

DESIGN AND

IMPLEMENTATION OF A
PARALLEL CRAWLER

By

Ankur M. Patwa

A project submitted to the graduate faculty of

The University of Colorado at Colorado Springs in partial

fulfillment of the Master of Science degree

Department of Computer Science

2006

This project for Master’s of Science degree by

Ankur M. Patwa has been approved for

the Department of Computer Science

by

Dr. J. Kalita (Advisor)

Dr. C. E. Chow (Committee Member)

Dr. S. Semwal (Committee Member)

 Date

 Page: 1 /88

Table of Contents

Table of Contents.. 1

List of Tables: ... 2

Abstract: ... 3

Abstract: ... 3

Chapter 1: Introduction ... 4

1.1 Problem Statement: ... 6

1.2 Objectives and Design Goals ... 6

1.3 Summary of Work:.. 8

Chapter 2: Background Research .. 9

2.1 Related work: .. 9

2.2 Politeness and Robots Exclusion Protocol ... 15

Chapter 3: Implementation.. 26

3.1 Software and packages used: ... 26

3.2 Perl modules used: .. 28

3.3 Explanation of WWW::RobotRules::MySQLCache module:............................... 30

3.4 The configuration file:... 31

3.5 System architecture and user manual: .. 34

3.6 Database Implementation: ... 35

3.7 The Algorithm used:.. 49

Chapter 4: Problems faced and Solutions .. 56

Chapter 5: Experiments and Results.. 70

 Page: 2 /88

List of Tables:

Table 1: s_domain table. 36
Table 2: s_machine table. 37
Table 3: s_crawler table. 38
Table 4: s_assignment table. 38
Table 5: s_machine_crawler table. 39
Table 6: s_linkage table. 39
Table 7: s_url table. 40
Table 8: s_interdomainlinkage table. 41
Table 9: s_server table. 42
Table 10: location table. 42
Table 11: rules table. 43
Table 12: c_server table. 43
Table 13: c_linkage table. 43
Table 14: c_url table. 45

Table 15: Comparison of different systems. 79

List of Figures:

Figure 1: System Architecture. 34
Figure 2: Relationships amongst tables on scheduler 47
Figure 4: Relationships amongst tables on crawler machines 49
Figure 5: Distribution of pages in the database 71
Figure 6: Results of optimization of MySQL table and redefining indexes on fields 72
Figure 7: Throughput per hour before and after load balancing 73
Figure 8: Time taken by different activities 75
Figure 9: Scaleup graph to process 10,000 URLs. 76
Figure 10: Scaleup graph for downloaded pages and throughput per hour for 10,000 URLs. 78

 Page: 3 /88

Abstract:

A Web crawler is a module of a search engine that fetches data from various

servers. It can be implemented as an independent module or in coalition with other

modules. This module demands much processing power and network consumption. It is a

time-taking process to gather data from various sources around the world. Such a single

process faces limitations on the processing power of a single machine and one network

connection. If the workload of crawling Web pages is distributed amongst several

machines, the job can be performed faster.

The goal for the project is to discover problems and issues pertaining to the design

and development of a scalable, parallel architecture for crawling a set of domains; to

enumerate important problems that arise and provide solutions for the same. The crawled

pages can be used as input for an indexer module and/or an analysis module. The task of

distribution of domains to crawling machines and a strategy to crawl the domains without

overloading the servers are experimented with and concerns important to such tasks are

recorded.

 Page: 4 /88

Chapter 1: Introduction

With the ever expanding Internet, it is difficult to keep track of information added

by new sites and new pages being uploaded or changed everyday. While the Internet is

nearing chaos, it is difficult for a user to find correct information in a timely manner.

Today’s search engines are greatly used to get whereabouts of relevant information ver y

quickly. They are like maps and signs which point the user in right direction.

A search engine consists of following modules:

 A crawling module which fetches pages from Web servers

 Indexing and analysis modules which extract information from the fetched pages and

organize the information

 A front-end user interface and a supporting querying engine which queries the

database and presents the results of searches.

Web crawlers are a part of the search engines that fetch pages from the Web and

extract information. The downloaded pages are indexed according to the amount and

quality of informational content by an indexing module and the results from the storage is

provided to a user via a user interface. The crawlers can also be used to check links of a

site, harvest email addresses and other tasks. These days, one can witness mobile

crawlers, crawling agents, collaborative agents, crawlers implemented on a point-to-point

network and others.

 Page: 5 /88

A crawling module consists of the following functional parts:

 URL frontier: It is a list of URLs to be crawled by the crawler.

 A page-fetching function: This is implemented as a browser object which queries a

Web server and downloads the document at a given URL.

 Link extracting module: Downloaded documents are parsed for links and links which

have not been encountered before are extracted and pushed into the URL frontier.

Relative links are converted to absolute or canonical URLs. The functionality of

extracting URLs can be enhanced by adding parsers to parse different types of

documents. Some of the types of documents other than HTML documents that can

contain links are CSS and Javascript files, PDF and Word documents etc.

 Storing module: This module stores the fetched document. A physical disk is used as

the medium to store the pages.

 A database to store information about the crawling task and meta-information about

the pages that are crawled.

The modules listed above can be implemented simultaneously or executed one

after another. The information gathering and extracting processes can be implemented in

a distributed fashion and the results can be put into one place to be processed by another

module. A parallel crawler is implemented in a distributed fashion to crawl educational

domains ending in .edu.

Information gathered by the experiments will be used for the Needle project

which is an outcome of Zhang’s work [YDI 2006] and Patankar’s project [SNC 2006].

 Page: 6 /88

1.1 Problem Statement:

Design and implement a centrally managed architecture of parallel crawlers to

crawl US educational sites (.edu). Perform site-based distribution of work among the

machines and simultaneously crawl as many domains as possible.

 Some of the problems faced were evident during research and the goal of the

project was to device solutions for the problems. Following is a list of problems known

beforehand:

 Duplication of data amongst the machines.

 Presence of skew in terms of work load amongst the crawlers.

 Lack of an efficient communication system amongst the machines with a focus on

decreasing number of URLs exchanged amongst the machines.

 Fast and economical restarting mechanism for the machines in the system and a low

time to allow for resilience of the system.

More information about crawlers and information discovered are discussed in the

second chapter.

1.2 Objectives and Design Goals

The following are the aspects to be considered for the design of a crawler:

 Page: 7 /88

 Politeness: The crawler should be polite to Web servers in a way that it does not over

burden the Web servers with frequent requests in a short amount of time. There

should be enough delay between consecutive requests to the same server.

 Rule-abiding: The robot rules in robot exclusion files (robots.txt) on the servers

should be followed without any exceptions. The crawler should not fetch documents

which it (or any other spider) is not allowed to access.

 Scalability: Performance of the crawler should not degrade if there is an increase in

the number of domains to be crawled or an increase in machines assigned to the task

of crawling.

 Easy but exhaustive configuration: The configuration of a crawler should be easy and

intuitive. Almost all the aspects of the crawler should be configurable but the amount

of options should not be daunting. There should not be any two mutually exclusive

options.

 Speed: The crawler should be able to gain a good speed for crawling URLs and

should be able to maintain that speed even if the number of URLS increase or there is

an increase in the number of domains to be crawled.

 Priority based frontier: Frontier is the part of a crawler which holds the URLS to be

crawled. The crawler should make a sound choice regarding which URL should be

crawled next. The URLs will have a weight or a rank, based on which URL will be

chosen next. The URL with the highest rank will be crawled before any other URLs.

Logic defines how the rank of a URL is determined. Any URL which is encountered

in other URLs but not yet crawled gets a higher rank and will be shifted nearer the

front of the frontier.

 Page: 8 /88

 Detection of non-functional servers: A good crawler should detect that a Web server

is offline and is not processing requests or takes a long time to process the requests.

 Selective crawling of documents: The crawler should crawl documents where there is

a possibility to find links. i.e. documents having content-type text/html, text/javascript

and others and should have logic to avoid the download of audio/ video files or files

which might not contain links.

 Load Balancing: The task of crawling should be equally distributed among the

machines based on their performance.

1.3 Summary of Work:

 The crawling system was built from scratch. Design logic was developed and

implementation of the system was changed a many times as problems became evident.

The ideal properties of a crawler, as mentioned above, were kept in focus for building the

system. When the system was updated, crawled pages were not discarded. Experiments

were performed starting with four machines. Issues like caching of Robot Rules,

distribution of sites amongst crawlers, a quick and economical restart mechanism and

others were solved. One main problem faced was the processing speed of the machines.

These and other issues are mentioned in detail in the fourth chapter.

 Page: 9 /88

Chapter 2: Background Research

2.1 Related work:

The distribution of a Web crawling task not only faces the yard-stick of getting

extracted information but also have to handle other issues such as network usage,

distribution of sites to be crawled and synchronization of downloaded data with previous

data, duplication of data and merging of results.

In [CGM 2002], the authors discuss various criteria and options for parallelizing

the crawling process. A crawler can either be centrally managed or totally distributed. A

crawler can be designed as to ignore overlap of pages that are downloaded while taking

care of network load or vice versa. The authors define the quality of a crawler as its

ability to download “important” pages before others. For a parallel crawler, this metric is

important as every crawling process focuses only on local data for marking pages as

important. The authors mention that distributed crawlers are advantageous than multi-

threaded crawlers or standalone crawlers on the counts of scalability, efficiency and

throughput. If network dispersion and network load reduction are done, parallel crawlers

can yield good results. Their system utilizes memory of the machines and there is no disk

access. They did not store their data to prove the usefulness of a parallel crawling system.

Their target was a small set of news sites.

 Page: 10 /88

Mercator is a scalable and extensible crawler, now rolled into the Altavista search

engine. The authors of [HNM 1999] discuss implementation issues to be acknowledged

for developing a parallel crawler like traps and bottlenecks, which can deteriorate

performance. They discuss pros and cons of different coordination modes and evaluation

criteria. The authors summarize their work with very good performance statistics. In

brief, they concur that the communication overhead does not increase linearly as more

crawlers are added, throughput of the system increases linearly as more nodes are added

and the quality of the system, i.e. the ability to get “important” pages first, does not

decrease with increase in the number of crawler processes. Fetterly and others in their

work [FMN 2003] accumulated their data using the Mercator crawler. They crawled 151

million HTML pages totaling 6.4 TB over a period of 9 days.

Shkapenyuk and Suel of [SSD 2002] produce statistics similar to the ones

produced by Heydon and Najork of [HNM 1999]. Their architecture employs one

machine for each modular task. To avoid bottlenecks while scaleup, they had to deploy

more machines for a specific task. Therefore, the number of machines increased with a

greater curve for adding more crawler machines. The network communication load

increased drastically due to increased coordination work amongst machines with similar

tasks.

