
ENGG4420, REAL-
TIME SYSTEMS

DESIGN: LAB MANUAL

Developed By

Radu Muresan

School of Engineering

University of Guelph

2005, 2006, 2007

__

UNIVERSITY OF GUELPH

ABSTRACT

REAL-TIME SYSTEMS DESIGN:
LAB MANUAL

By Radu Muresan

This manual was written to guide the students of the University of Guelph

through the lab requirements for the ENGG4420 (Real-Time Systems Design)

course. The manual is still under development and the author hopes that the

students will understand this and help with suggestions and corrections.

TABLE OF CONTENTS

1. Lab 1: Real-Time Simulation/Experimentation Lab 3
1.1 Lab Objectives ... 3
1.2 Lab Requirements .. 4
1.3 Lab Report Outline... 6
1.4 Plant Description... 7
1.5 DDC Algorithms and Their Implementation.................................... 9
1.6 An Overview of Heat Transfer ..11
1.7 Notes on the Design of Real-Time systems.....................................15
1.9 LabView Starter ...19

2. Lab 2: Real-Time Embedded Application ...27
2.1 Lab Objectives ..27
2.2 Lab Introduction ...27
2.3 Features of the S3C44BOX RISC Microcontroller........................28
2.4 Lab Requirements ...31

3. Lab 3 & 4: Embedded VoIP Phone..35
3.1 Lab Objectives ...35
3.2 Lab Introduction ...35
3.3 Lab Requirements ..37

ENGG4420: Real-Time System Design; Lab Manual – By Radu Muresan

 ii

ACKNOWLEDGMENTS

The author wishes to acknowledge my graduate students Yang Zhanrong,

Nupoor Shukla, Oliver Liu, and Matthew Mayhew that have contributed to the

development of this manual. Special thanks to William Hohl of ARM Inc. for his

continual support with the ARM products; to Dr. Khosrow Faranbakhsh for his

help with the heat transfer topic; to the undergraduate class of Fall 2004 for their

suggestions and projects; and to the undergraduate students that have

experimented in their ENGG41xx projects with LabView and Embest boards.

ENGG4420: Real-Time System Design; Lab Manual – By Radu Muresan

3

L a b 1

1. REAL-TIME COMPUTER CONTROL SIMULATION/EXPERIMENTATION
LAB USING LABVIEW AND ARM BOARDS

1.1 Lab Objectives

Real-time embedded systems are difficult to develop and debug due to lack of realistic simulation,
specifically, when implementing embedded systems that need to perform data acquisition, system
control, and signal measurements. The goal of this lab is to introduce the students to the concept of
simulation/experimentation of real-time computer control systems using LabView software and
embedded boards. LabView is a powerful simulation and development software tool for industrial
applications. In this lab, the students will learn two important principles that can be used in the
development of the real-time computer control applications. These principles are: simulation of the
environment of a control application through modeling, and experimentation through physical
implementation of real-time control software. During the lab, the students will learn the basic usage
of LabView software by modeling a simple plant – hot-air blower. They will build the system by
using the built-in modules provided by the LabView software. They will simulate manual and auto
functionality of the plant and implement a PID feedback control in C using LabView and an ARM
based board called Embest. The simulation/experimentation technique will allow the students to
develop and debug the real-time C implementation. Figure 1.0 presents the block diagram with the
main components used in this lab.

Fig. 1.0. Hardware components used in the simulation/experimentation lab.

ENGG4420: Real-Time System Design; Lab Manual – By Radu Muresan

4

Design points:

• Through LabView the designer can generate in real-time analog and digital signals;

• The Embest S3CEV40 ARM provides an ADC that can be used to interface the Embest
board with the real-time environment developed in LabView;

• The real-time operating system uC/OS-II is installed on the Embest board and can be used
for development of real-time tasks;

• The NI PIC-6024E board is an A/D and D/A converter interface that works directly with
the LabView software and can be used as a bridge between the LabView application and the
Embest board.

1.2 Lab 1 Requirements

A. Using the LabView software implement the manual control of the air-blower plant. The
implementation should contain all of the elements necessary for the manual control. The
implementation should display all of the input and output signals used in the plant (Weeks 1-2).

B. Using the LabView software implement the auto control of the air-blower plant. The feedback
control should implement the PID algorithm presented in Section 1.3 using a sampled control loop
in a C-language control block. Use the examples presented in Section 1.4 to develop a realistic
relation between the input variables (air flow), the output variables (the air temperature), and the
control variables (current or voltage through resistor, air opening). Choose realistic values for your
design (Weeks 1-2).

C. Interface your LabView application with the Embest board by implementing the PID algorithm
on the Embest board using simple data acquisition tasks (non-uC/OS-II approach). For the
hardware connections between the Embest and NI boards you will need to do some wiring. Also,
you should display your communication signals on the oscilloscope. They should look the same as
the ones displayed through LabView. In order to complete these tasks refer to Lab 2, sections 2.2,
2.3, and 2.4.1 (Weeks 3-4).

NOTES on Point C:

• The ARM chip on the Embest board has only A/D converter. As a result, the analog
outputs (signals such as current or voltage) from the Embest board to the NI board must
be encoded as an 8 bit digital signals (0V, 5V levels) and wired from the I/O port to the NI
board. These outputs will be interfaced with the digital I/O ports of the NI PIC-6024E
board.

ENGG4420: Real-Time System Design; Lab Manual – By Radu Muresan

5

• Use the LabView instruments to check the value of each digital input line and then convert
the encoded signal value (8 bits) into its analog value equivalent.

• The Embest I/O ports are multiplexed by other devices such as UART, LCD or SDRAM.
Make sure that you select for your interface idle pins that are not used by other devices.

D. Develop a lab report of minimum 8 pages and maximum 15 pages that describes your design and
the LabView implementation.

E. Present a working LabView design for the manual and auto modes of the air-blower plant to the
TA. The maximum mark you can get for this lab is 14%. [Lab presentation: Week 1; Lab demo due
on Week 5; Lab Report due on Week 5].

• Marking: Lab requirements: 2%; Lab Report 4%; LabView Demo (point B): 4%; Interface
Demo (point C): 4%.

1.2.1 Example of Temperature Simulation and Note on How to Use C Code in LabView

Note: For the purpose of writing C source code you will have to use the formula node. You will
find this under the structures menu on the Functions palette.

 Formula Node.

To add input and output to the Formula node select it on Block diagram, right click and then select

add input or output.

Implement area of blower and power of heater coil using the above formula node.

NOTE: To calculate the output temperature you can derive your own relation.

The following relation is given for your convenience:

 Formula: t2= (p/ (m*c)) +t; Where: t2 = output temperature; t = initial temperature assumed to

be 21C; p = power of heater coil (p = R*I^2); m = mass of air; c= specific heat of air assumed to be

1.005.

Mass of air = Area of blower * constant. Assume some realistic value for the constant.

Area of blower = 0.5 * r * s; Where, r = radius of blower (assume some realistic value), s = Blower

opening.

ENGG4420: Real-Time System Design; Lab Manual – By Radu Muresan

6

To implement this formula you will have to use the formula menu under Arith/Compare on the

Functions palette.

 Formula

Define the above relation in this formula to get the output temperature.

DAQ Assistant can be used to perform data acquisition.

1.3 Suggested Report Outline for Lab1

Try to present in your report all of the important things that are related to your implementation. Things that
you are happy about the way you implemented or solved. Explain well your implementation and its
functionality. The following is an outline that you can use. However, this outline is not mandatory; you can
enhance it or tailor it to suit your application.

1. Introduction
1.1 Problem description
1.2 System requirements (similar to what I've presented in the lectures, but it can be simplified)

2. Background
2.1 Short overview of the benefits of using LabView in simulating this system.
2.2 Short description of the DDC (Direct Digital Control) for this system
2.3 Explain why this system is a real-time system
2.4 Explain the simulation/experimentation technique used in this lab and present its benefits.

3. Implementation
3.1 Present a top-down functional implementation of the system
3.2 Identify the functional modules and explain what type of real-time constraint they have
 Here you can use the information presented in the lecture
3.3 Present a system level block diagram for the manual mode
 Explain in detail the functionality of the manual mode.
3.4 Present a system level block diagram of the auto mode
 Explain in detail the functionality of the auto mode, the parameters used to control the loop.
 Justify why you choose to control the plant in this way.
 What are the parameters values used in designing the PID ...
 Observation on how these parameters affect the functionality of the plant.
 Present your simulation/experimentation design and explain the experiments conducted using the
Embest board.
Here you can present some functionality graphs that support your design.

