MBX Series Embedded Controller Version C

Programmer's Reference Guide

MBXCA/PG1

December 2001 Edition

© Copyright 1997, 1998, 2001 Motorola Inc.

All rights reserved.

Printed in the United States of America.

Motorola® and the Motorola logo are registered trademarks of Motorola, Inc.

PowerQUICCTM is a trademark of Motorola, Inc.

PowerPCTM is a trademark of International Business Machines Corporation and is used by Motorola with permission.

QSpanTM is a trademark of Tundra Semiconductor Corporation.

PC/104TM and PC/104-*Plus*TM are trademarks of the PC/104 Consortium.

I²C is a registered trademark of Philips Electronics.

All other products and/or services mentioned in this document may be trademarks or registered trademarks of their respective holders.

Safety Summary

The following general safety precautions must be observed during all phases of operation, service, and repair of this equipment. Failure to comply with these precautions or with specific warnings elsewhere in this manual could result in personal injury or damage to the equipment.

The safety precautions listed below represent warnings of certain dangers of which Motorola is aware. You, as the user of the product, should follow these warnings and all other safety precautions necessary for the safe operation of the equipment in your operating environment.

Ground the Instrument.

To minimize shock hazard, the equipment chassis and enclosure must be connected to an electrical ground. If the equipment is supplied with a three-conductor AC power cable, the power cable must be plugged into an approved three-contact electrical outlet, with the grounding wire (green/yellow) reliably connected to an electrical ground (safety ground) at the power outlet. The power jack and mating plug of the power cable meet International Electrotechnical Commission (IEC) safety standards and local electrical regulatory codes.

Do Not Operate in an Explosive Atmosphere.

Do not operate the equipment in any explosive atmosphere such as in the presence of flammable gases or fumes. Operation of any electrical equipment in such an environment could result in an explosion and cause injury or damage.

Keep Away From Live Circuits Inside the Equipment.

Operating personnel must not remove equipment covers. Only Factory Authorized Service Personnel or other qualified service personnel may remove equipment covers for internal subassembly or component replacement or any internal adjustment. Service personnel should not replace components with power cable connected. Under certain conditions, dangerous voltages may exist even with the power cable removed. To avoid injuries, such personnel should always disconnect power and discharge circuits before touching components.

Use Caution When Exposing or Handling a CRT.

Breakage of a Cathode-Ray Tube (CRT) causes a high-velocity scattering of glass fragments (implosion). To prevent CRT implosion, do not handle the CRT and avoid rough handling or jarring of the equipment. Handling of a CRT should be done only by qualified service personnel using approved safety mask and gloves.

Do Not Substitute Parts or Modify Equipment.

Do not install substitute parts or perform any unauthorized modification of the equipment. Contact your local Motorola representative for service and repair to ensure that all safety features are maintained.

Observe Warnings in Manual.

Warnings, such as the example below, precede potentially dangerous procedures throughout this manual. Instructions contained in the warnings must be followed. You should also employ all other safety precautions which you deem necessary for the operation of the equipment in your operating environment.

To prevent serious injury or death from dangerous voltages, use extreme caution when handling, testing, and adjusting this equipment and its components.

Flammability

All Motorola PWBs (printed wiring boards) are manufactured with a flammability rating of 94V-0 by UL-recognized manufacturers.

EMI Caution

This equipment generates, uses and can radiate electromagnetic energy. It may cause or be susceptible to electromagnetic interference (EMI) if not installed and used with adequate EMI protection.

Lithium Battery Caution

This product contains a lithium battery to power the clock and calendar circuitry.

Danger of explosion if battery is replaced incorrectly. Replace battery only with the same or equivalent type recommended by the equipment manufacturer. Dispose of used batteries according to the manufacturer's instructions.

Il y a danger d'explosion s'il y a remplacement incorrect de la batterie. Remplacer uniquement avec une batterie du même type ou d'un type équivalent recommandé par le constructeur. Mettre au rebut les batteries usagées conformément aux instructions du fabricant.

Explosionsgefahr bei unsachgemäßem Austausch der Batterie. Ersatz nur durch denselben oder einen vom Hersteller empfohlenen Typ. Entsorgung gebrauchter Batterien nach Angaben des Herstellers.

CE Notice (European Community)

Motorola Computer Group products with the CE marking comply with the EMC Directive (89/336/EEC). Compliance with this directive implies conformity to the following European Norms:

EN55022 "Limits and Methods of Measurement of Radio Interference Characteristics of Information Technology Equipment"; this product is tested to Equipment Class B

EN55024 "Information technology equipment—Immunity characteristics—Limits and methods of measurement"

Board products are tested in a representative system to show compliance with the above mentioned requirements. A proper installation in a CE-marked system will maintain the required EMC/safety performance.

In accordance with European Community directives, a "Declaration of Conformity" has been made and is available on request. Please contact your sales representative.

Notice

While reasonable efforts have been made to assure the accuracy of this document, Motorola, Inc. assumes no liability resulting from any omissions in this document, or from the use of the information obtained therein. Motorola reserves the right to revise this document and to make changes from time to time in the content hereof without obligation of Motorola to notify any person of such revision or changes.

Electronic versions of this material may be read online, downloaded for personal use, or referenced in another document as a URL to the Motorola Computer Group Web site. The text itself may not be published commercially in print or electronic form, edited, translated, or otherwise altered without the permission of Motorola, Inc.

It is possible that this publication may contain reference to or information about Motorola products (machines and programs), programming, or services that are not available in your country. Such references or information must not be construed to mean that Motorola intends to announce such Motorola products, programming, or services in your country.

Limited and Restricted Rights Legend

If the documentation contained herein is supplied, directly or indirectly, to the U.S. Government, the following notice shall apply unless otherwise agreed to in writing by Motorola, Inc.

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (b)(3) of the Rights in Technical Data clause at DFARS 252.227-7013 (Nov. 1995) and of the Rights in Noncommercial Computer Software and Documentation clause at DFARS 252.227-7014 (Jun. 1995).

Motorola, Inc. Computer Group 2900 South Diablo Way Tempe, Arizona 85282

Contents

Abo	out This Book	
	Overview of Contents	xii
	Comments and Suggestions	xiii
	Terminology	xiii
	Conventions Used in This Manual	xv
CHA	APTER 1 MBX Initialization	
	Introduction	1-1
	Initialization Sequence	1-1
	PowerPC Core	
	I2C/SPI Parameter RAM Patch	1-3
	System Interface Unit (SIU) Registers	1-4
	Memory Controller	1-5
	System Memory Map	1-8
	Notes for System Address Map	1-9
	ISA Memory Map	1-11
	DRAM Configuration	1-12
	QSpan Initialization Values	1-14
	Winbond 83C554 Initialization Values	
	37C672 Peripheral I/O Device	1-18
	Required Interrupt Routing	1-18
	I/O Device Address Offsets	1-20
	I/O Device Configuration	1-21
	Interrupt Routing	1-24
	Resets	1-26
	Hardware Reset	1-26
	Software Reset	1-27
CHA	APTER 2 MPC8xx Multiple-Function Pins	
	Introduction	2-1
	Processor Bus Interface	2-1
	PCMCIA and/or IPA Port Pins	2-1
	Interrupt Pins	2-3
	IPB Port Pins	

Debug/IEEE 1149 Port Pins	2-5
Miscellaneous Pins	2-5
Processor I/O Ports	2-7
Port A Pins — Definition vs. Function	2-7
Port B Pins — Definition vs. Function	
Port C Pins — Definition vs. Function	2-9
Port D Pins — Definition vs. Function	2-10
CHAPTER 3 Additional Programming Information	
Introduction	3-1
Control and Status Registers	3-1
Control Register #1	
Status Register #1	
Control Register #2	
Status Register #2	
I2C Address Assignments	3-7
Digital Thermometer/Thermostat	3-7
Utility Connectors	3-8
Utility Connector #1	
Utility Connector #2	
APPENDIX A NVRAM Map and EPPCBug	
Overview	A-1
NVRAM Map	A-2
Primary Network Configuration Parameters	
CRC Calculation Routine	A-5
APPENDIX B Related Documentation	
MCG Documents	B-1
Manufacturers' Documents	B-2
Related Specifications	

GLOSSARY

List of Tables

Table 1-1. Processor Core Configuration/Initialization
Table 1-2. SIU Registers: Initial Values
Table 1-3. Memory Controller Register: Initial Values
Table 1-4. System Memory Map — MPU View
Table 1-5. ISA Address Map
Table 1-6. UPM A RAM Array for DRAM at 50 MHz 1-12
Table 1-7. Enhanced UPM A RAM Array for DRAM at 50 MHz 1-13
Table 1-8. QSpan Registers: Initial Values
Table 1-9. 83C554 Interrupt Initialization
Table 1-10. 37C672 I/O Device Interrupt Routing
Table 1-11. 37C672 I/O Device Address Offsets
Table 1-12. 37C672 I/O Device Configuration
Table 1-13. Interrupt Structure — ISA and PCI
Table 1-14. Interrupt Structure — MPC8xx
Table 1-15. Hard Reset Configuration Word: Bit Definitions
Table 2-1. PCMCIA/IPA Port — Pin Definition vs. Function
Table 2-2. Interrupts — Pin Definition vs. Function
Table 2-3. IPB Port — Pin Definition vs. Function
Table 2-4. Debug/IEEE 1149 Port — Pin Definition vs. Function
Table 2-5. Miscellaneous Signals — Pin Definition vs. Function
Table 2-6. Peripheral Port A
Table 2-7. Peripheral Port B
Table 2-8. Peripheral Port C
Table 2-9. Peripheral Port D
Table 3-1. Control Register #1: Bit Definitions
Table 3-2. Status Register #1: Bit Definitions
Table 3-3. Control Register #2: Bit Definitions
Table 3-4. Status Register #2: Bit Definitions
Table 3-5. I2C Address Assignments
Table A-1. NVRAM Map
Table A-2. Primary Network Configuration Parameters
Table B-1. Motorola Computer Group DocumentsB-1
Table B-2. Manufacturers' Documents
Table B-3. Related Specifications

About This Book

The MBX Series Embedded Controller Version C Programmer's Reference Guide provides board-level information, complete memory maps, and detailed chip information including register bit descriptions for the MBX family of embedded controller boards. It is intended for use as a companion to the MBX Series Embedded Controller Version C Installation and Use manual listed under Motorola Computer Group Documents in Appendix B, Related Documentation. This manual is intended for anyone who wants to program these boards in order to design OEM systems, add capability to an existing compatible system, or work in a lab environment for experimental purposes. A knowledge of computers and digital logic is assumed.

The information in this manual applies to MBX version C models in both entry-level and standard configurations. The following table lists the specific MBX models documented in this manual:

Model Number	Description					
Entry-Level	Entry-Level					
MBX821-001C	MBX821-001C 50 MHz MPC821 processor, 4MB DRAM, 2MB Flash, 10BaseT Ethernet, 32KB NVRAM, COMM interface connector					
MBX860-001C	MBX860-001C 50 MHz MPC860 processor, 4MB DRAM, 2MB Flash, 10BaseT Ethernet, 32KB NVRAM, COMM interface connector					
Standard						
MBX821 models include 50 MHz MPC821 processor; PC/104- <i>Plus</i> ; 10BaseT Ethernet; EIDE and Floppy interfaces; 32KB NVRAM; keyboard, mouse, IR, COM1 and COM2 ports; LCD panel connector						
MBX821-002C 4MB DRAM, 4MB Flash						
MBX821-004C	16MB DRAM, 4MB Flash					
MBX821-006C 16MB DRAM, 8MB Flash						

Model Number	Description			
MBX860 models include 50 MHz MPC860 processor; PC/104- <i>Plus</i> ; 10BaseT Ethernet; EIDE and Floppy interfaces; 32KB NVRAM; keyboard, mouse, IR, COM1 and COM2 ports; COMM interface connector				
MBX860-002C 4MB DRAM, 4MB Flash				
MBX860-004C 16MB DRAM, 4MB Flash				
MBX860-006C	16MB DRAM, 8MB Flash			

For programming reference information about other versions of the MBX821 or MBX860, refer to the documentation that covers your model:

For MBX Model Numbers	Refer to
MBX821-00x, MBX860-00x	MBX Series Embedded Controller Programmer's Reference Guide (MBXA/PG1)
MBX821-00xA, MBX860-00xA	MBX Series Embedded Controller Programmer's Reference Guide (MBXA/PG1) and MBX Series version A customer letter (MBXA/LT1)
MBX860-00xB	MBX Series Embedded Controller Version B Programmer's Reference Guide (MBXA/PG3)

Overview of Contents

This manual is divided into the chapters and appendices listed below.

- ☐ Chapter 1, *MBX Initialization*: Memory maps and guidelines for initialization of the board.
- ☐ Chapter 2, MPC8xx Multiple-Function Pins: An examination of the multiple-function pins on the MPC821 and MPC860 processors.
- ☐ Chapter 3, Additional Programming Information: A description of various control and status registers on the MBX embedded controller as well as the board's I²C devices.