The architecture of Ubicrawler as described in [BCS 2002] is fully distributed in

terms of agents. A single point of failure does not exist but at an expense of heavy intra-

system communication and duplication of data. Their system is a fault-tolerant, platform

 Page: 11 /88

independent and all data is saved to files. The agents push URLs amongst themselves in

order to download them. If a node is busy, another node is contacted. Much latency can

creep into the system if a free node is hard to find at correct time. This utilizes more

resources for coordination amongst agents than necessary. Manual tuning of allocation of

nodes to agents is needed to avoid bottlenecks.

In [LKC 2004], the authors implement a distributed system of crawlers in a point-

to-point network environment. Data to be communicated to and fro amongst systems are

stored in dynamic hash tables (DHTs). The crawler is an on-the-fly crawler. It fetches

pages guided by a user’s search. Even when the search triggers the crawling task, there is

no pruning of URLs and exclusion pages based on content. This can result in poor quality

of results returned. They implement URL-redirection amongst nodes to balance the load

but the criteria for redirection of URLs is unclear. The usage of memory due to DHTs

and the coordination is not recorded. But they claim to reach download speed of around

1100 kBps per second with 80 nodes.

Authors of [PSM 2004] have implemented a location-aware system where

globally distributed crawlers fetch pages from servers which are nearest to them. The

system is resilient to failures but it has long resilience time and the feature is detrimental

to the organization of data. When a crawler goes down, the domains it was crawling are

transferred to other crawlers. This results in a large overlap of data. A heavy heartbeat

protocol is needed to choose the nearest crawler. Moreover, a crawler nearer to many

 Page: 12 /88

Web servers might be overloaded whereas a server at a little bit more distance may be

sitting idle.

Cho et. al. in their work [JHL 1998], describe the importance of URL re-ordering

in the frontier. If a page exists in the frontier and it is linked in by many pages that are

crawled, it makes sense to visit it before others which are linked from a few number of

pages. PageRank is used as a driving metric for ordering of URLs and three models of

crawlers are evaluated. They conclude that Page Rank is a good metric and pages with

many backlinks or ones with a high PageRank are sought first.

In [JHE 2000], Cho and Molina evaluate an incremental crawler. A collection is

the repository where crawled pages are stored. They describe a periodic crawler as a

crawler which re-visits the sites only after crawling all the sites in an iteration. On the

other hand, an incremental crawler incrementally crawls and re-visits pages after a target

amount of pages are crawled and stored in the collection. This target is specified by a

page window. A page window is the number of pages when crawled; the crawler has to

crawl them again. This way, an incremental crawler indexes a new page as soon as it is

found as opposed to the periodic crawler which indexes new pages only after the current

crawling cycle is complete. The way an incremental crawler crawls is called active

crawling, where the crawler is aggressive on getting more recent copies of pages. A

periodic crawler’s crawling process is called passive crawling. The researchers crawl a

small amount of the Web and discover that more than 70% of the pages over all domains

remained in their page window for more than one month and it took only 11 days for

 Page: 13 /88

50% of the .com domain to change, while the same amount of change took almost 4

months for the .gov domain. The authors state that the rate of change of pages is best

described by a Poisson process. A Poisson process is often used to model a sequence of

independent and random events. The authors describe two techniques to maintain the

collection. With the first one, a collection can have multiple copies of pages grouped

according to the crawl in which they were found. For the second one, only the latest copy

of pages is to be saved. For this, one has to maintain records of when the page changed

and how frequently it was changed. This technique is more efficient than the previous

one but it requires an indexing module to be run with the crawling module. The authors

conclude that an incremental crawler can bring fresher copies of pages more quickly and

keep the repository more recent than a periodic crawler. However, they conduct their

experiment for a limited period of time.

A recent paper, [JHH 2006] was discovered late during my research but it is

worth mentioning here as the architecture of my system and their system have a lot in

common. In their work, the authors describe the Stanford’s WebBase system which is the

academic version of Google! repository and search engine before it was commercialized

in late 1990’s. The component of interest is the crawler module. They implement 500

processes dedicated to the task of crawling. The process of crawling is parallelized

amongst the machines. A site with a fully qualified domain name is taken as an atomic

unit for the crawling process and it should not be crawled by more than one machine for a

crawling cycle. The authors state good points on why a site should be treated as

independent components. For example, it makes management of crawlers much easier

 Page: 14 /88

requiring little coordination amongst crawlers and the URL data structures can be stored

in the main memory. One can reinforce site-specific crawling policies too; like

scheduling the time of the crawl. But they crawl all the sites at the same time (9 A.M. to 6

P.M.PST). This can be improved upon where the location of servers is taken into

consideration. One can crawl the sites at night time according to the location of servers or

during the wee hours of mornings when the servers expect lesser load. During the day,

one can crawl in a non-intrusive way with a large delay between consecutive fetches. The

authors refer to this delay as courtesy pause and it ranges from 20 seconds for smaller

websites to 5 seconds for larger websites. The courtesy pause and courtesy policies like

respecting the robots exclusion protocol play a major role in the design of a system. The

system has a threshold of 3000 pages to be crawled per site, on a day. The crawlers crawl

the pages which belong to one domain at a time. There are two types of crawling

techniques described. One, there is a process dedicated to crawl each site and a process

which crawls multiple sites simultaneously. The authors discuss advantages and trade-

offs between two processes. Their system implements a combination of both types of

processes. The system translates domain names to IP addresses for the seed URLs. IP

addresses of sites are used to fetch more pages from sites. The authors state that if one

does not resolve domain names, one could experience a performance hit and accuracy

loss due to high DNS queries. But the technique fails if there are multiple virtual servers

implemented by hosting services or if a domain exchanges service providers.

Additionally, robots.txt files on the sites hosted on virtual servers cannot be retrieved.

This and other factors make the choice of resolving a domain name during the starting of

 Page: 15 /88

a crawl more expensive and difficult. For the purpose of crawling, the authors conclude

that treating a site as one unit elevates parallelization of a crawling process.

Using a single process for the task of crawling in her work [SNC 2006], Patankar

crawled 1 Million pages in a period of nine days. Data was loaded into the main memory

from the tables and a number of queues were used to represent the frontier. HTML pages

and images were crawled from five .edu domains.

2.2 Politeness and Robots Exclusion Protocol

There are two criteria for a Web crawler to fulfill to be a polite crawler:

1. Wait for some amount of time before fetching another page from one server and

not having many simultaneous connections with the same server at any given point

of time in order to avoid a high load for the servers it is crawling.

2. Respect the rules in the robots exclusion file: robots.txt hosted on the server’s root

directory.

A detailed explanation of both the points is as follows:

Crawlers automate the process of requesting data from the servers. The automated

scripts can perform the job very quickly, resulting in a crippling impact on the

performance of a Web server. If a single crawler is performing multiple requests per

second and/or downloading large files, and there are multiple crawlers trying to crawl

sites, there will be a daunting load on a server due to requests from multiple crawlers.

 Page: 16 /88

Even if Web crawlers can be used for a number of tasks as noted by Koster in

[KMR 1995], but they come with a price for the general community. Web server

performance can be hit due to answering crawlers and the ways the performance is

affected are:

• Network resources are consumed greatly, as crawlers require considerable

bandwidth to operate and they generally function with a high degree of

parallelism for a long time span.

• The number of requests coming in is high and at a high frequency resulting in

steep server overload.

• If a crawler is poorly written or the inherent logic is inefficient, it can crash

servers or routers by sending too many requests in a small period of time, or

download a huge number of pages that they cannot handle.

• If too many users stated using personal crawlers and deployed them around the

same time, they can disrupt networks and Web servers.

The first proposal for the interval between two requests was given in [KGR 1993]

and was proposed to be a 60 seconds value. However, if pages were downloaded at such

a rate from a large website having more than 100,000 pages over a perfect, zero latency

connection with infinite bandwidth, it would take a crawler more than 2 months to crawl

only that entire website; also, the Web server would be sitting idle most of the time. In

addition, the crawler would never be able to get current pages with latest information

from that Web server. This norm does not seem practical, let alone be acceptable.

 Page: 17 /88

Cho and Molina in their work [JGM 2003] use 10 seconds as an interval between

two page accesses, and the implementers of the WIRE crawler [BYC- 2002] use 15

seconds as the default time gap between fetching two pages. An adaptive politeness

policy was followed by the Mercator Web crawler [HNM 1999]: if downloading a

document from a given Web server takes t seconds, the crawler should wait at least for

(10 x t) seconds before downloading the next page from that particular Web server. Dill

et al. the their work [DKR 2002] used just 1 second but that seems to be too short of an

interval because generally, a default connection time-out for a Web server is 30 seconds.

Anecdotal evidence from Web servers’ access logs show that access intervals

from known Web crawlers range anything from 20 seconds to 3–4 minutes. It is worth

noticing that even when being very polite, and taking all the safeguards to avoid

overloading Web servers, some complaints from Web server administrators are received.

The following is a classic example on why a crawler needs to be polite while

crawling pages. Grub, a search engine acquired by LookSmart was based on a distributed

computing algorithm. According to grub.looksmart.com, the Grub crawling project is not

operational right now. Quite a few webmasters were opposed to being crawled by a Grub

crawler for its apparent ignorance of sites’ robots.txt files. Because Grub cached

robots.txt, any changes to the file could not be detected. Webmasters encountered that

 Page: 18 /88

Grub did not understand newly created robots.txt files blocking access to specific areas of

their site for all crawlers. Grub's distributed architecture resulted in a huge amount of

server overload by keeping open a large number of TCP connections — the effects of this

were essentially similar to a typical distributed denial of service (DDOS) attack.

Koster in [KRE 1996] proposed a partial solution to problems stated above called

initially as the robots exclusion protocol, also known as the robots.txt protocol and it is

now a way to communicate by administrators to the crawlers about what parts of their

Web servers should not be accessed. Even though an interval between requests plays an

important role on the Web server’s load, its efficiency and its availability, this standard

does not include a suggestion for the interval of visits to the same server. A non-standard

robots.txt file can use a "Crawl-delay:" parameter to indicate the number of seconds to

pause between two requests, and some commercial search engines like Google, MSN,

Yahoo!, are already considering and respecting this norm.

2.2.1 A simple robots file

Even if you want all your directories to be accessed by spiders, a simple robots

file with the following may be useful:

User-agent: *
Disallow:

 Page: 19 /88

With no file or directory listed in the Disallow line, you imply that every directory

on your site can be accessed by any crawler. At the very least, this file will save you a

few bytes of bandwidth each time a spider visits your site (or more if your 404 file is

large); and it will also remove robots.txt from your web statistics bad referral links report.

User-agent: *
Disallow: /cgi-bin/

The above two lines, informs all robots - since the wildcard asterisk "*" character

was used) that they are not allowed to access any page in the cgi-bin directory and its

sub-directories. That is, they are not allowed to access cgi-bin/any_file.cgi or even a file

or script in a subdirectory of cgi-bin, such as /cgi-bin/any_sub_directory/any_file.cgi.

