
SSH Secure Shell
for Servers
Version 3.2.9
Administrator’s Guide

September 2003

2

c
�

1996 - 2003 SSH Communications Security Corp.

No part of this publication may be reproduced, published, stored in an
electronic database, or transmitted, in any form or by any means, elec-
tronic, mechanical, recording, or otherwise, for any purpose, without
the prior written permission of SSH Communications Security Corp.
This software is protected by international copyright laws. All rights re-
served. ssh R

�
is a registered trademark of SSH Communications Security

Corp. in the United States and in certain other jurisdictions. SSH2,
the SSH logo, SSH IPSEC Express, SSH Certifier, SSH Sentinel, SSH
NAT Traversal, and Making the Internet Secure are trademarks of SSH
Communications Security Corp. and may be registered in certain ju-
risdictions. All other names and marks are property of their respective
owners. THERE IS NO WARRANTY OF ANY KIND FOR THE AC-
CURACY OR USEFULNESS OF THIS INFORMATION EXCEPT AS
REQUIRED BY APPLICABLE LAW OR EXPRESSLY AGREED IN
WRITING.

SSH Communications Security Corp.
Fredrikinkatu 42; FIN-00100 Helsinki; FINLAND
SSH Communications Security Inc.
1076 East Meadow Circle; Palo Alto, CA 94303; USA
SSH Communications Security K.K.
House Hamamatsu-cho Bldg. 5F; 2-7-1 Hamamatsu-cho, Minato-ku; Tokyo 105-0013,
JAPAN

http://www.ssh.com/
e-mail: ssh-sales@ssh.com (sales), http://www.ssh.com/support/
Tel: +358 20 5007030 (Finland), +1 650 2512700 (USA), +81 3 34596830 (Japan)
Fax: +358 20 5007031 (Finland), +1 650 2512701 (USA), +81 3 34596825 (Japan)