A. Appendix
In the appendix you can add your detailed LabView diagrams, C code, extra functionality graphs that you
like. The appendix can be as long as you want. The 3 main parts should be limited to 8 - 15 pages.

ENGG4420: Real-Time System Design; Lab Manual – By Radu Muresan

7

1.4 Plant Description

The hot-air blower is a simple plant that illustrates various operations of a computer control system.
Let us consider the hot-air blower shown in Figure 1.1. A centrifugal fan blows air over a heating
element and into the tube. A thermistor bead is placed at the outlet end of the tube and forms one
arm of the bridge circuit. The amplified output of the bridge circuit is available at B and provides a
voltage, in the range of 0 to 10 V, proportional to the temperature. The current supplied to the
heating element can be varied by supplying a DC voltage in the range 0 to 10 V at point A.

The position of the air-inlet cover is adjusted by means of a reversible motor. The motor operates at
a constant speed and is turned on or off by a logic signal applied to its controller; a second logic
signal determines the direction of rotation. A potentiometer wiper is attached to the air-inlet cover
and the voltage output is proportional to the position of the cover. Micro-switches are used to detect
when the cover is fully open and fully closed.

The operator is provided with a panel from which the control system can be switched from
automatic to manual mode. In manual mode the heat output and cover position can be adjusted
using potentiometers. Switches are provided to operate the fan and heater. Panel lights indicate fan
on, heater on, cover fully open, cover fully closed, and auto/manual status. The desired output
temperature (this is known as the set point for the control system) is set by the operator using a
slider potentiometer, the setting of which can be read by the computer. The operator can also adjust
the fan cover position. The operation of this simple plant using a computer requires that software be
provided to support monitoring, control and actuation of the plant. A general schematic of the
system is shown in Figure 1.2.

Figure 1.1. A simple plant – a hot-air blower.

Bridge
Circuit

& Amplifier

Fully
Open

Thyristor
Unit

Tube
Air Flow

Power
Input

A

Computer

B

Temperature
Measurement

(0-10V)

Auto Man

Air Inlet Heater

Manual Fully
Closed

Air Inlet
Position

On/Off
Clockwise/

Anticlockwise

Blower

Motor
Control

Operator

Variable
Air Inlet

ENGG4420: Real-Time System Design; Lab Manual – By Radu Muresan

8

Monitoring involves obtaining information about the current state of the plant. In the above
example the information is available from the plant instruments in the following two forms:

1. Analog signals: air temperature and fan-inlet cover position
2. Digital logic signals: fan-inlet cover position (fully open, fully closed); status signals:

auto/manual, fan motor on, heater on.

Figure 1.2. Computer control of a hot-air blower.

Digital
Input

ADC

Computer

DAC Digital
Output

Bridg
e

Air Inlet
Positio

Heater
Circuit

Motor
Contro

Operato
r

Air
Flo

Thermisto

Air
Inlet
Clos

Air
Inlet
Ope

Blowe

Heater
Elemen

DirectioAuto/Manua

To
Operato

r
On
/

Air
Inle

Air Inlet
Motor

ENGG4420: Real-Time System Design; Lab Manual – By Radu Muresan

9

 Control involves the digital equivalent of continuous feedback control for the control of
termperature (direct digital control, DDC) and for position control of the fan-inlet cover. Sequence
and interlock control operations are also required since for the example, the heater should not be on
if the fan is not running. The computer also has to handle automatic change-over from simply
tracking (monitoring) the manual control operations to controlling the system when the operator
request a change from manual to automatic control. This change over should be carried out without
disturbing the temperature of the air at the output of the tube (a change-over which does not cause
plant disturbance is referred to as a bumpless transfer). These actions may involve parallel logic
operation, time-sequential control and timing of operations. Actuation requires provision of a voltage
proportional to the demanded heat output to drive the heater control; logic signals indicating on/off,
the direction in which the fan-inlet cover is to be moved and logic signals for the operator display.

A simplified block diagram of a sampled feedback control system is shown in Figure 1.3. The
computer control model for this application will have the following software tasks: plant input tasks;
plant output tasks; and control tasks.

Figure 1.3. Simplified block diagram of a sampled feedback control system: c(nT), r(nT), e(nT), u(nT)
are sampled values of c(t), r(t), e(t), u(t) at sample times nT where n is an integer and T is the
sampling interval.

In Figure 1.3, r(t) = set point, c(t) = controlled variable, e(t) = r(t) – c(t) = error, and m(t) =
manipulated variable.

1.5 DDC Algorithms and Their Implementation

The differential equation for a PID controller is:]/)(()(/1)([)(
0

dttedTdtteTteKtm d

t

ip ++= ∫ ;
where e(t) = r(t) – c(t), r(t) is the desired value (set point), c(t) the value of the variable being
controlled and m(t) the output from the controller. The differential equation is the time domain
representation of the controller. The equivalent frequency domain representation is:









++== sT
sT

K
sE
sMsG d

i
pc

11
)(
)()(.

In the frequency domain the overall system of the controller and plant can be represented by a block
diagram as shown in Figure 1.4.

Σ Controlle
r

Plant r(nT) e(nT) u(t) c(t)
+

-

Hold
(DAC)

T

u(nT)

Sampl
e

(ADC)T

c(nT)

ENGG4420: Real-Time System Design; Lab Manual – By Radu Muresan

10

Figure 1.4. General form of a control system: (a) continuous form; (b) discrete form

Both time domain and frequency domain representations are continuous representations. To
implement the controller using a digital algorithm we have to convert from a continuous to a discrete
representation of the controller. There are several methods of doing this; the simplest is to use first-
order finite differences. Considering the time domain version of the controller we replace the
differential and integral terms by their discrete equivalents by using the following relationships:









∆++








∆
−−

=

∆=
∆
−

=

∑

∑∫

=

=

−

n

k
k

i
dp

n

k
k

kk

k

te
T

te
t
neneTKnm

tedtte
t
ff

dt
df

1

1

1

1)()1()()(

)(,
 (1.1)

where m(n) represents the value of m at some time interval n∆t where n is an integer. By introducing
new parameters () ()sdpdispi TTKKTTKK /;/ == ; where Ts = ∆t = the sampling interval,
equation 1.1 can be expressed as an algorithm of the form:

)]1()([)()()(
)()1()(

−−++=
+−=

neneKnsKneKnm
nensns

dip
 (1.2)

where s(n) = the sum of the errors taken over the interval 0 to nTs.

sampling points

R(s) E(s) M(s) C(s)

C(s) E(s) R(s) M(z)

(b)

(a)

T

Gc(Z)

Gp(s)
+

_

_

+ Gp(s)

Gc(s)

ENGG4420: Real-Time System Design; Lab Manual – By Radu Muresan

11

 1.6 An Overview of Heat Transfer

The basic requirement for heat transfer is the presence of a temperature difference. The temperature
difference is the driving force for heat transfer, just as the voltage difference is the driving force for
electrical circuits. The heat transfer mechanisms are: conduction, convection, and radiation.

Conduction is the transfer of energy from the more energetic particles of a substance to the
adjacent, less energetic ones as a result of interactions between the particles. (Example: a cold canned
drink in a warm room, eventually warms up to the room temperature as a result of heat transfer from
the room through the aluminum can by conduction).

Convection is the mode of energy transfer between a solid surface and an adjacent liquid or gas that
is in motion and it involves the combined effects of conduction and fluid motion. Convection is
called forced convection if the fluid is forced to flow over the surface by external means such as a
fan, pump or wind. In contrast, convection is called natural (or free) convection if the fluid motion is
caused by buoyancy forces induced by density differences due to the variation of temperature in the
fluid. In our system we can apply the principles of heat transfer through forced convection. Despite
the complexity of convection, rate of convection heat transfer is observed to be proportional to
the temperature difference, and is conventionally expressed by Newton’s law of cooling as:

)(
.

∞−= TThAQ sconvection (1.3)

where h is the convection heat transfer coefficient in W/m2*C), A is the surface area through which
the convection heat transfer takes place, Ts is the surface temperature and ∞T is the temperature of a
fluid sufficiently far from the surface. Note that at the surface, fluid temperature equals the surface
temperature of the solid. The convection heat transfer coefficient h is not a property of the fluid. For
forced convection of gases h = 25 – 250)/(2 CmW o⋅ .

