 2 3 4 6 2

ST10 FAMILY PROGRAMMING MANUAL

19/172

ANDB Rb, [Rw+] Bitwise AND indirect byte memory with direct GPR and
post-increment source pointer by 1

2 6 2 3 4 6 2

ANDB Rb, #data3 Bitwise AND immediate byte data with direct GPR 2 6 2 3 4 6 2

ANDB reg, #data16 Bitwise AND immediate byte data with direct register 2 8 4 6 8 12 4

ANDB reg, mem Bitwise AND direct byte memory with direct register 2 8 4 6 8 12 4

ANDB mem, reg Bitwise AND direct byte register with direct memory 2 8 4 6 8 12 4

OR Rw, Rw Bitwise OR direct word GPR with direct GPR 2 6 2 3 4 6 2

OR Rw, [Rw] Bitwise OR indirect word memory with direct GPR 2 6 2 3 4 6 2

OR Rw, [Rw+] Bitwise OR indirect word memory with direct GPR and
post-increment source pointer by 2

2 6 2 3 4 6 2

OR Rw, #data3 Bitwise OR immediate word data with direct GPR 2 6 2 3 4 6 2

OR reg, #data16 Bitwise OR immediate word data with direct register 2 8 4 6 8 12 4

OR reg, mem Bitwise OR direct word memory with direct register 2 8 4 6 8 12 4

OR mem, reg Bitwise OR direct word register with direct memory 2 8 4 6 8 12 4

ORB Rb, Rb Bitwise OR direct byte GPR with direct GPR 2 6 2 3 4 6 2

ORB Rb, [Rw] Bitwise OR indirect byte memory with direct GPR 2 6 2 3 4 6 2

ORB Rb, [Rw+] Bitwise OR indirect byte memory with direct GPR and
post-increment source pointer by 1

2 6 2 3 4 6 2

ORB Rb, #data3 Bitwise OR immediate byte data with direct GPR 2 6 2 3 4 6 2

ORB reg, #data16 Bitwise OR immediate byte data with direct register 2 8 4 6 8 12 4

ORB reg, mem Bitwise OR direct byte memory with direct register 2 8 4 6 8 12 4

ORB mem, reg Bitwise OR direct byte register with direct memory 2 8 4 6 8 12 4

XOR Rw, Rw Bitwise XOR direct word GPR with direct GPR 2 6 2 3 4 6 2

XOR Rw, [Rw] Bitwise XOR indirect word memory with direct GPR 2 6 2 3 4 6 2

XOR Rw, [Rw+] Bitwise XOR indirect word memory with direct GPR and
post-increment source pointer by 2

2 6 2 3 4 6 2

XOR Rw, #data3 Bitwise XOR immediate word data with direct GPR 2 6 2 3 4 6 2

XOR reg, #data16 Bitwise XOR immediate word data with direct register 2 8 4 6 8 12 4

XOR reg, mem Bitwise XOR direct word memory with direct register 2 8 4 6 8 12 4

XOR mem, reg Bitwise XOR direct word register with direct memory 2 8 4 6 8 12 4

XORB Rb, Rb Bitwise XOR direct byte GPR with direct GPR 2 6 2 3 4 6 2

XORB Rb, [Rw] Bitwise XOR indirect byte memory with direct GPR 2 6 2 3 4 6 2

XORB Rb, [Rw+] Bitwise XOR indirect byte memory with direct GPR and
post-increment source pointer by 1

2 6 2 3 4 6 2

XORB Rb, #data3 Bitwise XOR immediate byte data with direct GPR 2 6 2 3 4 6 2

XORB reg, #data16 Bitwise XOR immediate byte data with direct register 2 8 4 6 8 12 4

XORB reg, mem Bitwise XOR direct byte memory with direct register 2 8 4 6 8 12 4

XORB mem, reg Bitwise XOR direct byte register with direct memory 2 8 4 6 8 12 4

Table 10 : Logical instructions (continued)

Mnemonic Description

In
t

R
O

M

In
t.

 R
A

M

16
-b

it
 N

-M
u

x

16
-b

it
 M

u
x

8-
b

it
 N

-M
u

x

8-
b

it
 M

U
X

B
yt

es

ST10 FAMILY PROGRAMMING MANUAL

20/172

Table 11 : Boolean bit map instructions (continued)

Mnemonic Description

In
t.

 R
O

M

In
t.

 R
A

M

16
-b

it
 N

-M
u

x

16
-b

it
 M

u
x

8-
b

it
 N

-M
u

x

8-
b

it
 M

u
x

B
yt

es

BAND
bitaddr, bitaddr

AND direct bit with direct bit 2 8 4 6 8 12 4

BCLR bitaddr Clear direct bit 2 6 2 3 4 6 2

BCMP
bitaddr, bitaddr

Compare direct bit to direct bit 2 8 4 6 8 12 4

BFLDH
bitoff, #mask8,#data8

Bitwise modify masked high byte of bit-addressable direct
word memory with immediate data

2 8 4 6 8 12 4

BFLDL
bitoff, #mask8, #data8

Bitwise modify masked low byte of bit-addressable direct
word memory with immediate data

2 8 4 6 8 12 4

BMOV
bitaddr, bitaddr

Move direct bit to direct bit 2 8 4 6 8 12 4

BMOVN
bitaddr, bitaddr

Move negated direct bit to direct bit 2 8 4 6 8 12 4

BOR
bitaddr, bitaddr

OR direct bit with direct bit 2 8 4 6 8 12 4

BSET bitaddr Set direct bit 2 6 2 3 4 6 2

BXOR
bitaddr, bitaddr

XOR direct bit with direct bit 2 8 4 6 8 12 4

CMP Rw, Rw Compare direct word GPR to direct GPR 2 6 2 3 4 6 2

CMP Rw, [Rw] Compare indirect word memory to direct GPR 2 6 2 3 4 6 2

CMP Rw, [Rw+] Compare indirect word memory to direct GPR and
post-increment source pointer by 2

2 6 2 3 4 6 2

CMP Rw, #data3 Compare immediate word data to direct GPR 2 6 2 3 4 6 2

CMP reg, #data16 Compare immediate word data to direct register 2 8 4 6 8 12 4

CMP reg, mem Compare direct word memory to direct register 2 8 4 6 8 12 4

CMPB Rb, Rb Compare direct byte GPR to direct GPR 2 6 2 3 4 6 2

CMPB Rb, [Rw] Compare indirect byte memory to direct GPR 2 6 2 3 4 6 2

CMPB Rb, [Rw+] Compare indirect byte memory to direct GPR and
post-increment source pointer by 1

2 6 2 3 4 6 2

CMPB Rb, #data3 Compare immediate byte data to direct GPR 2 6 2 3 4 6 2

CMPB reg, #data16 Compare immediate byte data to direct register 2 8 4 6 8 12 4

CMPB reg, mem Compare direct byte memory to direct register 2 8 4 6 8 12 4

ST10 FAMILY PROGRAMMING MANUAL

21/172

Table 12 : Compare and loop instructions (continued)

Mnemonic Description

In
t.

 R
O

M

In
t.

 R
A

M

16
-b

it
 N

-M
u

x

16
-b

it
 M

u
x

8-
b

it
 N

-M
u

x

8-
b

it
 M

u
x

B
yt

es

CMPD1 Rw, #data4 Compare immediate word data to direct GPR and
decrement GPR by 1

2 6 2 3 4 6 2

CMPD1 Rw, #data16 Compare immediate word data to direct GPR and
decrement GPR by 1

2 8 4 6 8 12 4

CMPD1 Rw, mem Compare direct word memory to direct GPR and
decrement GPR by 1

2 8 4 6 8 12 4

CMPD2 Rw, #data4 Compare immediate word data to direct GPR and
decrement GPR by 2

2 6 2 3 4 6 2

CMPD2 Rw, #data16 Compare immediate word data to direct GPR and
decrement GPR by 2

2 8 4 6 8 12 4

CMPD2 Rw, mem Compare direct word memory to direct GPR and
decrement GPR by 2

2 8 4 6 8 12 4

CMPI1 Rw, #data4 Compare immediate word data to direct GPR and
increment GPR by 1

2 6 2 3 4 6 2

CMPI1 Rw, #data16 Compare immediate word data to direct GPR and
increment GPR by 1

2 8 4 6 8 12 4

CMPI1 Rw, mem Compare direct word memory to direct GPR and
increment GPR by 1

2 8 4 6 8 12 4

CMPI2 Rw, #data4 Compare immediate word data to direct GPR and
increment GPR by 2

2 6 2 3 4 6 2

CMPI2 Rw, #data16 Compare immediate word data to direct GPR and
increment GPR by 2

2 8 4 6 8 12 4

CMPI2 Rw, mem Compare direct word memory to direct GPR and
increment GPR by 2

2 8 4 6 8 12 4

Table 13 : Prioritize instructions

Mnemonic Description

In
t.

 R
O

M

In
t.

 R
A

M

16
-b

it
 N

-M
u

x

16
-b

it
 M

u
x

8-
b

it
 N

-M
u

x

8-
b

it
 M

u
x

B
yt

es

PRIOR Rw, Rw Determine number of shift cycles to normalize direct word
GPR and store result in direct word GPR

2 6 2 3 4 6 2

ST10 FAMILY PROGRAMMING MANUAL

22/172

Table 14 : Shift and rotate instructions (continued)

Mnemonic Description

In
t.

 R
O

M

In
t.

 R
A

M

16
-b

it
 N

-M
u

x

16
-b

it
 M

u
x

8-
b

it
 N

-M
u

x

8-
b

it
 M

u
x

B
yt

es

ASHR Rw, Rw Arithmetic (sign bit) shift right direct word GPR; number of
shift cycles specified by direct GPR

2 6 2 3 4 6 2

ASHR Rw, #data4 Arithmetic (sign bit) shift right direct word GPR; number of
shift cycles specified by immediate data

2 6 2 3 4 6 2

ROL Rw, Rw Rotate left direct word GPR; number of shift cycles
specified by direct GPR

2 6 2 3 4 6 2

ROL Rw, #data4 Rotate left direct word GPR; number of shift cycles
specified by immediate data

2 6 2 3 4 6 2

ROR Rw, Rw Rotate right direct word GPR; number of shift cycles
specified by direct GPR

2 6 2 3 4 6 2

ROR Rw, #data4 Rotate right direct word GPR; number of shift cycles
specified by immediate data

2 6 2 3 4 6 2

SHL Rw, Rw Shift left direct word GPR; number of shift cycles specified
by direct GPR

2 6 2 3 4 6 2

SHL Rw, #data4 Shift left direct word GPR; number of shift cycles specified
by immediate data

2 6 2 3 4 6 2

SHR Rw, Rw Shift right direct word GPR; number of shift cycles specified
by direct GPR

2 6 2 3 4 6 2

SHR Rw, #data4 Shift right direct word GPR; number of shift cycles specified
by immediate data

2 6 2 3 4 6 2

Table 15 : Data movement instructions

Mnemonic Description

In
t.

 R
O

M

In
t.

 R
A

M

16
-b

it
 N

-M
u

x

16
-b

it
 M

u
x

8-
b

it
 N

-M
u

x

8-
b

it
 M

u
x

B
yt

es

MOV Rw, Rw Move direct word GPR to direct GPR 2 6 2 3 4 6 2

MOV Rw, #data4 Move immediate word data to direct GPR 2 6 2 3 4 6 2

MOV reg, #data16 Move immediate word data to direct register 2 8 4 6 8 12 4

MOV Rw, [Rw] Move indirect word memory to direct GPR 2 6 2 3 4 6 2

MOV Rw, [Rw+] Move indirect word memory to direct GPR and
post-increment source pointer by 2

2 6 2 3 4 6 2

MOV [Rw], Rw Move direct word GPR to indirect memory 2 6 2 3 4 6 2

MOV [-Rw], Rw Pre-decrement destination pointer by 2 and move
direct word GPR to indirect memory

2 6 2 3 4 6 2

MOV [Rw], [Rw] Move indirect word memory to indirect memory 2 6 2 3 4 6 2

MOV [Rw+], [Rw] Move indirect word memory to indirect memory &
post-increment destination pointer by 2

2 6 2 3 4 6 2

MOV [Rw], [Rw+] Move indirect word memory to indirect memory &
post-increment source pointer by 2

2 6 2 3 4 6 2

ST10 FAMILY PROGRAMMING MANUAL

23/172

MOV Rw, [Rw+ #data16] Move indirect word memory by base plus constant
to direct GPR

4 10 6 8 10 14 4

MOV [Rw+ #data16], Rw Move direct word GPR to indirect memory by base
plus constant

2 8 4 6 8 12 4

MOV [Rw], mem Move direct word memory to indirect memory 2 8 4 6 8 12 4

MOV mem, [Rw] Move indirect word memory to direct memory 2 8 4 6 8 12 4

MOV reg, mem Move direct word memory to direct register 2 8 4 6 8 12 4

MOV mem, reg Move direct word register to direct memory 2 8 4 6 8 12 4

MOVB Rb, Rb Move direct byte GPR to direct GPR 2 6 2 3 4 6 2

MOVB Rb, #data4 Move immediate byte data to direct GPR 2 6 2 3 4 6 2

MOVB reg, #data16 Move immediate byte data to direct register 2 8 4 6 8 12 4

MOVB Rb, [Rw] Move indirect byte memory to direct GPR 2 6 2 3 4 6 2

MOVB Rb, [Rw+] Move indirect byte memory to direct GPR and
post-increment source pointer by 1

2 6 2 3 4 6 2

MOVB [Rw], Rb Move direct byte GPR to indirect memory 2 6 2 3 4 6 2

MOVB [-Rw], Rb Pre-decrement destination pointer by 1 and move
direct byte GPR to indirect memory

2 6 2 3 4 6 2

MOVB [Rw], [Rw] Move indirect byte memory to indirect memory 2 6 2 3 4 6 2

MOVB [Rw+], [Rw] Move indirect byte memory to indirect memory and
post-increment destination pointer by 1

2 6 2 3 4 6 2

MOVB [Rw], [Rw+] Move indirect byte memory to indirect memory and
post-increment source pointer by 1

2 6 2 3 4 6 2

MOVB Rb, [Rw+ #data16] Move indirect byte memory by base plus constant
to direct GPR

4 10 6 8 10 14 4

MOVB [Rw+ #data16], Rb Move direct byte GPR to indirect memory by base
plus constant

2 8 4 6 8 12 4

MOVB [Rw], mem Move direct byte memory to indirect memory 2 8 4 6 8 12 4

MOVB mem, [Rw] Move indirect byte memory to direct memory 2 8 4 6 8 12 4

MOVB reg, mem Move direct byte memory to direct register 2 8 4 6 8 12 4

MOVB mem, reg Move direct byte register to direct memory 2 8 4 6 8 12 4

MOVBS Rw, Rb Move direct byte GPR with sign extension to direct
word GPR

2 6 2 3 4 6 2

MOVBS reg, mem Move direct byte memory with sign extension to
direct word register

2 8 4 6 8 12 4

MOVBS mem, reg Move direct byte register with sign extension to
direct word memory

2 8 4 6 8 12 4

MOVBZ Rw, Rb Move direct byte GPR with zero extension to direct
word GPR

2 6 2 3 4 6 2

MOVBZ reg, mem Move direct byte memory with zero extension to
direct word register

2 8 4 6 8 12 4

MOVBZ mem, reg Move direct byte register with zero extension to
direct word memory

2 8 4 6 8 12 4

Table 15 : Data movement instructions (continued)

Mnemonic Description

In
t.

 R
O

M

In
t.

 R
A

M

16
-b

it
 N

-M
u

x

16
-b

it
 M

u
x

8-
b

it
 N

-M
u

x

8-
b

it
 M

u
x

B
yt

es

ST10 FAMILY PROGRAMMING MANUAL

24/172

Table 16 : Jump and Call Instructions (continued)

Mnemonic Description

In
t.

 R
O

M

In
t.

 R
A

M

16
-b

it
 N

-M
u

x

16
-b

it
 M

u
x

8-
b

it
 N

-M
u

x

8-
b

it
 M

u
x

B
yt

es

CALLA cc, caddr Call absolute subroutine if condition is met 4/2 10/8 6/4 8/6 10/8 14/12 4

CALLI cc, [Rw] Call indirect subroutine if condition is met 4/2 8/6 4/2 5/3 6/4 8/6 2

CALLR rel Call relative subroutine 4 8 4 5 6 8 2

CALLS seg, caddr Call absolute subroutine in any code segment 4 10 6 8 10 14 4

JB bitaddr, rel Jump relative if direct bit is set 4 10 6 8 10 14 4

JBC bitaddr, rel Jump relative and clear bit if direct bit is set 4 10 6 8 10 14 4

JMPA cc, caddr Jump absolute if condition is met 4/2 10/8 6/4 8/6 10/8 14/12 4

JMPI cc, [Rw] Jump indirect if condition is met 4/2 8/6 4/2 5/3 6/4 8/6 2

JMPR cc, rel Jump relative if condition is met 4/2 8/6 4/2 5/3 6/4 8/6 2

JMPS seg, caddr Jump absolute to a code segment 4 10 6 8 10 14 4

JNB bitaddr, rel Jump relative if direct bit is not set 4 10 6 8 10 14 4

JNBS bitaddr, rel Jump relative and set bit if direct bit is not set 4 10 6 8 10 14 4

PCALL reg, caddr Push direct word register onto system stack and
call absolute subroutine

4 10 6 8 10 14 4

TRAP #trap7 Call interrupt service routine via immediate trap
number

4 8 4 5 6 8 2

Table 17 : System Stack Instructions

Mnemonic Description

In
t.

 R
O

M

In
t.

 R
A

M

16
-b

it

16
-b

it

8-
b

it

8-
b

it

B
yt

es

POP reg Pop direct word register from system stack 2 6 2 3 4 6 2

PUSH reg Push direct word register onto system stack 2 6 2 3 4 6 2

SCXT reg, #data16 Push direct word register onto system stack and update
register with immediate data

2 8 4 6 8 12 4

SCXT reg, mem Push direct word register onto system stack and update
register with direct memory

2 8 4 6 8 12 4

Table 18 : Return Instructions

Mnemonic Description

In
t.

 R
O

M

In
t.

 R
A

M

16
-b

it

16
-b

it

8-
b

it

8-
b

it

B
yt

es

RET Return from intra-segment subroutine 4 8 4 5 6 8 2

RETI Return from interrupt service subroutine 4 8 4 5 6 8 2

RETP reg Return from intra-segment subroutine and pop direct word
register from system stack

4 8 4 5 6 8 2

RETS Return from inter-segment subroutine 4 8 4 5 6 8 2

ST10 FAMILY PROGRAMMING MANUAL

25/172

Table 19 : System Control Instructions (continued)

Note 1. The EXT instructions override the standard DPP addressing sheme.

Mnemonic Description

In
t.

 R
O

M

In
t.

 R
A

M

16
-b

it
 N

-M
u

x

16
-b

it
 M

u
x

8-
b

it
 N

-M
u

x

8-
b

it
 M

u
x

B
yt

es

ATOMIC #data2 Begin ATOMIC sequence 1 2 6 2 3 4 6 2

DISWDT Disable Watchdog Timer 2 8 4 6 8 12 4

EINIT Signify End-of-Initialization on RSTOUT-pin 2 8 4 6 8 12 4

EXTR #data2 Begin EXTended Register sequence 1 2 6 2 3 4 6 2

EXTP Rw, #data2 Begin EXTended Page sequence1 2 6 2 3 4 6 2

EXTP #pag, #data2 Begin EXTended Page sequence1 2 8 4 6 8 12 4

EXTPR Rw, #data2 Begin EXTended Page and Register sequence 1 2 6 2 3 4 6 2

EXTPR #pag, #data2 Begin EXTended Page and Register sequence 1 2 8 4 6 8 12 4

EXTS Rw, #data2 Begin EXTended Segment sequence1 2 6 2 3 4 6 2

EXTS #seg, #data2 Begin EXTended Segment sequence1 2 8 4 6 8 12 4

EXTSR Rw, #data2 Begin EXTended Segment and Register sequence 1 2 6 2 3 4 6 2

EXTSR #seg, #data2 Begin EXTended Segment and Register sequence 1 2 8 4 6 8 12 4

IDLE Enter Idle Mode 2 8 4 6 8 12 4

PWRDN Enter Power Down Mode (supposes NMI-pin is low) 2 8 4 6 8 12 4

SRST Software Reset 2 8 4 6 8 12 4

SRVWDT Service Watchdog Timer 2 8 4 6 8 12 4

Table 20 : Miscellaneous instructions

Mnemonic Description

In
t.

 R
O

M

In
t.

 R
A

M

16
-b

it
 N

-M
u

x

16
-b

it
 M

u
x

8-
b

it
 N

-M
u

x

8-
b

it
 M

u
x

B
yt

es

NOP Null operation 2 6 2 3 4 6 2

ST10 FAMILY PROGRAMMING MANUAL

26/172

2.5 - Instruction set ordered by opcodes

The following pages list the instruction set ordered
by their hexadecimal opcodes. This is used to
identify specific instructions when reading execut-
able code, i.e. during the debugging phase.

Notes for Opcode Lists

1. Some instructions are encoded by means of
additional bits in the operand field of the instruction

For these instructions only the lowest four GPRs,
R0 to R3, can be used as indirect address
pointers.

2. Some instructions are encoded by means of
additional bits in the operand field of the instruc-
tion.

Notes on the JMPR instructions

The condition code to be tested for the JMPR
instructions is specified by the opcode. Two mne-
monic representation alternatives exist for some
of the condition codes.

Notes on the BCLR and BSET instructions

The position of the bit to be set or to be cleared is
specified by the opcode. The operand “bitaddrQ.q”
(where q=0 to 15) refers to a particular bit within a
bit-addressable word.

Notes on the undefined opcodes

A hardware trap occurs when one of the unde-
fined opcodes signified by ‘----’ is decoded by the
CPU.

x0h - x7h:Rw, #data3or Rb, #data3

x8h - xBh:Rw, [Rw] or Rb, [Rw]

xCh - xFh Rw, [Rw+] or Rb, [Rw+]

00xx.xxxx: EXTS or ATOMIC

01xx.xxxx: EXTP

10xx.xxxx: EXTSR or EXTR

11xx.xxxx: EXTPR

00xx.xxxx: EXTS or ATOMIC

Table 21 : Instruction set ordered by Hex code

Hex- code Number of Bytes Mnemonic Operand

00 2 ADD Rwn, Rwm

01 2 ADDB Rbn, Rbm

02 4 ADD reg, mem

03 4 ADDB reg, mem

04 4 ADD mem, reg

05 4 ADDB mem, reg

06 4 ADD reg, #data16

07 4 ADDB reg, #data16

08 2 ADD Rwn, [Rwi+] or Rwn, [Rwi] or Rwn, #data3

09 2 ADDB Rbn, [Rwi+] or Rbn, [Rwi] or Rbn, #data3

0A 4 BFLDL bitoffQ, #mask8, #data8

0B 2 MUL Rwn, Rwm

0C 2 ROL Rwn, Rwm

0D 2 JMPR cc_UC, rel

0E 2 BCLR bitaddrQ.0

0F 2 BSET bitaddrQ.0

10 2 ADDC Rwn, Rwm

11 2 ADDCB Rbn, Rbm

ST10 FAMILY PROGRAMMING MANUAL

27/172

12 4 ADDC reg, mem

13 4 ADDCB reg, mem

14 4 ADDC mem, reg

15 4 ADDCB mem, reg

16 4 ADDC reg, #data16

17 4 ADDCB reg, #data16

18 2 ADDC Rwn, [Rwi+] or Rwn, [Rwi] or Rwn, #data3

19 2 ADDCB Rbn, [Rwi+] or Rbn, [Rwi] or Rbn, #data3

1A 4 BFLDH bitoffQ, #mask8, #data8

1B 2 MULU Rwn, Rwm

1C 2 ROL Rwn, #data4

1D 2 JMPR cc_NET, rel

1E 2 BCLR bitaddrQ.1

1F 2 BSET bitaddrQ.1

20 2 SUB Rwn, Rwm

21 2 SUBB Rbn, Rbm

22 4 SUB reg, mem

23 4 SUBB reg, mem

24 4 SUB mem, reg

25 4 SUBB mem, reg

26 4 SUB reg, #data16

27 4 SUBB reg, #data16

28 2 SUB Rwn, [Rwi+] or Rwn, [Rwi] or Rwn, #data3

29 2 SUBB Rbn, [Rwi+] or Rbn, [Rwi] or Rbn, #data3

2A 4 BCMP bitaddrZ.z, bitaddrQ.q

2B 2 PRIOR Rwn, Rwm

2C 2 ROR Rwn, Rwm

2D 2 JMPR cc_EQ, rel or cc_Z, rel

2E 2 BCLR bitaddrQ.2

2F 2 BSET bitaddrQ.2

30 2 SUBC Rwn, Rwm

31 2 SUBCB Rbn, Rbm

32 4 SUBC reg, mem

33 4 SUBCB reg, mem

Table 21 : Instruction set ordered by Hex code (continued)

Hex- code Number of Bytes Mnemonic Operand

ST10 FAMILY PROGRAMMING MANUAL

28/172

34 4 SUBC mem, reg

35 4 SUBCB mem, reg

36 4 SUBC reg, #data16

37 4 SUBCB reg, #data16

38 2 SUBC Rwn, [Rwi+] or Rwn, [Rwi] or Rwn, #data3

39 2 SUBCB Rbn, [Rwi+] or Rbn, [Rwi] or Rbn, #data3

3A 4 BMOVN bitaddrZ.z, bitaddrQ.q

3B - - -

3C 2 ROR Rwn, #data4

3D 2 JMPR cc_NE, rel or cc_NZ, rel

3E 2 BCLR bitaddrQ.3

3F 2 BSET bitaddrQ.3

40 2 CMP Rwn, Rwm

41 2 CMPB Rbn, Rbm

42 4 CMP reg, mem

43 4 CMPB reg, mem

44 - - -

45 - - -

46 4 CMP reg, #data16

47 4 CMPB reg, #data16

48 2 CMP Rwn, [Rwi+] or Rwn, [Rwi] or Rwn, #data3

49 2 CMPB Rbn, [Rwi+] or Rbn, [Rwi] or Rbn, #data3

4A 4 BMOV bitaddrZ.z, bitaddrQ.q

4B 2 DIV Rwn

4C 2 SHL Rwn, Rwm

4D 2 JMPR cc_V, rel

4E 2 BCLR bitaddrQ.4

4F 2 BSET bitaddrQ.4

50 2 XOR Rwn, Rwm

51 2 XORB Rbn, Rbm

52 4 XOR reg, mem

53 4 XORB reg, mem

54 4 XOR mem, reg

55 4 XORB mem, reg

Table 21 : Instruction set ordered by Hex code (continued)

Hex- code Number of Bytes Mnemonic Operand

ST10 FAMILY PROGRAMMING MANUAL

29/172

56 4 XOR reg, #data16

57 4 XORB reg, #data16

58 2 XOR Rwn, [Rwi+] or Rwn, [Rwi] or Rwn, #data3

59 2 XORB Rbn, [Rwi+] or Rbn, [Rwi] or Rbn, #data3

5A 4 BOR bitaddrZ.z, bitaddrQ.q

5B 2 DIVU Rwn

5C 2 SHL Rwn, #data4

5D 2 JMPR cc_NV, rel

5E 2 BCLR bitaddrQ.5

5F 2 BSET bitaddrQ.5

60 2 AND Rwn, Rwm

61 2 ANDB Rbn, Rbm

62 4 AND reg, mem

63 4 ANDB reg, mem

64 4 AND mem, reg

65 4 ANDB mem, reg

66 4 AND reg, #data16

67 4 ANDB reg, #data16

68 2 AND Rwn, [Rwi+] or Rwn, [Rwi] or Rwn, #data3

69 2 ANDB Rbn, [Rwi+] or Rbn, [Rwi] or Rbn, #data3

6A 4 BAND bitaddrZ.z, bitaddrQ.q

6B 2 DIVL Rwn

6C 2 SHR Rwn, Rwm

6D 2 JMPR cc_N, rel

6E 2 BCLR bitaddrQ.6

6F 2 BSET bitaddrQ.6

70 2 OR Rwn, Rwm

71 2 ORB Rbn, Rbm

72 4 OR reg, mem

73 4 ORB reg, mem

74 4 OR mem, reg

75 4 ORB mem, reg

76 4 OR reg, #data16

77 4 ORB reg, #data16

Table 21 : Instruction set ordered by Hex code (continued)

