
Mathematical Programming manuscript No.
(will be inserted by the editor)

François Margot

Exploiting Orbits in Symmetric ILP

February, 2003

Abstract. This paper describes components of a branch-and-cut algorithm for solving in-
teger linear programs having a large symmetry group. It describes an isomorphism pruning
algorithm and variable setting procedures using orbits of the symmetry group. Pruning and
orbit computations are performed by backtracking procedures using a Schreier-Sims table for
representing the symmetry group. Applications to hard set covering problems, generation of
covering designs and error correcting codes are given.

Key words. Branch-and-cut – isomorphism pruning – symmetry

1. Introduction

An integer linear program (ILP) is symmetric if its variables can be permuted
without changing the structure of the problem. Symmetric ILPs frequently ap-
pear when formulating classical problems in combinatorics or optimization (graph
coloring problem, scheduling of jobs on parallel identical machines, covering de-
sign problems, code construction; see [31] for additional real world examples).
Even for relatively modestly sized problems, ILPs with large symmetry groups
are difficult to solve using traditional branch-and-bound or branch-and-cut al-
gorithms. (We assume that the reader is familiar with these procedures, as ex-
cellent introductions can be found in [10,30,32,33]). The trouble comes from the
fact that many subproblems in the enumeration tree are isomorphic, forcing a
wasteful duplication of effort.

One way to deal with the symmetry is to try to remove or reduce it by fixing
variables and adding inequalities cutting part of the feasible region, while guar-
anteeing that an optimal solution of the original problem is still feasible [31].
While this is sometimes an efficient approach, it usually involves empirical ex-
perimentation, each problem requiring a new study. The approach followed in
this paper, along the lines of [23], is to deal with the symmetry by using the
symmetry group of the problem to fix or set variables, to generate cuts and to
prune the enumeration tree. The symmetry group is assumed to be part of the

François Margot: Department of Mathematics, University of Kentucky, Lexington, KY 40506-
0027, e-mail: fmargot@ms.uky.edu

Mathematics Subject Classification (1991): 90C10, 90C27, 90C57

2 François Margot

input. If the symmetry group is not completely known, any of its subgroups can
be used. Alternatively, software computing the automorphism group of graphs
(for example nauty [26]) can be used to generate the symmetry group from the
ILP formulation.

In [23], an isomorphism pruning algorithm using the symmetry group for a
branch-and-cut algorithm was described. One of the main drawbacks of that
algorithm is that the branching variable cannot be chosen freely, but always has
to be the non-fixed variable with smallest index. In this paper, a modification
of the algorithm allows for a more flexible rule to pick the branching variable,
called ranked branching rule. It also introduces strict setting algorithms that
can be used to set variables to 0 or 1 without conflicting with the isomorphism
pruning. Section 3 defines the ranked branching rule and describes its associ-
ated pruning algorithm. Section 4 defines the strict setting algorithms and show
how to use orbits of subgroups of G to set additional variables, an operation
called orbit setting. Section 5 describes the strong branching procedure and the
corresponding strict setting algorithm. Section 6 briefly presents basic group al-
gorithms and data structures. Finally, Section 7 presents a comparison between
several branch-and-cut algorithms to illustrate the effect of two strict setting al-
gorithms when coupled (or not) with orbit setting. The test problems come from
three types of applications: set covering problems from Steiner triple systems,
covering designs, and error correcting codes.

2. Preliminaries

Let Πn be the set of all permutations of the ground set In = {1, . . . , n}. Πn is
known as the symmetric group of In. A permutation in Πn is represented by an
n-vector π, with π[i] being the image of i under π. If v is an n-vector and π ∈ Πn,
let w = π(v) denote the vector w obtained by permuting the coordinates of v

according to π, i.e.,
w[π[i]] = v[i] for all i ∈ In.

We consider an integer linear program (ILP) of the form

min cT x (1)

s.t. Ax ≥ b,

x ∈ {0, 1}n ,

where A is an m×n matrix. Without loss of generality, we also assume that the
entries in A, b, and c are all integers. For a permutation π of the n variables and
a permutation σ of the m rows of A let A(π, σ) be the matrix obtained from A

by permuting its columns according to π and its rows according to σ. Let

G = {π |π(c) = c and there exists σ s.t. σ(b) = b, A(π, σ) = A} .

Exploiting Orbits in Symmetric ILP 3

Clearly, G is a permutation group of In. Moreover, for π ∈ G, a point x̄ is feasible
(resp. optimal) for the linear relaxation of ILP (1) if and only if π(x̄) is feasible
(resp. optimal) for that ILP. Hence, G is a symmetry group of the feasible (and
of the optimal) set of the ILP.

Let S ⊆ In. To simplify the notation, we make no difference between a set S

and its characteristic vector and sets containing a single element e are written
simply e instead of {e}. The orbit of S under G is

orb(S, G) = {S′ ⊆ In | S′ = g(S) for some g ∈ G} .

The stabilizer of S in G is the subgroup of G given by:

stab(S, G) = {g ∈ G | g(S) = S} .

For 1 ≤ a ≤ b ≤ n, we write v[a..b] for the entries {v[a], v[a + 1], . . . , v[b]} of v

as an unordered set.

If g1, . . . , gk are k permutations of In, the permutation g = g1 · . . . ·gk is obtained
by applying the permutations from right to left, i.e g(v) = g1(g2(. . . (gk(v)) . . .))
for any n-vector v.

The proposed branch-and-cut algorithm will branch by fixing the value of one
variable xj to 0 or 1. We make a difference between a variable fixed to 0 or 1
and a variable set to 0 or 1: A variable is fixed to a value if this is the result
of a branching operation; it is set to a value if, for some reason other than a
branching decision (e.g. reduced cost fixing, logical implications), the variable
must take that particular value.

Let a be a node of the branch-and-cut enumeration tree. We denote by F a
0 (resp.

F a
1) the set of indices of variables fixed to 0 (resp. to 1) at a and Na for the set

of indices of variables that are not fixed to 0 or 1 at a. We use Sa
0 (resp. Sa

1) for
the set of indices of variables set to 0 (resp. to 1) at a. Note that Sa

0 ∪Sa
1 ⊆ Na.

3. Ranked Branching Rule

Let a and b be two nodes of the enumeration tree of a branch-and-cut algo-
rithm. The subproblems associated with nodes a and b of the branch-and-cut
are isomorphic if there exists a permutation g ∈ G, such that g(F a

k) = F b
k for

k = 0, 1.

Using this definition to prune nodes is difficult for two reasons: First, for a given
pair of nodes a, b, deciding if a suitable permutation g ∈ G exists is not easy.
Second, this decision problem would have to be solved for a large number of
pairs of nodes. The goal of this section is to present a practical isomorphism

4 François Margot

pruning algorithm. One advantage of the proposed algorithm is that it works
with a single node a of the enumeration tree instead of a pair of nodes. This
is a very valuable property, as storing nodes that have been already explored is
then unnecessary. However, to achieve this, we need to restrict the choice of the
branching variable. We then define one representative of each class of isomorphic
subproblems, guaranteeing that pruning all nodes that are not representatives
is valid. The proof of the later is the main result of this section.

