
AL 2000S/P User Guide AL2000S V9941 System Program v. 3.07

FF-AUTOMATION OY

HEAD OFFICE

Eräkuja 2 01600 VANTAA Tel. +358-9-5306310 Fax. +358-9-53063130 http://www.ff-automation.com e-mail:info@ff-automation.com

SERVICE CENTER

Meijerikuja 37650 Valkeakoski Tel. +358-3-5846390 Fax. +358-3-5846711 <section-header>AL 2000S/P User Guide AL2000S V9941 System program v. 3.07

FF-AUTOMATION OY

HEAD OFFICE

Eräkuja 2 01600 VANTAA Tel. +358-9-5306310 Fax. +358-9-53063130 http://www.ff-automation.com e-mail:info@ff-automation.com

SERVICE CENTER

Meijerikuja 37650 Valkeakoski Tel. +358-3-5846390 Fax. +358-3-5846711

TABLE OF CONTENT

1. GEN	ERAL DESCRIPTION	1-1
1.1	Introduction	
1.2	Basic Design	1-3
	-	
2. PRO	GRAMMING	
2.1	Programming the AL2000	
2.2	DSIMM32 Digital I/O Simulator	
	DWARE CONFIGURATION	
3.1	Selection of Mounting Rack	
3.2	Selection of Power Input Module(s)	
3.3	Modules Required for Each Unit	
3.4	Hardware Configuration Set-up	
3.5	Example of Hardware Configuration	
4. DIST 4.1	RIBUTED CONTROL SYSTEM	
4.1	The Modbus RTU Protocol Setting up a MODBUS Master	
4.2		
4.3	Setting up a MODBUS Slave Using Modems with MODBUS	
4.4		
5 OPE	RATIONAL/TECHNICAL DATA	5-1
5.1	Power Supply	
5.2	Digital I/O Modules	
5.3	Analog I/O Modules	
5.4	Central Processor Units	
	ITROLLERS	
6.1	8-Bit Controllers	
6.2	12-Bit Controllers	
6.3	Three Point Controllers	
6.4	Controller Tuning	6-8
	LAY/KEYPAD UNITS	7 4
7.015P	AL1096 Display/Keypad Units	
7.1	AL1096 Display/Reypad Units	
7.2	AL1095/B Display/Reypad Units	
7.3	AL1093 Display/Reypad Units AL1094R/F/AF Display/Keypad Units	
7.4	Reading the Keypad	
7.5	Control of LED Indicators	
7.0	Display Control Characters	
7.7	Display Modes	
7.8	Program Examples	
1.3		
8. TECH	HNICAL DESCRIPTIONS	
8.1	CPU2000S Series Modules	
8.2	CPU2000L Module	
8.3	AL2000S/P Variables	

9. REGISTER MEMORIES, OUTPUTS & VARIABLES
9.1 Reserved Memories and Outputs
9.2 Modbus Error Information Register Outputs
9.3 Control variables for AL1095 graphical symbols
9.3 Register Outputs (which must be set)
10. TROUBLE SHOOTING AND SERVICE
10.1 Checking the Hardware Configuration10-1
10.2 Tracing Faults and Solving Problems
10.3 The CPU Battery
10.4 Fuse Replacement
10.5 Adjusting of Analog Inputs
11. PROGRAMMING11-1
11.1 Programming Methods
11.2 AL2000 Variables11-3
11.3 Error Messages
11.4 AL2000S Instructions
12. TABLES
12.1 ASCII-Codes
12.2 Decimal/Octal Conversion
13. AL2000 PRODUCT LIST
13.1 Mounting Racks
13.2 Central Processing Units
13.3 Serial Communication and Router Boards
13.4 Input Modules
13.5 Output Modules
13.6 Input/Output Modules
13.7 Analog Modules13-2
13.8 Power Units
13.9 Special Units
13.10 Accessories
13.11 Converters for Serial Communication
13.12 Power Supplies
13.13 Programming Cables
13.14 Programming Software
13.15 Other Programs
13.16 AutoLog FCS Control Software
14. CABLES AND COMMUNICATION TIME SHEET
14.1 Cables
14.2 Data Communication Time Calculation Sheet
14.3 The Commands of AutoLog14-4
Appendix A. PHYSICAL INSTALLATION
A.1 Mounting DimensionsA-1

FF-AUTOMATION OY

HEAD OFFICE

Eräkuja 2 01600 VANTAA Tel. +358-9-5306310 Fax. +358-9-53063130 http://www.ff-automation.com e-mail:info@ff-automation.com

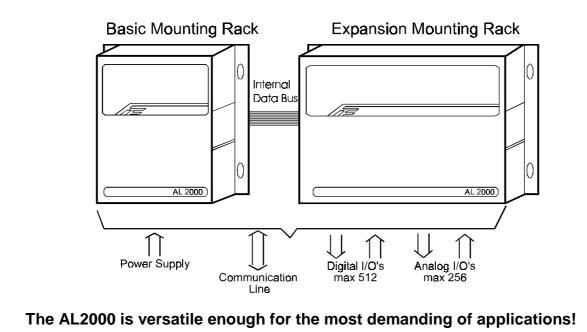
SERVICE CENTER

Meijerikuja 37650 Valkeakoski Tel. +358-3-5846390 Fax. +358-3-5846711

GENERAL DESCRIPTION

1.1 Introduction

1.


The AL2000 is a new modular PLC from FF-Automation, Finland. Due to it's modular design, different hardware configurations can easily be made for specific automation and data acquisition requirements. The AL2000 is designed to be used in medium and large scale applications.

The AL2000 can be easily programmed using an ordinary PC and the ALProWin programming software. ALPro has an extensive instruction language for PLC programming, with over 260 instructions available. Programming difficult procedures is made easy by the many instructions which have been developed for specific applications. The ALPro EIL (Extensive Instruction Language) is a highly efficient programming tool which is both easy to learn and simple to use.

For programmers who are familiar with ladder logic programming, ALProWin introduces a new and efficient way to write PLC programs. However, for programmers who prefer to work with ladder logic, an additional module is available for this purpose.

The AL2000L provides versatile communication capabilities via serial interface or Ethernet LAN.

AL2000 has been designed giving special attention to ease of use and rapid service. A thorough Self Diagnostics Function (SDF) continuously supervises the AL2000's operation. In the event that a fault in the system is discovered by the SDF, the user is immediately informed. A fault condition is displayed on the module by means of an LED, and sent via serial interface or Ethernet LAN to a supervising PC (if the user so chooses). This makes servicing the AL2000 both easy and rapid.

The AL2000 can be used to realise a fully distributed control system. Remote units can be connected to a central AL2000 unit via a fast serial interface. It is only necessary to program the central AL2000 unit with all remote units operating as simple I/O units, however, for more demanding situations local programs can be written to the remote units. Typical applications for the AL2000 are:

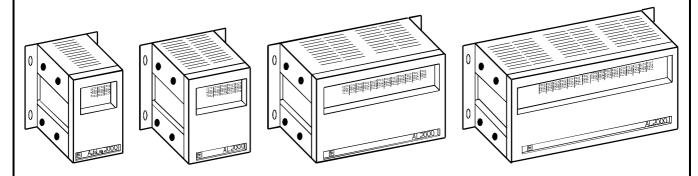
- * The Pulp and Paper Industry
- * The Steel Industry
- * Waste Water Treatment Plants
- * Pumping Stations
- * Saw Mills
- * Regional Control Systems

- * Remote Control Systems
- * Water Treatment Plants
- * Machine Manufacturing
- * The Chemical Industry
- * Building Automation
- * Machine Control

The AL2000 together with control software such as 'PARAGON' or 'FCS', opens up unlimited opportunities for SCADA (Supervisory, Control And Data Acquisition) applications for every industrial control situation. The following is a summary of the advantages offered by the AL2000 system:

- * Savings in mounting space due to the construction
- * Flexibility of hardware configuration You only buy what you need
- * Robustness the binary outputs are overload and short circuit protected
- * Reliability natural cooling, requires no fan
- * Versatile communication using RS-232C, RS-422/485 serial interfaces and Ethernet LAN
- * Powerful PID control capabilities
- * Rapid "key hole" installation
- * Easy service efficient self diagnostics and detachable screw terminals
- * I/O cables connect directly to each I/O module

Setting up the AL2000 system for a particular application is a simple and methodical procedure as outlined below:


- 1. Determine the type of CPU-module, power supply units and the number and type of I/O modules required
- 2. Select the number and size of mounting racks (allowing for possible future expansion)
- 3. Select the length of flat cable required to connect the expansion mounting rack (if used)
- Use the ALPro`Win software to define the hardware configuration (number and type of I/O modules and their respective slot numbers)
- 5. Select the communication protocol (e.g. MODBUS RTU)
- 6. Install the AL2000
- 7. Design and write the PLC program
- 8. Transfer the PLC program from the PC to the AL2000
- 9. Test the PLC program and correct possible errors
- 10. Save the PLC program onto disk
- 11. Make documentation for the PLC program (ALProWin can help with this)

1.2 Basic Design

The AL2000 is a modern PLC designed for general purpose industrial automation and data acquisition. The AL2000's modular design allows each mounting rack to be fitted with the CPU and I/O modules which best meet the specific demands of each application.

1.2.1 Mounting Rack

Five different sizes of mounting rack are available, with space for 3, 5, 11 or 16 I/O modules. All mounting racks are delivered with mother boards that connect the different I/O modules to the CPU. The modular design enables easy and rapid installation of different hardware configurations. The I/O cabling is connected to detachable screw terminals on the front edge of each I/O module. All I/O modules can be removed (or re-positioned in the rack) without disconnecting the I/O cables. The front cover of the unit hides the screw terminals but allows the LED indicators (indicating the status of each I/O) to be seen through a window.

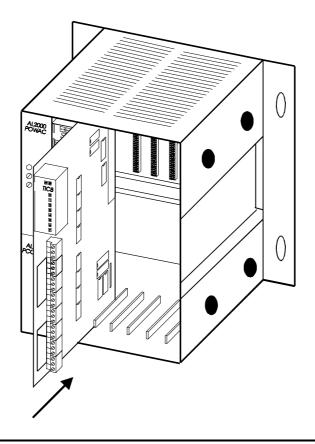
1.2.2 Power Supply

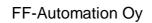
Each mounting rack (except MR3 models) must be fitted with a power supply module and a power connecting module. The power supply cable is connected to the power connecting module. The power supply module provides the AL2000 with the voltages it needs. The MR3 includes a single-unit power supply and does not require separate power connecting and power supply modules. The MR3-mini does not require a power supply, power for this mounting rack come from the CPU2000P.

1.2.3 Internal Bus

The internal bus handles communication between the I/O modules and the CPU. When an expansion mounting rack is used, the internal bus is extended from the basic mounting rack to the expansion mounting rack using a flat cable. The internal bus provides fast communication and is designed to IEC-Standards IEC47B (CO8) for electrical features and (CO10) for mechanical features. Each I/O module is connected to the mother board using DIN41612 connectors. The expansion mounting rack does not require its own CPU since the internal bus is extended to serve the expansion mounting rack via a flat cable. The basic mounting rack and the expansion mounting rack (if fitted) are hereafter collectively referred to as the Basic Unit.

1.2.4 The CPU2000S Series Modules


The CPU2000S is the basic general purpose CPU-unit for the AL2000. This CPU can control the basic unit which can house a maximum of 32 I/O modules. This basic unit can consist of one basic mounting rack and one expansion mounting rack. All CPU modules are equipped with three serial interface ports and an I²C interface port for connection of a keypad/display unit. The CPU2000P is equipped with own power supply unit.


1.2.5 The CPU2000L Module

The CPU2000L is a powerful CPU based on the pentium 586 and is entirely PC compatible. The CPU2000L is equipped with two serial interfaces, an I²C interface port for connection of a keypad/display unit, parallel printer port, Ethernet LAN and connectors for standard IBM-AT keyboard.

1.2.6 The I/O Modules

There are several modules available for both digital and analog inputs and outputs. These modules are slot-in cards which can be installed in any of the mounting racks and controlled by any of the slot-in CPU modules. All I/O modules are equipped with LED indicators which indicate the status of inputs and/or outputs and any error condition.

PROGRAMMING

2.1 Programming the AL2000

2.

The AL2000 can be programmed using an normal PC running Windows 9x or NT and the AlproWin programming software. The AL Extensive Instruction Language (ALEIL) comprising over 260 commands is used for programming the AL2000. Due to the AL2000's versatility, pure ladder logic programming would not make efficient use of all its features, although AlproWin allows the use of ladder logic in addition to ALEIL, AlproWin features both on-line and off-line programming, graphical representation of variables and an excellent tool for documentation of PLC programs. For more detailed information concerning AlproWin please consult the AlproWin User Manual.

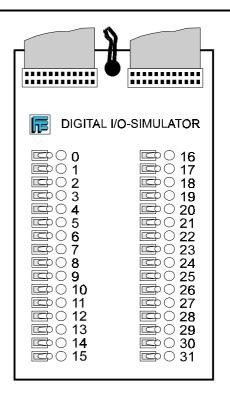
2.1.1 Programming with the AlproWin Software

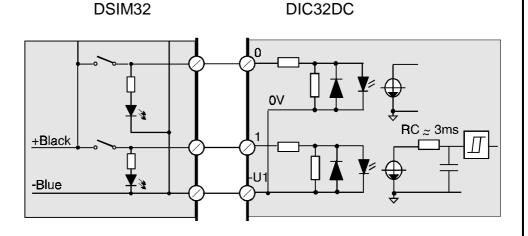
Before programming the AL2000, the hardware configuration must be defined. This is done using the AlproWin software The PLC program can be written using the text editor in AlproWin or using any other word processor or editor and save file in ASCII mode. AlproWin compiles the PLC program for running on the AL2000. PLC programs are saved on disk for later use.

2.1.2 I/O Module Addresses

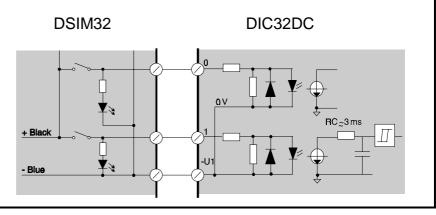
Each slot in the mounting rack has its own unique address which is automatically recognised by the I/O module installed in that specific slot. Two special registers in the I/O modules are provided for a test procedure done by the CPU-module. This permits the CPU to continuously supervise the function of the internal bus, check that the correct I/O modules are installed in the correct slots etc. The registers in the I/O modules also contain information about the type of the I/O module. This makes it possible for the CPU to fully check the I/O configuration. If an I/O module is accidentally replaced with the wrong type of I/O module (e.g. during repair/service), the CPU discovers and reports the mistake immediately upon power-up.

2.1.3 MODBUS


Using the standard MODBUS RTU protocol, AL2000 units can operate as masters driving other AL2000, AL14 - AL32 and AL20AN slave units, thus enabling large scale and distributed control systems to be realised. This is a standard feature on all AL2000 CPU modules. The MODBUS software included with AlproWin can be used to define the master/slave units and their respective addresses. The MODBUS protocol can also be used to communicate with PLCs made by other manufacturers and all supervisory software currently available.


2.2 DSIM32 Digital I/O Simulator

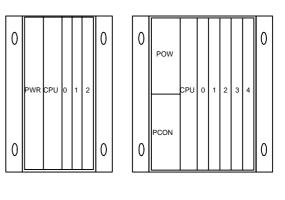
The DSIM32 digital I/O simulator can be used to test and debug PLC programs before they are used in the actual control process. This makes the testing process faster, easier and safer by avoiding the possibility of erronous PLC programs affecting the process. It is strongly recommended that all PLC programs be tested with the DSIM32 prior to use in the control process.

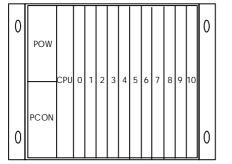

The DSIM32 can be used to simulate up to 32 digital inputs or outputs at a time, and is connected to the modules using convenient plugs which replace the detachable screw terminals making connection rapid and trouble free.

For input simulation, the switches are used to turn inputs on and off. LED indicators adjacent to the switches show the status of each input. Connections are as follows:

For input simulation, the switches are used to turn inputs on and off. LED indicators adjacent to the switches show the status of each input. Connections are as follows:

HARDWARE CONFIGURATION


3.1 Selection of Mounting Rack


3.

The number of the I/O modules and CPU type must be considered when selecting the mounting rack. If the process to be controlled is spread over a large area, considerable savings can be achieved by using the AL2000 to implement a distributed control system utilising several remote units. In this case only the central unit requires PLC programming, the remote units operate as Modbus RTU I/O units only.

Five different mounting racks are available:

- 1. MR3-mini for up to 3 I/O modules (CPU2000SCP)
- 2. MR3 for up to 3 I/O modules
- 3. MR5 for up to 5 I/O modules
- 4. MR11 for up to 11 I/O modules
- 5. MR16 for up to 16 I/O modules

0	POW																		0
		CPU	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
0	PCON																		0

3.2 Selection of Power Input Module(s)

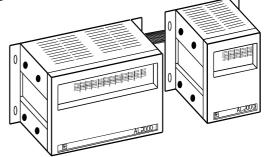
The AL2000 power supply is made up of two separate parts, the power connecting module and the power supply module. All mounting racks except the MR3 and MR3-mini must be fitted with both of these units. A different, single-unit power supply is included with the MR3 and the MR3-mini requires no power supply (the CPU2000SCP has its own power supply).

There are two types of power connecting module available, the PCON230 and the PCON24. These must be used in conjunction with the POWAC and POWDC power supply modules respectively:

PCON230 and POWAC:	1 0	230VAC
	Suitable for MR5	, MR11, MR16
PCON24 and POWDC:	Input voltage	24VAC/DC
	Suitable for MR5	
PWR3:	Input voltage	230VAC or 24VAC/DC
	Suitable for	MR3 only

3.3 Modules Required for Each Unit

3.3.1 MR5/MR11/MR16 Basic Unit

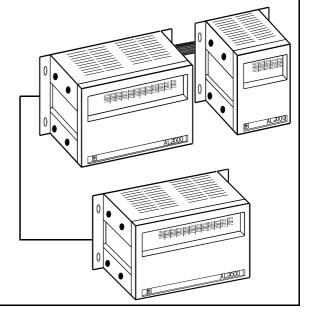

The following modules must be installed in the basic mounting rack:

- 1. PCON power connection module
- 2. POW power supply module
- 3. CPU central processing unit
- 4. Additionally the required I/O modules.

3.3.2 MR5/MR11/MR16 Expansion Unit

The following modules must be installed in the expansion mounting rack:

- 1. PCON power connection module
- 2. POW power supply module
- 3. Additionally the required I/O modules.

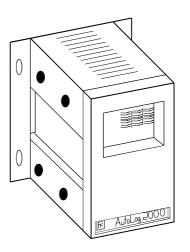


3.3.3 MR5/MR11/MR16 Remote Unit

The following modules must be installed in the remote mounting rack:

- 1. PCON power connection module
- 2. POW power supply module
- 3. CPU with DIP switch set to remote mode
- 4. Additionally the required I/O modules.

Remote units are connected to the basic unit via serial interface (SER3).

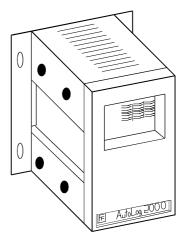


3.3.4 MR3 Mounting Rack

This unit is intended for use as a remote unit or a stand-alone unit for small applications. This unit cannot be expanded by adding other mounting racks, neither can it be used as an expansion mounting rack. The following modules must be installed in the MR3 for use as a basic unit:

- 1. PWR3 power supply module
- 2. CPU central processing unit
- 3. Additionally the required I/O modules

Note: If this mounting rack is used as a remote unit, the CPU DIP switch must be set to remote mode


3.3.5 MR3-mini Mounting Rack

This unit is intended for use as a remote unit or a stand-alone unit for small applications. This unit cannot be expanded by adding other mounting racks, neither can it be used as an expansion mounting rack. The following modules must be installed in the MR3-mini for use as a basic unit:

- 1. CPU2000P central processing unit
- 2. Additionally the required I/O modules

The MR3-mini is powered by the CPU2000P module and therefore requires no seperate power supply. The CPU2000P, however, requires an input voltage of 24V.

Note: If this mounting rack is used as a remote unit, the CPU DIP switch must be set to remote mode

3.4 Hardware Configuration Set-up

The hardware is configured using the ALPro software. The software gives directions about where to place the I/O modules required by the application in the rack(s). Each I/O module has an internal address which the AL2000 operating system detects on power-up. No DIP-switches have to be set to determine the address of an I/O module.

The system program checks the configuration on every program cycle, this makes it impossible to accidentally replace an I/O module with one of the wrong type (e.g. during maintenance) and also ensures that no mistakes can be made in the hardware configuration. Select Configure from the ALPro main menu. Select the desired slot and make the following definitions:

- 1. Type of I/O module
- 2. Address of variables in the I/O map
- 3. On Error action to be taken in the event that the hardware configuration is not the same as that defined in the ALPro Software: The options are:
 - STOP and RESET: execution of PLC program stops. All outputs are given the value 0 STOP: execution of PLC program stops. All outputs maintain their status IGNORE: execution of PLC program continues
- 4. Type and measurement range of analog inputs (for analog I/O modules only)

3.5 Example of Hardware Configuration

In a certain application the following number of I/O's must be handled:

232 x Digital Inputs (24VDC) 78 x Digital Outputs (24VDC) 58 x Digital Outputs (230VAC) 20 x Analog Inputs (4-20mA) 4 x Analog Outputs (4-20mA)

The following modules are required:

1 x CPU2000S 1 x MR5 1 x MR16 2 x POWAC 2 x PCON230 8 x DIC32DC 3 x DOC32EP 4 x ROC16 2 x AIC8 1 x AIO74 1 x Flat cable

0	P O W A C	C P U 2	A I O 7 4	A I C 8	A I C 8	EMPT	E M P T	0	
0	PCON230	CPU2000S	4	0	0	EMPTY SLOT	Y S L O T	0	

0	P O W																	0	
	A C	E M PT		I C	I	1				DOC32E	DOCSNEP		0 C	ROC1	R O C	R O C 1	E M P T		
	P C O N 2 3	Y S L O	3 3 2 2 D D C C	D	-	2 D C	C 3 2 D C	C 3 2 D C	C 3 2 D C	2 2 E P	2 E P	2 E P	1 6 K	1 6 K	- K	- 6 K	Y S L		
0	2 3 0	Т															O T	0	

3.5.1 Configuring the Modules

The required I/O modules and their respective slot positions must be configured in the ALPro software. This is done by selecting **Hardware Configuration** from the **View** menu.

The Configuration screen is shown below.

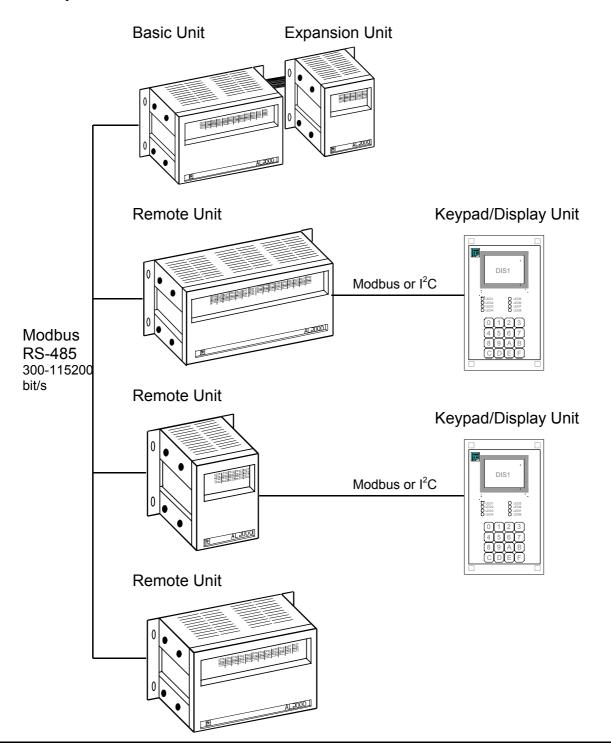
Reprowin Editor	-
☞ ■ C	
Project info	
PIc Type: Project Name: Major version AL2000s GSMAL200 1 1	
Com 1 9600 connected to AL2000sc	
Hardware Configuration	Select Card Type
<u>File</u> <u>T</u> ransfer	Card Type On Error Action
	AI074 IGNORE
Card Types Slot Card Inp. Addr. Out. Addr. Err. Action	Inp. Addr. Range Out. Addr. Range
CPU: AL2000s	W I 000-015 V W O 000-015 V
0 : DIO32ep I 000-015 O 000-015 IGNORE	
1 : AI074 W I 000-015 W O 000-015 IGNORE	OK Cancel
4 :	
5:	
6 : 7 :	
Analog input ranges Analog output ranges Out. Range	
0 : 05 V Differential	
1 : 05 V Differential 1 : 020 mA	
2 : 05 V Differential 2 : 020 mA	
3 : 05 V Differential 3 : 020 mA	
5 : 05 V Differential	
6 : 05 V Differential	
<u> 7</u> : ▼	
GSMAL2000TST.HRD	
Com 1 9600 connected to AL2000sc	
,	

The required I/O modules can be configured as follows:

- 1. Select the desired slot using the up and down arrow keys
- 2. Select the desired type of card from the Card menu
- 3. Select On Error from the menu
- 4. Select the action to be taken in the event of an error in the card

3.5.2 Setting the Range of Analog Inputs

The range of analog inputs can be set by selecting Range from the menu. The following screen is then displayed:


Alprowin Editor	
Eile <u>C</u> ompile <u>V</u> iew <u>T</u> ransfer P <u>L</u> C T <u>o</u> ols <u>D</u> ebug <u>H</u> elp	
☞ ■ □ ● ◆ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	
Project info Plc Type: Project Name: Major version Minor version	
Plc Type: Project Name: Major version Minor version AL2000s GSMAL200 GSMAL200	
Com 1 9600 connected to AL2000sc	
Hardware Configuration	Select Input Range
Eile Iransfer	Input Range Selection
	Pt100 alpha=0.00385 (-50150°C)
	05 V Differential
Slot Card Inp. Addr. Out. Addr. Err. Action	020 mA Differential
CPU: AL2000s 0 : DIO32ep I 000-015 O 000-015 IGNORE	Pt100 alpha=0.00385 (-50150°C) Pt100 alpha=0.00385 (-200730°C)
1 : AIO74 W I 000-015 W O 000-015 IGNORE	Pt100 alpha=0.00391 (-200770°C)
2 :	3 wire Pt100 alpha=0.00385 (-50150°C)
3:	3 wire Pt100 alpha=0.00385 (-200730°C) 3 wire Pt100 alpha=0.00391 (-200770°C)
5:	KTY10 (-50150°C)
6 :	Cu50 (-200200°C)
7:	3 wire Cu50 (-200200°C) 0480 mV Single Ended
Analog input ranges	05 V Single Ended
Inp. Range Out. Range	010 V Single Ended
0 : Pt100 alpha=0.00385 (-50150°C) 🔺 0 : 020 mA	-1010 V Single Ended
1 : Pt100 alpha=0.00385 (-50150°C) 1 : 020 mA 2 : Pt100 alpha=0.00385 (-50150°C) 2 : 020 mA	
3 : Pt100 alpha=0.00385 (-50150°C) 3 : 020 mA	
4 : Pt100 alpha=0.00385 (-50150°C)	
5 : Pt100 alpha=0.00385 (-50150°C) 6 : Pt100 alpha=0.00385 (-50150°C)	
7:	
GSMAL2000TST.HRD	
Com 1 9600 connected to AL2000scj	

DISTRIBUTED CONTROL SYSTEM

4.

All CPU modules are capable of controlling AL2000 remote units in addition to the basic unit (each having a maximum of 32 I/O modules). Each remote unit may consist of one basic mounting rack and one expansion mounting rack. The MODBUS RTU protocol is also supported all CPU modules, enabling the AL2000 to be connected to other PLCs and computers via serial interface. Using MODBUS remote units a fully distributed control system can be realised.

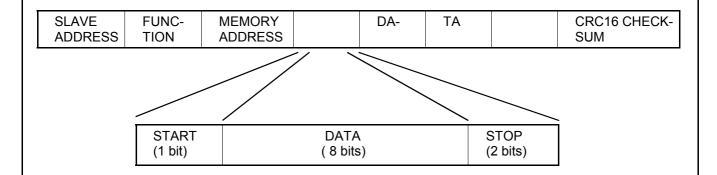
FF-Automation Oy

4.1 The MODBUS RTU Protocol

Using the MODBUS RTU protocol, the AL2000 can be connected to other PLCs (AL2000, AL100, AL20AN, AL32, AL16, AL14) and/or a computer via serial interface. The AL2000 can function as MODBUS Master or MODBUS Slave to other units.

Several MODBUS masters can be used in the same AL2000 system. One AL2000 can operate as a master to another AL2000, which in turn can operate as master to a third AL2000. This allows large distributed control systems to be realised.

Using MODBUS to connect the AL2000 to a computer running software such as PARAGON, opens up unlimited opportunities for SCADA (Supervisory, Control And Data Acquisition) applications.


4.1.1 Error Checking

All MODBUS communication is subject to the following error checks by both Master and Slave units:

- CRC16 Checksum
- Address Validity Check
- Framing Check

- Command Validity Check
- Message Length Check
- Message Integrity Check

Messages may be transmitted at rates of 300-115kbaud. The composition of the message frames is shown below:

Modbus messages are launched from master either based on pollrate defined in the message or if user has defined conditional messages, these are launched from PLC-program with FCN instruction. The Slave unit ignores all invalid messages. If, after transmitting a message, the Master does not receive a valid response from a slave, it will time-out after 500 ms and re-send the message. If the Master still does not receive a valid response, it will ignore all further messages destined for that slave for 10 seconds. On the next run through the message list the Master will attempt to send messages to that slave again.

The PC's MODBUS COM port may be initialised from DOS using: MODE COM1 9600,8,2,N,P

4.1.2 Addresses of Inputs and Outputs

All I/O points have addresses, these are used by MODBUS. The address assignment can be seen on the ALPro configuration screen's I/O map. I/O addresses are assigned in blocks of 16, therefore there will be unused addresses if an I/O module requires less then 16 addresses. For an AIO74 module the used/unused addresses are:

AIO74 Inputs	0	1	2	3	4	5	6	-	8	9	10	11	12	13	14	-
AIO74 Outputs	0	1	2	3	-	-	-	-	-	-	-	-	-	-	-	-

Unused addresses are represented by the '-' symbol

4.1.3 Serial Port Configuration

The AL2000 has 3 serial interfaces of which all can be configured to function as MODBUS Slave and MODBUS Master (independently of one another). These are:

 SER 1, SER 2
 RS-232

 SER 3
 RS-485

The serial ports must be configured for the required baud rate and MODBUS master/ slave mode. This is done by initialising the following register outputs:

MODBUS modes	SER 1, SER 2, SER 3	MODBUS Slave/MODBUS Master
Baud Rates	SER 1, SER 2, SER 3	0,3/1,2/2,4/4,8/9,6/19,2 kbit/s 28,8/38,4/57,6/115,2 kbit/s

Maximum cable length for RS-232 is 15m for 9600 bit/s Maximum cable length for RS-485 is 1200m for 9600 bit/s

4.2 Setting Up A MODBUS Master

A MODBUS master can be set up on SER1 and/or SER2 and/or SER3 by following the steps below.

Example: Set The Serial Port 2 to Modbus MASTER, baud rate 9600,N,8,1

STR	RC	5	
EQ	RΟ	215	; set SER2 to MASTER mode
STR	R C	4	
EQ	RΟ	229	; set SER2 baud rate to 9600
STR	R C	0	
EQ	RΟ	219	; set SER 2 data configuration to 8,N,1

See chapter 9.3 Register Output Configuration for available baud rates, communication modes and data configuration modes.

4.2.1 Configure the MODBUS Master Messages

In one transmission, several input or output values can be transferred between master and slave. This is called a message. A separate definition must be made for each master/ slave message (max. 63 per serial port) stating what information is to be sent.

MODBUS Master message definitions should be made using the Modbus Configuration program in the ALPro software. The serial interface to be configured should be selected first (SER2/SER3-MODBUS), after which message definitions can be made as follows:

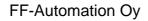
Master data Direction	Variable type and address range in the Master where data is to be written to or read from Arrow defines whether operation is read from slave (<-03) or write to slave (16->).
Slave data	Variable type and start address in the Slave where data is to be written to or read from
Slave No	Address of slave where data is to be written to or read from. Address 0 is used for
	broadcast messages. Broadcast messages are received by all slaves, but the slaves
	do not respond to these messages
Poll rate	Defines the update rate for this message. Possible poll rates are :
	Continuous ;update message as fast as possible
	1 second, 10 seconds, 30 seconds, 60 seconds
	Conditional ;launch message from PLC-program with FCN-instruction.
Satel1, Satel	2Satel codes are used when Satel radio modems are used as repeaters. (not added yet).
In the abov	e example message 1 would read outputs 0-15 from slave 1 and place them
	ers memory at addresses 0-15.

After all messages have been defined, the configuration information must be transferred to the AL2000. This is done by selecting 'Send File' from the 'File' menu. Transfer can be verified by selecting 'Verify' from the menu.

The following functions are available in messages:

Read/write operation	Modbus read	Mod- bus write	Address offset	Control sw. Address	FCS sw. Address
Binary output (O)	01	05, 15	0	00001	SDO 0001
Binary memory (M)	01	05, 15	1024	01025	SDO 1025
Binary memory (GM)	01	05, 15	2048	02049	SDO 2049
Binary memory (BM)	01	05, 15	3072	03073	SDO 3073
Binary input (1)	02		0	10001	SDI 0001
Word input (W I)	04		1024	31025	SAI 1025
Register output (R O)	03	06, 16	0	40001	SAO 0001
Register memory (R M)	03	06, 16	1024	41025	SAO 1025
Word output 0 ->1023 (W O)	03	06, 16	2048	42049	SAO 2049
Word memory 0 ->1023 (W M)	03	06, 16	3072	43073	SAO 3073
Register general memory (R GM)	03	06, 16	4096		
Word general memory (W GM)	03	06, 16	5120	45121	SAO 5121
Word output 1024 -> 2047 (W O)	03	06, 16	6144	46145	SAO 6145
Word memory 1024 -> 4095 (W M)	03	06, 16	7168	47169	SAO 7169
Word output 2048 -> 4095 (W O)	03	06, 16	10240		
Word memory 4096 -> 16275 (W M)	03	06, 16	12288		

4.3 Setting Up A MODBUS Slave


A MODBUS slave can be set up on SER1and/or SER2 and/or SER3 by following the steps described below.

Example: Set The Serial Port 3 to SLAVE, baud rate 9600,N,8,1, slave address = 2

STR	R	С	4	
EQ	R	0	216	;set SER3 to SLAVE mode
STR	R	С	4	
EQ	R	0	217	;set SER3 baud rate to 9600
STR	R	С	0	
EQ	R	0	218	; set SER 3 data configuration to 8,N,1
STR	R	С	2	-
EQ	R	0	243	; set Slave address to 2

See 4.1.3. Serial Port Configuration for available baud rates

The slave address can be from 1 to 255. If the PLC operates as a slave unit on two or three serial lines, the slave address is the same for all slave channels. Address 0 is reserved for broadcast messages. A slave cannot have this address.

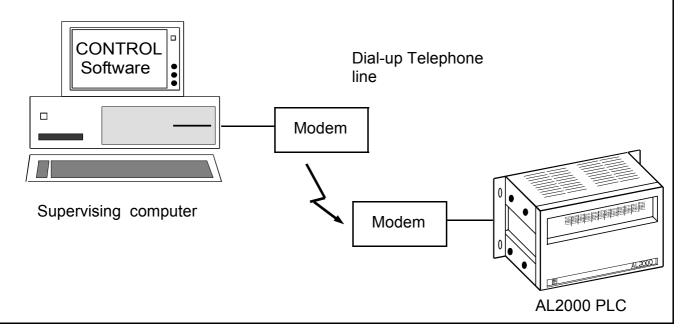
4.4 Using MODEMs with MODBUS

AL2000 RS-232 Serial channels supports modem control/status signals.

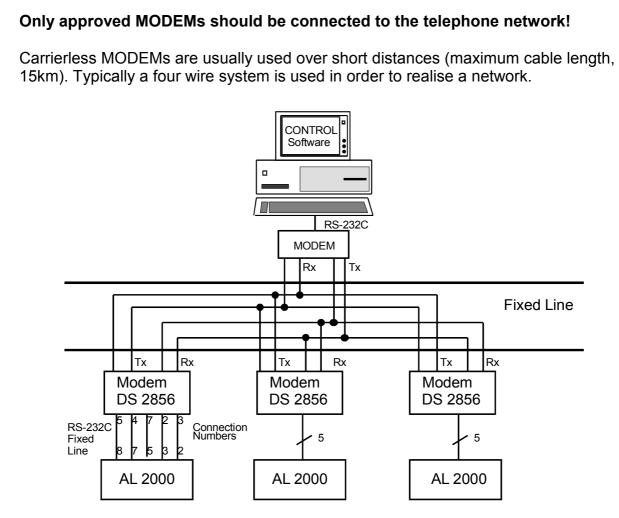
	Bit 0	Bit 1	Bit2	Bit3	bit4	Bit5	Bit6	Bit7
SER1 R O 57 SER2= RO 58	0=system program controls RTS 1= user controls RTS & DTR	RTS to modem	DTR to modem		DSR from modem	RI from modem	DCD from modem	CTS from modem

Two wire, carrier, MODEMs are normally used on standard 'dial-up' telephone lines. MODEMs which conform to the following CCITT recommendations are suitable for use with the AL2000 system:

V.22 (1200 baud) V.22bis (1200/2400 baud) V.32 (4800/9600 baud)


Using an auto-dialing MODEM which recognises 'AT' instructions, remote AL2000 units can dial-up and send data to a supervising computer.

