

User Manual

for the

C2I2 Systems’

PMC High Speed Serial VxWorks Driver

CCII Document No. CCII/HSS/6-MAN/002

Document Issue 3.5

Issue Da te 2002-04-11

Print Date 2002-04-11

File Name P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd

© C²I² Syste ms. T he co pyrigh t of this do cum ent is the prop erty of C ²I² Syste ms. T he do cum ent is iss ued fo r the so le

purpos e for whic h it is supplied , on the ex press term s that it may not be co pied in w hole or pa rt, used by o r disclosed to

others except as authorised in writing by C²I² Systems.

Document prepared for C²I ² Sys tems (Pty) Ltd

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page iii of vi

Amendment History

Issue Description Date ECP No

1.0 Initial version created b y splitting cM anSioD rv.wpd, Is sue 1.1 in to

separate SIO and HSS user manuals.

2000-03-16 -

1.1 Upda ted App lication Pro gram In terface (A PI) to corre spond with

version 1 release 0 of the host driver.

2000-05-23 -

2.0 Updated for HSS version 2.0. 2000-06-06 -

2.1 Updated paragraph 4.2, detailing protocol structures and setup

options.

2000-10-31 -

2.3 Updated driver data structures to include DPLL and various

encoding methods.

2001-01-19 -

2.4 Added version display function for driver and firmware software.

Updated UART and HDLC descriptions. Added clock detection

function.

2001-03-19 -

2.5 Added functionality to attach external clocks. Added SMC ports. 2001-04-23 -

2.6 Implemented the BISYNC protocol. Included the BIT functions

descriptions. Added configuration specifics for the X86.

2001-05-21 -

2.6.1 Added HS S Front Panel functionality. 2001-06-15 -

2.6.2 Changed flash programming. 2001-07-05 -

3.0 General up date of driver. 2001-09-13 -

3.1 Updated description of include-files. 2001-09-25 -

3.2 HSS Serial I/O back & front panel boards share the same protocol

information structure now. Updated description of protocol

information structure.

2001-10-01 -

3.3 Added new hssOpen_port_fp() function, which allows for floating

point initialisation of send, receive and clock tasks.

2001-10-12 -

3.4 Added new hssCreate_device_ex() function, which allows the user

to specify th e Rx & Tx buffer s ize for eac h port.

2002-01-17 -

3.5 Updated callback function description: added CRC error and Tx

done e rror reporting .

Updated BIT structure: added oscillator frequency variable.

2002-04-11 -

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page iv of vi

Contents

1 Scope . 1
1.1 Identification . 1

1.2 Introduction . 1

2 Applicable Documents . 2
2.1 Specifications . 2

2.2 Standards . 2

2.3 Other D ocum ents . 2

3 Installation Procedure . 3
3.1 To Build the HSS Driver into the VxWorks Kernel . 3

3.1.1 Tornado 1.0.1 Environment . 3

3.1.2 Tornado 2.0 Environment . 3

3.2 To Lo ad the D river So ftware Sepa rately . 3

3.3 Using the HSS Driver . 4

3.3.1 Creating the Device . 4

3.3.2 Configur ing the Po rts . 4

3.3.3 Adding Re ceive Buffers . 4

3.3.4 Adding Call-back Functions . 5

3.3.5 Sending and Rec eiving Data . 6

3.3.6 Destroying the Device . 6

3.3.7 Detecting a n active clock signal on po rts . 6

3.3.8 Obtaining the current host and firmware version number . 7

3.3.9 HSS B uilt-In-Tests . 7

4 Application Program Interface (API) . 8
4.1 High Speed Serial Driver Interface . 8

4.1.1 Create Device . 9

4.1.2 Destroy Device . 10

4.1.3 Port Exists? . 11

4.1.4 Set Port Configuration . 12

4.1.5 Get Port Configuration . 13

4.1.6 Open Po rt . 14

4.1.7 Close Port . 16

4.1.8 Send D ata . 17

4.1.9 Add Receive Buffer . 18

4.1.10 Remove Receive Buffer . 19

4.1.11 Add Call-back . 20

4.1.12 Remove Call-back . 21

4.1.13 Detecting a n active clock signal on po rts . 22

4.1.14 Print out current version number . 23

4.1.15 HSS Built-In-Test . 24

4.2 Driver Data Structures . 26

4.2.1 UART Mode . 27

4.2.1.1 UART P rotocol Information Struc ture . 27

4.2.1.2 UART P rotocol Information Struc ture Memb ers . 28

4.2.2 HDLC Mode . 31

4.2.2.1 HDLC P rotocol Information Struc ture . 31

4.2.2.2 HDLC P rotocol Information Struc ture Memb ers . 32

4.2.2.3 Pream ble Requ irements . 34

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page v of vi

4.2.3 BISYNC Mode . 35

4.2.3.1 BISYNC Protocol Information S tructure . 35

4.2.3.2 BISYNC Protocol Information S tructure Mem bers . 36

4.2.4 SMC UART Mode . 40

4.2.4.1 SMC U ART Pro tocol Information Structure . 40

4.2.4.2 SMC U ART Pro tocol Information Structure M embers . 41

5 Getting Started . 43

6 Contact Details . 44
6.1 Contact Person . 44

6.2 Physical Address . 44

6.3 Postal Address . 44

6.4 Voice an d Electron ic Contac ts . 44

6.5 Product Sup port . 44

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page vi of vi

Abbreviations and Acronyms

API Application Program Interface

BIT Built-In-Test

BRG Baudrate Generator

BSD Berkeley Socket Devices

BSP Board Support Package

CCII Communications, Computer Intelligence, Integration

C2I2 C²I² Syste ms (Pty) Ltd

DPLL Digital Phase-Locked Loop

FTP File Transfer Protocol

HCC Host Carrier C ard

HSS High Spe ed Serial (Acron ym for the C²I² PM C Serial I/O card project)

I/O Input/Output

PC Personal Computer

PCI Peripheral Component Interconnect

PMC PCI Me zzanine C ard

SBC Single Board Computer

SCC Serial Communications Controller

SIO Serial Input/Output

SMC Serial Management Controller

TBD To Be Determined

VME Versa M odule Euroc ard

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 1 of 45

1 Scope
1.1 Identification

This document is the User's Manual for the C²I² Systems' Peripheral Component Interconnect (PCI) Mezzanine

Card (PMC) High Speed Serial VxWorks Driver. This document refers to the High Speed Serial VxWorks driver

version 3.5 or later.

1.2 Introduction

The PMC High Speed Serial (HSS) driver is a low level, device-de pendant, interface for transferring data ove r a

C²I² Systems ' HSS PC I Mezzanin e Card (PMC). The driver binaries are provided with explicit installation

instructions .

The driver software distribution consists of (at least) the following files:

ccHss Lib[4|8]vx.y .z.<host> Host-architecture specific, driver object file:

cc - CCII Sy stems (Pty) Ltd

HssL ib - High Speed Serial driver

[4|8] - 4 port or 8 port HSS PMC

x - Version num ber

y - Revision number

z - Beta number

<host> - Host for wh ich the binary is built

e.g. “ccHss4v2.4.dmv179” for version 2.4 of the HSS

software, built for a DY4 DMV179 PowerPC host for a 4

port HSS PMC.

ccHss4vx.y.z.firmware.zip containing:

ccHss4vx.y.z -<freq>.hex

HSS firmware.

<freq> - corresponding oscillator frequency

ccHss Flashvx .y.z.<hos t> Flash upda te driver.

hssReadme.txt General information and installation notes.

hssRelease_emb.txt, hssRelease_host.txt Relea se no tes an d revis ion hist ory: Ple ase ch eck th is file

for information on the latest updates.

ccHs s4vx. y.z.h_ files.zip Zip file which contains all header files that define the

application progra m interface (AP I) to the driver.

ccHss Test.c, cc HssT est.<ho st> Samp le C code for ac cessing the H SS driver.

hssChanges.txt Changes to be made to VxWorks and BS P files.

hssFlash.txt Procedure for updating the firmware if required.

hssTest.txt Test procedure for verifying host driver and firmware.

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 2 of 45

2 Applicable Documents

2.1 Specifications

Not applicable.

2.2 Standards

! DI-IPS C-81 443: D ata Item Desc ription fo r a Softw are U ser M anua l.

2.3 Other Documents

! VxWorks 5.3.1, Programmers Guide, Edition 1.

! MPC860 PowerQUICC™ User’s Manual Rev. 1.

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 3 of 45

3 Installation Procedure
This paragraph describes the installation procedure for the HSS host driver. (The examples given are for a DY4

DMV 179 Po werPC host.)

3.1 To Build the HSS Driver into the VxWorks Kernel

Assume the BSP directory is given as: BSP_DIR = /tornado/target/config/dmv179

3.1.1 Tornado 1.0.1 Environment

! Copy ccHss4vx.y.z.dmv179 to your $(BSP_DIR)/lib directory as ccHss4.a.

! Edit the Mak efile in the BSP d irectory

(Use hs sCha nges.txt to copy an d paste th e relevan t informatio n.)

