
Freescale Semiconductor
User’s Guide

© Freescale Semiconductor, Inc., 2005, 2006. All rights reserved.

1 Overview
This document is a user’s guide for the SEC 2.x Reference
Device Driver, version 1.6. SEC 2.x refers to the integrated
security engine found in most members of the
PowerQUICC™ II Pro and PowerQUICC III device
families.

The SEC 2.x Reference Device Driver, version 1.6 is a
superset device driver including all the routines necessary to
operate the acceleration features available in the SEC 2.1,
the most capable SEC core found in PowerQUICC products
today. The SEC 2.0, 2.2 and 2.4 cores offer a subset of SEC
2.1 functionality, and consequently, not all the examples of
application interaction with the SEC 2.x core will apply to all
PowerQUICC devices.

Table 1 shows the SEC core version found in each member
of the PowerQUICC product family. Consult the individual
PowerQUICC device’s reference manual to determine which
SEC core and functions are applicable to your environment.

SEC2xSWUG
Rev.1, 08/2006

Contents
1. Overview . 1
2. Device Driver Components . 4
3. User Interface . 6
4. Individual Request Type Descriptions 16
5. Sample Code . 45
6. Linux Environment . 47
7. VxWorks Environment . 49
8. Porting . 50
9. Revision History . 53

Security Engine 2.x
Reference Device Driver User’s Guide
For SEC 2.x Device Driver Version 1.6

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

2 Freescale Semiconductor

Overview

The driver is coded in ANSI C. In it’s design, an attempt has been made to write a device driver that is as
operating system agnostic as practical. Where necessary, operating system dependencies are identified and
the "Porting" section, addresses them.

Testing has been accomplished on VxWorks 5.5 and LinuxPPC using kernel version 2.6.11.

Application interfaces to this driver are implemented through the ioctl() function call. Requests made
through this interface can be broken down into specific components, including miscellaneous requests and
process requests. The miscellaneous requests are any requests not related to the direct processing of data
by the SEC core.

Process requests comprise the majority of the requests and all are executed using the same ioctl() access
point. In the section entitled “Process Request Structures,” structures needed to compose these requests are
described in detail.

Throughout the document, the acronyms CHA (crypto hardware accelerator) and EU (execution unit) are
used interchangeably. Both acronyms indicate the device's functional block that performs the crypto
functions requested.

The reader should understand that the design of this driver is a legacy holdover from two prior generations
of security processors. As applications have already been written for those processors, certain aspects of
the interface for this driver have been designed so as to maintain source-level application portability with
prior driver/processor versions. Where relevant in this document, prior-version compatibility features will
be indicated to the reader.

Table 1. Product and SEC Core Version

Product Family Device SEC Core Version
SEC 2.x Driver Features Not Supported in

Silicon

PowerQUICC II Pro MPC8323E SEC 2.2 Public Key, Kasumi, RNG, ARC-4

MPC8343E, MPC8347E, MPC8349E
(Rev 1.1)

SEC 2.0 Kasumi, XOR, single descriptor SSL/TLS

MPC8343EA, MPC8347EA,
MPC8349EA (Rev 3)

SEC 2.4 Kasumi

MPC8358E, MPC8360E (Rev 1) SEC 2.0 Kasumi, XOR, single descriptor SSL/TLS

MPC8358EA, MPC8360EA (Rev 2) SEC 2.4 Kasumi

PowerQUICC III MPC8541E, MPC8555E SEC 2.0 Kasumi, XOR, single descriptor SSL/TLS

MPC8543E, MPC8545E, MPC8547E,

MPC8548E

SEC 2.1

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

Freescale Semiconductor 3

Overview

Table 2 contains acronyms and abbreviations that are used in this user’s manual.
Table 2. Acronyms and Abbreviations

Term Meaning

AESA AES accelerator—This term is synonymous with AESU in the Security Engine 2.x chapter of the PowerQUICC
device reference manuals and other related documentation.

AFHA ARC-4 hardware accelerator—This term is synonymous with AFEU in the Security Engine 2.x chapter of the
PowerQUICC device reference manuals and other related documentation.

APAD Autopad—The MDHA will automatically pad incomplete message blocks out to 512 bits when APAD is enabled.

ARC-4 Encryption algorithm compatible with the RC-4 algorithm developed by RSA, Inc.

Auth Authentication

CBC Cipher block chaining—An encryption mode commonly used with block ciphers.

CHA Crypto hardware accelerator—This term is synonymous with ‘execution unit’ in the Security Engine 2.x chapter of
the PowerQUICC device reference manuals and other related documentation.

CTX Context

DESA DES accelerator—This term is synonymous with DEU in the Security Engine 2.x chapter of the PowerQUICC device
reference manuals and other related documentation.

DPD Data packet descriptor

ECB Electronic code book—An encryption mode less commonly used with block ciphers.

EU Execution unit

HMAC Hashed message authentication code

IDGS Initialize digest

IPSec Internet protocol security

ISR Interrupt service routine

MD Message digest, synonymous with hash

MDHA Message digest hardware accelerator—This term is synonymous with MDEU in the Security Engine 2.x chapter of
the PowerQUICC device reference manuals and other related documentation.

OS Operating system

PK Public key

PKHA Public key hardware accelerator—This term is synonymous with PKEU in the Security Engine 2.x chapter of the
PowerQUICC device reference manuals and other related documentation.

RDK Restore decrypt key—An AESA option to re-use an existing expanded AES decryption key.

RNGA Random number generator accelerator

SDES Single DES

TEA Transfer error acknowledge

TDES Triple DES

VxWorks Operating system provided by Wind River Systems.

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

4 Freescale Semiconductor

Device Driver Components

2 Device Driver Components
This section is provided to help users understand the internal structure of the device driver.

2.1 Device Driver Structure
Internally, the driver is structured in four basic components:

• Driver Initialization and Setup
• Application Request Processing
• Interrupt Service Routine
• Deferred Service Routine

While executing a request, the driver runs in system/kernel state for all components with the exception of
the ISR, which runs in the operating system's standard interrupt processing context.

Figure 1 shows the SEC Reference Device Driver structure.

Figure 1. SEC Device Driver Structure

2.1.1 Driver Initialization Routine

The driver initialization routine includes both OS-specific and hardware-specific initialization. The steps
taken by the driver initialization routine are as follows:

• Finds the security engine core and sets the device memory map starting address in IOBaseAddress.
• Initialize the security engine's registers

— Controller registers
— Channel registers

• Prepare Descriptors

• Queue Request when Channels are Unavailable

• Start the descriptor’s execution in a channel

• Tracks Requests

Driver
invoked

Callback function

Prepare request
(non-blocking)
ioctl ()

Sleeps on queue

Completes the user request

execute callback function*

Driver
returns

End-User Application

ProcessingComplete Task
Operation
starts

SEC2.x Execution

Operation completed/
interrupt generated

ISR

IsrMsgQId

Writing a message to the queue wakes
the ProcessingComplete task

If no callback function is defined, no callback takes place.*

Driver Code

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

Freescale Semiconductor 5

Device Driver Components

— EU registers
• Initializes driver internal variables
• Initializes the channel assignment table

— The device driver will maintain this structure with state information for each channel and user
request. A mutual-exclusion semaphore protects this structure so multiple tasks are prevented
from interfering with each other.

• Initializes the internal request queue
— This queue holds requests to be dispatched when channels become available. The queue can

hold up to 16 requests. The driver will reject requests with an error when the queue is full.
• ProcessingComplete() is enabled, which then pends on IsrMsgQId. This serves as the interface

between the interrupt service routine and this deferred task.

2.1.2 Request Dispatch Routine
The request dispatch routine provides the ioctl() interface to the device driver. It uses the callers request
code to identify which function is to execute and dispatches the appropriate handler to process the request.
The driver performs a number of tasks that include tracking requests, queuing requests when the requested
channel is unavailable, preparing data packet descriptors, and writing said descriptor's address to the
appropriate channel; in effect giving the security engine the direction to begin processing the request. The
ioctl() function returns to the end-user application without waiting for the security engine to complete,
assuming that once a DPD is initiated for processing by the hardware, interrupt service may invoke a
handler to provide completion notification

2.1.3 Process Request Routine
The process request routine translates the request into a sequence of one or more data packet descriptors
(DPD) and feeds it to the security engine core to initiate processing. If no channels are available to handle
the request, the request is queued.

2.1.4 Interrupt Service Routine
When processing is completed by the security engine, an interrupt is generated. The interrupt service
routine handles the interrupt and queues the result of the operation in the IsrMsgQId queue for deferred
processing by the ProcessingComplete() deferred service routine.

2.1.5 Deferred Service Routine
The ProcessingComplete() routine completes the request outside of the interrupt service routine, and
runs in a non-ISR context. This routine depends on the IsrMsgQId queue and processes messages written
to the queue by the interrupt service routine. This function will determine which request is complete, and
notify the calling task using any handler specified by that calling task. It will then check the remaining
content of the process request queue, and schedule any queued requests.

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

6 Freescale Semiconductor

User Interface

3 User Interface

3.1 Application Interface
In order to make a request of the SEC, the calling application must populate a request structure with the
appropriate information to pass to the driver for processing. These structures are described in Section 4,
“Individual Request Type Descriptions,” and include items such as operation ID, channel, callback
routines (success and error), and data.

Once the request is prepared, the application calls ioctl() with the prepared request. This function is a
standard system call used by operating system I/O subsystems to implement special-purpose functions. It
typically follows the format:
int ioctl(int fd, /* file descriptor */

 int function, /* function code */

 int arg /* arbitrary argument (driver dependent) */

The function code (second argument) is defined as the Section 3.3.1, “I/O Control Codes.” This code will
specify the driver-specific operation to be performed by the device in question. The third argument is the
pointer to the SEC user request structure, which contains information needed by the driver to perform the
function requested.

The following is a list of guidelines to be followed by the end-user application when preparing a request
structure:

• The first member of every request structure is an operation ID (opID). The operation ID is used by
the device driver to determine the format of the request structure.

• All requests have a "channel" member. It should normally be specified as zero, and as such, the
driver will place the request on the “next available” channel from the pool of channels in use. If the
requesting task has reserved a static channel for dedicated use (numbered 1 or higher), this member
may be filled in with the number of the reserved channel.

• All process request structures have a status member. This value is filled in by the device driver
when the interrupt for the operation occurs and it reflects the status of the completed operation as
determined by the deferred service routine.

• All process request structures have two notify members, notify and notify_on_error. These notify
members can be used by the device driver to notify the application when its request has been
completed. They may be the same function, or different, as required by the caller's operational
requirements.

• All process request structures have a next request member. This allows the application to chain
multiple process requests together.

• It is the application's choice to use a notifier function or to poll the status member to detect
completion of the request.

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

Freescale Semiconductor 7

User Interface

3.2 Error Handling
Due to the asynchronous nature of the device/driver, there are two primary sources of errors:

• Syntax or logic. These are returned in the status member of the 'user request' argument and as a
return code from ioctl(). Errors of this type are detected by the driver, not by hardware.

• Protocol/procedure. These errors are returned only in the status member of the user request
argument. Errors of this type are detected by hardware in the course of their execution.

Consequently, the end-user application needs two levels of error checking, the first one after the return
from ioctl(), and the second after the completion of the request. The second level is possible only if the
request was done with a validnotify_on_error handler. If the handler has not been specified, this level of
error will be lost.

A code example of the two levels of errors are as follows, using an AES request as an example:
AESA_CRYPT_REQ aesdynReq;

 ..

 aesdynReq.opId = DPD_AESA_CBC_ENCRYPT_CRYPT;

 aesdynReq.channel = 0;

 aesdynReq.notify = (void *) notifAes;

 aesdynReq.notify_on_error = (void *) notifAes;

 aesdynReq.status = 0;

 aesdynReq.inIvBytes = 16;

 aesdynReq.inIvData = iv_in;

 aesdynReq.keyBytes = 32;

 aesdynReq.keyData = AesKey;

 aesdynReq.inBytes = packet_length;

 aesdynReq.inData = aesData;

 aesdynReq.outData = aesResult;

 aesdynReq.outIvBytes = 16;

 aesdynReq.outIvData = iv_out;

 aesdynReq.nextReq = 0;

 status = Ioctl(device, IOCTL_PROC_REQ, &aesdynReq);

 if (status != 0) {

 printf ("Syntax-Logic Error in dynamic descriptor 0x%x\n", status); .

 .

 .

 }.

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

8 Freescale Semiconductor

User Interface

 /* in callback function notifAes */

 if (aesdynReq.status != 0) {

 printf ("Error detected by HW 0x%x\n", aesdynReq.status) ;

 .

 .

 }

3.3 Global Definitions

3.3.1 I/O Control Codes
The I/O control code is the second argument in the ioctl function. Definitions of these control codes are
defined in Sec2.h.

Internally, these values are used in conjunction with a base index to create the I/O control codes. The macro
for this base index is defined by SEC2_IOCTL_INDEX and has a default value of 0x0800. See Table 3.

Table 3. Second and Third Arguments to ioctl()

I/O Control Code (Second
Argument in ioctl Function)

Purpose of ioctl Function

IOCTL_PROC_REQ Primary form of making a request of the security engine. Passes a pointer to a detailed
request block, specific to the type of request being made.

IOCTL_GET_STATUS Get detailed internal status after execution. Passes pointer to a STATUS_REQ

IOCTL_RESERVE_CHANNEL_S
TATIC

Reserve a channel for exclusive use by a task, such that it will not be shared with other
requestors. Is passed a pointer to a “channel” argument (see the “channel” element in
GENERIC_REQ) that will be updated with a channel number for use in subsequent requests
to that channel.

IOCTL_RELEASE_CHANNEL Release a channel from exclusive use by a task. Is passed a pointer to a channel same as for
IOCTL_RESERVE_CHANNEL_STATIC

IOCTL_MALLOC Allocate a contiguous block of kernel memory for use in the processing of a request.
Parameter is a pointer to the allocated block. Note that this is only valid on systems that
support privileged memory access,

IOCTL_FREE Free a block of memory originally allocated by IOCTL_MALLOC. Parameter is a pointer to the
block to free.

IOCTL_COPYFROM Pointer to type MALLOC_REQ, which will hold information about a user buffer that will be copied
from user memory space to kernel memory space allocated by IOCTL_MALLOC.

IOCTL_COPYTO Pointer to type MALLOC_REQ, which will hold information about a user buffer that will be copied
from kernel memory space allocated by IOCTL_MALLOC back to a user's buffer.

IOCTL_INSTALL_AUX_HANDL
ER

Install an auxiliary deferred service handler for a channel that was reserved by
IOCTL_RESERVE_CHANNEL_STATIC. This exists so that the application using a reserved
channel may implement it’s own channel completion “interrupt” handler to be invoked at the
completion of operations on a channel. Will be passed an argument to an
AUX_HANDLER_SPEC which will include the channel number, and a pointer to the handler to
be installed (or NULL if the handler is to be disabled).

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

Freescale Semiconductor 9

User Interface

3.3.2 Channel Definitions
The NUM_CHANNELS definition is used to specify the number of channels implemented in the SEC2 device.
If not specified it will be set to a value of 4 as a default. See Table 4.

The NUM_CHAS definition contains the total number of crypto hardware accelerators (CHAs) in SEC2 and
is simply defined as the sum of the individual channels.

The device name is defined by default as /dev/sec2.

3.3.3 Operation ID (opId) Masks
Operation Ids can be broken down into two parts, the group or type of request and the request index or
descriptor within a group or type. This is provided to help understand the structuring of the opIds. It is not
specifically needed within a user application. See Table 5.

3.3.4 Return Codes
A complete list of the error status results that may be returned to the callback routines is shown in Table 6.

Table 4. Channel Defines

Define Description

NUM_AFHAS Number of ARC4 accelerators

NUM_DESAS Number of DES accelerators

NUM_MDHAS Number of message digest accelerators

NUM_RNGAS Number of random number generators

NUM_PKHAS Number of public key accelerators

NUM_AESAS Number of AES accelerators

NUM_KEAS Number of Kasumi accelerators

Table 5. Request Operation ID Mask

Define Description Value

DESC_TYPE_MASK The mask for the group or type of an opId 0xFF00

DESC_NUM_MASK The mask for the request index or descriptor within that group or type 0x00FF

Table 6. Callback Error Status Return Code

Code Description Value

SEC2_SUCCESS Successful completion of request 0

SEC2_MEMORY_ALLOCATION Driver cannot obtain memory from the host
operating system.