It is possible to exclude a spider from indexing a particular file. For example, if

you don't want Google's image search robot to index a particular picture, say,

some_personal_picture.jpg, you can add the following lines to your robots.txt:

User-agent: Googlebot-Image
Disallow: /images/some_personal_picture.jpg

2.2.2 Advantages of a robots.txt file

1. A robots.txt can avoid wastage of Web server’s resources.

 Page: 20 /88

Dynamic pages on a site which are coded in scripting languages (such as CGI/

PHP/ Python/ Perl) are not indexed by many of the search engine spiders. However, there

are crawlers of some search engines that do index them, including one of the major

players, Google.

For robots or spiders that do index dynamic pages, they will request the scripts

just as a browser would, complete with all the special characters and request parameters.

Generally, the scripts serve no practical use for a search engine as the values change

depending on the request parameters, location of the browser or type of the browser –

Web developers can create different pages to be viewed with specific browsers so that

their site is browser-compatible and has a consistent look and feel. But here, we are

talking about scripts that check site-navigation, error-reporting scripts, scripts that send

emails, scripts that implement business logic and so on. It does not make sense for a

search engine to crawl such types of scripts. - It can just crawl the direct links that use the

scripts. Generally, scripts do not produce useful information when called on their own

and many times, they do not produce links leading to other pages. An administrator might

want to block access for spiders from the directories that contain scripts. For example,

spiders can be blocked from accessing scripts in a CGI-BIN directory. Hopefully, this

will reduce the load on the Web server that occurs due to execution of scripts.

Of course there are the occasional ill-behaved robots that hit your server at a high

frequency. Such spiders can actually crash your server or at the very least hit its

performance and as a result, slow it down for the real users who are trying to access it.

 Page: 21 /88

An administrator might want to keep such spiders from accessing their sites. It can be

done with a robots.txt file. Unfortunately, ill-behaved spiders or ones with bad logic often

ignore robots.txt files.

2. It can save a good amount of bandwidth

If one examines a site's access logs, there will surely be a fair amount of requests

for the robots.txt file by various spiders. If the site has a customized 404 document

instead of a default one, the spider will end up requesting for that document if a robots.txt

file does not exist. If a site has a fairly large 404 document, which the spiders end up

downloading it repeatedly throughout the day, one can easily run into bandwidth

problems. In such a case, having a small robots.txt file may save some, even though, not

significant bandwidth. It would also save some considerable bandwidth during a high

time of the day when the server runs gets a huge amount of requests from users and it is

being crawled at the same time.

Some spiders may also request for files which one feels they should not do so. For

example, there is one search engine which is on a look out for only graphic files (.gif,

.jpg, .png, .bmp etc.). If one does not see the reason why s/he should let any crawler

index the graphics on his/her site, waste their bandwidth, and possibly infringe their

copyright, they can ban it and other spiders from accessing their graphic files directory

through a rule in a robots.txt file.

 Page: 22 /88

Once a page is indexed, a spider is likely to visit the page again to get a fresh

copy, just in case the page was updated after its previous visit. If one catches a spider

coming too often and creating bandwidth problems, one can block such a spider from

accessing any document in the entire site.

3. Refusing a particular robot for copyright reasons.

Sometimes you don't want a particular spider to index documents on your site

because you feel that its search engine infringes on your copyright or some other reason.

For example, Picsearch1 will download images and create a thumbnail version of it for

people to search. That thumbnail image will be saved on their Web server. If, as a

webmaster, you do not want this done, you can exclude their spider from indexing your

site with a robots.txt directive and hope that the spider obeys the rules in that file and stop

making a copy of documents from your site.

2.2.3 Shortcomings of using robots.txt

1. It is a specification, not a rule.

As mentioned earlier, although the robots.txt format is listed in a document called

"A Standard for Robots Exclusion", not all spiders and robots actually bother to heed it.

These days, generally all the bots obey it but some bots created specially to extract and

1 http://www.picsearch.com

 Page: 23 /88

harvest information from your site do not respect the robots.txt file. Listing something in

your robots.txt is no guarantee that it will be excluded. If you really need to protect

something, you should use a .htaccess file or other access authentication methods.

2. Sensitive directories should not be listed

Anyone can access your robots file, not just robots. For example, type

http://www.google.com/robots.txt on the address bar of your browser and it will get you

Google's robots.txt file. It doesn’t make sense for webmasters who seem to think that

they can list their secret directories in their robots.txt file to prevent that directory from

being accessed. Far from it, listing a directory in a robots.txt file often attracts attention to

the directory! In fact, some spiders (like certain spammers' email harvesting robots) make

it a point to check the robots.txt for excluded directories to spider. There is less chance

that your directory contents are not accessed if you do not advertise it or link it from

public area of your website. A better way is to password-protect the directories.

3. Only One Directory/File per Disallow line

Robots Exclusion Standard only provides for one directory per Disallow

statement.Do not put multiple directories on your Disallow line. This will probably not

work and all the robots that access your site will end up ignoring that line and accessing

the directory and/or pages listed on that line.

 Page: 24 /88

2.2.4 Strengthening the defense against ill-behaved spiders:

If one has a particular spider in mind which one wants to block, one have to find

out its name. To do this, the best way is to check out the website of the search engine.

Respectable engines will usually have a page somewhere that gives you details on how

you can prevent their spiders from accessing certain files or directories. One other way is

to look at the access logs. One can also use tools like Webilizer, Mint, or other statistical

tools that construct information out of server’s access logs.

When one has such spiders in mind, one can create a daemon to keep these

spiders at bay. This process can be executed as a proxy server. The algorithm for such a

daemon process is as follows:

1. Load the robot rules in robots.txt from Web server’s root directory.

2. For every request that comes in, check it against the set of rules.

a. if the request fails: issue a restricted-access error page.

b. else: pass the request to the Web server to be processed.

Another way is to use a combination of RewriteCond and RewriteRule directives

provided by mod_rewrite module for the Apache server to keep spiders away from the

website or parts of it. The mod_rewrite module can also be used to rewrite URLs as a part

of search engine optimization techniques but this functionality is out of context here.

 Page: 25 /88

In connection with the F(orbidden) flag, the RewriteCond directive can contribute

to keeping down the server strain caused by robots, for example, with dynamically

generated pages or parts of the site which contain sensitive data. The following

configuration snippet shows a mod_rewrite method to keep off such a robot, called

"BadSpider". It is identified by its IP address. One cares for the robot’s name to ensure

that the Web server doesn't block out normal users who may be working from the same

computer. Additionally, reading the starting page is allowed, so that the robot can read

this page and enter it in its index.

#if the HTTP header user agent starts with "BadSpider" ...
RewriteCond %{HTTP_USER_AGENT} ^BadSpider.*
#and requesting IP addresses are a.b.c.d and a.b.c.e,
RewriteCond %{REMOTE_ADDR} ^a\.b\.c\.[d-e]$
#then prevent access to pages which start with /dir/sub-dir
RewriteRule ^/~dir/sub-dir/.+ - [F]

A detailed explanation of the last technique of blocking spiders is available in an article

entitled URL manipulation with Apache at http://www.heise.de/ix/artikel/E/1996/12/149/

by Ralf S. Engelschall and Christian Reiber.

 Page: 26 /88

Chapter 3: Implementation

This chapter explains the setup of the system. There is one machine which works

as the scheduler machine. Its task is to assign seed pages or domains to the crawling

machines. The crawling machines get the seed URLs and the domains they need to crawl.

These then crawl the pages and follow links on the crawled pages.

 Following topics are discussed in this chapter:

 Software and packages used

 Perl modules used

 Explanation of WWW::RobotRules::MySQLCache module.

 The configuration file

 System architecture and user manual

 Database implementation

 The Algorithm used.

3.1 Software and packages used:

Perl:

Perl (version 5.8.8) is used as the programming language. A fast interpreter, its

features to handle and manipulate strings and relatively small memory signatures of its

modules make it an ideal language for this project.

 Page: 27 /88

MySQL:

The database is designed and implemented using MySQL v3.23.58 and v4.1.1.

MySQL is free, scalable and Perl has a rich API for MySQL.

PhpMyAdmin:

It is a good and intuitive front-end user interface for the MySQL database. Many

features are provided to create, manipulate and manage databases and users in the

MySQL environment. One can also see and adjust MySQL environment variables.

jEdit:

 jEdit is a powerful IDE for coding in multiple languages. It is free of cost. Its

features consist of syntax highlighting, auto code indentation, matching of braces, code

folding, error checking, ability to handle multiple secure remote connections, ability to

remember open documents while restarting and a very powerful search and replace

facility with regular expressions.

Apache:

 An Apache server v2.0.54 is used for the machines to communicate using the CGI

module.

Software used for documentation:

 Microsoft Visio was used for the diagrams and Microsoft Word was used to write

the project report.

 Page: 28 /88

3.2 Perl modules used:

 The following CPAN (Comprehensive Perl Archive Network) modules were used

for the project.

1. LWP: It is a comprehensive module for Web related implementation. LWP::Simple is

a small sub-module used for fetching pages. For more information, visit the CPAN

website (http://cpan.perl.org).

2. File::Path: It is used to implement an operating system independent file system to

store fetched pages. One can create, modify, list, read and delete directories and files

and create, follow, modify and delete symbolic links (if it is available as a feature in

the operating system).

3. DBI: DBI is a rich database independent interface for Perl. DBI::DBD is a Perl DBI

Database Driver Writer's Guide and DBD::mysql is a MySQL driver for the Perl5

Database Interface (DBI). These modules are not threads compliant and database

handles cannot be shared amongst Perl threads.

4. Threads: To start numerous machines, a multi-threaded implementation was designed

so that the crawler machines can be started at the same time and while one machine is

started, other machines do not have to sit idle.

5. CGI: It is used for communication among different machines. Crawler machines are

started when a CGI script is called which starts the crawling script as a background

process.

 Page: 29 /88

6. Digest::MD5: The md5_hex() function from this module is used to create a hash of

the retrieved pages. This can be checked for changes in a page when it is crawled the

next time.

7. HTML::Element: This module represents HTML tag elements. It is used to define

tags by HTML::SimpleLinkExtor when it parses a downloaded Web page.

8. HTML::SimpleLinkExtor: This module extracts links from a Web page. One can

specify what types of links are to be extracted. Links can be extracted from different

tags like <a>, , <form>, <link>, <script>, <frame> and others.

9. URI::URL is used to construct objects of URLs from links encountered in a

Webpage.

10. URI is used to canonize relative and absolute URI objects provided by the above

module.

11. HTTP::Headers is used to extract individual headers from a Web server’s response.

12. LWP::RobotUA is a package for implementing a browser object. The parameters are

discussed in the explanation of the configuration file.

13. WWW::RobotRules::Parser: This module is used to parse a robots.txt file.

14. WWW::RobotRules::MySQLCache: This is a extension for maintaining a cache of

multiple robots.txt files in a MySQL database. Its working is explained next.

15. Carp: This module is used to issue warnings and errors at different intensity levels for

problems occurring in modules.