Add the follow ing macro (or e dit the existing one):

EXTR A_M ODU LES = $(BSP _DIR)/lib/c cHss4 .a

! Rebuild all VxWorks images.

3.1.2 Tornado 2.0 Environment

! Copy ccHss4vx.y.z.dmv179 to your $(BSP_DIR)/lib directory as ccHss4.a.

! In the Bu ilds section of the Pro ject Wo rkspace , change the Kern el propertie s to include the ccH ss4.a

library file in the Macros LIBs option.

! Rebuild all VxWorks images.

3.2 To Load the Driver Software Separately

Note this step is not required if the driver was built into the BSP.

If the driver is not built into the BSP, a user can load it separately:

! Copy ccHss4vx.y.z.dmv179 to your present working directory as ccHss4.a.

! From the VxWorks shell type:

ld < ccH ss4.a

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 4 of 45

3.3 Using the HSS Driver

3.3.1 Creating the Device

The HSS driver supports multiple HSS PMC on a single host. To establish a connection and construct all the

device s pecific struc tures, a us er mus t create ea ch of the d evices s eparate ly, using the device ID to identify it.

The device ID starts at 0 and increments by 1 for each of the devices. Device 0 refers to the device in the lowest

PMC slot. The HSS driver can not be used until the user has created the device.

Example: For device 0:

/* Create all HSS devices */

hssCreate _device(0);

The device ID is used in all calls to the HSS driver to identify the correct device.

3.3.2 Configuring the Ports

The HSS PMC has four serial communications controllers (SCC’s) [Ports A-D] that support UART and

HDLC/SDLC protoc ols, an d two s erial m anag eme nt con trollers (S MC ’s) [Por ts I&J] th at sup port on ly

asynchronous UART.

After the HSS device has been created, the user must first set the default configuration for each of the ports. To

set the configuration of a port, a protocol-specific information structure is used. Examples of the required structure

is given in c cHssT est.c (for the U ART protocol) a nd can be used as a starting point.

The structures allow the u ser to set all the protocol-specific options available on the HSS PMC comm unication

contro ller chip (the MPC860 PowerQUICC™). For available options for each of th e structure fields, see [2 .3.3].

Example: Set two SCC ports to UART mode and two to HDLC mode:

/* Set initial SCC port configuration */

hssSet_p ort_config(0, HS S_PO RT_A, & uart_info);

hssSet_p ort_config(0, HS S_PO RT_B, & uart_info);

hssSet_p ort_config(0, HS S_PO RT_C , &hdlc_info);

hssSet_p ort_config(0, HS S_PO RT_D , &hdlc_info);

/* Set initial SMC port configuration */

hssSet_p ort_config(0, HS S_PO RT_I, &sm c_uart_info);

hssSet_p ort_config(0, HS S_PO RT_J, &s mc_ua rt_info);

3.3.3 Adding Receive Buffers

Note: this step is not necessary anymore. Receive buffers are added automatically by the driver in the

hssOpe n_port() function. It is still possible to call hssAdd_receive_buffer(), but this function will not do anything.

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 5 of 45

3.3.4 Adding Call-back Functions

The HSS driver notifies the user of different events by calling a user defined Call-back function. The events for

which the user may specify one or more Call-back functions are:

Send Begin - The driver has accepted the data for sending.

Send Done - The driver has finished sending the data.

Receive Done - Data has be en received a nd written into the use r’s buffer.

Clock D etect - A clock s ignal has been de tected on that spec ific port.

Only one Call-back function for each ev ent is recomm ended. For the user to receive data, at least the Receive

Don e Call-b ack m ust be installed . While the Re ceive Done Call-ba ck is ex ecute d, the c orresp ondin g buffe r will

not be accessed by the HS S driver. The user can process the data in the Ca ll-back function or copy the data

somewhere else for processing at the user’s leisure.

Receive function prototype:

void Proces s_rx_data(int dev id, int portid, int crc_error, int userid, int length, void *pdata);

Transmit Begin prototype:

void Proces s_tx_data(int dev id, int portid, int dummy, int use rid, int length, void *pdata);

Transmit Done prototype:

void Proces s_tx_data(int dev id, int portid, int error, int userid, int length, void *pdata);

Clock Detection prototype:

void Proces s_clk_detec t(int devid, int portid, int dummy 1, int userid, int dumm y2, void *dum my3);

devid = device ID.

portid = port ID.

crc_error = HSS _OK (no CRC e rror).

= HSS _ERR OR (CR C error).

error = HSS _OK (se nd done O K).

= HSS _ERR OR (buffer un derrun or CT S lost: send no t complete).

userid = user defined ID.

length = length of received data.

pdata = buffer with received data.

dummy/1/2 = variables not us ed (always 0).

dummy3 = variable not use d (always N ULL).

Example: Add a Call-back function for handling receives:

/* Receive function prototype - this function is implemented by the user */

void Proces s_rx_data(int dev id, int portid, int crc_error, int userid, int length, void *pdata);

/* Add receive Call-back */

hssAdd _callback(0, H SS_C B_ON _REC EIVE_D ONE , Process_rx_ data, 0);

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 6 of 45

3.3.5 Sending and Receiving Data

To send and receive data on a specified port, the user must first open the port. To sto p send ing or rece iving data

from a p ort, the use r must clo se the po rt.

Example: Send some data on device 0, port B:

/* Open port for sending data */

hssOpe n_port(0, HS S_PO RT_B, 5 0);

/* Send some da ta */

hssSen d_data(0, HS S_PO RT_B, 0 , 256, pbuffer256 , NO_W AIT);

/* Do other stuff */

/* */

/* Close port after final usage */

hssClose _port(0, HSS _POR T_B);

3.3.6 Destroying the Device

When the device is no longer required it should be destroyed to free system resources.

Example: Device 0 is no longer required:

/* Close ports after final usage */

hssClose _port(0, HSS _POR T_A);

hssClose _port(0, HSS _POR T_B);

hssClose _port(0, HSS _POR T_C);

hssClose _port(0, HSS _POR T_D);

hssClose _port(0, HSS _POR T_I);

hssClose _port(0, HSS _POR T_J);

/* Destroy device to free resources */

hssDes troy_device(0);

3.3.7 Detecting an active clock signal on ports

To detect when a port’s clock signal becomes active, use the following function.

Example: Detecting a clock signal on device 0 and Port A:

/* Enable port to detect clock */

hssClock_ detect(0, HSS _POR T_A);

A Call-back function gets called once a clock has been detected. After this Call-back function has been serviced,

the user can re-initialise the clock detection routine as shown above.

/* Clock detection prototype - this function is implemented by the user */

void Proces s_clk_even t(int devid, int portid, int dummy 1, int userid, int dumm y2, void *dum my3);

/* adding clock_detect callback */

hssAdd _callback (0,H SS_C B_ON _CLO CK_D ETEC T,Process _clk_detect,0);

Note: The last 2 variables of the clock detection prototype function are dummy variables and are not initialised.

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 7 of 45

3.3.8 Obtaining the current host and firmware version number

The following function prints out the current version number of the driver and firmware software:

/* Print current version number */

hssVersion _print(0);

Note: R un hssC reate_d evice(0) first.

3.3.9 HSS Built-In-Tests

The following function displays each port’s statistics: e.g. how many bytes / packets have been accepted / rejected

/ sent / received and how many errors were reported.

Example: Displaying each port’s statistics for device 0:

hssBit_repo rt(0);

To clear the cou nters of the hssB it_report(0) function, use the function hssB it_clear(0).

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 8 of 45

4 Application Program Interface (API)
4.1 High Speed Serial Driver Interface

The zip file ccHss4vx.y.z.h_files.zip contains the following header files:

crc.h - used for crc algorithm

hssDe fs.h

hssHo stDriver.h

hssCo ntrolIfc.h

The following files should always be included:

hssDe fs.h

hssHo stDriver.h

hssCo ntrolIfc.h

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 9 of 45

4.1.1 Create Device

Function : hssCreate_device

Purpose: Create and initialize the HSS device specific structures.

Arguments:

<dev_id> - Device ID on the PCI bus. The HSS device in the lowest PCI

slot:<dev_id> = 0, next HSS device: <dev_id> = 1, etc.

Returns:

HSS_OK - On success.

HSS_ INVALID _PAR AM - Invalid dev_id supplied.

HSS_PCI_INIT_FAIL - PCI initialisation failed.

HSS_MEM_ALLOC_FAILED - If HSS device structure could not be created in mem ory.

HSS_DEVICE_NOT_FOUND - If HSS device <dev_id> was not found on the PCI bus.

HSS_MEM_INVALID_ADDRESS - If the HSS device PCI address was not valid.

hssStatus h ssCreate_ device(hssD eviceId dev_ id);

Function: hssCreate_device_ex

Purpose: Create and initialize the HSS device specific structures. This extended version allow s the use r to

specify the maxim um R x & Tx b uffer size for e ach po rt.

Arguments:

<dev_id> - Device ID on the PCI bus. The HSS device in the lowest PCI

slot:<dev_id> = 0, next HSS device: <dev_id> = 1, etc.

<scc_#_size> - maxim um R x&Tx b uffer size for s pecific scc port.