Hex- code Number of Bytes Mnemonic Operand

ST10 FAMILY PROGRAMMING MANUAL

30/172

78 2 OR Rwn, [Rwi+] or Rwn, [Rwi] or Rwn, #data3

79 2 ORB Rbn, [Rwi+] or Rbn, [Rwi] or Rbn, #data3

7A 4 BXOR bitaddrZ.z, bitaddrQ.q

7B 2 DIVLU Rwn

7C 2 SHR Rwn, #data4

7D 2 JMPR cc_NN, rel

7E 2 BCLR bitaddrQ.7

7F 2 BSET bitaddrQ.7

80 2 CMPI1 Rwn, #data4

81 2 NEG Rwn

82 4 CMPI1 Rwn, mem

83 4 CoXXX1 Rwn, [Rwm⊗]

84 4 MOV [Rwn], mem

85 - - -

86 4 CMPI1 Rwn, #data16

87 4 IDLE

88 2 MOV [-Rwm], Rwn

89 2 MOVB [-Rwm], Rbn

8A 4 JB bitaddrQ.q, rel

8B - - -

8C - - -

8D 2 JMPR cc_C, rel or cc_ULT, rel

8E 2 BCLR bitaddrQ.8

8F 2 BSET bitaddrQ.8

90 2 CMPI2 Rwn, #data4

91 2 CPL Rwn

92 4 CMPI2 Rwn, mem

93 4 CoXXX1 [IDXi⊗], [Rwn⊗]

94 4 MOV mem, [Rwn]

95 - - -

96 4 CMPI2 Rwn, #data16

97 4 PWRDN

98 2 MOV Rwn, [Rwm+]

99 2 MOVB Rbn, [Rwm+]

Table 21 : Instruction set ordered by Hex code (continued)

Hex- code Number of Bytes Mnemonic Operand

ST10 FAMILY PROGRAMMING MANUAL

31/172

9A 4 JNB bitaddrQ.q, rel

9B 2 TRAP #trap7

9C 2 JMPI cc, [Rwn]

9D 2 JMPR cc_NC, rel or cc_UGE, rel

9E 2 BCLR bitaddrQ.9

9F 2 BSET bitaddrQ.9

A0 2 CMPD1 Rwn, #data4

A1 2 NEGB Rbn

A2 4 CMPD1 Rwn, mem

A3 4 CoXXX1 Rwn, Rwm

A4 4 MOVB [Rwn], mem

A5 4 DISWDT

A6 4 CMPD1 Rwn, #data16

A7 4 SRVWDT

A8 2 MOV Rwn, [Rwm]

A9 2 MOVB Rbn, [Rwm]

AA 4 JBC bitaddrQ.q, rel

AB 2 CALLI cc, [Rwn]

AC 2 ASHR Rwn, Rwm

AD 2 JMPR cc_SGT, rel

AE 2 BCLR bitaddrQ.10

AF 2 BSET bitaddrQ.10

B0 2 CMPD2 Rwn, #data4

B1 2 CPLB Rbn

B2 4 CMPD2 Rwn, mem

B3 4 CoSTORE1 [Rwn⊗], CoReg

B4 4 MOVB mem, [Rwn]

B5 4 EINIT

B6 4 CMPD2 Rwn, #data16

B7 4 SRST

B8 2 MOV [Rwm], Rwn

B9 2 MOVB [Rwm], Rbn

BA 4 JNBS bitaddrQ.q, rel

BB 2 CALLR rel

Table 21 : Instruction set ordered by Hex code (continued)

Hex- code Number of Bytes Mnemonic Operand

ST10 FAMILY PROGRAMMING MANUAL

32/172

BC 2 ASHR Rwn, #data4

BD 2 JMPR cc_SLE, rel

BE 2 BCLR bitaddrQ.11

BF 2 BSET bitaddrQ.11

C0 2 MOVBZ Rbn, Rbm

C1 - - -

C2 4 MOVBZ reg, mem

C3 4 CoSTORE1 Rwn, CoReg

C4 4 MOV [Rwm+#data16], Rwn

C5 4 MOVBZ mem, reg

C6 4 SCXT reg, #data16

C7 - - -

C8 2 MOV [Rwn], [Rwm]

C9 2 MOVB [Rwn], [Rwm]

CA 4 CALLA cc, caddr

CB 2 RET

CC 2 NOP

CD 2 JMPR cc_SLT, rel

CE 2 BCLR bitaddrQ.12

CF 2 BSET bitaddrQ.12

D0 2 MOVBS Rbn, Rbm

D1 2 ATOMIC/EXTR #data2

D2 4 MOVBS reg, mem

D3 4 CoMOV1 [IDXi⊗], [Rwn⊗]

D4 4 MOV Rwn, [Rwm+#data16]

D5 4 MOVBS mem, reg

D6 4 SCXT reg, mem

D7 4 EXTP(R)/EXTS(R) #pag, #data2

D8 2 MOV [Rwn+], [Rwm]

D9 2 MOVB [Rwn+], [Rwm]

DA 4 CALLS seg, caddr

DB 2 RETS

DC 2 EXTP(R)/EXTS(R) Rwm, #data2

DD 2 JMPR cc_SGE, rel

Table 21 : Instruction set ordered by Hex code (continued)

Hex- code Number of Bytes Mnemonic Operand

ST10 FAMILY PROGRAMMING MANUAL

33/172

Note 1. This instruction only applies to products including the MAC.

DE 2 BCLR bitaddrQ.13

DF 2 BSET bitaddrQ.13

E0 2 MOV Rwn, #data4

E1 2 MOVB Rbn, #data4

E2 4 PCALL reg, caddr

E3 - - -

E4 4 MOVB [Rwm+#data16], Rbn

E5 - - -

E6 4 MOV reg, #data16

E7 4 MOVB reg, #data16

E8 2 MOV [Rwn], [Rwm+]

E9 2 MOVB [Rwn], [Rwm+]

EA 4 JMPA cc, caddr

EB 2 RETP reg

EC 2 PUSH reg

ED 2 JMPR cc_UGT, rel

EE 2 BCLR bitaddrQ.14

EF 2 BSET bitaddrQ.14

F0 2 MOV Rwn, Rwm

F1 2 MOVB Rbn, Rbm

F2 4 MOV reg, mem

F3 4 MOVB reg, mem

F4 4 MOVB Rbn, [Rwm+#data16]

F5 - - -

F6 4 MOV mem, reg

F7 4 MOVB mem, reg

F8 - - -

F9 - - -

FA 4 JMPS seg, caddr

FB 2 RETI

FC 2 POP reg

FD 2 JMPR cc_ULE, rel

FE 2 BCLR bitaddrQ.15

FF 2 BSET bitaddrQ.15

Table 21 : Instruction set ordered by Hex code (continued)

Hex- code Number of Bytes Mnemonic Operand

ST10 FAMILY PROGRAMMING MANUAL

34/172

2.6 - Instruction conventions
This section details the conventions used in the
individual instruction descriptions. Each individual
instruction description is described in a standard
format in separate sections under the following
headings:

2.6.1 - Instruction name
Specifies the mnemonic opcode of the instruction.

2.6.2 - Syntax
Specifies the mnemonic opcode and the required
formal operands of the instruction. Instructions
can have either none, one, two or three operands
which are separated from each other by commas:
MNEMONIC {op1 {,op2 {,op3 } } }.
The operand syntax depends on the addressing
mode. All of the available addressing modes are

summarized at the end of each single instruction
description.

2.6.3 - Operation
The following symbols are used to represent data
movement, arithmetic or logical operators (see
Table 22).
Missing or existing parentheses signifies that the
operand specifies an immediate constant value,
an address, or a pointer to an address as follows:
opX Specifies the immediate constant value

of opX.
(opX) Specifies the contents of opX.
(opXn) Specifies the contents of bit n of opX.
((opX)) Specifies the contents of the contents of

opX (i.e. opX is used as pointer to the
actual operand).

The following abbreviations are used to describe operands:

Table 22 : Instruction operation symbols

Diadic operations

operator (opY)

(opx) <-- (opy) (opY) is MOVED into (opX)

(opx) + (opy) (opX) is ADDED to (opY)

(opx) - (opy) (opY) is SUBTRACTED from (opX)

(opx) * (opy) (opX) is MULTIPLIED by (opY)

(opx) / (opy) (opX) is DIVIDED by (opY)

(opx) ^ (opy) (opX) is logically ANDed with (opY)

(opx) v (opy) (opX) is logically ORed with (opY)

(opx) ⊕ (opy) (opX) is logically EXCLUSIVELY ORed with (opY)

(opx) <--> (opy) (opX) is COMPARED against (opY)

(opx) mod (opy) (opX) is divided MODULO (opY)

Monadic operations
 operator (opX)

(opx) ¬ (opX) is logically COMPLEMENTED

Table 23 : Operand abbreviations

Abbreviation Description

CP Context Pointer register.

CSP Code Segment Pointer register.

IP Instruction Pointer.

MD Multiply/Divide register (32 bits wide, consists of MDH and MDL).

MDL, MDH Multiply/Divide Low and High registers (each 16 bit wide).

PSW Program Status Word register.

SP System Stack Pointer register.

SYSCON System Configuration register.

C Carry flag in the PSW register.

V Overflow flag in the PSW register.

SGTDIS Segmentation Disable bit in the SYSCON register.

count Temporary variable for an intermediate storage of the number of shift or rotate cycles which
remain to complete the shift or rotate operation.

tmp Temporary variable for an intermediate result.

0, 1, 2,... Constant values due to the data format of the specified operation.

ST10 FAMILY PROGRAMMING MANUAL

35/172

2.6.4 - Data types

Specifies the particular data type according to the
instruction. Basically, the following data types are
used: BIT, BYTE, WORD, DOUBLEWORD

Except for those instructions which extend byte
data to word data, all instructions have only one
particular data type.

Note that the data types mentioned here do not
take into account accesses to indirect address
pointers or to the system stack which are always
performed with word data. Moreover, no data type
is specified for System Control Instructions and

for those of the branch instructions which do not
access any explicitly addressed data.

2.6.5 - Description

Describes the operation of the instruction.

2.6.6 - Condition code

The following table summarizes the 16 possible
condition codes that can be used within Call and
Branch instructions and shows the mnemonic
abbreviations, the test executed for a specific con-
dition and the 4-bit condition code number.

Table 24 : Condition codes

Condition Code
Mnemonic cc Test Description Condition Code

Number c

cc_UC 1 = 1 Unconditional 0h

cc_Z Z = 1 Zero 2h

cc_NZ Z = 0 Not zero 3h

cc_V V = 1 Overflow 4h

cc_NV V = 0 No overflow 5h

cc_N N = 1 Negative 6h

cc_NN N = 0 Not negative 7h

cc_C C = 1 Carry 8h

cc_NC C = 0 No carry 9h

cc_EQ Z = 1 Equal 2h

cc_NE Z = 0 Not equal 3h

cc_ULT C = 1 Unsigned less than 8h

cc_ULE (Z v C) = 1 Unsigned less than or equal Fh

cc_UGE C = 0 Unsigned greater than or
equal

9h

cc_UGT (Z v C) = 0 Unsigned greater than Eh

cc_SLT (N ⊕ V) = 1 Signed less than Ch

cc_SLE (Z v (N ⊕ V)) = 1 Signed less than or equal Bh

cc_SGE (N ⊕ V) = 0 Signed greater than or equal Dh

cc_SGT (Z v (N ⊕ V)) = 0 Signed greater than Ah

cc_NET (Z v E) = 0 Not equal AND not end of
table

1h

ST10 FAMILY PROGRAMMING MANUAL

36/172

2.6.7 - Flags
This section shows the state of the N, C, V, Z and
E flags in the PSW register. The resulting state of
the flags is represented by the following symbols
(see Table 25).
If the PSW register is specified as the destination
operand of an instruction, the flags can not be
interpreted as described.
This is because the PSW register is modified
according to the data format of the instruction:
– For word operations, the PSW register is over-

written with the word result.

– For byte operations, the non-addressed byte is
cleared and the addressed byte is overwritten.

– For bit or bit-field operations on the PSW regis-
ter, only the specified bits are modified.

If the flags are not selected as destination bits,
they stay unchanged i.e. they maintain the state
existing after the previous instruction.

In all cases, if the PSW is the destination operand
of an instruction, the PSW flags do NOT represent
the flags of this instruction, in the normal way.

Table 25 : List of flags

Symbol Description

* The flag is set according to the following standard rules

N = 1 : Most significant bit of the result is set

N = 0 : Most significant bit of the result is not set

C = 1 : Carry occurred during operation

C = 0 : No Carry occurred during operation

V = 1 : Arithmetic Overflow occurred during operation

V = 0 : No Arithmetic Overflow occurred during operation

Z = 1 : Result equals zero

Z = 0 : Result does not equal zero

E = 1 : Source operand represents the lowest negative number, either 8000h for word data or 80h
for byte data.

E = 0 : Source operand does not represent the lowest negative number for the specified data type

“S” The flag is set according to non-standard rules. Individual instruction pages or the ALU status flags
description.

“-” The flag is not affected by the operation

“0” The flag is cleared by the operation.

“NOR” The flag contains the logical NORing of the two specified bit operands.

“AND” The flag contains the logical ANDing of the two specified bit operands.

“'OR” The flag contains the logical ORing of the two specified bit operands.

“XOR” The flag contains the logical XORing of the two specified bit operands.

“B” The flag contains the original value of the specified bit operand.

“B” The flag contains the complemented value of the specified bit operand

ST10 FAMILY PROGRAMMING MANUAL

37/172

2.6.8 - Addressing modes
Specifies available combinations of addressing
modes. The selected addressing mode combina-
tion is generally specified by the opcode of the
corresponding instruction.
However, there are some arithmetic and logical
instructions where the addressing mode combina-
tion is not specified by the (identical) opcodes but
by particular bits within the operand field.
In the individual instruction description, the
addressing mode is described in terms of mne-
monic, format and number of bytes.

– Mnemonic gives an example of which operands
the instruction will accept.

– Format specifies the format of the instruction as
used in the assembler listing. Figure 3 shows
the reference between the instruction format
representation of the assembler and the corre-
sponding internal organization of the instruction
format (N = nibble = 4 bits). The following sym-
bols are used to describe the instruction for-
mats:

Table 26 : Instruction format symbols

00h through FFh Instruction Opcodes

0, 1 Constant Values

:.... Each of the 4 characters immediately following a colon represents a single bit

:..ii 2-bit short GPR address (Rwi)

ss 8-bit code segment number (seg).

 :..## 2-bit immediate constant (#data2)

:.### 3-bit immediate constant (#data3)

c 4-bit condition code specification (cc)

n 4-bit short GPR address (Rwn or Rbn)

m 4-bit short GPR address (Rwm or Rbm)

q 4-bit position of the source bit within the word specified by QQ

z 4-bit position of the destination bit within the word specified by ZZ

4-bit immediate constant (#data4)

QQ 8-bit word address of the source bit (bitoff)

rr 8-bit relative target address word offset (rel)

RR 8-bit word address reg

ZZ 8-bit word address of the destination bit (bitoff)

8-bit immediate constant (#data8)

@@ 8-bit immediate constant (#mask8)

pp 0:00pp 10-bit page address (#pag10)

MM MM 16-bit address (mem or caddr; low byte, high byte)

16-bit immediate constant (#data16; low byte, high byte)

ST10 FAMILY PROGRAMMING MANUAL

38/172

Number of bytes Specifies the size of an instruc-
tion in bytes. All ST10 instructions are either 2 or 4
bytes. Instructions are classified as either single
word or double word instructions (see Figure 3).

2.7 - ATOMIC and EXTended instructions
ATOMIC, EXTR, EXTP, EXTS, EXTPR, EXTSR
instructions disable standard and PEC interrupts
and class A traps during a sequence of the follow-
ing 1...4 instructions. The length of the sequence
is determined by an operand (op1 or op2, depend-
ing on the instruction). The EXTended instructions
also change the addressing mechanism during
this sequence (see detailed instruction descrip-
tion).
The ATOMIC and EXTended instructions become
active immediately, so no additional NOPs are
required. All instructions requiring multiple cycles
or hold states to be executed are regarded as one
instruction in this sense. Any instruction type can

be used with the ATOMIC and EXTended instruc-
tions.
CAUTION: When a Class B trap interrupts an
ATOMIC or EXTended sequence, this sequence is
terminated, the interrupt lock is removed and the
standard condition is restored, before the trap rou-
tine is executed! The remaining instructions of the
terminated sequence that are executed after
returning from the trap routine, will run under stan-
dard conditions!
CAUTION: When using the ATOMIC and
EXTended instructions with other system control
or branch instructions.
CAUTION: When using nested ATOMIC and
EXTended instructions. There is ONE counter to
control the length of this sort of sequence, i.e.
issuing an ATOMIC or EXTended instruction
within a sequence will reload the counter with
value of the new instruction.

Figure 3 : Instruction format representation

Bits in ascending order LSBMSB

Representation in the
Assembler Listing:

N2-N1 N4-N3 N6-N5 N8-N7

High Byte 2nd word

Low Byte 2nd word

High Byte 1st word

Low Byte 1st word

Internal Organization:

N8 N7 N6 N5 N4 N3 N2 N1

ST10 FAMILY PROGRAMMING MANUAL

39/172

2.8 - Instruction descriptions
This section contains a detailed description of each instruction, listed in alphabetical order.

ADD Integer Addition

Syntax ADD op1, op2

Operation (op1) <-- (op1) + (op2)

Data Types WORD

Description
Performs a 2’s complement binary addition of the source operand specified by op2 and the destination
operand specified by op1. The sum is then stored in op1.

Flags

Addressing Modes

E Z V C N

* * * * *

E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise. Used
to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.
V Set if an arithmetic overflow occurred, i.e. the result cannot be represented in the specified data

type. Cleared otherwise.
C Set if a carry is generated from the most significant bit of the specified data type. Cleared other-

wise.
N Set if the most significant bit of the result is set. Cleared otherwise.

Mnemonic Format Bytes

ADD Rwn, Rwm 00 nm 2

ADD Rwn, [Rwi] 08 n:10ii 2

ADD Rwn, [Rwi+] 08 n:11ii 2

ADD Rwn, #data3 08 n:0### 2

ADD reg, #data16 06 RR ## ## 4

ADD reg, mem 02 RR MM MM 4

ADD mem, reg 04 RR MM MM 4

ST10 FAMILY PROGRAMMING MANUAL

40/172

ADDB Integer Addition

Syntax ADDB op1, op2

Operation (op1) <-- (op1) + (op2)

Data Types BYTE

Description
Performs a 2’s complement binary addition of the source operand specified by op2 and the destination
operand specified by op1. The sum is then stored in op1.

Flags

Addressing Modes

E Z V C N

* * * * *

E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.
V Set if an arithmetic overflow occurred, i.e. the result cannot be represented in the specified

data type. Cleared otherwise.
C Set if a carry is generated from the most significant bit of the specified data type. Cleared

otherwise.
N Set if the most significant bit of the result is set. Cleared otherwise.

Mnemonic Format Bytes

ADDB Rbn, Rbm 01 nm 2

ADDB Rbn, [Rwi] 09 n:10ii 2

ADDB Rbn, [Rwi+] 09 n:11ii 2

ADDB Rbn, #data3 09 n:0### 2

ADDB reg, #data16 07 RR ## ## 4

ADDB reg, mem 03 RR MM MM 4

ADDB mem, reg 05 RR MM MM 4

ST10 FAMILY PROGRAMMING MANUAL

41/172

ADDC Integer Addition with Carry

Syntax ADDC op1, op2

Operation (op1) <-- (op1) + (op2) + (C)

Data Types WORD

Description
Performs a 2’s complement binary addition of the source operand specified by op2, the destination oper-
and specified by op1 and the previously generated carry bit. The sum is then stored in op1. This instruc-
tion can be used to perform multiple precision arithmetic.

Flags

Addressing Modes

E Z V C N

* S * * *

E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.

Z Set if result equals zero and previous Z flag was set. Cleared otherwise.
V Set if an arithmetic overflow occurred, i.e. the result cannot be represented in the specified

data type. Cleared otherwise.
C Set if a carry is generated from the most significant bit of the specified data type. Cleared

otherwise.
N Set if the most significant bit of the result is set. Cleared otherwise.

Mnemonic Format Bytes

ADDC Rwn, Rwm 10 nm 2

ADDC Rwn, [Rwi] 18 n:10ii 2

ADDC Rwn, [Rwi+] 18 n:11ii 2

ADDC Rwn, #data3 18 n:0### 2

ADDC reg, #data16 16 RR ## ## 4

ADDC reg, mem 12 RR MM MM 4

ADDC mem, reg 14 RR MM MM 4

ST10 FAMILY PROGRAMMING MANUAL

42/172

ADDCB Integer Addition with Carry

Syntax ADDCB op1, op2

Operation (op1) <-- (op1) + (op2) + (C)

Data Types BYTE

Description
Performs a 2’s complement binary addition of the source operand specified by op2, the destination oper-
and specified by op1 and the previously generated carry bit. The sum is then stored in op1. This instruc-
tion can be used to perform multiple precision arithmetic.

Flags

Addressing Modes

E Z V C N

* S * * *

E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.

Z Set if result equals zero and previous Z flag was set. Cleared otherwise.
V Set if an arithmetic overflow occurred, i.e. the result cannot be represented in the specified

data type. Cleared otherwise.
C Set if a carry is generated from the most significant bit of the specified data type. Cleared

otherwise.
N Set if the most significant bit of the result is set. Cleared otherwise.

Mnemonic Format Bytes

ADDCB Rbn, Rbm 11 nm 2

ADDCB Rbn, [Rwi] 19 n:10ii 2

ADDCB Rbn, [Rwi+] 19 n:11ii 2

ADDCB Rbn, #data3 19 n:0### 2

ADDCB reg, #data16 17 RR ## ## 4

ADDCB reg, mem 13 RR MM MM 4

ADDCB mem, reg 15 RR MM MM 4

ST10 FAMILY PROGRAMMING MANUAL

43/172

AND Logical AND

Syntax AND op1, op2

Operation (op1) <-- (op1) ^ (op2)

Data Types WORD

Description
Performs a bitwise logical AND of the source operand specified by op2 and the destination operand spec-
ified by op1. The result is then stored in op1.

Flags

Addressing Modes

E Z V C N

* * 0 0 *

E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.
V Always cleared.
C Always cleared.
N Set if the most significant bit of the result is set. Cleared otherwise.

Mnemonic Format Bytes

AND Rwn, Rwm 60 nm 2

AND Rwn, [Rwi] 68 n:10ii 2

AND Rwn, [Rwi+] 68 n:11ii 2

AND Rwn, #data3 68 n:0### 2

AND reg, #data16 66 RR ## ## 4

AND reg, mem 62 RR MM MM 4

AND mem, reg 64 RR MM MM 4

ST10 FAMILY PROGRAMMING MANUAL

44/172

ANDB Logical AND

Syntax ANDB op1, op2

Operation (op1) <-- (op1) ^ (op2)

Data Types BYTE

Description
Performs a bitwise logical AND of the source operand specified by op2 and the destination operand spec-
ified by op1. The result is then stored in op1.

Flags

Addressing Modes

E Z V C N

* * 0 0 *

E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.
V Always cleared.
C Always cleared.
N Set if the most significant bit of the result is set. Cleared otherwise.

Mnemonic Format Bytes

ANDB Rbn, Rbm 61 nm 2

ANDB Rbn, [Rwi] 69 n:10ii 2

ANDB Rbn, [Rwi+] 69 n:11ii 2

ANDB Rbn, #data3 69 n:0### 2

ANDB reg, #data16 67 RR ## ## 4

ANDB reg, mem 63 RR MM MM 4

ANDB mem, reg 65 RR MM MM 4

ST10 FAMILY PROGRAMMING MANUAL

45/172

ASHR Arithmetic Shift Right

Syntax ASHR op1, op2

Operation (count) <-- (op2)
(V) <-- 0
(C) <-- 0

DO WHILE (count) ≠ 0
(V) <-- (C) v (V)
(C) <-- (op10)
(op1n) <-- (op1n+1) [n=0...14]
(count) <-- (count) - 1

END WHILE

Data Types WORD

Description
Arithmetically shifts the destination word operand op1 right by as many times as specified in the source
operand op2. To preserve the sign of the original operand op1, the most significant bits of the result are
filled with zeros if the original most significant bit was a 0 or with ones if the original most significant bit
was a 1. The Overflow flag is used as a Rounding flag. The least significant bit is shifted into the Carry.
Only shift values between 0 and 15 are allowed. When using a GPR as the count control, only the least
significant 4 bits are used.

Flags

Addressing Modes

E Z V C N

0 * S S *

E Always cleared.
Z Set if result equals zero. Cleared otherwise.
V Set if in any cycle of the shift operation a 1 is shifted out of the carry flag. Cleared for a shift

count of zero.
C The carry flag is set according to the last least significant bit shifted out of op1. Cleared for a

shift count of zero.
N Set if the most significant bit of the result is set. Cleared otherwise.

Mnemonic Format Bytes

ASHR Rwn, Rwm AC nm 2

ASHR Rwn, #data4 BC #n 2

ST10 FAMILY PROGRAMMING MANUAL

46/172

ATOMIC Begin ATOMIC Sequence

Syntax ATOMIC op1

Operation (count) <-- (op1) [1 ≤ op1 ≤ 4]
Disable interrupts and Class A traps
DO WHILE ((count) ≠ 0 AND Class_B_trap_condition ≠ TRUE)

Next Instruction
(count) <-- (count) - 1

END WHILE
(count) = 0
Enable interrupts and traps

Description
Causes standard and PEC interrupts and class A hardware traps to be disabled for a specified number of
instructions. The ATOMIC instruction becomes immediately active so that no additional NOPs are
required.
Depending on the value of op1, the period of validity of the ATOMIC sequence extends over the sequence
of the next 1 to 4 instructions being executed after the ATOMIC instruction. All instructions requiring multi-
ple cycles or hold states to be executed are regarded as one instruction in this sense. Any instruction type
can be used with the ATOMIC instruction.

Note: The ATOMIC instruction must be used carefully (see Section 2.7 - ATOMIC and EXTended instruc-
tions on page 38).

Flags

Addressing Modes

E Z V C N

- - - - -

E Not affected
Z Not affected
V Not affected
C Not affected
N Not affected

Mnemonic Format Bytes

ATOMIC #data2 D1 00##:0 2

ST10 FAMILY PROGRAMMING MANUAL

47/172

BAND Bit Logical AND

Syntax BAND op1, op2

Operation (op1) <-- (op1) ^ (op2)

Data Types BIT

Description
Performs a single bit logical AND of the source bit specified by op2 and the destination bit specified by
op1. The result is then stored in op1.

Flags

Addressing Modes

E Z V C N

0 NOR OR AND XOR

E Always cleared.
Z Contains the logical NOR of the two specified bits.
V Contains the logical OR of the two specified bits.
C Contains the logical AND of the two specified bits.
N Contains the logical XOR of the two specified bits.

Mnemonic Format Bytes

BAND bitaddrZ.z, bitaddrQ.q 6A QQ ZZ qz 4

ST10 FAMILY PROGRAMMING MANUAL

48/172

BCLR Bit Clear

Syntax BCLR op1

Operation (op1) <-- 0

Data Types BIT

Description
Clears the bit specified by op1. This instruction is primarily used for peripheral and system control.

Flags

Addressing Modes

E Z V C N

0 B 0 0 B

E Always cleared.
Z Contains the logical negation of the previous state of the specified bit.
V Always cleared.
C Always cleared.
N Contains the previous state of the specified bit.

Mnemonic Format Bytes

BCLR bitaddrQ.q qE QQ 2

ST10 FAMILY PROGRAMMING MANUAL

49/172

BCMP Bit to Bit Compare

Syntax BCMP op1, op2

Operation (op1) <--> (op2)

Data Types BIT

Description
Performs a single bit comparison of the source bit specified by operand op1 to the source bit specified by
operand op2. No result is written by this instruction. Only the flags are updated.

Flags

Addressing Modes

E Z V C N

0 NOR OR AND XOR

E Always cleared.
Z Contains the logical NOR of the two specified bits.
V Contains the logical OR of the two specified bits.
C Contains the logical AND of the two specified bits.
N Contains the logical XOR of the two specified bits.

Mnemonic Format Bytes

BCMP bitaddrZ.z, bitaddrQ.q 2A QQ ZZ qz 4

ST10 FAMILY PROGRAMMING MANUAL

50/172

BFLDH Bit Field High Byte

Syntax BFLDH op1, op2, op3

Operation (tmp) <-- (op1)
(high byte (tmp)) <-- ((high byte (tmp) ^ ¬op2) v op3)
(op1) <-- (tmp)

Data Types WORD

Description
Replaces those bits in the high byte of the destination word operand op1 which are selected by an ’1’ in
the AND mask op2 with the bits at the corresponding positions in the OR mask specified by op3.

