

User Manual

for the

C²I² Systems'

PMC High Speed Serial VxWorks Driver

CCII Document No.	CCII/HSS/6-MAN/002
Document Issue	3.5
Issue Date	2002-04-11
Print Date	2002-04-11
File Name	P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd

© C²l² Systems. The copyright of this document is the property of C²l² Systems. The document is issued for the sole purpose for which it is supplied, on the express terms that it may not be copied in whole or part, used by or disclosed to others except as authorised in writing by C²l² Systems.

Document prepared for C²/² Systems (Pty) Ltd

Signatur**e She**et

Name	Signature	Date			
Completed by	n. ci				
A. Henrichsen	Software Engineer HSS C²l² Systems (Pty) Ltd	2002-04-11			
Accepted by	w delal				
L. DE um	Project Manager HSS C²l² Systems (Pty) Ltd	2007-04-11			
Accepted by X Kruger	Quality Assurance Representative C1 ² Systems (Pty) Ltd	2007-05-02			

CCII/HSS/6-MAN/002	2002-04-11	Issue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd		Page ii of vi

Amendment History

Issue	Description	Date	ECP No
1.0	Initial version created by splitting cManSioDrv.wpd, Issue 1.1 into separate SIO and HSS user manuals.	2000-03-16	-
1.1	Updated Application Program Interface (API) to correspond with version 1 release 0 of the host driver.	2000-05-23	-
2.0	Updated for HSS version 2.0.	2000-06-06	-
2.1	Updated paragraph 4.2, detailing protocol structures and setup options.	2000-10-31	-
2.3	Updated driver data structures to include DPLL and various encoding methods.	2001-01-19	-
2.4	Added version display function for driver and firmware software. Updated UART and HDLC descriptions. Added clock detection function.	2001-03-19	-
2.5	Added functionality to attach external clocks. Added SMC ports.	2001-04-23	-
2.6	Implemented the BISYNC protocol. Included the BIT functions descriptions. Added configuration specifics for the X86.	2001-05-21	-
2.6.1	Added HSS Front Panel functionality.	2001-06-15	-
2.6.2	Changed flash programming.	2001-07-05	-
3.0	General update of driver.	2001-09-13	-
3.1	Updated description of include-files.	2001-09-25	-
3.2	HSS Serial I/O back & front panel boards share the same protocol information structure now. Updated description of protocol information structure.	2001-10-01	-
3.3	Added new hssOpen_port_fp() function, which allows for floating point initialisation of send, receive and clock tasks.	2001-10-12	-
3.4	Added new hssCreate_device_ex() function, which allows the user to specify the Rx & Tx buffer size for each port.	2002-01-17	-
3.5	Updated callback function description: added CRC error and Tx done error reporting. Updated BIT structure: added oscillator frequency variable.	2002-04-11	-

CCII/HSS/6-MAN/002	CCII/HSS/6-MAN/002 2002-04-11							
P:\HSS\TECH\MAN\USERMAN\cManHs		Page iii of vi						

Contents

1	Scope	е		. 1
	1.1	ldentif	ication	. 1
	1.2	Introdu	uction	. 1
2	Appli	cable l	Documents	. 2
	2.1	Specif	ications	. 2
	2.2	Standa	ards	2
	2.3	Other I	Documents	. 2
3	Instal	lation	Procedure	ર
5	3.1		Id the HSS Driver into the VxWorks Kernel	
	3.1	3.1.1	Tornado 1.0.1 Environment	
		3.1.1	Tornado 2.0 Environment	
	3.2		ad the Driver Software Separately	
	3.2 3.3		the HSS Driver	
	3.3	3.3.1	Creating the Device	
		3.3.1	Configuring the Ports	
		3.3.2 3.3.3	Adding Receive Buffers	
			•	
		3.3.4	Adding Call-back Functions	
		3.3.5	Sending and Receiving Data	
		3.3.6	Destroying the Device	
		3.3.7	Detecting an active clock signal on ports	
		3.3.8	Obtaining the current host and firmware version number	
		3.3.9	HSS Built-In-Tests	1
4	Appli	cation	Program Interface (API)	8
	4.1		peed Serial Driver Interface	
		4.1.1	Create Device	9
		4.1.2	Destroy Device	10
		4.1.3	Port Exists?	
		4.1.4	Set Port Configuration	12
		4.1.5	Get Port Configuration	
		4.1.6	Open Port	
		4.1.7	Close Port	16
		4.1.8	Send Data	
		4.1.9	Add Receive Buffer	18
		4.1.10		
		4.1.11	Add Call-back	20
		4.1.12	Remove Call-back	21
			Detecting an active clock signal on ports	
			Print out current version number	
			HSS Built-In-Test	
	4.2		Data Structures	
		4.2.1	UART Mode	
			4.2.1.1 UART Protocol Information Structure	
			4.2.1.2 UART Protocol Information Structure Members	
		4.2.2	HDLC Mode	
			4.2.2.1 HDLC Protocol Information Structure	
			4.2.2.2 HDLC Protocol Information Structure Members	
			4.2.2.3 Preamble Requirements	
				- "

CCII/HSS/6-MAN/002	2002-04-11	Issue 3.5					
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd	Page iv of vi						

		4.2.3	4.2	.3.1	Mod BISYI	NC P	roto	col	Infor	mat	ion	Stru	ıctu	re							 			 	. 35
		4.2.4			BISYI RT M																				
			4.2	4.1	SMC SMC	UAR	T Pr	otoc	ol Ir:	nforr	nati	on S	Stru	ctu	re.						 			 	. 40
			4.2.	4.2		UAR		0100	.01 11	non	nau	on a	Stru	ciu	ren	ien	ber	5	•••		 •••		• •	 	. 41
5	Gett	ing Sta	rted		•••										• •					• •	 	•	•••	 	43
6	Con	tact Def																							
	6.1	Conta																							
	6.2	Physic	cal A	ddre	SS																 			 	. 44
	6.3	Postal	l Add	ress																	 			 	. 44
	6.4	Voice a	and	Elect	ronic	Con	tact	s													 			 	. 44
	6.5	Produc	ict Su	ppor	t																 			 	. 44

	CCII/HSS/6-MAN/002	2002-04-11	Issue 3.5				
	P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpc	Page v of vi					
Co	Copyright © C ^a ² Systems (Pty) Ltd, All rights reserved, 2002						

Abbreviations and Acronyms

API	Application Program Interface
BIT	Built-In-Test
BRG	Baudrate Generator
BSD	Berkeley Socket Devices
BSP	Board Support Package
CCII	Communications, Computer Intelligence, Integration
$C^2 l^2$	C²I² Systems (Pty) Ltd
DPLL	Digital Phase-Locked Loop
FTP	File Transfer Protocol
НСС	Host Carrier Card
HSS	High Speed Serial (Acronym for the C^2I^2 PMC Serial I/O card project)
I/O	Input/Output
PC	Personal Computer
PCI	Peripheral Component Interconnect
PMC	PCI Mezzanine Card
SBC	Single Board Computer
SCC	Serial Communications Controller
SIO	Serial Input/Output
SMC	Serial Management Controller
TBD	To Be Determined
VME	Versa Module Eurocard

	CCII/HSS/6-MAN/002	2002-04-11	Issue 3.5				
	P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpc	1	Page vi of vi				
Co	Copyright © C ^a ² Systems (Pty) Ltd, All rights reserved, 2002						

1 Scope

1.1 Identification

This document is the User's Manual for the C²l² Systems' Peripheral Component Interconnect (PCI) Mezzanine Card (PMC) High Speed Serial VxWorks Driver. This document refers to the High Speed Serial VxWorks driver version 3.5 or later.

1.2 Introduction

The PMC High Speed Serial (HSS) driver is a low level, device-dependant, interface for transferring data over a $C^{2}I^{2}$ Systems' HSS PCI Mezzanine Card (PMC). The driver binaries are provided with explicit installation instructions.

The driver software distribution consists of (at least) the following files:

ccHssLib[4 8]vx.y.z. <host></host>	Host-architecture specific, driver object file:cc- CCII Systems (Pty) LtdHssLib- High Speed Serial driver[4 8]- 4 port or 8 port HSS PMCx- Version numbery- Revision numberz- Beta number <host>- Host for which the binary is builte.g. "ccHss4v2.4.dmv179" for version 2.4 of the HSSsoftware, built for a DY4 DMV179 PowerPC host for a 4port HSS PMC.</host>							
ccHss4vx.y.z.firmware.zip containing: ccHss4vx.y.z - <freq>.hex</freq>	HSS firmware. <freq> - corresponding oscillator frequency</freq>							
ccHssFlashvx.y.z. <host></host>	Flash update driver.							
hssReadme.txt	General information and installation notes.							
hssRelease_emb.txt,	Release notes and revision history: Please check this file for information on the latest updates.							
ccHss4vx.y.z.h_files.zip	Zip file which contains all header files that define the application program interface (API) to the driver.							
ccHssTest.c, ccHssTest. <host></host>	Sample C code for accessing the HSS driver.							
hssChanges.txt	Changes to be made to VxWorks and BSP files.							
hssFlash.txt	Procedure for updating the firmware if required.							
hssTest.txt	Test procedure for verifying host driver and firmware.							

CCII/HSS/6-MAN/002	2002-04-11	Issue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd		Page 1 of 45

Copyright $\ensuremath{\mathbb{C}}$ C4² Systems (Pty) Ltd, All rights reserved, 2002

2 Applicable Documents

2.1 Specifications

Not applicable.

2.2 Standards

• DI-IPS C-81443: Data Item Description for a Software User Manual.