<smc_#_size> - max imum Rx& Tx bu ffer size for spe cific sm c port. (v alid

arguments: HSS_2K, HSS_4K, HSS_8K, HSS_16K,

HSS_32K)

<reserved1&2> - 2 reserved variables for future use.

Returns:

HSS_OK - On success.

HSS_INVALID_PARAM - Invalid parameters supplied.

HSS_PCI_INIT_FAIL - PCI initialisation failed.

HSS_MEM_ALLOC_FAILED - If HSS device structure could not be created in mem ory.

HSS_DEVICE_NOT_FOUND - If HSS device <dev_id> was not found on the PCI bus.

HSS_MEM_INVALID_ADDRESS - If the HSS device PCI address was not valid.

hssStatus hssCreate_device_ex(hssDeviceId dev_id, unsigned int scc_0_size, unsigned int scc_1_size,

unsigne d int scc_2 _size, un signed in t scc_3_ size,

unsigned int smc_0_size, unsigned int smc_1_size,

unsigned int rese rved1, unsigne d int reserved2);

Notes: One of these two func tions has to be called (once pe r device) b efore any other func tion call to the

specified device will be valid. The function h ssCrea te_dev ice() sets up the Rx & Tx bu ffer size for all

ports to the default value of 2Kbytes.

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 10 of 45

4.1.2 Destroy Device

Function: hssDestroy_device

Purpose: Destroy the HSS device specific structures.

Arguments:

<dev_id> - Device ID on the PCI bus. The HSS device in the lowest PCI

slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc.

Returns:

HSS_OK - On success.

HSS_INVALID_PARAM - Invalid dev_id supplied.

HSS_PCI_INIT_FAIL - PCI initialisation failed

HSS_ERROR - If the interrupt tasks have not been destroyed.

hssStatus h ssDestroy_ device(hssD eviceId dev_ id);

Notes: After this function is called, no other function call to the specif ied device will be valid, except for

hssCreate _device(..).

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 11 of 45

4.1.3 Port Exists?

Function: hssPo rt_exists

Purpose: Determine whether a port exists on the specified device.

Arguments:

<dev_id> - Device ID on the PCI bus. The HSS device in the lowest PCI

slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc.

<port_id> - Port to query.

Returns:

TRUE - If the port exists in hardware.

FALSE - If the port does not exist in hardware.

hssBoo l hssPort_exists(h ssDeviceId dev_id, hssP ortId port_id);

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 12 of 45

4.1.4 Set Port Configuration

Function: hssS et_por t_config

Purpose: Set port protocol and protocol configuration.

Arguments:

<dev_id> - Device ID on the PCI bus. The HSS device in the lowest PCI

slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc.

<port_id> - Port to configure.

<p_info> - Pointer to information struct used for configuration.

Returns:

HSS_OK - On success.

HSS_PCI_INIT_FAIL - PCI initialisation failed.

HSS_ ERRO R - If the Tx/Rx tasks have not been destroyed.

HSS_INVALID_PARAM - Invalid dev_id or port_id supplied.

HSS_PORT_NOT_INSTALLED - If the port does nor exists.

HSS_ DEVIC E_BU SY - If no PCI buffer is available.

HSS_ DEVIC E_NO T_RES PON DING - If the HSS control block could not be accessed

within a certain time.

HSS_INCORRECT_PARAM_COMBINATION - If an incorrect parameter combination was selected

in the protocol structure.

hssStatus h ssSet_po rt_config(hssD eviceId dev_ id, hssPortId port_id, hs sProtocolInfo* p_ info);

Notes: The <p_in fo> po inter m ust po int to a va lid hssP rotoco lInfo stru cture w ith all protocol information set

as required. If only a few items need to change, the hssGet_port_config(..) function should be used

to fill in the rest of the structure.

Warning: Do not call this function while sending or receiving data as this may result in data loss.

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 13 of 45

4.1.5 Get Port Configuration

Function: hssG et_por t_config

Purpose: Get port protocol and protocol configuration.

Arguments:

<dev_id> - Device ID on the PCI bus. The HSS device in the lowest PCI

slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc.

<port_id> - Port to get conf igurat ion info from.

<p_info> - Pointer to information struct used for configuration.

Returns:

HSS_OK - On success.

HSS_ERROR - If the Tx/Rx tasks have not been destroyed.

HSS_INVALID_PARAM - Invalid dev_id or port_id supplied.

HSS_DEVICE_BUSY - If no PCI buffer is available.

HSS_DEVICE_NOT_RESPONDING - If the HSS control block could not be accessed within a

certain time.

hssStatus h ssGet_po rt_config(hssD eviceId dev_ id, hssPortId port_id, hs sProtocolInfo* p_ info);

Notes: The <p_info> pointer must point to an existing hssProtocolInfo structure.

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 14 of 45

4.1.6 Open Port

Function: hssOpen _port

Purpose: Open specified port for send and receive.

Arguments:

<dev_id> - Device ID on the PCI bus. The HSS device in the lowest PCI

slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc.

<port_id> - Port to open for send and receive.

<priority> - Priority of the send, receive and clock detection task

servicing this port.

Returns:

HSS_OK - On success.

HSS_ERROR - If opening of port failed.

HSS_INVALID_PARAM - Invalid dev_id or port_id supplied

HSS_PORT_NOT_INSTALLED - If the port does nor exists.

HSS_PORT_NOT_CONFIGURED - If an ‘Open’ is attempted on a port before configuring the

port.

HSS_DEVICE_BUSY - If no PCI buffer is available.

HSS_DEVICE_NOT_RESPONDING - If the HSS control block could not be accessed within a

certain time.

HSS_MEM_ALLOC_FAILED - If failed to create semaphore or spawn receive task.

hssStatus h ssOpen _port(hssDe viceId dev_id, hs sPortId port_id, hss INT32 priority);

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 15 of 45

Function: hssOp en_port_ fp

Purpose: Open specified port for send and receive with floating point functionality.

Arguments:

<dev_id> - Device ID on the PCI bus. The HSS device in the lowest PCI

slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc.

<port_id> - Port to open for send and receive.

<priority> - Priority of the send, receive and clock detection task

servicing this port.

<fp_options> - Floating point enable for send, receive and clock detect task:

HSS_TX_TASK_FP_ENABLE,

HSS_RX_TASK_FP_ENABLE,

HSS_CLK_TASK_FP _ENABLE

Returns:

HSS_OK - On success.

HSS_ERROR - If opening of port failed.

HSS_INVALID_PARAM - Invalid dev_id or port_id supplied.

HSS_PORT_NOT_INSTALLED - If the port does nor exists.

HSS_PORT_NOT_CONFIGURED - If an ‘Open’ is attempted on a port before configuring the

port.

HSS_DEVICE_BUSY - If no PCI buffer is available.

HSS_DEVICE_NOT_RESPONDING - If the HSS control block could not be accessed within a

certain time.

HSS_MEM_ALLOC_FAILED - If failed to create semaphore or spawn receive task.

hssStatus h ssOpen _port_fp(hssD eviceId dev_ id, hssPortId port_id, hs sINT32 priority, char fp_ options);

Notes: These functions must be called prior to attempting to send or receive on any channel of the specified

port.

Opening a port spawns a receive, send and clo ck detect tas k for tha t spec ific port. Th e priority of thes e tasks is

specified by <priority>.

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 16 of 45

4.1.7 Close Port

Function: hssClose_p ort

Purpose: Close specified port for send and receive.

Arguments:

<dev_id> - Device ID on the PCI bus. The HSS device in the lowest PCI

slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc.

<port_id> - Port to close for send and receive.

Returns:

HSS_OK - On success.

HSS_ERROR - If opening of port failed or Rx/Tx tasks have not been

destroye d..

HSS_INVALID_PARAM - Invalid dev_id or port_id supplied.

HSS_PORT_NOT_INSTALLED - If the port does nor exists.

HSS_PORT_NOT_CONFIGURED - If an ‘Open’ is attempted on a port before configuring the

port.

HSS_DEVICE_BUSY - If no PCI buffer is available.

HSS_DEVICE_NOT_RESPONDING - If the HSS control block could not be accessed within a

certain time.

hssStatus h ssClose_ port(hssDev iceId dev_id, hss PortId port_id);

Notes: Closing a port a secon d time has no effect a nd still re turns H SS_ OK, s ince th e port w as suc cessf ully

closed.

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 17 of 45

4.1.8 Send Data

Function: hssSen d_data

Purpose: Send data o ver the specifie d cha nnel.

Arguments:

<dev_id> - Device ID on the PCI bus. The HSS device in the lowest PCI

slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc.

<port_id> - Port on w hich data must be sent.

<chan_id> - Channel on which data must be sent. If a port has only one

channel, <chan_id> = 0.

<nr_bytes>- Number of bytes to send.

<p_data> - Pointer to buffer with at least <nr_bytes> bytes of data.

<timeout> - Not used anymore.

Returns:

HSS_OK - On success.

HSS_INVALID_PARAM - Invalid dev_id or port_id supplied.

HSS_PORT_NOT_INSTALLED - If the port does nor exists.

HSS_PORT_NOT_OPEN - If the port is no t open ye t.