16. DateTime::Format::Epoch is used to convert time from epoch seconds to current time

format in year, hours, minutes and seconds and vice versa.

17. Data::Dumper is used to print data as strings for debugging purposes.

 Page: 30 /88

18. Config::Crontab: To manage crontab entries.

19. Time::HiRes: This module was used to keep track of time for different activities

during the crawl

3.3 Explanation of WWW::RobotRules::MySQLCache module:

 This module was created to persistently store robot rules extracted by the

WWW::RobotRules::Parser module in a MySQL Database. The reasons to create this

module are explained in Chapter 4. A description of MySQL tables used by this module

and their relation is in the database section of this chapter.

The functions provided by this module are as follows:

 1. new($databaseServer,$username,$password,$database):

Creates a new object of type WWW::RobotRules::MySQLCache. Database

connection parameters are similar to those used in DBI.

 a. database server to connect to.

 b. username

 c. password

 d. database to be used.

2. create_db():

Creates two tables – location and rules to store the information.

location: Stores location of robots.txt.

rules: Stores rules extracted from robots.txt file(s).

 Page: 31 /88

3. load_db($location):

Loads rules from a robots.txt if we don't have them in the database. If the copy of

robots.txt in database is not consistent with the one just fetched from the server, the

database is updated.

4. is_present($location):

Checks if a particular robots.txt is present or not.

Returns 0 if

a) $location/robots.txt does not exists database OR

 b) $location/robots.txt is not a recently updated file

Returns 1 otherwise.

5. is_allowed($user_agent, $url_or_folder):

Checks of a userAgent is allowed to fetch a URL or access pages in a folder.

Returns 1(allowed) or 0(disallowed).

3.4 The configuration file:

The file config.txt holds the parameters for the configuration of the system. There

are configuration parameters for the scheduler machine, the crawling machines and the

userAgent object. It is saved as a text file so that the crawling machines can fetch it from

scheduler machine’s Apache server as a text file. The crawling machines then include the

local copy of config.txt as a file containing Perl scripts. An explanation of the parameters

is as follows:

 Page: 32 /88

1. weight_of_machine: This is a multiplication factor for the weight of machines and

the domains assigned to the machines. Possible values:

a. a numeric digit

b. number of domains * weight of machines field in the database.

2. location of log files: The directory relative to the scripts to store the log files.

3. max_error_pages: The maximum number of error pages to crawl before declaring a

server to be non-operational.

4. delay: courtesy pause to be obeyed between consecutive fetches from one server.

5. max_count_per_domain: The maximum number of pages to be crawled from one

domain in one cycle.

6. max_time: The maximum time in seconds devoted to one domain in one cycle.

7. number_of_retries: The number of retries for failed URLS.

8. restrict_to_base_domain: This parameter is used as a flag to report URLs from other

domains not assigned to the crawling machine or not to report such URLs.

9. threads_per_crawler: For a multi-threaded version of the crawler; number of threads

to be run simultaneously. Each thread runs for one domain.

10. crawl_content_types: This is a list of content_types of documents from which links

are extracted and followed.

11. save_content_types: A list of content_types of documents to be saved on the disk.

12. save_crawled_files_here: The location or folder where the downloaded documents

are to be saved.

13. tag_types: List of tags to be extracted from a downloaded Web page.

14. store_mailto_links: A flag parameter to save email addresses found on Web pages.

 Page: 33 /88

15. max_redirects: The maximum number of redirects to be followed for one URL.

16. time_out_secs: The timeout for the userAgent object while trying to fetch a page from

a server.

17. time_out_sec_on_fetch: This is the maximum time for a page-fetch from a server. If

the process takes more time than this parameter, the server is temporarily added to list

of blocked servers.

18. allowed_protocol_schemes: It is a list of protocol schemes to be followed. Currently,

this is set to http.

19. depth_of_crawl: This is an unused parameter. Web pages located not more than the

depth of number of sub-directories are to be crawled.

20. max_urls_per_site: This is an unused parameter. This number indicates the maximum

number of pages to be crawled from a Website.

Note: The two parameters above can be used if one experiences a server that has a page

that leads to an unending dynamically generated pages to trap a spider.

21. spider_name: Name of the userAgent or a browser object.

22. responsible_person: Email address of a person to be contacted by administrators of

Web sites for problems experienced due to the spider.

23. query_method: Default query method to be used to fetch Web pages. The values can

be ‘get’ or ‘post’.

 Page: 34 /88

3.5 System architecture and user manual:

 The system consists of one main machine called the scheduler and multiple

crawler machines. Each machine has a local MySQL database, a Web server and Perl

installed. Seed URLs are added to the database on the scheduler machine. The crawlers

register themselves, i.e., add themselves to the database on the scheduler. A high level

system diagram is shown in Figure 1. The working of the system is explained in the next

section.

Figure 1: System Architecture.

 The following are the steps to add a machine to the database and prepare it to

crawl sites:

1. Move scripts from scheduler machine to the new machine. The folder cgi-bin is to be

copied.

Scheduler
+

Crawler

Internet

Crawler

Crawler

Crawler

 Page: 35 /88

2. From browser on the new machine, call http://<location of

scheduler>/~ankur/register_form.html and submit the form Pass phrase is

academic_crawler. This will add the new machine to the database.

3. Change database connection parameters (database, username, password) in cgi-

bin/local_db_connection.pl for local database connection.

4. Start the crawler manually by running perl crawl_all.pl <ip address of current

machine> <crawl_id of the current crawl> <ip address of scheduler machine>.

crawl_all.pl is in cgi-bin directory. The crawler does not need to be started manually. It

will be started by a cron job on the scheduler machine.

 To add domains to be crawled, fill out the form using a browser at <location of

the scheduler>/~ankur/domains_register_form.html. Enter a seed page for the

domain. Generally this is the root page of the domain.

 To start a crawl, call the script start_crawl.pl on a command line. This will assign

domains to the crawlers and start the crawlers.

 To end a crawl, call the script end_crawl.pl. It will collect the information from

databases on crawler machines and stop the crawler processes. It will also mark the

current crawl as completed.

3.6 Database Implementation:

An explanation of fields in the tables is provided. Data from these tables will be

shared among researchers for the Needle project. An explanation of relationships

amongst the tables follows.

 Page: 36 /88

3.6.1 Tables on the scheduler:

Table s_domain:

Field Type Null Default
 total_pages int(11) Yes NULL
 size bigint(20) Yes NULL
 base_url varchar(255) No

 domain varchar(255) Yes NULL
 time_stamp date No 0000-00-00
 start_time time Yes NULL

 stop_time time Yes NULL
 delay_high int(2) Yes NULL
 delay_low int(2) No 0

Table 1: s_domain table.

Table 1 contains information about the domains to be crawled. total_pages and

size are two fields to be filled in during the crawl. These are updated at a regular interval.

base_url is the seed url for one domain.

 start_time and stop_time define the range when the server load is expected to be

minimum. These times are local times for the crawler. For example, a server in

Arizona is expected to have low load from 1:00 AM in the morning to 7:00 AM, then

the start_time for its record would be 00:00:00 and stop_time would be 06:00:00.

 delay_low is the delay between two consecutive page fetches from one single server

when the Web server is expecting a lot of load, i.e., during the day.

 Page: 37 /88

 delay_high is the delay between two page fetches when the server load is expected to

be low, for example, in the wee hours of mornings. delay_high is the delay when

local time is in the range from start_time and stop_time.

Table s_machine:

 Field Type Null Default
 machine_id varchar(15) No

 weight int(2) Yes NULL

 database varchar(255) Yes NULL
 username varchar(255) Yes NULL
 password varchar(255) Yes NULL
scripts_loc varchar(255) No

Table 2: s_machine table.

Table 2 contains information about the machines where crawler processes will

run.

 machine_id is the IP address of the machine

 weight pertains to the number of domains the machine can crawl simultaneously.

There is one crawling process running per domain.

 database, username and password are MySQL connection parameters to connect to

the datatabase on the machine.

 scripts_loc is location of scripts on the crawler machines. This field was added so that

different users can have a crawling process.

 Page: 38 /88

Table s_crawler:

 Field Type Null Default
 crawl_id int(11) No
 start_time timestamp(14) Yes NULL
 end_time timestamp(14) Yes NULL

Table 3: s_crawler table.

Table 3 contains information about each crawling cycle.

 crawl_id uniquely identifies a crawl. This field is also used to identify data belonging

to each crawl.

 start_time is the start time of the crawl and end_time when the crawl ended.

Table s_assignment:

 Field Type Null Default
 crawl_id int(11) Yes NULL
 machine_id varchar(20) Yes NULL
 base_url varchar(255) Yes NULL
 time_stamp timestamp No 0
 crawl_done tinyint(1) No 0
 c_pid int(11) Yes 0
 delay int(3) No 0
last_crawl bigint(20) Yes 0

Table 4: s_assignment table.

Table 4 connects the machines, domains and crawling processes. Seed urls:

base_urls of one or more domains from s_domain table are allotted to machines

according to the s_machine.weight. This is done for every crawl process identified by

s_crawler.crawl_id.

 delay is either delay_low or delay_high from the s_domain table.

 Page: 39 /88

 crawl_started and crawl_done mark the start and end of crawl for each domain.

 c_pid is the process id for the crawling processes on machines identified by

s_machine.machine_id.

 last_crawl is the number of URLs processed the previous time pages were fetched

from a particular domain.

Table s_machine_crawler:

 Field Type Null Default

 crawl_id int(11) No 0

 machine_id varchar(20) No

 url_count int(11) No 0

Table 5: s_machine_crawler table.

 Table 5 - s_machine_crawler is another relationship table between crawlers,

machines and domains. But here, it is a count of URLs allotted to each machine for

one crawling period.

Table s_linkage:

 Field Type Null Default
 base varchar(255) Yes NULL

 link varchar(255) Yes NULL

Table 6: s_linkage table.

Table 6 is a copy of c_linkage except that the links are normalized to be uniquely

recognized across machines and across crawls.

 Page: 40 /88

Table s_url:

Data from crawlers is dumped into this table at the end of each crawling period.

The table structure is the same except url_id is normalized to be able to uniquely identify

a url across machines and across crawling cycles. The fields are explained below for the

c_url table, i.e., table 7.

 Field Type Null Default
 url text No
 content_type varchar(100) Yes NULL
 time_stamp timestamp(14) Yes NULL

 time_taken integer(5) Yes 0
 crawled_at datetime Yes 0000-00-00 00:00:00
 valid_till datetime Yes 0000-00-00 00:00:00

 server varchar(255) No
 size int(11) Yes NULL

 url_id varchar(255) No
 crawl_id int(11) No 0
 crawled tinyint(1) No 0

 update_freq int(11) No 0
 check_sum varchar(50) Yes NULL
 rank int(11) No 0

retries tinyint(1) Yes 0

Table 7: s_url table.