Radiation is the energy emitted by matter in the form of electromagnetic waves (or photons) as a
result of the changes in the electronic configuration of the atoms or molecules.

Pipe and Duct Flow. The transport of liquids or gases in pipes and ducts is of great importance in
many engineering applications. Flow through a pipe or a duct usually satisfies steady-flow conditions
and thus can be analyzed as a steady-flow process. The steady-flow process is an idealized process
which is defined as a process during which a fluid flows through a control volume steadily. The
volume V, mass m and total energy content E of the control volume remain constant. Also, the heat
and work interactions between a steady-flow system and its surroundings do not change with time.
Thus, the power delivered by a system and the rate of heat transfer to or from a system remains
constant during a steady-flow process. The mass balance for a general steady-flow system can be

expressed in the rate form as: outin mm
..

= (kg/s). During a steady-flow process, the total energy
content of a controlled volume remains constant Ecv = constant. As a result the amount of energy
entering a control volume in all forms (by heat, work, and mass) must be equal to the amount of

energy leaving it: outin EE
..

= .

ENGG4420: Real-Time System Design; Lab Manual – By Radu Muresan

12

The following heat transfer problem examples can be used to model the temperature of air in the air-
duct plant. Note that these problems were taken from the reference book [2]. The air-blower plant
can be considered as a steady-state flow problem with controlled volume. The control volume is the
portion of the pipe that surrounds the resistor.

ENGG4420: Real-Time System Design; Lab Manual – By Radu Muresan

13

ENGG4420: Real-Time System Design; Lab Manual – By Radu Muresan

14

ENGG4420: Real-Time System Design; Lab Manual – By Radu Muresan

15

 1.7 Notes on the Design of the Real-Time Systems

You should use this example to develop the design and the report for this lab and the following labs.
For the hot-air blower described in this lab it is assumed that the planning phase has been completed
and a specification document has been prepared. The following is a short version of such document:

A. Introduction

The system comprises a set of hot-air blowers arranged along a conveyor belt. Several different
configurations may be used with a minimum of 6 blowers and a maximum of 12.

B. Plant Interface

ENGG4420: Real-Time System Design; Lab Manual – By Radu Muresan

16

B.1. Input from plant

Outlet temperature: analog signal, range 0 – 10 V, corresponding to 20C to 64C, linear relationship.

B.2. Output to plant

Heater control: analog 0 V to -10 V, corresponding to full heat (0 V) to no heat (-10 V), linear
relationship.

C. Control

A PID controller with a sampling interval of 40 ms is to be used. (Note: Due to NI board sampling
limitations this sampling interval may be changed to smaller rates). The controller parameters are to
be expressed to the user in standard analog form that is proportional gain, integral action time, and
derivative action time. The set point is to be entered from the keyboard. The controller parameters
are to be variable and are to be entered from the keyboard.

D. Operator communication

D.1. Display

General Settings Controller settings

Set temperature :nn.n C Proportional gain :nn.n
Actual temperature :nn.n C Integral action :nn.nn s
Error :nn.n C Derivative action :nn.nn s
Heater output :nn% FS Sampling interval :nn ms
Other settings
Date :dd/mm/yyyy Time :hh.mm

The values on the display will be updated every 5 seconds.

D.2. Operator input

The operator can at any time enter a new set point or new values for the control parameters. This is
done by pressing the ‘ESC’ key. In response to ‘ESC’ a menu is shown on the bottom of the display
screen:

 :

1. Set temperature = nn.n 2. Proportional gain = nn.n
3. Integral action = nn.nn 4. Derivative action = nn.nn
5. Sampling interval = nn 6. Management information
7. Accept entries
Select menu number to change

ENGG4420: Real-Time System Design; Lab Manual – By Radu Muresan

17

In response to the number entered, the present value of the item selected will be deleted from the
display and the cursor positioned ready for the input of a new value. The process will be repeated
until item 7 is selected at which time the bottom part of the display will be cleared and the new values
shown in the top part of the display.

E. Management information

On selection of item 6 the operator menu a management summary of the performance of the plant
over the previous 24 hours will be given. The summary provides the following information:

(a) Average error in C in 24 hour period.

(b) Average heat demand %FS in 24 hour period.

(c) For each 15 minute period:

• Average demanded temperature;

• Average error; and

• Average heat demand

(d) Date and time of output.

F. General information

There will be a requirement for a maximum of 12 control units. A single display and entry keyboard
which can be switched between the units is adequate.

Hardware Design

There are many different possibilities for the hardware structure. Obvious arrangements are:

1. Single computer with multi-channel ADC and DAC boards.

2. Separate general purpose computers on each unit.

3. Separate computer-based microcontroller on each unit linked to a single general purpose
computer.

Each of these configurations needs to be analyzed and evaluated. Some points to consider are:

Option1: given that the specification calls for the system to be able to run with a sample interval for
the control loop of 40 ms, can this be met with 12 units sharing a single processor?

Option 2: is putting a processor that includes a display and keyboard on each unit an expensive
solution? Will communication between processors be required? (Almost certainly the answer to this
is yes; operators and managers will not want to have to use separate display and keyboards.)

Option 3: what sort of communication linkage should be used? A shared high-speed bus? A local-
area network? Where should the microcontrollers be located? At each blower unit or together in a
central location?

ENGG4420: Real-Time System Design; Lab Manual – By Radu Muresan

18

Each option needs careful analysis and evaluation in terms of cost and performance. The analysis
must include consideration of development costs, performance operating and maintenance costs. It
should also include consideration of reliability and safety.

To provide a basis for consideration of the widest range of approaches to software design we will
assume that option 1 above is chosen.

Software design

Examining the specification shows that the software has to perform several different functions:

• DDC for temperature control;

• Operator display;

• Operator input;

• Provision of management information;

• System start-up and shut-down; and

• Clock/calendar function

The various functions and type of time constraint are shown in the following figure. The control
module has a hard constraint in that it must run every 40 ms. In practice this constraint may be
relaxed a little to 40ms +-1 ms with an average value over 1 minute of, say, 40 ms +- 0.5 ms. In
general the sampling time can be specified as Ts+-es with an average value, over time T, of Ts +-ea.
The requirements may also be relaxed to allow, for example, one sample in 100 to be missed. These
constraints will form part of the test specification.

The clock/calendar module must run every 20 ms in order not to miss a clock pulse. This constraint
can be changed into a soft constraint if some additional hardware is provided in the form of a
counter which can be read and reset by the clock/calendar module. The constraint could now be,
say, an average response time of 1 second with a maximum interval between reading the counter of 5
seconds.

The operator display, as specified, has a hard constraint in that an update interval of 5 seconds is
given. Common sense suggests that this is unnecessary and an average time of 5 seconds should be
adequate; however, a maximum time would also have to be specified, say 10 seconds.

Similarly soft constraints are adequate for operator input and for the management information logs.
These would have to be decided upon and agreed with the customer. They should form part of the
specification in the requirements document. The start-up module does not have to operate in real-
time and hence can be considered as a standard interactive module.

There are obviously several different activities which can be divided into subproblems. The sub-
problems will have to share a certain amount of information and how this is done and how the next
stages of the design proceed will depend upon the general approach to the implementation. There
are three possibilities: single program; foreground/background system; and muti-tasking.

ENGG4420: Real-Time System Design; Lab Manual – By Radu Muresan

19

Event

Event/
cyclic

Cyclic

Soft time
constraint

Hard
time

constraint
(cyclic)

Control

Clock/
calendar

Operator
display

Operator
input

Management
information

Interactive Start up

Shared
data

ENGG4420: Real-Time System Design; Lab Manual – By Radu Muresan

20

1.8 LabView Starter

1.8.1 Introduction to LabView

LabView is a graphical programming language that uses icons to create applications. All LabView
programs are called VI’s (virtual Instruments). User interface or front panel consists of controls
(input devices like knobs, dials) and indicators (displays like LEDs, charts). A graphical
representation of functions to control front panel objects is called code. The block diagram contains
this code. Please check the LabView resources such as “Getting Started with the LabView” found on
the Getting Started window of the LabView 8 software.