In [23], a simple branching rule, called minimum index branching, was used.
Unfortunately, this rule is very inflexible: At node a, the branching variable has
to be xf where f is the minimum index in Na (even if the value of xf in the
current solution of the LP relaxation is 0 or 1). This section presents a relaxation
of the rule, leaving more latitude for picking the branching variable at the cost
of maintaining a vector R of integers, the rank vector, indicating the order in
which the variables have been used as branching variables: At the beginning,
R[i] = n + 1 for i = 1, . . . , n and r = 0. If variable xf is chosen for branching
and R[f] = n + 1, then R[f] is set to r + 1 and r is increased by one. Note that
both R and r are global variables (i.e., the same R and r are in use at each
node of the enumeration tree) and that r is never decreased during the whole
enumeration.

The rule to select the branching variable xf at a, called ranked branching rule,
is then the following:

(i) If there exists j ∈ Na with R[j] < n + 1, then f = arg min {R[j] | j ∈ Na}.
(ii) Otherwise, choose freely any index f ∈ Na.

It follows that if each variable has been used at least once as a branching variable,
the resulting rank vector R is a permutation of In. The branching rule of [23]
is obtained by always choosing the minimum index in Na in step (ii) above.
Note that a variable i ∈ Sa

k for k = 0 or k = 1, might be the chosen branching
variable. Then the rank vector is updated, a unique son b is created (since the
other son could be pruned by infeasibility), and variable i becomes one of the
fixed variables.

In the remainder of the paper, we consider a branch-and-cut using a ranked
branching rule. The rank vector R at the start of the processing of node a is
denoted by Ra. Ra depends on the enumeration strategy, but the results given
below are valid for any enumeration strategy.

Let J = {j1, . . . , jp} be an unordered multiset of In+1. Let J̄ be the ordered mul-
tiset obtained from J by ordering its elements in non-decreasing order. Given
two multisets J1, J2 in In+1, we write J1 � J2 (resp. J1 ≺ J2) if J̄1 is lexico-
graphically smaller or equal to J̄2 (resp. lexicographically strictly smaller than
J̄2).

Exploiting Orbits in Symmetric ILP 5

For a given rank vector R, a set J is a representative of the sets in its orbit under
G if its rank R(J) := {R[j] | j ∈ J} is lexicographically minimum among the
sets in its orbit under G, i.e.,

R(J) � R(g(J)) ∀ g ∈ G.

Notice that, for any rank vector R, there is at least one representative in the
orbit of J and, possibly, more than one.

Lemma 1. Let R1 and R2 be two rank vectors obtained during a branch-and-cut
using a ranked branching rule and assume that R2 is obtained after R1. Then

(i) if J is not a representative with respect to R1 then J is not a representative
with respect to R2.

(ii) if J is a representative with respect to R1 and all the entries in R(J) are
strictly smaller than n + 1 then J is the unique representative of its orbit
with respect to R1.

(iii) if J is a representative with respect to R1 and all the entries in R(J) are
strictly smaller than n + 1 then J is also a representative with respect to R2.

Proof. (i): Let g ∈ G such that R1(g(J)) ≺ R1(J) and let p = |J |. Let R1(J)
be the ordered set (a1, a2, . . . , ap), R2(J) be the ordered set (a′

1, a
′

2, . . . , a
′

p),

R1(g(J)) be the ordered set (b1, b2, . . . , bp) and R2(g(J)) be the ordered set
(b′1, b

′

2, . . . , b
′

p). Let k be the index such that ai = bi for i = 1, . . . , k − 1 and
bk < ak. Then bk < n + 1, implying that ai = a′

i for i = 1, . . . , k − 1, a′

k > bk

and bi = b′i for i = 1, . . . , k. It follows that R2(g(J)) ≺ R2(J).

(ii): Let J ′ be a set in the orbit of J under G. If R1(J
′) = R1(J) then J ′ = J as

R1 is a bijection between J and R1(J).

(iii): The orbit of J under G has at least one representative with respect to R2.
Since, by (ii), J is the unique representative with respect to R1, (i) implies the
result. ⊓⊔

The following property is crucial for the validity of the pruning:

Lemma 2. Let J ⊆ In be a representative under G with respect to rank vector R.
Let J ′ := J − j with j ∈ arg max {R[i] | i ∈ J}. Then J ′ is also a representative
with respect to R.

Proof. If J ′ is not a representative, then there exists g ∈ G such that R(g(J ′)) ≺
R(J ′). Then R(g(J)) ≺ R(J), a contradiction. ⊓⊔

Consider the following isomorphism pruning to be applied at node a of the
enumeration tree of a branch-and-cut using a ranked branching rule: If F a

1 is not

6 François Margot

a representative with respect to Ra, then prune node a. (Node a is said to be
pruned by isomorphism for short.)

Remark 1. This isomorphism pruning introduces an asymmetry between vari-
ables fixed to 1 and those fixed to 0. It would be of course possible to define
the representative using F a

0 instead of F a
1 , with similar results. Note however

that pruning nodes where at least one of F a
0 and F a

1 is not a representative
with respect to Ra would not work. To simplify the following, assume that the
branching variable is chosen according to the minimum index rule, implying that
R is the identity permutation. Consider the group generated by the permutation
(2, 3, 1)T , and suppose that the optimal solution of the ILP (1) is obtained at
node a when two of the variables have value 1 and the remaining one has value 0.
Then F a

1 is a representative if and only if F a
1 = {1, 2}, and F a

0 is a representative
if and only if F a

0 = {1}. Since F a
1 and F a

0 are always disjoint, a would be pruned
by the isomorphism test working with both F a

1 and F a
0 and all nodes containing

the optimal solution would be pruned.

One way to work with both F a
1 and F a

0 would be to say that node a is not
pruned if F a

1 is a representative and that F a
0 is lexicographically minimal in

its orbit under stab(F a
1 , G). But this results in pruning exactly the same nodes

as the proposed isomorphism pruning test, as F a
0 is “filling the gaps” between

elements in F a
1 and F a

1 ∪F a
0 = {1, 2, . . . , k} for some k, showing that F a

0 is always
lexicographically minimal in the considered orbit. ⊓⊔

Let B be a branch-and-cut using a ranked branching rule, isomorphism pruning,
and a particular enumeration strategy. Let T be the enumeration tree of B,
assuming that nodes are pruned only by isomorphism pruning or when the LP
relaxation of the corresponding ILP is infeasible. This implies that even in the
case where the linear relaxation associated with node a has an integer optimal
solution, B continues to branch. Pruned nodes are not included in T .

Let B′ be the branch-and-cut obtained from B by dropping isomorphism pruning,
but enumerating the nodes in the same order as B, the remaining nodes being
processed arbitrarily after that. Let T ′ be the enumeration tree of B′, assuming
that nodes are pruned only by infeasibility. Pruned nodes are not included in
T ′. Note that T ⊆ T ′.

Lemma 3. Let R be the rank vector obtained at the end of the enumeration for
B. Then

(i) If a ∈ T ′ − T then F a
1 is not a representative of its orbit with respect to R;

(ii) If a ∈ T then F a
1 is the unique representative of its orbit with respect to R;

(iii) B and B′ return the same optimal value.