The 'PRT' instruction is used to dial telephone numbers:


PRT ("ATDP 90844992",<CR>)

The MODEM reports a connection using the 'CONNECT' response. For the specific format of 'AT' instructions, consult the MODEM manual.

Data transfer rates of over 1200 baud, using telephone lines, can give rise to frequent errors. If 'PRT' instructions are used to transfer data, error correcting MODEMs should be used as data transfer errors may lead to operational problems. However, if an error correcting protocol like MODBUS is used, error correcting MODEMs are not necessary.

Carrierless MODEMs can be used for point-to point connection.

MODEMs are usually mains powered. If a battery back-up is required, the MODEM must be capable of being powered by a battery.

When a MODEM is used, the following definitions should be made in the PLC.

	Data Transfer Protocol	Baud Rate	Data format in terminal mode
SER1	R O 213 2 or 4	R O 214 0,1,2,3 or 4	R O 210 0 to 4
SER2	R O 215 0 or 4	R O 229 0,1,2,3 or 4	R O 219 0 to 4
SER3	R O 216 0 or 4	R O 217 0,1,2,3 or 4	R O 218 0 to 4

See also: REGISTER MEMORIES, OUTPUTS AND VARIABLES.

The following is a	a program example using MO	DEM communication.
STR EQ STR EQ EQ STR EQ STR AND STEP STR PRT STEP	R C 000 R O 212 R C 000 R O 215 R O 219 R O 001 R O 229 S 000 I 000 S 001 S 001 ("ATE0V0DP844992", <cr>) S 002</cr>	;select English instruction set ;select MODEM on SER2 ;select terminal mode SER2:data configuration ;select baud rate - 1200 Bd ;establish connection ;dial number
EQ EQ NEXT NEXT STR	R RO 232 R RO 233 S 002 030 ;time-out S 003 060 S 004	 D dial phone number P pulse dialing T tone dialing E0 disable echo V0 digit responses
STEP STR EQU AND STEP STR	S 001 R O 232 R C 013 S 002 S 010 R O 233	;check that connection is established
EQU AND STEP STR PRT	R C 049 S 010 S 011 S 011 ("AL2000 is sending some data",<0	;data transfer CR>)
STEP NEXT STR STEP NEXT	S 055 S 055 060 S 056 S 012 S 012 003	;terminate connection (hang-up)
STR PRT STEP NEXT STR	S 013 ("+++") S 014 S 014 003 S 015	,terminate connection (nang-up)
PRT STEP EQ EQ NEXT STR EQU AND STEP	("ATH0", <cr>) S 16 R RO 232 R RO 233 S 016 005 R O 232 R C 013 S 017 S 019 S 019</cr>	;PLC waits for next connection attempt
STR STEP NEXT STR STEP STOP	S 019 S 000 S 017 005 S 018 S 012	;if hang-up is unsuccessful then hang-up again

OPERATIONAL/TECHNICAL DATA

All AL2000 components are furnished with identification labels which state the code, serial number and name of the quality control inspector. On most components these stickers can be found on the bus connectors. A sample identification label is shown below:

FF-AUTOMATION OY	Code	902203	DCI
Made In Finland	Serial	01059300164	Inspected By

5.1 Power Supply

5.

Each mounting rack (except MR3-mini) must be equipped with its own power supply. The 230 VAC power supply can be used with all mounting racks, however, the 24 VDC/AC power supply can only be used with the MR5 mounting rack.

The external power supply cables are connected to the power connecting module and the power supply module generates the voltages required by the AL2000.

Supply Voltage	Power Connecting Module	Power Supply Module	Mounting Rack
230 VAC	PCON230	POWAC	MR5, MR11, MR16
24 VAC/DC	PCON24	POWDC	MR5
24 VAC/DC 230 VAC	PWR3		MR3 only

The protective ground must be connected to the ground terminal on the mounting rack as shown below.

(<u> </u>	Screw	M4x8

(The left bottom corner of the AL2000)

CAUTION: In order to prevent electric shock, disconnect mains supply before making any power connections.

5.1.1 PCON24 Power Connecting Module

The PCON24 is a power connecting module for supply voltages of 24VDC or 24VAC. The PCON24 drives the POWDC-25W power supply module and can also supply an auxiliary voltage of 24VDC (0.8A) for powering sensors or an AL32 PLC etc.

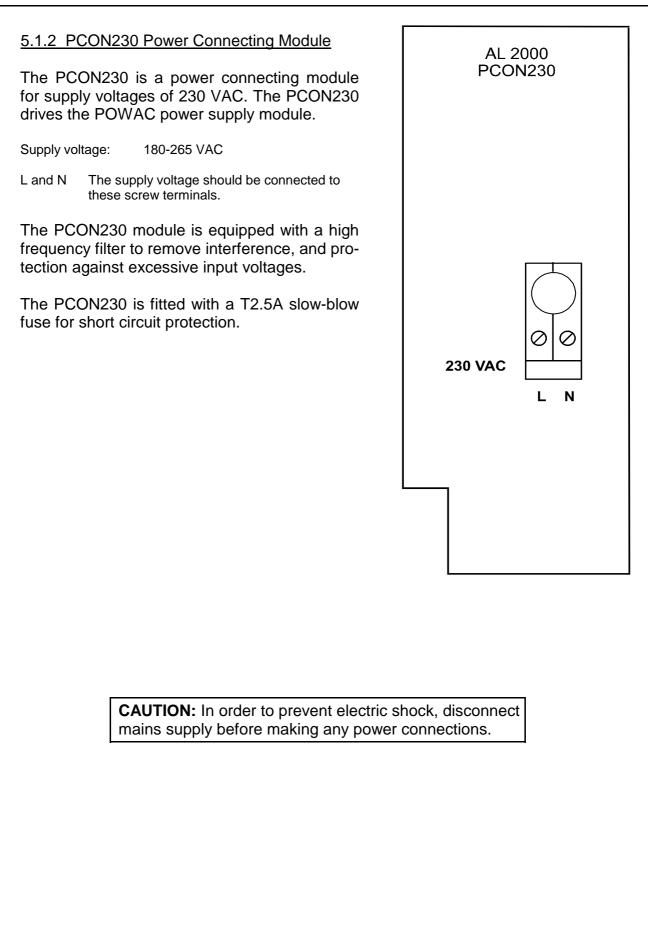
NOTE! The PCON24 can only be used in the small MR5 mounting rack.

Supply voltage:	20-32 VDC or
	20-26 VAC

POWER IN The supply voltage should be connected to these screw terminals.AUX Auxiliary voltage of 24VDC (0.8A) is available for external use from these terminals.

There are three fuses in the PCON24 module:

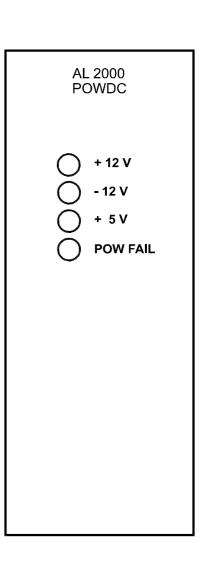
- F1 T1.6A slow-blow fuse for supply to the AL 2000
- F2 T1A slow-blow fuse for auxiliary power supply
- F3 T2.5A slow-blow fuse for supply to the PCON24


There are two LED indicators on the PCON24 module:

AUX (green) Auxiliary supply ON PLC (green) Supply to POWDC ON

CAUTION: In order to prevent electric shock, disconnect mains supply before making any power connections.

5.1.3 POWDC-25 W Power Supply Module


The POWDC-25W is a power supply module designed for use with the PCON24 power connecting module and supplies the following voltages to the AL2000:

+5V (3A) +12V (0.6A) -12V (0.6A)

There are four LED indicators in the POWDC module:

+12 V (green)	+12V supply ON
-12 V (green)	-12V supply ON
+5 V (green)	+5V supply ON
POW FAIL (red)	Supply voltage too low

The POWDC power supply module isolates the supply to AL 2000 from the external supply voltage. The POWDC also provides electronic overload protection to limit the output power. The high frequency interference filter is designed to standards VDE 0806, VDE 0871 and FCC 15B.

5.1.4 POWAC Power Supply Module

The POWAC power supply module is designed for use with the PCON230 power connection module and supplies the following voltages to the AL2000:

+5V (10A) +12V (0.6A) -12V (0.6A)

There is one green LED indicator in the POWAC module:

POWER ON Supply voltage ON

In addition the POWAC is furnished with two potentiometers for voltage adjustments:

There is one glas tube fuse inside power unit, (size 5 x 20 mm) ratings 3.15 A 250 VAC slow blow.

AL 2000 POWAC
$\bigcirc POWER ON$ $\bigotimes \Delta + 5 V$ $\bigotimes \Delta \pm 12 V$

AL 2000

PWR3

+5V()

+24V

POW FAIL

5.1.5 PWR3 Power Supply Module

The PWR3 is a complete power supply module for use with the MR3 mounting rack. Input voltages can be either AC or DC. The input voltage ranges are as follows:

AC supply 180-265VAC DC supply 20-32VDC

The PWR3 supplies the following voltages to the AL2000:

+5V (3A)

The following LED indicators are located on the front edge of the module:

+5V (green)	+5V supply ON
POW FAIL (red)	Supply voltage too low
+24V (green)	Auxiliary supply ON

There are three fuses provided on the PWR3 module:

Fin	T315mA slow-blow fuse for overload protection
Faux	T1A slow-blow fuse for auxiliary power supply

Faux 11A slow-blow fuse for auxiliary power supply Fplc T1A slow-blow fuse for supply to the AL2000

CAUTION: In order to prevent electric shock, disconnect mains supply before making any power connections.

5.2 Digital I/O Modules

All digital I/O modules are fitted with detachable screw terminals for I/O wiring. These terminals can be removed from the module without disconnecting the wiring. There are two labelling conventions for the screw terminals depending on whether the terminal is an input or an output:

Input	Black text on a white background
Output	White text on a black background

The numbers of the inputs or outputs are shown on both the screw terminals and the LED indicators, these being decimal numbers from 0-31. In the ALPro software inputs and outputs are defined as follows:

Inputs:	I <i number="" o="" slot="">.<input i="" module="" number="" o="" on=""/></i>
Outputs:	O <i number="" o="" slot="">.<output i="" module="" number="" o="" on=""></output></i>
Example:	I 2.4 (digital input number 4 on the module in slot number 2) O 6.28 (digital output number 28 on the module in slot number 6)

All I/O modules are fitted with LED's to indicate the status of each input/output and the operational status of the module. These LED's are colour coded as follows:

Input	Yellow	The input is ON
Output	Red	The output is ON
ACT	green/yellow	The module is in operation
ERR	Red	The operating system has discovered one of the following faults: - Incorrect configuration, module has not been configured for this slot - Fault in the module
SP.F	green	The spare fuse is available and working (located on the card)

ACT ERR

DIC32DC

0 8 16 24

1 9 17 25

2 10 18 26

3 11 19 27

4 12 20 28

5 13 21 29

6 14 22 30

7 15 23 31

00

2

30

4 Ø

0

Ø

5 0

10 18

11 19

12

13

14

15

16

17

116 124

117 125

I10 I18 I26

111 119 127

112 120 128

113 121 129

114 122 130

115 123 131

10

11

12

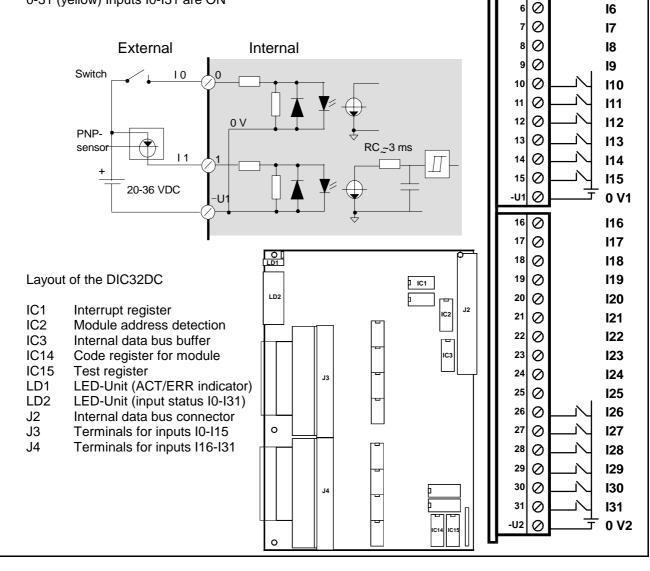
13

14

15

5.2.2 DIC32DC Input Module

The DIC32DC is a digital input module with 32 isolated inputs in two groups of 16 inputs each. The current consumption of DIC32DC is 250 mA. Input wiring is connected to two detachable screw terminals on the front edge of the module. The common ground for each of the two groups is connected to the bottom screw in each of the two screw terminals. The logic range of the DIC32DC module is:


logic 0 -30 to +5VDC (0-1.1mA) logic 1 +13 to +36VDC (4-11mA)

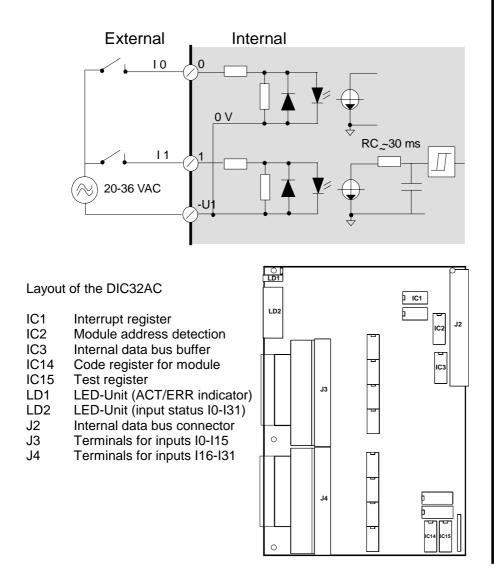
Sensor must be PNP output type or voltage supplying .

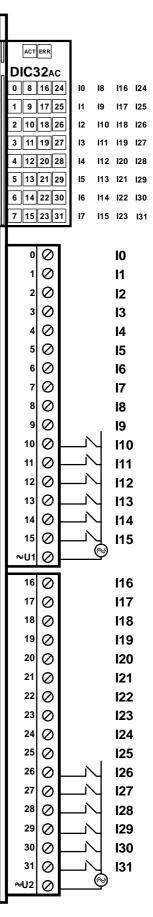
The following LED indicators are located on the front edge of the module:

ACT (green) Module in operation

ERR (red) The operating system has discovered a fault in the module 0-31 (yellow) Inputs I0-I31 are ON

5.2.3 DIC32AC Input Module


The DIC32AC is a digital input module with 32 isolated inputs in two groups of 16 inputs each. The current consumption of DIC32AC is 250 mA. Input wiring is connected to two detachable screw terminals on the front edge of the module. The common ground for each of the two groups is connected to the bottom screw in each of the two screw terminals. The logic range of the DIC32AC module is:


logic 0 0 to +5 VAC (0-1.1mA) logic 1 19 to +36VAC (6-11mA)

The following LED indicators are located on the front edge of the module:

ACT (green) Module in operation

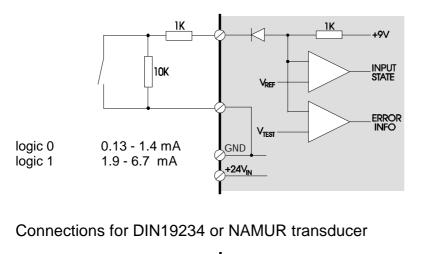
ERR (red) The operating system has discovered a fault in the module 0-31 (yellow) Inputs I0-I31 are ON

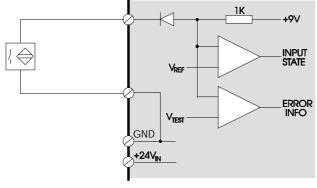
5.2.4 DIF16 Fault Checking Digital Input Module

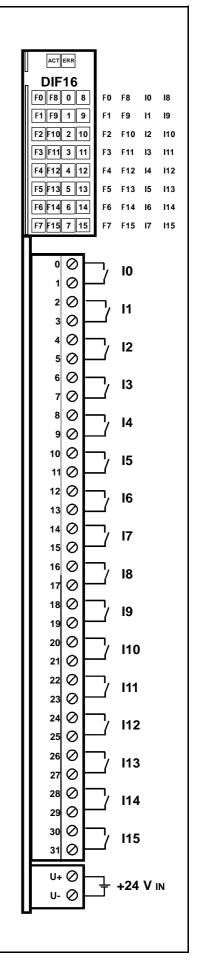
The DIF16 is a digital input module with 16 fault checking inputs isolated as a group.

The following LED indicators are located on the front edge of the module:

ACT (green) Module in operation

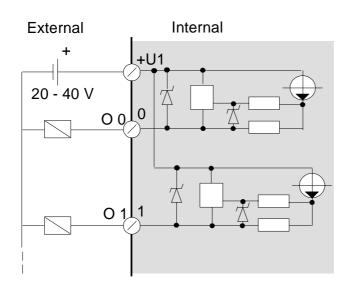

ERR (red) The operating system has discovered a fault in the module


0-15 (yellow) Inputs I0-I15 are ON F0-15 (red) Fault in inputs I0-I15


The DIF16 can detect short and open-circuit faults in the cable. The status of each input can be determined from the LED indicators and can be used in the PLC program. Status indication is as follows:

Status 0-15	Fault F0-15	Condition
OFF (0)	OFF (0)	Input OFF
ON (1)	OFF (0)	Input ON
OFF (0)	ON (1)	Open circuit
ON (1)	ON (1)	Short circuit

Connection diagram for a switch


5.2.5 DOC32EP Digital Output Module

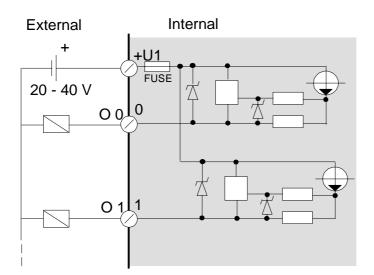
The DOC32EP is a digital output module with 32 x 24VDC PNP-type outputs in two groups of 16 outputs each. The current consumption of DOC32EP is 250 mA. The DOC32EP has electronic overload and short circuit protection. The outputs can withstand a load current of 1A each and can be connected in parallel. If connected in parallel the load on each output must not exceed 0.8A. The following LED indicators are located on the front edge of the module:

ACT (green) Module in operation

ERR (red) The operating system has discovered a fault in the module 0-31 (yellow) Inputs I0-I31 are ON

Output wires are connected to the screw terminals as shown below:

п	
ACTERR	
DOC32EP	00 08 016 024
0 8 16 24 1 9 17 25	01 09 017 025
2 10 18 26	02 010 018 026
3 11 19 27	03 011 019 027
4 12 20 28	04 012 020 028
5 13 21 29	05 013 021 029
6 14 22 30	06 014 022 030
7 15 23 31	07 015 023 031
00	00
	01
2 Ø	02
30	03
40	04
50	05
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	O6
70	07
80	08
90	. 09
11 0	
13 Ø	
14 Ø	
15 Ø	
+U1 Ø	+24 V
16 Ø	O16
17 Ø 18 Ø	017
	O18
	019
20 ⊘ 21 Ø	O20
21 Ø	O21
22 Ø 23 Ø	O22
23 Ø 24 Ø	O23
	O24
25 Ø 26 Ø —	025
	-IZH 026
	-122- 028
29 Ø	
30 ⊘ -	
31 Ø	
+∪2⊘	+24 V


5.2.6 DOC32FP Digital Output Module

The DOC32FP is a digital output module with 32 x 24VDC PNP-type outputs in two groups of 16 outputs each. The current consumption of DOC32FP is 250 mA. The DOC32FP has group overload and short circuit protection (two groups) using 2 x F4A quick-blow fuses located behind the top edge of their respective connectors. The outputs can withstand a load current of 0.5A each, however, the maximum total current for each group must not exceed 4A. The following LED indicators are located on the front edge of the module:

ACT (green) Module in operation

ERR (red) The operating system has discovered a fault in the module 0-31 (yellow) Inputs I0-I31 are ON

Output wires are connected to the screw terminals as shown below:

_	I		
			-
	ACT	ERR	
	DOC	32гр	
	08	16 24	00 08 016 024
	19	17 25	01 09 017 025
	2 10	18 26	02 010 018 026
	3 11	19 27	03 011 019 027
	4 12	20 28	
	5 13	21 29	05 013 021 029
	6 14	22 30	06 014 022 030
	7 15	23 31	07 015 023 031
	0	0	00
	1	0	01
	2	0	02
	3	0 0 0	03
	4	0	04
	5	0 0	O5
	6	0	06
	7	0 0 0 0	07
	8	0	08
	9	0	09
	10	0	
	11	0	
	12	0	
	13	0	
	14	0	
	15	0	
	+U1	0	+24 V
	16	0	O16
	17	\oslash	017
	18	0 0	O18
	19	0	O19
	20	0	O20
	21	0	O21
	22	0	022
	23	0	O23
	24	0	O24
	25	0	025
	26	0	
	27	0	
	28	0	
	29	0	
	30	0	
	31	0	—☑ 031
	+U2	0	+24 V
	I		

5.2.7 DOF16 Fault Checking Digital Output Module

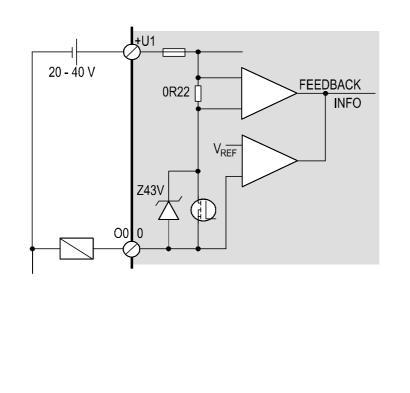
The DOF16 is a digital output module with 16 fault checking FET-type outputs isolated as a group. The electronically protected outputs can withstand a load of 1A each and may be connected in parallel (load/output must not exceed 0.8A).

The following LED indicators are located on the front edge of the module:

ACT (green) Module in operation

ERR (red) The operating system has discovered a fault in the module

0-15 (red) Outputs O0-015 are ON

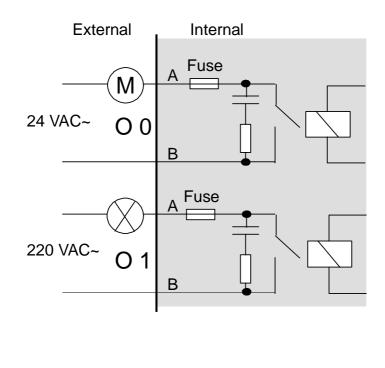

F0-15 (red) Fault in outputs O0-O15

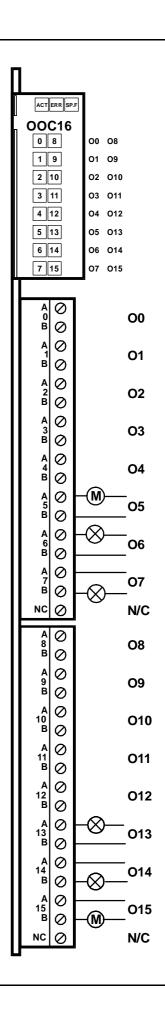
The statuts of each output can be determined as follows:

Status 0-15	Fault F0-15	Condition
OFF (0) ON (1) OFF (0) ON (1)	OFF (0) OFF (0) ON (1)	Input OFF Input ON Open / short circuit
ON (1)	ON (1)	Short circuit to GND/Vcc

These status conditions can be used in the PLC program.

The outputs are connected to as shown in the diagram below:

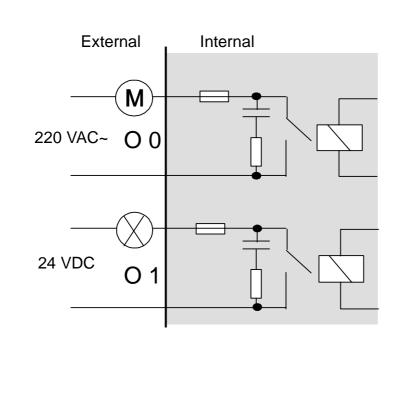

5.2.8 OOC16 Relay Output Module

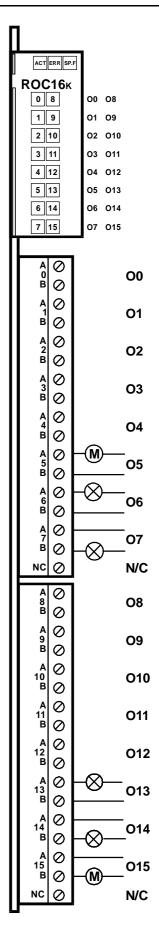

The OOC16 is a digital output module with 16 solid state relay outputs. The current consumption of OOC16 is 250 mA. The voltage range of the module is 20-280VAC with a maximum continuous load of 0.6A. The following LED indicators are located on the front edge of the module:

ACT (yellow/green)	Module is in operation
ERR (red)	The operating system has discovered
	a fault in the module
SP.F (yellow/green)	The spare fuse is available and working
0-15 (red)	Outputs O0-O15 are ON

Each output is protected by a separate F1.6A quick-blow fuse. The fuses are mounted in sockets located directly behind the output screw terminals and are easily replaceable. In the event of a fuse blowing, a spare fuse is located in a socket directly behind the LED indicators. The SP.F LED on the front edge of the module indicates if the spare fuse is working and mounted in its socket. This provides a simple way to check fuses. A spare fuse should always be installed in the module's spare fuse socket.

The output wires are connected to the screw terminals as shown below:

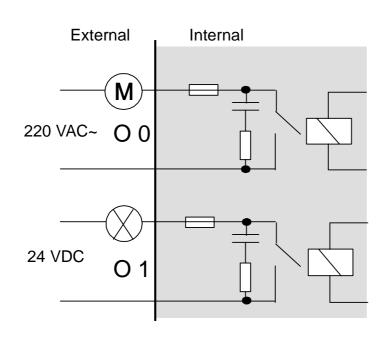

5.2.9 ROC16K Relay Output Module

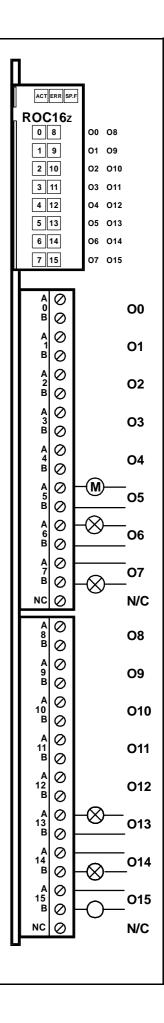

The ROC16K is a digital output module with 16 relay outputs. The current consumption of ROC16K is 500 mA.The outputs are potential free N/O gold-plated relay contacts with a maximum continuous load of 2A making this module ideal for low current signalling applications. The following LED indicators are located on the front edge of the module:

Module is in operation
The operating system has discovered
a fault in the module
The spare fuse is available and working
Outputs O0-O15 are ON

Each output is protected by a separate T2.5A slow-blow fuse. The fuses are mounted in sockets located directly behind the output screw terminals and are easily replaceable. In the event of a fuse blowing, a spare fuse is located in a socket directly behind the LED indicators. The SP.F LED on the front edge of the module indicates if the spare fuse is working and mounted in its socket. This provides a simple way to check fuses. A spare fuse should always be installed in the module's spare fuse socket.

The output wires are connected to the screw terminals as shown below:


5.2.10 ROC16Z Relay Output Module


The ROC16Z is a digital output module with 16 relay outputs. These are potential free N/O relay contacts with a maximum continuous load of 4A. The following LED indicators are located on the front edge of the module:

ACT (yellow/green)	Module is in operation
ERR (red)	The operating system has discovered
	a fault in the module
SP.F (green)	The spare fuse is available and working
0-15 (red)	Outputs O0-O15 are ON

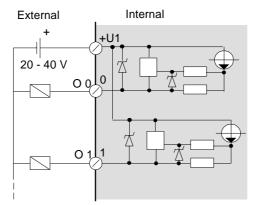
Each output is protected by a separate T5A slow-blow fuse. The fuses are mounted in sockets located directly behind the output screw terminals and are easily replaceable. In the event of a fuse blowing, a spare fuse is located in a socket directly behind the LED indicators. The SP.F LED on the front edge of the module indicates if the spare fuse is working and mounted in its socket. This provides a simple way to check fuses. A spare fuse should always be installed in the module's spare fuse socket.

The output wires are connected to the screw terminals as shown below:

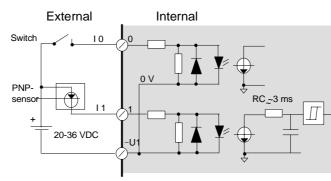
5.2.11 DIO32 Digital Input/Output Module

The DIO32 is hybrid module combining the half of the DIC32DC and half of the DOC32EP modules to give 16 isolated digital inputs and 16 digital outputs. The current consumption of DIO32 is 250 mA. The outputs have electronic overload and short circuit protection and can withstand a load current of 1A each. Outputs may be connected in parallel but the current on each output must not exceed 0.8A. The total sum current is thus for 4 parallel connected output

 $\Sigma I = 4 * 0.8 A = 3.2A.$


The input logic range of the DIO32 module is:

logic 0	-30 to +5VDC (0-1.1mA)
logic 1	+13 to +36VDC (4-11mÅ)


The sensor must be of PNP output type or voltage supplying.The following LED indicators are located on the front edge of the module:


ACT (green)	Module is in operation
ERR (red)	The operating system has discovered a fault in
	the module
0-15 (red)	Outputs O0-O15 are ON
0-15 (yellow)	Inputs I0-I15 are ON

Output Connections

Input Connections

5.3 Analog I/O Modules

All analog I/O modules have multiple-range input/outputs and are fitted with detachable screw terminals for I/O wiring. These terminals can be removed from the module without disconnecting the wiring. There are two labelling conventions for the screw terminals depending on whether the terminal is an input or an output:

Input	Black text on a white background
Output	White text on a black background

The numbers of the inputs or outputs are shown on both the screw terminals and any LED indicators provided, these being decimal numbers from 0-7. Analog I/O's must be configured using the ALPro software. Analog inputs and outputs are defined as follows:

Inputs:	W I <slot number="">.<input number=""/></slot>
Outputs:	W O <slot number="">.<output number=""></output></slot>
Example:	W I 2.4 (analog input number 4 on the module in slot number 2) W O 6.3 (analog output number 3 on the module in slot number 6)

When an Analog Input or Output is defined the type of input or output has to be first defined in ALPro. After this definition, the approriate connections should be made preferably using twisted pairs (see diagrams on the following pages).

All modules are pre-calibrated at the factory and should require no further adjustment for normal use. However, if extremely accurate measurements are required, the user should re-calibrate using the ALPro software. ALPro also allows the user to perform calibration on-line.

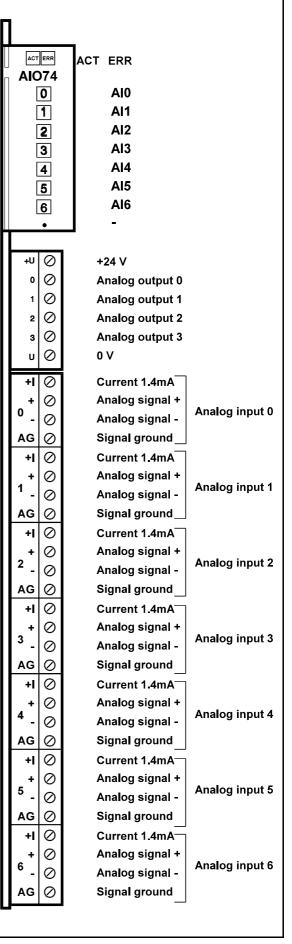
5.3.2 AIO74 Analog Input/Output Module

The AIO74 is a combined analog input/output module with 4 x 12-bit analog outputs and 7 x 12-bit differential or 14 x 12-bit non-differential analog inputs. 500 VDC group isolation is provided by opto-isolators and DC/DC converters. The maximum common mode voltage for the AIO74 is 5V. The current consumption of AIO74 is 600 mA.

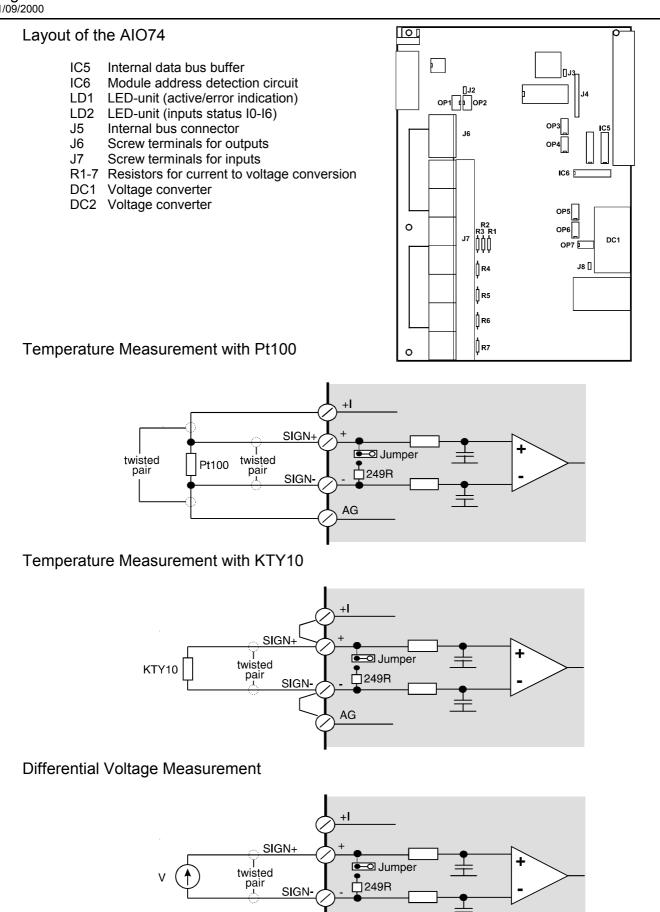
The ranges of the AIO74 are as follows:

Inputs:

Voltage		
0-480mV	(0-4000)	8.3 bits/mV
0-5V	(0-4000)	800 bits/V
0-10V	(0-4000)	400 bits/V
±10V	(0-4000)	200 bits/V
Current		
0(4)-20mA	(0-4000)	200 bits/mA
Pt100 ₃₈₅		
(-50 to 150°C)	(0-4000)	20 bits/°C
(-200 to 730°C)	(0-3720)	4 bits/°C
KTY10		
(-50 to 150°C)	(0-2000)	10 bits/ºC
Pt100 ₃₉₁		
(-200 to 730°C)	(0-3720)	4 bits/°C
Cu50	. ,	
(-200 to 200°C)	(100-900)	2 bits/ºC

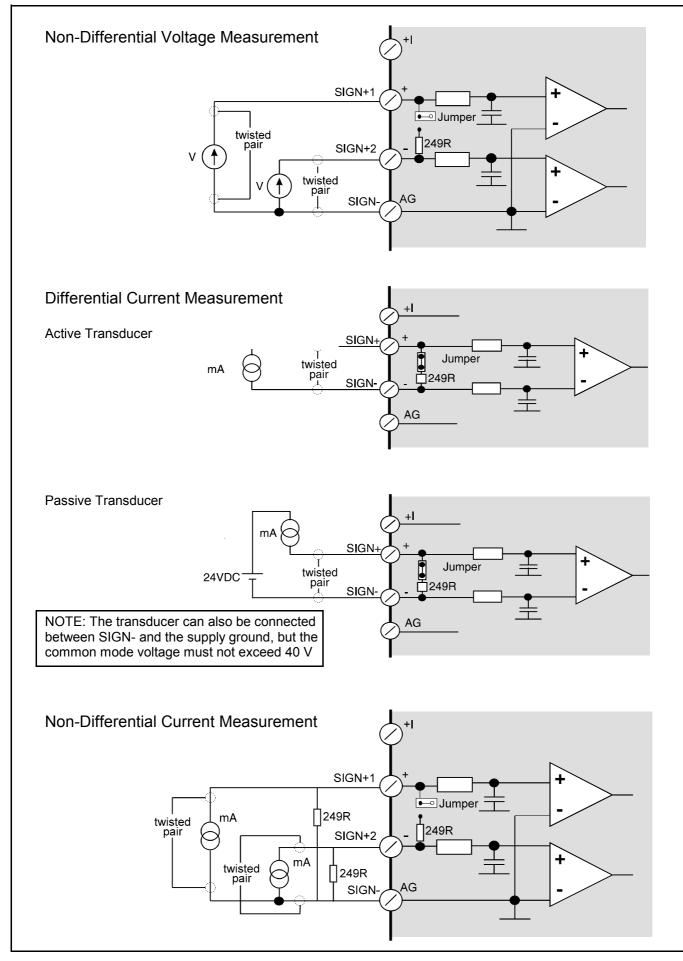

Outputs:

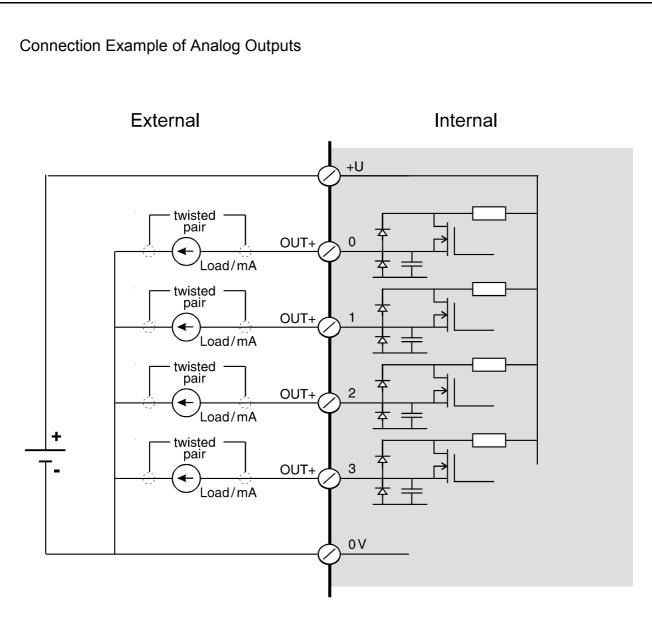
0(4) -20 mA (0-4000) 200 bits/mA


A constant measuring current of 1.4mA is provided for each input.

