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Chapter 1: Hardware 

The development board for this course is very much like a prototype board you might do for a product 

developed in industry.   The main elements are the microcontroller, LCD, and ANT radio, and the board 

is supported with the user input (trackball and buttons) as well as a power supply.  However, the board 

also has a few extras like a UART for programming or otherwise communicating (perhaps for debugging) 

and a daughter board connector for future expansion.   

This chapter examines the key components to discuss why they were chosen and provide an overview of 

their capabilities, then goes over the schematics to explain all of the circuits.  We conclude with a look at 

the PCB and discuss the important decisions made in positioning components and routing the board. 

1.1 Selecting a Microcontroller 
The Cortex family of microprocessor cores seems to be having an immense impact on the embedded 

system industry, as evidenced by the fact that virtually every microcontroller manufacturer who has had 

their own proprietary lineup of parts has added a Cortex-based lineup as well.  Developers who used 8 

and 16-bit micros due to their low power consumption and low cost over 32-bit parts like those based 

on the ARM7 are now considering the higher power Cortex parts that compete in power consumption 

and cost, yet still offer the greater capability of a 32-bit architecture running the very powerful ARM 

instruction set.   

Another huge advantage to an ARM core is scalability.  Just as the ARM7 scaled to ARM9 and ARM11, 

Cortex parts scale from M0, M1, M3, and M4.  There are additional Cortex parts that scale all the way up 

to application processors that run in the GHz speeds and essentially compete with Intel and PowerPC.  

Figure 1.1.1 shows the ARM cores available as of June 2010.  

 

Figure 1.1.1: ARM processor cores. 

Source: http://www.arm.com/products/processors/index.php   
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Every designer should recognize the value of this type of scalability.  As someone who is taking this 

course can attest to, learning a new microcontroller takes a lot of time and effort, not to mention costs 

in hardware and design tools.  Moving through the ARM family allows you to reuse many of the same 

skills you have already invested hundreds of hours in. 

ARM has taken a step further with an attempt to provide some compatibility across vendors who are 

integrating their cores.  They have introduced the Cortex Microcontroller Software Interface Standard 

(CMSIS) which dictates how manufacturers should build their microcontrollers around the Cortex core.  

In the past, designers have to look at the header file(s) for a new processor and figure out the 

conventions that are used by the manufacturer for naming registers and bits and then ensure their 

firmware follows those conventions.  If you made the switch to another vendor, you had to spend a fair 

bit of time getting used to the new vendor’s conventions and updating all of your code to be compatible.  

The magnitude of this type of inconvenience was begging for a standard, and finally CMSIS is starting to 

gain traction.   

For example, NXP, ST and TI (among others) all make a microcontroller based on a Cortex-M3 core.  

They all include similar peripherals like UARTs and Timers and interrupts and analog to digital 

converters.  If they follow the CMSIS rules then the registers, 

configuration and general operation of their respective 

peripherals will be very much the same so that developers can 

write generic code that will work on any platform.  Since this is 

starting to sound like an advertisement for ARM, now is a good 

time to offer some criticism.  First of all, not everything will be identical between processor vendors, but 

as much as possible will be at least at a certain layer of the software (when it gets down to the nitty-

gritty like register base addresses, there will probably be some processor-specific code required). 

As it so happens, most of the original development for this course was completed on an STM32F103VC 

Cortex-M3 part from ST Microelectronics, and then ported over to the NXP LPC175x.  This provided first-

hand experience with using the wonderful promises of CMSIS, and it actually did make the conversion 

go fairly smoothly.  Though many of the specific register names within peripherals were entirely 

different, the structure of the code and the conventions for register and bit accesses were very similar.   

Having taken the time to become familiar with those conventions of CMSIS allowed certain tasks to be 

completed faster and even some assumptions to be made that helped speed things up.  On the other 

hand, there were a lot of minor differences that were just irritating.  For example, the ST part uses 

alphabetic characters for GPIO ports while NXP uses numerical values.  The CMSIS standard for accessing 

GPIO is with a pointer-to-structure-like definition like GPIOx->peripheral_register where ‘x’ is the port 

name.  Since ST’s GPIO port names were GPIOA, GPIOB, etc., it was correctly assumed that NXP’s GPIO 

names would be GPIO0, GPIO1, etc.  That made making these firmware changes relatively quick and 

easy from a structure point of view, but still required some work since ST uses a “BSRR” (bit set-reset 

register) while NXP uses “FIOSET” (bit-set register ).   
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Beyond the basics of register and bit naming, CMSIS also tries to standardize how basic processor 

operations are performed.  This is a reasonably well-intentioned idea, but like any application of a 

standard, there tends to be some added cost in overhead.  For example, CMSIS provides a universal set 

of functions for setting GPIO functionality.  A CMSIS purest would use these function calls to setup all 

their IO, even though that could mean literally hundreds of function calls to completely set up a large 

processor.  The same configuration could be done by just a few hardware-specific instructions.  Of 

course, the code is no longer portable and definitely not “CMSIS Compliant.”  As we have already 

discussed, the fact that low-level drivers will still need processor-specific code also raises some doubt 

about the attainability of true universality amongst vendors.  Frankly, processor vendors may choose to 

purposely resist CMSIS in some areas to maintain some individuality and lay claim to some sort of 

superiority as a result. 

In reality, a company will likely stay with a certain processor vendor unless there are very compelling 

reasons to change like a special feature or an amazing price that cannot be met by any other 

manufacturer.  Aside from that, even changing parts in the same family will require some code 

maintenance regardless of whether or not the CMSIS standard has been followed, simply because the 

resources and their allocation will change along with the microcontroller selected and its application. 

All that being said, using a Cortex part has many advantages regardless of the target application and 

completely independent of whether a designer chooses to follow the CMSIS spec (though given the 

porting experience from ST to NXP, using CMSIS conventions are definitely recommended).  Cortex-M3 

parts have been out for only a few years, but the traction they have gained due to their excellent overall 

performance has no doubt positioned the part for success for many years to come.  Choosing the 

Cortex-M3 LPC175x for this course was very purposeful to ensure all the skills here are with one of the 

most up-to-date and relevant microcontrollers on the market right now. 

The decision on processor choice for this course came down to two vendors who had parts that were 

essentially equal.  The development board requires a device with the following: 

1. UART interface for serial programming and debugging 

2. SPI interface for ANT 

3. I²C interface for the LCD 

4. I²C and SPI interfaces for the Engenuics daughter board connector 

5. GPIOs for 7 button signals, 4 LEDs 

6. PWM output for the buzzer  

7. A minimum of 8kB of RAM for the LCD plus at least 1kB for other processor operations 

8. An estimated 10kB of flash memory for the program plus 10kB of flash available for LCD bitmaps 

 

Both ST Microelectronics and NXP Semiconductors offer attractive Cortex-M3 parts that can meet the 

requirements for the development board.  To be consistent with MPG Level 1, the NXP part was chosen.  

This allows one to leverage the familiarity in the conventions and styles of a single company in their 
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documentation, architecture decisions and example code.  Specifically, the LPC1752 part is used as it has 

64kB of Flash and 16kB of RAM – plenty for our requirements.  Higher parts in the family offer a few 

more features and of course more flash and RAM, but none of these are necessary for this project so we 

decide to pick a lower-level part due to cost.  All processors in the family are pin-for-pin compatible with 

each other, so if ever a feature of a higher part was required, then it could simply be dropped onto the 

board. 

1.2 LPC175x Cortex-M3 Microcontroller 
Familiarizing oneself with the processor pin map is a good starting point in a design.  Figure 1.2.2 on the 

following page shows the complete pin-out of the processor.  Every possible function of every pin is 

indicated and the pins are shown in the correct order, though the part is drawn with pins on only two 

sides instead of on all four sides as the part is actually configured.  This is a good time to remind the 

reader that the schematic symbols in CAD software are just that: symbols.  Their appearance and pin 

positions have no bearing on how the device is actually configured.  Only the pin number and the signal 

attached to it are important and the user must be able to assign pins per their correct functions.  The 

CAD software looks only at the pin number to map the connection to the correct location on the PCB 

land pattern for the part.   