 Page: 41 /88

Table s_interdomainlinkage:

 Field Type Null Default

 from_link text No

 to_link text No

 crawl_id int(11) No 0

 time_stamp timestamp(14) Yes NULL

 seen_flag int(11) No 0

Table 8: s_interdomainlinkage table.

Links leading to pages hosted on servers outside the domain currently being

crawled are dumpled into s_interdomainlinkage table, i.e., table 8.

 seen_flag is implemented as a flag for the scheduler to check if links are working or

not. Following are the possible values for the seen_flag:

o 1: If the link works

o 0: If the link is not checked.

o -1: If the link is broken.

Table s_server:

 Field Type Null Default
 server_id varchar(255) No 0
 server varchar(255) No

 Page: 42 /88

 domain varchar(255) No

Table 9: s_server table.

 Table 9 contains list of servers and domains gathered from multiple crawlers

3.6.2 Tables on the crawlers:

Table location:

 Field Type Null Default

 robot_id int(11) No

 location varchar(255) No

 created_on datetime No 0000-00-00 00:00:00

Table 10: location table.

 location table stores the location of robots.txt files.

 robot_id is the primary key for the records.

 location holds the domain where the robots.txt is hosted.

 created_on is the date when the robots.txt was created. This field is used to test if the

copy of robots.txt cached on the crawler is a fresh or not.

Table rules:

 Field Type Null Default
 robot_id int(11) No 0

 Page: 43 /88

 userAgent varchar(255) No
 rule_loc varchar(255) No

Table 11: rules table.

 rules contain the rules extracted from a robots.txt file. This table is used to check if

crawlers are allowed to fetch a URL from the server or not.

 userAgent is the userAgent field in the robots.txt. Generally, this contains a * meaning

a rule is set for all robots or spiders. Sometimes there are names of particular spiders.

 rule_loc contains part(s) of the website or page(s) that are not to be visited.

Table c_server:

 Field Type Null Default
 server_id int(11) No 0
 server varchar(255) No
 domain varchar(255) No

Table 12: c_server table.

 server hold different servers from where the URLs are fetched.

 domain is the list of domains.

Table c_linkage:

 Field Type Null Default

 base int(11) Yes NULL

 link int(11) Yes NULL

Table 13: c_linkage table.

Table 13 holds the connection between the urls.

 base is the url_id of the containing page.

 Page: 44 /88

 link is the url_id of the linked page.

 Page: 45 /88

Table c_url:

 Field Type Null Default
 url text No

 content_type varchar(100) Yes NULL
 time_stamp timestamp(14) Yes NULL

 time_taken integer(5) Yes 0

 crawled_at datetime Yes 0000-00-00 00:00:00

 valid_till datetime Yes 0000-00-00 00:00:00

 server int(11) No

 size int(11) Yes NULL

 url_id varchar(255) No

 crawl_id int(11) No 0

 crawled tinyint(1) No 0

 update_freq int(11) No 0

 check_sum varchar(50) Yes NULL

 rank int(11) No 0
retires tinyint(1) Yes 0

Table 14: c_url table.

Table 14 serves as a holder for the information gathered by the crawlers as well as

a frontier.

 url is the URL of the pages

 url_id is the primary key. It uniquely identifies the URLs.

 content_type holds either the content_type of the pages, i.e., text/html, application/pdf

and others or holds the HTTP error code returned by the server if the url is broken i.e.

404, 403, 500 and others.

 Page: 46 /88

 time_taken is the time taken to process the URL which consists of fetching the

content type of content of the URL, fetching the document from the server and/ or

extracting links from the page.

 crawled_at is the time when the process discussed was completed.

 crawl_id is the identity of a crawling cycle.

 crawled: This field determines the status of a URL. Possible values are as follows:

o 0 if the URL is not crawled

o 1 if the URL is crawled

o -1 if fetching the URL results in an error

o -2 if just a head request was performed on the URL.

o -3 if the URL was ignored due to robots exclusion or a protocol mismatch.

 update_freq: When a record is shifted from a crawler to the scheduler, checksum of

the page is checked with its checksum in previous crawls. This field holds the number

of times the page was updated.

 check_sum holds the MD5 checksum of the content fetched from a Web server for a

URL.

 rank: When a URL is not crawled, i.e., it is still a part of the frontier, rank is

implemented as a counter and holds the number of times it is linked from other pages.

A rank is used to prioritize the order in which the URLs in the frontier are processed.

URLs with a higher rank are crawled earlier than their counterparts with low rank.

 retires: This field holds the counter for number of retries on failed fetches. Failed

fetches have -1 as value for the crawled field. Maximum number of retires is a

configuration option in the config.txt file.

 Page: 47 /88

 server: It is the Primary key of the server where the URL is hosted. Domain and

server information is stored in the c_server table.

3.6 Database Relationships:

s_domain

base_url

domain
total_pages

size
start _time

stop _time

delay _high
delay _low

time_stamp

s_machine

machine _id

weight
database

username

password

s_crawler

crawl _id

start _time

end_time

s_assignment

crawl _id
base_url

machine _id

crawl _done
c_pid

delay
time_stamp

last_crawl

s_machine _crawler

crawl_id

machine _id
url_count

s_interdomain _linkage

--

from _link (url_id of container page)

to_link
crawl _id

time_stamp

seen_flag

Figure 2: Relationships amongst tables on scheduler

 Page: 48 /88

s_linkage

base

link

s_url

url_id

url

content_type

time_stamp

time_taken

valid_till

server

size

crawl_id

crawled

update_freq

check_sum

rank

s_server

server_id

server

domain

Figure 3: Relationship amongst tables on Scheduler for dumping data from crawler machines.

 Page: 49 /88

c_linkage

base

link

c_url

url_id

url

content_type

time_stamp

time_taken

valid_till

server

size

crawl_id

crawled

update_freq

check_sum

rank

location

id

location

created_on

rules

robot_id

userAgent

rule_loc

c_server

server_id

server

domain

Figure 4: Relationships amongst tables on crawler machines

3.7 The Algorithm used:

3.7.1 Scripts on the scheduler machine:

a) Starting a crawl:

1. Start a new crawl by inserting a new row in s_crawer table.

 Page: 50 /88

2. Fetch unassigned domains from s_domain table.

3. Fetch machines from s_machine table. Note: It is assumed that the machines are

registered in the database.

4. Assign domains to machines and save the assignment in s_assignment table.

5. Count domains per machine and store the information in s_machine_crawler.

6. Write cron jobs to start crawling machines (b: crontab entry 1) and fetch statistics (c:

crontab entry 2).

b) crontab entry 1: starting or restarting crawling processes

1. Check for unassigned or new seed pages in the s_domain table.

2. Check for new machines in the s_machine table.

3. If both of above values are greater than 0, assign the domains to machines and re-

calculate the number of domains per machine.

4. Fetch machines from the s_machine_crawler table.

5. For each machine, do the following:

a. Kill the current crawling process if the c_pid field > 0.

b. Start a new crawling process on the machine.

c) crontab entry 2: fetch statistics and check if the crawling process is running

1. Fetch machines in the s_machine_crawler table.

2. For each machine, perform following tasks:

a. Try to ping it.

b. Check if the crawling process is running or not.

 Page: 51 /88

c. Try to connect to its database.

i. If success, collect number of URLs crawled, uncrawled, ignored,

which had just the head request performed and store this information

into the s_crawl_stats table.

3. If any of sub-steps of 2 fails, email the administrator.

d) End a crawl

1. Get machines that participated in the current crawl from s_machine_crawler table.

2. For each machine, perform following tasks:

a. End all crawling processes on the crawler machines.

b. Append information in c_url and c_linkage to s_url and s_linkage after

normalizing the url_id for each URL.

3. Mark the current crawl as finished by adding a stop_time in the s_crawl table.

3.7.2 Scripts on the crawling machines:

a) Crawling

1. Fetch a new copy of config.txt and database.txt from the scheduler machine. The file

database.txt holds database connection parameters like host name, the name of the

 Page: 52 /88

database, the user name and the password for the database on the scheduler machine.

Local database connection parameters are stored in local_db_connection.pl.

2. Get seed pages for domains assigned to this machine.

3. For each seed page, do the following:

a. If the seed URL is found on the local database, restart the crawling process for

the domain. Get distinct servers for the domain and the count of uncrawled

URLs for each server. Also get the URLs with error pages but retries field is

less than number_of_retries in the configuration file.

b. If the seed URL is not found, fetch the page and extract links from it. Store the

links in the database with a crawled flag value of 0. See extract_links

(algorithm section b) for steps to extract links from a downloaded page. Mark

the seed URL as crawled. Store the server where uncrawled links are located

and the count of URLs for each server into main memory.

4. While the count of URLs for servers in the memory is greater than zero, loop through

the servers and fetch a page that belongs to the server and has the highest rank from

the database. Perform the steps mentioned in extract_links(algorithm section b) for

each URL. Perform this step for all the servers having count of URLs greater than

zero and if the server does not exist in the list of blocked servers.

5. Mark all the pages as error pages which are marked as not yet crawled but the number

of retries is equal to the corresponding value in the configuration file.

6. Mark a domain as crawled if none of its pages are to be crawled.

7. If you run out of servers, go to step 3.

 Page: 53 /88

b) Extract links from a downloaded page:

1. Try to ping the server if server’s ping status is not set

a. If the result of the ping request is success, continue

b. Else increase retries field by one for all the URLs hosted on the server and

exit from the function. Add the server to the list of blocked servers.

2. Note down current time.

3. Perform a head request on the URL.

a. If the head request is a success,

i. continue for pages that have content_type similar to

crawl_content_type entry in the configuration file. On success,

continue to step 4.

ii. Else update the record by saying that a head request was performed but

the page was not downloaded.

b. Else mark the URL as an error page and increment the number of error pages

of the server by one.

4. Reset the number of error pages for the server.

5. If the number of error pages for a server is equal to its corresponding value specified

in the configuration file, add the server to the list of blocked servers. Exit the

function.

6. Perform a page download.

a. If the download is a success, go to step 7.

b. Else mark the URL as error and increment its retries value by one.

 Page: 54 /88

7. Extract links from the downloaded document. The tags to be extracted are specified in

the configuration file.

8. Remove duplicates from the extracted list.

9. Remove links which are navigational tags on the same page.

10. Ignore email links. Save these links in a file if specified in the configuration file.

11. For each link, canonize a relative URL and perform following steps:

a. If the link exists in the database and if it is uncrawled, increment its rank by

one and add the linkage: from the current URL to a link in the c_linkage table.

b. If the link exists in the database and it is crawled, just add linkage.

c. If the link does not exist in the database, add it to the database and add the

server to the list of servers.

12. Mark the current URL as crawled.

13. Note the current time and if the difference between this value and the one noted in

step 2 is greater than the value of max_delay_on_fetch specified in the configuration

file, mark the server as too slow and add it to the list of blocked servers.

