

EC-Gold Dual Gas Concentration Transmitter User Manual

Technical Support

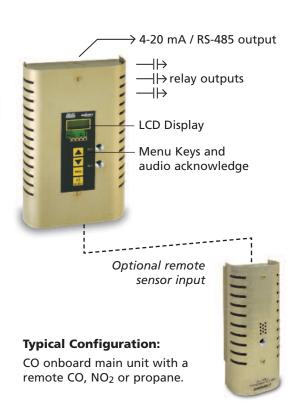
Continental North America Toll Free 1-(800) 387-9487

Ph: +1 (905) 829-2418 Fx: +1 (905) 829-4701

A Product of Arjay Engineering Ltd. Oakville, Ontario, Canada

www.ArjayEng.com www.EnmetGasDetection.com

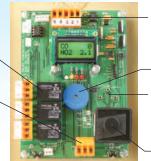
EC-Gold Dual


Multi-Sensor Gas Detector

Stand alone gas monitoring for commercial and light industrial applications

The EC-Gold Dual is ideal for any size facility where one or multiple gases need to be monitored. More than 30 years of gas detection experience has contributed to this highly functional detector.

- one or two onboard sensors (ie. CO and NO₂)
- two optional remote sensors (ie. toxic, combustible, or any analog device)
- LCD display, buzzer, 3 relays, RS-485 communication, 4-20 mA output and a keypad interface are standard
- ideal for maintenance garages, fire and ambulance stations, service, storage and repair bays, chiller rooms, factories and laboratories


EC-GOLD

The EC-Gold Dual offers complete flexibility in meeting your gas detection needs. The standard unit includes 3 relays. They are factory set to High, Low and fault and activated by all of the sensors. The standard 4-20 mA output can be designated to one sensor or scan all sensor inputs simultaneously to represent the highest concentration. The RS-485 Modbus communication is always available.

The Full Feature package includes a LCD display of the gas concentration, a buzzer with silence, and a keypad interface for user set-up and calibration.

High, low and fault relays

remote sensor inputs from **EC-GOLD** or MOS type

24 vac/vdc input 4-20 mA / RS-485 Modbus output

audio alarm

onboard toxics NO₂, CL₂, O₂, NH₃, H₂S

CO sensor

Plug-in connectors and easy access sensors for fast maintenance.

Features and Benefits

- analog and relay outputs for control interface
- metal sensor guard
- top, bottom and rear conduit entry
- 3 year sensor guarantee (CO sensor)
- on-board diagnostics
- up to four sensor inputs
- remote sensor input capability
- LCD display of concentration
- LED Alarm Status indication
- · Buzzer with silence
- Keypad/menu driven set-up
- Single analog output representing highest sensor concentration for easy fan speed control or logging
- Push to Test button to confirm interlocks

Technical Specifications - Control Unit

Operating Temperature -20°C to 40°C, indoor use

Approvals to CSA, UL

Enclosure Nema/Type 1 (IP40) Mounting Surface mount

Power Input 24 vac or 24 vdc, 0.2 amp

(.325 with MOS)

Relays 3xSPDT, 10 amp @ 240 vac

4-20 mA, 700 ohms **Analog Output**

(24 vdc units only)

RS-485 Modbus Communication

Typical Gases

CO carbon monoxide 0-500 ppm (factory shipped 0-200 ppm)

 NO_2 nitrogen dioxide 0-20 ppm

 NH_3 ammonia 0-100 ppm

H₂S hydrogen sulphide 0-100 ppm (factory shipped 0-10 ppm

chlorine 0-10 ppm

 Cl_2

oxygen 0-30% O_2

combustibles

refrigerants

TABLE OF CONTENTS

1.0	INST	ISTRUMENT OVERVIEW			
	1.1	Feature	S	3	
	1.2	Descrip	tion	3	
	1.3	Specific	cations	6	
2.0	INSTA	ALLATION	l	7	
	2.1	Mechan	nical Installation	7	
	2.2	Electrica	al Installation	8	
3.0	STAR	TUP AND	CONFIGURATION	11	
	3.1	Notes C	On The User Interface	11	
	3.2	Startup.		12	
	3.3	Menu C	Configuration	12	
		3.3.1	Normal Operating Menu Flow Chart	13	
		3.3.2	Sensors Setup Menu Flow Chart	14	
4.0	CALIBRATION				
	4.1	Calibrat	ion Notes	15	
	4.2	Calibrat	tion Procedures (Full Feature Mode with LCD / KEYPAD)	15	
	4.3 Ca	alibration F	Procedures (Standard Feature Mode Without LCD / KEYPAD)	18	
		4.3.1	CALIBRATION NOTES	18	
		4.3.2	SINGLE POINT CALIBRATION	18	
5.0	PUSH	TO TEST	Γ FEATURE	19	
6.0	EC-G	OLD DUA	L MODBUS SETTING	20	
	6.1	Modbus	Configuration	20	
	6.2	Ec-Gold	d Dual Modbus Register Mapping	21	
7.0	TROU	BLESHO	OTING	23	
8.0	CONT	ROLLER	SETTINGS SHEET	24	

1.0 INSTRUMENT OVERVIEW

1.1 Features

- Gas monitor for a large variety of gas types.
- Can monitor up to 4 different sensor inputs at one time
 - Port 1: on board CO (Carbon Monoxide) Electrochemical
 - Port 2: on board electrochemical for NO2 (Nitrogen Dioxide), CL2 (Chlorine), H2S (Hydrogen Sulfide), NH3 (Ammonia) and others.
 - Port 3: integral or remote MOS broad range toxic and combustibles
 - Port 4: remote 4-20 mA input transmitters
- Carbon Monoxide sensor has expected life of 5 years min. (3 year guarantee)
- Other sensors have expected life of 2 years (1 year guarantee)
- Output may be user selectable for analog (4-20mA / 2-10V) or Arjay's Discrete Voltage Output (DVO).
- Convenient pushbutton calibration.
- User selectable for Single or Dual Point calibration
- High/High, High, Low, and optional System Fault Indication in place of High/High alarm
- User selectable High and Low Alarm levels
- Modbus protocol via RS-485 for access by Arjay/Enmet Central Access Panel or compatible system
- Can be used as a stand alone gas detector or can be used with other EC-Gold sensors for interfacing with an Arjay Central control panel or customer system
- User specified custom features might be added by contacting Arjay Engineering Ltd.

1.2 Description

The EC-Gold Dual can be used a Stand Alone gas detector with relays and outputs available to communicate with remote devices such as alarms, fans and building automation systems.

The standard model provides 3 relays, a 4-20 mA output and an RS-485 interface. The full feature model provides the addition of an LCD display of concentration, buzzer with silence, and keypad interface.