- Appendix A, *NVRAM Map and EPPCBug*: A discussion of stored data items that are pertinent to board configuration and operation.
- ☐ Appendix B, *Related Documentation*: A listing of other publications that may be helpful in using the MBX board.

Comments and Suggestions

Motorola welcomes and appreciates your comments on its documentation. We want to know what you think about our manuals and how we can make them better Mail comments to:

Motorola Computer Group Reader Comments DW164 2900 S. Diablo Way Tempe, Arizona 85282

You can also submit comments to the following e-mail address: reader-comments@mcg.mot.com

In all your correspondence, please list your name, position, and company. Be sure to include the title and part number of the manual and tell how you used it. Then tell us your feelings about its strengths and weaknesses and any recommendations for improvements.

Terminology

Throughout this manual, a convention is used which precedes data and address parameters by a character identifying the numeric format as follows:

\$	dollar	specifies a hexadecimal value
%	percent	specifies a binary number
&	ampersand	specifies a decimal number

For example, "&12" is the decimal number twelve, and "\$12" is the hexadecimal equivalent of the decimal number eighteen.

Unless otherwise specified, all address references are in hexadecimal format.

A pound sign (#) or underscore-L (_L) following the signal name for signals which are *level significant* denotes that the signal is *true* or valid when the signal is low.

A pound sign (#) or underscore-L (_L) following the signal name for signals which are *edge significant* denotes that the actions initiated by that signal occur on high-to-low transitions.

In this manual, *assertion* and *negation* are used to specify forcing a signal to a particular state. In particular, assertion and assert refer to a signal that is active or true; negation and negate indicate a signal that is inactive or false. These terms are used independently of the voltage level (high or low) that they represent.

Data and address sizes for MPC8xx chips are defined as follows:

- ☐ A *byte* is eight bits, numbered 0 through 7, with bit 0 being the most significant.
- ☐ A *half-word* is 16 bits, numbered 0 through 15, with bit 0 being the most significant.
- A word or single word is 32 bits, numbered 0 through 31, with bit 0 being the most significant.
- ☐ A *double word* is 64 bits, numbered 0 through 63, with bit 0 being the most significant.

Refer to the *Endian Modes* chapter in the *PowerPC MPC821 Portable Systems Microprocessor User's Manual* or *MPC860 User's Manual* for information on big-endian, small-endian, and PowerPC little-endian byte ordering. For information on byte ordering in the PowerSpan PCI interface, refer to the PowerSpan PowerPC-to-PCI Bus Switch Manual listed in the *Related Documentation* appendix.

The terms *control bit* and *status bit* are used extensively in this document. The term *control bit* describes a bit in a register that can be set and cleared under software control. The term *true* indicates that a bit is in the state that enables the function it controls. The term *false* indicates that the bit is in the state that disables the function it controls. The terms 0 and 1 describe

the actual value that should be written to a bit, or the value that it yields when read. The term *status bit* describes a bit in a register that reflects a specific condition. The status bit can be read by software to determine operational or exception conditions.

Conventions Used in This Manual

The following typographical conventions are used in this document:

bold

is used for user input that you type just as it appears; it is also used for commands, options and arguments to commands, and names of programs, directories and files.

italic

is used for names of variables to which you assign values, for function parameters, and for structure names and fields. Italic is also used for comments in screen displays and examples, and to introduce new terms.

courier

is used for system output (for example, screen displays, reports), examples, and system prompts.

<Enter>, <Return> or <CR>

represents the carriage return or Enter key.

Ctrl

represents the Control key. Execute control characters by pressing the **Ctrl** key and the letter simultaneously, for example, **Ctrl-d**.

Introduction

This chapter details the default MBX initialization values as well as the EPPCBug firmware initialization values. It is organized according to the initialization hierarchy inherent in the hardware.

Initialization Sequence

At start-up or reset, the MPC8xx processor samples the data bus for initial configuration based on current jumper settings and the design of the MBX board. It then passes control to firmware for further initialization. Initialization flows in a sequence determined by the hierarchy inherent in the hardware:

- 1. MPC821/860 PowerPC core
- 2. MPC821/860 System Interface Unit (SIU)
- 3. MPC821/860 Memory Controller and memory
- 4. Primary PCI Bus Bridge device (Tundra QSpan chip; standard configurations only)
- 5. ISA Bus Bridge device (Winbond W83C554F; standard configurations only)
- 6. Super I/O device (Standard Microsystems Corporation 37C672; standard configurations only)
- 7. PCI Address Spaces configuration and PCI Device configuration (standard configurations only)
- 8. PCMCIA Module configuration

For further details on board initialization, you may also wish to review the MBX Version C *Installation and Use* manual or the *EPPCBug Firmware Package User's Manual* listed in Appendix B, *Related Documentation*.

1-1

PowerPC Core

Within the processor chip is a module (the "core") that embodies the PowerPC architecture within the MPC8xx. Table 1-1 lists the firmware initialization values for the principal control registers located within the core.

Core registers not listed in the table either have indeterminate values or use the processor default values. For more information, refer to the MPC821 or MPC860 processor manuals listed in Appendix B, *Related Documentation*.

Table 1-1. Processor Core Configuration/Initialization

Special-Purpose Register Value	Register Mnemonic	Туре	Firmware Initialization Value	Notes
&22	DEC	Supervisor	FFFF FFFF	
&148	ICR	Debug	0000 0000	
&149	DER	Debug	0000 0000	
&158	ICTRL	Debug	0000 0000	
&275	SPRG3	Supervisor	Reserved	1
&284	TB Write	Supervisor	0000 0000	
&285	TBU Write	Supervisor	0000 0000	
&560	IC_CST	Supervisor	0A00 0000 0400 0000 0C00 0000 0200 0000	2

Firmware Register **Special-Purpose** Type Initialization Notes **Register Value** Mnemonic Value DC CST &568 Supervisor 0A00 0000 2 0400 0000 0C00 0000 &638 **IMMR** Supervisor 3 FA20 0000 MSR Supervisor 0000 1002

Table 1-1. Processor Core Configuration/Initialization (continued)

Notes

- 1. This register is reserved by the firmware.
- The series of values shown is written to cause invalidation of the code and data cache.
- 3. The firmware uses this register as a pointer to its internal data structures. When system calls are made (the programmatic interface function) this register must be restored to the same value at the time of client/target execution.

I²C/SPI Parameter RAM Patch

Due to an overlap in the parameter RAM of the MPC8xx processor, I^2C/SPI entries must be relocated in order to implement Ethernet (SCC1) and I^2C/SPI concurrently. Since IDMA1 is not used on the MBX, its parameter RAM is reused for relocating the I^2C .

EPPCBUG firmware downloads the MPC8xx I²C/SPI Microcode Package and then relocates the I²C parameter RAM base to DPRAM_Base+\$1CC0 (IDMA1 parameter base). Information about the microcode patch can be found at:

http://www.mot.com/SPS/ADC/pps/subpgs/etoolbox/8XX/i2c_spi.html

System Interface Unit (SIU) Registers

Table 1-2 lists hardware initialization values used for SIU registers after reset. For additional information about the state of the SIU Module Configuration Register (SIUMCR) after reset, refer to the MPC821 or MPC860 processor manuals listed in Appendix B, *Related Documentation*.

Table 1-2. SIU Registers: Initial Values

Internal Address	Register Mnemonic	Register Name	MBX Default Value	Firmware Initialization Value
000	SIUMCR	SIU Module Configuration Register	006A 2900	0060 2900
004	SYPCR	System Protection Control Register	FFFF FF88	FFFF FF88
008	SWT	Software Watchdog Timer Current Value		
00E	SWSR	Software Service Register		
010	SIPEND	SIU Interrupt Pending Register		
014	SIMASK	SIU Interrupt Mask Register		
018	SIEL	SIU Interrupt Edge Level Mask Register		AAAA 0000
01C	SIVEC	SIU Interrupt Vector Register	0000	
020	TESR	Transfer Error Status Register	0001 0000	FFFF FFFF
030	SDCR	SDMA Configuration Register		0000 0001
200	TBSCR	Timebase Status and Control Register	0003	00C3
220	RTCSC	Real-Time Clock Status and Control Register	00C3	00C3
240	PISCR	Periodic Interrupt Status and Control Register	0083	0083
280	SCCR	System Clock Control Register	6200 0000	6200 0000

Table 1-2. SIU Registers: Initial Values (continued)

Internal Address	Register Mnemonic	Register Name	MBX Default Value	Firmware Initialization Value
284	PLPRCR	PLL, Low Power and Reset Control Register	0000 D000	0000 D000
320	RTCSCK	Real-Time Clock Status/Control Register Key		55CC AA33
324	RTCK	Real-Time Clock Register Key		55CC AA33
328	RTCECK	Real-Time Alarm Seconds Key		55CC AA33
32C	RTCALK	Real-Time Alarm Register Key		55CC AA33

Memory Controller

In hardware, all address decoding originates with the eight chip-select banks of the memory controller incorporated into the MPC8xx processor. Table 1-3 lists the initial values established by EPPCBug firmware for the memory controller registers. Some values are dependent on the state of jumper J4 (boot ROM device selection), the size of the on-board DRAM memory, and the size of the optional DIMM memory.

Underlined values in Table 1-3 identify parameters required by the design of the MBX board; they should not be modified. Other values are user-selectable. For additional details about the processor Base and Option registers, refer to the MPC821 or MPC860 processor manuals listed in Appendix B, *Related Documentation*.

Table 1-3. Memory Controller Register: Initial Values

Offset	Mnemonic	Name	Device	Value 50MHz	Notes
100	BR0	Base Register Bank 0	On-Board or Socketed	FE00 0 <u>001</u> or FC00 0 <u>401</u>	1
104	OR0	Option Register Bank 0	Flash	FF80 0 <u>940</u>	2
108	BR1	Base Register Bank 1	On-board	XXX0 0 <u>081</u>	
10C	OR1	Option Register Bank 1	DRAM	XXX0 0 <u>400</u>	
110	BR2	Base Register Bank 2	DIMM DRAM (Bank	XXX0 0 <u>081</u>	
114	OR2	Option Register Bank 2	0)	XXX0 0 <u>400</u>	
118	BR3	Base Register Bank 3	DIMM DRAM (Bank	XXX0 0 <u>081</u>	
11C	OR3	Option Register Bank 3	1)	XXX0 0 <u>400</u>	
120	BR4	Base Register Bank 4	NVRAM, board-local	FA00 0 <u>401</u>	
124	OR4	Option Register Bank 4	control/status register spaces	FFE0 0 <u>930</u>	3
128	BR5	Base Register Bank 5	PCI I/O,	8000 0 <u>001</u>	
12C	OR5	Option Register Bank 5	PCI memory spaces	A000 0 <u>008</u>	3
130	BR6	Base Register Bank 6	PCI Bus bridge	FA21 0 <u>001</u>	
134	OR6	Option Register Bank 6	registers	FFFF 0 <u>108</u>	3

Table 1-3. Memory Controller Register: Initial Values (continued)

Offset	Mnemonic	Name	Device	Value 50MHz	Notes
138	BR7	Base Register Bank 7	Socketed or On-Board	FE00 0 <u>401</u> or FC00 0 <u>001</u>	1
13C	OR7	Option Register Bank 7	Flash	FF80 0 <u>940</u>	2
170	MAMR	Machine A Mode Register	All DRAM	1880 1000 (no DIMM) 0880 1000 (DIMM installed)	4
174	MBMR	Machine B Mode Register			
17A	MPTPR	Memory Periodic Timer Prescaler	All DRAM	0200	

Notes

- 1. EPPCBug configures the reset Flash device at the lower address, and the nonreset Flash device at the higher address, based on the setting of jumper header J4 (boot ROM device selection).
- 2. These initialization values assume 90ns or better access timing.
- 3. These initialization values assume 70ns or better access timing.
- 4. With a DIMM installed, the system has three banks of memory from a hardware perspective: one soldered, and two on the DIMM. The refresh periodic timer should be scaled back to $5\mu s$ so that the aggregate refresh time comes to $15\mu s$.

System Memory Map

Table 1-4 shows the system address map established by the firmware initialization of the processor's SIU registers and memory controller. The notes that follow the table provide device-specific information, important in programming the MBX to suit your application.