3.7.4 Calculate performance of a machine and balancing the load amongst crawlers.

To calculate the performance of a machine and balance the load, following steps

are implemented:

1. If the crawl is restarted, calculate number of pages explored.

2. Calculate total pages crawled for each hour and a cumulative average of pages

crawled over the period.

 Page: 55 /88

3. If the current total of pages is less than the total of pages explored in the first hour by

more than 70% for more than 50% of crawlers in the system,

a. Stop the crawlers

b. Count the number of servers under each domain which have uncrawled URLs

and calculate the average. Sort the domains according to this average in a

descending order.

c. Calculate the percent of pages processed by each machine after the last restart.

d. Sort the machines according to the percentage of pages processed.

e. Assign the domains to the machines based on the above number.

f. Restart the crawlers.

 Page: 56 /88

Chapter 4: Problems faced and Solutions

Even if the project differs from work done by previous researchers – Zhang [YDI

2006] and Patankar [SNC 2006], there were common issues which were kept in mind like

scalability of the system, efficiency of the crawlers, a good restart policy for the crawlers

and analyzing the time taken by different parts of the crawler i.e. selection of next URL

to crawl, download of a Web page, testing of the links encountered and updating the

database.

Following is a list of problems faced during the development of the crawler. Also

listed are the methods to solve them and the solutions.

4.1 Starting the system, a heartbeat protocol and communication amongst the

machines.

The first problem was to devise a way for the machines to communicate

effectively over the network connecting them, not overloading the network at the same

time. One of the goals of the project was to minimize network overhead due to intra-

system communication. There are many options for machines to communicate like p2p

connection, using ports and TCP-level connection and alternatively using the message

passing interface. These options seemed to be cumbersome as all that is needed is a

persistent connection, which in turn hogs the network. There should be a seamless way

for the machines to communicate only when needed and the communicating machines

should be able to report on a non-functional parts of the machine, i.e., the machines

 Page: 57 /88

should be able to check if the program is not working or the database could not be

contacted or the other machine could not be found on the network. The previously

mentioned methods do not work at the application level and it is difficult to test programs

or database if the underlying connection is not working. If a machine goes offline, the

administrator or the person in charge should be notified and other machines should be

able to acknowledge that a machine has failed. The main problem was to start the

crawlers via a single switch on the main machine and devise a non-intrusive heartbeat

system for machines to check on each other. A heartbeat system or protocol is used to

check on other machines if they are working or not.

Solution:

One of the options explored for kick starting the crawler machines was to use SSH

connection which is not better than a TCP connection although the connections are

secure. It did not work because for each connection to be made for a password had to be

typed in manually. It would work great to monitor all the crawlers but there was no way

to tell if the scheduler stopped working. Also like the TCP connection, a script had to be

started on each crawler which listened for incoming connection requests at a particular

port. That would require manually going to each crawler and starting the script. This

would not fulfill the criteria of having a single startup switch.

Remote Procedural Calls (RPC) was tried too. These also needed a program

running at one end, i.e., the provider’s end.

 Page: 58 /88

Using message passing interface was not an option as it required the machines to

be in a cluster. One of the design goals was to add and remove machines from the system

as easily as possible and keep the system loosely coupled.

For the current system, there are crawlers which crawl non-intersecting domains

and the only machine they contact is the scheduler machine. This design needs 2 * n

unidirectional connections or n bi-directional connections to be maintained for n

machines. The communication needs to be at the application level and asynchronous to

be non-intrusive and non-persistent. CGI worked well for the problem of starting the

system. A script on the scheduler would call LWP->get() for a CGI script on the

crawlers which start a background crawling script local to that machine. This setup

worked as the communication need not stay persistent and the life of the communication

was maximum 5 minutes after which the CGI would give up. The connection can be

broken after the background process is started but as the crawling process is implemented

using threads; the CGI cannot end the connection by itself.

In one implementation, the scheduler machine tried to connect to the database of

the crawlers for getting the statistics of the crawler like number of URLs the machines

have explored. As discussed in the implementation, the number of URLs explored is the

sum of the number of the URLs ignored, the URLs that could not be downloaded, the

URLs that were ignored based on the content type and number of URLs downloaded and

crawled. If the scheduler is not able to connect, it notifies the administrator about the

failed machine. All the machines contact the database of the scheduler to report links to

 Page: 59 /88

pages which are outside the domains been crawled resulting in a non-intrusive, uni-

directional asynchronous communication method that also worked as a heartbeat protocol

and minimizes the exchange of URLs amongst the machines. If the crawler machines

could not reach the scheduler machine, they would email the administrator and shut down

because links outside the assigned domains could not be reported any more. A faster

method to restart the machines is discussed later.

For an implementation under consideration, databases on the crawler machines

were dropped and only the crawling process was checked upon if it is working or not.

Crawlers would fetch URLs from the scheduler machine and crawl the pages. They

would then update the database on the scheduler machine. A problem with this design is

discussed next.

4.2 Decrease in URL exchanges amongst the crawlers

 For a distributed system, the network usage is of prime importance. As mentioned

in the background research chapter, researchers state that a large number of URL

exchanges can hog the network.

Solution:

 The design of the system was developed in a way such that one can have

individual control over the machines performing the task of crawling. These machines

behave as independent crawling systems except when they want to start or restart

crawling the domains. The scheduler machine assigns domains to the crawlers and

 Page: 60 /88

regularly checks if they are accessible and the crawling process on the machine is

working. The machines report URLs outside the domains they are crawling. The

reporting would fail if the scheduler machine itself is not working or the database is not

accessible. This condition is however; assumed not acceptable. In such a case, the

crawling machines would stop their processes and notify the administrator.

 One other design to be considered is to avoid having a database on the crawler

machines and to have all the crawler machines connected to the database on the scheduler

machine. This idea was dropped for the same reason that there would be a huge number

of URLs (all the URLs) being transmitted from the crawler machines to the main

machine. If one calculates database usage for the current database design, the database is

used numerous times for each URL:

 For insertion of a new URL

 For selection of a URL to be crawled.

 Updating the record for a crawled URL

 Multiple searches if a URL is seen before or not and,

 If the URL undergoing a check is in the frontier, its rank is updated.

The current design of having autonomous crawlers being part of the overall

system solves the problem of multiple URL exchanges amongst the machines.

 Page: 61 /88

4.3 Caching of Robot Rules.

The rules in robots exclusion files had to be cached somewhere in order to avoid

searching for a robots.txt file and downloading it frequently. It would be easier if most of

the data would be in one consistent format and easily updated if the robots.txt file on a

server was updated.

Solution:

WWW::RobotRules just parsed the incoming robots.txt file but did not cache the

rules. There is a persistent version of the above module called

WWW::RobotRules::AnyDBM_File. It is persistent in the sense it stores the robots.txt in a

disk file. However, it didn’t use the previously saved copies of a robots.txt file. Every

time a robot rule had to be checked; a new copy was downloaded and appended to the

disk file. This resulted in retrieving multiple copies of the same file. There was no way of

removing the duplicates and the disk file’s length grew very fast adding in little

functionality.

A module was needed which had similar functionality as

WWW::RobotRules::Parser such as parsing the fetched robots.txt file and being able to

query the set of rules if a userAgent object is allowed to crawl a URL or not. The module

should be able to store robots exclusion files from multiple servers but should have one

copy of the file. It should check if the cached copy of a robots.txt file is current or not;

and if there exists a new copy of robots.txt file on the server, the module should be able

to replace the cached copy of rules with the new one. There should be a way to see if we

have a copy of a robots.txt file or not. It should also provide a functionality to check if a

 Page: 62 /88

single URL is allowed to be crawled by my userAggent regardless of server or location

of the URL.

 A module was created with above mentioned functionality and uploaded on

CPAN (Comprehensive Perl Archive Network). The module is called

WWW::RobotRules::MySQLCache and it uses DBI, WWW::RobotRules::Parser,

WWW::LWP::Simple modules available on CPAN. One can create the required MySQL

tables given the connection parameters to a MySQL database with a function call. One

can check if a robots.txt file is present in the database before inserting another copy. The

function will return false in two cases: a robots.txt file does not exist in the database or a

robots.txt file is not a recently updated,. i.e., there exists a fresh copy of robots.txt on the

server and the module has an outdated copy. The module works on two tables: location

and rules. The working of the module is explained in chapter 3.

WWW::RobotRules::MySQLCache is freely available and can be downloaded from

CPAN at http://search.cpan.org/~apatwa/WWW-RobotRules-MySQLCache-

0.02/lib/WWW/RobotRules/MySQLCache.pm. The version is subject to change without

prior notice and can be redistributed and/or modified under the same terms as Perl .

4.4 Filter on URLs to be crawled:

 There are huge application files, like Flash files, audio and video files which

might not have any links and the browser takes a long time to download them. This

induced a major hit on the performance of the crawler. The crawler process would

 Page: 63 /88

occasionally halt or take a long time trying to fetch such files. The time taken to

download such files was observed to be up to 10 minutes.

Solution:

 A list of content-types was created to narrow the types of files the crawler would

crawl. Generally, text/html is the content-type for pages having links leading to other

pages. A time consuming but necessary step of finding out the content type of the page

before crawling was added to the crawling system. Pages having content types other than

text/html like PDF files, audio and video files, text files were filtered out and were not

crawled. This method worked for most of crawl but it failed during certain pages which

were listed as dynamic pages with an extension of .php having the application file as a

parameter in the URL. The delivered content of such URLs consisted of video files.

For another method, the content-type of the URL was predetermined by

implementing a head request for the URL. The userAgent object would perform a head

request on the URL and determine the content-type. This is a fool-proof way to determine

the content type but it comes with a penalty of time. The request goes all the way to the

server and fetches the information. This adds a delay of about 0.67 seconds to the task of

processing of each URL but it does work every time without an exception. The

implementation of fetching header information before download of a page was dropped

to increase the throughput of the crawlers.

 Page: 64 /88

4.5 Increasing the efficiency of the database:

 The data type of the URL field in the database was set to BLOB; which in MySQL

is TEXT. One cannot define a hashed index on such a data type resulting in slow retrieval

during searches. Patankar in her work [SNC 2006] experienced the same problem.

Solution:

 A FULLTEXT index was defined on the column and searches were performed

using match function available for searching strings on a FULLTEXT field in a boolean

implementation. The non-boolean version returns multiple rows and a rank stating how

close the match was. During a search using the match function, every character of each

row is matched till a perfect hit is found. This increased the processing time of each

search. But the cardinality of the index was too low for the index to be efficient.

The data type of the URL field was changed to VARCHAR with a length of 255

characters (maximum allowed length) and a hashed index was defined for the field.

Moreover, a limit on results was added to searches where just one row was

expected. For example, when the crawler wants to get a URL to crawl, it just needs one

URL. For such a query, adding LIMIT 1 at the end of the query improved the

performance of the query as the database engine would stop looking after a matching row

was found. Indexes were introduced on the fields on which a search query was executed.