The 4-20 mA output will represent the peak value determined from all sensor inputs based on the percentage concentration of their range. For example, assume the detector has a CO sensor calibrated for 0-200 ppm and an NO2 sensor with a calibrated range of 0-20 ppm. If the CO sensor reads a 20ppm and the NO2 sensor reads 10ppm, the 4-20 mA output will be 12 mA. This will represent that the NO2 is at 50% of its range while the CO is only at 10% of its range. An analog output cannot be averaged among sensors. This would provide outputs not representative of actual conditions and could result in unsafe conditions.

The relays are common to all sensors and are set to ppm or % LEL values specific and proper for each sensor type.

The LCD display will provide a real time reading of the ppm or % LEL concentrations of all sensors.

The EC-Gold Dual can be used with multiple sensors connected to any Arjay/Enmet Control panel. The following are examples of typical methods of installing the EC-Gold Dual.

Figure 1.0: The EC-Gold Dual can be a Stand Alone detector to interface with fans or alarms using the relays or analog outputs.

Figure 1.1: EC-Gold Dual can be combined with other EC-Gold Dual or EC-Gold sensors to the ISA 66 RLU panel using the cost effective Arjay/Enment DVO signal. Ideal for multi-zone installations where a central control panel is desirable.

Figure 1.2: EC-Gold Dual can be combined with other EC-Gold Dual or EC-Gold sensors to the ISA Gas Alert Max panel using the cost effective Arjay/Enmet DVO signal. Ideal for single or multi-zone installations where a control panel is desirable at each fan location or in central location.

Figure 1.3: EC-Gold Dual can be combined with other EC-Gold Dual or EC-Gold sensors to the PG-2000 panel using the RS-485 communication to address each sensor. Ideal for applications that require more complex zone control or analog outputs for VFD fan control.

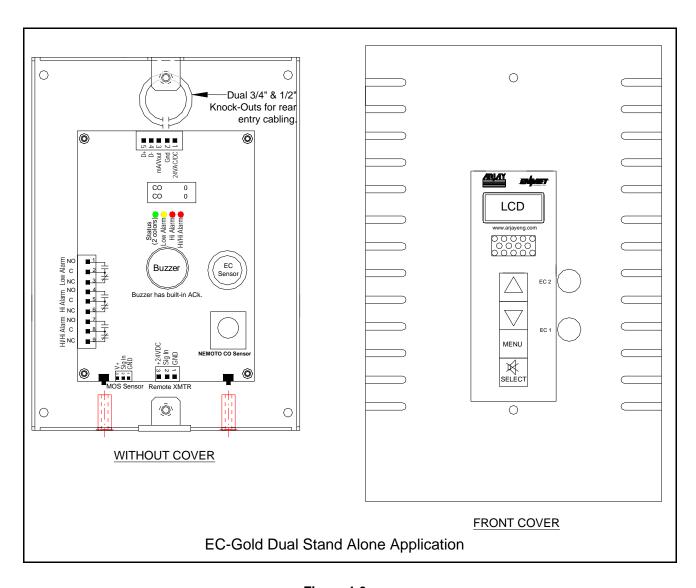


Figure 1.0

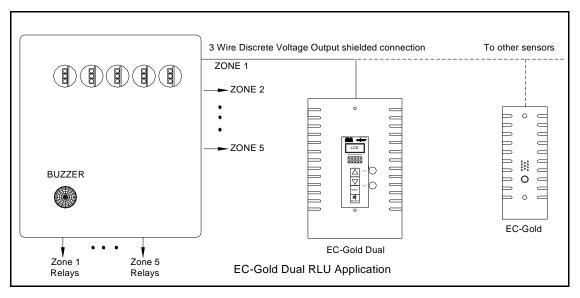


Figure 1.1

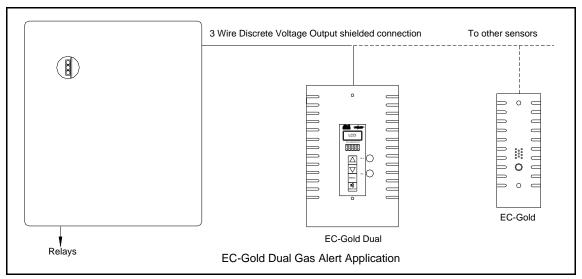


Figure 1.2

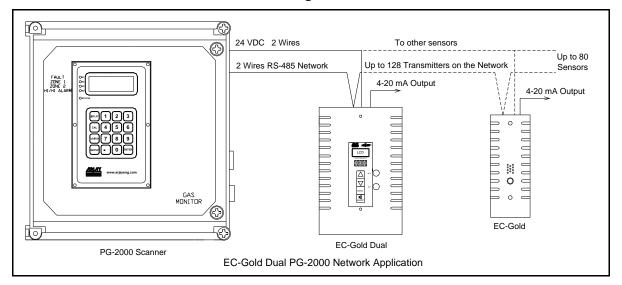


Figure 1.3

1.3 Specifications

OPERATION

The EC-Gold Dual is a multi-sensor gas detector. A variety of gases may be sensed when fitted with the appropriate sensors.

PUSH-TEST FEATURE On demand using the Push to Test pushbutton.

LCD DISPLAY/KEYPAD 2 x 8 LCD display showing ppm concentrations and calibration

menus

USER INTERFACE

Calibration and setup Keypad, LCD, pushbutton, and LED status lights.

Push-Test Pushbutton.

Network RS-485 modbus protocol. Used either with the ARJAY/ENMET

CAP unit or via third party, modbus compatible systems.

INPUTS

Port 1 (EC1): on board CO (Carbon Monoxide) Electrochemical

Port 2 (EC2): on board electrochemical for NO2 (Nitrogen Dioxide), CL2

(Chlorine), H2S (Hydrogen Sulfide), NH3 (Ammonia) and others.

Port 3: integral or remote MOS broad range toxic/combustibles and

catalytic combustibles

Port 4: remote 4-20 mA input transmitters

OUTPUTS

mA output When configured for Analog output: 4-20mA into 700 ohms max.

DC Voltage output When configured for Voltage output: 2-10V proportional to

calibrated range.

mA / Voltage output 0.1% resolution – non-isolated.

RLU DV output When configured for RLU Discrete Voltage Output mode:

0V = No Alarm, 1.8V = Low Alarm, 2.8V = High Alarm, 10V = Sensor Fault. (Sensor Fault only detected with CO sensor).

Alarms 3 alarms (High/High, High, Low) and Optional System Fault May be

factory selected

Alarm Indication High (Red), Low (Yellow), and a 2 color LED for Sensor Fault (Red)

and No Alarms (Green). The 2 color LED is also used to flash calibration errors (Red for ~2 seconds after an unsuccessful

calibration).

PERFORMANCE Accuracy ±2% of Full Scale Range (the accuracy is limited by the

sensors - the electronic accuracy is better than 1%.

