
DYNAMIC MASS MARKETING PROCESSOR

A thesis written at

ROSEVILLE CHRYSLER JEEP

and submitted to

KETTERING UNIVERSITY

in partial fulfillment
of the requirements for the

degree of

BACHELOR OF SCIENCE IN COMPUTER SCIENCE

by

ANTHONY MONTALBANO

Author

Employer Advisor

Faculty Advisor

DISCLAIMER

This thesis is submitted as partial and final fulfillment of the cooperative work

experience requirements of Kettering University needed to obtain a Bachelor of Science in

Computer Science Degree.

The conclusions and opinions expressed in this thesis are those of the writer and do

not necessarily represent the position of Kettering University or Roseville Chrysler Jeep, or

any of its directors, officers, agents, or employees with respect to the matters discussed.

 ii

PREFACE

This thesis represents the capstone of my five years combined academic work at

Kettering University and job experience at Roseville Chrysler Jeep. Academic experience in

Computer Science proved to be a valuable asset while I developed this thesis and addressed

the problem it concerns.

Although this thesis represents the compilation of my own efforts, I would like to

acknowledge and extend my sincere gratitude to the following persons for their valuable time

and assistance, without whom the completion of this thesis would not have been possible:

1. Wayne Andrei

2. Gil Hale

3. David Johnston

4. Jim Huggins

 iii

TABLE OF CONTENTS

DISCLAIMER ... ii

PREFACE ... iii

LIST OF ILLUSTRATIONS .. vi

I. INTRODUCTION ... 1
Problem Topic ... 1
Background .. 1
Criteria and Parameter Restrictions ... 2
Methodology .. 2
Primary Purpose ... 3
Overview .. 3

II. CONCLUSIONS AND RECOMMENDATIONS .. 4

III. PREVIOUS SOLUTIONS... 6

Third Party Marketing Tools ... 6
Dealership Customer Management System Market Tool................................ 7
Previous Solutions Concluding Thoughts.. 8

IV. DEALERSHIP CUSTOMER MANAGEMENT SYSTEM (DCMS)......................... 9

V. USER FUNCTIONALITY .. 10

Main ... 10
Create/Edit Document.. 12
Build Document ... 19
Preview Document... 22

VI. TECHNICAL UNDERSTANDING.. 24

Initializing RosePro ... 24
Creating/Editing a RosePro Document.. 25
Building the Document .. 26
Merging the Document .. 28
Concluding Technical Thoughts .. 28

 iv

REFERENCES .. 30

GLOSSARY .. 31

APPENDICES ... 34

APPENDIX A: SOURCE CODE ... 35
APPENDIX B: USER’S MANUAL... 70
APPENDIX C: PROGRAM OUTCOMES .. 81

 v

LIST OF ILLUSTRATIONS

Figures Page

1. Main window example ... 11

2. Create/edit document window example ... 13

3. Build document window example ... 20

4. Details of loaded data file .. 21

5. Preview document window example ... 22

 vi

I. INTRODUCTION

 The Dynamic Mass Marketing Processor is an application developed for Roseville

Chrysler Jeep. The application is completely dependent on the Dealer Customer

Management System (DCMS), developed by Gil Hale. The Dynamic Mass Marketing

Processor has been titled RosePro. RosePro is a tool to generate mass marketing lists

from the current customer database.

Problem Topic

 At Roseville Chrysler Jeep, like all dealerships, keeping in contact with its

customers is a big key to success. Over the years the dealership has build a very large

and extensive database of customers. Roseville Chrysler Jeep has never been able to use

this customer database for a marketing strategy. The dealership wants to be able to build

unique customer lists for specific marketing, but has no tool simple enough to use.

Background

 A simple software system was proposed. The software was titled RosePro and

would be a simple, easy-to-use program allowing anyone in the dealership to create mark

able customer lists. Currently, within Gil's DCMS, there is a feature that generates lists

specific to criteria, but each option is hard coded into DCMS and there are no options to

modify the selection of data. RosePro puts the creation of generating marketing data in

the user’s hands. Previous methods to creating marketing material involved many hours

writing unique scripts to pull information from the database and then creating documents

 1

into which to merge the data. Roseville Chrysler Jeep wanted to simplify this process

and make it as "user-friendly" as possible. Development of the project was guided by

Wayne Andrei

Criteria and Parameter Restrictions

 There were very specific development criteria. Since it is very easy to get carried

away with software development features, each criterion was chosen carefully. To limit

the budget, no new software development tools were purchased. The project was

developed within Microsoft Access 2002, which Roseville Chrysler Jeep currently owns.

This still gave the flexibility of Visual Basic without the need for a new Visual Basic

license. Obviously, the new system must operate within the data constraints provided by

the DCMS FoxPro database.

Methodology

 To make this project possible an Open Database Connectivity (ODBC)

connection to the DCMS FoxPro database was established. Once the connection was

made, the database tables were linked into Microsoft Access. This allowed the software

to be designed specifically for the data tables now present in Microsoft Access. Before

laying out any of the graphical user interface (GUI), a list of fields that would be most

commonly used as criteria in specifying customer details (i.e.- name, address, vehicle

make, vehicle model) was created. Small scripts were written in order to test the integrity

of the database. After a few days of testing a generic formula that would be used in

selecting a list of customers from the database. Using this formula a program was created

 2

that would input all of the variables. Finally a GUI that was simple and easy to use was

created to communicate with the rest of the program. The software was tested for a few

weeks before users were asked to test software. Errors were recorded and later fixed.

One final test was done with successful results. The project was completed.

Primary Purpose

 RosePro, a dynamic mass marketing processor, successfully generates data highly

sufficient for creating marketing campaigns for Roseville Chrysler Jeep and merges them

into documents formatted for direct market use.

Overview

 The following chapters describe the research, implementation, execution, and

testing of RosePro, a dynamic mass marketing processor. Considerable time was spent

researching and learning the details and system structures of both Gil's DCMS database

and the possibilities of final output. This lead to a plan of attack on implementation and

testing. Upon completing the project was put through many tests, by the developer and

other testers. Reports came back and changes were made to fix the flaws. A second set

of tests were made and the project proved very successful.

 3

II. CONCLUSIONS AND RECOMMENDATIONS

 Developing marketing lists was made much easier with the creation of RosePro.

The program will continue to be used at the dealership in many different marketing

campaigns Roseville Chrysler Jeep will undertake. Now, almost anyone can create

marketing documents and unique customer lists in a few minutes, as opposed to multiple

hours. In the future, possible upgrades will allow the user to create not only the customer

lists, but also the formatted documents used for merging within RosePro. Other fields

could be added to broaden the possible choices for delimiting what criteria to use when

making customer selection.

 During the development and implementation of my software, further

unanticipated problems were encountered. The different individual conclusions and key

findings are listed below. They are listed in chronological order, starting with the

research regarding possible recommendations for the future.

1. The first major problem was trying to connect to the database. A direct database
connection was not possible. This lead to the creation of an ODBC connection
and then linking the tables within the database.

2. Once into the database tables trying to decipher the meaning behind the names of

the fields became very confusing. After multiple phone conversations with Gil
Hale a list of database table fields and a description of each field was created.

3. At a technical level, creating queries to pull the data became very tedious. The

sample results did not match with manual results. The initial formula for creating
a query to be run on the database needed to be restructured. Joining the tables in
different orders yielded lists that were accurate.

 4

4. A couple of early tests revealed that creating customer lists based on a date range
had an effect on the frequency with which these lists were built. Assuming a user
built a 0 to 7 day list today and two days later did the same build, there is
potential overlap of five days. To correct this potential problem the ability to do a
progressive build was added. When progressive build is enabled the system will
look at the last time the document was created and base its criteria on this date,
which will eliminate any overlap. This feature became optional, since the
situation will not always occur.

5. When the initial formula was created a few of the date fields chosen for

comparison were based off of the same model Gil Hale had used in his DCMS.
Initial results matched well with DCMS, but after further examination we were
able to see that actually these values were wrong. Instead a new formula that was
a combination of date formulas was required. In the end we were able to fix a
problem that was previously undetected.

6. An issue that came up during the testing phase was determining exactly what the

created document in RosePro will do, after creation. So a new feature was added
that allows the user to preview what that document will do.

7. While error testing RosePro it became apparent that required fields must be filled

out in order for a minimal list to be built. To alleviate any potential human error,
a new document in RosePro cannot be saved without the required fields properly
filled out.

8. Since RosePro is dependent on being connected to the database remotely, it is

possible for the computer in which RosePro is installed on to become
disconnected. If, the computer became disconnected during a user's build, they
would never know this and it would appear that RosePro is continually building,
forever. Even though this case is rare a 30 minute time out was established, after
which RosePro will notify the user that there is an issue with the connection to the
database and a simple computer reboot should re-establish the connection.

 5

III. PREVIOUS SOLUTIONS

Prior to the creation of RosePro, previous systems did exist. There were

essentially two other methods for obtaining mass marketing material for Roseville

Chrysler Jeep. In this chapter these two methods will be described followed by the

drawbacks to the systems. One of the methods required interaction with a third party that

was not only costly and limited, but took a substantial amount of time, (three to five

days). The other method, quicker, but similar to the first method, was limited in its use.

Both methods limited the creativity and extensibility of the dealership's marketing

techniques.

Third Party Marketing Tools

 Before any in-house software solutions were provided, Roseville Chrysler relied

on a third-party marketing company to develop unique customer lists. The third-party

company provided choices the dealership could make on marketing strategies (e.g.

customers with three purchases, new weekly customers). The third-party company had

access to the dealership customer database and within a few days would mail the

marketing lists and/or documents to Roseville Chrysler Jeep.

 The third-party company did offer a wide variety of marketing choices, but the

choices were still limited. This method was successful, but it also was costly, depending

how often the dealership needed to create new marketing documents and how urgently

 6

they needed them. Roseville Chrysler Jeep relied on this method heavily, up until about

three years ago, when a better method was created.

Dealership Customer Management System Market Tool

Within Gil Hale’s DCMS is a feature that allowed its users to build mailing lists.