2.3 Other Documents

- VxWorks 5.3.1, Programmers Guide, Edition 1.
- MPC860 PowerQUICC[™] User's Manual Rev. 1.

CCII/HSS/6-MAN/002	2002-04-11	Issue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd		Page 2 of 45

3 Installation Procedure

This paragraph describes the installation procedure for the HSS host driver. (The examples given are for a DY4 DMV 179 PowerPC host.)

3.1 To Build the HSS Driver into the VxWorks Kernel

Assume the BSP directory is given as: BSP_DIR = /tornado/target/config/dmv179

3.1.1 Tornado 1.0.1 Environment

- Copy ccHss4vx.y.z.dmv179 to your \$(BSP_DIR)/lib directory as ccHss4.a.
- Edit the Makefile in the BSP directory

(Use hssChanges.txt to copy and paste the relevant information.) Add the following macro (or edit the existing one): EXTRA_MODULES = \$(BSP_DIR)/lib/ccHss4.a

• Rebuild all VxWorks images.

3.1.2 Tornado 2.0 Environment

- Copy ccHss4vx.y.z.dmv179 to your \$(BSP_DIR)/lib directory as ccHss4.a.
- In the Builds section of the Project Workspace, change the Kernel properties to include the ccHss4.a library file in the Macros LIBs option.
- Rebuild all VxWorks images.

3.2 To Load the Driver Software Separately

Note this step is not required if the driver was built into the BSP.

If the driver is not built into the BSP, a user can load it separately:

- Copy ccHss4vx.y.z.dmv179 to your present working directory as ccHss4.a.
- From the VxWorks shell type:

ld < ccHss4.a

CCII/HSS/6-MAN/002	2002-04-11	Issue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd		Page 3 of 45

3.3 Using the HSS Driver

3.3.1 Creating the Device

The HSS driver supports multiple HSS PMC on a single host. To establish a connection and construct all the device specific structures, a user must create each of the devices separately, using the device ID to identify it.

The device ID starts at 0 and increments by 1 for each of the devices. Device 0 refers to the device in the lowest PMC slot. The HSS driver can not be used until the user has created the device.

Example: For device 0:

/* Create all HSS devices */ hssCreate_device(0);

The device ID is used in all calls to the HSS driver to identify the correct device.

3.3.2 Configuring the Ports

The HSS PMC has four serial communications controllers (SCC's) [Ports A-D] that support UART and HDLC/SDLC protocols, and two serial management controllers (SMC's) [Ports I&J] that support only asynchronous UART.

After the HSS device has been created, the user must first set the default configuration for each of the ports. To set the configuration of a port, a protocol-specific information structure is used. Examples of the required structure is given in ccHssTest.c (for the UART protocol) and can be used as a starting point.

The structures allow the user to set all the protocol-specific options available on the HSS PMC communication controller chip (the MPC860 PowerQUICC^m). For available options for each of the structure fields, see [2.3.3].

Example: Set two SCC ports to UART mode and two to HDLC mode:

/* Set initial SCC port configuration */
hssSet_port_config(0, HSS_PORT_A, &uart_info);
hssSet_port_config(0, HSS_PORT_B, &uart_info);
hssSet_port_config(0, HSS_PORT_C, &hdlc_info);
hssSet_port_config(0, HSS_PORT_D, &hdlc_info);

/* Set initial SMC port configuration */
hssSet_port_config(0, HSS_PORT_I, &smc_uart_info);
hssSet_port_config(0, HSS_PORT_J, &smc_uart_info);

3.3.3 Adding Receive Buffers

Note: this step is not necessary anymore. Receive buffers are added automatically by the driver in the hssOpen_port() function. It is still possible to call hssAdd_receive_buffer(), but this function will not do anything.

CCII/HSS/6-MAN/00	2	2002-04-11	Issue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd		Page 4 of 45	

3.3.4 Adding Call-back Functions

The HSS driver notifies the user of different events by calling a user defined Call-back function. The events for which the user may specify one or more Call-back functions are:

Send Begin	 The driver has accepted the data for sending.
Send Done	 The driver has finished sending the data.
Receive Done	- Data has been received and written into the user's buffer.
Clock Detect	 A clock signal has been detected on that specific port.

Only one Call-back function for each event is recommended. For the user to receive data, at least the Receive Done Call-back must be installed. While the Receive Done Call-back is executed, the corresponding buffer will not be accessed by the HSS driver. The user can process the data in the Call-back function or copy the data somewhere else for processing at the user's leisure.

Receive function prototype:

void Process_rx_data(int devid, int portid, int crc_error, int userid, int length, void *pdata);

Transmit Begin prototype:

void Process_tx_data(int devid, int portid, int dummy, int userid, int length, void *pdata);

Transmit Done prototype:

void Process_tx_data(int devid, int portid, int error, int userid, int length, void *pdata);

Clock Detection prototype:

void Process_clk_detect(int devid, int portid, int dummy1, int userid, int dummy2, void *dummy3);

devid	= device ID.
portid	= port ID.
crc_error	= HSS_OK (no CRC error).
	= HSS_ERROR (CRC error).
error	= HSS_OK (send done OK).
	= HSS_ERROR (buffer underrun or CTS lost: send not complete).
userid	= user defined ID.
length	= length of received data.
pdata	= buffer with received data.
dummy/1/2	= variables not used (always 0).
dummy3	= variable not used (always NULL).

Example: Add a Call-back function for handling receives:

/* Receive function prototype - this function is implemented by the user */
void Process_rx_data(int devid, int portid, int crc_error, int userid, int length, void *pdata);

/* Add receive Call-back */ hssAdd_callback(0, HSS_CB_ON_RECEIVE_DONE, Process_rx_data, 0);

C	CCII/HSS/6-MAN/002	2002-04-11	Issue 3.5
F	P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd		Page 5 of 45

3.3.5 Sending and Receiving Data

To send and receive data on a specified port, the user must first open the port. To stop sending or receiving data from a port, the user must close the port.

Example: Send some data on device 0, port B:

/* Open port for sending data */ hssOpen_port(0, HSS_PORT_B, 50); /* Send some data */ hssSend_data(0, HSS_PORT_B, 0, 256, pbuffer256, NO_WAIT);

```
/* Do other stuff */
/* */
```

```
/* Close port after final usage */
hssClose_port(0, HSS_PORT_B);
```

3.3.6 Destroying the Device

When the device is no longer required it should be destroyed to free system resources.

Example: Device 0 is no longer required:

```
/* Close ports after final usage */
hssClose_port(0, HSS_PORT_A);
hssClose_port(0, HSS_PORT_B);
hssClose_port(0, HSS_PORT_C);
hssClose_port(0, HSS_PORT_D);
hssClose_port(0, HSS_PORT_I);
hssClose_port(0, HSS_PORT_J);
```

/* Destroy device to free resources */
hssDestroy_device(0);

3.3.7 Detecting an active clock signal on ports

To detect when a port's clock signal becomes active, use the following function.

Example: Detecting a clock signal on device 0 and Port A:

/* Enable port to detect clock */
hssClock_detect(0, HSS_PORT_A);

A Call-back function gets called once a clock has been detected. After this Call-back function has been serviced, the user can re-initialise the clock detection routine as shown above.

/* Clock detection prototype - this function is implemented by the user */ void Process_clk_event(int devid, int portid, int dummy1, int userid, int dummy2, void *dummy3);

/* adding clock_detect callback */
hssAdd_callback (0,HSS_CB_ON_CLOCK_DETECT,Process_clk_detect,0);

Note: The last 2 variables of the clock detection prototype function are dummy variables and are not initialised.

CCII/HSS/6-MAN/002	2002-04-11	Issue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd		Page 6 of 45

3.3.8 Obtaining the current host and firmware version number

The following function prints out the current version number of the driver and firmware software:

/* Print current version number */
hssVersion_print(0);

Note: Run hssCreate_device(0) first.

3.3.9 HSS Built-In-Tests

The following function displays each port's statistics: e.g. how many bytes / packets have been accepted / rejected / sent / received and how many errors were reported.

Example: Displaying each port's statistics for device 0:

hssBit_report(0);

To clear the counters of the hssBit_report(0) function, use the function hssBit_clear(0).

CCII/HSS/6-MAN/002	2002-04-11	Issue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpc	1	Page 7 of 45

4 Application Program Interface (API)4.1 High Speed Serial Driver Interface

The zip file ccHss4vx.y.z.h_files.zip contains the following header files:

crc.h - used for crc algorithm hssDefs.h hssHostDriver.h hssControllfc.h

The following files should always be included:

hssDefs.h hssHostDriver.h hssControllfc.h

CCII/HSS/6-MAN/002	2002-04-11	Issue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd		Page 8 of 45

Copyright $\ensuremath{\mathbb{C}}$ C²l² Systems (Pty) Ltd, All rights reserved, 2002

4.1.1 Create Device

Function: hssCreate_device

Purpose: Create and initialize the HSS device specific structures.

Arguments:

<dev_id> -</dev_id>	Device ID on the PCI bus. The HSS device in the lowest PCI
	slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc.</dev_id></dev_id>

Returns:

HSS_OK -	On success.
HSS_INVALID_PARAM -	Invalid dev_id supplied.
HSS_PCI_INIT_FAIL -	PCI initialisation failed.
HSS_MEM_ALLOC_FAILED -	If HSS device structure could not be created in memory.
HSS_DEVICE_NOT_FOUND -	If HSS device <dev_id> was not found on the PCI bus.</dev_id>
HSS_MEM_INVALID_ADDRESS -	If the HSS device PCI address was not valid.

hssStatus hssCreate_device(hssDeviceId dev_id);

Function: hssCreate_device_ex

Purpose: Create and initialize the HSS device specific structures. This extended version allows the user to specify the maximum Rx & Tx buffer size for each port.