0xE004FFFF

SEC2_INVALID_CHANNEL Channel specification was out of range. This
exists for legacy compatibility and has no
relevance for SEC2.

0xE004FFFE

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

10 Freescale Semiconductor

User Interface

SEC2_INVALID_CHA_TYPE Requested CHA does not exist in this version of
the hardware.

0xE004FFFD

SEC2_INVALID_OPERATION_ID Requested opID is out of range for this request
type.

0xE004FFFC

SEC2_CHANNEL_NOT_AVAILABLE Requested channel was not available. This error
exists for legacy compatibility reasons, and has
no relevance for SEC2.

0xE004FFFB

SEC2_CHA_NOT_AVAILABLE Requested CHA was not available at the time the
request was being processed.

0xE004FFFA

SEC2_INVALID_LENGTH Length of requested data item is incompatible
with request type, or data alignment
incompatible.

0xE004FFF9

SEC2_OUTPUT_BUFFER_ALIGNMENT Output buffer alignment incompatible with
request type

0xE004FFF8

SEC2_ADDRESS_PROBLEM Driver could not translate argued address into a
physical address.

0xE004FFF6

SEC2_INSUFFICIENT_REQS Request entry pool exhausted at the time of
request processing; try again later.

0xE004FFF5

SEC2_CHA_ERROR CHA flagged an error during processing; check
the error notification context if one was provided
to the request.

0xE004FFF2

SEC2_NULL_REQUEST Request pointer was argued NULL. 0xE004FFF1

SEC2_REQUEST_TIMED_OUT Timeout in request processing 0xE004FFF0

SEC2_MALLOC_FAILED Direct kernel memory buffer request failed. 0xE004FFEF

SEC2_FREE_FAILED Direct kernel memory free failed. 0xE004FFEE

SEC2_PARITY_SYSTEM_ERROR Parity Error detected on the bus 0xE004FFED

SEC2_INCOMPLETE_POINTER Error due to partial pointer 0xE004FFEC

SEC2_TEA_ERROR A transfer error has occurred. 0xE004FFEB

SEC2_FRAGMENT_POOL_EXHAUSTED The internal scatter-gather buffer descriptor pool
is full.

0xE004FFEA

SEC2_FETCH_FIFO_OVERFLOW Too many DPDs written to a channel (indicates
an internal driver problem)

0xE004FFE9

SEC2_BUS_MASTER_ERROR Processor could not acquire the bus for a data
transfer.

0xE004FFE8

SEC2_SCATTER_LIST_ERROR Caller's list describing a scatter-gather buffer is
corrupt.

0xE004FFE7

SEC2_UNKNOWN_ERROR Any other unrecognized error 0xE004FFE6

SEC2_IO_CARD_NOT_FOUND Error due to device hardware not being found -1000

SEC2_IO_MEMORY_ALLOCATE_ERROR Error due to insufficient resources -1001

SEC2_IO_IO_ERROR Error due to I/O configuration -1002

Table 6. Callback Error Status Return Code (continued)

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

Freescale Semiconductor 11

User Interface

3.3.5 Miscellaneous Request Structures
STATUS_REQ Structure

Used to indicate the internal state of the SEC2 core as well as the driver after the occurrence of an event.
Returned as a pointer by GetStatus() and embedded in all requests. This structure is defined in
Sec2Notify.h

Each element is a copy of the contents of the same register in the SEC2 driver. This structure is also known
as SEC2_STATUS through a typedef.

unsigned long ChaAssignmentStatusRegister[2];
unsigned long InterruptControlRegister[2];
unsigned long InterruptStatusRegister[2];
unsigned long IdRegister;
unsigned long ChannelStatusRegister[NUM_CHANNELS][2];
unsigned long ChannelConfigurationRegister[NUM_CHANNELS][2];
unsigned long CHAInterruptStatusRegister[NUM_CHAS][2];
unsigned long QueueEntryDepth;
unsigned long FreeChannels;
unsigned long FreeAfhas;
unsigned long FreeDesas;
unsigned long FreeMdhas;
unsigned long FreePkhas;
unsigned long FreeAesas;
unsigned long FreeKeas;
unsigned long BlockSize;

SEC2_NOTIFY_ON_ERROR_CTX Structure

Structure returned to the notify_on_error callback routine that was setup in the initial process request.
This structure contains the original request structure as well as an error and driver status.

 unsigned long errorcode; // Error that the request generated
 void *request; // Pointer to original request

SEC2_IO_VXWORKS_DRIVER_TABLE_ADD_ERROR Error due to VxWorks not being able to add
driver to table.

-1003

SEC2_IO_INTERRUPT_ALLOCATE_ERROR Error due to interrupt allocation error. -1004

SEC2_VXWORKS_CANNOT_CREATE_QUEUE Error due to VxWorks not being able to create
the ISR queue in IOInitQs()

-1009

SEC2_CANCELLED_REQUEST Error due to canceled request -1010

SEC2_INVALID_ADDRESS Error due to a NULL request -1011

Table 6. Callback Error Status Return Code (continued)

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

12 Freescale Semiconductor

User Interface

 STATUS_REQ driverstatus; // Detailed information as to the state of the
 // hardware and the driver at the time of an error

3.3.6 Process Request Structures
All process request structures contain a copy of identical request header information, which is defined by
the COMMON_REQ_PREAMBLE macro. The members of this header must be filled in as needed by the user
prior to the issue of the user's request. Descriptions of the process-request structures are shown in Table 7.

 unsigned long opId;
 unsigned char scatterBufs;
 unsigned char notifyFlags;
 unsigned char reserved;
 unsigned char channel;
 PSEC2_NOTIFY_ROUTINE notify;
 PSEC2_NOTIFY_CTX pNotifyCtx;
 PSEC2_NOTIFY_ON_ERROR_ROUTINE notify_on_error;
 SEC2_NOTIFY_ON_ERROR_CTX ctxNotifyOnErr;
 int status;
 void *nextReq;

Table 7. Process Request Structures

Process-Request Structure Description

opId operation Id which identifies what type of request this is. It is normally associated with a specific
type of cryptographic operation, see Individual Requests for all supported request types.

scatterBufs A bitmask that specifies which of the argued buffers are mapped through a scatter-gather list.
The mask is filled out via the driver's helper function MarkScatterBuffer(), described in
the discussion on scatter-gather buffer management.

notifyFlags If a POSIX-style signal handler will be responsible for request completion notification, then it can
contain ORed bits of NOTIFY_IS_PID and/or NOTIFY_ERROR_IS_PID, signifying that the
notify or notify_on_error pointers are instead the process ID's (i.e. getpid()) of the
task requesting a signal upon request completion.

channel identifies the channel to be used for the request. Should normally be zero, and as such, the driv-
er places the request on the “next available” channel, or queues the request. If a static channel
has been reserved, pass it’s number here to ensure that the request executes on this channel
only.

notify pointer to a notification callback routine that will be called when the request has completed suc-
cessfully. May instead be a process ID if a user-state signal handler will flag completion, see
notifyFlags for more info.

pNotifyCtx pointer to context area to be passed back through the notification routine.

notify_on_error pointer to the notify on error routine that will be called when the request has completed unsuc-
cessfully. May instead be a process ID if a user-state signal handler will flag completion, see
notifyFlags for more info.

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

Freescale Semiconductor 13

User Interface

The additional data in the process request structures is specific to each request; refer to the specific
structure for this information.

3.3.7 Scatter-Gather Buffer Management
A unique feature of the SEC 2.x core is the presence of the hardware's ability to read and act on a
scatter-gather description list for a data buffer. This allows the hardware to more efficiently deal with
buffers located in memory belonging to a non-privileged process; memory which may not be contiguous,
but instead may be at scattered locations determined by the memory management scheme of the host
system. Any data buffer in any request may be "marked" as a scattered memory buffer by the requestor as
needed.

For the requestor to do so, two actions must be taken:
• A linked list of structures of type EXT_SCATTER_ELEMENT, one per memory fragment, must be

constructed to describe the whole of the buffer's content.
• The buffer pointer shall reference the head of this list, not the data itself. The buffers containing

scatter references shall be marked in the request's scatterBufs element. Which bits get marked
shall be determined by a helper function that understands the mapping used on an individual
request basis.

3.3.7.1 Building the Local Scatter/gather List with EXT_SCATTER_ELEMENT

Since individual operating systems shall have their own internal means defining memory mapping
constructs, the driver cannot be designed with specific knowledge of one particular mapping method.
Therefore, a generic memory fragment definition structure, EXT_SCATTER_ELEMENT is defined for this
purpose.

Each EXT_SCATTER_ELEMENT describes one contiguous fragment of user memory, and is designed so that
multiple fragments can be tied together into a single linked list. Each element has the aspects shown in
Table 8:

ctxNotifyOnErr context area that is filled in by the driver when there is an error.

status will contain the returned status of request.

nextReq pointer to next request which allows for multiple request to be linked together and sent via a sin-
gle ioctl function call.

Table 8. Scatter_Gather_Elements

Aspects of Scatter_Gather_Elements Description

void *next; Pointer to next fragment in list, NULL if at end of list

void *fragment; Pointer to contiguous data fragment

unsigned short size; Size of this fragment in bytes

Table 7. Process Request Structures (continued)

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

14 Freescale Semiconductor

User Interface

With this, the caller must construct the list of all the fragments needed to describe the buffer, NULL
terminate the end of the list, and pass the head as the buffer pointer argument. This list must remain intact
until completion of the request.

3.3.7.2 Scatter Buffer Marking

For reasons of legacy compatibility, the structure of all driver request types maintains the same size and
form as prior versions, with a minor change in that a size-compatible scatterBufs element was added as
a modification to the channel element in other versions. This allows the caller a means of indicating which
buffers in the request are scatter-composed, as opposed to direct, contiguous memory (for instance, key
data could be in contiguous system memory, while ciphertext data will be in fragmented user memory).

A problem with marking buffers using this method is that there is no means for the caller to clearly identify
which bit in scatterBufs matches any given pointer in the request, since the data description portion of
different requests cannot be consistent or of any particular order.

A helper function, MarkScatterBuffer(), is therefore made available by the driver to make the
bit/pointer association logic in the driver accessible to the caller. It's form is:
MarkScatterBuffer(void *request, void *buffer);

where request points to the request block being built (the opId element must be set prior to call), and
buffer points to the element within the request which references a scattered buffer. It will then mark the
necessary bit in scatterBufs that defines this buffer for this specific request type.

3.3.7.3 Direct Scatter-Gather Usage Example

In order to make this usage clear, an example is presented. Assume that a triple DES encryption operation
is to be constructed, where the input and output buffers are located in fragmented user memory, and the
cipher keys and IV are contained in system memory. A DES_LOADCTX_CRYPT_REQ is zero-allocated as
encReq, and constructed:

/* set up encryption operation */
encReq.opId = DPD_TDES_CBC_CTX_ENCRYPT;
encReq.notify = notifier;
encReq.notify_on_error = notifier;
encReq.inIvBytes = 8;
encReq.keyBytes = 24;
encReq.inBytes = bufsize;
encReq.inIvData = iv;
encReq.keyData = cipherKey;
encReq.inData = (unsigned char *)input; /* this buffer is scattered */
encReq.outIvBytes = 8;
encReq.outIvData = ctx;
encReq.outData = (unsigned char *)output; /* this buffer is scattered */

MarkScatterBuffer(&encReq, &encReq.input);
MarkScatterBuffer(&encReq, &encReq.output);

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

Freescale Semiconductor 15

User Interface

Upon completion of the two mark calls, encReq.scatterBufs will have two bits set within it that the
driver knows how to interpret as meaning that the intended buffers have scatter lists defined for them, and
will process them accordingly as the DPD is built for the hardware.

3.3.8 Reserved Channels
Beginning with driver version 1.5, a capability is added to allow a task the ability to reserve a channel and
use it separately from other requests (i.e. keeps that channel out of the “pool” of channels available for
general processing). This feature may be desirable in the instance that a channel may be needed for rapid
servicing of data peculiar to a specific protocol with high real-time demand requirements.

Requesting a channel is done with the IOCTL_RESERVE_CHANNEL_STATIC call. It’s argument is a pointer to a
channel byte that will be used in the channel argument for all subsequent requests. Once the static channel
is no longer needed, it can be returned to the free channel pool with IOCTL_RELEASE_CHANNEL.

3.3.8.1 Reserved Channel Specification

Normal requests to the driver take place through the COMMON_REQ_PREAMBLE to the detailed request block.
The channel argument in this block is normally left at zero and if specified as such, the driver “allocates”
a channel on a round-robin basis for each request as it comes in (extra requests become placed in a queue
for each channel).

If the channel specification is nonzero, (for example, from 1 to 4 for all SEC 2.x devices other that are not
2.2) then the driver will post the request to that channel if the channel is reserved to that requestor.

3.3.8.2 Auxiliary Channel Service Handlers

Should a reserved channel need the ability to invoke a special handler at the end of processing for a given
request, then an auxiliary handler routine may be installed to service end-of-processing events for that
channel. That handler may be installed or disabled through the use of IOCTL_INSTALL_AUX_HANDLER, which
is passed a pointer to a AUX_HANDLER_SPEC which specifies the channel to service, and a pointer to the user’s
handler to execute the service.

typedef struct {

int (*auxHandler)(int ch, void *regs);

char channel;

} AUX_HANDLER_SPEC;

In any case, channel should always be the channel that is reserved for use. If it is not reserved, an error will
be returned.

The auxHandler pointer references the user handler function. When dispatched by the driver, it will be
passed two items, (1) the number of the channel whose interrupt triggered this handler, and (2) a pointer
to a copy of a DEVICE_REGS as saved from the ISR as it’s argument, so that the handler can act on any error
information that was saved. Although the auxiliary handler is cast to return an int as a status value, this
return is ignored by the driver at this time.

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

16 Freescale Semiconductor

Individual Request Type Descriptions

If auxHandler is passed as a NULL value, then an existing handler will be disabled. This should be
accomplished before a channel is released.

NOTE

Auxiliary handlers run in a deferred-service context, not in the context of the
calling application. For this reason, they need to complete in a reasonable
amount of time to prevent starving other channels from service. Also,
because they are not in the user’s context, auxiliary handlers should never
be used from a Linux user-state application, since the user-state handler
cannot be directly invoked.

4 Individual Request Type Descriptions

4.1 Random Number Requests

4.1.1 RNG_REQ

COMMON_REQ_PREAMBLE
unsigned long rngBytes;
unsigned char* rngData;

NUM_RNGA_DESC defines the number of descriptors within the DPD_RNG_GROUP that use this request.

DPD_RNG_GROUP (0x1000) defines the group for all descriptors within this request. See Table 9.

4.2 DES Requests

4.2.1 DES_CBC_CRYPT_REQ

COMMON_REQ_PREAMBLE
unsigned long inIvBytes; /* 0 or 8 bytes */
unsigned char *inIvData;
unsigned long keyBytes; /* 8, 16, or 24 bytes */
unsigned char *keyData;
unsigned long inBytes; /* multiple of 8 bytes */
unsigned char *inData;
unsigned char *outData; /* output length = input length */
unsigned long outIvBytes; /* 0 or 8 bytes */
unsigned char *outIvData;

Table 9. RNG_REQ Valid Descriptor (opId)

Descriptor Value Function Description

DPD_RNG_GETRN 0x1000 Generate a series of random values

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

Freescale Semiconductor 17

Individual Request Type Descriptions

NUM_DES_LOADCTX_DESC defines the number of descriptors within the DPD_DES_CBC_CTX_GROUP that use
this request.

DPD_DES_CBC_CTX_GROUP (0x2500) defines the group for all descriptors within this request. See Table 10.

4.2.2 DES_CRYPT_REQ

COMMON_REQ_PREAMBLE
unsigned long keyBytes; /* 8, 16, or 24 bytes */
unsigned char *keyData;
unsigned long inBytes; /* multiple of 8 bytes */
unsigned char *inData;
unsigned char *outData; /* output length = input length */

NUM_DES_DESC defines the number of descriptors within the DPD_DES_ECB_GROUP that use this request.

DPD_DES_ECB_GROUP (0x2600) defines the group for all descriptors within this request. See Table 11.

