
The Embedded I/O Company

TPMC501-S
Windows Device

Optically Isolated 32 Chan

Version 2.0.x

User Manu

Issue 2.0.0

March 2011

TEWS TECHNOLOGIES G

Am Bahnhof 7 25469 Ha

Phone: +49 (0) 4101 4058 0 Fax: +49 (

e-mail: info@tews.com www.tews
W-65
Driver

nel 16 Bit ADC

al

mbH

lstenbek, Germany

0) 4101 4058 19

.com

TPMC501-SW-65 – Windows Device Driver Page 2 of 43

TPMC501-SW-65

Windows Device Driver

Optically Isolated 32 Channel 16 Bit ADC

Supported Modules:
TPMC501

This document contains information, which is
proprietary to TEWS TECHNOLOGIES GmbH. Any
reproduction without written permission is forbidden.

TEWS TECHNOLOGIES GmbH has made any
effort to ensure that this manual is accurate and
complete. However TEWS TECHNOLOGIES GmbH
reserves the right to change the product described
in this document at any time without notice.

TEWS TECHNOLOGIES GmbH is not liable for any
damage arising out of the application or use of the
device described herein.

2004-2011 by TEWS TECHNOLOGIES GmbH

Issue Description Date

1.0 First Issue August 4, 2004

1.0.1 General revision, new address TEWS LLC May 20, 2009

2.0.0 Windows 7 support, API functions added March 4, 2011

TPMC501-SW-65 – Windows Device Driver Page 3 of 43

Table of Contents

1 INTRODUCTION... 4

2 INSTALLATION.. 5

2.1 Software Installation ...5

2.1.1 Windows 2000 / XP..5
2.1.2 Windows 7..6
2.1.3 Confirming Driver Installation...6

3 API DOCUMENTATION ... 7

3.1 General Functions...7

3.1.1 tpmc501Open...7
3.1.2 tpmc501Close ..9

3.2 Device Access Functions...11

3.2.1 tpmc501Read...11
3.2.2 tpmc501StartSequencer ..14
3.2.3 tpmc501GetDataBuffer ..17
3.2.4 tpmc501StopSequencer...20
3.2.5 tpmc501SetModelType ..22
3.2.6 tpmc501GetModuleInfo..24

4 DEVICE DRIVER PROGRAMMING ... 26

4.1 TPMC501 Files and I/O Functions ...26

4.1.1 Opening a TPMC501 Device ...26
4.1.2 Closing a TPMC501 Device...28
4.1.3 TPMC501 Device I/O Control Functions..29

4.1.3.1 IOCTL_TPMC501_READ...31
4.1.3.2 IOCTL_TPMC501_START_SEQ ...34
4.1.3.3 IOCTL_TPMC501_STOP_SEQ ...39
4.1.3.4 IOCTL_TPMC501_CONF_MOD_TYPE...40
4.1.3.5 IOCTL_TPMC501_MOD_INFO..42

TPMC501-SW-65 – Windows Device Driver Page 4 of 43

1 Introduction
The TPMC501-SW-65 Windows device driver is a kernel mode driver which allows the operation of the
supported hardware module on an Intel or Intel-compatible Windows operating system. Supported
Windows versions are:

 Windows 2000
 Windows XP
 Windows XP Embedded
 Windows 7 (32bit and 64bit)

The standard file and device (I/O) functions (CreateFile, CloseHandle, and DeviceIoControl) provide
the basic interface for opening and closing a resource handle and for performing device I/O control
operations.

The TPMC501-SW-65 device driver supports the following features:

 reading converted AD values from a specified channel
 configuring the sequencer for a free running measurement
 direct transfer of converted AD values to a dynamic ring buffer in the user space of the application

task (Direct I/O)
 AD data correction with factory calibration data stored in the onboard EEPROM

The TPMC501-SW-65 device driver supports the modules listed below:

TPMC501 Optically Isolated 32 Channel 16 Bit ADC (PMC)

To get more information about the features and use of TPMC501 devices it is recommended to read
the manuals listed below.

TPMC501 User manual

TPMC501 Engineering Manual

TPMC501-SW-65 – Windows Device Driver Page 5 of 43

2 Installation
Following files are located in directory TPMC501-SW-65 on the distribution media:

i386\ Directory containing driver files for 32bit Windows versions
amd64\ Directory containing driver files for 64bit Windows versions
installer_32bit.exe Installation tool for 32bit systems (Windows XP or later)
installer_64bit.exe Installation tool for 64bit systems (Windows XP or later)
tpmc501.inf Windows installation script
tpmc501.h Header file with IOCTL codes and structure definitions
example\tpmc501exa.c Example application
api\tpmc501api.c Application Programming Interface source
api\tpmc501api.h Application Programming Interface header
TPMC501-SW-65-2.0.0.pdf This document
Release.txt Information about the Device Driver Release
ChangeLog.txt Release history

2.1 Software Installation

2.1.1 Windows 2000 / XP

This section describes how to install the TPMC501 Device Driver on a Windows 2000 / XP operating
system.

After installing the TPMC501 card(s) and boot-up your system, Windows 2000 / XP setup will show a
"New hardware found" dialog box.

1. The "Upgrade Device Driver Wizard" dialog box will appear on your screen.
Click "Next" button to continue.

2. In the following dialog box, choose "Search for a suitable driver for my device".
Click "Next" button to continue.

3. In Drive A, insert the TPMC501 driver disk; select "Disk Drive" in the dialog box.
Click "Next" button to continue.

4. Now the driver wizard should find a suitable device driver on the diskette.
Click "Next" button to continue.

5. Complete the upgrade device driver and click "Finish" to take all the changes effect.

6. Now copy all needed files (tpmc501.h and API files) to the desired target directories.

After successful installation the TPMC501 device driver will start immediately and creates devices
(TPMC501_1, TPMC501_2 ...) for all recognized TPMC501 modules.