Arguments:

<dev_id> -</dev_id>	Device ID on the PCI bus. The HSS device in the bwest PCI slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc.</dev_id></dev_id>
<scc_#_size> -</scc_#_size>	maxim um Rx&Tx buffer size for specific scc port.
<smc_#_size> -</smc_#_size>	maximum Rx&Tx buffer size for specific smc port. (valid arguments: HSS_2K, HSS_4K, HSS_8K, HSS_16K, HSS_32K)
<reserved1&2> -</reserved1&2>	2 reserved variables for future use.

Returns:

HSS_OK -	On success.
HSS_INVALID_PARAM -	Invalid parameters supplied.
HSS_PCI_INIT_FAIL -	PCI initialisation failed.
HSS_MEM_ALLOC_FAILED -	If HSS device structure could not be created in memory.
HSS_DEVICE_NOT_FOUND -	If HSS device <dev_id> was not found on the PCI bus.</dev_id>
HSS_MEM_INVALID_ADDRESS -	If the HSS device PCI address was not valid.

hssStatus hssCreate_device_ex(hssDeviceId dev_id, unsigned int scc_0_size, unsigned int scc_1_size, unsigned int scc_2_size, unsigned int scc_3_size, unsigned int smc_0_size, unsigned int smc_1_size, unsigned int reserved1, unsigned int reserved2);

Notes: One of these two functions has to be called (once per device) before any other function call to the specified device will be valid. The function hssCreate_device() sets up the Rx & Tx buffer size for all ports to the default value of 2Kbytes.

CCII/HSS/6-MAN/002	2002-04-11	Issue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd		Page 9 of 45

4.1.2 Destroy Device

Function: hssDestroy_device

Purpose: Destroy the HSS device specific structures.

Arguments:

<dev_id> -

Device ID on the PCI bus. The HSS device in the lowest PCI slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc.

Returns:

HSS_OK -HSS_INVALID_PARAM -HSS_PCI_INIT_FAIL -HSS_ERROR - On success. Invalid dev_id supplied. PCI initialisation failed If the interrupt tasks have not been destroyed.

hssStatus hssDestroy_device(hssDeviceId dev_id);

Notes: After this function is called, no other function call to the specified device will be valid, except for hssCreate_device(..).

CCII/HSS/6-MAN/002	2002-04-11	Issue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpc	1	Page 10 of 45

4.1.3 **Port Exists?**

Function: hssPort_exists

Purpose: Determine whether a port exists on the specified device.

Arguments:

<dev_id> -</dev_id>	Device ID on the PCI bus. The HSS device in the lowest PCI slot: <dev id=""> = 0, next HSS device: <dev id=""> = 1, etc.</dev></dev>
<port_id> -</port_id>	Port to query.
Returns:	
	If the most evicte in boundary

TRUE -FALSE - If the port exists in hardware. If the port does not exist in hardware.

hssBool hssPort_exists(hssDeviceId dev_id, hssPortId port_id);

CCII/HSS/6-MAN/002	2002-04-11	Issue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpc	I	Page 11 of 45

Copyright $\textcircled{\sc Cl} C^{2l^2}$ Systems (Pty) Ltd, All rights reserved, 2002

4.1.4 Set Port Configuration

Function: hssSet_port_config

Purpose: Set port protocol and protocol configuration.

Arguments:

<dev_id> -</dev_id>	Device ID on the PCI bus. The HSS device in the lowest PCI electric day, ids = 0, part HSS device: $day, ids = 1$, etc.	
<port_id> -</port_id>	slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc. Port to configure.</dev_id></dev_id>	
<p_info> -</p_info>	Pointer to information struct used for configuration.	

Returns:

HSS_OK -	On success.
HSS_PCI_INIT_FAIL -	PCI initialisation failed.
HSS_ERROR -	If the Tx/Rx tasks have not been destroyed.
HSS_INVALID_PARAM -	Invalid dev_id or port_id supplied.
HSS_PORT_NOT_INSTALLED -	If the port does nor exists.
HSS_DEVICE_BUSY -	If no PCI buffer is available.
HSS_DEVICE_NOT_RESPONDING -	If the HSS control block could not be accessed within a certain time.
HSS_INCORRECT_PARAM_COMBINATION -	If an incorrect parameter combination was selected in the protocol structure.

hssStatus hssSet_port_config(hssDeviceId dev_id, hssPortId port_id, hssProtocolInfo* p_info);

- Notes: The <p_info> pointer must point to a valid hssP rotocollnfo structure with all protocol information set as required. If only a few items need to change, the hssGet_port_config(..) function should be used to fill in the rest of the structure.
- Warning: Do not call this function while sending or receiving data as this may result in data loss.

CCII/HSS/6-MAN/002	2002-04-11	Issue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpc	1	Page 12 of 45

4.1.5 Get Port Configuration

Function: hssGet_port_config

Purpose: Get port protocol and protocol configuration.

Arguments:

<dev_id> -</dev_id>	Device ID on the PCI bus. The HSS device in the lowest PCI slot: <dev id=""> = 0, next HSS device: <dev id=""> = 1, etc.</dev></dev>
<port_id> -</port_id>	Port to get configuration info from.
<p_info> -</p_info>	Pointer to information struct used for configuration.

Returns:

HSS_OK -	On success.
HSS_ERROR -	If the Tx/Rx tasks have not been destroyed.
HSS_INVALID_PARAM -	Invalid dev_id or port_id supplied.
HSS_DEVICE_BUSY -	If no PCI buffer is available.
HSS_DEVICE_NOT_RESPONDING -	If the HSS control block could not be accessed within a
	certain time.

hssStatus hssGet_port_config(hssDeviceId dev_id, hssPortId port_id, hssProtocolInfo* p_info);

Notes: The <p_info> pointer must point to an existing hssProtocolInfo structure.

CCII/HSS/6-MAN/002	2002-04-11	Issue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd		Page 13 of 45

Copyright $\textcircled{CC} C^{2\!\!\!\!/ 2}$ Systems (Pty) Ltd, All rights reserved, 2002

4.1.6 Open Port

Function: hssOpen_port

Purpose: Open specified port for send and receive.

Arguments:

<dev_id> -</dev_id>	Device ID on the PCI bus. The HSS device in the lowest PCI slot: <dev id=""> = 0, next HSS device: <dev id=""> = 1, etc.</dev></dev>
<port_id> -</port_id>	Port to open for send and receive.
<priority> -</priority>	Priority of the send, receive and clock detection task
	servicing this port.

Returns:

HSS_OK -	On success.
HSS_ERROR -	If opening of port failed.
HSS_INVALID_PARAM -	Invalid dev_id or port_id supplied
HSS_PORT_NOT_INSTALLED -	If the port does nor exists.
HSS_PORT_NOT_CONFIGURED -	If an 'Open' is attempted on a port before configuring the port.
HSS_DEVICE_BUSY -	If no PCI buffer is available.
HSS_DEVICE_NOT_RESPONDING -	If the HSS control block could not be accessed within a certain time.
HSS_MEM_ALLOC_FAILED -	If failed to create semaphore or spawn receive task.

hssStatus hssOpen_port(hssDeviceId dev_id, hssPortId port_id, hssINT32 priority);

CCII/HSS/6-MAN/002	2002-04-11	Issue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd		Page 14 of 45

Copyright $\textcircled{\sc Cl} C^{2l^2}$ Systems (Pty) Ltd, All rights reserved, 2002

Function: hssOpen_port_fp

Purpose: Open specified port for send and receive with floating point functionality.

Arguments:

<dev_id> -</dev_id>	Device ID on the PCI bus. The HSS device in the lowest PCI slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc.</dev_id></dev_id>
<port_id> -</port_id>	Port to open for send and receive.
<priority> -</priority>	Priority of the send, receive and clock detection task servicing this port.
<fp_options> -</fp_options>	Floating point enable for send, receive and clock detect task: HSS_TX_TASK_FP_ENABLE, HSS_RX_TASK_FP_ENABLE, HSS_CLK_TASK_FP_ENABLE

Returns:

HSS_OK -	On success.
HSS_ERROR -	If opening of port failed.
HSS_INVALID_PARAM -	Invalid dev_id or port_id supplied.
HSS_PORT_NOT_INSTALLED -	If the port does nor exists.
HSS_PORT_NOT_CONFIGURED -	If an 'Open' is attempted on a port before configuring the port.
HSS_DEVICE_BUSY -	If no PCI buffer is available.
HSS_DEVICE_NOT_RESPONDING -	If the HSS control block could not be accessed within a certain time.
HSS_MEM_ALLOC_FAILED -	If failed to create semaphore or spawn receive task.

hssStatus hssOpen_port_fp(hssDeviceId dev_id, hssPortId port_id, hssINT32 priority, char fp_options);

Notes: These functions must be called prior to attempting to send or receive on any channel of the specified port.

Opening a port spawns a receive, send and clock detect task for that specific port. The priority of these tasks is specified by <priority>.

CCII/HSS/6-MAN/002	2002-04-11	Issue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd		Page 15 of 45

4.1.7 Close Port

Purpose: Close specified port for send and receive.