LabView Help:

To view more information about elements on the block diagram, move cursor to that element and
Ctrl+H. You can also select context help by Help>>Show Context Help.

In order to find useful help on VI applications select Help>>Find Examples to view sample VIs.
You can study examples such as: Analyzing and processing signals>>Probability and
statistics>>Temperature System Demo.vi and Industry Applications>>Process Control>>Control
Mixer Process.vi to learn more about LabView features. Additional support material can be found on
http://www.ni.com/labview/

Important Things at a Glance:

• Block Diagram-contains functions to control front panel.

• Functions palette- palette to select various functions to control front panel objects.

• Front panel-contains controls and indicators.

• Control palette-palette to select various front panel objects.

• To View Context Help: Ctrl+H.

• To View Block Diagram: Window>>Show Block Diagram.

• To View Functions palette: Window>>Show Functions palette or Right click anywhere
inside the Block Diagram.

• To View Front Panel: Window>>Show Front Panel.

• To View Controls palette: Window>>Show Controls palette or Right click anywhere inside
the Front Panel.

• Knowledge about Functions palette and Controls palette will be helpful for the lab. So please
study various submenus of each carefully.

ENGG4420: Real-Time System Design; Lab Manual – By Radu Muresan

21

1.8.2 Building a VI

To begin with LabView you will create a simple VI that generates a signal and displays it. After
completing this exercise the block diagram and front panel of your VI will look like this. You can
also find this exercise in “Getting Started with the LabView”.

 Block Diagram

 Front Panel

ENGG4420: Real-Time System Design; Lab Manual – By Radu Muresan

22

Follow the following steps to create your first VI:

1. Launch LabView and select New in the LabView dialog box.

2. In the Create new list select Generate and Display under Tutorial (Getting Started).
Click OK button to open the template.

3. Front panel appears with a graph. In the Controls palette locate the Numeric Controls
palette. If the Controls palette is not visible, select Window>>Show Controls Palette. You
will find different types of controls, indicators, buttons, LED1’s, graphs on the palette.

4. Click on Numeric Controls icon to access the Numeric Controls palette. Select the Knob
control and place it on the front panel next to the graph.

5. To see the block diagram select Window>>Show Block Diagram. You will find Simulate
Signal icon. It simulates a sine wave by default. Notice that the knob you selected in step 4
appears on it.

6. Right click on Simulate Signal to access its properties. You can select different signal types
from the drop down menu.

7. Click OK to close the Configure Simulate Signal [Simulate Signal].

8. Place cursor over the double- headed arrow of the Simulated Signal icon and drag the
borders of Simulate Signal icon until Amplitude input appears.

9. The knob that you have selected in step 4 is used to control the amplitude of the sine wave.
Move the cursor over the arrow of the Knob. Cursor becomes a wire spool or wiring tool.
When Wiring tool appears click on the arrow and then click on the Amplitude input of
Simulate Signal. Notice that wire appears and connects two objects. This completes the
block diagram. Use Context Help to learn more about all the elements in the block diagram.

10. Select File>>Save to save this VI as example1.vi at a convenient location.

11. To Run this VI select Window>>Show Front Panel or by clicking the front panel. Click on
the Run button. When the VI is running the Run button changes to a darkened arrow. You
can also run a VI by Operate>>Run.

12. Move the cursor over the knob control and change the amplitude of the signal.

13. Click the STOP button to stop the VI or Operate>>STOP.

ENGG4420: Real-Time System Design; Lab Manual – By Radu Muresan

23

1.8.3 Building a VI from blank template:

This VI compares operand 2 with operand 1 and determines if it is lesser, greater or equal to operand
1 and gives an LED indication about the same. It continues the comparison until the user stops the
process. After completing this exercise the block diagram and front panel of your VI will look like
this.

 Block Diagram

 Front Panel

ENGG4420: Real-Time System Design; Lab Manual – By Radu Muresan

24

Follow the following steps to create the VI:

1. Launch LabView and select Blank VI from LabView dialog box.

2. From the problem description we find that we will need two numeric controls to input
operand 1 and operand 2, some elements from Arithmetic&Comparison to compare if the
numbers are greater, less than or equal to each other and three LEDs for the three
conditions.

3. Select Numeric Ctrl from the Controls palette and place it on the front panel. Refer to
steps 3 and 4 from example1.

4. On the block diagram this control appears with label Numeric. Right click it to access its
Properties. In the Properties, change its label from Numeric to Operand1.

5. Repeat the steps 3 and 4 to create another control and name it as Operand 2.

6. To compare if Operand 1 is greater than Operand 2, go to the block diagram window and
select appropriate expression from Comparison functions and place it on the block
diagram. Read Context Help about the same. Connect Operand 1 to the x input and
Operand 2 to the y input of the expression. Refer to step 9 in example 1 to wire the objects
together using the wiring tool.

7. Select expression to compare if Operand 1 is less than Operand 2 and repeat step 7 to wire
the inputs to the expression.

8. Select expression to compare if Operand 1 is equal to Operand 2 and repeat step 7 to wire
the inputs to the expression.

9. You have to give LED indication for each of the cases. Go back to the front panel controls
and place three LEDs on the front panel. Select LEDs from the Controls palette.

10. On the block diagram, connect the output of each of the above expressions to the LED
input using the wiring tool.

11. Similar to step 4, access the Properties of each LED and change their labels to
appropriately indicate greater, less or equal conditions.

12. Select File>>Save to save this VI as example2.vi at a convenient location.

13. If you have followed all the steps correctly, you will see a solid white arrow on the Run
button. A broken arrow indicates that there are some errors. Click on the broken arrow to
see the Error list. Refer to Help and correct the errors.

14. Run your VI. You will notice that the program runs only once and then stops. We want to
design a VI, which continues to Run until the user stops it. Notice that there is no condition
on the block diagram that indicates this feature.

ENGG4420: Real-Time System Design; Lab Manual – By Radu Muresan

25

15. On the Functions palette, select an Execution Control, which continues to execute until a
condition is true. This functionality can be achieved by a While Loop.

16. Place the Loop on the block diagram such that all the elements including (2 numeric
controls, 3 expressions, 3 LEDs) are inside the loop. In order to do this, select While Loop
function, left click on the top left corner of the block diagram, keeping the mouse pressed
drag and increase the dotted loop until all the elements are inside the loop.

17. Notice that a Stop button appears which is connected to the Stop condition of the while
loop. You can configure the stop condition by right clicking the stop sign and choosing the
appropriate condition. For your example select the Stop if True condition. Similar to step 5,
change the label of the Stop button to On/Off. Notice the STOP button appears on the
front panel.

18. Save changes to your VI and Run it again.

19. Notice that this time the VI runs continuously and stops only if the On/Off button is
clicked. This is because of the While loop you have included in your design.

1.8.4 For the lab:

The main inputs and outputs for the lab are blower arc length, reference temperature, heater current,
control for automatic/manual mode of operation, main control to turn On/Off the system, fan on
and heater on.

Keep the Context Help open at all times while doing the lab. Please follow the following steps:

1. Launch LabView and select New in the LabView dialog box. Select Blank VI in the Create
new list. Click OK to open the template.

2. As in example 2, design a control such that the process continues until the user stops it.
Refer to Step 15 in example 2.

3. The user can change the opening of the fan cover. Implement a control to achieve this
functionality. Depending on the opening certain mass of air blows over the heating element.
Implement this calculation of mass of air blowing over the heating element using a simple C
code. Search for a feature, which lets you, implement C code.

4. The current flowing through the heating coil can also be varied. The resistance of the coil is
considered to be constant. Similar to step 3, you can implement the power calculation using a
simple C code.

5. The output temperature depends on the airflow and the current flowing through the coil. For
a constant heater current, if the airflow increases then the output temperature drops. If the
airflow remains constant then the output temperature increases with the increase in heater

ENGG4420: Real-Time System Design; Lab Manual – By Radu Muresan

26

current. Determine a relation between these factors. You can implement this formula. Refer
to Functions palette for the appropriate menu.

6. The control action to be taken depends on the mode of operation of the system i.e. if the
system is in automatic or manual mode of operation. So the next step would be to determine
the mode of operation. You can implement a toggle switch for this purpose. Find a
Function, which lets you do this Case selection.

7. Within the automatic mode case you have to implement the PID algorithm using C language.
Refer to the same block you have used in steps 3 and 4. Comparing the output of this C
block and the reference temperature, some control action has to be taken.