HSS_DEVICE_BUSY - If no PCI buffer is available.

HSS_DEVICE_NOT_RESPONDING - If the HSS control block could not be accessed within a

certain time.

hssStatus hssSend_data(hssDeviceId dev_id, hssPortId port_id, hssChannelId chan_id, hssCount nr_bytes,

hssBufferP tr p_data, hssInt32 tim eout);

Notes: The po rt must be opene d before a ttempting to send d ata over it.

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 18 of 45

4.1.9 Add Receive Buffer

Function: hssAdd_receive_buffer

Purpose: Add a receiv e buffe r to a sp ecified chan nel.

Arguments :

<dev_id> - Device ID on the PCI bus. The HSS device in the lowest PCI

slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc.

<port_id> - Port on which data must be received.

<chan_id> - Cha nnel o n whic h data mus t be rec eived . If a port h as on ly

one channel, <chan_id> = 0.

<min_nr_bytes> - Minimum number of bytes to receive before Call-back

function is called.

<max_nr_bytes> - Maximu m num ber of bytes to receive into this buffer.

<p_data> - Pointer to buffer with space for at least <max_nr_bytes>

bytes of data.

Returns:

HSS_OK - On success.

hssStatus hssAdd_receive_buffer(hssDeviceId dev_id, hssPortId port_id, hssChannelId chan_id, hssCount

min_nr_b ytes, hssCou nt max_n r_bytes, hssB ufferPtr p_data);

Note: This function is not used anymore . The receive bu ffers are added internally. The user may still call

this function, but this function returns only HSS_OK.

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 19 of 45

4.1.10 Remove Receive Buffer

Function: hssRemove_receive_buffer

Purpose: Rem ove a receive buffe r from a specifie d cha nnel.

Arguments:

<dev_id> - Device ID on the PCI bus. The HSS device in the lowest PCI

slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc.

<port_id> - Port on which data must be received.

<chan_id> - Cha nnel o n whic h data mus t be rec eived . If a port h as on ly

one channel, <chan_id> = 0.

<p_data> - Pointer to buffer to be removed.

Returns:

HSS_OK - On success.

hssStatus hssRem ove_receive_b uffer(hssD eviceId dev_id, hssPo rtId port_id, hssChanne lId chan_id, hssBufferPtr

p_data);

Note: This function is not used anym ore. Th e rece ive bu ffers are remo ved in ternally . The u ser m ay still ca ll

this function, but this function returns only HSS_OK.

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 20 of 45

4.1.11 Add Call-back

Function: hssAdd_callback

Purpose: Add a user defined Call-back routine.

Arguments:

<dev_id> - Device ID on the PCI bus. The HSS device in the lowest PCI

slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc.

<cb_type> - Call-back type, one of: HSS_CB_ON_SEND_BEGIN,

HSS_CB_ON_SEND_DONE,

HSS_CB_ON_RECEIVE_DONE,

HSS_CB_ON_CLOCK_DETECT

<Call-back> - User function.

<user_id> - User identifier. This identifier will be passed to the Call-back

function when it is called.

Returns:

HSS_OK - On success.

HSS_INVALID_PARAM - Invalid dev_id supplied.

HSS_MEM_ALLOC_FAILED - If HSS Ca ll-back node co uld not be created in memo ry

hssSta tus hssAdd_ callback (hssDe viceId de v_id, hss Callbac kType c b_type, h ssCallb ack Ca ll-back, hss UserId

user_id);

Notes: Four call-backs are provided for us er notification from the driver:

HSS_CB_ON_SEND_BEGIN:

This Call-back will be called as soon as the data has been handed over to the driver for sending.

HSS_CB_ON_SEND_DONE:

This Call-back will be called whe n all the data for a given s end has be en sent by the d river.

HSS_CB_ON_RECEIVE_DONE:

This Call-back will be called when a block of data has been received by the driver. The user must

add at least one of these call-backs to receive data.

Only one call-back for each above type per device is recommended. The call-back function receives the port id,

such that the user can distinguish which port triggered the call-back. More than one call-back function may be

used, in which case the call-backs will be called in the sequence they were added.

HSS_CB_ON_CLOCK_DETECT:

This C all-bac k will be called w hen a clock s ignal h as be en de tected on a po rt. The u ser m ust ad d only

one of the se call-ba cks. This Call-bac k function will only be c alled onc e a port ha s been instructed to

detect a clock sign al, e.g. calling the function hssC lock_detect().

Note:

HSS_CB_ON_RECEIVE_BEGIN:

This Call-back does not exist anymore.

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 21 of 45

4.1.12 Remove Call-back

Function: hssRemove_callback

Purpose: Remove a user defined Call-back routine.

Arguments:

<dev_id> - Device ID on the PCI bus. The HSS device in the lowest PCI

slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc.

<cb_type> - Call-back type, one of: HSS_CB_ON_SEND_BEGIN,

HSS_CB_ON_SEND_DONE,HSS_CB_ON_RECEIVE_DON

E, HSS_CB_ON_CLOCK_DETECT

<Call-back>- User function to remove.

<user_id> - User identifier. This identifier must be the same as the one

passed to hssAdd_callback.

Returns:

HSS_OK - On success.

HSS_INVALID_PARAM - Invalid dev_id supplied.

hssStatus hssRemov e_callba ck(hssD eviceId dev_id, hssCallbackType cb_type, hssCallback Call-back, hssUse rId

user_id);

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 22 of 45

4.1.13 Detecting an active clock signal on ports

Function: hssClock_detect

Purpose: Set up a port to detect when clock signal becomes active.

Arguments:

<dev_id> - Device ID on the PCI bus. The HSS device in the lowest PCI

slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc.

<port_id> - Port on whic h to de tect clock sign al.

Returns:

HSS_OK - On success.

HSS_INVALID_PARAM - Invalid dev_id or port_id supplied.

HSS_PORT_NOT_INSTALLED - If the port does nor exists.

HSS_DEVICE_BUSY - If no PCI buffer is available.

HSS_DEVICE_NOT_RESPONDING - If the HSS control block could not be accessed within a

certain time.

hssStatus h ssClock_d etect(hssDe viceId dev_id, hs sPortId port_id);

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 23 of 45

4.1.14 Print out current version number

Function: hssVersion_print

Purpose: To obtain the current version number of the driver and firmware software.

Arguments:

<dev_id> - Device ID on the PCI bus. The HSS device in the lowest PCI

slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc.

Returns:

HSS_OK - On success.

HSS_INVALID_PARAM - Invalid dev_id supplied.

HSS_DEVICE_BUSY - If no PCI buffer is available.

HSS_DEVICE_NOT_RESPONDING - If the HSS control block could not be accessed within a

certain time.

hssStatus h ssVersion_ print(hssDevice Id dev_id);

Note: Run first hssC reate_device (dev_id);

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 24 of 45

4.1.15 HSS Built-In-Test

The follow ing structu res define the HS S Built_In _Test va riables (de fined in hss Contro lIfc.h):

BIT structures:

struct hssBoardBitInfoStruct

{

hssUINT 32 board_n umber;

hssUINT32 board_type;

hssUINT32 firmware_version;

hssUINT32 firmware_revision;

hssUINT32 firmware_beta;

hssUINT32 oscillator_freq;

char firmw are_cre ation_da te[30];

};

typedef struct hssBoardBitInfoStruct hssBoardBitInfo;

struct hssSendBitInfoStruct

{

hssCount nr_accepted;

hssCount nr_rejected;

hssCount nr_errors;

hssCo unt nr_se nt;

hssCount nr_bytes_accepted;

hssCount nr_bytes_rejected;

hssCo unt nr_by tes_sen t;

};

typedef struct hssSendBitInfoStruct hssSendBitInfo;

struct hssReceiveBitInfoStruct

{

hssCount nr_buffers_busy;

hssCount nr_received;

hssCount nr_bytes_received;

hssCount nr_errors;

};

typedef struct hssReceiveBitInfoStruct hssReceiveBitInfo;

Main BIT structure:

struct hssBitInfoStruct

{

hssBo ardBitInfo board_ bit;

hssSe ndBitInfo tx_scc_ bit[HSS _HW _NR _SCC];

hssRe ceiveB itInfo rx_scc _bit[HS S_HW _NR _SCC];

hssSe ndBitInfo tx_smc _bit[HS S_HW _NR _SM C];

hssRe ceiveB itInfo rx_sm c_bit[HS S_HW _NR _SM C];

};

typedef struct hssBitInfoStruct hssBitInfo;

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 25 of 45

Three functions give access to the HSS Built_In_Test structures:

Function: hssBit_getstruct

Purpose: To obtain the latest BIT variables.

Arguments:

<dev_id> - Device ID on the PCI bus. The HSS device in the lowest PCI

slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc.

<bit_info> - Pointer to BIT info stru ct.

Returns:

HSS_OK - On success.

HSS_INVALID_PARAM - Invalid dev_id supplied.

HSS_DEVICE_BUSY - If no PCI buffer is available.

HSS_DEVICE_NOT_RESPONDING - If the HSS control block could not be accessed within a

certain time.

hssStatus h ssBit_getstruct(hs sDeviceId d ev_id, hssBitInfo *b it_info);

Function: hssBit_report

Purpose: To display each port’s statistics.