Arguments:

	<dev_id> -</dev_id>	Device ID on the PCI bus. The HSS device in the lowest PCI slot: <dev id=""> = 0, next HSS device: <dev id=""> = 1, etc.</dev></dev>
	<port_id> -</port_id>	Port to close for send and receive.
Retu	irns:	
	HSS_OK -	On success.
	HSS_ERROR -	If opening of port failed or Rx/Tx tasks have not been destroyed
	HSS_INVALID_PARAM -	Invalid dev_id or port_id supplied.
	HSS_PORT_NOT_INSTALLED -	If the port does nor exists.
	HSS_PORT_NOT_CONFIGURED -	If an 'Open' is attempted on a port before configuring the port.
	HSS_DEVICE_BUSY -	If no PCI buffer is available.
	HSS_DEVICE_NOT_RESPONDING -	If the HSS control block could not be accessed within a certain time.

hssStatus hssClose_port(hssDeviceId dev_id, hssPortId port_id);

Notes: Closing a port a second time has no effect and still returns HSS_OK, since the port was successfully closed.

CCII/HSS/6-MAN/002	2002-04-11	Issue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpc	3	Page 16 of 45

4.1.8 Send Data

Function: hssSend_data

Purpose: Send data over the specified channel.

Arguments:

<dev_id> -</dev_id>	Device ID on the PCI bus. The HSS device in the lowest PCI
	slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc.</dev_id></dev_id>
<port_id> -</port_id>	Port on which data must be sent.
<chan_id>-</chan_id>	Channel on which data must be sent. If a port has only one channel, <chan_id> = 0.</chan_id>
<nr_bytes>-</nr_bytes>	Number of bytes to send.
<p_data> -</p_data>	Pointer to buffer with at least <nr_bytes> bytes of data.</nr_bytes>
<timeout> -</timeout>	Not used anymore.

Returns:

HSS_OK - HSS_INVALID_PARAM - HSS_PORT_NOT_INSTALLED - HSS_PORT_NOT_OPEN - HSS_DEVICE_BUSY -	On success. Invalid dev_id or port_id supplied. If the port does nor exists. If the port is not open yet.
HSS_PORT_NOT_OPEN - HSS_DEVICE_BUSY - HSS_DEVICE_NOT_RESPONDING -	If the port is not open yet. If no PCI buffer is available. If the HSS control block could not be accessed within a
	certain time.

hssStatus hssSend_data(hssDeviceId dev_id, hssPortId port_id, hssChannelId chan_id, hssCount nr_bytes, hssBufferPtr p_data, hssInt32 timeout);

Notes: The port must be opened before attempting to send data over it.

CCII/HSS/6-MAN/002	2002-04-11	Issue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd		Page 17 of 45

4.1.9 Add Receive Buffer

Function: hssAdd_receive_buffer

Purpose: Add a receive buffer to a specified channel.

Arguments :

<dev_id> -</dev_id>	Device ID on the PCI bus. The HSS device in the lowest PCI
<i>.</i>	slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc.</dev_id></dev_id>
<port_id> -</port_id>	Port on which data must be received.
<chan_id> -</chan_id>	Channel on which data must be received. If a port has only one channel, <chan_id> = 0.</chan_id>
<min_nr_bytes> -</min_nr_bytes>	Minimum number of bytes to receive before Call-back function is called.
<max_nr_bytes> -</max_nr_bytes>	Maximum number of bytes to receive into this buffer.
<p_data> -</p_data>	Pointer to buffer with space for at least <max_nr_bytes> bytes of data.</max_nr_bytes>

Returns:

HSS_OK -

On success.

hssStatus hssAdd_receive_buffer(hssDeviceId dev_id, hssPortId port_id, hssChanneIId chan_id, hssCount min_nr_bytes, hssCount max_nr_bytes, hssBufferPtr p_data);

Note: This function is not used anymore. The receive buffers are added internally. The user may still call this function, but this function returns only HSS_OK.

CCII/HSS/6-MAN/002	2002-04-11	Issue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd		Page 18 of 45

4.1.10 Remove Receive Buffer

Function: hssRemove_receive_buffer

Purpose: Remove a receive buffer from a specified channel.

Arguments:

evice ID on the PCI bus. The HSS device in the lowest PCI ot: <dev id=""> = 0, next HSS device: <dev id=""> = 1, etc.</dev></dev>
ort on which data must be received.
nannel on which data must be received. If a port has only e channel, <chan_id> = 0.</chan_id>
pinter to buffer to be removed.

HSS_OK - On success.

 $hssStatus hssRem ove_receive_b uffer (hssD eviceId \ dev_id, hssPortId \ port_id, hssChanne IId \ chan_id, hssBufferPtr \ p_data);$

Note: This function is not used anymore. The receive buffers are removed internally. The user may still call this function, but this function returns only HSS_OK.

CCII/HSS/6-MAN/002	2002-04-11	Issue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd		Page 19 of 45

4.1.11 Add Call-back

Function: hssAdd_callback

Purpose: Add a user defined Call-back routine.

Arguments:

<dev_id> -</dev_id>	Device ID on the PCI bus. The HSS device in the lowest PCI slot: <dev id=""> = 0, next HSS device: <dev id=""> = 1, etc.</dev></dev>
<cb_type> -</cb_type>	Call-back type, one of: HSS_CB_ON_SEND_BEGIN,
	HSS_CB_ON_SEND_DONE,
	HSS CB ON RECEIVE DONE,
	HSS_CB_ON_CLOCK_DETECT
<call-back> -</call-back>	User function.
<user_id> -</user_id>	User identifier. This identifier will be passed to the Call-back
	function when it is called.

Returns:

HSS_OK -	On success.
HSS_INVALID_PARAM -	Invalid dev_id supplied.
HSS MEM ALLOC FAILED-	If HSS Call-back node could not be created in memory

 $\label{eq:linear} hssStatus \ hssAdd_callback (hssDeviceId \ dev_id, \ hssCallbackType \ cb_type, \ hssCallback \ Call-back, \ hssUserId \ user_id);$

Notes: Four call-backs are provided for user notification from the driver:

HSS_CB_ON_SEND_BEGIN: This Call-back will be called as soon as the data has been handed over to the driver for sending.

HSS_CB_ON_SEND_DONE: This Call-back will be called when all the data for a given send has been sent by the driver.

HSS_CB_ON_RECEIVE_DONE: This Call-back will be called when a block of data has been received by the driver. The user must add at least one of these call-backs to receive data.

Only one call-back for each above type per device is recommended. The call-back function receives the port id, such that the user can distinguish which port triggered the call-back. More than one call-back function may be used, in which case the call-backs will be called in the sequence they were added.

HSS_CB_ON_CLOCK_DETECT:

This Call-back will be called when a clock signal has been detected on a port. The user must add only one of these call-backs. This Call-back function will only be called once a port has been instructed to detect a clock signal, e.g. calling the function hssClock_detect().

Note:

HSS_CB_ON_RECEIVE_BEGIN: This Call-back does not exist anymore.

CCII/HSS/6-MAN/002	2002-04-11	Issue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd		Page 20 of 45

4.1.12 Remove Call-back

Function: hssRemove_callback

Purpose: Remove a user defined Call-back routine.

Arguments:

<dev_id> -</dev_id>	Device ID on the PCI bus. The HSS device in the lowest PCI
	slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc.</dev_id></dev_id>
<cb_type> -</cb_type>	Call-back type, one of: HSS_CB_ON_SEND_BEGIN,
	HSS_CB_ON_SEND_DONE,HSS_CB_ON_RECEIVE_DON
	E, HSS_CB_ON_CLOCK_DETECT
<call-back>-</call-back>	User function to remove.
<user_id> -</user_id>	User identifier. This identifier must be the same as the one passed to hssAdd_callback.
	· _

Returns:

HSS_OK -	On success.
HSS_INVALID_PARAM -	Invalid dev_id supplied.

 $hssStatushssRemove_callback(hssDeviceId\ dev_id, hssCallbackTypecb_type, hssCallback\ Call-back, hssUserId\ user_id);$

CCII/HSS/6-MAN/002	2002-04-11	Issue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd		Page 21 of 45

4.1.13 Detecting an active clock signal on ports

Function: hssClock_detect

Purpose: Set up a port to detect when clock signal becomes active.

Arguments:

<dev_id> -</dev_id>	Device ID on the PCI bus. The HSS device in the lowest PCI
	slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc.</dev_id></dev_id>
<port_id> -</port_id>	Port on which to detect clock signal.

Returns:

HSS_OK -	On success.
HSS_INVALID_PARAM -	Invalid dev_id or port_id supplied.
HSS_PORT_NOT_INSTALLED -	If the port does nor exists.
HSS_DEVICE_BUSY -	If no PCI buffer is available.
HSS_DEVICE_NOT_RESPONDING -	If the HSS control block could not be accessed within a
	certain time.

hssStatus hssClock_detect(hssDeviceId dev_id, hssPortId port_id);

CCII/HSS/6-MAN/002	2002-04-11	lssue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd		Page 22 of 45

4.1.14 Print out current version number

Function: hssVersion_print

Purpose: To obtain the current version number of the driver and firmware software.

Arguments:

<dev_id> -

Device ID on the PCI bus. The HSS device in the lowest PCI slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc.