TPMC501-SW-65 – Windows Device Driver Page 6 of 43

2.1.2 Windows 7

This section describes how to install the TPMC501-SW-65 Device Driver on a Windows 7 (32bit or
64bit) operating system.

Depending on the operating system type, execute the installer binaries for either 32bit or 64bit
systems. This will install all required driver files using an installation wizard.

Copy needed files (tpm501.h and API files) to desired target directory.

After successful installation a device is created for each module found (TPMC501_1, TPMC501_2 ...).

2.1.3 Confirming Driver Installation

To confirm that the driver has been properly loaded, perform the following steps:

1. Open the Windows Device Manager:

a. For Windows 2000 / XP, open the "Control Panel" from "My Computer" and click the
"System" icon and choose the "Hardware" tab, and then click the "Device Manager"
button.

b. For Windows 7, open the "Control Panel" from "My Computer" and then click the
"Device Manager" entry.

2. Click the "+" in front of "Embedded I/O".
The driver "TEWS TECHNOLOGIES - TPMC501 32(16) Channel 16-Bit ADC (TPMC501)"
should appear for each installed device.

TPMC501-SW-65 – Windows Device Driver Page 7 of 43

3 API Documentation

3.1 General Functions

3.1.1 tpmc501Open

NAME

tpmc501Open – Opens a Device

SYNOPSIS

TPMC501_HANDLE tpmc501Open

(

char *DeviceName

);

DESCRIPTION

Before I/O can be performed to a device, a file descriptor must be opened by a call to this function.

PARAMETERS

DeviceName

This parameter points to a null-terminated string that specifies the name of the device.

EXAMPLE

#include “tpmc501api.h”

TPMC501_HANDLE hdl;

/*

** open file descriptor to device

*/

hdl = tpmc501Open(“\\\\.\\TPMC501_1”);

if (hdl == NULL)

{

/* handle open error */

}

TPMC501-SW-65 – Windows Device Driver Page 8 of 43

RETURNS

A device handle, or NULL if the function fails. To get extended error information, call GetLastError.

ERROR CODES

All error codes are standard error codes set by the I/O system.

TPMC501-SW-65 – Windows Device Driver Page 9 of 43

3.1.2 tpmc501Close

NAME

tpmc501Close – Closes a Device

SYNOPSIS

TPMC501_STATUS tpmc501Close

(

TPMC501_HANDLE hdl

);

DESCRIPTION

This function closes previously opened devices.

PARAMETERS

hdl

This value specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

EXAMPLE

#include “tpmc501api.h”

TPMC501_HANDLE hdl;

TPMC501_STATUS result;

/*

** close file descriptor to device

*/

result = tpmc501Close(hdl);

if (result != TPMC501_OK)

{

/* handle close error */

}

TPMC501-SW-65 – Windows Device Driver Page 10 of 43

RETURNS

On success TPMC501_OK, or an appropriate error code.

ERROR CODES

All error codes are standard error codes set by the I/O system.

TPMC501-SW-65 – Windows Device Driver Page 11 of 43

3.2 Device Access Functions

3.2.1 tpmc501Read

NAME

tpmc501Read – Read converted AD value

SYNOPSIS

TPMC501_STATUS tpmc501Read

(

TPMC501_HANDLE hdl,

int channel,

int gain,

int flags,

int *pAdcVal

);

DESCRIPTION

This function starts an AD conversion on the specified channel and returns the converted value.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

channel

This argument specifies the input channel number. Valid channels for single-ended mode are
1…32, for differential mode 1...16.

gain

This argument specifies the input gain that shall be used. Allowed values are 1, 2, 5, 10 or 1, 2,
4, 8 depending on the module type.

TPMC501-SW-65 – Windows Device Driver Page 12 of 43

flags

Set of bit flags that control the AD conversion. The following flags could be OR’ed:

Flag Meaning

TPMC501_DIFF If this flag is set the ADC input works in differential mode
otherwise in single-ended (default).

TPMC501_CORR Perform an offset and gain correction with factory
calibration data stored in the TPMC501 EEPROM.

TPMC501_FAST If this flag is set the fast (polled) mode will be used. The
driver will not use interrupts, instead it will wait in a busy
loop until the settling time (if necessary) and the
conversion is finished. Conversions using this mode will
be handled faster, but the processor executes a busy
loop and other tasks will not be handled during the loops.

pAdcVal

This argument points to an integer variable where the AD value will be returned.

EXAMPLE

#include “tpmc501api.h”

TPMC501_HANDLE hdl;

TPMC501_STATUS result;

int AdcData;

int channel, gain, flags;

channel = 32;

gain = 2;

flags = TPMC501_CORR | TPMC501_FAST;

result = tpmc501Read(hdl, channel, gain, flags, &AdcData);

if (result != TPMC501_OK)

{

/* handle error */

}

TPMC501-SW-65 – Windows Device Driver Page 13 of 43

RETURNS

On success, TPMC501_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

TPMC501_ERR_ACCESS The module type has not been configured.

TPMC501_ERR_INVALID_HANDLE The specified TPMC501_HANDLE is invalid.

TPMC501_ERR_INVAL At least one of the parameters is invalid.

TPMC501_ERR_TIMEOUT ADC conversion timed out.

TPMC501_ERR_RANGE Invalid channel number.