Proof. (i): If a ∈ T ′ − T then a node b on the path between the root of T ′

and a is pruned by isomorphism. Then F b
1 is not a representative with respect

Exploiting Orbits in Symmetric ILP 7

to Rb, and thus, by Lemma 1 (i), it is not a representative with respect to R.
By definition of a ranked branching rule, we have, for all i ∈ F a

1 − F 1
b , that

R[i] > max {R[j]|j ∈ F 1
b }. Then, by Lemma 2, F a

1 cannot be a representative
with respect to R.

(ii): As a was not pruned by isomorphism, F a
1 is a representative with respect to

Ra. According to the rule for updating the rank vector during the enumeration,
we have that R[i] < n + 1 for all i ∈ F a

1 . By Lemma 1 (ii) and (iii), F a
1 is the

unique representative with respect to R.

(iii): Let a be a node of T ′ for which F a
1 is the characteristic vector of an optimal

solution to ILP (1) and such that F a
0 = In − F a

1 . A representative of the orbit
of F a

1 under G with respect to R is a set F ∗, and, by (i) and (ii), there is a node
b ∈ T with F b

1 = F ∗ and F b
0 = In − F ∗. As B processes node b at some point,

B yields the same optimal value as the one returned by B′. ⊓⊔

Lemma 3 shows the validity of the isomorphism pruning. It should then be
obvious that usual techniques such as cutting planes and pruning by bounds can
be added to B, keeping a branch-and-cut returning an optimal solution of the
problem. On the other hand, setting variables to 0 or 1 requires some care, as
explained in the next section.

4. Setting variables

This section shows how to modify standard techniques for setting variables to
0 or 1 (e.g. reduced cost fixing) when coupled with isomorphism pruning. This
motivates the definition of a strict setting algorithm. Then new results allowing
for the setting of additional variables are presented. A consequence of these
results is that, at node a, all variables in the same orbit of stab(F a

1 , G) can be
set simultaneously to k as soon as it is known that one of them can be set to k

by a strict setting algorithm working under symmetry, for k = 0, 1.

Let a be a node of the enumeration tree and let z∗ be the value of the best
known feasible solution to ILP (1) when processing node a. Let ILP a denote
the ILP at node a, i.e., ILP (1) where variables in F a

k ∪ Sa
k take value k, for

k = 0, 1. It is sometimes possible to identify variables that may be set to 0 or
1 without affecting the optimal solution returned by a branch-and-cut. Usually,
if it is possible to show that there exists an optimal solution x̄ of ILP a with
x̄i = k, for k = 0 or k = 1, then it is valid to set that variable to k at a.
When using a branch-and-cut with isomorphism pruning, however, this is not
true anymore, as the node corresponding to x̄ might be pruned by isomorphism
and the representative of its orbit might have xi = 1 − k. To avoid this, it is
necessary to use a strict setting algorithm. This is a procedure used to identify
variables that must be 0 (resp. 1) in every optimal solution of ILP (1) having

8 François Margot

value less than z∗ that is feasible for ILP a. The procedure then includes the
variables in Sa

0 (resp. Sa
1) and sets them to 0 (resp. 1). If the algorithm wants

to set a variable in F a
k ∪ Sa

k to the value (1 − k) for k = 0 or k = 1, ILP a

is infeasible and a is pruned. For simplicity, this observation is implicit in the
remainder of the paper.

For what follows it is essential that the strict setting algorithm works under
symmetry: If the setting algorithm is able to set variable xi in ILP a then, for
any g ∈ G, it is able to set variable xg(i) in the ILP obtained from ILP a by
permuting the variables according to g. This essentially prevents the setting
algorithm to work based on conditions linked to the isomorphism pruning, but
allows for traditional setting procedures. In the remainder of the paper, we only
consider strict setting algorithms working under symmetry.

As an example of a strict setting algorithm, consider the usual reduced cost
fixing procedure: Let c̄ ≥ 0 be the reduced costs of the optimal solution of the
linear relaxation of ILP a having value z. If xi is non basic at its lower bound
and z + c̄i ≥ z∗ then xi = 0 in every feasible solution of ILP a with value better
than z∗. (A similar test can be used for a non basic variable at its upper bound).
Since we assume that c is integer, it is valid to replace the condition by the
stronger z + c̄i > z∗ − 1.

We consider a branch-and-cut B using isomorphism pruning, a ranked branching
strategy and a strict setting algorithm. Let T be the nodes in the enumeration
tree of B that are not pruned by infeasibility or isomorphism. For a ∈ T , let T a

be the subtree of T rooted at a. A feasible leaf of T a is a leaf of T a where all
variables are fixed to 0 or 1. A solution in T a is a solution x corresponding to a
feasible leaf of T a. An optimal solution in T a is a solution in T a that is optimal
for ILP (1).

The next lemma shows that it is possible to set additional variables to 0, based
on the variables fixed to 0 at ancestors nodes. The idea is that if a variable was
fixed to 0 at an ancestor d, then either F d

1 ∪ {i} is not a representative or the

nodes f with F
f
1 = F d

1 ∪ {i} are explored in the other subtree in the sons of d.
Coupling this observation with some permutations in G, we get the following:

Lemma 4. Let a ∈ T and let d be an ancestor of a in T . Let g ∈ G such that
g(F d

1) ⊆ F a
1 ∪ Sa

1 and let i ∈ F d
0 . Then no solution x in T a has xg(i) = 1.

Proof. Assume that a feasible leaf b of T a has g(i) ∈ F b
1 . As g(F d

1) ⊆ F a
1 ∪Sa

1 ⊆
F b

1 , we have that g(F d
1)∪g(i) ⊆ F b

1 and thus F b
1 −F d

1 6= ∅. Moreover, as a ranked
branching rule is used and as i is fixed at d, Rd(i) < min {Rd(j) | j ∈ F b

1 −F d
1 }.

As g−1(g(F d
1)∪g(i)) = F d

1 ∪i and Rd(F d
1 ∪i) ≺ Rd(F b

1), F b
1 is not a representative

with respect to Rd. Lemma 1 (i) and Lemma 3 (ii) then show that b 6∈ T , a
contradiction. ⊓⊔

Exploiting Orbits in Symmetric ILP 9

In situations were the strict setting algorithm is an expensive operation, it might
be faster to use it only at a subset of the nodes of the enumeration tree. At
other nodes, it is possible to use the following result to draw on the knowledge
of fixed and set variables at other nodes in the tree. Note also that in certain
cases, the strict setting algorithm works with an outside hint and that different
conclusions might be obtained with different hints. (For example, for the reduced
cost fixing procedure with degenerate LPs, two different optimal LP bases might
yield different groups of variables to set to 0 or 1.)

Lemma 5. Let z∗ be the value of the best known feasible solution of ILP (1)
while processing node a ∈ T and let d be a node of T . Let g ∈ G such that
g(F d

0) ⊆ F a
0 ∪ Sa

0 and g(F d
1) ⊆ F a

1 ∪ Sa
1 . Then no optimal solution x in T a with

value better than z∗ has xg(i) = 1 for i ∈ Sd
0 or xg(i) = 0 for i ∈ Sd

1 .

Proof. Assume that the indices in Sd
0 ∪ Sd

1 = {i1, . . . , ip} are ordered according
to the order in which the setting algorithm proved that these variables could
be set. Let b(ik) be the ancestor of d in T at which variable xik

was set, for

k = 1, . . . , p. Note that F
b(ik)
0 ⊆ F d

0 and F
b(ik)
1 ⊆ F d

1 . We prove by induction on
k that xg(ik) satisfies the statement.

