CT
Spstems

COi Syawna Py Lo Fepamor i, | DRSO
Co mmuric aHon s
Computer Intellige nce
Integratrion

User Manual
for the
C?%> Systems’
PMC High Speed Serial VxWorks Driver

CCIll Document No.

CCII/HSS/6-MAN/002

Document Issue 3.5
Issue Date 2002-04-11
Print Date 2002-04-11
File Name

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd

© C2|2 Systems. The copyright of this document is the property of C22 Systems. The document is issued for the sole
purpose for which it is supplied, on the express terms that it may not be copied in whole or part, used by or disclosed to

others except as authorised in writing by C2P Systems.

Document prepared for C242 Systems (Pty) Ltd



Copyright © C?I2 Systems (Pty) Ltd, All rights reserved, 2002

Signature Sheet

Signature

Date

Completed by

A . Heﬂna[,\gﬂ-.\

JL. ~_

Software Engineer
HSS
C?I? Systems (Pty) Ltd

2003 ~ 0y~ |

Accepted by

o . ne e

C_ AL C.w{

Project Manager
HSS
C?* Systems (Pty) Ltd

Lol oLt

Accepted by

% Keuges

AC

Quglity Assurance Répresentative
Cil? Systems (Pty) Ltd

3 oCo-O5 e

CCIl/HSS/6-MAN/002

2002-04-11

Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd

Page ii of vi




Amendment History

Issue Description Date ECP No
1.0 Initial version created by splitting cManSioD rv.wpd, Issue 1.1 into 2000-03-16 -
separate SIO and HSS user manuals.
1.1 Updated Application Program Interface (API) to correspond with 2000-05-23 -
version 1 release 0 of the host driver.
2.0 Updated for HSS version 2.0. 2000-06-06 -
2.1 Updated paragraph 4.2, detailing protocol structures and setup 2000-10-31 -
options.
2.3 Updated driver data structures to include DPLL and various 2001-01-19 -
encoding methods.
2.4 Added version display function for driver and firmware software. 2001-03-19 -
Updated UART and HDLC descriptions. Added clock detection
function.
2.5 Added functionality to attach external clocks. Added SMC ports. 2001-04-23 -
2.6 Implemented the BISYNC protocol. Included the BIT functions 2001-05-21 -
descriptions. Added configuration specifics for the X86.
2.6.1 Added HS S Front Panel functionality. 2001-06-15 -
2.6.2 Changed flash programming. 2001-07-05 -
3.0 General update of driver. 2001-09-13 -
3.1 Updated description of include-files. 2001-09-25 -
3.2 HSS Serial 1/O back & front panel boards share the same protocol 2001-10-01 -
information structure now. Updated description of protocal
information structure.
3.3 Added new hssOpen_port_fp() function, which allows for floating 2001-10-12 -
point initialisation of send, receive and clock tasks.
3.4 Added new hssCreate_device_ex() function, which allows the user 2002-01-17 -
to specify the Rx & Tx buffer size for each port.
3.5 Updated callback function description: added CRC error and Tx 2002-04-11 -
done error reporting.
Updated BIT structure: added oscillator frequency variable.
CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd

Page iii of vi

Copyright © C42 Systems (Pty) Ltd, All rights reserved, 2002




Contents

1 SO P o it 1
1.1 ldentification . ... ... 1

1.2 IO dUCE I ON . 1

2 Applicable DOCUMENTS . . ... 2
2.1 SpeCifiCatioNS . . . 2

2.2 StaNdaArdS . .o 2

2.3 Other DOCUM BNES . . . o e e e e e e e e 2

3 Installation Procedure .. ....... . e 3
3.1 To Build the HSS Driver into the VxWorks Kernel ... ... . . . . . . . . . 3

3.1.1 Tornado 1.0.1 ENVIrONMENt . . . . .. 3

3.1.2 Tornado 2.0 EnVironment . .. ... . 3

3.2 To Load the Driver Software Separately .. ... ... .. 3

3.3 USiNg the HSS Driver . . .o e e e e e e e 4

3.3.1 Creating the Device .. ... e e 4

3.3.2  Configuring the POrts . ... e 4

3.3.3  Adding Receive Buffers . ... .. . e 4

3.3.4 Adding Call-back FUNCHIONS . . .. ... e 5

3.3.5 Sending and Receiving Data . .. .. ... ... 6

3.3.6  Destroying the DeviCe . . .. .. 6

3.3.7 Detecting an active clock signal on ports .. ... ... 6

3.3.8 Obtaining the current host and firmware version number ............ ... ... .. ....... 7

3.3.9  HSS BUIlt-IN-TeStS . .. o 7

4 Application Program Interface (API) ... ... ... ... . . 8
4.1 High Speed Serial Driver Interface . .. ... .. . 8

4.1.1  Create DeviCe . . .. 9

4.1.2 Destroy DeVvViCe . ... 10

4.1.3 POt EXIStS 2 o 11

4.1.4 Set Port Configuration ... ... ... e 12

4.1.5 Get Port Configuration . . ... ... e 13

4.1.6  OPEN POTt .o 14

4.1.7  CloSe POt . 16

4.1.8  Send Data .. .. ... 17

4.1.9 Add Receive BUffer ... ... 18

4.1.10 Remove Receive Buffer ... ... . 19

4.1.11 Add Call-back ... ... 20

4.1.12 Remove Call-back . .. ... 21

4.1.13 Detecting an active clock signal on ports . ... . e 22

4.1.14 Printout current version NnUMbBeEr . ... ... 23

4.1.15 HSS BUilt-In-Test . . .ot 24

4.2 Driver Data StrUCIUIES . . . oo it e e e e e e e e e 26

4.2.1  UART MO e oo e 27

4.2.1.1 UART Protocol Information Structure .......... ... . . . . .. ... 27

4.2.1.2 UART Protocol Information Structure Members .......... ... .. .. .. .. ....... 28

4.2.2 HDLC MOAE ..t e e 31

4.2.2.1 HDLC Protocol Information Structure .......... ... .. . . . i 31

4.2.2.2 HDLC Protocol Information Structure Members ......... ... .. .. .. .. .. ..... 32

4.2.2.3 Preamble Requirements . . ... ... ... 34

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page iv of vi

Copyright © C42 Systems (Pty) Ltd, All rights reserved, 2002




4.2.3 BISYNC MOUE ..ot e e e e 35

4.2.3.1 BISYNC Protocol Information Structure . .......... . .. . . ... 35

4.2.3.2 BISYNC Protocol Information Structure Members ............ ... .. .c........ 36

424 SMC UART MOAE ..ot e e e e e e e e 40

4.2.4.1 SMC UART Protocol Information Structure .............. . . . . . ... . 40

4.2.4.2 SMC UART Protocol Information Structure Members . ...................... 41

5 Getting Started . .. ... .. 43
6 Contact Details . .. ..o 44
6.1 ConNtaCt PersOn ... e e 44

6.2 Physical AdAress . ... . 44

6.3 Postal AdAres S . ... e 44

6.4 Voice and Electronic Contacts .. ... it e 44

6.5 ProdUCE SUP PO . o 44
CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd

Page v of vi

Copyright © C42 Systems (Pty) Ltd, All rights reserved, 2002




Abbreviations and Acronyms

API Application Program Interface

BIT Built-In-Test

BRG Baudrate Generator

BSD Berkeley Socket Devices

BSP Board Support Package

CCll Communications, Computer Intelligence, Integration

c?? C212 Systems (Pty) Ltd

DPLL Digital Phase-Locked Loop

FTP File Transfer Protocol

HCC Host Carrier Card

HSS High Spe ed Serial (Acronym for the C212 PM C Serial I/O card project)
1/10 Input/Output

PC Personal Computer

PCI Peripheral Component Interconnect

PMC PCI Mezzanine Card

SBC Single Board Computer

SCC Serial Communications Controller

SIO Serial Input/Output

SMC Serial Management Controller

TBD To Be Determined

VME Versa Module Eurocard
CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page vi of vi

Copyright © C42 Systems (Pty) Ltd, All rights reserved, 2002



1 Scope

This document is the User's Manual for the C22 Systems' Peripheral Component Interconnect (PCIl) Mezzanine
Card (PMC) High Speed Serial VxXWorks Driver. This document refers to the High Speed Serial VxWorks driver

1.1 Identification
version 3.5 or later.
1.2 Introduction

The PMC High Speed Serial (HSS) driver is alow level, device-de pendant, interface for transferring data over a
C212 Systems' HSS PCI| Mezzanine Card (PMC). The driver binaries are provided with explicit installation

instructions.

The driver software distribution consists of (atleast) the following files:

ccHssLib[4|8]vx.y.z.<host>

ccHss4vx.y.z firmware.zip containing:
ccHss4vx.y.z -<freg>.hex

ccHssFlashvx.y.z.<host>
hssReadme.txt

hssRelease_emb.txt, hssRelease_ host.txt

Host-architecture specific, driver objectfile:
cc - CCIl Systems (Pty) Ltd

HssLib - High Speed Serial driver

[4]8] - 4 portor 8 port HSSPMC

X - Version num ber

y - Revision number

z - Beta number

<host> - Host for which the binary is built

e.g.“ccHss4v2.4.dmv179" forversion 2.4 of the HSS
software, built for a DY4 DMV179 PowerPC host for a 4
portHSS PMC.