Information to build this symbol was taken from the processor datasheet where each pin is listed with 

its name and all available options.  Often the device manufacturer will show a complete symbol like 

Figure 1.2.2, but with this processor they have not.  An abbreviated representation of the actual pin 

locations and physical positioning on the chip are shown in the processor data sheet and repeated here 

in Figure 1.2.1. 

 

Figure 1.2.1: Pin configuration for the LPC175x processor in LQFP package 

Source: LPC1759_58_56_54_52_521 Product data sheet, Rev. 04 – 26 January 2010, NXP Semiconductor 

 

Building the schematic symbol is admittedly tedious but also very, very critical to complete correctly.  If 

a pin is assigned incorrectly, then the entire design will be flawed along with any other design that 
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makes use of the symbol from the schematic library.  It is therefore highly recommended that the 

symbol be checked and rechecked by at least two pairs of eyes.  Once the base symbol is verified, 

application-specific symbols can be created where pins are moved around and grouped to best fit on the 

schematic page and attach to the other circuits in the design.  We will see this a little later on. 

 

 

Figure 1.2.2: LPC175x Microcontroller Pin-Out Schematic Symbol 
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1.2.1 Pin Allocation 
The next somewhat tedious task is assigning pins to the circuits in the design.  The block diagram of the 

device is a good tool to assist in this, and in fact can be improved at this point by adding more specific 

information.  Virtually every GPIO pin on the LPC175x processor has several options available for how it 

can be used.  For example, pin 80 is the Port 0.3 GPIO, UART0 receive data line (RXD0) or one of the 

analog inputs.  It is important to investigate each pin before mapping begins to determine if there are 

any critical functions you need and how using different pins will impact the remaining functionality 

available on the other pins.  In general, the order of assignment should be something like this: 

1. No-choice pins: power, ground, clocks, etc. can be hooked up first just to get them out of the 

way.  All power and ground pins need to be connected.  It is suggested that JTAG pins for 

programming / debugging fall into this category as well even though some processors allow you 

to multiplex GPIOs onto these.  This is a highly unadvised practice if you plan to load your device 

over JTAG, or if you do any debugging.  The LPC175x does not multiplex any of the programming 

pins, so here you do not have to worry about it (the alternate signals shown for some of the 

JTAG pins are for different types of debuggers). 

2. One-of / special function pins: any signal / peripheral that you need that is available on only one 

pin must be assigned first since there are no other options.  If two such signals you need are 

only available on one pin, then you either have to figure out if you can multiplex them somehow 

(perhaps with an external mux), select a different processor, or change your design. 

3. Peripheral-connected pins: these include communication ports, interrupt pins, analog pins, 

PWM pins, timer/counter pins, etc.  Often there are multiple choices to content with.  For 

example, you may only need 3 analog inputs, so pick pins that do not have other useful 

functions on them.  Communication ports can also be selected to ensure you get everything you 

need.  For example, since the LPC175x has four UARTs but only two I2C ports and since we need 

two I²C ports and only one UART, it would be logical to assign the I2C pins first, then use 

whatever remaining UART is available.  

4. GPIO: signals that only need to be 0, 1 or Hi-Z can be allocated next.  In general, it does not 

matter where you put these but you should still be aware of what functions you are giving up if 

you claim a pin.  You must also ensure that the pin will do what you think it will do.  Some 

processor GPIOs will only accept inputs up to the processor supply rail which may be an issue if 

you run a 3.3V rail but talk to another device with a 5V rail.  Or, some pins might have open-

collector drivers instead of push-pull drivers.  GPIO assignment should also be influenced by 

firmware.  For example, if you wanted to show an 8-bit counter on LEDs, then the LEDs should 

be assigned to consecutive pins on the same port if possible.  This will help when writing code 

because the LED driver can write to consecutive bits in a single register to turn the lights on and 

off.  If you randomly assign LEDs to pins all over the place, then it will require a bit more code to 
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map those and update the LEDs when required.  Though a lot of times this cannot be avoided, 

any consideration and optimization will likely lead to a better product delivered in less time. 

5. Unused pins: many designs will not need all the processor pins available.  In this case, be sure to 

consult the processor data sheet to ensure you do the right thing with these unused pins.  You 

may be able to leave them floating, or you might want to tie them high or low directly or 

through a resistor.  If you have the space, it is highly recommended that you stick a test point on 

them so they are accessible should you decide to add something to the board or make a 

mistake.  Almost all development boards would take the test point approach to maximize 

flexibility.  If you are really unsure what to do with them, add both a pull-up and pull-down 

resistor in addition to the test point.  Then you have all options available and the only cost is 

board space. 

Given all that information, we will allocate pins and peripherals as follows: 

1. LCD communication: I²C1 and Port 1 GPIO. 

2. ANT communication: SSP0 and Port 1 GPIO. 

3. UART ISP / serial debug port: UART0. 

4. Trackball / button inputs: Port 2 interruptible GPIO. 

5. Daughter board: I²C2, SSP1, UART3 and Port 2 interruptible GPIO. 

6. Remaining GPIO as required and all power, ground and clocks. 

 

The way this was all done was not at all arbitrary – the steps described above were taken exactly.  First, 

the entire ”Pinning Information“ section of the datasheet was read to see if any particular pins had 

critical functions that must be used.  Note that you need to be very careful when looking at datasheets 

that cover entire families of parts.  To use this processor, we have two documents: a Product data sheet 

and a Product User manual.  In this case, the “Product data sheet” covers only the LPC175x family that 

are all 80-pin devices.  The “User Manual” covers the LPC17xx family (175x and 176x parts), which 

includes 100-pin devices.  Therefore, the User Manual pin mapping has a pair of extra columns that 

differentiate the pin purpose on the 80-pin and 100-pin parts.  Obviously the 80-pin package does not 

have all the signals that the 100-pin package has.   

 

Since this design has relatively few requirements and the processor itself does not allocate too many 

similar functions per pin, assigning pins was quite simple.  In fact, the only pins that stood out from 

reading the pin map were those related to serial programming the device.  Pin 41 is the signal used to 

enter boot loader mode after reset, and UART0 TXD0 and RXD0 are the communication lines over which 

the boot loader communicates.  This is critical for using the serial programmer.  Pin 41 is also shared 

with the external interrupt pin, EINT0.  This investigation led to something that required specific 

attention: the external interrupt pins.   
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1.2.1.1 External Interrupt Pins 

On the LPC214x processor used in MPG Level 1, only 4 GPIOs could be configured as external interrupt 

sources (EINT0 – EINT3).  The four buttons on that development board were therefore connected to 

those lines.  On the LPC17xx family, the same EINT pins exist, however the processor datasheet says that 

all GPIO pins on Port 0 and Port 2 can be used as edge-sensitive interrupt sources.  This is a good thing 

since we want all 7 of our button input signals to be on interruptible inputs.  It is doubly good because 

the 80-pin package of the 175x series only offers EINT0.  Though that does not sound like a very 

significant conclusion, it actually is and took a fair amount of time to understand.  Investigation into all 

of it went like this: 

1. Find the statement in the data sheet that confirms Port 0 and Port 2 are interruptible GPIOs. 

2. Look at the Nested Vectored Interrupt Controller (NVIC) section of the data sheet to read what it 

says about external interrupt sources: the information about the GPIOs is repeated, so no 

additional help there. 

3. Look at the NVIC section of the processor user manual.  In Table 50: Connection of interrupt 

sources to the Vectored Interrupt Controller, see the note, “EINT3 channel is shared with GPIO 

interrupts.”  No other information is found in the NVIC section. 

4. Move to Chapter 9: GPIO in the User manual.  Note reference to interrupts in “Basic 

Configuration.”  In section 9.2.2, there is discussion of the generated interrupts.  Since all pins 

on Port 0 and Port 2 share the same (single) NVIC line, it implies there will be a register to 

enable / disable particular port pins as being interrupt sources.  The interrupt service routine 

(ISR) that handles this single interrupt source of the NVIC will therefore have to parse the 

different input signals to determine which caused the interrupt, then branch to the particular 

function to handle that interrupt.  It also implies that a level of priority will be required in the 

event that simultaneous buttons are pressed.  

5. Find table 9-101: GPIO interrupt register map.  Here are the registers where individual pins can 

be set to provide rising and/or falling edge-triggered interrupts (the IntXEnR and IntXEnF 

registers, where X is 0 for Port 0 and 2 for Port 2).  The status registers are also here (IntXStatR 

and IntXStatF) – these will hold the bits that the ISR will poll to see which interrupt occurred. 