For k = 1, observe that a problem isomorphic to ILP b(i1) is obtained from ILP

(1) by assigning the value 0 to all variables in g(F
b(i1)
0) and the value 1 to those in

g(F
b(i1)
1). The choice of g implies that all these variables have the corresponding

values in ILP a. It follows that the setting algorithm applied at node a can prove
that xg(i1) satisfies the statement.

The reasoning for k > 1 is similar, since a problem isomorphic to ILP b(ik) is

obtained from ILP (1) by assigning the value 0 to all variables in g(F
b(ik)
0) and

the value 1 to those in g(F
b(ik)
1). Moreover, when the setting algorithm was used

at b(ik) to prove that xik
could be set, the other variables already set had indices

in {i1, . . . , ik−1}. Since all variables in xg(iq) for 1 ≤ q ≤ k − 1 are set to the
proper value in ILP a, and thus the strict setting algorithm on ILP a can prove
that xg(ik) can be set too. ⊓⊔

One difficulty in using Lemma 4 or Lemma 5 to set variables to 0 or 1 is com-
puting the set G∗ of all g ∈ G satisfying the statement. For given nodes a and d,
this set has no nice property and might not be a subgroup of G. Note however,
that there is no need to compute the whole set G∗ as the results remain valid
even if setting is done only for a subset of G∗. The following corollaries are easier
to use, albeit weaker than the Lemma.

Corollary 1. Let i ∈ F a
0 . Then all the variables in orb(i, stab(F a

1 , G)) may be
set to 0 in ILP a.

10 François Margot

Proof. This is Lemma 4 for d = a and g ∈ stab(F a
1 , G), i.e., g satisfying g(F a

1) =
F a

1 . ⊓⊔

Corollary 2. For i ∈ F a
0 ∪Sa

0 , all the variables in orb(i, stab(F a
1 , G)) can be set

to 0 in ILP a. For i ∈ Sa
1 , all the variables in orb(i, stab(F a

1 , G)) can be set to 1
in ILP a.

Proof. For i ∈ F a
0 , the result is Corollary 1. After setting these variables to 0,

we have g(F a
0) ⊆ F a

0 ∪Sa
0 . Then, for i ∈ Sa

0 ∪Sa
1 , the result is Lemma 5 for d = a

and g ∈ stab(F a
1 , G). ⊓⊔

Consider the following operations at node a ∈ T with rank vector Ra, called an
orbit setting. Let set alg(a) be the strict setting algorithm used at node a with
variables in F a

0 ∪ Sa
0 having value 0 and variables in F a

1 ∪ Sa
1 having value 1:

(i) Compute all orbits in stab(F a
1 , G).

(ii) For each i ∈ Sa
1 , set to 1 all variables in orb(i, stab(F a

1 , G)) and update Sa
1

accordingly. For each i ∈ F a
0 ∪Sa

0 , set to 0 all variables in orb(i, stab(F a
1 , G))

and update Sa
0 accordingly.

(iii) If additional variables can be set by set alg(a) update Sa
0 and Sa

1 accordingly
and go to (ii).

(iv) If Na = ∅ then return n + 1 and stop.
(v) Let xf be the variable that would be chosen as the branching variable, ac-

cording to the ranked branching rule. If F a
1 ∪ f is not a representative with

respect to Ra, then set to 0 all variables in orb(f, stab(F a
1 , G)), update Sa

0

accordingly and go to (ii). Otherwise, update Ra, return f and stop.

The output of the orbit setting is the value f in (v) for which F a
1 ∪ f is a

representative, or n + 1 if no such f exists.

The validity of the orbit setting should be clear. Step (ii) is an application
of Corollary 2 and the correctness of Step (v) follows from Lemma 1 (i) and
Corollary 2.

It remains to show how to compute orbits in stab(F a
1 , G) and how to test if a

set is a representative or not. This will be covered in Section 6. If orbit setting
is used, the operations performed at node a are:

f := orbit setting at a;
Repeat until a criterion is met

solve the LP relaxation of ILP a;
generate cuts;

If f < n + 1 then create two sons of a by fixing xf to 0 or 1;

Exploiting Orbits in Symmetric ILP 11

It would of course be possible to apply the orbit setting a second time after cuts
have been generated, but the differences are likely to be minimal.

If orbit setting is not used, the branching index f is obtained by repeated ap-
plication of step (v) of the orbit setting, skipping the setting of variables in
orb(f, stab(F a

1 , G)) when F a
1 ∪ f is not a representative with respect to Ra.

5. Strong Branching

The selection of the branching variable is a crucial component of an efficient
branch-and-cut. While a rule of thumb can usually be devised for a particular
problem, a universal rule is more elusive. For hard problems, where reducing
the size of the enumeration tree is particularly important, the most successful
procedure is probably strong branching: A list of candidate branching variables
is built and, for each variable in the list, the LP relaxation of the two sons that
would be created if the variable was selected is solved. The final choice of the
variable is then based on the different values of the LP relaxations. Usually the
LP is not solved to optimality, as only a fixed number of iterations of the dual
simplex algorithms are performed. The maximum size of the candidate list is
typically small. In the implemented algorithms, the LP is solved to optimality
and the size of the candidate list is at most 10. (See [10] for more background
on strong branching.)

After performing an orbit setting at node a of the enumeration tree, the orbits
of stab(F a

1 , G) partition Na into “equivalent” variables: If a variable is set to k,
then so are all variables in its orbit. If a variable is not set, then none of the
variables in its orbit is set. In the latter case, let i and j be two variables in the
same orbit. As there exists g ∈ stab(F a

1 , G) such that g(i) = j, g(F a
1) = F a

1 ,
g(Sa

1) = Sa
1 , and f(F a

0 ∪Sa
0) = F a

0 ∪ Sa
0 , including both i and j in the candidate

list for strong branching is useless, as the resulting LPs for the potential sons
will have exactly the same optimal values. If i (resp. j) can be set then the orbit
setting will set j (resp. i) too. It follows that the strong branching candidate list
needs to include not more than one variable from each orbit of stab(F a

1 , G). Note
that the situation is different for the setting algorithm based on reduced costs:
Since the calculations are done with respect to one particular optimal base, it is
possible that the algorithm is able to set i but not j.

A side result of the strong branching calculations is the occasional setting of
some variables: Let xi be a candidate for strong branching. If ILP a with xi = k,
for k = 0 or k = 1, is infeasible or has an optimal value larger or equal to the
value z∗ of the best known feasible solution (or strictly larger than z∗ − 1 if c

is integer), then xi may be set to 1 − k. This is a strict setting algorithm and
thus the orbit setting described in Section 4 is still valid. In the computational
tests given in the next section, when strong branching is used, it means that the
strict setting algorithm described above is used.

12 François Margot

6. Group Operations

Following [23], the chosen group representation and algorithms are based on the
Schreier-Sims representation of G [2–5,14,16–18].

Let G0 = G and Gi = stab(i, Gi−1) for i = 1, . . . , n. Observe that G0, G1, . . . , Gn

are nested subgroups of G.