4.3 ARC4 Requests

4.3.1 ARC4_LOADCTX_CRYPT_REQ

COMMON_REQ_PREAMBLE
unsigned long inCtxBytes; /* 257 bytes */
unsigned char *inCtxData;
unsigned long inBytes;

Table 10. DES_CBC_CRYPT_REQ Valid Descriptors (opId)

Descriptors Value Function Description

DPD_SDES_CBC_CTX_ENCRYPT 0x2500 Load encrypted context from a dynamic channel to encrypt in single DES
using CBC mode

DPD_SDES_CBC_CTX_DECRYPT 0x2501 Load encrypted context from a dynamic channel to decrypt in single DES
using CBC mode

DPD_TDES_CBC_CTX_ENCRYPT 0x2502 Load encrypted context from a dynamic channel to encrypt in triple DES
using CBC mode

DPD_TDES_CBC_CTX_DECRYPT 0x2503 Load encrypted context from a dynamic channel to decrypt in triple DES
using CBC mode

Table 11. DES_CRYPT_REQ Valid Descriptors (opId)

Descriptors Value Function Description

DPD_SDES_ECB_ENCRYPT 0x2600 Encrypt data in single DES using ECB mode

DPD_SDES_ECB_DECRYPT 0x2601 Decrypt data in single DES using ECB mode

DPD_TDES_ECB_ENCRYPT 0x2602 Encrypt data in triple DES using ECB mode

DPD_TDES_ECB_DECRYPT 0x2603 Decrypt data in triple DES using ECB mode

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

18 Freescale Semiconductor

Individual Request Type Descriptions

unsigned char *inData;
unsigned char *outData; /* output length = input length */
unsigned long outCtxBytes; /* 257 bytes */
unsigned char *outCtxData;

NUM_RC4_LOADCTX_UNLOADCTX_DESC defines the number of descriptors within the
DPD_RC4_LDCTX_CRYPT_ULCTX_GROUP that use this request.

DPD_RC4_LDCTX_CRYPT_ULCTX_GROUP (0x3400) defines the group for all descriptors within this request.
See Table 12.

4.3.2 ARC4_LOADKEY_CRYPT_UNLOADCTX_REQ

COMMON_REQ_PREAMBLE
unsigned long keyBytes;
unsigned char *keyData;
unsigned long inBytes;
unsigned char *inData;
unsigned char *outData; /* output length = input length */
unsigned long outCtxBytes; /* 257 bytes */
unsigned char* outCtxData;

NUM_RC4_LOADKEY_UNLOADCTX_DESC defines the number of descriptors within the
DPD_RC4_LDKEY_CRYPT_ULCTX_GROUP that use this request.

DPD_RC4_LDKEY_CRYPT_ULCTX_GROUP (0x3500) defines the group for all descriptors within this request.
See Table 13.

4.4 Hash Requests

4.4.1 HASH_REQ

COMMON_REQ_PREAMBLE
unsigned long ctxBytes;
unsigned char *ctxData;
unsigned long inBytes;
unsigned char *inData;
unsigned long outBytes; /* length is fixed by algorithm */

Table 12. ARC4_LOADCTX_CRYPT_REQ Valid Descriptor (opId)

Descriptor Value Function Description

DPD_RC4_LDCTX_CRYPT_ULCTX 0x3400 Load context, encrypt using ARC-4, and store the resulting context.

Table 13. ARC4_LOADKEY_CRYPT_UNLOADCTX_REQ Valid Descriptor (opId)

Descriptor Value Function Description

DPD_RC4_LDKEY_CRYPT_ULCTX 0x3500 Load the cipher key, encrypt using ARC-4, then save the resulting context.

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

Freescale Semiconductor 19

Individual Request Type Descriptions

unsigned char *outData;
unsigned char *cmpData; /* digest auto-compare value */

NUM_MDHA_DESC defines the number of descriptors within the DPD_HASH_LDCTX_HASH_ULCTX_GROUP that
use this request.

DPD_HASH_LDCTX_HASH_ULCTX_GROUP (0x4400) defines the group for all descriptors within this request.
See Table 14.

Table 14. HASH_REQ Valid Descriptors (0x4400) (opId)

Descriptors Value Function Description

DPD_SHA256_LDCTX_HASH_ULCTX 0x4400 Compute a final SHA256 digest using autopadding and an
external context.

DPD_MD5_LDCTX_HASH_ULCTX 0x4401 Compute a final MD5 digest using autopadding and an external
context.

DPD_SHA_LDCTX_HASH_ULCTX 0x4402 Compute a final SHA1 digest using autopadding and an external
context.

DPD_SHA256_LDCTX_IDGS_HASH_ULCTX 0x4403 Compute an interim SHA256 digest using autopadding, and use
the algorithm’s standard initialization.

DPD_MD5_LDCTX_IDGS_HASH_ULCTX 0x4404 Compute an interim MD5 digest using autopadding, and use the
algorithm’s standard initialization.

DPD_SHA_LDCTX_IDGS_HASH_ULCTX 0x4405 Compute an interim SHA1 digest using autopadding, and use
the algorithm’s standard initialization.

DPD_SHA256_CONT_HASH_ULCTX 0x4406 Compute an interim SHA256 digest using autopadding, and use
an external context.

DPD_MD5_CONT_HASH_ULCTX 0x4407 Compute an interim MD5 digest using autopadding, and use an
external context.

DPD_SHA_CONT_HASH_ULCTX 0x4408 Compute an interim SHA1 digest using autopadding, and use
an external context.

DPD_SHA224_LDCTX_HASH_ULCTX 0x4409 Compute a final SHA224 digest with autopadding and an
external context (Does not apply to SEC 2.0).

DPD_SHA224_LDCTX_IDGS_HASH_ULCTX 0x440a Compute an interim SHA224 digest using autopadding, and use
the algorithm’s standard initialization (Does not apply to SEC
2.0).

DPD_SHA224_CONT_HASH_ULCTX 0x440b Compute an interim SHA224 digest using autopadding, and use
an external context (Does not apply to SEC 2.0).

DPD_SHA256_LDCTX_HASH_ULCTX_CMP 0x440c Compute a final SHA256 digest using autopadding and an
external context. Compare the digest to an expected value, and
flag an error if they do not compare (Does not apply to SEC 2.0).

DPD_MD5_LDCTX_HASH_ULCTX_CMP 0x440d Compute a final MD5 digest using autopadding and an external
context. Compare the digest to an expected value, and flag an
error if they do not compare (Does not apply to SEC 2.0).

DPD_SHA_LDCTX_HASH_ULCTX_CMP 0x440e Compute a final SHA1 digest using autopadding and an external
context. Compare the digest to an expected value, and flag an
error if they do not compare (Does not apply to SEC 2.0).

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

20 Freescale Semiconductor

Individual Request Type Descriptions

NUM_MDHA_PAD_DESC defines the number of descriptors within the
DPD_HASH_LDCTX_HASH_PAD_ULCTX_GROUP that use this request.

DPD_HASH_LDCTX_HASH_PAD_ULCTX_GROUP (0x4500) defines the group for all descriptors within this
request. See Table 15.

DPD_SHA256_LDCTX_IDGS_HASH_ULCTX_CMP 0x440f Compute an interim SHA256 digest using autopadding, and use
the algorithm’s standard initialization. Compare the digest to an
expected value, and flag an error if they do not compare (Does
not apply to SEC 2.0).

DPD_MD5_LDCTX_IDGS_HASH_ULCTX_CMP 0x4410 Compute an interim MD5 digest using autopadding, and use the
algorithm’s standard initialization. Compare the digest to an
expected value, and flag an error if they do not compare (Does
not apply to SEC 2.0)

DPD_SHA_LDCTX_IDGS_HASH_ULCTX_CMP 0x4411 Compute an interim SHA1 digest using autopadding, and use
the algorithm’s standard initialization. Compare the digest to an
expected value, and flag an error if they do not compare (Does
not apply to SEC 2.0)

DPD_SHA224_LDCTX_HASH_ULCTX_CMP 0x4412 Compute a final SHA224 digest using autopadding and an
external context. Compare the digest to an expected value, and
flag an error if they do not compare (Does not apply to SEC 2.0)

DPD_SHA224_LDCTX_IDGS_HASH_ULCTX_CMP 0x4413 Compute an interim SHA224 digest using autopadding, and use
the algorithm’s standard initialization. Compare the digest to an
expected value, and flag an error if they do not compare (Does
not apply to SEC 2.0)

Table 15. HASH_REQ Valid Descriptors (0x4500) (opId)

Descriptors Value Function Description

DPD_SHA256_LDCTX_HASH_PAD_ULCTX 0x4500 Compute digest over pre-padded data using a SHA-256
hash algorithm with an external context.

DPD_MD5_LDCTX_HASH_PAD_ULCTX 0x4501 Compute digest over pre-padded data using an MD5 hash
algorithm with an external context.

DPD_SHA_LDCTX_HASH_PAD_ULCTX 0x4502 Compute digest over pre-padded data using a SHA-1
hash algorithm with an external context.

DPD_SHA256_LDCTX_IDGS_HASH_PAD_ULCTX 0x4503 Compute digest over pre-padded data using SHA-256
with its standard initialization.

DPD_MD5_LDCTX_IDGS_HASH_PAD_ULCTX 0x4504 Compute digest over pre-padded data using MD5 with its
standard initialization.

DPD_SHA_LDCTX_IDGS_HASH_PAD_ULCTX 0x4505 Compute digest over pre-padded data using SHA1 with its
standard initialization.

DPD_SHA224_LDCTX_HASH_PAD_ULCTX 0x4506 Compute digest over pre-padded data using a SHA224
hash algorithm with an external context (Does not apply to
SEC 2.0).

DPD_SHA224_LDCTX_IDGS_HASH_PAD_ULCTX 0x4507 Compute digest over pre-padded data using SHA224 with
its standard initialization (Does not apply to SEC 2.0).

Table 14. HASH_REQ Valid Descriptors (0x4400) (opId) (continued)

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

Freescale Semiconductor 21

Individual Request Type Descriptions

4.5 HMAC Requests

4.5.1 HMAC_PAD_REQ

COMMON_REQ_PREAMBLE
unsigned long keyBytes;
unsigned char *keyData;
unsigned long inBytes;
unsigned char *inData;
unsigned long outBytes; /* length is fixed by algorithm */
unsigned char *outData;
unsigned char *cmpData; /* digest auto-compare value */

DPD_SHA256_LDCTX_HASH_PAD_ULCTX_CMP 0x4508 Compute digest over pre-padded data using a SHA-256
hash algorithm with an external context. Compare
resulting digest to external value and return an error if they
do not match (Does not apply to SEC 2.0).

DPD_MD5_LDCTX_HASH_PAD_ULCTX_CMP 0x4509 Compute digest over pre-padded data using an MD5 hash
algorithm with an external context. Compare resulting
digest to external value and return an error if they do not
match (Does not apply to SEC 2.0)

DPD_SHA_LDCTX_HASH_PAD_ULCTX_CMP 0x450a Compute digest over pre-padded data using a SHA-1
hash algorithm with an external context. Compare
resulting digest to external value and return an error if they
do not match (Does not apply to SEC 2.0)

DPD_SHA256_LDCTX_IDGS_HASH_PAD_ULCTX_CMP 0x450b Compute digest over pre-padded data using SHA-256
with its standard initialization. Compare resulting digest to
external value and return an error if they do not match
(Does not apply to SEC 2.0)

DPD_MD5_LDCTX_IDGS_HASH_PAD_ULCTX_CMP 0x450c Compute digest over pre-padded data using MD5 with its
standard initialization. Compare resulting digest to
external value and return an error if they do not match
(Does not apply to SEC 2.0)

DPD_SHA_LDCTX_IDGS_HASH_PAD_ULCTX_CMP 0x450d Compute digest over pre-padded data using SHA1 with its
standard initialization. Compare resulting digest to
external value and return an error if they do not match
(Does not apply to SEC 2.0)

DPD_SHA224_LDCTX_HASH_PAD_ULCTX_CMP 0x450e Compute digest over pre-padded data using a SHA224
hash algorithm using an external context. Compare
resulting digest to external value and return an error if they
do not match (Does not apply to SEC 2.0)

DPD_SHA224_LDCTX_IDGS_HASH_PAD_ULCTX_CMP 0x450f Compute digest over pre-padded data using SHA224 with
its standard initialization. Compare resulting digest to
external value and return an error if they do not match
(Does not apply to SEC 2.0)

Table 15. HASH_REQ Valid Descriptors (0x4500) (opId) (continued)

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

22 Freescale Semiconductor

Individual Request Type Descriptions

NUM_HMAC_PAD_DESC defines the number of descriptors within the DPD_HASH_LDCTX_HMAC_ULCTX_GROUP
that use this request.

DPD_HASH_LDCTX_HMAC_ULCTX_GROUP (0x4A00) defines the group for all descriptors within this request.
See Table 16.

Table 16. HMAC_PAD_REQ Valid Descriptors (opId)

Descriptors Value Function Description

DPD_SHA256_LDCTX_HMAC_ULCTX 0x4A00 Compute a SHA256 HMAC digest over a non-padded message

DPD_MD5_LDCTX_HMAC_ULCTX 0x4A01 Compute an MD5 HMAC digest over a non-padded message

DPD_SHA_LDCTX_HMAC_ULCTX 0x4A02 Compute a SHA1 HMAC digest over a non-padded message

DPD_SHA256_LDCTX_HMAC_PAD_ULCTX 0x4A03 Compute a SHA256 HMAC digest over a pre-padded message

DPD_MD5_LDCTX_HMAC_PAD_ULCTX 0x4A04 Compute an MD5 HMAC digest over a pre-padded message

DPD_SHA_LDCTX_HMAC_PAD_ULCTX 0x4A05 Compute a SHA1 HMAC digest over a pre-padded message

DPD_SHA224_LDCTX_HMAC_ULCTX 0x40a6 Compute a SHA224 HMAC digest over a non-padded message
(Does not apply to SEC 2.0)

DPD_SHA224_LDCTX_HMAC_PAD_ULCTX 0x4a07 Compute a SHA224 HMAC digest over a pre-padded message
(Does not apply to SEC 2.0)

DPD_SHA256_LDCTX_HMAC_ULCTX_CMP 0x4a08 Compute a SHA256 HMAC digest over a non-padded message.
Compare the resulting digest to an expected value, and return an
error if they do not compare (Does not apply to SEC 2.0)

DPD_MD5_LDCTX_HMAC_ULCTX_CMP 0x4a09 Compute an MD5 HMAC digest over a non-padded message.
Compare the resulting digest to an expected value, and return an
error if they do not compare (Does not apply to SEC 2.0)

DPD_SHA_LDCTX_HMAC_ULCTX_CMP 0x4a0a Compute a SHA1 HMAC digest over a non-padded message.
Compare the resulting digest to an expected value, and return an
error if they do not compare (Does not apply to SEC 2.0)

DPD_SHA256_LDCTX_HMAC_PAD_ULCTX_CMP 0x4a0b Compute a SHA256 HMAC digest over a pre-padded message.
Compare the resulting digest to an expected value, and return an
error if they do not compare (Does not apply to SEC 2.0)

DPD_MD5_LDCTX_HMAC_PAD_ULCTX_CMP 0x4a0c Compute an MD5 HMAC digest over a pre-padded message.
Compare the resulting digest to an expected value, and return an
error if they do not compare (Does not apply to SEC 2.0)

DPD_SHA_LDCTX_HMAC_PAD_ULCTX_CMP 0x4a0d Compute a SHA1 HMAC digest over a pre-padded message.
Compare the resulting digest to an expected value, and return an
error if they do not compare (Does not apply to SEC 2.0)

DPD_SHA224_LDCTX_HMAC_ULCTX_CMP 0x40ae Compute a SHA224 HMAC digest over a non-padded message.
Compare the resulting digest to an expected value, and return an
error if they do not compare (Does not apply to SEC 2.0)

DPD_SHA224_LDCTX_HMAC_PAD_ULCTX_CMP 0x4a0f Compute a SHA224 HMAC digest over a pre-padded message.
Compare the resulting digest to an expected value, and return an
error if they do not compare (Does not apply to SEC 2.0)

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

Freescale Semiconductor 23

Individual Request Type Descriptions

4.6 AES Requests

4.6.1 AESA_CRYPT_REQ

COMMON_REQ_PREAMBLE
unsigned long keyBytes; /* 16, 24, or 32 bytes */
unsigned char *keyData;
unsigned long inIvBytes; /* 0 or 16 bytes */
unsigned char *inIvData;
unsigned long inBytes; /* multiple of 8 bytes */
unsigned char *inData;
unsigned char *outData; /* output length = input length */
unsigned long outCtxBytes; /* 0 or 8 bytes */
unsigned char *outCtxData;

NUM_AESA_CRYPT_DESC defines the number of descriptors within the DPD_AESA_CRYPT_GROUP that use this
request.