Table 1-4. System Memory Map — MPU View

Start	End	Size	Definition	CS	Notes
0000 0000	00XF FFFF	4/16 MB	On-board DRAM (32 bit) $X = 3 \text{ for } 4M$ $X = F \text{ for } 16M$	CS1	1,4,7
00X0 0000	0XXX XXXX	x MB	DIMM slot (Bank 0 and 1) (8/16/32/64/128M)	CS2 CS3	1,2,3,4
8000 0000	9FFF FFFF	512 MB	PCI/ISA I/O space	CS5	5,6,8,11
A000 0000	BFFF FFFF	512 MB	Reserved		10
C000 0000	DFFF FFFF	512 KB	PCI/ISA memory space	CS5	5,8,11
E000 0000	E3FF FFFF	64 MB	PCMCIA memory space	N/A	9,16
E400 0000	E7FF FFFF	64 MB	PCMCIA DMA memory space	N/A	9,16
E800 0000	EBFF FFFF	64 MB	PCMCIA attribute space	N/A	9,16
EC00 0000	EFFF FFFF	64 MB	PCMCIA I/O space	N/A	9,16
F000 0000	F9FF FFFF	160 MB	Unused		10
FA00 0000	FA0F FFFF	1 MB	NVRAM (BBSRAM; 8 bit) (32/128/512K internal decode)	CS4	9,11
FA10 0000	FA1F FFFF	1 MB	MBX status/control registers #1 and #2	CS4	9,11,12
FA20 0000	FA20 FFFF	64 KB	MPC8xx dual-port RAM (16K internal decode)	N/A	9
FA21 0000	FA21 FFFF	64 KB	PCI bus bridge control/status registers (4K internal decode)	CS6	5,8
FA22 0000	FBFF FFFF	30592 KB	Unused		10

Definition Start End Size CS Notes FC00 0000 FC7F FFFF 1/2/4/8 Flash memory (1/2/4/8 MB; CS₀ 7,13,14, CS7 MB 15 10 FC80 0000 FDFF FFFF 24 MB Reserved FE00 0000 FE7F FFFF 8 MB Boot ROM (128/256/512KB; CS7 9,3,14, 8 bit) CS0 15 FE80 0000 FFFF FFFF 24 MB 10 Reserved

Table 1-4. System Memory Map — MPU View (continued)

Notes for System Address Map

Entries in the **Notes** column of Table 1-4, *System Memory Map — MPU View* refer to the items below.

- 1. Depending upon the size of memory installed (plugged into the DIMM slot), the on-board memory may or may not be located at address \$0000 0000. If the installed memory is larger than the on-board memory, then the installed memory should be located at address \$0000 0000. When you configure the bank address registers of the MPC8xx, the base address of the bank must be a modulus of the bank size. For example, if a bank is 32MB, it can only be located at addresses \$0000 0000, \$0200 0000, \$0400 0000, \$0600 0000.
- 2. The DIMM is 64 data bits wide, but it can be accessed only 32 bits at a time. The 32-bit data width is a limitation of the MPC8xx. With this in mind, the DIMM can be viewed as two contiguous banks of memory (bank 0 and bank 1). The RAS0 signal is logically connected to the first chip selection and the RAS2 signal is logically connected to the second chip selection.
- 3. When installing DIMM modules, ensure that the jumpers (J8/9/10) on the MBX Series board are configured to match the size of the DIMM being installed.
- 4. Both the on-board DRAM and the DIMM DRAM share/utilize the same UPM: UPMA.

- 5. The location of these address spaces is dependent upon the presence of the PCI bus host bridge. PCI/ISA I/O space and PCI/ISA memory space are programmable via the PCI bus host bridge device (QSpan). On entry-level boards, CS5# and CS6# are available at the 8xx/COMM expansion connector (P1) as well.
- 6. For details, see *ISA Memory Map* on page 1-11.
- 7. The size of these address spaces is queried from the I²C SROM device.
- 8. The presence of the PCI bus host bridge device is queried from the I²C SROM device.
- These address spaces are smaller than the indicated size. The actual decode is dependent upon the device. Address "wrapping" may occur.
- Access to any reserved/unused address space is undefined with respect to boundaries. One cannot assume a behavior, predicted or experienced, and any outcome is uncertain.
- 11. These address spaces share a common chip select; the specified selection is further decoded by the appropriate address lines.
- 12. MBX control and status registers are byte addressed.
 Control/Status Register #1 is located at all even addresses
 \$FA10 0000–\$FA1F FFFE. Control/Status Register #2 is located at all odd addresses \$FA10 0001–\$FA1F FFFF.
- 13. The MBX is designed to boot from either the on-board Flash or the socketed Flash as determined by jumper J4, which variously routes CS0# and CS7# to the two devices. The actual chip select used is dependent upon the position of jumper J4. The MPC8xx processor always uses CS0# as the source to the reset vector. By default, the on-board Flash is on CS0# and the socketed Flash is at CS7#.

After reset, CS0# is active for the entire memory. Software should reconfigure to limit the range of CS0#.

- 14. EPPCBug can be executed from either the on-board Flash or the socketed Flash. EPPCBug configures the reset Flash device at the lower address, and the nonreset Flash device at the higher address. Refer to the *MBX Series Embedded Controller Version C Installation and Use* manual for information about selecting a boot ROM device via jumper J4.
- 15. CS7# can alternatively be used for the 8xx/COMM expansion connector (P1), if you boot from the 32-bit on-board Flash device and the socketed Flash device is removed from XU1.
- 16. PCMCIA decodes are enabled only if a PCMCIA card is present in the PCMCIA socket.

ISA Memory Map

Table 1-5 lists the firmware initialization values for the ISA address map beginning at \$80000000.

Port	Description	ISA Address	Enabled
FDC	Floppy disk controller	3F0-3F7	Y
UART1	Serial port 1	3F8-3FF	Y
UART2/IR	Serial port 2/Infrared	2F8-2FF	Y
Parallel	Parallel port	3BC-3BF	N
KBC	Keyboard controller	060, 064	Y
MOUSE	Mouse controller	060, 064	Y

Table 1-5. ISA Address Map

Notes

- 1. Base address of the peripheral I/O controller is \$370 (the alternate may be \$3F0).
- 2. Addresses are relocatable through software.

DRAM Configuration

Configuration values for DRAM vary depending on the speed of the processor. They are stored in User Programmable Machine A. Table 1-6 specifies the configuration values for DRAM at 50 MHz. Table 1-7 specifies the configuration values for enhanced DRAM at 50 MHz. All values assume 60 ns or faster EDO DRAM with 1, 2, or 4K refresh.

For additional details on the configuration of DRAM, refer to notes 1–4, Table 1-4.

Table 1-6. UPM A RAM Array for DRAM at 50 MHz

Word	Single Read (Offset \$00)	Burst Read (Offset \$08)	Single Write (Offset \$18)	Burst Write (Offset \$20)	Refresh (Offset \$30)	Exception (Offset \$3C)
0	CFAF C004	CFAF C004	CFFF 0004	CFFF 0004	FCFF C004	FFFF C007
1	0FAF C404	0FAF C404	0FFF 0404	0FFF 0404	C0FF C004	
2	0CAF 8C04	0CAF 8C04	0CFF 0C00	0CFF 0C00	01FF C004	
3	10AF 0C04	00AF 0C04	13FF 4804	03FF 0C0C	0FFF C004	
4	F0AF 0C00	07AF 0C08	FFFF C004	0CFF 0C00	1FFF C004	
5	F3BF 4805	0CAF 0C04	FFFF C005	03FF 0C0C	FFFF C004	
6	FFFF C005	01AF 0C04		0CFF 0C00	FFFF C005	
7		0FAF 0C08		03FF 0C0C		
8		0CAF 0C04		0CFF 0C00		
9		01AF 0C04		13FF 4804		
A		0FAF 0C08		FFFF C004		
В		0CAF 0C04		FFFF C005		
С		10AF 0C04				
D		F0AF C000				
Е		F3BF 4805				_
F		FFFF C005				

Table 1-7. Enhanced UPM A RAM Array for DRAM at 50 MHz

Word	Single Read (Offset \$00)	Burst Read (Offset \$08)	Single Write (Offset \$18)	Burst Write (Offset \$20)	Refresh (Offset \$30)	Exception (Offset \$3C)
0	CFEF C004	CFEF C004	CFFF 0004	CFFF 0004	FCFF C004	FFFF C007
1	0FAF C404	0FAF C404	0FFF 0404	0FFF 0404	C0FF C004	
2	0CAF 0C04	0CAF 0C04	0CFF 0C00	0CFF 0C00	01FF C004	
3	30AF 0C00	03AF 0C08	33FF 4804	03FF 0C0C	0FFF C004	
4	F3BF 4805	0CAF 0C04	FFFF C005	0CFF 0C00	1FFF C004	
5		03AF 0C08		03FF 0C0C	FFFF C004	
6		0CAF 0C04		0CFF 0C00	FFFF C005	
7		03AF 0C08		03FF 0C0C		
8		0CAF 0C04		0CFF 0C00		
9		30AF 0C00		33FF 4804		
A		F3BF 4805		FFFF C004		
В		0CAF 0C04		FFFF C005		
С						
D						
Е						
F						

QSpan Initialization Values

The QSpan R/W registers are initialized by firmware to the values listed in Table 1-8. Read-only registers are left blank.

Table 1-8. QSpan Registers: Initial Values

Address Offset	Register	Description	Default Value	Initialization Value
000	PCI_ID	PCI Configuration Space ID	0860 10E3	
004	PCI_CS	PCI Configuration Space Control and Status	0280 0000	FB00 0147
008	PCI_CLASS	PCI Configuration Class	0680 0000	
00C	PCI_MISC0	PCI Configuration Miscellaneous 0	0000 0000	0000 0000
010	PCI_BSM	PCI Configuration Base Address for Memory	xxxx x000	0100 0000
014	PCI_BSIO	PCI Configuration Base Address for I/O	xxxx x001	1FFF F001
02C	PCI_SID	PCI Configuration Subsystem ID	xxxx xxxx	
030	PCI_BSROM	PCI Configuration Expansion ROM Base Address	0000 0000	0000 0000
03C	PCI_MISC1	PCI Configuration Miscellaneous 1	0000 0100	0000 0100
100	PBTI0_CTL	PCI Bus Target Image 0 Control	0000 0000	8F80 0080 (QSpan 1.2)
104	PBTI0_ADD	PCI Bus Target Image 0 Address	xxxx xxxx	8000 0000
110	PBTI1_CTL	PCI Bus Target Image 1 Control	0000 0000	0000 0000
114	PBTI1_ADD	PCI Bus Target Image 1 Address	xxxx xxxx	0000 0000
13C	PBROM_CTL	PCI Bus Expansion ROM Control	0000 0000	0000 0000
140	PB_ERRCS	PCI Bus Error Control and Status	0000 0070	8000 0000
144	PB_AERR	PCI Bus Address Error Log	0000 0000	
148	PB_DERR	PCI Bus Data Error Log	0000 0000	
400	IDMA_CS	IDMA Control and Status	0000 0000	0078 0008 ¹

Table 1-8. QSpan Registers: Initial Values (continued)

Register	Description	Default Value	Initialization Value
IDMA_ADD	IDMA Address	XXXX XXXX	Note 1
IDMA_CNT	IDMA Transfer Count	00xx xxxx	Note 1
CON_ADD	Configuration Address	0000 0000	Note 2
CON_DATA	Configuration Data	0000 0000	Note 2
IACK_GEN	IACK Cycle Generator Register	0000 0000	
INT_STAT	Interrupt Status	0000 0000	EFF0 000F (QSpan 1.2)
INT_CTL	Interrupt Control	0000 0000	0000 0000
INT_DIR	Interrupt Direction Control	0000 0000	0000 0000
MISC_CTL	Miscellaneous Control and Status	0000 0003	000C 0043 (QSpan 1.2)
QBSI0_CTL	QBus Slave Image 0 Control	0000 0000	0100 0000
QBSI0_AT	QBus Slave Image 0 Address Translation	xxxx 00x0	0000 00D1
QBSI1_CTL	QBus Slave Image 1 Control	0000 0000	0000 0000
QBSI1_AT	QBus Slave Image 1 Address Translation	xxxx 00x0	0000 00D1
QB_ERRCS	QBus Error Log Control and Status	0000 0000	8100 0000
QB_AERR	QBus Address Error Log	0000 0000	
QB_DERR	QBus Data Error	0000 0000	
	IDMA_ADD IDMA_CNT CON_ADD CON_DATA IACK_GEN INT_STAT INT_CTL INT_DIR MISC_CTL QBSI0_CTL QBSI0_AT QBSI1_CTL QBSI1_AT QB_ERRCS QB_AERR	IDMA_ADD IDMA Address IDMA_CNT IDMA Transfer Count CON_ADD Configuration Address CON_DATA Configuration Data IACK_GEN IACK Cycle Generator Register INT_STAT Interrupt Status INT_CTL Interrupt Control INT_DIR Interrupt Direction Control MISC_CTL Miscellaneous Control and Status QBSI0_CTL QBus Slave Image 0 Control QBSI0_AT QBus Slave Image 0 Address Translation QBSI1_CTL QBus Slave Image 1 Control QBSI1_AT QBus Slave Image 1 Address Translation QB_ERRCS QBus Error Log Control and Status QB_AERR QBus Address Error Log	RegisterDescriptionValueIDMA_ADDIDMA Addressxxxx xxxxIDMA_CNTIDMA Transfer Count00xx xxxxCON_ADDConfiguration Address0000 0000CON_DATAConfiguration Data0000 0000IACK_GENIACK Cycle Generator Register0000 0000INT_STATInterrupt Status0000 0000INT_CTLInterrupt Control0000 0000MISC_CTLMiscellaneous Control and Status0000 0000QBSI0_CTLQBus Slave Image 0 Control0000 0000QBSI0_ATQBus Slave Image 0 Address Translationxxxx 00x0QBSI1_CTLQBus Slave Image 1 Control0000 0000QBSI1_ATQBus Slave Image 1 Address Translationxxxx 00x0QB_ERRCSQBus Error Log Control and Status0000 0000QB_AERRQBus Address Error Log0000 0000

Notes

- 1. IDMA not supported.
- 2. Variable depending on PCI peripherals.

