
UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Sciences
Computer Science Division

CS61B P. N. Hilfinger

Fall 2004

Project #3: Checkers

Due: 8 December 2004

1 Introduction

Checkers (or draughts outside the United States) is a pure strategy game between two players.
For this last project, you are to implement a checkers-playing program, capable of handling games
between a human and a machine player, two machine players, or a human or machine and a remote
player (either human or machine). We’re not going to be picky about how good your machine
player is, as long as it plays by the rules. If you want it to make random legal moves, that’s fine.
However, you are invited to give it an improved strategy; we’ll be providing supplementary notes
on the subject.

2 Rules of Checkers

Checkers is played on what I used to call a checkerboard, but which now seems to be called a
chess board. Various versions of the game use different sizes of board. We’ll use 8 × 8. Pieces
occupy only the dark squares and move along diagonals. The player who moves first gets twelve
black pieces and the player who moves second gets twelve white pieces. Figure 1 shows the initial
setup of pieces and the standard numbering scheme used to designate squares1.

Simple moves. There are two kinds of pieces: initially, all are single men, as shown in the
figure. When a single man advances to the last rank (squares 1–4 for white pieces, 29–32 for
black), it becomes a king (we say it is crowned). Single pieces move one square diagonally, with
single white pieces moving up and single black pieces moving down. Kings can move one square
in any of the four diagonal directions. Black moves first.

1In fact, the pieces are officially red and white, respectively, for black and white. However, we’ll use black instead
of red, since the paper handout is black-and-white and since many textbooks use the term “black” for “red.” Also,
you will often see the board printed in books with the dark squares being light colored and the light squares dark
colored, so as to show up the pieces more clearly. We won’t do this.

1

Project #3: Checkers 2

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

Figure 1: On the left: a checkerboard showing the standard numbering of squares. On the right: the initial

configuration of pieces.

Captures. A piece may not move into an occupied square. However, if the square is occupied
by a piece of the opposing color, and if there is an unoccupied square on the other side of the
opposing piece, a piece may jump over the opposing piece, thus moving two diagonal squares.
A jump also captures the opposing piece, removing it from the board. If, after making a jump,
another jump is possible from the capturing piece’s new square, then the piece may make that
capture as well, and this process may continue as long as the piece has a capturing move. Pieces
are crowned only at the end of a move, so a single piece that lands on the last rank cannot make
any further capture on that move. Figure 2 illustrates legal moves and captures.

Forced moves. A player who has a legal capturing move must jump, and must continue to
jump with that piece until no capture is possible. When more than one capture is possible, the
player has a free choice of which to take (it is not necessary to take the capture that allows one
to capture the most pieces).

End of the game. A player loses when he has no legal moves. This may either be because all
his pieces are captured, or because his pieces are completely blocked, as in Figure 3. At any time
before a loss by either side, the two players may agree to a draw (well, this isn’t the real rule, but
that is too complicated and vague for our purposes). Finally, a player can lose by resigning on his
turn, or by making any kind of illegal move.

3 Notation

A transcript of a game is written in free format using the following syntax.

<Game> ::= <End-Moves>
| <Move-Pair> <Game>

<End-Moves> ::= <Move-Number> <Move> <Score>
| <Score>

<Move-Pair> ::= <Move-Number> <Move> <Move>
<Move-Number> ::= <Number>.
<Move> ::= <Normal-Move>

| <Special-Move>
<Normal-Move> ::= <Number>-<Number>

| <Normal-Move>-<Number>
<Special-Move> ::= resign

Project #3: Checkers 3

K

K

K

K

Figure 2: On the left: examples of simple moves. The white piece on 27 is blocked by another white piece from

moving to 23. On the right: examples of capturing moves. The white piece on 18 may capture the black piece on

15 and either the black king on 7 (18-11-2) or the black single piece on 8 (18-11-4). It must capture two pieces.