Note: Bits which are masked off by a ’0’ in the AND mask op2 may be unintentionally altered if the corre-
sponding bit in the OR mask op3 contains a ’1’.

Flags

Addressing Modes

E Z V C N

0 * 0 0 *

E Always cleared.
Z Set if the word result equals zero. Cleared otherwise.
V Always cleared.
C Always cleared.
N Set if the most significant bit of the word result is set. Cleared otherwise.

Mnemonic Format Bytes

BFLDH bitoff Q, #mask 8, #data 8 1A QQ ## @@ 4

ST10 FAMILY PROGRAMMING MANUAL

51/172

BFLDL Bit Field Low Byte

Syntax BFLDL op1, op2, op3

Operation (tmp) <-- (op1)
(low byte (tmp)) <-- ((low byte (tmp) ^ ¬op2) v op3)
(op1) <-- (tmp)

Data Types WORD

Description
Replaces those bits in the low byte of the destination word operand op1 which are selected by an ’1’ in the
AND mask op2 with the bits at the corresponding positions in the OR mask specified by op3.

Note: Bits which are masked off by a ’0’ in the AND mask op2 may be unintentionally altered if the corre-
sponding bit in the OR mask op3 contains a ’1’.

Flags

Addressing Modes

E Z V C N

0 * 0 0 *

E Always cleared.
Z Set if the word result equals zero. Cleared otherwise.
V Always cleared.
C Always cleared.
N Set if the most significant bit of the word result is set. Cleared otherwise.

Mnemonic Format Bytes

BFLDL bitoff Q, #mask 8, #data 8 0A QQ @@## 4

ST10 FAMILY PROGRAMMING MANUAL

52/172

BMOV Bit to Bit Move

Syntax BMOV op1, op2

Operation (op1) <-- (op2)

Data Types BIT

Description
Moves a single bit from the source operand specified by op2 into the destination operand specified by
op1. The source bit is examined and the flags are updated accordingly.

Flags

Addressing Modes

E Z V C N

0 B 0 0 B

E Always cleared.
Z Contains the logical negation of the previous state of the source bit.
V Always cleared.
C Always cleared.
N Contains the previous state of the source bit.

Mnemonic Format Bytes

BMOV bitaddrZ.z, bitaddrQ.q 4A QQ ZZ qz 4

ST10 FAMILY PROGRAMMING MANUAL

53/172

BMOVN Bit to Bit Move & Negate

Syntax BMOVN op1, op2

Operation (op1) <-- ¬(op2)

Data Types BIT

Description
Moves the complement of a single bit from the source operand specified by op2 into the destination oper-
and specified by op1. The source bit is examined and the flags are updated accordingly.

Flags

Addressing Modes

E Z V C N

0 B 0 0 B

E Always cleared.
Z Contains the logical negation of the previous state of the source bit.
V Always cleared.
C Always cleared.
N Contains the previous state of the source bit.

Mnemonic Format Bytes

BMOVN bitaddr Z.z, bitaddr Q.q 3A QQ ZZ qz 4

ST10 FAMILY PROGRAMMING MANUAL

54/172

BOR Bit Logical OR

Syntax BOR op1, op2

Operation (op1) <-- (op1) v (op2)

Data Types BIT

Description
Performs a single bit logical OR of the source bit specified by operand op2 with the destination bit speci-
fied by operand op1. The ORed result is then stored in op1.

Flags

Addressing Modes

E Z V C N

0 NOR OR AND XOR

E Always cleared.
Z Contains the logical NOR of the two specified bits.
V Contains the logical OR of the two specified bits.
C Contains the logical AND of the two specified bits.
N Contains the logical XOR of the two specified bits.

Mnemonic Format Bytes

BOR bitaddrZ.z, bitaddrQ.q 5A QQ ZZ qz 4

ST10 FAMILY PROGRAMMING MANUAL

55/172

BSET Bit Set

Syntax BSET op1

Operation (op1) <-- 1

Data Types BIT

Description
Sets the bit specified by op1. This instruction is primarily used for peripheral and system control.

Flags

Addressing Modes

E Z V C N

0 B 0 0 B

E Always cleared.
Z Contains the logical negation of the previous state of the specified bit.
V Always cleared.
C Always cleared.
N Contains the previous state of the specified bit.

Mnemonic Format Bytes

BSET bitaddrQ.q qF QQ 2

ST10 FAMILY PROGRAMMING MANUAL

56/172

BXOR Bit Logical XOR

Syntax BXOR op1, op2

Operation (op1) <-- (op1) ⊕ (op2)

Data Types BIT

Description
Performs a single bit logical EXCLUSIVE OR of the source bit specified by operand op2 with the destina-
tion bit specified by operand op1. The XORed result is then stored in op1.

Flags

Addressing Modes

E Z V C N

0 NOR OR AND XOR

E Always cleared.
Z Contains the logical NOR of the two specified bits.
V Contains the logical OR of the two specified bits.
C Contains the logical AND of the two specified bits.
N Contains the logical XOR of the two specified bits.

Mnemonic Format Bytes

BXOR bitaddrZ.z, bitaddrQ.q 7A QQ ZZ qz 4

ST10 FAMILY PROGRAMMING MANUAL

57/172

CALLA Call Subroutine Absolute

Syntax CALLA op1, op2

Operation IF (op1) THEN
(SP) <-- (SP) - 2
((SP)) <-- (IP)
(IP) <-- op2

ELSE
next instruction

END IF

Description
If the condition specified by op1 is met, a branch to the absolute memory location specified by the second
operand op2 is taken. The value of the instruction pointer, IP, is placed onto the system stack. Because
the IP always points to the instruction following the branch instruction, the value stored on the system
stack represents the return address of the calling routine. If the condition is not met, no action is taken
and the next instruction is executed normally.

Condition Codes
See condition code Table 24 - page 35.

Flags

Addressing Modes

E Z V C N

- - - - -

E Not affected
Z Not affected
V Not affected
C Not affected
N Not affected

Mnemonic Format Bytes

CALLA cc, caddr CA c0 MM MM 4

ST10 FAMILY PROGRAMMING MANUAL

58/172

CALLI Call Subroutine Indirect

Syntax CALLI op1, op2

Operation IF (op1) THEN
(SP) <-- (SP) - 2
((SP)) <-- (IP)
(IP) <-- (op2)

ELSE
next instruction
END IF

Description
If the condition specified by op1 is met, a branch to the location specified indirectly by the second operand
op2 is taken. The value of the instruction pointer, IP, is placed onto the system stack. Because the IP
always points to the instruction following the branch instruction, the value stored on the system stack rep-
resents the return address of the calling routine. If the condition is not met, no action is taken and the next
instruction is executed normally.

Condition Codes
See condition code Table 24 - page 35.

Flags

Addressing Modes

E Z V C N

- - - - -

E Not affected
Z Not affected
V Not affected
C Not affected
N Not affected

Mnemonic Format Bytes

CALLI cc, [Rwn] AB cn 2

ST10 FAMILY PROGRAMMING MANUAL

59/172

CALLR Call Subroutine Relative

Syntax CALLR op1

Operation (SP) <-- (SP) - 2
((SP)) <-- (IP)
(IP) <-- (IP) + sign_extend (op1)

Description
A branch is taken to the location specified by the instruction pointer, IP, plus the relative displacement,
op1. The displacement is a two’s complement number which is sign extended and counts the relative dis-
tance in words. The value of the instruction pointer (IP) is placed onto the system stack. Because the IP
always points to the instruction following the branch instruction, the value stored on the system stack rep-
resents the return address of the calling routine. The value of the IP used in the target address calculation
is the address of the instruction following the CALLR instruction.

Condition Codes
See condition code Table 24 - page 35.

Flags

Addressing Modes

E Z V C N

- - - - -

E Not affected
Z Not affected
V Not affected
C Not affected
N Not affected

Mnemonic Format Bytes

CALLR rel BB rr 2

ST10 FAMILY PROGRAMMING MANUAL

60/172

CALLS Call Inter-Segment Subroutine

Syntax CALLS op1, op2

Operation (SP) <-- (SP) - 2
((SP)) <-- (CSP)
(SP) <-- (SP) - 2
((SP)) <-- (IP)
(CSP) <-- op1
(IP) <-- op2

Description
A branch is taken to the absolute location specified by op2 within the segment specified by op1. The
value of the instruction pointer (IP) is placed onto the system stack. Because the IP always points to the
instruction following the branch instruction, the value stored on the system stack represents the return
address to the calling routine. The previous value of the CSP is also placed on the system stack to insure
correct return to the calling segment.

Condition Codes
See condition code Table 24 - page 35.

Flags

Addressing Modes

E Z V C N

- - - - -

E Not affected
Z Not affected
V Not affected
C Not affected
N Not affected

Mnemonic Format Bytes

CALLS seg, caddr DA ss MM MM 4

ST10 FAMILY PROGRAMMING MANUAL

61/172

CMP Integer Compare

Syntax CMP op1, op2

Operation (op1) <--> (op2)

Data Types WORD

Description
The source operand specified by op1 is compared to the source operand specified by op2 by performing
a 2’s complement binary subtraction of op2 from op1. The flags are set according to the rules of subtrac-
tion. The operands remain unchanged.

Flags

Addressing Modes

E Z V C N

* * * S *

E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.
V Set if an arithmetic underflow occurred, i.e. the result cannot be represented in the specified

data type. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
N Set if the most significant bit of the result is set. Cleared otherwise.

Mnemonic Format Bytes

CMP Rwn, Rwm 40 nm 2

CMP Rwn, [Rwi] 48 n:10ii 2

CMP Rwn, [Rwi+] 48 n:11ii 2

CMP Rwn, #data3 48 n:0### 2

CMP reg, #data16 46 RR ## ## 4

CMP reg, mem 42 RR MM MM 4

ST10 FAMILY PROGRAMMING MANUAL

62/172

CMPB Integer Compare

Syntax CMPB op1, op2

Operation (op1) <--> (op2)

Data Types BYTE

Description
The source operand specified by op1 is compared to the source operand specified by op2 by performing
a 2’s complement binary subtraction of op2 from op1. The flags are set according to the rules of subtrac-
tion. The operands remain unchanged

Flag

Addressing Modes

E Z V C N

* * * S *

E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.
V Set if an arithmetic underflow occurred, i.e. the result cannot be represented in the specified

data type. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
N Set if the most significant bit of the result is set. Cleared otherwise.

Mnemonic Format Bytes

CMPB Rbn, Rbm 41 nm 2

CMPB Rbn, [Rwi] 49 n:10ii 2

CMPB Rbn, [Rwi+] 49 n:11ii 2

CMPB Rbn, #data3 49 n:0### 2

CMPB reg, #data16 47 RR ## ## 4

CMPB reg, mem 43 RR MM MM 4

ST10 FAMILY PROGRAMMING MANUAL

63/172

CMPD1 Integer Compare & Decrement by 1

Syntax CMPD1 op1, op2

Operation (op1) <--> (op2)
(op1) <-- (op1) - 1

Data Types WORD

Description
This instruction is used to enhance the performance and flexibility of loops. The source operand specified
by op1 is compared to the source operand specified by op2 by performing a 2’s complement binary sub-
traction of op2 from op1. Operand op1 may specify ONLY GPR registers. Once the subtraction has com-
pleted, the operand op1 is decremented by one. Using the set flags, a branch instruction can then be
used in conjunction with this instruction to form common high level language FOR loops of any range.

Flags

Addressing Modes

E Z V C N

* * * S *

E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.
V Set if an arithmetic underflow occurred, i.e. the result cannot be represented in the specified

data type. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
N Set if the most significant bit of the result is set. Cleared otherwise.

Mnemonic Format Bytes

CMPD1 Rwn, #data4 A0 #n 2

CMPD1 Rwn, #data16 A6 Fn ## ## 4

CMPD1 Rwn, mem A2 Fn MM MM 4

ST10 FAMILY PROGRAMMING MANUAL

64/172

CMPD2 Integer Compare & Decrement by 2

Syntax CMPD2 op1, op2

Operation (op1) <--> (op2)
(op1) <-- (op1) - 2

Data Types WORD

Description
This instruction is used to enhance the performance and flexibility of loops. The source operand specified
by op1 is compared to the source operand specified by op2 by performing a 2’s complement binary sub-
traction of op2 from op1. Operand op1 may specify ONLY GPR registers. Once the subtraction has com-
pleted, the operand op1 is decremented by two. Using the set flags, a branch instruction can then be
used in conjunction with this instruction to form common high level language FOR loops of any range.

Flags

Addressing Modes

E Z V C N

* * * S *

E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.
V Set if an arithmetic underflow occurred, i.e. the result cannot be represented in the specified

data type. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
N Set if the most significant bit of the result is set. Cleared otherwise.

Mnemonic Format Bytes

CMPD2 Rwn, #data4 B0 #n 2

CMPD2 Rwn, #data16 B6 Fn ## ## 4

CMPD2 Rwn, mem B2 Fn MM MM 4

ST10 FAMILY PROGRAMMING MANUAL

65/172

CMPI1 Integer Compare & Increment by 1

Syntax CMPI1 op1, op2

Operation (op1) <--> (op2)
(op1) <-- (op1) + 1

Data Types WORD

Description
This instruction is used to enhance the performance and flexibility of loops. The source operand specified
by op1 is compared to the source operand specified by op2 by performing a 2’s complement binary sub-
traction of op2 from op1. Operand op1 may specify ONLY GPR registers. Once the subtraction has com-
pleted, the operand op1 is incremented by one. Using the set flags, a branch instruction can then be used
in conjunction with this instruction to form common high level language FOR loops of any range.

Flags

Addressing Modes

E Z V C N

* * * S *

E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.
V Set if an arithmetic underflow occurred, i.e. the result cannot be represented in the specified

data type. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
N Set if the most significant bit of the result is set. Cleared otherwise.

Mnemonic Format Bytes

CMPI1 Rwn, #data4 80 #n 2

CMPI1 Rwn, #data16 86 Fn ## ## 4

CMPI1 Rwn, mem 82 Fn MM MM 4

ST10 FAMILY PROGRAMMING MANUAL

66/172

CMPI2 Integer Compare & Increment by 2

Syntax CMPI2 op1, op2

Operation (op1) <--> (op2)
(op1) <-- (op1) + 2

Data Types WORD

Description
This instruction is used to enhance the performance and flexibility of loops. The source operand specified
by op1 is compared to the source operand specified by op2 by performing a 2’s complement binary sub-
traction of op2 from op1. Operand op1 may specify ONLY GPR registers. Once the subtraction has com-
pleted, the operand op1 is incremented by two. Using the set flags, a branch instruction can then be used
in conjunction with this instruction to form common high level language FOR loops of any range.

Flags

Addressing Modes

E Z V C N

* * * S *

E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.
V Set if an arithmetic underflow occurred, i.e. the result cannot be represented in the specified

data type. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
N Set if the most significant bit of the result is set. Cleared otherwise.

Mnemonic Format Bytes

CMPI2 Rwn, #data4 90 #n 2

CMPI2 Rwn, #data16 96 Fn ## ## 4

CMPI2 Rwn, mem 92 Fn MM MM 4

ST10 FAMILY PROGRAMMING MANUAL

67/172

CPL Integer One’s Complement

Syntax CPL op1

Operation (op1) <-- ¬(op1)

Data Types WORD

Description
Performs a 1’s complement of the source operand specified by op1. The result is stored back into op1.

Flags

Addressing Modes

E Z V C N

* * 0 0 *

E Set if the value of op1 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.
V Always cleared.
C Always cleared.
N Set if the most significant bit of the result is set. Cleared otherwise.

Mnemonic Format Bytes

CPL Rwn 91 n0 2

ST10 FAMILY PROGRAMMING MANUAL

68/172

CPLB Integer One’s Complement

Syntax CPL op1

Operation (op1) <-- ¬(op1)

Data Types BYTE

Description
Performs a 1’s complement of the source operand specified by op1. The result is stored back into op1.

Flags

Addressing Modes

E Z V C N

* * 0 0 *

E Set if the value of op1 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.
V Always cleared.
C Always cleared.
N Set if the most significant bit of the result is set. Cleared otherwise.

Mnemonic Format Bytes

CPLB Rbn B1 n0 2

ST10 FAMILY PROGRAMMING MANUAL

69/172

DISWDT Disable Watchdog Timer

Syntax DISWDT

Operation Disable the watchdog timer

Description
This instruction disables the watchdog timer. The watchdog timer is enabled by a reset. The DISWDT
instruction allows the watchdog timer to be disabled for applications which do not require a watchdog
function. Following a reset, this instruction can be executed at any time until either a Service Watchdog
Timer instruction (SRVWDT) or an End of Initialization instruction (EINIT) are executed. Once one of
these instructions has been executed, the DISWDT instruction will have no effect. To insure that this
instruction is not accidentally executed, it is implemented as a protected instruction.

Flags

Addressing Modes

E Z V C N

- - - - -

E Not affected
Z Not affected
V Not affected
C Not affected
N Not affected

Mnemonic Format Bytes

DISWDT A5 5A A5 A5 4

ST10 FAMILY PROGRAMMING MANUAL

70/172

DIV 16-by-16 Signed Division

Syntax DIV op1

Operation (MDL) <-- (MDL) / (op1)
(MDH) <-- (MDL) mod (op1)

Data Types WORD

Description
Performs a signed 16-bit by 16-bit division of the low order word stored in the MD register by the source
word operand op1. The signed quotient is then stored in the low order word of the MD register (MDL) and
the remainder is stored in the high order word of the MD register (MDH).

Flags

Addressing Modes

E Z V C N

0 * S 0 *

E Always cleared.
Z Set if result equals zero. Cleared otherwise.
V Set if an arithmetic overflow occurred, i.e. the result cannot be represented in a word data

type, or if the divisor (op1) was zero. Cleared otherwise.
C Always cleared.
N Set if the most significant bit of the result is set. Cleared otherwise.

Mnemonic Format Bytes

DIV Rwn 4B nn 2

ST10 FAMILY PROGRAMMING MANUAL

71/172

DIVL 32-by-16 Signed Division

Syntax DIVL op1

Operation (MDL) <-- (MD) / (op1)
(MDH) <-- (MD) mod (op1)

Data Types WORD, DOUBLEWORD

Description
Performs an extended signed 32-bit by 16-bit division of the two words stored in the MD register by the
source word operand op1. The signed quotient is then stored in the low order word of the MD register
(MDL) and the remainder is stored in the high order word of the MD register (MDH).

Flags

Addressing Modes

E Z V C N

0 * S 0 *

E Always cleared.
Z Set if result equals zero. Cleared otherwise.
V Set if an arithmetic overflow occurred, i.e. the result cannot be represented in a word data

type, or if the divisor (op1) was zero. Cleared otherwise.
C Always cleared.
N Set if the most significant bit of the result is set. Cleared otherwise.

Mnemonic Format Bytes

DIVL Rwn 6B nn 2

ST10 FAMILY PROGRAMMING MANUAL

72/172

DIVLU 32-by-16 Unsigned Division

Syntax DIVLU op1

Operation (MDL) <-- (MD) / (op1)
(MDH) <-- (MD) mod (op1)

Data Types WORD, DOUBLEWORD

Description
Performs an extended unsigned 32-bit by 16-bit division of the two words stored in the MD register by the
source word operand op1. The unsigned quotient is then stored in the low order word of the MD register
(MDL) and the remainder is stored in the high order word of the MD register (MDH).

Flags

Addressing Modes

E Z V C N

0 * S 0 *

E Always cleared.
Z Set if result equals zero. Cleared otherwise.
V Set if an arithmetic overflow occurred, i.e. the result cannot be represented in a word data

type, or if the divisor (op1) was zero. Cleared otherwise.
C Always cleared.
N Set if the most significant bit of the result is set. Cleared otherwise.

Mnemonic Format Bytes

DIVLU Rwn 7B nn 2

ST10 FAMILY PROGRAMMING MANUAL

73/172

DIVU 16-by-16 Unsigned Division

Syntax DIVU op1

Operation (MDL) <-- (MDL) / (op1)
(MDH) <-- (MDL) mod (op1)

Data Types WORD

Description
Performs an unsigned 16-bit by 16-bit division of the low order word stored in the MD register by the
source word operand op1. The signed quotient is then stored in the low order word of the MD register
(MDL) and the remainder is stored in the high order word of the MD register (MDH).

Flags

Addressing Modes

E Z V C N

0 * S 0 *

E Always cleared.
Z Set if result equals zero. Cleared otherwise.
V Set if an arithmetic overflow occurred, i.e. the result cannot be represented in a word data

type, or if the divisor (op1) was zero. Cleared otherwise.
C Always cleared.
N Set if the most significant bit of the result is set. Cleared otherwise.

Mnemonic Format Bytes

DIVU Rwn 5B nn 2

ST10 FAMILY PROGRAMMING MANUAL

74/172

EINIT End of Initialization

Syntax EINIT

Operation End of Initialization

Description
This instruction is used to signal the end of the initialization portion of a program. After a reset, the reset
output pin RSTOUT is pulled low. It remains low until the EINIT instruction has been executed at which
time it goes high. This enables the program to signal the external circuitry that it has successfully initial-
ized the microcontroller. After the EINIT instruction has been executed, execution of the Disable Watch-
dog Timer instruction (DISWDT) has no effect. To insure that this instruction is not accidentally executed,
it is implemented as a protected instruction.

Flags

Addressing Modes

E Z V C N

- - - - -

E Not affected
Z Not affected
V Not affected
C Not affected
N Not affected

Mnemonic Format Bytes
EINIT B5 4A B5 B5 4

ST10 FAMILY PROGRAMMING MANUAL

75/172

EXTP Begin EXTended Page Sequence

Syntax EXTP op1, op2

Operation (count) <-- (op2) [1 ≤ op2 ≤ 4]
Disable interrupts and Class A traps
Data_Page = (op1)
DO WHILE ((count) ≠ 0 AND Class_B_trap_condition ≠ TRUE)

Next Instruction
(count) <-- (count) - 1

END WHILE
(count) = 0
Data_Page = (DPPx)
Enable interrupts and traps

Description
Overrides the standard DPP addressing scheme of the long and indirect addressing modes for a specified
number of instructions. During their execution, both standard and PEC interrupts and class A hardware
traps are locked. The EXTP instruction becomes immediately active such that no additional NOPs are
required.
For any long (’mem’) or indirect ([...]) address in the EXTP instruction sequence, the 10-bit page number
(address bits A23-A14) is not determined by the contents of a DPP register but by the value of op1 itself.
The 14-bit page offset (address bits A13-A0) is derived from the long or indirect address as usual.The
value of op2 defines the length of the effected instruction sequence.

Note: The EXTP instruction must be used carefully (see Section 2.7 - ATOMIC and EXTended instruc-
tions on page 38).

Flags

Addressing Modes

E Z V C N

- - - - -

E Not affected
Z Not affected
V Not affected
C Not affected
N Not affected

Mnemonic Format Bytes

EXTP Rwm, #data2 DC 01##:m 2

EXTP #pag, #data2 D7 01##:0 pp 0:00pp 4

ST10 FAMILY PROGRAMMING MANUAL

76/172

EXTPR Begin EXTended Page & Register Sequence

Syntax EXTPR op1, op2

Operation (count) <-- (op2) [1 ≤ op2 ≤ 4]
Disable interrupts and Class A traps
Data_Page = (op1) AND SFR_range = Extended
DO WHILE ((count) ≠ 0 AND Class_B_trap_condition ≠ TRUE)

Next Instruction
(count) <-- (count) - 1

END WHILE
(count) = 0
Data_Page = (DPPx) AND SFR_range = Standard
Enable interrupts and traps

Description
Overrides the standard DPP addressing scheme of the long and indirect addressing modes and causes
all SFR or SFR bit accesses via the ’reg’, ’bitoff’ or ’bitaddr’ addressing modes being made to the
Extended SFR space for a specified number of instructions. During their execution, both standard and
PEC interrupts and class A hardware traps are locked. For any long (’mem’) or indirect ([...]) address in
the EXTP instruction sequence, the 10-bit page number (address bits A23-A14) is not determined by the
contents of a DPP register but by the value of op1 itself. The 14-bit page offset (address bits A13-A0) is
derived from the long or indirect address as usual. The value of op2 defines the length of the effected
instruction sequence.

Note: The EXTPR instruction must be used carefully (see Section 2.7 - ATOMIC and EXTended instruc-
tions on page 38).

Flags

Addressing Modes

E Z V C N

- - - - -

E Not affected
Z Not affected
V Not affected
C Not affected
N Not affected

Mnemonic Format Bytes

EXTPR Rwm, #data2 DC 11##:m 2

EXTPR #pag, #data2 D7 11##:0 pp 0:00pp 4

ST10 FAMILY PROGRAMMING MANUAL

77/172

EXTR Begin EXTended Register Sequence

Syntax EXTR op1

Operation (count) <-- (op1) [1 ≤ op1 ≤ 4]
Disable interrupts and Class A traps
SFR_range = Extended
DO WHILE ((count) ≠ 0 AND Class_B_trap_condition ≠ TRUE)

Next Instruction
(count) <-- (count) - 1
END WHILE
(count) = 0
SFR_range = Standard
Enable interrupts and traps

Description
Causes all SFR or SFR bit accesses via the “reg”, “bitoff” or “bitaddr” addressing modes being made to
the Extended SFR space for a specified number of instructions. During their execution, both standard and
PEC interrupts and class A hardware traps are locked.
The value of op1 defines the length of the effected instruction sequence.

Note: The EXTR instruction must be used carefully (see Section 2.7 - ATOMIC and EXTended instruc-
tions on page 38).

Flags

Addressing Modes

E Z V C N

- - - - -

E Not affected
Z Not affected
V Not affected
C Not affected
N Not affected

Mnemonic Format Bytes

EXTR #data2 D1 10##:0 2

ST10 FAMILY PROGRAMMING MANUAL

78/172

EXTS Begin EXTended Segment Sequence

Syntax EXTS op1, op2

Operation (count) <-- (op2) [1 ≤ op2 ≤ 4]
Disable interrupts and Class A traps
Data_Segment = (op1)
DO WHILE ((count) ≠ 0 AND Class_B_trap_condition ≠ TRUE)

Next Instruction
(count) <-- (count) - 1

END WHILE
(count) = 0
Data_Page = (DPPx)
Enable interrupts and traps

Description
Overrides the standard DPP addressing scheme of the long and indirect addressing modes for a specified
number of instructions. During their execution, both standard and PEC interrupts and class A hardware
traps are locked. The EXTS instruction becomes immediately active such that no additional NOPs are
required.
For any long (’mem’) or indirect ([...]) address in an EXTS instruction sequence, the value of op1 deter-
mines the 8-bit segment (address bits A23-A16) valid for the corresponding data access. The long or indi-
rect address itself represents the 16-bit segment offset (address bits A15-A0).
The value of op2 defines the length of the effected instruction sequence.

Note: The EXTS instruction must be used carefully (see Section 2.7 - ATOMIC and EXTended instruc-
tions on page 38).

Flags

Addressing Modes

E Z V C N

- - - - -

E Not affected
Z Not affected
V Not affected
C Not affected
N Not affected

Mnemonic Format Bytes

EXTS Rwm, #data2 DC 00##:m 2

EXTS #seg, #data2 D7 00##:0 ss 00 4

ST10 FAMILY PROGRAMMING MANUAL

79/172

EXTSR Begin EXTended Segment & Register Sequence

Syntax EXTSR op1, op2

Operation (count) <-- (op2) [1 ≤ op2 ≤ 4]
Disable interrupts and Class A traps
Data_Segment = (op1) AND SFR_range = Extended
DO WHILE ((count) ≠ 0 AND Class_B_trap_condition ≠ TRUE)
Next Instruction
(count) <-- (count) - 1
END WHILE
(count) = 0
Data_Page = (DPPx) AND SFR_range = Standard
Enable interrupts and traps

Description
Overrides the standard DPP addressing scheme of the long and indirect addressing modes and causes
all SFR or SFR bit accesses via the ’reg’, ’bitoff’ or ’bitaddr’ addressing modes being made to the
Extended SFR space for a specified number of instructions. During their execution, both standard and
PEC interrupts and class A hardware traps are locked. The EXTSR instruction becomes immediately
active such that no additional NOPs are required. For any long (’mem’) or indirect ([...]) address in an
EXTSR instruction sequence, the value of op1 determines the 8-bit segment (address bits A23-A16) valid
for the corresponding data access. The long or indirect address itself represents the 16-bit segment offset
(address bits A15-A0). The value of op2 defines the length of the effected instruction sequence.