POWER

12VDC - 24VDC @ 200mA max OR 24VAC INPUT (See JP1

Jumper in Fig 2.1)

Requires extra current if wiring external transmitter

MECHANICAL SPECIFICATIONS

Enclosure Nema 1 wall mount

Dimensions 9.61" [244mm] H x 6.25" [159mm] W x 2" [50mm] D

Weight 0.3 kg

ENVIRONMENTAL SPECIFICATIONS

Operating Temp. -20°C to +55°C

Relative Humidity 90% max. with no condensation.

2.0 INSTALLATION

2.1 Mechanical Installation

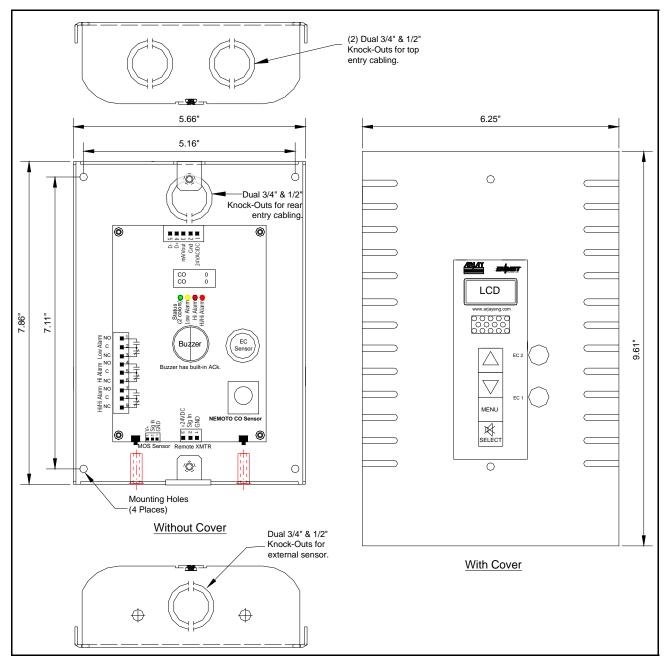


Figure 2.0

Locate the EC-Gold Dual on a vertical surface away from drafts, open doors or windows, condensation or dripping moisture.

The vertical placement (above the floor) depends on the gas being monitored. For CO, the unit should be located within the breathing zone: about 4 - 5 feet above the finished floor*. For other gases, refer to an Arjay Engineering representative.

^{*} Check local building codes (i.e. Ontario Building code requires mounting 2'11" to 3'11").

2.2 Electrical Installation

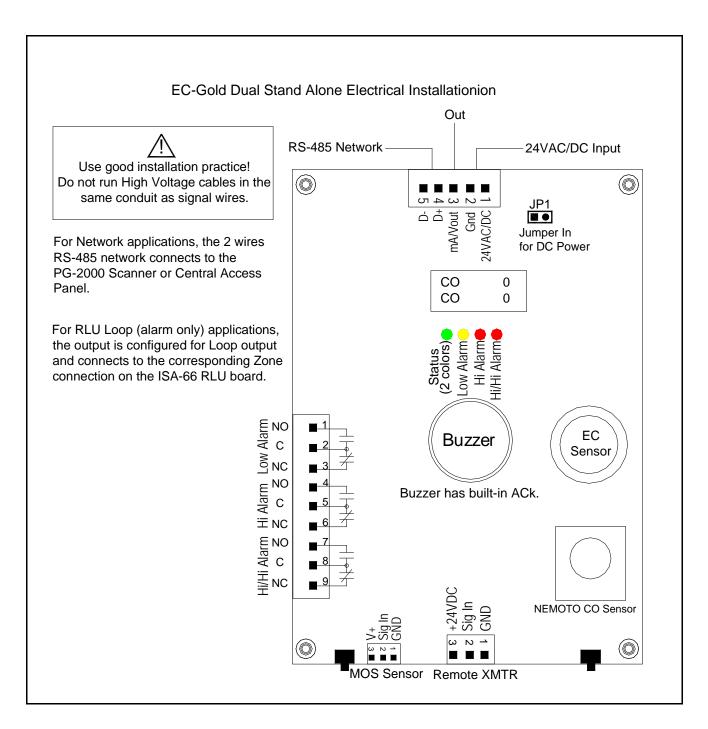


Figure 2.1

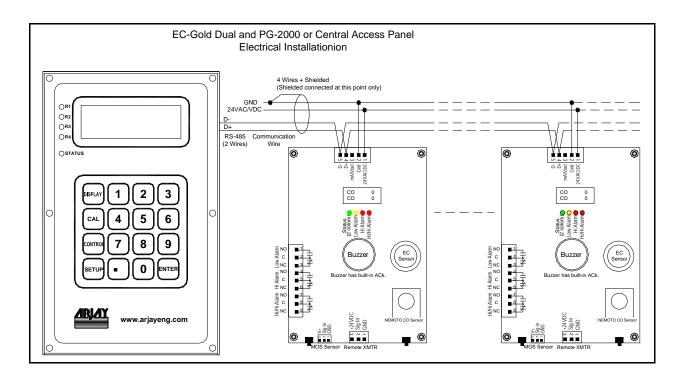


Figure 2.2

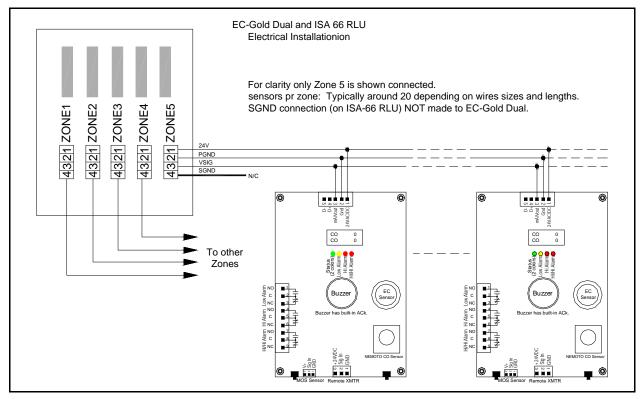


Figure 2.3

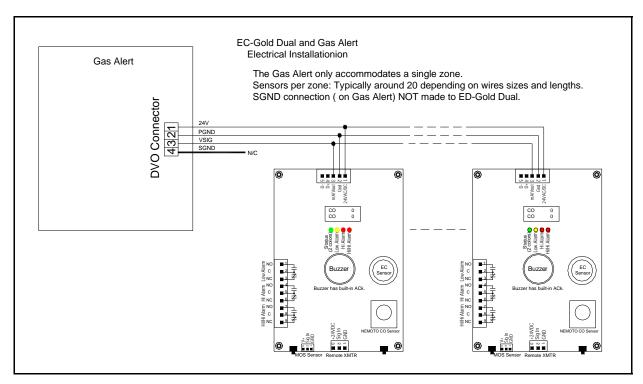


Figure 2.4

All user connections are via mating plug/receptacle connectors to make installation and service easier.