TPMC501_ERR_BUSY This error occurs if the sequencer is still running.
Please stop the sequencer before executing this
function.

TPMC501-SW-65 – Windows Device Driver Page 14 of 43

3.2.2 tpmc501StartSequencer

NAME

tpmc501StartSequencer – Start sequencer operation

SYNOPSIS

TPMC501_STATUS tpmc501StartSequencer

(

TPMC501_HANDLE hdl,

unsigned int CycleTime,

unsigned int NumOfBufferPages,

unsigned int NumOfChannels,

TPMC501_CHAN_CONF *ChanConf

);

DESCRIPTION

This function starts an AD conversion on the specified channel and returns the converted value.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

CycleTime

This argument specifies the repeat frequency of the sequencer in 100 μs steps. Each time the
sequencer timer reaches the programmed cycle time a new AD conversion of all active
channels is started. Valid values are in the range from 100 μs to 6.5535 seconds.

NumOfBufferPages

This argument specifies the number of sample blocks in the ring buffer. A sample block contains
the samples of all channels (NumOfChannels) per sequencer cycle.

NumOfChannels

This argument specifies the number of active channels for this job. The maximum number is 32.

ChanConf

This array of channel configuration structures specifies the configuration of the active channels.
The channel configuration defines the channel number, the gain and some flags. The ordering
of channels in a ring buffer page is the same as defined in this array.

TPMC501-SW-65 – Windows Device Driver Page 15 of 43

typedef struct

{

UINT32 ChanToUse;

UINT32 gain;

UINT32 flags;

} TPMC501_CHAN_CONF, *PTPMC501_CHAN_CONF;

ChanToUse

This parameter specifies the input channel number. Valid channels for single-ended
mode are 1…32, for differential mode 1...16.

gain

This Parameter specifies the gain for this channel. Valid gains are 1, 2, 5, 10 for
TPMC501-10/-12/-20/-22 and 1, 2, 4, 8 for TPMC501-11/-13/-21/-23.

flags

Set of bit flags that control the AD conversion. The following flags could be OR’ed:

Flag Meaning

TPMC501_DIFF If this flag is set the ADC input works in differential mode
otherwise in single-ended (default).

TPMC501_CORR Perform an offset and gain correction with factory
calibration data stored in the TPMC501 EEPROM.

EXAMPLE

#include “tpmc501api.h”

TPMC501_HANDLE hdl;

TPMC501_STATUS result;

unsigned int CycleTime;

unsigned int NumOfBufferPages;

unsigned int NumOfChannels;

TPMC501_CHAN_CONF ChanConf[TPMC501_MAX_CHAN];

CycleTime = 5000;

NumOfBufferPages = 100;

int NumOfChannels = 2;

ChanConf[0].ChanToUse = 1;

ChanConf[0].gain = 1;

ChanConf[0].flags = TPMC501_CORR;

ChanConf[1].ChanToUse = 20;

ChanConf[1].gain = 5;

ChanConf[1].flags = TPMC501_CORR;

…

TPMC501-SW-65 – Windows Device Driver Page 16 of 43

// start the sequencer

result = tpmc501StartSequencer(hdl, CycleTime, NumOfBufferPages,

NumOfChannels, ChanConf);

if (result != TPMC501_OK)

{

/* handle error */

}

RETURNS

On success, TPMC501_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

TPMC501_ERR_ACCESS The module type has not been configured.

TPMC501_ERR_INVALID_HANDLE The specified TPMC501_HANDLE is invalid.

TPMC501_ERR_INVAL At least one of the parameters is invalid.

TPMC501_ERR_RANGE Invalid channel number.

TPMC501_ERR_BUSY This error occurs if the sequencer is still running.
Please stop the sequencer before executing this
function.

TPMC501-SW-65 – Windows Device Driver Page 17 of 43

3.2.3 tpmc501GetDataBuffer

NAME

tpmc501GetDataBuffer – Get next data block of sequencer samples

SYNOPSIS

TPMC501_STATUS tpmc501GetDataBuffer

(

TPMC501_HANDLE hdl,

int **pData,

unsigned int *pStatus

);

DESCRIPTION

This function returns a pointer to the next available data block in the ring buffer. If no data block is
available the functions returns TPMC501_ERR_NODATA. In this case it must be called again until
new data are available.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

pData

This argument is a pointer to an array of integer items that contains the converted data of all
configured channels of a sequencer cycle. The number of channels and the channel
configuration was setup with the tpmc501StartSequencer function. The first array item [0]
belongs to the channel configured by ChanConfig[0], the second array item [1] belongs to the
channel configured by ChanConfig[1] and so forth. Please refer to the example application for
details.

TPMC501-SW-65 – Windows Device Driver Page 18 of 43

pStatus

This argument is a pointer to a variable which returns the actual sequencer error status. Keep in
mind to check this status before each reading. If status is 0 no error is pending. A set of bits
specifies the error condition.

Value Description

TPMC501_BUF_OVERRUN This bit indicates a ring buffer overrun. The error
occurred if there is no space in ring buffer to write the
new AD data. In this case the new AD values are
dismissed. The sequencer was not stopped.

TPMC501_DATA_OVERFLOW This indicates an overrun in the sequencer data RAM.
The error occurred if the driver is too slow to read the
data in time. The sequencer was stopped after this error
occurred.

TPMC501_TIMER_ERR Sequencer timer error (see also TPMC501 hardware
manual). The sequencer was stopped after this error
occurred.

TPMC501_INST_RAM_ERR Sequencer instruction RAM error (see also TPMC501
hardware manual). The sequencer was stopped after this
error occurred.