HSS firmware.
<freq> - corresponding oscillator frequency

Flash update driver.
General information and installation notes.

Release notes and revision history: Please check this file

for information on the latest updates.

ccHss4vx.y.z.h_files.zip Zip file which contains all headerfiles that define the

application program interface (API) to the driver.
ccHssTest.c, ccHssTest.<host> Sample C code for accessing the HSS driver.
hssChanges.txt Changes to be made to VxWorks and BSP files.
hssFlash.txt Procedure forupdating the firmware if required.

hssTest.txt Test procedure for verifying hostdriver and firmware.

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 1 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002



2 Applicable Documents

2.1 Specifications
Not applicable.

2.2 Standards
1 DI-IPSC-81443: Data Iltem Description for a Software User Manual.

2.3 Other Documents

1 vxWorks 5.3.1, Programmers Guide, Edition 1.

I MPC860 PowerQUICC™ User’'s Manual Rev. 1.

CCII/HSS/6-MAN/002 2002-04-11

Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd

Page 2 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002




3 Installation Procedure

This paragraph describes the installation procedure for the HSS hostdriver. (The examples given areforaDY4
DMV 179 PowerPC host.)

3.1 To Build the HSS Driver into the VxWorks Kernel
Assume the BSP directory is given as: BSP_DIR = /tornado/target/config/dmv179

3.1.1 Tornado 1.0.1 Environment
1 Copy ccHss4vx.y.z.dmv179 to your $(BSP_DIR)/lib directory as ccHss4.a.

Edit the Makefile in the BSP directory

(Use hssChanges.txt to copy and paste the relevant information.)
Add the following macro (or edit the existing one):
EXTRA_MODULES = $(BSP_DIR)/lib/ccHss4 .a

1 Rebuild all VxWorks images.

3.1.2 Tornado 2.0 Environment
1 Copy ccHss4vx.y.z.dmv179 to your $(BSP_DIR)/lib directory as ccHss4.a.

¥ Inthe Builds section of the Project Workspace, change the Kernel properties to include the ccHss4.a
library file in the Macros LIBs option.

1 Rebuild all VxWorks images.

3.2 To Load the Driver Software Separately
Note this step is not required if the driver was built into the BSP.
If the driver is not builtinto the BSP, a user can load it separately:

1 Copy ccHss4vx.y.z.dmv179 to your present working directory as ccHss4.a.

! From the VxWorks shell type:

Id < ccHss4.a

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 3 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002



3.3 Using the HSS Driver
3.3.1 Creating the Device

The HSS driver supports multiple HSS PMC on a single host. To establish a connection and construct all the
device specific structures, a user must create each of the devices separately, using the device ID to identify it.

The device ID startsat 0 and increments by 1 for each of the devices. Device O refers to the device in the lowest
PMC slot. The HSS driver can not be used until the user has created the device.

Example: For device O:

I* Create all HSS devices */
hssCreate _device(0);

The device ID is used in all calls to the HSS driver to identify the correct device.

3.3.2 Configuring the Ports

The HSS PMC has four serial communications controllers (SCC’s) [Ports A-D] that support UART and
HDLC/SDLC protocols, and two serial management controllers (SMC’s) [Ports 1&J] that support only
asynchronous UART.

Afterthe HSS device has been created, the user must first setthe default configuration for each ofthe ports. To
setthe configuration of a port,a protocol-specific information structure is used. Examples of the required structure
is given in ccHssTest.c (for the UART protocol) and can be used as a starting point.

The structures allow the user to set all the protocol-specific options available on the HSS PMC comm unication
controller chip (the MPC860 PowerQUICC™). For available options for each of the structure fields, see [2.3.3].

Example: Set two SCC portsto UART mode and two to HDLC mode:

/* Set initial SCC port configuration */

hssSet_port_config(0, HSS_PORT_A, &uart_info);
hssSet_port_config(0, HSS_PORT_B, &uart_info);
hssSet_port_config(0, HSS_PORT_C, &hdlc_info);
hssSet_port_config(0, HSS_PORT_D, &hdlc_info);

/* Set initial SMC port configuration */
hssSet_port_config(0, HSS_PORT_I, &mc_uart_info);
hssSet_port_config(0, HSS_PORT_J, &smc_uart_info);

3.3.3 Adding Receive Buffers

Note: this step is not necessary anymore. Receive buffers are added automatically by the driver in the
hssOpen_port() function. It is still possible to call hssAdd_receive_buffer(), but this function will notdo anything.

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 4 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002



3.34 Adding Call-back Functions

The HSS driver notifies the user of different events by calling a user defined Callback function. The events for
which the user may specify one or more Call-back functions are:

Send Begin - The driver has accepted the data for sending.

Send Done - The driver has finished sending the data.

Receive Done - Data has been received and written into the user’s buffer.
Clock D etect - A clock signal has been detected on that specific port.

Only one Call-back function for each event is recommended. For the user to receive data, at least the Receive
Done Call-back must be installed. While the Re ceive Done Call-back is executed, the corresponding buffer will
not be accessed by the HS S driver. The user can process the data in the Call-back function or copy the data
somewhere else for processing atthe user’s leisure.

Receive function prototype:
void Process_rx_data(int devid, int portid, int crc_error, int userid, int length, void *pdata);

Transmit Begin prototype:
void Process_tx_data(int devid, int portid, int dummy, int userid, int length, void *pdata);

Transmit Done prototype:
void Process_tx_data(int devid, int portid, int error, int userid, int length, void *pdata);

Clock Detection prototype:
void Process_clk_detect(int devid, int portid, int dummy1, int userid, int dummy2, void *dum my3);

devid = device ID.
portid = port ID.
crc_error = HSS_OK (no CRC error).

= HSS_ERROR (CRC error).
error = HSS_OK (send done OK).

= HSS_ERROR (buffer underrun or CTS lost: send not complete).
userid = userdefined ID.
length = length of received data.
pdata = buffer with received data.
dummy/1/2 = variables not used (always 0).
dummy3 = variable not used (always NULL).

Example: Add a Call-back function for handling receives:

/* Receive function prototype - this function is implemented by the user */
void Process_rx_data(int devid, int portid, int crc_error, int userid, int length, void *pdata);

/* Add receive Call-back */
hssAdd_callback(0, HSS_CB_ON_RECEIVE_DONE, Process_rx_data, 0);

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 5 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002



3.3.5

3.3.6

3.3.7

Sending and Receiving Data

To send and receive data on a specified port, the user must first open the port. To stop sending or receiving data
from a port, the user must close the port.

Example: Send some data on device 0, port B:

/* Open port for sending data */
hssOpen_port(0, HSS_PORT_B, 50);

/* Send some data */
hssSend_data(0, HSS_PORT_B, 0, 256, pbuffer256, NO_W AIT);

/* Do other stuff */
I* */

/* Close port after final usage */
hssClose _port(0, HSS_PORT_B);
Destroying the Device

When the device is no longer required it should be destroyed to free system resources.
Example: Device 0 is no longer required:

/* Close ports after final usage */

hssClose_port(0, HSS_PORT_A);
hssClose_port(0, HSS_PORT_B);
hssClose_port(0, HSS_PORT_C);
hssClose_port(0, HSS_PORT_D);
hssClose_port(0, HSS_PORT_);

hssClose_port(0, HSS_PORT_J);

/* Destroy device to free resources */
hssDestroy_device(0);

Detecting an active clock signal on ports

To detect when a port’s clock signal becomes active, use the following function.
Example: Detecting a clock signalon device 0 and Port A:

/* Enable port to detect clock */
hssClock_detect(0, HSS_PORT_A);

A Call-back function gets called once a clock has been detected. After this Call-back function has been serviced,
the user can re-initialise the clock detection routine as shown above.

/* Clock detection prototype - this function is implemented by the user */
void Process_clk_event(int devid, int portid, int dummy1, int userid, int dummy2, void *dum my3);

/* adding clock_detect callback */
hssAdd_callback (0,LHSS_CB_ON_CLOCK_DETECT,Process_clk_detect,0);

Note: The last 2 variables of the clock detection prototype function are dummy variables and are not initialised.

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 6 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002



3.3.8 Obtaining the current host and firmware version number

The following function prints out the current version number of the driver and firmware software:

/* Print current version number */
hssVersion_print(0);

Note: Run hssCreate_device(0) first.

3.3.9 HSS Built-In-Tests

The following function displayseach port’s statistics: e.g. how many bytes/ packetshave been accepted /rejected
/ sent /received and how many errors were reported.

Example: Displaying each port's statistics for device 0:
hssBit_report(0);

To clear the counters of the hssBit_report(0) function, use the function hssBit_clear(0).

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 7 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002



4 Application Program Interface (API)
4.1 High Speed Serial Driver Interface

The zip file ccHss4vx.y.z.h_files.zip contains the following header files:

crc.h - used for crc algorithm
hssDefs.h

hssHo stDriver.h
hssControllfc.h

The following files should always be included:
hssDefs.h

hssHo stDriver.h
hssControllfc.h

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd

Page 8 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002



411 Create Device

Function: hssCreate_device

Purpose: Create and initialize the HSS device specific structures.