CAUTION:

THE UNIT HOUSES SENSITIVE ELECTRONIC COMPONENTS AND SHOULD BE HANDLED WITH CARE. IF PUNCHING OR DRILLING THROUGH THE ENCLOSURE WALLS IS NECESSARY MAKE SURE THAT THE INTERNAL ELECTRONIC MODULES ARE SHIELDED FROM DEBRIS ESPECIALLY METAL PARTICLES.

PLEASE MAKE SURE THAT THE CONNECTIONS HAVE THE POLARITY AS INDICATED OR THE CONTROLLER MAY BE DAMAGED.

USE GOOD INSTALLATION PRACTICE! DO NOT RUN HIGH VOLTAGE CABLE IN THE SAME CONDUIT AS SIGNAL WIRES.

3.0 STARTUP AND CONFIGURATION

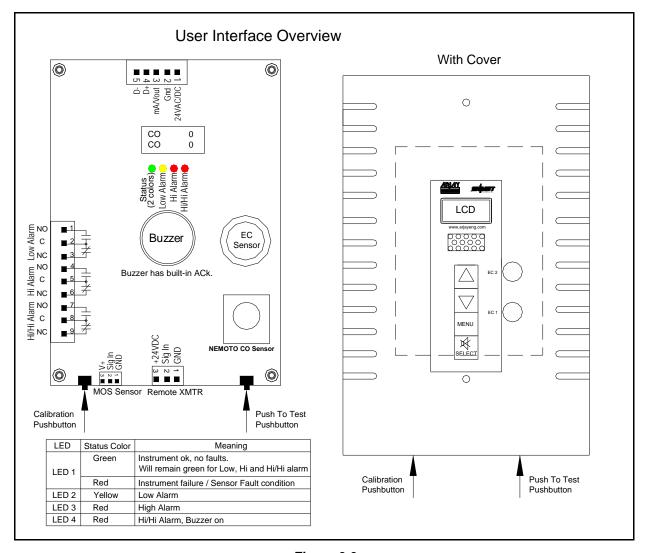


Figure 3.0

3.1 Notes On The User Interface

The EC-Gold Dual can monitor up to 4 different Sensor inputs at one time.

Port 1: on board CO (carbon monoxide) sensor

Port 2: on board electrochemical sensor

Port 3: remote MOS sensor

Port 4: remote 4-20 mA Input Transmitter

The standard model provides 3 relays, a 4-20mA output and an RS-485 interface. The full feature model provides the addition of an LCD display of concentration, buzzer with silence and keypad interface.

The EC-Gold Dual may be configured and calibrated using the following methods:

1. Using the calibration pushbutton (basic model without keypad). The pushbutton is accessible without removing the front cover.

- 2. Using the keypad and display (full feature model). The user follows the menus on the display.
- 3. Using Arjay's optional 2000-CAL hand held calibrator. The calibrator communicates with the EC-Gold Dual via the RS-485 connection using the modbus protocol. The calibrator's LCD and keypad offer a more convenient method of setting up and calibrating the EC-Gold Dual unit.

3.2 Startup

Power up the unit. The status LED should be green. The High and Low alarm LED's should go off in less than a minute.

The unit is normally pre-configured and calibrated at the factory so field setup is not required on startup.

To re-calibrate, see section 4.0 Calibration.

To re-enter or modify settings, follow the procedures described below. Only the full feature model interface procedure is described here.

3.3 Menu Configuration

After powering up the unit and under normal operating conditions, the LCD displays the Normal Operating Menu. See the next page for detail Menu configuration>

The Default Password: 2000

Alrm Del – Alarm and Buzzer Delay (Setup Alarm Delay On and Off Time in seconds; setup Buzzer Delay On time in seconds)

K1 - Relay 1 Alarm Delay On/Off time

K2 - Relay 2 Alarm Delay On/Off time

K3 – Relay 3 Alarm Delay On/Off time

Buzzer - Delay On time

Sel Snsr – Select Sensor

A1 – Relay 1 Alarm Setting Value (normally, Low alarm value)

A2 – Relay 2 Alarm Setting Value (normally, High alarm value)

A3 – Relay 3 Alarm Setting Value (normally, Hi/Hi alarm value)

Normal Operating Menu Flow Chart 3.3.1

Press <SELECT> to move cursor; Press $<\Delta>/<\nabla>$ to increase / decrease

the value.

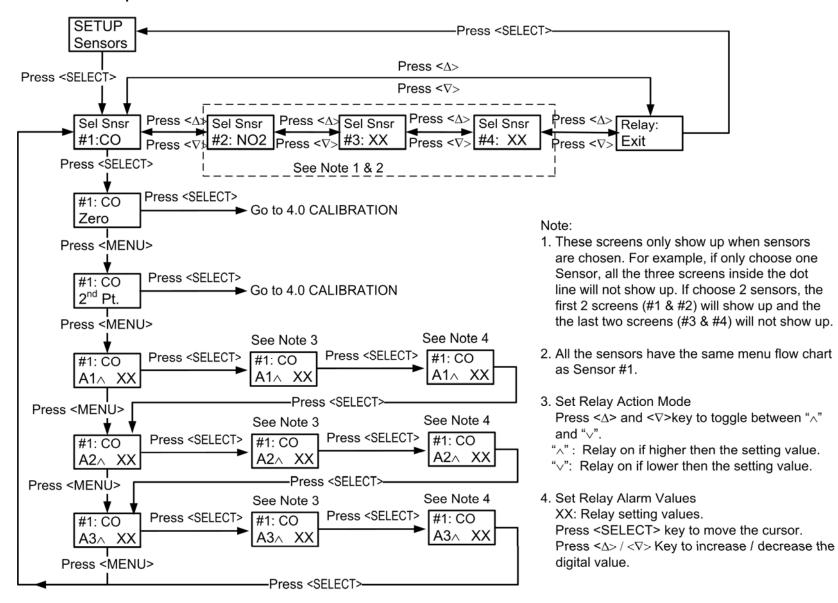
Normal Operating Menu CO NO2 0 Press and hold <MENU> key Password Press <SELECT> Default Password: 2000 **Alarm Delay** Press <∆> Key twice and press <SELECT> Setup Menu four times to go to the Sensors Setup Menu -Press <SELECT> Press <∇> Key SETUP Press <∆> Key SETUP Press <Select> NET ID SETUP Press <∆> Key SETUP Press < 1> Key Sensors Exit Alrm Del Press <∇> Key ID Press <∇> Kev Press <SELECT> Press <∆> Key Press $<\Delta>$ Press <∇> Key Press <∇> Press <SELECT> Press <∆√ Relay: Press <∆> Relay: lPress <∆> Relay: Relay: Relay: Buzzer Exit K1 Press <∇> lPress <⊽ Press <∇> **Next Page** Press <SELECT> Press <SELECT> Press <SELECT> Press <SELECT> Notes: K1 Delay See See K3 Delay | See See K2 Delav Buzzer 1. Set Relays and Buzzer Delay On Time Note 1 Note 1 Note 1 Note 1 On= 0 | 0 On= 0 On=0On= (second) Press <SELECT> to move cursor: Press <SELECT> Press <SELECT> Press $<\Delta>$ / $<\nabla>$ to increase / decrease Press <SELECT> Press <SELECT> the value. K3 Delay See K1 Delay | See K2 Delay See 2. Set Relay Delay Off Time (second)

Off= 0 Note 2

Press <SELECT>

Off=

Press <SELECT>


0 Note 2

Off= 0 | Note 2

Press <SELECT>

3.3.2 Sensors Setup Menu Flow Chart

Sensors Setup Menu

4.0 CALIBRATION

4.1 Calibration Notes

The instrument was calibrated and tested prior to leaving the factory. Therefore, it is possible to use the instrument directly out of the box. Under normal conditions, recalibration is recommended once every 6 months. For a two point calibration, the first point is typically Zero (clear air); the second point (also called span) is a determined gas concentration value.