After either move, it will be on its last rank, and will therefore be crowned. However, it may not then capture the

piece on 6 until its next move. The white king at 30, on the other hand, may reverse direction and capture both

the pieces on 26 and 27 (30-23-32), or it may capture just the piece on 25 (30-21). Here, kings have ‘K’s on them;

normally, you crown a piece by putting a second piece on top.

| draw
| accept
| reject

<Score> ::= 0-1 | 1-0 | 1/2-1/2

Here, <Number> refers to a positive decimal integer. There may not be any space in a
<Move-Number>, <Score>, or <Move>. The score marks the end of a game. It is either 1-0
(black wins), 0-1 (white wins), or 1/2-1/2 (draw). The <Move-Number>s are supposed to be
consecutive, beginning at 1, except that a <Special-Move> does not increment the move count.
Each <Move-Number> should start a new line in a transcript, as should the <Score>. Each move
consists of a sequence of two or more square numbers (1–32), the first being the starting square
for the piece that is moving, the last being its ultimate destination, with any middle ones being
the intermediate squares in a multiple jump. The usual convention is that if there is only one legal
way to reach the final square from the first in a multiple jump, then the intermediate steps need
not be shown. However, we aren’t going to use this abbreviation.

The <Special-Move> resign indicates that the player on move loses through resignation. It
should always be followed by the final score in a transcript. A player who loses in the normal way
(by not having a legal move) is not allowed to resign; the transcript at that point simply records
the score.

The <Special-Move> draw offers a draw. The responding move must either be accept, which
is immediately followed in a transcript by the score 1/2-1/2, or reject, which is followed by
a regular move (i.e., from the player who offered the draw). A reject may not be followed by
another draw. The moves reject and accept may not appear in any other context.

4 The Problem

Your job is to write a program to play checkers. Your program must be called checkers. You’ll
start it with

java checkers options

where the available options are as follows:

Project #3: Checkers 4

K

K

Figure 3: A lost position for white. White still has a piece, but it has no legal moves.

--transcript=FILE write a record of the game in the notation described in §3 to FILE.

--display Use a graphical interface for the board. (Default is text.)

--player1=auto The first player is a machine player. (Default is that the first player is the
person sitting at the keyboard.) When the not using either --display or --transcript,
this option also causes the transcript to be printed on the standard output.

--player2=NAME The second player is using a remote program. The first player’s program (the
one running locally) is hosting the game. This game can be referred to by other programs
wishing to join it as NAME (see the next form of --player2). By default, the second player
is the machine.

--player2=NAME@HOST The second player is using a remote program on the machine HOST

and is hosting the game, which is designated NAME.

--white First player (at the terminal) takes the white pieces. This option is not allowed with the
second form of the --player2 option. In that case, the hosting player decides the color, and
any --white option is ignored.

--init=FILE Read and make moves from FILE and then let the players continue the game from
that point. The moves in FILE should obey the format used for transcripts (see §3).

--level=NUM If you provide any intelligence in your program, this parameter should limit the
number of moves it looks ahead. Your program need only support --level=0, and can
ignore other values (except that NUM must be a non-negative integer).

--seed=NUM If you use random numbers in your program, it is a good idea to provide for
reproducible results. Do this by having all random-number generators in your program start
with seeds that are derived from NUM. For example, if you have two machine players, you
could have the first use a random number generator seeded with NUM and the second could
start with NUM+42. See the .setSeed(N) method in java.util.Random for how to arrange
this. Of course, they could both start with the same seed, but the game might not be as
interesting. I do not recommend having two machine players in the same program share a
random-number generator, by the way; depending on your implementation, this could lead
to non-deterministic results.