Arguments:

<dev_id> -

Returns:

HSS_OK -
HSS_INVALID _PARAM -
HSS_PCI_INIT_FAIL -
HSS_MEM_ALLOC_FAILED -
HSS_DEVICE_NOT_FOUND -
HSS_MEM_INVALID_ADDRESS -

Device ID onthe PCIl bus. The HSS device inthe lowest PCI
slot:<dev_id> = 0, next HSS device: <dev_id> = 1, etc.

On success.

Invalid dev_id supplied.

PCl initialisation failed.

If HSS device structure could not be created in memory.
If HSS device <dev_id> was not found on the PCI bus.
If the HSS device PCI address was not valid.

hssStatus hssCreate_device(hssD eviceld dev_id);

Function: hssCreate_device_ex

Purpose: Create and initialize the HSS device specific structures. This extended version allows the user to
specify the maximum Rx & Tx buffer size for each port.

Arguments:
<dev_id> -

<scc_#_size> -
<smc_#_size> -

<reservedl1&2> -
Returns:

HSS_OK -
HSS_INVALID_PARAM -
HSS_PCI_INIT_FAIL -
HSS_MEM_ALLOC_FAILED -
HSS_DEVICE_NOT_FOUND -
HSS_MEM_INVALID_ADDRESS -

Device ID onthe PCIl bus. The HSS device inthe lowest PCI
slot:<dev_id> = 0, next HSS device: <dev_id> = 1, etc.
maximum Rx&Tx buffer size for specific scc port.

maximum Rx&Tx buffer size for spe cific smc port. (valid
arguments: HSS_2K,HSS_4K, HSS_8K,HSS_16K,
HSS_32K)

2 reserved variables for future use.

On success.

Invalid parameters supplied.

PCl initialisation failed.

If HSS device structure could not be created in memory.
If HSS device <dev_id> was not found on the PCI bus.
If the HSS device PCI address was not valid.

hssStatus hssCreate_device_ex(hssDeviceld dev_id, unsigned int scc_0_size, unsigned int scc_1_size,
unsigned int scc_2 _size, unsigned int scc_3_size,
unsigned intsmc_0_size, unsigned int smc_1_size,
unsigned int reservedl, unsigned int reserved?2);

Notes: One of these two functions has to be called (once per device) before any other function call to the
specified device will be valid. The function hssCreate_device() sets up the Rx & Tx buffer size for all

ports to the default value of 2Kbytes.

CCII/HSS/6-MAN/002

2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd

Page 9 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002



4.1.2 Destroy Device

Function: hssDestroy_device

Purpose: Destroy the HSS device specific structures.

Arguments:

<dev_id> -

Returns:

HSS_OK -
HSS_INVALID_PARAM -
HSS_PCI_INIT_FAIL -
HSS_ERROR -

Device ID onthe PCIl bus. The HSS device inthe lowest PCI
slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc.

On success.
Invalid dev_id supplied.
PCl initialisation failed

If the interrupt tasks have notbeen destroyed.

hssStatus hssDestroy_device(hssD eviceld dev_id);

Notes: After this function is called, no other function call to the specified device will be valid, except for

hssCreate _device(..).

CCII/HSS/6-MAN/002

2002-04-11

Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd

Page 10 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002




4.1.3 Port Exists?

Function: hssPort_exists

Purpose: Determine whether a port exists on the specified device.

Arguments:
<dev_id> - Device ID onthe PCI bus. The HSS device inthe lowest PCI
slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc.
<port_id> - Port to query.
Returns:
TRUE - If the port exists in hardware.
FALSE - If the port does not exist in hardware.

hssBool hssPort_exists(hssDeviceld dev_id, hssPortld port_id);

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 11 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002



4.1.4 Set Port Configuration

Function: hssSet_port_config

Purpose: Set port protocol and protocol configuration.

Arguments:
<dev_id> - Device ID onthe PCI bus. The HSS device inthe lowest PCI
slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc.
<port_id> - Port to configure.
<p_info> - Pointer to information struct used for configuration.
Returns:
HSS_OK - On success.
HSS PCI_INIT_FAIL - PCl initialisation failed.
HSS_ERROR - If the TXRx tasks have notbeen destroyed.
HSS_INVALID_PARAM - Invalid dev_id or port_id supplied.
HSS_PORT_NOT_INSTALLED - If the portdoes nor exists.
HSS_DEVICE_BUSY - If no PCI buffer is available.
HSS_DEVICE_NOT_RESPONDING - If the HSS control block could not be accessed
within a certain time.
HSS_INCORRECT_PARAM_COMBINATION - If an incorrect parameter combination was selected

in the protocol structure.
hssStatus hssSet_port_config(hssDeviceld dev_id, hssPortld port_id, hssProtocolinfo* p_info);
Notes: The <p_info> pointer must point to a valid hssP rotocolinfo structure with all protocol information set
as required. If only a few items need to change, the hssGet_port_config(..) function should be used

to fill in the rest of the structure.

Warning: Do not call this function while sending or receiving data as this may result in data loss.

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 12 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002



4.1.5 Get Port Configuration

Function: hssGet_port_config

Purpose: Get port protocol and protocol configuration.

Arguments:
<dev_id> - Device ID onthe PCI bus. The HSS device inthe lowest PCI
slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc.
<port_id> - Port to get configuration info from.
<p_info> - Pointer to information struct used for configuration.
Returns:
HSS_OK - On success.
HSS_ERROR - If the TX/Rx tasks have notbeen destroyed.
HSS_INVALID_PARAM - Invalid dev_id or port_id supplied.
HSS_DEVICE_BUSY - If no PCI buffer is available.
HSS_DEVICE_NOT_RESPONDING - If the HSS control block could not be accessed within a

certaintime.

hssStatus hssGet_port_config(hssDeviceld dev_id, hssPortld port_id, hssProtocolinfo* p_info);

Notes: The <p_info> pointer must point to an existing hssProtocolinfo structure.
CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 13 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002



4.1.6 Open Port

Function: hssOpen_port

Purpose: Open specified port for send and receive.

Arguments:
<dev_id> - Device ID onthe PCI bus. The HSS device inthe lowest PCI
slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc.
<port_id> - Port to open for send and receive.
<priority> - Priority of the send, receive and clock detection task
servicing this port.
Returns:
HSS_OK - On success.
HSS_ERROR - If opening of port failed.
HSS_INVALID_PARAM - Invalid dev_id or port_id supplied
HSS_PORT_NOT_INSTALLED - If the portdoes nor exists.
HSS_PORT_NOT_CONFIGURED - If an ‘Open’ is attempted on a port before configuring the
port.
HSS DEVICE_BUSY - If no PCI buffer is available.
HSS_DEVICE_NOT_RESPONDING - If the HSS control block could not be accessed within a
certain time.
HSS MEM_ALLOC_FAILED - If failed to create semaphore or spawn receive task.

hssStatus hssOpen_port(hssDeviceld dev_id, hssPortld port_id, hssINT32 priority);

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 14 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002



Function: hssOpen_port_fp

Purpose: Open specified port for send and receive with floating point functionality.

Arguments:

<dev_id> - Device ID onthe PCI bus. The HSS device inthe lowest PCI
slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc.

<port_id> - Port to open for send and receive.

<priority> - Priority of the send, receive and clock detection task
servicing this port.

<fp_options> - Floating point enable for send, receive and clock detect task:
HSS_TX_TASK_FP_ENABLE,
HSS_RX_TASK_FP_ENABLE,
HSS_CLK_TASK_FP_ENABLE

Returns:

HSS_OK - On success.

HSS_ERROR - If opening of port failed.

HSS_INVALID_PARAM - Invalid dev_id or port_id supplied.

HSS_PORT_NOT_INSTALLED - If the portdoes nor exists.

HSS_PORT_NOT_CONFIGURED - If an ‘Open’ is attempted on a port before configuring the
port.

HSS_DEVICE_BUSY - If no PCI buffer is available.

HSS _DEVICE_NOT_RESPONDING - If the HSS control block could not be accessed within a
certain time.

HSS_MEM_ALLOC_FAILED - If failed to create semaphore or spawn receive task.

hssStatus hssOpen_port_fp(hssDeviceld dev_id, hssPortld port_id, hssINT32 priority, char fp_options);

Notes: These functions must be called prior to attempting to send or receive on any channel ofthe specified
port.

Opening a port spawns a receive, send and clock detect task for that specific port. The priority of these tasks is
specified by <priority>.

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 15 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002



4.1.7 Close Port

Function: hssClose_port

Purpose:

Arguments:
<dev_id> -
<port_id> -

Returns:

HSS_OK -
HSS_ERROR -

HSS_INVALID_PARAM -
HSS_PORT_NOT_INSTALLED -
HSS_PORT_NOT_CONFIGURED -

HSS_DEVICE_BUSY -
HSS_DEVICE_NOT_RESPONDING -

Close specified portfor send and receive.

Device ID onthe PCIl bus. The HSS device inthe lowest PCI
slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc.
Port to close for send and receive.

On success.

If opening of portfailed or Rx/Tx tasks have not been
destroyed..

Invalid dev_id or port_id supplied.