If the preset EC-Gold Dual calibration span value is known and you have the same calibration gas concentration, the entire calibration procedure can be completed without removing the front cover.

4.2 Calibration Procedures (Full Feature Mode with LCD / KEYPAD)

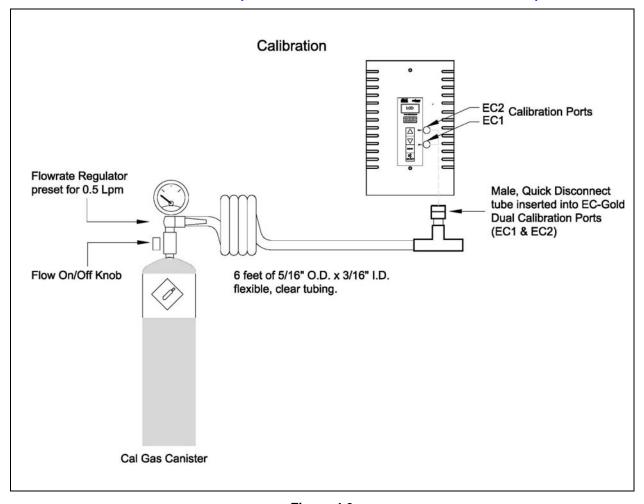


Figure 4.0

1. Under normal operating conditions, the LCD displays the following (depending on sensors order):

СО	0
NO2	0

2. Follow the Manu Flow Chart, until the following screen display:

#1: CO	
Zero	

- 3. Zero Calibration only needs to be done when installing a new sensor. Press <MENU> key to bypass Zero Calibration, and go to step 6 to start second point calibration. If a Zero Calibration is required, follow the steps 4-5.
- 4. Press <SELECT> key, the LCD display:

Z	XX
mv	XX

- 5. Make sure the ambient air around the sensor is clean ie. it has no traces of the gas being monitored. In applications where the ambient air is not guaranteed to be clean, use a compressed air calibration canister and apply the air to the sensor hole (EC1). For the Zero point, the mv values should be less then 100 mv. If the mv value is changing within 5 mv for a minimum of 10 seconds, the instrument will automatically accept the Zero calibration. Or press <SELECT> key and finish the first point (Zero) calibration.
- 6. The LCD now displays the following and the instrument is ready for the second point calibration.

```
#1: CO
2nd Pt.
```

7. Press <SELECT> key to start the second point calibration, and the LCD displays the following. Press <SELECT> key to move the cursor and accept the second point calibration. If want to change gas concentration value, press <SELECT> key to move the cursor to proper position and press <MENU> key to increase up to the right value. Press <SELECT> key to accept the gas concentration value.

```
#1: CO
S 100
```

S stands for second point

8. After selecting gas concentration value, the LCD displays the following and the instrument is ready for the second calibration:

S	XXX
mv	XXX

9. Apply the Gas in the sensor hole (EC1). EC1 is for Carbon Monoxide; EC2 is for other types of gas, such as NO2. Start gassing the sensor by opening the valve on the canister. The flow rate is set to 0.5 Lpm (or ~1 SCFH (Standard Cubic Foot per Hour). Wait about 90 seconds. After this, if the mv value is changing within 5 mv for a minimum of 10 seconds, the instrument will automatically accept the second point. Or press <SELECT> key to manually accept the second point. If the calibration was successful, the LCD displays the following. Otherwise, the LCD displays the calibration error message.

```
#1: CO
Cal OK
```

10. The "Cal OK" or "Error Message" only displays a couple of seconds, then the LCD displays the following alarm 1 setting value:

```
#1: CO
A1 \( \) 35
```

11. Press <MENU> key to bypass the Alarm value setting menu, until the following Sensor Selection Menu shows up:

Sel Snsr #1: CO

12. Press <∆> or <∇> key to select the #2 Sensor or Exit. If choose the #2 Sensor, the LCD displays the following:

Sel Snsr #2: NO2

13. Press <SELECT> Key to the second sensor calibration menu. If the sensor is mA input sensor, then go to step 14

#2 NO2 Zero

The calibration procedure for second sensor is the same as the first sensor except for applying gas to sensor hole (EC2). Follow the steps 3-12, then press <MENU> key to go to the normal working display.

14. If the sensor is mA input sensor, the calibration of the sensor is done at the remote sensor (see Remote Sensor Manual). The mA scale is normally factory set, but may be changed if change needed. Press <SELECT> to change mA settings or press <MENU> key to bypass the calibration and go back to the Sensor Selection Menu.

#2 CO mA Scale

15. Press <SELECT> key to set 4 mA, and the LCD displays the following. Press <SELECT> key to move the cursor and accept the value. Normally, set 4 mA equals 0 ppm. To change the value, press <SELECT> key to move the cursor to proper position and press <MENU> key to increase up to the right value. Press <SELECT> key to accept the setting value.

#2 CO 4= 0

16. Press <SELECT> key to set 20 mA, and the LCD displays the following. Press <SELECT> key to move the cursor and accept the value. 20 mA is normally set for maximum range of remote XMTR. To change the value, press <SELECT> key to move the cursor to proper position and press <MENU> key to increase up to the right value. Press <SELECT> key to accept the setting value.

#2 CO 20= 200

- 17. Then the display goes to the Alarm setting Menu. Press <MENU> key to bypass the calibration and go back to the Sensor Selection Menu. Repeat Step 12 to Step 16 if calibrate more sensors.
- 18. Go back to the normal operating Menu by following the Normal Operating Menu Flow Chart

THIS COMPLETES THE CALIBRATION PROCEDURE FOR FULL FEATURE CONTROLLER

4.3 Calibration Procedures (Standard Feature Mode Without LCD / KEYPAD)

4.3.1 CALIBRATION NOTES

The EC-Gold Dual may be calibrated using a Single Point calibration procedure, by using calibration push button.

The Calibration pushbutton may be accessed using a screwdriver or other fine tool – See Figure 4.1 for the location of the access hole.