What all this means is that

java checkers

Project #3: Checkers 5

lets you play against the machine using the terminal, and

java checkers --player1=auto

plays the machine against itself, printing the game on the terminal. To make this game repro-
ducible, you might use

java checkers --player1=auto --seed=4242421

You can host a game against another program with something like

java checkers --player2=ourgame # You play, or

java checkers --player1=auto --player2=ourgame # Your program plays

If you did this on, say, nova.cs, then the other player could join this game later by typing (on
the other machine)

java checkers --player2=ourgame@nova.cs # He plays, or

java checkers --player1=auto --player2=ourgame@nova.cs # His machine plays

You need not accept the GUI (--display) argument; it is an optional (extra credit) part of
this project. We will actually do automatic testing only on commands like

java checkers --player1=auto --init=... --seed=...

java checkers --player1=auto --player2=X@Y --seed=...

or

java checkers --player1=auto --player2=X --seed=...

(that is, we’ll check that it plays legal games against our program and itself). The readers will
check your GUI, if provided. If you do not provide a GUI, your program should print an error
message when started with the --display option.

5 Format of Text Moves

When playing with a textual interface, players type only their own <Move>s, not the opponent’s
moves, move numbers, or scores. The terminal session on the left, below, shows the case of a
human player playing black, and the one on the right shows the case of a human player playing
white. The underlined portions in both cases are what the human types.

Project #3: Checkers 6

1. 11-15

1. ... 24-20

2. 8-11

2. ... 28-24

3. draw

3. ... reject

3. 9-13

3. ... 22-18

4. b

+-+-+-+-+-+-+-+-+

| |b| |b| |b| |b|

+-+-+-+-+-+-+-+-+

|b| |b| |b| | | |

+-+-+-+-+-+-+-+-+

| | | |b| |b| |b|

+-+-+-+-+-+-+-+-+

|b| | | |b| | | |

+-+-+-+-+-+-+-+-+

| | | |w| | | |w|

+-+-+-+-+-+-+-+-+

|w| | | |w| |w| |

+-+-+-+-+-+-+-+-+

| |w| |w| |w| | |

+-+-+-+-+-+-+-+-+

|w| |w| |w| |w| |

+-+-+-+-+-+-+-+-+

4. 15-22

4. ... 25-18

5. resign

0-1

1. 11-15 24-20

2. 8-11 28-24

3. draw reject

3. 9-13 22-18

4. 15-22 21-17

Error: illegal move. Try again.

4. 15-22 b

+-+-+-+-+-+-+-+-+

| |b| |b| |b| |b|

+-+-+-+-+-+-+-+-+

|b| |b| |b| | | |

+-+-+-+-+-+-+-+-+

| | | |b| |b| |b|

+-+-+-+-+-+-+-+-+

|b| | | | | | | |

+-+-+-+-+-+-+-+-+

| | | | | | | |w|

+-+-+-+-+-+-+-+-+

|w| |b| |w| |w| |

+-+-+-+-+-+-+-+-+

| |w| |w| |w| | |

+-+-+-+-+-+-+-+-+

|w| |w| |w| |w| |

+-+-+-+-+-+-+-+-+

4. 15-22 25-18

5. resign

0-1

The special command ‘b’ (for “board”) prints the current state of the board in the format
shown. To denote kings, use capital letters (‘B’ and ‘W’). As you can see from this example,
your human-player text interface should not allow the player to make an illegal move (this is only
friendly; if you were to transmit an illegal move to another program, it is supposed to treat the
move as a resignation). The transcript for the game above would be

1. 11-15 24-20

2. 8-11 28-24

3. draw reject

3. 9-13 22-18

4. 15-22 25-18

5. resign

0-1

6 Communicating with a Remote Program

Java supplies a Remote Method Invocation (RMI) package that allows two separate program
executions (possibly on different machines) to communicate with each other by calling each other’s
methods. We have developed our own packages that allow you to make use of this facility.

Project #3: Checkers 7

You can communicate with a remote job by means of a “mailbox” abstraction that we supply
in the form of types in the package ucb.util.mailbox. Take a look at the interface Mailbox in
that package. The idea is that a mailbox is simply a kind of queue. Its methods allow you to
deposit messages into it, and to wait for and receive messages that have been deposited into it, in
the order they were deposited. You can do this even if the mailbox is on another machine. The
class QueuedMailbox is probably the only implementation of Mailbox you’ll need.