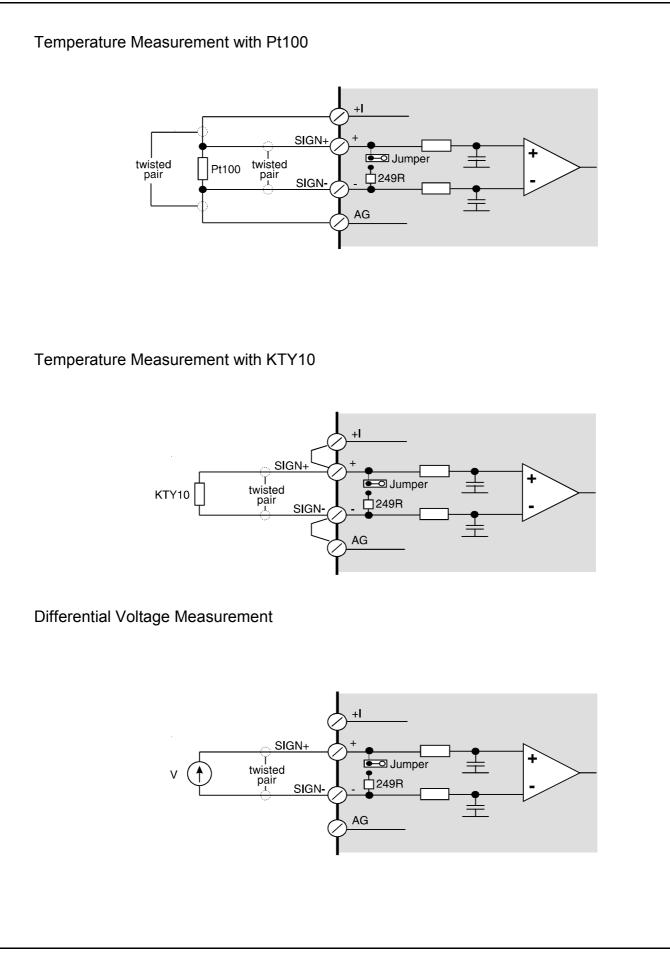
The following LED indicators are located on the front edge of the module:

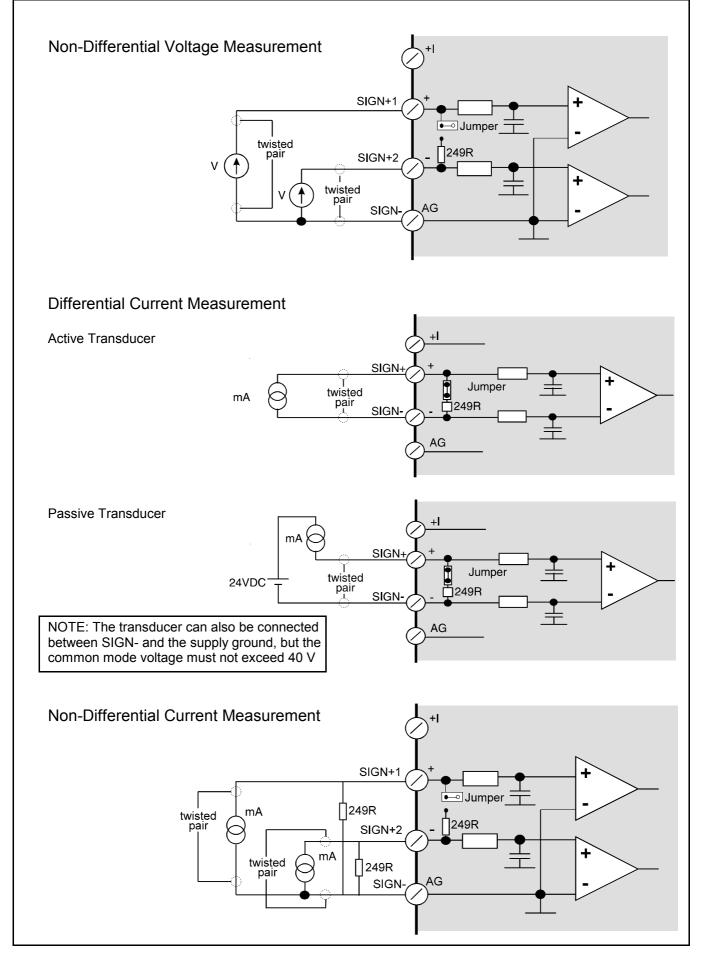
ACT (green) ERR (red) fault	Module is in opera The operating syst	tion tem has discovered a
0-6 (red)	in the module Status of analog in STEADY LIGHT: FLASHING LIGHT NO LIGHT:	





AG




	Analog In	<u>iput Modul</u>	<u>e</u>	Г	1		
The AIC8 i	s an analo	g input mo	dule with 8 x 1	12-	ACTERR	ACT ERR	
		• •	-differential ar		AIC8		
			he maximum		0	AIO	
0 1		U 1	IC8 is 40V. TI	he	1	Al1	
	-	of AIC8 is			2	AI2	
	•	C8 are as f			3	AI3	
ne ranges			010005.		4	Al4	
nnuto:					5	AI5	
nputs:						AIG	
/oltaga					6 7	AIT	
/oltage 0-480mV		(0-4000)	8.3 bits/mV	Ŀ			
0-400111V 0-5V		(0-4000)	800 bits/V				
0-10V		(0-4000)	400 bits/V				
±10V		(0-4000)	200 bits/V				
Current		. ,		1		Current 1.4mA	
0(4)-20mA		(0-4000)	200 bits/mA		+1 Ø		
2t100 ₃₈₅				1	₀ + ⊘	Analog signal +	Analog input 0
(-50 to 150°C		(0-4000)	20 bits/°C	1	- 0	Analog signal -	
(-200 to 730° (TY10	(C)	(0-3720)	4 bits/ºC		AG 🖉	Signal ground	
(-50 to 150°	\mathbf{C}	(0-2000)	10 bits/ºC		+ ⊘	Current 1.4mA	
t100 ₃₉₁	0)	(0-2000)	10 51(3/ 0		_+⊘	Analog signal +	
-200 to 730 ^c	PC)	(0-3720)	4 bits/ºC		1 - ⊘	Analog signal -	Analog input 1
Cu50	0)	(0 0/20)			AG ⊘	Signal ground	
(-200 to 200	°C)	(100-900)	2 bits/°C		+1 Ø	Current 1.4mA	
		. ,			+ 0	Analog signal +	
constant	A constant measuring current of 1.4mA is pro-						
Sensuin	measuim	g current (of 1.4mA is p	ro-	2_0	Analog signal -	Analog input 2
		g current o	of 1.4mA is p	ro-	- 0	Analog signal - Signal ground	Analog input 2
		g current o	of 1.4mA is p	ro-	AG Ø	Signal ground	Analog input 2
ided for ea	ach input.	-	e located on t		- ⊘ AG ⊘ +I ⊘	Signal ground Current 1.4mA	Analog input 2
vided for ea	ach input. ng LED ine	dicators ar			- ⊘ AG ⊘ +I ⊘ , + ⊘	Signal ground Current 1.4mA Analog signal +	
vided for ea The followi	ach input. ng LED ine	dicators ar			AG () +I () 3 ()	Signal ground Current 1.4mA Analog signal + Analog signal -	
vided for ea The followi ront edge	ach input. ng LED ine	dicators ar lule:			AG () +I () 3 () AG ()	Signal ground Current 1.4mA Analog signal + Analog signal - Signal ground	
rided for ea The followi ront edge ACT (green)	ach input. ng LED in of the mod Module is ir	dicators ar lule: n operation			AG () +I () 3 ()	Signal ground Current 1.4mA Analog signal + Analog signal - Signal ground Current 1.4mA	
ided for ea The followi ront edge CT (green) ERR (red)	ach input. ng LED ind of the mod Module is ir The operati	dicators ar lule: n operation ing system h	e located on t		- Ø AG Ø +I Ø 3 _ Ø AG Ø +I Ø + Ø	Signal ground Current 1.4mA Analog signal + Analog signal - Signal ground	Analog input 3
The followi ront edge ACT (green) ERR (red) ault	ach input. ng LED inc of the mod Module is ir The operati in the modu	dicators ar lule: n operation ing system h ule	e located on t		- ⊘ AG ⊘ +I ⊘ 3 _ ⊘ AG ⊘ +I ⊘	Signal ground Current 1.4mA Analog signal + Analog signal - Signal ground Current 1.4mA	Analog input 3
The followi ront edge ACT (green) ERR (red) ault	ach input. ng LED inc of the mod Module is ir The operati in the modu Status of ar	dicators ar lule: n operation ing system h ule nalog inputs	e located on t as discovered a AI0-AI6		- ⊘ AG ⊘ +I ⊘ + ⊘ 3 - ⊘ AG ⊘ +I ⊘ + Ø	Signal ground Current 1.4mA Analog signal + Analog signal - Signal ground Current 1.4mA Analog signal +	Analog input 3
rided for ea The followi ront edge ACT (green) ERR (red) ault	ach input. ng LED ind of the mod Module is ir The operati in the modu Status of ar STEADY LI	dicators ar lule: n operation ing system h ule nalog inputs IGHT: inpu	e located on t as discovered a AI0-AI6 t not scaled		- ⊘ AG ⊘ +I ⊘ 3 _ ⊘ AG ⊘ +I ⊘ 4 _ ⊘ AG ⊘	Signal ground Current 1.4mA Analog signal + Analog signal - Signal ground Current 1.4mA Analog signal + Analog signal -	Analog input 3
rided for ea The followi ront edge ACT (green) ERR (red) ault	ach input. ng LED ind of the mod Module is ir The operati in the modu Status of ar STEADY LI	dicators ar lule: n operation ing system h ule nalog inputs IGHT: inputs LIGHT: inputs	e located on t as discovered a AI0-AI6 t not scaled it at upper/lower	he	- ⊘ AG ⊘ +I ⊘ + ⊘ AG ⊘ +I ⊘ AG ⊘ AG ⊘ +I ⊘ AG ⊘ +I ⊘	Signal ground Current 1.4mA Analog signal + Analog signal - Signal ground Current 1.4mA Analog signal + Analog signal - Signal ground Current 1.4mA	Analog input 3
The followi ront edge ACT (green) ERR (red) ault	ach input. ng LED ind of the mod Module is ir The operati in the modu Status of ar STEADY LI	dicators ar lule: n operation ing system h ule nalog inputs IGHT: inpu LIGHT: inpu limit	e located on t as discovered a AI0-AI6 t not scaled it at upper/lower or not connected	he	- ⊘ AG ⊘ +I ⊘ 3 _ ⊘ AG ⊘ +I ⊘ 4 _ ⊘ AG ⊘ +I ⊘ +I ⊘ +I ⊘ +I ⊘	Signal ground Current 1.4mA Analog signal + Analog signal - Signal ground Current 1.4mA Analog signal + Analog signal - Signal ground Current 1.4mA Analog signal +	Analog input 3 Analog input 4
The followi ront edge ACT (green) ERR (red) ault	ach input. ng LED ind of the mod Module is ir The operati in the modu Status of ar STEADY LI FLASHING	dicators ar lule: n operation ing system h ule nalog inputs IGHT: inpu LIGHT: inpu limit	e located on t as discovered a AI0-AI6 t not scaled it at upper/lower	he	AG () +I () + () 3 () AG () +I () 4 () AG () AG () +I () 5 ()	Signal ground Current 1.4mA Analog signal + Analog signal - Signal ground Current 1.4mA Analog signal + Analog signal - Signal ground Current 1.4mA Analog signal + Analog signal -	Analog input 3 Analog input 4
ided for ea The followi ront edge CT (green) ERR (red) ault	ach input. ng LED ind of the mod Module is ir The operati in the modu Status of ar STEADY LI FLASHING	dicators ar lule: n operation ing system h ule nalog inputs IGHT: inpu LIGHT: inpu limit	e located on t as discovered a AI0-AI6 t not scaled it at upper/lower or not connected	he	- ⊘ AG ⊘ +I ⊘ + ⊘ AG ⊘ +I ⊘ AG ⊘ +I ⊘ AG ⊘ +I ⊘ AG ⊘ AG ⊘	Signal ground Current 1.4mA Analog signal + Analog signal - Signal ground Current 1.4mA Analog signal + Analog signal - Signal ground Current 1.4mA Analog signal + Analog signal - Signal ground	Analog input 3 Analog input 4
ided for ea The followi ront edge CT (green) ERR (red) ault	ach input. ng LED ind of the mod Module is ir The operati in the modu Status of ar STEADY LI FLASHING	dicators ar lule: n operation ing system h ule nalog inputs IGHT: inpu LIGHT: inpu limit	e located on t as discovered a AI0-AI6 t not scaled it at upper/lower or not connected	he	AG () +I () + () 3 () AG () +I () 4 () AG () +I () AG () +I () 5 () AG () +I () 5 () AG () +I () 5 () 4 () 4 () 4 () 4 () 5 () 4 () 5 () 4 () 4 () 5 () 4 () 4 () 5 () 4 () 5 () 4 () 4 () 4 () 4 () 5 () 4 () 4 () 4 () 4 () 4 () 4 () 4 () 4	Signal ground Current 1.4mA Analog signal + Analog signal - Signal ground Current 1.4mA Analog signal + Analog signal - Signal ground Current 1.4mA Analog signal + Analog signal - Signal ground Current 1.4mA	Analog input 3 Analog input 4
ided for ea The followi ront edge CT (green) ERR (red) ault	ach input. ng LED ind of the mod Module is ir The operati in the modu Status of ar STEADY LI FLASHING	dicators ar lule: n operation ing system h ule nalog inputs IGHT: inpu LIGHT: inpu limit	e located on t as discovered a AI0-AI6 t not scaled it at upper/lower or not connected	he	- Ø AG Ø +I Ø 3 - Ø AG Ø +I Ø 4 - Ø AG Ø +I Ø 5 - Ø AG Ø +I Ø 5 - Ø AG Ø +I Ø	Signal ground Current 1.4mA Analog signal + Analog signal - Signal ground Current 1.4mA Analog signal + Analog signal - Signal ground Current 1.4mA Analog signal + Analog signal - Signal ground Current 1.4mA Analog signal +	Analog input 3 Analog input 4 Analog input 5
vided for ea The followi ront edge ACT (green) ERR (red) ault	ach input. ng LED ind of the mod Module is ir The operati in the modu Status of ar STEADY LI FLASHING	dicators ar lule: n operation ing system h ule nalog inputs IGHT: inpu LIGHT: inpu limit	e located on t as discovered a AI0-AI6 t not scaled it at upper/lower or not connected	he	$ \begin{array}{c c} - & & & \\ \hline & & \\ AG & & \\ + & & \\ 3 & - & \\ AG & & \\ AG & & \\ + & & \\ 4 & - & \\ AG & & \\ + & & \\ AG & & \\ + & & \\ 6 & & \\ - & \\ 6 & - & \\ \end{array} $	Signal ground Current 1.4mA Analog signal + Analog signal - Signal ground Current 1.4mA Analog signal + Analog signal - Signal ground Current 1.4mA Analog signal + Analog signal - Signal ground Current 1.4mA Analog signal + Analog signal +	Analog input 3 Analog input 4 Analog input 5
vided for ea The followi ront edge ACT (green) ERR (red) ault	ach input. ng LED ind of the mod Module is ir The operati in the modu Status of ar STEADY LI FLASHING	dicators ar lule: n operation ing system h ule nalog inputs IGHT: inpu LIGHT: inpu limit	e located on t as discovered a AI0-AI6 t not scaled it at upper/lower or not connected	he	- Ø AG Ø + Ø 3 - AG Ø + Ø AG Ø + Ø 4 O 4 Ø + Ø + Ø + Ø + Ø + Ø 5 Ø AG Ø + Ø 6 Ø AG Ø	Signal ground Current 1.4mA Analog signal + Analog signal - Signal ground Current 1.4mA Analog signal + Analog signal - Signal ground Current 1.4mA Analog signal + Analog signal - Signal ground Current 1.4mA Analog signal - Signal ground	Analog input 3 Analog input 4 Analog input 5
vided for ea The followi ront edge ACT (green) ERR (red) ault	ach input. ng LED ind of the mod Module is ir The operati in the modu Status of ar STEADY LI FLASHING	dicators ar lule: n operation ing system h ule nalog inputs IGHT: inpu LIGHT: inpu limit	e located on t as discovered a AI0-AI6 t not scaled it at upper/lower or not connected	he	$ \begin{array}{c c} - & & & \\ \hline & & \\ AG & & \\ + & & \\ 3 & - & \\ AG & & \\ AG & & \\ + & & \\ 4 & - & \\ AG & & \\ + & & \\ AG & & \\ + & & \\ 6 & & \\ - & \\ 6 & - & \\ \end{array} $	Signal ground Current 1.4mA Analog signal + Analog signal - Signal ground Current 1.4mA	Analog input 3 Analog input 4 Analog input 5
vided for ea	ach input. ng LED ind of the mod Module is ir The operati in the modu Status of ar STEADY LI FLASHING	dicators ar lule: n operation ing system h ule nalog inputs IGHT: inpu LIGHT: inpu limit	e located on t as discovered a AI0-AI6 t not scaled it at upper/lower or not connected	he	- Ø AG Ø +I Ø AG Ø AG Ø +I Ø AG Ø +I Ø AG Ø +I Ø AG Ø AG Ø AG Ø AG Ø AG Ø AG Ø AG Ø AG	Signal ground _ Current 1.4mA Analog signal + Analog signal - Signal ground _ Current 1.4mA Analog signal + Analog signal - Signal ground _ Current 1.4mA Analog signal + Analog signal - Signal ground _ Current 1.4mA Analog signal + Analog signal + Analog signal + Analog signal + Analog signal +	Analog input 3 Analog input 4 Analog input 5 Analog input 6
vided for ea The followi Front edge ACT (green) ERR (red) Fault	ach input. ng LED ind of the mod Module is ir The operati in the modu Status of ar STEADY LI FLASHING	dicators ar lule: n operation ing system h ule nalog inputs IGHT: inpu LIGHT: inpu limit	e located on t as discovered a AI0-AI6 t not scaled it at upper/lower or not connected	he	$ \begin{array}{c c} - & & & & \\ \hline AG & & \\ +I & & \\ 3 & - & \\ AG & & \\ - & & \\ AG & & \\ +I & & \\ 4 & - & \\ AG & & \\ +I & & \\ AG & & \\ +I & & \\ 5 & - & \\ AG & & \\ +I & & \\ 6 & - & \\ AG & & \\ +I & & \\ 6 & - & \\ AG & & \\ +I & & \\ 6 & - & \\ \hline \\ +I & & \\ 0 & & \\ - & & \\ 1 & & \\ 0 & & \\ +I & & \\ 0 & & \\ - & & \\ 0 & & \\ 0 & & \\ - & & \\ 0 & & \\ - & & \\ 0 & & \\ 0 & & \\ - & & \\ 0$	Signal ground Current 1.4mA Analog signal + Analog signal - Signal ground Current 1.4mA	Analog input 2 Analog input 3 Analog input 4 Analog input 5 Analog input 6

5.3.3 AIC8 Analog Input Module

FF-Automation Oy

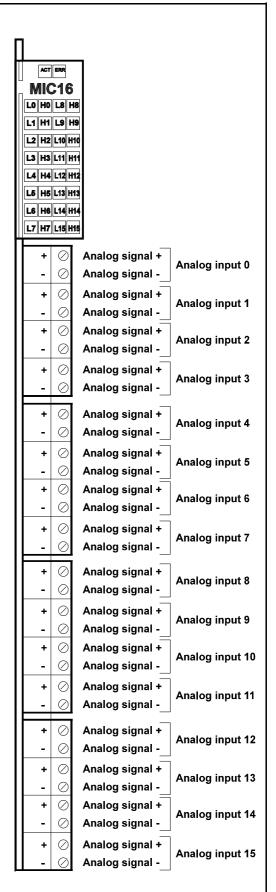
5.3.4 MIC16 Analog Input Module

The MIC16 is an analog input module with 16 x 13-bit individually isolated analog inputs. The maximum voltage between input channels is 500VDC.

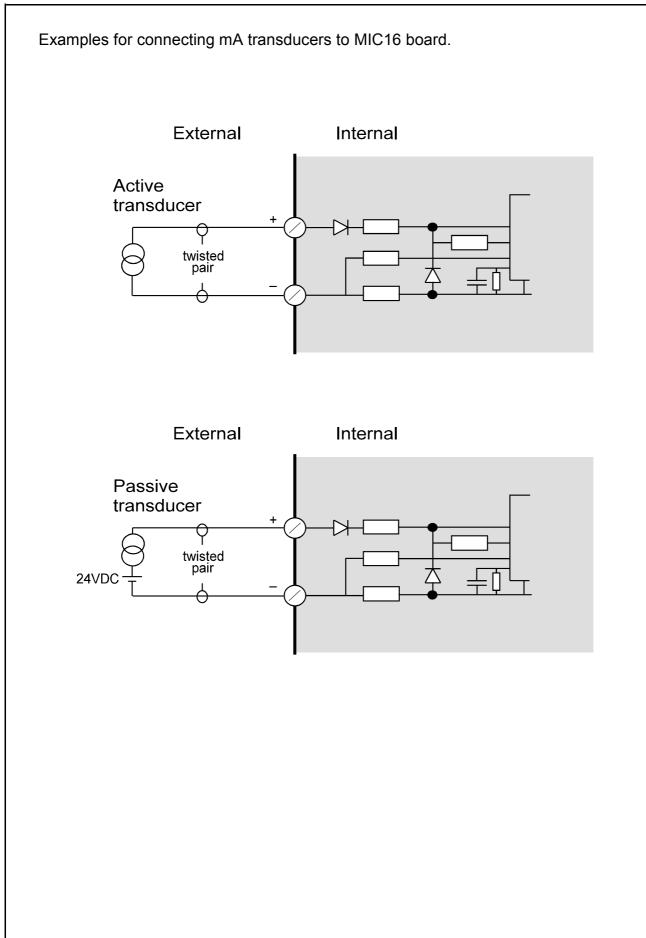
The current consumption of MIC16 is 600 mA. The input ranges of the MIC16 are 4 - 20 mA and the 13-bit raw values are presented in numbers 1600..8000. By deviding the raw value with 2 the raw value limits are equal with other AL2000 analog input boards (800 - 4000).

On the board the mA current is converted to frequency and led to the counter chip. The CPU on MIC16 board reads the frequencys every 0.5 second and calculates the value for analog input based on former value and the change during the last 0.5 second. The calculated value is after that corrected based on individual calibration values for that input.

The following LED indicators are located on the front edge of the module:


There are 32 indicator LEDs for inputs and 2 LEDs indicating the state of MIC16 board.

The LEDs for MIC16 state are

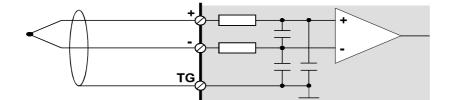

ACT (green)	Steady light = Module is in normal operation
	Blink light = communication to AL2000 CPU
	doesn't operate correctly
ERR (red)	Steady light = AL2000 CPU doesn't get con-
	nection to MIC16 board or the
	Albus is in reset state.

For every input there are two leds L and H, and they indicate the following states:

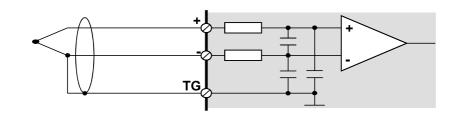
	LED L	LED H
Steady light	Input is not cali- brated	Input is not con- nected
Blinks	Input value is near low limit	Input value is near high limit
Dark	Input is cali- brated	Input signal is in the range

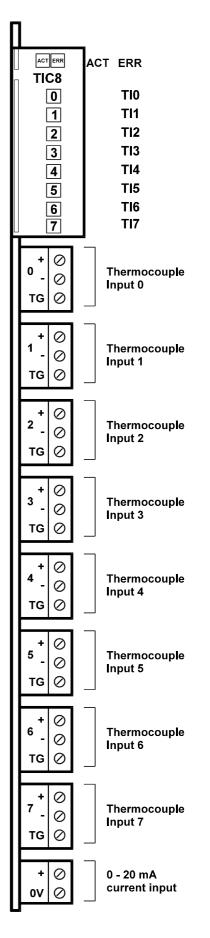
5.3.5 TIC8 Thermocouple Input Module

The TIC8 is a thermocouple input module with 8 x 12-bit analog inputs (isolated as a group). 500 VDC isolation is provided by opto-isolators and DC/DC converters. The current consumption of TIC8 is 600 mA. The input ranges of the TIC8 are as follows:


K	-50 to 150°C	(0-4000)	20 bits/°C
K	-250 to 1372°C	(0-3244)	2 bits/°C
Т	-50 to 150°C	(0-4000)	20 bits/°C
L	-200 to 730°C	(0-3720)	4 bits/°C

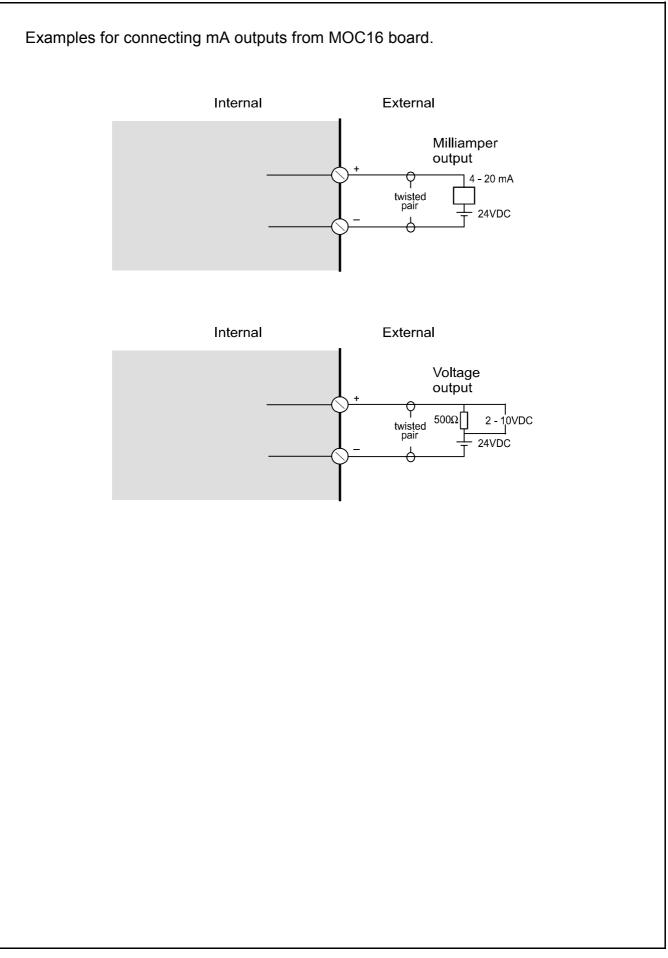
The following LED indicators are located on the front edge of the module:


ACT (green)	Module is in operation				
ERR (red)	The operating system has discovered a fault in				
	the module				
0-7 (red)	Status of analog ir				
	STEADY LIGHT:	input not scaled			
	FLASHING LIGHT	: input at upper/lower			
		limit or not connected			
	NO LIGHT:	input in use and OK			


Thermocouples can be connected using normal cable but for longer lengths screened cable is recommended.Both earthed and floating thermocouples may be connected to the TIC8 as shown below.

Connections for floating thermocouple

Connections for earthed thermocouple



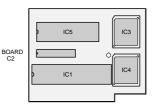
	_		
<u>5.3.6 MOC</u>	16 Analog Output	<u>Module</u>	П
16 x 12-bit		put module with d analog outputs. /IOC16 is 700 mA.	
Outputs:			L2 H2 L10 H10 L3 H3 L11 H11
4 -20 mA	(0-4000) 200 bits/mA	L4 H4 L12 H12 L5 H5 L13 H13
2 LEDs indi The LEDs for ACT (green) ERR (red) For every inpu	32 indicator LEDs icating the state o MOC16 state are Steady light = Modul Blink light = commur doesn't Steady light = AL200 nectio	for inputs and f MOC16 board. e is in normal operation nication to AL2000 CPU operate correctly 0 CPU doesn't get con- n to MOC16 board or the is in reset state.	n - O Analog signal + Analog signal - Analog signal - Analog signal + Analog signal - Analog signal + Analog signal + Analog signal + Analog signal + Analog signal - Analog signal + Analog signal +
			+ O Analog signal + - O Analog signal - Analog signal -
			+ ⊘ Analog signal + - ⊘ Analog signal -
			+ O Analog signal + Analog output 1

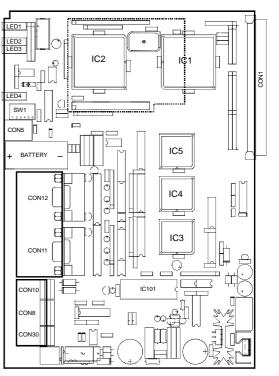
5.4 Central Processor Units

There are several types of CPU module available for the AL2000. These are the CPU2000S, CPU2000P and CPU2000L. Module CPU2000S, has three serial interfaces, two RS-232C and one RS-485. An I²C interface for a display/keypad unit and the following LED indicators, located on the front edge of all CPU2000S module:

RUN (green) RES (red) CTS1 (red) RTS1 (red) TX1 (yellow) RX1 (yellow) CTS2 (red) RTS2 (red) TX2 (yellow) RX2 (yellow) RX3 (yellow) BAT (red)	see table below Fault condition SER1 serial interface CTS handshake SER1 serial Interface RTS handshake SER1 serial interface transmitting SER2 serial interface receiving SER2 serial interface RTS handshake SER2 serial interface transmitting SER3 serial interface transmitting SER3 serial interface receiving Battery low indicator
BAT (red) VS3 (red)	Battery low indicator Fault in SER 3 interface voltage

Run LED	Program state	Reason	Measure to be taken	
Steady light or no light.	Execution of the pro- gram has stopped. The status of the out- puts remain.	The program was stopped using the pro- gramming tool.	Start execution of the program with the START (!) command.	
Slow blinking 0,5 Hz Pulse width 50%	The program is running	Normal operation		
Combined slow/quick blinking	The program is running	Disturbances in supply voltage. After 4 min the blinking returns to nor-mal.	Check the supply volt- age.	
Quick blinking Pulse width 90%	The execution of the program has stopped. The status of all out- puts is 0.	Too low supply voltage. It has dropped below 17 VDC (180 VAC) and has not exceeded 20 VDC (195 VAC).	Check the supply volt- age.	
Quick blinking 5 Hz Pulse width 50%	The execution of the program has stopped. The status of all out- puts is 0.	There are faults in the program.	Correct the program and re-start execution.	
Very quick blinking Pulse width 20%	The execution of the program has stopped. The status of all out- puts is 0.	Hardware fault or the STOP command has been erased or the END command was moved during the exe- cution of the program.	Switch off the supply voltage and switch on again. Correct the pro- gram and re-start execution.	




All CPU2000S series modules are equipped with DIP switches located directly beneath the LED indicators on the front panel of the module. The position of these DIP switches determines the manner in which the module operates. The possible settings for these switches are shown in the table below.

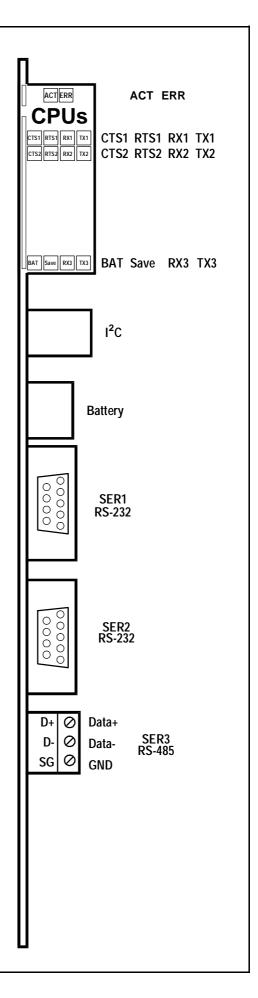
DIP	ON		OFF	
1		writing to memory	Disable writing to FLASH memory	
2	Serial line: (Mode se- lected by R O 214) - terminal printing - modbus slave - programming device			Serial line: Used for programming
DIP	300 1200 9600 bd bd bd			Rate determined
	bd	bd	bd	by R O 213
3 4	bd OFF OFF	bd ON OFF	bd OFF ON	by R O 213 ON ON
	OFF	ON	OFF	ON

CPU2000S series module layout

C2_IC1	Processor
C2_IC3	System program FLASH
C2_IC4	Application program FLASH
C2_IC5	Data RAM
IC1 IC2 IC3 IC4 IC5 SW1 BATTERY LD1 LD2 LD3 LD4 CON12 CON11 CON10 CON1 CON5 CON8 CON30	ALBus FPGA Memory decoder FPGA SER3 Uart SER2 Uart SER1 Uart DIP-switch Lithium Battery LED-unit (operational information) LED-unit (SER1) LED-unit (SER2) LED-unit (SER3) SER1 RS-232C serial interface 1 SER2 RS-232C serial interface 2 SER3 RS-485 serial Interface 3 Internal bus connector Display unit connector

Precautions Against Data Loss

When handling CPU modules, care should be taken not to touch the metallic parts of the PCL rack, this could cause damage to data stored in the RAM.

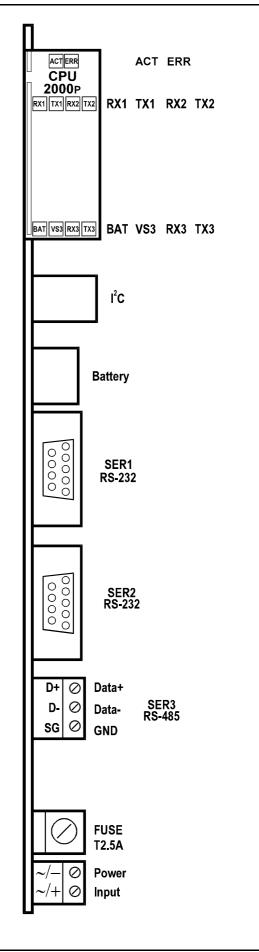

If the AL2000's working environment is especially noisy or susceptible to violent electrical storms, DIP1 should be set to the OFF position after programming, this protects the contents of the FLASH memory.

5.4.1 CPU2000S Module

The CPU2000S is the basic CPU module. The RS-485 serial interface uses detachable screw terminals for ease of connection. The RS-232 and RS-485 serial ports are isolated in two groups to 500VDC.

The current consumption of CPU2000S is 700 mA at 5 VDC voltage level.

5.4.2 CPU2000P Module


The CPU2000P is a CPU module with two fast counter inputs and a built in power supply. The counter inputs and the RS-485 serial interface use detachable screw terminals for ease of connection. The RS-232 and RS-485 serial ports are isolated in two groups to 500VDC. They are also isolated as a group to 500VDC.

The current consumption of CPU2000P is 600 mA.

This CPU is designed for use with the MR3-mini mounting rack and its built in power supply is capable of driving the I/O modules fitted in this rack. The CPU2000P cannot be used with any other type of mounting rack.

The CPU2000P requires an input voltage in the range:

20-32 VDC or 20-26 VAC

5.4.3 CPU2000L Modules

486 DX4/DX5 version

The CPU2000L is the most powerful CPU module in the AL2000 range. The CPU2000L is based on the 486 DX4/DX5, running up to 133MHz. The module is PC compatible running QNX. The CPU2000L is equipped with connectors for an IBM-AT keyboard, RS232C port, RS232/422/485 port and Ethernet LAN (AUI/ 10BaseT). The board can be equipped with PC104 extension board to connect additional PC104 devices.

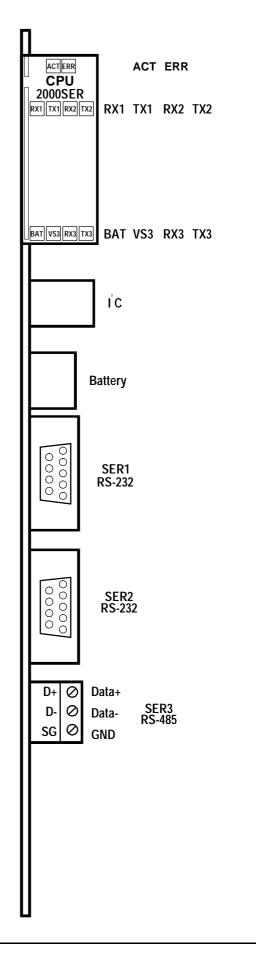

The FLASH disks are available in 16 MB, 24 MB and 48 MB sizes and are ideal for use in poor environmental conditions where standard disk systems would be unreliable.

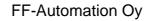
Pentium 586 version

The CPU2000L is the most powerful CPU module in the AL2000 range. The CPU2000L is based on the 586, running on 233MHz. The module is PC compatible running QNX. The CPU2000L is equipped with connectors for an IBM-AT keyboard, RS232C port, RS232/422/485 port and Ethernet LAN 10/100 (AUI/10BaseT). The board can be equipped with PC104 extension board to connect additional PC104 devices.

The FLASH disks are available in 16 MB, 24 MB and 48 MB sizes and are ideal for use in poor environmental conditions where standard disk systems would be unreliable.

A separate disk module is also available for connection to the CPU2000L. This has space for two standard IDE floppy or hard disk drives and can be installed in the mounting rack alongside the CPU2000L.