8. In this case we will control only the heater current. If the output temperature is greater than
reference temperature then your control block should reduce the heater current. The
important thing in this step is the feedback. Whether the output temperature exceeds the
reference temperature is given as a feedback to the control block.

9. Within the manual mode case we will control the blower arc length and heater current. The
output temperature from step 5 is once again compared with reference temperature. If the
user has kept the settings such that the output temperature exceeds the reference
temperature then you will display a message to the user and prompt him for an input to
change the arc length and heater current suitably. You will find a block to display and
prompt user for an input on the Functions palette>>All Functions>>Time & Dialog.

10. If the number entered by the user is positive then it increases the arc length and vice versa.
Similar to step 8 you will have to implement a feedback loop, which will reflect this new arc
length.

11. To indicate the Blower on and heater on conditions, you will have to implement two LED
indicators on the front panel (Control palette>>LED’s). If the arc length and heater
current are greater than zero, then the LEDs are switched on to indicate that both fan and
heater current are on.

ENGG4420: Real-Time System Design; Lab Manual – By Radu Muresan

27

L a b 2

2. REAL-TIME EMBEDDED APPLICATION

2.1 Lab Objectives

I believe that in an engineering environment students should learn the mechanisms of developing
applications based on commercial real-time operating systems (RTOS). As a result, the main goal of
this lab is to introduce the students to embedded development environment that will be used to
develop RTOS based applications. uC/OS-II is a real-time preemptive multitasking kernel. It is
written in C with the exception of a small CPU-specific assembly module. This means that uC/OS
can be ported easily to different processors. In fact, it has been ported to a large number of
processors ranging from simple 8-bit controllers like 8051 to large 32-bit CPUs. The good thing
about the uC/OS-II is that it is completely documented by the author (Jean J. Labrosse) in its book
“MicroC/OS-II, The Real-Time Kernel Second Edition”. Also, the uC/OS-II kernel is simple and
has been used in various commercial products.

The embedded development platform used in this lab is the Embest Development System for ARM.
The Embest Development System is simple, cost effective and suitable for a university environment.
The tools provide a complete software and hardware package that can be used in developing
complex practical implementations. I have chosen these tools based on these facts and due to the
fact that all of the hardware interfaces are supported by working examples. This allows the students
to focus on more complex applications; they don’t have to spend a lot of time in writing low level
interfacing programs. Also, Embest has ported the uC/OS-II to the development board and has
provided some programming examples that use the uC/OS-II real-time kernel. This lab and the next
labs, in this manual,will be based on the “Embedded System Development and Labs; English
Edition, 2005” Edited by Radu Muresan. At this time the book is available only in electronic format.
However, there will be two hardcopies of the book present in the lab class and one at the library.

2.2 Lab Introduction

ARM architectures are well known for their low-power consumption features and for the Thumb
instruction set. ARM Inc. is a chipless company. However, the ARM processor cores are adopted by
many leading semiconductor companies such as TI, Philips, Intel, Samsung, etc. ARM has
established its lead position in the embedded technologies and due to its low-power design features it
is widely used in the wireless and portable applications. In 2002, ARM processors occupied 79.5% of
the 32-bit and 64-bit microprocessor market in the world. Nowadays, ARM processors are almost in
everybody’s pocket because almost all of the mobiles phones and PDAs are developed based on
ARM cores.

The Embest Development Tools for ARM use a development board based on the Samsung’s
S3C44BOX 16/32-bit RISC microprocessor. The Samsung S3C44BOX was developed using an
ARM7TDMI core, 0.25 um CMOS standard cells and a memory compiler. Its low-power and fully

ENGG4420: Real-Time System Design; Lab Manual – By Radu Muresan

28

static design is particularly suitable for cost-sensitive and power sensitive applications. The main
feature of the S3C44BOX is its CPU core, a 16/32-bit ARM7TDMI RISC processor (66 MHz). The
architectural enhancements of ARM7TDMI include Thumb decompressor, an on-chip ICE breaker
debug support and a 32-bit hardware multiplier. By providing a complete set of common system
peripherals, the S3C44BOX minimizes overall system costs and eliminates the need to configure
additional components. The following are the integrated on-chip functions that are described in the
User’s Manual. Most of these features are explained in the “Embedded System Development and
Labs” book with practical examples.

• 2.5 Static ARM7TDMI CPU core with 8Kb cache. (SAMBA II bus architecture up to
66MHz;

• External memory controller. (FP/EDO/SDRAM Control, Chip Select logic);
• LCD controller (up to 256 color DSTN) with 1-ch LCD-dedicated DMA;
• 2-ch general DMAs / 2-ch peripheral DMAs with external request pins;
• 2-ch UART with handshake (IrDA1.0, 16-byte FIFO) / 1-ch SIO;
• 1-ch multi-master IIC-BUS controller;
• 1-ch IIS-BUS controller;
• 5-ch PWM timers & 1-ch internal timer;
• Watch Dog Timer;
• 71 general purpose I/O ports / 8-ch external interrupt source;
• Power control; Normal, Slow, Idle, and Stop mode;
• 8-ch 10-bit ADC;
• RTC with calendar function;
• On-chip clock generator with PLL.

2.3 Features of the S3C44BOX RISC Microcontroller

Architecture

• Integrated system for hand-held devices and general embedded applications;
• 16/32-Bit RISC architecture and powerful instruction set with ARM7TDMI CPU core;
• Thumb de-compressor maximizes code density while maintaining performance;
• On-chip ICEbreaker debug support with JTAG-based debugging solution;
• 32x8 bit hardware multiplier;
• New bus architecture to implement Low-Power SAMBA II (Samsung' ARM CPU embedded

Micro-controller Bus Architecture);

System Manager

• Little/Big endian support;
• Address space: 32Mbytes per each bank (Total 256 Mbytes);
• Supports programmable 8/16/32-bit data bus width for each bank;
• Fixed bank start address and programmable bank size for 7 banks;
• 8 memory banks:

o 6 memory banks for ROM, SRAM etc.

ENGG4420: Real-Time System Design; Lab Manual – By Radu Muresan

29

o 2 memory banks for ROM/SRAM/DRAM (Fast Page, EDO, and Synchronous
DRAM);

• Fully Programmable access cycles for all memory banks;
• Supports external wait signal to expend the bus cycle;
• Supports self-refresh mode in DRAM/SDRAM for power-down;
• Supports asymmetric/symmetric address of DRAM.

Cache Memory & Internal SRAM

• 4-way set associative ID(unified)-cache with 8Kbyte;
• The 0/4/8 Kbytes internal SRAM using unused cache memory;
• Pseudo LRU(Least recently used) Replace Algorithm;
• Write through policy to maintain the coherence between main memory and cache content;
• Write buffer with four depth;
• Request data first fill technique when cache miss occurs;

Clock & Power Manager

• Low power;
• The on-chip PLL makes the clock for operating MCU at maximum 66MHz;
• Clock can be fed selectively to each function block by software;
• Power mode: Normal, Slow, Idle and Stop mode. Normal mode: Normal operation mode;

Slow mode: Low frequency clock without PLL; Idle mode: Stop the clock only for CPU;
Stop mode: All clocks are stopped;

• Wake up by EINT[7:0] or RTC alarm interrupt from Stop mode.

Interrupt Controller

• 30 Interrupt sources; (Watch-dog timer, 6 Timer, 6 UART, 8 External interrupts, 4 DMA, 2
RTC, 1 ADC, 1 IIC, 1 SIO);

• Vectored IRQ interrupt mode to reduce interrupt latency;
• Level/edge mode on the external interrupt sources;
• Programmable polarity of edges and level;
• Supports FIQ (Fast Interrupt request) for very urgent interrupt request.

Timer with PWM (Pulse Width Modulation)

• 5-ch 16-bit Timer with PWM / 1-ch 16-bit internal timer with DMA-based or interrupt-
based operation;

• Programmable duty cycle, frequency, and polarity;
• Dead-zone generation;
• Supports external clock source.

ENGG4420: Real-Time System Design; Lab Manual – By Radu Muresan

30

RTC (Real Time Clock)

• Full clock feature: msec, sec, min, hour, day, week, month, year;
• 32.768 KHz operation;
• Alarm interrupt for CPU wake-up;
• Time tick interrupt.