If the port does nor exists.

If an ‘Open’ is attempted on a port before configuring the
port.

If no PCI buffer is available.

If the HSS control block could not be accessed within a
certaintime.

hssStatus hssClose_port(hssDeviceld dev_id, hssPortld port_id);

Notes:
closed.

Closing a port a second time has no effect and still returns HSS_OK, since the port was suc cessfully

CCII/HSS/6-MAN/002

2002-04-11

Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd

Page 16 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002



4.1.8 Send Data

Function: hssSend_data

Purpose: Send data over the specified channel.

Arguments:
<dev_id> - Device ID onthe PCI bus. The HSS device inthe lowest PCI
slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc.
<port_id> - Port on which data must be sent.
<chan_id> - Channel on which data must be sent. If a porthas only one
channel, <chan_id> = 0.
<nr_bytes>- Number of bytes to send.
<p_data> - Pointer to buffer with at least <nr_bytes> bytes of data.
<timeout> - Not used anymore.
Returns:
HSS_OK - On success.
HSS_INVALID_PARAM - Invalid dev_id or port_id supplied.
HSS PORT_NOT_INSTALLED - If the portdoes nor exists.
HSS_PORT_NOT_OPEN - If the port is not open yet.
HSS_DEVICE_BUSY - If no PCI buffer is available.
HSS DEVICE_NOT_RESPONDING - If the HSS control block could not be accessed within a
certain time.

hssStatus hssSend_data(hssDeviceld dev_id, hssPortld port_id, hssChannelld chan_id, hssCount nr_bytes,
hssBufferPtr p_data, hssInt32 timeout);

Notes: The port must be opened before attempting to send data over it.
CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 17 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002



419 Add Receive Buffer

Function: hssAdd_receive_buffer

Purpose: Add a receive buffer to a specified channel.

Arguments :
<dev_id> - Device ID onthe PCI bus. The HSS device inthe lowest PCI
slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc.
<port_id> - Port on which data must be received.
<chan_id> - Channel on which data must be received. If a port has only
one channel, <chan_id> = 0.
<min_nr_bytes> - Minimum number of bytes to receive before Call-back
function is called.
<max_nr_bytes> - Maximum number of bytes to receive into this buffer.
<p_data> - Pointer to buffer with space for atleast <max_nr_bytes>
bytes of data.
Returns:
HSS_OK - On success.

hssStatus hssAdd_receive_buffer(hssDeviceld dev_id, hssPortld port_id, hssChannelld chan_id, hssCount
min_nr_bytes, hssCount max_nr_bytes, hssBufferPtr p_data);

Note: This function is not used anymore. The receive buffers are added intemally. The user may still call
this function, but this function returns only HSS_OK.

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 18 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002



4.1.10 Remove Receive Buffer

Function: hssRemove_receive_buffer

Purpose: Remove a receive buffer from a specified channel.

Arguments:
<dev_id> - Device ID onthe PCI bus. The HSS device inthe lowest PCI
slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc.
<port_id> - Port on which data must be received.
<chan_id> - Channel on which data must be received. If a port has only
one channel, <chan_id> = 0.
<p_data> - Pointer to buffer to be removed.
Returns:
HSS_OK - On success.

hssStatushssRemove_receive_buffer(hssD eviceld dev_id, hssPortld port_id,hssChannelld chan_id, hssBufferPtr

p_data);
Note: This function is notused anymore. The receive buffers are removed internally. The user may still call
this function, but this function returns only HSS_OK.
CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 19 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002



4111 Add Call-back

Function: hssAdd_callback

Purpose: Add a user defined Call-back routine.

Arguments:
<dev_id> - Device ID onthe PCI bus. The HSS device inthe lowest PCI
slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc.
<cb_type> - Call-back type, one of: HSS_CB_ON_SEND_BEGIN,
HSS_CB_ON_SEND_DONE,
HSS_CB_ON_RECEIVE_DONE,
HSS_CB_ON_CLOCK_DETECT
<Call-back> - User function.
<user_id> - User identifier. This identifier will be passed to the Call-back
function when it is called.
Returns:

HSS_OK - On success.

HSS _INVALID PARAM - Invalid dev_id supplied.

HSS_MEM_ALLOC_FAILED - If HSS Call-back node could not be created in memory
hssStatus hssAdd_ callback (hssDeviceld dev_id, hssCallbackType cb_type, hssCallback Call-back, hssUserld
user_id);

Notes: Four call-backs are provided for user notification from the driver:

HSS_CB_ON_SEND_BEGIN:
This Call-back will be called as soon as the data has been handed over to the driver for sending.

HSS_CB_ON_SEND_DONE:
This Call-back will be called when all the data for a given send has been sent by the driver.

HSS_CB_ON_RECEIVE_DONE:
This Call-back will be called when a block of data has been received by the driver. The user must
add at leastone of these call-backs to receive data.

Only one call-back foreach above type per device is recommended. The call-back function receives the port id,
such that the user can distinguish which port triggered the call-back. More than one call-back function may be
used, in which case the call-backs will be called in the sequence they were added.

HSS_CB_ON_CLOCK_DETECT:

This Call-back will be called when a clock signal has been detected on a port. The user must add only
one of these call-backs. This Call-back function will only be called once a port has been instructed to
detect a clock signal, e.g. calling the function hssClock_detect().

Note:
HSS_CB_ON_RECEIVE_BEGIN:
This Call-back does not exist anymore.
CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 20 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002



4112 Remove Call-back

Function: hssRemove_callback

Purpose: Remove a user defined Call-back routine.

Arguments:
<dev_id> -

<cb_type> -

<Call-back>-

<user_id> -
Returns:
HSS_OK -

HSS_INVALID_PARAM -

Device ID onthe PCIl bus. The HSS device inthe lowest PCI
slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc.
Call-back type, one of: HSS_CB_ON_SEND_BEGIN,

HSS CB_ON_SEND_DONE,HSS_CB_ON_RECEIVE_DON
E, HSS_CB_ON_CLOCK_DETECT

User function to remove.

User identifier. This identifier must be the same as the one
passed to hssAdd_callback.

On success.
Invalid dev_id supplied.

hssStatushssRemove_callback(hssD eviceld dev_id, hssCallbackTypechb_type, hssCallback Call-back, hssUserld

user_id);

CCII/HSS/6-MAN/002

2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd

Page 21 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002



4.1.13 Detecting an active clock signal on ports

Function: hssClock_detect

Purpose: Set up a port to detect when clock signal becomes active.

Arguments:
<dev_id> -
<port_id> -
Returns:
HSS_OK -
HSS_INVALID_PARAM -

HSS_PORT_NOT_INSTALLED -
HSS_DEVICE_BUSY -

Device ID onthe PCI bus. The HSS device inthe lowest PCI
slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc.
Port on which to detect clock signal.

On success.

Invalid dev_id or port_id supplied.
If the portdoes nor exists.

If no PCI buffer is available.

HSS_DEVICE_NOT_RESPONDING - If the HSS control block could not be accessed within a

certaintime.

hssStatus hssClock_detect(hssDeviceld dev_id, hssPortld port_id);

CCII/HSS/6-MAN/002

2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd

Page 22 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002



41.14 Print out current version number

Function: hssVersion_print

Purpose: To obtain the currentversion number ofthe driver and firmware software.

Arguments:
<dev_id> - Device ID onthe PCI bus. The HSS device inthe lowest PCI
slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc.
Returns:
HSS_OK - On success.
HSS_INVALID_PARAM - Invalid dev_id supplied.
HSS_DEVICE_BUSY - If no PCI buffer is available.
HSS_DEVICE_NOT_RESPONDING - If the HSS control block could not be accessed within a

certain time.

hssStatus hssVersion_print(hssDeviceld dev_id);

Note: Run first hssCreate_device (dev_id);
CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 23 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002




4.1.15 HSS Built-In-Test

The following structures define the HS'S Built_In_Test variables (defined in hss Controllfc.h):
BIT structures:

struct hssBoardBitInfoStruct

{
hssUINT 32 board_number;
hssUINT32 board_type;
hssUINT32 firmware_version;
hssUINT32 firmware_revision;
hssUINT32 firmware_beta;
hssUINT32 oscillator_freq;
char firmware_cre ation_date[30];

h

typedef struct hssBoardBitinfoStruct hssBoardBitInfo;

struct hssSendBitinfoStruct

{
hssCount nr_accepted;
hssCount nr_rejected;
hssCount nr_errors;
hssCount nr_sent;
hssCount nr_bytes_accepted;
hssCount nr_bytes_rejected,;
hssCount nr_bytes_sent;

|3

typedef struct hssSendBitinfoStruct hssSendBitinfo;

struct hssReceiveBitinfoStruct

{
hssCount nr_buffers_busy;
hssCount nr_received,;
hssCount nr_bytes_received;
hssCount nr_errors;

3

typedef struct hssReceiveBitInfoStruct hssReceiveBitinfo;

Main BIT structure:

struct hssBitinfoStruct

{
hssBoardBitInfo board_ bit;
hssSendBitInfo tx_scc_bitfHSS_HW _NR_SCC];
hssRe ceiveBitInfo rx_scc_bitfHSS_HW _NR_SCC];
hssSendBitinfo tx_smc_bitfHSS_HW _NR_SMC];
hssRe ceiveBitInfo rx_smc_bitfHSS_HW _NR_SMC];

h

typedef struct hssBitinfoStruct hssBitinfo;

CCII/HSS/6-MAN/002 2002-04-11

Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd

Page 24 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002




Three functions give access to the HSS Built_In_Test structures:

Function: hssBit_getstruct
Purpose: To obtain the latest BIT variables.
Arguments:
<dev_id> -
<bit_info> -
Returns:
HSS OK -

HSS_INVALID_PARAM -
HSS_DEVICE_BUSY -
HSS_DEVICE_NOT_RESPONDING -

Device ID onthe PCI bus. The HSS device inthe lowest PCI
slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc.
Pointer to BIT info struct.