Arguments:

<dev_id> - Device ID on the PCI bus. The HSS device in the lowest PCI

slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc.

Returns:

HSS_OK - On success.

HSS_INVALID_PARAM - Invalid dev_id supplied.

HSS_DEVICE_BUSY - If no PCI buffer is available.

HSS_DEVICE_NOT_RESPONDING - If the HSS control block could not be accessed within a

certain time.

hssStatus h ssBit_report(hss DeviceId de v_id);

Function: hssBit_clear

Purpose: To clear each port’s counters.

Arguments:

<dev_id> - Device ID on the PCI bus. The HSS device in the lowest PCI

slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc.

Returns:

HSS_OK - On success.

HSS_INVALID_PARAM - Invalid dev_id supplied.

HSS_DEVICE_BUSY - If no PCI buffer is available.

HSS_DEVICE_NOT_RESPONDING - If the HSS control block could not be accessed within a

certain time.

hssStatus h ssBit_clear(hss DeviceId de v_id);

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 26 of 45

4.2 Driver Data Structures

Each protocol defines a protocol information structure used to configure a port with protoc ol specific optio ns. Th is

paragraph details the information structures used by each protocol and explains the use and limitations of every

structure mem ber.

hssProtocolInfo structure:

struct hssProtocolInfoStruct

{

hssUINT32 protocol_id;

/* only used for HSS Front Pane l boards - value ignored otherwise */

hssUINT32 elec_interface;

union

{

/* SCC info */

hssUa rtInfo uart;

hssHdlcInfo hdlc;

hssBisyncInfo bisync;

/* SMC info */

hssSm cUartInfo smc_ uart;

} info;

};

typedef struct hssProtocolInfoStruct hssProtocolInfo;

__

protocol_id:

HSS_PROTOCOL_UART

HSS_PROTO COL_HDLC

HSS_PROTOCOL_BISYNC

HSS_PROTOCOL_SMC_UART

elec_interface: (only used for HSS Front Panel boards)

HSS_RS485 /* RS485/422 */

HSS_RS232_INT_CTL_LINES /* RS232 : control lines (RTS , CTS, CD) are

connected internally */

HSS_RS232_EXT_CTL_LINES /* RS232: control lines (RTS, CTS, CD) need to be

connected externally */

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 27 of 45

4.2.1 UART Mode

This protocol may only be used with the four SCC ports: Ports A-D.

4.2.1.1 UART Protocol Information Structure
The followin g struc ture is d efined in the file hssControlIfc.h and is given here in abbreviated format (i.e. reserved

and obsolete members are not shown). Always use the structure as defined in hssControlIfc.h.

struct hssUartInfoStruct

{

hssUIN T32 ba ud_rate ;

hssUINT32 clock_source;

hssU INT3 2 flow_ contro l;

hssUINT32 stop_bits;

hssUINT32 data_bits;

hssUINT32 uart_mode;

hssUINT32 freeze_tx;

hssUINT32 rx_zero_stop_bits;

hssUINT32 sync_mode;

hssUINT32 disable_rx_while_tx;

hssUINT32 parity_enable;

hssUINT32 rx_p arity;

hssUINT32 tx_pa rity;

hssUINT32 diag_mode;

hssUINT32 max_receive_bytes;

hssU INT3 2 ma x_idl;

hssUINT 32 brkcr;

hssUINT32 parec;

hssUINT32 frmec;

hssUINT32 nosec;

hssUINT32 brkec;

hssUINT32 uaddr1;

hssUINT32 uaddr2;

hssUINT32 toseq;

hssUIN T32 cc [8];

hssUINT32 rccm;

};

typedef struct hssUartInfoStruct hssUartInfo;

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 28 of 45

4.2.1.2 UART Protocol Information Structure Members

Name Options Description

baud_ rate 1200 - 115kbps (RS232)

1200 - 2.4Mbps (RS422/RS485)

0 - Indicates separate transmitter and receiver baudrates will be

set.

Any values permissible.

Units in bps.

This mem ber is used to spe cify a

single b audra te for bo th

transm itter and receive r.

clock_source HSS_CLOCK_DE FAULT HSS_CLOCK_DE FAULT

connects BRG[1-4] to

Port[A -D].

For synchronous UART:

when transm it clock is set to

HSS_CLOCK_BR G[1-4], then

receive clock is still set to

HSS_CLOCK_EXT[1-4] for Port[A-

D].

For asynchronous UART:

transmit & receive clocks can be

set to one of

HSS_CLOCK_BR G[1-4] or

HSS _CLO CK_ EXT [1-4].

HSS_CLOCK_BRG1

HSS_CLOCK_BRG2

HSS_CLOCK_BRG3

HSS_CLOCK_BRG4

Baud rate Ge nerato rs [1-4].

HSS_CLOCK_EXT1

HSS_CLOCK_EXT2

HSS_CLOCK_EXT3

HSS_CLOCK_EXT4

External Clocks connected

on Pins: RXCLK[1-4]

(RS232) or CLKIN[1-4]

(RS48 5/RS4 22).

Note:

HSS_CLOCK_EXT[1-2]

can only be used for SCC

Port[A&B], while

HSS_CLOCK_EXT[3-4]

can only be used for SCC

Port[C &D].

flow_control HSS_UART_FLOW_NORMAL

HSS_UART_FLOW_ASYNC

Normal or asynchronous f low

contro l.

stop_b its HSS_UART_STOP_BITS_ONE

H S S _U A R T_ S TO P _B IT S _T W O

Number of full stop bits.

data_b its HSS_UART_DATA_B ITS_5

HSS_UART_DATA_B ITS_6

HSS_UART_DATA_B ITS_7

HSS_UART_DATA_B ITS_8

HSS_UART_DATA_B ITS_9

HSS_UART_DATA_B ITS_10

HSS_UART_DATA_B ITS_11

HSS_UART_DATA_B ITS_12

HSS_UART_DATA_B ITS_13

HSS_UART_DATA_B ITS_14

Num ber of d ata bits. N ote on ly

ports I & J (i .e. the SMC ports) can

select 9 or more data bits.

uart_mode HSS_UART_MODE_NORMAL

HSS_UART_MODE_MAN_MM

HSS_UART_MODE_AUTO_MM

Selec t UAR T mo de: no rmal,

man ual m ultidrop o r autom atic

mult idrop mode.

freeze_ tx HSS_UART_FREEZE_TX_NORMAL

HSS_UART_FREEZE_TX_FREEZE

Paus e (freez e) trans missio n.

Transmission continues when set

back to norm al.

rx_zero _stop_ bits HSS_UART_RX_ZERO_STOP_BITS_NORMAL

HSS_UART_RX_ZERO_STOP_BITS_NONE

If set to none, the receiver

receives data without stop bits.

sync_mode HSS_UART_SYNC_MODE_ASYNC

HSS_UART_SYNC_MODE_SYNC

Select asynchronous (normal) or

synchronous mode.

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 29 of 45

disable_ rx_wh ile_tx HSS_UART_DISABLE_RX_WHILE_TX_NORMAL

HSS_UART_DISABLE_RX _WHILE_TX_DISABLE

Enab le (norm al) or disa ble

receiver while transmitting. Used

in mult idrop mode to prevent

reception of own messages.

parity_ enab le HSS_UART_PARITY_NO_PARITY

HSS_UART_PARITY_ENAB LE

Enable or disable parity checking.

rx_parity, tx_ parity HSS_UART_PARITY_ODD

HSS_UART_PARITY_LOW

HSS_UART_PARITY_EVEN

HSS_UART_PARITY_HIGH

Rece ive and transm it parity.

Parity w ill only be c heck ed if par ity

is enabled.

diag_mode HSS_DIAG_NORMAL Norm al ope ration. U se this

for external loopback.

Set diagnostic mode.

External loopback - RS485:

conn ect TX D+ to R XD+ , TXD - to

RXD-, (TXCLK+ to RXCLK+ and

TXCLK- to RXCLK- for

synchro nous m ode).

External loopback - RS232:

conn ect TX D to R XD, (T XCL K to

RXCLK for synchronous mode)

and RTS to CTS & CD.

For HSS Front Panel I/O Board:

p rog ram elec_interface=

HSS_RS232_INT_CTL_LINES

and connect TXD to RXD, (TXCLK

to RXC LK for syn chronou s mod e).

Ignore RTS, CTL & CD.

HSS_DIAG_LOOPBACK Internal loopback: TXD &

RXD are connected

internally. The value on

RXD , CTS & CD is

ignored. The transmitter

and receiver share the

same clock source.

HSS_DIAG_ECHO The transmitter

automatically resends

receive d data bit-by-bit.

HSS_DIAG_LOOPBACK_ECHO Loopback and echo

operation occur

simultaneous ly.

max_receive_bytes 1 to 2048 (default) or up to 32 Kbytes, depending on how many

bytes have been allocated to the Rx & Tx buffers (See function

hssCre ate_dev ice_ex()).