Returns:

HSS_OK -HSS_INVALID_PARAM -HSS_DEVICE_BUSY -HSS_DEVICE_NOT_RESPONDING - On success. Invalid dev_id supplied. If no PCI buffer is available. If the HSS control block could not be accessed within a certain time.

hssStatus hssVersion_print(hssDeviceId dev_id);

Note: Run first hssCreate_device(dev_id);

CCII/HSS/6-MAN/002	2002-04-11	Issue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd		Page 23 of 45

4.1.15 HSS Built-In-Test

The following structures define the HSS Built_In_Test variables (defined in hssControlIfc.h):

BIT structures:

```
struct hssBoardBitInfoStruct
{
 hssUINT 32 board_number;
 hssUINT32 board_type;
 hssUINT32 firmware_version;
 hssUINT32 firmware_revision;
 hssUINT32 firmware_beta;
 hssUINT32 oscillator freq;
 char firmware creation date[30];
};
typedef struct hssBoardBitInfoStruct hssBoardBitInfo;
struct hssSendBitInfoStruct
{
 hssCount nr accepted;
 hssCount nr_rejected;
 hssCount nr_errors;
 hssCount nr_sent;
 hssCount nr_bytes_accepted;
 hssCount nr_bytes_rejected;
 hssCount nr bytes sent;
};
typedef struct hssSendBitInfoStruct hssSendBitInfo;
struct hssReceiveBitInfoStruct
{
 hssCount nr_buffers_busy;
 hssCount nr_received;
 hssCount nr_bytes_received;
 hssCount nr_errors;
};
typedef struct hssReceiveBitInfoStruct hssReceiveBitInfo;
```

Main BIT structure:

```
struct hssBitInfoStruct
{
    hssBoardBitInfo board_bit;
    hssSendBitInfo tx_scc_bit[HSS_HW_NR_SCC];
    hssReceiveBitInfo rx_scc_bit[HSS_HW_NR_SCC];
    hssSendBitInfo tx_smc_bit[HSS_HW_NR_SMC];
    hssReceiveBitInfo rx_smc_bit[HSS_HW_NR_SMC];
};
```

typedef struct hssBitInfoStruct hssBitInfo;

CCII/HSS/6-MAN/002	2002-04-11	Issue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd		Page 24 of 45

Three functions give access to the HSS Built_In_Test structures:

Function: hssBit_getstruct

Purpose: To obtain the latest BIT variables.

Arguments:

 <dev_id> Device ID on the PCI bus. The HSS device in the lowest PCI slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc.

 <bit_info> Pointer to BIT info struct.

 Returns:
 Pointer to BIT info struct.

HSS_OK -HSS_INVALID_PARAM -HSS_DEVICE_BUSY -HSS_DEVICE_NOT_RESPONDING -

On success. Invalid dev_id supplied. If no PCI buffer is available. If the HSS control block could not be accessed within a certain time.

hssStatus hssBit_getstruct(hssDeviceId dev_id, hssBitInfo *bit_info);

Function: hssBit_report

Purpose: To display each port's statistics.

Arguments:

<dev_id> -Device ID on the PCI bus. The HSS device in the lowest PCI slot: <dev_id> = 0, next HSS device: <dev_id> = 1, etc. Returns: HSS OK -On success. HSS INVALID PARAM -Invalid dev id supplied. HSS DEVICE BUSY -If no PCI buffer is available. HSS_DEVICE_NOT_RESPONDING -If the HSS control block could not be accessed within a certain time. hssStatus hssBit report(hssDeviceId dev id); Function: hssBit_clear Purpose: To clear each port's counters. Arguments: <dev id> -Device ID on the PCI bus. The HSS device in the lowest PCI slot: <dev id> = 0, next HSS device: <dev id> = 1, etc. Returns: HSS OK -On success. HSS_INVALID_PARAM -Invalid dev_id supplied. HSS_DEVICE_BUSY -If no PCI buffer is available. HSS_DEVICE_NOT_RESPONDING -If the HSS control block could not be accessed within a certain time.

hssStatus hssBit_clear(hssDeviceId dev_id);

CCII/HSS/6-MAN/002	2002-04-11	Issue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpc	I	Page 25 of 45

4.2 Driver Data Structures

Each protocol defines a protocol information structure used to configure a port with protocol specific options. This paragraph details the information structures used by each protocol and explains the use and limitations of every structure member.

hssProtocolInfo structure:

struct hssProtocolInfoStruct

hssUINT32 protocol_id;

/* only used for HSS Front Panel boards - value ignored otherwise */ hssUINT32 elec_interface;

union

{

{

```
/* SCC info */
hssUartInfo uart;
hssHdlcInfo hdlc;
hssBisyncInfo bisync;
/* SMC info */
```

```
hssSmcUartInfo smc_uart;
} info;
};
typedef struct hssProtocolInfoStruct hssProtocolInfo;
```

protocol_id:

HSS_PROTOCOL_UART HSS_PROTOCOL_HDLC HSS_PROTOCOL_BISYNC HSS_PROTOCOL_SMC_UART

elec_interface: (only used for HSS Front Panel boa	ards)
HSS_RS485	/* RS485/422 */
HSS_RS232_INT_CTL_LINES	/* RS232: control lines (RTS, CTS, CD) are connected internally */
HSS_RS232_EXT_CTL_LINES	/* RS232: control lines (RTS, CTS, CD) need to be connected externally */

CCII/HSS/6-MAN/002	2002-04-11	Issue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpc	1	Page 26 of 45

4.2.1 UART Mode

This protocol may only be used with the four SCC ports: Ports A-D.

4.2.1.1 UART Protocol Information Structure

The following structure is defined in the file hssControllfc.h and is given here in abbreviated format (i.e. reserved and obsolete members are not shown). Always use the structure as defined in hssControllfc.h.

struct hssUartInfoStruct

{

```
hssUINT32 baud_rate;
hssUINT32 clock_source;
hssUINT32 flow control;
hssUINT32 stop bits;
hssUINT32 data bits;
hssUINT32 uart_mode;
hssUINT32 freeze tx;
hssUINT32 rx zero stop bits;
hssUINT32 sync_mode;
hssUINT32 disable_rx_while_tx;
hssUINT32 parity_enable;
hssUINT32 rx_parity;
hssUINT32 tx_parity;
hssUINT32 diag_mode;
hssUINT32 max_receive_bytes;
hssUINT32 max_idl;
hssUINT 32 brkcr;
hssUINT32 parec;
hssUINT32 frmec;
hssUINT32 nosec:
hssUINT32 brkec;
hssUINT32 uaddr1;
hssUINT32 uaddr2;
hssUINT32 toseq;
hssUINT32 cc[8];
hssUINT32 rccm;
```

};
typedef struct hssUartInfoStruct hssUartInfo;

CCII/HSS/6-MAN/002	2002-04-11	Issue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.	rpd	Page 27 of 45

4.2.1.2 UART Protocol Information Structure Members

Name	Option	Options	
baud_rate	1200 - 115kbps (RS232) 1200 - 2.4Mbps (RS422/RS485) 0 - Indicates separate transmitter and receiver baudrates will be set. Any values permissible. Units in bps.		This member is used to specify a single b audrate for both transmitter and receiver.
clock_source	HSS_CLOCK_DE FAULT	HSS_CLOCK_DE FAULT	
	HSS_CLOCK_BRG1 HSS_CLOCK_BRG2 HSS_CLOCK_BRG3 HSS_CLOCK_BRG4	Baud rate Ge nerato rs [1-4].	when transmit clock is set to HSS_CLOCK_BR G[1-4], then receive clock is still set to HSS_CLOCK_EXT[1-4] for Port[A- D]. For asynchronous UART : transmit & receive clocks can be set to one of HSS_CLOCK_BR G[1-4] or HSS_CLOCK_EXT[1-4].
	HSS_CLOCK_EXT1 HSS_CLOCK_EXT2 HSS_CLOCK_EXT3 HSS_CLOCK_EXT4	External Clocks connected on Pins: RXCLK[1-4] (RS232) or CLKIN[1-4] (RS485/RS422).	
		Note: HSS_CLOCK_EXT[1-2] can only be used for SCC Port[A&B], while HSS_CLOCK_EXT[3-4] can only be used for SCC Port[C&D].	
flow_control	HSS_UART_FLOW_NORMAL HSS_UART_FLOW_ASYNC		
stop_bits	HSS_UART_STOP_BITS_ONE HSS_UART_STOP_BITS_TWO		Number of full stop bits.
data_bits	HSS_UART_DATA_BITS_5 HSS_UART_DATA_BITS_6 HSS_UART_DATA_BITS_7 HSS_UART_DATA_BITS_8 HSS_UART_DATA_BITS_9 HSS_UART_DATA_BITS_10 HSS_UART_DATA_BITS_11 HSS_UART_DATA_BITS_12 HSS_UART_DATA_BITS_13 HSS_UART_DATA_BITS_14		Num ber of data bits. N ote on ly ports I & J (i.e. the SMC ports) can select 9 or more data bits.
uart_mode	HSS_UART_MODE_NORMAL HSS_UART_MODE_MAN_MM HSS_UART_MODE_AUTO_MM		Select UAR T mode: normal, man ual m ultidrop o r autom atic multidrop mode.
freeze_tx	HSS_UART_FREEZE_TX_NORMAL HSS_UART_FREEZE_TX_FREEZE		Pause (freeze) transmission. Transmission continues when set back to normal.
rx_zero_stop_bits	HSS_UART_RX_ZERO_STOP_B HSS_UART_RX_ZERO_STOP_B	HSS_UART_RX_ZERO_STOP_BITS_NORMAL HSS_UART_RX_ZERO_STOP_BITS_NONE	
sync_mode	HSS_UART_SYNC_MODE_ASYN HSS_UART_SYNC_MODE_SYNC	HSS_UART_SYNC_MODE_ASYNC HSS_UART_SYNC_MODE_SYNC	