General-Purpose input/output Ports

• 8 external interrupt ports;
• 71 multiplexed input/output ports.

UART

• 2-channel UART with DMA-based or interrupt based operation;
• Supports 5-bit, 6-bit, 7-bit, or 8-bit serial data transmit/receive;
• Supports H/W handshaking during transmit/receive;
• Programmable baud rate;
• Supports IrDA 1.0 (115.2 kbps);
• Loop back mode for testing;
• Each channel have two internal 32-byte FIFO for Rx and Tx;

DMA Controller

• 2 channel general purpose Direct Memory Access controller without CPU intervention;
• 2 channel Bridge DMA (peripheral DMA) controller;
• Support IO to memory, memory to IO, IO to IO with the Bridge DMA which has 6 type’s

DMA requestor: Software, 4 internal function blocks (UART, SIO, Timer, IIS), and External
pins;

• Programmable priority order between DMAs (fixed or round-robin mode);
• Burst transfer mode to enhance the transfer rate on the FPDRAM, EDODRAM and

SDRAM;
• Supports fly-by mode on the memory to external device and external device to memory

transfer mode.

A/D Converter

• 8 channel multiplexed ADC;
• Max. 100KSPS/10-bit.

LCD Controller

• Supports color/monochrome/gray LCD panel;
• Supports single scan and dual scan displays;

ENGG4420: Real-Time System Design; Lab Manual – By Radu Muresan

31

• Supports virtual screen function;
• System memory is used as display memory;
• Dedicated DMA for fetching image data from system memory;
• Programmable screen size;
• Gray level: 16 gray levels;
• 256 Color levels.

Watchdog Timer

• 16-bit Watchdog Timer;
• Interrupt request or system reset at time-out.

IIC-BUS Interface

• 1 channel Multi-Master IIC-Bus with interrupt-based operation;
• Serial, 8-bit oriented, bi-directional data transfers can be made at up to 100Kbits/s in the

standard mode or up to 400 Kbits/s in the fast mode.

IIS-BUS Interface

• 1 channel IIS-bus for audio interface with DMA-based operation;
• Serial, 8/16bit per channel data transfers;
• Supports MSB-justified data format.

SIO (Synchronous Serial I/O)

• 1 channel SIO with DMA-based interrupt-based operation;
• Programmable baud rates;
• Supports serial data transmit/receive operations 8-bit in SIO.

Operating Voltage Range / Operating Frequency / Package

• Core: 2.5V I/O: 3.0V to 3.6V;
• Up to 66 MHz;
• 160 LQFP / 160 FBGA

2.4 Lab 2 Requirements

Throughout this Chapter you will need to refer to the “Embedded System Development and Labs,
English Edition” book.

2.4.1 Introduction to the Real-Time Embedded ARM Development System

In this part of the lab you will get familiar with the Embest Development System and learn how to
use the software tools. Specifically, you will learn how to create projects, how to compile assembly

ENGG4420: Real-Time System Design; Lab Manual – By Radu Muresan

32

and C language programs, how to link the object files, how to initialize the system, how to debug
your applications, etc. Also, you will learn basic programming methods and interfacing for common
peripherals. Feel free to experiment with the hardware and software tools and learn as much as
possible about the tools and about the microcontroller and its peripherals. The following are the lab
requirements for this part:

1. Study Chapter 2 of the “Embedded System Development and Labs” book.
2. Perform ARM Assembly Instruction Lab 1 of Section 3.1, C Language Program Lab 1 of

Section 3.5, C Language Program Lab 1 of Section 3.6, and Sum up Programming Lab of
Section 3.8. (Note: The exercise sections are not required).

3. Perform the labs of Chapter 4 (Note: The exercise sections are not required). These labs are
in order: Memory Lab; I/O Interface Lab; Interrupt Lab; Serial Communication Lab; Real-
Time Timer Lab; 8-SEG LED Display Lab.

4. Perform the labs of Chapter 5 (Note: The exercise sections are not required). These labs are:
LCD Display Lab; 4x4 Keyboard Control Lab; Touch Panel Control Lab.

5. Talk to your TA when you have completed this part.

2.4.2 Example: MicroC/OS-II Implementation of a Start-Stop Watch (One Week)

In this part of the lab you will learn how to port the MicroC/OS-II Kernel to the S3C44BOX ARM
based microcontroller and how to write simple application programs that use the uC/OS-II kernel.
Also, you will learn to develop projects using the uC/OS-II kernel. The following are the
requirements for this part:

1. Perform the uC/OS Porting Lab of Section 7.1 (Note: The exercise section is not required).
2. Perform the uC/OS Application Lab of Section 7.2 (Note: The exercise section is not

required).
3. Perform the uC/OS Start-Stop Watch application example of Section 7.3. This example was

developed based on the Stop-Watch application presented in the “Embedded
Microcontrollers” by Todd D. Morton.

4. Talk to your TA when you have completed this part.

2.4.3 Implementation Requirements for an Intruder Alarm System (Two Weeks)

In this part of the lab you will use the knowledge gained so far and implement an “Intruder Alarm
System” using the functions of the uC/OS-II real-time kernel. The requirements of this part can be
also found in Section 7.3.4 of the lab book. The following describes the requirements of the Intruder
Alarm System implementation.

Intruder Alarm Description

An intruder alarm system receives information about the state of the monitored building from a
number of sensors located at every possible entrance and exit. Sensors function basically as switches,
indicating whether a given sensor has detected an intruder or not. The alarm is located inside the
building. It is set (armed) and reset (disarmed) from inside the building. A digital code of fixed length
is required for both setting and resetting the alarm. One of the entrances, which also functions as an
exit, is nominated as the entrance and the exit after the alarm has been set.

ENGG4420: Real-Time System Design; Lab Manual – By Radu Muresan

33

Timing information is crucial for proper functioning of an intruder alarm. When the alarm is initially
set, a specific time delay is allowed for the user to leave the building through the nominated exit.
When the alarm is set, the use of any of the entrances other than the nominated one for re-entry
activates the alarm instantly or, at most, within a matter of a few seconds. The sensors monitoring
the entrance nominated for re-entry and the route to the alarm control point do not activate the
alarm until a set time has elapsed. This set time allows the user to enter the building and disarm the
alarm by entering the correct digital code. If this is not done successfully, the alarm is activated at the
end of the set time.
The alarm system has a siren and a strobe and these are located outside the building. If an intruder is
detected or the alarm is not disarmed by the person entering the building through the nominated
entrance during the required time, the siren begins to sound and the strobe begins to flash
immediately, as mentioned above. In this event, the siren continues to sound for a specified time,
usually for a few minutes and stops, but the strobe continues to flash. The alarm can be reset by the
user only by entering the correct code. If the alarm has already been triggered this would turn the
alarm off. The correct code is the most up to date code entered when arming the system.
When entering the code for disarming the alarm, the user is allowed a maximum period to complete
the task. If the user fails to complete this within the given time, the system discards the partial entry
and waits for the next attempt. The user is allowed as many attempts as possible to enter the correct
code within the allocated time. If the alarm has already been set off, after this period it cannot be
reset except by an appointed independent authority.
Some reasonable limiting values for the timing parameters involved are:

a. Time allowed for setting the alarm and leaving the building – 30 seconds
b. Time between detecting an intruder and triggering the alarm off – 5 seconds
c. Time allowed for re-entry through the nominated entrance and start resetting the alarm – 2

minutes
d. Duration for resetting the alarm after re-entry – 1 minute
e. Maximum duration for entering the code at each attempt – 20 seconds
f. Duration of the siren sound – 5 minutes

NOTE1: In this application you can use the keypad in order to simulate the entrance and exit
switches; the 8-SEG LED or the LCD to perform the flashing; the earphone to simulate the siren
sound.
NOTE2: Use the statistics task OS_TaskStat() to analyze the CPU usage of your application. Present
an analysis of the CPU usage in your report and explain the task priority assignment in your system.
NOTE3: For deciding the task priorities you can use the RMS (Rate Monotonic Scheduling)
technique (See the Lecture Notes).

2.4.4 Lab Marking

A. The maximum lab mark that you can obtain for this lab is 10%. The lab mark includes:

performing the steps presented in Sections 2.4.1 and 2.4.2, implement the intruder alarm
system.