EXAMPLE

#include “tpmc501api.h”

TPMC501_HANDLE hdl;

TPMC501_STATUS result;

unsigned int seqStatus;

int *pData;

result = tpmc501GetDataBuffer(hdl, &pData, &seqStatus);

if (result != TPMC501_OK)

{

if (result == TPMC501_ERR_NODATA)

{

/* try again reading data */

}

else

{

/* handle error */

}

}

TPMC501-SW-65 – Windows Device Driver Page 19 of 43

RETURNS

On success, TPMC501_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

TPMC501_ERR_INVALID_HANDLE The specified TPMC501_HANDLE is invalid.

TPMC501_ERR_NODATA No new data available in the ring buffer

TPMC501_ERR_NOT_READY The sequencer is stopped.

TPMC501-SW-65 – Windows Device Driver Page 20 of 43

3.2.4 tpmc501StopSequencer

NAME

tpmc501StopSequencer – Stop the sequencer

SYNOPSIS

TPMC501_STATUS tpmc501StopSequencer

(

TPMC501_HANDLE hdl

);

DESCRIPTION

This function stops execution of the sequencer mode on the specified device.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

EXAMPLE

#include “tpmc501api.h”

TPMC501_HANDLE hdl;

TPMC501_STATUS result;

result = tpmc501StopSequencer(hdl);

if (result != TPMC501_OK)

{

/* handle error */

}

TPMC501-SW-65 – Windows Device Driver Page 21 of 43

RETURNS

On success, TPMC501_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

TPMC501_ERR_INVALID_HANDLE The specified TPMC501_HANDLE is invalid.

TPMC501-SW-65 – Windows Device Driver Page 22 of 43

3.2.5 tpmc501SetModelType

NAME

tpmc501SetModelType – Set the module type of the TPMC501

SYNOPSIS

TPMC501_STATUS tpmc501SetModelType

(

TPMC501_HANDLE hdl,

int ModuleType

);

DESCRIPTION

This TPMC501 function configures the model type of the TPMC501.

This function must be called before the first AD conversion can be started.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

ModuleType

This argument specifies the model type of the TPMC501. The following model types are
supported.

Value Description

TPMC501_TYPE_10 TPMC501-10 (Gain 1/2/5/10, +/-10V, Front I/O)

TPMC501_TYPE_11 TPMC501-11 (Gain 1/2/4/8, +/-10V, Front I/O)

TPMC501_TYPE_12 TPMC501-12 (Gain 1/2/5/10, 0-10V, Front I/O)

TPMC501_TYPE_13 TPMC501-13 (Gain 1/2/4/8, 0-10V, Front I/O)

TPMC501_TYPE_20 TPMC501-20 (Gain 1/2/5/10, +/-10V, Back I/O)

TPMC501_TYPE_21 TPMC501-21 (Gain 1/2/4/8, +/-10V, Back I/O)

TPMC501_TYPE_22 TPMC501-22 (Gain 1/2/5/10, 0-10V, Back I/O)

TPMC501_TYPE_23 TPMC501-23 (Gain 1/2/4/8, 0-10V, Back I/O)

TPMC501-SW-65 – Windows Device Driver Page 23 of 43

EXAMPLE

#include “tpmc501api.h”

TPMC501_HANDLE hdl;

TPMC501_STATUS result;

result = tpmc501SetModelType(hdl, TPMC501_TYPE_11);

if (result != TPMC501_OK)

{

/* handle error */

}

RETURNS

On success, TPMC501_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

TPMC501_ERR_INVALID_HANDLE The specified TPMC501_HANDLE is invalid.

TPMC501_ERR_RANGE Invalid channel number.

TPMC501-SW-65 – Windows Device Driver Page 24 of 43

3.2.6 tpmc501GetModuleInfo

NAME

tpmc501GetModuleInfo – Get module information data

SYNOPSIS

TPMC501_STATUS tpmc501GetModuleInfo

(

TPMC501_HANDLE hdl,

TPMC501_INFO_BUFFER *pModuleInfo

);

DESCRIPTION

This function reads module information data such as configured module type, location on the PCI bus
and factory programmed correction data.

PARAMETERS

hdl

This argument specifies the device handle to the hardware module retrieved by a call to the
corresponding open-function.

pModuleInfo

This argument specifies a pointer to the module information buffer.

typedef struct

{

UINT32 Variant;

UINT32 PciBusNo;

UINT32 PciDevNo;

UINT32 ADCOffsetCal[4];

UINT32 ADCGainCal[4];

} TPMC501_INFO_BUFFER, *PTPMC501_INFO_BUFFER;

Variant

This parameter returns the configured module variant (e.g. 10 for a TPMC501-10).

PciBusNo, PciDevNo

These parameters specifies the PCI location of this module

TPMC501-SW-65 – Windows Device Driver Page 25 of 43

ADCOffsetCal[4]

This array returns the factory programmed offset correction value for the different gains.
Array index 0 contains the value for gain 1, index 1 contains the value for gain 2 and so
forth.

ADCGainCal[4]

This array returns the factory programmed gain correction for the different gains. Array
index 0 contains the value for gain 1, index 1 contains the value for gain 2 and so forth.

EXAMPLE

#include “tpmc501api.h”

TPMC501_HANDLE hdl;

TPMC501_STATUS result;

TPMC501_INFO_BUFFER ModuleInfo

result = tpmc501GetModuleInfo(hdl, &ModuleInfo);

if (result != TPMC501_OK)

{

/* handle error */

}

RETURNS

On success, TPMC501_OK is returned. In the case of an error, the appropriate error code is returned
by the function.