The QSpan PCI Bus Bridge device can act either as master or as slave on the local processor bus as well as on the PCI bus.

As a slave on the processor bus, the QSpan device can accept single-beat or burst accesses from the processor. The GPCM (general-purpose chip select machine) is used to interface to the QSpan; enabling the burst read capability of the GPCM will enhance system performance.

As a master on the processor bus, the QSpan device performs memory accesses to the area of memory controlled by the UPMA (user-programable machine A). Due to the nature of the MPC8xx UPM memory controller interface, the QSpan interface on the MPC8xx processor bus cannot perform bursting in this case. The burst write feature should be disabled.

QSpan register space is on chip select line CS6#. QSpan PCI space is on CS5#. On entry-level boards, CS5# and CS6# are available at the 8xx/COMM expansion connector (P1) as well.

All accesses to the QSpan register space must be single-beat. The programmer should mark this area noncacheable, to inhibit bursting to the QSpan register space (see BR6 and OR6 in Table 1-3, *Memory Controller Register: Initial Values*).

Accesses to the QSpan PCI memory space can be burst or single from the processor perspective. To enable bursting to PCI memory space from the processor, enable the burst bit in the BRn controlled by the GPCM (see BR5 and OR5 in Table 1-3, Memory Controller Register: Initial Values).

Winbond 83C554 Initialization Values

The Winbond 83C554 PCI-to-ISA bridge register initialization values are subject to change based on driver and application requirements. This includes the support for application-specific EIDE-type devices. Interrupts are defined in Table 1-13. For more information, refer to the *EPPCBug Firmware Package User's Manual*.

The 83C554 wakes up in an operational state. Initialization consists of:

- ☐ Programming the PCI interrupt routing registers
- ☐ Programming the interrupt edge/level detect registers

- ☐ Setting up the three PC-type timers
- ☐ Programming the ISA bus control registers to a state conducive to host operation

The Interrupt Controller portion of the 83C554 device is initialized by firmware to the values listed in Table 1-9.

Table 1-9. 83C554 Interrupt Initialization

PRI	ISA IRQ	PCI IRQ	Contr.	Edge/ Level	Polarity	Interrupt Source	Notes
1	IRQ0		INT1	Edge	High	Timer-0/Counter-0	1
2	IRQ1			Edge	High	Keyboard	
3-10	IRQ2			Edge	High	Cascaded Interrupt from INT2	
3	IRQ8		INT2	Edge	Low		
4	IRQ9			Edge	Low		
5	IRQ10	INTA#		Edge	Low	PCI Slot - INTA#	2,3
6	IRQ11	INTB#		Edge	Low	PCI Slot - INTB#	2,3
7	IRQ12			Edge	High	Mouse	
8	IRQ13			Edge	High		
9	IRQ14	INTC#		Edge	Low	PCI Slot - INTC#	2,3
10	IRQ15	INTD#		Edge	Low	PCI Slot - INTD#	2,3

Table 1-9. 83C554 Interrupt Initialization (continued)

PRI	ISA IRQ	PCI IRQ	Contr.	Edge/ Level	Polarity	Interrupt Source	Notes
11	IRQ3		INT1	Edge	High	COM2 (Async Serial Port #2)	
12	IRQ4			Edge	High	COM1 (Async Serial Port #1)	
13	IRQ5			Edge	High		
14	IRQ6			Edge	High	Floppy	
15	IRQ7			Edge	High	Parallel Port	

Notes

- 1. Internally generated by the 83C554.
- 2. Initialize the PIRQ registers with the associated ISA IRQ value.
- 3. The PIRQ values reside in NVRAM. These values are used upon a reset condition to initialize the PIRQ registers located within the PCI-to-ISA bridge. This allows for a custom initialization.

37C672 Peripheral I/O Device

The 37C672 I/O device is a collection of industry-standard PC I/O peripherals (e.g., two UARTs, parallel port, FDC, keyboard/mouse controller). The 37C672 peripheral I/O device register initialization values are subject to change based upon driver and application requirements.

Required Interrupt Routing

The 37C672 device must be programmed to bring out the:

- ☐ Floppy Disk Controller (FDC) interrupt signal on pin 100, which is defined as IRQ7 in the device. Pin 100 is then hardwired on the board to ISA interrupt ISA_IRQ6.
- ☐ Keyboard interrupt signal on pin 97, which is defined as IRQ10 in the device. Pin 97 is then hardwired on the board to ISA interrupt ISA_IRQ1.

- ☐ Mouse interrupt signal on pin 92, which is defined as IRQ12 in the device. Pin 92 is then hardwired on the board to ISA interrupt ISA_IRQ12.
- ☐ Parallel port interrupt signal on pin 94, which is defined as IRQ11 in the device. Pin 94 is then hardwired on the board to ISA interrupt ISA_IRQ7.

Table 1-10. 37C672 I/O Device Interrupt Routing

Function	Pin Number – Signal Name	ISA IRQ (Hardwired)
Keyboard	Pin 97 - DSR#/SA15/ISA_IRQ10	ISA_IRQ1
COM2	Pin 33 - SER_IRQ/ISA_IRQ3	ISA_IRQ3
COM1	Pin 32 - PCI_CLK/ISA_IRQ4	ISA_IRQ4
FDC	Pin 100 - DTR#/SA14/ISA_IRQ7	ISA_IRQ6
Parallel Port	Pin 94 - DCD#/8042P12/ISA_IRQ11	ISA_IRQ7
Mouse	Pin 92 - RI#/8042P16/ISA_IRQ12	ISA_IRQ12

I/O Device Address Offsets

The 37C672 is plug-and-play (PnP) compatible. The PnP compatibility requires that each of the I/O peripherals be located in the ISA address map and that each of these address spaces be enabled.

To initialize the hardware, program each I/O peripheral's base address register and enable the address decode for it. Device initialization beyond this occurs as needed by the specific device driver.

This is the same level of initialization that occurs with EPPCBug. Table 1-11 lists the I/O address offsets into PCI/ISA I/O space for the different 37C672 entities. These address offsets are a result of the firmware initialization.

Table 1-11, 37C672 I/O Device Address Offsets

Resource	Enabled	Address Mnemonic	Address Offset(s)	Description
FDC	Yes	PRI	3F0-3F7	Floppy Disk Controller
Keyboard	Yes	COM1	3F8-3FF	Serial Port #1
Mouse	Yes	COM2	2F8-2FF	Serial Port #2
Parallel Port	Yes	LPTI	3BC-3BF	Parallel Port
KBC	Yes		060, 064	Keyboard/Mouse Controller

I/O Device Configuration

Table 1-12 lists the firmware initialization values (in hexadecimal format) for configuration-type registers of the 37C672. As previously stated, these are just the initialization values. Operation of specific 37C672 drivers may require additional initialization such as interrupt enabling, DMA operations, operation modes/parameters, etc.

Table 1-12. 37C672 I/O Device Configuration

Index	Туре	Configuration Register Description	Hard Reset	Soft Reset	Initialization Value
		Global Configuration	on Registers		
02	W	Configuration Control	00	00	
03	R/W	Index Address	03	N/A	
07	R/W	Logical Device Number	00	00	XX
20	R	Device Identifier	40	40	
21	R	Device Revision	01	01	
22	R/W	Power Control	00	00	3F
23	R/W	Power Management	00	N/A	00
24	R/W	OSC	04	N/A	
2B	R/W	Test 4	00	N/A	
2C	R/W	Test 5	00	N/A	
2D	R/W	Test 1	00	N/A	
2E	R/W	Test 2	00	N/A	
2F	R/W	Test 3	00	N/A	
	l	Logical Device 0 Configura	tion Registers (FDD)	
30	R/W	Activate	00	00	01
60	R/W	Primary Base I/O Address (15:8)	03	03	03
61	R/W	Primary Base I/O Address (7:0)	F0	F0	F0
70	R/W	Primary Interrupt Select	06	06	07

Table 1-12. 37C672 I/O Device Configuration (continued)

Index	Туре	Configuration Register Description	Hard Reset	Soft Reset	Initialization Value
74	R/W	DMA Channel Select	02	02	02
F0	R/W	FDD Mode Register	0E	N/A	06
F1	R/W	FDD Option Register	00	N/A	0C
F2	R/W	FDD Type Register	FF	N/A	55
F4	R/W	FDD0	00	N/A	01
F5	R/W	FDD1	00	N/A	01
		Logical Device 1 Configuration	on Registers (Re	eserved)	
		Logical Device 2 Configuration	on Registers (Re	eserved)	
		Logical Device 3 Configuration	Registers (Para	allel Port)	
30	R/W	Activate	00	00	01
60	R/W	Primary Base I/O Address (15:8)	00	00	03
61	R/W	Primary Base I/O Address (7:0)	00	00	ВС
70	R/W	Primary Interrupt Select	00	00	0B
74	R/W	DMA Channel Select	04	04	04
F0	R/W	Parallel Port Mode Register 1	3C	N/A	3C
F1	R/W	Parallel Port Mode Register 2	00	N/A	
		Logical Device 4 Configuration	Registers (Seri	ial Port 1)	
30	R/W	Activate	00	00	01
60	R/W	Primary Base I/O Address (15:8)	00	00	03
61	R/W	Primary Base I/O Address (7:0)	00	00	F8
70	R/W	Primary Interrupt Select	00	00	04
F0	R/W	Serial Port 1 Mode Register	00	N/A	00
		Logical Device 5 Configuration	Registers (Seri	ial Port 2)	1
30	R/W	Activate	00	00	01
60	R/W	Primary Base I/O Address (15:8)	00	00	02

Table 1-12. 37C672 I/O Device Configuration (continued)

Index	Туре	Configuration Register Description	Hard Reset	Soft Reset	Initialization Value
61	R/W	Primary Base I/O Address (7:0)	00	00	F8
62	R/W	Fast IR Base I/O Address (15:8)	00	00	
63	R/W	Fast IR Base I/O Address (7:0)	00	00	
70	R/W	Primary Interrupt Select	00	00	03
74	R/W	DMA Channel Select	04	04	
F0	R/W	Serial Port 2 Mode Register	00	N/A	00
F1	R/W IP Options Register		02	N/A	00
F2	R/W	IP Half-Duplex Timeout	03	N/A	
		Logical Device 6 Configuration	on Registers (Re	eserved)	•
		Logical Device 7 Configuration	on Registers (Ke	eyboard)	
30	R/W	Activate	00	00	01
70	R/W	Primary Interrupt Select	00	00	0A
72	R/W	Secondary Interrupt Select	00	00	0C
F0	R/W KRESET and GateA20 Select		00	N/A	
	1	Logical Device 8 Configuration	Registers (Aux	iliary I/O)	
30	R/W	Activate	00	00	
C0	R/W	Pin Multiplex Controls	00	N/A	00

Interrupt Routing

Table 1-13 and Table 1-14 present the interrupt structure of the MBX Series embedded controller.