CCII/HSS/6-MAN/002	2002-04-11	lssue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd		Page 28 of 45

disable_rx_while_tx	HSS_UART_DISABLE_RX_WHILE_TX_NORMAL HSS_UART_DISABLE_RX_WHILE_TX_DISABLE		Enable (norm al) or disable receiver while transmitting. Used in multidrop mode to prevent reception of own messages.	
parity_enable	HSS_UART_PARITY_NO_PARITY HSS_UART_PARITY_ENABLE	(Enable or disable parity checking.	
rx_parity, tx_parity	HSS_UART_PARITY_ODD HSS_UART_PARITY_LOW HSS_UART_PARITY_EVEN HSS_UART_PARITY_HIGH		Rece ive and transm it parity. Parity will only be checked if parity is enabled.	
diag_mode	HSS_DIAG_NORMAL	Norm al operation. U se this for external loopback .	Set diagnostic mode. External loopback - RS485: connect TXD+ to R XD+, TXD- to	
	HSS_DIAG_LOOPBACK	Internal loopback: TXD & RXD are connected internally. The value on RXD, CTS & CD is ignored. The transmitter and receiver share the same clock source.	RXD-, (TXCLK+ to RXCLK+ and TXCLK- to RXCLK- for synchronous mode). External loopback - RS232: connect TXD to RXD, (TXCLK to RXCLK for synchronous mode) and RTS to CTS & CD.	
	HSS_DIAG_ECHO	The transmitter automatically resends received data bit-by-bit.	For HSS Front Panel I/O Board: program <i>elec_interface=</i> <i>HSS_RS232_INT_CTL_LINES</i> and connect TXD to RXD, (TXCLK to RXCLK for syn chronou s mod e). Ignore RTS, CTL & CD.	
	HSS_DIAG_LOOPBACK_ECHO	Loopback and echo operation occur simultaneous ly.		
max_receive_bytes	1 to 2048 (default) or up to 32 Kbytes, depending on how many bytes have been allocated to the Rx & Tx buffers (See function hssCreate_device_ex()).		Maximum number of bytes that may be copied into a buffer.	
max_idl	0 to 2048 (default) or up to 32 Kbytes, depending on how many bytes have been allocated to the Rx & Tx buffers (See function hssCreate_device_ex()).		Maximum idle characters. When a character is received, the receiver begins counting idle characters. If max_idl idle characters are received before the next data character, an idle time out occurs and the buffer is closed. Thus, max_idl offers a way to dem arcate frames. To disable the feature, clear max_idl. The bit length of an idle character is calculated as folbws: 1 + data length (5-9) + 1 (if parity is used) + number of stop bits (1-2). For8 data bits, no parity, and 1 stop bit, the character length is 10 bits.	
brkcr	0 - 2048		Number of break characters sent by transmitter. For 8 data bits, no parity, 1 stop bit, and 1 start bit, each break character consists of 10 zero bits.	
parec	0 - 65535		Number of received parity errors.	
frmec	0 - 65535		Number of received characters with framing errors.	

CCII/HSS/6-MAN/002	2002-04-11	lssue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHss	P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd	

nosec	0 - 65535	Number of received characters with noise errors.
brkec	0 - 65535	Number of break conditions on the signal.
uaddr1, uaddr2	0x0000 - 0x00FF	Address in multidrop mode. Only the lower 8 bits are used so the upper 8 bits should be cleared.
toseq	0x0000 - 0x00FF	Transmit out of sequence character (e.g. XON , XOFF).
cc[8]	0b00cccccccc - valid entry 0b10cccccccc - entry not valid and is not used.	Control character 1 to 8. These characters can be used to delimit received messages.
		(6 bits) - re serve d. Initialise to zero.
		cccccccc (8 bits) - defines control characters to be compared to the incoming character.
rccm	0b1100000000 - ignore these bits when comparing incomming character 0b1111111111 - enable comparing the incoming character to cc[n].	Rece ive con trol character mask. A one enables comparison and a zero masks it.

CCII/HSS/6-MAN/002	2002-04-11	Issue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd		Page 30 of 45

4.2.2 HDLC Mode

This protocol may only be used with the four SCC ports: Ports A-D.

4.2.2.1 HDLC Protocol Information Structure

{

The following structure is defined in the file hssControllfc.h and is given here in abbreviated format (i.e. reserved and obsolete members are not shown). Always use the structure as defined in hssControllfc.h.

struct hssHdlcInfoStruct

hssUINT32 tx_baud_rate; hssUINT32 rx_baud_rate; hssUINT32 clock_source; hssUINT32 crc mode; hssUINT32 diag mode; hssUINT32 max_receive_bytes; hssUINT32 max frame bytes; hssUINT32 address mask; hssUINT32 address1; hssUINT32 address2; hssUINT32 address3; hssUINT32 address4; hssUINT32 nr_flags_between_frames; hssUINT32 retransmit_enabled; hssUINT32 flag_sharing_enabled; hssUINT32 rx_disabled_during_tx; hssUINT32 bus_mode; hssUINT32 bus mode rts; hssUINT32 multiple tx frames; hssUINT32 encoding method; hssUINT32 preamble_length; hssUINT32 preamble pattern; hssUINT32 send_idles_or_flags;

};
typedef struct hssHdlcInfoStruct hssHdlcInfo;

CCII/HSS/6-MAN/002	2002-04-11	Issue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpc	1	Page 31 of 45

4.2.2.2 HDLC Protocol Information Structure Members

Name	Option	S	Description	
tx_baud_rate, rx_baud_rate	1200 - 115kbps (RS232) 1200 - 12Mbps (RS422/RS485) Any values permissible. Units in bps.		NB: It is not possible to specify the transmitter and receiver baudrate separately anymore. Set both variables to the same baudrate.	
tx_clock_direction rx_clock_direction			OBSOLETE VARIABLES	
clock_source	HSS_CLOCK_DE FAULT		HSS_CLOCK_DE FAULT conn ects B RG[1 -4] to Port[A-D]. For NRZ/NRZI : when transm it clock is set to	
	HSS_CLOCK_BRG1 HSS_CLOCK_BRG2 HSS_CLOCK_BRG3 HSS_CLOCK_BRG4	Baud rate Ge nerato rs [1-4].	HSS_CLOCK_BRG[1-4], then receive clock is still set to HSS_CLOCK_EXT[1-4] for Port[A-D]. For FM0/1, Manc hester & Diff.	
	HSS_CLOCK_EXT1 HSS_CLOCK_EXT2 HSS_CLOCK_EXT3 HSS_CLOCK_EXT4	External Clocks connected on Pins: RXCLK[1-4] (RS232) or CLKIN[1-4] (RS485/RS422).	Manchester: transmit & receive clocks can be set to one of HSS_CLOCK_BRG[1-4] or HSS_CLOCK_EXT[1-4].	
		Note: HSS_CLOCK_EXT[1-2] can only be used for SCC Port[A&B], while HSS_CLOCK_EXT[3-4] can only be used for SCC Port[C &D].		
crc_mode	HSS_HDLC_C RC_MODE_16_B IT HSS_HDLC_C RC_MODE_32_B IT		HDLC CRC mode.	
diag_mode	HSS_DIAG_NORMAL	Norm al operation. U se this for external loopback .	Set diagnostic mode. External loopback - RS485: conn ect TXD+ to RXD+, TXD- to RXD-, (TXCLK+ to RXCLK+ and TXCLK- to RXCLK- for synchronous mode). External loopback - RS232: conn ect TXD to RXD, (TXCLK to RXCLK for synchronous mode) and RTS to CTS & CD.	
	HSS_DIAG_LOOPBACK	Internal loopback: TXD & RXD are connected internally. The value on RXD, CTS & CD is ignored. The transmitter and receiver share the same clock source.		
	HSS_DIAG_ECHO	The transmitter automatically resends received data bit-by-bit.	For HSS Front Panel I/O Board: program elec_interface= HSS_RS232_INT_CTL_LINES and connect TXD to RXD, (TXCLK to RXCLK for synchronous mode). Ignore RTS,	
	HSS_DIAG_LOOPBACK_ECHO	Loopback and echo operation occur simultaneous ly.	CTL & CD. For synchronous mode: see encoding_method .	

CCII/HSS/6-MAN/002	2002-04-11	Issue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpc	1	Page 32 of 45

max_receive_bytes	1 to (2048 - CRC bytes (2 or 4)) (default) or up to (32 Kbytes - CRC bytes (2 or 4)), depending on how many bytes have been allocated to the Rx & Tx buffers (See function hssCreate_device_ex()).	Maximum number of bytes to receive before closing buffer. Set equal to max_frame_bytes.
max_frame_bytes	1 to 2048 (default) or up to 32 Kbytes, depending on how many bytes have been allocated to the Rx & Tx buffers (See function hssCreate_device_ex()).	Maximum number of bytes per frame. Set equal to the number of data bytes plus the number of CRC bytes (either 2 or 4) per frame.
address_mask	0x0000 - 0xFFFF	HDLC address mask. A one enables comparison and a zero masks it.
address1, address2, address3, address4	0x0000 - 0xFFFF	Four address registers for address recognition. The SCC reads the frame address from the HDL C receiver, com pares it with the address registers, and masks the re sult with addre ss_m ask. For example, to recognize a frame that begins 0x7E (flag), 0x68, 0xAA, using 16-bit address recognition, the address registers should contain 0xAA68 and address_mask should conta in 0xFF FF. For 8-bit addresses, clear the eight high- order address bits.
nr_flags_between_frames	0 - 15	Minimum number of flags between or before frames.
retransmit_enabled	TRUE FALSE	Enable re-transmit.
flag_sharing_enabled	TRUE FALSE	Enable flag sharing.
rx_disabled_during_tx	TRUE FALSE	Disable receive during transmit.
bus_mode	TRUE FALSE	Enable bus mode.
bus_mode_rts	TRUE FALSE	Enable special RTS operation in HDLC bus mode.
multiple_tx_frames	TRUE FALSE	Enable multiple frames in transmit FIFO.
encoding_method	HSS_UART_ENCODING_METHOD_NRZ HSS_UART_ENCODING_METHOD_NRZI_MARK HSS_UART_ENCODING_METHOD_NRZI_SPACE HSS_UART_ENCODING_METHOD_FM0 HSS_UART_ENCODING_METHOD_FM1 HSS_UART_ENCODING_METHOD_MANCHESTER HSS_UART_ENCODING_METHOD_DIFF_MANCHESTER	Rx / Tx encoding method. NRZ and NRZI use no DPLL. FM0/1, Manchester & Diff_Manchester use the DPLL for clock recovery.The clock rate is 16x when the DPLL is used.
preamble_length	HSS_DPLL_PREAM BLE_LENGTH_0 HSS_DPLL_PREAM BLE_LENGTH_8 HSS_DPLL_PREAM BLE_LENGTH_16 HSS_DPLL_PREAM BLE_LENGTH_32 HSS_DPLL_PREAM BLE_LENGTH_48 HSS_DPLL_PREAM BLE_LENGTH_64 HSS_DPLL_PREAM BLE_LENGTH_128	Determines the length of the preamble pattern.