ERROR CODES

TPMC501_ERR_INVALID_HANDLE The specified TPMC501_HANDLE is invalid.

TPMC501-SW-65 – Windows Device Driver Page 26 of 43

4 Device Driver Programming
The TPMC501-SW-65 Windows device driver is a kernel mode device driver.

The standard file and device (I/O) functions (CreateFile, CloseHandle, and DeviceIoControl) provide

the basic interface for opening and closing a resource handle and for performing device I/O control
operations.

All of these standard Win32 functions are described in detail in the Windows Platform SDK
Documentation (Windows base services / Hardware / Device Input and Output).

For details refer to the Win32 Programmers Reference of your used programming tools (C++, Visual
Basic etc.)

4.1 TPMC501 Files and I/O Functions

The following section does not contain a full description of the Win32 functions for interaction with the
TPMC501 device driver. Only the required parameters are described in detail.

4.1.1 Opening a TPMC501 Device

Before you can perform any I/O the TPMC501 device must be opened by invoking the CreateFile
function. CreateFile returns a handle that can be used to access the TPMC501 device.

HANDLE CreateFile(
LPCTSTR lpFileName,
DWORD dwDesiredAccess,
DWORD dwShareMode,
LPSECURITY_ATTRIBUTES lpSecurityAttributes,
DWORD dwCreationDistribution,
DWORD dwFlagsAndAttributes,
HANDLE hTemplateFile

);

Parameters

lpFileName

This parameter points to a null-terminated string, which specifies the name of the TPMC501 to
open. The lpFileName string should be of the form \\.\TPMC501_x to open the device x. The
ending x is a one-based number. The first device found by the driver is \\.\TPMC501_1, the
second \\.\TPMC501_2 and so on.

dwDesiredAccess

This parameter specifies the type of access to the TPMC501.
For the TPMC501 this parameter must be set to read-write access (GENERIC_READ |
GENERIC_WRITE)

dwShareMode

Set of bit flags that specify how the object can be shared. Set to 0.

TPMC501-SW-65 – Windows Device Driver Page 27 of 43

lpSecurityAttributes

This argument is a pointer to a security structure. Set to NULL for TPMC501 devices.

dwCreationDistribution

Specifies the action to take on existing files, and which action to take when files do not exist.
TPMC501 devices must be always opened OPEN_EXISTING.

dwFlagsAndAttributes

Specifies the file attributes and flags for the file. This value must be set to
FILE_FLAG_OVERLAPPED for TPMC501 devices (see also the device I/O function
IOCTL_TPMC501_START_SEQ).

hTemplateFile

This value must be NULL for TPMC501 devices.

Return Value

If the function succeeds, the return value is an open handle to the specified TPMC501 device. If the
function fails, the return value is INVALID_HANDLE_VALUE. To get extended error information, call
GetLastError.

Example

HANDLE hDevice;

hDevice = CreateFile(

“\\\\.\\TPMC501_1”,

GENERIC_READ | GENERIC_WRITE,

0,

NULL, // no security attrs

OPEN_EXISTING, // TPMC501 device always open existing

FILE_FLAG_OVERLAPPED, // overlapped I/O

NULL

);

if (hDevice == INVALID_HANDLE_VALUE) {

ErrorHandler("Could not open device"); // process error

}

See Also

CloseHandle(), Win32 documentation CreateFile()

TPMC501-SW-65 – Windows Device Driver Page 28 of 43

4.1.2 Closing a TPMC501 Device

The CloseHandle function closes an open TPMC501 handle.

BOOL CloseHandle(
HANDLE hDevice;

);

Parameters

hDevice

Identifies an open TPMC501 handle.

Return Value

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Example

HANDLE hDevice;

if(!CloseHandle(hDevice)) {

ErrorHandler("Could not close device"); // process error

}

See Also

CreateFile (), Win32 documentation CloseHandle ()

TPMC501-SW-65 – Windows Device Driver Page 29 of 43

4.1.3 TPMC501 Device I/O Control Functions

The DeviceIoControl function sends a control code directly to a specified device driver, causing the
corresponding device to perform the specified operation.

BOOL DeviceIoControl(
HANDLE hDevice,
DWORD dwIoControlCode,
LPVOID lpInBuffer,
DWORD nInBufferSize,
LPVOID lpOutBuffer,
DWORD nOutBufferSize,
LPDWORD lpBytesReturned,
LPOVERLAPPED lpOverlapped

);

Parameters

hDevice

Handle to the TPMC501 that is to perform the operation.

dwIoControlCode

Specifies the control code for the operation. This value identifies the specific operation to be
performed. The following values are defined in tpmc501.h :

Value Meaning

IOCTL_TPMC501_READ Read a converted AD value

IOCTL_TPMC501_START_SEQ Setup and start the sequencer

IOCTL_TPMC501_STOP_SEQ Stop the sequencer

IOCTL_TPMC501_CONF_MOD_TYPE Configure which model type is mounted

IOCTL_TPMC501_MOD_INFO Get module information

See below for more detailed information on each control code.

To use these TPMC501 specific control codes the header file tpmc501.h must be included in
the application

lpInBuffer

Pointer to a buffer that contains the data required to perform the operation.

nInBufferSize

Specifies the size of the buffer pointed to by lpInBuffer.

lpOutBuffer

Pointer to a buffer that receives the operation’s output data.

nOutBufferSize

Specifies the size of the buffer in bytes pointed to by lpOutBuffer.