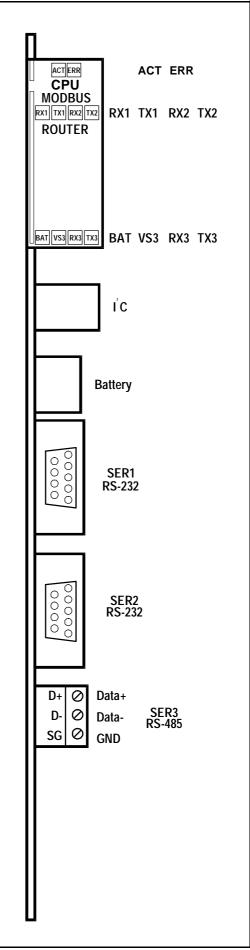



5.4.4 CPU2000SER Module

The CPU2000SER is serial communication expansion CPU module. The module is similar with the CPU2000S except that it is not able to control any I/O points of the rack. The module can be installed into any card place in the rack. When AL2000SER module is used, it doubles the number of variables in the rack.

The RS-422/485 serial interface uses detachable screw terminals for ease of connection. The RS-232 and RS-485 serial ports are isolated in two groups to 500VDC.

The current consumption of CPU2000SER is 700 mA at 5 VDC voltage level.


5.4.5 CPU Modbus Router Module

The CPU Modbus Router is serial modbus communication CPU module. The module is not able to control any I/O points of the rack and can be installed into any card place in the rack. The RS-422/485 serial interface uses detach-

able screw terminals for ease of connection. The RS-232 and RS-485 serial ports are isolated in two groups to 500VDC.

The current consumption of CPU Modbus Router is 700 mA at 5 VDC voltage level.

TECHNICAL FEATURES	
Mode Serial connections Ser1 (9 pin D type) Ser2 (9 pin D type) Ser3 (3 screw terminal)	Modbus Master, Slave, Not used 3, isolated in 2 blocks (500 VDC) RS-232, 30019200 Bd, Modbus master/slave RS-232, 30019200 Bd, ModBus master/slave RS-485, 30028800 Bd, ModBus master/slave
Addresses	Address / Address block
Retransmissions	0 - 7
On error	Enabled, Disabled
Send delay	0 - 250 ms
Responce timeout	100 - 1500 ms
Serial channel diagnos- tics	Acknowledged messages Warnings Rejected messages Error code and slave address

6.

CONTROLLERS

6.1 8-Bit Controllers

The AL 2000 PLC system software includes 8 x 8-bit direct digital controllers (DDC) with PID characteristics. The controller parameters are held in R GM's:

	Controller 0	Controller 1	Controller 2		Controller 7
Mode	0	8	16	-	56
Actual value	1	9	17	-	57
Set point	2	10	18	-	58
D term	3	11	19	-	59
I term	4	12	20	-	60
Gain term	5	13	21	-	61
Output	6	14	22	-	62
Aux.	7	15	23	-	63

Mode (R GM 0,8,16 etc.) gives the control program the following information:

- 0 Controller not in use
- 1 Controller in automatic mode
- 3 Controller in manual mode

Writing 1 to register memory R GM 8 (mode) would activate controller 1 in automatic mode. The contents of register memory R GM 14 (output) will then be generated in accordance with the control algorithm and parameters. Three-point control outputs are also written to register outputs R O 192 and R O 196. The required pulse interval can be written to register output R O 200.

Writing 3 to register memory R GM 8 (mode) would activate controller 1 in manual mode. In this mode the controller program computes the control algorithm once and then leaves the controller in manual mode. This allows the user to use greater control intervals. The controller program continuously monitors the output, so returning to automatic mode does not cause steps or spikes in the controller output.

If a controller is deactivated by writing 0 to its mode register memory, the remaining register memories for that controller become available for other purposes. For example, deactivating controller 2 by writing 0 to R GM 16 would leave register memories R GM 17-23 available for other purposes.

6.1.1 Control Algorithm

The following control algorithm is used:

```
DY=P*{e(ti)-e(ti-1)+D*[e(ti)-2e(ti-1)+e(ti-2)]+e(ti)/l} Where
```

P = gain (0-1) D = differentiation time constant e = error I = integration time constant

6.1.2 Effect of the gain, P

P is a value 0-255 corresponding to gains of 0-1 (128 corresponds to a gain of 0.5).

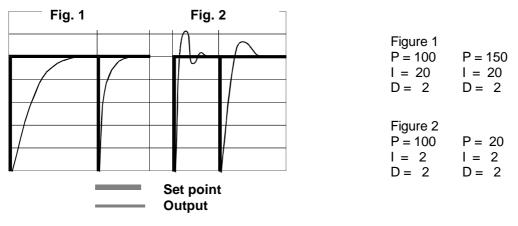
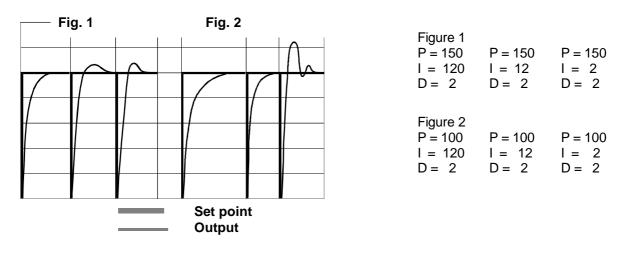
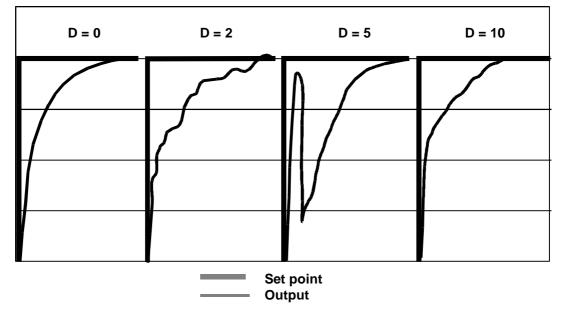



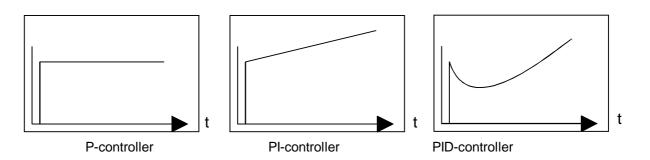
Figure 1 shows how increasing the gain yields faster control oscillation caused by short Figure 2 shows how reducing the gain stabilises the action. integration time.

The sum of the proportional, derivative and integral terms is multiplied by the gain, P. Thus the gain, P, strengthens or weakens the effects of these coefficients.

6.1.3 Effect of the integration time constant, I



The figures show the behaviour of the same process for two different values of gain, P and varying integration time, I. It can be seen that using high gain will result in overshoot even with longer integration times. If the integration time, I is too short, an oscillation of the type shown in the right-hand figure will occur.


6.1.4 Effect of the differentiation time constant, D

The effect of the differentiation time is critical, as illustrated in the figures below. Derivative control is unsuitable for many types of systems, and is often not necessary at all.

6.1.5 Controller types

The figure below shows the step response of the three basic controller types.

- The P controller has constant gain, and the result is unsatisfactory, especially if the gain

is low.

- The PI controller changes the apparent gain and correscts the error in time.
- The PID controller exaggerates variations of error in order to abtain rapid error correction. The step responce becomes faster.

6.2 12-Bit Controllers

The AL2000 has 32 x 12-bit controllers with PID characteristics. The shortest possible update interval for one controller is 100ms. The controller parameters are held in W GM memories. The controllers are divided into four groups of eight controllers. Within these groups the user can select different update intervals.

The number of controllers to be used in a particular group is given in the register outputs (R O 128 to R O 131). This number also determines the group update interval depending on the number of controllers used. If one controller in a group is updated, the update time is 100ms. Similarly, if three controllers in a group are updated, the update time is 300ms etc. The group update interval can be reduced by reducing the number of controllers used within that particular group. If the number of controllers is given as 0, no controllers will be used.

The system software runs the group so that there are 20 PID controllers with 500ms update intervals (R O 128 to R O 131 = 5) automatically upon power-up. This configuration can later be changed.

	Controller						Number		
Group 1 Group 2	0	1 9	2 10	3 11	4 12	5 13	6 14	7 15	R O 128 R O 129
Group 3	16	17	18	19	20	21	22	23	R O 120
Group 4	24	25	26	27	28	29	30	31	R O 131

For Example, if we require three controllers with 100ms update intervals and two controllers with 500ms update intervals:

Group 1 - required interval 100ms = 1 controller (No 0) Group 2 - required interval 100ms = 1 controller (No 8) Group 3 - required interval 100ms = 1 controller (No 16) Group 4 - required interval 500ms = 5 controllers (No 24-28)

Controllers 0, 8 and 16 can be used for the three 100ms update interval controllers and two of the five controllers 24-28 can be used as the 500ms update interval controllers.

				Contr	oller				Number
Group 1	0	1	2	3	4	5	6	7	R O 128
Group 2	8	9	10	11	12	13	14	15	R O 129
Group 3	16	17	18	19	20	21	22	23	R O 130
Group 4	24	25	26	27	28	29	30	31	R O 131

Mode (W GM 0,8,16 etc.) gives the control program the following information:

- 0 Controller not in use
- 1 Controller in automatic mode
- 2 Controller in automatic inverted mode
- 3 Controller in manual mode

6.3 Three Point Controllers

There are 32 three point controllers available

Controllers	0-7	8-15	16-23	24-31
Control interval Pulse interval Valve closing bit Valve opening bit	R O 128 R O 132 R O 136 R O 140	R O 137	R O 134 R O 138	

Controller parameters are stored in W GM 0-255.

	Controller 0	Controller 1	Controller 2	-	Controller 31
Mode	0	8	16	-	248
Actual value	1	9	17	-	249
Set point	2	10	18	-	250
D time/100ms	3	11	19	-	251
l time/100ms	4	12	20	-	252
Gain term	5	13	21	-	253
Output	6	14	22	-	254
Aux.	7	15	23	-	255

6.3.1 Control Algorithm

The control algorithm is as follows:

$DY = (100/gain)^*(e(t_1)-(e(t_1-1)) +$; P term
e(t _i)/integration time constant+	; I term
diff. time constant*($e(t_i)-2e(t_i-1)+e(t_i-2)$)	; D term

The D term controls how strongly the control process reacts to rapid changes in the input signal. The differentiation time constant is an 8-bit parameter and is given in hundreds of milliseconds (0.1-25.5s). The larger the time the greater the changes to the output signal. If the differentiation time constant is given as 0, the D term is not used.

The I term controls how quickly the process reacts to stabilise offset error. The integration time constant is a 16-bit parameter and is given in hundreds of milliseconds (0.1-6553.5s). The larger the integration time constant the slower the process reacts to offset errors. If the integration time constant is given as 0, the I term is not used.

The P term controls the gain such that: P=100/gain, where gain can be from 0.01-100

Therefore:	if gain = 0 if gain = 5	P-TERM NOT USED P = 20
	if gain = 0.5	P = 20 P = 200
	if gain = 0.02	P = 5000
	if gain = 0.01	P = 10000

Example 1

```
If P \text{ term} = 100
D \text{ term} = 0
I \text{ term} = 0
```

Then a 1% change in input signal would produce a 1% change in output signal

Example 2

```
If P term = 50
```

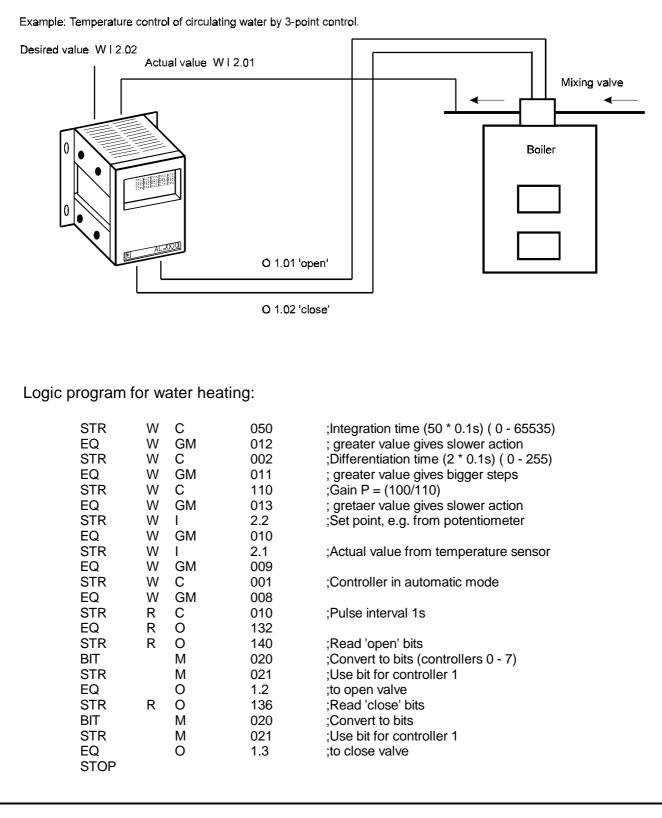
- D term = 0
- I term = 0

Then a 1% change in input signal would produce a 2% change in output signal

The P term can also be used where the input and output signals are not in the same range (e.g. If the input signal range is 0-1000 and the output signal range is 0-100 we need a value P=1000. This would result in a gain of 1).

All controllers provide three-point control outputs in the form of bit data in register outputs R O 136-143.

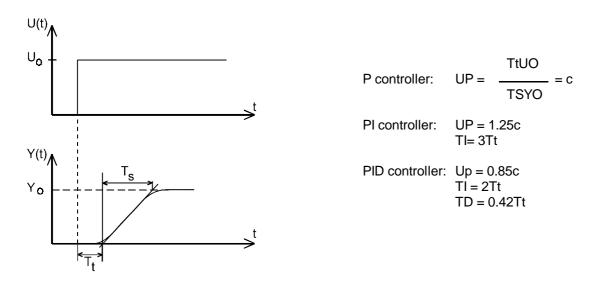
Controller No.: Close output: Open output:	R O 136 bit R O 140 bit	0 0 0	1 1 1	2 2 2	3 3 3	4 4 4	5 5 5	6 6 6	7 7 7
Controller No.: Close output: Open output:	R O 137 bit R O 141 bit	8 0 0	9 1 1	10 2 2	11 3 3	12 4 4	13 5 5	14 6 6	15 7 7
Controller No.: Close output: Open output:	R O 138 bit R O 142 bit	16 0 0	17 1 1	18 2 2	19 3 3	20 4 4	21 5 5	22 6 6	23 7 7
Controller No.: Close output: Open output:	R O 139 bit R O 143 bit	24 0 0	25 1 1	26 2 2	27 3 3	28 4 4	29 5 5	30 6 6	31 7 7


The pulse interval, i.e. the dead time that the controller will wait for the process response to settle, is programmed into register outputs R O 132-135. The time range is from 0.1s to 25.5s, corresponding to the numbers 1-255.

R O 132	Controllers 0-7
R O 133	Controllers 8-15
R O 134	Controllers 16-23
R O 135	Controllers 24-31

A typical application, controlling the temperature of the circulating water in a central heating system, is shown over the page.

The mixing value is controlled by a pulse driven actuator motor. The dead time in an application of this kind can be several seconds, as changes in the water temperature will not immediately be detected by the sensor. It is, therefore, futile to give further drive pulses to the value before the true effect of the previous action is known. This dead time can be accounted for when tuning the controller using the step response method.



6.4 Controller Tuning

In a control system, suitable values must be found for the control parameters P, I and D. Suitable parameters can be determined using mathematics or a Bode diagram, however, these methods can be time consuming. Controllers are usually tuned on the basis of experimental data from the control system. Two simple and effective methods for this are described below.

6.4.1 Step Response Method

The delay and rise time of the step response of the process are determined, and the controller settings are determined on that basis.

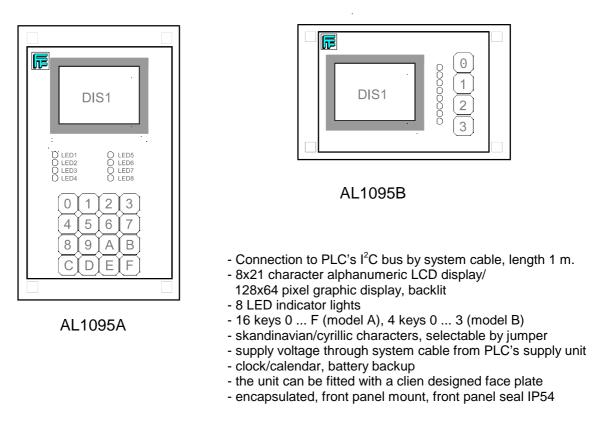
6.4.2 Oscillation Method

The gain and oscillation cycle time at the point of oscillation are determined, and the controller settings are determined on that basis.

P controller:	KP = 0.5KPcr	KP = 1 / UP = gain
PI controller:	KP = 0.455KPcr TI = 0.85Tcr	Where:
PID controller:	KP = 0.6KPcr TI = 0.5Tcr TD = 0.12Tcr	TIIntegration time constantTDDifferentiation time constant KPcr Critical gain at which the process oscillatesTcrCycle time of process oscillation

The above two methods yield reasonable starting points for the controller parameters which can be further refined during operation. The ALPro software can be used for monitoring controller variables, building trend data and producing documentation.

DISPLAY/KEYPAD UNITS

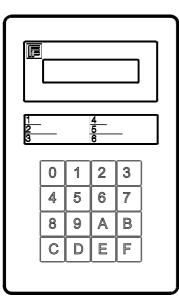

There are several display/keypad units available for the AL2000, most of which can be connected to the CPU board via I^2C interface.

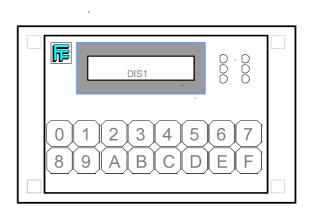
7.1 AL1096 Display/Keypad Units

7.

AL 1096PS/PE	 front panel mounted enclosure, RS232 connection 320x240 pixel STN graphic LCD display, backlit touch screen max. 40 x 30 touch keys Clock and calendar, battery backup
AL 1096S	 front panel mounted enclosure, RS232 connection 5 function keys 240 x 128 pixel graphic LCD display, backlit
AL1096T	 front panel mounted enclosure, RS232 connection touch screen max. 10 x 8 touch keys 240 x 128 pixel graphic LCD display, backlit

7.2 AL1095A/B Display/Keypad Units


7.3 AL1093 Display/keypad Units

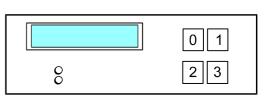

There are three versions of the AL1093 unit. These are AL1093C, AL1093D and AL1093F. All AL1093 units have 2 x 16 character alphanumeric display, 16-key hexadecimal keypad and 6 LED indicator lights. AL1093 unit can be connected to any Autolog PLC. In addition to displaying the values and time/date information, the AL1093 unit can also display text (using the PRT instruction). the LCD display is backlighted. The clock and calendar functions are battery backed-up.

All AL1093 models are front panel moun type and models D and F can be fitted with client designed face plate.

AL1093C / D

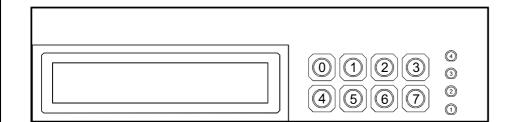
AL1093F

7.4 AL1094 / R / AF Display/keypad Units


The AL1094 display/keypad unit without clock and calendar functions. It has a 4-digit 7-segment display, four LED indicators and a 4-key keypad. The unit can be fitted with client designed face plate.

 FB:R2
 0
 1
 2
 3
 0

 4
 5
 6
 7
 0


 4
 5
 6
 7
 0

The AL1094R display/keypad unit without clock and calendar functions. It has 2 x 16 character alphanumeric display, two LED indicators and a 4-key keypad. In addition to displaying the values and time/date information, the AL1094R unit can also display text (using the PRT instruction). The unit can be fitted with client designed face plate.

The AL1094AF display/keypad unit has 2x20 character alphanumeric display, clock/calendar, 8 keys, 4 indicating leds, summer and one 24VDC 300 mA output for external indicating ligth. The AL1904AF can display text (using the PRT instruction). The unit can be fitted with client designed front plate. Output O 4 = buzzer, output O 5 = control output for external indicating ligth .

AL1094AF

7.5 Reading The Keypad

R O 209: The ASCII code of the last character from keypad is stored in the register output R O 209, when the keypad is connected to PLC's I²C connector .

Example: PLC receives a character from keypad.

STR LES EQ	R R R	O C RO	209 000 209	; Read the character from keypad ; If value <> 0 ; reset the buffer
PRT	R	Т		; and output the character
STOP				

The keypad status is stored in the bits of R O 207 and R O 208. When no key is being pressed, all bits are set to '0'. When a key is pressed, the bit corresponding to that key is set to '1'. The keys and their corresponding bit are shown below.

R O 207 bit	7 6 5 4 3 2 1 0	R O 208 bit	76543210
key	7 6 5 4 3 2 1 0	key	FEDCBA98

7.6 Control of LED Indicators

The LED indicators / other outputs from display are controlled by the bits of R O 204. An LED / output can be set on by setting the approriate bit to '1', and subsequently turned off by setting the bit to '0'. The LEDs and their corresponding bits are shown below.

R O 204	bit	0	1	2	3	4	5
	LED	L0	L1	L2	L3	L4	L5

7.7 Display Control Characters

Mnemonic	Hex	Function
BS (Back space)	08	Moves the cursor one character to the left and clears that position. If the cursor is at the beginning of a line, it moves to the end of the previous line.
HT (Tabulator)	09	Moves the cursor one character to the right without clearing that position. If the cursor is at the end of a line, it goes to the beginning of the next line.
LF (Line Feed)	0A	Moves the cursor to the next line.
FF (Form Feed)	0C	Clears the display and moves the cursor to the beginning of the first line.
CR (Return/Enter)	0D	Moves the cursor to the beginning of the present line.
NAK	15	Moves the cursor one character to the left without clearing that po- sition. If the cursor is at the beginning of a line, it goes to the end of the previous line.
<esc>,"Y", <line>,<col/></line></esc>	1B 59 01 08	Moves the cursor to line 1, column 8. Line 14, column 140, maximum numbers along displays.

7.8 Display Modes

All display/keypad units have several display modes. Some modes are not available for every unit (e.g. those without clock and calendar functions and reduced keypads). The display modes are outlined below and defined by register output R O 240.

R O 240:

Content	Function
0	Mode "0" (normal Mode)
2	Mode "1"
4	Mode "2"
8	Mode "3"
16	Mode "4" the entire display is reserved for PRT outputs
32	Mode "5" as mode "0", but the B-key disabled (changes)
128	Mode "6" display locked (doesn't allow any changes in display)

7.8.1 Normal display mode - Mode '0' (R O 240 = 0)

Key	Function
0-9	Numeric keys
А	Set clock/calendar
В	Enter parameters into register variables
С	Display register variables
D	Next display/entry
E	Display address (in register variable display mode)
F	Return to clock display

'A' Set Clock/Calendar

The clock/calendar is set as follows:

Key	display		continue
'A'	1-xx	year (two digits)	D or F
	2-xx	month (two digits, 01-12)	D or F
	3-xx	day (two digits, 01-31)	D or F
	4-xx	hour (two digits, 01-24)	D or F
	5-xx	minute (two digits, 01-59)	D or F
	6-x	day of week (one digit, 01-07)	D or F
		(1 = mon, 2 = tue ,, 7 = sun)	

'B' Enter Parameters into Register variable

Кеу 'В'	display RM000 WM000 RO000 xxx XX001 xxx	new address (octal number) continue with 'B' browsing variables address of variable continue with 'D' enter parameters value address 001 or new address enter parameters value and/or quit by 'F'-key	continue D or B or F D or B or F D or F D or F D or F D or F

'C' Display register memory/output or word memory

The value of register variable is updated continuously into the display. Update rate is one second.

Key	display		continue
'C'	RM000	new address (octal number)	C or D or F
	WM000	continue with 'C' browsing variables	C or D or F
	RL000	address of variable 'D' -> update	D or E or F
	ууу	'D' -> next variable	D or F
	RL000	'E' display varaible's address escape by 'F'-key	C or D or F

'D' Next Display Mode

In the normal display mode '0', the display information may changed by pressing the 'D'-key. This is performed as follows:

Key	display		continue
'D'	15:30	hours:minutes	D or F
	17.05	date.month	D or F
	00:01	date of week	D or F
		(models AL1093, AL1094AF, AL1095)	
	FF:FF	R O 245 and R O 246 in hex	D or F
	15:30	hours:minutes etc.	

7.8.2 Data Display Mode '1' [R O 240 = 2]

This mode is available for all models. In this mode the contents of R O 245 and R O 246 are sent to the display. In this mode it is not neccessary use the 'D' key to change the display mode (as with mode '0') each time after power-up.

Example: 1000 connects the display control program and the contents of R O 245 and R O 246 are immediately displayed. When 1001 is truned off, it disconnects the control program, and the display will again show the time.

STR R EQ R STR STR R	C 0 1 C	000 240 000	; Normal display mode ; chosen for display ; set input on (=ON) ; the control code for mode [4] is
EQ R STOP	so	002 240	; the control code for mode '1' is ; transferred to register output R O 240. ; When writing the value to R O 240 ends, ; returns the to normal mode (two first instruction lines)

7.8.3 7-Segment mode - mode '2' (R O 240 = 4)

This display mode is available only for the AL1094 with 7-segment display. In this mode R O 245 controls the right hand side of the 7-segment display, so that seven of the eight bits controls a segment each, and the eighth bit controls the minus sign as shown in the diagram below.

R O 245:

bit	765432	210
segment	xgfedo	;ba

Segments are illuminated by writing the sum of the corresponding values into R O 245

Segment	t	Number	Segment	Number
а		1	е	16
b		2	f	32
с		4	g	64
d		8	x	128
STR	R	С	028	
EQ	R	0	245	; Display

For example, to display segments e, c and d, the sum of corresponding numbers (16+8+4=28) should be written into register output R O 245.

; Display segments e, c and d

7.8.4 Text Display Mode '4' (R O 240 = 16)

This mode is available only for the AL1094R, AL1093, AL1094AF and AL1095 with alphanumeric displays. The entire display will be reserved for text produced by the PRT instruction.

7.8.5 Normal Mode with Key 'B' Function Disabled. Mode '5' (R O 240 = 32)

This mode is available only for the AL1094R, AL1093C/D/F and AL1095A models with alphanumeric displays. The unit functions otherwise normally but the changes of content of variables are disabled.

7.8.6 Display Lock Mode '6' (R O 240 = 128)

This mode is available only for the AL1094F/R, AL1093C/D/F and AL 1095A/B with alphanumeric displays. Current display information will be retained and no changes will be allowed.

7.9 Program examples

7.9.1 Printing Date Information

STR EQ STR PRT PRT PRT PRT	R R R	I DP О Т О Т О	0.01 000 248 .@ 247 .19@ 255	; print ; date ; point ; month ; point and hundreds of year ; year (0 - 99)			
<u>7.9.2 R</u>	eal Tim	e Cont	rol with R O 2	253 (6 minutes from midnight)			
STR LES EQ GRT AND EQ STOP	R R R	0 C M C M O	253 174 000 210 000 0.01	; read number of six minute periods from beginning of day ; every day starting from 17:30 ; (17.5 * 60/6 = 175) ; until 21:00 ; output on			
<u>7.9.3 Di</u>	7.9.3 Display Step Registers 0 and 1 (0 99)						
STR EQ STR BCD EQ STR BCD EQ STOP	R R R R R	C O S O S	002 240 000 245 001 246	; set register outputs R O 245 and 246 ; display mode '1' value ; read step register's 0 step into register accumulator ; convert to BCD form ; save the value into display variable ; read step register's 1 step into register accumulator ; convert to BCD form ; save the value into display variable			

STR	W	Ι	0.01	; read word input	001 into word accumulator
BDC	Ŵ	Ť	0.01	; convert to BCD	
EQ	W	М	000	; save into word i	memory
STR		Р	001	; print on 1 secor	
PRT	•)1>,<04>)	; to line 1 column	
PRT	R	M	000		T 1, first high byte
PRT STOP	R	Μ	001	; and then low by	te
9.5 Set	tting	<u>the Tim</u>	e and Date	Using Register va	riables
STR	R	S	000	; Step register 0	
STR		I	0.00	; Clock synchron	ising input
EQ		M	065		
		DP	065		
AND STEP		S S	000 001	: activate cleak ti	me setting
STEP	R	S	000	; activate clock ti	tep to register accumulator
LES	R	č	000		cuted only if current
IF	-	T		; step is greater t	
STR	R	S	000		
LES	R	С	019	; 2 seconds dela	y, made by STEP register 0
STEP	D	S	000		
STR EQ	R	C	005	, transfor time to	real time cleak
STR	R S	SO	242 001	; transfer time to ; if in step	Teal line clock
STR	R	С	001	, ii iii 3tep	
EQ	R	sõ	242	: disable reading	of real time clock
STR	R	С	001		of real time clock
EQU	R	0	242	; is disabled	
AND		Р	000	; pulse, interval 0	0.1 second
STEP	-	Т		; go to next step	
STR BCD	R R	C T	96	; set year	
EQ	R	0	255		
STR	R	C	3	; set month	
BCD	R	Т	0.47		Sequencies in setting clock time:
EQ	R	0	247		,
STR BCD	R R	C T	10	; set day ; of month	1 Stop system program RTC clock
EQ	R	Ŏ	248	, or monut	read function by inserting to
STR	R	c	9	; set hour	R O 242 value 1.
BCD	R	Ť	-	; part of time	
EQ	R	Ó	250	· · · · ·	2 Set new values to clock variables
STR	R	С	25	; set minute	from R O 247 to R O 255 in BCD format.
BCD	R	Т		; part of time	
EQ	R	0	251		3 Start function "insert new values"
CONT					by inserting to R O 242 value 5.
STOP					Now system program updates
					the RTC and resets R O 242
					to zero which starts normal clock
					reading to R O variables.

8.

TECHNICAL DESCRIPTIONS

8.1 CPU2000S Series Modules

Memories	FLASH - Operating system FLASH - PLC-program & configuration RAM (battery backed-up) - PLC-program variables RAM - buffers, operating system variables, PLC-program when executed		
PLC-program space	8192 instruction lines		
Commands	Approximately 260		
Auxiliary memories	50 kBytes of memory reserved for auxiliary memories and variables		
Timers	4 x 0.01-2.55s, addressable from PLC program 68 x 0.1-25.5s, addressable from PLC program 8 x 1-255s, addressable from PLC program		
Counters	16 x 0-255, addressable from PLC program		
Step registers	32 x 0-255 step. The first 8 are reset during power failure. All others can maintain their position during power failure by setting a DIP switch.		
Controllers	32 x 16-bit PID controller functions with programmable parameters 8 x 8-bit PID controller functions with programmable parameters		
Loop time	5ms+20μs/instruction line (average)		
Serial Interfaces	 3 isolated (500 VDC) SER1 RS-232C (300-115200 bit/s, 9-pin D-type connector). Used for programming, operator's terminal, bar-code reader, MODBUS slave/master, communication with supervising PC, modem handshakes. SER2 RS-232C (300-115200 bit/s, 9-pin D-type connector). Used for operator's terminal, bar-code reader, MODBUS slave/master, communication with supervising PC, modem handshakes. SER3 RS-485 (300-115200 bit/s, screw terminals). Used for operator's terminal, bar-code reader, MODBUS slave/master, communication with supervising PC 		
I ² C interface	For display/keyboard unit		
Isolation	Serial interfaces SER1 and SER2 are isolated as a group. Serial interface SER3 is isolated separately Isolation is between groups, 500VDC, metal frame and the internal data bus.		

LED indicators	RES (fault, red) RUN (PLC functioning, green) TX1, TX2, TX3 (serial interfaces transmitting, yellow) RX1, RX2, RX3 (serial interfaces receiving, yellow) CTS1, CTS2 (serial interfaces CTS handshaking, red) RTS1, RTS2 (serial interfaces RTS handshaking, red) BAT (battery low, red) VS3 (fault in SER3 interface, red)		
Watchdog	Separate watchdog circuit with excess voltage protection and low voltage detection		
Clock	Year, month, week, day, hour, minute, second and number of six-minute periods from the beginning of the day. Battery backed-up		
Power consumption	600mA, 5Vfor CPU2000S0.2-1.2A, 24Vfor CPU2000P (depending on number of I/O modules)		
Battery life	With no external supply, 2 years with max. ambient temperature +60°C Normal use, up to 10 years.		
Cooling	Natural		
Dimensions	6HE, 4TE, = 233.3 mm x 160 mm x 25 mm		
Weight	0.35 kg		
Product Codes	CPU2000S CPU2000P	902200 902205	

8.2 CPU2000L Module

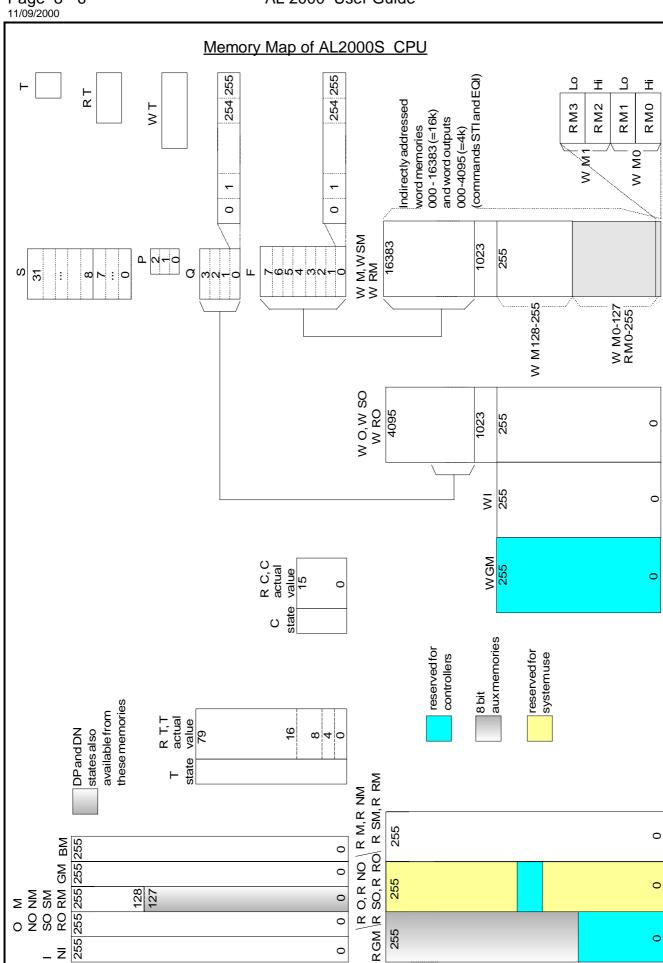
CPU Ethernet or CPU Ethernet	486DX4/DX5, 5x86 AMD 10 Base2/5 AUI / 10 Base T RJ-45 Pentium 233 MHz AMD 10/100 Base2/5 AUI / 10/100 Base T RJ-45
Flash memory	16 - 48 MB FLASH
RAM memory	16 - 32 MB
Bus	Optional PC-104 extensions (HDD, FDD, etc.)
Operating system QNX	
Software	FCS control system software
Serial Interfaces	1 isolated SER1 RS-232C (300 - 115200 bits/s, 9-pin D-type connector). SER2 RS-422/485/232 (300 - 115200 bits/s).
LED Indicators	11 LED indicators
Power Consumption	4 A, 5VDC
Cooling	Natural
Operating temperature	0 - 50 $^{\circ}$ C. Available also for higher ambient temperatures
For testing PC in installa Option Display driver Option Display unit Option Keyboard	tion phase following devices can be connected to CPU2000L PC-104 VGA/SVGA, 256 colour/grey scale, maximum resolution 1024 x 768 VGA/SVGA video monitor with 15-pin D-type connector Connector for Mouse & Standard IBM-AT keyboard

8.3 AL2000S/P Variables

8.3.1. Single Bit Variables

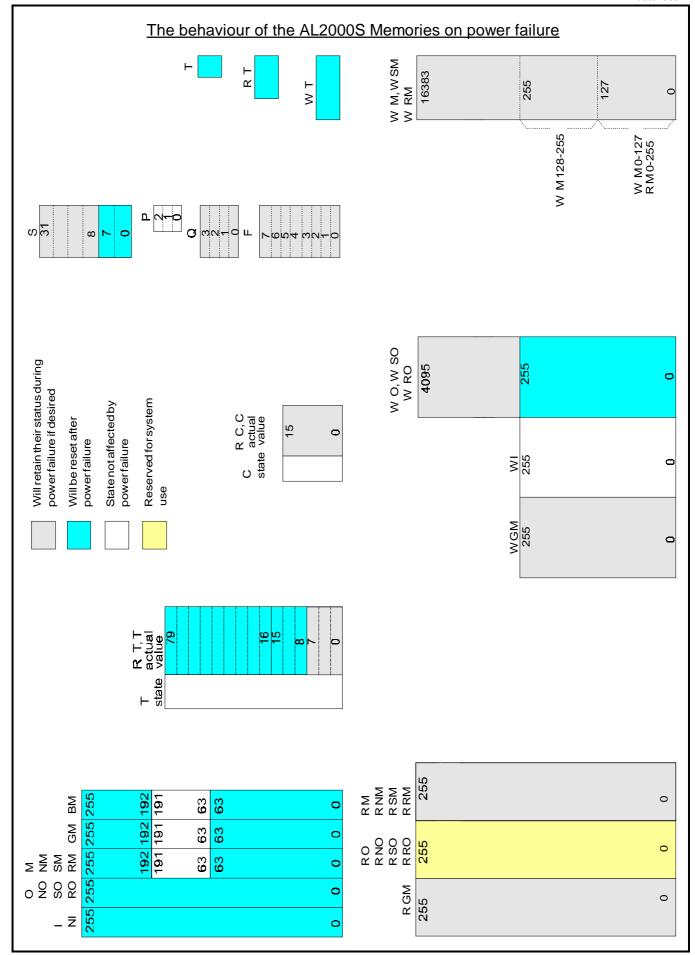
1	Input (0-255).		
NI	One's complement of input. When In=1, NIn=0.		
M	Auxiliary memory (0-255).		
NM	One's complement of auxiliary memory (M).		
GM	Additional auxiliary me		(101):
NG	One's complement of		ny memory (GM)
BM	Additional auxiliary me		ry memory (Civi).
NB	One's complement of		ry memory (BM)
0	Output (0-255).		
NO	One's complement of	outout	
SM, SG, SB, SO	Conditional setting of I		M)/output (0-255)
011, 00, 00, 00	Used with EQ instructi		5M//Output (0 200).
RM, RG, RB, RO	Conditional resetting c	of memory (M/GN	1/BM)/output (0-255).
	Used with EQ instructi		
DP	Change auxiliary mem	ory from 0 to 1, i	numbered from 0-127.
	Compares memory st	ate to that at beg	inning of cycle.
DN	Change auxiliary mem	ory from 1 to 0, i	numbered from 0-127.
	Compares memory st	ate to that at beg	inning of cycle.
Р			duration of one program
	cycle, P000 ten times	per second, P00	1 once per second, and
	P002 once per minute		
S			nce register. There are 64
			ble from 8-64, default 32).
	These registers have 2		
NS	One's complement of		
Т	Timer (0-79). Timer resolutions are as follows:		
	Timer	Resolution	
	T0-3	10 ms	0.02-2.55s
	T4-7	100 ms	0.2-25.5s
	T8-15	1 s	2-255s
	T16-79 100m		0.2-25.5s
	In the IF and STEP instructions T refers to the bit accumulator.		
	In the PRT instruction		
C	. ,		o 0. In the PRT instruction
	C refers to a numerica	al value.	