Table 1-13. Interrupt Structure — ISA and PCI

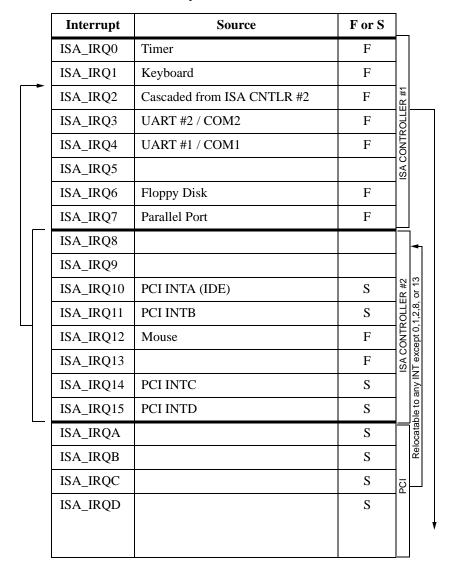


Table 1-14. Interrupt Structure — MPC8xx

	Interrupt	Source	F or S
_	8xx_IRQ0	Power Fail	F
	LEVEL0		S
	8xx_IRQ1	Temperature High/Low	F
	LEVEL1		S
	8xx_IRQ2	QSpan	F
	LEVEL2		S
	8xx_IRQ3	ISA CNTLR #1	F
	LEVEL3		S
	8xx_IRQ4	Unavailable	
	LEVEL4		S
	8xx_IRQ5	Unavailable	
	LEVEL5		S
	8xx_IRQ6	COMMINT_L	F
	LEVEL6		S
	8xx_IRQ7	Stop / Abort	F
	LEVEL7		S
	NMI	Watchdog Timer or IRQ	F
	DEC	Decrementer	F
	SIU	DEC, TB, PIT, RTC, PCMCIA	S
_	СРМ	Port C Pins, Timers, SCCs, SMCs, SPI, I ² C, PIP, DMA	S

Notes

- 1. S = Software configurable.
- 2. F = Fixed hardware connection.
- 3. TB, PIT, RTC, PIP, PCMCIA, and CPM_IRQ_Controller are all software-configurable to any LEVELx.
- 4. Watchdog Timer is configurable to generate NMI or HRESET.
- 5. PCI interrupts and IDE interrupt are routable to any ISA interrupt except 0, 1, 2, 8, or 13. Default maps are A 10, B 11, C 14, D 15.
- 6. For polarities, refer to *Interrupt Pins* on page 2-3.

Resets

To preserve the energy of the on-board battery, the battery will not supply the processor keep-alive power (KAPWR) circuits until the board is first placed in service.

When power is first applied to the MBX, the KAPWR supply is generally below a minimum voltage threshold because of the "freshness seal" on the battery. As a result, the reset circuitry on the board issues a power-on reset (POR#) to the entire board, including the registers powered by the KAPWR circuits.

The POR# signal also causes the MPC8xx processor to assert a hardware reset (HRESET#) signal.

After this initialization, the freshness seal is broken and the battery always supplies power to the processor KAPWR circuits when the main power is removed. The processor never sees another POR# signal unless the battery is removed and the main power disconnected.

Hardware Reset

The hardware reset (HRESET#) signal resets the entire system except the portion of the processor powered by the KAPWR circuits.

When coming out of a hardware reset, the processor samples the data bus for a hard reset configuration word. The configuration word is built in part from jumper settings; the jumpers should be set before you power up the board.

The 32 bits that comprise the configuration word are defined in Table 1-15.

Table 1-15. Hard Reset Configuration Word: Bit Definitions

Bits	Definition
0-15	J100 0J01 0110 J000 (where J represents a jumper setting)
16-31	0000 0000 0000 0000 (reserved and must be zero)

Notes

- 1. The jumper for bit position 0 (J6) specifies internal or external arbitration.
- 2. The jumper for bit position 5 (J4) specifies a boot port size of 8 bits or 32 bits.
- 3. The jumper for bit position 12 (J5) defines whether the DEBUG signals or the IEEE 1149 signals are active on the multiplexed DEBUG/IEEE1149 processor pins.
- 4. The reset vector for the MPC8xx is set to 0000 0100 (IP=1, MSRIP=0).
- 5. The Initial IMMR value is FF00 0000.
- 6. The CLKOUT frequency is divided by 1 (EBDF=00).

The Power Monitor circuit monitors both +3.3V and +5V. At power-up, it pulls HRESET# low until 350ms after both voltages reach their proper operating levels. HRESET# is kept low (asserted) for as long as either +3.3V or +5V is out of tolerance.

When the processor detects an HRESET# signal, it also drives SRESET# low.

Software Reset

The software reset (SRESET#) signal is for use with an emulator or debugger in development applications. SRESET# is present at pin 2 of the MBX Debug connector (J24); it is routed to the MPC8xx SRESET# pin. To enter Debug mode, SRESET# can be cleared to 0 while DSCK (pin 8 on the Debug connector) is set to 1. DSCK should remain set to 1 after negation of SRESET# to enable the Debug mode immediately.

Note that the above is one of many ways to enter Debug mode. For further information, refer to the appropriate processor manual or to the *EPPCBug Firmware Package User's Manual* listed in Appendix B, *Related Documentation*.

Introduction

The MPC821 and MPC860 processors are highly integrated; a number of pins serve multiple functions. Multi-function pins must be programmed in accordance with the requirements of your application.

This chapter describes how the pins associated with the MPC821/860 processor bus interface and peripheral ports are multiplexed on the MPMC8xx.

Processor Bus Interface

This section describes pins on the MPC8xx bus and control interface that have multiple functions but have dedicated functionality. Programmable pins must be set accordingly.

PCMCIA and/or IPA Port Pins

The PCMCIA interface signals for slot 1 are routed to the MPC8xx as defined in Table 2-1. The MPC8xx IPA port is used for the PCMCIA slot 1 interface signals. The active-low signals (those with names followed by a pound sign) can be defined as signals active on a low logic level or on the falling edge.

Table 2-1. PCMCIA/IPA Port — Pin Definition vs. Function

Proc	essor		
Pin Number	Pin Name	PCMCIA Function	Alternate
T5	IPA0	VS1	
T4	IPA1	VS2	
U3	IPA2	WP or IOCS16#	DREQ#
W2	IPA3	CD2	
U4	IPA4	CD1	
U5	IPA5	BVD1 or SPKR	DREQ#
T6	IPA6	BVD2 or STSCHG	
T3	IPA7	RDY or IRQ#	
R3	WAITA#	WAIT#	
L4	OP(0)	RESET	
L2	OP(1)	PC Card Enable for Control Signal Buffer	

The PCMCIA signal INPACK# is not needed for non-DMA type PCMCIA cards in this design. To support PCMCIA cards that have DMA capability and use the INPACK# pin for the DREQ# signal, a jumper (J11) on the board enables you to connect the INPACK# signal to the IPA5 pin. For a description of J11 functionality, refer to the MBX Series Embedded Controller Version C Installation and Use manual listed under Motorola Computer Group Documents in Appendix B, Related Documentation.

Interrupt Pins

The external interrupt pins available on the MPC8xx are defined in Table 2-2. The interrupt signals can be defined as active low or falling edge.

Table 2-2. Interrupts — Pin Definition vs. Function

Processor		
Pin Number	Pin Name	Function
V14	8xx_IRQ0#	Power Fail Interrupt
U14	8xx_IRQ1#	Temperature Interrupt
Н3	RSV# / 8xx_IRQ2#	8xx_IRQ2# as QSpan Interrupt
F2	CR# / 8xx_IRQ3#	8xx_IRQ3# as ISA Bus Interrupt
V5	DP1 / 8xx_IRQ4#	DP1 (IRQ4# unavailable)
W4	DP2 / 8xx_IRQ5#	DP2 (IRQ5# unavailable)
G3	FRZ / 8xx_IRQ6#	8xx_IRQ6# as 8xx/COMM Expansion Interrupt
W15	8xx_IRQ7#	Stop or Abort Interrupt
D18	PC14	User-selectable
E18	PC13	User-selectable
F18	PC12	User-selectable
L18	PC9	User-selectable
M18	PC8	User-selectable
M16	PC7	User-selectable
R19	PC6	User-selectable
T18	PC5	User-selectable
T17	PC4	User-selectable

External interrupt lines 4 and 5 are not available as interrupt lines (see *Miscellaneous Pins* on page 2-5). All external interrupts feeding the external interrupt pins of the MPC8xx are active low in polarity. The 8xx_IRQ1# interrupt (temperature interrupt) polarity is programmed in the

digital thermometer and thermostat (DS1621S) device itself depending on whether the interrupt is desired on a high temperature limit or a low temperature limit. The MPC8xx allows for both level detection or edge detection. For more information, refer to the EPPCBug Firmware Package User's Manual.

The Port C pins identified above can be redefined as interrupt lines to the MPC8xx processor core when not used for another function/purpose. Each available Port C pin, when configured as an interrupt signal, has a unique interrupt vector as defined in Table 16-44 (Encoding the Interrupt Vector) in the MPC860 User's Manual and PowerPC MPC821 Portable Systems Microprocessor User's Manual. Making use of these pins involves tradeoffs with the other functionality they provide. See Port C Pins—Definition vs. Function on page 2-9.

IPB Port Pins

The MPC8xx IPB(0:7) signals are defined in Table 2-3.

Table 2-3. IPB Port — Pin Definition vs. Function

	Processor	
Pin Number	Pin Name	Function
H2	IPB0 / IWP0 / VFLS0	VFLS0 (Debug Port)
J3	IPB1 / IWP1 / VFLS1	VFLS1 (Debug Port)
J2	IPB2 / IOIS16B# / AT2	AT2 (Unused)
G1	IPB3 / IWP2 / VF2	VF2 (No connection on board)
G2	IPB4 / IWP0 / VF0	VF0 (No connection on board)
J4	IPB5 / IWP1 / VF1	VF1 (No connection on board)
К3	IPB6 / DSDI / ATO	AT0 (Unused)
H1	IPB7 / PTR / AT3	AT3 (Unused)

Debug/IEEE 1149 Port Pins

The MPC8xx Debug and/or Test Port pins are defined in Table 2-4.

Table 2-4. Debug/IEEE 1149 Port — Pin Definition vs. Function

Proc	cessor	
Pin Number	Pin Name	Function
H16	TCK / DSCK	If J5 1-2 then TCK
		If J5 2-3 then DSCK
H17	TDI / DSDI	If J5 1-2 then TDI
		If J5 2-3 then DSDI
G17	TDO / DSDO	If J5 1-2 then TDO
		If J5 2-3 then DSDO

Note

Leaving J5 empty has the same effect as placing the jumper on pins 2-3: it enables Debug functionality at the Debug header on the board.

Miscellaneous Pins

A number of miscellaneous MPC8xx signals not covered in previous sections are defined in Table 2-5. The active-low signals (those with names followed by a pound sign) can be defined as signals active on a low logic level or on the falling edge.

Table 2-5. Miscellaneous Signals — Pin Definition vs. Function

Processor		
Pin Number	Pin Name	Function
D2	BDIP/GPLB5#	BDIP
K1	KR#/RETRY#/8xx_IRQ4#/SPKROUT	RETRY#
Н3	RSV#/8xx_IRQ2#	8xx_IRQ2#
F2	CR#/8xx_IRQ3#	8xx_IRQ3#
V3	DP0/8xx_IRQ3#	DP0
V5	DP1/8xx_IRQ4#	DP1
W4	DP2/8xx_IRQ5#	DP2
V4	DP3/8xx_IRQ6#	DP3
G3	FRZ/8xx_IRQ6#	8xx_IRQ6#
D5	CS6#/CE1B#	CS6#
C4	CS7#/CE2B#	CS7#
D7	GPLA0#/GPLB0#	DRAM Output Enable
C6	GPLA1#/GPLB1#	General Output Enable
B6	GPLA2#/GPLB2#	Unused and unconnected
C5	GPLA3#/GPLB3#	DRAM Buffer Output Enable
C1	UPWAITA/GPLA4#	Unused and unconnected
B1	UPWAITB/GPLB4#	Unused and unconnected
D3	GPLA5#/GPLB5#	DRAM Row/Column Selector
J1	ALEB/DSCK/AT1	AT1 (unused)
L1	OP2/MODCK1/STS#	MODCK1
M4	OP3/MODCK2/DSDO	MODCK2
M3	BADDR30/REG#	Unused and unconnected

Processor I/O Ports

MPC8xx I/O Ports A B, C, and D have multiple functions but dedicated functionality. In the following tables, "User selectable" means that any of the signals listed under "Pin Name" are available for use. Wherever applicable, the port pins must be programmed according to the tables below.

Port A Pins — Definition vs. Function

The following tables list the pin assignments of the MPC8xx I/O ports with respect to the processor pin name and the associated interface function. Port A pins are defined in Table 2-6.

Table 2-6. Peripheral Port A

Pin	Pin Name	Interface Function	On Header
C18	PA(15)/RXD1	SCC1_ETHERNET_RXD	No
D17	PA(14)/TXD1	SCC1_ETHERNET_TXD	No
E17	PA(13)/RXD2	SCC2_RXD	Yes
F17	PA(12)/TXD2	SCC2_TXD	Yes
G16	PA(11)/L1TXDb	User selectable	Yes
J17	PA(10)/L1RXDb	User selectable	Yes
K18	PA(9)/L1TXDa	User selectable	Yes
L17	PA(8)/L1RXDa	User selectable	Yes
M19	PA(7)/CLK1/TIN1/L1RCLKa/BRGO1	User selectable	Yes
M17	PA(6)/CLK2/TOUT1#/BRGCLK1	SCC1_ETHERNET_TCLK	No
N18	PA(5)/CLK3/TIN2/L1TCLKa/BRGOUT2	User selectable	Yes
P19	PA(4)/CLK4/TOUT4	SCC1_ETHERNET_RCLK	No

Table 2-6. Peripheral Port A (continued)

Pin	Pin Name	Interface Function	On Header
P17	PA(3)/CLK5/TIN3/BRGOUT3	User selectable	Yes
R18	PA(2)/CLK6/TOUT3#/L1RCLKb/BRGOUT2	User selectable	Yes
T19	PA(1)/CLK7/TIN4/BRGO4	User selectable	Yes
U19	PA(0)/CLK8/TOUT4#/L1TCLKb	User selectable	Yes

Port B Pins — Definition vs. Function

Port B is a dual-purpose port. If the MPC8xx parallel port is used, the Port B pins function as described in the "Alternate Parallel Port" column in Table 2-7. If the parallel port is not used, then the pins function as described in the "Interface Function" column in Table 2-7. User-selectable pins are routed to the 8xx/COMM expansion connector.