Maximum number of bytes that

may be copied into a buffer.

max_idl 0 to 2048 (default) or up to 32 Kbytes, depending on how many

bytes have been allocated to the Rx & Tx buffers (See function

hssCre ate_dev ice_ex()).

Maximum idle characters. When a

character is received, the receiver

begin s cou nting idle chara cters. If

max_ idl idle charac ters are

receive d befo re the n ext data

characte r, an idle time out occu rs

and the buffer is closed. Thus,

max _idl offers a way to dem arcate

frames. To disable the feature,

clear max_idl. The bit length of an

idle character is calculated as

fol lows: 1 + data length (5-9) + 1

(if parity is used) + number of stop

bits (1-2). For 8 data bits, no

parity, and 1 stop bit, the character

length is 10 bits.

brkcr 0 - 2048 Number of break characters sent

by transmitter. For 8 data bits, no

parity, 1 s top bit, an d 1 sta rt bit,

each break character consists of

10 zero bits.

parec 0 - 65535 Number of received parity errors.

frmec 0 - 65535 Num ber of rece ived cha racters

with framing errors.

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 30 of 45

nosec 0 - 65535 Num ber of rece ived cha racters

with noise errors.

brkec 0 - 65535 Number of break condit ions on the

signa l.

uaddr1, uad dr2 0x0000 - 0x00FF Addre ss in m ultidrop m ode. O nly

the lower 8 bits are used so the

upper 8 bits should be cleared.

toseq 0x0000 - 0x00FF Transmit out of sequence

characte r (e.g. XON , XOFF).

cc[8] 0b00------ccc ccccc - va lid entry

0b10------cccccccc - entry not valid and is not used.

Control character 1 to 8. These

chara cters ca n be u sed to delimit

received messages.

------ (6 bits) - re serve d.

Initial ise to zero.

cccccccc (8 bits) - defines control

characters to be compared to the

incomin g charac ter.

rccm 0b11------00000000 - ignore these bits when comparing

 incomming character

0b11------11111111 - enable comparing the incoming

 characte r to cc[n].

Rece ive con trol char acter m ask.

A one enables comparison and a

zero m asks it.

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 31 of 45

4.2.2 HDLC Mode

This protocol may only be used with the four SCC ports: Ports A-D.

4.2.2.1 HDLC Protocol Information Structure
The followin g struc ture is d efined in the file hssControlIfc.h and is given here in abbreviated format (i.e. reserved

and obsolete members are not shown). Always use the structure as defined in hssControlIfc.h.

struct hssHdlcInfoStruct

{

hssUINT32 tx_baud_rate;

hssUINT32 rx_baud_rate;

hssUINT32 clock_source;

hssUINT32 crc_mode;

hssUINT32 diag_mode;

hssUINT32 max_receive_bytes;

hssUINT32 max_frame_bytes;

hssUINT32 address_mask;

hssUINT32 address1;

hssUINT32 address2;

hssUINT32 address3;

hssUINT32 address4;

hssUINT32 nr_flags_between_frames;

hssUINT32 retransmit_enabled;

hssUINT32 flag_sharing_enabled;

hssUINT32 rx_disabled_during_tx;

hssUINT32 bus_mode;

hssUINT32 bus_mode_rts;

hssUINT32 multiple_tx_frames;

hssUINT32 encoding_method;

hssUINT32 preamble_length;

hssUINT32 preamble_pattern;

hssUINT32 send_idles_or_flags;

};

typedef struct hssHdlcInfoStruct hssHdlcInfo;

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 32 of 45

4.2.2.2 HDLC Protocol Information Structure Members

Name Options Description

tx_baud_rate,

rx_bau d_rate

1200 - 115kbps (RS232)

1200 - 12Mbps (RS422/RS485)

Any values permissible.

Units in bps.

NB: It is n ot pos sible to s pecify

the transmitter and receiver

baudrate separately anymore.

Se t bo th var iab les to the same

baudrate.

tx_clock_direction

rx_clock_direction

OBSOLETE VARIABLES

clock_source HSS_CLOCK_DE FAULT HSS_CLOCK_DE FAULT

conn ects B RG[1 -4] to Po rt[A-D].

For NRZ/NRZI: when transm it

clock is set to

HSS_CLOCK_BR G[1-4], then

receive clock is still set to

HSS_CLOCK_EXT[1-4] for

Port[A -D].

For FM0/1 , Manc hester & Diff.

Manchester: transmit & receive

clocks can be set to one of

HSS _CLO CK_B RG[1-4] or

HSS _CLO CK_ EXT [1-4].

HSS_CLOCK_BRG1

HSS_CLOCK_BRG2

HSS_CLOCK_BRG3

HSS_CLOCK_BRG4

Baud rate Ge nerato rs [1-4].

HSS_CLOCK_EXT1

HSS_CLOCK_EXT2

HSS_CLOCK_EXT3

HSS_CLOCK_EXT4

External Clocks connected

on Pins: RXCLK[1-4]

(RS232) or CLKIN[1-4]

(RS48 5/RS4 22).

Note:

HSS_CLOCK_EXT[1-2]

can only be used for SCC

Port[A&B], while

HSS_CLOCK_EXT[3-4]

can only be used for SCC

Port[C &D].

crc_mode HSS _HD LC_C RC_ MO DE_ 16_B IT

HSS _HD LC_C RC_ MO DE_ 32_B IT

HDLC CRC m ode.

diag_mode HSS_DIAG_NORMAL Norm al ope ration. U se this

for external loopback.

Set diagnostic mode.

External loopback - RS485:

conn ect TX D+ to R XD+ , TXD - to

RXD-, (TXCLK+ to RXCLK+ and

TXCLK- to RXCLK- for

synchro nous m ode).

External loopback - RS232:

conn ect TX D to R XD, (T XCL K to

RXCLK for synchronous mode)

and RTS to CTS & CD.

For HSS Front Panel I/O Board:

p rog ram elec_interface=

HSS_RS232_INT_CTL_LINES

and connect TXD to RXD,

(TXCLK to RXCLK for

synchronous mode). Ignore RTS,

CTL & CD.

For synchronous mode:

see encoding_method.

HSS_DIAG_LOOPBACK Internal loopback: TXD &

RXD are connected

internally. The value on

RXD , CTS & CD is

ignored. The transmitter

and receiver share the

same clock source.

HSS_DIAG_ECHO The transmitter

automatically resends

receive d data bit-by-bit.

HSS_DIAG_LOOPBACK_ECHO Loopback and echo

operation occur

simultaneous ly.

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 33 of 45

max_receive_bytes 1 to (2048 - CRC bytes (2 or 4)) (default) or up to (32 Kbytes -

CRC bytes (2 or 4)), depending on how many bytes have been

allocated to the Rx & Tx buffers (See function

hssCre ate_dev ice_ex()).

Max imum num ber of b ytes to

receive before closing buffer. Set

equal to max_frame_bytes.

max_frame_bytes 1 to 2048 (default) or up to 32 Kbytes, depending on how many

bytes have been allocated to the Rx & Tx buffers (See function

hssCre ate_dev ice_ex()).

Maximum number of bytes per

frame. Set equal to the number

of data bytes plus the number of

CRC bytes (either 2 or 4) per

frame.

address_mask 0x0000 - 0xFFFF HDLC address mask. A one

enables comp arison an d a zero

mas ks it.

address1, address2,

address3, address4

0x0000 - 0xFFFF Four address registers for

address recogni tion. The SCC

reads the frame address from the

HDL C rece iver, com pares it

with the address registers, and

mas ks the re sult with

addre ss_m ask.

For example, to recognize a

frame tha t begins 0 x7E (flag),

0x68, 0xAA,

using 16-bit address recognit ion,

the ad dress register s sho uld

contain 0xAA68 and

address_mask

shou ld conta in 0xFF FF. Fo r 8-bit

addresses, clear the eight high-

order address bits.

nr_flags_between_frames 0 - 15 Minimum number of f lags

between or before frames.

retransmit_enabled TRUE

FALSE

Enab le re-tran smit.

flag_sharing_enabled TRUE

FALSE

Enable f lag sharing.

rx_disab led_du ring_tx TRUE

FALSE

Disab le rece ive dur ing tran smit.

bus_mode TRUE

FALSE

Enable bus mode.

bus_m ode_rts TRUE

FALSE

Enab le spec ial RTS opera tion in

HDLC bus mode.

multiple_tx_frames TRUE

FALSE

Enab le mu ltiple fram es in

t ransmi t F IFO.

encoding_method HSS_UART_ENCODING_METHOD_NRZ

HSS_UART_ENCODING_METHOD_NRZI_MARK

HSS_UART_ENCODING_METHOD_NRZI_SPACE

HSS_UART_ENCODING_METHOD_FM0

HSS_UART_ENCODING_METHOD_FM1

HSS_UART_ENCODING_METHOD_MANCHESTER

HSS_UART_ENCODING_METHOD_DIFF_MANCHESTER

Rx / Tx encoding method. NRZ

and NRZI use no DPLL. FM0/1,

Manchester & Diff_Manchester

use the DPLL for clock

recovery.The clock rate is 16x

when the DPLL is used.

pream ble_leng th HSS_DPLL_PREAM BLE_LENGTH_0

HSS_DPLL_PREAM BLE_LENGTH_8

HSS_DPLL_PREAM BLE_LENGTH_16

HSS_DPLL_PREAM BLE_LENGTH_32

HSS_DPLL_PREAM BLE_LENGTH_48

HSS_DPLL_PREAM BLE_LENGTH_64

HSS_DPLL_PREAM BLE_LENGTH_128

Determines the length of the

preamble pattern.