8.3.2. Register (8-bit) Variables


R M R NM R GM	Register memory (0-255). These are 8-bit registers. One's complement of register memory. Register general memory (0-255). These are 8-bit registers, some
	of which are reserved for 8-bit PID controllers.
R NG R O	One's complement of register general memory. Register output (0-255), all of which are reserved for special purposes. Register outputs defines the operational parameters of CPU.
R NO	One's complement of register output.
R SM, R SG, R SO	Conditional setting of register memory/general memory/output. Used with EQ instruction.
R RM, R RG, R RO	Conditional resetting of register memory/general memory/output. Used with EQ instruction.
RT	Register timer. This is identical to the timers listed above; T or R T is used as the variable according to the instruction. Also refers to the register accumulator in some instructions.
RC	Register constant (0-255), except register counter with the READ and LOAD instructions. C or R C is used as the variable according to the instruction.
Q	Queue (0-3). Each queue has 256 x 8-bit locations.
F	First In First Out store (0-7). Each FIFO has 256 x 8-bit locations.
8.3.3. Word Variab	les or 16 bit variables
WI	Word input (0-255).
WM	Word memory (0-255, indirectly addressable up to 16363). These are 16-bit memories . Word memories 0-127 overlap register memories 0-255.
W GM	Additional word memory (0-255). These are 16-bit memories, some of which are reserved for 16-bit PID controllers.
WO	Word output (0-255, indirectly addressable up to 4096). These can be used as auxiliary memories.
W SM, W SO	Conditional setting of word memory/output.
W RM, W RO	Conditional resetting of word memory/output.
WT	Word accumulator.
WC	Word constant (0-65535,bin / 0 - 9999 bcd).

8.3.4. Special Variables

String constant (0-255). These are text strings with a maximum length of 16 characters each. Used in conjunction with the PRT instruction.

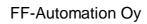


Page 8 - 6

AL 2000 User Guide

Page 8 - 7 11/09/2000

FF-Automation Oy


9. **REGISTER MEMORIES, OUTPUTS & VARIABLES**

9.1 Reserved Memories and Outputs

R O 000-031	Status information for I/O modules in slots 0-31
R O 032	Watchdog status information
R O 033	Keypad/Display unit type
R O 034	System program version
R O 035	DIP switch (SW1) status
R O 036	Battery and SER3 fault status File transfer error counter
R O 037 R O 038	Processor Type (0=80C32, 1=80C320)
R O 039	CPU type (0=80C32, 1=80C320)
R O 039 R O 040	Error code on program save
R O 040	FPGA IC1 version
R O 043 R O 044	FPGA IC2 version
R O 044 R O 045	Flash manufacturer code
R O 045	Flash device code
R O 048	Number of non answered Modbus slave address for SER1
R O 049	Type number of detected Modbus error for SER1
R O 050	MODBUS error information for SER1
R O 051	MODBUS counter : abandoned messages on SER1
R O 052	MODBUS counter : accepted messages on SER1
R O 054	MODBUS message transmission delay for SER1
R O 055	MODBUS response timeout for SER1
R O 056	MODBUS response timeout for SER2
R O 057	CTS / RTS control memory forSER1 (CTS=bit 7, RTS=bit 1)
R O 058	CTS / RTS control memory forSER2 (CTS=bit 7, RTS=bit 1)
R O 059	MODBUS error information for SER2
R O 060	MODBUS response timeout for SER3
R O 063	MODBUS error information for SER3
R O 080	MODBUS counter : abandoned messages on SER2
R O 081	MODBUS counter : accepted messages on SER2
R O 082	MODBUS message list completed for SER2
R O 083	MODBUS message transmission delay for SER2
R O 084	MODBUS counter : abandoned messages on SER3
R O 085	MODBUS counter : accepted messages on SER3
R O 086	MODBUS message list completed for SER3
R O 087	MODBUS message transmission delay for SER3
R O 088	Number of non answered Modbus slave address for SER2
R O 089	Type number of detected Modbus error for SER2
R O 090	Number of non answered Modbus slave address for SER3
R O 091	Type number of detected Modbus error for SER3

R O 128-131 R O 132-135 R O 136-139 R O 140-143 R O 160 - 183 R O 192 R O 196 R O 200 R O 204 R O 207 R O 208 R O 209 R O 210 R O 211 R O 212 R O 213 R O 214 R O 215 R O 216 R O 217 R O 218 R O 217 R O 218 R O 219 R O 220 R O 221 R O 221 R O 222 R O 223 R O 224 R O 225 R O 225 R O 225 R O 226 R O 227 R O 223 R O 224 R O 223 R O 231 R O 231 R O 233 R O 234 R O 235 R O 236 R O 237 R O 238 R O 238 R O 237 R O 238 R O 238 R O 237 R O 238 R O 239	Update interval for controller groups 1-4 (default 5=500ms) Pulse interval for 12-bit PID-controller groups 1-4 Closing bits for 12-bit PID-controller groups 1-4 Reserved for Counters on old AL2000SAC/SCP boards Closing control bits for 8-bit PID-controllers 0-7 Opening control bits for 8-bit PID-controllers 0-7 Control for LEDs on display unit Bit information from keys 0-7 Bit information from keys 8-F Last character received from the keyboard SER1 data length and parity in terminal mode Reserved for test information Selected language SER1 communication speed SER1 mode; programming/ terminal /MODBUS SLAVE/MASTER SER2 mode; terminal/EVS/MODBUS SLAVE/MODBUS MASTER SER3 mode; terminal/EVS/MODBUS SLAVE/MODBUS MASTER SER3 data length and parity in terminal mode SER3 data length and parity in terminal mode Calibration of analog input Slot number of module to be calibrated Input number on module to be calibrated Input type to be calibrated Lower calibration value (4 MSB) Lower calibration value (4 MSB) Higher calibration value (4 LSB) Higher calibration value (8 LSB) Mumber of step registers (configurable from 8 to 64, default=32) SER2 last character received from terminal SER2 last character received from terminal SER2 last character received from terminal SER3 last character received from terminal SER3 last character received from terminal CPU counter input status (AL2000SCP) Analog input update rate (1/2/4/8 inputs per program cycle) Value of CPU analog output 1 (AL2000SAA/SAC) Value of CPU analog output 2 (AL2000SAA/SAC)	

R O 240	Selection the display information
R O 241	Number of power fail interruptions
R O 242	Setting the time
R O 243	Slave address of AL2000
R O 244	High byte of multiplication/division remainder
R O 245	Left side of numerical display (for AL1092)
R O 246	Right side of numerical display (for AL2092)
R O 247	Date and time information: month
R O 248	Date and time information: date
R O 249	Date and time information: day of the week
R O 250	Date and time information: hour
R O 251	Date and time information: minute
R O 252	Date and time information: second
R O 253	Clock & Calendar: number of six minutes from the beginning of the day
R O 255	Date and time information: year
R GM 0-7	Controller 0
R GM 8-15	Controller 1
R GM 16-23	Controller 2
R GM 23-31	Controller 3
R GM 32-39	Controller 4
R GM 40-47	Controller 5
R GM 48-55	Controller 6
R GM 56-63	Controller 7
R GM 64-80	Counter 1 control registers (SAC)
R GM 96-112	Counter 2 control registers (SAC)
R GM 128-191	AL1095 Graphical objects (see 9.3)

9.2 Modbus Error information Register Outputs

Slave ID number	SER1	SER2	SER3
	R O 48	R O 88	R O 90
Type number of detected error	R O 49	R O 89	R O 91

Error codes:

First cycle	second o	cycle
17d	33d	warning, error in building master request
18d	34d	warning, error on sending master request
19d	35d	warning, no answer
20d	36d	warning, receive timeout (command)
21d	37d	warning, receive timeout (data)
22d	38d	warning, CRC error
23d	39d	warning, received address/command different
		than request address/command

9.3 Control variables for AL1095 graphical symbols

R GM 128 2	200	Graphic object 1:mode		R GM 160	240	Graphic object 5:mode
R GM 129 2	201	Value		R GM 161	241	Value
R GM 130 2	202	X start point		R GM 162	242	X start point
R GM 131 2	203	X length		R GM 163	243	X length
R GM 132 2		Y start point		R GM 164	244	Y start point
R GM 133 2		Y length		R GM 165	245	Ylength
		uppdate interval	R GM			e interval
	207			R GM 167	247	
R GM 136 2	210	Graphic object 2: mode		R GM 168	250	Graphic object 6: mode
R GM 137 2		Value		R GM 169	251	Value
R GM 138 2	212	X start point		R GM 170	252	X start point
		X length		R GM 171	253	X length
		Y start point		R GM 172	254	Y start point
		Ylength		R GM 173	255	Ylength
		uppdate interval	R GM	174 256		e interval
		Graphic object 3: mode		R GM 175	257	Graphic object 7: mode
	- · ·				201	
R GM 144 2	220	Graphic object 3: mode		R GM 176	260	Graphic object 7: mode
R GM 145 2		Value		R GM 177	261	Value
R GM 146 2	222	X start point		R GM 178	262	X start point
R GM 147 2		X length		R GM 179	263	X length
R GM 148 2		Y start point		R GM 180	264	Y start point
R GM 149 2		Y length		R GM 181	265	Ylength
R GM 150 2		uppdate interval	R GM	182 266	uppdate	e interval
R GM 151 2		X start point		R GM 183	267	X start point
		·				·
R GM 152 2	230	Graphic object 3: mode		R GM 184	270	Graphic object 8: mode
R GM 153 2	231	Value		R GM 185	271	Value
R GM 154 2	232	X start point		R GM 186	272	X start point
R GM 155 2	233	X length		R GM 187	273	X length
R GM 156 2	234	Y start point		R GM 188	274	Y start point
R GM 157 2		Ylength		R GM 189	275	Y length
R GM 158 2		uppdate interval	R GM	190 276	uppdate	e interval
R GM 159 2	237			R GM 191	277	

Graphic object update interval: 1 = 1 sec., 2 = 2 sec., ..., 0 = 256 sec.

9.4 Register Outputs (which must be set)

- R O 212 Selected language
 - 0 English
 - 1 Finnish

R O 210 Terminal mode SER1: data configuration

- 0 8 bit parity NONE
- 1 7 bit parity EVEN
- 2 7 bit parity ODD
- 3 8 bit parity EVEN
- 4 8 bit parity ODD

R O 213 Serial interface SER1: communication speed

- 0 300 bit/s
- 1 1200 bit/s
- 2 2400 bit/s
- 3 4800 bit/s
- 4 9600 bit/s
- 5 19200 bit/s
- 6 28800 bit/s
- 7 38400 bit/s
- 8 57600 bit/s
- 9 115 kbit/s

R O 214 Serial interface SER1: mode

- 0 Programming
- 1 EVS 112 bar code camera
- 2 Terminal / printing
- 3
- 4 Serial interface to computer (MODBUS slave)/modem
- 5 MODBUS master
 - Note! DIP switch number 2 to ON position
- R O 219 Terminal mode SER2: data configuration
 - 0 8 bit parity NONE
 - 1 7 bit parity EVEN
 - 2 7 bit parity ODD
 - 3 8 bit parity EVEN
 - 4 8 bit parity ODD

R O 229 Serial interface SER2: communication speed 300 bit/s 0 1 1200 bit/s 2 2400 bit/s 3 4800 bit/s 4 9600 bit/s 5 19200 bit/s 6 28800 bit/s 7 38400 bit/s 8 57600 bit/s 9 115 kbit/s R O 215 Serial interface SER2: mode Terminal / printouts / modem 0 1 EVS112 bar code camera 2 3 4 Serial interface to computer (MODBUS slave)/modem 5 **MODBUS** master R O 218 Terminal mode SER3: data configuration 0 8 bit parity NONE 1 7 bit parity EVEN 2 7 bit parity ODD 3 8 bit parity EVEN 4 8 bit parity ODD R O 217 Serial interface SER3: communication speed 300 bit/s 0 1 1200 bit/s 2 2400 bit/s 3 4800 bit/s 4 9600 bit/s 5 19200 bit/s 6 28800 bit/s 7 38400 bit/s 8 57600 bit/s 9 115 kbit/s R O 216 Serial interface SER3: mode Terminal / printouts / modem 0 1 EVS112 bar code camera 2 3 4 Serial interface to computer (MODBUS slave)/modem 5 **MODBUS** master

R O 236 Analog input update rate

- 0 1 analog input per program cycle (default)/ each analog board
- 1 2 analog inputs per program cycle
- 2 4 analog inputs per program cycle
- 3 8 analog inputs per program cycle
- 4 2 analog inputs per program cycle of which one (input 0) will be updated every cycle
- ? 1 analog input per program cycle (default)

10. TROUBLE SHOOTING AND SERVICE

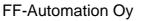
In the design of the AL2000 special attention has been paid to ease of service, rapid fault finding and correction. Special procedures have been built into the operation system which continuously supervise the AL2000's operation.

A good selection of spare modules (especially power supplies and CPUs), as well as cables and fuses is highly recommended. This will reduce expensive down-time in the event of a fault occurring.

10.1 Checking the Hardware Configuration

On power-up the AL2000 checks that the hardware configuration is the same as the one defined with the ALPro software. The hardware configuration table defines the following items:

Slot number of the module The address and number of the I/O's in the module Type code of the module Action to be taken in the event that the hardware configuration is not the same as that defined in the ALPro Software:


After a 'warm start' with the START instruction the following operations are performed:

Status of memories and outputs remain unchanged PLC program is moved from RAM memory into the EEPROM PLC program is checked and executed if no errors found After the second program cycle, parameters are read from the register memories

If the configuration for a particular I/O module is correct, the green ACT LED on that module should be on, and the red ERR LED should be off. In the event of an incorrect hardware configuration for a particular module, the red ERR LED on that module will be on. Information about the configuration error is simultaneously sent to a supervising PC via serial interface (provided that this function is enabled). After a hardware configuration error has been detected, the CPU will react in the manner specified during configuration with the ALPro software. The following alternatives are available:

STOP and RESET Suspends execution of the PLC program and sends a reset signal to all the I/O modules, returning all outputs to 0.
 STOP Suspends execution of the PLC program, maintaining all outputs in their current state.
 IGNORE Continues execution of the PLC program. If the faulty module is replaced with a correct and working one, the CPU will resume using of that module.

The above checking procedure is performed on all defined I/O modules. Any modules not defined using the ALPro software are completely ignored by the CPU. This checking procedure supervises the address and data busses in the motherboard and I/O modules.

10.2 Tracing Faults and Solving Problems

AL2000 informs the user of any faults and malfunctions by the following means:

Operating system LED indicators on all modules Error messages sent via serial interface to a supervising PC Error messages during PLC programming with the ALPro software

10.2.1 Hardware Faults

Trouble shooting table

Fault signal	Probable Cause	Remedy
RES signal on the CPU module	disturbances in the supply voltage	Check the power supply cabling and the PCON** and POW** modules
All LED signals are missing on the I/O module	disturbances in the supply voltage	Check the Power Supply cabling and the PCON and POW** modules
ERR signal on the I/O	The I/O module is not in the right slot	Check the hardware configuration module
	The I/O module is broken	Replace the broken I/O module
The I/O modules do not operate in the expected	The PLC program uses wrong I/Os	Correct the program
manner	The definition of the analog I/O module is incorrect	Check and correct the definitions
	Incorrect resistors on the inputs/outputs of the analog I/O module	Check the resistors and replace them with correct resistors
	Fuse in the relay output module is blown	Replace the fuse
The content of R O 241	Disturbances in the supply voltage is not equal to 0	Check the power supply

10.2.2 The ALPro Diagnostic Display

The ALPro programming software can be used to display diagnostic information to assist in the correction of hardware problems. This display can be produced by selecting **Diagnostics** from the **Configure** menu.

10.2.3 The I/O Module Status Table

Each I/O Module has one byte reserved for status information. The status bytes for the Modules in each slot are held in register outputs R O 0-31 (representing slot numbers 0-31 respectively). The status bytes contain possible error information as follows:

For All Modules:

- 0 No error!
- 101 Module does not match configuration table
- 102 Data transfer error between CPU and module
- 255 Module is not configured

For Analog Modules Only:

103-109 Error in write operation (due to module being in incorrect state)

110 e2prom not responding. This indicates an error in either the e2prom or the I2C serial link. This is a serious error condition because without calibration information from the e2prom all input values from that module are incorrect

- 111 Error in module's data bus
- 112Data transfer error between CPU and module. Error occurred during module initialisation
- 113 Error writing to module's RAM memory
- 114-116 Error in write operation (due to module being in incorrect state)

10.2.4 The CPU Status Table

Register outputs R O 32-36 contain the following information about the CPU status:

R O 32	Watchdog test. If value is 255, then Watchdog is not present				
R O 33	Display/keypad version: 0	No display/keypad connected			
	11	AL1094R			
	15	AL1093			
	19	AL1094			
	21	AL1092			
	34	AL1095			
	67	AL1094AF			
R O 34	Operating system version numb	er. The version number is obtained by adding 200			
	to the contents of this register or	Itput			
R O 35	Status of DIP switches				
R O 36	Status of battery: 0(4) Battery good			
	1(5) Battery low			
	2(6) Battery flat, faulty or missing			
	4	Serial connection 3 power supply ok.			
R O 37	Reserved				
R O 38-63	Reserved for possible future use).			

10.2.5 The Remote Unit Status Table

Each remote unit has one byte reserved for status information. This is held in register outputs R O 64-79 (representing remote unit numbers 32-47 respectively). The status bytes contain possible error information as follows:

0	No error!
33/161	Excessive bus traffic
34/162	Remote station not responding
35/163	Remote response framing error
36/164	Remote response break-up
37/165	CRC checksum error
144-159	Error in the module in remote unit slot 0-15 respectively

10.2.6 Software Faults

If the ALPro software gives the message PLC not connected, check the programming cable and communication speed/serial port selection.

10.3 The CPU Battery

The CPU2000S series modules require a 3-3.6V 1/2AA lithium battery (e.g. TADIRAN TL-5101, VARTA CR 1/2AA etc.) . This battery is used for the RAM and the clock and calendar IC. The life expectancy of the battery is over 2 years without the CPU being connected to a power supply (if the operating environment temperature does not exceed +60 C). However, under normal use the battery has a life expectancy of over 10 years.

Information about the condition of the battery is stored in R O 36. There are three possible battery states:

R O 36 0(4) - OK, battery in good condition
 1(5) - WARNING, battery weak and should be replaced
 2(6) - FAIL, battery exhausted, faulty or missing
 4 - Serial connection 3 power supply ok.

The AL2000 checks the battery on power-up. If the voltage is sufficient, the battery condition indicated in R O 36 is OK. If the voltage is close to minimum, the condition indicated is WARNING. The system program continues to check the battery condition and if it does not improve shortly after power-up, the condition indicated will be FAIL.

The system program continuously monitors the battery condition during operation. If the battery becomes exhausted, develops a fault or is removed, this information is immediately sent to R O 36.

10.3.1 Battery Replacement

The battery is mounted in a compartment on the CPU module immediately above the SER1 interface port. The battery can be replaced in the following way:

- (1. Turn off power to the AL2000)
- (2. Remove the CPU module from its slot)
- 3. Remove battery compartment cover
- 4. Remove old battery

5. Insert new battery with positive pole facing the edge of the PCB

- 6. Replace battery compartment cover
- (7. Replace the CPU module in its slot)
- (8. Turn on power to the AL2000)

Note: If there is data saved in the RAM memory of the PLC, ignore items 1, 2,7 and 8.

The CPU module must have an uninterrupted power supply in order to maintain the contents of the RAM and the correct time and date. An electrolytic capacitor preserves the memory contents for approximately one minute after disconnecting the power and removing the CPU module from its slot, during this time the battery can be changed without losing the memory contents. However, it is recommended that the battery be changed while the module is powered-up, thus avoiding any risk of losing the memory contents.

NOTE: After a battery change during CPU operation, R O 36 should be manually reset to OK. However, if the battery is changed during power-down time, R O 36 is automatically updated by the system program next time the CPU is powered-up.

10.4 Fuse Replacement

The power connector modules and the relay output modules are equipped with fuses. All fuses are located in separate sockets and are thus easily replaceable. Fuses are replaced in the following way:

10.4.1 PCON24

There are three fuse holders on the front panel of the module which house T1.6A, T1A and T2.5A, 5 x 20mm slow-blow fuses (to IEC 127/III standard).

The LED indicators on the front panel of the unit can be used to determine which of the three fuses is blown as shown below:

AUX	PLC	Blown Fuse
ON	OFF	FPLC / F1 (T1.6A)
OFF	ON	FAUX / F2 (T1A)
OFF	OFF	FIN / F3 (T2.5A)

1. Turn the fuse holder cap anti-clockwise about a quarter of a turn

2. Remove the cap and replace the blown fuse with a new one

3. Replace the cap. Push and turn the cap clockwise until locked.

10.4.2 PCON230

There is one fuse holder on the front panel of the module housing a T2.5A, 5 x 20mm slow-blow fuse (to IEC 127/III standard).

- 1. Turn the fuse holder cap anti-clockwise about a quarter of a turn
- 2. Remove the cap and replace the blown fuse with a new one
- 3. Replace the cap. Push and turn the cap clockwise until locked.

10.4.3 PWR3

There are three fuse holders on the front panel of the module which house a T315mA and 2 x T1A, 5 x 20mm slow-blow fuses (to IEC 127/III standard).

- 1. Turn the fuse holder cap anti-clockwise about a quarter of a turn
- 2. Remove the cap and replace the blown fuse with a new one
- 3. Replace the cap. Push and turn the cap clockwise until locked.

10.4.4 DOC32FP

This module has two T4A, 5 x 20mm slow-blow fuses (to IEC 127/III standard), one for each group. These are located behind the top edge of their respective connectors.

- 1. Remove the blown fuse by unplugging it
- 2. Replace the blown fuse with a new one

10.4.5 ROC16K

In this module there are 16 x T2.5A* slow-blow fuses located behind their respective output terminals, and one spare fuse located behind the LED indicators. When the spare fuse is on place and working the SP.F LED on the front edge of the module is on. Thus the spare fuse holder provides a simple way to check fuses.

- 1. Remove the blown fuse by unplugging it
- 2. Replace the blown fuse with the spare fuse
- 3. Remember to order more spare fuses

10.4.6 ROC16Z

The procedure is exactly the same as for the ROC16K module except that ROC16Z uses 16 x T5A* slow-blow fuses.

<u>10.4.7 OOC16</u>

The procedure is exactly the same as for the ROC16K module except that the OOC16 uses 16 x F1.6A* quick-blow fuses.

BUSS 'PC-Tron' WICKMANN-WERKE 'TR5' SCHURTER 'MSF Microfuse'

10.5 Adjusting of Analog Inputs

AL2000's analog inputs are pre-calibrated prior to delivery and should require no further adjustment. The non-linearity of temperature measuring elements are compensated on analog boards system program. The resolution of the analog input is 12 bits.

However, for extremely accurate results, inputs can be re-calibrated in the following way.

On the table below the calibration variables and their functions are showed:

Register output	Meaning of variable	Min / max.values 8 bit 16 bit	Calculation of the value for adjustment variables
R O 220	Adjustment step	0 5	
R O 221	Slot number of analog input	0 31	
R O 222	Input number on analog board	0 15	
R O 224	Lower adjustment value high byte	0 15 (0 4000)	500 = 1 * 256 +
R O 225	Lower adjustment value low byte	0 255	244
R O 226	Upper adjustment value high byte	0 15 (0 4000)	3500 = 13 * 256 +
R O 227	Upper adjustment value low byte	0 255	172

The initialization of adjustment step is controlled through register ouput R O 220. The permitted adjustment steps are:

Before step 1 Slot number, Input number on analog board and both calibration variable values (into R O's 224, 225, 226, 227) should be inserted

Step 1: Start adjustment

Step 2: Set the lower adjustment value for the input

Before going to step 3 the lower calibration value must be inserted

Step 3: Read the lower adjustment value

Step 4: Set the upper adjustment value for the input

Before going to step 5 the upper calibration value must be inserted

Step 5: Read the upper adjustment value

AS the result of succesful/unsuccesful adjustment of input PLC's system program writes into register output R O 220 the result value:

- 0 adjustment was succesful
- n > 5 error code
- NOTE: When calibrating at the upper and lower calibration points, be sure to allow enough time for the sensor to stabilise. (e.g. allow sensor enough time to heat up of the boiling water).

The result of adjustment is that the zero point value from the PLC's analog input corresponds the minimum value of input and high value in PLC corresponds the high value of input. The value can be seen in the PLC as a number from 0 to 4095 (as a raw value).

10.5.1 What is needed for adjustment

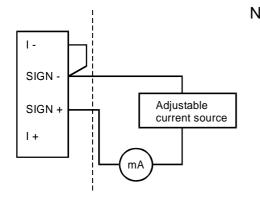
You need the ALPro or AlproWin software, a PC, an accurate mA-meter, an accurate V-meter, an adjustable resistance reference and when calibrating current inputs millamper source.

For making the readings of the analog inputs you have to use the PC and the ALPro software. For the adjustment of the analog inputs of AL2000 CPU only one instruction has to be downloaded to the PLC; the STOP instruction. Through the AlproWin watch table you can see the values of all AL2000's analog inputs.

How to read the input values using the PC and AlproWin

- 1. Connect the AL2000 to the PC and start the AlproWin software.
- 2. If you want to read inputs in values from 0 to 1000, write the following program, otherwise you see the values from 0 to 4000.

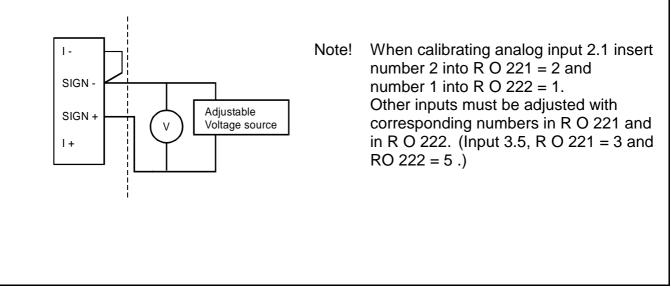
STR	W	Ι	000	This program was made for the analog input 0. If you
DIV	W	С	004	want to include all analogue inputs at once, you can
EQ	W	М	000	add similar instructions for all the rest of the
STOP)			analog inputs


- 3. Compile program by choosing **Compile** from the main menu.
- 4. Transfer the program to the PLC by choosing **Transfer project** from the **Transfer** submenu and start PLC program execution.
- 5. Choose **Watch table** from the **View** submenu, insert desired variables to watch table and start updating by choosing **Start loop** from **Loop** submenu.
- 6. Now you can see the values of the variables on watch table.
- Check that the PLC's Run led is blinking indicating normal operation.
- 7. Begin calibration procedure.

10.5.2 Current input

You need an adjustable current source and a mA meter with enough accuracy (0.1%). Connect the adjustable current source to the analogue input number 1 (terminals SIGN+, SING- and I-).

Analog input 1.0

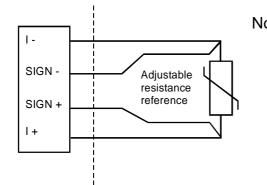


Note! When calibrating analog input 1.0 insert number 1 into R O 221 = 1 and number 0 into R O 222 = 0. Other inputs must be adjusted with corresponding numbers in R O 221 and in R O 222. (Input 0.4, R O 221 = 0 and RO 222 = 4.)

10.5.3 Voltage input

You need an adjustable voltage source and a V meter with enough accuracy (0.1%). Connect the adjustable voltage source to the analogue input (terminals SIGN+, SING- and I-).

```
Analog input 2.1
```



10.5.4 Temperature input with PT100 sensor

You need an adjustable resistance reference 0.1 ... 250 Ω with an accuracy of 0.1%. Connect the adjustable resistance in the following way to terminals I+, SIGN+, SIGN- and I-.

Analog input 2.1

Note! When calibrating analog input 2.1 insert number 2 into R O 221 = 2 and number 1 into R O 222 = 1. Other inputs must be adjusted with corresponding numbers in R O 221 and in R O 222. (Input 3.5, R O 221 = 3 and RO 222 = 5.)

The calibration of an analog input is made as follows:

- 1. Start the adjustment by setting number one (1) to R O 220. The calibration program moves to step two (2) and waits you to insert the lower calibration values into R O 224 and R O 225.
- Adjust the level of the analog signal to lower calibration value. In order to make the calibration of the Pt100 input as accurate as bossible over the measurement range, it is advisable to take the lower value about +10% higher than minimum measure value.
- 3. When the signal value corresponding to the lower calibration value can be read on AlproWin's watch table, set into R O 220 a value of three (3). Now the calibration program reads the signal value and moves to step four (4) to insertion of the upper calibration value into register outputs R O 226 and R O 227.
- 4. When the signal value corresponding to the upper calibration value can be read on ALPro's debug screen, set into R O 220 a value of five (5). Now the calibration program reads the signal value, calculates the values of the calibration parameters and saves the values to the FLASH memory. After that the calibration program informs the user if the calibration was succesful by writing into R O 220 the value zero (0), or if the result was unsuccesful the error code. From the error codes the user can check what the problem was.

The error codes for analogue input calibration are as follows:

- 027 FLASH verification error
- 028 FLASH write error
- 128 input signal low > input signal high
- 129 adjustment value low > adjustment value high
- 130 input signal high > 4000
- 140 input address too high

The Pt100 sensor is nonlinear. The following temperatures corresponds to the resistance values given in the table (DIN 43 760) below:

°C	Ω	Diff. Ω	°C	Ω	Diff. Ω	°C	Ω	Diff. Ω
-50	80.31	0.40	55	121.32	0.39	160	161.04	0.37
-45	82.29	0.40	60	123.24	0.38	165	162.90	0.37
-40	84.27	0.39	65	125.16	0.39	170	164.76	0.37
-35	86.25	0.39	70	127.07	0.38	175	166.61	0.37
-30	88.22	0.39	75	128.98	0.38	180	168.46	0.37
-25	90.19	0.39	80	130.89	0.38	185	170.31	0.37
-20	92.16	0.39	85	132.80	0.38	190	172.16	0.37
-15	94.12	0.39	90	134.79	0.38	195	174.00	0.37
-10	96.06	0.39	95	136.60	0.38	200	175.84	0.37
-5	98.04	0.39	100	138.50	0.38	205	177.68	0.37
0	100	0.39	105	140.39	0.37	210	179.51	0.37
5	101.95	0.39	110	142.29	0.39	215	181.34	0.37
10	103.90	0.39	115	144.17	0.37	220	183.17	0.37
15	105.85	0.39	120	146.06	0.38	225	184.99	0.36
20	107.79	0.39	125	147.94	0.37	230	186.82	0.37
25	109.73	0.38	130	149.82	0.37	235	188.63	0.36
30	111.67	0.39	135	151.70	0.37	240	190.45	0.36
35	113.61	0.39	140	153.58	0.38	245	192.26	0.36
40	115.54	0.39	145	155.45	0.38	250	194.07	0.36
45	117.47	0.39	150	157.31	0.37	255	195.88	0.36
50	119.40	0.39	155	159.04	0.37	260	197.69	0.36

In the following table the calibration points are calculated for the two different, standard Pt100 measurement ranges available for AL2000.

PT100:

Temp. range °C	-50 +150	-200 +730
Resolution °C	0.05	0.25
OFFSET point 10% °C OFFSET point 20% °C	-30.0	-5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	88.22 400	98.04 800
GAIN point 80% °C GAIN point 90% °C	+130.0	+544.0
Resistor value Ω Calibration constant (high)	149.82 3600	295.43 3200

On the PC you should see the following values when the adjustment is correct:

Input	OFFSET	GAIN
range	10%	90%
-50 150	400	3600

PROGRAMMING

(**Paragraph 11.1** discusses the available alternative programming methods. Since separate documentation is provided for the programming programs, they are only briefly outlined below.)

11.1 Programming methods

11.

The programming device can be any IBM compatible PC computer. The program is transferred through the programming cable to the PLC. When programming with a PC, the AIPro programming software is used. With the programming software, the PLC program can be written either in OFF LINE mode (without a PLC, for subsequent transfer) or in ON LINE mode (the program is immediately transferred to the PLC).

The AL 2000 series Programmable Logic Controller incorporates a programming port Ser1, (information on the operation of instructions and commands) and a RS-232C interface. Accordingly, the following alternative programming methods are available:

- the **ALProWin** programming software
- the **ALPro** programming software
- a PROM programmer

A complete program for the PLC can be produced using the programming software ALProWin or ALPro, which run on a personal computer. The programming software also allows for off-line programming and versatile program documentation etc.

Memories of the PLC and programs:

When a program is transferred from a programming device to the PLC, the program first goes to RAM and, after completion of the START command, to FLASH memory. When a logic program is transferred from the PLC to a programming device, the program is first stored from RAM to FLASH, and then transferred to the programming device.

The logic program is stored in a FLASH memory. When power is applied to the Programmable Logic Controller, the program is read into RAM for execution.

<u>11.1.1 Programming with a PROM programmer</u>

When a number of PLCs with identical functions are required, programming is easiest to do by duplication. First program one FLASH using one of the programming programs or a terminal and then copy the finished program into the program memories of the remaining PLCs with a FLASH programmer.

11.1.2 Programming with ALProWin/ALPro

The program, with comments, is first written in plain text form using the text editor of ALProWin. (Any other text editor producing ASCII text will do just as well.) The program is then compiled with ALProWin compiler into a form that the Programmable Logic Controller understands, stored on a diskette, and transferred into the memory of the PLC when desired.

Further features of ALProWin:

- **Macros:** Emphasizing the program structure. (Page division, writing similar program sections, etc.)
 - Windowing: Error messages easy to include in the listing file.
- **ON-LINE features** including display of variables, history display, on-line editor, etc. For example, the basic displays can be stored on disk, which facilitates the clearing of fault conditions.
- ALProWin contains HELP screens describing the functions.
- Available in Finnish and English language versions.

A free version of the program, ALProWin-demo or ALPro-demo, is also available (similar to ALProWin / ALPro proper, but the length of the program that can be written is limited) as well as a manual (ALProWin / ALPro Programming manual).

11.1.3 Fast program loop

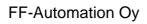
A fast program loop can be written into the Programmable Logic Controller for execution at timer interrupts, at intervals of 5 ms. The executable program of the loop starts as program line 0000 and ends at an END instruction.

When the fast program loop is in use, the PLC reads inputs 0 - 7 and writes to outputs 0 - 7 every time before executing the fast loop.

The differentiation of auxiliary memories 0 - 7 is timed by the fast loop.

The maximum permissible length of the fast loop is 62 instructions, but it is advisable to keep it as short as possible in order to avoid slowing down the main program more than necessary.

No PRT instructions are allowed in the fast loop.


CAUTION! The END instruction must not be written while program execution is in progress. The program must always be halted when instructions preceding the END instruction are deleted, added, or changed.