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

CONTENTS 3

Contents

1 About This Document 9

1.1 Available Manual Pages . 9

1.2 Documentation Conventions . 10

2 Introduction to SSH Secure Shell 11

2.1 Network Security Risks . 11

2.2 Protocol Features . 12

2.3 Different Versions of the SSH Protocol . 13

2.4 Legal Issues with Encryption . 13

2.5 Supported Platforms . 13

2.6 Support . 14

3 Configuring SSH Secure Shell 15

3.1 Basic Configuration . 15

3.1.1 Default Locations of Secure Shell Files . 15

3.1.2 Generating the Host Key . 16

3.1.3 Ciphers and MACs . 17

3.1.4 Compression . 19

3.1.5 Configuring Root Logins . 20

3.1.6 Restricting User Logins . 20

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

4 CONTENTS

3.2 Subconfigurations . 22

3.2.1 Host-Specific Subconfiguration . 22

3.2.2 User-Specific Subconfiguration . 23

3.3 Configuring SSH Secure Shell for TCP Wrappers Support 23

3.3.1 Troubleshooting TCP Wrappers . 25

3.4 Configuring SSH2 for SSH1 Compatibility . 25

3.5 Forwarding . 26

3.5.1 Port Forwarding . 26

3.5.2 Dynamic Port Forwarding . 29

3.5.3 X11 Forwarding . 29

3.5.4 Agent Forwarding . 30

4 Authentication 31

4.1 Server Authentication . 31

4.1.1 Public-Key Authentication . 31

4.1.2 Certificate Authentication . 33

4.2 User Authentication . 35

4.2.1 Password Authentication . 35

4.2.2 Public-Key Authentication . 36

4.2.3 Host-Based Authentication . 39

4.2.4 Certificate Authentication . 43

4.2.5 Kerberos Authentication . 47

4.2.6 Pluggable Authentication Module (PAM) . 48

4.2.7 SecurID . 49

4.3 Keyboard-Interactive Authentication . 50

4.3.1 Overview . 51

4.3.2 Configuring the Server and Client . 51

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

CONTENTS 5

4.3.3 Adding New Authentication Methods . 52

5 Log Messages 57

5.1 Log Message Reference . 57

5.1.1 User Authentication - Common . 57

5.1.2 User Authentication - Host-Based . 59

5.1.3 User Authentication - Keyboard-Interactive PAM 63

5.1.4 User Authentication - Keyboard-Interactive Password 65

5.1.5 User Authentication - Keyboard-Interactive . 66

5.1.6 User Authentication - Kerberos TGT . 66

5.1.7 User Authentication - Kerberos . 67

5.1.8 User Authentication - PAM . 67

5.1.9 User Authentication - Password . 69

5.1.10 User Authentication - Public Key . 72

5.1.11 User Authentication - SecurID . 75

5.1.12 Certificate-specific code . 75

5.1.13 SFTP Server . 75

5.1.14 Agent Forwarding . 76

5.1.15 Session Channels . 77

5.1.16 SSH1 Agent Forwarding . 79

5.1.17 Port Forwarding . 80

5.1.18 X11 Forwarding . 82

5.1.19 Common Code . 82

5.1.20 Host Key I/O . 83

5.1.21 General Server Log Messages . 83

5.1.22 SFTP . 89

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

6 CONTENTS

6 Using SSH Secure Shell 99

6.1 Using the Secure Shell Server Daemon (sshd2) . 99

6.1.1 Manually Starting the Secure Shell Server Daemon 99

6.1.2 Automatically Starting the Server Daemon at Boot Time 100

6.1.3 Operation of the Server Daemon . 101

6.1.4 Resetting and Stopping the Server Daemon . 102

6.1.5 Daemon Configuration File and Command-Line Options 102

6.1.6 Subsystems . 102

6.2 Using the Secure Shell Client (ssh2) . 103

6.2.1 Starting the Secure Shell Client . 103

6.2.2 Client Configuration File and Command-Line Options 104

6.3 Using Secure Copy (scp2) . 104

6.4 Using Secure File Transfer (sftp2) . 104

6.5 Using Authentication Agent (ssh-agent2, ssh-add2) 105

A Tool Syntax 107

A.1 ssh-keygen2 . 107

A.2 ssh-certenroll2 . 109

B Technical Specifications 111

B.1 Supported Cryptographic Algorithms and Standards . 111

B.1.1 Public-Key Algorithms . 111

B.1.2 Data Integrity Algorithms . 111

B.1.3 Symmetric Session Encryption Algorithms . 111

B.1.4 Certificate Standards . 112

B.1.5 Certificate and CRL Publishing Solutions . 112

B.1.6 Cryptographic Token Standards . 112

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

CONTENTS 7

B.1.7 Other Supported Standards . 113

B.1.8 Additional Information . 113

B.2 Authentication Methods . 113

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

8 CONTENTS

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

9

Chapter 1

About This Document

This document, SSH Secure Shell for Servers Administrator’s Guide, contains instructions on the basic ad-
ministrative tasks of SSH Secure Shell. The document is intended for the system administrators responsible
for the configuration of SSH Secure Shell software.

To use the information presented in this document, you should be familiar with UNIX system administration.

The document contains the following information:

� introduction to SSH Secure Shell

� configuration options

� authentication options

� keyboard-interactive authentication options

� using SSH Secure Shell

� appendix (list of supported standards and authentication methods)

Installation instructions for SSH Secure Shell software can be found in SSH Secure Shell for Servers Quick
Start Guide, included in the CD-ROM package and available on the SSH Web site (http://www.ssh.
com/support/). For more information, see the manual pages included in the distribution.

1.1 Available Manual Pages

The following manual pages are included in the distribution:

� ssh2: secure shell client (remote login program)

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

10 Chapter 1. About This Document

� scp2: secure copy client

� sftp2: secure ftp client

� ssh-add2: adds identities for the authentication agent

� ssh-agent2: authentication agent

� ssh-certenroll2: certificate enrollment client (included only in the commercial distribution)

� ssh-certificates: describes the configuration files and options needed when using certificates
with ssh2 software (included only in the commercial distribution)

� ssh-dummy-shell: ultimately restricted shell

� ssh-externalkeys: general documentation about using external keys with ssh2 software

� ssh-keygen2: authentication key pair generation

� ssh-probe2: seeks ssh servers from the local network

� ssh2 config: format of configuration file for ssh2

� sshd-check-conf: check what your configuration allows or denies based on incoming user and/or
host name

� sshd2: secure shell daemon

� sshd2 config: format of configuration file for sshd2

� sshd2 subconfig: advanced configuration of sshd2

� sshregex: describes the regular expressions (or globbing patterns) used in filename globbing with
scp2 and sftp2 and in the configuration files ssh2 config and sshd2 config

Please refer to the above mentioned man pages for command syntax descriptions and usage instructions.

1.2 Documentation Conventions

The following special conventions are used in this document:

Convention Usage Example
Bold Menus, GUI elements, strong emphasis Click Apply or OK.

Monospace Filenames, commands, directories, URLs etc. Refer to readme.txt.

Italics Reference to other documents or products, emphasis See SSH Sentinel User Manual.