DPD_AESA_CRYPT_GROUP (0x6000) defines the group for all descriptors within this request. See Table 17.

4.7 Integer Public Key Requests

4.7.1 MOD_EXP_REQ

COMMON_REQ_PREAMBLE
unsigned long aDataBytes;
unsigned char *aData;
unsigned long expBytes;
unsigned char *expData;
unsigned long modBytes;
unsigned char *modData;

Table 17. AESA_CRYPT_REQ Valid Descriptors (opId)

Descriptors Value Function Description

DPD_AESA_CBC_ENCRYPT_CRYPT 0x6000 Perform encryption in AESA using CBC mode

DPD_AESA_CBC_DECRYPT_CRYPT 0x6001 Perform decryption in AESA using CBC mode

DPD_AESA_CBC_DECRYPT_CRYPT_RDK 0x6002 Perform decryption in AESA using CBC mode with RDK

DPD_AESA_ECB_ENCRYPT_CRYPT 0x6003 Perform encryption in AESA using ECB mode

DPD_AESA_ECB_DECRYPT_CRYPT 0x6004 Perform decryption in AESA using ECB mode

DPD_AESA_ECB_DECRYPT_CRYPT_RDK 0x6005 Perform decryption in AESA using ECB mode with RDK

DPD_AESA_CTR_CRYPT 0x6006 Perform CTR in AESA

DPD_AESA_CTR_HMAC 0x6007 Perform AES CTR-mode cipher operation with integrated
authentication as part of the operation

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

24 Freescale Semiconductor

Individual Request Type Descriptions

unsigned long outBytes;
unsigned char *outData;

NUM_MM_EXP_DESC defines the number of descriptors within the DPD_MM_LDCTX_EXP_ULCTX_GROUP that
use this request.

DPD_MM_LDCTX_EXP_ULCTX_GROUP (0x5100) defines the group for all descriptors within this request. See
Table 18.

4.7.2 MOD_SS_EXP_REQ

COMMON_REQ_PREAMBLE
unsigned long expBytes;
unsigned char *expData;
unsigned long modBytes;
unsigned char *modData;
unsigned long aDataBytes;
unsigned char *aData;
unsigned long bDataBytes;
unsigned char *bData;

NUM_MM_SS_EXP_DESC defines the number of descriptors within the DPD_MM_SS_EXP_GROUP that use this
request.

DPD_MM_SS_EXP_GROUP (0x5B00) defines the group for all descriptors within this request. See Table 19.

4.7.3 MOD_R2MODN_REQ

COMMON_REQ_PREAMBLE
unsigned long modBytes;
unsigned char *modData;
unsigned long outBytes;
unsigned char *outData;

NUM_MM_R2MODN_DESC defines the number of descriptors within the
DPD_MM_LDCTX_R2MODN_ULCTX_GROUP that use this request.

Table 18. MOD_EXP_REQ Valid Descriptor (opId)

Descriptor Value Function Description

DPD_MM_LDCTX_EXP_ULCTX 0x5100 Perform a modular exponentiation operation

Table 19. MOD_SS_EXP_REQ Valid Descriptor (opId)

Descriptor Value Function Description

DPD_MM_SS_RSA_EXP 0x5B00 Perform a single-stage RSA exponentiation operation

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

Freescale Semiconductor 25

Individual Request Type Descriptions

DPD_MM_LDCTX_R2MODN_ULCTX_GROUP (0x5200) defines the group for all descriptors within this
request.See Table 20.

4.7.4 MOD_RRMODP_REQ

COMMON_REQ_PREAMBLE
unsigned long nBytes;
unsigned long pBytes;
unsigned char *pData;
unsigned long outBytes;
unsigned char *outData;

NUM_MM_RRMODP_DESC defines the number of descriptors within the
DPD_MM_LDCTX_RRMODP_ULCTX_GROUP that use this request.

DPD_MM_LDCTX_RRMODP_ULCTX_GROUP (0x5300) defines the group for all descriptors within this request.
See Table 21.

4.7.5 MOD_INV_REQ

COMMON_REQ_PREAMBLE
unsigned long nBytes;
unsigned char *inData;
unsigned long inBytes;
unsigned char *inData;
unsigned long outBytes;
unsigned char *outData;

NUM_MM_MOD_INV_DESC defines the number of descriptors within the DPD_MM_MOD_INV_ULCTX_GROUP that
use this request.

DPD_MM_MOD_INV_ULCTX_GROUP (0x5500) defines the group for all descriptors within this request. See
Table 22.

Table 20. MOD_R2MODN_REQ Valid Descriptor (opId)

Descriptor Value Function Description

DPD_MM_LDCTX_R2MODN_ULCTX 0x5200 Perform a R2MOD operation upon a public key.

Table 21. MOD_RRMODP_REQ Valid Descriptor (opId)

Descriptor Value Function Description

DPD_MM_LDCTX_RRMODP_ULCTX 0x5300 Compute the result of an RRMODP operation

Table 22. MOD_INV_REQ Valid Descriptor (opId)

Descriptor Value Function Description

DPD_MM_MOD_INV_ULCTX 0x5500 Compute the modular inverse of inData using
the modulus specified in inData

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

26 Freescale Semiconductor

Individual Request Type Descriptions

4.7.6 MOD_2OP_REQ

unsigned long bDataBytes;
unsigned char *bData;
unsigned long aDataBytes;
unsigned char *aData;
unsigned long modBytes;
unsigned char *modData;
unsigned long outBytes;
unsigned char *outData;

NUM_MM_2OP_DESC defines the number of descriptors within the DPD_MM_LDCTX_2OP_ULCTX_GROUP that
use this request.

DPD_MM_LDCTX_2OP_ULCTX_GROUP (0x5400) defines the group for all descriptors within this request. See
Table 23.

Table 23. MOD_2OP_REQ Valid Descriptors (opId)

Descriptors Value Function Description

DPD_MM_LDCTX_MUL1_ULCTX 0x5400 Perform a modular MUL1 operation

DPD_MM_LDCTX_MUL2_ULCTX 0x5401 Perform a modular MUL2 operation

DPD_MM_LDCTX_ADD_ULCTX 0x5402 Perform a modular ADD operation

DPD_MM_LDCTX_SUB_ULCTX 0x5403 Perform a modular SUB operation

DPD_POLY_LDCTX_A0_B0_MUL1_ULCTX 0x5404 Perform a modular A0-to-B0 MUL1 operation

DPD_POLY_LDCTX_A0_B0_MUL2_ULCTX 0x5405 Perform a modular A0-to-B0 MUL2 operation

DPD_POLY_LDCTX_A0_B0_ADD_ULCTX 0x5406 Perform a modular A0-to-B0 ADD operation

DPD_POLY_LDCTX_A1_B0_MUL1_ULCTX 0x5407 Perform a modular A1-to-B0 MUL1 operation

DPD_POLY_LDCTX_A1_B0_MUL2_ULCTX 0x5408 Perform a modular A1-to-B0 MUL2 operation

DPD_POLY_LDCTX_A1_B0_ADD_ULCTX 0x5409 Perform a modular A1-to-B0 ADD operation

DPD_POLY_LDCTX_A2_B0_MUL1_ULCTX 0x540A Perform a modular A2-to-B0 MUL1 operation

DPD_POLY_LDCTX_A2_B0_MUL2_ULCTX 0x540B Perform a modular A2-to-B0 MUL2 operation

DPD_POLY_LDCTX_A2_B0_ADD_ULCTX 0x540C Perform a modular A2-to-B0 ADD operation

DPD_POLY_LDCTX_A3_B0_MUL1_ULCTX 0x540D Perform a modular A3-to-B0 MUL1 operation

DPD_POLY_LDCTX_A3_B0_MUL2_ULCTX 0x540E Perform a modular A3-to-B0 MUL2 operation

DPD_POLY_LDCTX_A3_B0_ADD_ULCTX 0x540F Perform a modular A3-to-B0 ADD operation

DPD_POLY_LDCTX_A0_B1_MUL1_ULCTX 0x5410 Perform a modular A0-to-B1 MUL1 operation

DPD_POLY_LDCTX_A0_B1_MUL2_ULCTX 0x5411 Perform a modular A-to-B MUL2 operation

DPD_POLY_LDCTX_A0_B1_ADD_ULCTX 0x5412 Perform a modular A0-to-B1 ADD operation

DPD_POLY_LDCTX_A1_B1_MUL1_ULCTX 0x5413 Perform a modular A1-to-B1 MUL1 operation

DPD_POLY_LDCTX_A1_B1_MUL2_ULCTX 0x5414 Perform a modular A1-to-B1 MUL2 operation

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

Freescale Semiconductor 27

Individual Request Type Descriptions

DPD_POLY_LDCTX_A1_B1_ADD_ULCTX 0x5415 Perform a modular A1-to-B1 ADD operation

DPD_POLY_LDCTX_A2_B1_MUL1_ULCTX 0x5416 Perform a modular A2-to-B1 MUL1 operation

DPD_POLY_LDCTX_A2_B1_MUL2_ULCTX 0x5417 Perform a modular A2-to-B1 MUL2 operation

DPD_POLY_LDCTX_A2_B1_ADD_ULCTX 0x5418 Perform a modular A2-to-B1 ADD operation

DPD_POLY_LDCTX_A3_B1_MUL1_ULCTX 0x5419 Perform a modular A3-to-B1 MUL1 operation

DPD_POLY_LDCTX_A3_B1_MUL2_ULCTX 0x541A Perform a modular A3-to-B1 MUL2 operation

DPD_POLY_LDCTX_A3_B1_ADD_ULCTX 0x541B Perform a modular A3-to-B1 ADD operation

DPD_POLY_LDCTX_A0_B2_MUL1_ULCTX 0x541C Perform a modular A0-to-B2 MUL1 operation

DPD_POLY_LDCTX_A0_B2_MUL2_ULCTX 0x541D Perform a modular A0-to-B2 MUL2 operation

DPD_POLY_LDCTX_A0_B2_ADD_ULCTX 0x541E Perform a modular A0-to-B2ADD operation

DPD_POLY_LDCTX_A1_B2_MUL1_ULCTX 0x541F Perform a modular A1-to-B2 MUL1 operation

DPD_POLY_LDCTX_A1_B2_MUL2_ULCTX 0x5420 Perform a modular A1-to-B2 MUL2 operation

DPD_POLY_LDCTX_A1_B2_ADD_ULCTX 0x5421 Perform a modular A1-to-B2 ADD operation

DPD_POLY_LDCTX_A2_B2_MUL1_ULCTX 0x5422 Perform a modular A2-to-B2 MUL1 operation

DPD_POLY_LDCTX_A2_B2_MUL2_ULCTX 0x5423 Perform a modular A2-to-B2 MUL2 operation

DPD_POLY_LDCTX_A2_B2_ADD_ULCTX 0x5424 Perform a modular A2-to-B2 ADD operation

DPD_POLY_LDCTX_A3_B2_MUL1_ULCTX 0x5425 Perform a modular A3-to-B2 MUL1 operation

DPD_POLY_LDCTX_A3_B2_MUL2_ULCTX 0x5426 Perform a modular A3-to-B2 MUL2 operation

DPD_POLY_LDCTX_A3_B2_ADD_ULCTX 0x5427 Perform a modular A3-to-B2 ADD operation

DPD_POLY_LDCTX_A0_B3_MUL1_ULCTX 0x5428 Perform a modular A0-to-B3 MUL1 operation

DPD_POLY_LDCTX_A0_B3_MUL2_ULCTX 0x5429 Perform a modular A0-to-B3 MUL2 operation

DPD_POLY_LDCTX_A0_B3_ADD_ULCTX 0x542A Perform a modular A0-to-B3 ADD operation

DPD_POLY_LDCTX_A1_B3_MUL1_ULCTX 0x542B Perform a modular A1-to-B3 MUL1 operation

DPD_POLY_LDCTX_A1_B3_MUL2_ULCTX 0x542C Perform a modular A1-to-B3 MUL2 operation

DPD_POLY_LDCTX_A1_B3_ADD_ULCTX 0x542D Perform a modular A1-to-B3 ADD operation

DPD_POLY_LDCTX_A2_B3_MUL1_ULCTX 0x542E Perform a modular A2-to-B3 MUL1 operation

DPD_POLY_LDCTX_A2_B3_MUL2_ULCTX 0x542F Perform a modular A2-to-B3 MUL2 operation

DPD_POLY_LDCTX_A2_B3_ADD_ULCTX 0x5430 Perform a modular A2-to-B3 ADD operation

DPD_POLY_LDCTX_A3_B3_MUL1_ULCTX 0x5431 Perform a modular A3-to-B3 MUL1 operation

DPD_POLY_LDCTX_A3_B3_MUL2_ULCTX 0x5432 Perform a modular A3-to-B3 MUL2 operation

DPD_POLY_LDCTX_A3_B3_ADD_ULCTX 0x5433 Perform a modular A3-to-B3 ADD operation

Table 23. MOD_2OP_REQ Valid Descriptors (opId) (continued)

Descriptors Value Function Description

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

28 Freescale Semiconductor

Individual Request Type Descriptions

4.8 ECC Public Key Requests

4.8.1 ECC_POINT_REQ

COMMON_REQ_PREAMBLE
unsigned long nDataBytes;
unsigned char *nData;
unsigned long eDataBytes;
unsigned char *eData;
unsigned long buildDataBytes;
unsigned char *buildData;
unsigned long b1DataBytes;
unsigned char *b1Data;
unsigned long b2DataBytes;
unsigned char *b2Data;
unsigned long b3OutDataBytes;
unsigned char *b3OutData;

NUM_EC_POINT_DESC defines the number of descriptors within the DPD_EC_LDCTX_kP_ULCTX_GROUP that
use this request.

DPD_EC_LDCTX_kP_ULCTX_GROUP (0x5800) defines the group for all descriptors within this request.
Table 24.

4.8.2 ECC_2OP_REQ

COMMON_REQ_PREAMBLE
unsigned long bDataBytes;
unsigned char *bData;
unsigned long aDataBytes;
unsigned char *aData;
unsigned long modBytes;

Table 24. ECC_POINT_REQ Valid Descriptors (opId)

Descriptors Value Function Description

DPD_EC_FP_AFF_PT_MULT 0x5800 Perform a PT_MULT operation in an affine system

DPD_EC_FP_PROJ_PT_MULT 0x5801 Perform a PT_MULT operation in a projective system

DPD_EC_F2M_AFF_PT_MULT 0x5802 Perform an F2M PT_MULT operation in an affine system

DPD_EC_F2M_PROJ_PT_MULT 0x5803 Perform an F2M PT_MULT operation in a projective system

DPD_EC_FP_LDCTX_ADD_ULCTX 0x5804 Perform an FP add operation

DPD_EC_FP_LDCTX_DOUBLE_ULCTX 0x5805 Perform an FP double operation

DPD_EC_F2M_LDCTX_ADD_ULCTX 0x5806 Perform an F2M add operation

DPD_EC_F2M_LDCTX_DOUBLE_ULCTX 0x5807 Perform an F2M double operation

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

Freescale Semiconductor 29

Individual Request Type Descriptions

unsigned char *modData;
unsigned long outBytes;
unsigned char *outData;

NUM_EC_2OP_DESC defines the number of descriptors within the DPD_EC_2OP_GROUP that use this request.

DPD_EC_2OP_GROUP (0x5900) defines the group for all descriptors within this request. See Table 25.

4.8.3 ECC_SPKBUILD_REQ

COMMON_REQ_PREAMBLE
unsigned long a0DataBytes;
unsigned char *a0Data;
unsigned long a1DataBytes;
unsigned char *a1Data;
unsigned long a2DataBytes;
unsigned char *a2Data;
unsigned long a3DataBytes;
unsigned char *a3Data;
unsigned long b0DataBytes;
unsigned char *b0Data;
unsigned long b1DataBytes;
unsigned char *b1Data;
unsigned long buildDataBytes;
unsigned char *buildData;

NUM_EC_SPKBUILD_DESC defines the number of descriptors within the DPD_EC_SPKBUILD_GROUP that use
this request.