For k = 1, . . . , n, let orb(k, Gk−1) = {j1, . . . , jp} be the orbit of k under Gk−1.
Then for each 1 ≤ i ≤ p, let hk,ji

be any permutation in Gk−1 sending k on ji,
i.e., hk,ji

[k] = ji. Let Uk = {hk,j1 , . . . , hk,jp
}. Note that Uk is never empty as

orb(k, Gk−1) always contains k.

Arrange the permutations in the sets Uk, k = 1, . . . , n in an n× n table T , with

Tk,j =

{

hk,j if j ∈ orb(k, Gk−1),
∅ otherwise.

The table T is called the Schreier-Sims representation of G. This table is not
uniquely defined, as there is usually a choice for the permutations included in
the sets Uk. However, the non-empty entries in the table are always the same in
all representations.

It is possible to make a small generalization of the presentation by ordering the
points of the ground set in an arbitrary order β, called the base of the table. In
that case, the subgroups G(β)k for k = 1, . . . , n are defined as the stabilizer of
β[k] in G(β)k−1, with G(β)0 = G. The corresponding table is denoted by T (β).
Row k of T (β) corresponds to the element k, U(β)k is the set of non empty
entries in row k of T (β) and J(β)k denotes the corresponding set of indices
{j ∈ In | T (β)[k, j] 6= ∅}, also called the basic orbit of k in T (following the
terminology of [18]). When the base β is fixed, we sometimes drop the qualifier
(β) in these symbols, but from now on each table T is defined with respect to a
base.

Algorithms for creating the table T (β) and for changing the base β of the rep-
resentation can be found in [2,4,5,14,16–18]. The implemented algorithm for
creating the table is closest to [16] and runs in O(n6 + n2 · |P|) where P is a
given set of generators of the group. The change of base algorithm is similar
to one in [5] and runs in O(n6). See [23] for details. Although the algorithms
are described for a 2-dimensional table T , a more space efficient implementation
uses a vector of ordered lists instead, as most entries in the table are usually
empty. The actual implementation uses a vector of ordered lists, but algorithms
are simpler to describe and understand for the 2-dimensional table.

We use backtracking algorithms to decide if a set is a representative or to com-
pute the orbits in the stabilizer of a set in G. These algorithms take advantage
of the fact that we may assume that the base β of the group at node a of the
enumeration tree has the following structure: Variables fixed to 1 at a (i.e., F a

1)

Exploiting Orbits in Symmetric ILP 13

come first in β, then the variables not set to 0 and not fixed (Na − Sa
0), and

then the variables fixed or set to 0 at a (F a
0 ∪ Sa

0).

The data structure associated with group G at node a of the branch-and-cut is
the following:

integer: bvf

matrix of permutations: T integer vector: β

integer: fixed one integer vector : part zero .

In addition a single rank vector R is updated during the whole enumeration
according to the rule of Section 3. When processing node a, the current rank
vector R corresponds to the vector Ra of the previous sections. The integer bvf

is the index of the branching variable of the father of a. The table T is just a
Schreier-Sims representation of the group with base β. The variable fixed one

gives the number of variables in F a
1 and

F a
1 = β[1..f ixed one] with R[β[1]] < · · · < R[β[fixed one]] .

The vector part zero is used to store information about variables fixed or set
to 0. For i = 1, . . . , f ixed one, β[part zero[i]..n] are the variables that have
been fixed or set to 0 before β[i] was fixed to 1. For i = fixed one + 1,
β[part zero[i]..n] = F a

0 ∪ Sa
0 , i.e., all the variables currently fixed or set to 0

at a. The remaining variables appear in β in increasing order of their rank, after
variables in F a

1 and before variables in F a
0 ∪Sa

0 . This structure of β is not difficult
to maintain throughout the branch-and-cut, using the procedure down() of [23]
and a more general base change algorithm when needed. The procedure down()
has complexity O(n6) for downing a point.

This is a compact way to store the sets F a
1 , F a

0 and Sa
0 with their history. Note

that the set F a
0 can be recovered as

{j ∈ β[part zero[fixed one + 1]..n] | R[j] ≤ R[bvf]}. (2)

Another advantage is that if the branching variable at a is chosen as a variable
in Sa

0 , there is no real need to actually generate the son. This is becaus the data
structure and ILP of the son would be identical to those of a, except for bvf which
can be updated. However, when branching on a variable in j ∈ Sa

1 , we might
need to modify the base β by moving j at its appropriate place and updating
the vector part zero. Although this could be done at node a, we nevertheless
create one son in this situation.

In this section, we consider algorithms for solving questions related to a single
node a of the branch-and-cut. To avoid heavy notations, the table associated
with a is denoted by T , instead of a more precise notation like T (a) or a → T .

14 François Margot

The same remark applies to the other fields of the data structure associated with
a.

We are interested in performing the following operations that were mentioned
in Section 4: Computing all orbits in the stabilizer of a set and deciding if the
rank of a set is lexicographically minimum in its orbit under G.

6.1. Computing orbits in the stabilizer of a set

If generators g1, . . . , gp of the stabilizer G′ are known, a simple algorithm [3]
works with the graph with node set In and edge set {(i, j) | gk(i) = j, with 1 ≤
k ≤ p, and i ∈ In}. The orbits are then the connected components of the graph.
Unfortunately, finding generators of the stabilizer of a set under G is difficult,
as it is at least as hard as testing if two graphs are isomorphic [14,19]. We
resort to backtracking for finding generators of G′. The resulting algorithm has
a complexity exponential in the size of the set to stabilize, but is practical for
small sizes.

One property of a Schreier-Sims representation of G is that each g ∈ G can be
uniquely written as

g = g1 · g2 · · · · · gn (3)

with gi ∈ U(β)i for i = 1, . . . n. Hence the permutations in the table form a set
of generators of G. As a consequence, any g ∈ G can be written as

g = g1 · · · · · gk−1 · gk · h

with gi ∈ U(β)i for i = 1, . . . k, and h ∈ Gk. Generators of stab(β[1..k], G) can
be thus obtained by selecting

a) all permutations g = g1 · · · · · gk−1 · gk with gi ∈ U(β)i for i = 1, . . . k such
that g(β[1..k]) = β[1..k].

b) all the entries in U(β)i for i = k + 1, . . . n.

Listing all permutations described in a) can be done easily with a backtracking
procedure: Observe that g2, . . . , gk all stabilize point β[1] and thus we must
choose g1 ∈ U(β)1 such that g1[β[1]] ∈ β[1..k]. Once g1 is chosen, as g3, . . . , gk

all stabilize point β[2], we must choose g2 ∈ U(β)2 such that g1 · g2[β[2]] ∈
(β[1..k] − g1[β[β[1]]]), i.e., g2[2] ∈ g−1

1 (β[1..k] − g1[β[1]]). The same reasoning
applies for selecting g3, . . . , gk.

The backtracking procedure given below outputs generators of the stabilizer of
the points in β[1..k]. It consists of an initializing procedure stabilizer gen() that
calls a recursive procedure stab gen().