CCII/HSS/6-MAN/002	2002-04-11	lssue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpc	P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd	

preamble_pattern	HSS_DPLL_PREAM BLE_PATTERN_00 HSS_DPLL_PREAM BLE_PATTERN_10 HSS_DPLL_PREAM BLE_PATTERN_01 HSS_DPLL_PREAM BLE_PATTERN_11	Determines what bit pattern precedes each Tx frame.
send_idles_or_flags	HSS_HDLC_SEND_IDLES HSS_HDLC_SEND_FLAGS_SYNCS	Send either idles or flags/syncs between frames as defined by the protocol. For HDLC the flag is defined as 0x7E. NRZI encoding methods may only be used with flags/syncs.

4.2.2.3 Preamble Requirements

Decoding Method	Preamble Pattern	Minimum Preamble Length Required
NRZI Mark	All zeros	8-bit
NRZI Space	All ones	8-bit
FM0	All ones	8-bit
FM1	All zeros	8-bit
Manchester	10101010	8-bit
Differential Manchester	All ones	8-bit

CCII/HSS/6-MAN/002	2002-04-11	lssue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpc	P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd	

4.2.3 BISYNC Mode

This protocol may only be used with the four SCC ports: Ports A-D.

4.2.3.1 BISYNC Protocol Information Structure

{

The following structure is defined in the file hssControllfc.h and is given here in abbreviated format (i.e. reserved and obsolete members are not shown). Always use the structure as defined in hssControllfc.h.

struct hssBisyncInfoStruct

hssUIN T32 baud_rate; hssUINT32 clock_source; hssUINT32 max_receive_bytes; hssUINT32 min_no_sync_pairs; hssUINT32 crc select; hssUINT32 receive bcs; hssUINT32 rx_transparant_mode; hssUINT32 reverse data; hssUINT32 disable rx while tx; hssUINT32 rx_parity; hssUINT32 tx_parity; hssUINT32 diag_mode; hssUINT32 crcc; hssUINT32 prcrc; hssUINT32 ptcrc; hssUINT32 parec; hssUINT32 bsync; hssUINT32 bdle; hssUIN T32 cc[8]; hssUINT32 rccm; hssUINT32 sync; hssUINT32 syn_length; hssUINT32 send_idles_or_flags;

};

typedef struct hssBisyncInfoStruct hssBisyncInfo;

CCII/HSS/6-MAN/002	2002-04-11	Issue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpc	1	Page 35 of 45

Copyright © C²l² Systems (Pty) Ltd, All rights reserved, 2002

4.2.3.2 BISYNC Protocol Information Structure Members

Name	Options		Description
baud_rate	1200 - 115kbps (RS232) 1200 - 12Mbps (RS422/RS485) Any values pemissible. Units in bps.		This member is used to specify a single baudrate for both transmitter and receiver.
clock_source	HSS_CLOCK_DE FAULT		HSS_CLO CK_DEF AUL T con nects BRG [1-4] to P ort[A-D].
	HSS_CLOCK_BRG1 HSS_CLOCK_BRG2 HSS_CLOCK_BRG3 HSS_CLOCK_BRG4	Baud rate Ge nerato rs [1-4].	When the transmit clock is set to HSS_CLOCK_BRG[1-4], then receive clock is still set to HSS_CLOCK_EXT[1-4] for Port[A-D].
	HSS_CLOCK_EXT1 HSS_CLOCK_EXT2 HSS_CLOCK_EXT3 HSS_CLOCK_EXT4	External Clocks connected on Pins: RXCLK[1-4] (RS232) or CLKIN[1-4] (RS48 5/RS4 22).	
		Note: HSS_CLOCK_EXT[1-2] can only be used for SCC Port[A&B], while HSS_CLOCK_EXT[3-4] can only be used for SCC Port[C&D].	
max_receive_bytes	1 to (2048 - 2 CRC bytes) (default) or up to (32 Kbytes - 2 CRC bytes), depending on how many bytes have been allocated to the Rx & Tx buffers (See function hssCreate_device_ex()).		Maximum num ber of bytes to receive before closing buffer.
min_no_sync_pairs	0b0000 (0 pairs) - 0b1111 (16 pairs)		Minim um nu mber of SYN1-SYN2 pairs sent between or before messages. The entire pair is always sent, regardless of the syn_length variable.
crc_select	HSS_BISYNC_CRC_MODE_16 HSS_BISYNC_CRC_MODE_LRC		CRC selection. 1: CRC 16 (X16 + X15 + X2 + 1): initialise prcrc & ptcrc to all zeros or all ones. 2: LRC (sum check): for even LRC, initialise prcrc & ptcrc to zeros, for odd LRC initialise to ones.
receive_bcs	TRUE FALSE		Enable Receive Block Check Sequence (BCS).

CCII/HSS/6-MAN/002	2002-04-11	Issue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpc	1	Page 36 of 45

rx_transparant_mode	TRUE FALSE		Enable Receiver transparent mode. FALS E: norm al receiver mode with SYNC stripping and control character recognition. TRUE: transparent receiver mode. SYNC's, DLE's and control characters are recognised only after the leading DLE character. The receiver calculates the CRC16 sequence even if it is programmed to LRC while in transparent mode. Initialize prorc to the CRC16 preset value before setting rx_transparant_mode.	
reverse_data	TRUE FALSE		Enable Reverse data.	
disable_rx_while_tx	TRUE FALSE		Disable receiver while sending.	
rx_parity tx_parity	HSS_BISYNC_PARITY_ODD HSS_BISYNC_PARITY_LOW HSS_BISYNC_PARITY_EVEN HSS_BISYNC_PARITY_HIGH	HSS_BISYNC_PARITY_LOW HSS_BISYNC_PARITY_EVEN		
diag_mode	HSS_DIAG_NORMAL	Norm al ope ration. U se this for external loopback.	Set diagnostic mode. External loopback - RS485 : connect TXD+ to RXD+, TXD- to RXD-,	
	HSS_DIAG_LOOPBACK	Internal loopback: TXD & RXD are connected internally. The value on RXD, CTS & CD is ignored. The transmitter and receiver share the same clock source.	TXCLK+ to RXCLK+ and TX CLK- to RXCLK External loopback - RS232: connect TXD to RXD, TXCLK to RXCLK and RTS to CTS & CD.	
	HSS_DIAG_ECHO	The transmitter automatically resends received data bit-by-bit.	For HSS Front Panel I/O Board: program elec_interface= HSS_RS232_INT_CTL_LINES and conn ect TXD to RXD, TXCLK to RXCLK. Ignore RTS, CTL & CD.	
	HSS_DIAG_LOOPBACK_ECHO	Loopback and echo operation occur simultaneous ly.		
crcc	0		CRC constant value.	
prcrc ptcrc	0x0000 or 0xFFFF		Preset receiver / transmitter CRC16/LRC. These values should be preset to all ones or zeros, depending on the BCS used.	
parec	0 - 65535		Number of received parity errors.	

CCII/HSS/6-MAN/002	2002-04-11	Issue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wp	d	Page 37 of 45

bsync	0bv000000ssssss	BISYNC SYNC register. Contains the value of the SYNC character stripped from incoming
		from incoming data on receive once the receiver synchronizes to the data using the SYN1 - SYN2 pair.
		v - if v = 1and the receiver is not in hunt mode when a SYNC character is received, this character is discarded.
		ssssss (8 bits) - SYNC character. When using 7-bit characters with parity, the parity bit should be included in the SYNC register value.
bdle	0bv00000ddddddd	BISYNC DLE register. In transparent mode, the receiver discards any DLE character received.
		v - if v = 1a nd the receiver is not in hunt mode when a DLE character is received, this character is discarded.
		ddddd ddd (8 bits) - D LE character. This character tells the receiver that the next character is text.
cc[8]	0b0bhccccccc - valid entry	Control character 1 to 8.
	Ob1bhcccccccc - entry not valid and is not used.	(5 bits) - re serve d. Initialise to zero.
		 b - Bloch check sequence expected. A maskable interrupt is generated after the buffer is closed. b = 0: the character is written into the receive buffer and the buffer is closed. b = 1: the character is written into the receive buffer. The receiver waits for 1 LRC or 2 CRC bytes and then closes the buffer.
		 h - Enables huntmode when the current buffer is closed. h = 0: the BISYNC controller maintains character synchronisation after closing the buffer. h = 1: the BISYNC controller enters hunt mode after closing the buffer. When b = 1, the controller enters hunt mode after receiving LRC or CRC.
		ccccccc (8 bits) - defines control characters to be compared to the incom ing character. W hen u sing 7-bit characters with parity, include the parity bit in the character value.
rccm	0b1100000000 - ignore these bits when comparing incomming character 0b1111111111 - enable comparing the incoming character to cc[n].	Rece ive con trol char acter m ask. A one en ables comparison and a zero masks it.
sync	0xssss (2 bytes)	SYNC character: should be programmed with the sync pattern.