A full Dual Point calibration is always performed at the factory and involves zeroing the sensor in clean air, then calibrating at a preset gas concentration. The Single Point calibration is typically used in the field since it is more convenient. Also, it does not require clean air as one of the calibration points, since clean air cannot be guaranteed in all installations. **A Single Point calibration assumes the unit has** already been zeroed. This is always true for new units from the factory.

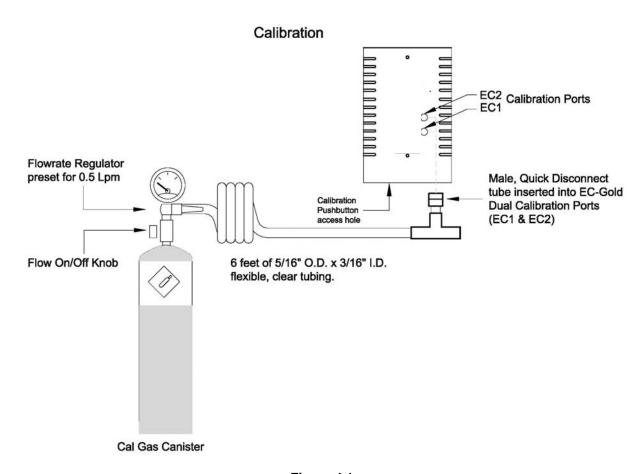


Figure 4.1

4.3.2 SINGLE POINT CALIBRATION

The calibration gas concentration value must be known. The unit comes factory set for Single Point Calibration and 100 ppm CO or 10 ppm NO2. If either setting is in doubt, then see section 7, controller setting sheet.

- 1. Determine what Calibration gas concentration the EC-Gold Dual is expecting. This value is listed on the packing slip and may be recorded in the back of the user manual in the CONTROLLER SETTINGS sheet for future reference.
- 2. The gas sensor is mounted directly behind the Calibration Port in the middle of the front plate of the EC-Gold Dual housing [See Fig. 4.1]. Insert the Quick Disconnect tube into the EC-Gold's Dual Calibration Port.
- 3. Start gassing the sensor by opening the valve on the canister. The flow rate is preset to 0.5 Lpm (or ~1 SCFH (Standard Cubic Foot per Hour). Wait about 90 seconds.
- 4. Press and hold the calibration pushbutton (via the access hole see Fig. 4.1) until the Status LED glows orange acknowledging the calibration request. Release the pushbutton.
- 5. If the Status LED remains green after the Calibration pushbutton is released, then the Calibration has been successfully completed. If the calibration was successful, the Status LED remains green. If there was a calibration error such as not enough change for the gas concentration used, then the Status LED shows red for about 2-3 seconds before reverting back to green.

THIS COMPLETES THE CALIBRATION PROCEDURE FOR STANDARD FEATURE CONTROLLER

5.0 PUSH TO TEST FEATURE

The Push to Test feature allows the customer to verifty if the controller is receiving a LOW, HIGH, HIGH and Total span alarm signals and that ventilation fans, audio alarms etc are working.

Press the Push to Test pushbutton to activate this feature. See Figure 3.0 for the pushbutton location.

When the button is pressed and released, the Status LED starts blinking green on and off every 2 seconds to indicate a test is underway. This feature forces the sensor to Low alarm plus 1ppm.

Press Button again to force High alarm plus 1ppm. Press Button again to force HIGH HIGH alarm (HIGH HIGH alarm plus 1ppm). Press Button again to force span value alarm. Press Button again to get out of Push to Test feature. If Push to Test feature is left ON, it will time out after 30 minutes.

6.0 EC-GOLD DUAL MODBUS SETTING

The EC-GOLD Dual may be monitored via RS-485 protocol compatible digital communications. Typical features are:

1. Ease of wiring in multiple level point monitoring:

Up to 254 may be connected together in a daisy chain (2 wire communication plus power wiring) connection to an Arjay Remote Access monitor or customer control system which allows viewing data and setup of any of the transmitters on the network. The relay and analog outputs may still be used if necessary.

2. Setup for the EC-Gold Dual for network operation:

Each EC-Gold Dual transmitter must have a unique ID number to connect in a network system.

6.1 Modbus Configuration

Parameter settings: 9600 Baud Rate; Even Parity, 8 Data Bits and 1 Stop Bit.

Wiring connection: RS485 (+) connect to D+; RS485 (-) connect to D-

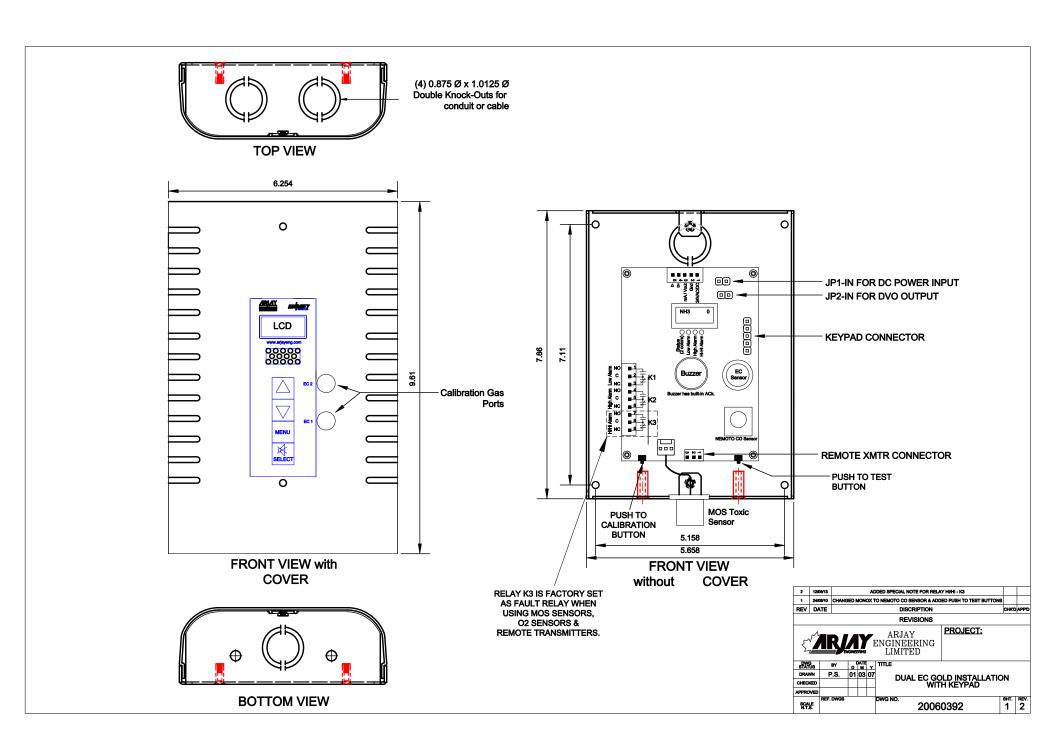
6.2 Ec-Gold Dual Modbus Register Mapping