On success.

Invalid dev_id supplied.

If no PCI buffer is available.

If the HSS control block could not be accessed within a
certaintime.

hssStatus hssBit_getstruct(hssDeviceld dev_id, hssBitinfo *bit_info);

Function: hssBit_report

Purpose: To display each port’s statistics.
Arguments:
<dev_id> -
Returns:
HSS_OK -
HSS_INVALID_PARAM -
HSS_DEVICE_BUSY -
HSS_DEVICE_NOT_RESPONDING -
hssStatus hssBit_report(hssDeviceld dev_id);
Function: hssBit_clear
Purpose: To clear each port’s counters.
Arguments:
<dev_id> -
Returns:
HSS_OK -
HSS_INVALID_PARAM -
HSS_DEVICE_BUSY -
HSS_DEVICE_NOT_RESPONDING -

hssStatus hssBit_clear(hssDeviceld dev_id);

Device ID onthe PCI bus. The HSS device inthe lowest PCI
slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc.

On success.

Invalid dev_id supplied.

If no PCI buffer is available.

If the HSS control block could not be accessed within a
certaintime.

Device ID onthe PCI bus. The HSS device inthe lowest PCI
slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc.

On success.

Invalid dev_id supplied.

If no PCI buffer is available.

If the HSS control block could not be accessed within a
certain time.

CCII/HSS/6-MAN/002

2002-04-11

Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd

Page 25 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002



4.2 Driver Data Structures

Each protocoldefines a protocol information structure used to configure a port with protoc ol spe cific options. This
paragraph details the information structures used by each protocol and explains the use and limitations of every
structure mem ber.

hssProtocollnfo structure:

struct hssProtocolinfoStruct

{
hssUINT32 protocol_id;

/* only used for HSS Front Panel boards - value ignored otherwise */
hssUINT32 elec_interface;

union

{
/* SCC info */
hssUartInfo uart;
hssHdlclnfo hdlc;
hssBisynclnfo bisync;

/* SMC info */
hssSm cUartinfo smc_uart;
} info;
k

typedef struct hssProtocollnfoStruct hssProtocolinfo;

protocol_id:

HSS_PROTOCOL_UART
HSS_PROTOCOL_HDLC
HSS_PROTOCOL_BISYNC
HSS_PROTOCOL_SMC_UART

elec_interface: (only used for HSS Front Panel boards)

HSS_RS485 /* RS485/422 */

HSS_RS232_INT_CTL_LINES /* RS232: control lines (RTS, CTS, CD) are
connected internally */

HSS_RS232_EXT_CTL_LINES /* RS232: control lines (RTS, CTS, CD) need to be

connected externally */

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 26 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002



4.2.1 UART Mode
This protocol may only be used with the four SCC ports: Ports A-D.

4211 UART Protocol Information Structure

The following structure is defined in the file hssControlifc.h and is given here in abbreviated format (i.e. reserved
and obsolete members are not shown). Always use the structure as defined in hssControllfc.h.

struct hssUartInfoStruct

{
hssUIN T32 baud_rate;
hssUINT32 clock_source;
hssUINT32 flow_control;
hssUINT32 stop_bits;
hssUINT32 data_bits;
hssUINT32 uart_mode;
hssUINT32 freeze_tx;
hssUINT32 rx_zero_stop_bits;
hssUINT32 sync_mode;
hssUINT32 disable_rx_while_tx;
hssUINT32 parity_enable;
hssUINT32 rx_p arity;
hssUINT32 tx_parity;
hssUINT32 diag_mode;
hssUINT32 max_receive_bytes;
hssUINT32 max_idl;
hssUINT 32 brkcr;
hssUINT32 parec;
hssUINT32 frmec;
hssUINT32 nosec;
hssUINT32 brkec;
hssUINT32 uaddrl;
hssUINT32 uaddr?;
hssUINT32 toseq;
hssUIN T32 cc([8];
hssUINT32 rccm;

3

typedef struct hssUartinfoStruct hssUartinfo;

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 27 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002



4.2.1.2 UART Protocol Information Structure Members
Name Options Description
baud_rate 1200 - 115kbps (RS232) This mem ber is used to specify a

1200 - 2.4Mbps (RS422/RS485)

0 - Indicates separate transmitter and receiver baudrates will be
set.

Any values pemissible.

Units in bps.

single b audrate for both
transmitter and receiver.

clock_source

HSS_CLOCK_DEFAULT

HSS_CLOCK_BRG1
HSS_CLOCK_BRG2
HSS_CLOCK_BRG3
HSS_CLOCK_BRG4

Baudrate Ge nerators [1-4].

External Clocks connected
on Pins: RXCLKJ[1-4]
(RS232) or CLKIN[1-4]
(RS485/RS422).

HSS_CLOCK_EXT1
HSS_CLOCK_EXT2
HSS_CLOCK_EXT3
HSS_CLOCK_EXT4

Note:
HSS_CLOCK_EXT[1-2]
can only be used forSCC
Port[A&B], while
HSS_CLOCK_EXT[3-4]
can only be usedforSCC

HSS_CLOCK_DEFAULT
connects BRG[1-4]to

Port[A-D].

For synchronous UART:

when transmit clock is set to
HSS_CLOCK_BR G[1-4], then
receive clock is still set to
HSS_CLOCK_EXT[1-4]for Port[A-
D].

For asynchronous UART:
transmit& receive clocks can be
set to one of
HSS_CLOCK_BRGJ[1-4] or

HSS _CLO CK_EXT([1-4].

Port[C &D].
flow control HSS_UART_FLOW_NORMAL Normal or asynchronous flow
- HSS_UART_FLOW_ASYNC control.
stop_bits HSS_UART_STOP_BITS_ONE Number of full stop bits.
- HSS_UART_STOP_BITS_TWO
data bits HSS_UART_DATA_BITS_5 Num ber of data bits. N ote only
- HSS_UART_DATA_BITS_6 ports 1& J (i.e.the SMC ports) can
HSS_UART_DATA_BITS_7 select 9 or more data bits.
HSS_UART_DATA_BITS_8
HSS_UART_DATA_BITS_9
HSS_UART_DATA_BITS_10
HSS_UART_DATA_BITS_11
HSS_UART_DATA_BITS_12
HSS_UART_DATA_BITS_13
HSS_UART_DATA_BITS_14
uart mode HSS_UART_MODE_NORMAL Select UART mode: normal,
- HSS_UART_MODE_MAN_MM man ual multidrop or autom atic
HSS_UART_MODE_AUTO_MM multidrop mode.
freeze tx HSS_UART_FREEZE_TX_NORMAL Pause (freeze) trans mission.

HSS_UART_FREEZE_TX_FREEZE

Transmission continues when set
back to norm al.

rx_zero_stop_bits

HSS_UART_RX_ZERO_STOP_BITS_NORMAL
HSS_UART_RX_ZERO_STOP_BITS_NONE

If setto none, the receiver
receives data without stop bits.

sync_mode

HSS_UART_SYNC_MODE_ASYNC
HSS_UART_SYNC_MODE_SYNC

Select asynchronous (nomal) or
synchronous mode.

CCII/HSS/6-MAN/002

2002-04-11

Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd

Page 28 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002




disable_rx_while_tx

HSS_UART_DISABLE_RX_WHILE_TX_NORMAL

HSS_UART_DISABLE_RX_WHILE_

TX_DISABLE

Enable (normal) or disable
receiver while transmitting. Used
in multidrop mode to prevent
reception of own messages.

parity_enable

HSS_UART_PARITY_NO_PARITY
HSS_UART_PARITY_ENABLE

Enable or disable parity checking.

rx_parity, tx_parity

HSS_UART_PARITY_ODD
HSS_UART_PARITY_LOW
HSS_UART_PARITY_EVEN
HSS_UART_PARITY_HIGH

Receive and transmit parity.
Parity will only be checked if parity
is enabled.

diag_mode

HSS_DIAG_NORMAL

Norm al operation. U se this
for external loopback.

HSS_DIAG_LOOPBACK

Internalloopback: TXD &
RXD are connected
internally. The value on
RXD, CTS &CD is
ignored. The transmitter
and receivershare the
same clock source.

HSS_DIAG_ECHO

The transmitter
automatically resends
receive d data bit-by-bit.

HSS_DIAG_LOOPBACK_ECHO

Loopback and echo
operation occur
simultaneously.

Set diagnostic mode.