B. Talk to your TA after finalizing Sections 2.4.1 and 2.4.2. Show to your TA that you
understand the basics presented in these sections. The accomplishment of the steps
presented in these sections will be marked by 2% of the total lab mark.

ENGG4420: Real-Time System Design; Lab Manual – By Radu Muresan

34

C. Develop a lab report of minimum 8 pages and maximum 15 pages that describes your design
and the intruder alarm implementation. The report should have three main parts:
introduction, background, and implementation design. The introduction and the background
should be short; your main focus should be on the design of your lab application. The
maximum mark for this part is 8%. The final mark will be based on your report and on the
demo of your implementation. Each part (report and demo) will weigh 1/2 of the total mark
for this part.

a. Marking: Lab requirements: 2%; Lab Report 4%; Lab Demo: 4%.

2.4.4 Suggested Report Outline for Lab 2

Try to present in your report all of the important things that are related to your implementation. Things that
you are happy about the way you implemented or solved. Explain well your implementation and its
functionality. The following is an outline that you can use. This outline is not mandatory and you can
enhance it or tailor it to suit your application. Make sure that you identify all your tasks, task requirements
and their type (hard, soft, interactive)

1. Introduction
1.1 Problem description
1.2 System requirements

2. Background
2.1 Short description of the embedded platform used and the benefits of using an ARM based controller
2.2 Short overview of the benefits of using uC/OS in developing a real time application.
2.3 Explain why this system is a real-time system

3. Implementation
3.1 Present a top-down functional implementation of the system
3.2 Identify the tasks, objects and services needed to implement this system.
3.3 Present a block diagram of your implementation
 Show the interconnection and the communication between all your tasks.
 Explain in detail the functionality of your implementation.
 Explain the testing procedures that you used to make sure that the real-time system works and all of the
constraints are met.
 Here you can present some simulation (testing) results.

A. Appendix
Present your project structure and present your complete C code for your implementation.
Note. The appendix can be as long as you want. The 3 main parts should be limited to 8 - 15 pages

ENGG4420: Real-Time System Design; Lab Manual – By Radu Muresan

35

L a b 3 a n d 4

3. EMBEDDED VOIP PHONE

3.1 Lab Objectives

The goal of this lab is to teach the students how to implement a complex real-time embedded
application using the uC/OS-II real-time kernel. The application that students will implement in this
lab is an embedded VoIP phone. The students will use the Embest development system to develop
embedded VoIP phone. A working VoIP embedded phone should be able to perform duplex phone
communication with the other boards. At the end of the labs all of the boards will be connected
through an Ethernet switch and students will prove the functionality of their implementation by
performing duplex communications with other boards.

3.2 Lab Introduction

Due to intense research into the VoIP technology, there are a large number of commercial VoIP
products in the market today. VoIP or Voice over Internet Protocol, is a method for taking analog
audio signals like the kind you hear when you talk on the phone and turning them into digital data
that can be transmitted over the internet. There are three different flavors of VoIP service in use
today:

• ATA (Analog Telephone Adaptor): The ATA allows you to connect a standard phone to
your computer or your internet connection for use with VoIP. The ATA is an analog to
digital converter. It takes the analog signal from your traditional phone and converts it into
digital data for transmission over the internet. Providers such as Vonage and AT&T
CallVantage are bundling ATAs free with their services.

• IP Phones – These specialized phones look just like normal phones with a handset, cradle
and buttons. But instead of having the standard RJ-11 phone connectors, IP phones have an
RJ-45 Ethernet connector. IP phones connect directly to your router and have all the
hardware and software necessary right onboard to handle the IP call. Soon, Wi-Fi IP phones
will be available, allowing subscribing callers to make VoIP calls from any Wi-Fi hot spot.

• Computer-to-Computer – This is certainly the easiest way to use VoIP. You don’t even have
to pay for long-distance calls. There are several companies offering free or very low-cost
software that you can use for this type of VoIP. All you need is the software, a microphone,
speakers, a sound card and an internet connection.

Cisco IP phones have become an instant favorite of many companies, educational institutions and
other organizations. The advantage of deploying these phones results in direct price saving, as lines
do not have to be leased from phone companies. The 7900 Series IP phones from Cisco offers a
host of features and advanced customization options. These phones are connected through a virtual

ENGG4420: Real-Time System Design; Lab Manual – By Radu Muresan

36

LAN, which guarantees adequate bandwidth for communications. Also, there is support for features
such as XML (Extensible Markup Language) that enables users to access services such as directories,
stock quotes etc. Typical Cisco IP phones are shown in the following figure.

Figure 3.1 Cisco IP Phones.

The VoIP Phone System: Packet Switching

Data networks do not use circuit switching. Your Internet connection would be a lot slower if it
maintained a constant connection to the Web page you were viewing at any given time. Instead, data
networks simply send and retrieve data as you need it. And, instead of routing the data over a
dedicated line, the data packets flow through a chaotic network along thousands of possible paths.
This is called packet switching.

While circuit switching (used in switching telephony) keeps the connection open and constant,
packet switching opens a brief connection – just long enough to send a small chunk of data, called a
packet, from one system to another. Packet switching is very efficient. It lets the network route the
packets along the least congested and cheapest lines. It also frees up the two computers
communicating with each other so that they can accept information from other computers, as well.

VoIP technology uses the Internet’s packet-switching capabilities to provide phone service. VoIP has
several advantages over circuit switching. For example, packet switching allows several telephone
calls to occupy the amount of space occupied by only one in a circuit-switched network. Using

ENGG4420: Real-Time System Design; Lab Manual – By Radu Muresan

37

PSTN (Public Switched Telephone Network), that 10-minute phone call we talked about earlier
consumed 10 full minutes of transmission time at a cost of 128Kbps. With VoIP, the same call may
have occupied only 3.5 minutes of transmission time at a cost of 64Kbps, leaving another 64Kbps
free for that 3.5 minutes, plus an additional 128 Kbps for the remaining 6.5 minutes. Based on this
simple estimate, another three or four calls could be easily fit into the space used by a single call
under the conventional system. And this example doesn’t even factor in the use of data compression,
which further reduces the size of each call.

3.3 Lab Requirements

3.3.1 Preparatory Examples

In this part of the lab you will use the “Embedded System Development and Labs” book and you
will learn how to download a file to the development board through an Ethernet connection and
how to store a wav file using the IIS interface. The following are the requirements for this part:

1. Perform the IIC Serial Communication Lab of Section 6.1 (Note: The exercise section is not
required).

2. Perform the Ethernet Communication Lab of Section 6.2 (Note: The exercise section is not
required).

3. Perform the IIS Voice Interface Lab of Section 6.3 (Note: The exercise section is not
required).

4. Talk to your TA when you have completed this part.

3.3.2 Implementation Requirements for the VoIP Embedded Phone

In this part you have to develop a complete VoIP embedded phone using the MicroC/OS-II RTOS
and the Embest Development System. The functional requirements of the phone are:

• Use the key pad to introduce a group number to be called

• Use the key pad to send a short message to a group connected to

• Broadcast your phone status (online/busy) to other groups

• Use the LCD to display the group number connected to

• Use the LCD or UART0 to display the time passed while connecting with a MAC address

• List all the online groups

• Caller ID

• Answer machine (option)

• Use the microphone and the earphones to perform a duplex audio communication

ENGG4420: Real-Time System Design; Lab Manual – By Radu Muresan

38

Phone Protocol in the Lab

1. You have to setup your own NIC MAC address in the format of: 00-20-05-44-20-XX, in which
XX is your group number. For example, your group number is 12, then you should use 00-20-05-44-
20-12 as your NIC MAC address.

2. The message format should be in the format of: “MESSAGE TYPE + MESSAGE”. MESSAGE
TYPE is the first byte of your data to be sent.

• 0x10: Broadcast AVAILABLE, followed by your group number.

• 0x11: Broadcast BUSY, followed by your group number.

• 0x12: REQUEST a connection, followed by the group number to be connected.

• 0x13: ACCEPT a connection, followed by your group number.

• 0x14: Send a TEXT MESSAGE, followed by the text message.

• 0x15: Send VOICE DATA, followed by the voice data.

ENGG4420: Real-Time System Design; Lab Manual – By Radu Muresan

39

• 0x16: Indicates the END of data pertaining to a recorded voice sample.

• 0x17: CLOSE a connection, followed by your group number.