In this feature one could not create a new type of mailing list, but only use pre-existing

ones. Once a build has been completed in DCMS data is outputted to a CSV file, which

could be used for any purpose.

Given this CSV file, a manual process was created to make the CSV data more

appealing. These steps include the following:

1. The file was opened using Microsoft Excel and a set of fields that are irrelevant to

the rest of the process was removed. Also, while the document is open in Excel,

all records that were missing required fields for mailing were removed. The file

was resaved.

2. Second, a Microsoft Word document was opened, and the details of the

marketable document were created. Next, using Word’s mail merge, the

previously edited CSV file were linked to the document. Using the mail merge

toolbar, fields from the CSV file were entered into the document. This Word

document was then saved, for potential re-use.

3. Finally the Word document was merged, typically to the printer. This complete

process is repeated for each unique marketing list and document.

 7

Prior to the use of RosePro, this was the primary method for achieving custom

marketing documents. If there was a case where a new type of marketing list was

needed, outside of the choices available in DCMS, Gil Hale was contacted and he would

have to hard code a new type of marketing list. This process could take a few days.

There was a lot of room for human error during the manipulation and creation of the new

documents. The process was relatively tedious and could take up to an hour to complete.

Previous Solutions Concluding Thoughts

While both systems were effective, the biggest drawbacks to their use were time

and limited functionality. The goal of RosePro is to expand on infinite possibilities of

marketing, in a timely manner. Wayne Andrei had once mentioned the fact that there are

thousands of records in the DCMS database and the data is barely being used. This is

where RosePro is put to the test.

 8

IV. DEALERSHIP CUSTOMER MANAGEMENT SYSTEM (DCMS)

Dealership Customer Management System or DCMS, for short, was developed by

Gil Hale. Gil Hale is an independent database programmer who has spent over five years

developing DCMS. Roseville Chrysler Jeep is one of his “guinea pig” clients. Currently

there are two main database systems that nearly all vehicle dealerships use: ADP and

Reynolds & Reynolds. DCMS is a Microsoft Windows application that synchronizes the

database from either ADP or Reynolds & Reynolds. The purpose of DCMS is to provide

a user-friendly solution to viewing and modifying customer data in the database.

DCMS was developed in Microsoft Visual FoxPro. Within DCMS there are

many tools including the ability to search customer records and view information in great

detail. A tool within DCMS allows one to select a list of customer builds, tentatively

called Builds. These builds, as previously stated in chapter III, output unique customer

lists to files. Examples of builds include all customers who have purchased a vehicle in

the past 30 days or all sales customers.

The functionality of DCMS is extensible and rather easy to use. Tools for mass

marketing beyond the “Builds” feature have not yet been developed. It is currently

limited to the array of lists within DCMS. At the time of this writing, DCMS remains

under development. A larger number of dealerships have begun to use DCMS.

 9

V. USER FUNCTIONALITY

The following chapter will explain the user functionality of RosePro. There are

four main windows for user interaction. Each window will be explained describing its

purpose and usage. Further the process of using RosePro and its efficiency will be

explained.

Before using RosePro for its first time, a few things are required. Microsoft

Access is required to run it and an ODBC database connection must be established. To

do so, the location of DCMS’s FoxPro database is needed. In Microsoft Windows XP

the user can create a data source connection, also known as an ODBC. Here the user will

create a data source of type Microsoft Visual FoxPro Driver, give it a name and select the

path of the DCMS database. Upon completion, RosePro is ready to be used.

Main

The main window is the first window seen when starting RosePro. The main

window shows all of the current build documents that exist. On this window the user can

also create, edit, preview, or build a document. Figure 1, on the following page, is an

example of RosePro’s main window.

On the main window there are five buttons that do the following:

 10

Figure 1. Main window example.

1. Create New Document – This will open a new window that will allow the user

create a new document.

2. Edit Selected Document – This will open a new window to edit the document

highlighted in the list of existing builds. The user may also double click on an

existing document and it will open up the same window.

 11

3. Build Selected Document – This will open a new window that allows the user to

build data for the selected document. The user can also merge the data to a Word

document.

4. Preview – This will open a new window that will display exactly what the

selected document will filter out when built.

5. Exit – This will simply exit out of the RosePro application and return to Microsoft

Windows.

The main window has an interactive list of currently existing documents in the

middle. The document name, where the document will be sent to upon its merge, and the

last time the document was run are displayed here. Clicking on a document highlights it.

Double clicking on it opens up a new window to edit the details of the document.

Create/Edit Document

 This window includes the heart of the document. In this window the user is given

all of the fields necessary to customizing the type of document to be built and merged.

This window is broken down into four essential sections. Each section includes fields

related to the name of each section. There are also a few other options that are not

categorized in any section. These options are very important to the use of RosePro.

Figure 2 is an example of the Create/Edit Document window, prior to any data entry.

 12

Figure 2. Create/edit document window example.

1. The Document section of the Create/Edit Document window includes fields

specific to the creation of the document. The first objective would be to give the

document a name. Next would be to choose what criteria should be outputted to

file. The user can create documents for mailing, documents that have lists of

phone numbers of customers to be called, or documents that can be emailed. The

user can choose any combination of the three types of lists: address, phone, or

email. Depending on the user’s choice the final Microsoft Word document can be

merged to either a new Word Document, directly to a printer, or to Microsoft

Outlook, in the form of an email.

 13

The user will next see a disabled drop down box, defaulting to Sales. (Further

detail about this drop down box can be found later in the chapter.) There is a

sentence with two fields that can be filled in by the user. The sentence reads

“Date Range from ___ days ago to ___ days ago”. By filling in the fields with

numerical values the user can have the document select a list of sales customers

from a specified date range. If both values are left blank, no date range will be

applied. If the first field is left blank, the program will select all customers up

until the date generated by the second field. If the second field is left blank, the

program will select all customers starting with the date generated from the first

field.

The next field down can be automatically filled in by clicking the button labeled

Find Directory. This will allow the user to select the directory into which to save

all archived builds for this document. Next the user will select the Microsoft

Word document into which to merge the data. Clicking Find Side 1 will allow the

user to browse the computer for the Word document. If the user opts to merge

data to the opposite side of the document there is a field and a correlating button

that will act similarly to finding the first Word document.

The new RosePro document cannot be saved without completing a few required

fields. These fields include Name, Send To, Set Save Directory, and Set Side 1.

 14

If the user tries to save the document with any of these fields blank, the program

will alert the user of the missing fields and highlight the fields in red.

2. The next section for the user to consider relates to specific information regarding

the customer. The section is simply labeled Customer. All fields in the Customer

section are optional. Here the user can select all customers with the same first or

last name, or city. If, for example, the user chooses to select more than one zip

code, the user can input a list of zip codes separated by a comma. The same

technique can be used for first name, last name, and city. Furthermore the user

can select, from a drop down box, the birth month of a customer. This can be

very beneficial if Roseville Chrysler Jeep would like to send out a promotion to

all customers that have a birthday within a particular month. There is also a drop

down box to select the state in which the customer lives.

3. The next section, labeled Sale, concentrates on what type of sale was completed

and who completed the sale. Here a drop down box lists all of the current

salespersons at Roseville Chrysler Jeep. By selecting a salesperson, only

customers who purchased and/or leased from the selected salesperson will be

chosen. There are two check boxes which allow the users to select all sales of

vehicles that were bought or vehicles that were leased (or both).

 15

4. The fourth section, labeled Vehicle, relates to different details regarding the

customer’s vehicle. The user can input the vehicle year, make, and/or model. All

three of these fields allow for multiple inputs, similar to the zip code entry

previously mentioned. If the user opts more than one year, then each year should

be separated by a comma. The same technique can be applied to make and

model.

The user will also see two check boxes which allows for any combination of new

or used vehicles. Finally, disabled, there is a drop down box and an input field

labeled with Mileage. This part will be explained later within this chapter.

 As previously mentioned, the four sections have detailed options regarding the

RosePro document, relating to the title of each section. There are also check boxes and

buttons that are not in any section. The details and functionality of each of these options

are a vital part of RosePro. The user will see four check boxes that do not belong to any

section. Each of these check boxes will be explained further.

 The check box labeled “Remove Empty Fields” is selected by default. This

option, if selected, will remove all records that do not have the necessary fields to send

out marketing material. If a record is missing any of the following fields, it will be

removed: first name, last name, address, city, state, and zip code. This feature is optional.

 16

 The check box labeled “Highly Detailed Results” is not selected by default. This

option, if selected, will output the build file with over 100 different fields. This option is

here if the user would like to use the build data for other reasons beyond marketing.

 The check box labeled “Include Service History” is not selected by default. This

option, if selected, will not only search sales history, but also service history. The user

will notice, upon making this selection, the Sales drop down box in the Customer section

will become enabled. Also the drop down box and field labeled Mileage under the

Vehicle section will become enabled. Now the user has the ability to search service

history and repair order date by a date range. In the Vehicle section the user can select all

vehicles based on its current mileage at the last time the vehicle was serviced. The drop

down box allows the users to select mileage greater than, equal, or less than the specified

miles in the next field. This option is optional, whether or not service history is included.

 The check box labeled “Progressive Builds” is not selected by default. This

option, if selected, will only apply if the document is based on a date range. Given that a

date range has been applied two different scenarios could occur, depending on the

frequency of the document’s build. Given that the user set the date range from 0 to 7

days ago the two scenarios would act out like this. In the first scenario the user would

build the document today and again tomorrow. If the progressive builds option is

selected then the program will look at the last time the document was built. If the date of

the last build is within 7 days, then the program will use the last build day as the limit for

the date range. So the second time building the document only customers from 0 to 1 day

 17

would be selected. This can be very beneficial if the builds are frequent and the user does

not want to select customers twice. The second scenario would follow similarly to the

first scenario, but instead the second build would occur 8 days later. In this case

progressive builds would have no effect on the date range and it would still select 0 to 7

days ago. Without progressive building the frequency of the builds has no effect on the

date range selected and there could be potential duplicates between the first and second

builds.