Note: The EXTSR instruction must be used carefully (see Section 2.7 - ATOMIC and EXTended instruc-
tions on page 38).

Flags

Addressing Modes

E Z V C N

- - - - -

E Not affected
Z Not affected
V Not affected
C Not affected
N Not affected

Mnemonic Format Bytes

EXTSR Rwm, #data2 DC 10##:m 2

EXTSR #seg, #data2 D7 10##:0 ss 00 4

ST10 FAMILY PROGRAMMING MANUAL

80/172

IDLE Enter Idle Mode

Syntax IDLE

Operation Enter Idle Mode

Description
This instruction causes the part to enter the idle mode. In this mode, the CPU is powered down while the
peripherals remain running. It remains powered down until a peripheral interrupt or external interrupt
occurs. To insure that this instruction is not accidentally executed, it is implemented as a protected
instruction.

Flags

Addressing Modes

E Z V C N

- - - - -

E Not affected
Z Not affected
V Not affected
C Not affected
N Not affected

Mnemonic Format Bytes

IDLE 87 78 87 87 4

ST10 FAMILY PROGRAMMING MANUAL

81/172

JB Relative Jump if Bit Set

Syntax JB op1, op2

Operation IF (op1) = 1 THEN
(IP) <-- (IP) + sign_extend (op2)
ELSE

Next Instruction
END IF

Data Types BIT

Description
If the bit specified by op1 is set, program execution continues at the location of the instruction pointer, IP,
plus the specified displacement, op2. The displacement is a two’s complement number which is sign
extended and counts the relative distance in words. The value of the IP used in the target address calcu-
lation is the address of the instruction following the JB instruction. If the specified bit is clear, the instruc-
tion following the JB instruction is executed.

Flags

Addressing Modes

E Z V C N

- - - - -

E Not affected
Z Not affected
V Not affected
C Not affected
N Not affected

Mnemonic Format Bytes

JB bitaddrQ.q, rel 8A QQ rr q0 4

ST10 FAMILY PROGRAMMING MANUAL

82/172

JBC Relative Jump if Bit Set & Clear Bit

Syntax JBC op1, op2

Operation IF (op1) = 1 THEN
(op1) = 0
(IP) <-- (IP) + sign_extend (op2)

ELSE
Next Instruction

END IF

Data Types BIT

Description
If the bit specified by op1 is set, program execution continues at the location of the instruction pointer, IP,
plus the specified displacement, op2. The bit specified by op1 is cleared, allowing implementation of
semaphore operations. The displacement is a two’s complement number which is sign extended and
counts the relative distance in words. The value of the IP used in the target address calculation is the
address of the instruction following the JBC instruction. If the specified bit was clear, the instruction follow-
ing the JBC instruction is executed.

Flags

Addressing Modes

E Z V C N

0 B 0 0 B

E Always cleared
Z Contains logical negation of the previous state of the specified bit.
V Always cleared
C Always cleared
N Contains the previous state of the specified bit.

Mnemonic Format Bytes

JBC bitaddrQ.q, rel AA QQ rr q0 4

ST10 FAMILY PROGRAMMING MANUAL

83/172

JMPA Absolute Conditional Jump

Syntax JMPA op1, op2

Operation IF (op1) = 1 THEN
(IP) <-- op2

ELSE
Next Instruction

END IF

Description
If the condition specified by op1 is met, a branch to the absolute address specified by op2 is taken. If the
condition is not met, no action is taken, and the instruction following the JMPA instruction is executed nor-
mally.

Condition Codes
See Condition code Table 24 - page 35.

Flags

Addressing Modes

E Z V C N

- - - - -

E Not affected
Z Not affected
V Not affected
C Not affected
N Not affected

Mnemonic Format Bytes

JMPA cc, caddr EA c0 MM MM 4

ST10 FAMILY PROGRAMMING MANUAL

84/172

JMPI Indirect Conditional Jump

Syntax JMPI op1, op2

Operation IF (op1) = 1 THEN
(IP) <-- (op2)

ELSE
Next Instruction

END IF

Description
If the condition specified by op1 is met, a branch to the absolute address specified by op2 is taken. If the
condition is not met, no action is taken, and the instruction following the JMPI instruction is executed nor-
mally.

Condition Codes
See Condition code Table 24 - page 35.

Flags

Addressing Modes

E Z V C N

- - - - -

E Not affected
Z Not affected
V Not affected
C Not affected
N Not affected

Mnemonic Format Bytes

JMPI cc, [Rwn] 9C cn 2

ST10 FAMILY PROGRAMMING MANUAL

85/172

JMPR Relative Conditional Jump

Syntax JMPR op1, op2

Operation IF (op1) = 1 THEN
(IP) <-- (IP) + sign_extend (op2)

ELSE
Next Instruction

END IF

Description
If the condition specified by op1 is met, program execution continues at the location of the instruction
pointer, IP, plus the specified displacement, op2. The displacement is a two’s complement number which
is sign extended and counts the relative distance in words. The value of the IP used in the target address
calculation is the address of the instruction following the JMPR instruction. If the specified condition is not
met, program execution continues normally with the instruction following the JMPR instruction.

Condition Codes
See condition code Table 24 - page 35.

Flags

Addressing Modes

E Z V C N

- - - - -

E Not affected
Z Not affected
V Not affected
C Not affected
N Not affected

Mnemonic Format Bytes

JMPR cc, rel cD rr 2

ST10 FAMILY PROGRAMMING MANUAL

86/172

JMPS Absolute Inter-Segment Jump

Syntax JMPS op1, op2

Operation (CSP) <-- op1
(IP) <-- op2

Description
Branches unconditionally to the absolute address specified by op2 within the segment specified by op1.

Flags

Addressing Modes

E Z V C N

- - - - -

E Not affected
Z Not affected
V Not affected
C Not affected
N Not affected

Mnemonic Format Bytes

JMPS seg, caddr FA ss MM MM 4

ST10 FAMILY PROGRAMMING MANUAL

87/172

JNB Relative Jump if Bit Clear

Syntax JNB op1, op2

Operation IF (op1) = 0 THEN
(IP) <-- (IP) + sign_extend (op2)

ELSE
Next Instruction

END IF

Data Types BIT

Description
If the bit specified by op1 is clear, program execution continues at the location of the instruction pointer,
IP, plus the specified displacement, op2. The displacement is a two’s complement number which is sign
extended and counts the relative distance in words. The value of the IP used in the target address calcu-
lation is the address of the instruction following the JNB instruction. If the specified bit is set, the instruc-
tion following the JNB instruction is executed.

Flags

Addressing Modes

E Z V C N

- - - - -

E Not affected
Z Not affected
V Not affected
C Not affected
N Not affected

Mnemonic Format Bytes

JNB bitaddrQ.q, rel 9A QQ rr q0 4

ST10 FAMILY PROGRAMMING MANUAL

88/172

JNBS Relative Jump if Bit Clear & Set Bit

Syntax JNBS op1, op2

Operation IF (op1) = 0 THEN
(op1) = 1
(IP) <-- (IP) + sign_extend (op2)

ELSE
Next Instruction

END IF

Data Types BIT

Description
If the bit specified by op1 is clear, program execution continues at the location of the instruction pointer,
IP, plus the specified displacement, op2. The bit specified by op1 is set, allowing implementation of sema-
phore operations. The displacement is a two’s complement number which is sign extended and counts
the relative distance in words. The value of the IP used in the target address calculation is the address of
the instruction following the JNBS instruction. If the specified bit was set, the instruction following the
JNBS instruction is executed.

Flags

Addressing Modes

E Z V C N

0 B 0 0 B

E Always cleared.
Z Contains logical negation of the previous state of the specified bit.
V Always cleared.
C Always cleared.
N Contains the previous state of the specified bit.

Mnemonic Format Bytes

JNBS bitaddrQ.q, rel BA QQ rr q0 4

ST10 FAMILY PROGRAMMING MANUAL

89/172

MOV Move Data

Syntax MOV op1, op2

Operation (op1) <-- (op2)

Data Types WORD

Description
Moves the contents of the source operand specified by op2 to the location specified by the destination
operand op1. The contents of the moved data is examined, and the flags are updated accordingly.

Flags

Addressing Modes

E Z V C N

* * - - *

E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.

Z Set if the value of the source operand op2 equals zero. Cleared otherwise.
V Not affected.
C Not affected.
N Set if the most significant bit of the source operand op2 is set. Cleared otherwise.

Mnemonic Format Bytes

MOV Rwn, Rwm F0 nm 2

MOV Rwn, #data4 E0 #n 2

MOV reg, #data16 E6 RR ## ## 4

MOV Rwn, [Rwm] A8 nm 2

MOV Rwn, [Rwm+] 98 nm 2

MOV [Rwm], Rwn B8 nm 2

MOV [-Rwm], Rwn 88 nm 2

MOV [Rwn], [Rwm] C8 nm 2

MOV [Rwn+], [Rwm] D8 nm 2

MOV [Rwn], [Rwm+] E8 nm 2

MOV Rwn, [Rwm+#data16] D4 nm ## ## 4

MOV [Rwm+#data16], Rwn C4 nm ## ## 4

MOV [Rwn], mem 84 0n MM MM 4

MOV mem, [Rwn] 94 0n MM MM 4

MOV reg, mem F2 RR MM MM 4

MOV mem, reg F6 RR MM MM 4

ST10 FAMILY PROGRAMMING MANUAL

90/172

MOVB Move Data

Syntax MOVB op1, op2

Operation (op1) <-- (op2)

Data Types BYTE

Description
Moves the contents of the source operand specified by op2 to the location specified by the destination
operand op1. The contents of the moved data is examined, and the flags are updated accordingly.

Flags

Addressing Modes

E Z V C N

* * - - *

E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.

Z Set if the value of the source operand op2 equals zero. Cleared otherwise.
V Not affected.
C Not affected.
N Set if the most significant bit of the source operand op2 is set. Cleared otherwise.

Mnemonic Format Bytes

MOVB Rbn, Rbm F1 nm 2

MOVB Rbn, #data4 E1 #n 2

MOVB reg, #data16 E7 RR ## ## 4

MOVB Rbn, [Rwm] A9 nm 2

MOVB Rbn, [Rwm+] 99 nm 2

MOVB [Rwm], Rbn B9 nm 2

MOVB [-Rwm], Rbn 89 nm 2

MOVB [Rwn], [Rwm] C9 nm 2

MOVB [Rwn+], [Rwm] D9 nm 2

MOVB [Rwn], [Rwm+] E9 nm 2

MOVB Rbn, [Rwm+#data16] F4 nm ## ## 4

MOVB [Rwm+#data16], Rbn E4 nm ## ## 4

MOVB [Rwn], mem A4 0n MM MM 4

MOVB mem, [Rwn] B4 0n MM MM 4

MOVB reg, mem F3 RR MM MM 4

MOVB mem, reg F7 RR MM MM 4

ST10 FAMILY PROGRAMMING MANUAL

91/172

MOVBS Move Byte Sign Extend

Syntax MOVBS op1, op2

Operation (low byte op1) <-- (op2)
IF (op27) = 1 THEN

(high byte op1) <-- FFh
ELSE

(high byte op1) <-- 00h
END IF

Data Types WORD, BYTE

Description
Moves and sign extends the contents of the source byte specified by op2 to the word location specified by
the destination operand op1. The contents of the moved data is examined, and the flags are updated
accordingly.

Flags

Addressing Modes

E Z V C N

0 * - - *

E Always cleared.
Z Set if the value of the source operand op2 equals zero. Cleared otherwise.
V Not affected.
C Not affected.
N Set if the most significant bit of the source operand op2 is set. Cleared otherwise.

Mnemonic Format Bytes

MOVBS Rbn, Rbm D0 mn 2

MOVBS reg, mem D2 RR MM MM 4

MOVBS mem, reg D5 RR MM MM 4

ST10 FAMILY PROGRAMMING MANUAL

92/172

MOVBZ Move Byte Zero Extend

Syntax MOVBZ op1, op2

Operation (low byte op1) <-- (op2)
(high byte op1) <-- 00h

Data Types WORD, BYTE

Description
Moves and zero extends the contents of the source byte specified by op2 to the word location specified
by the destination operand op1. The contents of the moved data is examined, and the flags are updated
accordingly.

Flags

Addressing Modes

E Z V C N

0 * - - 0

E Always cleared.
Z Set if the value of the source operand op2 equals zero. Cleared otherwise.
V Not affected.
C Not affected.
N Always cleared.

Mnemonic Format Bytes

MOVBZ Rbn, Rbm C0 mn 2

MOVBZ reg, mem C2 RR MM MM 4

MOVBZ mem, reg C5 RR MM MM 4

ST10 FAMILY PROGRAMMING MANUAL

93/172

MUL Signed Multiplication

Syntax MUL op1, op2

Operation (MD) <-- (op1) * (op2)

Data Types WORD

Description
Performs a 16-bit by 16-bit signed multiplication using the two words specified by operands op1 and op2
respectively. The signed 32-bit result is placed in the MD register.

Flags

Addressing Modes

E Z V C N

0 * S 0 *

E Always cleared.
Z Set if the result equals zero. Cleared otherwise.
V This bit is set if the result cannot be represented in a word data type. Cleared otherwise.
C Always cleared.
N Set if the most significant bit of the result is set. Cleared otherwise.

Mnemonic Format Bytes

MUL Rwn, Rwm 0B nm 2

ST10 FAMILY PROGRAMMING MANUAL

94/172

MULU Unsigned Multiplication

Syntax MULU op1, op2

Operation (MD) <-- (op1) * (op2)

Data Types WORD

Description
Performs a 16-bit by 16-bit unsigned multiplication using the two words specified by operands op1 and
op2 respectively. The unsigned 32-bit result is placed in the MD register.

Flags

Addressing Modes

E Z V C N

0 * S 0 *

E Always cleared.
Z Set if the result equals zero. Cleared otherwise.
V This bit is set if the result cannot be represented in a word data type. Cleared otherwise.
C Always cleared.
N Set if the most significant bit of the result is set. Cleared otherwise.

Mnemonic Format Bytes

MULU Rwn, Rwm 1B nm 2

ST10 FAMILY PROGRAMMING MANUAL

95/172

NEG Integer Two’s Complement

Syntax NEG op1

Operation (op1) <-- 0 - (op1)

Data Types WORD

Description
Performs a binary 2’s complement of the source operand specified by op1. The result is then stored in
op1.

Flags

Addressing Modes

E Z V C N

* * * S *

E Set if the value of op1 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.
V Set if an arithmetic underflow occurred, i.e. the result cannot be represented in the specified

data type. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
N Set if the most significant bit of the result is set. Cleared otherwise.

Mnemonic Format Bytes

NEG Rwn 81 n0 2

ST10 FAMILY PROGRAMMING MANUAL

96/172

NEGB Integer Two’s Complement

Syntax NEGB op1

Operation (op1) <-- 0 - (op1)

Data Types BYTE

Description
Performs a binary 2’s complement of the source operand specified by op1. The result is then stored in
op1.

Flags

Addressing Modes

E Z V C N

* * * S *

E Set if the value of op1 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.
V Set if an arithmetic underflow occurred, i.e. the result cannot be represented in the specified

data type. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
N Set if the most significant bit of the result is set. Cleared otherwise.

Mnemonic Format Bytes

NEGB Rbn A1 n0 2

ST10 FAMILY PROGRAMMING MANUAL

97/172

NOP No Operation

Syntax NOP

Operation No Operation

Description
This instruction causes a null operation to be performed. A null operation causes no change in the status
of the flags.

Flags

Addressing Modes

E Z V C N

- - - - -

E Not affected
Z Not affected
V Not affected
C Not affected
N Not affected

Mnemonic Format Bytes

NOP CC 00 2

ST10 FAMILY PROGRAMMING MANUAL

98/172

OR Logical OR

Syntax OR op1, op2

Operation (op1) <-- (op1) v (op2)

Data Types WORD

Description
Performs a bitwise logical OR of the source operand specified by op2 and the destination operand spec-
ified by op1. The result is then stored in op1.

Flags

Addressing Modes

E Z V C N

* * 0 0 *

E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.
V Always cleared.
C Always cleared.
N Set if the most significant bit of the result is set. Cleared otherwise.

Mnemonic Format Bytes

OR Rwn, Rwm 70 nm 2

OR Rwn, [Rwi] 78 n:10ii 2

OR Rwn, [Rwi+] 78 n:11ii 2

OR Rwn, #data3 78 n:0### 2

OR reg, #data16 76 RR ## ## 4

OR reg, mem 72 RR MM MM 4

OR mem, reg 74 RR MM MM 4

ST10 FAMILY PROGRAMMING MANUAL

99/172

ORB Logical OR

Syntax ORB op1, op2

Operation (op1) <-- (op1) v (op2)

Data Types BYTE

Description
Performs a bitwise logical OR of the source operand specified by op2 and the destination operand spec-
ified by op1. The result is then stored in op1.

Flags

Addressing Modes

E Z V C N

* * 0 0 *

E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.
V Always cleared.
C Always cleared.
N Set if the most significant bit of the result is set. Cleared otherwise.

Mnemonic Format Bytes

ORB Rbn, Rbm 71 nm 2

ORB Rbn, [Rwi] 79 n:10ii 2

ORB Rbn, [Rwi+] 79 n:11ii 2

ORB Rbn, #data3 79 n:0### 2

ORB reg, #data16 77 RR ## ## 4

ORB reg, mem 73 RR MM MM 4

ORB mem, reg 75 RR MM MM 4

ST10 FAMILY PROGRAMMING MANUAL

100/172

PCALL Push Word & Call Subroutine Absolute

Syntax PCALL op1, op2

Operation (tmp) <-- (op1)
(SP) <-- (SP) - 2
((SP)) <-- (tmp)
(SP) <-- (SP) - 2
((SP)) <-- (IP)
(IP) <-- op2

Data Types WORD

Description
Pushes the word specified by operand op1 and the value of the instruction pointer, IP, onto the system
stack, and branches to the absolute memory location specified by the second operand op2. Because IP
always points to the instruction following the branch instruction, the value stored on the system stack rep-
resents the return address of the calling routine.

Flags

Addressing Modes

E Z V C N

* * - - *

E Set if the value of the pushed operand op1 represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.

Z Set if the value of the pushed operand op1 equals zero. Cleared otherwise.
V Not affected.
C Not affected.
N Set if the most significant bit of the pushed operand op1 is set. Cleared otherwise.

Mnemonic Format Bytes

PCALL reg, caddr E2 RR MM MM 4

ST10 FAMILY PROGRAMMING MANUAL

101/172

POP Pop Word from System Stack

Syntax POP op1

Operation (tmp) <-- ((SP))
(SP) <-- (SP) + 2
(op1) <-- (tmp)

Data Types WORD

Description
Pops one word from the system stack specified by the Stack Pointer into the operand specified by op1.
The Stack Pointer is then incremented by two.

Flags

Addressing Modes

E Z V C N

* * - - *

E Set if the value of the popped word represents the lowest possible negative number. Cleared
otherwise. Used to signal the end of a table.

Z Set if the value of the popped word equals zero. Cleared otherwise.
V Not affected.
C Not affected.
N Set if the most significant bit of the popped word is set. Cleared otherwise.

Mnemonic Format Bytes

POP reg FC RR 2

ST10 FAMILY PROGRAMMING MANUAL

102/172

PRIOR Prioritize Register

Syntax PRIOR op1, op2

Operation (tmp) <-- (op2)
(count) <-- 0

DO WHILE (tmp15) ≠ 1 AND (count) ≠ 15 AND (op2) ≠ 0
(tmpn) <-- (tmpn-1)
(count) <-- (count) + 1

END WHILE
(op1) <-- (count)

Data Types WORD

Description
This instruction stores a count value in the word operand specified by op1 indicating the number of single
bit shifts required to normalize the operand op2 so that its most significant bit is equal to one. If the source
operand op2 equals zero, a zero is written to operand op1 and the zero flag is set. Otherwise the zero flag
is cleared.

Flags

Addressing Modes

E Z V C N

0 * 0 0 0

E Always cleared.
Z Set if the source operand op2 equals zero. Cleared otherwise.
V Always cleared.
C Always cleared.
N Always cleared.

Mnemonic Format Bytes

PRIOR Rwn, Rwm 2B nm 2

ST10 FAMILY PROGRAMMING MANUAL

103/172

PUSH Push Word on System Stack

Syntax PUSH op1

Operation (tmp) <-- (op1)
(SP) <-- (SP) - 2
((SP)) <-- (tmp)

Data Types WORD

Description
Moves the word specified by operand op1 to the location in the internal system stack specified by the
Stack Pointer, after the Stack Pointer has been decremented by two.

Flags

Addressing Modes

E Z V C N

* * - - *

E Set if the value of the pushed word represents the lowest possible negative number. Cleared
otherwise. Used to signal the end of a table.

Z Set if the value of the pushed word equals zero. Cleared otherwise.
V Not affected.
C Not affected.
N Set if the most significant bit of the pushed word is set. Cleared otherwise.

Mnemonic Format Bytes

PUSH reg EC RR 2

ST10 FAMILY PROGRAMMING MANUAL

104/172

PWRDN Enter Power Down Mode

Syntax PWRDN

Operation Enter Power Down Mode

Description
This instruction causes the part to enter the power down mode. In this mode, all peripherals and the CPU
are powered down until the part is externally reset. To insure that this instruction is not accidentally exe-
cuted, it is implemented as a protected instruction. To further control the action of this instruction, the
PWRDN instruction is only enabled when the non-maskable interrupt pin (NMI) is in the low state. Other-
wise, this instruction has no effect.

Flags

Addressing Modes

E Z V C N

- - - - -

E Not affected
Z Not affected
V Not affected
C Not affected
N Not affected

Mnemonic Format Bytes

PWRDN 97 68 97 97 4

ST10 FAMILY PROGRAMMING MANUAL

105/172

RET Return from Subroutine

Syntax RET

Operation (IP) <-- ((SP))
(SP) <-- (SP) + 2

Description
Returns from a subroutine. The IP is popped from the system stack. Execution resumes at the instruction
following the CALL instruction in the calling routine.

Flags

Addressing Modes

E Z V C N

- - - - -

E Not affected
Z Not affected
V Not affected
C Not affected
N Not affected

Mnemonic Format Bytes

RET CB 00 2

ST10 FAMILY PROGRAMMING MANUAL

106/172

RETI Return from Interrupt Routine

Syntax RETI

Operation (IP) <-- ((SP))
(SP) <-- (SP) + 2
IF (SYSCON.SGTDIS=0) THEN

(CSP) <-- ((SP))
(SP) <-- (SP) + 2

END IF
(PSW) <-- ((SP))
(SP) <-- (SP) + 2

Description
Returns from an interrupt routine. The PSW, IP, and CSP are popped off the system stack. Execution
resumes at the instruction which had been interrupted. The previous system state is restored after the
PSW has been popped. The CSP is only popped if segmentation is enabled. This is indicated by the
SGTDIS bit in the SYSCON register.

Flags

Addressing Modes

E Z V C N

S S S S S

E Restored from the PSW popped from stack.
Z Restored from the PSW popped from stack.
V Restored from the PSW popped from stack.
C Restored from the PSW popped from stack.
N Restored from the PSW popped from stack.

Mnemonic Format Bytes

RETI FB 88 2

ST10 FAMILY PROGRAMMING MANUAL

107/172

RETP Return from Subroutine & Pop Word

Syntax RETP op1

Operation (IP) <-- ((SP))
(SP) <-- (SP) + 2
(tmp) <-- ((SP))
(SP) <-- (SP) + 2
(op1) <-- (tmp)

Data Types WORD

Description
Returns from a subroutine. The IP is first popped from the system stack and then the next word is popped
from the system stack into the operand specified by op1. Execution resumes at the instruction following
the CALL instruction in the calling routine.

Flags

Addressing Modes

E Z V C N

* * - - *

E Set if the value of the word popped into operand op1 represents the lowest possible negative
number. Cleared otherwise. Used to signal the end of a table.

Z Set if the value of the word popped into operand op1 equals zero. Cleared otherwise.
V Not affected.
C Not affected.
N Set if the most significant bit of the word popped into operand op1 is set. Cleared otherwise.

Mnemonic Format Bytes

RETP reg EB RR 2

ST10 FAMILY PROGRAMMING MANUAL

108/172

RETS Return from Inter-Segment Subroutine

Syntax RETS

Operation (IP) <-- ((SP))
(SP) <-- (SP) + 2
(CSP) <-- ((SP))
(SP) <-- (SP) + 2

Description
Returns from an inter-segment subroutine. The IP and CSP are popped from the system stack. Execution
resumes at the instruction following the CALLS instruction in the calling routine.

Flags

Addressing Mode

E Z V C N

- - - - -

E Not affected
Z Not affected
V Not affected
C Not affected
N Not affected

Mnemonic Format Bytes

RETS DB 00 2

ST10 FAMILY PROGRAMMING MANUAL

109/172

ROL Rotate Left

Syntax ROL op1, op2

Operation (count) <-- (op2)
(C) <-- 0
DO WHILE (count) ≠ 0

(C) <-- (op115)
(op1n) <-- (op1n-1) [n=1...15]
(op10) <-- (C)
(count) <-- (count) - 1

END WHILE

Data Types WORD

Description
Rotates the destination word operand op1 left by as many times as specified by the source operand op2.
Bit 15 is rotated into Bit 0 and into the Carry. Only shift values between 0 and 15 are allowed. When using
a GPR as the count control, only the least significant 4 bits are used.

Flags

Addressing Modes

E Z V C N

0 * 0 S *

E Always cleared.
Z Set if result equals zero. Cleared otherwise.
V Always cleared.
C The carry flag is set according to the last most significant bit shifted out of op1. Cleared for a

rotate count of zero.
N Set if the most significant bit of the result is set. Cleared otherwise.

Mnemonic Format Bytes

ROL Rwn, Rwm 0C nm 2

ROL Rwn, #data4 1C #n 2

ST10 FAMILY PROGRAMMING MANUAL

110/172

ROR Rotate Right

Syntax ROR op1, op2

Operation (count) <-- (op2)
(C) <-- 0
(V) <-- 0
DO WHILE (count) ≠ 0

(V) <-- (V) v (C)
(C) <-- (op10)
(op1n) <-- (op1n+1) [n=0...14]
(op115) <-- (C)
(count) <-- (count) - 1

END WHILE

Data Types WORD

Description
Rotates the destination word operand op1 right by as many times as specified by the source operand
op2. Bit 0 is rotated into Bit 15 and into the Carry. Only shift values between 0 and 15 are allowed. When
using a GPR as the count control, only the least significant 4 bits are used.

Flags

Addressing Modes

E Z V C N

0 * S S *

E Always cleared.
Z Set if result equals zero. Cleared otherwise.
V Set if in any cycle of the rotate operation a ‘1’ is shifted out of the carry flag. Cleared for a

rotate count of zero.
C The carry flag is set according to the last least significant bit shifted out of op1. Cleared for a

rotate count of zero.
N Set if the most significant bit of the result is set. Cleared otherwise.

Mnemonic Format Bytes

ROR Rwn, Rwm 2C nm 2

ROR Rwn, #data4 3C #n 2

ST10 FAMILY PROGRAMMING MANUAL

111/172

SCXT Switch Context

Syntax SCXT op1, op2

Operation (tmp1) <-- (op1)
(tmp2) <--(op2)
(SP) <-- (SP) - 2
((SP)) <-- (tmp1)
(op1) <-- (tmp2)

Data Types WORD

Description
Used to switch contexts for any register. Switching context is a push and load operation. The contents of
the register specified by the first operand, op1, are pushed onto the stack. That register is then loaded
with the value specified by the second operand, op2.

Flags

Addressing Modes

E Z V C N

- - - - -

E Not affected
Z Not affected
V Not affected
C Not affected
N Not affected

Mnemonic Format Bytes

SCXT reg, #data16 C6 RR ## ## 4

SCXT reg, mem D6 RR MM MM 4

ST10 FAMILY PROGRAMMING MANUAL

112/172

SHL Shift Left

Syntax SHL op1, op2

Operation (count) <-- (op2)
(C) <-- 0

DO WHILE (count) ≠ 0
(C) <-- (op115)
(op1n) <-- (op1n-1) [n=1...15]
(op10) <-- 0
(count) <-- (count) - 1

END WHILE

Data Types WORD

Description
Shifts the destination word operand op1 left by as many times as specified by the source operand op2.
The least significant bits of the result are filled with zeros accordingly. The most significant bit is shifted
into the Carry. Only shift values between 0 and 15 are allowed. When using a GPR as the count control,
only the least significant 4 bits are used.