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

11

Chapter 2

Introduction to SSH Secure Shell

SSH Secure Shell is a program that allows secure network services over an insecure network, such as the
Internet.

The Secure Shell concept originated on UNIX as a replacement for the insecure ”Berkeley services”, that is,
the rsh , rcp, and rlogin commands. SSH Secure Shell replaces other, insecure terminal applications
(such as Telnet and FTP). It allows you to securely login to remote host computers, to execute commands
safely in a remote computer, to securely copy remote files, to forward X11 sessions (on UNIX), and to provide
secure encrypted and authenticated communications between two non-trusted hosts. Also arbitrary TCP/IP
ports can be forwarded over the secure channel, enabling secure connection, for example, to an email service.

SSH Secure Shell with its array of unmatched security features is an essential tool in today’s network envi-
ronment. It is a powerful guardian against the numerous security hazards that nowadays threaten network
communications.

This chapter gives an overview of some of the security risks facing the Internet user and introduces the SSH2
protocol to combat these risks.

2.1 Network Security Risks

The open architecture of the Internet Protocol (IP) makes it a highly efficient, cost-effective, and flexible
communications protocol for local and global communications. It has been widely adopted, not only on the
global Internet, but also in the internal networks of large corporations.

The IP protocol suite, including TCP/IP, was designed to provide reliable and scalable communications over
real-world networks. It has served this goal well. However, it was designed twenty years ago in a world where
the Internet consisted of a few hundred closely controlled hosts. The situation has changed. The Internet now
connects dozens of millions of computers, controlled by millions of individuals and organizations. The core
network itself is administered by thousands of competing operators, and the network spans the whole globe,
connected by fibers, leased lines, dial-up modems, and mobile phones.

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

12 Chapter 2. Introduction to SSH Secure Shell

The phenomenal growth of the Internet has peaked the interest of businesses, military organizations, govern-
ments, and criminals. Suddenly, the network is changing the way business is done. It is changing the nature
of trade and distribution networks and the way individual people communicate with each other.

The upsurge of business, scientific, and political communications on the Internet has also brought out the
usual negative elements. Criminals are looking for ways of getting a cut of the emerging business. In-
dustrial espionage has moved online. Intelligence agencies are showing a growing interest towards net-
worked communications, and they often exchange information with domestic commercial interest and politi-
cal groups. Crackers, exchanging information and source code, make attacks that ten years ago were thought
to be within the reach of only the most powerful intelligence agencies.

It has turned out that the IP protocol, while very tolerant of random errors, is vulnerable to a number of
malicious attacks. The most common types of attacks include:

� Eavesdropping a transmission, for example looking for passwords, credit card numbers, or business
secrets.

� Hijacking, or taking over a communication in such a way that the attacker can inspect and modify any
data being transmitted between the communicating parties.

� IP spoofing, or faking network addresses in order to fool access control mechanisms based on them or
to redirect connections to a fake server.

The SSH2 protocol is designed to protect network communications against security hazards like these.

2.2 Protocol Features

The SSH Secure Shell products from SSH Communications Security use the Secure Shell version 2 (SSH2)
protocol. The SSH2 protocol is being standardized in the Secsh Working Group of the Internet Engineering
Task Force (IETF).

The SSH2 protocol contains the following features:

� Secure terminal sessions utilizing secure encryption.

� Full, secure replacement for FTP and Telnet, as well as the UNIX r-series of commands: rlogin,
rcp, rexec.

� Multiple high security algorithms and strong authentication methods that prevent such security threats
as identity spoofing.

� Multiple ciphers for encryption, including 3DES, Blowfish, and AES.

� Transparent and automatic tunneling of X11 connections and arbitrary TCP/IP-based applications, such
as e-mail.

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

2.3. Different Versions of the SSH Protocol 13

� Automatic and secure authentication of both ends of the connection. Both the server and the client are
authenticated to prevent identity spoofing, Trojan horses, and so on.

� Multiple channels that allow multiple terminal windows and file transfers through one secure and au-
thenticated connection.

2.3 Different Versions of the SSH Protocol

The current version of the SSH protocol is version 2 (SSH2). More information on the protocol can be found
in the IETF-secsh Internet-Drafts (http://www.ietf.org/ID.html).

Note: SSH Communications Security considers the Secure Shell protocol version 1 (SSH1) deprecated and
does not recommend the use of it. The SSH statement regarding the vulnerability of SSH1 protocol is avail-
able at http://www.ssh.com/company/newsroom/article/210/.