 The next thing the user will see under these four check boxes is a collection of

five buttons. Each button has a different action and its details are listed below.

1. Save – This button will save the new document or save changes to an existing

document. It will only successfully save if all required fields are completed.

Upon saving the document the window will automatically close, returning the

user back to the main RosePro window.

2. Close – This will close the window and return back to the main RosePro window.

Any changes made to the document will not be saved.

3. Delete – This will delete the current RosePro document. It will not delete any

Microsoft Word documents associated with the RosePro document. Upon

deletion the window will close and return back to the main RosePro window.

4. Reset Build Date – This will reset the date of the last build for the current

document. This could be beneficial if the user plans on using progressive

building and wants to restart the last build date.

 18

5. Clear Temp Files – Occasionally during builds, temporary Microsoft Word files

will be left in the document save directory during its mail merging. These

temporary files can cause conflict with further builds. To relieve any possibility

of error, this button will remove any temporary files in this directory.

With the Create/Edit Document window the user has full control of infinite

possibilities regarding what can be created. All fields on this window are optional except

for the four fields mentioned in the Document section.

Build Document

The Build Document window will only be visible upon clicking the Build

Selected Document on the main RosePro window. This window processes all of the data

selected during the Create/Edit Document window. In this window the user can build

new data which will be archived to the directory previously set. If the user opts not to

build new data the user can select a previous build from the archives and use that data file

to merge. The user will also use this window to merge the data files to the Microsoft

Word document(s) set for the current document. There are three main buttons on this

window that will perform these functions. Figure 3 is an example of what the Build

Document window looks like.

 19

Figure 3. Build document window example.

In the middle of this window is a white status window which is updated with the

status of the build and the progress of the mail merge. The first step, before merging the

document, is to obtain the data to be merged. There are two different ways to obtain this

data. The first option is to click the Build List button, which creates a new list of

customers. When the build is finished, RosePro will archive the customer list to the

directory previously set. The second option is to select an archived build. To do this the

user clicks on Use Archived Build. This brings up a dialog window to browse for the

location of the archived build file. When the data file is loaded into RosePro, more

options appear between the set of buttons on the top. Figure 4 shows what the screen

looks like once the data file is loaded.

 20

Figure 4. Details of loaded data file.

Now the program will show the location of the file to be merged. By default,

upon building a new list, the most recent build file will be selected. Also, by default, all

records will be selected as shown in the range. If the user would like to change the range

of records to merge to file, the user would simply type in the requested range. When the

user is satisfied with the data selection, clicking on the Merge Document button will

merge the data file to the Microsoft Word document associated with the current RosePro

document. When the merge is completed the Microsoft Word document will open up on

the screen for the user to see the final result. From here the user can save this Word

document or discard it.

Back on the Build Document window the status window will update the progress

of the build and merge. Upon a successful completion of the full process the time is

outputted here in the status window. Clicking on the Close button at the bottom of the

screen will close this window and return back to the main RosePro screen.

 21

Preview Document

 This window shows the user exactly what the selected RosePro document will

process. Figure 5 is an example of what the Preview Document window looks like.

Figure 5. Preview document window example.

The first sentence on this window describes the possible date range selected and

whether or not it is progressively built. The next section of the window shows what

criteria have been selected based on a customer stand point. All customer criteria are

 22

separated between the two horizontal lines. Finally the last section of this window

explains the details of the merge and the location of the files and directory for archiving.

The button on the bottom of this window will close the window returning to the main

RosePro window. This window is strictly for information purposes. It gives the user a

simpler way to view exactly what the selected RosePro document will select when built.

The functionality of RosePro was designed for simplicity and ease of use for the

users. A copy of the user’s manual can be found in Appendix B. Many aspects of the

functionality have been designed with human error in mind. Unnecessary fields cannot

be changed or are invisible unless possible. Required fields are alerted before any saving.

Overall, RosePro is simple and easy to use. Only three main windows are needed to use

nearly all of the features created in RosePro.

 23

VI. TECHNICAL UNDERSTANDING

 This chapter will provide an in-depth look at the technical background behind

RosePro’s design and functionality. Functionality can be seen as the combination of four

processes: initializing RosePro, creating/editing a RosePro document, building the

document, and merging the document.

 Due to constraints at Roseville Chrysler Jeep, RosePro was developed using

Microsoft Access and it’s built in Visual Basic for Applications. All of RosePro’s

document data is stored within a Microsoft Access database. All forms were created

within Microsoft Access. All tables used for marketing data are linked to the ODBC-

established DCMS Microsoft FoxPro database located remotely.

Initializing RosePro

 The first step to creating a database application requires a database. Extensive

hours were spent on the phone with Gil Hale learning about his DCMS system and the

structure of the database. Since the DCMS database was handled in Visual FoxPro, it is

very easy to link the database to an Access database. In order to do this the computer that

would run the RosePro application must have an open database connection, an ODBC for

short. Within Microsoft Windows XP creating an ODBC is fairly simple. Within

Window’s Control Panel there is a collection of Administrative Tools. Here the user will

find Data Sources (ODBC). To make an active ODBC connection a new source is

 24

created and the database file is selected. In this case the DCMS Visual FoxPro database

is selected, on a remote computer across the network at Roseville Chrysler. After the

connection has been established, within Microsoft Access the user has the ability to find

active ODBC connections and selected one recently created. This will allow the user to

import tables from the remote database into Microsoft Access. Since the Microsoft

Access settings are already established within the RosePro file, an initial installation

would only require the creation of a new data source (an ODBC). Otherwise RosePro is

ready to start running actions on the database.

Creating/Editing a RosePro Document

 A RosePro document is nothing more than a record within an internal Microsoft

Access database. This database has many fields corresponding to the characteristics of a

RosePro document. All of the values saved into this database are used during the

processing and building of data from the remote DCMS database. On the main window

of RosePro, when the user clicks on the button to create a new RosePro document, the

user is, in reality, creating a new record in the internal RosePro database. After the new

record is created it opens up a new form that allows the user to input all the necessary

fields associated with that record. By creating a form, such as the window seen in figure

2, data entry is easy to understand and aesthetically pleasing to the user. Entering data

manually into a spreadsheet-like view can be very confusing. The form design to

create/edit a RosePro document was done using Microsoft Access. Very little actual

 25

Visual Basic coding was necessary. In Microsoft Access it was possible to set the data

selection of each field to a field relating to a field in the RosePro database. This makes it

very easy to keep data synchronized with the Create/Edit Document window and the

RosePro database. Design constraints on the form limit the user to how and when data

can be entered. The purpose is clearly to keep a standardized structure relevant to how

RosePro will use the data for processing. When the user has finished entering all of the

data in the form, or RosePro window, the Save button will save the record to the RosePro

database. This button will also close the window, bringing the user back to the main

window.

Building the Document

 When the user has finished creating a new RosePro document, the next step is to

process the document so that it outputs the results for further use. To do so the user

would then click on the Build Selected Document button on the main RosePro window.

This will open up a new window which actually handles two separate large processes.

Both of these processes were automated using Visual Basic for Applications, a

programming language environment. The first of the two will be explained in this

section. The first thing the user does is to get some actual data from the DCMS database.

The amount of data is dependent upon the characteristics set for the selected RosePro

document, or technically, record. By clicking on the Build List button RosePro extracts

the necessary data from the DCMS database. To make this happen RosePro creates a

 26

highly elaborate query statement. Like many databases a structured query language, or

SQL, is used. Based on all of the variables in the RosePro database record RosePro

creates a SQL statement and applies it to the DCMS database. In return a set of records

returns that match the query given. This set of records is then outputted to a text file in

the directory set for the RosePro document. A query can take as little as a few seconds or

as long as minutes to complete. Typically large record sets take longer. Upon the

completion of the query RosePro will then analyze the newly created text document and

output to the user the number of records found. On the same Build and Merge Data

window the user can also select a previous build text document, instead of creating a new

one. To do so the user simply clicks on the Use Archived Build button and proceeds to

browse and select the previously build he/she would like to process. When browsing the

computer for an archived file, RosePro uses a Microsoft Windows common dialog box.

To achieve this, a new class was created within Visual Basic relating to Microsoft

Windows and the built in application programming interface, or API. The same

technique is used on the Create/Edit Document window, when setting the directory for

archiving and selecting the Word documents to merge. Similar to creating a new build,

RosePro will then analyze the archived build and output the number of records found.

Once the data set has been selected and loaded into RosePro, the next step for the user is

to merge that dataset into a Microsoft Word document.

 27

Merging the Document

 To merge the dataset to the previously set Microsoft Word document the user

simply clicks on the Merge Document button. RosePro now creates an instance of

Microsoft Word and opens the Word document selected when the RosePro document was

created. When RosePro creates a new instance of Word it also hides it in the background

as it does the work. It then uses a build-in function in Word, called Mail Merge, which

merges the dataset into the Word document and outputs the final result to one of three

possible choices: new document, printer, or email. This choice is previously set by the

user when he/she creates the RosePro document. When RosePro has finished merging all

of the data to the Word document it will make the Word document visible with the

dataset merged. Here the user can either save the Word document or discard it. The

merge process is complete.

Concluding Technical Thoughts

 The progress of the build and merge process is displayed in the large status

window on the lower half of the Build and Merge Data window. Most of the work that

RosePro does occurs during the Build and Merge processes. The Create/Edit window

simply sets up all the variables necessary to complete the Build and Merge process. In

the end the complete process from creating the RosePro document to merging the data to

a Word document can be accomplished in about five minutes on average. The previous

 28

method would take over an hour. RosePro automates many of the steps that human

interaction can slow down. At the same time it also eliminates human error.

 29

REFERENCES

Litwin, P., Getz, K., Gunderloy, M. (2001) Access 2002 Desktop Developer’s Handbook,
Alameda, CA: Sybex.

Litwin, P., Getz, K., Gunderloy, M. (2001) Access 2002 Enterprise Developer’s Handbook,

Alameda, CA: Sybex.

 30

GLOSSARY

Application Programming Interface (API): An API is the interface that a computer system,
library or application provides in order to allow requests for services to be
made of it by other computer programs, and/or to allow data to be exchanged
between them.