CCII/HSS/6-MAN/002	2002-04-11	Issue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpc	1	Page 38 of 45

syn_length	HSS_BISYNC_SYNL_8 HSS_BISYNC_SYNL_16	HSS_BISYNC_SYNL_8: should be chosen to implement mono-sync protocol. The receiver synchronizes on an 8-bit sync pattern in sync . HSS_BISYNC_SYNL_16: The receiver synchronizes on a 16-bit sync pattern stored in sync .
send_idles_or_flags	HSS_BISYNC_SEND_IDLES HSS_BISYNC_SEND_FLAGS_SYNCS	Send either idles or flags/syncs between frames as defined by the protocol.The flag character is equal to sync.

CCII/HSS/6-MAN/002	2002-04-11	Issue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd	1	Page 39 of 45

4.2.4 SMC UART Mode

This protocol may only be used with the two SMC ports: Ports I&J.

4.2.4.1 SMC UART Protocol Information Structure

{

};

The following structure is defined in the file hssControllfc.h and is given here in abbreviated format (i.e. reserved and obsolete members are not shown). Always use the structure as defined in hssControllfc.h.

struct hssSmcUartInfoStruct

```
hssUIN T32 baud_rate;
hssUINT32 clock_source;
hssUINT32 stop_bits;
hssUINT32 data_bits;
hssUINT32 parity_enable;
hssUINT32 parity_mode;
hssUINT32 diag_mode;
hssUINT32 max_receive_bytes;
hssUINT32 max_idl;
```

typedef struct hssSmcUartInfoStruct hssSmcUartInfo;

CCII/HSS/6-MAN/002	2002-04-11	Issue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd		Page 40 of 45

4.2.4.2 SMC UART Protocol Information Structure Members

Name	Opt	ions	Description	
baud_rate	1200 - 115kbps (RS232/RS422/RS485) Any values permissible. Units in bps.		This member is used to specify a single baudrate for both transmitter and receive r.	
clock_source	HSS_CLOCK_DE FAULT HSS_CLOCK_BRG1 HSS_CLOCK_BRG2 HSS_CLOCK_BRG3 HSS_CLOCK_BRG4 HSS_CLOCK_EXT1 HSS_CLOCK_EXT2 HSS_CLOCK_EXT3 HSS_CLOCK_EXT4	Baud rate Ge nerators [1-4]. External Clocks connected on Pins: RXCLK[1-4] (RS232) or CLKIN [1-4] (RS4 85/RS 422). Note: HSS_CLOCK_EXT[1-2] can only be used for SMC Port I, while HSS_CLOCK_EXT[3-4] can only be used for SMC Port J.	HSS_CLOCK_DE FAULT connects BRG[1-2] to Port[I-J]. Transmit & receive clocks can be set to one of HSS_CLOCK_BRG[1-4] or HSS_CLOCK_EXT[1-4].	
stop_bits	HSS_UART_STOP_BITS_ONE HSS_UART_STOP_BITS_TWO		Number of full stop bits.	
data_bits	HSS_UART_DATA_BITS_5 HSS_UART_DATA_BITS_6 HSS_UART_DATA_BITS_7 HSS_UART_DATA_BITS_8 HSS_UART_DATA_BITS_9 HSS_UART_DATA_BITS_10 HSS_UART_DATA_BITS_11 HSS_UART_DATA_BITS_12 HSS_UART_DATA_BITS_13 HSS_UART_DATA_BITS_14		Number of data bits. Note only ports I & J (i.e. the SMC ports) can select 9 or more data bits.	
parity_enable	HSS_UART_PARITY_NO_PARITY HSS_UART_PARITY_ENABLE		Enable or disable parity checking.	
parity_mode	HSS_UART_SMC_PARITY_ODD HSS_UART_SMC_PARITY_EVEN		Rece ive and transm it parity. Parity will only be checked if parity is enabled.	
diag_mode	HSS_DIAG_NORMAL	Normal operation. Use this for external loopback.	Set diagnostic mode. External loopback -	
	HSS_DIAG_LOOPBACK	Internal loopback: TXD & RXD are connected internally. The value on RXD is ignored.	RS485: connect TX D+ to RXD + & TX D- to RX D External loopback -	
	HSS_DIAG_ECHO	The transmitter autom atically resends received data bit-by-bit.	RS232: connect TXD to RXD.	
	HSS_DIAG_LOOPBACK_ECHO	Loopback and echo operation occur simultane ously.		
max_receive_bytes	1 to 2048 (default) or up to 32 Kbytes, depending on how many bytes have been allocated to the Rx & Tx buffers (See function hssCreate_device_ex()).		Maximum number of bytes that may be copied into a buffer.	

CCII/HSS/6-MAN/002	2002-04-11	lssue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd		Page 41 of 45

max_idl	0 to 2048 (default) or up to 32 Kbytes, depending on how many bytes have been allocated to the Rx & Tx buffers (See function hssCreate_device_ex()).	Maximum idle characters. When a character is received, the receiver begins counting idle characters. If max_idl idle characters are received before the next data character, an idle timeout occurs and the buffer is closed. Thus, max_idl offers a way to demarcate frames. To disable the feature, clear max_idl. The bit length of an idle character is calculated as follows: 1 + data length (5-14) + 1 (if parity is used) + num ber of stop bits (1-2). For 8 data bits, no parity, and 1 stop bit, the character
		length is 10 bits.

CCII/HSS/6-MAN/002	2002-04-11	Issue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd	3	Page 42 of 45

5 Getting Started

After installing the host driver according to paragraph 3.1, test the host driver following the test procedure given in hssTest.txt.

CCII/HSS/6-MAN/002	2002-04-11	Issue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpc	3	Page 43 of 45

6 Contact Details

6.1 Contact Person

Direct all correspondence and / or support queries to the Project Manager (HSS) at C2I2 Systems.

6.2 Physical Address

C2I2 Systems (Pty) Ltd Unit 3, 67 Rosmead Avenue Kenilworth Cape Town 7701 South Africa

6.3 Postal Address

C2I2 Systems (Pty) Ltd P.O. Box 171 Rondebosch Cape Town 7701 South Africa

6.4 Voice and Electronic Contacts

 Tel:
 (+27) 21 683 5490

 Fax:
 (+27) 21 683 5435

 Email:
 info@ccii.co.za

 Email:
 support@ccii.co.za

 URL:
 http://www.ccii.co.za/

6.5 Product Support

Support on C2I2 Systems' products is available telephonically between Monday and Friday from 09:00 to 17:00 CAT. Central African Time (CAT = GMT + 2).

Email support is available at support@ccii.co.za

CCII/HSS/6-MAN/002	2002-04-11	lssue 3.5
P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpd		Page 44 of 45

Appendix A Making Changes to sysLib.c for X86

The PCI free memory space needs to be defined in the memory descriptor table. Consult the relevant reference manual and obtain the upper address of the PCI memory. Allocate at least 5 megabytes of memory per HSS card. Subtract that amount from the upper address of the PCI memory, and use this value as the base of the PCI memory space.

Note: if there are other devices on the PCI bus, it may be necessary to allocate more memory.

Example: For 2 HSS cards, allocate 10 megabytes of memory. If the upper address of the PCI memory space is defined as 0xFFF00000, then subtracting 10 megabytes gives a base address of: 0xFFF00000 - 0xA00000 = 0xFF500000.

In the PC 386/486/Pentium/Pentiumpro system-dependent library (sysLib.c), code (**shown in bold text**) needs to be added to the memory descriptor table, sysPhysMemDesc[]:

```
#ifndef CPU_PCI_MEM_ADRS
#define CPU PCI MEM ADRS
                                  0xFF500000 /* base of PCI MEM addr */
#endif
PHYS MEM DESC sysPhysMemDesc [] =
{
       /* adrs and length parameters must be page-aligned (multiples of 4KB/4MB) */
       #if(VM PAGE SIZE == PAGE SIZE 4KB)
             /* lower memory */
                    ...
             /* video ram, etc */
             /* upper memory for OS */
             /* upper memory for Application */
             /* PCI I/O space */
             {
                    (void *) CPU_PCI_MEM_ADRS,
                    (void *) CPU_PCI_MEM_ADRS,
                     (0xA00000),
                    VM_STATE_MASK_VALID | VM_STATE_MASK_WRITABLE |
                    VM_STATE_MASK_CACHEABLE, VM_STATE_VALID |
                    VM_STATE_WRITABLE | VM_STATE_CACHEABLE_NOT
             },
             /* entries for dynamic mappings - create sufficient entries */
             DUMMY MMU ENTRY,
              DUMMY MMU ENTRY,
              DUMMY_MMU_ENTRY,
                    ...
       #else
             ...
              . . .
```

CCII/HSS/6-MAN/0022002-04-11Issue 3.5P:\HSS\TECH\MAN\USERMAN\cManHssDrv.wpdPage 45 of 45