Exploiting Orbits in Symmetric ILP 15

stabilizer gen(a, k)

/* Outputs generators of stab(β[1..k], G) where G is the group repre-
sented by T with base β */

Output U(β)i for i = k + 1, . . . , n;

ident = identity permutation;

remain := β[1..k];
stab gen(a, k, ident, remain, 1);

The parameters of the call to stab gen() have the following interpretation: ind

refers to the point β[ind] being treated during the current call; perm is a per-
mutation in G sending β[1..ind − 1] on a subset B ⊆ β[1..k]; and remain is
the set perm−1(β[1..k] − B). The variable i runs through all possible choice for
gi ∈ U(β)ind.

stab gen(a, k, perm, remain, ind)

For each i ∈ remain do

h := T [β[ind], i];
If h 6= ∅ then

loc remain := remain − i;

loc remain := h−1(loc remain);
loc perm := perm · h;
If ind < k then

stab gen(a, k, loc perm, loc remain, ind + 1);
else

output perm.

Remark 2. When using this algorithm in the first step of the orbit setting, a
slight modification may allow us to set more variables to 0 or 1 while computing
the generators of the stabilizer: Observe that during a recursive call at depth
q, β[1..q] = F d

1 and β[part zero[q + 1]..n] = F d
0 ∪ Sd

0 for some ancestor d of
a. It is thus possible to use Lemma 5 and set to 0 all variables perm[j] for
j ∈ β[part zero[q + 1]..n]. This is implemented in the codes tested in Section 7.
A stronger variant would be to initialize remain as F a

1 ∪ Sa
1 and then output

perm only if it stabilizes F a
1 . Moreover, it would be possible to also set to 1

all variables perm[j] for j ∈ Sd
1 , but this would require additional bookkeeping

to be able to retrieve the set Sd
1 . In most applications that we considered, few

variables are ever set to 1, making it likely that very little benefit would be
obtained by implementing this. ⊓⊔

16 François Margot

6.2. Deciding if a set is a representative or not

For deciding if a set is a representative of its orbit with respect to R, we refer to
[23], where procedure first in orbit() is described. The rank vector and the fact
that variables fixed and set to zero are moved to the end of the base (instead
of only the variables fixed to 0 as in [23]) require only a small modification of
first in orbit() (line marked (*) below). The justification of this comes directly
from the relation (2). The proof of correctness of the procedure is identical to
the one in [23], as the ordering of the variables in the base and the test (*)
take into account that the lexicographic ordering is done with respect to R. The
complexity of the procedure is O(n · k!), where k is the cardinality of the set.

first in orbit(a, k)

/* Returns “true” if and only if R(β[1..k]) is
lexicographically minimum among all sets in
orb(β[1..k], G) */

ident := identity permutation;

remain := β[1..k];
is lexmin := true;

f in orb(a, k, ident, remain, 1, is lexmin);

return(is lexmin);

The parameter is lexmin is passed by reference and is used to stop the procedure
as soon as it is known that R(β[1..k]) is not lexicographically minimum among
all sets in orb(β[1..k], G).

f in orb(a, k, perm, remain, ind, is lexmin)

If is lexmin = false then return;

For each i ∈ remain do

If β−1[i] ≥ part zero[ind] and R[i] < R[bvf] then (*)

is lexmin := false;

return;

h := T [β[ind], i];
If h 6= ∅ then

loc remain := remain − i;

loc remain := h−1(loc remain);
loc perm := perm · h;
If ind < k then

f in orb(a, k, loc perm, loc remain, ind + 1,

is lexmin);

Exploiting Orbits in Symmetric ILP 17

Remark 3. Assume that this algorithm is used to find the branching index f

when no orbit setting is used, i.e., the orbits of stab(β[1..k − 1], G) are not
known. It is then possible to compute the orbit (or at least part of it) of β[k] in
stab(β[1..k − 1], G) at virtually no cost: During a recursive call of f in orb() at
depth k−1, if the permutation loc perm stabilizes β[1..k−1] then loc perm[β[k]]
is in the orbit of β[k]. If the algorithm returns that R(β[1..k]) is lexicographically
minimum in the orbit of β[1..k], it is easy to check that all the points in the orbit
of β[k] have been found. If R(β[1..k]) is not lexicographically minimum in the
orbit, only a subset Q of the orbit might have been found, but it is possible to
set all variables in Q as well as β[k] to 0, similarly to what is done in step (v) of
the orbit setting. ⊓⊔

7. Applications

We use the software ABACUS (version 2.3) originally developed by Thienel [12,15,
32], now distributed by OREAS [29], as generic implementation of all branch-and-
cut steps with the LP solver CPLEX7.1 [11]. The machine used is an HP B2000
running HP-UX11 with a 500MHz PA-8600 CPU. Results on three classical com-
binatorial problems are presented: set covering problems generated by Steiner
triple systems, covering design problems, and error correcting code construction.

All the branch-and-cut, including the one in CPLEX7.1, are run in order to prove
that no solution with value better than the optimal one exists, i.e., the optimal
value is used to prune the enumeration tree from the start. This is done in order
to remove the randomness of the time at which an optimal solution is found. Since
the optimal value ẑ is always an integer for the problems under consideration,
the value ẑ−0.95 is used as the upper cutoff value. The branching variable order
is the minimum index branching variable of [23] described in Section 3. Cutting
is used in neither for our algorithms, making them work as Branch-and-Bounds,
but the branch-and-cut of CPLEX7.1 is allowed to use cuts (we use the default
settings). Since the goal is to get a better feel for the enumeration tree under
different strategies for setting variables, the comparisons are more reliable under
these choices.

The three applications and the set of test problems are described briefly below.
Table 1 gives characteristics of the test problems. Files of the test problems (in
LP format) can be obtained from [21].

Error correcting codes: The Hamming distance between two binary n-vectors
v and v′ is the number of indices 1 ≤ i ≤ n such that v[i] 6= v′[i]. An error
correcting binary code with distance d and word length w is a collection C of
binary w-vectors such that the Hamming distance between any pair of vectors
in C is at least d ([24], Chapter 9 in [6]). The goal is to find such a collection C
of maximal size. This maximal size is denoted by A(w, d). A simple set packing
problem with one variable per binary w-vector yields an ILP named codwd. We

18 François Margot

report results for cod83, cod93, and cod105. Those ILPs are difficult to solve for
the branch-and-cut of CPLEX7.1 as it runs out of memory after more than two
days of CPU time with roughly 80% of the generated nodes still in the tree.
Generators of the symmetry group are the w− 1 permutations corresponding to
swapping entry 1 and k in a word, for k = 2, . . . , w, and the 2w permutations
corresponding to complementing a subset of entries. The order of the group is
2w ·w!. Related reduced problems are denoted by codwdr. They are obtained from
codwd by setting to 1 the variable corresponding to the zero word and deleting
all other variables corresponding to words with at most d − 1 ones. CPLEX7.1
needs more than 6 hours to solve cod83r, more than 4 hours to solve cod105r,
and is not done after more than 3 days and 2.25 million nodes (almost none
pruned) for cod93r. Generators of the symmetry group of the reduced problems
are the w − 1 permutations corresponding to swapping entry 1 and k in a word,
for k = 2, . . . , w. The order of the group is w!.