DPD_EC_SPKBUILD_GROUP (0x5a00) defines the group for all descriptors within this request. See Table 26.

4.8.4 ECC_PTADD_DBL_REQ

COMMON_REQ_PREAMBLE
unsigned long modBytes;
unsigned char *modData;
unsigned long buildDataBytes;

Table 25. ECC_2OP_REQ Valid Descriptors (opId)

Descriptor Value Function Description

DPD_EC_F2M_LDCTX_MUL1_ULCTX 0x5900 Perform an F2M MULT1 operation

Table 26. ECC_SPKBUILD_REQ Valid Descriptor (opId)

Descriptor Value Function Description

DPD_EC_SPKBUILD_ULCTX 0x5A00 Using separate values for a0-a3 and b0-b1, build a uniform data block that can be
used to condense data to a point that allow it to be used with ECC operational
requests.

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

30 Freescale Semiconductor

Individual Request Type Descriptions

unsigned char *buildData;
unsigned long b2DataBytes;
unsigned char *b2Data;
unsigned long b3DataBytes;
unsigned char *b3Data;
unsigned long b1DataBytes;
unsigned char *b2Data;
unsigned long b2DataBytes;
unsigned char *b2Data;
unsigned long b3DataBytes;
unsigned char *b3Data;

4.9 IPSec Requests

4.9.1 IPSEC_CBC_REQ

COMMON_REQ_PREAMBLE
unsigned long hashKeyBytes;
unsigned char *hashKeyData;
unsigned long cryptKeyBytes;
unsigned char *cryptKeyData;
unsigned long cryptCtxInBytes;
unsigned char *cryptCtxInData;
unsigned long hashInDataBytes;
unsigned char *hashInData;
unsigned long inDataBytes;
unsigned char *inData;
unsigned char *cryptDataOut;
unsigned long hashDataOutBytes;
unsigned char *hashDataOut;

NUM_IPSEC_CBC_DESC defines the number of descriptors within the DPD_IPSEC_CBC_GROUP that use this
request.

Table 27. ECC_PTADD_DBL_REQ Valid Descriptor (opId)

Descriptor Value Function Description

DPD_EC_FPADD 0x5d00 Perform an FP add operation

DPD_EC_FPDBL 0x5d01 Perform an FP double operation

DPD_EC_F2MADD 0x5d02 Perform an F2M add operation

DPD_EC_F2MDBL 0x5d03 Perform an F2M double operation

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

Freescale Semiconductor 31

Individual Request Type Descriptions

DPD_IPSEC_CBC_GROUP (0x7000) defines the group for all descriptors within this request. See Table 28.

4.9.2 IPSEC_ECB_REQ

COMMON_REQ_PREAMBLE
unsigned long hashKeyBytes;
unsigned char *hashKeyData;
unsigned long cryptKeyBytes;
unsigned char *cryptKeyData;
unsigned long hashInDataBytes;
unsigned char *hashInData;
unsigned long inDataBytes;
unsigned char *inData;
unsigned long hashDataOutBytes;
unsigned char *hashDataOut;
unsigned char *cryptDataOut;

Table 28. IPSEC_CBC_REQ Valid Descriptors (opId) Descriptors

Descriptor Value Function Description

DPD_IPSEC_CBC_SDES_ENCRYPT_MD5 0x7000 Perform the IPSec process of encrypting in single DES using
CBC mode with MD5 padding.

DPD_IPSEC_CBC_SDES_ENCRYPT_SHA 0x7001 Perform the IPSec process of encrypting in single DES using
CBC mode with SHA-1 padding.

DPD_IPSEC_CBC_SDES_ENCRYPT_SHA256 0x7002 Perform the IPSec process of encrypting in single DES using
CBC mode with SHA-256 padding.

DPD_IPSEC_CBC_SDES_DECRYPT_MD5 0x7003 Perform the IPSec process of decrypting in single DES using
CBC mode with MD5 padding.

DPD_IPSEC_CBC_SDES_DECRYPT_SHA 0x7004 Perform the IPSec process of decrypting in single DES using
CBC mode with SHA-1 padding.

DPD_IPSEC_CBC_SDES_DECRYPT_SHA256 0x7005 Perform the IPSec process of decrypting in single DES using
CBC mode with SHA-256 padding.

DPD_IPSEC_CBC_TDES_ENCRYPT_MD5 0x7006 Perform the IPSec process of encrypting in triple DES using CBC
mode with MD5 padding.

DPD_IPSEC_CBC_TDES_ENCRYPT_SHA 0x7007 Perform the IPSec process of encrypting in triple DES using CBC
mode with SHA-1 padding.

DPD_IPSEC_CBC_TDES_ENCRYPT_SHA256 0x7008 Perform the IPSec process of encrypting in triple DES using CBC
mode with SHA-256 padding.

DPD_IPSEC_CBC_TDES_DECRYPT_MD5 0x7009 Perform the IPSec process of decrypting in triple DES using CBC
mode with MD5 padding.

DPD_IPSEC_CBC_TDES_DECRYPT_SHA 0x700A Perform the IPSec process of decrypting in triple DES using CBC
mode with SHA-1 padding.

DPD_IPSEC_CBC_TDES_DECRYPT_SHA256 0x700B Perform the IPSec process of decrypting in triple DES using CBC
mode with SHA-256 padding.

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

32 Freescale Semiconductor

Individual Request Type Descriptions

NUM_IPSEC_ECB_DESC defines the number of descriptors within the DPD_IPSEC_ECB_GROUP that use this
request.

DPD_IPSEC_ECB_GROUP (0x7100) defines the group for all descriptors within this request. See Table 29.

4.9.3 IPSEC_AES_CBC_REQ

unsigned long hashKeyBytes;
unsigned char *hashKeyData;
unsigned long cryptKeyBytes;
unsigned char *cryptKeyData;
unsigned long cryptCtxInBytes;
unsigned char *cryptCtxInData;
unsigned long hashInDataBytes;
unsigned char *hashInData;
unsigned long inDataBytes;
unsigned char *inData;
unsigned char *cryptDataOut;

Table 29. IPSEC_ECB_REQ Valid Descriptors (opId)

Descriptors Value Function Description

DPD_IPSEC_ECB_SDES_ENCRYPT_MD5 0x7100 Perform the IPSec process of encrypting in single DES using
ECB mode with MD5 padding.

DPD_IPSEC_ECB_SDES_ENCRYPT_SHA 0x7101 Perform the IPSec process of encrypting in single DES using
ECB mode with SHA-1 padding.

DPD_IPSEC_ECB_SDES_ENCRYPT_SHA256 0x7102 Perform the IPSec process of encrypting in single DES using
ECB mode with SHA-256 padding.

DPD_IPSEC_ECB_SDES_DECRYPT_MD5 0x7103 Perform the IPSec process of decrypting in single DES using
ECB mode with MD5 padding.

DPD_IPSEC_ECB_SDES_DECRYPT_SHA 0x7104 Perform the IPSec process of decrypting in single DES using
ECB mode with SHA-1 padding.

DPD_IPSEC_ECB_SDES_DECRYPT_SHA256 0x7105 Perform the IPSec process of decrypting in single DES using
ECB mode with SHA-256 padding.

DPD_IPSEC_ECB_TDES_ENCRYPT_MD5 0x7106 Perform the IPSec process of encrypting in triple DES using ECB
mode with MD5 padding.

DPD_IPSEC_ECB_TDES_ENCRYPT_SHA 0x7107 Perform the IPSec process of encrypting in triple DES using ECB
mode with SHA-1 padding.

DPD_IPSEC_ECB_TDES_ENCRYPT_SHA256 0x7108 Perform the IPSec process of encrypting in triple DES using ECB
mode with SHA-256 padding.

DPD_IPSEC_ECB_TDES_DECRYPT_MD5 0x7109 Perform the IPSec process of decrypting in triple DES using ECB
mode with MD5 padding.

DPD_IPSEC_ECB_TDES_DECRYPT_SHA 0x710A Perform the IPSec process of decrypting in triple DES using ECB
mode with SHA-1 padding.

DPD_IPSEC_ECB_TDES_DECRYPT_SHA256 0x710B Perform the IPSec process of decrypting in triple DES using ECB
mode with SHA-256 padding.

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

Freescale Semiconductor 33

Individual Request Type Descriptions

unsigned long hashDataOutBytes;
unsigned char *hashDataOut;

NUM_IPSEC_AES_CBC_DESC defines the number of descriptors within the DPD_IPSEC_AES_CBC_GROUP that
use this request.

DPD_IPSEC_AES_CBC_GROUP (0x8000) defines the group for all descriptors within this request. See
Table 30.

4.9.4 IPSEC_AES_ECB_REQ

COMMON_REQ_PREAMBLE
unsigned long hashKeyBytes;
unsigned char *hashKeyData;
unsigned long cryptKeyBytes;
unsigned char *cryptKeyData;
unsigned long hashInDataBytes;
unsigned char *hashInData;

Table 30. IPSEC_AES_CBC_REQ Valid Descriptors (opId)

Descriptors Value Function Description

DPD_IPSEC_AES_CBC_ENCRYPT_MD5_APAD 0x8000 Perform the IPSec process of encrypting in AES
using CBC mode with MD5 auto padding.

DPD_IPSEC_AES_CBC_ENCRYPT_SHA_APAD 0x8001 Perform the IPSec process of encrypting in AES
using CBC mode with SHA-1 auto padding.

DPD_IPSEC_AES_CBC_ENCRYPT_SHA256_APAD 0x8002 Perform the IPSec process of encrypting in AES
using CBC mode with SHA-256 auto padding.

DPD_IPSEC_AES_CBC_ENCRYPT_MD5 0x8003 Perform the IPSec process of encrypting in AES
using CBC mode with MD5.

DPD_IPSEC_AES_CBC_ENCRYPT_SHA 0x8004 Perform the IPSec process of encrypting in AES
using CBC mode with SHA-1.

DPD_IPSEC_AES_CBC_ENCRYPT_SHA256 0x8005 Perform the IPSec process of encrypting in AES
using CBC mode with SHA-256.

DPD_IPSEC_AES_CBC_DECRYPT_MD5_APAD 0x8006 Perform the IPSec process of decrypting in AES
using CBC mode with MD5 auto padding.

DPD_IPSEC_AES_CBC_DECRYPT_SHA_APAD 0x8007 Perform the IPSec process of decrypting in AES
using CBC mode with SHA-1 auto padding.

DPD_IPSEC_AES_CBC_DECRYPT_SHA256_APAD 0x8008 Perform the IPSec process of decrypting in AES
using CBC mode with SHA-256 auto padding.

DPD_IPSEC_AES_CBC_DECRYPT_MD5 0x8009 Perform the IPSec process of decrypting in AES
using CBC mode with MD5.

DPD_IPSEC_AES_CBC_DECRYPT_SHA 0x800A Perform the IPSec process of decrypting in AES
using CBC mode with SHA-1.

DPD_IPSEC_AES_CBC_DECRYPT_SHA256 0x800B Perform the IPSec process of decrypting in AES
using CBC mode with SHA-256.

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

34 Freescale Semiconductor

Individual Request Type Descriptions

unsigned long inDataBytes;
unsigned char *inData;
unsigned char *cryptDataOut;
unsigned long hashDataOutBytes;
unsigned char *hashDataOut;

NUM_IPSEC_AES_ECB_DESC defines the number of descriptors within the DPD_IPSEC_AES_ECB_GROUP that
use this request.

DPD_IPSEC_AES_ECB_GROUP (0x8100) defines the group for all descriptors within this request. See
Table 31.

4.9.5 IPSEC_ESP_REQ

COMMON_REQ_PREAMBLE
unsigned long hashKeyBytes;
unsigned char *hashKeyData;
unsigned long cryptKeyBytes;

Table 31. IPSEC_AES_ECB_REQ Valid Descriptors (opId)

Descriptors Value Function Description

DPD_IPSEC_AES_ECB_ENCRYPT_MD5_APAD 0x8100 Perform the IPSec process of encrypting in AES
using ECB mode with MD5 auto padding.

DPD_IPSEC_AES_ECB_ENCRYPT_SHA_APAD 0x8101 Perform the IPSec process of encrypting in AES
using ECB mode with SHA-1 auto padding.

DPD_IPSEC_AES_ECB_ENCRYPT_SHA256_APAD 0x8102 Perform the IPSec process of encrypting in AES
using ECB mode with SHA-256 auto padding.

DPD_IPSEC_AES_ECB_ENCRYPT_MD5 0x8103 Perform the IPSec process of encrypting in AES
using ECB mode with MD5.

DPD_IPSEC_AES_ECB_ENCRYPT_SHA 0x8104 Perform the IPSec process of encrypting in AES
using ECB mode with SHA-1.

DPD_IPSEC_AES_ECB_ENCRYPT_SHA256 0x8105 Perform the IPSec process of encrypting in AES
using ECB mode with SHA-256.

DPD_IPSEC_AES_ECB_DECRYPT_MD5_APAD 0x8106 Perform the IPSec process of decrypting in AES
using ECB mode with MD5 auto padding.

DPD_IPSEC_AES_ECB_DECRYPT_SHA_APAD 0x8107 Perform the IPSec process of decrypting in AES
using ECB mode with SHA-1 auto padding.

DPD_IPSEC_AES_ECB_DECRYPT_SHA256_APAD 0x8108 Perform the IPSec process of decrypting in AES
using ECB mode with SHA-256 auto padding.

DPD_IPSEC_AES_ECB_DECRYPT_MD5 0x8109 Perform the IPSec process of decrypting in AES
using ECB mode with MD5.

DPD_IPSEC_AES_ECB_DECRYPT_SHA 0x810A Perform the IPSec process of decrypting in AES
using ECB mode with SHA-1.

DPD_IPSEC_AES_ECB_DECRYPT_SHA256 0x810B Perform the IPSec process of decrypting in AES
using ECB mode with SHA-256.

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

Freescale Semiconductor 35

Individual Request Type Descriptions

unsigned char *cryptKeyData;
unsigned long cryptCtxInBytes;
unsigned char *cryptCtxInData;
unsigned long hashInDataBytes;
unsigned char *hashInData;
unsigned long inDataBytes;
unsigned char *inData;
unsigned char *cryptDataOut;
unsigned long hashDataOutBytes;
unsigned char *hashDataOut;
unsigned long cryptCtxOutBytes;
unsigned char *cryptCtxOutData;

NUM_IPSEC_ESP_DESC defines the number of descriptors within the DPD_IPSEC_ESP_GROUP that use this
request.