Table 2-7. Peripheral Port B

Pin	Pin Name	Interface Function	Alternate Parallel Port	On Header
C17	PB(31)/SPISEL#/REJECT1#	User selectable	BUSY	Yes
C19	PB(30)/SPICLK	User selectable	SELECTOUT	Yes
E16	PB(29)/SPIMOSI	User selectable	PE or PERROR	Yes
D19	PB(28)/SPIMISO	User selectable	FAULT# or ERROR#	Yes
E19	PB(27)/I2CSDA/BRGO1	I2	I2C_SDA	
F19	PB(26)/I2CSCL/BRGO2	I2C_SCL		Yes
J16	PB(25)/SMTXD1	SMC1_TXD		Yes
J18	PB(24)/SMRXD1	SMC1_RXD		Yes
K17	PB(23)/SMSYN1#/SDACK1 User selectable		D0	Yes
L19	PB(22)/SMSYN2#/SDACK2	User selectable D1		Yes
K16	PB(21)/SMTXD2/L1CLKOb	User selectable	D2	Yes

STROBE OUT#

STROBE IN#

No

No

Interface Alternate On Pin Pin Name **Function Parallel Port** Header L16 Yes PB(20)/SMRXD2/L1CLKOa User selectable D3 N19 User selectable D4 PB(19)/RTS1#/L1ST1 No N17 PB(18)/RTS2#/L1ST2 User selectable D5 No P18 PB(17)/L1RQb/L1ST3 User selectable D6 No N16 PB(16)/L1RQa/L1ST4 User selectable **D**7 No R17

Table 2-7. Peripheral Port B (continued)

The PB(25) and PB(24) signals are also routed to the 8xx/COMM expansion connector and are available for general-purpose (userselectable) use if the on-board EIA-232 transceiver is disabled.

User selectable

User selectable

The I²C signals should be configured as open-drain type outputs. If you are using the parallel port functionality of Port B, the appropriate parallel port output signals should also be configured as open-drain type outputs.

Port C Pins — Definition vs. Function

PB(15)/BRGO3

PB(14)/RSTRT1

U18

Port C pins are described in Table 2-8.

Table 2-8. Peripheral Port C

Pin	Pin Name	Function on MPC860	Function on MPC821	On Header
D16	PC(15)/DREQ1/RTS1#/L1ST1	SCC1_ETHER	RNET_TXEN#	No
D18	PC(14)/DREQ2/RTS2/L1ST2	SCC2_RTS#		Yes
E18	PC(13)/L1RQb/L1ST3	User se	lectable	Yes
F18	PC(12)/L1RQa/L1ST4	User se	lectable	Yes
J19	PC(11)/CTS1#	SCC1_ETHE	RNET_CLSN#	No

Table 2-8. Peripheral Port C (continued)

Pin	Pin Name	Function on MPC860	Function on MPC821	On Header
K19	PC(10)/CD1#/TGATE1#	SCC1_ETHER	RNET_RXEN#	No
L18	PC(9)/CTS2#	SCC2	_CTS#	Yes
M18	PC(8)/CD2#/TGATE2#	SCC2_	_DCD#	Yes
M16	PC(7)/CTS3#/L1TSYNCb/SDACK2	SCC3_CTS#	User selectable	Yes
R19	PC(6)/CD2#/L1RSYNCb	SCC3_DCD#	User selectable	Yes
T18	PC(5)/CTS4#/L1TSYNCa/SDACK1	SCC4_CTS#	User selectable	Yes
T17	PC(4)/CD4#/L1RSYNCa	SCC4_DCD#	User selectable	Yes

Note The SCC3 and SCC4 signals are not available on the MPC821.

Each of the SCC2, SCC3, and SCC4 signals listed above can be redefined as "user selectable". All of them are available on the 8xx/COMM expansion connector.

In addition, all other Port C signals except PC15, PC11, and PC10 are routed to the 8xx/COMM expansion connector. They may be redefined as interrupt lines to the MPC8xx processor core when not in use for another function/purpose. Each available Port C pin (when configured as an interrupt signal) has a unique interrupt vector as defined in Table 16-44, "Encoding the Interrupt Vector", in the MPC860 User's Manual and the PowerPC MPC821 Portable Systems Microprocessor User's Manual.

Port D Pins — Definition vs. Function

The Port D pins are described in Table 2-9. Port D is a dual-purpose port:

☐ MPC860. Port D is used for SCC3, SCC4, and several user-selectable functions. All signals except PD(5:3) are routed to the 8xx/COMM expansion connector. Each of the SCC3 and SCC4

- signals listed in Table 2-9 may be redefined as "user selectable". All of them are available on the 8xx/COMM expansion connector.
- ☐ MPC821. All pins are reserved for an LCD interface. If no LCD interface is used, then the PD(15:3) signals can serve as general-purpose I/O lines. All signals except PD(5:3) are routed to the 8xx/COMM expansion connector.

Table 2-9. Peripheral Port D

Pin	Pin Name	Function on MPC860	Function on MPC821	On Header
U17	PD(15) - L1TSYNCa or LD8	User selectable	LD8	Yes
V19	PD(14) - L1RSYNCa or LD7	User selectable	LD7	Yes
V18	PD(13) - L1TSYNCb or LD6	User selectable	LD6	Yes
R16	PD(12) - L1RSYNCb or LD5	User selectable	LD5	Yes
T16	PD(11) - RXD3 or LD4	SCC3_RXD	LD4	Yes
W18	PD(10) - TXD3 or LD3	SCC3_TXD	LD3	Yes
V17	PD(9) - RXD4 or LD2	SCC4_RXD	LD2	Yes
W17	PD(8) - TXD4 or LD1	SCC4_TXD	LD1	Yes
T15	PD(7) - RTS3# or LD0	SCC3_RTS#	LD0	Yes
V16	PD(6) - RTS4# or LCD_AC/OE	SCC4_RTS#	LCD_AC/OE	Yes
U15	PD(5) - REJECT2 or FRAME/VSYNC	User selectable	FRAME/VSYNC	Yes
U16	PD(4) - REJECT3 or LOAD/HSYNC	User selectable	LOAD/HSYNC	Yes
W16	PD(3) - REJECT4 or SHIFT/CLK	User selectable	SHIFT/CLK	Yes

Notes

- 1. The SCC3 and SCC4 signals are not available on the MPC821.
- 2. LCD signals are not available on the MPC860.

Introduction

This chapter describes various control and status registers on the MBX as well as the board's I^2C address assignments and the DS1621 digital thermometer and thermostat implementation.

Control and Status Registers

The MBX design includes two control and status registers. Both registers are byte addressed. Control/Status Register #1 is located at all even addresses \$FA10 0000–\$FA1F FFFE. Control/Status Register #2 is located at all odd addresses \$FA10 0001–\$FA1F FFFF. Data lines 0 through 7 of the processor data bus connect to the respective registers, with data line 0 carrying the most significant bit. The following sections define the bits in those registers.

NVRAM and the control/status registers all share chip select signal CS4#. PowerPC address line A11 distinguishes NVRAM from the control and status registers.

Control Register #1

Control Register #1 sets and defines the configuration of the Ethernet Port (bits 0 through 5) and the configuration of the on-board EIA-232-D serial port transceiver (bits 6 and 7). The default setting of this register after reset is \$00. Firmware then initializes the register to \$90 (entry-level boards) or \$92 (standard boards). The bits are defined in Table 3-2.

Table 3-1. Control Register #1: Bit Definitions

Bit	Mnemonic	Definition
0	ETEN	0 = Disable Ethernet transceiver, Low Power mode
		1 = Enable Ethernet transceiver
1	ELEN	0 = Disable Ethernet transceiver loopback capability
		1 = Enable Ethernet transceiver internal loopback
2	EAEN	0 = Disable 10BaseT (TP) / AUI auto selection feature. Port selected via bit 3.
		1 = Enable auto selection of 10BaseT (TP) or AUI port
3	TPEN	This bit is functional only if bit $2 = 0$.
		0 = AUI port is manually selected
		1= 10BaseT (TP) port is manually selected
4	FDDIS	This bit is functional only if the 10BaseT port is operational. Do not enable if Loopback is enabled (bit $1 = 1$).
		0 = Enable Full Duplex mode of operation on 10BaseT port— Disable Half Duplex
		1 = Disable Full Duplex mode of operation—Enable Half Duplex
5	FCTEN	0 = Enable Forced Collision Testing on TP
		1 = Disable Collision Testing capability on transceiver
6	COM1EN	This bit is irrelevant if the EIA-232 transceiver is disabled (bit $7 = 1$).
	(see Note)	0 = Route SMC1 communication signals to the EIA-232 transceiver
		1 = Route COM1 communication signals to the EIA-232 transceiver
7	XCVRDIS	Setting this bit to 1 allows SMC1 to be utilized at the 8xx/COMM interface.
		0 = Enable on-board EIA-232 transceiver
		1 = Disable the on-board EIA-232 transceiver, place it in Low Power mode, and tri-state all transceiver outputs.
Note	e: On entry-leve	el boards, bit 6 should be programmed to select SMC1. On standard

Note: On entry-level boards, bit 6 should be programmed to select SMC1. On standard boards, program bit 6 to select COM1.

Status Register #1

Status Register #1 provides read-back capability of Control Register #1. The bits are defined in Table 3-2.

Table 3-2. Status Register #1: Bit Definitions

Bit	Mnemonic	Definition
0	ETEN	0 = Ethernet transceiver disabled and in Low Power mode
		1 = Ethernet transceiver enabled
1	ELEN	0 = Ethernet transceiver <i>not</i> looped back
		1 = Ethernet transceiver in internal loopback
2	EAEN	0 = 10BaseT (TP) / AUI auto selection feature disabled.
		1 = Auto selection of 10BaseT (TP) or AUI port enabled
3	TPEN	This bit is valid only if bit $2 = 0$.
		0 = AUI port is manually selected
		1= 10BaseT (TP) port is manually selected
4	FDDIS	This bit is valid only if the 10BaseT port is operational.
		0 = Full Duplex mode of operation on 10BaseT port enabled
		1 = Full Duplex mode of operation on 10BaseT port disabled
5	FCTEN	0 = Forced Collision Testing on TP enabled
		1 = Collision Testing on transceiver disabled
6	COM1EN	0 = SMC1 communication signals routed to the EIA-232 transceiver
		1 = COM1 communication signals routed to the EIA-232 transceiver
7	XCVRDIS	Set to 1, this bit indicates that SMC1 can be utilized at the 8xx/COMM interface.
		0 = On-board EIA-232 transceiver enabled
		1 = On-board EIA-232 transceiver disabled and in Low Power mode; all transceiver outputs are tri-stated.

Control Register #2

The first four bits in Control Register #2 (bits 0 through 3) set and define the voltage requirements of the PCMCIA card that plugs into the on-board PCMCIA socket. Bits 4 through 6 control status LEDs 4 through 6. When Bit 7 is set, the processor has the ability to reset the PCI interface.

After reset, the default setting of this register is \$00. If the board passes startup diagnostics and a PCMCIA card is not installed, the register is initialized by firmware to \$0E. The bits are defined in Table 3-3.

Table 3-3. Control Register #2: Bit Definitions

Bit(s)	Mnemonic	Definition	
0 and 1	VDDSEL(0:1)	These two bits define the supply $(V_{cc} \text{ or } V_{dd})$ voltage that is presented to the PCMCIA card socket:	
		Bit 0 Bit 1	
		$\begin{array}{cccc} 0 & 0 & = \text{Hi-Z} \\ 0 & 1 & = +5.0\text{V} \\ 1 & 0 & = +3.3\text{V} \\ 1 & 1 & = \text{Hi-Z} \end{array}$	
2 and 3	VPPSEL(0:1)	These two bits define the programming (V _{pp}) voltage that is presented to the PCMCIA card socket:	
		Bit 0 Bit 1	
		0 0 = Ground 0 1 = +12.0V if bits 0 and 1 are 01 or 10, Hi-Z if bits 0 and 1 are 00 or 11 1 0 = The value specified by bits 0 and 1 above 1 1 = Hi-Z	
4	BRDFAIL ¹	LED 4, orange: $0 = \text{On (fail)}$ $1 = \text{Off (pass)}$	

Table 3-3. Control Register #2: Bit Definitions (continued)

Bit(s)	Mnemonic	Definition
5	Battery Low ¹	LED 5, yellow:
		0 = On 1= Off
6	Flash Programming ^{1,2}	LED 6, yellow: 0 = On 1 = Off
7	QSPANRST	0 = Normal operation, QSpan (host PCI bridge device) <i>not</i> reset. 1 = Reset QSpan (host PCI bridge device). PCI bus <i>not</i> reset.