Set covering from Steiner triple systems: Fulkerson [8] introduced a class
of difficult set covering problems obtained from the incidence matrix of Steiner
triple systems [9]. These problems, named STS9, STS15, STS27 and STS45,
have 9, 15, 27, and 45 variables respectively and are surprisingly difficult for
standard branch-and-cut codes. STS45 was first solved by Ratliff in 1979 [1]. As
an indication on the difficulty of these problems, Avis [1] showed that any branch-
and-bound algorithm using LP relaxations and dominance pruning will enumer-

ate at least 2
√

2n/3 nodes for an infinite family of problems STSn with n → ∞.
Feo and Resende [7] studied similar problems called STS81 and STS243, and
found good heuristic solutions, but only a few years ago Mannino and Sassano
[20] were able to solve STS81 to optimality. Their branch-and-bound requires
an enumeration tree with more than 900 million nodes. They also introduced
the problem STS135 for which they could only find an upper bound on the
optimal value. We report results for STS45, STS81 and a problem generated
according to the same method that we call STS63. Since our branch-and-cut is
asymmetric with respect to 0’s and 1’s in the solution (from isomorphism prun-
ing working with F a

1 , not with F a
0) and since any optimal solution for STS45,

STS63 or STS81 has more than 2/3 of the variables set to 1, it is much faster to
solve the problems where all variables are complemented, i.e., xi is replaced by
(1−xi) for i = 1, . . . , n. The constraints of the resulting ILP become of the form
xi +xj +xk ≤ 2 for the triples {i, j, k} generating an inequality xi +xj +xk ≥ 1
of the corresponding STS problem. The objective is then to minimize

∑

j −xj .
The statistics given below are for the modified problems, but numbers in Ta-
ble 1 relate to the original ILP. We choose not to introduce new names for the
modified problems, as identical results could be obtained for the original ILP by
running a similar branch-and-cut with the roles of 1’s and 0’s interchanged. The
symmetry groups were computed using the program nauty (version 1.5) written
by McKay [26]. CPLEX7.1 is able to prove optimality of the optimal value of
STS45 in 52 seconds and solves STS63 in a little bit more than 3 hours. It fails
to do so for STS81, as it runs out of memory after 6 hours and having generated
more than 9 million nodes (90% of them remaining in the tree). Despite the fact

Exploiting Orbits in Symmetric ILP 19

that STS81 is solved easily by our branch-and-cut, the solution of STS135 still
seems to be out of reach. (Its best known feasible solution has value 103 [28]).

Covering designs: Let V be a set of elements of cardinality v and let k and t

be integers such that v ≥ k ≥ t ≥ 0. Let K be the set of all k-subsets of V and
T be the set of all t-subsets of V . A (v, k, t)-covering design is a collection C of
sets in K such that each t ∈ T is contained in at least one set of C. A (v, k, t)-
covering design C is minimum if the cardinality of C is as small as possible.
Results and optimal values for these problems can be found in [27]. Generators
of the symmetry group are the v − 1 permutations corresponding to swapping
elements 1 and k, for k = 2, . . . , v and the order of the group is v!. The optimal
value for the (10, 5, 4)-covering design was found by Etzion et al. [13], without
optimality proof. The branch-and-cut of [22] proved optimality and generated 40
non-isomorphic optimal solutions. Results for cov954, cov1053, cov1054, cov1075,
cov1076, and cov1174 are reported. CPLEX7.1 solves only cov954 (196 seconds)
and cov1075 (13 hours). The other four problems are not solvable by CPLEX7.1

even after running for several days (it runs out of memory after 2 days on
cov1076; it does not make much progress on cov1053, cov1054 or cov1174 after
several days and millions of enumerated nodes).

Problem #variables Opt LP Group order
cod83 256 -20 -28.44 10,321,920
cod83r 219 -19 -25.81 40,320
cod93 512 -40 -51.20 185,794,560
cod93r 466 -39 -47.00 362,880
cod105 1024 -12 -18.29 371,5891,200
cod105r 638 -11 -15.26 3,628,800
STS45 45 30 15.00 360
STS63 63 45 42.00 72,576
STS81 81 61 27.00 1,965,150,720
cov954 126 30 25.20 362,880
cov1053 252 17 16.00 3,628,800
cov1054 252 51 50.00 3,628,800
cov1075 120 20 17.14 3,628,800
cov1076 120 45 42.86 3,628,800
cov1174 330 17 15.71 39,916,800

Table 1. Problem characteristics; “Opt” is the optimal value and “LP” is the value of the LP
relaxation of the initial formulation.

We consider four slightly different versions of a branch-and-cut, depending on
the choice of the strict setting algorithm and the use of orbit setting.

– BC1 is a branch-and-cut using isomorphism pruning and the strict setting
algorithm based on reduced costs (cf. Section 4).

20 François Margot

– BC2 is BC1 plus the orbit setting described in Section 4.
– BC3 is BC1 plus the strict setting algorithm based on strong branching

described in Section 5. BC3 thus uses two strict setting algorithms.
– BC4 is BC3 plus the orbit setting described in Section 4.

For BC1 and BC3, the additional setting of variables described in Remark 3
is used. For BC2 and BC4, the orbit setting is based on Corollary 2 with the
extension described in Remark 2. For BC4, the variables in the strong branching
candidate list are selected based on the orbits of stab(F a

1 , G), at most one variable
per orbit. The maximum size of the candidate list is 10.

Table 2 gives the total number of nodes in the enumeration trees. Comparing
BC1 with BC2 and BC3 with BC4, the orbit setting reduces the size of the
enumeration tree significantly. BC2 has a tree on average 16% smaller than BC1
by using orbit setting. The use of the orbit setting in BC4 (and possibly a better
choice of the variables in the strong branching candidate list) reduces the tree by
an additional factor of roughly 25%. Exceptions are cod83r, cod105, cod105r and
STS45, but this probably comes from the fact that cod105, cod105r are solved
in a few nodes and the symmetry groups of the other two problems are rather
small, implying that only a few non-trivial orbits are exploitable. For STS45, the
fact that about 1/4 of the variables are in the candidate list for strong branching
might also play a role. It is interesting to note that although cod83r and cod93r

have fewer variables and a symmetry group smaller than cod83 and cod93, the
number of nodes for the reduced problems is larger than for the original problem
for all four variants. The opposite is true for cod105r and cod105.

Problem BC1 BC2 BC3 BC4 CPLEX7.1

cod83 90 79 38 33 *
cod83r 135 121 45 39 1 · 106

cod93 671 653 249 203 *
cod93r 1,365 1,301 295 237 –
cod105 19 19 15 15 *
cod105r 13 13 9 5 14,881
STS45 1,571 1,571 515 513 62,934
STS63 4,723 4,499 1,477 1,247 9 · 106

STS81 658 503 309 199 *
cov954 700 655 159 126 45,139
cov1053 685 681 190 111 –
cov1054 483 447 172 108 –
cov1075 499 470 202 169 50,099
cov1076 23,607 22,454 6,392 5,121 *
cov1174 87,113 69,036 21,454 16,103 –

Table 2. Enumeration tree size. A ’–’ means that CPLEX7.1 did not finish after days of running;
A ’*’ means that it ran out of memory.

Exploiting Orbits in Symmetric ILP 21

Table 3 gives the CPU times of the different algorithms. Comparing BC1 with
BC2, and BC3 with BC4, we see that the time spent on the orbit setting is
usually more than offset by the time savings due to the reduction in the number
of nodes in the enumeration tree. The exception here is STS81, although the
total CPU time for BC4 is not worse than the one for BC3. Variants BC2 and
BC4 seem to dominate BC1 and BC3 respectively. BC2 is faster than BC4 on all
problems except STS81 and cov7114. This is not exactly a surprise, as it is well
known that the time to perform strong branching is non-negligible. In addition,
all these problems are solved in a few hundred nodes at most by BC2, making it
hard for BC4 to recover the cost of reoptimizing 20 problems at each node of the
enumeration tree. However, for cov1174, where the enumeration tree of BC2 has
close to 70,000 nodes, BC4 is significantly faster, despite spending about 2/3 of
the CPU time in the strong branching setting algorithm.