6. Discover that EINT3 is not physically present on the 80-pin parts.  Therefore we do not have to 

worry about that input signal, and can just enable Port 0 and Port 2 interrupts as required. 

With this information confirmed, we can safely allocate all the buttons to any pins on Port 0 or Port 2 as 

we please, making this allocation less critical which could have caused conflicts with some of the 

communication peripherals that are also on Ports 0 and 2. 
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The next step in selecting pins was to print a copy of the schematic symbol in Figure 1.2.2 and write in 

any of the critical pins required.  On this printout, any multiplexed function that was not needed for sure 

was crossed off to help narrow our selections down and make the picture clearer.  Following the 

selection hierarchy, critical pins and no-choice pins were identified on the sheet.   

The UART selection was made next.  Notice that only UART1 is a fully-defined UART with the hardware 

flow control lines Ring, DCD, DTR and DSR.  However, we know from reading the pin documentation that 

UART0 must be used for the boot loader.  At this point an important decision is made: should both 

UARTs be made accessible on DB9 connectors so that programming can occur on UART0 and a full UART 

can be provided through UART1; or does cost, space and functionality requirements override the need 

to make UART 1 accessible.  The latter argument wins out, but as a consolation, the additional UART pins 

will be brought out to test points near the connector so it would be possible to tie in to the signals.     

1.2.1.2 Pins with Multiple Connections 

Note that UART1 (and a few other peripherals) have signals that appear on several different pins.  It took 

a bit of hunting to see how this was handled, but eventually the information was found in the product 

manual on page 103 (see excerpt below).  Given this information, the UART pins were selected based on 

the two options available (Port 0 and Port 2).  Port 2 was selected because none of the UART functions 

on those pins overlapped pins of other communication peripherals.  With this selection made, the 

alternate UART1 pins can be crossed off since they are not needed anymore. 

 

For the SPI interface, the LPC175x family offers a single SPI peripheral, or two SSP peripherals.  The 

dedicated SPI peripheral is a legacy device that is limited in functionality over an SSP peripheral.  For our 

purposes, they function the same but we will implement our ANT SPI communication assuming the SSP 

peripheral.  Since the pins are the same, it does not really matter.  Since the UART1 functions of the pins 

where the SSP0 is attached have been crossed out, these were assigned next. 

Some of the other signals on the processor symbol could be selected next since they have only one 

peripheral option left, though we had to be careful to avoid taking Port 0 or Port 2 signals that are 

possible interrupt sources needed for the 7 buttons.  The buzzer is assigned to P1.18 since it is a PWM 

output that has no other required multiplexed signal.  P4.28 and P4.29 are not used for anything else so 
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they can be set to use UART3 for the daughter board connection.   The remaining SSP pins for the 

daughter board are allocated.  P1.0, P1.1, P1.4, P1.8 are set for LEDs and P1.9, P1.10, P1.15 are chosen 

for the LCD backlight control, LCD reset line and LCD chip enable line, respectively. 

The I²C busses are allocated somewhat arbitrarily: I²C1 is chosen for the LCD, while I²C2 will be for the 

daughter board.  There were no other factors that contributed to selecting one over the other.  The only 

consideration was to share an I²C bus with the LCD and daughter board.  Since the LCD bus will be fairly 

busy and since we have plenty of pins available and a spare I²C peripheral, it makes the most sense to 

allocate one each to the LCD and daughter board. 

The remaining Port 0 pins are taken up with the seven button inputs.  Though it would be nice for 

routing purposes to use P2.8 and P2.9 for the ANT_PWR and ANT_RESET signals, these are the only two 

remaining interruptible GPIO, so they are assigned to the daughter board.  There are also four other 

GPIO ANT signals required that do not have any special needs, so choose the group P1.22 – P1.25 for 

them all. 

All leftover pins are unused.  We will loosely allocate P1.30 and P1.31 as analog pins since they are the 

only remaining analog GPIOs.  These and the rest of the digital pins will be given test points for future 

use. 

This entire exercise took about 3 hours to complete.  Indeed it is a tedious task but obviously very 

important (just as tedious and important as getting the processor schematic symbol correct in the first 

place).   For the sake of completeness, a scanned image of the symbol “worksheet” is shown in Figure 

1.2.1.2.1 to show how truly a pen-and-paper exercise this is.  The solid black-outs were done first for 

functions that were not needed for sure.  The x-outs were done as it became clear that that particular 

pin function was not needed or not used.  Circled pins are the functionality that must be assigned when 

we get to that part of the firmware.  The notations on each pin indicate the target signal for the selected 

function.  Note that every pin has been assigned, even if it is just to a test point as indicated by a small 

square. 
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Figure 1.2.1.2.1: Scan of completed pin mapping symbol worksheet 

 

Now that all of the pin assignments are complete, a device-specific processor schematic symbol can be 

made that does not need to show all of the unused pin options and organizes the pin-out in a way that 

will facilitate an orderly schematic.  With that complete, the remaining hardware design and schematic 

capture can take place. 
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1.3 Development Board Schematic Review 
Even if you never design a circuit in your life, having a basic understanding of the hardware platform on 

which your firmware will run is invaluable if not essential.  Not only do you learn about the choices and 

tradeoffs made in designing the circuits in the system, you also have an opportunity to contribute 

feedback through intelligent discussion.  There is always an inherent rift between “the hardware team” 

and “the firmware team” who tend to blame the other when things go wrong.  If you get to play both 

roles, then the only one you can blame is yourself.  Even if doing both is not your full time job, having 

knowledge and experience with both allows you to quickly understand why both teams must contribute 

and ultimately make sacrifices to help each other out to successfully build a working product.   

At the beginning design stage of any product, both hardware and firmware teams should meet to 

discuss the project’s requirements, processor selection and planned approach for module 

communication and resource use.  As soon as possible, the firmware team should supply an overview of 

their high-level design to hardware, and hardware should provide a block diagram or draft schematics.   

Final schematics should be reviewed and discussed, at which time the firmware team hopefully has a 

clear view of how their code will use the hardware.  This is also a good time to share and clarify any 

assumptions made, such as how particular circuits are used, what the expected processor on-time is for 

power consumption, etc.   

Playing both sides of the equation, the MPG Level 2 processor resources were allocated and the 

hardware design was completed.  The course development board is broken up into five schematic pages 

(the full schematic package is available on the MPG website) that cover the following: 

1. Block diagram 

2. Power supply 

3. Processor 

4. ANT Radio 

5. User I/O 

 

Each circuit block will be discussed in detail to ensure a full understanding of the components and 

connections chosen for this design.  The process of selecting the components is not entirely described 

here, though the general steps for everything can be summarized by the following:  

1. Requirements definition for each circuit. 

2. Part selection and evaluation based on previous experience, reference designs and/or new 

research and investigation. 

3. Analysis, prototyping and testing as required (particularly for power supplies). 

4. Schematic symbol creation (if parts are not already in your design library). 

5. Schematic capture of the circuit. 
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Clearly this is one of the very handy advantages of working on a design that is already complete – many 

hours of work go into designing a product and correctly integrating the various circuits for the design.  

The sections discuss the final circuits chosen, but do not attempt to describe much of the decision 

making that led to the final selections. 

1.3.1 Block Diagram 

Schematics can be captured entirely on a single page but can become cluttered quite quickly.  The main 

advantage is that every circuit is available without flipping pages, and it can be easier to view and 

understand interconnections.  There is also potential to reduce some errors that may arise from 

improperly naming signals lines between pages – many of these can be caught by the design tools, but 

some can squeak through. 

For multi-page schematics, a block diagram is used to show the interconnections between all the 

schematic pages (see Figure 1.3.1.1).  Though this is not required by the design tools, it can help to 

ensure that every signal goes somewhere and can assist in identifying errors in defining the data 

directions of the lines.   

 

Figure 1.3.1.1: Schematic Block Diagram 
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The page symbols are automatically generated by the design tools though they have to be adjusted and 

resized to make all the connections between each page line up.  Signal lines can be drawn between all 

the ports to explicitly show the connection, but this is another optional step as long as the project 

environment is configured to automatically connect like-named ports. 