Automated Data Processing (ADP): ADP is the largest payroll and tax filing processor in the

world. ADP is used by Roseville Chrysler Jeep as its primary database for not
only customer information, but also for employee information. The initial
source for the data being used by RosePro is indirectly related to the data
found in the Roseville Chrysler Jeep ADP database.

Comma Separate Values (CSV): The CSV common file format is a delimited data format

that has fields separated by the comma character and records separated by
newlines. Essentially RosePro archives all data builds to a CSV format.

Database: A database is a collection of records. Examples of databases include those

found in Microsoft Access and Microsoft Visual FoxPro.

Dealership Customer Management System (DCMS): DCMS is a software application

designed by Gil Hale directed towards car dealerships. The DCMS system was
developed on Microsoft Visual FoxPro and is based on a database.

Fields: A field is an identifier within a database that helps organize different pieces of

information. Each record in a database contains a collection of data which are
each identified within a field.

Graphical User Interface (GUI): A GUI is typically a user interface making it simpler for

the user to interact with the computer. In RosePro each window that the user
interacts with is all a part of the system’s GUI.

Mail Merge: Mail Merge is a feature found in Microsoft Word that allows the user to select

a dataset of records. Mail merge then allows the user to customize a Word
document as a template to merge the record field values. Essentially this will
produce a unique Word document specific to the dataset.

Microsoft Access: Microsoft Access is a database application tool developed by

Microsoft. RosePro was developed completely in Microsoft Access.

 31

Microsoft Excel: Microsoft Excel is a spreadsheet application developed by Microsoft.

Microsoft Office: Microsoft Office is a collection of common applications used in

productivity. Common Office applications include Word, Excel, and
PowerPoint.

Microsoft Visual Basic (VB): VB is an event driven programming language and associated

development platform produced by Microsoft.

Microsoft Visual Basic for Applications (VBA): VBA is a scaled down version of VB

which is built into most of Microsoft Office applications.

Microsoft Visual FoxPro: Visual FoxPro is a data-centric object-oriented and procedural

programming language produced by Microsoft. DCMS was developed in
Visual FoxPro.

Microsoft Windows XP: Microsoft Windows XP is the current operating system (at the

time of this writing) produced by Microsoft. All applications upon which
RosePro is dependent run on Windows XP.

Microsoft Word: Microsoft Word is a word processing application developed by

Microsoft. RosePro uses Word to merge data to user-created templates.

Open Database Connection (ODBC): An ODBC is a specification that offers a procedural API

for using SQL queries to access data. RosePro is dependent on an ODBC that
connects the DCMS database to RosePro.

Query: A query is a form of questioning. To run a query on a database is to ask the

database to return a set of data specific to its questioning. The build process of
RosePro relies on this method.

Record: A record is a single entry of data in a table. A database is a collection of

tables. Each table has a collection of records. Each record has a collection of
data separated into fields.

Reynolds & Reynolds: Reynolds & Reynolds helps automobile dealers sell cars and

service customers through use of its dealer management systems.

Structure Query Language (SQL): SQL is the most popular computer language used to

create, modify, retrieve and manipulate data from relational database

 32

management systems. When RosePro builds data it does so by creating a SQL
statement to be processed on the database.

Table: A table is a collection of records. Typically a collection of tables is found in a

database.

 33

APPENDICES

 34

APPENDIX A

SOURCE CODE

 35

Form_Main

Option Compare Database
Private Sub BuildDoc_Click()
On Error GoTo Err_EditDoc_Click

 Dim stDocName As String
 Dim stLinkCriteria As String

 stDocName = "BuildDocument"
 stLinkCriteria = "[Doc_ID]=" & Me.DocList.Value
 DoCmd.OpenForm stDocName, , , stLinkCriteria

Exit_EditDoc_Click:
 Exit Sub

Err_EditDoc_Click:
 MsgBox Err.Description
 Resume Exit_EditDoc_Click
End Sub
Private Sub DocList_Click()
 Me.Repaint
 If Me.DocList.Value <> "" Then
 BuildDoc.Enabled = True
 ViewPreview.Enabled = True
 End If
End Sub
Private Sub DocList_DblClick(Cancel As Integer)
On Error GoTo Err_DocList_DblClick

 Dim stDocName As String
 Dim stLinkCriteria As String

 36

 stDocName = "NewDocument"
 stLinkCriteria = "[Doc_ID]=" & Me.DocList.Value
 DoCmd.OpenForm stDocName, , , stLinkCriteria

Exit_DocList_DblClick:
 Exit Sub

Err_DocList_DblClick:
 MsgBox Err.Description
 Resume Exit_DocList_DblClick
End Sub
Private Sub DocList_GotFocus()
 Me.Refresh
End Sub
Private Sub EditDoc_Click()
On Error GoTo Err_EditDoc_Click

 Dim stDocName As String
 Dim stLinkCriteria As String

 stDocName = "NewDocument"
 stLinkCriteria = "[Doc_ID]=" & Me.DocList.Value
 DoCmd.OpenForm stDocName, , , stLinkCriteria

Exit_EditDoc_Click:
 Exit Sub

Err_EditDoc_Click:
 MsgBox Err.Description
 Resume Exit_EditDoc_Click

 37

End Sub
Private Sub Form_Load()
 BuildDoc.Enabled = False
 ViewPreview.Enabled = False
End Sub
Private Sub NewDoc_Click()
On Error GoTo Err_NewDoc_Click

 Dim stDocName As String
 Dim stLinkCriteria As String

 stDocName = "NewDocument"
 DoCmd.OpenForm stDocName, , , stLinkCriteria
 DoCmd.GoToRecord , , acNewRec

Exit_NewDoc_Click:
 Exit Sub

Err_NewDoc_Click:
 MsgBox Err.Description
 Resume Exit_NewDoc_Click

End Sub
Private Sub ExitRosePro_Click()
On Error GoTo Err_ExitRosePro_Click

 DoCmd.Quit

Exit_ExitRosePro_Click:

 38

 Exit Sub

Err_ExitRosePro_Click:
 MsgBox Err.Description
 Resume Exit_ExitRosePro_Click

End Sub
Private Sub ViewPreview_Click()
On Error GoTo Err_ViewPreview_Click

 Dim stDocName As String
 Dim stLinkCriteria As String

 stDocName = "Preview"
 stLinkCriteria = "[Doc_ID]=" & Me.DocList.Value
 DoCmd.OpenForm stDocName, , , stLinkCriteria

Exit_ViewPreview_Click:
 Exit Sub

Err_ViewPreview_Click:
 MsgBox Err.Description
 Resume Exit_ViewPreview_Click
End Sub

Form_NewDocument

Option Compare Database
Private Type BROWSEINFO
 hOwner As Long
 pidlRoot As Long
 pszDisplayName As String

 39

 lpszTitle As String
 ulFlags As Long
 lpfn As Long
 lParam As Long
 iImage As Long
End Type

Private Declare Function SHGetPathFromIDList Lib "shell32.dll" Alias _
 "SHGetPathFromIDListA" (ByVal pidl As Long, _
 ByVal pszPath As String) As Long

Private Declare Function SHBrowseForFolder Lib "shell32.dll" Alias _
 "SHBrowseForFolderA" (lpBrowseInfo As BROWSEINFO) _
 As Long

Private Const BIF_RETURNONLYFSDIRS = &H1
Private Sub FindSide1_Click()
Dim cdlg As New CommonDialogAPI
Dim lFormHwnd As Long
Dim lAppInstance As Long
Dim sInitDir As String
Dim sFileFilter As String
Dim lResult As Long
Dim sLogFile As String

lFormHwnd = Me.Hwnd
lAppInstance = Application.hWndAccessApp
sInitDir = "C:\"

sFileFilter = "Word Files (*.doc)" & Chr(0) & "*.doc*" & Chr(0)

 40

lResult = cdlg.OpenFileDialog(lFormHwnd, lAppInstance, sInitDir,
sFileFilter)

If cdlg.GetStatus = True Then
 sLogFile = cdlg.GetName
End If

DocSide1.Locked = False
DocSide1.Value = sLogFile
DocSide1.Locked = True
If cdlg.GetStatus = True Then
 MsgBox "You selected file: " & _
 cdlg.GetName
Else
 MsgBox "No file selected."
End If
End Sub
Private Sub FindSide2_Click()
Dim cdlg As New CommonDialogAPI
Dim lFormHwnd As Long
Dim lAppInstance As Long
Dim sInitDir As String
Dim sFileFilter As String
Dim lResult As Long
Dim sLogFile As String

lFormHwnd = Me.Hwnd
lAppInstance = Application.hWndAccessApp
sInitDir = "C:\"

sFileFilter = "Word Files (*.doc)" & Chr(0) & "*.doc*" & Chr(0)

 41

lResult = cdlg.OpenFileDialog(lFormHwnd, lAppInstance, sInitDir,
sFileFilter)

If cdlg.GetStatus = True Then
 sLogFile = cdlg.GetName
End If

DocSide2.Locked = False
DocSide2.Value = sLogFile
DocSide2.Locked = True
If cdlg.GetStatus = True Then
 MsgBox "You selected file: " & _
 cdlg.GetName
Else
 MsgBox "No file selected."
End If
End Sub
Private Sub ClearTmp_Click()
 deleteTmpFiles (TheDir.Value)
End Sub
Private Sub deleteTmpFiles(path As String)
 Dim fso As FileSystemObject
 Dim letfolder As Folder
 Dim recentFile As File
 Dim beginFile As String
 Dim delCount As Integer
 delCount = 0
 Set fso = New FileSystemObject
 Set letfolder = fso.GetFolder(path)
 For Each recentFile In letfolder.Files

 42

 beginFile = Left(recentFile.Name, 2)
 If beginFile = "~$" Then
 recentFile.Delete
 delCount = delCount + 1
 End If
 Next recentFile
 MsgBox (CStr(delCount) + " temp files deleted.")
End Sub
Private Sub ResetBD_Click()
 [Doc_Last_Run] = ""
 MsgBox "Build Date Reset!"
End Sub
Private Sub CloseDoc_Click()
On Error GoTo Err_Handler
DoCmd.Close
Exit_Handler:
Exit Sub