Flags

Addressing Modes

E Z V C N

0 * 0 S *

E Always cleared.
Z Set if result equals zero. Cleared otherwise.
V Always cleared.
C The carry flag is set according to the last most significant bit shifted out of op1. Cleared for a

shift count of zero.
N Set if the most significant bit of the result is set. Cleared otherwise.

Mnemonic Format Bytes

SHL Rwn, Rwm 4C nm 2

SHL Rwn, #data4 5C #n 2

ST10 FAMILY PROGRAMMING MANUAL

113/172

SHR Shift Right

Syntax SHR op1, op2

Operation (count) <-- (op2)
(C) <-- 0
(V) <-- 0

DO WHILE (count) ≠ 0
(V) <-- (C) v (V)
(C) <-- (op10)
(op1n) <-- (op1n+1) [n=0...14]
(op115) <-- 0
(count) <-- (count) - 1

END WHILE

Data Types WORD

Description
Shifts the destination word operand op1 right by as many times as specified by the source operand op2.
The most significant bits of the result are filled with zeros accordingly. Since the bits shifted out effectively
represent the remainder, the Overflow flag is used instead as a Rounding flag. This flag together with the
Carry flag helps the user to determine whether the remainder bits lost were greater than, less than or
equal to one half an least significant bit. Only shift values between 0 and 15 are allowed. When using a
GPR as the count control, only the least significant 4 bits are used.

Flags

Addressing Modes

E Z V C N

0 * S S *

E Always cleared.
Z Set if result equals zero. Cleared otherwise.
V Set if in any cycle of the shift operation a ‘1’ is shifted out of the carry flag. Cleared for a shift

count of zero.
C The carry flag is set according to the last least significant bit shifted out of op1. Cleared for a

shift count of zero.
N Set if the most significant bit of the result is set. Cleared otherwise.

Mnemonic Format Bytes

SHR Rwn, Rwm 6C nm 2

SHR Rwn, #data4 7C #n 2

ST10 FAMILY PROGRAMMING MANUAL

114/172

SRST Software Reset

Syntax SRST

Operation Software Reset

Description
This instruction is used to perform a software reset. A software reset has the same effect on the micro-
controller as an externally applied hardware reset. To insure that this instruction is not accidentally exe-
cuted, it is implemented as a protected instruction.

Flags

Addressing Modes

E Z V C N

0 0 0 0 0

E Always cleared.
Z Always cleared.
V Always cleared.
C Always cleared.
N Always cleared.

Mnemonic Format Bytes

SRST B7 48 B7 B7 4

ST10 FAMILY PROGRAMMING MANUAL

115/172

SRVWDT Service Watchdog Timer

Syntax SRVWDT

Operation Service Watchdog Timer

Description
This instruction services the Watchdog Timer. It reloads the high order byte of the Watchdog Timer with a
preset value and clears the low byte on every occurrence. Once this instruction has been executed, the
watchdog timer cannot be disabled. To insure that this instruction is not accidentally executed, it is imple-
mented as a protected instruction.

Flags

Addressing Modes

E Z V C N

- - - - -

E Not affected.
Z Not affected.
V Not affected.
C Not affected.
N Not affected.

Mnemonic Format Bytes

SRVWDT A7 58 A7 A7 4

ST10 FAMILY PROGRAMMING MANUAL

116/172

SUB Integer Subtraction

Syntax SUB op1, op2

Operation (op1) <-- (op1) - (op2)

Data Types WORD

Description
Performs a 2’s complement binary subtraction of the source operand specified by op2 from the destina-
tion operand specified by op1. The result is then stored in op1.

Flags

Addressing Modes

E Z V C N

* * * S *

E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.
V Set if an arithmetic underflow occurred, i.e. the result cannot be represented in the specified

data type. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
N Set if the most significant bit of the result is set. Cleared otherwise.

Mnemonic Format Bytes

SUB Rwn, Rwm 20 nm 2

SUB Rwn, [Rwi] 28 n:10ii 2

SUB Rwn, [Rwi+] 28 n:11ii 2

SUB Rwn, #data3 28 n:0### 2

SUB reg, #data16 26 RR ## ## 4

SUB reg, mem 22 RR MM MM 4

SUB mem, reg 24 RR MM MM 4

ST10 FAMILY PROGRAMMING MANUAL

117/172

SUBB Integer Subtraction

Syntax SUBB op1, op2

Operation (op1) <-- (op1) - (op2)

Data Types BYTE

Description
Performs a 2’s complement binary subtraction of the source operand specified by op2 from the destina-
tion operand specified by op1. The result is then stored in op1.

Flags

Addressing Modes

E Z V C N

* * * S *

E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.
V Set if an arithmetic underflow occurred, ie. the result cannot be represented in the specified

data type. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
N Set if the most significant bit of the result is set. Cleared otherwise.

Mnemonic Format Bytes

SUBB Rbn, Rbm 21 nm 2

SUBB Rbn, [Rwi] 29 n:10ii 2

SUBB Rbn, [Rwi+] 29 n:11ii 2

SUBB Rbn, #data3 29 n:0### 2

SUBB reg, #data16 27 RR ## ## 4

SUBB reg, mem 23 RR MM MM 4

SUBB mem, reg 25 RR MM MM 4

ST10 FAMILY PROGRAMMING MANUAL

118/172

SUBC Integer Subtraction with Carry

Syntax SUBC op1, op2

Operation (op1) <-- (op1) - (op2) - (C)

Data Types WORD

Description
Performs a 2’s complement binary subtraction of the source operand specified by op2 and the previously
generated carry bit from the destination operand specified by op1. The result is then stored in op1. This
instruction can be used to perform multiple precision arithmetic.

Flags

Addressing Modes

E Z V C N

* S * S *

E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.

Z Set if result equals zero and the previous Z flag was set. Cleared otherwise.
V Set if an arithmetic underflow occurred, i.e. the result cannot be represented in the specified

data type. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
N Set if the most significant bit of the result is set. Cleared otherwise.

Mnemonic Format Bytes

SUBC Rwn, Rwm 30 nm 2

SUBC Rwn, [Rwi] 38 n:10ii 2

SUBC Rwn, [Rwi+] 38 n:11ii 2

SUBC Rwn, #data3 38 n:0### 2

SUBC reg, #data16 36 RR ## ## 4

SUBC reg, mem 32 RR MM MM 4

SUBC mem, reg 34 RR MM MM 4

ST10 FAMILY PROGRAMMING MANUAL

119/172

SUBCB Integer Subtraction with Carry

Syntax SUBCB op1, op2

Operation (op1) <-- (op1) - (op2) - (C)

Data Types BYTE

Description
Performs a 2’s complement binary subtraction of the source operand specified by op2 and the previously
generated carry bit from the destination operand specified by op1. The result is then stored in op1. This
instruction can be used to perform multiple precision arithmetic.

Flags

Addressing Modes

E Z V C N

* S * S *

E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.

Z Set if result equals zero and the previous Z flag was set. Cleared otherwise.
V Set if an arithmetic underflow occurred, i.e. the result cannot be represented in the specified

data type. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
N Set if the most significant bit of the result is set. Cleared otherwise.

Mnemonic Format Bytes

SUBCB Rbn, Rbm 31 nm 2

SUBCB Rbn, [Rwi] 39 n:10ii 2

SUBCB Rbn, [Rwi+] 39 n:11ii 2

SUBCB Rbn, #data3 39 n:0### 2

SUBCB reg, #data16 37 RR ## ## 4

SUBCB reg, mem 33 RR MM MM 4

SUBCB mem, reg 35 RR MM MM 4

ST10 FAMILY PROGRAMMING MANUAL

120/172

TRAP Software Trap

Syntax TRAP op1

Operation (SP) <-- (SP) - 2
((SP)) <-- (PSW)
IF (SYSCON.SGTDIS=0) THEN

(SP) <-- (SP) - 2
((SP)) <-- (CSP)
(CSP) <-- 0

END IF
(SP) <-- (SP) - 2
((SP)) <-- (IP)
(IP) <-- zero_extend (op1*4)

Description
Invokes a trap or interrupt routine based on the specified operand, op1. The invoked routine is deter-
mined by branching to the specified vector table entry point. This routine has no indication of whether it
was called by software or hardware. System state is preserved identically to hardware interrupt entry
except that the CPU priority level is not affected. The RETI, return from interrupt, instruction is used to
resume execution after the trap or interrupt routine has completed. The CSP is pushed if segmentation is
enabled. This is indicated by the SGTDIS bit in the SYSCON register.

Flags

Addressing Modes

E Z V C N

- - - - -

E Not affected.
Z Not affected.
V Not affected.
C Not affected.
N Not affected.

Mnemonic Format Bytes

TRAP #trap7 9B t:ttt0 2

ST10 FAMILY PROGRAMMING MANUAL

121/172

XOR Logical Exclusive OR

Syntax XOR op1, op2

Operation (op1) <-- (op1) ⊕ (op2)

Data Types WORD

Description
Performs a bitwise logical EXCLUSIVE OR of the source operand specified by op2 and the destination
operand specified by op1. The result is then stored in op1.

Flags

Addressing Modes

E Z V C N

* * 0 0 *

E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.
V Always cleared.
C Always cleared.
N Set if the most significant bit of the result is set. Cleared otherwise.

Mnemonic Format Bytes

XOR Rwn, Rwm 50 nm 2

XOR Rwn, [Rwi] 58 n:10ii 2

XOR Rwn, [Rwi+] 58 n:11ii 2

XOR Rwn, #data3 58 n:0### 2

XOR reg, #data16 56 RR ## ## 4

XOR reg, mem 52 RR MM MM 4

XOR mem, reg 54 RR MM MM 4

ST10 FAMILY PROGRAMMING MANUAL

122/172

XORB Logical Exclusive OR

Syntax XORB op1.0p2

Operation (op1) <-- (op1) ⊕ (op2)

Data Types BYTE

Description
Performs a bitwise logical EXCLUSIVE OR of the source operand specified by op2 and the destination
operand specified by op1. The result is then stored in op1.

Flags

Addressing Modes

E Z V C N

* * 0 0 *

E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.

Z Set if result equals zero. Cleared otherwise.
V Always cleared.
C Always cleared.
N Set if the most significant bit of the result is set. Cleared otherwise.

Mnemonic Format Bytes
XORB Rbn, Rbm 51 nm 2

XORB Rbn, [Rwi] 59 n:10ii 2

XORB Rbn, [Rwi+] 59 n:11ii 2

XORB Rbn, #data3 59 n:0### 2

XORB reg, #data16 57 RR ## ## 4

XORB reg, mem 53 RR MM MM 4

XORB mem, reg 55 RR MM MM 4

ST10 FAMILY PROGRAMMING MANUAL

123/172

3 - MAC INSTRUCTION SET

This section describes the instruction set for the
MAC. Refer to device datasheets for information
about which ST10 devices include the MAC.

3.1 - Addressing modes

MAC instructions use some standard ST10
addressing modes such as GPR direct or #data5
for immediate shift value. To supply the MAC with
up to 2 new operands per instruction cycle, new
MAC instruction addressing modes have been
added. These allow indirect addressing with
address pointer post-modification. Double indirect
addressing requires 2 pointers, one of which can
be supplied by any GPR, the other is provided by
one of two new specific SFRs IDX0 and IDX1. Two
pairs of offset registers QR0/QR1 and QX0/QX1
are associated with each pointer (GPR or IDXi).
The GPR pointer gives access to the entire mem-
ory space, whereas IDXi are limited to the internal
Dual-Port RAM, except for the CoMOV instruc-
tion. The following table shows the various combi-

nations of pointer post-modification for each of
these 2 new addressing modes (see Table 27).
When using pointer post-modification addressing
modes, the address pointed to (i.e the value in the
IDXi or Rwn register) must be a legal address,
even if its content is not modified. An odd value
(e.g. in R0 when using [R0] post-modification
adressing mode) will trigger the class-B hardware
Trap 28h (Illegal Word Operand Access Trap
(ILLOPA)).
In this document the symbols “[Rwn⊗]” and
“[IDXi⊗]” are used to refer to these addressing
modes.
A new instruction CoSTORE transfers a value
from a MAC register to any location in memory.
This instruction uses a specific addressing mode
for the MAC registers, called CoReg. The follow-
ing table gives the 5-bit addresses of the MAC
registers corresponding to this CoReg addressing
mode. Unused addresses are reserved for future
revisions (see Table 28).

Note 1. IDXi can only contain even values. Therefore, bit 0 always equals zero.

Table 27 : Pointer post-modification for [Rwn⊗]” and “[IDXi⊗] addressing modes

Symbol Mnemonic Address Pointer Operation

“[IDXi⊗]” stands for 1 [IDXi] (IDXi) <-- (IDXi) (no-op)

[IDXi+] (IDXi) <-- (IDXi) +2 (i=0,1)

[IDXi-] (IDXi) <-- (IDXi) -2 (i=0,1)

[IDXi + QXj] (IDXi) <-- (IDXi) + (QXj) (i, j =0,1)

[IDXi - QXj] (IDXi) <-- (IDXi) - (QXj) (i, j =0,1)

“[Rwn⊗]” stands for [Rwn] (Rwn) <-- (Rwn) (no-op)

[Rwn+] (Rwn) <-- (Rwn) +2 (n=0...15)

[Rwn-] (Rwn) <-- (Rwn) -2 (n=0...15)

[Rwn + QRj] (Rwn) <-- (Rwn) + (QRj) (n=0...15; j =0,1)

[Rwn - QRj] (Rwn) <-- (Rwn) - (QRj) (n=0...15; j =0,1)

Table 28 : MAC register addresses for CoReg

Register Description Address

MSW MAC-Unit Status Word 00000

MAH MAC-Unit Accumulator High 00001

MAS “limited” MAH 00010

MAL MAC-Unit Accumulator Low 00100

MCW MAC-Unit Control Word 00101

MRW MAC-Unit Repeat Word 00110

ST10 FAMILY PROGRAMMING MANUAL

124/172

3.2 - MAC Instruction Execution Time
The instruction execution time for MAC
instructions is calculated in the same way as that
of the standard instruction set. To calculate the

execution time for MAC instructions, refer to
Instruction execution times in Table 6, considering
MAC instructions to be 4-byte instructions with a
minimum state time number of 2.

3.3 - MAC instruction set summary

Table 29 : MAC instruction mnemonic by addressing mode and repeatability

Mnemonic Addressing Modes Rep Mnemonic Addressing Modes Rep

CoMUL Rwn, Rwm No CoMACM [IDXi⊗], [Rwm⊗] Yes

CoMULu [IDXi⊗], [Rwm⊗] No CoMACMu

CoMULus Rwn, [Rwm⊗] No CoMACMus

CoMULsu CoMACMsu
CoMUL- CoMACM-
CoMULu- CoMACMu-
CoMULus- CoMACMus-
CoMULsu- CoMACMsu-
CoMUL + rnd CoMACM + rnd
CoMULu + rnd CoMACMu + rnd
CoMULus + rnd CoMACMus + rnd
CoMULsu + rnd CoMACMsu + rnd
CoMAC Rwn, Rwm No CoMACMR

CoMACu [IDXi⊗], [Rwm⊗] Yes CoMACMRu

CoMACus Rwn, [Rwm⊗] Yes CoMACMRus

CoMACsu CoMACMRsu
CoMAC- CoMACMR + rnd
CoMACu- CoMACMRu + rnd
CoMACus- CoMACMRus + rnd
CoMACsu- CoMACMRsu + rnd
CoMAC + rnd CoADD Rwn, Rwm No

CoMACu + rnd CoADD2 [IDXi⊗], [Rwm⊗] Yes

CoMACus + rnd CoSUB Rwn, [Rwm⊗] Yes

CoMACsu + rnd CoSUB2
CoMACR CoSUBR
CoMACRu CoSUB2R
CoMACRus CoMAX
CoMACRsu CoMIN
CoMACR + rnd CoLOAD Rwn, Rwm No

No

No

CoMACRu + rnd CoLOAD- [IDXi⊗], [Rwm⊗]
CoMACRus + rnd CoLOAD2 Rwn, [Rwm⊗]
CoMACRsu + rnd CoLOAD2-

CoCMP
CoNOP [Rwm⊗] Yes CoSHL Rwn Yes

[IDXi⊗], [Rwm⊗] Yes CoSHR #data5 No

CoASHR [Rwm⊗] Yes

CoNEG - No CoASHR + rnd
CoNEG + rnd CoABS - No
CoRND Rwn, Rwm No

CoSTORE Rwn , CoReg No [IDXi⊗], [Rwm⊗] No

[Rwn⊗], CoReg Yes Rwn, [Rwm⊗] No

CoMOV [IDXi⊗], [Rwm⊗] Yes

ST10 FAMILY PROGRAMMING MANUAL

125/172

The following table gives the MAC Function Code
of each instruction. This Function Code is the third
byte of the new instruction and is used by the

co-processor as its operation code. Unused func-
tion codes are treated as CoNOP Function Code
by the MAC.

Table 30 : MAC instruction function code (hexa)

Mnemonic Function Code Mnemonic Function Code

CoMUL C0 CoMACM D8

CoMULu 00 CoMACMu 18

CoMULus 80 CoMACMus 98

CoMULsu 40 CoMACMsu 58

CoMUL- C8 CoMACM- E8

CoMULu- 08 CoMACMu- 28

CoMULus- 88 CoMACMus- A8

CoMULsu- 48 CoMACMsu- 68

CoMUL + rnd C1 CoMACM + rnd D9

CoMULu + rnd 01 CoMACMu + rnd 19

CoMULus + rnd 81 CoMACMus + rnd 99

CoMULsu + rnd 41 CoMACMsu + rnd 59

CoMAC D0 CoMACMR F9

CoMACu 10 CoMACMRu 38

CoMACus 90 CoMACMRus B8

CoMACsu 50 CoMACMRsu 78

CoMAC- E0 CoMACMR + rnd F9

CoMACu- 20 CoMACMRu + rnd 39

CoMACus- A0 CoMACMRus + rnd B9

CoMACsu- 60 CoMACMRsu + rnd 79

CoMAC + rnd D1 CoADD 02

CoMACu + rnd 11 CoADD2 42

CoMACus + rnd 91 CoSUB 0A

CoMACsu + rnd 51 CoSUB2 4A

CoMACR F0 CoSUBR 12

CoMACRu 30 CoSUB2R 52

CoMACRus B0 CoMAX 3A

CoMACRsu 70 CoMIN 7A

CoMACR + rnd F1 CoLOAD 22

CoMACRu + rnd 31 CoLOAD- 2A

CoMACRus + rnd B1 CoLOAD2 62

CoMACRsu + rnd 71 CoLOAD2- 6A

CoNOP 5A CoCMP C2

CoNEG 32 CoSHL #data5 82

CoNEG + rnd 72 CoSHL other 8A

CoRND B2 CoSHR #data5 92

CoABS - 1A CoSHR other 9A

CoABS op1, op2 CA CoASHR #data5 A2

CoSTORE wwww:w000 CoASHR other AA

CoMOV 00 CoASHR + rnd #data5 B2

CoASHR + rnd other BA

ST10 FAMILY PROGRAMMING MANUAL

126/172

3.4 - MAC instruction conventions
This section details the conventions used to describe the MAC instruction set.

3.4.1 - Operands

3.4.2 - Operations

3.4.3 - Abbreviations

3.4.4 - Data addressing Modes

Operand Description

opX Specifies the immediate constant value of opX

(opX) Specifies the contents of opX

(opXn) Specifies the contents of bit n of opX

((opX)) Specifies the contents of opX (i.e. opX is used as pointer to the actual operand)

rnd plus 00 0000 8000h

Diadic
operations

(opX)<-- (opY) (opY) is MOVED into (opX)

(opX) + (opY) (opX) is ADDED to (opY)

(opX) - (opY) (opY) is SUBTRACTED from (opX)

(opX) * (opY) (opX) is MULTIPLIED by (opY)

(opX) <--> (opY) (opY) is COMPARED against (opX)

opX\opY (opX) is CONCATANATED to (opY) (LSW)

Max ((opX), (opY)) MAXIMUM value between (opX) and (opY)

Min ((opX), (opY)) MINIMUM value between (opX) and (opY)

Monadic
Operations

(opX) << (opX) is Logically SHIFTED Left

(opX) >> (opX) is Logically SHIFTED Right

(opX) >>a (opX) is Arithmetically SHIFTED Right

Abs (opX) ABSOLUTE value of (opX)

Abbreviation Description

C Carry flag in the MSW register

MP MP mode in the MCW register

MS MS mode in the MCW register

MAE 8 most significant bits of the accumulator (lowest byte of the MSW register)

Addressing mode Description

“Rwn”, or “Rwm” : General Purpose Registers (GPRs) where “n” and “m” are any value between 0 and 15.

[...] : Indirect word memory location

CoReg : MAC-Unit Register (MSW, MAH, MAL, MAS, MRW, MCW)

ACC : MAC Accumulator consisting of (lowest byte of MSW)\MAH\MAL.

#datax : Immediate constant (the number of significant bits is represented by ‘x’).

ST10 FAMILY PROGRAMMING MANUAL

127/172

3.4.5 - Instruction format

The instruction format is the same as that of the
standard instruction set.

In addition, the following new symbols are used:

3.4.6 - Flag states

3.4.7 - Repeated instruction syntax
Repeatable instructions CoXXX are expressed as
follows when repeated

When MRW is invoked, the instruction is repeated
(MRW12-0) + 1 times, therefore the maximum num-
ber of times an instruction can be repeated is
8 192 (213) times.
#data5 is an integer value specifying the number
of times an instruction is repeated, #data5 must be
less than 32.
Therefore, CoXXX can only be repeated less
than 32 times. When the MRW register is used in
the repeat instruction, the 5-bit repeat field is set
to 1.

3.4.8 - Shift value
The shifter authorizes only 8-bit left/right shifts.
Shift values must be between 0-8 (inclusive).

3.5 - MAC instruction descriptions
Each instruction is described in a standard format.
See “MAC instruction conventions” on page 126
for detailed information about the instruction con-
ventions. The MAC instruction set is divided into 5
functional groups:
– Multiply and Multiply-Accumulate Instructions
– 40-bit Arithmetic Instructions
– Shift Instructions
– Compare Instructions
– Transfer Instructions
The instructions are described in alphabetical
order.

Instruction Description

X 4-bit IDX addressing mode encoding.
(see following table)

:.qqq 3-bit GPR offset encoding for new GPR
indirect with offset encoding.

rrrr:r... 5-bit repeat field.

wwww:w... 5-bit CoReg address for CoSTORE
instructions.

ssss: 4-bit immediate shift value.

ssss:s... 5-bit immediate shift value.

Table 31 : IDX Addressing Mode Encoding and
GPR offset Encoding

Addressing Mode 4-bit Encoding

IDX0 1 h

IDX0 + 2 h

IDX0 - 3 h

IDX0 + QX0 4 h

IDX0 - QX0 5 h

IDX0 + QX1 6 h

IDX0 - QX1 7 h

IDX1 9 h

IDX1 + A h

IDX1 - B h

IDX1 + QX0 C h

IDX1 - QX0 D h

IDX1 + QX1 E h

IDX1 - QX1 F h

GPR Offset 3-bit Encoding

no-op 1 h

+ 2 h

- 3 h

+ QR0 4 h

- QR0 5 h

+ QR1 6 h

- QR1 7 h

Flag Description

- Unchanged

* Modified

Repeat #data5 times CoXXX... or

Repeat MRW times CoXXX...

Table 31 : IDX Addressing Mode Encoding and
GPR offset Encoding (continued)

Addressing Mode 4-bit Encoding

ST10 FAMILY PROGRAMMING MANUAL

128/172

CoABS Absolute Value

Group 40-bit Arithmetic Instructions

Syntax CoABS

Operation (ACC) <-- Abs(ACC)

Syntax CoABS op1, op2

Operation (ACC) <-- Abs((op2)\(op1))

Data Types ACCUMULATOR, DOUBLE WORD

Result 40-bit signed value

Description
Compute the absolute value of the Accumulator if no operands are specified or the absolute value of a
40-bit source operand and load the result in the Accumulator. The 40-bit operand results from the con-
catenation of the two source operands op1 (LSW) and op2 (MSW) which is then sign-extended. This
instruction is not repeatable.

MAC Flags

Addressing Modes

N Z C SV E SL

* * 0 - * *

N Set if the most significant bit of the result is set. Cleared otherwise.

Z Set if the result equals zero. Cleared otherwise.

C Always cleared.

SV Not affected.

E Set if the MAE is used. Cleared otherwise.

SL Set if the contents of the ACC is automatically saturated. Not affected otherwise.

Mnemonic Rep Format Bytes

CoABS No A3 00 1A 00 4

CoABS Rwn, Rwm No A3 nm CA 00 4

CoABS [IDXi⊗], [Rwm⊗] No 93 Xm CA 0:0qqq 4

CoABS Rwn, [Rwm⊗] No 83 nm CA 0:0qqq 4

ST10 FAMILY PROGRAMMING MANUAL

129/172

CoADD(2) Add

Group 40-bit Arithmetic Instructions

Syntax CoADD op1, op2

Operation (tmp) <-- (op2)\(op1)
(ACC) <-- (ACC) + (tmp)

Syntax CoADD2 op1, op2

Operation (tmp) <-- 2 * (op2)\(op1)
(ACC) <-- (ACC) + (tmp)

Data Types DOUBLE WORD

Result 40-bit signed value

Description

Adds a 40-bit operand to the 40-bit Accumulator contents and store the result in the accumulator. The
40-bit operand results from the concatenation of the two source operands op1 (LSW) and op2 (MSW)
which is then sign-extended. “2” option indicates that the 40-bit operand is also multiplied by two prior
being added to ACC. When the MS bit of the MCW register is set and when a 32-bit overflow or underflow
occurs, the obtained result becomes 00 7FFF FFFFh or FF 8000 0000h, respectively. This instruction is
repeatable with indirect addressing modes and allows up to two parallel memory reads.

MAC Flags

Note : The E-flag is set when the nine highest bits of the accumulator are not equal. The SV-flag is set,
when a 40-bit arithmetic overflow/ underflow occurs.

Addressing Modes

N Z C SV E SL

* * * * * *

N Set if the most significant bit of the result is set. Cleared otherwise.

Z Set if the result equals zero. Cleared otherwise.

C Set if a carry is generated. Cleared otherwise.

SV Set if an arithmetic overflow occurred. Not affected otherwise.

E Set if MAE is used. Cleared otherwise.

SL Set if the contents of the ACC is automatically saturated. Not affected otherwise.