DPD_IPSEC_ESP_GROUP (0x7500) defines the group for all descriptors within this request. See Table 32.
Table 32. IPSEC_ESP_REQ Valid Descriptors (opId)

Descriptors Value Function Description

DPD_IPSEC_ESP_OUT_SDES_ECB_CRPT
_MD5_PAD

0x7500 Process an outbound IPSec encapsulated system payload packet
using single DES in ECB mode and MD5 with auto padding

DPD_IPSEC_ESP_OUT_SDES_ECB_CRPT
_SHA_PAD

0x7501 Process an outbound IPSec encapsulated system payload packet
using single DES in ECB mode, and SHA1 with auto padding

DPD_IPSEC_ESP_OUT_SDES_ECB_CRPT
_SHA256_PAD

0x7502 Process an outbound IPSec encapsulated system payload packet
using single DES in ECB mode, and SHA256 with auto padding

DPD_IPSEC_ESP_IN_SDES_ECB_DCRPT
_MD5_PAD

0x7503 Process an inbound IPSec encapsulated system payload packet
using single DES in ECB mode, and MD5 with auto padding

DPD_IPSEC_ESP_IN_SDES_ECB_DCRPT
_SHA_PAD

0x7504 Process an inbound IPSec encapsulated system payload packet
using single DES in ECB mode, and SHA1 with auto padding

DPD_IPSEC_ESP_IN_SDES_ECB_DCRPT
_SHA256_PAD

0x7505 Process an inbound IPSec encapsulated system payload packet
using single DES in ECB mode, and SHA256 with auto padding

DPD_IPSEC_ESP_OUT_SDES_CBC_CRPT
_MD5_PAD

0x7506 Process an outbound IPSec encapsulated system payload packet
using single DES in CBC mode, and MD5 with auto padding

DPD_IPSEC_ESP_OUT_SDES_CBC_CRPT
_SHA_PAD

0x7507 Process an outbound IPSec encapsulated system payload packet
using single DES in CBC mode, and SHA1 with auto padding

DPD_IPSEC_ESP_OUT_SDES_CBC_CRPT
_SHA256_PAD

0x7508 Process an outbound IPSec encapsulated system payload packet
using single DES in CBC mode, and SHA256 with auto padding

DPD_IPSEC_ESP_IN_SDES_CBC_DCRPT
_MD5_PAD

0x7509 Process an inbound IPSec encapsulated system payload packet
using single DES in CBC mode, and MD5 with auto padding

DPD_IPSEC_ESP_IN_SDES_CBC_DCRPT
_SHA_PAD

0x750A Process an inbound IPSec encapsulated system payload packet
using single DES in CBC mode, and SHA1 with auto padding

DPD_IPSEC_ESP_IN_SDES_CBC_DCRPT
_SHA256_PAD

0x750B Process an inbound IPSec encapsulated system payload packet
using single DES in CBC mode, and SHA256 with auto padding

DPD_IPSEC_ESP_OUT_TDES_CBC_CRPT
_MD5_PAD

0x750C Process an outbound IPSec encapsulated system payload packet
using triple DES in CBC mode, and MD5 with auto padding

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

36 Freescale Semiconductor

Individual Request Type Descriptions

DPD_IPSEC_ESP_OUT_TDES_CBC_CRPT
_SHA_PAD

0x750D Process an outbound IPSec encapsulated system payload packet
using triple DES in CBC mode, and SHA1 with auto padding

DPD_IPSEC_ESP_OUT_TDES_CBC_CRPT
_SHA256_PAD

0x750E Process an outbound IPSec encapsulated system payload packet
using triple DES in CBC mode, and SHA256 with auto padding

DPD_IPSEC_ESP_IN_TDES_CBC_DCRPT
_MD5_PAD

0x750F Process an inbound IPSec encapsulated system payload packet
using triple DES in CBC mode, and MD5 with auto padding

DPD_IPSEC_ESP_IN_TDES_CBC_DCRPT
_SHA_PAD

0x7510 Process an inbound IPSec encapsulated system payload packet
using triple DES in CBC mode, and SHA1 with auto padding

DPD_IPSEC_ESP_IN_TDES_CBC_DCRPT
_SHA256_PAD

0x7511 Process an inbound IPSec encapsulated system payload packet
using triple DES in CBC mode, and SHA256 with auto padding

DPD_IPSEC_ESP_OUT_TDES_ECB_CRPT
_MD5_PAD

0x7512 Process an outbound IPSec encapsulated system payload packet
using triple DES in ECB mode, and MD5 with auto padding

DPD_IPSEC_ESP_OUT_TDES_ECB_CRPT
_SHA_PAD

0x7513 Process an outbound IPSec encapsulated system payload packet
using triple DES in ECB mode, and SHA1 with auto padding

DPD_IPSEC_ESP_OUT_TDES_ECB_CRPT
_SHA256_PAD

0x7514 Process an outbound IPSec encapsulated system payload packet
using triple DES in ECB mode, and SHA256 with auto padding

DPD_IPSEC_ESP_IN_TDES_ECB_DCRPT
_MD5_PAD

0x7515 Process an inbound IPSec encapsulated system payload packet
using triple DES in ECB mode, and MD5 with auto padding

DPD_IPSEC_ESP_IN_TDES_ECB_DCRPT
_SHA_PAD

0x7516 Process an inbound IPSec encapsulated system payload packet
using triple DES in ECB mode, and SHA1 with auto padding

DPD_IPSEC_ESP_IN_TDES_ECB_DCRPT
_SHA256_PAD

0x7517 Process an inbound IPSec encapsulated system payload packet
using triple DES in ECB mode, and SHA256 with auto padding

DPD_IPSEC_ESP_IN_SDES_ECB_DCRPT_MD5
_PAD_CMP

0x7518 Process an inbound IPSec encapsulated system payload packet
using single DES in ECB mode, and MD5 with auto padding. If the
packet signature does not match the expected signature, and
error will be returned (Does not apply to SEC 2.0).

DPD_IPSEC_ESP_IN_SDES_ECB_DCRPT_SHA
_PAD_CMP

0x7519 Process an inbound IPSec encapsulated system payload packet
using single DES in ECB mode, and SHA1 with auto padding. If
the packet signature does not match the expected signature, and
error will be returned (Does not apply to SEC 2.0)

DPD_IPSEC_ESP_IN_SDES_ECB_DCRPT_SHA
256_PAD_CMP

0x751a Process an inbound IPSec encapsulated system payload packet
using single DES in ECB mode, andSHA256 with auto padding. If
the packet signature does not match the expected signature, and
error will be returned (Does not apply to SEC 2.0).

DPD_IPSEC_ESP_IN_SDES_CBC_DCRPT_MD5
_PAD_CMP

0x751b Process an inbound IPSec encapsulated system payload packet
using single DES in CBC mode, and MD5 with auto padding. If the
packet signature does not match the expected signature, and
error will be returned (Does not apply to SEC 2.0).

DPD_IPSEC_ESP_IN_SDES_CBC_DCRPT_SHA
_PAD_CMP

0x751c Process an inbound IPSec encapsulated system payload packet
using single DES in CBC mode, and SHA1 with auto padding. If
the packet signature does not match the expected signature, and
error will be returned (Does not apply to SEC 2.0).

Table 32. IPSEC_ESP_REQ Valid Descriptors (opId) (continued)

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

Freescale Semiconductor 37

Individual Request Type Descriptions

4.10 802.11 Protocol Requests

4.10.1 CCMP_REQ

COMMON_REQ_PREAMBLE
unsigned long keyBytes;
unsigned char *keyData;
unsigned long ctxBytes;
unsigned char *context;
unsigned long FrameDataBytes;
unsigned char *FrameData;
unsigned long AADBytes;
unsigned char *AADData;
unsigned long cryptDataBytes;
unsigned char *cryptDataOut;
unsigned long MICBytes;
unsigned char *MICData;

DPD_IPSEC_ESP_IN_SDES_CBC_DCRPT_SHA
256_PAD_CMP

0x751d Process an inbound IPSec encapsulated system payload packet
using single DES in CBC mode, and SHA256 with auto padding.
If the packet signature does not match the expected signature,
and error will be returned (Does not apply to SEC 2.0).

DPD_IPSEC_ESP_IN_TDES_ECB_DCRPT_MD5
_PAD_CMP

0x751e Process an inbound IPSec encapsulated system payload packet
using triple DES in ECB mode, and MD5 with auto padding. If the
packet signature does not match the expected signature, and
error will be returned (Does not apply to SEC 2.0).

DPD_IPSEC_ESP_IN_TDES_ECB_DCRPT_SHA
_PAD_CMP

0x751f Process an inbound IPSec encapsulated system payload packet
using triple DES in ECB mode, and SHA1 with auto padding. If the
packet signature does not match the expected signature, and
error will be returned (Does not apply to SEC 2.0).

DPD_IPSEC_ESP_IN_TDES_ECB_DCRPT_SHA
256_PAD_CMP

0x7520 Process an inbound IPSec encapsulated system payload packet
using triple DES in ECB mode, andSHA256 with auto padding. If
the packet signature does not match the expected signature, and
error will be returned (Does not apply to SEC 2.0).

DPD_IPSEC_ESP_IN_TDES_ECB_DCRPT_MD5
_PAD_CMP

0x7521 Process an inbound IPSec encapsulated system payload packet
using triple DES in CBC mode, and MD5 with auto padding. If the
packet signature does not match the expected signature, and
error will be returned (Does not apply to SEC 2.0).

DPD_IPSEC_ESP_IN_TDES_ECB_DCRPT_SHA
_PAD_CMP

0x7512 Process an inbound IPSec encapsulated system payload packet
using triple DES in CBC mode, and SHA1 with auto padding. If the
packet signature does not match the expected signature, and
error will be returned (Does not apply to SEC 2.0).

DPD_IPSEC_ESP_IN_TDES_ECB_DCRPT_SHA
256_PAD_CMP

0x7513 Process an inbound IPSec encapsulated system payload packet
using single DES in CBC mode, and SHA256 with auto padding.
If the packet signature does not match the expected signature,
and error will be returned (Does not apply to SEC 2.0).

Table 32. IPSEC_ESP_REQ Valid Descriptors (opId) (continued)

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

38 Freescale Semiconductor

Individual Request Type Descriptions

NUM_CCMP_DESC defines the number of descriptors within the DPD_CCMP_GROUP that use this request.

DPD_CCMP_GROUP (0x6500) defines the group for all descriptors within this request. See Table 33.

4.11 SRTP Protocol Requests

4.11.1 SRTP_REQ

COMMON_REQ_PREAMBLE
unsigned long hashKeyBytes;
unsigned char *hashKeyData;
unsigned long keyBytes;
unsigned char *keyData;
unsigned long ivBytes;
unsigned char *ivData;
unsigned long HeaderBytes;
unsigned long inBytes;
unsigned char *inData;
unsigned long ROCBytes;
unsigned long cryptDataBytes;
unsigned char *cryptDataOut;
unsigned long digestBytes;
unsigned char *digestData;
unsigned long outIvBytes;
unsigned char *outIvData;

NUM_SRTP_DESC defines the number of descriptors within the DPD_SRTP_GROUP that use this request.

DPD_SRTP_GROUP (0x8500) defines the group for all descriptors within this request. See Table 34.

Table 33. CCMP_REQ Valid Descriptors (opId)

Descriptors Value Function Description

DPD_802_11_CCMP_OUTBOUND 0x6500 Process an outbound CCMP packet.

DPD_802_11_CCMP_INBOUND 0x6501 Process an inbound CCMP packet.

DPD_802_11_CCMP_INBOUND_CMP 0x6502 Process an inbound CCMP packet and compare the packet signature with
an expected value. If they don’t compare, return an error (Does not apply to
SEC 2.0).

Table 34. SRTP_REQ Valid Descriptors (opId)

Descriptors Value Function Description

DPD_SRTP_OUTBOUND 0x8500 Process an outbound SRTP packet.

DPD_SRTP_INBOUND 0x8501 Process an inbound SRTP packet.

DPD_SRTP_INBOUND_CMP 0x8502 Process an inbound SRTP packet and compare the signature with an expected
value. If the compared values differ, return an error (Does not apply to SEC 2.0).

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

Freescale Semiconductor 39

Individual Request Type Descriptions

4.12 RAID XOR Requests (Does not apply to SEC 2.0)

4.12.1 RAID_XOR_REQ
COMMON_REQ_PREAMBLE
unsigned char *inDataA;
unsigned char *inDataB;
unsigned char *inDataC;
unsigned char *outData;
unsigned long opSize;

NUM_RAID_XOR_DESC defines the number of descriptors within the DPD_RAID_XOR_GROUP that use this
request.

DPD_RAID_XOR_GROUP (0x6100) defines the group for all descriptors within this request. See Table 35.

4.13 Kasumi Cipher Requests (SEC 2.1 only)

4.13.1 KEA_CRYPT_REQ

COMMON_REQ_PREAMBLE
unsigned long ivBytes;
unsigned char *ivData
unsigned long keyBytes;
unsigned char *keyData;
unsigned long inBytes; /* multiple of 8 bytes */
unsigned char *inData;
unsigned long outBytes;
unsigned char *outData; /* output length = input length */

/*if f9_CMP, this becomes compare value */
unsigned long outIvBytes;
unsigned char *outIvData;
unsigned long ctxBytes;
unsigned char *ctxData; /* f9 integrity digest/context */

NUM_KEA_CRYPT_DESC defines the number of descriptors within the DPD_KEA_CRYPT_GROUP that use this
request.

DPD_KEA_CRYPT_GROUP (0xa000) defines the group for all descriptors within this request. See Table 36.

Table 35. RAID_XOR_REQ Valid Descriptors (opId)

Descriptors Value Function Description

DPD_RAID_XOR 0x6100 Perform an XOR operation of either 2 or 3 of the input data blocks, and write the output.

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

40 Freescale Semiconductor

Individual Request Type Descriptions

4.14 SSL/TLS Processing Requests (Does not apply to SEC 2.0)
Note that there are 4 different classes of requests for SSL/TLS message types; block or stream cipher,
either inbound or outbound. Since each type has significantly differing content, and data mapping into
descriptors differs for each type, the four separate request types have their own request structure.

4.14.1 TLS_BLOCK_INBOUND_REQ

COMMON_REQ_PREAMBLE
unsigned long hashKeyBytes;
unsigned char *hashKeyData;
unsigned long hashOnlyBytes;
unsigned char *hashOnlyData;
unsigned long ivBytes;
unsigned char *ivData;
unsigned long cipherKeyBytes;
unsigned char *cipherKeyData;
unsigned long inBytes;
unsigned char *inData;
unsigned long MACcmpBytesl
unsigned long outBytes;
unsigned char *outData;
unsigned long MACoutBytes;
unsigned long ivOutBytes;

Table 36. KEA_CRYPT_REQ Valid Descriptors (opId)

Descriptors Value Function Description

DPD_KEA_f8_CIPHER_INIT 0x6100 Perform f8 cipher function with initial cipher state set.

DPD_KEA_f8_CIPHER 0x6101 Perform f8 cipher function using cipher state remaining from previous
operation.

DPD_KEA_f9_CIPHER_INIT 0x6102 Perform f9 authentication function with initial state set.

DPD_KEA_f9_CIPHER 0x6103 Perform f9 authentication function using existing state.

DPD_KEA_f9_CIPHER_FINAL 0x6104 Perform f9 authentication and finalize digest using existing state.

DPD_KEA_f9_CIPHER_INIT_FINAL 0x6105 Perform f9 authentication and finalize digest using initialized cipher
state.

DPD_KEA_GSM_A53_CIPHER 0x6106 Perform single-pass 3GPP GSM A5/3 message processing.

DPD_KEA_EDGE_A53_CIPHER 0x6107 Perform single-pass 3GPP EDGE A5/2 message processing.

DPD_KEA_f9_CIPHER_FINAL_CMP 0x6108 Perform f9 authentication and finalize digest using existing cipher
state. Compare final digest with expected value, and flag error if they
do not match.

DPD_KEA_f9_CIPHER_INIT_FINAL_CMP 0x6109 Perform f9 authentication and finalize digest using initial cipher state.
Compare final digest with expected value, and flag error if they do not
match.

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

Freescale Semiconductor 41

Individual Request Type Descriptions

unsigned char *ivOutData;

NUM_TLS_BLOCK_INBOUND_DESC defines the number of descriptors within the
DPD_TLS_BLOCK_INBOUND_GROUP that use this request.

DPD_TLS_BLOCK_INBOUND_GROUP (0x9000) defines the group for all descriptors within this request. See
Table 37.

Table 37. TLS_BLOCK_INBOUND_REQ Valid Descriptors (opId)

Descriptors Value Function Description

DPD_TLS_BLOCK_INBOUND_SDES_MD5 0x9000 Process inbound message using single DES and MD5

DPD_TLS_BLOCK_INBOUND_SDES_MD5_CMP 0x9001 Process inbound message using single DES and MD5, and
comparing signatures with the expected value, returning an
error if a mismatch occurs.

DPD_TLS_BLOCK_INBOUND_SDES_SHA1 0x9002 Process inbound message using single DES and SHA1.

DPD_TLS_BLOCK_INBOUND_SDES_SHA1_CMP 0x9003 Process inbound message using single DES and SHA1, and
comparing signatures with the expected value, returning an
error if a mismatch occurs.

DPD_TLS_BLOCK_INBOUND_SDES_SHA256 0x9004 Process inbound message using single DES and SHA256.

DPD_TLS_BLOCK_INBOUND_SDES_SHA256_CMP 0x9005 Process inbound message using single DES and SHA256,
and comparing signatures with the expected value, returning
an error if a mismatch occurs.

DPD_TLS_BLOCK_INBOUND_TDES_MD5 0x9006 Process inbound message using triple DES and MD5.