3.3.2 Implementation Requirements for the VoIP Embedded Phone (NOTE: this part is

not complete. More details will be presented later)

In this part you have to develop a complete VoIP embedded phone using the MicroC/OS-II RTOS
and the Embest Development System. The minimum functional requirements of the phone are:

• Use the key pad to introduce the IP address called

• Use the LCD to display the IP address connected to

• Use the LCD and the 8-SEG LED to display the time passed while conversing with an IP
address

• Use the microphone and the earphones to perform a duplex audio communication

3.3.3 Lab Marking

D. The maximum lab mark that you can obtain for this lab is 16%. The lab mark includes:
performing the steps presented in Section 3.3.1, implement the VoIP embedded phone,
connect your phone to the lab network.

E. Talk to your TA after finalizing Section 3.3.1. Show to your TA that you understand the
basics presented in this section. The accomplishment of the steps presented in these sections
will represent 2% of your total lab mark.

ENGG4420: Real-Time System Design; Lab Manual – By Radu Muresan

40

F. Develop a lab report of minimum 10 pages and maximum 20 pages that describes your
design and the VoIP embedded phone application. The report should have three main parts:
introduction, background, and implementation design. The introduction and the background
should be short; your main focus should be on the design of your lab application. The
maximum mark for this part is 12%. The final mark for this part will be based on your report
and on the demo of your implementation. Each part (report and demo) will weigh 1/2 of the
total mark for this part. NOTE: Provide the Petri Net diagram for the implementation.
Also, you should use again the statistics task and analyze the efficiency of your system.

G. For the demo part, connect your VoIP embedded phone to the lab network and perform
duplex connections with the TA’s board. Try to implement the whole functionality of the
VoIP phone. Your implementation should present the duplex text communication. As for
the voice communication, your implementation should at least be able to send the sample
wav file. We will mark this lab relative to the best implementations.

a. Marking: Lab requirements: 2%; Lab Report: 6%; Lab Demo: 6%; Petri Net: 2%.

NOTE 1: Provide the Petri Net diagram for the implementation.

NOTE 2: Use the statistics task OS_TaskStat() to analyze the CPU usage of your application. Present
an analysis of the CPU usage in your report and explain the task priority assignment in your system.
NOTE 3: For deciding the task priorities you can use the RMS (Rate Monotonic Scheduling)
technique (See the Lecture Notes).

3.3.4 Suggested Report Outline for Lab 3&4

You need to present only one report for both labs. Try to present in your report all of the important things
that are related to your implementation. Things that you are happy about the way you implemented or
solved. Explain well your implementation and its functionality. The following is an outline that you can use.
This outline is not mandatory and you can enhance it or tailor it to suit your application. Make sure that you
identify all your tasks, task requirements and their type (hard, soft, interactive)

1. Introduction
 1.1 Problem description
 1.2 System requirements
2. Background
 2.1 Short description of the embedded platform used and the benefits of using an ARM based controller
 2.2 Short overview of the benefits of using uC/OS in developing the VoIP phone.
 2.3 Explain why this system is a real-time system

3. Implementation
 3.1 Present a top-down functional implementation of the VoIP phone.
 3.2 Present a Petri Nets functional diagram of your VoIP phone. Explain the functionality of the diagram
and provide the reachability tree.
 3.3 Identify the tasks, objects and services needed to implement this system.
 3.4 Present a block diagram of your implementation
 Show the interconnection and the communication between all your tasks.
 Explain in detail the functionality of your implementation.
 Explain the testing procedures that you used to make sure that the real-time system works and all of the
constraints are met. Explain the CPU usage results, by using the statistics task OS_TaskStat().
 Here you can present some simulation (testing) results.

ENGG4420: Real-Time System Design; Lab Manual – By Radu Muresan

41

4. Conclusions. Briefly present the main conclusions of the lab results.

A. Appendix
Present your project structure and present your complete C code for your implementation.

Note. The appendix can be as long as you want. The 3 main parts should be limited to 8 - 15 pages

APPENDIX A

Embest S3CEV40 Evaluation Board

ARM - Samsung S3C44B0X EVB
 ------10 BaseT, USB, 2x RS232, LCD, Boot Code, uCos, ucLinux ...

Embest S3CEV40 EVB for S3C44B0X is a platform that is suitable for code development of
Samsung's S3C44B0X 16/32-bit RISC microcontroller (General ARM) for hand-held device
and general applications.

S3C44B0X consists of 16-/32-bit RISC (ARM7TDMI) CPU core, 8KB cache, optional internal
SRAM, LCD controller (up to 256 color DSTN), 2-ch UART with hand-shake (IRDA1.0,16-
byte FIFO), 4-ch DMA, System manager (chip select logic, FP/ EDO/SDRAM controller), 6-
ch timers with PWM, 71-bit general purpose I/O ports, RTC, 8-ch 10-bit ADC, IIC-BUS
interface, IIS-BUS interface, Sync. SIO interface and PLL for clock.

Embest S3CEV40 EVB consist of S3C44B0X, boot Flash, SDRAM, LCD&TSP touch screen
interface, two serial communication ports, ethernet interface, USB interface, keyboard
interface, IIS(sound) interface, exterior IDE port, Nand Flash, RTC, JTAG interface and 8-
SEG. Embest S3CEV40 EVB provide a high performance and low cost solution for
embedded engineers.

Hardware specification

ENGG4420: Real-Time System Design; Lab Manual – By Radu Muresan

42

• Dimensions: 190 x 190 mm(main board)

• 5.0V DC or USB power supply

• 2 M bytes 16-bit Flash

• 8 M bytes 16-bit SDRAM

• 4K bit EEPROM with IIC BUS

• 2x RS232

• USB connecter

• 10M Ethernet interface connector

• microphone import

• IIS audio frequency export (speaker out)

• 16 M Bytes Nand Flash

• external IDE port

• LCD&TSP touch screen port

• 320×240 LCD * (optional)

• 4×4 keyboard * (optional)

• Reset button

• 2 interrupt buttons and 2 LEDS

• 8 segment leds

• 20-pin JTAG interface connector

• 4 groups 2×20 PIN expansion connectors of CPU

Software Specification

• Boot software

• Samples codes and test software(All in source code)

o learning example for arm assemble instructions

o learning example for running arm processor in different operating mode

o learning example for arm thumb instructions

o learning example on how to operate with interrupt

o IIS sounds test program

o Test porgram for 8_segment Led, to light as 1,2,3,...

o Test program for using RTC

ENGG4420: Real-Time System Design; Lab Manual – By Radu Muresan

43

o Test program on how to access memory

o Test program to lighting LED, showing how to use GPIO

o Test Program for reading/writing flash chip

o Test program about Timer

o Test program about UART

o Test program for keyboard operation

o Test program for LCD display, both showing text and graphics

o Test porgram on how to use touch screen

o A network application to test Ethernet port

o DHCP protocol test program

o

• uCos source tree(porting for this board)

• uClinux source tree(porting for this board)

Package List

• Embest S3CEV40 Evaluation Board

• a DB9 plug-to-DB9 socket straight-through serial cable

• 5.0V DC Power supply

• USB cable

• CD-ROM, include:
- user manual
- circuit schematic drawing
- Boot software
- samples code and test software
- uCos source tree
- uClinux source tree

The evaluation board is capable of supporting different kinds of debugging systems, using

an ICE interface.

BIBLIOGRAPHY

[1] Stuart Bennett. Real-Time Computer Control; An Introduction, 2nd ed. Prentice Hall, 1994.
[2] Yunus A. Cengel, Michael A. Boles. Thermodynamics; An Engineering Approach, 4th ed., Mc. Graw

Hill, 2002.
[3] Samsung Electronics, User’s Manual; S3C44BOX 16/32-Bit RISC Microprocessor.
[4] Radu Muresan Editor, Embedded System Development and Labs, English Edition, 2005.
[5] Jean. J. Labrosse, MicroC/OS-II, The Real-Time Kernel, Second Edition, CMP Books, 2002.
[6] David Seal Editor, ARM Architecture Reference Manual, Second Edition, Addison-Wesley, 2001.
[7] Steve Furber, System-On-Chip Architectures, Second Edition, Addison-Wesley, 2000.

ENGG4420: Real-Time System Design; Lab Manual – By Radu Muresan

44

[8] Qing Li, Caroline Yao, Real-Time Concepts for Embedded Systems, CMPBooks, 2003.