Mnemonic Rep Format Bytes

CoADD Rwn, Rwm No A3 nm 02 00 4

CoADD2 Rwn, Rwm No A3 nm 42 00 4

CoADD [IDXi⊗], [Rwm⊗] Yes 93 Xm 02 rrrr:rqqq 4

CoADD2 [IDXi⊗], [Rwm⊗] Yes 93 Xm 42 rrrr:rqqq 4

CoADD Rwn, [Rwm⊗] Yes 83 nm 02 rrrr:rqqq 4

CoADD2 Rwn, [Rwm⊗] Yes 83 nm 42 rrrr:rqqq 4

ST10 FAMILY PROGRAMMING MANUAL

130/172

Examples

Addition Examples

CoADD R0, R1 ; (ACC) <-- (ACC) + (R1)\(R0)

CoADD2 R2, [R6+] ; (ACC) <-- (ACC) + 2*(((R6))\(R2))

; (R6) <-- (R6) + 2

Repeat 3 times CoADD

CoADD [IDX1+QX1], [R10+QR0] ; (ACC) <-- (ACC) + (((R10))\((IDX1)))

; (R10) <-- (R10) + (QR0)

; (IDX1) <-- (IDX1) + (QX1)

Repeat MRW times CoADD2

CoADD2 R4, [R8 - QR1] ; (ACC) <-- (ACC) + 2*(((R8))\(R4))

; (R8) <-- (R8) - (QR1)

Instr. MS op 1 op 2 ACC (before) ACC (after) N Z C SV E SL

CoADD x 0000h FFFFh 00 0100 0000h 00 00FF 0000h 0 0 1 - 0 -

CoADD2 x 0000h 0200h 00 0300 0000h 00 0700 0000h 0 0 0 - 0 -

CoADD 0 0000h 4000h 7F BFFF FFFFh 7F FFFF FFFFh 0 0 0 - 1 -

CoADD 0 0001h 4000h 7F BFFF FFFFh 80 0000 0000h 1 0 0 1 1 -

CoADD 0 FFFFh FFFFh FF FFFF FFFFh FF FFFF FFFEh 1 0 1 - 0 -

CoADD 0 FFFFh FFFFh 00 0000 0001h 00 0000 0000h 0 1 1 - 0 -

CoADD 0 FFFFh FFFFh 80 0000 0000h 7F FFFF FFFFh 0 0 1 1 1 -

CoADD2 0 0001h 2000h FF C000 0001h 00 0000 0003h 0 0 1 - 0 -

CoADD2 0 0001h 1800h FF C000 0001h FF F000 0003h 1 0 0 - 0 -

CoADD 0 B4A1h 73C2h 00 7241 A0C3h 00 E604 5564h 0 0 0 - 1 -

1 00 7FFF FFFFh 0 0 0 - 0 1

CoADD 0 B4A1h A3C2h FF 8241 A0C3h FF 2604 5564h 1 0 1 - 1 -

1 FF 8000 0000h 1 0 1 - 0 1

CoADD 0 B4A1h 73C2h 7F B241 A0C3h 80 2604 5564h 1 0 0 1 1 -

CoADD 0 B4A1h A3C2h 80 0241 A0C3h 7F A604 5564h 0 0 1 1 1 -

ST10 FAMILY PROGRAMMING MANUAL

131/172

CoASHR Accumulator Arithmetic Shift Right with Optional Round

Group Shift Instructions

Syntax CoASHRop1
CoASHR op1, rnd

Operation (count) <-- (op1)
(C) <-- 0

DO WHILE (count) ≠ 0
(ACCn) <-- (ACCn+1) [n=0-38]
(count) <-- (count) -1

END WHILE
IF (rnd) THEN

(ACC) <-- (ACC) + 00008000H
(MAL) <-- 0

END IF

Data Types ACCUMULATOR

Result 40-bit signed value

Description

Arithmetically shifts the ACC register right by as many times as specified by the operand op1. To preserve
the sign of the ACC register, the most significant bits of the result are filled with sign 0 if the original most
significant bit was a 0 or with sign 1 if the original most significant bit was 1. Only shift values between 0
and 8 are allowed. “op1” can be either a 5-bit unsigned immediate data, or the least significant 5 bits (con-
sidered as unsigned data) of any register directly or indirectly addressed operand. Without “rnd” option,
the MS bit of the MCW register does not affect the result. While with “rnd” option and if the MS bit is set
and when a 32-bit overflow or underflow occurs, the obtained result becomes 00 7FFF FFFFh or FF 8000
0000h, respectively. This instruction is repeatable when “op 1” is not an immediate operand.

MAC Flags

Addressing Modes

Examples

N Z C SV E SL

* * * * * *

N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result equals zero. Cleared otherwise.
C Set if a carry is generated (rnd). Cleared otherwise.
SV Set if an arithmetic overflow occurred (rnd). Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SL Set if the contents of the ACC is automatically saturated (rnd). Not affected otherwise

Mnemonic Rep Format Bytes

CoASHR Rwn Yes A3 nn AA rrrr:r000 4
CoASHR Rwn, rnd Yes A3 nn BA rrrr:r000 4
CoASHR #data5 No A3 00 A2 ssss:s000 4
CoASHR #data5, rnd No A3 00 B2 ssss:s000 4
CoASHR [Rwm⊗] Yes 83 mm AA rrrr:rqqq 4
CoASHR [Rwm⊗], rnd Yes 83 mm BA rrrr:rqqq 4

CoASHR #3, rnd ; (ACC) <-- (ACC) >>a 3 + rnd
CoASHR R3 ; (ACC) <-- (ACC) >>a (R3)4-0
CoASHR [R10 - QR0] ; (ACC) <-- (ACC) >>a ((R10))4-0

; (R10) <-- (R10) - (QR0)

ST10 FAMILY PROGRAMMING MANUAL

132/172

CoCMP Compare

Group Compare Instructions

Syntax CoCMP op1, op2

Operation tmp <-- (op2)\(op1)

(ACC) <--> (tmp)

Data Types DOUBLE WORD

Description

Subtracts a 40-bit signed operand from the 40-bit Accumulator content and update the N, Z and C flags
contained in the MSW register leaving the accumulator unchanged. The 40-bit operand results from the
concatenation, “\”, of the two source operands op1 (LSW) and op2 (MSW) which is then sign-extended.
The MS bit of the MCW register does not affect the result. This instruction is not repeatable and allows up
to two parallel memory reads.

MAC Flags

Addressing Modes

Examples

N Z C SV E SL

* * * - - -

N Set if the most significant bit of the result is set. Cleared otherwise.

Z Set if the result equals zero. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

SV Not affected.

E Not affected.

SL Not affected.

Mnemonic Rep Format Bytes

CoCMP Rwn, Rwm No A3 nm C2 00 4

CoCMP [IDXi⊗], [Rwm⊗] No 93 Xm C2 0:0qqq 4

CoCMP Rwn, [Rwm⊗] No 83 nm C2 0:0qqq 4

CoCMP [IDX1+QX0], [R11+QR1] ; MSW(N,Z,C)<--(ACC) - ((R11))\((IDX1))

; (R11) <-- (R11) + (QR1)

; (IDX1) <-- (IDX1) + (QX0)

CoCMP R1, [R2-] ; MSW(N,Z,C) <-- (ACC) - ((R2))\(R1)

; (R2) <-- (R2) - 2

CoCMP R2, R5 ; MSW(N,Z,C) <-- (ACC) - (R5)\(R2)

ST10 FAMILY PROGRAMMING MANUAL

133/172

CoLOAD(2)(-) Load Accumulator

Group 40-bit Arithmetic Instructions

Syntax CoLOAD op1, op2

Operation (tmp) <-- (op2)\(op1)
(ACC) <-- 0 + (tmp)

Syntax CoLOAD- op1, op2

Operation (tmp) <-- (op2)\(op1)
(ACC) <-- 0 - (tmp)

Syntax CoLOAD2 op1, op2

Operation (tmp) <-- 2 * (op2)\(op1)
(ACC) <-- 0 + (tmp)

Syntax CoLOAD2- op1, op2

Operation (tmp) <-- 2 * (op2)\(op1)
(ACC) <-- 0 - (tmp)

Data Types DOUBLE WORD

Result 40-bit signed value

Description

Loads the accumulator with a 40-bit source operand. The 40-bit source operand results from the concate-
nation of the two source operands op1 (LSW) and op2 (MSW) which is then sign-extended. “2” and “-”
options indicate that the 40-bit operand is also multiplied by two or/and negated, respectively, prior being
stored in the accumulator. The “-” option indicates that the source operand is 2’s complemented. When
the MS bit of the MCW register is set and when a 32-bit overflow or underflow occurs, the obtained result
becomes 00 7FFF FFFFh or FF 8000 0000h, respectively. This instruction is not repeatable and allows up
to two parallel memory reads.

MAC Flags

Addressing Modes

N Z C SV E SL

* * * - * *

N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result equals zero. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
SV Not affected.
E Set if the MAE is used. Cleared otherwise.
SL Set if the contents of the ACC is automatically saturated. Not affected otherwise.

Mnemonic Rep Format Bytes

CoLOAD Rwn, Rwm No A3 nm 22 00 4
CoLOAD- Rwn, Rwm No A3 nm 2A 00 4
CoLOAD2 Rwn, Rwm No A3 nm 62 00 4
CoLOAD2- Rwn, Rwm No A3 nm 6A 00 4
CoLOAD [IDXi⊗], [Rwm⊗] No 93 Xm 22 0:0qqq 4
CoLOAD- [IDXi⊗], [Rwm⊗] No 93 Xm 2A 0:0qqq 4
CoLOAD2 [IDXi⊗], [Rwm⊗] No 93 Xm 62 0:0qqq 4
CoLOAD2- [IDXi⊗], [Rwm⊗] No 93 Xm 6A 0:0qqq 4
CoLOAD Rwn, [Rwm⊗] No 83 nm 22 0:0qqq 4
CoLOAD- Rwn, [Rwm⊗] No 83 nm 2A 0:0qqq 4
CoLOAD2 Rwn, [Rwm⊗] No 83 nm 62 0:0qqq 4
CoLOAD2- Rwn, [Rwm⊗] No 83 nm 6A 0:0qqq 4

ST10 FAMILY PROGRAMMING MANUAL

134/172

CoMAC(R/-) Multiply-Accumulate & Optional Round

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMAC op1, op2

Operation IF (MP = 1) THEN
(tmp) <-- ((op1) * (op2)) << 1
(ACC) <-- (ACC) + (tmp)

ELSE
(tmp) <-- (op1) * (op2)
(ACC) <-- (ACC) + (tmp)

END IF

Syntax CoMAC op1, op2, rnd

Operation IF (MP = 1) THEN
(tmp) <-- ((op1) * (op2)) << 1
(ACC) <-- (ACC) + (tmp) + 00 0000 8000h

ELSE
(tmp) <-- (op1) * (op2)
(ACC) <-- (ACC) + (tmp) + 00 0000 8000h

END IF
(MAL) <-- 0

Syntax CoMAC- op1, op2

Operation IF (MP = 1) THEN
(tmp) <-- ((op1) * (op2)) << 1
(ACC) <-- (ACC) - (tmp)

ELSE
(tmp) <-- (op1) * (op2)
(ACC) <-- (ACC) - (tmp)

END IF

Syntax CoMACR op1, op2

Operation IF (MP = 1) THEN
(tmp) <-- ((op1) * (op2)) << 1
(ACC) <-- (tmp) - (ACC)

ELSE
(tmp) <-- (op1) * (op2)
(ACC) <-- (tmp) - (ACC)

END IF

Syntax CoMACRop1, op2, rnd

Operation IF (MP = 1) THEN
(tmp) <-- ((op1) * (op2)) << 1
(ACC) <-- (tmp) - (ACC) + 00 0000 8000h

ELSE
(tmp) <-- (op1) * (op2)
(ACC) <-- (tmp) - (ACC) + 00 0000 8000h

END IF
(MAL) <-- 0

Data Types DOUBLE WORD

Result 40-bit signed value

Description
Multiplies the two signed 16-bit source operands “op1” and “op2”. The obtained signed 32-bit product is first
sign-extended, then the condition MP flag is set, it is one-bit left shifted, then it is optionally negated prior
being added/subtracted to/from the 40-bit ACC register content. Finally, the obtained result is optionally
rounded before being stored in the 40-bit ACC register. The “-” option is used to negate the specified product,
the “R” option is used to negate the accumulator content, and finally the “rnd” option is used to round the
result using two’s complement rounding. The default sign option is “+” and the default round option is “no
round”. When “rnd” option is used, MAL register is automatically cleared. Note that “rnd” and “-” are exclusive
as well as “-” and “R”. This instruction might be repeated and allows up to two parallel memory reads.

ST10 FAMILY PROGRAMMING MANUAL

135/172

MAC Flags

Addressing Modes

Examples

N Z C SV E SL

* * * * * *

N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result equals zero. Cleared otherwise.
C Set if a carry or borrow is generated. Cleared otherwise.
SV Set if an arithmetic overflow occurred. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SL Set if the contents of the ACC is automatically saturated. Not affected otherwise.

Mnemonic Rep Format Bytes

CoMAC Rwn, Rwm No A3 nm D0 00 4

CoMAC- Rwn, Rwm No A3 nm E0 00 4

CoMAC Rwn, Rwm, rnd No A3 nm D1 00 4

CoMACR Rwn, Rwm No A3 nm F0 00 4

CoMACR Rwn, Rwm, rnd No A3 nm F1 00 4

CoMAC [IDXi⊗], [Rwm⊗] Yes 93 Xm D0 rrrr:rqqq 4

CoMAC- [IDXi⊗], [Rwm⊗] Yes 93 Xm E0 rrrr:rqqq 4

CoMAC [IDXi⊗], [Rwm⊗], rnd Yes 93 Xm D1 rrrr:rqqq 4

CoMACR [IDXi⊗], [Rwm⊗] Yes 93 Xm F0 rrrr:rqqq 4

CoMACR [IDXi⊗], [Rwm⊗], rnd Yes 93 Xm F1 rrrr:rqqq 4

CoMAC Rwn, [Rwm⊗] Yes 83 nm D0 rrrr:rqqq 4

CoMAC- Rwn, [Rwm⊗] Yes 83 nm E0 rrrr:rqqq 4

CoMAC Rwn, [Rwm⊗], rnd Yes 83 nm D1rrrr:rqqq 4

CoMACR Rwn, [Rwm⊗] Yes 83 nm F0 rrrr:rqqq 4

CoMACR Rwn, [Rwm⊗], rnd Yes 83 nm F1 rrrr:rqqq 4

CoMAC R3, R4, rnd ; (ACC) <-- (ACC) + (R3)*(R4) + rnd

CoMAC- R2, [R6+] ; (ACC) <-- (ACC) - (R2)*((R6))

; (R6) <-- (R6) + 2
CoMAC [IDX0+QX0], [R11+QR0] ; (ACC) <-- (ACC) + ((IDX0))*((R11))

; (R11) <-- (R11) + (QR0)

; (IDX0) <-- (IDX0) + (QX0)
Repeat 3 times CoMAC

CoMAC [IDX1 - QX1], [R9+QR1] ; (ACC) <-- (ACC) + ((IDX1))*((R9))

; (R9) <-- (R9) + (QR1)

; (IDX1) <-- (IDX1) - (QX1)
Repeat MRW times CoMAC

CoMAC - R3, [R7 - QR0] ; (ACC) <-- (ACC) - (R3)*((R7))

; (R7) <-- (R7) - (QR0)
CoMACR [IDX1], [R4+], rnd ; (ACC) <-- ((IDX1))*((R4)) - (ACC) + rnd

; (R4) <-- (R4) + 2

ST10 FAMILY PROGRAMMING MANUAL

136/172

CoMAC(R)u(-) Unsigned Multiply-Accumulate & Optional Round

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACu op1, op2

Operation (tmp) <-- (op1) * (op2)
(ACC) <-- (ACC) + (tmp)

Syntax CoMACu op1, op2, rnd

Operation (tmp) <-- (op1) * (op2)
(ACC) <-- (ACC) + (tmp) + 00 0000 8000h
(MAL) <-- 0

Syntax CoMACu- op1, op2

Operation (tmp) <-- (op1) * (op2)
(ACC) <-- (ACC) - (tmp)

Syntax CoMACRu op1, op2

Operation (tmp) <-- (op1) * (op2)
(ACC) <-- (tmp) - (ACC)

Syntax CoMACRu op1, op2, rnd

Operation (tmp) <-- (op1) * (op2)
(ACC) <-- (tmp) - (ACC) + 00 0000 8000h
(MAL) <-- 0

Data Types DOUBLE WORD

Result 40-bit signed value

Description

Multiplies the two unsigned 16-bit source operands “op1” and “op2”. The obtained unsigned 32-bit prod-
uct is first zero-extended and then optionally negated prior being added/subtracted to/from the 40-bit
ACC register content, finally, the obtained result is optionally rounded before being stored in the 40-bit
ACC register. The result is never affected by the MP mode flag contained in the MCW register. “-” option
is used to negate the specified product, “R” option is used to negate the accumulator content, and finally
“rnd” option is used to round the result using two’s complement rounding. The default sign option is “+”
and the default round option is “no round”. When “rnd” option is used, MAL register is automatically
cleared. Note that “rnd” and “-” are exclusive as well as “-” and “R”. This instruction might be repeated and
allows up to two parallel memory reads.

MAC Flags

N Z C SV E SL

* * * * * *

N Set if the most significant bit of the result is set. Cleared otherwise.

Z Set if the result equals zero. Cleared otherwise.

C Set if a carry or borrow is generated. Cleared otherwise.

SV Set if an arithmetic overflow occurred. Not affected otherwise.

E Set if the MAE is used. Cleared otherwise.

SL Set if the contents of the ACC is automatically saturated. Not affected otherwise.

ST10 FAMILY PROGRAMMING MANUAL

137/172

Addressing Modes

Examples

Mnemonic Rep Format Bytes

CoMACu Rwn, Rwm No A3 nm 10 00 4

CoMACu- Rwn, Rwm No A3 nm 20 00 4

CoMACu Rwn, Rwm, rnd No A3 nm 11 00 4

CoMACRu Rwn, Rwm No A3 nm 30 00 4

CoMACRu Rwn, Rwm, rnd No A3 nm 31 00 4

CoMACu [IDXi⊗], [Rwm⊗] Yes 93 Xm 10 rrrr:rqqq 4

CoMACu- [IDXi⊗], [Rwm⊗] Yes 93 Xm 20 rrrr:rqqq 4

CoMACu [IDXi⊗], [Rwm⊗], rnd Yes 93 Xm 11 rrrr:rqqq 4

CoMACRu [IDXi⊗], [Rwm⊗] Yes 93 Xm 30 rrrr:rqqq 4

CoMACRu [IDXi⊗], [Rwm⊗], rnd Yes 93 Xm 31 rrrr:rqqq 4

CoMACu Rwn, [Rwm⊗] Yes 83 nm 10 rrrr:rqqq 4

CoMACu- Rwn, [Rwm⊗] Yes 83 nm 20 rrrr:rqqq 4

CoMACu Rwn, [Rwm⊗], rnd Yes 83 nm 11 rrrr:rqqq 4

CoMACRu Rwn, [Rwm⊗] Yes 83 nm 30 rrrr:rqqq 4

CoMACRu Rwn, [Rwm⊗], rnd Yes 83 nm 31 rrrr:rqqq 4

CoMACu R5, R8, rnd ; (ACC) <-- (ACC) + (R5)*(R8) + rnd

CoMACu- R2, [R7] ; (ACC) <-- (ACC) - (R2)*((R7))

CoMACu [IDX0 - QX0], [R11 - QR0] ; (ACC) <-- (ACC) +
((IDX0))*((R11))

; (R11) <-- (R11) - (QR0)

; (IDX0) <-- (IDX0) - (QX0)

Repeat 3 times CoMACu [IDX1+], [R9-] ; (ACC) <-- (ACC) + ((IDX1))*((R9))

; (R9) <-- (R9) - 2

; (IDX1) <-- (IDX1) + 2

Repeat MRW
times

CoMACu- R3, [R7 - QR0] ; (ACC) <-- (ACC) - (R3)*((R7))

; (R7) <-- (R7) - (QR0)

CoMACRu [IDX1 - QX0], [R4], rnd ; (ACC) <-- ((IDX1))*((R4))-(ACC)+
rnd

; (IDX1) <-- (IDX1) - (QX0)

ST10 FAMILY PROGRAMMING MANUAL

138/172

CoMAC(R)us(-) Mixed Multiply-Accumulate & Optional Round

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACus op1, op2

Operation (tmp) <-- (op1) * (op2)
(ACC) <-- (ACC) + (tmp)

Syntax CoMACus op1, op2, rnd

Operation (tmp) <-- (op1) * (op2)
(ACC) <-- (ACC) + (tmp) + 00 0000 8000h
(MAL) <-- 0

Syntax CoMACus- op1, op2

Operation (tmp) <-- (op1) * (op2)
(ACC) <-- (ACC) - (tmp)

Syntax CoMACRus op1, op2

Operation (tmp) <-- (op1) * (op2)
(ACC) <-- (tmp) - (ACC)

Syntax CoMACRus op1, op2, rnd

Operation (tmp) <-- (op1) * (op2)
(ACC) <-- (tmp) - (ACC) + 00 0000 8000h
(MAL) <-- 0

Data Types DOUBLE WORD

Result 40-bit signed value

Description

Multiplies the two unsigned and signed 16-bit source operands “op1” and “op2”, respectively. The
obtained signed 32-bit product is first sign-extended, and then, it is optionally negated prior being added/
subtracted to/from the 40-bit ACC register content, finally the obtained result is optionally rounded before
being stored in the 40-bit ACC register. The result is never affected by the MP mode flag contained in the
MCW register. “-” option is used to negate the specified product, “R” option is used to negate the accumu-
lator content, and finally “rnd” option is used to round the result using two’s complement rounding. The
default sign option is “+” and the default round option is “no round”. When “rnd” option is used, MAL reg-
ister is automatically cleared. Note that “rnd” and “-” are exclusive as well as “-” and “R”. This instruction
might be repeated and allows up to two parallel memory reads.

MAC Flags

N Z C SV E SL

* * * * * *

N Set if the most significant bit of the result is set. Cleared otherwise.

Z Set if the result equals zero. Cleared otherwise.

C Set if a carry or borrow is generated. Cleared otherwise.

SV Set if an arithmetic overflow occurred. Not affected otherwise.

E Set if the MAE is used. Cleared otherwise.

SL Set if the contents of the ACC is automatically saturated. Not affected otherwise.

ST10 FAMILY PROGRAMMING MANUAL

139/172

Addressing Modes

Examples

Mnemonic Rep Format Bytes

CoMACus Rwn, Rwm No A3 nm 90 00 4

CoMACus- Rwn, Rwm No A3 nm A0 00 4

CoMACus Rwn, Rwm, rnd No A3 nm 91 00 4

CoMACRus Rwn, Rwm No A3 nm B0 00 4

CoMACRus Rwn, Rwm, rnd No A3 nm B1 00 4

CoMACus [IDXi⊗], [Rwm⊗] Yes 93 Xm 90 rrrr:rqqq 4

CoMACus- [IDXi⊗], [Rwm⊗] Yes 93 Xm A0 rrrr:rqqq 4

CoMACus [IDXi⊗], [Rwm⊗], rnd Yes 93 Xm 91 rrrr:rqqq 4

CoMACRus [IDXi⊗], [Rwm⊗] Yes 93 Xm B0 rrrr:rqqq 4

CoMACRus [IDXi⊗], [Rwm⊗], rnd Yes 93 Xm B1 rrrr:rqqq 4

CoMACus Rwn, [Rwm⊗] Yes 83 nm 90 rrrr:rqqq 4

CoMACus- Rwn, [Rwm⊗] Yes 83 nm A0 rrrr:rqqq 4

CoMACus Rwn, [Rwm⊗], rnd Yes 83 nm 91 rrrr:rqqq 4

CoMACRus Rwn, [Rwm⊗] Yes 83 nm B0 rrrr:rqqq 4

CoMACRus Rwn, [Rwm⊗], rnd Yes 83 nm B1 rrrr:rqqq 4

CoMACus R5, R8, rnd ; (ACC) <-- (ACC) + (R5)*(R8) + rnd

CoMACus- R2, [R7] ; (ACC) <-- (ACC) - (R2)*((R7))

CoMACus [IDX0 - QX0], [R11 - QR0] ; (ACC) <-- (ACC) + ((IDX0))*((R11))

; (R11) <-- (R11) - (QR0)

; (IDX0) <-- (IDX0) - (QX0)

Repeat 3 times CoMACus[IDX1+], [R9-] ; (ACC) <-- (ACC) + ((IDX1))*((R9))

; (R9) <-- (R9) - 2

; (IDX1) <-- (IDX1) + 2

Repeat MRW times CoMACus- R3, [R7 - QR0] ; (ACC) <-- (ACC) - (R3)*((R7))

; (R7) <-- (R7) - (QR0)

CoMACRus [IDX1 - QX0], [R4], rnd ; (ACC) <-- ((IDX1))*((R4))-(ACC)+rnd

; (IDX1) <-- (IDX1) - (QX0)

ST10 FAMILY PROGRAMMING MANUAL

140/172

CoMAC(R)su(-) Mixed Multiply-Accumulate & Optional Round

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACsu op1, op2

Operation (tmp) <-- (op1) * (op2)
(ACC) <-- (ACC) + (tmp)

Syntax CoMACsu op1, op2, rnd

Operation (tmp) <-- (op1) * (op2)
(ACC) <-- (ACC) + (tmp) + 00 0000 8000h
(MAL) <-- 0

Syntax CoMACsu- op1, op2

Operation (tmp) <-- (op1) * (op2)
(ACC) <-- (ACC) - (tmp)

Syntax CoMACRsu op1, op2

Operation (tmp) <-- (op1) * (op2)
(ACC) <-- (tmp) - (ACC)

Syntax CoMACRsu op1, op2, rnd

Operation (tmp) <-- (op1) * (op2)
(ACC) <-- (tmp) - (ACC) + 00 0000 8000h
(MAL) <-- 0

Data Types DOUBLE WORD

Result 40-bit signed value

Description

Multiplies the two signed and unsigned 16-bit source operands “op1” and “op2”, respectively. The
obtained signed 32-bit product is first sign-extended, and then, it is optionally negated prior being added/
subtracted to/from the 40-bit ACC register content, finally the obtained result is optionally rounded before
being stored in the 40-bit ACC register. The result is never affected by the MP mode flag contained in the
MCW register. “-” option is used to negate the specified product, “R” option is used to negate the accumu-
lator content, and finally “rnd” option is used to round the result using two’s complement rounding. The
default sign option is “+” and the default round option is “no round”. When “rnd” option is used, MAL reg-
ister is automatically cleared. Note that “rnd” and “-” are exclusive as well as “-” and “R”. This instruction
might be repeated and allows up to two parallel memory reads.

MAC Flags

N Z C SV E SL

* * * * * *

N Set if the most significant bit of the result is set. Cleared otherwise.

Z Set if the result equals zero. Cleared otherwise.

C Set if a carry or borrow is generated. Cleared otherwise.

SV Set if an arithmetic overflow occurred. Not affected otherwise.

E Set if the MAE is used. Cleared otherwise.

SL Set if the contents of the ACC is automatically saturated. Not affected otherwise.

ST10 FAMILY PROGRAMMING MANUAL

141/172

Addressing Modes

Examples

Mnemonic Rep Format Bytes

CoMACsu Rwn, Rwm No A3 nm 50 00 4

CoMACsu- Rwn, Rwm No A3 nm 60 00 4

CoMACsu Rwn, Rwm, rnd No A3 nm 51 00 4

CoMACRsu Rwn, Rwm No A3 nm 70 00 4

CoMACRsu Rwn, Rwm, rnd No A3 nm 71 00 4

CoMACsu [IDXi⊗], [Rwm⊗] Yes 93 Xm 50 rrrr:rqqq 4

CoMACsu- [IDXi⊗], [Rwm⊗] Yes 93 Xm 60 rrrr:rqqq 4

CoMACsu [IDXi⊗], [Rwm⊗], rnd Yes 93 Xm 51 rrrr:rqqq 4

CoMACRsu [IDXi⊗], [Rwm⊗] Yes 93 Xm 70 rrrr:rqqq 4

CoMACRsu [IDXi⊗], [Rwm⊗], rnd Yes 93 Xm 71 rrrr:rqqq 4

CoMACsu Rwn, [Rwm⊗] Yes 83 nm 50 rrrr:rqqq 4

CoMACsu- Rwn, [Rwm⊗] Yes 83 nm 60 rrrr:rqqq 4

CoMACsu Rwn, [Rwm⊗], rnd Yes 83 nm 51 rrrr:rqqq 4

CoMACRsu Rwn, [Rwm⊗] Yes 83 nm 70 rrrr:rqqq 4

CoMACRsu Rwn, [Rwm⊗], rnd Yes 83 nm 71 rrrr:rqqq 4

CoMACsu R5, R8, rnd ; (ACC) <-- (ACC) + (R5)*(R8) + rnd

CoMACsu- R2, [R7] ; (ACC) <-- (ACC) - (R2)*((R7))

CoMACsu [IDX0 - QX0], [R11 - QR0] ; (ACC) <-- (ACC) + ((IDX0))*((R11))

; (R11) <-- (R11) - (QR0)

; (IDX0) <-- (IDX0) - (QX0)

Repeat 3 times CoMACsu [IDX1+], [R9-] ; (ACC) <-- (ACC) + ((IDX1))*((R9))

; (R9) <-- (R9) - 2

; (IDX1) <-- (IDX1) + 2

Repeat MRW times CoMACsu- R3, [R7 - QR0] ; (ACC) <-- (ACC) - (R3)*((R7))

; (R7) <-- (R7) - (QR0)

CoMACRsu [IDX1 - QX0], [R4], rnd ; (ACC) <-- ((IDX1))*((R4)) - (ACC)

; (IDX1) <-- (IDX1) - (QX0)

ST10 FAMILY PROGRAMMING MANUAL

142/172

CoMACM(R/-) Multiply-Accumulate
Parallel Data Move & Optional Round

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACM op1, op2

Operation IF (MP = 1) THEN
(tmp) <-- ((op1))*((op2)) << 1
(ACC) <-- (ACC) + (tmp)

ELSE
(tmp) <-- ((op1))*((op2))
(ACC) <-- (ACC) + (tmp)

END IF
((IDXi(-⊗))) <-- ((IDXi))

Syntax CoMACM op1, op2, rnd

Operation IF (MP = 1) THEN
(tmp) <-- ((op1))*((op2)) << 1
(ACC) <-- (ACC) + (tmp) + 00 0000 8000h

ELSE
(tmp) <-- ((op1))*((op2))
(ACC) <-- (ACC) + (tmp) + 00 0000 8000h

END IF
(MAL) <-- 0
((IDXi(-⊗))) ¨ ((IDX i))

Syntax CoMACM- op1, op2

Operation IF (MP = 1) THEN
(tmp) <-- ((op1))*((op2)) << 1
(ACC) <-- (ACC) - (tmp)

ELSE
(tmp) <-- ((op1))*((op2))
(ACC) <-- (ACC) - (tmp)

END IF
((IDX i(- ⊗))) <-- ((IDX i))

Syntax CoMACMR op1, op2

Operation IF (MP = 1) THEN
(tmp) <-- ((op1))*((op2)) << 1
(ACC) <-- (tmp) - (ACC)

ELSE
(tmp) <-- ((op1))*((op2))
(ACC) <-- (tmp) - (ACC)

END IF
((IDX i(- ⊗))) <-- ((IDX i))

Syntax CoMACMR op1, op2, rnd

Operation IF (MP = 1) THEN
(tmp) <-- ((op1))*((op2)) << 1
(ACC) <-- (tmp) - (ACC) + 00 0000 8000 h

ELSE
(tmp) <-- ((op1))*((op2))
(ACC) <-- (tmp) - (ACC) + 00 0000 8000 h

END IF
(MAL) <-- 0
((IDX i(- ⊗))) <-- ((IDX i))

Data Types DOUBLE WORD

Result 40-bit signed value

ST10 FAMILY PROGRAMMING MANUAL

143/172

Description
Multiplies the two signed 16-bit source operands “op1” and “op2”. The obtained signed 32-bit product is
first sign-extended, then and on condition the MP flag is set, it is one-bit left shifted, and next, it is option-
ally negated prior being added/subtracted to/from the 40-bit ACC register content, finally the obtained
result is optionally rounded before being stored in the 40-bit ACC register. “-” option is used to negate the
specified product, “R” option is used to negate the accumulator content, and finally “rnd” option is used to
round the result using two’s complement rounding. The default sign option is “+” and the default round
option is “no round”. When “rnd” option is used, MAL register is automatically cleared. Note that “rnd” and
“-” are exclusive as well as “-” and “R”. This instruction might be repeated and performs two parallel mem-
ory reads. In parallel to the arithmetic operation and to the two parallel reads, the data pointed to by IDXi

overwrites another data located in memory (DPRAM). The address of the overwritten data depends on
the operation executed on IDXi, as explained by the following table

MAC Flags

Addressing Modes

Addressing Mode Overwritten Address

[IDXi] (no change)

[IDXi+] (IDXi) - 2

[IDXi-] (IDXi) + 2

[IDXi+QXj] (IDXi) - (QXj)

[IDXi -QXj] (IDXi) + (QXj)

N Z C SV E SL

* * * * * *

N Set if the most significant bit of the result is set. Cleared otherwise.