DPD_TLS_BLOCK_INBOUND_TDES_MD5_CMP 0x9007 Process inbound message using triple DES and MD5, and
comparing signatures with the expected value, returning an
error if a mismatch occurs.

DPD_TLS_BLOCK_INBOUND_TDES_SHA1 0x9008 Process inbound message using triple DES and SHA1.

DPD_TLS_BLOCK_INBOUND_TDES_SHA1_CMP 0x9009 Process inbound message using triple DES and SHA1, and
comparing signatures with the expected value, returning an
error if a mismatch occurs.

DPD_TLS_BLOCK_INBOUND_TDES_SHA256 0x900a Process inbound message using triple DES and SHA256.

DPD_TLS_BLOCK_INBOUND_TDES_SHA256_CMP 0x900b Process inbound message using triple DES and SHA256,
and comparing signatures with the expected value, returning
an error if a mismatch occurs.

DPD_TLS_BLOCK_INBOUND_SDES_MD5_SMAC 0x900c Process inbound message using single DES and MD5
SMAC.

DPD_TLS_BLOCK_INBOUND_SDES_MD5_SMAC_CMP 0x900d Process inbound message using single DES and MD5
SMAC, and comparing signatures with the expected value,
returning an error if a mismatch occurs.

DPD_TLS_BLOCK_INBOUND_SDES_SHA1_SMAC 0x900e Process inbound message using single DES and SHA1
SMAC.

DPD_TLS_BLOCK_INBOUND_SDES_SHA1_SMAC_CMP 0x900f Process inbound message using single DES and SHA1
SMAC, and comparing signatures with the expected value,
returning an error if a mismatch occurs.

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

42 Freescale Semiconductor

Individual Request Type Descriptions

4.14.2 TLS_BLOCK_OUTBOUND_REQ

COMMON_REQ_PREAMBLE
unsigned long hashKeyBytes;
unsigned char *hashKeyData;
unsigned long ivBytes;
unsigned char *ivData;
unsigned long cipherKeyBytes;
unsigned char *cipherKeyData;
unsigned long hashOnlyBytes;
unsigned long *hashOnlyData;

DPD_TLS_BLOCK_INBOUND_TDES_MD5_SMAC 0x9010 Process inbound message using triple DES and MD5
SMAC.

DPD_TLS_BLOCK_INBOUND_TDES_MD5_SMAC_CMP 0x9011 Process inbound message using triple DES and MD5
SMAC, and comparing signatures with the expected value,
returning an error if a mismatch occurs.

DPD_TLS_BLOCK_INBOUND_TDES_SHA1_SMAC 0x9012 Process inbound message using triple DES and SHA1
SMAC.

DPD_TLS_BLOCK_INBOUND_TDES_SH1_SMAC_CMP 0x9013 Process inbound message using triple DES and SHA1
SMAC, and comparing signatures with the expected value,
returning an error if a mismatch occurs.

DPD_TLS_BLOCK_INBOUND_AES_MD5 0x9014 Process inbound message using AES and MD5.

DPD_TLS_BLOCK_INBOUND_AES_MD5_CMP 0x9015 Process inbound message using single AES and MD5, and
comparing signatures with the expected value, returning an
error if a mismatch occurs.

DPD_TLS_BLOCK_INBOUND_AES_SHA1 0x9016 Process inbound message using single AES and SHA1.

DPD_TLS_BLOCK_INBOUND_AES_SHA1_CMP 0x9017 Process inbound message using single AES and SHA1, and
comparing signatures with the expected value, returning an
error if a mismatch occurs.

DPD_TLS_BLOCK_INBOUND_AES_SHA256 0x9018 Process inbound message using single AES and SHA256.

DPD_TLS_BLOCK_INBOUND_AES_SHA256_CMP 0x9019 Process inbound message using single AES and SHA256,
and comparing signatures with the expected value, returning
an error if a mismatch occurs.

DPD_TLS_BLOCK_INBOUND_AES_MD5_SMAC 0x901a Process inbound message using single AES and MD5
SMAC.

DPD_TLS_BLOCK_INBOUND_AES_MD5_SMAC_CMP 0x901b Process inbound message using single AES and MD5
SMAC, and comparing signatures with the expected value,
returning an error if a mismatch occurs.

DPD_TLS_BLOCK_INBOUND_AES_SHA1_SMAC 0x901c Process inbound message using single AES and SHA1
SMAC.

DPD_TLS_BLOCK_INBOUND_AES_SHA1_SMAC_CMP 0x901d Process inbound message using single AES and SHA1
SMAC, and comparing signatures with the expected value,
returning an error if a mismatch occurs.

Table 37. TLS_BLOCK_INBOUND_REQ Valid Descriptors (opId) (continued)

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

Freescale Semiconductor 43

Individual Request Type Descriptions

unsigned long mainDataBytes;
unsigned long outBytes;
unsigned long *outData;
unsigned long MACbytes;
unsigned long cipherOnlyBytes;
unsigned long *cipherOnlyData;
unsigned long ivOutBytes;
unsigned long *ivOutData;

NUM_TLS_BLOCK_OUTBOUND_DESC defines the number of descriptors within the
DPD_TLS_BLOCK_OUTBOUND_GROUP that use this request.

DPD_TLS_BLOCK_OUTBOUND_GROUP (0x9100) defines the group for all descriptors within this request. See
Table 38.

4.14.3 TLS_STREAM_INBOUND_REQ

COMMON_REQ_PREAMBLE
unsigned long hashKeyBytes;
unsigned char *hashKeyData;
unsigned long hashOnlyBytes;
unsigned char *hashOnlyData;
unsigned long ivBytes;
unsigned char *ivData;
unsigned long cipherKeyBytes;
unsigned char *cipherKeyData;
unsigned long inBytes;
unsigned char *inData;
unsigned long MACcmpBytes;
unsigned long outBytes;
unsigned char *outData;
unsigned long MACoutBytes;

Table 38. TLS_BLOCK_OUTBOUND_REQ Valid Descriptors (opId)

Descriptors Value Function Description

DPD_TLS_BLOCK_OUTBOUND_SDES_MD5 0x9100 Prepare an outbound message using single DES and MD5.

DPD_TLS_BLOCK_OUTBOUND_SDES_SHA1 0x9101 Prepare an outbound message using single DES and SHA1.

DPD_TLS_BLOCK_OUTBOUND_SDES_SHA256 0x9102 Prepare an outbound message using single DES and SHA256.

DPD_TLS_BLOCK_OUTBOUND_TDES_MD5 0x9103 Prepare an outbound message using triple DES and MD5.

DPD_TLS_BLOCK_OUTBOUND_TDES_SHA1 0x9104 Prepare an outbound message using triple DES and SHA1.

DPD_TLS_BLOCK_OUTBOUND_TDES_SHA256 0x9105 Prepare an outbound message using triple DES and SHA256.

DPD_TLS_BLOCK_OUTBOUND_AES_MD5 0x9106 Prepare an outbound message using AES and MD5.

DPD_TLS_BLOCK_OUTBOUND_AES_SHA1 0x9107 Prepare an outbound message using AES and SHA1.

DPD_TLS_BLOCK_OUTBOUND_AES_SHA256 0x9108 Prepare an outbound message using AES and SHA256.

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

44 Freescale Semiconductor

Individual Request Type Descriptions

unsigned long ivOutBytes;
unsigned char *ivOutData;
unsigned char *cmpData;

NUM_TLS_STREAM_INBOUND_DESC defines the number of descriptors within the
DPD_TLS_STREAM_INBOUND_GROUP that use this request.

DPD_TLS_STREAM_INBOUND_GROUP (0x9200) defines the group for all descriptors within this request. See
Table 39.

4.14.4 TLS_STREAM_OUTBOUND_REQ

COMMON_REQ_PREAMBLE
unsigned long hashKeyBytes;

Table 39. TLS_BLOCK_INBOUND_REQ Valid Descriptors (opId)

Descriptors Value Function Description

DPD_TLS_STREAM_INBOUND_MD5 0x9200 Process an inbound message using MD5 and RC4 initial context.

DPD_TLS_STREAM_INBOUND_CTX_MD5 0x9201 Process an inbound message using MD5 and RC4 external
context.

DPD_TLS_STREAM_INBOUNDS_SHA1 0x9202 Process an inbound message using SHA1 and RC4 initial context.

DPD_TLS_STREAM_INBOUND_CTX_SHA1 0x9203 Process an inbound message using SHA1 and RC4 external
context.

DPD_TLS_STREAM_INBOUND_SHA256 0x9204 Process an inbound message using SHA256 and RC4 initial
context.

DPD_TLS_STREAM_INBOUND_SHA256 0x9205 Process an inbound message using SHA256 and RC5 external
context.

DPD_TLS_STREAM_INBOUND_MD5_CMP 0x9206 Process an inbound message using MD5 and RC4 initial context.
Compare digest with external value, and return error if digests do
not match.

DPD_TLS_STREAM_INBOUND_CTX_MD5_CMP 0x9207 Process an inbound message using MD5 and RC4 external
context. Compare digest with external value, and return error if
digests do not match.

DPD_TLS_STREAM_INBOUNDS_SHA1_CMP 0x9208 Process an inbound message using SHA1 and RC4 initial context.
Compare digest with external value, and return error if digests do
not match.

DPD_TLS_STREAM_INBOUND_CTX_SHA1_CMP 0x9209 Process an inbound message using SHA1 and RC4 external
context. Compare digest with external value, and return error if
digests do not match.

DPD_TLS_STREAM_INBOUND_SHA256_CMP 0x920a Process an inbound message using SHA256 and RC4 initial
context. Compare digest with external value, and return error if
digests do not match.

DPD_TLS_STREAM_INBOUND_SHA256_CMP 0x920b Process an inbound message using SHA256 and RC4 external
context. Compare digest with external value, and return error if
digests do not match.

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

Freescale Semiconductor 45

Sample Code

unsigned char *hashKeyData;
unsigned long ivBytes;
unsigned char *ivData;
unsigned long cipherKeyBytes;
unsigned char *cipherKeyData;
unsigned long hashOnlyBytes;
unsigned char *hashOnlyData;
unsigned long mainDataBytes;
unsigned long outBytes;
unsigned char *outData;
unsigned long MACbytes;
unsigned long ivOutBytes;
unsigned char *ivOutData;
unsigned char *cmpData;

NUM_TLS_STREAM_OUTBOUND_DESC defines the number of descriptors within the
DPD_TLS_STREAM_OUTBOUND_GROUP that use this request.

DPD_TLS_STREAM_OUTBOUND_GROUP (0x9300) defines the group for all descriptors within this request. See
Table 40.

5 Sample Code
The following sections provide sample codes for DES and IPSec.

5.1 DES Sample

/* define the User Structure */
DES_LOADCTX_CRYPT_REQ desencReq;
...

Table 40. TLS_STREAM_OUTBOUND_REQ Valid Descriptors (opId)

Descriptors Value Function Description

DPD_TLS_STREAM_OUTBOUND_MD5 0x9300 Prepare an outbound message using MD5 and an RC4 initial
context.

DPD_TLS_STREAM_OUTBOUND_SHA1 0x9301 Prepare an outbound message using SHA1 and an RC4 initial
context.

DPD_TLS_STREAM_OUTBOUND_SHA256 0x9302 Prepare an outbound message using SHA256 and an RC4 initial
context.

DPD_TLS_STREAM_OUTBOUND_CTX_MD5 0x9303 Prepare an outbound message using MD5 and an RC4 external
context.

DPD_TLS_STREAM_OUTBOUND_CTX_SHA1 0x9304 Prepare an outbound message using SHA1 and an RC4 external
context.

DPD_TLS_STREAM_OUTBOUND_CTX_SHA256 0x9305 Prepare an outbound message using SHA256 and an RC4 external
context.

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

46 Freescale Semiconductor

Sample Code

/* fill the User Request structure with appropriate pointers */
desencReq.opId = DPD_TDES_CBC_ENCRYPT_SA_LDCTX_CRYPT ;
desencReq.channel = 0; /* dynamic channel */
desencReq.notify = (void*) notifyDes; /* callback function */
desencReq.notify_on_error = (void*) notifyDes; /* callback in case of
errors only */
desencReq.status = 0;
desencReq.ivBytes = 8; /* input iv length */
desencReq.ivData = iv_in; /* pointer to input iv */
desencReq.keyBytes = 24; /* key length */
desencReq.keyData = DesKey; /* pointer to key */
desencReq.inBytes = packet_length; /* data length */
desencReq.inData = DesData; /* pointer to data */
desencReq.outData = desEncResult; /* pointer to results */
desencReq.nextReq = 0; /* no descriptor chained */
/* call the driver */
status = Ioctl(device, IOCTL_PROC_REQ, &desencReq);
/* First Level Error Checking */
if (status != 0) {
..
}
...
void notifyDes (void)
{
/* Second Level Error Checking */
if (desencReq.status != 0) {
..
}
..)

5.2 IPSEC Sample

/* define User Requests structures */
IPSEC_CBC_REQ ipsecReq;
....
/* Ipsec dynamic descriptor triple DES with SHA-1 authentication */
ipsecReq.opId = DPD_IPSEC_CBC_TDES_ENCRYPT_SHA_PAD;
ipsecReq.channel = 0;
ipsecReq.notify = (void *) notifyFunc;
ipsecReq.notify_on_error = (void *) notifyFunc;
ipsecReq.status = 0;
ipsecReq.hashKeyBytes = 16; /* key length for HMAC SHA-1 */
ipsecReq.hashKeyData = authKey; /* pointer to HMAC Key */
ipsecReq.cryptCtxInBytes = 8; /* length of input iv */
ipsecReq.cryptCtxInData = in_iv; /* pointer to input iv */
ipsecReq.cryptKeyBytes = 24; /* DES key length */
ipsecReq.cryptKeyData = EncKey; /* pointer to DES key */

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

Freescale Semiconductor 47

Linux Environment

ipsecReq.hashInDataBytes = 8; /* length of data to be hashed only */
ipsecReq.hashInData = PlainText; /* pointer to data to be
hashed only */
ipsecReq.inDataBytes = packet_length-8; /* length of data to be
hashed and encrypted */
ipsecReq.inData = &PlainText[8]; /* pointer to data to be
hashed and encrypted */
ipsecReq.cryptDataOut = Result; /* pointer to encrypted results */
ipsecReq.hashDataOutBytes = 20; /* length of output digest */
ipsecReq.hashDataOut = digest; /* pointer to output digest */
ipsecReq.nextReq = 0; /* no chained requests */
/* call the driver */
status = Ioctl(device, IOCTL_PROC_REQ, &ipsecReq);
/* First Level Error Checking */
if (status != 0) {
...
}
...
void notifyFunc (void)
{
/* Second Level Error Checking */
if (ipsecReq.status != 0) {
...
}
..)

6 Linux Environment
This section describes the driver's adaptation to and interaction with the Linux operating system as applied
to PPC processors

6.1 Installation

6.1.1 Driver Source
The SEC 2.x driver installs into Linux as a loadable module. To build the driver as a module, it must be
installed into the kernel source tree to be included in the kernel build process. The makefile included with
the distribution assumes this inclusion. As delivered, this directory is defined as
[kernelroot]/drivers/sec2

Once the driver source is installed, and the kernel source (and modules) are built, module dependency lists
updated, and the built objects are installed in the target filesystem, the driver, (named sec2drv.o) is ready
for loading when needed.

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

48 Freescale Semiconductor

Linux Environment

6.1.2 Device Inode
Kernel processes may call the driver's functionality directly. On the other hand, user processes must use
the kernel's I/O interface to make driver requests. The only way for user processes to do this it to open the
device as a file with the open() system call to get a file descriptor, and then make requests through
ioctl(). Thus the system will need a device file created to assign a name to the device.

The driver functions as a char device in the target system. As shipped, the driver assumes that the device
major number will be assigned dynamically, and that the minor number will always be zero, since only one
instance of the driver is supported.

Creation of the device's naming inode may be done manually in a development setting, or may be driven
by a script that runs after the driver module loads, and before any user attempts to open a path to the driver.
Assuming the module loaded with a dynamically assigned major number of 254 (look for sec2 in
/proc/devices), then the shell command to accomplish this would normally appear as:
$ mknod c 254 0 /dev/sec2

Once this is done, user tasks can make requests to the driver under the device name /dev/sec2.