A block diagram page is also a good spot to put non-electrical component symbols on and other design 

notations that are relevant.  In this case, the PCB label is shown along with two fiducial markings that 

are used as reference locations for SMT PCB population.  Both the label and the fiducials have 

corresponding PCB land patterns that will appear on the PCB. 

1.3.2 Power Supply 

The essence of any good design is a quality, stable power supply.  The first challenge of a power supply 

design is getting a simple circuit to operate properly over the lowest, nominal and peak loads that the 

supply is expected to source.  With a linear regulator, this is generally easy.  With a switching power 

supply, it is much more difficult especially if noise and board space are concerns.   

The MPG Level 2 design (see Figure 1.3.2.1) leverages the same proven supply from the development 

board used in MPG Level 1 and provides 5V and 3.3V rails.  The switcher is highly robust and supports a 

wide voltage input range anywhere from 7 to 30V.  The relatively low switching frequency bodes well for 

avoiding RF interference or any other interference with MHz-frequencies on the device.  Large 

capacitors are used to provide ample current sourcing for transient response and stability, and a large 

inductor is used to store plenty of energy.  The power supply is also quite reasonably priced given the 

components it requires.   

 

Figure 1.3.2.1: MPG Level 2 development board power supply 
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The power supply has a “TVS” (transient voltage suppressor) clamping diode (D2) on the 5V output to 

deal with any input transients that were found to appear with certain transformers that power the 

board.  There is also a fuse (F1) to help those with not-so-great soldering techniques from destroying 

parts on their boards through ground shorts.   On that note, prior to applying any power to the board, 

do a continuity check from the 5V test point to ground and from the Vcc test point to ground to check 

for shorts. 

This design also “dual-footprints” the input and output capacitors so either thru-hole or SMT parts can 

be used.  This is a matter of pricing and availability more than design performance.  The LDO was chosen 

as it has a common footprint across several vendors and the adjustable output can address any changing 

supply needs down the road.   

A DC wall wart or a 9V battery is used to power the board.  The J-Link power supply can also directly 

power the 5V rail and is diode-protected so you can safely plug the J-Link into the board when the board 

is powered externally.  Because of the diode, the actual 5V voltage will be around 4.5V when powered 

from a J-Link.  D1 and D12 protect their respective power sources from back charging.   

All LEDs in this design have been set with 1.2k resistors even though 1k is a more standard part for 

current-limiting an LED.  However, since the feedback network R4 / R6 of the power supply needs a 1.2k 

resistor to properly set the output voltage, inventory from having both 1k and 1.2k resistors in the 

design can be saved.  As far as the LED is concerned, 1.2k or 1.0k really makes no difference.  If you have 

other resistors lying around and want the LEDs brighter or dimmer, you are free to populate the LED 

resistors with any value as long as a maximum 10mA of current is not exceeded. 

Lastly, test points at all the critical locations are available. 

1.3.3 Processor 

Figure 1.3.3.1 shows the board-specific LPC175x schematic symbol and all the connections required to 

make the device perform its duties.  The symbol is the simplified version of the first symbol you saw in 

Figure 1.2.2.  Any pin function that is not needed is no longer shown, and pins have been grouped to 

make the schematic look as orderly as possible.  Note also that the pin numbers are not in any order – 

the physical characteristics of a schematic symbol have no bearing on how the design tools map the 

signals to the PCB land pattern.  Mapping is based solely on the pin number as it matches to the pin 

number on the land. 
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Figure 1.3.3.1: Main processor and connections 

 

Signal names are appropriately descriptive just like naming variables in software.  The names shown 

here will be used verbatim in the firmware to help support consistency.  

Following the schematic around clockwise from the top right, the JTAG connector is the first thing you 

see.  The pin out is the same for Cortex-M3 as it is for ARM7, though the documentation for supporting 

components (i.e. pull-up or pull-down resistors) is better.  The LPC175x includes internal pull-ups/downs 

so no external parts are used.  The Cortex-M3 core does not use the RTCK or DBDRQ JTAG signals so 

they are tied low.  The system reset line ties into the processor’s reset input on pin 14 (this connection is 

made because the signal lines are both named MCU_RESET so the schematic compiler knows to make a 

connection).  Lastly, the DBGACK line which is specified on the J-Link devices as 5V power is attached to 

the +5V rail through a protection diode so the board can be safely powered from the J-Link.  The diode 

prevents current flowing back into the J-Link if the board is powered externally by a higher voltage. 
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Figure 1.3.3.2: ANT-processor connections 

The ANT connections come next.  There are four SPI signal lines that are normally directly connected to 

the corresponding SPI peripheral lines on the processor.  During prototyping of the course development 

board, it was realized that the ANT_SSP0_CS signal line driven from ANT does not work because ANT 

releases the line during the last byte of a transmission which immediately shuts down the SSP 

peripheral.  Therefore, the signal is brought in on a regular GPIO (P0.22) and then an additional GPIO is 

used to drive the actual SSEL0 line.  A few fingers can be pointed at ANT or the NXP SSP peripheral 

design here, but at least there is a workaround even though it costs two extra GPIO pins. 

The SPI data signals are push-pull drivers and do not require any resistors to pull signal levels high or 

low.  In addition to the four SPI lines, four GPIOs are connected (power and reset control, and two flow 

control lines SRDY and MSGRDY) to provide the other outputs to ANT.  The note on the schematic 

reminds anyone looking at the design that the ANT module is the SPI master device and the LPC175x is 

the slave.  The “MOSI” (Master-out-Slave-in) and “MISO” (Master-in-Slave-out) naming convention is 

used to avoid very painful mix-ups of the communication lines. 

Next are the LCD connections.  The I²C bus requires pull-up resistors on both the clock and data lines 

since all I²C devices are connected with “open-drain” IOs.  This is because both the master and slave(s) 

need to be able to drive the signals low and avoid shorting power and ground when one device wants to 

drive a line high while the other wants to drive it low.  The standard value of these resistors is 10k, but 

can (or must) be increased depending on the bus characteristics.  Several factors can exist that make a 

case for using smaller (stronger) pull-ups: 

1. The number of devices connected to the bus – more devices mean more capacitive load on the 

bus lines 

2. The physical distance between all of the devices – longer traces have more parasitic capacitance 

and higher resistive loss 

3. Bus speed – running the bus at 400 kHz vs. 100 kHz requires faster rise and fall times. 

It is easy (and a very good idea) to use an oscilloscope to look at the clock and data lines of the I²C bus 

once the circuit is populated and running. The signals should ideally be very good square waves.  If the 
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rise times are rounded, they are too slow and the pull-ups should be stronger.  If the fall times are too 

rounded, then the pull-ups are too strong and should be reduced.  Values of 3.6k were chosen because 

the bus runs at 400 kHz, and though communication worked with 10k parts, the signals looked better 

with 3.6k pull-ups.  3.6k was picked specifically because the part is used elsewhere in the design. 

The remaining LCD connections are three output lines to control the LCD backlight, reset and chip select 

signals.  Though any or all of these lines could be tied appropriately high / low at the LCD, having control 

is important in the case of the reset line, nice to have in the case of the LCD backlight, and safe to have 

in the case of the CSB line.  Since IOs are in ample supply here, allowing the MCU to have control is a no-

brainer. 

The UART0 lines are the next group of pins.  TXD0 and RXD0 are attached to the RS-232 line-driver, so 

they will be 0/3.3V signals at the LPC1752.  When the UART is connected to a PC, all the lines operate at 

the +/-12V PC levels which is automatically taken care of by the transceiver IC.  The signals are driven 

with push-pull drivers so no pull-up/down resistors are required.   The most confusing part about 

hooking up UART lines is deciding if the processor’s transmit line (TXD0) should attach to pin 2 or pin 3 

of the DB9 connector.  Technically, pin 2 on a DB9 connector is designated RX and pin 3 is designated TX 

– this is from the perspective of the PC.  In this case, TXD0 (POMI) should end up going to pin 2 and 

RXD0 should end up on pin 3 of the DB9.  This assumes that a “straight-thru” serial cable connects the 

PC and development board.  If a “null-modem” serial cable is to be used, then the cable swaps pin 2 and 

3.  Likely one of the most irritating and time-consuming exercises for an embedded designer is not 

realizing they have a null-modem cable and troubleshooting why their serial communication is not 

working.  The worst part is that most serial cables are not marked if they are straight-thru or null-

modem, so you have to buzz them out with a multimeter to figure it out.  It is a great idea to label all 

your serial cables! 