TPMC501-SW-65 – Windows Device Driver Page 30 of 43

lpBytesReturned

Pointer to a variable that receives the size, in bytes, of the data stored into the buffer pointed to
by lpOutBuffer. A valid pointer is required.

lpOverlapped

Pointer to an Overlapped structure. This parameter is required because the TPMC501 device
driver uses overlapped I/O.

Return Value

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

See Also

Win32 documentation DeviceIoControl()

TPMC501-SW-65 – Windows Device Driver Page 31 of 43

4.1.3.1 IOCTL_TPMC501_READ

This TPMC501 control function starts an AD conversion on the specified channel and returns the
converted value (16 bit sign extended) in a long word buffer to the caller. The Parameter lpOutBuffer
passes a pointer to this buffer to the device driver.

The lpInBuffer parameter passes a pointer to a channel configuration structure
(TPMC501_CHAN_CONF) to the driver which contains parameter required to perform the operation.

typedef struct {

UINT32 ChanToUse;

UINT32 gain;

UINT32 flags;

} TPMC501_CHAN_CONF, *PTPMC501_CHAN_CONF;

ChanToUse

This parameter specifies the input channel number. Valid channels for single-ended mode are
1…32, for differential mode 1...16.

gain

Specifies the gain for this AD conversion. Valid gains are 1, 2, 5, 10 for TPMC501-10/-12/-20/-
22 and 1, 2, 4, 8 for TPMC501-11/-13/-21/-23.

flags

Set of bit flags that controls the AD conversion. The following flags could be OR’ed:

Flag Meaning

TPMC501_DIFF If this flag is set the ADC input works in differential mode
otherwise in single-ended (default).

TPMC501_CORR Perform an offset and gain correction with factory
calibration data stored in the TPMC501 EEPROM.

TPMC501_FAST If this flag is set the fast (polled) mode will be used. The
driver will not use interrupts, instead it will wait in a busy
loop until the settling time (if necessary) and the
conversion is finished. Conversions using this mode will
be handled faster, but the processor executes a busy
loop and other tasks will not be handled during the loops.

TPMC501-SW-65 – Windows Device Driver Page 32 of 43

Example

#include “tpmc501.h”

HANDLE hDevice;

BOOLEAN success;

ULONG NumWritten;

int ReadData;

TPMC501_CHAN_CONF ChanConf;

//

// Start conversion at channel 1, set gain to 1 and correct the

// reading with the factory calibration data

//

ChanConf.ChanToUse = 1;

ChanConf.gain = 1;

ChanConf.flags = TPMC501_CORR;

success = DeviceIoControl (

hDevice,

IOCTL_TPMC501_READ,

&ChanConf,

sizeof(ChanConf),

&ReadData,

sizeof(int),

&NumWritten,

NULL

);

if (!success)

{

ErrorHandler ("Device I/O control error”);

}

TPMC501-SW-65 – Windows Device Driver Page 33 of 43

Error Codes

ERROR_ACCESS_DENIED The module type has not been set.

ERROR_INVALID_PARAMETER This error will be returned if the size of the
read/write buffer is too small or at least one of the
parameters is invalid.

ERROR_IO_TIMEOUT ADC conversion timed out.

ERROR_MEMBER_NOT_IN_GROUP Invalid channel number.

ERROR_DEVICE_BUSY This error occurs if the sequencer is still running.
Please stop the sequencer before executing this
function.

All other returned error codes are system error conditions.

TPMC501-SW-65 – Windows Device Driver Page 34 of 43

4.1.3.2 IOCTL_TPMC501_START_SEQ

This overlapped TPMC501 control function starts the internal sequencer to perform a continuous AD
conversion of the specified channels. After each conversion cycle the device driver stores the AD
value directly into a user supplied ring buffer. A list of active channels, the sequencer cycle time and
other parameter which controls the conversion must be passed with the following job description
structure to the device driver.

typedef struct {

UINT32 CycleTime;

UINT32 NumOfBufferPages;

UINT32 NumOfChannels;

TPMC501_CHAN_CONF ChanConf[TPMC501_MAX_CHAN];

} TPMC501_JOB_DESC, *PTPMC501_JOB_DESC;

Members

CycleTime

Specifies the repeat frequency of the sequencer in 100 μs steps. Each time the sequencer timer
reaches the programmed cycle time a new AD conversion of all active channels is started. Valid
values are in the range from 100 μs to 6.5535 seconds.

NumOfBufferPages

Specifies the maximum number of “pages” in the ring buffer. A page contains the AD values of
all active channels from a sequencer cycle. The ring buffer looks like a two-dimensional array:
buffer[NumOfBufferPages][NumOfChannels]

NumOfChannels

Specifies the number of active channels for this job. The maximum number is 32.

ChanConf[TPMC501_MAX_CHAN]

This array of channel configuration structures specifies the configuration of the active channels.
The channel configuration defines the channel number, the gain and some flags. Please refer to
IOCTL_TPMC501_READ for detailed description of this structure. The ordering of channels in a
ring buffer page is the same as defined in this array.

Ring Buffer Layout

The user supplied ring buffer contains the converted AD values of each sequencer cycle. This buffer is
directly mapped into the system virtual space of the device driver (Direct I/O) and filled after each
sequencer interrupt with the new AD values. That is the reason why this function was performed as an
overlapped (asynchronous) operation (see also Win32 documentation). As long as the device I/O
control function is pending the device driver is able to lock the user buffer in memory and access these
pages from the interrupt service routine. To stop the sequencer and finish device I/O control function
execute the IOCTL_TPMC501_STOP_SEQ control function.