Notes

- 1. The functions of LEDs 4, 5, and 6 respectively are defined and controlled in software through these registers. The mnemonics for bits 4–6 represent the recommended configuration. These bits may be used in other applications, however.
- 2. Burst accesses to Flash memory are not supported.

Status Register #2

The first four bits in Status Register #2 (bits 0 through 3) are a read-back of bits 0–3 in Control Register #2. The last four bits are defined in Table 3-4.

Table 3-4. Status Register #2: Bit Definitions

Bit(s)	Mnemonic	Definit	tion	
0 and 1	VDDSEL(0:1)	These two bits define the supply $(V_{cc} \text{ or } V_{dd})$ voltage that is presented to the PCMCIA card socket:		
		Bit 0	Bit 1	
		0	0	= Hi-Z
		0	1	= +5.0V
		1	0	= +3.3V
		1	1	= Hi-Z

Table 3-4. Status Register #2: Bit Definitions (continued)

Bit(s)	Mnemonic	Definition	
2 and 3	VPPSEL(0:1)	These two bits define the programming (V_{pp}) voltage that is presented to the PCMCIA card socket:	
		Bit 0 Bit 1	
		0 0 = Ground 0 1 = +12.0V if bits 0 and 1 are 01 or 10, Hi-Z if bits 0 and 1 are 00 or 11	
		1 0 = The voltage as specified by bits 0 and 1 above 1 1 = Hi-Z	
4	BATGD	Low battery voltage indication for the on-board or external backup battery: 0 = Battery voltage is low. Battery requires replacement. 1 = Battery is good.	
5	NVBATGD	Low Battery Voltage indication for the on-board battery-backed SRAM (NVRAM): 0 = Battery voltage is low and NVRAM device should be replaced. 1= Battery voltage is good in the NVRAM device.	
6	RDY/BSY#	Flash programming status bit. Valid only with Flash devices that have a dedicated output pin to indicate programming status; otherwise read as logical "1." 0 = On-board Flash programming cycle <i>not</i> complete. 1 = On-board Flash programming cycle complete.	
7	FT#	Reserved for factory test purposes.	

I²C Address Assignments

The MBX uses four of the 128 possible I²C connections. Table 3-5 lists the address assignments (in hexadecimal format) for the devices implemented. These I²C signals are also routed to the 8xx/COMM connector.

Table 3-5. I²C Address Assignments

Device	Write Address	Read Address
Board configuration EEPROM	A4	A5
Board Comiguration EEF ROM	A6	A7
DIMM (Serial Presence Detect)	A2	A3
Reserved	A8	A9
Digital Thermometer and Thermostat	90	91

Note: The Board Configuration serial EEPROM is partitioned in two halves. The first half responds to addresses A4 and A5; the second half responds to addresses A6 and A7.

Digital Thermometer/Thermostat

The MBX provides a DS1621 digital thermometer and thermostat for temperature-sensitive applications. The DS1621 device supports the I²C protocol. It can be programmed to assert an interrupt (TOUT active on 8xx_IRQ1#) when the temperature exceeds a user-defined upper limit (TH) or lower limit (TL). The interrupt signal remains active until the temperature crosses the other threshold, allowing for any amount of hysteresis.

The DS1621 device is accurate to within 0.5° C from 0° C to 70° C. This device is assigned I²C address \$90 for write operations and address \$91 for read operations. For additional programming information including commands, refer to the DS1621 data sheet listed in Appendix C, *Related Documentation*.

Utility Connectors

No actual switches or LEDs are mounted on the MBX board. Instead, a pair of headers is provided for user interface purposes.

Utility Connector #1

A 20-pin dual-row header referred to as "Utility Connector #1" (J16) supplies the interface between the MBX series embedded controller and external devices such as status LEDs, Reset and Abort switches, and power sources. The header enables an end user application to route these signals via cable to a panel of some sort.

Utility Connector #1 is present on both entry-level and standard versions of the board. It provides a connection point for the following functions:

- 1. A Power Fail Sense input. This signal activates an NMI to the processor when the voltage falls out of tolerance, typically below 0.8V. The signal is pulled up via a $3.3K\Omega$ resistor and filtered on the board.
- 2. An external connection for battery backup of the processor in deep sleep mode. The external battery will also power the keep-alive circuits of the MPC8xx.
- 3. Five status lines relating to Ethernet functionality: Eth_Tx#, Eth_Rx#, Eth_Col#, Eth_TPI#, Eth_TPP#. The status lines are provided for use with an LED interface.
- 4. A status line for hard disk activity.
- 5. An active-low switch connection for resetting the MBX. When pulled to ground, this line produces an HRESET# signal on the board. The switched Reset signal is pulled up to 3.3V via a $40 \mathrm{K}\Omega$ resistor. The Reset signal is debounced and filtered; it provides an active pulse at least 350msec in duration once the Reset switch has been pressed and released.
- 6. An active-low switch connection for stopping or aborting processes running on the MPC8xx. This signal is pulled up and filtered via an RC network. The pullup is $4.7K\Omega$. If possible,

- aborts should be initiated before board resets so that all processes running can be shut down in an orderly fashion.
- 7. Four status lines relating to board activity: Battery_Low#, Flash_Programming#, MBX_Bus_Activities#, and PCI_Bus_Activities#. The status lines are provided for use with an LED interface.
- 8. +3V, +5V, GND, -5V, -12V are provided as reference voltages. These are outputs, but hey should only be used in low-power applications.

Utility Connector #2

A 16-pin dual-row header referred to as "Utility Connector #2" (J19) collects a number of MBX I/O signals for use with an external user-supplied expansion board if necessary in a given application. This utility connector is only available on standard board configurations.

Utility Connector #2 is present on standard versions of the board only. It provides a connection point for the following functions:

- 1. The COM2 signals from the Peripheral I/O controller.
- 2. The Keyboard and Mouse interface signals. These signals are intended for direct connection to standard keyboard and mouse connectors.
- 3. Fuse-protected +5V drawn from the board. The fuse will open if the current drawn by the keyboard and mouse totals more than 0.75A.
- 4. The infrared TTL serial signals from the Peripheral I/O controller.

All the signals present on Utility Connector #2 are EMC filtered and ESD protected. It is recommended, however, that you use a keyboard and mouse that are FCC certified and UL approved.

The pin assignments for Utility Connectors #1 and #2 can be found in the MBX Series Embedded Controller Version C Installation and Use manual listed under Motorola Computer Group Documents in Appendix B, Related Documentation.

NVRAM Map and EPPCBug

Overview

EPPCBug uses the first 4KB of NVRAM on the MBX for storage of various user-tunable parameters (such as the ENV and NIOT parameters). The remainder of NVRAM is unused by EPPCBug and is available for user applications.

The first portion (\$0000 to \$0EFF) of EPPCBug's 4K NVRAM block is public. Any future changes to the public segment of EPPCBug's NVRAM block will be backwards compatible. In other words, elements added to the public area in future EPPCBug releases will be placed in previously unused areas of NVRAM, and the NVRAM revision field at offset \$0008 will be updated to reflect the presence of the additional elements.

The second portion (\$0F00 to \$0FFD) of EPPCBug's NVRAM block is private. User applications should avoid modifying or relying on its contents.

NVRAM and the control/status registers all share chip select signal CS4#. (PowerPC address line A11 distinguishes NVRAM from the control and status registers.)

EPPCBug does not use NVRAM to store board-specific information such as serial number, Ethernet address, artwork id, etc. This type of information is stored in the I²C SROM instead. For more information, refer to the *EPPCBug Firmware Package User's Manual* listed in Appendix B, *Related Documentation*.

NVRAM Map

Data items in the NVRAM are mapped at the following offsets from the beginning of NVRAM.

Table A-1. NVRAM Map

Offset	Size (Bytes)	Description
\$0000	4	The magic constant \$1230 1983, used to detect uninitialized NVRAM.
\$0004	4	The size of NVRAM claimed by EPPCBug.
\$0008	4	NVRAM structure revision.
		The value \$0001 0001 indicates a structure layout as described in this table.
\$000C	4	Offset to EPPCBug startup command buffer. Add the contents of this location to the base address of NVRAM (\$FA00 0000) to find the starting address of the EPPCBug command buffer.
		For more information about using the command buffer, refer to the <i>EPPCBug Firmware Package User's Manual</i> .
\$0010	4	Amount of NVRAM (in bytes) allocated to the command buffer.
\$0014	4	Time to delay (in milliseconds) before EPPCBug begins execution of the commands contained in the command buffer.
\$0018	4	Specifies the address in memory that binary images will be loaded into when using the PL command. This affects binary loads only—ELF files and S records are loaded into the location(s) indicated by the file loaded.
\$001C	4	Specifies the offset from the binary load address that execution will start from. This affects binary loads only—ELF files and S records are loaded into the location(s) indicated by the file loaded.
\$0020	4	Specifies the address in memory that files will initially be loaded into. From this area in memory, they will be relocated to the appropriate area in memory for execution.
\$0024	4	These are currently unused but are reserved for future support of an OEM-
\$0028	4	specified startup message.
\$002C	16	Reserved for future use.

Table A-1. NVRAM Map (continued)

Offset	Size (Bytes)	Description	
\$003C	1	Contains the CLUN and DLUN of the network device which EPPCBug	
\$003D	1	should consider the "primary" network device. There is no distinction between the primary network device and all others except that the primary device parameters are stored in the NVRAM primary network configuration block beginning at offset \$0040.	
\$003E	2	Reserved.	
\$0040	256	Primary network configuration block. See <i>Primary Network Configuration Parameters</i> on page A-4 for details.	
\$0140	256	Reserved for future use.	
\$0240	1	ISA IRQ number corresponding to PCI INT 0.	
\$0241	1	ISA IRQ number corresponding to PCI INT 1.	
\$0242	1	ISA IRQ number corresponding to PCI INT 2.	
\$0243	1	ISA IRQ number corresponding to PCI INT 3.	
\$0244	1	"Y" or "N" character which indicates whether or not to reset the system SCSI buses during startup.	
\$0245	1	"Y" or "N" character which indicates whether or not to probe the system for controllers during startup.	
\$0246	1	"Y" or "N" character which indicates whether or not to always negate SYSFAIL at startup. This capability is not currently used on the MBX, but is available for possible future use.	
\$0247	1	Reserved.	
\$0248	64	PCI probe list. This is not yet used on the MBX, but is available for possible future use.	
\$0288	64	Reserved for future expansion.	
\$02C8	3116	Heap for dynamic NVRAM allocation.	
		The command and OEM buffers are located here. The actual locations of items in this area may change from release to release, but will always be determinable from information stored in NVRAM at fixed offsets as described previously.	

Table A-1. NVRAM Map (continued)

Offset	Size (Bytes)	Description
\$0F00	254	EPPCBug private NVRAM area. The contents of this area are subject to change from release to release.
\$0FFE	2	Contains the checksum of the EPPCBug NVRAM block. See <i>CRC Calculation Routine</i> on page A-5 for the algorithm to recalculate the checksum.
\$1000	Remainder of NVRAM	User-definable area.

Primary Network Configuration Parameters

Configuration parameters for the network device designated as "primary" are stored in NVRAM from \$0040 to \$013F. The following table shows the exact locations of these parameters.

Table A-2. Primary Network Configuration Parameters

Offset	Size (Bytes)	Description
\$0040	4	Magic number (\$1230 1983)
\$0044	4	Reserved.
\$0048	4	Reserved.
\$004C	4	Reserved.
\$0050	4	Reserved.
\$0054	4	Reserved.
\$0058	4	Reserved.
\$005C	4	Reserved.
\$0060	4	Client (i.e., EPPCBug) IP address
\$0064	4	Server (i.e., host) IP address

Table A-2. Primary Network Configuration Parameters

Offset	Size (Bytes)	Description
\$0068	4	Subnet mask
\$006C	4	Broadcast IP address
\$0070	4	Gateway IP address
\$0074	1	Maximum BOOTP/RARP retries
\$0075	1	Maximum TFTP/ARP retries
\$0076	1	Reserved.
\$0077	1	Reserved.
\$0078	64	Bootfile name
\$00B8	64	Argument string
\$00F8	72	Reserved.

