Using GATE as an Annotation Tool

Tom Kenter, Diana Maynard

20th July 2004

Contents

1 Introduction

2 Getting started

2.1 Download and install the software
2.2 Documentation
23 AGATE session. e
2.3.1 Start the GATE application
2.3.2 Importing/loading/saving resources
2.3.3 Annotation schemas
2.3.4 Start annotating Lo
2.3.5 Manual annotationo
2.3.6 Automatic annotation L
2.3.7 Viewing annotationso
2.3.8 Saving data in datastores L.
2.3.9 Savedataas XMLo
2.3.10 Restore application from file

3 Working with Ontologies

3.1 Load creolexml
3.2 Ontology Editor
3.3 OntoGazetteer
3.3.1 dstfile
3.3.2 mappings.def
3.3.3 listsdef . . .

3.4
3.5
3.6

3.7
3.8

Jape Transducer 10

Creating a pipeline 10
Portability 10
3.6.1 Language resources: gate:/ path names 10
Processing resources: Saving application state 11
How to generate annotations automatically 11

1 Introduction

This manual is designed as an introduction to GATE 2 for people who have no experience at
all with the tool. The first part covers the basic aspects of how to use GATE as an annotation
tool; the second part includes some more advanced aspects concerned with using the ontology
functionalities. For more detailed information, we refer the reader to the GATE User Guide
(see Section 3.2). Note that some parts of the GUI have changed significantly in Version
3 of GATE. If you are using GATE 3, please refer to the corresponding documentation for
GATE 3.

1.1 What is GATE for?

But first, what is GATE for?

GATE can be used for infinitely many things, but one of the most typical uses is to annotate
pages with it. This means that you have a collection of pages (a corpus) and a number of
concepts (Annotation Schema) that supposedly occur in these pages. GATE provides you
with an easy to use interface for indicating which pieces of text denote which of your concepts.
In GATE you can do the annotating by hand, or you can let GATE do this automatically by
using Gazetteers, etc. For example, GATE automatically annotates all html tags it finds in
your text (you will find them in the Annotation Set called ’Original markups annotations’).

1.2 Overview of GATE

GATE is an architecture that contains functionality for plugging in all kinds of NLP soft-
ware, such as POS taggers, sentence splitters, Named Entity recognizers, etc. It works with
resources. There are two main kinds of resources: Language Resources, and Processing
Resources.

e Language Resource (LR): refers to data-only resources such as lexicons, corpora, the-
sauri or ontologies. Some LRs come with software (e.g. Wordnet has both a user
query interface and C and Prolog APIs), but where this is only a means of accessing
the underlying data we will still define such resources as LRs.

e Processing Resource (PR): refers to resources whose character is principally program-
matic or algorithmic, such as lemmatisers, generators, translators, parsers or speech
recognisers. For example, a part-of-speech tagger is best characterised by reference to
the process it performs on text. PRs typically include LRs, e.g. a tagger often has a
lexicon; a word sense disambiguator uses a dictionary or thesaurus.

These resources can be loaded into GATE, and saved together in a Data Store. Also,

Processing Resources can be put together in a so-called 'pipeline’ (as in Unix pipelines, where
4

the output of an application serves as input to the next). This is called an ’application’ in
GATE.

2 Getting started

2.1 Download and install the software

You can download the GATE annotation tool from: http://gate.ac.uk/download/index.html

You will be asked for some details, and download instructions will be sent to you by mail.
Once you have downloaded the application, you can install it in a place convenient for you.

2.2 Documentation

By default, GATE comes with documentation included. The main source of information is
the User Guide ('Developing Language Processing Components with GATE (a User Guide)’)
which is called tao.pdf, located in the directory that GATE was installed in. Or you can
view it online at http://gate.ac.uk/sale/tao

Also there is the very useful mailing list, and accompanying archive. Information
about subscribing to the list, and browsing the mailing list archive, can be found at
http://gate.ac.uk/mail /index.html.

2.3 A GATE session
2.3.1 Start the GATE application

Click on the icon if you choose to have one installed, or double click on the gate.bat file in
GATE’s bin/ directory.

2.3.2 Importing/loading/saving resources

Throughout the documentation about GATE, importing/opening files is called "loading’. We
will adhere to this convention.

You can load both Language Resources and Processing Resources, by right clicking on "Lan-
guage/Processing Resource’ in GATE’s left window, and choosing 'New’. Or by going to the
"File’ menu and choosing 'New Language/Processing Resource’.

5

NOTE that 'new’ is being used here as 'open’, ie it is used for opening existing files, rather
than for creating completely new ones. The 'new’ is local, i.e. it means 'new to the particular
application’ rather than globally new.

By default GATE loads no resources. However the tool can be configured to save session
data on closing. In this case, all the data will be loaded again automatically the next time it
is run. This is done by choosing ’Configuration’ in the ’Options’ menu. Under the ’Advanced
options’ it can be specified whether or not session info and/or options should be saved upon
exitting. Saving options just stores the settings such as fonts etc, rather than the data.