Err_Handler:
MsgBox Err.Description, vbExclamation, "Error No: " & Err.Number
Resume Exit_Handler
DoCmd.Close
End Sub
Private Sub DelDoc_Click()
On Error GoTo Err_DelDoc_Click

 'Confirms with user to delete the current document
 confirming = MsgBox("Are You Sure You Want To Delete This?",
vbYesNo, "Confirm Delete")
 'If user selects yes the following will delete the document
 If confirming = vbYes Then

 43

 DoCmd.DoMenuItem acFormBar, acEditMenu, 8, , acMenuVer70
 DoCmd.DoMenuItem acFormBar, acEditMenu, 6, , acMenuVer70
 DoCmd.Close
 Dim db As DAO.Database
 Set db = CurrentDb()
 db.QueryDefs.Delete (DFName.Value)
 Else
 End If

Exit_DelDoc_Click:
 Exit Sub

Err_DelDoc_Click:
 MsgBox Err.Description
 Resume Exit_DelDoc_Click

End Sub
Private Sub DFService_Click()
 If DFService.Value = -1 Then
 DFSaleServ.Enabled = True
 DFMileType.Enabled = True
 DFMileage.Enabled = True
 Else
 DFSaleServ.Enabled = False
 DFSaleServ.Value = "Sales"
 DFMileType.Enabled = False
 DFMileType.Value = ""
 DFMileage.Enabled = False
 DFMileage.Value = ""
 End If
End Sub

 44

Private Sub FindDir_Click()
 Dim sLogFile As String

 sLogFile = BrowseFolder("Browse for folder")

 TheDir.Value = sLogFile
 If sLogFile <> "" Then
 MsgBox "You selected directory: " & _
 sLogFile
 Else
 MsgBox "No directory selected."
 End If
End Sub
Private Sub Form_Load()
 If [Doc_IncService] = -1 Then
 DFSaleServ.Enabled = True
 DFMileType.Enabled = True
 DFMileage.Enabled = True
 End If
End Sub
Private Sub SaveDoc_Click()
On Error GoTo Err_SaveDoc_Click
 Dim Missing As String

 Missing = "The following fields are required:" & vbCrLf & vbCrLf
 If DFName.Value = "" Then
 Missing = Missing & "Document Name" & vbCrLf
 DFName.BackColor = "8421631"
 End If
 If DFType.ListIndex = -1 Then
 Missing = Missing & "Send To" & vbCrLf

 45

 DFType.BackColor = "8421631"
 End If
 If TheDir.Value = "" Then
 Missing = Missing & "Save Directory" & vbCrLf
 TheDir.BackColor = "8421631"
 End If
 If DocSide1.Value = "" Then
 Missing = Missing & "Merge Side 1"
 DocSide1.BackColor = "8421631"
 End If
 If Missing = "The following fields are required:" & vbCrLf & vbCrLf Then
 DoCmd.DoMenuItem acFormBar, acRecordsMenu, acSaveRecord, ,
acMenuVer70
 [Doc_Created] = Now()

 'Closes The Edit Document Form
 DoCmd.Close
 Else
 MsgBox Missing, vbExclamation, "Missing Fields"
 End If

Exit_SaveDoc_Click:
 Exit Sub

Err_SaveDoc_Click:
 MsgBox Err.Description
 Resume Exit_SaveDoc_Click

End Sub
Public Function BrowseFolder(szDialogTitle As String) As String
 Dim X As Long, bi As BROWSEINFO, dwIList As Long

 46

 Dim szPath As String, wPos As Integer

 With bi
 .hOwner = hWndAccessApp
 .lpszTitle = szDialogTitle
 .ulFlags = BIF_RETURNONLYFSDIRS
 End With

 dwIList = SHBrowseForFolder(bi)
 szPath = Space$(512)
 X = SHGetPathFromIDList(ByVal dwIList, ByVal szPath)

 If X Then
 wPos = InStr(szPath, Chr(0))
 BrowseFolder = Left$(szPath, wPos - 1)
 Else
 BrowseFolder = vbNullString
 End If
End Function

Form_BuildDocument

Option Compare Database
Dim recTotal As Integer
Dim startTime, endTime As Date
Private Sub ArchiveBuild_Click()
 startTime = Now()
 RecLabel.visible = True
 TxtFileLoc.visible = True
 TxtFileLoc.Value = ""
 FindTextLoc.visible = True
 SelLbl1.visible = True

 47

 SelLbl2.visible = True
 RecMin.visible = True
 RecMax.visible = True
End Sub
Private Sub MergeDoc_Click()
 On Error GoTo MergeErr

Dim totMin, totSec As Integer
If TxtFileLoc.Value = "" Then
 MsgBox "Please provide a record source!"
Else
 StatusWin.AddItem ("Merge Document Initialized...")
 If recTotal = 0 Then
 StatusWin.AddItem ("No record seletion has been made!")
 Else
 StatusWin.AddItem ("Found " & recTotal & " records to be merged")
 StatusWin.AddItem ("(Merging records from " & RecMin.Value & " to "
& RecMax.Value & ")")
 Dim newWord As wordMerge
 Set newWord = New wordMerge
 If [Doc_Merge_Side1] <> "" Then
 printSide1 = MsgBox("Do you want to print side 1 of " &
[Doc_Name], vbYesNo)
 If printSide1 = vbYes Then
 newWord.hide
 newWord.openDocument ([Doc_Merge_Side1])
 newWord.openDataSource (TxtFileLoc.Value)
 newWord.printSelect RecMin, RecMax, [Doc_Type]
 newWord.visible
 StatusWin.AddItem ("Side 1 merged successfully")
 End If

 48

 End If
 If [Doc_Merge_Side2] <> "" Then
 printSide2 = MsgBox("Do you want to print side 2 of " &
[Doc_Name], vbYesNo)
 If printSide2 = vbYes Then
 newWord.hide
 newWord.openDocument ([Doc_Merge_Side2])
 newWord.openDataSource ([Doc_Directory])
 newWord.printSelect RecMin, RecMax, [Doc_SendTo]
 newWord.closeDocument
 StatusWin.AddItem ("Side 2 merged successfully")
 End If
 End If
 endTime = Now()
 StatusWin.AddItem ("All merging has been successful")
 totSec = DateDiff("s", startTime, endTime)
 secPart = totSec Mod 60
 minPart = (totSec - (totSec Mod 60)) / 60
 If minPart < 1 Then
 StatusWin.AddItem ("Total process took " & secPart & " seconds.")
 Else
 StatusWin.AddItem ("Total process took " & minPart & " minutes
and " & secPart & " seconds.")
 End If
 End If
End If

MergeErr:
 MsgBox Err.Description
 End Sub

 49

End Sub
Private Sub FindTextLoc_Click()

 Dim cdlg As New CommonDialogAPI
 Dim lFormHwnd As Long
 Dim lAppInstance As Long
 Dim sInitDir As String
 Dim sFileFilter As String
 Dim lResult As Long
 Dim sLogFile As String

 lFormHwnd = Me.Hwnd
 lAppInstance = Application.hWndAccessApp
 sInitDir = "C:\"

 sFileFilter = "Text Files (*.txt)" & Chr(0) & "*.txt*" & Chr(0)

 lResult = cdlg.OpenFileDialog(lFormHwnd, lAppInstance, sInitDir,
sFileFilter)

 If cdlg.GetStatus = True Then
 sLogFile = cdlg.GetName
 End If
 Dim fso As New FileSystemObject
 Dim ts As TextStream
 Dim getRecordTotal As Integer
 Set ts = fso.OpenTextFile(cdlg.GetName, ForReading, False,
TristateUseDefault)
 Do Until ts.AtEndOfStream
 If ts.ReadLine <> "" Then
 getRecordTotal = getRecordTotal + 1

 50

 End If
 Loop
 getRecordTotal = getRecordTotal - 1
 Set fso = Nothing
 Set ts = Nothing
 BlComplete.Value = getRecordTotal & " records found in archived file"
 RecMin.Value = 1
 RecMax.Value = getRecordTotal
 recTotal = getRecordTotal

 TxtFileLoc.Value = sLogFile
 If cdlg.GetStatus = True Then
 MsgBox "You selected file: " & _
 cdlg.GetName
 Else
 MsgBox "No file selected."
 End If

End Sub
Private Sub Form_Load()
 RecLabel.visible = False
 TxtFileLoc.visible = False
 FindTextLoc.visible = False
 SelLbl1.visible = False
 SelLbl2.visible = False
 RecMin.visible = False
 RecMin.Value = ""
 RecMax.visible = False
 RecMax.Value = ""
 BlComplete.Value = ""
 StatusWin.Locked = True

 51

 recTotal = 0
End Sub
Private Sub QueryRun_Click()
 On Error GoTo HandleErr

startTime = Now()
StatusWin.AddItem ("Build data records initialized...")
BlComplete.Value = ""
Dim useDir As String
Dim curDate As String
Update_Query
StatusWin.AddItem ("Query design complete")
curDate = Format(Now(), "yyyy-mm-dd_hh-mm-ss")
useDir = [Doc_Name] & "_" & curDate & ".txt"
useDir = Replace(useDir, " ", "_")
useDir = [Doc_Directory] & useDir
DoCmd.TransferText acExportDelim, , [Doc_Name], useDir, 1
StatusWin.AddItem ("Record archiving complete")
Dim fso As New FileSystemObject
Dim ts As TextStream
Dim getRecordTotal As Integer
Set ts = fso.OpenTextFile(useDir, ForReading, False, TristateUseDefault)
Do Until ts.AtEndOfStream
If ts.ReadLine <> "" Then
getRecordTotal = getRecordTotal + 1
End If
Loop
getRecordTotal = getRecordTotal - 1
Set fso = Nothing
Set ts = Nothing