Several different versions of the Secure Shell client and server exist. Please note that the different versions
may use different implementations of the ssh protocol, and therefore you may not be able to connect to an
ssh1 server using ssh2 client software, or vice versa.

However, the SSH Secure Shell server software includes support for fallback functionality if SSH Secure
Shell version 1.x is already installed. (SSH Secure Shell for Windows Servers does not include this func-
tionality.) Furthermore, the SSH Secure Shell client now contains internal ssh1 emulation, allowing it to
communicate with ssh1 servers without using an external ssh1 program.

For optimal results, however, upgrade all servers and clients to the latest available version of SSH Secure
Shell.

Please note that the version number of the SSH Secure Shell software product does not reflect the version
number of the secure shell protocol, but the version of the software.

2.4 Legal Issues with Encryption

The encryption software included in SSH Communications Security products is developed in Europe, and
therefore these products are not subject to US export regulations.

SSH Secure Shell software can be used in any country that allows encryption, including the United States of
America.

2.5 Supported Platforms

The SSH Secure Shell Server software (the software component that allows remote users to connect to your
computer) is available for most UNIX and Linux platforms and for Microsoft Windows NT4 (Service Pack 5

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

14 Chapter 2. Introduction to SSH Secure Shell

required), Windows 2000, and Windows XP.

The associated client software (the component that remote users run on their computers) is additionally
available also for Microsoft Windows 98, Me and the Symbian operating systems.

A list of the officially supported platforms for SSH Secure Shell products is available at http://www.
ssh.com/products/.

Independent third parties have also ported Secure Shell to other platforms such as OS/2 and VMS. These
independent software products are intended to be compatible with the Secure Shell standard. However,
SSH Communications Security can only provide support for software developed by SSH Communications
Security.

2.6 Support

Commercial users are entitled to technical support from SSH Communications Security for ninety (90) days
from the date of purchase of the software. If you have purchased a maintenance agreement, review your
agreement for specific terms.

Commercial users and those evaluating the software prior to purchase can contact the SSH Secure Shell tech-
nical support by filling out a support request form at http://www.ssh.com/support/contact/.

� Commercial support requests http://www.ssh.com/support/contact/

support-request-shell.mpl

Non-commercial licensees are welcome to submit bug reports and feature requests, but are not entitled to tech-
nical support from SSH Communications Security. Please note that SSH Communications Security makes
every effort to make available information on issues that impact non-commercial licensees. See the SSH Web
site (http://www.ssh.com/support/) for more information. Note, for example, the product FAQ
pages.

� Bug Reports

http://www.ssh.com/support/contact/bug-report-shell.mpl

� Feature Requests

http://www.ssh.com/support/contact/feature-request-shell.mpl

Note: The above two links are for submissions only - you will not receive a response to emails sent using
these forms.

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

15

Chapter 3

Configuring SSH Secure Shell

This chapter gives instructions on configuring SSH Secure Shell.

3.1 Basic Configuration

This section covers some basic configuration options that are commonly modified.

3.1.1 Default Locations of Secure Shell Files

The system-wide configuration files are the most important. They are located in the directory /etc/ssh2.
User and system binaries are stored in /usr/local/bin and /usr/local/sbin, respectively. In
/usr/local/sbin, you will find sshd2. All other binaries are stored in /usr/local/bin.

System-Wide Configuration Files

The system-wide configuration files for the client and server, respectively, consist of the following files:

� /etc/ssh2/ssh2 config

� /etc/ssh2/sshd2 config

Example files sshd2 config.example and ssh2 config.example can be found in the same direc-
tory.

Users can have their own configuration files. These are stored in ˜/.ssh2.

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

16 Chapter 3. Configuring SSH Secure Shell

Key Files

The system public key pair (DSS only) consists of the following files:

� /etc/ssh2/hostkey

� /etc/ssh2/hostkey.pub

Host keys that are recognized for all users on the local system should be placed in the
/etc/ssh2/hostkeys directory.

User-specific host keys should be placed in the ˜/.ssh2/hostkeys directory.

If you are using host-based authentication, the system-wide file for recognized host keys is
/etc/ssh2/knownhosts.

User-specific known host keys should be located in ˜/.ssh2/knownhosts.

License File

Commercial packages of SSH Secure Shell use the license file license ssh2.dat. Non-commercial
packages do not include this file.

To verify the type of the SSH Secure Shell package you are using, display version information with the
following command:

ssh2 -V

When you acquire a license for an evaluation version of the software, the appropriate license file must be
copied in the correct location. The license file is typically stored in the /etc/ssh2/ directory, but a
different location can be specified by setting the environment variable SSH LICENSE FILE.