External loopback - RS485:
connect TXD+ to RXD+, TXD- to
RXD-, (TXCLK+ to RXCLK+ and
TXCLK- to RXCLK- for
synchronous mode).

External loopback - RS232:
connect TXD to RXD, (T XCLK to
RXCLK for synchronous mode)
and RTSto CTS & CD.

For HSS Front Panel /O Board:
program elec_interface=
HSS_RS232_INT_CTL_LINES
and connect TXD to RXD, (TXCLK
to RXC LK for synchronous mode).
Ignore RTS,CTL & CD.

max_receive_bytes

1 to 2048 (default) or up to 32 Kbytes, depending on how many
bytes have been allocated to the Rx & Tx buffers (See function

hssCre ate_device_ex()).

Maximum number of bytes that
may be copied into a buffer.

max_idl

0 to 2048 (default) or up to 32 Kbytes, depending on how many
bytes have been allocated to the Rx & Tx buffers (See function

hssCre ate_device_ex()).

Maximum idle characters. When a
characteris received, the receiver
begins counting idle characters. If
max_idl idle characters are
receive d before the next data
character, an idle time out occurs
and the buffer is closed. Thus,
max_idl offers a way to dem arcate
frames. To disable the feature,
clear max_idl. The bit length of an
idle character is calculated as
follows: 1 + data length (5-9)+ 1
(if parityis used) + number of stop
bits (1-2). For 8 data bits, no
parity, and 1 stop bit, the character
length is 10 bits.

brker

0 -2048

Number of break characters sent
by transmitter. For 8 data bits, no
parity, 1 stop bit, and 1 start bit,
each break character consists of
10 zero bits.

parec

0 - 65535

Number of received parity errors.

frmec

0 - 65535

Num ber of received characters
with framing errors.

CCII/HSS/6-MAN/002

2002-04-11

Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd

Page 29 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002




nosec 0 - 65535

Number of received characters
with noise errors.

brkec 0 - 65535

Number of break condiions on the
signal.

uaddrl, uaddr2

0x0000 - OXxO0FF

Addre ss in multidrop m ode. O nly
the lower 8 bits are used so the
upper 8 bits should be cleared.

toseq 0x0000 - OxOOFF

Transmit out of sequence
character (e.g. XON, XOFF).

cc[8] 0b00------ cceceece
0b10----- cceceecece

- valid entry
- entry not valid and is notused.

Control character1 to 8. These
characters can be used to delimit
received messages.

—————— (6 bits) - reserved.
Initialise to zero.

ccceccccc (8 bits) - defines contol
characters to be compared to the
incoming character.

rccm 0b11----- 00000000

0b11----- 11111111

-ignore these bits when comparing
incomming character

-enable comparing the incoming
character to cc[n].

Receive control character m ask.
A one enables comparison and a
zero masks it.

CCII/HSS/6-MAN/002

2002-04-11

Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd

Page 30 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002




4.2.2 HDLC Mode
This protocol may only be used with the four SCC ports: Ports A-D.

4221 HDLC Protocol Information Structure

The following structure is defined in the file hssControlifc.h and is given here in abbreviated format (i.e. reserved
and obsolete members are not shown). Always use the structure as defined in hssControllfc.h.

struct hssHdlcInfoStruct

{
hssUINT32 tx_baud_rate;
hssUINT32 rx_baud_rate;
hssUINT32 clock_source;
hssUINT32 crc_mode;
hssUINT32 diag_mode;
hssUINT32 max_receive_bhytes;
hssUINT32 max_frame_bytes;
hssUINT32 address_mask;
hssUINT32 address1,;
hssUINT32 address?2;
hssUINT32 address3;
hssUINT32 address4;
hssUINT32 nr_flags_between_frames;
hssUINT32 retransmit_enabled;
hssUINT32 flag_sharing_enabled;
hssUINT32 rx_disabled_during_tx;
hssUINT32 bus_mode;
hssUINT32 bus_mode_rts;
hssUINT32 multiple_tx_frames;
hssUINT32 encoding_method;
hssUINT32 preamble_length;
hssUINT32 preamble_pattern;
hssUINT32 send_idles_or_flags;

h

typedef struct hssHdlcinfoStruct hssHdlcInfo;

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 31 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002



4.2.2.2

HDLC Protocol Information Structure Members

Name

Options

Description

tx_baud_rate,
rx_baud_rate

1200 - 115kbps (RS232)

1200 - 12Mbps (RS422/RS485)
Any values pemissible.

Units in bps.

NB: It is not possible to s pecify
the transmitter and receiver
baudrate separately anymore.
Setboth variables to the same
baudrate.

tx_clock_direction
rx_clock_direction

OBSOLETE VARIABLES

clock_source

HSS_CLOCK_DEFAULT

HSS_CLOCK_BRG1
HSS_CLOCK_BRG2
HSS_CLOCK_BRG3
HSS_CLOCK_BRG4

Baudrate Ge nerators [1-4].

HSS_CLOCK_EXT1
HSS_CLOCK_EXT2
HSS_CLOCK_EXT3
HSS_CLOCK_EXT4

External Clocks connected
on Pins: RXCLK[1-4]
(RS232) or CLKIN[1-4]
(RS485/RS422).

Note:
HSS_CLOCK_EXT[1-2]
can only be used forSCC
Port[A&B], while
HSS_CLOCK_EXT[3-4]
can only be usedforSCC
Port[C &D].

HSS_CLOCK_DEFAULT
connects BRG[1-4] to Port[A-D].
For NRZ/NRZI: when transm it
clock is set to
HSS_CLOCK_BRGJ[1-4],then
receive clock is still set to
HSS_CLOCK_EXT[1-4] for
Port[A-D].

For FM0/1, Manc hester & Diff.
Manchester: transmit & receive
clocks can be setto one of
HSS_CLOCK_BRG[1-4] or
HSS _CLO CK_EXT[1-4].

for external loopback.

HSS_DIAG_LOOPBACK

Internalloopback: TXD &
RXD are connected
internally. The value on
RXD, CTS &CD is
ignored. The transmiter
and receivershare the
same clock source.

HSS_DIAG_ECHO

The transmitter
automatically resends
receive d data bit-by-bit.

HSS_DIAG_LOOPBACK_ECHO

Loopback and echo
operation occur
simultaneously.

crc mode HSS_HDLC_CRC_MODE_16_BIT HDLC CRC mode.
- HSS_HDLC_CRC_MODE_32_BIT
diag mode HSS_DIAG_NORMAL Norm al operation. U se this Set diagnostic mode.

External loopback - RS485:
connect TXD+ to R XD+, TXD- to
RXD-, (TXCLK+ to RXCLK+ and
TXCLK- to RXCLK- for
synchronous mode).

External loopback - RS232:
connect TXD to RXD, (T XCLK to
RXCLK for synchronous mode)
and RTSto CTS & CD.

For HSS Front Panel 1/O Board:
program elec_interface=
HSS_RS232_INT_CTL_LINES
and connect TXD to RXD,
(TXCLK to RXCLK for
synchronous mode). Ignore RTS,
CTL & CD.

For synchronous mode:
see encoding_method.

CCII/HSS/6-MAN/002

2002-04-11

Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd

Page 32 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002




max_receive_bytes

1 to (2048 - CRC bytes (2 or 4)) (default) or up to (32 Kbytes -
CRC bytes (2 or 4)), depending on how many bytes have been
allocated to the Rx & Tx buffers (See function

hssCre ate_device_ex()).

Maximum num ber of bytes to
receive before closing buffer. Set
equal to max_frame_bytes.

max_frame_bytes

1 to 2048 (default) or up to 32 Kbytes, depending on how many
bytes have been alocated to the Rx & Tx buffers (See function
hssCre ate_device_ex()).

Maximum number of bytes per
frame. Set equal to the number
of data bytes plus the number of
CRC bytes (either 2 or 4) per
frame.

address_mask

0x0000 - OXFFFF

HDLC address mask. A one
enables comparison and a zero
masks it.

addressl, address2,
address3, address4

0x0000 - OXFFFF

Four address registers for
address recognition. The SCC
reads the frame address from the
HDL C receiver, com pares it
with the address registers, and
mas ks the re sult with

addre ss_m ask.

For example, to recognize a
frame that begins 0x7E (flag),
0x68, 0XAA,

using 16-bit address recognition,
the ad dress registers should
contain OXAA68 and
address_mask

should contain OxFF FF. For 8-bit
addresses, clear the eight high-
order address bits.

nr_flags_between_frames | 0-15 Minimum number of flags
- - - between or before frames.
retransmit_enabled TRUE Enab le re-tran smit.
- FALSE
flag_sharing_enabled TRUE Enable flag sharing.
FALSE
rx_disabled_during_tx TRUE Disab le receive during transmit.
- - - FALSE
bus_mode TRUE Enable bus mode.
- FALSE
bus_mode_rts TRUE Enable special RTS operation in
- - FALSE HDLC bus mode.
multiple_tx_frames TRUE Enable multiple frames in
- FALSE transmitFIFO.

encoding_method

HSS_UART_ENCODING_METHOD_NRZ
HSS_UART_ENCODING_METHOD_NRZI_MARK
HSS_UART_ENCODING_METHOD_NRZI| SPACE
HSS_UART_ENCODING_METHOD_FMO
HSS_UART_ENCODING_METHOD_FM1
HSS_UART_ENCODING_METHOD_MANCHESTER
HSS_UART_ENCODING_METHOD_DIFF_MANCHESTER

Rx / Tx encoding method. NRZ
and NRZ| use no DPLL. FMO0/1,
Manchester & Diff_Manchester
use the DPLL for clock
recovery.The clock rate is 16x
when the DPLL is used.

preamble_length

HSS_DPLL_PREAMBLE_LENGTH_O
HSS_DPLL_PREAMBLE_LENGTH_8
HSS_DPLL_PREAMBLE_LENGTH_16
HSS_DPLL_PREAMBLE_LENGTH_32
HSS_DPLL_PREAMBLE_LENGTH_48
HSS_DPLL_PREAMBLE_LENGTH_64
HSS_DPLL_PREAMBLE_LENGTH_128

Determines the length ofthe
preamble pattern.