 52

recTotal = getRecordTotal
BlComplete.Value = getRecordTotal & " records completed"
RecLabel.visible = True
TxtFileLoc.visible = True
TxtFileLoc.Value = useDir
FindTextLoc.visible = True
SelLbl1.visible = True
SelLbl2.visible = True
RecMin.visible = True
RecMin.Value = 1
RecMax.visible = True
RecMax.Value = getRecordTotal
If getRecordTotal = 0 Then
 RecMin.Value = 0
End If
[Doc_Last_Run] = Now()

HandleErr:
 If Err.Number = 3151 Then
 MsgBox "Connection to DCMS Database failed!" & vbCrLf & "Please
close RosePro and restart your PC to re-establish connection" & vbCrLf &
vbCrLf & "Detailed error description:" & vbCrLf & Err.Description,
vbCritical, "Database Connection Error"
 End If
 StatusWin.AddItem ("Build canceled - no connection to database")
 StatusWin.AddItem ("Please close RosePro and restart your PC")
 Exit Sub

End Sub
Private Sub CloseBuild_Click()
On Error GoTo Err_CloseBuild_Click

 53

 DoCmd.Close

Exit_CloseBuild_Click:
 Exit Sub

Err_CloseBuild_Click:
 MsgBox Err.Description
 Resume Exit_CloseBuild_Click

End Sub
Private Sub Update_Query()
 On Error GoTo ErrQuery
 Dim db As DAO.Database
 Dim qdf As DAO.QueryDef
 Dim SQLstring As String
 Dim plusOne As String
 Dim BackDate As Integer

 '***
 '* This section checks either creates or
 '* updates the query to be built
 '***
 Set db = CurrentDb()
 If QueryExists([Doc_Name]) Then
 db.QueryDefs.Delete ([Doc_Name])
 End If
 Set qdf = db.CreateQueryDef([Doc_Name])

 '***

 54

 '* This section is based on whether or not
 '* the detailed results was selected
 '* (Defines the SQL SELECT clause)
 '***
 If [Doc_Detailed] = -1 Then
 SQLstring = "SELECT DISTINCT customer.*, employee.*, vehicle.*"
 Else
 SQLstring = "SELECT DISTINCT TRIM(fiwip.adp2) AS
status,TRIM(fiwip.adp4) AS contractdate, TRIM(fiwip.adpfin_lse) AS
buylease, TRIM(fiwip.adp52) AS newused, TRIM(fiwip.cficustnum) AS
custnum, TRIM(customer.csalutn) AS salut, TRIM(customer.ctitle) AS title,
TRIM(customer.cfirstname) AS cfirstname, TRIM(customer.clastname) AS
clastname, TRIM(customer.dbirthdate) AS cbirthdate,
TRIM(employee.cfirstname)" & Chr$(38) & Chr$(34) & " " & Chr$(34) &
Chr$(38) & "TRIM(employee.clastname) AS salesperson,
TRIM(employee.cempphone) AS salesphone, TRIM(employee.cemailemp)
AS salesemail, TRIM(vehicle.cyear) AS vyear, TRIM(vehicle.cmake) AS
vmake, TRIM(vehicle.cmodel) AS vmodel, TRIM(vehicle.cvehid) AS vin"
 If [Doc_IncService] = -1 Then
 SQLstring = SQLstring & ", TRIM(svcgnhist.dclosedate) AS
servicedate, TRIM(svcgnhist.nmileage) AS mileage"
 End If
 If [Doc_Address] = -1 Then
 SQLstring = SQLstring & ", TRIM(customer.caddrline1) AS
caddress, TRIM(customer.czipcode) AS czipcode, TRIM(customer.ccity) AS
ccity, TRIM(customer.cstate) AS cstate"
 End If
 If [Doc_Phone] = -1 Then
 SQLstring = SQLstring & ", TRIM(customer.cadpphone) AS cphone"
 End If
 If [Doc_Email] = -1 Then

 55

 SQLstring = SQLstring & ", TRIM(customer.cemail1) AS cemail"
 End If
 End If

 '***
 '* This section joins the multiple tables
 '* together to extract data from
 '* (Defines the SQL FROM clause)
 '***
 If [Doc_IncService] = -1 Then
 'SQLstring = SQLstring & " FROM (((customer LEFT JOIN fiwip ON
customer.ccustnum = fiwip.cficustnum) LEFT JOIN employee ON
customer.cassign=employee.cassign) LEFT JOIN svcgnhist ON
right(fiwip.adp41,8)=svcgnhist.cvehid) LEFT JOIN vehicle ON
svcgnhist.cvehid=vehicle.cvehid"
 SQLstring = SQLstring & " FROM (((customer LEFT JOIN vehicle ON
customer.ccustnum = vehicle.ccustnum) LEFT JOIN fiwip ON
right(fiwip.adp41,8)=vehicle.cvehid) LEFT JOIN employee ON
customer.cassign=employee.cassign) LEFT JOIN svcgnhist ON
svcgnhist.cvehid=vehicle.cvehid"
 Else
 'SQLstring = SQLstring & " FROM ((customer LEFT JOIN fiwip ON
customer.ccustnum = fiwip.cficustnum) LEFT JOIN employee ON
customer.cassign=employee.cassign) LEFT JOIN vehicle ON
right(fiwip.adp41,8)=vehicle.cvehid"
 SQLstring = SQLstring & " FROM ((customer LEFT JOIN vehicle ON
customer.ccustnum = vehicle.ccustnum) LEFT JOIN fiwip ON
right(fiwip.adp41,8)=vehicle.cvehid) LEFT JOIN employee ON
customer.cassign=employee.cassign"
 End If

 56

 '***
 '* This section builds the criteria
 '* to be filtered within the document
 '* (Defines the SQL WHERE clause)
 '***
 SQLstring = SQLstring & " WHERE (vehicle.laltercust=0) AND
(customer.lnomail=0) AND (customer.lnoemail=0) AND
(customer.lnocall=0) AND ((fiwip.adp2 = " & Chr$(34) & "I" & Chr$(34) &
") OR (fiwip.adp2 = " & Chr$(34) & "F" & Chr$(34) & ") OR (fiwip.adp2 = "
& Chr$(34) & "B" & Chr$(34) & "))"
 If [Doc_Clean] = -1 Then
 SQLstring = SQLstring & " AND (customer.cfirstname>' ') And
(customer.clastname>' ') And (customer.caddrline1>' ') And
(customer.czipcode>' ') And (customer.ccity>' ') And (customer.cstate>'
')"
 End If
 If [Doc_SaleService] = "Sales" Then
 If [Doc_Range_Start] <> "" Then
 NewDate = DateAdd("d", -([Doc_Range_Start]), Now())
 SQLstring = SQLstring & " AND (fiwip.adp4<=CDate(" & Chr$(39)
& NewDate & Chr$(39) & "))"
 End If
 If [Doc_Range_End] <> "" Then
 If ([Doc_Last_Run] > "") And ([Doc_Progress] = -1) Then
 BackDate = CInt(DateDiff("d", [Doc_Last_Run], Now()))
 NewDate = DateAdd("d", -(BackDate), Now())
 Else
 NewDate = DateAdd("d", -([Doc_Range_End]), Now())
 End If
 SQLstring = SQLstring & " AND (fiwip.adp4>=CDate(" & Chr$(39)
& NewDate & Chr$(39) & "))"

 57

 End If
 Else
 If [Doc_Range_Start] <> "" Then
 NewDate = DateAdd("d", -([Doc_Range_Start]), Now())
 SQLstring = SQLstring & " AND (svcgnhist.dclosedate<=CDate(" &
Chr$(39) & NewDate & Chr$(39) & "))"
 End If
 If [Doc_Range_End] <> "" Then
 If ([Doc_Last_Run] > "") And ([Doc_Progress] = -1) Then
 BackDate = CInt(DateDiff("d", [Doc_Last_Run], Now()))
 NewDate = DateAdd("d", -(BackDate), Now())
 Else
 NewDate = DateAdd("d", -([Doc_Range_End]), Now())
 End If
 SQLstring = SQLstring & " AND (svcgnhist.dclosedate>=CDate(" &
Chr$(39) & NewDate & Chr$(39) & "))"
 End If
 End If
 If [Doc_Salesperson] <> "" Then
 SQLstring = SQLstring & " AND ((TRIM(employee.cfirstname)" &
Chr$(38) & Chr$(34) & " " & Chr$(34) & Chr$(38) &
"TRIM(employee.clastname))=" & Chr$(34) & [Doc_Salesperson] &
Chr$(34) & ")"
 End If
 If [Doc_Buy] = -1 And [Doc_Lease] = -1 Then
 SQLstring = SQLstring & " AND ((fiwip.adpfin_lse = 0) OR
(fiwip.adpfin_lse = 1))"
 Else
 If [Doc_Buy] = -1 Then
 SQLstring = SQLstring & " AND (fiwip.adpfin_lse = 0)"
 End If

 58

 If [Doc_Lease] = -1 Then
 SQLstring = SQLstring & " AND (fiwip.adpfin_lse = 1)"
 End If
 End If
 If [Doc_First_Name] <> "" Then
 plusOne = ""
 SQLstring = SQLstring & " AND ("
 For i = LBound(Split([Doc_First_Name], ",")) To
UBound(Split([Doc_First_Name], ","))
 SQLstring = SQLstring & plusOne & "(customer.cfirstname=" &
Chr$(34) & Split([Doc_First_Name], ",")(i) & Chr$(34) & ")"
 plusOne = " OR "
 Next i
 SQLstring = SQLstring & ")"
 End If
 If [Doc_Last_Name] <> "" Then
 plusOne = ""
 SQLstring = SQLstring & " AND ("
 For i = LBound(Split([Doc_Last_Name], ",")) To
UBound(Split([Doc_Last_Name], ","))
 SQLstring = SQLstring & plusOne & "(customer.clastname=" &
Chr$(34) & Split([Doc_Last_Name], ",")(i) & Chr$(34) & ")"
 plusOne = " OR "
 Next i
 SQLstring = SQLstring & ")"
 End If
 If [Doc_City] <> "" Then
 plusOne = ""
 SQLstring = SQLstring & " AND ("
 For i = LBound(Split([Doc_City], ",")) To UBound(Split([Doc_City], ","))