2.3.3 Annotation schemas

Annotation schemas provide a means to define types of annotations in GATE - basically this
means that GATE ”"knows about” annotations defined in a schema. The default annotation
schema contains common named entities such as Person, Organisation, Location, etc. You
can modify the existing schema or create a new one, in order to tell GATE about other kinds
of annotations you frequently use. You can still create annotations in GATE without having
specified them in an annotation schema, but you may then need to tell GATE about the
properties of that annotation type each time you create an annotation for it. Section 5.4.1
” Annotation Schemas” in the GATE User Guide describes how to create new schemas.

2.3.4 Start annotating

Load the file that is to be annotated.

To open a file, select 'New Language Resource’ in either of the two menus, and then ’‘GATE
document’. A window will appear in which the parameters for the document can be stated.
The only relevant parameter at this point is the location of the file, called, in GATE termi-
nology, the SourceUrl. By clicking on the yellow folder symbol that appears at the right side
of the first row in the "Value’ column, an 'Open file’ dialogue window will open.

By selecting a file and clicking on "OK’ it will be loaded into GATE, as a Language Resource.
By double clicking on the document in the left pane, it will be loaded into GATE’s main pane,
in an Annotation Editor. To view the annotations, click on ’Annotations’ and ’Annotation
Sets” in the Annotation Editor’s top bar. A bottom- and sideframe will open, in which the
annotations will be displayed.

There may be an Annotation Set called ’Original markup annotations’. This set usually
contains the html or xml tags that were found in the file.

2.3.5 Manual annotation

Load the file that is to be annotated as a Language Resource. By double clicking on the
document in the left pane, it will be loaded into GATE’s main pane, in an Annotation Editor.
Supposing there is an Annotation Scheme loaded as well, this is how manual annotation is
done. - Select the text you want to annotate - Click on the appropriate concept in the
Annotation Scheme on the right

2.3.6 Automatic annotation

Run the corpus pipeline (application). Double click on the loaded application in the left
pane of GATE’s window. Then choose 'run’. The corpus that was loaded will be annotated
automatically.

2.3.7 Viewing annotations

To view the annotations, click on ’Annotations’ and ’Annotation Sets’ in the Annotation
Editor’s top bar. A bottom- and sideframe will open, in which the annotations will be
displayed. There may be an Annotation Set called ’Original markup annotations’. This
set by default contains the html or xml tags that were found in the file, and is generated
automatically by GATE. If the box in front of an annotation concept is checked in the
"Annotation Sets’ frame (in the right part of GATE’s main window), the annotations of that
type are highlighted. The ’Annotations’ (in the bottom frame) show the Type, Set, Start
position, End position and feature structure of the annotations.

NOTE that, as a 'feature’ of GATE, annotation types that do not occur in the text (i.e.
there are no instances of that type in the text), are not displayed in the ’Annotations Sets’
frame.

2.3.8 Saving data in datastores

Language Resources can be saved together in a Data Store. This can be useful if you are
working with large datasets. It is also the safest way to ensure that when you reload the
files, they look exactly the same as before.

Strangely enough, you need te create an empty folder first on your computer (outside GATE,
i.e. using your operating system’s functionality for that), before you can create a Data Store.
Once you have got this empty folder, you right click on 'Data Stores’, select ’Create datastore’
and choose the fresh empty folder.

To save a file/corpus to a Data Store choose 'Save to’ from the menu you get by right clicking
on a resource. Then choose the Data Store the resource has to be saved to (this means you
7

need to have a Data Store open already, though it could be empty).

2.3.9 Save data as XML

Choose ’save as XML’ from the menu you get by rightclicking on a corpus or document. You
can do this with data that is annotated or not, though the latter doesn’t make much sense.

2.3.10 Restore application from file

In order to load a corpus and an application that you already have saved, choose (under the
menu 'File’) the option 'Restore application from file’. You will then be asked to choose a
file. The convention is for applications to have the extension .gapp (Gate Application), but
this is not necessary and any extension is fine.

3 Working with Ontologies
This section deals especially with ontologies: how to create/edit them, make Annotation
Schemas out of them, and annotate texts automatically with respect to these schemas.

By default, the GATE application comes without an Ontology Editor, or OntoGazetteer,
because these are under separate licence. You can obtain these by contacting the GATE
team <gate@dcs.shef.ac.uk> directly.

Some additional data is needed for them, such as a creole.xml file, which tells GATE what
to load, and where to find it.

3.1 Load creole.xml

In the menu 'File’ choose 'Load a CREOLE repository’. You then need to specify a folder
in which the relevant creole.xml file resides.

NOTE: for some reason you can not see any (creole.xml) files while browsing through the
directories.

NOTE also that you should specify the folder, not the file.