CCII/HSS/6-MAN/002

2002-04-11

Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd

Page 33 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002




preamble _pattern

HSS_DPLL_PREAMBLE_PATTERN_00
HSS_DPLL_PREAMBLE_PATTERN_10
HSS_DPLL_PREAMBLE_PATTERN_01
HSS_DPLL_PREAMBLE_PATTERN_11

Determines wh at bit pattern
precedes each Tx frame.

send_idles_or_flags

HSS_HDLC_SEND_IDLES
HSS_HDLC_SEND_FLAGS_SYNCS

Send either idles orflags/syncs
between frames as defined by
the protocol. ForHDLC the flag
is defined as OX7E. NRZI
encoding methods may only be
used with flags/syncs.

4.2.2.3 Preamble Requirements

Decoding Method Preamble Pattern Minimum Preamble Length
Required
NRZI Mark All zeros 8-bit
NRZI Space All ones 8-bit
FMO All ones 8-bit
FM1 All zeros 8-bit
Manchester 101010...10 8-bit
Differential Manchester All ones 8-bit
CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd

Page 34 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002




4.2.3 BISYNC Mode
This protocol may only be used with the four SCC ports: Ports A-D.

4.2.3.1 BISYNC Protocol Information Structure

The following structure is defined in the file hssControlifc.h and is given here in abbreviated format (i.e. reserved
and obsolete members are not shown). Always use the structure as defined in hssControllfc.h.

struct hssBisyncinfoStruct
{
hssUINT32 baud_rate;
hssUINT32 clock_source;
hssUINT32 max_receive_bytes;
hssUINT32 min_no_sync_pairs;
hssUIN T32 crc_select;
hssUINT32 receive_bcs;
hssUINT32 rx_transparant_mode;
hssUINT32 reverse_data;
hssUINT32 disable_rx_while_tx;
hssUINT32 rx_parity;
hssUINT32 tx_parity;
hssUINT32 diag_mode;
hssUINT32 crcc;
hssUINT32 prcrc;
hssUINT32 ptcrc;
hssUINT32 parec;
hssUINT32 bsync;
hssUINT32 bdle;
hssUINT32 cc[8];
hssUINT32 rccm;
hssUINT32 sync;
hssUINT32 syn_length;
hssUINT32 send_idles_or_flags;
h

typedef struct hssBisyncInfoStruct hssBisyncinfo;

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 35 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002



4.2.3.2

BISYNC Protocol Information Structure Members

Name

Options

Description

baud_rate

1200 - 115kbps (RS232)

1200 - 12Mbps (RS422/RS485)
Any values pemissible.

Units in bps.

This mem ber is used to specify a
single baudrate for both transmitter
and re ceiver.

clock_source

HSS_CLOCK_DEFAULT

HSS_CLOCK_BRG1
HSS_CLOCK_BRG2
HSS_CLOCK_BRG3
HSS_CLOCK_BRG4

Baudrate Ge nerators [1-4].

External Clocks connected
on Pins: RXCLK[1-4]
(RS232) or CLKIN[1-4]
(RS485/RS422).

HSS_CLOCK_EXT1
HSS_CLOCK_EXT2
HSS_CLOCK_EXT3
HSS_CLOCK_EXT4

Note:
HSS_CLOCK_EXT[1-2]
can only be used forSCC
Port[A&B], while
HSS_CLOCK_EXT[3-4]
can only be used forSCC
Port[C &D].

HSS_CLO CK_DEFAULT connects
BRG [1-4] to Port[A-D].

Whe n the transmit clock is set to
HSS_CLOCK_BRGJ[1-4], then receive
clock is still set to

HSS _CLO CK_EXT[1-4] for Port[A-D].

max_receive_bytes

1to (2048 -2 CRC bytes) (default) orup to (32 Kbytes - 2 CRC
bytes), depending on how many bytes have been allocated to the
Rx & T x buffers (See function hssCre ate_device_ex()).

Maximum num ber of bytes to receive
before closing buffer.

min_no_sync_pairs

0b000O0 (O pairs) - 0b1111 (16 pairs)

Minimum number of SYN1-SYN2 pairs
sent between or before messages.
The entire pair is always sent,
regardless of thesyn_length
variable.

crc_select

HSS_BISYNC_CRC_MODE_16
HSS_BISYNC_CRC_MODE_LRC

CRC selection.

1: CRC16 (X16 + X15+ X2 + 1):
initialise prcrc & ptcrc to all zeros or
all ones.

2: LRC (sum check): for even LRC,
initialise prcrc & ptcrc to zeros, for
odd LRC initialise to ones.

receive_bcs

TRUE
FALSE

Enable Receive Block Check
Sequence (BCS).

CCII/HSS/6-MAN/002

2002-04-11

Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd

Page 36 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002




rx_transparant_mode

TRUE

Enable Receiver transparent mode.

FALSE
FALS E: norm al receiver mode with
SYNC stripping and controlcharacter
recognition.
TRUE: transparent receiver mode.
SYNC's, DLE’'s and control characters
are recognised only after the leading
DLE character. The receiver
calculates the CRC16 sequence even
if it is programmed to
LRC while in ransparentmode.
Initialize prcrc to the CRC16 preset
value before setting
rx_transparant_mode.
reverse data TRUE Enable Reverse data.
- FALSE
disable rx while tx TRUE Disable receiver while sending.
FALSE
rx_parity HSS_BISYNC_PARITY_ODD Receive and transmit parity. Parity is
tx parity HSS_BISYNC_PARITY_LOW ignored unless crc_select=LRC.
- HSS_BISYNC_PARITY_EVEN
HSS_BISYNC_PARITY_HIGH
diag_mode HSS_DIAG_NORMAL Norm al operation. U se this Set diagnostic mode.
for externalloopback.
External loopback - RS485: connect
TXD+ to RXD+, TXD-to RXD-,
HSS_DIAG_LOOPBACK Internal loopback: TXD & | TXCLK+to RXCLK+and TXCLK- to
RXD are connected RXCLK-.
internally. The value on
RXD, CTS & CD is External loopback - RS232: connect
ignored. The transmitter TXD to RXD, TXCLK to RXCLK and
and receivershare the RTS toCTS & CD.
same clock source.
For HSS Front Panel /O Board:
HSS_DIAG_ECHO The transmitter program elec_interface=
automaticaly resends HSS_RS232_INT_CTL_LINES and
receive d data bit-by-bit. connect TXD to RXD, TXCLK to
RXCLK. lgnore RTS,CTL & CD.
HSS_DIAG_LOOPBACK_ECHO Loopback and echo
operation occur
simultaneously.
crcc 0 CRC constant value.
prcrc 0x0000 or Preset receiver / transmitter
ptcre OXFFFF CRC16/LRC. These values should be
preset to all
ones or zeros, depending on the BCS
used.
parec 0 - 65535 Number of received parity errors.

CCII/HSS/6-MAN/002

2002-04-11

Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd

Page 37 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002




bsync

0Obv0000000sSSSSSSS

BISYNC SYNC register. Contains the
value of the SYNC character stipped
from incoming

data on receive once the receiver
synchronizes to the data using the
SYN1- SYN2 pair.

v - if v = 1and the receiver is not in
hunt mode when a SYNC character is
received, this character is discarded.

S$SsSSs Ss (8 bits) - SYNC character.
Whe n using 7-bit characters with
parity, the parity bit should be included
in the SYNC register value.

bdle

0bv0000000dddddddd

BISYNC DLE register. In transparent
mode, the receiver discards any DLE
characterreceived.

v - if v = 1land the receiver is notin
hunt mode when a DLE character is
received, this character is discarded.

ddddd ddd (8 bits) - DLE character.
This character tells the receiver that
the next character is text.

cc[8]

0bObh ----- ccccceccc - valid entry
Oblbh----ccccccece - entry notvalid and is not used.

Control character 1 to 8.