 59

 SQLstring = SQLstring & plusOne & "(customer.ccity=" & Chr$(34)
& Split([Doc_City], ",")(i) & Chr$(34) & ")"
 plusOne = " OR "
 Next i
 SQLstring = SQLstring & ")"
 End If
 If [Doc_State] <> "" Then
 SQLstring = SQLstring & " AND (customer.cstate=" & Chr$(34) &
[Doc_State] & Chr$(34) & ")"
 End If
 If [Doc_Month] <> "" Then
 'Determine numerical value of month
 Dim vbMonth As Integer
 Select Case [Doc_Month]
 Case "January": vbMonth = 1
 Case "February": vbMonth = 2
 Case "March": vbMonth = 3
 Case "April": vbMonth = 4
 Case "May": vbMonth = 5
 Case "June": vbMonth = 6
 Case "July": vbMonth = 7
 Case "August": vbMonth = 8
 Case "September": vbMonth = 9
 Case "October": vbMonth = 10
 Case "November": vbMonth = 11
 Case "December": vbMonth = 12
 End Select
 SQLstring = SQLstring & " AND " & Chr$(40) & "DatePart(" & Chr$(34)
& "m" & Chr$(34) & ", customer.dbirthdate)=" & Chr$(34) & vbMonth &
Chr$(34) & ")"
 End If

 60

 If [Doc_Year] <> "" Then
 plusOne = ""
 SQLstring = SQLstring & " AND ("
 For i = LBound(Split([Doc_Year], ",")) To UBound(Split([Doc_Year], ","))
 SQLstring = SQLstring & plusOne & "(vehicle.cyear=" & Chr$(34) &
Split([Doc_Year], ",")(i) & Chr$(34) & ")"
 plusOne = " OR "
 Next i
 SQLstring = SQLstring & ")"
 End If
 If [Doc_Make] <> "" Then
 plusOne = ""
 SQLstring = SQLstring & " AND ("
 For i = LBound(Split([Doc_Make], ",")) To UBound(Split([Doc_Make],
","))
 SQLstring = SQLstring & plusOne & "(vehicle.cmake=" & Chr$(34)
& Split([Doc_Make], ",")(i) & Chr$(34) & ")"
 plusOne = " OR "
 Next i
 SQLstring = SQLstring & ")"
 End If
 If [Doc_Model] <> "" Then
 plusOne = ""
 SQLstring = SQLstring & " AND ("
 For i = LBound(Split([Doc_Model], ",")) To UBound(Split([Doc_Model],
","))
 SQLstring = SQLstring & plusOne & "(vehicle.cmodel=" & Chr$(34)
& Split([Doc_Model], ",")(i) & Chr$(34) & ")"
 plusOne = " OR "
 Next i
 SQLstring = SQLstring & ")"

 61

 End If
 If [Doc_New] = -1 And [Doc_Used] = -1 Then
 SQLstring = SQLstring & " AND ((fiwip.adp52 =" & Chr$(34) & "NEW"
& Chr$(34) & ") OR (fiwip.adp52 =" & Chr$(34) & "USED" & Chr$(34) & "))"
 Else
 If [Doc_New] = -1 Then
 SQLstring = SQLstring & " AND (fiwip.adp52 =" & Chr$(34) &
"NEW" & Chr$(34) & ")"
 End If
 If [Doc_Used] = -1 Then
 SQLstring = SQLstring & " AND (fiwip.adp52 =" & Chr$(34) &
"USED" & Chr$(34) & ")"
 End If
 End If
 If [Doc_Zipcode] <> "" Then
 plusOne = ""
 SQLstring = SQLstring & " AND ("
 For i = LBound(Split([Doc_Zipcode], ",")) To
UBound(Split([Doc_Zipcode], ","))
 SQLstring = SQLstring & plusOne & "(customer.czipcode=" &
Chr$(34) & Split([Doc_Zipcode], ",")(i) & Chr$(34) & ")"
 plusOne = " OR "
 Next i
 SQLstring = SQLstring & ")"
 End If
 If [Doc_IncService] = -1 And [Doc_Mileage] <> "" And [Doc_MileType]
<> "" Then
 Select Case [Doc_MileType]
 Case "Greater Than"
 SQLstring = SQLstring & " AND (svcgnhist.nmileage >=" &
[Doc_Mileage] & ")"

 62

 Case "Equal To"
 SQLstring = SQLstring & " AND (svcgnhist.nmileage =" &
[Doc_Mileage] & ")"
 Case "Less Than":
 SQLstring = SQLstring & " AND (svcgnhist.nmileage <=" &
[Doc_Mileage] & ")"
 End Select
 End If

 '***
 '* Save the SQL statement in a table and
 '* the appropriate query
 '***
 [Doc_SQL] = SQLstring
 qdf.Sql = SQLstring

ErrQuery:
 MsgBox Err.Description
 End Sub

End Sub
Function QueryExists(MyQueryName)

 Dim i
 Dim db2 As Database
 Set db2 = CurrentDb()
 QueryExists = False

 For i = 0 To db2.QueryDefs.Count - 1

 If db2.QueryDefs(i).Name = MyQueryName Then

 63

 QueryExists = True
 Exit Function
 End If

 Next i

End Function
Public Function BrowseFolder(szDialogTitle As String) As String
 Dim X As Long, bi As BROWSEINFO, dwIList As Long
 Dim szPath As String, wPos As Integer

 With bi
 .hOwner = hWndAccessApp
 .lpszTitle = szDialogTitle
 .ulFlags = BIF_RETURNONLYFSDIRS
 End With

 dwIList = SHBrowseForFolder(bi)
 szPath = Space$(512)
 X = SHGetPathFromIDList(ByVal dwIList, ByVal szPath)

 If X Then
 wPos = InStr(szPath, Chr(0))
 BrowseFolder = Left$(szPath, wPos - 1)
 Else
 BrowseFolder = vbNullString
 End If
End Function

Form_Preview

Option Compare Database

 64

Private Sub Close_Click()
On Error GoTo Err_Close_Click

 DoCmd.Close

Exit_Close_Click:
 Exit Sub

Err_Close_Click:
 MsgBox Err.Description
 Resume Exit_Close_Click

End Sub
Private Sub Form_Load()
 Dim TheString As String
 If [Doc_SaleService] = "Sales" Then
 TheString = "This document will select all sales records from " &
[Doc_Range_Start] & " days ago to " & [Doc_Range_End] & " days ago"
 Else
 TheString = "This document will select all service records from " &
[Doc_Range_Start] & " days ago to " & [Doc_Range_End] & " days ago"
 End If
 If [Doc_Progress] = -1 Then
 TheString = TheString & " with progressive building." & vbCrLf &
vbCrLf
 Else
 TheString = TheString & " with out progressive building." & vbCrLf &
vbCrLf
 End If

 65

 TheString = TheString & "Customers with only the following criteria
will be selected:" & vbCrLf & "-------------------------------------
-----------" & vbCrLf
 If [Doc_Zipcode] <> "" Then
 TheString = TheString & "Live in the following zipcode(s) " &
[Doc_Zipcode] & vbCrLf
 End If
 If [Doc_City] <> "" Then
 TheString = TheString & "Live in the following city(s) " & [Doc_City] &
vbCrLf
 End If
 If [Doc_State] <> "" Then
 TheString = TheString & "Live in " & [Doc_State] & vbCrLf
 End If
 If [Doc_First_Name] <> "" Then
 TheString = TheString & "With first name " & [Doc_First_Name] &
vbCrLf
 End If
 If [Doc_Last_Name] <> "" Then
 TheString = TheString & "With last name " & [Doc_Last_Name] &
vbCrLf
 End If
 If [Doc_Month] <> "" Then
 TheString = TheString & "Born in " & [Doc_Month] & vbCrLf
 End If
 If [Doc_Salesperson] <> "" Then
 TheString = TheString & "With salesperson " & [Doc_Salesperson] &
vbCrLf
 End If
 If [Doc_Lease] = -1 And [Doc_Buy] = -1 Then
 TheString = TheString & "Financed or leased" & vbCrLf

 66

 Else
 If [Doc_Lease] = -1 Then
 TheString = TheString & "Leased" & vbCrLf
 End If
 If [Doc_Buy] = -1 Then
 TheString = TheString & "Financed" & vbCrLf
 End If
 End If
 If [Doc_New] = -1 And [Doc_Used] = -1 Then
 TheString = TheString & "New Or Used" & vbCrLf
 Else
 If [Doc_New] = -1 Then
 TheString = TheString & "New" & vbCrLf
 End If
 If [Doc_Used] = -1 Then
 TheString = TheString & "Used" & vbCrLf
 End If
 End If
 If [Doc_Year] <> "" Then
 TheString = TheString & "With vehicle year in any of the following: "
& [Doc_Year] & vbCrLf
 End If
 If [Doc_Make] <> "" Then
 TheString = TheString & "With vehicle make in any of the following: "
& [Doc_Make] & vbCrLf
 End If
 If [Doc_Model] <> "" Then
 TheString = TheString & "With vehicle model in any of the following:
" & [Doc_Model] & vbCrLf
 End If

 67

 If [Doc_IncService] = -1 And [Doc_Mileage] <> "" And [Doc_MileType]
<> "" Then
 Select Case [Doc_MileType]
 Case "Greater Than"
 TheString = TheString & "With vehicle mileage greater than " &
[Doc_Mileage] & vbCrLf
 Case "Equal To"
 TheString = TheString & "With vehicle mileage equal to " &
[Doc_Mileage] & vbCrLf
 Case "Less Than":
 TheString = TheString & "With vehicle mileage less than " &
[Doc_Mileage] & vbCrLf
 End Select
 End If
 TheString = TheString & "--------------------------------------
----------" & vbCrLf & vbCrLf
 TheString = TheString & "The merge document will include "
 Dim plus As String
 If [Doc_Address] = -1 Then
 TheString = TheString & " the address"
 plus = ", "
 End If
 If [Doc_Phone] = -1 Then
 TheString = TheString & plus & "phone number"
 End If
 If [Doc_Email] = -1 Then
 TheString = TheString & plus & "email address"
 End If
 TheString = TheString & " of the customer." & vbCrLf
 If [Doc_Detailed] = -1 Then

 68

 TheString = TheString & "The results will be highly detailed." &
vbCrLf
 End If
 If [Doc_Clean] = -1 Then
 TheString = TheString & "All results with missing address, city,
state, and zip will be removed." & vbCrLf
 End If
 If [Doc_IncService] = -1 Then
 TheString = TheString & "All service customers will be included." &
vbCrLf
 End If
 TheString = TheString & "All archived builds will be saved in: " &
[Doc_Directory] & vbCrLf
 TheString = TheString & "The results will be merged to " &
[Doc_Merge_Side1]
 If [Doc_Merge_Side2] <> "" Then
 TheString = TheString & " and " & [Doc_Merge_Side2]
 End If
 TheString = TheString & " and sent to " & [Doc_Type] & "."