The Engenuics Daughter Board connector allows an array of different devices to attach to the 

development board.  Several I²C devices can be daisy-chained and other SPI and UART devices can also 

be added.  Two digital/analog pins are also included, and any combination of all the pins could be set as 

GPIO as required.  Having such a connector allows for virtually unlimited capability for experimentation 

based on the main development board.  Perhaps the most relevant right now would be either a different 

LCD (like a full-color device) and perhaps an external data flash to store more images, fonts, etc.  This 

connector will be standard on all Engenuics development boards.  Various daughter boards are already 

in design – check out http://www.engenuics.com/products_developmentboards.php#extension 

Continuing with the schematic examination, the bottom part of the symbol has all of the processor 

ground connections.  There are discrete pins for the analog ground (VSSA) and a reference voltage 

ground (VREFN) that could be routed separately to minimize electrical noise in these circuits.  This is not 

a concern in this design, so they are simply lumped together with the other ground pins.  Ideally, 

multiple ground connections like this will connect to a solid ground plane layer to minimize “ground 

loops” that can result from small trace impedances.  A solid copper layer minimizes impedance and thus 



  MPG LEVEL 2 
 

 

notes_mpgl2_chapter1.docx Version 1.1 Page 19 of 37 

 

minimizes ground loops.  Problems like this would never be noticed for this development board, but can 

cause trouble with EMI (electromagnetic interference) and performance for highly-sensitive analog 

applications. 

 

Figure 1.3.3.3: Bottom portion of processor schematic page 

Crystal oscillators come next.  The main crystal for this board will be 12MHz.  Originally, a 4MHz crystal 

was selected as they can be purchased in larger packages that happen to be relatively inexpensive.  

4MHz is the slowest MHz-frequency crystal that you can buy reliably and would be fast enough for any 

task on the PCB  while providing the lowest power consumption (faster speed = more power 

consumption).  The LPC175x has a PLL (phase lock loop) that can up-convert the oscillator frequency to 

any speed desired (up to the device’s maximum) but it cannot down convert to a slower speed.  As it 

turned out, the 12MHz crystal used in MPG Level 1 was almost the same cost and much, much smaller 

so it was chosen in the end.   

A footprint (land pattern) for a crystal to the real-time clock (RTC) input is provided but not intended for 

population on this board.  Since the pins cannot be used for anything else, adding the land patterns 

makes sense.  If you wanted to use the RTC functionality, you could simply populate these parts. 

Both crystals are shown with “guard rings” that are implemented as PCB traces around the pins and the 

crystal.  This is a matter of good EMI and RF (radio frequency) design practice.  The impact 

(improvement) of guard rings is debatable, but since they are free and – probably at least once in history 

–have shown to reduce noise that may appear in the circuit, they are included.  Noting this on the 

schematic directs the person doing the PCB layout to add them explicitly. 

Above the crystals are all the GPIOs that are fairly uninteresting on this page of the schematic.  The 

unused pins each have their own test point.  The test point names match the pin name for easy 

reference.  LED outputs sit above the unused lines.  The seven button inputs are next above, followed by 

the buzzer output.  Note that all signal names are descriptive though kept as short as possible. 
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Figure 1.3.3.4: Reset and BOOTLOAD signals 

P2.10 is the boot load signal.  The datasheet states that the signal is active-low and has a built-in pull-up.  

This line can be pulled low to engage the boot loader firmware on reset by flipping the first dip switch 

(see schematic Sheet4).   

As for the reset line, there are three possible sources of reset.  The first source is from the J-Link which 

comes over as MCU_RESET from the JTAG connector.  The user is provided a button for manual reset – 

an essential for any design.  The third source is from the aforementioned Flash Magic ISP capability.  

When connecting multiple driving sources to a line, one must be sure that the signals will cooperate.  If 

you try to connect multiple push-pull drivers and one happens to be driving low while the other is 

driving high, you will likely have some brown-out problems.  The LPC’s reset line has an internal pull-up, 

but a just-in-case external pull-up resistor was added as well.  Pads are essentially free, board spins are 

not. 

The last part of this schematic page is the power input to the processor.  You will find a bank of 

decoupling capacitors at the top left of the page, one for each VDD pin as prescribed by good design 

practices.  Decoupling caps are always placed as close to the IC’s power pins as possible to try to make 

the last element that the pin sees a capacitor.  This keeps the supply voltage steady during transients 

since voltage does not change instantaneously on a cap.  Without decoupling caps, the pin sees an 

inductance and resistance from the signal trace which can result in voltage transients that can lead to 

nasty behavior since even very fast droops in voltage can impact memory in the device.  That being said, 

for a design like this board running at the relatively slow speed and populated on a fairly small PCB, you 

could likely remove all the decoupling capacitors and still operate without a problem. 
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1.3.4 ANT AP2 Radio 

The ANT radio schematic is one of the more fun pages on the design since it incorporates mysterious RF 

technology.  The circuit is quite similar to that found on the MPG Level 1 development board but has a 

fundamental difference.  For MPG Level 2, ANT communication will use the synchronous method of 

communication (SPI) rather than the asynchronous UART.  See Figure 1.3.4.1. 

 

Figure 1.3.4.1: ANT AP2 schematic page 

 

Though Dynastream does not explicitly recommend using SPI instead of UART, most of their reference 

designs choose SPI and verbally they seem to lean towards it.  From experience with devices using both 

methods, SPI mode is highly recommended.  Though both modes work well, SPI has better flow control 

between the master and slave that help to manage message passing more easily.  Much faster 

communication data rates can also be achieved, and of course there is the added benefit of clock-speed 

independence since SPI is synchronous and the clock is transmitted with the message.  Dynastream does 
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recommend SPI to achieve the lowest power operation of an ANT-based system.  The downside is that 

implementing SPI might be considered marginally more complicated especially if you do not have an SPI 

slave peripheral and have to bit-bash the messages.  It also requires one additional I/O line – a negligible 

consideration for this development board (though as we discussed earlier, because of the SSP peripheral 

operation, a further two GPIO signals are required). 

To implement SPI (byte mode vs. bit mode since we will be communicating with an SPI peripheral), the 

“Interfacing with ant general purpose chipsets and modules” document from Dynastream instructs you 

to configure the device with PORTSEL high and the BR lines low.  The AP2 data sheet also suggests tying 

UART_RX high and leaving UART_TX floating.  For an RF device, it is highly recommended to follow every 

manufacturer’s suggestions! 

There are two crystal sources for the AP2, both of which have guard rings for the same reasons that the 

processor crystals have guard rings.  The 16MHz crystal is mandatory as it provides the baseband 

frequency for the radio.  It is very important to route this crystal properly and correctly calculate the 

external capacitors to provide the crystal load capacitance.  The 32k crystal is optional.  The AP2 can 

derive a 32k clock from the 16MHz signal, though this takes slightly more power.  The sleep current of 

the AP2 is roughly 2uA when the 32k crystal is present vs. 100uA when the device sleeps with the 

16MHz oscillator active.  The difference in power consumption is negligible for this design, but for an 

extremely low power device the 32k crystal is essential.  2uA vs. 100uA might not seem like a lot, but for 

a device that sleeps most of the time and runs on a coin cell battery, a factor of 50 for current 

consumption is the difference between operating for two weeks vs. two years!  Though the rest of the 

MPG Level 2 development board is not designed with ultra-low power in mind, you could still 

experiment with just the ANT radio to reduce its power consumption, thus the footprint is provided (but 

the parts will remain unpopulated).  To tell the AP2 that no 32k crystal is present, a 0R resistor is placed 

at C28 to tie the line low as recommended by the ANT documentation. 

The magical PCB antenna and “balun” (balanced – unbalanced matching circuit) comes directly from the 

Nordic / Dynastream reference design and is essentially identical to the MPG Level 1 AP2 development 

board.  The balancing part of the “balun” takes the dual radio feed ANT1 / ANT2 and couples it to a 

single feed going in to L2.  L2, C29, C30 then convert the signal impedance to 50 Ohm to match the 

antenna.  When the entire system is designed and matched correctly, the performance of the radio is 

optimized.  This comes from the same principle in DC where it is known that for maximum power 

transfer, the source impedance should match the load impedance.  More details on the RF magic here 

would need to come from an RF engineer.   