11.2 AL2000 variables

11.2.1 One bit variables

I NI M BM, GM NM, NB, NG O	Input, 0 - 7 off. Numbered 000007. One's complement of input. When I n=1 , NI n=0. Auxiliary memory, 256 off. Numbered 000255. Auxiliary memory, 256 off. Numbered 000255. One's complement of auxiliary memory. Output, 0 - 7 off. Numbered 000007. The unused ouputs and ouputs 008255 can also be used as one-bit auxiliary memory.
NO	One's complement of output.
SM, SB, SG, SL RM, RB, RG, RL	Conditional set of memory or output, 256 off. Used in conjunction with EQ instruction. Conditional reset of memory or output, 256 off. Used in conjunction with EQ instruction.
DP	Change of auxiliary memory from 0 to 1, 128 off. Numbered 000127.
	Compares the state of the memory to its state at the beginning of the program cycle.
DN	Change of auxiliary memory from 1 to 0, 128 off. Numbered 000127.
Р	Compares the state of the memory to its state at the beginning of the program cycle. Pulse variable. The variable is one for the duration of one program cycle, P000 ten
•	times per second, P001 once per second and P002 once per minute.
S	Sequence register or a step of a sequence register. There are 32 sequence registers,
тх	with 256 step each. String constant (0 - 255). These are text strings with a maximum length of 16 ASCII
	characters each. Used in conjunction with the PRT or EQU R TX instructions
т	Timer, 80 off. Numbered 00079. The resolution and range of
	the timers varies as follows: resolution range
	resolution range T 000003 10 ms 0,022,55 s
	T 004007 100 ms 0,225,5 s
	T 008015 1 s 2255 s
	T 016079 100 ms 0.225.5s In the IF and STEP instructions T refers to the bit accumulator.
	In the PRT instruction T refers to TEXT.
C	Counter, 16 off. Numbered from 000 to 015. The counters count down;
	their range is 2550.
	In the PRT instruction C refers to to a numerical value.
11.1.2 Register variables or 8 bit variables	
R M, GM	Register memory, 256 off. Numbered from 000 to 255.
R NM, NG R O	One's complement of register memory. Register output. Register outputs are reserved for PLC's system program.
κυ	Register outputs 0 and 1 are the analogue outputs from PLC.
R NO	One's complement of register output.
R SM, SG, SL	Conditional set of register memory or output. Used in conjunction with EQ instruction.
R RM, RG, RL R T	Conditional reset of register memory or output. Used in conjunction with EQ instruction. Register timer. Identical with the timers listed above; T or R T is used as the variable
IX I	according to the instruction. Also refers to register accumulator in some instructions.
RC	Register constant 000255 (decimal), except register counter with the READ and
0	LOAD instructions. C or R C is used as the variable according the instruction.
Q F	Queue, 4 off. Numbered from 0 to 3. The queue length can be 1 - 256. FIFO store, 8 off. Numbered from 0 to 7. The FIFO store has 256 locations.
-	

11.2.3 Word variables or 16 bit variables

W I W M	Word input, 0 - 255 off. Numbering depends on configuration. Word memory, 16384 off. Directly addressable numbered from 000 to 256. Indirectly addressable from 000 to 16384 (EQI and STI instructions).
wo	Word memories 0 to 127 overlaps with register memories 0 - 255. Word output, 4096 off. Directly addressable numbered from 000 to 256.
ii c	Indirectly addressable from 000 to 4096 (EQI and STI instructions).
W SM, SO	Conditional set of directly addressable word memory or output.
W RM, RO	Conditional reset of directly addressable word memory or output.
WТ	Word accumulator.
WC	Word constant 09999 (decimal).

NOTE! Refer to chapter 15 at the end part of this manual:

- AL2000 series PLC's memory and I/O maps
- AL2000 series PLC's data retention during power failure

11.3 Error messages

The programming software issues error messages when it encounters error conditions during programming:

ERROR 010	No AutoLog instruction on program line
ERROR 020	Instruction write to memory failed
ERROR 021	Instruction write to memory failed
ERROR 022	Instruction write to memory failed
ERROR 025	The instruction entered is not valid
ERROR 030	Variable number too large
ERROR 031	Decimal number too large
ERROR 032	Decimal number setting too high
ERROR 033	Invalid octal number
ERROR 040	Instruction not found in program by FIND
ERROR 044	Not an AutoLog 16 instruction
ERROR 050	Transfer exceeds program space
ERROR 060	Hex file read error
ERROR 080	Invalid variable (DISP)
ERROR 085	Insertion pushes program beyond 2047/4095
ERROR 090	Unidentified instruction in program at start
ERROR 091	Address of END instruction is 62 = 76 oct
ERROR 090 ERROR 091	
ERROR 092	A second END instruction in the program
ERROR 093	No STOP instruction in the program
	1 5

	Accumula [:] rd Accum			RA	Re	egister Ad	ccumulator	
vari	able num	ber		d	CO	nstant		
AND I/	m/o/ni/nm/	NO/BM/GN	//NB/NG	/DP/DN/P	n			
Operation		e bit accun and the vari		qual to the	logical	product o	f its old	
	BA	RA		WA	Va	ariable	Ĩ	
Affected	Yes	No		No	No	כ		
Example		TR ND	I NI	0.1 0.2			I 1 from card 0 is C 2 from card 0 is OF	
AND S	d							
Operation		it accumula	tor is 1 l	oforo tho i	netrue	tion and th	o current coquence	rogia
Operation							e current sequence e it is reset to 0.	eregis
	BA	RA		WA	Va	ariable	Ţ	
Affected	Yes	No		No	No)		
Example	STR	I	0.0	·If	innut	0 is 1 and	the	
	AND	S	019	;s	equen	ce register	is at step 19,	
	AND EQ	S SM	019 201	;s	equen		is at step 19,	
AND R				;s	equen	ce register	is at step 19,	
AND R Operation	EQ C d Sets th	SM	201 accumula	;s ;s	equen et mer	ce register nory 201 to	is at step 19,	and
	EQ C d Sets th	SM he register a	201 accumula - 255).	;s ;s	equen et mer	ce register nory 201 to	is at step 19, o 1.	and
	EQ C d Sets th the cor	SM ne register a nstant d (0 -	201 accumula · 255).	;s ;s ator equal te	equen et mer	ce register nory 201 to ogical prod ariable	is at step 19, o 1.	and
Operation	EQ C d Sets th the cor	SM ne register a nstant d (0 RA	201 accumula · 255).	;s ;s ator equal to WA No ;F ;	equen et mer	ce register nory 201 to ogical prod ariable	is at step 19, o 1. luct of its old value	and
Operation Affected Example	EQ C d Sets th the cor BA No STR AND	SM ne register a nstant d (0 RA Yes R M R C R M	201 accumula - 255). 3 002 015	;s ;s ator equal to WA No ;F ;	equen et mer o the lo No R M 2	ce register nory 201 to ogical prod ariable o = 100100 = 000011	is at step 19, o 1. luct of its old value	and
Operation Affected Example	EQ C d Sets th the cor BA No STR AND EQ M/O/NM/M Sets th	SM ne register a nstant d (0 RA Yes R M R C R M	201 accumula • 255). 3 002 015 006	;s ator equal to WA No ;F ; ;F	equen et mer o the lo Va No R M 2 R M 6	ce register nory 201 to ogical prod ariable = 100100 = 000011 = 000000	is at step 19, o 1. luct of its old value	
Operation Affected Example AND R	EQ C d Sets th the cor BA No STR AND EQ M/O/NM/M Sets th	SM he register a hstant d (0 - R M R C R M NO n he register a	201 accumula - 255). 	;s ator equal to WA No ;F ; ;F	equen et mer o the lo No R M 2 R M 6	ce register nory 201 to ogical prod ariable = 100100 = 000011 = 000000	is at step 19, o 1. luct of its old value 001 B 111 B 001 B	
Operation Affected Example	EQ C d Sets th the cor BA No STR AND EQ M/O/NM/M Sets th and the	SM he register a hstant d (0 - R M R C R M NO n he register a e variable.	201 accumula - 255). 	;s ator equal to WA No ;F ; ;F	equen et mer o the lo No R M 2 R M 6	ce register nory 201 to ogical prod ariable = 100100 = 00001^ = 000000 hit-by-bit log	is at step 19, o 1. luct of its old value 001 B 111 B 001 B	

Operation	Set the wo the consta			cumulator	equal to th	ne logical produ	ct of its old value and
	BA		R	A	WA	Variable	
Affected	No		N	0	Yes	No	
Example	STR AND EQ	W W W	I C M	2.3 02047 015	;	W I 2.3 W M 15	= 0000 0011 0000 1101 = 0000 0111 1111 1

AND WI/M/On

Operation Set the word accumulator equal to the logical product of its old value and variable n.

	BA		RA		WA		Variable	
Affected	No		No		Yes		No	
	STR AND EQ	W W W	l M M	2.3 014 015		;W I 2 ;W M ;W M	14	= 0000 0011 0000 1101 B = 0000 0000 0010 0110 B = 0000 0000 0000 0100 B

• BCD R T

Operation Converts the number in the register accumulator into a two-digit BCD number 00 - 99; if the number in the accumulator is greater than 99, the result is indeterminate.

	BA		RA		WA		Variable	
Affected	No		Yes		No		No	
	STR BCD	R R	M T	000		;Acc. ;now	= 0101 0 = 1000 0	(= 80 DES) (= 80 BCD)

• BCD W T

Operation Converts the number in the word accumulator into a four-digit BCD number; if the number in the accumulator is greater than 9999, the result is indeterminate.

	BA		R	A	WA		Variable
Affected	No		N	0	Yes		No
Example	STR BCD	W W	C T	04396		;W A	before = 000 after = 0100 ore (4396 DE
	EQ	W	М	000			0 = 17302 D

	BA		RA		WA		Variable	T	
Affected	No		Yes	8	No		No		
Example	STR BIN	R R	C T	148		NCC.	= 1001 = 0101		(= 94 BCD) (= 94 DES)
BIN W T	г								
Operation	contai	ned a	a four-c	ligit BCD) number be	efore		tion; if th	rmat, assuming ne accumulato
	BA		RA		WA		Variable		
Affected	No		No		Yes		No		
Example	STR BIN	W W	C T	00512	;V	VΑ	after = 000	0 0000 1	0000 0000 B 100 1000 B after 200 DEC
BIT M/O)/BM/GN	In			, к	Jeio			
	Moves that th the m Regis bit 0 bit 1 bit 2 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7	s the lea ost sig	st signi gnificai cumula	ificant bi nt bit to a ator	register acc t goes to ac address n + Variab n n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7	umu ddre · 7. le	ilator into 8 ss n, the ne	success	ive bit variable dress n + 1, etc
BIT M/O Operation Affected	Moves that th the move bit 0 bit 1 bit 2 bit 3 bit 3 bit 4 bit 5 bit 6	s the lea ost sig	st signi gnificai	ificant bi nt bit to a ator	register acc t goes to ac address n + Variab n n + 1 n + 2 n + 3 n + 4 n + 5 n + 6	umu ddre · 7. le	Ilator into 8	success	ive bit variable

• BYT I/M/O/BM/GM n

Operation	Converts 8 succ	essive variables to a byte in the register accumulator. Variable n
becomes	the least significat	nt bit and variable $n + 7$ the most significant bit.
	Variable	Register accumulator

and roade orgini	nount on and va
Variable	Register a
n	bit 0
n + 1	bit 1
n + 2	bit 2
n + 3	bit 3
n + 4	bit 4
n + 5	bit 5
n + 6	bit 6
n + 7	bit 7

	BA	RA	۱.	WA	Variable
Affected	No	Yes		No	No
Example	BYT BIN	Ι	0.00		;The time setting for ;timer 6 is read from
	STR LOAD R	NI T	0.10 006		;inputs, for example ;a thumbwheel switc

CLO R M/O n

Compares the 16-bit value in register memories RO 250 and RO 251 (RO 250 = high byte) with the variable given as the instruction parameter. The bit accumulator is reset to 0 when (RO 250, R0 251) = (R M/O n, R M/O n + 1). CAUTION: The 16-bit values compared must be in the same format, i.e. both binary or both BCD.

	BA		RA		WA		Variable	
Affected	Yes		No		No		No	
Example	CLO EQ CLO INV AND EQ	R R	M O M O O	192 0.12 194 0.12 0.12		wher the v and l clock	out 012 is turn in the clock tim ralue written in RM 193, and k time reaches en into RM 19	ne reaches nto RM 192 off when the

• CONT

Operation Terminates the skipping of instructions. (The STOP instruction also has this effect.) The first CONT instruction encountered stops the effect of all nested IF instructions.

	BA	RA	A	WA		Variable	
Affected	No	No)	No		No	
Example	IF STR EQ IF STR EQ CONT		0.00 0.01 1.01 0.02 1.03 1.04		;then ;if Inp ;then	out 000 = 1 an	nd Input 002 = 1 any case.

Operation

					ccumulator is true
	BA	RA	WA	Variab	le
Affected	No	Yes	No	No	
		ator states.	cumulators re	emain unchang	ed, so subroutine can use t
DCD R M	//O n				
Operation	between to 0. If th	0 and 7, the e variable is	e correspond greater thar	ing bit is set to 7, the register	ster accumulator. If the vari 1 and the remaining bits an accumulator is reset to 0. bit and 7 to the most signifi
	BA	RA	WA	Variab	le
Affected	No	Yes	No	No	
Example DCR Cn Operation	EQ F DCD F Value of 1 2 3 4 5 6 7 >7	R M Variable accumulator	r is 1, decren on - for exam	1 2 4 8 16 32 64 128 0	lator after DCD instruction by 1. This instruction does t ting pulses, the program m
	BA	RA	WA	Variab	le
	DA				
Affected	No	No	No	Yes	

• DEC R M/O n

Operation If the bit accumulator is 1, decrement the variable by 1 and load the value of the variable into the register accumulator. Decrementing a variable whose value is 0 gives 255. If the bit accumulator is 0, the variable is not decremented but only loaded into the register accumulator. If the variable was decremented (the bit accumulator was 1) and the result was 255 (zero minus 1), the bit accumulator is set to 1; otherwise the bit accumulator remains at 0.

							_
	BA	RA		WA	Var	iable	
Affected	Yes	Yes		No	Yes	3	
Example	STR DEC F XOR EQ	P M O O	001 112 001 001		;Decreme ;once per ;the mem ;0 to 255,	second.	Every time from

• DEC W M/O n

Operation If the bit accumulator is 1, decrement variable n by 1 and load the new value of the variable into the word accumulator. If the bit accumulator is 0, the variable is not decremented but only loaded into the word accumulator. Decrementing a variable whose value is 0 gives 65535. If the variable is decremented (the bit accumulator was 1)and the result is 65535, the bit accumulator is set to 1; otherwise the bit accumulator is reset to 0.

	BA		RA		WA		Variable	
Affected	Yes		No		Yes		Yes	
Example	STR DEC XOR EQ	W	P M O O	000 130 000 000		;10 ti ;the r	rement memo mes per seco nemory goes 65535, invert	nd. Every time from

• DIV RCd

Operation

Divide the register accumulator by the constant d. The quotient remains in the register accumulator and the remainder is stored in register output RM 244.

	-						
	BA		RA		WA		Variable
Affected	No		Yes		No		No
Example	STR DIV	R R	M C	010 006		;Acc.	10 = 15 = 2 244 = 3

● DIV R M/O n

Operation	Divide the register accumulator by the variable n. The quotient remains in the
	register accumulator and the remainder is stored in register output RM 244.

	BA		RA		WA	Variable
Affected	No		Yes		No	No
Example	STR DIV	R R	M O	100 000		

DIV W I/M/O n

Operation Divide the word accumulator by the variable n. The quotient remains in the word accumulator and the remainder is stored in register outputs RO 230,231 (MSB/LSB).

	BA		RA		WA	Variable	Ĩ
Affected	No		No		Yes	No	
Example	STR DIV EQ STR EQ STR EQ STR EQ	W W W R R R W W	M I M O M O M M M	025 010 230 230 231 231 115 011		It is in word a	

DIV WCd

Operation Divide the word accumulator by the constant d. The quotient remains in the word accumulator and the remainder is stored in register outputs RO 230,231 (MSB/LSB).

	BA		R	A	WA	Variable
Affected	No		N	D	Yes	No
Example	STR DIV	W W	M C	025 01040		

END

Operation Last instruction of the fast program loop. CAUTION: The END instruction must not be written while the program is being executed. The program execution must always be suspended if any of the instructions preceding the END instruction are removed, added, or altered.

	BA	RA		WA		Variable	
Affected	No	No		No		No	
Example	STR EQ END STR	NO O	000 000		;This	0 Hz oscillato loop runs eve regular progra	

EQ	M/O	/BM/GM	n				
Operati	on	Sets th	ie variable e	equal to	the con	tents of	f the bit accu
		BA	RA		WA		Variable
Affecte	b	No	No		No		Yes
Exampl	e	STR EQ	l O	1.00 0.00		;Outp ;follov	out 0 ws input 0.
EQ	SM/	SO/SB/S	Gn				
Operati	on		it accumula it accumula				e to 1;
		BA	RA		WA		Variable
Affecte	b	No	No		No		Yes
Exampl	e	STR EQ	l SO	1.00 0.00			t 0 sets ut 10 to 1.
EQ	RM/	'RO/RB/F	RG n				
Operati	on		it accumula it accumula				ble to 0;
		BA	RA		WA		Variable
Affecte	b	No	No		No		Yes
Exampl	е	STR EQ	l RO	1.00 0.00			t I 0.00 resets ut O 1.00.
EQ	RM	//O n					
Operati	on	Sets th	ie variable e	equal to	the con	tents of	f the register
		BA	RA		WA		Variable
Affecte	b	No	No		No		Yes
Exampl	e	STR EQ	R C R M	085 211			stant 85 load ster memory 2
EQ	RF	RM/RO n					
Operati	on		it accumula it accumula				ble to 0;
		BA	RA		WA		Variable
Affecte	b	No	No		No		Yes
Exampl	е	STR EQ STR EQ	R C R M I R RM	123 100 010 100		regis; is se;	out 10 = 1, ster memory ⁻ st to 0, rwise 123.

• EQ R SM/SO n

Operation If the bit accumulator is 1, set the variable equal to the contents of the register accumulator; if the bit accumulator is 0, do nothing.

	BA		RA		WA	Variable
Affected	No		No		No	Yes
Example	STR EQ STR STR EQ	R R R R	C M C I SM	123 100 200 0.01 100		;lf input I1 = 1, ;register memory 10 ;otherwise register ;memory 100 = 123.

EQ WM/On

Operation Set the variable equal to the contents of the word accumulator.

	BA		RA		WA	Variable	l
Affected	No		No		No	Yes	
Example	STR EQ	W W	I M	2.00 003		d memory 3 ws analog inp	out 0

EQ WRM/ROn

Operation If the bit accumulator is 1, reset the variable to 0; if the bit accumulator is 0, do nothing.

	BA		R	A	WA		Variable
Affected	No		N	0	No		Yes
Example	STR EQ STR EQ	W W W	C M I RM	03000 130 0.04 130		;word ;is se	out 1004 = 1, 1 memory 130 tt to 0, rwise 3000.

EQ W SM/SO n

Operation If the bit accumulator is 1, set variable n equal to the contents of the word accumulator; if the bit accumulator is 0, do nothing.

	BA		R	A	WA		Variable	
Affected	No		N	0	No		Yes	
Example	STR EQ STR STR EQ	W W W	C M C I SM	04500 130 05000 0.04 130		;word ;othe	out 1004 = 1, d memory 130 rwise word nory 130 = 45	

Page 11 - 14

EQI N	/O/BM/GM	I							
Operation							it output/men it variable to l		
	BA		RA		WA		Variable]	
Affected	No		No		No		Yes		
Example	STR EQI	R	C O	008			ram sets the output 8.	state of bit accu	mulator
EQI R	M/O n								
Operation							lator into the truction parar	variable whose a neter	address is
	BA		RA		WA		Variable		
Affected	No		No		No		Yes		
Example	STR EQ STR EQ STR INC	R R R	C M M DP M	001 000 0.01 1 1 000		;R M ;take ;from ;ever ;Incre	posite deriva input 0 y time input g ement pointer	oes active	
	STR EQI	R R	O M	252 000		;save ;Seco	onds into mer	mory 2	
EQI V Operation	EQI / M/O n Loads	R	M	000 of the v		Seco; sumulat	onds into mer	nory 2 riable whose ado ble addresses are	
	EQI / M/O n Loads value ables	R the of the	M content e variab	000 of the v le giver	n as the	Seco; Seco cumulat	onds into mer or into the va tion. Accessit	riable whose add	e W M vari-
Operation	EQI / M/O n Loads value ables BA	R the of the	M content e variab 16383, \ RA	000 of the v le giver	n as the riables (WA	Seco; Seco cumulat	onds into mer for into the va tion. Accessit 95 (check fror Variable	riable whose add	e W M vari-
	EQI / M/O n Loads value ables	R the of the	M content e variab 16383, \	000 of the v le giver	n as the riables (Seco; Seco cumulat	onds into mer tor into the va tion. Accessit 95 (check fror	riable whose add	e W M vari-
Operation	EQI / M/O n Loads value ables BA	R the of the	M content e variab 16383, \ RA	000 of the v le giver	n as the riables (WA	;Seco cumulat instruct) to 409	onds into mer for into the va tion. Accessit 95 (check fror Variable	riable whose add	e W M vari-
Operation Affected	EQI / M/O n Loads value ables BA No STR	R of the of the 0 to W	M content e variab 16383, V RA No C	000 of the v le giver V O va 11	n as the riables (WA	;Seco cumulat instruc) to 409 ; Initia ;Loao	onds into mer tor into the va tion. Accessit 25 (check fror Variable Yes alize pointer thour & minu	riable whose add ble addresses ar n memory tables	e W M vari- ;)
Operation Affected Example	EQI / M/O n Loads value ables BA No STR EQ STR	R of the of the 0 to W W W W	M content e variab 16383, V RA No C M M M	000 of the v le giver V O va 11 000 125	n as the riables (WA	;Seco cumulat instruc) to 409 ; Initia ;Loao	onds into mer tor into the va tion. Accessit 25 (check fror Variable Yes alize pointer thour & minu	riable whose add ole addresses are n memory tables	e W M vari- ;)
Operation Affected Example	EQI / M/O n Loads value ables BA No STR EQ STR EQI C d If the o	R the of the 0 to 1 W W W W W W W W	M content e variab 16383, V RA No C M M M	000 of the v le giver V O va 11 000 125 000 equal t	n as the riables (WA No	;Seco cumulat instruct) to 409 ; Initia ;Load ;value gister a	onds into mer tor into the va tion. Accessit 25 (check fror Variable Yes alize pointer d hour & minu e of word acc	riable whose add ole addresses are n memory tables	e W M vari-
Operation Affected Example	EQI / M/O n Loads value ables BA No STR EQ STR EQI C d If the o	R the of the 0 to 1 W W W W W W W W	M content e variab 16383, V RA No C M M M	000 of the v le giver V O va 11 000 125 000 equal t	n as the riables (WA No	;Seco cumulat instruct) to 409 ; Initia ;Load ;value gister a	onds into mer tor into the va tion. Accessit 25 (check fror Variable Yes alize pointer d hour & minu e of word acc	riable whose add ole addresses are n memory tables	e W M vari-
Operation Affected Example	EQI / M/O n Loads value ables BA No STR EQ STR EQI C d If the of if uneo	R the of the 0 to 1 W W W W W W W W	M content e variab 16383, V RA No C M M M tant d is the bit a	000 of the v le giver V O va 11 000 125 000 equal t	to the re	;Seco cumulat instruct) to 409 ; Initia ;Load ;value gister a	onds into mer tor into the va tion. Accessit 95 (check fror Variable Yes alize pointer d hour & minu e of word acc accumulator, f 0.	riable whose add ole addresses are n memory tables	e W M vari- emory 11

٠	EQU	RN	I/O n					
	Operatior	١					register accu is reset to 0.	imulator, the bit accumulator
			BA	RA	WA		Variable	
	Affected		Yes	No	No		No	
	Example		STR R EQU R EQ	M (001 002 .00	;are e	mories 1 and qual, ut 0 is 1.	2
•	EQU	RТ	X n					
	Operation	ו	tical text st transferred found. If the becomes ze characters.	ring is fou BCD num e characte ero. Into th The FIFC	und, the bit a ber which is ers don't repro- ne word accu) number to b	formed sent a mulato	lator is set to from the nex BCD number r is transferre pared is giver	and in given FIFO n. If an iden- 1. Into register accumulator is at two characters after the string r, the register accumulator d the ASCII codes of the former in register accumulator.
			BA	RA	WA		Variable	
	Affected		Yes	Yes	Yes		No	
	Example		STR EQ R I EQ W I STR R EQU R EQ R EQ R EQ W	RM (RM (C (TX (SM (SM (001 024 025 005 024 024 024 025	; rese ; rese ; Com ; inclu ; Save ; num	e the result to ber into R M	
•	EQU Operatior		set to 1; if u	•	ne bit accum			ulator, the bit accumulator is
			BA	RA	WA		Variable	
	Affected		Yes	No	No		No	
	Example		STR W EQU W EQ	M	000 037 0.08	;equa	rd memory 3 Is 3000, ut 8 is on.	7
٠	EQU	wc	d					
	Operation	n					n the word ac r is reset to 0.	cumulator, the bit accumulator
			BA	RA	WA		Variable	
	Affected		Yes	No	No		No]
	Example		STR W EQU W EQ EQU W EQ	C 01 O 0 C 02	001 000 0.01 000 0.01		e may be sev essive compa	

Operation If the bit accumulator is true, the FCN instruction executes one of the following functions. After successful execution of the instruction the bit accumulator is tru An undefined function call or illegal calculation parameter(s) may cause bit accumulator to reset. CAUTION! The FCN instruction must not be used in the fast program loop Affected BA RA WA Variable Yes No Yes No Affected Yes No Yes No n selects the function for execution calculationtime 0 = logarithm a. 13 ms 1 = natural logarithm a. 12 ms 2 = sqrt (square) a. 7 ms 8 = percent 10 = scaling of word variable a. 8 ms output: sign, integer and decimal part 24 = Send modbus message 30 = write to 1 ² C channel 31 = read from 1 ² C channel 31 = read serial number from lbutton Before calling the FCN instruction the variables content, which is to be scaled, mus be written to word accumulator. After execution of FCN instruction the result of calculation is in word acc. 0 log 65535= 4.8164, in word acc. is 48164 1 In 65535= 255.99, in word acc. is 25599 8 %, value in WA, number in RA = percent value, after execution the result	Onaroti	20	lf tha hit a		o truco the Fr		woouton one of the falloude -
Affected Yes No n selects the function for execution calculationtime 0 = logarithm a. 13 ms 1 = natural logarithm a. 13 ms 1 = natural logarithm 2 = sqrt (square) a. 7 ms 8 = percent 10 = scaling of word variable a. 7 ms 1 = scaling of word variable a. 8 ms output: sign, integer and decimal part 24 = Send modbus message 30 = write to 1 ² C channel 32 = read from 1 ² C channel 32 = read serial number from Ibutton Before calling the FCN instruction the variables content, which is to be scaled, must be written to word accumulator. After execution of FCN instruction the result of calculation is in word accumulator. The resolution of the result depends on the used function. 0 log 65535= 4.8164, in word acc. is 48164 1 In 65535= 11.090, in word acc. is 11090 2 sqrt 65535= 255.99, in word acc. is 25599 8 %, value in WA, number in RA = percent value, after execution the result	Operation	on	functions. An undefin	After succes ed function or to reset.	sful executio call or illegal	on of the instruc calculation par	ction the bit accumulator is true rameter(s) may cause bit
n selects the function for execution calculationtime 0 = logarithm a. 13 ms 1 = natural logarithm a. 12 ms 2 = sqrt (square) a. 7 ms 8 = percent 10 = scaling of word variable a. 7 ms 11 = scaling of word variable a. 8 ms output: sign, integer and decimal part 24 = Send modbus message 30 = write to 1 ² C channel 31 = read from 1 ² C channel 32 = read serial number from Ibutton Before calling the FCN instruction the variables content, which is to be scaled, must be written to word accumulator. After execution of FCN instruction the result of calculation is in word accumulator. The resolution of the result depends on the used function. 0 log 65535= 4.8164, in word acc. is 48164 1 ln 65535= 11.090, in word acc. is 25599 8 %, value in WA, number in RA = percent value, after execution the result			ВА	RA	WA	Variable	
 0 = logarithm a. 13 ms 1 = natural logarithm a. 12 ms 2 = sqrt (square) a. 7 ms 8 = percent 10 = scaling of word variable a. 7 ms 11 = scaling of word variable a. 8 ms output: sign, integer and decimal part 24 = Send modbus message 30 = write to 1²C channel 31 = read from 1²C channel 32 = read serial number from Ibutton Before calling the FCN instruction the variables content, which is to be scaled, must be written to word accumulator. After execution of FCN instruction the result of calculation is in word accumulator. The resolution of the result depends on the used function. 0 log 65535= 4.8164, in word acc. is 48164 1 ln 65535= 11.090, in word acc. is 25599 8 %, value in WA, number in RA = percent value, after execution the result	Affected		Yes	No	Yes	No	
is in word accumulator (WA * RA)/100		be ca us 0 1 2	$\begin{array}{llllllllllllllllllllllllllllllllllll$	rithm (square) cent ing of word ing of word out: sign, inte modbus me to I^2C chann from I^2C ch	n variable a. 7 variable a. 8 eger and dec essage lel innel er from Ibutto struction the ulator. After e umulator. The word acc. is word acc. is word acc. is er in RA = pe	a. 13 ms a. 12 ms a. 7 ms ms imal part wariables conte execution of FC e resolution of t 48164 11090 25599 ercent value, af	ent, which is to be scaled, mus N instruction the result of the result depends on the
W M 102 = low range scaled output (eg. 10 (°C))			W M	103 = hig	h range scal	ed output (eg. [.]	115 (°C))

Example	STR W C 0800 EQ W M 100 STR W C 4095 EQ W M 101 STR W C 0000 EQ W M 102 STR W C 1000 EQ W M 103 STR R C 100 STR W I 0.01 STR C 001 STR C 001 STR C 010 STR C 010 STR M 200 STOP STOP STO	 ; low limit of input (4 - 20 mA) ; wanted output 0 - 1000 (tenths of percent) ; high limit of input ; low limit of output ; high limit of output ; parameters start address to RA ; word input to be scaled into WA ; set bit accumulator to 1 ; call scaling function ; save the result to WM 200
• FCN	11 Scaling, returns sign, integ	er- and decimat part
Example	that points to the scaling paramet 32768 points to W O area. The ran The order of scaling parameters i W M 100 = low limit of me W M 101 = high limit of me W M 102 = low range sca	easured input (0 4095) easured input (0 4095) led output (eg. 10 (°C)) aled output (eg. 115 (°C)) ue (input data) : 04 (input data)
	STR R C 099 STR W I 0.01 STR C 001 FCN 011 STOP	; Initial pointer 1 points to W M 099 ; word input to be scaled into WA ; set bit accumulator to 1 ; call scaling function

FCN 24 Launch modbus message to serial channel Command is executed only if Bit accu equals 1 before instruction. Function parameters are defined in word memories. Register accu must hold the address of the first parameter before FCN instruction Parameters: 1st parameter:Serial Channel (1= Ser1, 2=Ser2, 3 = Ser3) 2nd parameter:Message number (0..511) Execution time is about 0.03 ms FNC 24 checks the parameter values and if parameters are OK it will add the message number to the first place in message queue and returns with bit accu set to 1. If either parameter is not good, FCN will return with bit accu set to 0. If message already exists in message queue, the previous message request will be re moved from message list. If current "transfer in progress" is the same message as requested message, request is ignored. Function will however return 1. Example 1 Send message every time input goes actice Parameters: W 010 ;Serial channel 3 Μ :3 W 011 :10 ;message number Μ STR Program: 0.0 EQ Μ 000 STR DP 000 ; On positive derivation STR R 010 ; Get parameters from W M 10-> С FCN 024 INV EQ SM ERROR STOP

• FCN 32 Read Ibutton serialcode

This command is used to read serial code from IButton device connected into Autolog PLC's I2C channel. Command is executed only if Bit accu equals 1 before instruction. Function parameter is defined in register accu. Register accu must hold the address of the 1st byte save location

Execution time is 1.4 ms

If there is no ibutton connected to PLC, command returns bit accu = 0 and register accu = 0. If there is iButton connected but CRC does not match, bit accu = 0 and register accu <> 0. If there is lbutton connected and it was successfully read, bit accu = 1 and register accu = 0.

Example 1		arv 1 c	econd		
Check for i Program:	Button eve STR STR FCN IF STR EQU EQ STR EQ AND EQ Etc. CONT	ery 1 s R R R R R	econd P C T M M M M M M M	001 000 032 000 100 000 001 101 000 000	; serial code saved into R M 0 -> ; check for ibutton ; if ibutton was attached to PLC and ; data was succesfully read ; make comparison ; device code ; result to memory 0 ; 1 st data byte

Program:	STR STR	R	C P	000 001	;parameters from R M 000 -> ;every second
	IF		T		;parametrit alkaen R M 10 ->
	FCN EQ		0	032 005	;Read possible Ibutton ;set output 5 active
	CONT		Ŭ	000	
• FCN 30	and FCI	N 31	1	I ² C Write (FCN	30) & read (FCN31) functions
These co PLC's I ² C			used t	to communicate	with external I ² C devices connected into Autol
			only i	f Bit accu equals	s 1 before instruction.
					mories. Register accu must e FCN instruction
Paramete	ers: 1 [°]	st par	amete	er: Slave address	6
	2' 3'		ramete	er: Byte count er: Data 0	
			amete	er: Data o er: Data n	
	n	pui			
Execution					
Executior					
For read	n time is function	abou (FCN	ıt 0.1 r N 31), ∣	ns /byte last byte is alway	ys read without ACK.
For read	n time is function	abou (FCN	ıt 0.1 r N 31), ∣	ns /byte	
For read t Read byte When you	n time is function es are st u wish to	abou (FCN ored	it 0.1 r N 31), I right a nect I2	ns /byte last byte is alway after parameter " 2C devices to PL	byte count " .C, refer always to specification
For read t Read byte When you provided	n time is function es are st u wish to by the de	abou (FCN ored o coni evice	ut 0.1 r N 31), I right a nect I2 manu	ns /byte last byte is alway after parameter " 2C devices to PL ıfacturer.(device	byte count "
For read f Read byte When you provided Also mak	n time is function es are st u wish to by the de e shore	abou (FCN ored coni evice that t	It 0.1 r I 31), I right a nect I2 manu here a	ns /byte last byte is alway after parameter " 2C devices to PL ıfacturer.(device	byte count " .C, refer always to specification address, READ/WRITE operations etc.)
For read to Read byte When you provided Also mak Example 1	n time is function es are st u wish to by the de e shore	abou (FCN ored coni evice that t	It 0.1 r I 31), I right a nect I2 manu here a	ns /byte last byte is alway after parameter " 2C devices to PL ufacturer.(device are no duplicated	byte count " .C, refer always to specification address, READ/WRITE operations etc.)
For read to Read byte When you provided Also mak Example 1	n time is function es are st u wish to by the de e shore	abou (FCN ored coni evice that t Outp R R	It 0.1 r right a nect I2 manu here a uts eve M M	ns /byte last byte is alway after parameter " 2C devices to PL lfacturer.(device are no duplicated ery 1 second 010 : 4Ch 011 : 1	byte count " .C, refer always to specification address, READ/WRITE operations etc.) device addresses in I ² C-channel. ; I2C I/O.board address ; byte count
For read to Read byte When you provided Also mak Example 1 Parameters:	n time is function es are st u wish to by the de e shore Write o	abou (FCN ored coni evice that t Outp R	It 0.1 r I 31), I right a nect I2 manu here a uts eve M	ns /byte last byte is alway after parameter " 2C devices to PL ufacturer.(device are no duplicated ery 1 second 010 : 4Ch	byte count " .C, refer always to specification address, READ/WRITE operations etc.) device addresses in I ² C-channel. ; I2C I/O.board address
For read to Read byte When you provided Also mak Example 1	time is function es are st u wish to by the do e shore Write of STR STR	abou (FCN ored coni evice that t Outp R R	It 0.1 r right a nect I2 manu here a uts eve M M M	ns /byte last byte is alway after parameter " 2C devices to PL lfacturer.(device are no duplicated ery 1 second 010 : 4Ch 011 : 1 012 : 0Fh 001 010	byte count " C, refer always to specification address, READ/WRITE operations etc.) d device addresses in I ² C-channel. ; I2C I/O.board address ; byte count ; output data. ; parameters R M 10 ->
For read to Read byte When you provided Also mak Example 1 Parameters:	n time is function es are st u wish to by the do e shore Write o STR	abou (FCN ored o coni evice that t Outp R R R R	It 0.1 r right a nect I2 manu here a uts evo M M M P	ns /byte last byte is alway after parameter " 2C devices to PL lfacturer.(device are no duplicated ery 1 second 010 : 4Ch 011 : 1 012 : 0Fh 001	byte count " C, refer always to specification address, READ/WRITE operations etc.) d device addresses in I ² C-channel. ; I2C I/O.board address ; byte count ; output data.
For read f Read byte When you provided Also mak Example 1 Parameters:	time is function es are st u wish to by the do e shore Write of STR STR	abou (FCN ored oconi evice that t Outp R R R R R	It 0.1 r right a nect I2 manu here a uts eve M M P C	ns /byte last byte is alway after parameter " 2C devices to PL lfacturer.(device are no duplicated ery 1 second 010 : 4Ch 011 : 1 012 : 0Fh 001 010	byte count " C, refer always to specification address, READ/WRITE operations etc.) d device addresses in I ² C-channel. ; I2C I/O.board address ; byte count ; output data. ; parameters R M 10 ->
For read to Read byte When you provided Also mak Example 1 Parameters: Program: Example 2	time is function es are st u wish to by the de e shore Write of STR STR STR FCN	abou (FCN ored o coni evice that t Outpo R R R R R R R R	It 0.1 r right a nect I2 manu here a uts eve M M P C ad	ns /byte last byte is alway after parameter " 2C devices to PL facturer.(device are no duplicated ery 1 second 010 : 4Ch 011 : 1 012 : 0Fh 001 010 030	byte count " C, refer always to specification address, READ/WRITE operations etc.) d device addresses in I ² C-channel. ; I2C I/O.board address ; byte count ; output data. ; parameters R M 10 ->
For read to Read byte When you provided Also mak Example 1 Parameters: Program: Example 2	time is function es are st u wish to by the de e shore Write of STR STR STR FCN	abou (FCN ored o coni evice that t Outpo R R R R R R R R	It 0.1 r right a nect I2 manu here a uts evo M M P C ad M	ns /byte last byte is alway after parameter " 2C devices to PL ifacturer.(device are no duplicated ery 1 second 010 : 4Ch 011 : 1 012 : 0Fh 001 010 030	 byte count " C, refer always to specification address, READ/WRITE operations etc.) device addresses in I²C-channel. ; I2C I/O.board address ; byte count ; output data. ; parameters R M 10 -> ; Write
For read to Read byte When you provided Also mak Example 1 Parameters: Program: Example 2 Parameters:	time is function es are st u wish to by the do e shore Write of STR FCN Read I STR	abou (FCN ored o coni evice that t Outpo R R R R R R R R	It 0.1 r right a nect I2 manu here a uts eve M M P C ad	ns /byte last byte is alway after parameter " 2C devices to PL ifacturer.(device are no duplicated ery 1 second 010 : 4Ch 011 : 1 012 : 0Fh 001 010 030 020 : 40h 021 : 1 022 020	byte count " .C, refer always to specification address, READ/WRITE operations etc.) d device addresses in I ² C-channel. ; I2C I/O.board address ; byte count ; output data. ; parameters R M 10 -> ; Write
For read t Read byte When you provided	time is function es are st u wish to by the do e shore Write of STR STR FCN Read I	abou (FCN ored o coni evice that t Outp R R R R R R R R R R	It 0.1 r right a nect I2 manu here a uts evo M M P C ad M M M M	ns /byte last byte is alway after parameter " 2C devices to PL ifacturer.(device are no duplicated ery 1 second 010 : 4Ch 011 : 1 012 : 0Fh 001 010 030 020 : 40h 021 : 1 022	 byte count " C, refer always to specification address, READ/WRITE operations etc.) device addresses in I²C-channel. ; I2C I/O.board address ; byte count ; output data. ; parameters R M 10 -> ; Write ; AL1093 keypad address ; keypad data

Example 3	Read (Clock	8583			
Parameters: Program:	STR STR FCN STR	RRRRRRRRR R R	M M M M M M M M M P C C	010 011 012 013 014 015 016 017 018 019 020 001 010 030 013	: A0h : 1 : 1 : A0h : 6	; Base address ;byte count ;data address ;Base address ;byte count : clock data: hundredth of a second : clock data: seconds : clock data: minutes : clock data: hours, : clock data: hours, : clock data: year/date : clock data: weekday/month ;parameters from R M 010 -> ;initialize read address ;parameters for read fcn
	FCN			031		;read only if FCN 30 was successful.