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 34 of 45

preamble _pattern HSS_DPLL_PREAM BLE_PATTERN_00

HSS_DPLL_PREAM BLE_PATTERN_10

HSS_DPLL_PREAM BLE_PATTERN_01

HSS_DPLL_PREAM BLE_PATTERN_11

Determ ines wh at bit pattern

precedes each Tx frame.

send_idles_or_flags HSS_HDLC_SEND_IDLES

HSS_HDLC_SEND_FLAGS_SYNCS

Send either idles or flags/syncs

between frames as defined by

the protocol. For HDLC the f lag

is defined as 0x7E. NRZI

encoding methods may only be

used with flags/syncs.

4.2.2.3 Preamble Requirements

Decoding Method Preamb le Pattern Minimu m Prea mble Le ngth

Required

NRZI M ark All zeros 8-bit

NRZI Space All ones 8-bit

FM0 All ones 8-bit

FM1 All zeros 8-bit

Manchester 101010...10 8-bit

Differential Manchester All ones 8-bit

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 35 of 45

4.2.3 BISYNC Mode

This protocol may only be used with the four SCC ports: Ports A-D.

4.2.3.1 BISYNC Protocol Information Structure
The followin g struc ture is d efined in the file hssControlIfc.h and is given here in abbreviated format (i.e. reserved

and obsolete members are not shown). Always use the structure as defined in hssControlIfc.h.

struct hssBisyncInfoStruct

{

hssUIN T32 ba ud_rate ;

hssUINT32 clock_source;

hssUINT32 max_receive_bytes;

hssUINT32 min_no_sync_pairs;

hssUIN T32 crc _select;

hssUINT32 receive_bcs;

hssUINT32 rx_transparant_mode;

hssUINT32 reverse_data;

hssUINT32 disable_rx_while_tx;

hssUINT32 rx_p arity;

hssUINT32 tx_pa rity;

hssUINT32 diag_mode;

hssUINT32 crcc;

hssUINT32 prcrc;

hssUINT32 ptcrc;

hssUINT32 parec;

hssUINT32 bsync;

hssUINT32 bdle;

hssUIN T32 cc [8];

hssUINT32 rccm;

hssUINT32 sync;

hssUINT32 syn_length;

hssUINT32 send_idles_or_flags;

};

typedef struct hssBisyncInfoStruct hssBisyncInfo;

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 36 of 45

4.2.3.2 BISYNC Protocol Information Structure Members

Name Options Description

baud_ rate 1200 - 115kbps (RS232)

1200 - 12Mbps (RS422/RS485)

Any values permissible.

Units in bps.

This mem ber is used to spe cify a

single baudrate for both transmitter

and re ceiver.

clock_source HSS_CLOCK_DE FAULT HSS _CLO CK_ DEF AUL T con nects

BRG [1-4] to P ort[A-D].

Whe n the tra nsm it clock is set to

HSS_CLOC K_BRG[1-4], then receive

clock is still set to

HSS _CLO CK_ EXT [1-4] for P ort[A-D].

HSS_CLOCK_BRG1

HSS_CLOCK_BRG2

HSS_CLOCK_BRG3

HSS_CLOCK_BRG4

Baud rate Ge nerato rs [1-4].

HSS_CLOCK_EXT1

HSS_CLOCK_EXT2

HSS_CLOCK_EXT3

HSS_CLOCK_EXT4

External Clocks connected

on Pins: RXCLK[1-4]

(RS232) or CLKIN[1-4]

(RS48 5/RS4 22).

Note:

HSS_CLOCK_EXT[1-2]

can only be used for SCC

Port[A&B], while

HSS_CLOCK_EXT[3-4]

can only be used for SCC

Port[C &D].

max_receive_bytes 1 to (2048 - 2 CRC bytes) (defau l t) or up to (32 Kbytes - 2 CRC

bytes), depending on how many bytes have been allocated to the

Rx & T x buffers (S ee function hssCre ate_dev ice_ex()).

Maximum num ber of bytes to receive

before clos ing buffer.

min_no_ sync_pairs 0b0000 (0 pairs) - 0b1111 (16 pairs) Minim um nu mber o f SYN1 -SYN2 pairs

sent between or before messages.

The e ntire pa ir is alwa ys sen t,

regardless of the syn_len gth

variable.

crc_select HSS_BISYNC_CRC_M ODE_16

HSS_BISYNC_CRC_MODE_LRC

CRC selection.

1: CRC 16 (X16 + X15 + X2 + 1):

initial ise prcrc & ptcrc to al l zeros or

all ones.

2: LRC (sum check): for even LRC,

initial ise prcrc & ptcrc to zeros, for

odd LRC initialise to ones.

receive_bcs TRUE

FALSE

Enable Receive Block Check

Sequ ence (BCS).

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 37 of 45

rx_transparant_mode TRUE

FALSE

Enab le Rec eiver tra nspa rent m ode.

FALS E: norm al rece iver m ode w ith

SYNC stripping and control character

recognition.

TRUE: transparent receiver mode.

SYNC ’s, DLE’s a nd con trol characte rs

are recognised only after the leading

DLE character. The receiver

calculates the CRC16 sequence even

if it is progra mm ed to

LRC while in transparent mode.

Initial ize prcrc to the CRC16 preset

value before sett ing

rx_transparant_mode .

reverse _data TRUE

FALSE

Enable Reverse data.

disable_ rx_wh ile_tx TRUE

FALSE

Disable receiver while sending.

rx_parity

tx_parity

HSS_BISYNC_PARITY_ODD

HSS_BISYNC_PARITY_LOW

HSS_BISYNC_PARITY_EVEN

HSS_BISYNC_PARITY_HIGH

Rece ive and transm it parity. Pa rity is

ignored unless crc_select = LRC.

diag_mode HSS_DIAG_NORMAL Norm al ope ration. U se this

for external loopback.

Set diagnostic mode.

External loopback - RS485: connect

TXD+ to RXD +, TXD - to RXD -,

TXC LK+ to RXC LK+ a nd TX CLK - to

RXC LK-.

External loopback - RS232: connect

TXD to RXD, TXCLK to RXCLK and

RTS to CTS & CD.

For HSS Front Panel I/O Board:

p rog ram elec_interface=

HSS_RS232_INT_CTL_LINES and

conn ect TX D to R XD, T XCL K to

RXCLK. Ignore RTS, CTL & CD.

HSS_DIAG_LOOPBACK Internal loopback: TXD &

RXD are connected

internally. The value on

RXD , CTS & CD is

ignored. The transmitter

and receiver share the

same clock source.

HSS_DIAG_ECHO The transmitter

automatically resends

receive d data bit-by-bit.

HSS_DIAG_LOOPBACK_ECHO Loopback and echo

operation occur

simultaneous ly.

crcc 0 CRC constant value.

prcrc

ptcrc

0x0000 or

0xFFFF

Preset receiver / transmitter

CRC16/LRC. These values should be

prese t to all

ones or zeros, depending on the BCS

used.

parec 0 - 65535 Number of received parity errors.

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 38 of 45

bsync 0bv0000000ssssssss BISYNC SYNC register. Contains the

value of the SYNC character str ipped

from incoming

data on receive once the receiver

synchronizes to the data using the

SYN1 - SYN2 pair.

v - if v = 1a nd the receive r is not in

hunt m ode w hen a SYN C cha racter is

received, this character is discarded.

ssssss ss (8 bits) - SY NC ch aracter.

Whe n using 7-bit cha racters with

parity, the parity bit should be included

in the SYNC register value.

bdle 0bv0000000dddddddd BISYNC DLE register. In transparent

mode, the receiver discards any DLE

character received.

v - if v = 1a nd the receive r is not in

hunt m ode w hen a DLE chara cter is

received, this character is discarded.

ddddd ddd (8 bits) - D LE cha racter.

This character tells the receiver that

the ne xt chara cter is tex t.

cc[8] 0b0bh -----ccccccc c - valid entry

0b1bh-----cccccccc - entry not valid and is not used.

Control character 1 to 8.

----- (5 bits) - re serve d.

Initial ise to zero.

b - Bloc h che ck seq uenc e expe cted. A

maskable interrupt is generated after

the buffer is closed.

b = 0: the character is written into the

receive buffer and the buffer is closed.

b = 1: the character is written into the

receive b uffer. The rec eiver waits fo r 1

LRC or 2 CRC bytes and then closes

the buffer.

h - Enables hunt mode when the

current buffer is closed.

h = 0: the BISYNC control ler maintains

character synchronisation after closing

the buffer.

h = 1: the B ISYNC controller en ters

hunt m ode after c losing the b uffer.