TPMC501-SW-65 – Windows Device Driver Page 35 of 43

typedef struct {

UINT32 status;

UINT32 PutIndex;

UINT32 GetIndex;

INT32 buffer[1];

} TPMC501_RING_BUFFER, *PTPMC501_RING_BUFFER;

Members

status

This field contains the actual sequencer error status. Keep in mind to check this status before
each reading. If status is 0 no error is pending. A set of bits specifies the error condition.

Value Description

TPMC501_BUF_OVERRUN This bit indicates a ring buffer overrun. The error
occurred if there is no space in ring buffer to write the
new AD data. In this case the new AD values are
dismissed. The sequencer was not stopped.

TPMC501_DATA_OVERFLOW This indicates an overrun in the sequencer data RAM.
The error occurred if the driver is too slow to read the
data in time. The sequencer was stopped after this error
occurred.

TPMC501_TIMER_ERR Sequencer timer error (see also TPMC501 hardware
manual). The sequencer was stopped after this error
occurred.

TPMC501_INST_RAM_ERR Sequencer instruction RAM error (see also TPMC501
hardware manual). The sequencer was stopped after this
error occurred.

PutIndex

Index of the next ring buffer page to write by the device driver. The index is incremented by 1
(device driver) after each write. At the ring buffer limit it is set to 0 again. The user application
only read this index.

GetIndex

Index of the next ring buffer page to read by the application task. The index is incremented by 1
(application) after each read. At the ring buffer limit it is set to 0 again. The ring buffer is empty if
PutIndex is equal to GetIndex.

buffer[1]

This is a dynamic expandable array which holds the converted AD values. The real dimension
of this buffer is given by NumOfBufferPages * NumOfChannles. Therefore don’t use this type
in a sizeof() function to determine the size of this array.
See also the code example to understand the structure of the ring buffer and the access
methods.

TPMC501-SW-65 – Windows Device Driver Page 36 of 43

Example

#include “tpmc501.h”

#define RING_BUFFER_SPACE 10000

HANDLE hDevice;

BOOLEAN success;

ULONG NumWritten;

OVERLAPPED SeqOverlapped;

TPMC501_CHAN_CONF ChanConf;

TPMC501_JOB_DESC job;

PTPMC501_RING_BUFFER pRing;

//

// Allocate enough memory for the ring buffer and initialze the

// buffer control header

//

pRing = (PTPMC501_RING_BUFFER)malloc(RING_BUFFER_SPACE);

pRing->status = 0;

pRing->PutIndex = 0;

pRing->GetIndex = 0;

SeqOverlapped.Offset = 0;

SeqOverlapped.hEvent = 0;

job.CycleTime = 1; // 0.0001 second

job.NumOfChannels = 3; // active channels

job.ChanConf[0].ChanToUse = 1;

job.ChanConf[0].gain = 1;

job.ChanConf[0].flags = TPMC501_CORR;

job.ChanConf[1].ChanToUse = 20;

job.ChanConf[1].gain = 5;

job.ChanConf[1].flags = TPMC501_CORR;

job.ChanConf[2].ChanToUse = 5;

job.ChanConf[2].gain = 2;

job.ChanConf[2].flags = TPMC501_CORR;

TPMC501-SW-65 – Windows Device Driver Page 37 of 43

//

// Calculate the maximum number of ring buffer pages to use

// A pages contains the ADC values from all desired channels

// (job.NumOfChannels) of a single sequencer cycle.

// The ring buffer looks like a two-dimensional array

//

// buffer[NumOfBufferPages][NumOfChannels]

//

// NOTE

// Not all of the space in the ring buffer is available for data.

// Subtract the offset of the buffer[] array

job.NumOfBufferPages = (RING_BUFFER_SPACE –

FIELD_OFFSET(TPMC501_RING_BUFFER, buffer)) /

(job.NumOfChannels * sizeof(pRing->buffer[0]));

success = DeviceIoControl (

hDevice,

IOCTL_TPMC501_START_SEQ,

&job,

sizeof(job),

pRing,

RING_BUFFER_SPACE,

&NumWritten,

&SeqOverlapped

);

if(success) {

printf("\nThis should never happen.\n");

}

else {

if(GetLastError() == ERROR_IO_PENDING) {

printf("\nSequencer successful started...\n");

}

else {

printf("\nStart sequencer failed --> Error = %d\n",

GetLastError());

PrintErrorMessage();

}

}

//

// Process converted AD values. See the example program for details....

//

TPMC501-SW-65 – Windows Device Driver Page 38 of 43

Error Codes

ERROR_ACCESS_DENIED The module type has not been configured.

ERROR_INVALID_PARAMETER This error will be returned if the size of the
read/write buffer is too small or at least one of the
parameters is invalid.

ERROR_MEMBER_NOT_IN_GROUP Invalid channel number.

ERROR_DEVICE_BUSY This error occurs if the sequencer is still running.
Please stop the sequencer before executing this
function.

All other returned error codes are system error conditions.

TPMC501-SW-65 – Windows Device Driver Page 39 of 43

4.1.3.3 IOCTL_TPMC501_STOP_SEQ

This TPMC501 control function stops the running sequencer and finishes the outstanding (overlapped)
IOCTL_TPMC501_START_SEQ device control function.

Example

#include “tpmc501.h”

HANDLE hDevice;

BOOLEAN success;

ULONG NumBytes;

//

// stop the running sequencer

//

success = DeviceIoControl (

hDevice,

IOCTL_TPMC501_STOP_SEQ,

NULL,

0,

NULL,

0,

&NumBytes,

NULL

);

if (!success)

{

// process error

ErrorHandler ("Device I/O control error”);

}

Error Codes

ERROR_ACCESS_DENIED The module type has not been configured.