The PCB antenna is called an “IFA” (Inverted F Antenna) for reasons that should be obvious when you 

look at the PCB.  From a DC perspective, the antenna is indeed a short to ground.  C29 ensures that no 

DC voltage is present.  From an RF perspective, the antenna is a complex circuit that successfully 

receives and radiates energy.  An IFA is a monopole antenna and requires a ground plane as large as 

possible under it.  The length of the antenna from the ground point to the tip is set at 1/4 wavelength of 
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2.45GHz.  The distance of the feed stub from the ground feed is critical in making the antenna 

impedance 50 Ohms to which the circuit is matched.  The design for the antenna is taken directly from 

the Nordic Semiconductor reference design. 

On this development board, the length has been extended slightly to achieve better performance at the 

center of the 2.4GHz ISM band as some testing on large boards in similar configurations proved 

beneficial. 

The power supply and remaining circuits on the ANT schematic are mostly from the reference designs.  

Two GPIO lines from the processor have been added:  ANT_PWR_EN allows power to be switched off to 

the AP2 entirely; ANT_RESET can toggle the AP2’s reset line to make it reset via hardware (a firmware 

reset command is also available).  These signals were added to allow full control over power to the ANT 

device and give optional “hail-marry” reset capability to the development board firmware.  Note that to 

actually get zero-voltage to the ANT chip, not only must the power line be turned off but all of the GPIO 

lines must also be set as output low on the LPC1752.  If not, then the AP2 will remain powered through 

the IO lines even though it will not really be able to function since its main supply rail is not being 

powered.  It will draw current, though and perhaps do strange things. 

1.3.5 User IO 

The last schematic page captures all of the development board user IO (see Figure 1.3.5.1 on the next 

page). 

Starting in the top left are the four LEDs.  The blue LED requires a transistor driver as typical forward 

voltage for a blue LED is higher than 3V so it is powered from the 5V rail.  Driving the digital NPN Q4 like 

this keeps the LED active-high.  The LCD backlight (LED_LCD_BL) is next, where the backlight LED is 

accessed via a connector attached to the board (J7).  The backlight LED is also driven with an NPN as the 

LCD data sheet states that its average current is 45mA which is beyond the driving capability of the 

processor pin.  A 150R resistor is installed to safely limit current while still providing good brightness.  

The LCD connection itself is directly from the data sheet. 
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Figure 1.3.5.1: User I/O 

Probably the most interesting circuit on this schematic is the trackball circuit.  The little trackball – the 

same one you can find in the original BlackBerry devices – is an ingenious mechanical device.  Figure 

1.3.5.2 shows the top and bottom blow-up of the device. 

 

Figure 1.3.5.2: Trackball bottom (left) and top (right) image 

Image Source: Sparkfun Electronics 
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There is nothing electrical involved in this device.  When you roll the ball with your finger, the four small 

wheels rotate.  Only one wheel rotates if you rotate exactly in the plane of either the x or y-axis.  If you 

are rotating across the axis, then two of the wheels will be rotating.  No matter what you do, you can 

never get both wheels in the same axis to turn at the same time.  This is the most magical part of the 

device.  Somehow they have designed and built the trackball so that the subtle pressure of your finger 

pushing to rotate the ball in one direction on an axis is enough to engage one of the wheels and 

disengage the other.  All in all you have four input signals, one each for up, down, left and right.  One 

thing that was learned when first working with this device is that the mechanics are very sensitive, and 

any attempt to make a solder connection to any part of the device destroyed it.  This is why the trackball 

is glued to the PCB and not soldered in any way. 

To capture the motion electrically, a Hall Effect sensor is placed on the circuit board under each of the 

wheels.  There are a few tiny Hall Effect sensors that do the trick, and the one chosen for the course 

board is from Panasonic, AN48841B.   

Creating the schematic symbol and PCB land pattern for the whole trackball circuit was a tad tricky 

because the manufacturer does not provide a datasheet.  The center button was first tried in a way that 

relied on the conductive actuator to close a circuit on the board with the outside metal of the switch as 

a ground.  As just pointed out however, attempting to solder to the trackball destroyed it. 

Therefore, a small, ultra-low profile switch was specified to be placed underneath the trackball.  The 

button on this switch is actuated by the trackball.  The schematic symbol and PCB land patter are shown 

in Figure 1.3.5.3. 
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Figure 1.3.5.3: Trackball schematic symbol and land pattern 

 

The PCB footprint for the trackball itself (S4) is the left pattern.  This symbol is placed on the board, then 

each of the four Hall Effect switch lands (S7, S8, S9, S10) were placed inside S4’s guidelines.  The center 

button (S6) was also placed inside S4 and just barely fit and required 45° rotation.  The vacant guidelines 

are large enough for the plastic pegs on the trackball to fit inside, and the silkscreen will act as a wall to 

contain the glue necessary to secure the trackball in place.  Obviously all the switches that reside under 

the trackball need to be populated before the trackball is glued on. 

The other buttons and buzzer circuit are next with nothing particularly interesting to note.  Both buttons 

are active low and rely on the processor’s internal pull-up resistors .  The buzzer can be switched on and 

off with the fourth dip switch. 

 

Figure 1.3.5.4: RS-232 converter circuit and dip switch 

The last circuit provides the level translation for the UART connection to RS-232.  The charge-pump / 

inverter IC (U5) translates the device 0-3V signal rails to +/-5V levels for the PC.  Translation is done only 

for the Tx and Rx signal pins as these are the only required signals.  All of the RS-232 signaling lines are 

optionally available through test points to enable experimenting with full flow control.  For example, a 

second development board could be connected directly to the DB9 connector.  If a PC was connected, 
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then level translation would also be required on the other lines.  An example of the type of circuit 

required to step down the voltage is shown for the RTS and DTR lines.  These circuits allow Flash Magic 

to control the BOOTLOAD and MCU_RESET lines of the processor so you do not have to manually set 

jumpers to program over UART, though you do have to apply them by flipping the dip switches on where 

they are connected.   Figure 1.3.5.5 is a screen shot of the Advanced Options area in Flash Magic that 

shows where this option is available.   

 

Figure 1.3.5.5: Flash Magic Advanced Options settings for RS-232 control of ISP lines 

 

Due to the lack of use of this feature, the components to clamp and rectify the +/- signal from the PC will 

not be populated on the board due to cost.  The NNP parts could be placed at any time if the automatic 

functionality was desired. 

1.4 PCB Layout 
Before even a single component is placed, a PCB designer must consider the needs of a device and 

balance those against parameters such as board size, cost and manufacturability.  On the performance 

side of things, there are key aspects to consider for all PCBs including power and ground distribution, 

high-speed signal routing and potential issues with PCB capacitance, signal coupling / noise, and 

impedance.  When a radio is involved, board design is very important as component positioning, trace 

length, ground planes and other factors must be managed since they can drastically impact how well the 

device operates.   

The need for performance is generally traded off with mechanical and physical needs.  With a 

protoboard, you often have the luxury of a few more degrees of freedom.  Cost is rarely a major driver, 

and mechanical constraints may be reduced or entirely removed in the very early phases.  For example, 

a designer might want to try several different power supply circuits, so the power section of the PCB 

might be three-times larger than it would normally be with optional circuits for each supply to test.  The 

whole PCB might have almost-duplicate circuits for testing, or at least some circuits might have 
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additional components in place for configuration options or be over-designed to optimize performance.  

Capacitors are often added in excess on prototypes just in case there is power supply or noise problems.   

Once a prototype PCB has been manufactured, populated and tested successfully (albeit with a few 

barnacle wires or hacked-in parts), the first form-factor PCB is created that is hopefully good for 

production.  First revision boards may still contain a few extra components unless spacing requirements 

prevent it.  They may also have extra test points that can allow relatively easy modification to circuits 

that could still have problems.  If the board has no errors, then it can be used for a production run and 

extra parts are not populated.  The extra land patterns could be removed entirely on future board spins. 