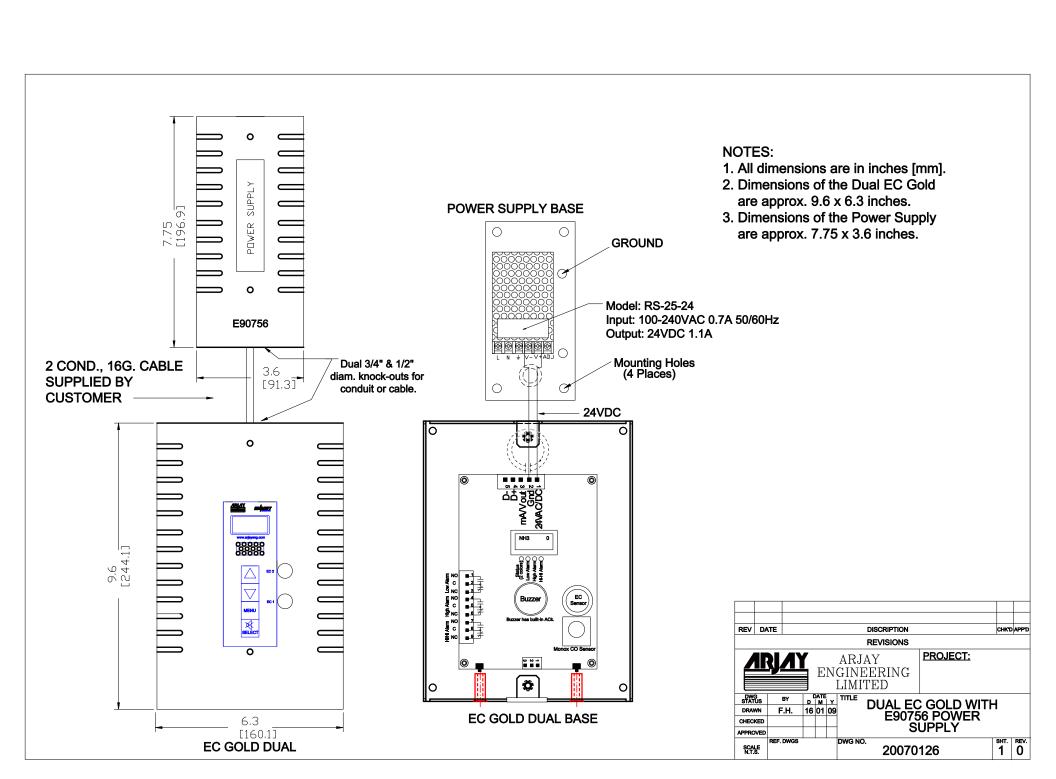
REG	DESCRIPTION	TYPE	No. of Reg	Read/write
40001	Serial Number	int	1	R/W
40002	Hardware Rev / Software Rev	byte	1	R/W
40003	Instrument status / Mode byte		1	R/W
40004	mA Output Link / Node Address		1	R/W
40005	Precison Ch2 / Precision Ch1		1	R/W
40006	Precison Ch4 / Precision Ch3		1	R/W
40007	Gas No Ch2 / Gas No Ch1		1	R/W
40008	Gas No Ch4 / Gas No Ch3		1	R/W
40009	Sensor Link Ch2 / Sensor Link Ch1		1	R/W
40010	Sensor Link Ch4 / Sensor Link Ch3		1	R/W
40011	Alarm Mode Ch2 / Alarm Mode Ch1		1	R/W
40012	Alarm Mode Ch4 / Alarm Mode Ch3		1	R/W
40013	Relay 1 Map		1	R/W
40014	Relay 2 Map		1	R/W
40015	Relay 3 Map		1	R/W
40016	Alarm Status bits		1	R/W
40017	Delay On Relay 1	int	1	R/W
40018	Delay On Relay 2		1	R/W
40019	Delay On Relay 3		1	R/W
40020	Delay Off Relay 1		1	R/W
40021	Delay Off Relay 2		1	R/W
40022	Delay Off Relay 3		1	R/W
40023	Slope for Monox Sensor	float	2	R/W
40025	Slope for Electrochemical Cell		2	R/W
40027	Slope for MOS sensor		2	R/W
40029	Slope for 4-20mA input sensor		2	R/W
40031	Offset for Monox Sensor		2	R/W
40033	Offset for Electrochemical Cell		2	R/W
40035	Offset for MOS sensor		2	R/W
40037	Offset for 4-20mA input sensor		2	R/W
40039	Cal1 PV Ch1		2	R/W
40041	Cal1 PV Ch2		2	R/W
40043	Cal1 PV Ch3		2	R/W
40045	Cal1 PV Ch4		2	R/W
40047	Cal2 PV Ch1		2	R/W
40049	Cal2 PV Ch2		2	R/W
40051	Cal2 PV Ch3		2	R/W
40053	Cal2 PV Ch4		2	R/W
40055	Cal1 Raw Ch1		2	R/W
40057	Cal1 Raw Ch2		2	R/W
40059	Cal1 Raw Ch3		2	R/W

40061	Cal1 Raw Ch4		2	R/W
40063	Cal2 Raw Ch1		2	R/W
40065	Cal2 Raw Ch2		2	R/W
40067	Cal2 Raw Ch3		2	R/W
40069	Cal2 Raw Ch4		2	R/W
40071	Output trim slope (Factory use only)		2	R/W
40073	Output trim offset (Factory use only)		2	R/W
40075	High High Alarm value Ch1		2	R/W
40077	High High Alarm value Ch2		2	R/W
40079	High High Alarm value Ch3		2	R/W
40081	High High Alarm value Ch4		2	R/W
40083	High Alarm Ch1		2	R/W
40085	High Alarm Ch2		2	R/W
40087	High Alarm Ch3		2	R/W
40089	High Alarm Ch4		2	R/W
40091	Low Alarm Ch1		2	R/W
40093	Low Alarm Ch2		2	R/W
40095	Low Alarm Ch3		2	R/W
40097	Low Alarm Ch4		2	R/W
40099	mA Span		2	R/W
40101	Output value		2	R/W
40103	mV for Monox Sensor		2	Read only
40105	mV for Electrochemical Sensor		2	Read only
40107	mV for MOS Sensor		2	Read only
40109	mV for 4-20mA Sensor		2	Read only
40111	PV for Monox Sensor		2	Read only
40113	PV for Electrochemical Sensor		2	Read only
40115	PV for MOS Sensor		2	Read only
40117	PV for 4-20mA Sensor		2	Read only
40119	PVMax Ch1	int	1	R/W
40120	PVMax Ch2		1	R/W
40121	PVMax Ch3		1	R/W
40122	PVMax Ch4		1	R/W
40123	Password		1	R/W

7.0 TROUBLESHOOTING

ERROR DESCRIPTION	WHAT TO DO		
No Output and all lights off	 Check the power to the unit. The voltage should be 24VAC/DC at the power connector with the positive and negative connected as shown on the connector label. Make sure JP1 is in place for DC voltage If the Power checks out, call Arjay Service. 		
4-20mA output does not track the gas concentration.	 Make sure that the EC-Gold Dual output mode is set to Analog mode and not to Discrete Voltage Output mode. See Controller Settings Sheet section for details. Make sure the maximum range of the remote XMTR is the same as the 2nd calibration point. Ex. 20mA=200ppm CO Calibration may be required. See the calibration section for details. Call Arjay/Enmet Service for Help if none of the above fixes the problem. 		
In Discrete Voltage Output mode, the ISA-66RLU or Gas Alert connected to the EC-Gold always shows Sensor Fault	Make sure that the EC-Gold DUAL output mode is set to Discrete Voltage Output mode and not to Analog.		