• FCN 32 Read Ibutton serialcode

This command is used to read serial code from IButton device connected into Autolog PLC's I²C channel.

Command is executed only if Bit accu equals 1 before instruction. Function parameter is defined in register accu. Register accu must hold the address of the 1st byte save location

Execution time is 1.4 ms

If iButton is not connected to PLC, command retuns BA = 0 and RA = 0. If iButton is connected but CRC does not match, BA = 0 and RA <> 0. If iButton is connected and it was successfully read, BA = 1 and RA = 0.

Example 1 Read iButton once in a second

Program:	STR STR FCN IF	R	P C T	001 000 032	; serial code saved into R M 0 -> ; check for ibutton ; if ibutton was attached to PLC and data ; was succesfully read
	STR	R	Μ	000	; make comparison
	EQU	R	М	100	; device code
	EQ		Μ	000	; result to memory 0
	STR	R	Μ	001	; 1 st data byte
	EQ	R	Μ	101	
	AND		Μ	000	
	EQ		Μ	000	
	Etc. CONT				

Example 2Check for iButton every 1 second

Program:	STR STR IF	R	C P T	000 001	; parameters from R M 000 -> ; every second ; parametrit alkaen R M 10 ->
	FCN EQ CONT		0	032 005	; Read possible lbutton ; set output 5 active

• FIN Fn

Operation	If the bit accumulator is 1, move the contents of the register accumulator into FIFO store n (0 - 7). If there was room in the FIFO, set the bit accumulator to 1, if not,
	clear the bit accumulator to 0.

	BA		RA		WA		Variable	
Affected	Yes		No		No		Yes	
Example	STR		Ι	0.00		;At th	e rising edge	of input 0
	EQ		Μ	000				
	STR		DP	000				
	STR	R	С	012		;ente	r the number	12
	FIN		F	000		;into	FIFO 0.	

• FOU F n

Operation If the bit accumulator is 1, move the "oldest" number in FIFO store n (0 - 7) into the register accumulator. If a number was available in the FIFO, set the bit accumulator to 1, if not, clear the bit accumulator to 0.

					,	
	BA		RA	A	WA	Variable
Affected	Yes		Ye	S	No	Yes
Example	STR EQ STR STR FIN FIN FOU	R R	I M DP C F C F F	0.00 000 024 000 034 000 000		;At the rising edge of input 0 ;enter the number 24 ;into FIFO 0, ;enter the number 34 ;into FIFO 0, move the number ;24 from FIFO 0 into the register acc.

GRT R C d

Operation If the constant d is greater than the register accumulator, the bit accumulator is set to 1; otherwise the bit accumulator is reset to 0.

	BA		RA		WA		Variable	
Affected	Yes		No		No		No	
	STR GRT EQ GRT EQ	R R R	0 0 0 0 0 0	001 100 0.00 200 1.02		;is les ;outp ;Whe	en register out ss than 100 ut 1 is on. en RI 1 is less ut 2 is on.	

GRT R M/On

Operation If variable n is greater than the register accumulator, the bit accumulator is set to 1; otherwise the bit accumulator is reset to 0.

	BA		RA	4	WA		Variable
Affected	Yes		No)	No		No
Example	STR GRT EQ	R R	C M O	100 000 0.00		;is gr	en register me eater than 10 ut 0 is 1.

● GRT WCd

Operation If the constant d is greater than the number in the word accumulator, the bit accumulator is set to 1; otherwise the bit accumulator is reset to 0.

	BA		R	A	WA		Variable	
Affected	Yes		Ν	0	No		No]
	STR GRT EQ GRT EQ	W W W	М С О С О О	001 04009 1.02 01050 1.03		is les; outp; whei;	en word memo ss than 4009, ut 002 is on; n WM 1 is les ut 003 is on.	

GRT WI/M/On

Operation

If variable n is greater than the number in the word accumulator, the bit accumulator is set to 1; otherwise the bit accumulator is reset to 0.

	BA		R	A	WA		Variable	
Affected	Yes		N	0	No		No	
Example	STR GRT EQ	W W	C 0	00500 0.02 1.33		;is gr	en analog inpu eater than 50 ut 33 is on.	

IF T

Operation If the bit accumulator is 0, subsequent instructions up to the CONT instruction are skipped; if the bit accumulator is 1, the instructions are executed. Further IF instructions can be placed between the IF and CONT instructions. The effect of all IF instructions ceases at the first CONT instruction encountered.

	BA	RA		WA		Variable
Affected	No	No		No		No
	STR IF STR EQ CONT	I T I O	0.10 0.01 1.01		;thes	out 10 = 0, e instructions wi be executed

● IF

I/M/O/NI/NM/NO/DP/DN/BM/GM/NB/NG/P n

Operation If the variable is 0, subsequent instructions up to the CONT instruction are skipped; if the variable is 1, the instructions are executed. Further IF instructions can be placed between the IF and CONT instructions. The effect of all IF instructions ceases at the first CONT instruction encountered.

	BA	RA		WA		Variable	
Affected	No	No		No		No	
	IF STR EQ CONT	DP I SM	077 0.00 1.01		;from	en memory 77 0 to 1, these executed	

Operation	otherwis	e executions can b	on contir e placed	nues from I between	n the r n the II	next CONT in	ent instructions are exect struction. Further IF instructions. The effect icountered.
	BA	RA		WA		Variable]
Affected	No	No		No		No	
Example	STR IF STR EQ CONT	R S S NO O	003 098 1.31 1.31		;is at	n the sequen step 98, t output 71.	nce register
INC R	M/O n						
Operation	new valu reset to of the va	ue is 0 and 0. If the b ariable is l	d the bit it accum oaded in	accumula ulator wa ito the reg	ator is as 0, th	set to 1; othe ne variable is accumulator.	. If the variable was 255 erwise the bit accumula not incremented. The v
	BA	RA		WA		Variable	-
				No		Yes	
	Yes STR	Yes P	001		;Incre	ement registe	L r memory 0 once per s
Affected Example INC W Operation	STR INC M/O n If the bit into the accumu	P R M accumula word accu lator is se	001 000 ator is 1, umulator t to 1; ot	add 1 to . If the va herwise t	variat ariable he bit	ble n and load was 65535, accumulator	I or memory 0 once per so d the new value of the w the new value is 0 and is 0. If the bit accumula l into the word accumul
Example INC W	STR INC M/O n If the bit into the accumu	P R M accumula word accu lator is se	001 000 ator is 1, umulator t to 1; ot e is not i	add 1 to . If the va herwise t	variat ariable he bit	ble n and load was 65535, accumulator	d the new value of the v the new value is 0 and is 0. If the bit accumula
Example INC W	STR INC M/O n If the bit into the accumu was 0, th	P R M accumula word accu lator is se he variable	001 000 ator is 1, umulator t to 1; ot e is not i	add 1 to . If the va herwise t ncremen	variat ariable he bit	ble n and load was 65535, accumulator it only loaded	d the new value of the v the new value is 0 and is 0. If the bit accumula
Example INC W Operation	STR INC M/O n If the bit into the accumu was 0, th BA Yes STR	P R M accumula word accu lator is se he variable RA	001 000 ator is 1, umulator t to 1; ot e is not i	add 1 to . If the va herwise t ncremen WA	variat ariable he bit ted bu ;Incre	ole n and load was 65535, accumulator it only loaded Variable	d the new value of the w the new value is 0 and is 0. If the bit accumula into the word accumul
Example INC W Operation Affected Example	STR INC M/O n If the bit into the accumu was 0, th BA Yes STR	P R M accumula word accu lator is se he variable RA No P	001 000 ator is 1, umulator t to 1; ot e is not i 001	add 1 to . If the va herwise t ncremen WA	variat ariable he bit ted bu ;Incre	ole n and load was 65535, accumulator it only loaded Variable Yes ement word m	d the new value of the w the new value is 0 and is 0. If the bit accumula into the word accumul
Example INC W Operation Affected	STR INC M/O n If the bit into the accumu was 0, th BA Yes STR INC	P R M accumula word accu lator is se he variable RA No P W M	001 000 ator is 1, umulator t to 1; ot e is not i 001 003	add 1 to . If the va herwise t ncremen WA Yes	variat ariable he bit ted bu ;Incre ;once	ole n and load was 65535, accumulator it only loaded Variable Yes ement word m	d the new value of the w the new value is 0 and is 0. If the bit accumula into the word accumul
Example INC W Operation Affected Example INV	STR INC M/O n If the bit into the accumu was 0, th BA Yes STR INC	P R M accumula word accu lator is se he variable RA No P W M	001 000 ator is 1, umulator t to 1; ot e is not i 001 003 ccumula	add 1 to . If the va herwise t ncremen WA Yes	variat ariable he bit ted bu ;Incre ;once	ole n and load was 65535, accumulator it only loaded Variable Yes ement word m per second.	d the new value of the w the new value is 0 and is 0. If the bit accumula into the word accumul
Example INC W Operation Affected Example INV	STR INC M/O n If the bit into the accumu was 0, th BA Yes STR INC N Change	P R M accumula word accu lator is se he variable RA No P W M	001 000 ator is 1, umulator t to 1; ot e is not i 001 003 ccumula	add 1 to . If the va herwise t ncremen WA Yes	variat ariable he bit ted bu ;Incre ;once	ole n and load was 65535, accumulator it only loaded Variable Yes ement word m per second.	d the new value of the w the new value is 0 and is 0. If the bit accumula into the word accumul

• LES RCd

Operation					an the regi ator is rese		r, the bit accumulator is set to 1;
	BA		RA	4	WA	Variable	7
Affected	Yes		No)	No	No	
Example	STR LES EQ	R R	O C M	001 145 000		When register o is between 146 a	•
	GRT AND EQ	R	C M O	155 000 1.02	;	output 2 is 1.	

● LES R M/On

Operation If variable n is less than the register accumulator, the bit accumulator is set to 1; otherwise the bit accumulator is reset to 0.

	BA		RA	٩	WA		Variable
Affected	Yes		No)	No		No
	STR LES EQ	R R	0 M 0	001 002 1.00		;is le	en register me ss than registe ut 0 is 1.

● LES WCd

Operation If the constant d is less than the number in the word accumulator, the bit accumulator is set to 1; otherwise the bit accumulator is reset to 0.

	BA		RA		WA		Variable	
Affected	Yes		No		No		No	
	STR LES EQ	W W	 C 0	0.001 06000 1.30		is les;	en analog inpu ss than 6000, ut 30 is 1.	ıt 01

• LES W I/M/O n

Operation If variable n is less than the number in the word accumulator, the bit accumulator is set to 1; otherwise the bit accumulator is reset to 0.

	BA		RA	l l	WA		Variable	
Affected	Yes	Yes		No			No	
Example	STR LES EQ	W W	I M O	2.01 004 1.30		;is le	en word memo ss than analog ut 30 is 1.	

LOAD Cnd

Operation

If the bit accumulator is 1, counter n is loaded with the initial setting d. After the instruction, the bit accumulator contains the status of the counter (1 = counted out, 0 = running). A setting can be defined for the counter with the programming device. If it is non-zero, it will be used; if it is zero, the value set in the program will be used. When the PLC is switched on, all counters are at zero.

	BA	RA		WA		Variable	
Affected	Yes	No		No		Yes	ļ
	STR LOAD EQ STR DCR	NI C O P C	0.00 000 1.00 001 001	100	;made	y of 100 seco e with unter 0	nds

LOAD Tnd

Operation If the bit accumulator is 1, timer n is loaded with the initial setting d. After the instruction, the bit accumulator contains the status of the timer (1 = timed out, 0 = running). A setting can be defined for the timer with the programming device. If it is non-zero, it will be used; if it is zero, the time set in the program will be used. When the PLC is switched on, all timers are at zero.

	BA	BA RA		WA		Variable	
Affected	Yes	Ye	S	No		Yes	
Example	STR LOAD EQ	NI T O	0.00 008 1.00	100		0-second dela input 0 to ou	

• LOAD R T/C n

Operation

If the bit accumulator is 1, timer/counter n is loaded with an initial setting equal to the contents of the register accumulator. After the instruction, the bit accumulator contains the status of the timer/counter. A setting made with the programming device or computer has no effect when this instruction is used.

	BA	RA	WA	Variable
Affected	Yes	No	No	Yes
Example	STR STR R LOAD R EQ	NI 0.00 M 000 T 000 O 1.00	;time	ay from input to output, e set via ster memory

LOAD Q n ddd

Operation	If the bit accumulator is 1, move the contents of the register accumulator into
	element d (0 - 255) of shift register n (0 - 3).

	BA		RA		WA		Variable	
Affected	No	No			No		Yes	
Example	STR STR EQ STR LOAD	R	C I M DP Q	000 0.00 000 000 000	002	;At th	r the register e rising edge r element 2 of	

MID RCd

Operation Subtracts the constant d and the bit accumulator from the register accumulator, assuming that both are two-digit BCD numbers. If the result is less than 0, the bit accumulator is set to 1; otherwise the bit accumulator is reset to 0. If the numbers are not BCD numbers, the result is indeterminate.

	BA	BA RA		4	WA	Variable
Affected	Yes	es Yes		es	No	No
Example	IF STR STR MID EQ STR MID EQ CONT	R R R R R R	DP NM C M C M C M	000 000 015 016 015 014 000 014		;M0 = 1 - NM0 = 0 ; Subtract 16 = 0001 0000B = ;10 BCD (=16 DES) from ;the 16-bit number in ;register memories 14,15.

• MID R M/On

Operation

Subtracts the variable n and the bit accumulator from the register accumulator, assuming that they are two-digit BCD numbers. If the result is less than 0, the bit accumulator is set to 1; otherwise the bit accumulator is reset to 0. If the numbers are not BCD numbers, the result is indeterminate.

								-
	BA		RA		WA		Variable	
Affected	Yes Y		Yes		No		No	
	IF INV STR MID EQ CONT	R R R	DP M O M	000 123 001 123		;Res	et bit accumul	lator

Operation	from the number.	word accu If the resu ator is res	umulato ult is les et to 0.	or, assun s than 0 If the nu	ning tha , the bi imber i	at the word ac t accumulato	subtract it and the bit acc. ccumulator contains a BCD r is set to 1; otherwise the b cumulator is not a BCD
	BA	RA		WA		Variable	
Affected	Yes	No		Yes		No	
Example	IF	DP	000		;Rese	et bit accumul	ator
	INV STR W MID W EQ W CONT	' C (030 00054 030		011 0110 0011 B (363 BCE 000 0011 0110 B (36 BCD) 011 0010 0111 B (327 BCE		
MID W	M/O n						
Operation	assuming	that they; ; otherwis	y are BC se the b	CD numb bit accun	bers. If hulator	the result is le	ne word accumulator, ess than 0, the bit accumula If the numbers are not BCE
	BA	RA		WA		Variable	
Affected	Yes	No		Yes		No	
Example	IF	DP	000		;Rese	et bit accumul	ator
	INV STR W MID W EQ W CONT	′ M	030 045 030				of word memory 45 r) from word memory 30.
MIN R Operation	STR W MID W EQ W CONT C d Subtracts	M M s the cons	045 030		as a;(as a;	a BCD numbe	
	STR W MID W EQ W CONT C d Subtracts the result to 0.	M M the cons is less th	045 030 stant d a han 0, th	ie bit ac	as a;(as a;	a BCD numbe imulator from tor is set to 1	r) from word memory 30. the register accumulator. It

MIN R M/On

Operation

Subtracts the variable n and the bit accumulator from the register accumulator. If the result is less than 0, the bit accumulator is set to 1; otherwise the bit accumulator is reset to 0.

	BA	BA		RA			Variable	
Affected	Yes	Yes		Yes			No	
Example	STR STR MIN EQ STR MIN	R R R R R	C M O M C	000 013 001 013 012 000		;R M ;R M ;If un	et bit accumu 12,13 (16-bit 12,13 – R O derflow occur tract 1 from R	number) = 1 's
	EQ	R	Μ	012				

MIN WCd

Operation Subtract the constant d and the bit accumulator from the word accumulator. If the result is less than 0, the bit accumulator is set to 1; otherwise the bit accumulator is reset to 0.

	BA	BA R		A	WA		Variable	
Affected	Yes	Yes		No			No	
Example	STR STR MIN	W W	C M C	000 60 03500		;Subt	et bit accumul tract the cons word memor	tant 3500

MIN W I/M/O n

Operation Subtract variable n and the bit accumulator from the word accumulator. If the result is less than 0, the bit accumulator is set to 1; otherwise the bit accumulator is reset to 0.

	BA		RA		WA		Variable	
Affected	Yes		No		Yes		No	
	STR STR MIN	W W	C M M	000 60 106			ator. word memory 106 d memory 60.	

MUL R C d

Multiply the register acc. by the constant d. The least significant byte remains Operation in the register acc. and the most significant byte is stored in register output RM 244.

	BA	BA			WA	Variable
Affected	No		Yes		No	No
Example	STR MUL	R R	M C	000 002		

MUL RM/On

Operation Multiply the register accumulator by the variable n. The least significant byte remains in the register accumulator and the most significant byte is stored in register output R O 244.

								_
	BA		RA		WA		Variable	
Affected	No		No		No		No	
Example	STR MUL	R R	O M	001 003		;R 0	1 * R M 3 = F	R M 5,4
	EQ	R	M	005				
	STR	R	0	244				
	EQ	R	М	004				

MUL WCd

Operation Multiply the word accumulator by the constant d. The least significant word of the product remains in the word accumulator and the MSB/LSB eight bit variables are stored in register outputs R O 230, 231.

	BA		RA		WA		Variable	
Affected	No	No			Yes		No	
Example	STR MUL EQ STR EQ STR EQ STR EQ	W W R R R W W	M C M O M O M M	030 00010 230 230 231 231 115 011			tents of word 1 30 * 10 = WI	memory 30 * 10 W10,11

MUL WI/M/On

Operation

Multiply the word accumulator by the variable n. The least significant word of the product remains in the word accumulator and the MSB/LSB eight bit variables are stored in register outputs R O 230, 231.

	BA		RA		WA		Variable	Ī
Affected	No		No		Yes		No	
Example	STR MUL EQ STR EQ STR EQ STR EQ	W W R R R R W W W R R R R R R W W W W W	M M O M O M M	001 002 010 230 231 231 115 011		;WM	1 * WM 2 = V	VM 10,11

NEXT Sde

Operation	If the current sequence register has been at step d for e seconds, it moves on to
	the next step.

	BA	RA		WA	Variable
Affected	No	No		No	No
Example	NEXT NEXT NEXT STR STEP	S S S S S S	000 001 002 003 000	010 010 010	;The sequence register ;moves around steps 0, 1, 2 ;at intervals of 10 seconds. ;Back to start from step 3

OR I/M/O/NI/NM/NO/DP/DN/BM/GM/NB/NG/P n

Operation Sets the bit accumulator equal to the logical sum of its old value and the variable.

	BA	RA		WA		Variable	
Affected	Yes	No		No		No	
Example	STR	М	000		a		
	OR	NM	000		;Set I	oit accumula	

• OR Sd

Operation

If the bit accumulator is 1 before the instruction or if the current sequence register is at step d, the bit accumulator is set to 1; otherwise it is reset to 0.

	BA		RA		WA		Variable	
Affected	Yes		No		No		No	
Example	STR OR EQ	R	S S M	027 028 005		is at;	e sequence re step 27 or 28 t memory 5.	•

• OR RCd

Operation Sets the register acc. equal to the logical sum of its old value and the constant d.

	BA		RA		WA		Variable	
Affected	Yes		No		No		No	
Example	STR OR EQ	R R R	M C M	001 128 002		;R M ; ;R M	$ \begin{array}{rcl} 1 &= 001000 \\ &= 100000 \\ 2 &= 101000 \end{array} $	000 B

B B B

• OR R M/O/NM/NO n

Operation	

tion Sets the register acc. equal to the logical sum of its old value and the variable.

	BA	RA			WA		Variable	
Affected	No		Yes	;	No		No	
Example	STR OR EQ	R R R	M M M	001 002 003		;R M ;R M ;R M	2 = 111101	110 B

OR WCd

Operation

Set the word acc. equal to the logical sum of its old value and the constant d.

	BA		R	A	WA		Variable	
Affected	No		N	0	Yes		No	
Example	STR OR EQ	W W W	M C M	045 09006 021		;	= 0010 0	101 1111 0000 B 011 0010 1110 B 111 1111 1

OR WI/M/On

Operation

Set the word accumulator equal to the logical sum of its old value and variable n.

	BA		RA	ł	WA		Variable	
Affected	No		No)	Yes		No	
Example	STR OR EQ	W W W	M M M	033 024 012		;W N	24 = 0000 0	110 0110 1100 010 1111 0100 110 1111 1100

• PLD RCd

Operation Adds the constant d and the bit accumulator to the register accumulator, assuming that both are BCD numbers. If the result is greater than 99, the bit accumulator is set to 1; otherwise the bit accumulator is reset to 0. If the numbers are not BCD numbers, the result is indeterminate. NOTE The constant d which is a BCD number is written in the program as a decimal number. Example: constant 16 = 0001 0000 (bit format)

01 0000 (bit format) 1 0 (BCD format)

	BA		RA	۱	WA		Variable	Ţ
Affected	Yes		Ye	S	No		No	
Example	STR PLD	R R	C C	017 025		; ; ;Acc.	= 0001 1	001B = 11 BCD 001B = 19 BCD 000B = 30 BCD

•	PLD R M	l/O n					
	Operation	that eac accumu	h contains lator is se	s a BCD t to 1; otl	number. If the herwise the bit	result is great	ster accumulator, assuming ter than 99, the bit is reset to 0. If the addend and ate.
		BA	RA	i.	WA	Variable	
	Affected	Yes	Ye	S	No	No	
	Example		I NI R C R M	0.00 0.00 016 001	;bit a ;acc. ;+ ;+	ister memory ccumulator = 7 = 0001 0000E 0000 1001E 1E = 0010 0000E	1 3 (10 BCD) 3 (9 BCD) B (bit acc.)
•	PLD W.C	d					

Operation Convert the constant d (0 - 9999) to BCD format and add it and the bit accumulator to the word accumulator, assuming that both are BCD numbers. If the result is greater than 9999, the bit accumulator is set to 1; otherwise the bit accumulator is reset to 0. If the numbers are not BCD numbers, the result is indeterminate.

	BA	RA	WA	Variable	
Affected	Yes	No	Yes	No	
Example	STR W PLD W	C 00313 C 00400	;W A ;W co ;W A	onst.= 0000 00	001 0011 1001 B (139 BCD) 001 1001 0000 B (190 BCD) 011 0010 1001 B (329 BCD)

W M/O n PLD

Operation Add variable n and the bit accumulator to the word accumulator, assuming that each contains a BCD number. If the result is greater than 9999, the bit accumulator is set to 1; otherwise the bit accumulator is reset to 0. If the addend and augend are not BCD numbers, the result is indeterminate.

	BA	RA	WA	Variable	
Affected	Yes	No	Yes	No	
Example	STR OR STR W PLD W	I 0.00 NI 0.00 C 02450 M 003	;set ;W A	bit accumulato =0000 10 M 3 =0001 00 A =0000 00	A = 4900 at the beginning, or to 1 001 1001 0010 B (992 BCD) 011 0010 0100 B (1324 BCD) 000 0000 0001 B (1 BCD) 011 0001 0111 B (2317 BCD)

● PLU RCd

Operation	Adds the constant d and the bit accumulator to the register accumulator. If the
-	result is greater than 255, the bit accumulator is set to 1; otherwise the bit
	accumulator is reset to 0.

	BA		RA	1	WA	Variable	Ī
Affected	Yes		Ye	S	No	No	
Example	STR STR PLU EQ	R R R	P M C M	001 123 000 123		1 to register r e per second.	memory 123

PLU R M/On

Operation Adds the variable n and the bit accumulator to the register accumulator. If the result is greater than 255, the bit accumulator is set to 1; otherwise the bit accumulator is reset to 0. Using the bit accumulator in this way as a carry bit allows calculation with numbers greater than 255.

	BA		RA		WA		Variable	
Affected	Yes		Yes	;	No		No	
Example	STR STR PLU EQ	R R R	C M M M	000 002 012 022		,	et bit accumul 22 = RM 12 +	

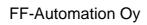
● PLU WCd

Operation Add the word constant d and the bit accumulator to the word accumulator. If the result is greater than 65535, the bit accumulator is set to 1; otherwise it is reset to 0.

	BA		R	A	WA	Variable	
Affected	Yes		N	0	Yes	No	
	STR STR PLU EQ	W W W	P M C M	002 050 00000 050		1 to word me e per minute.	mory 50

PLU WI/M/On

Operation Add variable n and the bit accumulator to the word accumulator. If the result is greater than 65535, the bit accumulator is set to 1; otherwise the bit accumulator is reset to 0.


							_
	BA		RA	\	WA	Variable	
Affected	Yes		No		Yes	No	
Example	STR STR PLU EQ	W W W	I M M M	0.00 034 025 003		en I000 = 1, 003 = WM 34	4 + WM 25 + 1

- 34					
PRI TX Operation	accumula	tor, is printed	to the active	output port. The l	r is given in the register bit accumulator is 1 after th om in the output buffer).
	BA	RA	WA	Variable]
Affected	Yes	No	No	No	
Example	STR STR R PRI	P 00 C 02 TX		; Set bit accumula ; Set 22 to registe ; Print with indirec ; the text string nu	r accumulator tly addressing
PRT Cd					
Operation	the regist (0=l ² C, 1: If there is	er accumulato = Ser1, 2= Ser	r, and selec 2, 3=Ser3). e than 80 ch	ts the output port f	buffer is returned in for printing ccumulator is set to 1;
	BA	RA	WA	Variable]
Affected	Yes	Yes	No	No	
Example	PRT PRT PRT	C 002 T <u>Sti</u> T <u>here@</u>	<u>I</u>	;Repeatedly prints ;Still here	the text:
I	n WinAlpro PRT PRT("Stil	yu can write th C 000 I here"))	;	
PRT T c	cccc				
Operation	If it is not with the (the end, added. A ters exce accumula	desired to out character, ir with the # cl ny characters pt that CTRL-1	put as many which case haracter, in that can be 3 (12 hex) is	y as five character a carrier return a which case a carri produced with the s not acceptable as	the instruction are output. s, the output can be termin nd line feed will not be add er return and line feed will keyboard are valid as para s the second character. Th were output (there was ro
	BA	RA	WA	Variable]
Affected	Yes	No	No	No]
Example	STR EQ STR PRT PRT PRT	I 0.0 M 00 DP 00 T inpu T 0 i T 0 i)) it s		
	STR	DP 00			

Operation	output po The bit a	ort. The text st	rings can be 1 after the ins	edited with ALP	r name is printed to the active ro / Symbol/Edit Text selection haracters were output
	BA	RA	WA	Variable	
Affected	Yes	No	No	No	
Example	STR PRT	P 00 TX STR00	3	Set bit accumu Print the text st to active output	ring name STR003 .
PRT R	with two d is great the chara The num	digits. The cor ter than 99, ind acters in the pi	nstant d is as determinate c rint buffer, the	sumed to be bet characters will be bit accumulato	ne instruction parameter is ou ween 00 and 99. If the consta e output. If there was room fo r is 1 after the instruction. at before printing.
	BA	RA	WA	Variable	
Affected	Yes	No	No	No	
Example	BCD F EQ F BCD F EQ F PRT STR PRT (4 PRT F PRT F	R C 02 R M 00 R M 25 R T 00 C 00 DP 00 DP 00 C 00 R M 00 C 00	0 5 ; 1 0 1 0>,<00>) 0	century (R C convert to BCD save to auxulia year convert to BCD save to auxulia Put output to di Print once per place the curso century: 20 & tens & ones) format ry memory) format ry memory isplay unit second
Operation	If the bit	n for the chara			ter accumulator is output. If th bit accumulator is 1 after
	BA	RA	WA	Variable	
Affected	Yes	No	No	No	
Example	PRT F	C 00 R M 23 R C 00 R T R RM 23	2 0	Put output to di If a character have received from the echo it and clear the character	as been ne serial line,

Operation	assuming instruction	If the bit accumulator is 1, assuming it to be a BCD no instruction. If the variable is be output.			If the bit accumulate	or is 0, it will be 0 after the
	BA	RA		WA	Variable]
Affected	Yes	No		No	No	
Example	STR PRT R	P M	001 001		;Outputs the conte ;memory 1 once p	
READ Fn						
Operation	lator. If th		ement			(0-7) into the register accun cumulator to 1, if not, clear
	BA	RA		WA	Variable]
Affected	Yes	Yes		No	No	
Example	STR EQ STR R FIN STR R FIN STR R FIN READ	F C F	0.00 000 012 000 004 000 024 000 000		;At the rising edge ;enter the number ;into FIFO 0, ;the number 4 ;into FIFO 0, ;the number 24 ;into FIFO 0, ;number 3 into reg	12
READ R T Operation						g count in timer/counter n.
	The regis	er/counter		ounted or	ut, the register accu	
Operation	The regis If the time BA	er/counter RA		WA	ut, the register accu Variable	
	The regis	RA RA Yes NI T O R T		ounted or	ut, the register accu	imulator will be 0.
Operation Affected	The regis If the time BA No STR LOAD EQ READ R	RA RA Yes NI T O R T	0.00 020 1.00 020	WA No	Variable No ;Register output 0 ;will show the	imulator will be 0.
Operation Affected Example	The regis If the time BA No STR LOAD EQ READ R EQ R	RA Yes NI T O R T R M	0.00 020 1.00 020 000	WA No 100	Variable No ;Register output 0 ;will show the	imulator will be 0.
Operation Affected Example READ S n	The regis If the time BA No STR LOAD EQ READ R EQ R	RA Yes NI T O R T R M	0.00 020 1.00 020 000	WA No 100	Variable No ;Register output 0 ;will show the ;remaining time	imulator will be 0.
Operation Affected Example READ S n	The regis If the time BA No STR LOAD EQ READ R EQ R Selects s	er/counter RA Yes NI T O R T & M	0.00 020 1.00 020 000	WA No 100	Variable No ;Register output 0 ;will show the ;remaining time	imulator will be 0.

READ T/C n

Operation	The status of the timer/counter (1=counted out, 0=running) is loaded into accumulator.							
	BA	RA		WA		Variable		
Affected	Yes	No		No		No		
Example	READ EQ LOAD STR EQ	T M T DP O	010 000 010 000 1.00	005	for a; at int	out 0 changes moment ervals of conds.	state	

RES Fn

Fifo operates in data areas F0 WM1024-1151, F1 WM1152-1279,...,F7 WM1920-2047.

Operation If the bit accumulator is 1, clear FIFO store n (0 - 7) (delete contents).

	BA	RA		WA		Variable	
Affected	No	No		No		Yes	
	STR EQ STR RES	I M DP F	0.00 000 000 000			e rising edge r FIFO 0.	of input 0

● RES Qn

Operation	If the bit accumulator is 1, reset all elements of shift register n (0 - 3) to ze							
	BA	RA	WA	Variable				
Affected	Yes	No	No	No				
Example	STR RES	l Q	0.00 002	;When input 0 is 1 ;elements of shift r				

• RET

Operation The subroutine ends here, execution is then returned to main program.

	BA	RA	WA	Variable
Affected	Yes	Yes	Yes	Yes

The states of the accumulators remain unchanged, so main program can use the accumulator states after executing the subroutine.

SBR n

Operation This is the starting instruction of a subroutine. **See page 12-44.**

• SHL Q n ddd

Operation If the bit accumulator is 1, shift the elements of shift register n (0 - 3) one step to the left. The number in the register accumulator is shifted into the vacated position (right end) of the shift register. The element shifted out of the shift register goes into the register accumulator. d (0 - 255) is the length of the shift register - 1.

	BA		RA	WA	Variable
Affected	No		Yes	No	Yes
	STR EQ STR READ SHL SHL SHL	NI M DP R C Q Q Q	0.00 000 003 000 001 001) 3 0 250 250	;The falling edge of input 0 ;moves a 560-step conveyor ;one step to the left.

SHR Q n ddd

SHR instruction uses word outputs (Q0 uses WO 512- 639, Q1 uses WO 640- 767 etc.) and these word outputs can be used for other purposes only if SHR instruction is not used.

Operation If the bit accumulator is 1, shift the byte-sized elements of shift register n (0 - 3) one step to the right. The number in the register accumulator is shifted into the vacated position (left end) of the shift register. The element shifted out of the shift register goes into the register accumulator. d (0 - 255) is the length of the shift register - 1.

	BA		RA		WA		Variable	
Affected	No		Ye	es	No		Yes	
	STR EQ STR STR SHR SHR	R	I M DP M Q Q	0.00 000 030 000 000	200 100	;mov	rising edge of es a 300-step step to the rig	conveyor

• STEP R T

Operation If the bit accumulator is 1, move the current sequence register to the step indicated by the contents of the register accumulator. If the bit accumulator is 0, do nothing.