3.2 Ontology Editor

The ontology editor is found in the "Tools” menu. If you double click on the ontology in the
left window in GATE, it will be loaded in the main window. This main window looks more
or less the same as the Ontology Editor itself. However, there is a difference.

NOTE that, if you edit the ontology in GATE’s main window, the changes are not saved.
This only works in the Ontology Editor itself.

3.3 OntoGazetteer

The OntoGazetteer is a Processing Resource in which lists of instances of ontology concepts
can be loaded. For the OntoGazetteer to function properly, it needs one or more .Ist files,
and two .def files, usually called mappings.def, and lists.def.

3.3.1 .Ist file

A st file is simply a file with an instance on every line. For instance persons.lst will have,
on every line, the name of a person.

3.3.2 mappings.def

The mappings.def file describes the relations between the .Ist files and the ontology concepts.
The format is .Ist file:ontology file:ontology concept.

3.3.3 lists.def

The lists.def file states the relations between the .Ist files and the annotation feature the
OntoGazetteer should generate. The format is: .Ist file:feature

The OntoGazetteer, when run, generates annotations for every instance mentioned in the .1st
files. All these instances will be annotated with the same annotation type, called "Lookup’ (
in the ’default’” Annotation Set). Every Lookup annotation will have a feature, which is its
majorType, which will differ per .Ist file.

This is not very useful, because every different concept from the ontology will have the same
annotation type (namely 'Lookup’). However, since the the 'majorType’ feature differs, we
can process them further. And to do that, we need a Jape Transducer.

3.4 Jape Transducer

A Jape transducer is a Processing Resource for manipulating annotations. For instance,
the annotations generated by the OntoGazetteer can be transcribed to distinct annotations.
For this, the Jape Transducer needs a Jape grammar, usually stored in a .jape file. A Jape
grammar describes which annotations should be changed, and how. See Chapter 6 of the
GATE User Manual for further reference on Jape rules.

3.5 Creating a pipeline

Once a Processing Resource is loaded, it can be included in a pipeline. To do so, right click
on ’Applications’ in the left pane, and choose one of the approriate options. A particularly
useful one is the ’Corpus Pipeline’ that lets you run an application on an entire corpus. A
pipeline is created by dragging the Processing Resources into it. They will be run one after
another.

NOTE that in order to run the OntoGazetteer, only the OntoGazetteer needs to be selected,
and not the Hash Gazetteer.

3.6 Portability

There are ways in GATE that make it possible to refer to files other than by their absolute
filenames. You may want to use this, e.g. because you want some resources to be portable,
i.e. usable for people on other computers, with possibly other file structures.

3.6.1 Language resources: gate:/ path names

In the bin/ directory of GATE you will find a gate.jar file. This is actually a zipped directory,
which, for some reason, is called .jar. In this directory is a directory gate/ (again), in which
a directory resources/ resides. This is the directory referred to as gate:/ in pathnames of
resources. If you want to refer to some file with a geta:/ pathname, you should unzip the
directory gate.jar (as e.g. gate/), go to the directory gate/resources/ (so, by way of example,
the full pathname after unzipping might be:

C:\Program Files\GATE
2.2\bin\gate\gate\resources

copy a file there called abc.html. After you have zipped the entire thing again, you have
made sure the zipped file is called gate.jar, and you have put it where it was originally stored
(i.e. the bin/ directory), you can refer to the file as gate:/abc.html. NOTE that this only
works for Language Resources.

10

3.7 Processing resources: Saving application state

See the GATE User Manual, section 2.18 ”Save Resource Parameter State to File”.

3.8 How to generate annotations automatically

Now that all the building blocks have been discussed, let us describe how to actually construct
something useful out of it.

Our aim is to have an Annotation Set that contains the concepts out of the ontology. First,
we make an OntoGazetteer. This we build from our ontology, and lists.def and mappings.def
file. These files can be situated anywhere. If they are in the gate.jar file, we refer to them
with a gate:/ pathname. Otherwise, we can pick them in the 'browse file’ window, or type
in a ’traditional’ pathname. Suppose we run the OntoGazetteer on our corpus. This would
produce, as described above, 'Lookup’ annotations like this:

Type

Set

Start

End

Features

Lookup

Default

281

302
{majorType=Department}

Now we want to have a Jape rule that turns this annotation into an annotation of type
"Department’. So it should select every annotation with 'Department’ as its majorType, and
convert it. This is the rule that does it:

Rule: departmentsRule
(
{Lookup.majorType == Department}
) :departmentslabel
-—>
:departmentslabel.departments = {rule = "departmentsRule"}

For the exact syntax for Jape rules, we refer to the manual again, but it will be clear more
or less what happens here.

This then is all we need. We build a corpus pipeline with first the OntoGazetteer, and then
the Jape Transducer, and if it is run, the corpus will get annotated automatically.

11