8.0 CONTROLLER SETTINGS SHEET


Checked by	
Model Number	
Serial Number	
Hardware Rev.	
Software Rev.	

The factory settings column below lists the typical default settings. The user may change these values at any time. If changed, please fill in the USER SETTING column for future reference.

PARAMETER	DESCRIPTION	FACTORY SETTING	USER SETTING
OUTPUT MODE	There are2 main output modes : Analog(4-20 mA) and DVO (discrete Voltage Output)		
BUZZER TYPE	Enable or disable the buzzer		
LOW ALARM DELAY TO ON	The minimum time in seconds a Low Alarm must exist before the corresponding relay and indicator are activated.		
LOW ALARM DELAY TO OFF	The minimum time in seconds the Ec-Gold Dual must be out of Low Alarm before the Low Alarm relay and indicator are de-activated		
HIGH ALARM DELAY TO ON	The minimum time in seconds a High Alarm must exist before the High Alarm relay and indicator are activated.		
HIGH ALARM DELAY TO OFF	The minimum time in seconds the Ec-Gold Dual must be out of High Alarm before the High Alarm relay and indicator are de-activated.		
Hi/Hi ALARM DELAY To ON	The minimum time in seconds a Low Alarm must exist before the corresponding relay and indicator are activated.		
Hi/Hi ALARM DELAY To OFF	The minimum time in seconds the Ec-Gold Dual must be out of Low Alarm before the Low Alarm relay and indicator are de-activated		
	Type or Port.		
	Sensor serial number		
	Gas name		
SENSOR #1	Low alarm value		
	High alarm value		
	Hi/Hi alarm value		
	Span Value		

PARAMETER	DESCRIPTION	FACTORY SETTING	USER SETTING
SENSOR #1	First Cal point Enter ppm and corresponding mV e.g. 0ppm= 150mV Second Cal point Enter ppm and corresponding mV e.g. 100ppm=400mV		
	Type or Port.		
	Sensor serial number		
	Gas name		
	Low alarm value		
SENSOR #2	High alarm value		
	Hi/Hi alarm value		
	Span Value		
	First Cal point Enter ppm and corresponding mV e.g. 0ppm= 150mV Second Cal point		
	Enter ppm and corresponding mV e.g. 100ppm=400mV		
	Type or Port.		
	Sensor serial number		
	Gas name		
	Low alarm value		
SENSOR #3	High alarm value		
	Hi/Hi alarm value		
	First Cal point Enter ppm and corresponding mV e.g. 0ppm= 150mV Second Cal point Enter ppm and corresponding mV e.g. 100ppm=400mV		
	Type or Port.		
	Sensor serial number		
	Gas name		
	Low alarm value		
SENSOR #4	High alarm value		
	Hi/Hi alarm value		
	Span Value		
	First Cal point Enter ppm and corresponding mV e.g. 0ppm= 150mV Second Cal point		
	Enter ppm and corresponding mV e.g. 100ppm=400mV		

MAINTENANCE AND CALIBRATION

Your **ARJAY / ENMET** gas detector is the state of the art in gas detection, but like any other part of your ventilation system, it requires periodic maintenance and calibration.

There are various sensor technologies that may be used in your Arjay gas monitor; including solid state MOS, Electrochemical, Infrared and Pellister Pair (Hot wire). These have a normal operating life of 3 to 5 years under ambient conditions. You should consider a preventive maintenance schedule whereby you test your system on a periodic basis to ensure its proper calibration and operation.

For solid state (MOS) sensors, we recommend calibration every 3 to 4 months for a typical garage application. For Electrochemical sensors, we recommend calibration every 6 months for a typical garage application. Pellister Pair we recommend every 3 to 4 months and Infrared we recommend every 6 months. For applications that are more sensitive, or where internal policies exist, a higher frequency of calibration may be required. This is a simple procedure which will indicate any problems with your system. A test and calibration kit may be purchased from **ARJAY ENGINEERING** for this purpose. Parts are also readily available from our facility.

MAINTENANCE CONTRACT

Alternatively you may wish to consider a Maintenance Contract with **ARJAY ENGINEERING** whereby one of our service technicians comes to your site and checks out the unit for proper calibration and operation on a regularly scheduled basis. This is done on a flat per annum fee. All parts are extra. Typical target gases are included, however, exotic or specialty gases may have a surcharge. If you wish us to quote a Maintenance Contract fill in the section below and return to our office.

COMPANY:		
ADDRESS:		
CONTACT PERSON:		
PHONE:	FAX:	
EMAIL:		
MODEL AND SERIAL		
NO. OF GAS DETECTOR:		

Fax to address below or e-mail to arjay@arjayeng.com

ARJAY ENGINEERING LTD. GUARANTEE

We hereby guarantee this instrument to be free from defects in workmanship and materials, and if found defective in workmanship or materials, upon being returned to our factory, prepaid, within one year from date of purchase, it will be repaired or replaced at factory without charge. However, if upon being returned and after inspection, there is evidence that the instrument has been subjected to tampering, careless handling, improper or faulty application or installation, the above guarantee shall not be applicable, and we shall have the right in any such case to make a charge to cover the cost of repairs, servicing and transportation expense. The undersigned assumes and shall have no liability for consequential damages resulting from the use or misuse of the instrument.

The foregoing guarantee is in lieu of all other guarantees or warranties, expressed or implied, and all other obligations or liabilities, contractual or otherwise, either to the original purchaser of said instrument, or to any other person whomever.

BY: ARJAY ENGINEERING LTD.

For service, call ARJAY Engineering Ltd. directly: Canada (905) 829-2418

North American Toll Free: 1-800-387-9487

Fax: (905) 829-4701

Internet: www.arjayeng.com

E-mail: arjay@arjayeng.com

Telephone: +1 (905)-829-2418

Internet: www.arjayEng.com

E-Mail: arjay@arjayEng.com

N. America Toll: (800)-387-9487

Telefax: +1 (905)-829-4701