Z Set if the result equals zero. Cleared otherwise.

C Set if a carry or borrow is generated. Cleared otherwise.

SV Set if an arithmetic overflow occurred. Not affected otherwise.

E Set if the MAE is used. Cleared otherwise.

SL Set if the contents of the ACC is automatically saturated. Not affected otherwise.

Mnemonic Rep Format Bytes

CoMACM [IDXi⊗], [Rwm⊗] Yes 93 Xm D8 rrrr:rqqq 4

CoMACM- [IDXi⊗], [Rwm⊗] Yes 93 Xm E8 rrrr:rqqq 4

CoMACM [IDXi⊗], [Rwm⊗], rnd Yes 93 Xm D9 rrrr:rqqq 4

CoMACMR [IDXi⊗], [Rwm⊗] Yes 93 Xm F8 rrrr:rqqq 4

CoMACMR [IDXi⊗], [Rwm⊗], rnd Yes 93 Xm F9 rrrr:rqqq 4

ST10 FAMILY PROGRAMMING MANUAL

144/172

Examples

CoMACM [IDX1+QX0],[R10+QR1], rnd ; (ACC) <-- (ACC) + ((IDX1))*((R10)) + rnd

; (R10) <-- (R10) + (QR1)

; (((IDX1)-(QX0))) <-- ((IDX1))

; (IDX1) <-- (IDX1) + (QX0)

Repeat 3 times CoMACM

CoMACM [IDX0 - QX0], [R8+QR0] ; (ACC) <-- (ACC) + ((IDX0))*((R8))

; (R8) <-- (R8) + (QR0)

; (((IDX0) + (QX0))) <-- ((IDX0))

; (IDX0) <-- (IDX0) - (QX0)

Repeat MRW times CoMACM

CoMACM [IDX1+QX1], [R7 - QR0] ; (ACC) <-- (ACC) - ((IDX1))*((R7))

; (R7) <-- (R7) - (QR0)

; (((IDX1) - (QX1))) <-- ((IDX1))

; (IDX1) <-- (IDX1) + (QX1)

ST10 FAMILY PROGRAMMING MANUAL

145/172

CoMACM(R)u(-) Unsigned Multiply-Accumulate
Parallel Data Move & Optional Round

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACMu op1, op2

Operation (tmp) <-- ((op1))*((op2))
(ACC) <-- (ACC) + (tmp)
((IDXi(-⊗))) <-- ((IDXi))

Syntax CoMACMu op1, op2, rnd

Operation (tmp) <-- ((op1))*((op2))
(ACC) <-- (ACC) + (tmp) + 00 0000 8000h
(MAL) <-- 0
(IDXi(-⊗))) <-- ((IDXi))

Syntax CoMACMu- op1, op2

Operation (tmp) <-- ((op1))*((op2))
(ACC) <-- (ACC) - (tmp)
((IDXi(-⊗))) <-- ((IDXi))

Syntax CoMACMRu op1, op2

Operation (tmp) <-- ((op1))*((op2))
(ACC) <-- (tmp) - (ACC)
((IDXi(-⊗))) <-- ((IDXi))

Syntax CoMACMRu op1, op2, rnd

Operation (tmp) <-- ((op1))*((op2))
(ACC) <-- (tmp) - (ACC) + 00 0000 8000h
(MAL) <-- 0
((IDXi(-⊗))) <-- ((IDXi))

Data Types DOUBLE WORD

Result 40-bit signed value

Description

Multiplies the two signed 16-bit source operands “op1” and “op2”. The unsigned 32-bit product is first
zero-extended, then optionally negated prior being added/subtracted to/from the 40-bit ACC register
content, finally the obtained result is optionally rounded before being stored in the 40-bit ACC register. “-”
option is used to negate the specified product, “R” option is used to negate the accumulator content, and
finally “rnd” option is used to round the result using two’s complement rounding. The default sign option is
“+” and the default round option is “no round”. When “rnd” option is used, MAL register is automatically
cleared. Note that “rnd” and “-” are exclusive as well as “-” and “R”. This instruction might be repeated and
performs two parallel memory reads. In parallel to the arithmetic operation and to the two parallel reads,
the data pointed to by IDXi overwrites another data located in memory (DPRAM). The address of the
overwritten data depends on the operation executed on IDXi, as illustrated by the following table.:

Addressing Mode Overwritten Address

[IDXi] (no change)

[IDXi+] (IDXi)- 2

[IDXi-] (IDXi) + 2

[IDXi+QXj] (IDXi) - (QXj)

[IDXi -QXj] (IDXi) + (QXj)

ST10 FAMILY PROGRAMMING MANUAL

146/172

MAC Flags

Addressing Modes

Examples

N Z C SV E SL

* * * * * *

N Set if the most significant bit of the result is set. Cleared otherwise.

Z Set if the result equals zero. Cleared otherwise.

C Set if a carry or borrow is generated. Cleared otherwise.

SV Set if an arithmetic overflow occurred. Not affected otherwise.

E Set if the MAE is used. Cleared otherwise.

SL Set if the contents of the ACC is automatically saturated. Not affected otherwise.

Mnemonic Rep Format Bytes

CoMACMu [IDXi⊗], [Rwm⊗] Yes 93 Xm 18 rrrr:rqqq 4

CoMACMu- [IDXi⊗], [Rwm⊗] Yes 93 Xm 28 rrrr:rqqq 4

CoMACMu [IDXi⊗], [Rwm⊗], rnd Yes 93 Xm 19 rrrr:rqqq 4

CoMACMRu [IDXi⊗], [Rwm⊗] Yes 93 Xm 38 rrrr:rqqq 4

CoMACMRu [IDXi⊗], [Rwm⊗], rnd Yes 93 Xm 39 rrrr:rqqq 4

CoMACMu [IDX1+QX0], [R10+QR1], rnd ; (ACC)<--(ACC)+ ((IDX1)) * ((R10))+ rnd

; (R10) <-- (R10) + (QR1)

; (((IDX1) - (QX0))) <-- ((IDX1))

; (IDX1) <-- (IDX1) + (QX0)

Repeat 3 times CoMACMu

CoMACMu [IDX0 - QX0], [R8+QR0] ; (ACC) <-- (ACC) + ((IDX0))*((R8))

; (R8) <-- (R8) + (QR0)

; (((IDX0) + (QX0))) <-- ((IDX0))

; (IDX0) <-- (IDX0) - (QX0)

Repeat MRW times CoMACMRu

CoMACMRu [IDX1+QX1], [R7 - QR0] ; (ACC) <-- ((IDX1))*((R7)) - (ACC)

; (R7) <-- (R7) - (QR0)

; (((IDX1) - (QX1))) <-- ((IDX1))

; (IDX1) <-- (IDX1) + (QX1)

ST10 FAMILY PROGRAMMING MANUAL

147/172

CoMACM(R)us(-) Mixed Multiply-Accumulate
Parallel Data Move & Optional Round

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACMus op1, op2

Operation (tmp) <-- ((op1))*((op2))
(ACC) <-- (ACC) + (tmp)
((IDXi(-⊗))) <-- ((IDXi))

Syntax CoMACMus op1, op2, rnd

Operation (tmp) <-- ((op1))*((op2))
(ACC) <-- (ACC) + (tmp) + 00 0000 8000h
(MAL) <-- 0
((IDXi(-⊗))) <-- ((IDXi))

Syntax CoMACMus- op1, op2

Operation (tmp) <-- ((op1))*((op2))
(ACC) <-- (ACC) - (tmp)
((IDXi(-⊗))) <-- ((IDXi))

Syntax CoMACMRus op1, op2

Operation (tmp) <-- ((op1))*((op2))
(ACC) <-- (tmp) - (ACC)
((IDXi(-⊗))) <-- ((IDXi))

Syntax CoMACMRus op1, op2, rnd

Operation (tmp) <-- ((op1))*((op2))
(ACC) <-- (tmp) - (ACC) + 00 0000 8000h
(MAL) <-- 0
((IDXi(-⊗))) <-- ((IDXi))

Data Types DOUBLE WORD

Result 40-bit signed value

Description

Multiplies the two signed 16-bit source operands “op1” and “op2”. The obtained signed 32-bit product is
first sign-extended, it is then optionally negated prior being added/subtracted to/from the 40-bit ACC regis-
ter content, finally the obtained result is optionally rounded before being stored in the 40-bit ACC register.
“-” option is used to negate the specified product, “R” option is used to negate the accumulator content,
and finally “rnd” option is used to round the result using two’s complement rounding. The default sign
option is “+” and the default round option is “no round”. When “rnd” option is used, MAL register is automat-
ically cleared. Note that “rnd” and “-” are exclusive as well as “-” and “R”. This instruction might be repeated
and performs two parallel memory reads.
In parallel to the arithmetic operation and to the two parallel reads, the data pointed to by IDXi overwrites
another data located in memory (DPRAM). The address of the overwritten data depends on the operation
executed on IDXi, as illustrated by the following table:

Addressing Mode Overwritten Address

[IDXi] (no change)

[IDXi+] (IDXi) - 2

[IDXi-] (IDXi) + 2

[IDXi+QXj] (IDXi) - (QXj)

[IDXi - QXj] (IDXi) + (QXj)

ST10 FAMILY PROGRAMMING MANUAL

148/172

MAC Flags

Addressing Modes

Examples

N Z C SV E SL

* * * * * *

N Set if the most significant bit of the result is set. Cleared otherwise.

Z Set if the result equals zero. Cleared otherwise.

C Set if a carry or borrow is generated. Cleared otherwise.

SV Set if an arithmetic overflow occurred. Not affected otherwise.

E Set if the MAE is used. Cleared otherwise.

SL Set if the contents of the ACC is automatically saturated. Not affected otherwise.

Mnemonic Rep Format Bytes

CoMACMus [IDXi⊗], [Rwm⊗] Yes 93 Xm 98 rrrr:rqqq 4

CoMACMus- [IDXi⊗], [Rwm⊗] Yes 93 Xm A8 rrrr:rqqq 4

CoMACMus [IDXi⊗], [Rwm⊗], rnd Yes 93 Xm 99 rrrr:rqqq 4

CoMACMRus [IDXi⊗], [Rwm⊗] Yes 93 Xm B8 rrrr:rqqq 4

CoMACMRus [IDXi⊗], [Rwm⊗], rnd Yes 93 Xm B9 rrrr:rqqq 4

CoMACMus [IDX1+QX0], [R10+QR1], rnd ; (ACC)<--(ACC) + ((IDX1))*((R10)) +rnd

; (R10) <-- (R10) + (QR1)

; (((IDX1) - (QX0)))<-- ((IDX1))

; (IDX1) <-- (IDX1) + (QX0)

Repeat 3 times CoMACMus

CoMACMus [IDX0 - QX0], [R8+QR0] ; (ACC) <-- (ACC) + ((IDX0))*((R8))

; (R8) <-- (R8) + (QR0)

; (((IDX0) + (QX0))) <-- ((IDX0))

; (IDX0) <-- (IDX0) - (QX0)

Repeat MRW times CoMACMRus

CoMACMRus [IDX1+QX1], [R7 - QR0], rnd ; (ACC)<--((IDX1))*((R7))-(ACC)+rnd

; (R7) <-- (R7) - (QR0)

; (((IDX1) - (QX1)))<-- ((IDX1))

; (IDX1) <-- (IDX1) + (QX1)

ST10 FAMILY PROGRAMMING MANUAL

149/172

CoMACM(R)su(-) Mix. Multiply-Accumulate
Parallel Data Move & Optional Round

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACMsu op1, op2

Operation (tmp) <-- ((op1))*((op2))
(ACC) <-- (ACC) + (tmp)
((IDXi(-⊗))) <-- ((IDXi))

Syntax CoMACMsu op1, op2, rnd

Operation (tmp) <-- ((op1))*((op2))
(ACC) <-- (ACC) + (tmp) + 00 0000 8000h
(MAL) <-- 0
((IDXi(-⊗))) <-- ((IDXi))

Syntax CoMACMsu- op1, op2

Operation (tmp) <-- ((op1))*((op2))
(ACC) <-- (ACC) - (tmp)
((IDXi(-⊗))) <-- ((IDXi))

Syntax CoMACMRsu op1, op2

Operation (tmp) <-- ((op1))*((op2))
(ACC) <-- (tmp) - (ACC)
((IDXi(-⊗))) <-- ((IDXi))

Syntax CoMACMRsu op1, op2, rnd

Operation (tmp) <-- ((op1))*((op2))
(ACC) <-- (tmp) - (ACC) + 00 0000 8000h
(MAL) <-- 0
((IDXi(-⊗))) <-- ((IDXi))

Data Types DOUBLE WORD

Result 40-bit signed value

Description

Multiplies the two signed 16-bit source operands “op1” and “op2”. The obtained signed 32-bit product is
first sign-extended, it is then optionally negated prior being added/subtracted to/from the 40-bit ACC regis-
ter content, finally the obtained result is optionally rounded before being stored in the 40-bit ACC register.
“-” option is used to negate the specified product, “R” option is used to negate the accumulator content,
and finally “rnd” option is used to round the result using two’s complement rounding. The default sign
option is “+” and the default round option is “no round”. When “rnd” option is used, MAL register is automat-
ically cleared. Note that “rnd” and “-” are exclusive as well as “-” and “R”. This instruction might be repeated
and performs two parallel memory reads.
In parallel to the arithmetic operation and to the two parallel reads, the data pointed to by IDXi overwrites
another data located in memory (DPRAM). The address of the overwritten data depends on the operation
executed on IDXi, as illustrated by the following table:

Addressing Mode Overwritten Address

[IDXi] (no change)

[IDXi+] (IDXi) - 2

[IDXi-] (IDXi) + 2

[IDXi+QXj] (IDXi) - (QXj)

[IDXi - QXj] (IDXi) + (QXj)

ST10 FAMILY PROGRAMMING MANUAL

150/172

MAC Flags

Addressing Modes

Example

N Z C SV E SL

* * * * * *

N Set if the m.s.b. of the result is set. Cleared otherwise.

Z Set if the result equals zero. Cleared otherwise.

C Set if a carry or borrow is generated. Cleared otherwise.

SV Set if an arithmetic overflow occurred. Not affected otherwise.

E Set if the MAE is used. Cleared otherwise.

SL Set if the contents of the ACC is automatically saturated. Not affected otherwise.

Mnemonic Rep Format Bytes

CoMACMsu [IDXi⊗], [Rwm⊗] Yes 93 Xm 58 rrrr:rqqq 4

CoMACMsu- [IDXi⊗], [Rwm⊗] Yes 93 Xm 68 rrrr:rqqq 4

CoMACMsu [IDXi⊗], [Rwm⊗], rnd Yes 93 Xm 59 rrrr:rqqq 4

CoMACMRsu [IDXi⊗], [Rwm⊗] Yes 93 Xm 78 rrrr:rqqq 4

CoMACMRsu [IDXi⊗], [Rwm⊗], rnd Yes 93 Xm 79 rrrr:rqqq 4

CoMACMsu [IDX1+QX0], [R10+QR1], rnd ; (ACC)<-- (ACC)+((IDX1))*((R10)) + rnd

; (R10) <-- (R10) + (QR1)

; (((IDX1) -(QX0))) <-- ((IDX1))

; (IDX1) <-- (IDX1) + (QX0)

Repeat 3 times CoMACMsu

CoMACMsu [IDX0 - QX0], [R8+QR0], rnd ; (ACC) <-- (ACC) + ((IDX0))*((R8))

; (R8) <-- (R8) + (QR0)

; (((IDX0) + (QX0)))<-- ((IDX0))

; (IDX0) <-- (IDX0) - (QX0)

Repeat MRW times CoMACMRsu

CoMACMRsu [IDX1+QX1], [R7 - QR0], rnd ; (ACC) <-- ((IDX1))*((R7)) - (ACC) + rnd

; (R7) <-- (R7) - (QR0)

; (((IDX1)) - (QX1))) <-- ((IDX1))

; (IDX1) <-- (IDX1) + (QX1)

ST10 FAMILY PROGRAMMING MANUAL

151/172

CoMAX Maximum

Group Compare Instructions

Syntax CoMAXop1, op2

Operation (tmp) <-- (op2)\(op1)
(ACC) <-- max((ACC), (tmp))

Data Types DOUBLE WORD

Result 40-bit signed value

Description

Compares a signed 40-bit operand against the ACC register content. The 40-bit operand results from the
concatenation of the two source operands op1 (LSW) and op2 (MSW) which is then sign-extended. If the
contents of the ACC register is smaller than the 40-bit operand, then the ACC register is loaded with it.
Otherwise the ACC register remains unchanged. The MS bit of the MCW register does not affect the
result. This instruction is repeatable with indirect addressing modes.

MAC Flags

Addressing Modes

Examples

N Z C SV E SL

* * 0 - * *

N Set if the most significant bit of the result is set. Cleared otherwise.

Z Set if the result equals zero. Cleared otherwise.

C Cleared always.

SV Not affected.

E Set if the MAE is used. Cleared otherwise.

SL Set if the contents of the ACC register is changed. Not affected otherwise.

Mnemonic Rep Format Bytes

CoMAX Rwn, Rwm No A3 nm 3A 00 4

CoMAX [IDXi⊗], [Rwm⊗] Yes 93 Xm 3A rrrr:rqqq 4

CoMAX Rwn, [Rwm⊗] Yes 83 nm 3A rrrr:rqqq 4

CoMAX [IDX1+QX0], [R11+QR1] ; (ACC)<-- Max((ACC),((R11))\((IDX1)))

; (R11) <-- (R11) + (QR1)

; (IDX1) <-- (IDX1) + (QX0)

CoMAX R1, R10 ; (ACC) <-- Max((ACC), (R10)\(R1))

Repeat 23 times CoMAX

CoMAX R5, [R6 - QR0] ; (ACC) <-- Max((ACC), ((R6))\(R5)))

; (R6) <-- (R6) - (QR0)

ST10 FAMILY PROGRAMMING MANUAL

152/172

CoMIN Minimum

Group Compare Instructions

Syntax CoMIN op1, op2

Operation (tmp) <-- (op2)\(op1)
(ACC) <-- min((ACC), (tmp))

Data Types DOUBLE WORD

Result 40-bit signed value

Description

Compares a signed 40-bit operand against the ACC register content. The 40-bit operand results from the
concatenation of the two source operands op1 (LSW) and op2 (MSW) which is then sign-extended. If the
contents of the ACC register is greater than the 40-bit operand, then the ACC register is loaded with it.
Otherwise the ACC register remains unchanged. The MS bit of the MCW register does not affect the
result. This instruction is repeatable with indirect addressing modes.

MAC Flags

Addressing Modes

Examples

N Z C SV E SL

* * 0 - * *

N Set if the most significant bit of the result is set. Cleared otherwise.

Z Set if the result equals zero. Cleared otherwise.

C Cleared always.

SV Not affected.

E Set if the MAE is used. Cleared otherwise.

SL Set if the contents of the ACC register is changed. Not affected otherwise.

Mnemonic Rep Format Bytes

CoMIN Rwn, Rwm No A3 nm 7A 00 4

CoMIN [IDXi⊗], [Rwm⊗] Yes 93 Xm 7A rrrr:rqqq 4

CoMIN Rwn, [Rwm⊗] Yes 83 nm 7A rrrr:rqqq 4

CoMIN [IDX1+QX0], [R11+QR1] ; (ACC)<-- min((ACC), ((R11))\((IDX1)))

; (R11) <-- (R11) + (QR1)

; (IDX1) <-- (IDX1) + (QX0)

CoMIN R1, R10 ; (ACC) <-- min((ACC), (R10)\(R1))

Repeat 23 times CoMIN

CoMIN R5, [R6 - QR0] ; (ACC) <-- min((ACC), ((R6))\(R5)))

; (R6) <-- (R6) - (QR0)

ST10 FAMILY PROGRAMMING MANUAL

153/172

CoMOV Memory to Memory Move

Group Transfer Instructions

Syntax CoMOV op1, op2

Operation (op1) <-- (op2)

Data Types WORD

Description

Moves the contents of the memory location specified by the source operand, op2, to the memory location
specified by the destination operand op1. This instruction is repeatable. Note that, unlike for the other
instructions, IDXi can address the entire memory. This instruction does not affect the Mac Flags but mod-
ify the CPU Flags as any other MOV instruction.

CPU Flags

MAC Flags

Addressing Modes

Examples

E Z V C N

* * - - *

E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.

Z Set if the value of the source operand op2 equals zero. Cleared otherwise.

V Not affected.

C Not affected.

N Set if the most significant bit of the source operand op2 is set. Cleared otherwise.

N Z C SV E SL

- - - - - -

N Not affected.

Z Not affected.

C Not affected.

SV Not affected.

E Not affected.

SL Not affected.

Mnemonic Rep Format Bytes

CoMOV [IDXi⊗], [Rwm⊗] Yes D3 Xm 00 rrrr:rqqq 4

Repeat 24 times CoMOV [IDX1+QX0], [R11+QR1] ; ((IDX1)) <-- ((R11))

; (R11) <-- (R11) + (QR1)

; (IDX1) <-- (IDX1) + (QX0)

ST10 FAMILY PROGRAMMING MANUAL

154/172

CoMUL(-) Signed Multiply & Optional Round

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMUL op1, op2

Operation IF (MP = 1) THEN
(ACC) <-- ((op1) * (op2)) << 1

ELSE
(ACC) <-- (op1) * (op2)

END IF

Syntax CoMUL- op1, op2

Operation IF (MP = 1) THEN
(ACC) <-- - (((op1) * (op2)) << 1)

ELSE
(ACC) <-- - ((op1) * (op2))

END IF

Syntax CoMUL op1, op2, rnd

Operation IF (MP = 1) THEN
(ACC) <-- ((op1) * (op2)) << 1 + 00 0000 8000h

ELSE
(ACC) <-- (op1) * (op2) + 00 0000 8000h

END IF
(MAL) <-- 0

Data Types DOUBLE WORD

Result 32-bit signed value

Description
Multiplies the two signed 16-bit source operands “op1” and “op2”. The obtained signed 32-bit product is
first sign-extended, then and on condition MP is set, it is one-bit left shifted, and finally, it is optionally
either negated or rounded before being stored in the 40-bit ACC register. The “-” option is used to negate
the specified product while the “rnd” option is used to round the product using two’s complement round-
ing. The default sign option is “+” and the default round option is “no round”. When “rnd” option is used,
MAL register is automatically cleared. “rnd” and “-” are exclusive. This non-repeatable instruction allows
up to two parallel memory reads

MAC Flags

N Z C SV E SL

* * 0 - * *

N Set if the most significant bit of the result is set. Cleared otherwise.

Z Set if the result equals zero. Cleared otherwise.

C Always cleared.

SV Not affected.

E Always cleared when MP is cleared, otherwise, only set in case of 8000h by 8000h multiplication.

SL Not affected when MP or MS are cleared, otherwise, only set in case of 8000h by 8000h multipli-
cation.

ST10 FAMILY PROGRAMMING MANUAL

155/172

Addressing Modes

Examples

Multiplication Examples

Mnemonic Rep Format Bytes

CoMUL Rwn, Rwm No A3 nm C0 00 4

CoMUL- Rwn, Rwm No A3 nm C8 00 4

CoMUL Rwn, Rwm, rnd No A3 nm C1 00 4

CoMUL [IDXi⊗], [Rwm⊗] No 93 Xm C0 0:0qqq 4

CoMUL- [IDXi⊗], [Rwm⊗] No 93 Xm C8 0:0qqq 4

CoMUL [IDXi⊗], [Rwm⊗], rnd No 93 Xm C1 0:0qqq 4

CoMUL Rwn, [Rwm⊗] No 83 nm C0 0:0qqq 4

CoMUL- Rwn, [Rwm⊗] No 83 nm C8 0:0qqq 4

CoMUL Rwn, [Rwm⊗], rnd No 83 nm C1 0:0qqq 4

CoMUL R0, R1, rnd ; (ACC) <-- (R0)*(R1) + rnd

CoMUL- R2, [R6+] ; (ACC)<-- -(R2)*((R6))

; (R6) <-- (R6) + 2

CoMUL [IDX0+QX1], [R11+] ; (ACC) <-- ((IDX0))*((R11))

; (R11)<-- (R11) + 2

; (IDX0) <-- (IDX0) + (QX1)

CoMUL- [IDX1-], [R15+QR0] ; (ACC) <-- -((IDX1))*((R15))

; (R15) <-- (R15) + (QR0)

; (IDX1) <-- (IDX1) - 2

CoMUL [IDX1+QX0], [R9 - QR1], rnd ; (ACC) <-- ((IDX1))*((R9)) + rnd

; (R9) <-- (R9) - (QR1)

; (IDX1) <-- (IDX1) + (QX0).

Cases op 1 op 2 rnd MAE MAH MAL N Z C SV E SL

MP=0, MS=x 8000h 8000h 0 00h 4000h 0000h 0 0 0 - 0 -

MP=1, MS=0 0 00h 8000h 0000h 0 0 0 - 1 -

MP=1, MS=1 0 00h 7FFFh FFFFh 0 0 0 - 0 1

MP=0, MS=x 7FFFh 7FFFh 0 00h 3FFFh 0001h 0 0 0 - 0 -

MP=1, MS=x 0 00h 7FFEh 0002h 0 0 0 - 0 -

MP=1, MS=x 1 00h 7FFEh 0000h 0 0 0 - 0 -

MP=0, MS=x 4001h F456h 0 FFh FD15h 7456h 1 0 0 - 0 -

MP=1, MS=x 0 FFh FA2Ah E8ACh 1 0 0 - 0 -

MP=0, MS=x 1 FFh FD15h 0000h 1 0 0 - 0 -

MP=1, MS=x 1 FFh FA2Bh 0000h 1 0 0 - 0 -

ST10 FAMILY PROGRAMMING MANUAL

156/172

CoMULu(-) Unsigned Multiply & Optional Round

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMULu op1, op2

Operation (ACC) <-- (op1) * (op2)

Syntax CoMULu- op1, op2

Operation (ACC) <-- - ((op1) * (op2))

Syntax CoMULu op1, op2, rnd

Operation (ACC) <-- (op1) * (op2) + 00 0000 8000h
(MAL) <-- 0

Data Types DOUBLE WORD

Result 32-bit signed value

Description

Multiply the two unsigned 16-bit source operands “op1” and “op2”. The unsigned 32-bit product is first
zero-extended, and then, it is optionally either negated or rounded before being stored in the 40-bit ACC
register. The result is never affected by the MP mode flag of the MCW register. The “-” option is used to
negate the specified product while the “rnd” option is used to round the product using two’s complement
rounding. The default sign option is “+” and the default round option is “no round”. When “rnd” option is
used, MAL register is automatically cleared. “rnd” and “-” are exclusive. This non-repeatable instruction
allows up to two parallel memory reads.