 Page: 65 /88

4.6 Decreasing amount of DNS queries:

 In previous works, the authors stated that DNS lookups can be slow. In [JHH

2006], the authors resolve DNS names before starting the crawl. But it may be possible

that servers change IP address; though not frequently. There has to be a way to find the IP

addresses of servers during execution of the crawl.

Solution:

 When a crawl starts for a number of servers, a ping request is sent to the servers

to find out their IP addresses. The server names for URLs of corresponding servers are

replaced by their IP addresses. The IP addresses are not stored but rediscovered for each

time a crawl is started. This adds a small delay of about 10 seconds for the first URL of

every server. However, this method results in avoiding DNS lookups for consequent URL

fetches by the crawler. This method of dynamically resolving DNS names is transparent

to change in IP address of the servers. This method was dropped after auditing log files.

The log files indicated a rise in the number of error pages. These pages had a temporarily

moved error status. Moreover, if a cluster of server exists, the page for residing on those

servers will be processed by a different server. A crawler should not fetch pages from the

same server and should be able to acknowledge such servers.

 Page: 66 /88

4.7 Configuration of delay between fetches per server.

 The delay between fetches from the same server is called courtesy pause. This

value has to be optimum. If it is too high, the crawler’s throughput is low. If it is too low,

one ends up in overloading a server with frequent visits.

Solution:

In previous works, researchers have set the value of courtesy pause between 10

and 30 seconds. Authors of [HNM 1999] have a dynamically set delay based on time it

took to fetch previous page.

It is observed that during night, based on the location of servers, the servers

experience considerable low load than their load during day time. Two period of hours

were set for each server dividing 24 hours – the high tide where the courtesy pause is low

and there can be more fetches from the same server compared to the low tide where there

are few fetches and the courtesy pause is greater. There were two different delays set; one

for each period of time. During the day, there can be a larger courtesy pause; which can

be decreased during the night time. Keeping a high delay during day time has two

advantages. First, the crawler can perform some fetches; which better than nothing; and

second; there is a guarantee that the servers are not getting overloaded resulting in no or

fewer complaints from their administrators. The length of the periods can vary. One can

set the high tide to be from midnight to early morning if the administrators are contacted

and they want their servers to be crawled during such hours.

 Page: 67 /88

4.8 Detection of an off-line or a slow server.

 Sometimes, the servers can be offline for maintenance purposes or other reasons.

If a server experiences high load of requests, it can take more time to respond to each

URL request. The crawler should be able to detect such servers and ignore them for a

time.

Solution:

 There are two lists of servers kept in the memory. One list contains the servers

from which URLs are to be fetched and two, a list of servers to be ignored for some time.

Time taken to process each URL is recorded. Servers of URLs taking more than 60

seconds were shifted from the first list to the list of ignored servers. It was found that

URLs taking more than 60 seconds took 70% of the crawling time. There were 4% of

such URLs. A configuration parameter is provided in the config.txt file.

URLs of servers previously ignored are processed next time the crawler process is

restarted. It has been observed that the time when the server is experiencing peak load is

not more than a couple of hours. The crawler process is forced to restart every 6 hours.

A count of pages resulting in error pages for each server is recorded. This count is

updated for every URL processed. It is reset to zero on a successful page download for a

URL and it is incremented every time an error page is discovered. Assuming any page on

 Page: 68 /88

a server does not have more than ten broken URLs, if the error counter reaches a value of

five, the server is added to the list of ignored servers.

4.9 Increasing the throughput of the crawlers:

 During the first implementation of the crawler, a thread was assigned the tasks to

crawl one domain. There were two such processes running on each machine. But due to a

low number of servers from each domain, the program ended in no activity till the

amount of time of courtesy pause was observed for every server.

Solution:

 The multi-threaded crawling method was dropped and the crawling process was

brought down to one process per machine. This process cycled through servers of all the

domains assigned to it by the scheduler. Due to a large number of servers to crawl, the

program didn’t have to wait for courtesy pause to end for a server. It can fetch a page

from the next server while courtesy pause for one server was observed. Patanker

discusses the same strategy in her work [SNC 2006]. But this method broke the logic of

site-level management scheme implemented in the multi-threaded implementation.

Queries were analyzed using the explain tool. Adding indices on fields used in the

searches brought down the search time to one-third of time consumed before for the same

task. For the c_url table, the server field was changed to an integer referring to server_id

 Page: 69 /88

in the c_server table. An index was added on the server field in the c_url. The idea of

redefining indices can be found in [SNC 2006].

 A huge amount of time was consumed in checking if a URL was present in the

database. For this problem, solution used by Patankar in [SNC 2006] was implemented.

MD5 hash of the URL is stored in the database and for checking if a URL is present or

not, a runtime hash value of the URL is checked in the database. This reduces the number

of bytes MySQL engine has to compare for each URL. MD5 produces a hash value of 32

bits. An index of 6 bytes was found to be sufficient to get a cardinality of the index equal

to the number of rows in the database.

 Page: 70 /88

Chapter 5: Experiments and Results

A total of 4,518,808 pages were downloaded over a period of 12 days with a

down time for the machines of about a day resulting in 4.5 GB of downloaded data from

2,219,436 pages. A total of five machines were used for the task of crawling. The pie

chart in figure 5 shows the distribution of pages according to their category.

 Page: 71 / 88

Distribution of pages in the database

Uncrawled, 4,023,304,

48%

Crawled, 2,219,436, 26%

Error, 609,572, 7%

Ignored, 462,641, 5%

Not allowed by Robot

Rules, 1,227,159, 14%

Uncrawled Crawled Error Ignored Not allowed by Robot Rules

Figure 5: Distribution of pages in the database

Optimizing the tables:

 A boost in performance was observed after optimizing the tables and redefining

indices over the fields which were included in crawls. Figure 6 compares the increase in

number of pages explored per hour on one of the machines. The hours are four hours

before and after the task was performed

 Page: 72 / 88

Results of optimiaztion of MySQL table and redefining the indexes on fields

After optimization, 2624
After optimization, 2511

Before optimization, 390

Before optimization,

 1849

Before optimization,

 887

Before optimization,

 261

After optimization, 1984

After optimization, 2871

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4

of hours

#
 o

f
p

a
g

e
s

Before optimization After optimization

Figure 6: Results of optimization of MySQL table and redefining indexes on fields

However, similar results were not observed for all the machines. It is advisable to check

the cardinality of the indexes at a period of three to four hours depending on how many

new rows are added. Optimizing the table using MySQL optimize table should be

performed at regular intervals for maintaining the efficiency of the database engine.

 Page: 73 / 88

Load Balancing

Load distribution was performed for the domains which lasted for 1441 seconds;

relocating 73 out of 92 domains.

Figure 7 shows the difference in performance of a machine for four hours before

and after the activity of load balancing.

Throughput per hour before and after load balancing

730

663
721

687

313

1,418

1,584
1,635

1,007

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5

hours

#
 o

f
p

a
g

e
s

Throughtput before load balancing Throughput after load balancing

Figure 7: Throughput per hour before and after load balancing

 Page: 74 / 88

The throughput decreases by 30% during the duration of four to five hours.

Considering an average of 665 pages an hour, 226 pages were not crawled by a machine.

After load balancing, the average throughput is 1411 pages per hour for 4 hours. The gain

in throughput is 440 pages per hour. Similar increase in performance was observed on

other machines. It is assumed that load balancing should be performed every six to eight

hours depending on the throughput of the machines. A machine’s performance over a

period is to be logged and the number of domains to be assigned should be calculated

accordingly. A machine’s performance can take a dive if it is assigned servers which

have a high response time and a number of these servers are ignored at the same time

Factors that affect the performance of the system are:

 Low processing power of one or more machines.

 A machine is assigned relatively small domains and the task of crawling is complete.

 A machine is assigned a domain that has few servers. In this case, the machine has no

task to perform for the machine for the minimum period of courtesy pause while

going through the list of servers.

.

Time distribution for activities:

Figure 8 shows time taken by different activities. This is the time taken to process

the latest 100,000 URLs processed over four machines, out of which 66,400 URLs

resulted in a download of documents. Total time to process 100,000 URLs = 62184.78

seconds with a speed of 1.6 URLs per second. This data is taken over time when all four

 Page: 75 / 88

machines were fully functional. Down time for the machines is not considered. This is the

performance attained after the code was optimized.

Time taken by different activities

274.89, 0%

1205.65, 2%

12478.23, 20%

48226.01, 78%

load the servers into memory

checking for presence of robots.txt on
servers

check if a file is allowed to be crawled

process time for URLs

Figure 8: Time taken by different activities

Scaleup performance:

 An ideal scaleup curve is a horizontal line. The scaleup graph for five machines is

as shown in figure 9. The time to load servers and time to check if a robots.txt file exists

on a server in the database are not increasing drastically. Time taken to check if a URL is

allowed to be crawled depends on the number of servers assigned to the machine. These

 Page: 76 / 88

three times are highly independent. The number of links downloaded is dependent on

what time of the crawl the data is captured.

With this data, if one wants to achieve the performance acquired by Google as

shown in table 15, i.e., 24 Million downloaded pages using 5 machines at the rate of 2.12

pages per second; it would take 131 days to complete the task.

Scaleup graph to process 10,000 URLs

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 2 3 4 5

of machines

ti
m

e
 i
n

 s
e
c
o

n
d

s

min time to load database avg time to load database max time to load database

min time to check robots.txt avg time to check robots.txt max time to check robots.txt

min time to check URL allowed avg time to check URL allowed max time to check URL allowed

min processing time avg processing time max processing time

min total processing time avg total processing time max total processing time
Figure 9: Scaleup graph to process 10,000 URLs.

 Figure 9 graphs the time taken by different processes per machine to process

10,000 URLs. The X-axis represents number of machines in the system and Y-axis

represent time in seconds. The solid lines represent average time taken for each activity

 Page: 77 / 88

and the dashed lines with same color and markings above and below it represent

maximum and minimum time taken for the activity respectively.

 The red lines with circles as points represent the total time taken to process

10,000 URLs. This is the sum of time taken to load the servers into the main memory

from the database, time to check the presence and fetch new copies (if available), of

robots.txt on the servers, time to check if a URL is allowed to be crawled and processing

time of the URLs which includes download of the page, extract URLs, check if the URLs

are present in the database and/ or add the URLs to the database. As noted, the total

processing time varies in congruence to the processing time for the pages.

 Page: 78 / 88

Scaleup for downloaded pages and throughput per hour for 10,000 URLs

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 2 3 4 5

of machines

#
 o

f
p

a
g

e
s

min throughput per hour avg throughput per hour max throughput per hour

min # of pages downloaded avg # of pages downloaded max # of pages downloaded
Figure 10: Scaleup graph for downloaded pages and throughput per hour for 10,000 URLs.

Figure 10 shows the throughput per hour per machine and the number of pages

downloaded per machine in the system for different number of machines in the system.