	BA		RA		WA		Variable	
Affected	No		No		No		No	
	STR STR STEP	R R	C M T	001 003		;mov	sequence reg es to the step egister memor	indicated

•	STEP	S d								
	Operatio	on	If the bit accumulator accumulator accumulator is 0, do					rent se	quence regist	ter moves to step d. If the bit
			BA		RA		WA		Variable]
	Affected		No		No		No		No	
	Example	e	STR STEP		S S	139 000			step 139, e to step 0	-
•	STEP	т								
	Operatio	on					the cur , the ne			ter moves on to the next step.
			BA		RA		WA		Variable	
	Affected	l	No		No		No		No	
	Example	e	STR STR STEP	R	S P T	000 000		;(vali ;Seq	ct sequence d until the nex uence registe step 10 time:	xt selection).
•	STI	I/M/O	/BM/GI	Мn						
	Operatio	on							emory to bit a it variable to l	
			BA		RA		WA		Variable	_
	Affected		Yes		No		No		No	
-	Example		STR STI	R	C I	012				I 12 is the bit accumulators s is 12 decimal).
•	STI Operatio	R M	Loads				ulator w			se address is the value of
			BA		_			n para	Variable	T
	A ffeeted	1			RA		WA			-
	Affected Example		No STR	R	Yes C	010	No	·- 00	No 001 010B =] 10 dec
	схатря	5	EQ STI	R R	M M	020 020		;Rea	d contents of the register a	RM 10
•	STI	W M	/O/I n							
	Operatio	on	the va	riable		as the i	nstructio			ddress is the value of ccessible addresses see
			BA		RA		WA		Variable	
	Affected		No		No		Yes		No	1
	Example	e	STR EQ STI	W W W	C M M	010 020 020		;Rea	000 000 000 0 d contents of the word accu	

Operation Affected		tes the ran					vill be executed next.
		RA			10000	1.	
	No	1.0.1		WA		Variable	
STD		No		No		No	
STD							
SIF							
Operation		's main pr written afte					all subroutine programs
STR I/M	/O/NI/NM/N	O/BM/GM	/NB/NG	≩/Pn			
Operation	Reads th	e state of	variable	e n into th	ne bit a	accumulator.	The variable is not affect
	BA	RA		WA		Variable	
Affected	Yes	No		No		No	
Example	STR	I	0.00		:Read	d state of inpu	it 0 into acc.
STR DP	n						
Operation	If auxiliar	ry memory	n is 1 ;	and was	0 at th	e start of the	program cycle,
							is 0, or was already 1 at
			Jiani Cy			cumulator is re	
	BA	RA		WA		Variable	
Affected	Yes	No		No		No	
Example	STR		0.00		;Read	d state of inpu	it 0 into memory
	EQ STR	M DP	010 010		:Risir	ng edge	
	XOR	0	1.05			rts output 5.	
	EQ	0	1.05				
STR DN	n						
Operation	If auxiliar	ry memory	/ n is 0 ;	and was	1 at th	e start of the	program cycle, the bit
							was already 0 at the sta
		-				reset to 0.	l
	BA	RA		WA		Variable	
Affected	Yes	No		No		No	
Example	STR	I	0.01			lling edge of i	
	EQ STR	M DN	001 001		;decr	ement counte	er 3 by 1.
	DCR	C	003				

STR S/(NS) d If the current sequence register is/(not) at step d, the bit accumulator is set to 1; Operation otherwise it is reset to 0. BA RA WA Variable Affected No No Yes No S STR 024 When sequence register is at Example EQ 0 125 ;step 24, O 125 is on. R M/O/NM/NO n STR Operation Reads the value of a register variable into the register accumulator. WA ΒA RA Variable Affected No Yes No No Example STR R Μ 210 ;Read contents of register memory 210 into register accumulator. STR R C d Reads the constant d (0 - 255) into the register accumulator. Operation BA RA WA Variable Yes Affected No No No R С 019 ;Store 19 (decimal) in register accumulator. Example STR STR R Sn Reads the number of the current step of sequence register n (0 - 31) into the register Operation accumulator. Register n is made the current sequence register, i.e. subsequent sequence register instructions will affect it. ΒA RA WA Variable Affected No Yes No No S 002 Example STR R ;When sequence register 2 is at S STR 029 ;step 29, output 5 is on. 0 EQ 1.05 STR Cd Operation Reads the state of variable n into the bit accumulator. The accumulator is reset to 0, if d = 0; for other values of d, it is set to 1. ΒA RA WA Variable Affected Yes No No No С 000 ;Initialize bit accumulator. Example STR STR R Μ 010 PLU R Μ 011 R EQ Μ 020

- 42						
STR Q r	n					
Operation					s given by the registe ter accumulator.	er accumulator, of
	BA		RA	WA	Variable	
Affected	No		Yes	No	No	
Example	STR STR	R C Q			;Move the value of e ;of shift register 0 in	element 5 to the register accumulate
STR W	l/M/O n					
Operation	Read th	he value	e of variab	e n into th	e word accumulator.	
	BA		RA	WA	Variable	
Affected	No		No	Yes	No	
Example	STR	W I	2.01		;Read value of input	t 1 (0 - 4095)into word acc
	•					
STR W	C d					
Operation	Deedu	he cons	tant d (0 -	65535) int	o the word accumula	ator.
Operation	Read tr			,		
Operation	BA		RA	WA	Variable	
Affected				,		
Affected Example	BA No STR	W C	RA No 00455	WA Yes	Variable No ;Initialize word accu	
Affected Example	BA No STR I /O/NI/NM/ I	W C NO/DP/ e bit ac iable.	RA No 00455 /DN/BM/G cumulator RA No 001	WA Yes M/NB/NG/	Variable No ;Initialize word accu P n	mulator to 455. ion of its old value and
Affected Example XOR I/M Operation Affected Example	BA No STR I/O/NI/NM/I Sets the the vari BA Yes STR XOR EQ	W C NO/DP/ e bit ac iable. P	RA No 00455 /DN/BM/G cumulator RA No 001 1.00	WA Yes M/NB/NG/ equal to th WA	Variable No ;Initialize word accu P n ne exclusive-or funct Variable No	mulator to 455. ion of its old value and
Affected Example XOR I/M Operation Affected Example XOR S c	BA No STR I/O/NI/NM/I Sets the the vari BA Yes STR XOR EQ	W C NO/DP/ e bit ac iable. P O O	RA No 00455 /DN/BM/G cumulator RA No 001 1.00 1.00	WA Yes M/NB/NG/ equal to th WA No	Variable No ;Initialize word accu P n ne exclusive-or funct Variable No ;Output 0 is inverted ;once per second.	mulator to 455. ion of its old value and
Affected Example XOR I/M Operation Affected Example	BA No STR I/O/NI/NM/I Sets the the vari BA Yes STR XOR EQ If the co the seq	W C NO/DP/ e bit ac iable. P O O Uurrent s	RA No 00455 /DN/BM/G cumulator RA No 001 1.00 1.00	WA Yes M/NB/NG/ equal to th WA No	Variable No ;Initialize word accu P n ne exclusive-or funct Variable No ;Output 0 is inverted ;once per second.	mulator to 455. ion of its old value and d accumulator is 0, or if nulator is 1,
Affected Example XOR I/M Operation Affected Example XOR S c	BA No STR I/O/NI/NM/I Sets the the vari BA Yes STR XOR EQ If the co the seq	W C NO/DP/ e bit ac iable. P O O Uurrent s juence	RA No 00455 /DN/BM/G cumulator RA No 001 1.00 1.00	WA Yes M/NB/NG/ equal to th WA No	Variable No ;Initialize word accu P n he exclusive-or funct Variable No ;Output 0 is inverted ;once per second.	mulator to 455. ion of its old value and d accumulator is 0, or if nulator is 1,
Affected Example XOR I/M Operation Affected Example XOR S c	BA No STR I/O/NI/NM/I Sets the the vari BA Yes STR XOR EQ If the cu the seq the bit a	W C NO/DP/ e bit ac iable. P O O O Uurrent s Juence	RA No 00455 /DN/BM/G cumulator RA No 001 1.00 1.00 sequence r register is ulator is se	WA Yes M/NB/NG/ equal to th WA No	Variable No ;Initialize word accu P n he exclusive-or funct Variable No ;Output 0 is inverted ;once per second.	mulator to 455. ion of its old value and d accumulator is 0, or if nulator is 1,

XOR R M/O/NM/NO n

Operation Sets the register accumulator equal to the exclusive-or function of its old value and the variable.

	BA		RA		WA		Variable	•
Affected	No		Yes		No		No	
	STR XOR EQ	R R R	M M M	000 001 002		;R M	$0 = 01111011 \\ 1 = 10000011 \\ 2 = 11111000 $	ΙB

XOR R C d

Sets the register accumulator equal to the exclusive-or function of its old value and Operation the constant d.

	BA		R	A	WA		Variable	
Affected	No		Y	es	No		No	
Example	STR XOR EQ	R R R	M C M	000 255 001		;R M ; ;R M	= 111	10101 B 11111 B 01010 B

XOR W I/M/O n

Operation

Set the word accumulator equal to the exclusive-or function of its old value and variable n.

	BA		RA		WA		Variable	
Affected	No		No		Yes		No	
Example	STR XOR EQ	W W W	M M M	033 024 012		;W M	24 = 0000 0	110 0110 1100 B 010 1111 0100 B 100 1001 1000 B

XOR WCd

Set the word accumulator equal to the exclusive-or function of its old value Operation and the constant d.

	BA		R	A	WA		Variable	Ĭ
Affected	No		Ν	0	Yes		No	
Example	STR XOR EQ	W W W	M C M	045 09006 021		;	= 0010 0	101 1111 0000 B 011 0010 1110 B 110 1101 1110 B

Subroutines

The PLC's main program ends with an STP instruction. It is possible to write subroutine programs which start with the SBR n command (n is subroutine number), and ends with the RET command. The maximum number of subroutines is 32 (numbers 0 - 31). The STOP command must be appear after the subroutines, this ends the PLC program. The PLC system program ignores all SBR and RET instructions which appear before STP instruction. If the RET instruction is missing from a subroutine the PLC executes the next subroutine(s) until the a RET command is found. If no RET command is found, program executes until the STOP command is reached, and the PLC system program does not return to main program. The PLC now performs I/O updates and the main program starts again from line 1. Therefore the main program is executed only up to the first CSR instruction, the rest of the main program is not executed at all. If there is a CSR call for a subroutine that does not exist, the PLC interpretes the CSR instruction as a NOP instruction and continues normally.

	STP	
	Operation	The PLC's main program ends with this command and all subroutine programs must be written after the STP command
	CSR n	
	Operation Affected	The PLC executes the subprogram n if the bit accumulator is true Bit accumulator Register accumulator Word accumulator Variable The states of the accumulators remain unchanged, so subroutine can use the accumulator states.
Ð	SBR n	
	Operation	This is the starting instruction of a subroutine
	RET	
	Operation Affected	The subroutine ends here, execution is then returned to main program. Bit accumulator Register accumulator Word accumulator Variable The states of the accumulators remain unchanged, so main program can use the accumulator states after executing the subroutine.
	Example	Scaling subroutine for analogue variables. The scaling parameters are transferred in main program with the EQI instruction. The result after the subroutine call is retrieved with the STI instruction from word accumulator or from WM 101.STRC001; set bit accumulator to 1CSR001; call subroutine 1STP; main program endSBR01; start of subroutine 1EQWMSTRRMM100; scaling parameters start addressSTRC001; set bit accumulator to 1STRWM100STRWMM100; scaling parameters start addressSTRC001; set bit accumulator to 1STRWM100FCN010; call scaling functionEQWM101RETSTOP

12.

TABLES

12.1 ASCII-codes

NUL 00 00 + 2B 43 V 56 86 SOH 01 01 . 2C 44 W 57 87 STX 02 02 - 2D 45 X 58 88 ETX 03 03 . 2E 46 Y 59 89 EOT 04 04 / 2F 47 Z 5A 90 ENQ 05 05 0 30 48 [Å) 5B 91 ACK 06 06 1 31 49 \(O) 5C 92 BEL 07 07 2 32 50](Å) 5D 93 BS 08 08 3 33 51 ^ 5F 95 LF 0A 10 5 35 53 - 60 96 VT 0B	character ASCII code	Hex code	decimal code	character ASCII code	Hex code	decimal code	character ASCII code	Hex code	decimal code
) 29 41 T 54 84 DEL 7F 127	code NUL SOH STX EOR ACK BBS HT LF VF CRO SI DC1 DC2 DC3 ACK STN ECAN BBS HT LF VF CRO SI DC1 DC2 DC3 ACK STN ECAN SI DC1 DC2 CC3 CC4 SI SI DC1 CC3 CC4 SI SI SI SI SI SI SI SI SI SI SI SI SI	00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28	$\begin{array}{c} 00\\ 01\\ 02\\ 03\\ 04\\ 05\\ 06\\ 07\\ 08\\ 09\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39 \end{array}$	code + , / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S	2B 2C 2D 2E 2F 30 31 32 33 4 35 36 37 38 39 3A 3C 3D 3E 3F 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52	$\begin{array}{c} 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ 61\\ 62\\ 63\\ 64\\ 65\\ 66\\ 67\\ 68\\ 69\\ 70\\ 71\\ 72\\ 73\\ 74\\ 75\\ 76\\ 77\\ 78\\ 79\\ 80\\ 81\\ 82\end{array}$	V W X Y Z [(Å) \(Ö)](Å) ∧ - a b c d e f g h i j k l m n o p q r s t u v w x y z {(ä)) (Ö) } ^ (Å) ∧ - - - - - - - - - - - - - - - - - -	56 57 58 59 5A 5C 5D 5E 5 60 61 2 34 65 66 7 89 6A 6C 6D 6E F 70 71 72 73 74 75 67 78 97A 7D 7E	$\begin{array}{c} 86\\ 87\\ 88\\ 89\\ 90\\ 91\\ 92\\ 93\\ 94\\ 95\\ 96\\ 97\\ 98\\ 99\\ 100\\ 101\\ 102\\ 103\\ 104\\ 105\\ 106\\ 107\\ 108\\ 109\\ 110\\ 101\\ 105\\ 106\\ 107\\ 108\\ 109\\ 110\\ 111\\ 112\\ 113\\ 114\\ 115\\ 116\\ 117\\ 118\\ 119\\ 120\\ 121\\ 122\\ 123\\ 124\\ 125\\ \end{array}$

12.2 Decimal/Octal conversions

dec.	octal	dec.	octal	dec.	octal	dec.	octal	dec.	octal	dec.	octal
code	code	code	code	code	code	code	code	code	code	code	code
code 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	code 00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17 20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37 40 41 42 43 44 45 46 47 50 51 52 53 54 55	code 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 91	code 56 57 60 61 62 63 64 65 66 67 70 71 72 73 74 75 76 77 100 101 102 103 104 105 106 107 110 111 112 113 114 115 116 117 120 121 122 123 124 125 126 127 130 131 132 133	code9293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137	code 134 135 136 137 140 141 142 143 144 145 146 147 150 151 152 153 156 157 160 161 162 163 164 165 166 167 170 171 172 173 174 175 176 177 200 201 202 203 204 205 206 207 210 211	code 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183	code 212 213 214 215 216 217 220 221 222 223 224 225 226 227 230 231 232 233 234 235 236 237 240 241 242 243 244 245 246 247 250 251 252 253 254 255 256 257 260 261 262 263 264 265 266 267	code 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 223 224 225 226 227 228 229	code 270 271 272 273 274 275 276 277 300 301 302 303 304 305 306 307 310 311 312 313 314 315 316 317 320 321 322 323 324 325 326 327 330 331 332 333 334 335 336 337 340 341 342 343 344 345	code 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255	code 346 347 350 351 352 353 354 355 356 357 360 361 362 363 364 365 366 367 370 371 372 373 374 375 376 377

13.

AL2000 PRODUCT LIST

13.1 Mounting Racks

Code	Model No.	Description
902158	MR3 mini	Mounting Rack for 3 I/O modules (no PSU)
902159	MR3 mini	Mounting Rack for 3 I/O modules (no PSU), with covers
902151	MR3	Mounting Rack for 3 I/O-modules (115 VAC)
902152	MR3	Mounting Rack for 3 I/O-modules (220 VAC)
902153	MR3	Mounting Rack for 3 I/O-modules (24 VDC)
902150	MR5	Mounting Rack for 5 I/O-modules
902154	MR11	Mounting Rack for 11 I/O-modules
902156	MR16	Mounting Rack 16 I/O-modules
902100	FC50	Flat cable 0,5 m
902110	FC100	Flat cable 1,0 m
13.2 Cent	ral Processing U	<u>nits</u>
Code	Model No.	Description
	001100000	

902200 902205 902204 902207 902132	CPU2000S CPU2000P CPU2000L	Central Processing Unit Central Processing Unit Central Processing Unit PC104 adapter (with CPU2000L, reserves 2 I/O Board Places) Mother Board for CPU2000L
902132		Mother Board for CPU2000L

13.3 Serial Communication and Router Boards

Code	Model No.	Description
902195	AL2000SER	Serial Communication Unit for use with AL2000
902197	AL-Router	Modbus Router

13.4 Input Modules

Code	Model No.	Description
902220	DIC32DC	Digital Input Module, 32 DI, 24 V DC
902224	DIC32AC	Digital Input Module, 32 DI, 24 V AC/DC
902228	DIF16	Digital Input Module, 16 Error-checking DI, 24 VDC

13.5 Output Modules

Code	Model No.	Description
902240	DOC32EP	Digital Output Module, 32 DO, 20-40 V DC, 1 A
902244	DOC32FP	Digital Output Module, 32 DO, 20-40 V DC, 0,5 A
902248	DOF16	Digital Output Module, 16 Error-checking DO, 24 VDC, 1 A
* 902260	ROC16K	Relay Output Module, 20-280 V AC, 2 A RO
902264	OOC16	Solid State Relay Output Module, 20-280 V AC, 0,6 A

* Delivery Time and Technical Data by Request

Code	Model No.	Description
902266	DIO32	Digital Input/Output Module, 16 DI 24 V DC, 16 DO 20-40 V DC, 1 A
13.7 Ana	log Modules	
Code	Model No.	Description
902273	AIC8	Analog Input Module, 8-16 AI
902274	TIC8	Thermocouple Input Module, 8 TI
902270	AIO74	Analog Input/Output Module, 7 - 14 AI, 4 AO
902272 902277	MIC16 MOC16	Analog Input Module, 16 AI galvanic isolated Analog Output Module, 16 AO 4 - 20 mA
902277 902310	FIC16	Frequency Input Module, maximum 10 kHz, 16 Channels
<u>13.8 Pow</u>	ver Units	
Code	Model No.	Description
902209	POWDC-100W	V Power Supply Module, Supply Voltage 24 VDC
902210	POWDC-25W	Power Supply Module, Supply Voltage 24 VDC
902211	PCON24	Power Connection Module (with POWDC-module)
902214	POWAC115	Power Supply Module, Supply Voltage 90-132 VAC
902215	PCON115	Power Connection Module (with POWAC115-module)
902212	POWAC230	Power Supply Module, Supply Voltage 180-265 VAC
902213	PCON230	Power Connection Module (with POWAC230 module)
902219	PCON24/100	Power connection module (with POWDC-100W module)
<u>13.9 Spec</u>	<u>ial Units</u>	
Code	Model No.	Description
902400	DSIM 32	Digital Inputs/Output Simulator
<u>13.10 Acc</u>	<u>essories</u>	
Code	Model No.	Description
900860	AL1093F	Clock and Calendar/Display/Keypad 2x16 Characters, 16 Function Ke
901017	AL1093D	Clock and Calendar/Display/Keypad (With Surface Mounting Plate) 2x16 Characters, 16 Function Keys
901017	AL1093DC	Clock and Calendar/Display/Keypad (for Customers front Plate) 2x16 Characters, 16 Function Keys
	AL1094	Display/Keypad
901023	AL1094R	Display/Keypad
901023 901019		Clock and Calendar/Display/Keypad (for Customers front Plate)
	AL1094F	clock and calchadi/Display/reypad (for castomers none rate)
901019 900870 900850	AL1094F AL1095A	Clock and Calendar/Display/Keypad, 16 keys
901019 900870 900850 900855	AL1094F AL1095A AL1095B	Clock and Calendar/Display/Keypad, 16 keys Clock and Calendar/Display/Keypad, 4 keys
901019 900870 900850 900855 902172	AL1094F AL1095A AL1095B AL1096/S	Clock and Calendar/Display/Keypad, 16 keys Clock and Calendar/Display/Keypad, 4 keys Graphic Display (240 x 128), 5 function keys
901019 900870 900850 900855 902172 902174	AL1094F AL1095A AL1095B AL1096/S AL1096/T	Clock and Calendar/Display/Keypad, 16 keys Clock and Calendar/Display/Keypad, 4 keys Graphic Display (240 x 128), 5 function keys Graphic Display (240 x 128), touch screen (10 x 8)
901019 900870 900850 900855 902172	AL1094F AL1095A AL1095B AL1096/S	Clock and Calendar/Display/Keypad, 16 keys Clock and Calendar/Display/Keypad, 4 keys Graphic Display (240 x 128), 5 function keys

* Delivery Time and Technical Data by Request

13.11 Converters for Serial Communication

Code	Model No.	Description
oouc		Description

901225	AL6442	CNV-1 full duplex Serial Interface Conversion Unit (RS232 - 422/485)
901462	AL 6405	Power Supply (CNV-1)
903190		CNV-2 Half-duplex Signal Converter RS232 - RS485

13.12 Power Supplies

Code N	lodel No.	Description
--------	-----------	-------------

901383	AL9624/3.5	Power Supply Unit 24VDC/3,5A
901380	AL9624/8	Power Supply Unit 24VDC/8A
902218	AL-UPS	AL UPS Module for Use with Accumulator
901374	AL9624/2/1.5	Power Supply Unit 24VDC/2A, 20VAC/1,5A

13.13 Programming Cables

Code Model No. Description

901172 ALC2 901173 ALC5 901175 901176 901510 AL9042 901177 901178 901178 901179 901180 901181 901187 901193	Programming Cable PC - AL2000, Length 2 m Programming Cable PC - AL2000, Length 5 m Cable AL1096 - PC, Length 5 m Cable AL1096 - Autolog, Length 5 m Cable AutoLog(D9P) - CNV1, 2.5m Cable Modem(D9P) - AutoLog(D9P), Length 2.5m Cable PC(D9S) - Modem(D9P), Length 2.5m Cable AutoLog(D9P) - Radiomodem(15P), Length 2m Cable AutoLog(D9P) - Radiomodem(15P), Length 8m Cable PC/FCS(D9S) - CNV1, Length 8m Cable GSM modem - AL2000S Cable PC - CNV2 Length 2.5 m
901193 901194	Cable PC - CNV2, Length 2.5 m Cable CNV2 - AL (RJ45), Length 2.5 m
501104	

13.14 Programming Software

Code Model No. Description

Model No.

941006 ALPro3.x	ALPro3.x Programming Software DOS version
941010	Update from AL/AX,ALGT,ALEDIT,ALPro(dos) to ALProwin 1.xx
941011	Update from ALPro1(2).x dos) to ALPro3.x(dos)
941020	ALProwin 1.xx

13.15 Other Programs

Code

941060	MODBUS RTU Development Kit for PC
906611	Modbus Analyser
906603	Modbus Test Program for PC, Dos

Description

13.16 AutoLog FCS Control Software

Code	Model No.	Description
941024 941025 941027 941026	Autolo Autolo Autolo	g 2000 FCS Development Licence g 2000 FCS Run Time Interface Licence g 2000 FCS Run Time Licence for AL2000 CPU og 2000 FCS Communication Programs Modbus RTU TCP/IP Siemens Allen Bradley
		etc.

14. CABLES AND COMMUNICATION TIME SHEET

14.1 Cables

Cables required for connecting a PC to the AL2000 and for SER1 and SER2 interfaces:

Pin	Signal	Pin	Signal
1 2	+4V max. 20 mA / DCD (selectable)	6	DSR
	RXD data to the AL2000	7	RTS
3	TXD data from the AL2000	8	CTS
4	DTR +12V from AL2000	9	RI
5	GND	•	

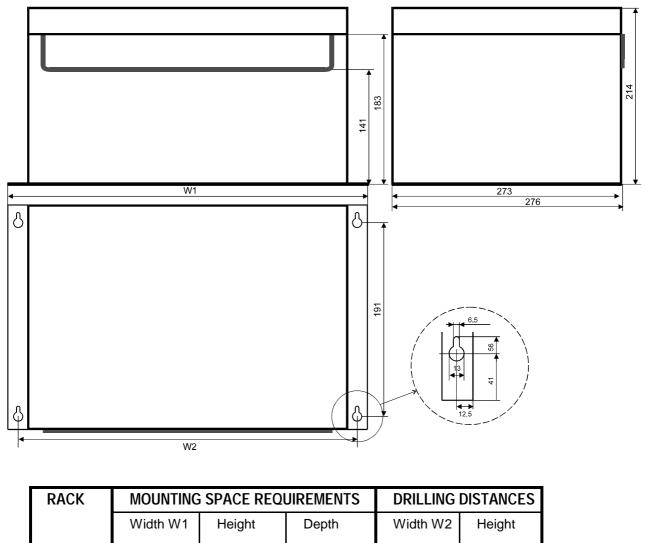
RxD 3○	AL 2000 Cannon DE9P 	
RxD 2∽ CTS 8⊳	AL 2000 Cannon DE9P 2 RxD 2 RxD 3 TxD 4 DTR 5 GND	
RD 3 GND 7 CTS 5 RTS 3 +24V 12 	AL 2000 Cannon DE9P 2 RxD 3 TxD 5 GND 4 DTR 8 CTS NOTE! Supply voltage shall be to either of these two not to bot	e connected th
TxD 2 ○ GND 7 ○ DTR 20 ○ DCD 8 ○ RTS 4 ○	AL 2000 Cannon DE9P 2 RxD 3 TxD 5 GND 5 GND 7 RTS 0R 7 RTS 0R 7 RTS 6 8 CTS	dialled phone lines.

14.2 Data Communication Time Calculation Sheet

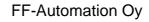
Communic		19200 bit/s			
	number of by	tes			
message	1: (+ (slave loop time	e) =	ms
message		+ 8) x cmmt + 1 ms			
message		+ 8) x cmmt + 1 ms			
message	4: (+ 8) x cmmt + 1 ms			
message	5: (+ 8) x cmmt + 1 ms			
message		<u>+</u> 8) x cmmt + 1 ms			
message		+ 8) x cmmt + 1 ms			
message		+ 8) x cmmt + 1 ms			
message		+ 8) x cmmt + 1 ms			
message		+ 8) x cmmt + 1 ms			
message		+ 8) x cmmt + 1 ms			
message		<u>+ 8) x cmmt + 1 ms</u>			
message		+ 8) x cmmt + 1 ms			
message		+ 8) x cmmt + 1 ms			
message		+ 8) x cmmt + 1 ms			
message		+ 8) x cmmt + 1 ms			
message	17: (+ 8) x cmmt + 1 ms	s + (slave loop time	e) =	ms
message	18: (+ 8) x cmmt + 1 ms			
	+	10 ma 1 1 ma		ll) =	
+ output se	t message	10 1115 + 1 1115	+ (slave loop time	=	ms
In practice	this time is sho	E GREATEST POSSIE rter, because the slave ine the received mess	BLE TIME that the does not always	al = modbus messag run its entire who	je loop can tal
In practice before the s The To	this time is sho slave can exam t al Responce ⁻	rter, because the slave ine the received mess Time	BLE TIME that the does not always	modbus messag	je loop can tal
In practice before the s The To - When RIC	this time is sho slave can exam t al Responce D channel is use	rter, because the slave ine the received mess Time	BLE TIME that the does not always age.	modbus messag	je loop can tal ble program lo
In practice before the s The To - When RIC	this time is sho slave can exam t al Responce D channel is use	rter, because the slave ine the received mess Time ed	BLE TIME that the does not always age.	modbus messag run its entire who er program loop ti	je loop can tal ble program lo
In practice before the s The To - When RIC the number - When Mo	this time is sho slave can exam t al Responce to channel is use of Modbus ma dbus channel/p	rter, because the slave ine the received mess Time ed ster messages	BLE TIME that the e does not always sage. x RIO maste x x	modbus messag run its entire who er program loop ti = me + responce m	ge loop can tal ble program lo me nessage time)
In practice before the s The To - When RIC the number - When Mo	this time is sho slave can exam t al Responce to channel is use of Modbus ma dbus channel/p	rter, because the slave ine the received mess Time ed ster messages rotocol is used	BLE TIME that the e does not always sage. x RIO maste x x	modbus messag run its entire who er program loop ti	ge loop can tal ble program lo me nessage time)
In practice before the s The To - When RIC the number - When Mo the number Additionally	this time is sho slave can exam tal Responce C channel is use r of Modbus ma dbus channel/p r of Modbus ma	rter, because the slave ine the received mess Time ed ster messages rotocol is used	BLE TIME that the e does not always sage. x RIO maste x re program loop tin x r re loop time must	modbus messag run its entire who er program loop ti = me + responce m =	ge loop can tal ble program lo me nessage time)
In practice before the s The To - When RIC the number - When Mo the number Additionally	this time is sho slave can exam tal Responce D channel is use of Modbus ma dbus channel/p of Modbus ma , in both cases the control soft	rter, because the slave ine the received mess Time ed ster messages rotocol is used ster messages x (slav the PC control softwa	BLE TIME that the e does not always sage. x RIO maste x re program loop tin x r re loop time must	modbus messag run its entire who er program loop ti = me + responce m =	ge loop can tal ble program lo me nessage time)
In practice is before the second the To The To - When RIC the number - When Mo the number Additionally (how soon	this time is sho slave can exam tal Responce D channel is use of Modbus ma dbus channel/p of Modbus ma , in both cases the control soft	rter, because the slave ine the received mess Time ed ster messages rotocol is used ster messages x (slav the PC control softwa ware is able to send th	BLE TIME that the e does not always sage. x RIO maste x re program loop tim x re loop time must ne new message)	modbus messag run its entire who er program loop ti = me + responce m = be included in the	ge loop can tal ble program lo me essage time) e time calculat

14.3 The Commands of AutoLog

English	Finnish	English	Finnish
AND BCD BIN BIT BYT CLO CONT	JA BCD BIN BIT BYT CLO JTK	STEP STI STOP STP STR XOR	STEP STI STOP STP STR ETAI
CSR	CSR	<u>Variables</u>	
DCD DCR DEC DIV END EQ EQI EQU ERROR FCN FIN FOU GRT IF INC INV LES LOAD MID MIN MUL NEXT OR PLD PLU PRI PRT READ	DCD VH DEC JAK END ON ON EQU VIRHE FCN FIN FOU GRT JOS INC INV LES AS MID MIN KER SEUR TAI PLD PLU PRI PRT LUE	Variables I NI O NO SO RO M NM SM RM DP DN BM SM RM DP DN BM SB RB GM NG SG RG P T TX C S F Q	T EL LLR MESRDD BESRGESRPATNSFJ
RES RET	RES RET	Variable ty	/pes
SBR SHL	SBR SHL	R	R
SHR	SHR	Ŵ	W

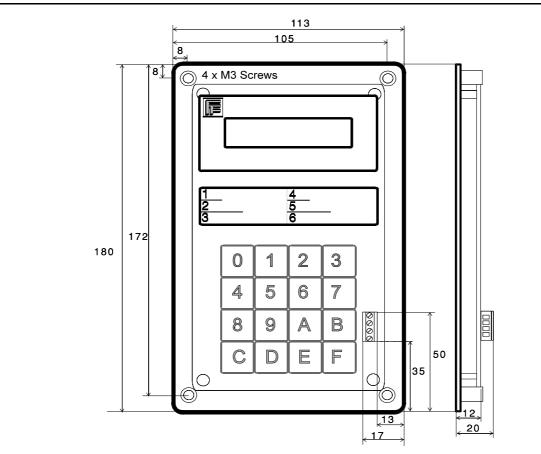


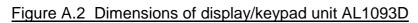
Appendix A. PHYSICAL INSTALLATION


Mounting the AL2000 in an enclosure is a rapid process due to key hole mounting. The Mounting Racks are fastened with 4 M6 screws.

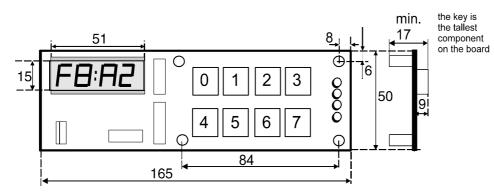
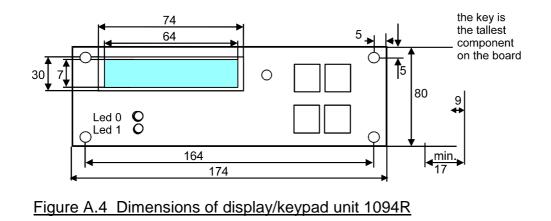
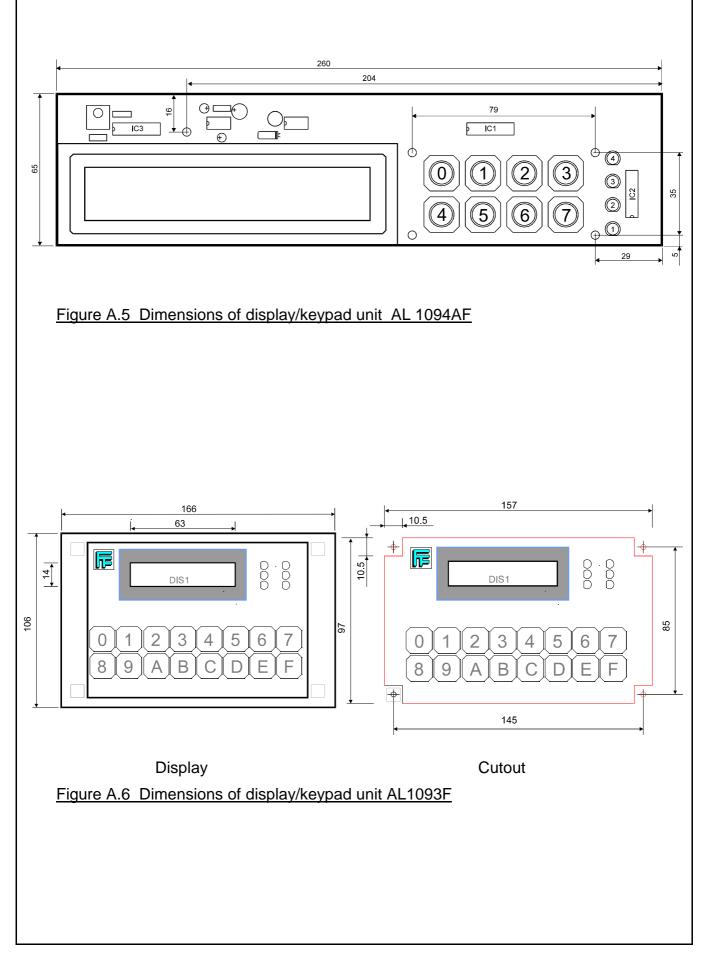
A.1 Mounting dimensions

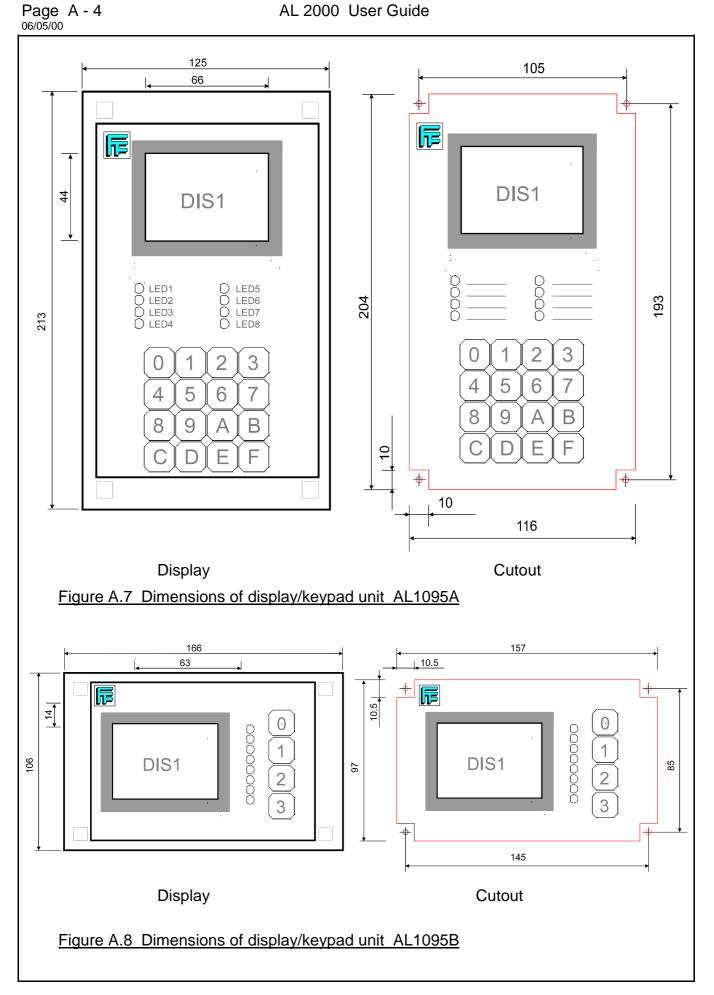
	Width W1	Height	Depth	Width W2	Height
	mm	mm	mm	mm	mm
MR3 mini	138	276	214	128	191
MR3	205	276	214	180	191
MR5	270	276	214	245	191
MR11	390	276	214	365	191
MR16	490	276	214	465	191


NOTE: At least 36 mm space should be left below the AL2000 for cabling.



AL 2000 User Guide


Figure A.3 Dimensions of display/keypad unit AL1094

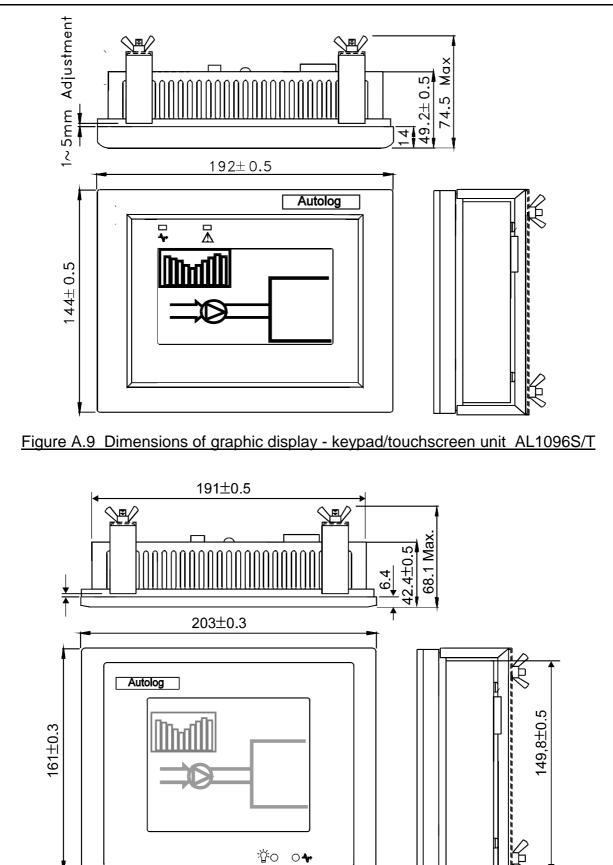


Figure A.10 Dimensions of graphic display - touchscreen unit AL1096PS/PE

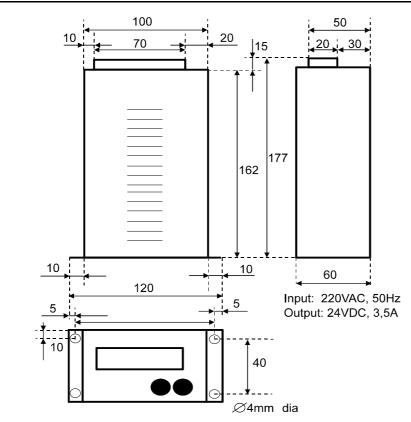
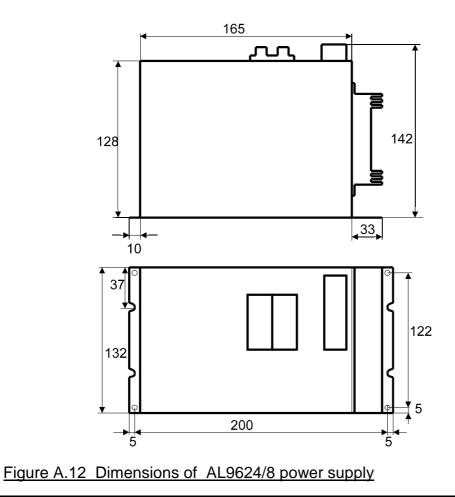



Figure A.12 Dimensions of AL9624/3.5 power supply