 PreTxt.Value = TheString
End Sub

 69

APPENDIX B

USER’S MANUAL

 70

RosePro Manual
Version 1.0

By: Anthony Montalbano
© 2006

 71

TABLE OF CONTENTS

Introduction and Installing RosePro……………………………………...….3

Creating a RosePro document without existing Word document………..….4

Creating a RosePro document with existing Word document……….……...5

Edit a RosePro document………………………………………………....…5

Understanding each screen…………………………………………….…….6

I. Main………………………………………………………6

II. Create/Edit Document………………………………….…7

III. Build Document……………………………………….….9

IV. Preview Document………………………………………10

 72

Introduction
 RosePro was creating with the intent to create quick and fast marketing
documents for Roseville Chrysler Jeep. This program is strongly dependent on the
DCMS database developed by Gil Hale. With RosePro you are given the ability to create
Microsoft Word documents with mail merge capabilities associated with the dealership
database found in DCMS. The following pages will help you install and run the
application smoothly. If for some reason any errors or problems come up please contact
me with the information provided below:

 Anthony Montalbano
 Cell Phone: (586) 242-4157
 Email: italianst4@gmail.com

Installing RosePro
 The following instructions are necessary for RosePro to properly work.

1. Click [Start]
2. Goto “Control Panel”
3. Goto “Adminstrative Tool”
4. Goto “Data Sources (ODBC)”
5. Click [Add]
6. Choose “Microsoft Visual FoxPro Driver” then click [Finish]
7. Type in “DCMS Database” for Data Source Name
8. Type in “V:\cdb\App\DBC\translationengine.dbc” for Path
9. Click [Ok] to close the window, then [Ok] to close the other window
10. Finish!

Upon successfully completing the following steps RosePro should be setup to use. Please
see further instruction on how to use RosePro.

 73

Creating a RosePro document without existing Word document
 The following directions will guide you through the proper way to create a Word
mail merge document specific to RosePro in Microsoft Word 2002. These directions will
only need to be completed this way for the initial build of a new document with a new
Word document.

1. Open Microsoft Word
2. Save your blank Word document to a location where it will not be moved.
3. Minimize Microsoft Word
4. Open RosePro
5. Click [Create New Document]
6. Choose the criteria specific to this document, make sure to include a name,

where to send the document, the save directory, and the Word document you
just created.

7. Save your newly created document
8. On the main RosePro screen click on your new document and click [Build

Selected Document]
9. Click [Build List]
10. Upon completion of build switch back to Microsoft Word
11. Click Tools on the top menu bar
12. Choose Letters and Mailing, then Mail Merge Wizard…
13. On the right of your screen you should see the Mail Merge side bar
14. Click “Next: Starting document” at the bottom of the screen
15. Click “Next: Select recipients” at the bottom of the screen
16. Click “Browse…” and navigate to the directory that you chose when you

created the new RosePro document and click on the file that begins with the
name of your RosePro document.

17. Click [Ok]
18. Click “Next: Write your letter” at the bottom of the screen
19. Click “More items…” and here you will find the fields that you can use in the

creation of Word document.
20. When you are done creating your Word document, save and close Microsoft

Word
21. Switch back to RosePro
22. Click on [Merge Document]
23. Finish!

Note: If you have a 2nd side to your document you will need to do steps 1-3 to create the
document, then steps 11-20 to merge the data to your document

 74

Creating a RosePro document with existing Word document
 If you have already created a mail merge Word document and would like to use it
in a new RosePro document, then follow the instructions below:

1. Open RosePro
2. Click [Create New Document]
3. Choose the criteria specific to this document, make sure to include a name,

where to send the document, the save directory, and the Word document you
just created.

4. Save your newly created document
5. On the main RosePro screen click on your new document and click [Build

Selected Document]
6. Click [Build List] or [Use Archived Build] (if you would like to merge an

archived)
7. Click on [Merge Document]
8. Finish!

Edit a RosePro document
 You can edit an existing RosePro document by highlighting it on the main
RosePro screen and click [Edit Selected Document] or double clicking it. This will open
a familiar screen as seen when you created the document. Make any necessary changes
and save it.

 75

Understanding each screen
 There are 4 main screen associated with RosePro. The following screens will be
explained in detail, so that you can familiarize yourself with using the RosePro
application.

I. Main

This is the main RosePro screen. The main screen shows all of the current build
documents that exist. There are also five buttons that do the following:

[Create New Document] – Opens a window to create a new document.
[Edit Selected Document] – Opens a window to edit the document highlighted in the list
of existing builds.
[Build Selected Document] – Opens a window to build data and merge to Word
document.
[Preview] – Opens a window to preview the criteria of the selected document to be built.
[Exit] – Exits RosePro Application.

 76

II. Create/Edit Document

This is the screen that does the most work. All of the build information will be
determined on this screen. There are four main sections to this screen, and will be
explained further below:

(* are required fields)
(+ are fields that accept multiple values separated by a comma)

 Document (Everything in this section relates to the document itself)
 *Name – Here you will type in the name of the RosePro document

Type – Choose any combination of address, phone, and email, and this
will output the corresponding material in the build, for mail merging
*Send To – Choose where you want to send your merged Word document
to, Printer, New Document, or Email
Date Range – The drop down box to the left of these criteria is only
enabled if you include service history. Here you can choose the range of
days that will be chosen. By default “Sales” is chosen and will choose the
range of days based on the contract date. If you happen to include
“Service” you can choose the range of days based on the RO close date.
*Set Save Directory – By clicking on [Find Directory], this will set the
location for all builds to be saved and archived.

 77

*Set Word Document – By clicking on [Find Side 1], you can find the
Word document to merge into. You are also given the option to set a
different 2nd side of the document by clicking on [Find Side 2].

 Customer (Everything in this section relates to the customer)
 +First Name – Type in first name(s) of customers you want to select
 +Last Name – Type in last name(s) of customers you want to select
 +Zipcode – Type in zipcode(s) of customers you want to select
 +City – Type in city(s) of customers you want to select
 State – Select a state where customers live
 Sale (Everything in this section relates to the sale)
 Salesperson – Select the salesperson
 Buy and/or Lease – Select any combination of Buy or Lease that you

would like to select
 Vehicle (Everything in this section relates to the sale)
 +Year – Type in the year(s) of the vehicles you want to select
 +Make – Type in the make(s) of the vehicles you want to select
 +Model – Type in the model(s) of the vehicles you want to select
 New and/or Used – Select any combination of New or Lease that you

would like to select
Mileage – This is only available if service history is included. You are
given the option to selecting the mileage of service customers, greater to,
equal, or less than the amount you provide.

There are also four options that you can set. These options are outlined below:
 Remove Empty Fields – This will remove any records that do not have the
necessary fields to send mailers, such values as customer name, address, city, state, and
zipcode.
 Highly Detailed Results – This will return a very large number of fields that you
could use in merging your Word Document.
 Include Service History – This will also return results from our service history,
not necessarily limited to our vehicle sales customers.
 Progressive Builds – This will not select any records past the previous build.
This option will be used for documents with scheduled builds.

There are five buttons that do the following:
 [Save] – Saves the RosePro document
 [Close] – Closes the window and does not save the RosePro document
 [Delete] – Deletes the RosePro document
 [Reset Build Date] – Resets the last build date for the RosePro document
 [Clear Temp Files] – Clears any temporary files left from the build

 78

III. Build Document

This is the screen that does the actual document building and mail merging. In the
middle of the screen is a status window that will be updated with the status of the build
and progress of the mail merge. There are four main buttons that will be detailed below:
 [Build List] – This will process the RosePro document and build the records
needed for merging.
 [Use Archived Build] – This will allow you to search for a previous build that
you would like to merge.

Note: Upon completion of build or selection of archived build the following will
become visible on the screen:

 This outputs the amount of records found, the location of the file to merge,
and the range of records to merge. You can change the range of records, if for
some reason you did not want to print all of them.

 [Merge Document] – This will merge your RosePro document with the
associated Microsoft Word document(s). Again, progress will be displayed in the status
window.

 79

 [Close] – This will close the current screen.

IV. Preview Document

This screen shows you a preview of what your selected RosePro document will do. The
criteria in between the two horizontal lines is specific to the criteria that will be selected.
Clicking [Ok] closes this window.

 80

APPENDIX C

PROGRAM OUTCOMES

 81

The Computer Science department at Kettering University set forth these four

program objectives:

1. Computer Science graduates will have a broad, mathematically rigorous program in
the fundamental areas of computer science that will allow them to continue their
professional development and sustain a life-long career in computer science either
through graduate study or continuing self-directed learning and development
activities.

2. Computer Science graduates will have developed a sufficient depth of understanding

in computer science, and the skill, confidence, professionalism, and experience
necessary for successful careers in computer science and related fields.

3. Computer Science graduates will have the teamwork, communication, and

interpersonal skills to enable them to work efficiently with interdisciplinary teams in
industry, government, and academia.

4. The Computer Science faculty will provide its degree majors an excellent education

experience through the incorporation of current pedagogical techniques,
understanding of contemporary trends in research and technology, and hands-on
laboratory experiences that enhance the educational experience.

 82