The data is captured for processing 10,000 URLs on each machine. The X-axis shows the

number of machines in the system and Y-axis is the number of pages. The solid lines

represent the average number of pages while the dashed lines in same color and same

style of markings above and below the solid lines represent maximum and minimum

readings respectively. As seen, the number of pages downloaded does not depend on the

 Page: 79 / 88

throughput of the systems. The throughput can vary on adding more machines but the

number of downloaded pages for each machine does not fluctuate much.

Comparison of performance with other systems:

 The data for other systems is taken from [SNC 2006].

Crawler Distributed Needle Needle Google Mercator Internet Archive
Year 2006 2006 1997 2001 -
Machine
Configuration

Intel P4 1.8 GHz, 1
GB RAM, 225 GB
Hard disk

Intel P4 1.8
GHz, 1 GB
RAM, 225
GB Hard
disk

 - 4 Compaq
DS20E 666
MHz, Alpha
servers

-

Data structures for
URLs

Perl Scalar Queue - Memory
Hash table,
disk sorted
list

Bloom Filter per
domain

DNS Solution - Stored
locally in
database

Local
Cache

Custom -

Programming
Language

Perl Perl C++/
Python

Custom JVM -

Parallelism per
machine

1 1 - 100 64

of crawling
processes in the
system

5-6 1 500 - -

System size 5-6 1 - 4 -
Number of pages 1 Million 1 Million 24 Million 151 Million 100 Million
Crawl Rate (pages
/ sec)

3.85 1.7 48 600 10

Effective Crawl
Rate (pages /
second) = crawl
rate/ (system size x
parallelism)

0.77 1.7 - 600/400 =
1.5

10/64 = 0.15

Table 15: Comparison of different systems.

 Page: 80 / 88

Chapter 6: Conclusion and Further Work

6.1 Conclusion

 A parallel crawler is implemented and many design issues related to a distributed

environment are learnt. Almost all of the issues are resolved but there are some of them

where there exists an opportunity for improvement or enhancement. Key problems faced

are mentioned in chapter 4. Section 5.3 discusses such issues. These are also the issues

when resolved; can enhance the performance and accuracy of the crawling task.

6.2 Further Work

1. Parsing of non-HTML files:

 During the crawl, the crawler looks for content-type of the page to be crawled. It

crawls pages with a content-type of text/html and ignores PDFs, Javascript, CSS and

other text or application files. If one can come up with a parser for such documents, it can

be plugged into the code and various documents can be crawled and information

extracted from various documents. Right now, extract_links is the function to parse

HTML documents. One can easily add functions to crawl and parse different types of

pages.

 Page: 81 / 88

2. Segregation of the polling function and processing of a fetched document:

 The crawler chooses a server to fetch next URL to crawl. This depends on the

configuration switch of the courtesy pause to be observed between two fetches from the

same server. This is done to avoid overloading one particular server with multiple

requests in a short time.

 The current method selects a server and crawls a URL hosted on that server. But

the URL can be unreachable or might have errors. This leads to a delay of period of time-

out set for the LWP::UserAgent object. Currently, the time-out is set to 30 seconds and

the courtesy pause is set to 10 seconds. Thus, the crawler can try to fetch just one where

it could fetch three pages. Moreover, due to large amount of links on a page and checking

each link with the database to see if it is seen before or not; some pages require more than

a minute to be processed.

If the function of polling can be independent from the function of fetching

documents, it would boost the crawler’s performance significantly. This can be achieved

by implementing the fetching function as threads. The crawling function was initiated as

different threads making it hard to create threads for fetching a document. This is a

limitation of not being able to distinguish between different levels of threads in the thread

pool. Occasionally, a number of fetched pages take a long time - more than a minute; to

be downloaded and processed. There can be a possibility of multiple threads

downloading from the same server. If we have for example, five servers from which the

crawler fetches pages, and if the userAgent object fetches pages simultaneously from all

of the five servers, it would take a longer time to download the pages, there can be

 Page: 82 / 88

numerous threads in their running state simultaneously and more threads being added at a

gap of ten seconds. Moreover, the userAgent object is not implemented to obey the

timeout and it runs in a blocking mode resulting in waiting by the main program while a

page is being downloaded. This can be changed to implement a non-blocking userAgent

and a different polling function which initiates fetching of a page from a server as soon as

the program has waited for the number of seconds as indicated by the courtesy pause

after a previous page download is complete.

3. Caching of DNS queries:

 A DNS query to resolve the domain name happens for each URL. The crawler

does not have the capability to save results of a DNS query. In one implementation, the

domain names of the URLs were not resolved. This resulted in minor delay for resolving

each URL but it adds up to significant delay for the entire crawl. In another

implementation, a server’s domain name was resolved only once, at the start of the crawl

or when a URL was encountered from a different server. But the mapping was not stored.

It would be good to have a module that stores DNS query results for servers and

minimize the delay in time for resolving each URL. Instead of resolving all domain

names dynamically, one can save previous results and periodically check for their

updates. This way, one can track how many times a server’s IP address was changed. The

change in IP addresses of servers in the .edu domain is almost negligible but it can be

significant for .com or .org domains where domains are maintained by service providers.

 Page: 83 / 88

The new module can either be attached to the current system or the server field in the

c_url tablecan be replaced by the IP addresses of the Web servers and mapping of IP

addresses and domain names can be stored in a different table.

4. Context based sorting of URLs in the frontier:

 The sorting of URLs is a dynamic function. The URLs in the frontier are sorted in

the order of their frequency of discovery in already fetched documents. A rank is already

provided to each URL and a URL with the highest rank is crawled first. A function which

calculates rank according to the context of the link or its position from the seed page or

some parameter based on link structure of the URLs and add it the current rank can

classify more accurately how important a URL is and what its position is in the frontier

queue.

5. Getting around a Splash page:

 The first page, the index page for a domain is taken as a seed for that domain.

Some domains have a flash video on the main page. Such pages are called Splash pages.

Such a page does not have any URLs and the navigation starts inside the flash video with

words “Skip Intro”. Sometimes, there is a HTML link but not always. A crawler cannot

get to other pages in the domain and the domain is marked as crawled after crawling the

index page.

There are two solutions for this problem. One, as mentioned above, one can create

parsers which look for links inside flash videos which is a formidable task. This way, the

crawler can follow the “Skip Intro” link and find other pages in the domain. This method

 Page: 84 / 88

can also help in discovering all pages in a domain if the site is implemented in Flash.

Two, one can query a search engine and get a few URLs from the domain. The crawler

can start crawling the domain with these URLs and discover other pages.

 Page: 85 / 88

References

[BCS 2002] P. Boldi, B. Codenotti, M. Santini, and S. Vigna, Ubicrawler: A scalable
fully distributed web crawler. In Proceedings of AusWeb02 - The Eighth Australian
World Wide Web Conference, Queensland, Australia, 2002,
http://citeseer.ist.psu.edu/boldi02ubicrawler.html

[BYC- 2002] Baeza-Yates and Castillo, WIRE Project 2002,
http://www.cwr.cl/projects/WIRE/

[CGM 2002] J. Cho and H. Garcia-Molina, Parallel crawlers. In Proceedings of the
Eleventh International World Wide Web Conference, 2002, pp. 124 - 135,
http://oak.cs.ucla.edu/~cho/papers/cho-parallel.pdf.

[DKR 2002] Dill, S., Kumar, R., Mccurley, K. S., Rajagopalan, S., Sivakumar, D., and
Tomkins, A Self-similarity in the Web. ACM Trans. Internet Technology, 2002, 2(3):205–
223.

[FMN 2003] D. Fetterly, M. Manasse, M. Najork, and J. Wiener. A large-scale study of
the evolution of web pages. In Proceedings of the twelfth international conference on
World Wide Web, Budapest, Hungary, pages 669-678. ACM Press, 2003.
http://delivery.acm.org/10.1145/780000/775246/p669-
fetterly.pdf?key1=775246&key2=5281066411&coll=portal&dl=ACM&CFID=70588468
&CFTOKEN=69016913.

[HNM 1999] A. Heydon and M. Najork, Mercator: A scalable, extensible web crawler.
World Wide Web, vol. 2, no. 4, pp. 219 -229, 1999.,
http://citeseer.nj.nec.com/heydon99mercator.html

[JGM 2003] J Cho and H Garcia-Molina, Effective Page Refresh Policies for Web
Crawlers, ACM Transactions on Database Systems, 2003

[JHE 2000] J. Cho and H. G. Molina, The Evolution of the Web and Implications for an
incremental Crawler, In Proceedings of 26th International Conference on Very Large
Databases (VLDB), September 2000.

[JHH 2006] J. Cho, H. G. Molina, T. Haveliwala, W. Lam, A. Paepcke, S. Raghavan and
G. Wesley, Stanford WebBase Components and Applications, ACM Transactions on
Internet Technology, 6(2): May 2006.

[JHL 1998] J Cho, H. G. Molina, Lawrence Page, Efficient Crawling Through URL
Ordering, Computer Networks and ISDN Systems, 30(1-7):161-172, 1998.

 Page: 86 / 88

[KGR 1993] Koster, M. Guidelines for robots writers. 1993,
http://www.robotstxt.org/wc/guidelines.html.

[KTT 1995] Koster, M, Robots in the web: threat or treat?, ConneXions, 4(4), April
1995

[KRE 1996] Koster, M, A standard for robot exclusion. 1996,
http://www.robotstxt.org/wc/exclusion.html.

[LKC 2004] B. T. Loo, S. Krishnamurthy, and O. Cooper, Distributed Web Crawling
over DHTs. Technical Report UCB-CS-04-1305, UC Berkeley, 2004,
http://www.eecs.berkeley.edu/Pubs/TechRpts/2004/CSD-04-1305.pdf

[NWB 2001] M. Najork and J. Wiener, Breadth-first search crawling yields high-quality
pages. The Tenth International World Wide Web Conference, May 2-5, 2001, Hong
Kong ACM 1-58113-348-0/01/0005, http://www10.org/cdrom/papers/208/.

[PSM 2004] O. Papapetrou and G. Samaras, Minimizing the Network Distance in
Distributed Web Crawling. International Conference on Cooperative Information
Systems, 2004, pp. 581-596, http://softsys.cs.uoi.gr/dbglobe/publications/coopis04.pdf

[SNC 2006] Sonali Patankar, Needle Crawler: A Large Scale Crawler for University
Domains, Master’s project, UCCS Computer Science Department, 2006.

[SSD 2002] V. Shkapenyuk and T. Suel, Design and implementation of a high-
performance distributed Web crawler. In Proceedings of the 18th International
Conference on Data Engineering (ICDE'02), San Jose, CA Feb. 26--March 1, pages 357 -
368, 2002,
http://ieeexplore.ieee.org/iel5/7807/21451/00994750.pdf?isnumber=&arnumber=994750

[YDI 2006] Yi Zhang, Design and Implementation of a Search Engine With the Cluster
Rank Algorithm, UCCS Computer Science Master’s Thesis, 2006.