6.2 Operation

6.2.1 Driver Operation in Kernel Mode
Operation of the SEC 2x core under kernel mode is relatively straightforward. Once the driver module has
loaded, which will initialize the device, direct calls to the ioctl() entry (named SEC2_ioctl in the driver)
can be made, the first two arguments may effectively be ignored.

In kernel mode, request completion may be handled through the standard use of notification callbacks in
the request. The example suite available with the driver shows how this may be accomplished; this suite
uses a mutex that the callback will release in order to allow the request to complete, although the caller
may make use of any other type of event mechanism that suits their preference.

Logical to physical memory space translation is handled internal to the driver.

6.2.2 Driver Operation in User Mode
Operation of the SEC 2x core in user mode is slightly more complex than in kernel mode. In particular,
the transition from user to kernel memory space creates two complications for user mode operation:

• User memory buffers can't be passed directly to the driver; instead, in this driver edition, the user
must allocate and place data in kernel memory buffer for operation. This can be accomplished via
SEC2_MALLOC, SEC2_FREE, SEC2_COPYFROM, and SEC2_COPYTO requests (see Section 3.3.1, “I/O
Control Codes,” for more information).

CAUTION
Extreme caution must be exercised by the user in transferring memory in
this fashion; kernel memory space may easily be corrupted by the caller,
causing target system instability.

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

Freescale Semiconductor 49

VxWorks Environment

• Standard notification callbacks cannot work, since the routines to perform the callback are in user
memory space, and cannot safely execute from kernel mode. In their place, standard POSIX signals
can be used to indicate I/O completion by placing the process ID of the user task in the notification
members of the request, and flagging NOTIFY_IS_PID in the notifyFlags member. The driver
uses SIGUSR1 to indicate normal request completions, and SIGUSR2 to indicate error completions.

The example suite available with the driver illustrates the contrast between the two different application
environments. Within the testAll.c file, there is a set of functions that shows the difference between the
two operations. Building the example testing application with __KERNEL__ on (building a kernel mode
test) shows the installation and usage of standard completion callbacks and a mutex used for interlock.
Conversely, building the example testing application with USERMODE turned on shows the installation of
signal handlers and their proper setup.

In USERMODE, this example also shows one possible means for handling the user to kernel memory
transition via the use of three functions for transferring user buffers to and from kernel memory.

7 VxWorks Environment
The following sections describe the installation of the SEC2 security processor software drivers, BSP
integration, and distribution archives.

7.1 Installation
To install the software drivers, extract the archive containing the driver source files into a suitable
installation directory. If you want the driver and tests to be part of a standard VxWorks source tree, place
them as follows:

Once the modules are installed, the driver image may be built per the following instructions.

7.2 Building the Driver Modules
Specific makefiles that can support building of the driver and it’s example application are no longer
provided, due to the differences between the build environment between VxWorks Base-5 and Base-6. For
this reason, it is assumed that the builder will create a workbench project that builds the driver as a
downloadable kernel module, and is familiar with this process.

The driver project will need it’s build properties amended to build the driver properly. Under “Build
Properties”, select the “Build Macros” tab. Within the “DEFINES” variable, add “-DVXWORKS” as one
of the definitions. Also, adding “-DDBG” will assist in the initial driver integration process.

Once built, the driver may simply be downloaded to a running BSP for testing.

Driver: $(WIND_BASE)/target/src/drv/crypto

Tests: $(WIND_BASE)/target/src/drv/crypto/test

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

50 Freescale Semiconductor

Porting

7.3 BSP Integration
Once the modules are built, they should be linked directly with the user's board support package, to
become integral part of the board image.

In VxWorks, the file sysLib.c contains the initialization functions, the memory/address space functions,
and the bus interrupt functions. It is recommended to call the function SEC2DriverInit directly from
sysLib.c.

In the process of initialization, the driver calls a specialized function name sysGetPeripheralBase(),
which returns a pointer to the base location of the peripheral device block in the processor (often defined
by the CCSBAR register in some PowerQUICC III processors). The driver uses this address and an offset
to locate the SEC core on the system bus. This is not a standard BSP function, the integrator will need to
provide it, or a substitute method for locating CCSBAR.

The security processor will be initialized at board start-up, with all the other devices present on the board.

8 Porting
This section describes probable areas of developer concern with respect to porting the driver to other
operating systems or environments.

At this time, this driver has been ported to function on both VxWorks and Linux operating systems. Most
of the internal functionality is independent of the constructs of a specific operating system, but there
necessarily are interface boundaries between them where things must be addressed.

Only a few of the files in the driver's source distribution contain specific dependencies on operating system
components; this is intentional. Those specific files are as follows:

• Sec2Driver.h

• sec2_init.c
• sec2_io.c

8.1 Header Files
Sec2Driver.h

This header file is meant to be local (private) to the driver itself, and as such, is responsible for including
all needed operating system header files, and casts a series of macros for specific system calls

Of particular interest, this header casts local equivalents macros for the following:

malloc Allocate a block of system memory with the operating system's heap allocation mechanism.

free Return a block of memory to the system heap

semGive Release a mutex semaphore

semTake Capture and hold a mutex semaphore

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

Freescale Semiconductor 51

Porting

8.2 C Source Files
sec2_init.c:

sec2_init.c performs the basic initialization of the device and the driver. It is responsible for finding the
base address of the hardware and saving it in IOBaseAddress for later reference.

For Linux, this file also contains references to register/unregister the driver as a kernel module, and to
manage it's usage/link count
sec2_io.c:

sec2_io.c contains functions to establish:
• Channel interlock semaphores (IOInitSemaphores)
• The ISR message queue (IOInitQs)
• Driver service function registration with the operating system (IORegisterDriver)
• ISR connection/disconnection (IOConnectInterrupt)

8.3 Interrupt Service Routine
The ISR will queue processing completion result messages onto the IsrMsgQId queue.
ProcessingComplete() pends on this message queue. When a message is received, the completion task
will execute the appropriate callback routine based on the result of the processing. When the end-user
application prepares the request to be executed, callback functions can be defined for nominal processing
as well as error case processing. If the callback function was set to NULL when the request was prepared
then no callback function will be executed. These routines will be executed as part of the device driver so
any constraints placed on the device driver will also be placed on the callback routines.

8.4 Conditional Compilation
See the makefile for specifics on the default build of the driver

8.5 Debug Messaging
The driver includes a DBG define that allows for debug message output to the developer's console. If
defined in the driver build, debug messages will be sent from various components in the driver to the
console.

Messages come from various sections of the driver, and a bitmask is kept in a driver global variable so that
the developer can turn message sources on or off as required. This global is named SEC2DebugLevel and
contains an OR'ed combination of any of the bits shown in Table 41:

Table 41. Debug Messages

Bit Description

DBGTXT_SETRQ Messages from request setup operations (new requests inbound from the application)

DBGTXT_SVCRQ Messages from servicing device responses (ISR/deferred service routine handlers) outbound to the
application

DBGTXT_INITDEV Messages from the device/driver initialization process

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

52 Freescale Semiconductor

Porting

In normal driver operation (not in a development setting), the DBG definition should be left undefined for
best performance.

8.6 Distribution Archive
For this release, the distribution archive consists of the source files listed in this section. Note that the user
may wish to reorganize header file locations consistent with the file location conventions appropriate for
their system configuration. See Table 42.

DBGTXT_DPDSHOW Shows the content of a constructed DPD before it is handed to the security core

DBGTXT_INFO Shows a short banner at device initialization describing the driver and hardware version

DBGTXT_DATASHOW Displays the content of all DPD-referenced data buffers before the request is passed to the hardware

DBGTXT_DESCBUF Displays contents of the descriptor buffer after processing to show what was fetched by the hardware

Table 42. Reference Driver Files

Header Description

Sec2.h Primary public header file for all users of the driver

Sec2Driver.h Driver/hardware interfaces, private to the driver itself

Sec2Descriptors.h DPD-type definitions

Sec2Notify.h Structures for ISR/main thread communication

sec2_dpd_Table.h DPD construction constants

sec2_cha.c CHA mapping and management

sec2_dpd.c DPD construction functionality

sec2_init.c Device/driver initialization code

sec2_io.c Basic register I/O primitives

sec2_ioctl.c Operating system interfaces

sec2_request.c Request/response management

sec2_sctrMap.c Scatter buffer identification and mapping

sec2isr.c Interrupt service routine

Table 41. Debug Messages (continued)

Bit Description

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

Freescale Semiconductor 53

Revision History

9 Revision History
Table 43 provides a revision history for this document.

Table 43. Revision History

Rev. Number Date Substantive Change(s)

0 10/18/2005 Initial Release

1 08/17/2006 Tested support for 2.2 core.

Full dynamic configuration for the SEC.
Added support for PKEU modular inverse operations.

Added two descriptor AES-CMAC examples.

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

54 Freescale Semiconductor

Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

Security Engine 2.x Reference Device Driver User’s Guide, Rev. 1

Freescale Semiconductor 55

Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

Document Number: SEC2XSWUG
Rev. 1
08/2006

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

Home Page:
www.freescale.com

email:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
1-800-521-6274
480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064, Japan
0120 191014
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447
303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners. The
Power Architecture and Power.org word marks and the Power and Power.org logos and
related marks are trademarks and service marks licensed by Power.org.

© Freescale Semiconductor, Inc. 2005, 2006.

	1 Overview
	Table 1. Product and SEC Core Version
	Table 2. Acronyms and Abbreviations

	2 Device Driver Components
	2.1 Device Driver Structure
	Figure 1. SEC Device Driver Structure
	2.1.1 Driver Initialization Routine
	2.1.2 Request Dispatch Routine
	2.1.3 Process Request Routine
	2.1.4 Interrupt Service Routine
	2.1.5 Deferred Service Routine

	3 User Interface
	3.1 Application Interface
	3.2 Error Handling
	3.3 Global Definitions
	3.3.1 I/O Control Codes
	Table 3. Second and Third Arguments to ioctl()

	3.3.2 Channel Definitions
	Table 4. Channel Defines

	3.3.3 Operation ID (opId) Masks
	Table 5. Request Operation ID Mask

	3.3.4 Return Codes
	Table 6. Callback Error Status Return Code

	3.3.5 Miscellaneous Request Structures
	3.3.6 Process Request Structures
	Table 7. Process Request Structures

	3.3.7 Scatter-Gather Buffer Management
	3.3.7.1 Building the Local Scatter/gather List with EXT_SCATTER_ELEMENT
	Table 8. Scatter_Gather_Elements

	3.3.7.2 Scatter Buffer Marking
	3.3.7.3 Direct Scatter-Gather Usage Example

	3.3.8 Reserved Channels
	3.3.8.1 Reserved Channel Specification
	3.3.8.2 Auxiliary Channel Service Handlers

	4 Individual Request Type Descriptions
	4.1 Random Number Requests
	4.1.1 RNG_REQ
	Table 9. RNG_REQ Valid Descriptor (opId)

	4.2 DES Requests
	4.2.1 DES_CBC_CRYPT_REQ
	Table 10. DES_CBC_CRYPT_REQ Valid Descriptors (opId)

	4.2.2 DES_CRYPT_REQ
	Table 11. DES_CRYPT_REQ Valid Descriptors (opId)

	4.3 ARC4 Requests
	4.3.1 ARC4_LOADCTX_CRYPT_REQ
	Table 12. ARC4_LOADCTX_CRYPT_REQ Valid Descriptor (opId)

	4.3.2 ARC4_LOADKEY_CRYPT_UNLOADCTX_REQ
	Table 13. ARC4_LOADKEY_CRYPT_UNLOADCTX_REQ Valid Descriptor (opId)

	4.4 Hash Requests
	4.4.1 HASH_REQ
	Table 14. HASH_REQ Valid Descriptors (0x4400) (opId)
	Table 15. HASH_REQ Valid Descriptors (0x4500) (opId)

	4.5 HMAC Requests
	4.5.1 HMAC_PAD_REQ
	Table 16. HMAC_PAD_REQ Valid Descriptors (opId)

	4.6 AES Requests
	4.6.1 AESA_CRYPT_REQ
	Table 17. AESA_CRYPT_REQ Valid Descriptors (opId)

	4.7 Integer Public Key Requests
	4.7.1 MOD_EXP_REQ
	Table 18. MOD_EXP_REQ Valid Descriptor (opId)

	4.7.2 MOD_SS_EXP_REQ
	Table 19. MOD_SS_EXP_REQ Valid Descriptor (opId)

	4.7.3 MOD_R2MODN_REQ
	Table 20. MOD_R2MODN_REQ Valid Descriptor (opId)

	4.7.4 MOD_RRMODP_REQ
	Table 21. MOD_RRMODP_REQ Valid Descriptor (opId)

	4.7.5 MOD_INV_REQ
	Table 22. MOD_INV_REQ Valid Descriptor (opId)

	4.7.6 MOD_2OP_REQ
	Table 23. MOD_2OP_REQ Valid Descriptors (opId)

	4.8 ECC Public Key Requests
	4.8.1 ECC_POINT_REQ
	Table 24. ECC_POINT_REQ Valid Descriptors (opId)

	4.8.2 ECC_2OP_REQ
	Table 25. ECC_2OP_REQ Valid Descriptors (opId)

	4.8.3 ECC_SPKBUILD_REQ
	Table 26. ECC_SPKBUILD_REQ Valid Descriptor (opId)

	4.8.4 ECC_PTADD_DBL_REQ
	Table 27. ECC_PTADD_DBL_REQ Valid Descriptor (opId)

	4.9 IPSec Requests
	4.9.1 IPSEC_CBC_REQ
	Table 28. IPSEC_CBC_REQ Valid Descriptors (opId) Descriptors

	4.9.2 IPSEC_ECB_REQ
	Table 29. IPSEC_ECB_REQ Valid Descriptors (opId)

	4.9.3 IPSEC_AES_CBC_REQ
	Table 30. IPSEC_AES_CBC_REQ Valid Descriptors (opId)

	4.9.4 IPSEC_AES_ECB_REQ
	Table 31. IPSEC_AES_ECB_REQ Valid Descriptors (opId)

	4.9.5 IPSEC_ESP_REQ
	Table 32. IPSEC_ESP_REQ Valid Descriptors (opId)

	4.10 802.11 Protocol Requests
	4.10.1 CCMP_REQ
	Table 33. CCMP_REQ Valid Descriptors (opId)

	4.11 SRTP Protocol Requests
	4.11.1 SRTP_REQ
	Table 34. SRTP_REQ Valid Descriptors (opId)

	4.12 RAID XOR Requests (Does not apply to SEC 2.0)
	4.12.1 RAID_XOR_REQ
	Table 35. RAID_XOR_REQ Valid Descriptors (opId)

	4.13 Kasumi Cipher Requests (SEC 2.1 only)
	4.13.1 KEA_CRYPT_REQ
	Table 36. KEA_CRYPT_REQ Valid Descriptors (opId)

	4.14 SSL/TLS Processing Requests (Does not apply to SEC 2.0)
	4.14.1 TLS_BLOCK_INBOUND_REQ
	Table 37. TLS_BLOCK_INBOUND_REQ Valid Descriptors (opId)

	4.14.2 TLS_BLOCK_OUTBOUND_REQ
	Table 38. TLS_BLOCK_OUTBOUND_REQ Valid Descriptors (opId)

	4.14.3 TLS_STREAM_INBOUND_REQ
	Table 39. TLS_BLOCK_INBOUND_REQ Valid Descriptors (opId)

	4.14.4 TLS_STREAM_OUTBOUND_REQ
	Table 40. TLS_STREAM_OUTBOUND_REQ Valid Descriptors (opId)

	5 Sample Code
	5.1 DES Sample
	5.2 IPSEC Sample

	6 Linux Environment
	6.1 Installation
	6.1.1 Driver Source
	6.1.2 Device Inode

	6.2 Operation
	6.2.1 Driver Operation in Kernel Mode
	6.2.2 Driver Operation in User Mode

	7 VxWorks Environment
	7.1 Installation
	7.2 Building the Driver Modules
	7.3 BSP Integration

	8 Porting
	8.1 Header Files
	8.2 C Source Files
	8.3 Interrupt Service Routine
	8.4 Conditional Compilation
	8.5 Debug Messaging
	Table 41. Debug Messages

	8.6 Distribution Archive
	Table 42. Reference Driver Files

	9 Revision History
	Table 43. Revision History

	Security Engine 2.x Reference Device Driver User’s Guide