————— (5 bits) - reserved.
Initialise to zero.

b - Bloch check sequence expected. A
maskable interrupt is generated after
the buffer is closed.

b = 0: the character is written into the
receive buffer and the bufferis closed.
b = 1: the character is written into the
receive buffer. The receiver waits for 1
LRC or 2 CRC bytes and then closes
the buffer.

h - Enables huntmode when the
current bufferis closed.

h = 0: the BISYNC controller maintains
character synchronisation after closing
the buffer.

h = 1: the BISYNC controller enters
hunt mode after closing the b uffer.
When b = 1, the controller enters hunt
mode afterreceiving LRC orCRC.

cccccccc (8 bits) - defines control
characters to be compared to the
incoming character. W hen using 7- bit
characters with parity, include the
parity bit in the character value.

rccm

Ob11---—- 00000000 -ignore these bits when comparing
incomming character

Ob11----- 11111111 -enable comparing the incoming
character to cc[n].

Receive control character mask. A
one enables comparison and a zero
masks it.

sync

0xssss (2 bytes)

SYNC character: should be
programmed with the sync pattern.

CCII/HSS/6-MAN/002

2002-04-11

Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd

Page 38 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002




syn_length

HSS_BISYNC_SYNL_8
HSS_BISYNC_SYNL_16

HSS_BISYNC_SYNL_8: should be
chosen to implement

mono-sync protocol. The
receiversynchronizes on an 8-bitsync
patternin sync.

HSS_BISYNC_SYNL_16: The
receiversynchronizes on a 16-bitsync
patternstored in sync.

send_idles_or_flags

HSS_BISYNC_SEND_IDLES
HSS_BISYNC_SEND_FLAGS_SYNCS

Send either idles orflags/syncs
between frames as defined by the
protocol.The flag character is e qual to
sync.

CCII/HSS/6-MAN/002

2002-04-11

Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd

Page 39 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002




4.2.4 SMC UART Mode
This protocol may only be used with the two SMC ports: Ports 1&J.

4241 SMC UART Protocol Information Structure

The following structure is defined in the file hssControlifc.h and is given here in abbreviated format (i.e. reserved
and obsolete members are not shown). Always use the structure as defined in hssControllfc.h.

struct hssSmcUartInfoStruct

{
hssUINT32 baud_rate;
hssUINT32 clock_source;
hssUINT32 stop_bits;
hssUINT32 data_bits;
hssUINT32 parity_enable;
hssUINT32 parity_mode;
hssUINT32 diag_mode;
hssUINT32 max_receive_bhytes;
hssUINT32 max_idl,

|3

typedef struct hssSmcUartinfoStruct hssSmcUartinfo;

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 40 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002



4.2.4.2 SMC UART Protocol Information Structure Members
Name Options Description
baud_rate 1200 - 115kbps (RS232/RS422/RS485) This member is used to

Any values pemissible.
Units in bps.

specify a single baudrate for
both transmitter and
receiver.

clock_source

HSS_CLOCK_DEFAULT

HSS_CLOCK_BRG1
HSS_CLOCK_BRG2
HSS_CLOCK_BRG3
HSS_CLOCK_BRG4

Baudrate Ge nerators [1-4].

HSS_CLOCK_EXT1
HSS_CLOCK_EXT2
HSS_CLOCK_EXT3
HSS_CLOCK_EXT4

External Clocks connected on
Pins: RXCLK[1-4](RS232) or
CLKIN [1-4] (RS485/RS422).

Note: HSS_CLOCK_EXT[1-2]
can only be used for SMC Port I,
while HSS_CLOCK_EXT[3-4]

can only be used for SMC Port J.

HSS_CLOCK_DEFAULT
connects BRG[1-2]to
Port[l-J].

Transmit & receive clocks
can be set to one of
HSS_CLOCK_BRGJ[1-4] or
HSS _CLO CK_EXT[1-4].

HSS_UART_DATA_BITS_6
HSS_UART_DATA_BITS_7
HSS_UART_DATA_BITS_8
HSS_UART_DATA_BITS_9
HSS_UART_DATA_BITS_10
HSS_UART_DATA_BITS_11
HSS_UART_DATA_BITS_12
HSS_UART_DATA_BITS_13
HSS_UART_DATA_BITS_14

stop_bits HSS_UART_STOP_BITS_ONE Number of full stop bits.
- HSS UART_STOP_BITS TWO
data bits HSS_UART_DATA_BITS_5 Num ber of d ata bits. N ote

only ports | & J (i.e. the
SMC ports) can select 9 or
more data bits.

parity_enable

HSS_UART_PARITY_NO_PARITY

HSS_UART_PARITY_ENABLE

Enable or disable parity
checking.

parity_mode

HSS_UART_SMC_PARITY_ODD
HSS_UART_SMC_PARITY_EVEN

Receive and transmit parity.
Parity will only be checked if
parityis enabled.

diag_mode

HSS_DIAG_NORMAL

Normal operation. Use this for
external loopback.

HSS_DIAG_LOOPBACK

Internalloopback: TXD & RXD
are connected internally. The
value on RXD is ignored.

HSS_DIAG_ECHO

The transmitter autom atically
resends received data bit-by-bit.

HSS_DIAG_LOOPBACK_ECHO

Loopback and echo operation
occur simultane ously.

Set diagnostic mode.

External loopback -
RS485: connect TXD+ to
RXD+ & TXD- to RXD-.

External loopback -
RS232: connect TXD to
RXD.

max_receive_bytes

1 to 2048 (default) or up to 32 Kbytes, depending on how many bytes
have been allocated to the Rx & Tx buffers (See function

hssCre ate_device_ex()).

Maximum number of bytes
that may be copied into a
buffer.

CCII/HSS/6-MAN/002

2002-04-11

Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd

Page 41 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002




max idl 0 to 2048 (default) or up to 32 Kbytes, depending on how many bytes Maximum idle characters.

- have been allocated to the Rx & Tx buffers (See function When a character is

hssCre ate_device_ex()). received, the receiver
begins counting idle
characters. If max_idl idle
characters are received
before the next data
character, an idle timeout
occurs and the buffer is
closed. T hus, max_idl offers
a way to demarcate frames.
To disable the feature, clear
max_idl. The bit length of an
idle character is calculated
as follows: 1 + data length
(5-14) + 1 (if parity is used)
+ num ber of stop bits (1-2).
For 8 data bits, no parity,
and 1 stop bit, the character
length is 10 bits.

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 42 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002



5 Getting Started

After installing the host driver according to paragraph 3.1, test the hostdriver following the test procedure given
in hssTe st.txt.

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 43 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002



6 Contact Details
6.1 Contact Person

Direct all corespondence and / or support queries to the Project Manager (HSS) at C212 Systems.

6.2 Physical Address

C212 Systems (Pty) Ltd

Unit 3, 67 Rosmead Avenue
Kenilworth

Cape Town

7701

South Africa

6.3 Postal Address

C2I12 Systems (Pty) Ltd
P.O. Box 171
Rondebosch

Cape Town

7701

South Africa

6.4 Voice and Electronic Contacts
Tel: (+27) 21 683 5490
Fax: (+27) 21 683 5435
Email: info@ccii.co.za
Email: support@ccii.co.za
URL: http:/www.ccii.co.za/
6.5 Product Support

Support on C212 Systems’ products is available telephonically between Monday and Friday from 09:00 to 17:00
CAT. Central African Time (CAT = GMT + 2).

Email support is available at support@ccii.co.za

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 44 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002



The PCI free memory space needsto be defined in the memory descriptor table. Consult the relevant reference
manual and obtain the upper address ofthe PClI memory. Allocate atleast 5 megabytes of memory per HSS card.
Subtract that amount from the upper address of the PCI memory, and use this value as the base of the PCI

memory space.

Note: if there are other devices on the PCI bus, it may be necessary to allocate more memory.

Example: For 2 HSS cards, allocate 10 megabytes of memory. If the upper address of the PCl memory space is
defined as OXFFF00000, then subtracting 10 megabytes gives a base address of: OxXFFF00000 - 0xA00000 =

OxFF500000.

In the PC 386/486/Pentium/Pentiumpro system-dependentlibrary (sysLib.c), code (shown in bold text) needs

Appendix A
Making Changes to sysLib.c for X86

to be add ed to the memory descriptor table, sysP hysMe mDe sc[]:

#ifndef CPU_PCI_MEM_ADRS
#define CPU_PCI_MEM_ADRS 0xFF500000 /* base of PCI MEM addr */

#endif

PHYS_MEM_DESC sysPhysMembDesc [] =

{

/* adrs and length parameters must be page-aligned (multiples of 4KB/4MB) */
#if(VM_PAGE_SIZE == PAGE_SIZE_4KB)

#else

[* lower memory */

/* video .r.z;m, etc */

I* upper.r.ﬁemory for OS */

* upperlr.r;emory for Application */

[* PCI 1/O space */

{
(void *) CPU_PCI_MEM_ADRS,
(void *) CPU_PCI_MEM_ADRS,
(0xA00000),
VM_STATE_MASK_VALID |VM_STATE_MASK_WRITABLE |
VM_STATE_MASK_CACHEABLE, VM_STATE_VALID |
VM_STATE_WRITABLE | VM_STATE_CACHEABLE_NOT

h

/* entries for dynamic mappings - create sufficient entries */
DUMMY_MMU_ENTRY,
DUMMY_MMU_ENTRY,
DUMMY_MMU_ENTRY,

CCII/HSS/6-MAN/002

2002-04-11

Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd

Page 45 of 45

Copyright © C32 Systems (Pty) Ltd, All rights reserved, 2002