MAC Flags

Addressing Modes

N Z C SV E SL

* * 0 - 0 -

N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result equals zero. Cleared otherwise.
C Always cleared.
SV Not affected.
E Always cleared.
SL Not affected.

Mnemonic Rep Format Bytes

CoMULu Rwn, Rwm No A3 nm 00 00 4

CoMULu- Rwn, Rwm No A3 nm 08 00 4

CoMULu Rwn, Rwm, rnd No A3 nm 01 00 4

CoMULu [IDXi⊗], [Rwm⊗] No 93 Xm 00 0:0qqq 4

CoMULu- [IDXi⊗], [Rwm⊗] No 93 Xm 08 0:0qqq 4

CoMULu [IDXi⊗], [Rwm⊗], rnd No 93 Xm 01 0:0qqq 4

CoMULu Rwn, [Rwm⊗] No 83 nm 00 0:0qqq 4

CoMULu- Rwn, [Rwm⊗] No 83 nm 08 0:0qqq 4

CoMULu Rwn, [Rwm⊗], rnd No 83 nm 01 0:0qqq 4

ST10 FAMILY PROGRAMMING MANUAL

157/172

Notes: The result of CoMULu is never saturated, whatever the value of MS bit is. (see multiplication
examples below).

Examples

Multiplication Examples

CoMULu R0, R1, rnd ; (ACC) <-- (R0)*(R1) + rnd

CoMULu- R2, [R6+] ; (ACC) <-- -(R2)*((R6))

; (R6) <-- (R6) + 2

CoMULu [IDX0], [R11+] ; (ACC) <-- ((IDX0))*((R11))

; (R11) <-- (R11) + 2

CoMULu- [IDX1-], [R15+QR0] ; (ACC) <-- -((IDX1))*((R15))

; (R15) <-- (R15) + (QR0)

; (IDX1) <-- (IDX1) - 2

CoMULu [IDX0+QX0], [R9-], rnd ; (ACC) <-- ((IDX0))*((R9)) + rnd

; (R9) <-- (R9) - 2

; (IDX0) <-- (IDX0) + (QX0).

Cases op 1 op 2 rnd MAE MAH MAL N Z C SV E SL

MP=x, MS=x 8000h 8000h x 00h 4000h 0000h 0 0 0 - 0 -

MP=x, MS=x 7FFFh 7FFFh 0 00h 3FFFh 0001h 0 0 0 - 0 -

1 00h 3FFFh 0000h 0 0 0 - 0 -

MP=x, MS=x 8001h F456h 0 00h 7A2Bh F456h 0 0 0 - 0 -

1 00h 7A2Ch 0000h 0 0 0 - 0 -

MP=x, MS=x FFFFh FFFFh 0 00h FFFEh 0001h 0 0 0 - 0 -

1 00h FFFEh 0000h 0 0 0 - 0 -

ST10 FAMILY PROGRAMMING MANUAL

158/172

CoMULus(-) Mixed Multiply & Optional Round

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMULus op1, op2

Operation (ACC) <-- (op1) * (op2)

Syntax CoMULus- op1, op2

Operation (ACC) <-- - ((op1) * (op2))

Syntax CoMULus op1, op2, rnd

Operation (ACC) <-- (op1) * (op2) + 00 0000 8000h
(MAL) <-- 0

Data Types DOUBLE WORD

Result 32-bit signed value

Description

Multiply the two 16-bit unsigned and signed source operands “op1” and “op2”, respectively. The obtained
signed 32-bit product is first sign-extended, then it is optionally either negated or rounded before being
stored in the 40-bit ACC register. The result is never affected by the MP mode flag contained in the MCW
register. The “-” option is used to negate the specified product while the “rnd” option is used to round the
product using two’s complement rounding. The default sign option is “+” and the default round option is
“no round”. When “rnd” option is used, MAL register is automatically cleared. “rnd” and “-” are exclusive.
This non-repeatable instruction allows up to two parallel memory reads.

MAC Flags

Addressing Modes

N Z C SV E SL

* * 0 - 0 -

N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result equals zero. Cleared otherwise.
C Always cleared.
SV Not affected.
E Always cleared.
SL Not affected.

Mnemonic Rep Format Bytes

CoMULus Rwn, Rwm No A3 nm 80 00 4

CoMULus- Rwn, Rwm No A3 nm 88 00 4

CoMULus Rwn, Rwm, rnd No A3 nm 81 00 4

CoMULus [IDXi⊗], [Rwm⊗] No 93 Xm 80 0:0qqq 4

CoMULus- [IDXi⊗], [Rwm⊗] No 93 Xm 88 0:0qqq 4

CoMULus [IDXi⊗], [Rwm⊗], rnd No 93 Xm 81 0:0qqq 4

CoMULus Rwn, [Rwm⊗] No 83 nm 80 0:0qqq 4

CoMULus- Rwn, [Rwm⊗] No 83 nm 88 0:0qqq 4

CoMULus Rwn, [Rwm⊗], rnd No 83 nm 81 0:0qqq 4

ST10 FAMILY PROGRAMMING MANUAL

159/172

Examples

Multiplication Examples

CoMULus R0, R1, rnd ; (ACC) <-- (R0)*(R1) + rnd

CoMULus- R2, [R6+] ; (ACC) <-- -(R2)*((R6))

; (R6) <-- (R6) + 2

CoMULus [IDX1+QX0], [R11+QR0] ; (ACC) <-- ((IDX1))*((R11))

; (R11) <-- (R11) + (QR0)

; (IDX1) <-- (IDX1) + (QX0)

CoMULus- [IDX0], [R15] ; (ACC) <-- -((IDX0))*((R15))

CoMULus [IDX0+QX0], [R9-QR1], rnd ; (ACC) <-- ((IDX0))*((R9)) + rnd

; (R9) <-- (R9) - (QR1)

; (IDX0) <-- (IDX0) + (QX0).

Cases op 1 op 2 rnd MAE MAH MAL N Z C SV E SL

MP=x, MS=x 8000h 8000h x FFh C000h 0000h 1 0 0 - 0 -

MP=x, MS=x 7FFFh 7FFFh 0 00h 3FFFh 0001h 0 0 0 - 0 -

1 00h 3FFFh 0000h 0 0 0 - 0 -

MP=x, MS=x 8001h F456h 0 FFh FA2Ah F456h 1 0 0 - 0 -

1 FFh FA2Bh 0000h 1 0 0 - 0 -

ST10 FAMILY PROGRAMMING MANUAL

160/172

CoMULsu(-) Mixed Multiply & Optional Round

Group Multiply/Multiply-Accumulate Instructions

Syntax CoMULsu op1, op2

Operation (ACC) <-- (op1) * (op2)

Syntax CoMULsu- op1, op2

Operation (ACC) <-- - ((op1) * (op2))

Syntax CoMULsu op1, op2, rnd

Operation (ACC) <-- (op1) * (op2) + 00 0000 8000h
(MAL) <-- 0

Data Types DOUBLE WORD

Result 32-bit signed value

Description

Multiply the two 16-bit signed and unsigned source operands “op1” and “op2”, respectively. The obtained
signed 32-bit product is first sign-extended, then, it is optionally either negated or rounded before being
stored in the 40-bit ACC register. The result is never affected by the MP mode flag contained in the MCW
register. The “-” option is used to negate the specified product while the “rnd” option is used to round the
product using two’s complement rounding. The default sign option is “+” and the default round option is
“no round”. When “rnd” option is used, MAL register is automatically cleared. “rnd” and “-” are exclusive.
This non-repeatable instruction allows up to two parallel memory reads.

MAC Flags

Addressing Modes

N Z C SV E SL

* * 0 - 0 -

N Set if the most significant bit of the result is set. Cleared otherwise.

Z Set if the result equals zero. Cleared otherwise.

C Always cleared.

SV Not affected.

E Always cleared.

SL Not affected.

Mnemonic Rep Format Bytes

CoMULsu Rwn, Rwm No A3 nm 40 00 4

CoMULsu- Rwn, Rwm No A3 nm 48 00 4

CoMULsu Rwn, Rwm, rnd No A3 nm 41 00 4

CoMULsu [IDXi⊗], [Rwm⊗] No 93 Xm 40 0:0qqq 4

CoMULsu- [IDXi⊗], [Rwm⊗] No 93 Xm 48 0:0qqq 4

CoMULsu [IDXi⊗], [Rwm⊗], rnd No 93 Xm 41 0:0qqq 4

CoMULsu Rwn, [Rwm⊗] No 83 nm 40 0:0qqq 4

CoMULsu- Rwn, [Rwm⊗] No 83 nm 48 0:0qqq 4

CoMULsu Rwn, [Rwm⊗], rnd No 83 nm 41 0:0qqq 4

ST10 FAMILY PROGRAMMING MANUAL

161/172

Examples

Multiplication Examples

CoMULsu R0, R1, rnd ; (ACC) <-- (R0)*(R1) + rnd

CoMULsu- R2, [R6+] ; (ACC) <-- -(R2)*((R6))

; (R6) <-- (R6) + 2

CoMULsu [IDX0], [R11+] ; (ACC) <-- ((IDX0))*((R11))

; (R11) <-- (R11) + 2

CoMULsu- [IDX1-], [R15] ; (ACC) <-- -((IDX1))*((R15))

; (IDX1) <-- (IDX1) - 2

CoMULsu [IDX0+QX0], [R9 - QR1], rnd ; (ACC) <-- ((IDX0))*((R9)) + rnd

; (R9) <-- (R9) - (QR1)

; (IDX0) <-- (IDX0) + (QX0).

Cases op 1 op 2 rnd MAE MAH MAL N Z C SV E SL

MP=x, MS=x 8000h 8000h x FFh C000h 0000h 1 0 0 - 0 -

MP=x, MS=x 7FFFh 7FFFh 0 00h 3FFFh 0001h 0 0 0 - 0 -

1 00h 3FFFh 0000h 0 0 0 - 0 -

MP=x, MS=x 8001h F456h 0 FFh 85D5h F456h 1 0 0 - 0 -

1 FFh 85D6h 0000h 1 0 0 - 0 -

ST10 FAMILY PROGRAMMING MANUAL

162/172

CoNEG Negate Accumulator with Optional Rounding

Group 32-bit Arithmetic Instructions

Syntax CoNEG
CoNEG nd

Operation IF (rnd) THEN
(ACC) <-- 0 - (ACC) + 00 0000 8000h
(MAL) <-- 0

ELSE
(ACC) <-- 0 - (ACC)

END IF

Data Types ACCUMULATOR

Result 40-bit signed value

Description

The Accumulator content is subtracted from zero and the result is optionally rounded before being stored
in the accumulator register. With “rnd” option MAL is cleared. When the MS bit of the MCW register is set
and when a 32-bit overflow or underflow occurs, the obtained result becomes 00 7FFF FFFFh or FF 8000
0000h, respectively. This instruction is not repeatable

MAC Flags

Addressing Modes

Examples

N Z C SV E SL

* * * * * *

N Set if the m.s.b. of the result is set. Cleared otherwise.

Z Set if the result equals zero. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

SV Set if an arithmetic overflow occurred. Not affected otherwise.

E Set if the MAE is used. Cleared otherwise.

SL Set if the contents of the ACC is automatically saturated. Not affected otherwise.

Mnemonic Rep Format Bytes

CoNEG No A3 00 32 00 4

CoNEG rnd No A3 00 72 00 4

CoNEG ; (ACC) <-- 0 - (ACC)

CoNEG rnd ; (ACC) <-- 0 - (ACC) + rnd

Instr MS rnd ACC (before) ACC (after) N Z C SV E SL

CoNEG x No 00 1234 5678h FF EDCB A988h 1 0 0 - 0 -

CoNEG x Yes 00 1234 5678h FF EDCC 0000h 1 0 0 - 0 -

ST10 FAMILY PROGRAMMING MANUAL

163/172

CoNOP No-Operation

Group 40-bit Arithmetic Instructions

Syntax CoNOP

Operation No Operation

Description
Modifies the address pointers without changing the internal MAC-Unit registers.

MAC Flags

Addressing Modes

Example

N Z C SV E SL

- - - - - -

N Not affected

Z Not affected

C Not affected

SV Not affected

E Not affected

SL Not affected

Mnemonic Rep Format Bytes

CoNOP [Rwm⊗] Yes 93 1m 5A rrrr:rqqq 4

CoNOP [IDXi⊗], [Rwm⊗] Yes 93 Xm 5A rrrr:rqqq 4

CoNOP [IDX0+QX1], [R11+QR1] ; (R11) <-- (R11) + (QR1)

; (IDX0) <-- (IDX0) + (QX1)

ST10 FAMILY PROGRAMMING MANUAL

164/172

CoRND Round Accumulator

Group Shift Instructions

Syntax CoRND

Operation (ACC) <-- (ACC) + 00 0000 8000h
(MAL) <-- 0

Data Types ACCUMULATOR

Result 40-bit signed value

Description
Rounds the ACC register contents by adding 0000 8000h to it and store the result in the ACC register and
the lower part of the ACC register, MAL, is cleared. When the MS bit of the MCW register is set and when
a 32-bit overflow or underflow occurs, the obtained result becomes 00 7FFF FFFFh or FF 8000 0000h,
respectively. This instruction is not repeatable.

MAC Flags

Addressing Modes

Notes: CoRND is equivalent to CoASHR #0, rnd.

Example

N Z C SV E SL

* * * * * *

N Set if the most significant bit of the result is set. Cleared otherwise.

Z Set if the result equals zero. Cleared otherwise.

C Set if a carry is generated. Cleared otherwise.

SV Set if an arithmetic overflow occurred. Not affected otherwise.

E Set if the MAE is used. Cleared otherwise.

SL Set if the contents of the ACC is automatically saturated. Not affected otherwise.

Mnemonic Rep Format Bytes

CoRND No A3 00 B2 00 4

CoRND ; (ACC) <-- (ACC) + rnd

ST10 FAMILY PROGRAMMING MANUAL

165/172

CoSHL Accumulator Logical Shift Left

Group Shift Instructions

Syntax CoSHL op1

Operation (count) <-- (op1)
(C) <-- 0

DO WHILE (count) ≠ 0
(C) <-- (ACC39)
(ACCn) <-- (ACCn-1) [n=1...39]
(ACC0) <-- 0
(count) <-- (count) -1

END WHILE

Data types ACCUMULATOR

Result 40-bit signed value

Description

Shifts the ACC register left by the number of times specified by the operand op1. The least significant bits
of the result are filled with zeros. Only shift values from 0 to 8 (inclusive) are allowed. “op1” can be either
a 5-bit unsigned immediate data, or the least significant 5 bits (considered as unsigned data) of any reg-
ister directly or indirectly addressed operand. When the MS bit of the MCW register is set and when a
32-bit overflow or underflow occurs, the obtained result becomes 00 7FFF FFFFh or FF 8000 0000h,
respectively. This instruction is repeatable when “op1” is not an immediate operand.

MAC Flags

Addressing Modes

Examples

N Z C SV E SL

* * * * * *

N Set if the most significant bit of the result is set. Cleared otherwise.

Z Set if the result equals zero. Cleared otherwise.

C Carry flag is set according to the last most significant bit shifted out of ACC.

SV Set if the last shifted out bit is different from N.

E Set if the MAE is used. Cleared otherwise.

SL Set if the content of the ACC is automatically saturated. Not affected otherwise.

Mnemonic Rep Format Bytes

CoSHL Rwn Yes A3 nn 8A rrrr:r000 4

CoSHL #data5 No A3 00 82 ssss:s000 4

CoSHL [Rwm⊗] Yes 83 mm 8A rrrr:rqqq 4

CoSHL #3 ; (ACC) <-- (ACC) << 3

CoSHL R3 ; (ACC) <-- (ACC) << (R3)4-0

CoSHL [R10 - QR0] ; (ACC) <-- (ACC) << ((R10))4-0

; (R10) <-- (R10) - (QR0)

ST10 FAMILY PROGRAMMING MANUAL

166/172

CoSHR Accumulator Logical Shift Right

Group Shift Instructions

Syntax CoSHR op1

Operation (count) <-- (op1)
(C) <-- 0
DO WHILE (count) ≠ 0

((ACCn) <-- (ACCn+1) [n=0-38]
(ACC39) <-- 0
(count) <-- (count) -1

END WHILE

Data Types ACCUMULATOR

Result 40-bit signed value

Description
Shifts the ACC register right by as many times as specified by the operand op1. The most significant bits
of the result are filled with zeros accordingly. Only shift values contained between 0 and 8 are allowed.
“op1” can be either a 5-bit unsigned immediate data, or the least significant 5 bits (considered as
unsigned data) of any register directly or indirectly addressed operand. The MS bit of the MCW register
does not affect the result. This instruction is repeatable when “op 1” is not an immediate operand.

MAC Flags

Addressing Modes

Examples

N Z C SV E SL

* * 0 - * -

N Set if the most significant bit of the result is set. Cleared otherwise.

Z Set if the result equals zero. Cleared otherwise.

C Cleared always.

SV Not affected.

E Set if the MAE is used. Cleared otherwise.

SL Not affected.

Mnemonic Rep Format Bytes

CoSHR Rwn Yes A3 nn 9A rrrr:r000 4

CoSHR #data5 No A3 00 92 ssss:s000 4

CoSHR [Rwm⊗] Yes 83 mm 9A rrrr:rqqq 4

CoSHR #3 ; (ACC) <-- (ACC) >> 3

CoSHR R3 ; (ACC) <-- (ACC) >> (R3)4-0

CoSHR [R10 - QR0] ; (ACC) <-- (ACC) >> ((R10))4-0

; (R10) <-- (R10) - (QR0)

ST10 FAMILY PROGRAMMING MANUAL

167/172

CoSTORE Store a MAC-Unit Register

Group Transfer Instructions

Syntax CoSTORE op1, op2

Operation (op1) <-- (op2)

Data Types WORD

Description
Moves the contents of a MAC-Unit register specified by the source operand op2 to the location specified
by the destination operand op1. This instruction is repeatable with destination indirect addressing mode
(for example to clear a table in memory)

MAC Flags

Addressing Modes

Note: Due to pipeline side effects, CoSTORE cannot be directly followed by a MOV instruction, the
source operand of which is also a MAC-Unit register such as MSW, MAH, MAL, MAS, MRW or MCW. In
this case, a NOP must be inserted between the CoSTORE and MOV instruction.

Examples

N Z C SV E SL

- - - - - -

N Not affected

Z Not affected

C Not affected

SV Not affected

E Not affected

SL Not affected

Mnemonic Rep Format Bytes

CoSTORE Rwn, CoReg No C3 nn wwww:w000 00 4

CoSTORE [Rwn⊗], CoReg Yes B3 nn wwww:w000 rrrr:rqqq 4

CoSTORE [R11+QR1], MAS ; ((R11)) <-- limited((ACC))

; (R11) <-- (R11) + (QR1)

Repeat 3 times CoSTORE

CoSTORE [R2-], MAL ; ((R2)) <-- (MAL)

; (R2) <-- (R2) - 2

ST10 FAMILY PROGRAMMING MANUAL

168/172

CoSUB(2)(R) Subtract

Group Arithmetic Instructions

Syntax CoSUB op1, op2

Operation (tmp) <-- (op2)\(op1)
(ACC) <-- (ACC) - (tmp)

Syntax CoSUB2 op1, op2

Operation (tmp) <-- 2 * (op2)\(op1)
(ACC) <-- (ACC) - (tmp)

Syntax CoSUBR op1, op2

Operation (tmp) <-- (op2)\(op1)
(ACC) <-- (tmp) - (ACC)

Syntax CoSUB2R op1, op2

Operation (tmp) <-- 2 * (op2)\(op1)
(ACC) <-- (tmp) - (ACC)

Data Types DOUBLE WORD

Result 40-bit signed value

Description

Subtracts a 40-bit operand from the 40-bit Accumulator contents or vice-versa when the “R” option is
used, and stores the result in the accumulator. The 40-bit operand results from the concatenation of the
two source operands op1 (LSW) and op2 (MSW), which is then sign-extended. The “2” option indicates
that the 40-bit operand is also multiplied by 2, prior to being subtracted/added from/to the ACC/negated
ACC. When the most significant bit of the MCW register is set and when a 32-bit overflow or underflow
occurs, the obtained result becomes 00 7FFF FFFFh or FF 8000 0000h, respectively. This instruction is
repeatable with indirect addressing modes, and allows up to two parallel memory reads

MAC Flags

Note: The E-flag is set when the nine highest bits of the accumulator are not equal. The SV-flag is set,
when a 40-bit arithmetic overflow/ underflow occurs.

N Z C SV E SL

* * * * * *

N Set if the most significant bit of the result is set. Cleared otherwise.

Z Set if the result equals zero. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

SV Set if an arithmetic overflow occurred. Not affected otherwise.

E Set if the MAE is used. Cleared otherwise.

SL Set if the contents of the ACC is automatically saturated. Not affected otherwise.

ST10 FAMILY PROGRAMMING MANUAL

169/172

Addressing Modes

Examples

Subtraction Examples

Mnemonic Rep Format Bytes

CoSUB Rwn, Rwm No A3 nm 0A 00 4

CoSUBR Rwn, Rwm No A3 nm 12 00 4

CoSUB2 Rwn, Rwm No A3 nm 4A 00 4

CoSUB2R Rwn, Rwm No A3 nm 52 00 4

CoSUB [IDXi⊗], [Rwm⊗] Yes 93 Xm 0A rrrr:rqqq 4

CoSUBR [IDXi⊗], [Rwm⊗] Yes 93 Xm 12 rrrr:rqqq 4

CoSUB2 [IDXi⊗], [Rwm⊗] Yes 93 Xm 4A rrrr:rqqq 4

CoSUB2R [IDXi⊗], [Rwm⊗] Yes 93 Xm 52 rrrr:rqqq 4

CoSUB Rwn, [Rwm⊗] Yes 83 nm 0A rrrr:rqqq 4

CoSUBR Rwn, [Rwm⊗] Yes 83 nm 12 rrrr:rqqq 4

CoSUB2 Rwn, [Rwm⊗] Yes 83 nm 4A rrrr:rqqq 4

CoSUB2R Rwn, [Rwm⊗] Yes 83 nm 52 rrrr:rqqq 4

CoSUB R0, R1 ; (ACC) <-- (ACC) - (R1)\(R0)

CoSUB2 R2, [R6+] ; (ACC) <-- (ACC) - 2*(((R6)) \ (R2))

; (R6) <-- (R6) + 2

Repeat 3 times CoSUB

CoSUB [IDX1+QX1], [R10+QR0] ; (ACC) <-- (ACC) - (((R10))\((IDX1)))

; (R10) <-- (R10) + (QR0)

; (IDX1) <-- (IDX1) + (QX1)

Repeat MRW times CoSUB2R

CoSUB2R R4, [R8 - QR1] ; (ACC) <-- 2*(((R8))\(R4)) - (ACC)

; (R8) <-- (R8) - (QR1)

Instr. MS op 1 op 2 ACC (before) ACC (after) N Z C SV E SL

CoSUB x 183Ah 72ACh 00 7FFF FFFFh 00 0D53 E7C5h 0 0 0 - 0 -

CoSUBR x 183Ah 72ACh 00 7FFF FFFFh FF F2AC 183Bh 1 0 1 - 0 -

CoSUB2 x 0C1Dh 3956h 00 E604 5564h 00 7358 3D2Ah 0 0 0 - 0 -

CoSUB2R x 0C1Dh 3956h 00 E604 5564h FF 8CA7 C2D6h 1 0 1 - 0 -

CoSUB 0 FFFFh FFFFh 7F FFFF FFFFh 80 0000 0000h 1 0 1 1 1 -

1 00 7FFF FFFFh 0 0 1 1 0 1

CoSUB2 0 0000h 3000h 7F FFFF FFFFh 7F 9FFF FFFFh 0 0 0 - 1 -

CoSUB2 0 0001h 0000h 80 0000 0000h 7F FFFF FFFEh 0 0 0 1 1 -

1 FF 8000 0000h 1 0 0 1 0 1

ST10 FAMILY PROGRAMMING MANUAL

170/172

4 - REVISION HISTORY

Revision 4 - version 1 of January 2000
Chapter 2.1.4

See 1: GPRAddress = (CP + 2 x ShortAddress)

See 3: LongAddress = (GPRAddress) + Constant)

See 4: PhysicalAddress = (DPPi) + LongAddress ^ 3FFFh

See5: (GPRPAddress) = (GPRDAddress) + ∆
Chapter 2.2.3 Additional State Times:

"Jumps into the internal ROM Space :..."

– Label

– In + 1

– In + 2 JMPR cc_NC, label

Chapter 2.4:

Table 9, 10, 11, 12, 13 , 14, 15, 16, 17, 18, 19,

All column 16 bit N-MUX, 16 bit MUX, 8 bit N-MUX, 8 bit MUX.

This document number 7096626A is the transfer onto ADCS of document 42-1735-05 on the Bristol doc-
ument control system. This revision includes extensive modifications to format. The major modifications
to content are summarized in this table:

r -> R In MAC instructions, upper case R has replaced lower case
r for Reverse operation.

#data4 -> #data5 In MAC instructions, immediate shift value uses 5 bits to be
coded, not 4.

Table 30

Instr. CoMACMus
Instr. CoMACMus-
Instr. CoMACMus rnd
Instr. CoMACMR

function code is 98
function code is A8
function code is 99
function code is F9

Instr. CoMACM(R)su(-) Addressing Mode

CoMACRsu [IDXi⊗], [Rwm⊗]
CoMACRsu [IDXi⊗], [Rwm⊗], rnd

CoMACRsu Rwn, [Rwm⊗], rnd

93 Xm 70 rrrr:rqqq
93 Xm 71 rrrr:rqqq
93 Xm 71 rrrr:rqqq

correction in Multiplication examples CoMULu(-) and coMULus(-)

Instruction BMOV flag Z corrected

Instruction BMOVN flag Z corrected

Instruction JNBS flag Z corrected

Instruction MUL flag N corrected

Instruction MULU flag N corrected

Instruction SUBCB flag Z corrected

Revision 5 - version 4
Updated Disclaimer

ST10 FAMILY PROGRAMMING MANUAL

171/172

Revision 4 - revision 3

Revision 3 - revision 2
CoSUB2r replaced CoSUBr2.
In MAC instructions, lower case r has replaced upper case R for optional repeat.

Revision 2 - revision 1
“Definition of measurement units” on page 12, ALE Cycle Time corrected.
“Integer Addition with Carry” on page 59: instruction name changed from ADDBC to ADDCB.

Instructions: CoMULsu(-), CoMULus(-),
CoMAC(r)su(-), CoMAC(r)us(-), CoMACM(r)su(-),
CoMAC(r)us(-), CoNOP, CoSHL, CoSHR, CoASHR,
CoSTORE

Addressing modes corrected.
Function code in Table 30 corrected.

Instructions JBC and JNBS: Condition flags corrected.

Table 22: Instruction set ordered by Hex code : Updated to include section C0-FF, MAC
instructions and working register indexes.

Instruction CoMULus(-): Example corrected.

Table 5: Branch target address summary : Seg address range corrected.

Table 24: Condition codes : Condition Code Mnemonic cc_N corrected.

Section 2.4.6: Repeated instruction syntax: Sentence added.

Instruction CoSHL: Description clarified: “Only shift values from 0
to 8 (inclusive)”.

Instruction CoNOP: [IDXi⊗] addressing mode and example

removed. Reference to this addressing mode
removed from Table 29.

Instruction BCLR: Condition flag Z corrected.

MAC instruction descriptions: Ordered Alphabetically.

Section 2.1: Addressing modes: Paragraph added.

Section 1.2.1: Definition of measurement units: [Fcpu] changed to 0-50MHz.

ST10 FAMILY PROGRAMMING MANUAL

172/172 DocID5869 Rev 5

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