For this development board, many of the circuits are from already-proven designs.  The microcontroller 

is the biggest risk as it is new to the design.  Extra attention was paid in assigning pins and verifying that 

they could be configured to provide the functionality needed.  The overall level of risk is not particularly 

high.  If the PCB was to be taken to a manufacturable device with a plastic shell, size constraints, and 

regulatory requirements (FCC for power supply and the radio), then mechanical design and more 

attention to RF performance would be made.  RF boards generally perform much better with four or six 

layers so several ground planes can be used, especially when the form-factor is shrunk and there is less 

room for routing (it is very difficult to rout a PCB on two layers and still create a sizeable ground plane 

for the required radio performance).  The development board is routed on two layers as it is large 

enough to route all the signals and the ANT RF section has enough space to route properly and supply 

sufficient ground plane for the antenna.  Note that all components (other than the JTAG connector) are 

populated on the top layer only.  This is for manufacturability so when the boards are machine-

populated all components can be done without turning the board over which saves substantial cost. 

Routing on two layers is most successful if one follows strict rules in the direction of signal traces.  As 

shown in Figures 1.4.1 and 1.4.2, traces on the top layer of the PCB generally run East-West while traces 

on the bottom side of the PCB run North-South.  Even though this may create the need for a few extra 

vias, it optimizes routing and minimizes instances where it appears impossible to route certain traces 

from point A to point B.  In addition to that, ground-plane pours (like on the bottom layer), will be much 

more solid.  Lastly, coupling between signals on different layers will be nearly zero because every trace 

on one layer that passes over a trace on another layer will do so completely orthogonal.   
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Figure 1.4.1: MPG Level 2 development PCB top layer 

 

 

Figure 1.4.2: MPG Level 2 development PCB bottom layer  
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Note that the bottom layer is shown “looking through” the PCB so it appears backwards to what you 

would see if you had the board in hand looking directly at the bottom layer.  Any text that is printed on 

the PCB bottom layer must be mirrored in the design files so that it will appear correctly on the actual 

PCB (it appears reversed in the image above). 

From a cosmetic perspective, component designators are placed and orientated consistently.  All test 

points are labeled with their comments so their purpose is immediately obvious to anyone debugging 

signals on the board.  In most cases, the orientation of the designator matches the orientation of the 

part.  Designators reside on the “silkscreen” or “overlay” layer in the design files.  Figure 1.4.3 shows just 

the Top Overlay layer with all other layers turned off.   

The large yellow squares are markings to indicate where the four foam tape pieces should go to properly 

support the LCD.  The board information label is at the top right corner and includes the name of the 

board, the part number and the design date in week # - year format. 

 

Figure 1.4.3: Top Overlay only of the PCB 

1.5. PCB Production 
To manufacture the PCB, the design tools are used to produce “Gerber” files which are standard PCB 

design files used by every board house.  No matter what software package you use to create the 

schematics and PCB, the output files will be in Gerber format.  Each layer of the PCB has its own Gerber 

file.  These files are used at different times when the PCB is being manufactured.   
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For two-layer boards the process is fairly straight forward.  The PCB holes are usually drilled first since 

they have to be plated with copper.  The drill data is always provided in an “NC Drill” text file though you 

can produce a Gerber drill file as well.  Figure 1.5.1 shows just the drill holes. 

 

Figure 1.5.1: Drill layer 

 

The copper on the top and bottom layers is then applied.  All of the red in Figure 1.4.1 and all of the blue 

in Figure 1.4.2 is copper on the top and bottom layers, respectively.  If you were using a prototyping 

service like Alberta Printed Circuits, the board would be complete at this point. 

For final boards, additional Gerber data is provided for the “solder mask” and silkscreen.  Solder mask is 

the green non-conductive layer that covers most of the PCB except the component pads that need to be 

soldered.  Solder mask layers define where solder mask should NOT be applied to the board.  Figure 

1.5.2 shows the top and bottom solder mask for the development board.  On this PCB, all of the vias are 

“tented” meaning that solder mask covers them on the top and bottom.  This helps prevent any 

accidental shorting to vias to components or wires.  This is especially important for integrated circuits 

that have exposed conductive pads on their bottoms which would most likely short to any vias under the 

part.  Note that solder mask can be any color through green is the standard and thus the least 

expensive.  PCBs do look cool in other colors, though!   
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The silkscreen is applied last to finish the boards. Silkscreen ink can also be different colors but the 

standard is white or yellow. 

 

Figure 1.5.2: Top (left) and bottom (right) solder mask layers 

There are a couple of Gerber files the board manufacturer does not use, but are needed if the board is 

to be machine-populated later on.  The first set is the “paste mask” files that show where solder paste 

should be applied.  Solder paste is a flux / solder mixture with the consistency of tooth paste that is 

applied to the PCB before the parts are machine-populated.  This is done by creating a “paste stencil” 

using the paste mask layer data.  The stencil is a solid metal sheet with cut-outs for all the pads that 

need solder.  The stencil is placed onto the PCB and solder paste is more or less squeegeed on.  The 

voids in the stencil allow paste to cover the exposed pads.   

The solder paste holds the parts in place once they are positioned, and then will melt and secure the 

part in place when heated to the correct temperature in a “reflow” or “wave solder” oven.  Infrared can 

also be used to more locally melt the solder paste.  Regardless of the process, the liquid flux burns off, 

the solder melts and then solidifies once the heat is removed.  Surface tension automatically aligns the 

parts and in most cases, all parts will end up being perfectly positioned during the reflow process.  In 

some cases, however, parts can “tombstone” (see Figure 1.5.3) or wind up in other strange orientations.  

There is an excellent explanation of why this occurs at the source of the image below. 

 

Figure 1.5.3: Rendering of a tomb stoned component 

Source: PCB007, http://www.pcb007.com/pages/zone.cgi?a=3235 
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Figure 1.5.4 shows the top paste layer

mounted on the bottom layer.  This is done very intentionally as it can significantly reduce the cost of 

having the PCB machine-populated.  With only one layer to populated, only one st

one machine program is needed, and only one run through the population process is needed. 

To tell the SMT machine where all the parts go, a “pick and place” file is generated that lists e

designator and its coordinates on the PCB.  The pick and place file is just an ASCII text file.

1.6 PCB Population 
Solder paste is applied to the PCB using the stencil and the pick

loaded with all of the components.  T

industry, almost every component is machine populated whether it be thru

many ways, the process is quite straight forward: grab a component, put it in the 

then solder it in place.  What is amazing is how robots can do this so accurately and so quickly.  

has a ton of videos if you look for “p

course Facebook page. 

After all the parts have been placed

manually or by machine to check that there are no placement errors

sideways, missing, etc.).  Then the board 

with a very carefully controlled heating and cooling profile to ensure that the solder melts correctly and 

that the PCB or components are not damaged
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layer.  There is no bottom paste layer because there are no SMT parts 

mounted on the bottom layer.  This is done very intentionally as it can significantly reduce the cost of 

populated.  With only one layer to populated, only one stencil is needed, only 

one machine program is needed, and only one run through the population process is needed. 

Figure 1.5.4: Top paste layer (in gray).   

 

To tell the SMT machine where all the parts go, a “pick and place” file is generated that lists e

designator and its coordinates on the PCB.  The pick and place file is just an ASCII text file.

is applied to the PCB using the stencil and the pick-and-place machine is programmed and 

.  The board is then populated with all the components

ndustry, almost every component is machine populated whether it be thru-hole or surface mount.  In 

many ways, the process is quite straight forward: grab a component, put it in the right location, 

solder it in place.  What is amazing is how robots can do this so accurately and so quickly.  

pick and place machines.”  One of the better videos is linked on the 

After all the parts have been placed, the board moves along a conveyor belt and is usually inspected 

check that there are no placement errors (components upside down, 

.  Then the board is moved into the reflow oven to melt the solder

with a very carefully controlled heating and cooling profile to ensure that the solder melts correctly and 

that the PCB or components are not damaged.  After reflow, the board is again inspected for problems.  
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There is no bottom paste layer because there are no SMT parts 

mounted on the bottom layer.  This is done very intentionally as it can significantly reduce the cost of 

encil is needed, only 

one machine program is needed, and only one run through the population process is needed.  