To talk to a remote program, you will employ two mailboxes: one to send it messages and
one to receive messages from it. Both mailboxes will reside in the host program (the one that
is started with the option --player2=NAME with no @... part). Each message (except the
first; see below) will be a string in the format <Move> or <Score>, as described in §3, with the
<Score> coming last. That is, on receiving (or sending) the last move in a game, both programs
send each other the score.

The tricky part is getting pointers to the mailboxes from one program to the other. For
this purpose, we provide another useful type: java.util.SimpleObjectRegistry. A registry is
simply a kind of dictionary in which one can associate names with values (object references). The
program that is started

java checkers ... --player2=Foo

on machine M (the host) creates a SimpleObjectRegistry and stores two Mailboxes in it named
"Foo.IN" and "Foo.OUT" using the rebind method. The program that is started

java checkers ... --player2=Foo@M

retrieves these Mailboxes using (for example)

(Mailbox<String>) SimpleObjectRegistry.findObject("Foo.IN","M")

This second program uses the mailbox Foo.IN to send messages to M and Foo.OUT to get responses
(the roles of the two mailboxes are reversed in the program that created the repository, of course).

The Foo.OUT mailbox should start with the sequence of moves from the host’s --init file,
if any (just the moves; no line numbers). Next should follow either the message string "white"

(meaning “play the white pieces and go second”) or "black". From then on, it’s just a matter of
reading moves from the .OUT mailbox and sending responses to the .IN mailbox.

Upon sending your last message to one of these mailboxes (which should normally be the
score), apply its .close method to make sure that the message has been received and to shut
down the mailbox.

Annoying technical glitch. When the program that creates a remote object (a mailbox in this
case) terminates, the object is destroyed, and attempts to call its methods get RemoteExceptions.
If you get such an exception, it probably means that the other program has terminated (and you
should too, probably). Be prepared to receive such exceptions (that is, don’t simply surround
everything with

try {

...

} catch (RemoteException e) { }

and effectively ignore the exception.) If you receive one of these at the end of the game, then you
can ignore it; at other times, treat it as if the opponent has resigned.

Project #3: Checkers 8

7 Advice

If you “don’t know how to begin,” start with reading and checking the command line (see
ucb.util.CommandArgs). Then try writing methods that prompt for and read moves from the
terminal, that check moves for legality, that generate possible legal moves starting from a given
position, that select legal moves to make, that print moves in transcript form, and that make
moves on a model of the checkerboard (you definitely want a class that represents the current
state of a game—where all the pieces are and whose move it is). Don’t even think about a GUI
or about clever strategy until you have the basic stuff (required by the assignment) working.

Your final work must be your own, but especially on this project, feel free to get together
with other students to discuss ideas and plan strategies. Of course, you should always feel free to
consult your TA or me.

8 What to Turn In

As usual, be sure to provide a makefile, user manual, and INTERNALS document. Also, gmake
test should do some kind of testing of your program, at least playing against itself. We don’t
expect tests of the GUI, if you provide one.

9 Optional: The GUI

We encourage you to try the extra-credit GUI (Graphical User Interface). To make life easier for
you, we will provide a little widget: ucb.games.checkers.CheckerboardUI, plus a simple test
GUI that uses it (CheckerTest). The idea is that the CheckerboardUI “listens” to a model of
the board and reflects all changes it finds there. It also allows the rest of your program to “listen
to” it and to respond to input events (moves) that are made on the board it displays. You will
find that there isn’t really a lot more you need to do, except to figure out what menus or buttons
to include. Remember always: RTFM.

	Introduction
	Rules of Checkers
	Notation
	The Problem
	Format of Text Moves
	Communicating with a Remote Program
	Advice
	What to Turn In
	Optional: The GUI