All other returned error codes are system error conditions.

TPMC501-SW-65 – Windows Device Driver Page 40 of 43

4.1.3.4 IOCTL_TPMC501_CONF_MOD_TYPE

This TPMC501 control function specifies the modeltype of the TPMC501. The lpInBuffer parameter
passes a pointer to an unsigned long value to the driver which contains parameters required to
perform the operation. The IpOutBuffer parameter will not be used. This function can not be called if
the sequencer is started. The unsigned long value specifies the model type, the following values are
valid:

Value Description

TPMC501_TYPE_10 TPMC501-10 (Gain 1/2/5/10, +/-10V, Front I/O)

TPMC501_TYPE_11 TPMC501-11 (Gain 1/2/4/8, +/-10V, Front I/O)

TPMC501_TYPE_12 TPMC501-12 (Gain 1/2/5/10, 0-10V, Front I/O)

TPMC501_TYPE_13 TPMC501-13 (Gain 1/2/4/8, 0-10V, Front I/O)

TPMC501_TYPE_20 TPMC501-20 (Gain 1/2/5/10, +/-10V, Back I/O)

TPMC501_TYPE_21 TPMC501-21 (Gain 1/2/4/8, +/-10V, Back I/O)

TPMC501_TYPE_22 TPMC501-22 (Gain 1/2/5/10, 0-10V, Back I/O)

TPMC501_TYPE_23 TPMC501-23 (Gain 1/2/4/8, 0-10V, Back I/O)

This function must be called before the first AD conversion can be started.

Example

#include “tpm501.h”

HANDLE hDevice;

BOOLEAN success;

ULONG NumBytes;

ULONG modelType;

//

// Tell the driver we are using a TPMC501-10

//

modelType = TPMC501_TYPE_10;

success = DeviceIoControl (

hDevice,

IOCTL_TPMC501_CONF_MOD_TYPE,

&modelType,

sizeof(modelType),

NULL,

0,

&NumBytes,

NULL

);

…

TPMC501-SW-65 – Windows Device Driver Page 41 of 43

if (!success)

{

ErrorHandler ("Device I/O control error”);

}

Error Codes

ERROR_INVALID_PARAMETER This error will be returned if the size of the
read/write buffer is too small or at least one of the
parameters is invalid.

All other returned error codes are system error conditions.

TPMC501-SW-65 – Windows Device Driver Page 42 of 43

4.1.3.5 IOCTL_TPMC501_MOD_INFO

This control function returns module information data such as configured module type, location on the
PCI bus and factory programmed correction data.

The information data is returned in the data structure TPMC501_INFO_BUFFER pointed by
lpOutBuffer. The argument nOutBufferSize specifies the size of the buffer.

typedef struct

{

UINT32 Variant;

UINT32 PciBusNo;

UINT32 PciDevNo;

UINT32 ADCOffsetCal[4];

UINT32 ADCGainCal[4];

} TPMC501_INFO_BUFFER, *PTPMC501_INFO_BUFFER;

Variant

This parameter returns the configured module variant (e.g. 10 for a TPMC501-10).

PciBusNo, PciDevNo

These parameters specifies the PCI location of this module

ADCOffsetCal[4]

This array returns the factory programmed offset correction value for the different gains. Array
index 0 contains the value for gain 1, index 1 contains the value for gain 2 and so forth.

ADCGainCal[4]

This array returns the factory programmed gain correction for the different gains. Array index 0
contains the value for gain 1, index 1 contains the value for gain 2 and so forth.

TPMC501-SW-65 – Windows Device Driver Page 43 of 43

Example

#include “tpmc501.h”

HANDLE hDevice;

BOOLEAN success;

ULONG NumBytes;

TPMC501_INFO_BUFFER ModuleInfo

success = DeviceIoControl (

hDevice,

IOCTL_TPMC501_MOD_INFO,

NULL,

0,

&ModuleInfo,

sizeof(TPMC501_INFO_BUFFER),

&NumBytes,

NULL

);

if (!success)

{

ErrorHandler ("Device I/O control error”);

}

Error Codes

ERROR_INVALID_PARAMETER This error will be returned if the size of the
read/write buffer is too small or at least one of the
parameters is invalid.

All other returned error codes are system error conditions.

	1	Introduction
	2	Installation
	2.1	Software Installation
	2.1.1	Windows 2000 / XP
	2.1.2	Windows 7
	2.1.3	Confirming Driver Installation

	3	API Documentation
	3.1	General Functions
	3.1.1	tpmc501Open
	3.1.2	tpmc501Close

	3.2	Device Access Functions
	3.2.1	tpmc501Read
	3.2.2	tpmc501StartSequencer
	3.2.3	tpmc501GetDataBuffer
	3.2.4	tpmc501StopSequencer
	3.2.5	tpmc501SetModelType
	3.2.6	tpmc501GetModuleInfo

	4	Device Driver Programming
	4.1	TPMC501 Files and I/O Functions
	4.1.1	Opening a TPMC501 Device
	4.1.2	Closing a TPMC501 Device
	4.1.3	TPMC501 Device I/O Control Functions
	4.1.3.1	IOCTL_TPMC501_READ
	4.1.3.2	IOCTL_TPMC501_START_SEQ
	4.1.3.3	IOCTL_TPMC501_STOP_SEQ
	4.1.3.4	IOCTL_TPMC501_CONF_MOD_TYPE
	4.1.3.5	IOCTL_TPMC501_MOD_INFO