CRC Calculation Routine

There is a two-byte checksum field at \$0FFE of the EPPCBug NVRAM block. If a user application modifies the contents of EPPCBug's NVRAM area, it must also update the checksum field to reflect the new checksum; otherwise, EPPCBug will detect the bad checksum at the next boot and reinitialize NVRAM. The following algorithm is used to recalculate the checksum.

```
/*
    *
    */
unsigned int
srom_crc(elements_p, elements_n)
register unsigned char *elements_p;/* buffer pointer */
register unsigned int elements_n;/* number of elements */
```

```
{
   register unsigned int crc;
   register unsigned int crc_flipped;
   register unsigned char cbyte;
   register unsigned int index, dbit, msb;
   crc = 0xffffffff;
       for (index = 0; index < elements_n; index++) {</pre>
      cbyte = *elements_p++;
      for (dbit = 0; dbit < 8; dbit++) {</pre>
msb = (crc >> 31) \& 1;
crc <<= 1;
if (msb ^ (cbyte & 1)) {
    crc ^= 0x04c11db6;
    crc |= 1;
 }
cbyte >>= 1;
      }
   }
   crc_flipped = 0;
   for (index = 0; index < 32; index++) \{
      crc_flipped <<= 1;</pre>
      dbit = crc & 1;
      crc >>= 1;
      crc_flipped += dbit;
   }
```

```
crc = crc_flipped ^ 0xffffffff;
return (crc)
```

Related Documentation

MCG Documents

The Motorola Computer Group publications listed below are referenced in this manual. You can obtain paper or electronic copies of MCG publications by:

- ☐ Contacting your local Motorola sales office
- ☐ Visiting MCG's World Wide Web literature site, http://www.motorola.com/computer/literature

Table B-1. Motorola Computer Group Documents

Document Title	Publication Number
MBX Series Embedded Controller Version C Installation and Use	MBXCA/IH
EPPCBug Firmware Package User's Manual	EPPCBUGA/UM
EPPCBug Diagnostic Firmware User's Manual	EPPCDIAA/UM

To locate and view the most up-to-date product information in PDF or HTML format, visit http://www.motorola.com/computer/literature.

Manufacturers' Documents

For additional information, refer to the following table for manufacturers' data sheets or user's manuals. As a further help, a source for the listed document is also provided. Please note that while these sources have been verified, the information is subject to change without notice.

Table B-2. Manufacturers' Documents

Document Title and Source	Publication Number	
PowerPC MPC821 Portable Systems Microprocessor User's Manual	MPC821UM	
PowerPC PowerQUICC MPC860 User's Manual	MPC860UM	
Literature Distribution Center for Motorola Telephone: 1-800-441-2447 FAX: (602) 994-6430 or (303) 675-2150 E-mail: ldcformotorola@hibbertco.com Web: http://www.mot.com/SPS/RISC/netcomm		
W83C554 Enhanced System I/O Controller with PCI Arbiter (PIB)	W83C554	
Winbond Electronics Corporation – America Headquarters 2727 North First Street – San Jose, CA 95134 Telephone: 1-800-677-0769 or (408) 943-6666 FAX: (408) 544-1789 Web: http://www.winbond.com.tw		
Peripheral I/O Controller	FDC37C67X	
Standard Microsystems Corporation 80 Arkay Drive, P.O. Box 18047 – Hauppage, NY 11788 Telephone: 1-800-443-SEMI or (631) 435-6000 Web: http://www.smsc.com		
QSpan User's Manual	CA91C860-50	
Tundra Semiconductor Corporation 603 March Road – Kanata, Ontario, Canada K2K 2M5 Telephone: 1-800-267-7231 or (613) 592-0714 FAX: (613) 592-1320		
or,		
Tundra Semiconductor Corporation 39 Darling Avenue – Portland, ME 04106 Telephone: (207) 773-2662 FAX: (207) 773-1550 Web: http://www.tundra.com		

Related Specifications

The related specifications listed in the following table are a source of additional information. As a further aid, sources for the listed documents are also supplied. Please note that, while these sources have been verified, the information is subject to change without notice.

Table B-3. Related Specifications

Document Title and Source	Publication Number	
EBX Specification, Version 1.1 For information visit the EBX Form Factor Overview available at the Motorola Computer Group Web site.		
The following IEEE specifications are available from: Institute of Electrical and Electronics Engineers, Inc. – Customer Serv 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331 — Telep Web: http://www.ieee.org	-	
IEEE Common Mezzanine Card Specification (CMC)	P1386 Draft 2.0	
IEEE PCI Mezzanine Card Specification (PMC)	P1386.1 Draft 2.0	
IEEE P996.1 Standard for Compact Embedded PC Modules	IEEE P996.1	
Bidirectional Parallel Port Interface Specification	IEEE Standard 1284	
IEEE Standard for Local Area Networks: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications	IEEE 802.3	
Peripheral Component Interconnect (PCI) Local Bus Specification, Revision 2.2 PCI Special Interest Group 2575 NE Kathryn St. #17, Hillsboro, OR 97124 Telephone: 1-800-433-5177 or (503) 693-6232 FAX: (503) 693-8344 Web: http://www.pcisig.com	PCI Local Bus Specification	

Table B-3. Related Specifications (continued)

Document Title and Source	Publication Number	
PC Card Standard PCMCIA – 2635 N. First Street, San Jose, CA 95134 Telephone: (408) 433-2273 FAX: (408) 433-9558 E-mail: office@pcmcia.org Web: http://www.pc-card.com	PCMCIA/JEIDA	
PowerPC Microprocessor Common Hardware Reference Platform: A System Architecture (CHRP), Version 1.0 Literature Distribution Center for Motorola Telephone: 1-800-441-2447 FAX: (602) 994-6430 or (303) 675-2150 E-mail: ldcformotorola@hibbertco.com Web: http://www.mot.com/SPS/RISC/netcomm	TB338/D	
The above specification is also available from: IBM, 1580 Route 52, Bldg. 504, Hopewell Junction, NY 12533-6531 Telephone: 1-800-PowerPC (1-800-769-3772)	MPRP-CHRP-01	
And from: Morgan Kaufmann Publishers, Inc. 340 Pine Street, Sixth Floor – San Francisco, CA 94104-3205, USA Telephone: (415) 392-2665 FAX: (415) 982-2665	ISBN 1-55860-394-8	
PC/104 and PC/104- <i>Plus</i> Specifications PC/104 Consortium – P.O. Box 4303, Mountain View, CA 94040 Telephone: (415) 903-8304 FAX: (415) 967-0995	PC/104, PC/104-Plus	
PowerPC Reference Platform (PRP) Specification, Third Edition, Version 1.0, Volumes I and II International Business Machines Corporation Power Personal Systems Architecture 11400 Burnet Rd., Austin, TX 78758-3493 Telephone: 1-800-PowerPC (1-800-769-3772) or (708) 296-9332	MPR-PPC-RPU-02	

Table B-3. Related Specifications (continued)

Document Title and Source	Publication Number	
Information Technology—Local and Metropolitan Networks—Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications	ISO/IEC 8802-3	
Global Engineering Documents Suite 400, 1991 M Street, NW – Washington, DC 20036 Telephone: 1-800-854-7179 or (303) 397-7956 Web: http://global.ihs.com		
(This document can also be obtained through the national standards body of member countries.)		
Interface Between Data Terminal Equipment and Data Circuit- Terminating Equipment Employing Serial Binary Data Interchange (EIA-232-D)	ANSI/EIA-232-D Standard	
Electronic Industries Association – Engineering Department 2001 Eye Street, N.W. – Washington, D.C. 20006		

В

ACK

Acknowledgement (signal).

ANSI

American National Standards Institute.

BBRAM

Battery-Backed-up RAM.

BDM

Background Debug Mode.

Big-Endian

Byte-ordering method in memory whereby bytes are ordered 0, 1, 2, 3 (left to right) with 0 being the most significant byte. See also Little-Endian.

CPM

Communication Processor Module.

CPU

Central Processor Unit.

DMA

Direct Memory Access.

DRAM

Dynamic Random-Access Memory.

ECC

Error Checking and Correction.

EEPROM

Electrically Erasable PROM.

EIA

Electronic Industries Association.

EMI

Electromagnetic Interference.

ESD

Electrostatic Discharge.

HDLC

High-level Data Link Control.

Hz

Hertz.

IEEE

Institute of Electrical and Electronics Engineers.

I²C

Inter-IC.

I/O

Input/Output.

JTAG

Joint Test Action Group.

Kb

Kilobit (1024 bits).

KB

Kilobyte (1024 bytes).

LAN

Local Area Network.

Mb

Megabit (1024 Kb).

MB

Megabyte (1024 KB).

Mbps

Megabits per second.

MHz

Megahertz.

msec

Millisecond.

NVRAM

Non-Volatile RAM.

PCI

Peripheral Component Interconnect.

PLL

Phase Lock Loop.

RAM

Random-Access Memory.

ROM

Read-Only Memory.

RTC

Real-Time Clock.

SCC

Serial Communication Controller.

SDRAM

Synchronous DRAM.

SRAM

Static RAM.

UPM

User-Programmable Machine in the MPC8xx processor.

VME

VersaModule Eurocard (VMEbus).

VPD

Vital Product Data.

WAN

Wide-Area Network.

Index

A assertion, defined xiv	DRAM bank address configuration 1-9
B base registers, configuration 1-5 binary number, symbol for xiii boot vectors, configuring addresses for 1-10 byte, defined xiv	values for configuration 1-12 E EBX specification B-3 EIA-232 transceiver, enable/disable 3-2, 3-3 Ethernet port configuration 3-1
checksum calculation (EPPCBug) A-5 chip selects, configuration 1-5 comments, sending xiii configuration base and option registers 1-5 boot vectors 1-10 chip selects 1-5 control/status registers 1-10 DRAM 1-12 Ethernet port 3-1 primary network device A-4 serial port 3-1 control bit, defined xiv control/status registers configuring addresses for 1-10 description of 3-1 conventions used in the manual xv conventions, numeric xiii CS7# line, use on 8xx/COMM 1-11	F features by model xi Flash memory configuring bank address 1-11 programming signal on Utility connector #1 3-9 G GPCM (general-purpose chip select machine) controlling QSpan device 1-16 H half-word, defined xiv hardware features xi hexadecimal value, symbol for xiii I I/O map, system 1-8 I ² C bus address assignments 3-7
Debug/IEEE 1149 port multifunction pins 2-5 decimal number, symbol for xiii definitions xiii digital thermometer/thermostat 3-7 double word, defined xiv	initialization boot vectors 1-10 chip selects 1-5 control/status registers 1-10 DRAM 1-9, 1-12 Flash memory 1-11 ISA address map 1-11

ISA devices 1-24	multifunction pins 2-3, 2-4, 2-5
memory controller 1-5, 1-12	parameter RAM patch 1-3
PCI devices 1-24	multifunction pins
PCI-to-ISA bridge (Winbond chip) 1-16	Debug/IEEE 1149 port 2-5
PowerPC core 1-2	miscellaneous signals 2-5
QSpan bridge 1-14	MPC8xx processor 2-3, 2-4, 2-5
system 1-1	PCMCIA/IPA port 2-1
system interface unit (SIU) 1-4	processor port A 2-7
initialization sequence 1-1	processor port B 2-8
interrupt	processor port C 2-9
keyboard 1-18	processor port D 2-11
mouse 1-19	
pins, IPB port 2-4	N
pins, MPC8xx processor 2-3	negation, defined xiv
polarity 2-3	network device, configuation A-4
routing, required 1-24	numeric format xiii
signals, I/O 1-18	NVRAM allocation A-1
structure 2-3, 2-4	0
IPB port interrupt pins 2-4	_
ISA address map 1-11	option registers, configuration 1-5
К	Р
KAPWR (keep-alive power)	parallel port
hardware reset 1-26	configuring 2-8
power-on reset 1-26	interrupt 1-19
keyboard interrupt 1-18	PCI-to-ISA bridge (Winbond chip)
keyboard interrupt 1-18	registers 1-16
L	PCMCIA
LCD interface, configuring 2-11	configuring voltage requirements 3-4
LEDs, configuration 3-4	multifunction pins, PCMCIA/IPA
a,	port 2-1
M	peripheral I/O controller
manual conventions xv	address offsets 1-20
manual terminology xiii	interrupt routing 1-19
manufacturers' documents B-2	polarity, interrupt signals 2-3
MBX models xi	pound sign (#), defined xiv
memory controller 1-5, 1-12	PowerPC core registers 1-2
memory map, system 1-8	
mouse interrupt 1-19	Q
MPC8xx processor	QSpan bridge registers 1-14
interrupt pins 2-3	D
memory controller 1-5, 1-12	R
	related specifications B-3

```
resets
    HRESET# vs. POR# 1-26
    Utility connector #1 3-8
S
serial port configuration 3-1
single word, defined xiv
suggestions, submitting xiii
symbols, meaning of xiii
system
    address map 1-8
    initialization 1-1
    interface unit (SIU) registers 1-4
terminology xiii
thermometer/thermostat, digital 3-7
true, defined xiv
typeface, meaning of xv
underscore-L (_L), defined xiv
W
word, defined xiv
```