 

To tell the SMT machine where all the parts go, a “pick and place” file is generated that lists each part 

designator and its coordinates on the PCB.  The pick and place file is just an ASCII text file. 

place machine is programmed and 

populated with all the components on a layer.  In 

hole or surface mount.  In 

right location, and 

solder it in place.  What is amazing is how robots can do this so accurately and so quickly.  YouTube 

One of the better videos is linked on the 

he board moves along a conveyor belt and is usually inspected 

(components upside down, 

low oven to melt the solder which is done 

with a very carefully controlled heating and cooling profile to ensure that the solder melts correctly and 

inspected for problems.  
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If the other layer requires components, the board is flipped over and passed through the process again.  

The surface tension of the solder will keep most of the components that are now upside down from 

falling off when the board is reflowed again.  Heavier parts are generally saved for the layer that runs 

through on the second pass.  If it is unavoidable to have heavy parts upside down and reflowed, then 

they must be secured to the PCB either with glue or clamps.  This adds cost to the process, so if possible 

a PCB designer will consider this when laying out the board. 

Some components still have to be hand-populated, and virtually any component COULD be hand-

populated with the correct tool.  A soldering iron can do the trick most of the time, but for parts that 

have pads underneath, then a hot-air gun or other larger heating device is required.  Just like in the 

reflow oven, one must be very careful to heat the part evenly, and not heat it for too long.   

Depending on how you came across the development board for this course, you may have a fully 

populated PCB ready to go, you may have an entirely bare PCB and big bag of parts, or you might have 

something in between.  If the board is complete, then you can skip the remainder of this chapter, 

otherwise, read on to find the instructions on how to populate the components and test the board.  If 

you have never soldered before or need a bit of a refresher, it is highly recommended that you review 

Chapter 5 of MPG Level 1.  If there is one rule to remember, it is that you only apply solder initially to 1 

pad of the component and do not solder any other pads until the part is perfectly in place.  Then, and 

only then, do you start soldering the other pads.  With that in mind, make sure your soldering iron is hot 

and has a good tip and dive right in. 

Solder components in this order: 

1. Microprocessor (U3), RS232 transceiver (U5), ANT radio IC (U4), ANT crystal (X4) and the buck 

converter IC (U2).  DO NOT solder the LDO (U1) at this time.  If you have a partially pre-

populated board, you will only need to solder some of these parts. 

2. All 0603 resistors and capacitors.  Do not forget to jumper the “on” switch with a 0 Ohm resistor 

across the correct pads.  To find the correct pads, examine the schematic and/or PCB artwork 

(or the board itself). 

3. Hall-effect sensors (N/A for partially pre-populated boards).  DO NOT wick-and-flow these 

devices.  They are highly sensitive to heat, so you must very carefully solder them pin-by-pin.   

4. LCD connectors (N/A for partially populated boards). 

5. SMT diodes and transistors. 

6. Buttons, buzzer and thru-hole LEDs.  Be sure to check the LED color with a multimeter diode test 

and observe the polarity of the LED. 

7. Remaining connectors. 
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1.6.1 Testing 

At this point, your board is fully populated except for the LDO

LCD or attach the track ball yet.   

- With a multimeter, do a continuity check between 5V and ground and Vcc and ground to ensure 

there are no direct shorts from th

- Ideally, take a 100mA current

connection points.  The current limit should not be hit since there is not any load on the circuit 

yet.  If that is okay, measure the 5V

regulating the 5V supply rail.  If not, debug the PCB to find the reason.  

If the 5V supply is operating, the power supply is not current limiting and nothing on the board is getting 

hot, disconnect the power supply and solder the LDO.  Reconnect the current

once again ensure it is not current limiting.  Measure the 5V rail and the 3

the correct voltage (within 2%), start debugging the circuit.

touch all the parts on the board with your finger to ensure none of them are hot.

your board is ready to move on to the rest of the 

 

Power on the board and set the jumper switches ON

to start the serial boot loader.  Attach the PCB to a straight

Magic.  Set the device to LPC1752 (or whatever processor you have on the PCB) and choose 38400 baud 
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nt, your board is fully populated except for the LDO, LCD and track ball.  Do not plug in the 

With a multimeter, do a continuity check between 5V and ground and Vcc and ground to ensure 

there are no direct shorts from the supply rails to ground. 

Ideally, take a 100mA current-limited power supply at 9 - 12V and attach it to the 9V battery 

connection points.  The current limit should not be hit since there is not any load on the circuit 

yet.  If that is okay, measure the 5V test point to ensure the buck converter is properly 

regulating the 5V supply rail.  If not, debug the PCB to find the reason.   

If the 5V supply is operating, the power supply is not current limiting and nothing on the board is getting 

power supply and solder the LDO.  Reconnect the current-limited power supply and 

once again ensure it is not current limiting.  Measure the 5V rail and the 3.3V (Vcc) rail.  If either is not at 

the correct voltage (within 2%), start debugging the circuit.  If the supply rails look good, systematically 

touch all the parts on the board with your finger to ensure none of them are hot.  If successful, then 

your board is ready to move on to the rest of the test procedure.  Figure 1.6.1.1 shows 

Figure 1.6.1: Fully populated PCB 

Power on the board and set the jumper switches ON-OFF-OFF-ON.  Press the processor reset button (S5) 

loader.  Attach the PCB to a straight-thru serial cable on a PC and launch Flash 

Set the device to LPC1752 (or whatever processor you have on the PCB) and choose 38400 baud 
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.  Do not plug in the 

With a multimeter, do a continuity check between 5V and ground and Vcc and ground to ensure 

12V and attach it to the 9V battery 

connection points.  The current limit should not be hit since there is not any load on the circuit 

test point to ensure the buck converter is properly 

If the 5V supply is operating, the power supply is not current limiting and nothing on the board is getting 

limited power supply and 

rail.  If either is not at 

If the supply rails look good, systematically 

If successful, then 

shows a completed PCB. 

 

processor reset button (S5) 

thru serial cable on a PC and launch Flash 

Set the device to LPC1752 (or whatever processor you have on the PCB) and choose 38400 baud 



  MPG LEVEL 2 
 

 

notes_mpgl2_chapter1.docx Version 1.1 Page 36 of 37 

 

with None (ISP) Interface.  The Oscillator speed is 12.000MHz.  Select ISP > Read Device Signature and 

you should get a new dialog box with the device information.  All of this is shown in Figure 1.6.2.  

 

Figure 1.6.2: Flash Magic screens showing setup and successful Device Signature 

 

Close the Device Signature window and choose Browse… to select the 

firmware_mpgl2_chapter1_boardtest.hex source file.  This file is on the course website if you do not 

have a copy under Chapter 1 Start Code.  Program the file, turn dip switch 1 off, and close Flash Magic.  

Keep the serial cable plugged in.  Plug in the LCD ribbon cable and backlight cable. 

Open a Terminal window and set up a serial connection with 38400bps, 8-N-1 (8 data bits, no parity, 1 

stop bit).  Press the reset button on the processor and observe the PCB and terminal window.  You 

should see the start-up sequence  displayed in the terminal window that indicates everything has 

initialized correctly (see Figure 1.6.3). 
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Figure 1.6.3: Successful startup sequence 

All of the LEDs should be lit.  The LCD should be displaying an ANT logo and the LCD backlight should be 

on.  Perform the following checks: 

1. Type “en+c00” in the terminal window: the characters should echo back.  Press Enter and a list 

of commands should be displayed. 

2. Press button 0 to toggle the LEDs on and off. 

3. Press button 1 to toggle the beeper on and off.  This will also toggle the radio to transmit mode 

and it will continue to transmit until the button is pressed again (and the buzzer is off).  While 

the radio is transmitting, use a test receiver to ensure that the radio is ACTUALLY sending 

information over the air. 

4. Place the track ball into its location on the PCB (DO NOT GLUE IT YET).  Scroll the track ball in all 

directions to move the logo around on the LCD and ensure that up, down, left and right all work. 

5. Press down on the trackball to test that the button works.  This will toggle the backlight off.  

Pressing the trackball button again will toggle the LEDs back on. 

Now launch IAR and load the Chapter 2 starting project.  Disconnect the power supply from the PCB and 

plug in a J-Link debugger.  The test program should begin running again.  If the board does not power 

on, you need to manually turn on the JTAG power using the Segger J-Link software tool. 

When the J-Link is powering the board, build the code and start the debugger to ensure it works 

correctly.  If the code loads and the debugger starts, then the board is fully operational. 