Problem BC1 BC2 BC3 BC4
cod83 13 12 – 1 27 18 – 19 10 0
cod83r 8 7 – 0 19 15 – 15 11 0
cod93 284 284 – 23 867 730 – 651 503 11
cod93r 327 317 – 7 880 771 – 717 621 2
cod105 814 822 – 1 4,175 3,383 – 2,000 1,190 1
cod105r 75 75 – 0 279 221 – 139 81 0
STS45 26 27 – 1 32 23 – 31 22 0
STS63 164 169 – 6 167 113 – 120 71 3
STS81 61 87 – 50 68 38 – 68 16 32
cov954 32 32 – 4 35 26 – 24 16 1
cov1053 61 63 – 3 60 35 – 35 16 1
cov1054 98 95 – 4 185 143 – 130 96 1
cov1075 70 67 – 0 193 162 – 118 92 0
cov1076 2,699 2,683 – 153 4,597 3,844 – 3,634 2,979 46
cov1174 17,909 14,717 – 555 15,129 10,545 – 11,136 7,431 197

Table 3. CPU times (rounded, in seconds); ordered as: Total time; strong branching time;
orbit setting time.

These results indicate that for problems requiring only an enumeration tree of
a few hundred nodes, BC2 is probably fastest. However, when BC2 has an enu-
meration tree much larger, BC4 might be faster. Note that if a problem has an
efficient strict setting algorithm faster than the strong branching setting algo-
rithm, the comparison would be more in favor of BC4. This could be simulated
by calling the strong branching setting algorithm only at a fraction of the nodes
of the enumeration tree.

Acknowledgements. I wish to thank three anonymous referees whose numerous suggestions
helped improve the paper substantially.

22 François Margot

References

1. Avis D., “A Note on Some Computationally Difficult Set Covering Problems”, Mathemat-
ical Programming 8 (1980), 138–145.

2. Butler G., “Computing in Permutation and Matrix Groups II: Backtrack Algorithm”,
Mathematics of Computation 39 (1982), 671–680.

3. Butler G., Fundamental Algorithms for Permutation Groups, Lecture Notes in Computer
Science 559, Springer (1991).

4. Butler G., Cannon J.J., “Computing in Permutation and Matrix Groups I: Normal Closure,
Commutator Subgroups, Series”, Mathematics of Computation 39 (1982), 663–670.

5. Butler G., Lam W.H., “A General Backtrack Algorithm for the Isomorphism Problem of
Combinatorial Objects”, Journal of Symbolic Computation 1 (1985), 363–381.

6. Conway J.H., Sloane N.J.A., Sphere Packings, Lattices and Groups, Springer (1993).
7. Feo T.A., Resende G.C., “A Probabilistic Heuristic for a Computationally Difficult Set

Covering Problem”, Operations Research Letters 8 (1989), 67–71.
8. Fulkerson D.R., Nemhauser G.L., Trotter L.E., “Two Computationally difficult Set Cover-

ing Problems That Arise in Computing the 1-width of Incidence Matrices of Steiner Triple
Systems”, Mathematical Programming Study 2, (1974), 72–81.

9. Hall M., Combinatorial Theory, Wiley (1986).
10. Jünger M., Naddef D., eds., Computational Combinatorial Optimization, Lecture Notes

in Computer Science 2241, Springer (2001).
11. ILOG CPLEX 7.1 User’s Manual, (2001).
12. Elf M., Gutwenger C., Jünger M., Rinaldi G., “Branch-and-Cut Algorithms for Combina-

torial Optimization and their Implementation in ABACUS”, in [10], 155–222.
13. Etzion T., Wei V., Zhang Z., “Bounds on the Sizes of Constant Weight Covering Codes”,

Designs, Codes and Cryptography 5 (1995), 217–239.
14. Hoffman C.M., Group-Theoretic Algorithms and Graph Isomorphism, Lecture Notes in

Computer Science 136, Springer (1982).
15. Jünger M., Thienel S., “Introduction to ABACUS – A Branch-And-CUt System”, Oper-

ations Research Letters 22 (1998), 83–95.
16. Kreher D.L., Stinson D.R., Combinatorial Algorithms, Generation, Enumeration, and

Search, CRC Press (1999).
17. Leon J.S., “On an Algorithm for Finding a Base and a Strong Generating Set for a Group

Given by Generating Permutations”, Mathematics of Computation 35 (1980), 941–974.
18. Leon J.S., “Computing Automorphism Groups of Combinatorial Objects”, in Computa-

tional Group Theory, Atkinson M.D. (ed.), Academic Press (1984), 321–335.
19. Luks E., “Permutation Groups and Polynomial-Time Computation”, in DIMACS Series

in Discrete Mathematics and Theoretical Computer Science 11 (1993), Groups and Com-
putation, L. Finkelsein, W. Kantor, eds., 139–175.

20. Mannino C., Sassano A., “Solving Hard Set Covering Problems”, Operations Research
Letters 18 (1995), 1–5.

21. http://www.ms.uky.edu/∼fmargot/rec pub.html
22. Margot F., “Small Covering Designs by Branch-and-Cut”, Research report 2000-27, De-

partment of Mathematics, University of Kentucky. To appear in Mathematical Program-
ming.

23. Margot F., “Pruning by Isomorphism in Branch-and-Cut”, Research report 2001-08, De-
partment of Mathematics, University of Kentucky.

24. S. Lytsin, “An Updated Table of the Best Binary Codes Known”, in Handbook of Coding
Theory, V.S. Pless, W.C. Huffmann, eds., North-Holland, Elsevier (1998).

25. Martin A., “General Mixed Integer Programming: Computational Issues for Branch-and-
Cut Algorithms”, in [10], 1–25.

26. McKay B.D., “Nauty User’s Guide (Version 1.5)”, Computer Science Department, Aus-
tralian National University, Canberra.

27. Mills W.H., Mullin R.C., “Coverings and Packings”, in: Contemporary Design Theory: A
collection of Surveys, Dinitz J.H., Stinson D.R., eds., Wiley (1992), 371–399.

28. Odijk M.A., van Maaren H., “Improved Solutions to the Steiner Triple Covering Problem”,
Information Processing Letters 65 (1998), 67–69.

29. http://www.oreas.de
30. M.W. Padberg, G. Rinaldi, “A Branch-and-Cut Algorithm for the Resolution of Large

Scale Symmetric Travelling Salesman Problems”, SIAM Review 33 (1991), 60–100.

Exploiting Orbits in Symmetric ILP 23

31. Sherali H.D., Smith J.C., “Improving Discrete Model Representations via Symmetry Con-
siderations”, Management Science 47 (2001) p1396–1407.

32. Thienel S., “ABACUS - A Branch-And-CUt System” Ph.D. Thesis, Universität zu Köln
(1995).

33. L.A. Wolsey, Integer Programming, Wiley (1998).