When b = 1, the control ler enters hunt

mode after receiv ing LRC or CRC.

cccccccc (8 bits) - defines control

characters to be compared to the

incom ing cha racter. W hen u sing 7- bit

characters with parity, include the

parity bit in the character value.

rccm 0b11------00000000 - ignore these bits when comparing

 incomming character

0b11------11111111 - enable comparing the incoming

 characte r to cc[n].

Rece ive con trol char acter m ask. A

one en ables co mpariso n and a zero

mas ks it.

sync 0xssss (2 bytes) SYNC character: should be

programmed with the sync pattern.

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 39 of 45

syn_len gth HSS_BISYNC_SYNL_8

HSS_BISYNC_SYNL_16

HSS_BISYNC_SYNL_8: should be

chosen to implement

 mono-sync protocol. The

receiver synchronizes on an 8-bit sync

pattern in sync.

HSS_BISYNC_SYNL_16: The

receiver synchronizes on a 16-bit sync

pattern stored in sync.

send_idles_or_flags HSS_BISYNC_SEND_IDLES

HSS_BISYNC_SEND_FLAGS_SYNCS

Send either idles or flags/syncs

between frames as defined by the

protoc ol.The flag cha racter is e qual to

sync.

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 40 of 45

4.2.4 SMC UART Mode

This protocol may only be used with the two SMC ports: Ports I&J.

4.2.4.1 SMC UART Protocol Information Structure
The followin g struc ture is d efined in the file hssControlIfc.h and is given here in abbreviated format (i.e. reserved

and obsolete members are not shown). Always use the structure as defined in hssControlIfc.h.

struct hssSmcUartInfoStruct

{

hssUIN T32 ba ud_rate ;

hssUINT32 clock_source;

hssUINT32 stop_bits;

hssUINT32 data_bits;

hssUINT32 parity_enable;

hssUINT32 parity_mode;

hssUINT32 diag_mode;

hssUINT32 max_receive_bytes;

hssU INT3 2 ma x_idl;

};

typedef struct hssSmcUartInfoStruct hssSmcUartInfo;

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 41 of 45

4.2.4.2 SMC UART Protocol Information Structure Members

Name Options Description

baud_ rate 1200 - 115kbps (RS232/RS422/RS485)

Any values permissible.

Units in bps.

This m emb er is use d to

specify a single baudrate for

both transmitter and

receive r.

clock_source HSS_CLOCK_DE FAULT HSS_CLOCK_DE FAULT

connects BRG[1-2] to

Port[I-J].

Transmit & receive clocks

can be set to one of

HSS_CLOCK_BR G[1-4] or

HSS _CLO CK_ EXT [1-4].

HSS_CLOCK_BRG1

HSS_CLOCK_BRG2

HSS_CLOCK_BRG3

HSS_CLOCK_BRG4

Baud rate Ge nerato rs [1-4].

HSS_CLOCK_EXT1

HSS_CLOCK_EXT2

HSS_CLOCK_EXT3

HSS_CLOCK_EXT4

External Clocks connected on

Pins: RXCLK[1-4] (RS232) or

CLKIN [1-4] (RS4 85/RS 422).

Note: HSS_CLOCK_EXT[1-2]

can o nly be u sed fo r SMC Port I,

while HSS_CLOCK_EXT[3-4]

can only be used for SMC Port J.

stop_b its HSS_UART_STOP_BITS_ONE

H S S _U A R T_ S TO P _B IT S _T W O

Number of full stop bits.

data_b its HSS_UART_DATA_B ITS_5

HSS_UART_DATA_B ITS_6

HSS_UART_DATA_B ITS_7

HSS_UART_DATA_B ITS_8

HSS_UART_DATA_B ITS_9

HSS_UART_DATA_B ITS_10

HSS_UART_DATA_B ITS_11

HSS_UART_DATA_B ITS_12

HSS_UART_DATA_B ITS_13

HSS_UART_DATA_B ITS_14

Num ber of d ata bits. N ote

only ports I & J (i.e. the

SMC ports) can select 9 or

more data bits.

parity_ enab le HSS_UART_PARITY_NO_PARITY

HSS_UART_PARITY_ENAB LE

Enab le or disa ble pa rity

checking.

parity_mode HSS_UART_SMC_PARITY_ODD

HSS_UART_SMC_PARITY_EVEN

Rece ive and transm it parity.

Parity w ill only be c heck ed if

parity is enabled.

diag_mode HSS_DIAG_NORMAL Normal operation. Use this for

external loopback.

Set diagnostic mode.

External loopback -

RS485: conn ect TX D+ to

RXD + & TX D- to RX D-.

External loopback -

RS232: conn ect TX D to

RXD.

HSS_DIAG_LOOPBACK Internal loopback: TXD & RXD

are connected internally. The

value on RXD is ignored.

HSS_DIAG_ECHO The tra nsm itter autom atically

resen ds rec eived data b it-by-bit.

HSS_DIAG_LOOPBACK_ECHO Loopback and echo operation

occur simultane ously.

max_receive_bytes 1 to 2048 (default) or up to 32 Kbytes, depending on how many bytes

have been allocated to the Rx & Tx buffers (See function

hssCre ate_dev ice_ex()).

Maximum number of bytes

that may be copied into a

buffer.

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 42 of 45

max_idl 0 to 2048 (default) or up to 32 Kbytes, depending on how many bytes

have been allocated to the Rx & Tx buffers (See function

hssCre ate_dev ice_ex()).

Maximum idle characters.

Whe n a ch aracte r is

received, the receiver

begin s cou nting idle

chara cters. If m ax_idl id le

characters are received

before the ne xt data

character, an idle t imeout

occu rs and the bu ffer is

closed. T hus, m ax_idl offers

a way to demarcate frames.

To disable the feature, clear

max_idl. The bit length of an

idle character is calculated

as follow s: 1 + d ata len gth

(5-14) + 1 (i f parity is used)

+ num ber of stop bits (1-2).

For 8 data bits, no pa rity,

and 1 stop bit, the character

length is 10 bits.

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 43 of 45

5 Getting Started
After installing the host driver according to paragraph 3.1, test the host driver following the test procedure given

in hssTe st.txt.

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 44 of 45

6 Contact Details
6.1 Contact Person

Direct all correspondence and / or support queries to the Project Manager (HSS) at C2I2 Systems.

6.2 Physical Address

C2I2 S ystems (Pty) Ltd

Unit 3, 67 Rosmead Avenue

Kenilw orth

Cape Town

7701

South Africa

6.3 Postal Address

C2I2 S ystems (Pty) Ltd

P.O. Box 171

Rondebosch

Cape Town

7701

South Africa

6.4 Voice and Electronic Contacts

Tel: (+27) 21 683 5490

Fax: (+27) 21 683 5435

Ema il: info@ccii.co.za

Ema il: support@ccii.co.za

URL: http://www.ccii.co.za/

6.5 Product Support

Support on C2I2 Systems’ products is available telephonically between Monday and Friday from 09:00 to 17:00

CAT. C entral African Tim e (CAT = GMT + 2).

Ema il support is a vailable at support@ccii.co.za

Copyright © C²I² Systems (Pty) Ltd, All r ights reserved, 2002

CCII/HSS/6-MAN/002 2002-04-11 Issue 3.5

P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd Page 45 of 45

Appendix A

Making Changes to sysLib.c for X86

The PCI free memory space needs to be defined in the memory descriptor table. Consult the relevant reference

manual and obtain the upper address of the PCI memory. Allocate at least 5 megabytes of memory per HSS card.

Subtract that amount from the upper address of the PCI memory, and use this value as the base of the PCI

memory space.

Note: if there are other devices on the PCI bus, it may be necess ary to allocate more memory.

Example: For 2 HSS cards, allocate 10 megabytes of memo ry. If the upper address of the PCI m emory space is

defined as 0xFFF 00000, then subtracting 10 megabytes gives a base address of: 0xFFF00000 - 0xA00000 =

0xFF500000.

In the PC 386/486/Pentium/Pentiumpro system-dependent library (sysLib.c), code (shown in bold text) needs

to be add ed to the m emory descripto r table, sysP hysMe mDe sc[]:

#ifndef CPU_PCI_MEM_ADRS

#define CPU_PCI_MEM_ADRS 0xFF500000 /* base of PCI ME M addr */

#endif

PHY S_M EM_ DES C sysP hysMe mDe sc [] =

{

/* adrs and length parameters mu st be page-aligned (multiples of 4KB/4MB) */

#if(VM_PAGE_SIZE == PAGE_SIZE_4KB)

/* lower memory */

...

/* video ram, etc */

...

/* upper memory for OS */

...

/* upper memory for Application */

...

/* PCI I/O space */

{

(void *) CPU_PCI_MEM_ADRS,

(void *) CPU_PCI_MEM_ADRS,

(0xA000 00),

VM_STATE_MASK_VALID | VM_STATE_MASK_WRITABLE |

VM_STATE_MASK_CACHEABLE, VM_STATE_VALID |

VM_STATE_WRITABLE | VM_STATE_CACHEABLE_NOT

},

/* entries for dynamic mappings - create sufficient entries */

DUMMY_MMU_ENTRY,

DUMMY_MMU_ENTRY,

DUMMY_MMU_ENTRY,

...

...

#else

...

...