The license file specifies the type of the license and indicates that the software has been legally purchased.
The file should be safely stored.

3.1.2 Generating the Host Key

Host keys are generated during the installation of SSH Secure Shell. You only need to regenerate them if you
want to change your host key, or if your host key was not generated during the installation.

To generate the host key, perform the following tasks:

1. Login as root.

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

3.1. Basic Configuration 17

2. Kill the sshd2 daemon listening to port 22:

kill ’cat /var/run/sshd2_22.pid’

If the directory /var/run does not exist, sshd2 22.pid is in directory /etc/ssh2/.

3. Generate the host key with the following command:

ssh-keygen2 -P /etc/ssh2/hostkey

Note: This will generate a DSA 2048-bit host key pair (without a passphrase). For more information
on the key generation options, see the ssh-keygen2 man page.

4. Restart sshd2:

/usr/local/sbin/sshd2

Note: Administrators that have other users connecting to their sshd2 daemon should notify the users of the
host-key change. If you do not, the users will receive a warning the next time they connect, because the host
key the users have saved on their disk for your server does not match the host key now being provided by your
sshd2 daemon. The users may not know how to respond to this error. You can run the following to generate
a fingerprint for your new public host key which you can provide to your users via some unalterable method
(such as digitally signed email):

ssh-keygen2 -F hostkey.pub

When the users connect and receive the error message about the host key having changed, they can compare
the fingerprint of the new key with the fingerprint you have provided in your email, and ensure that they are
connecting to the correct sshd2 daemon. Inform your users to notify you if the fingerprints do not match,
or if they receive a message about a host-key change and do not receive a corresponding message from you
notifying them of the change.

This procedure can help ensure that you do not become a victim of a man-in-the-middle attack, as your
users will notify you if the host-key fingerprints do not match. You will also be aware if the users encounter
host-key change messages when you have not regenerated your host key pair.

It is also possible to send the public host key to the users via an unalterable method. The users can save the key
to the ˜/.ssh2/hostkeys directory as key 22 machinename.pub. In this case, manual fingerprint
check is not needed.

3.1.3 Ciphers and MACs

The algorithm(s) used for symmetric session encryption can be chosen in the sshd2 config and
ssh2 config files:

Ciphers twofish,blowfish

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

18 Chapter 3. Configuring SSH Secure Shell

The system will attempt to use the different encryption ciphers in the sequence specified on the line. Currently
supported cipher names are the following:

� des

� 3des

� blowfish

� twofish

� cast

� arcfour

� aes.

Of these ciphers, Blowfish and Twofish are especially suitable for file transfers.

Special values for this option are the following:

� Any: allows all the cipher values including none

� AnyStd: allows only standard ciphers and none

� none: forbids any use of encryption

� AnyCipher: allows any available cipher apart from the non-encrypting cipher mode none

� AnyStdCipher: the same as AnyCipher, but includes only those ciphers mentioned in IETF-
SecSH-draft (excluding none). This is the default value.

The MAC (Message Authentication Code) algorithm(s) used for data integrity verification can be chosen in
the sshd2 config and ssh2 config files:

MACs hmac-sha1,hmac-md5

The system will attempt to use the different MAC algorithms in the sequence they are specified on the line.
Supported MAC names are the following:

� hmac-sha1

� hmac-sha1-96

� hmac-md5

� hmac-md5-96

� hmac-ripemd160

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

3.1. Basic Configuration 19

� hmac-ripemd160-96.

Special values for this option are the following:

� Any: allows all the MAC values including none

� AnyStd: allows only standard MACs and none

� none: forbids any use of MACs

� AnyMac: allows any available MAC apart from none

� AnyStdMac: the same as AnyMac, but includes only those MACs mentioned in IETF-SecSH-draft
(excluding none). This is the default value.

Both cipher and MAC can also be defined using command line arguments with ssh2 and scp2:

$ scp2 -c twofish -m hmac-md5 foobar user@remote:./tmp

Note: Algorithm names are case sensitive.

3.1.4 Compression

SSH Secure Shell uses GNU ZLIB (LZ77) for compression. The ”zlib” compression is described in RFC
1950 and in RFC 1951.

By default, compression is disabled. Compression can be enabled in the ssh2 config file:

Compression yes

Alternatively, compression can be enabled on the command line:

$ ssh2 +C username@remote

The client can request a compression level with a number after +C (from +C1 to +C9). In this case, the
compression level is between the levels requested by the client and offered by the server. For example, if the
server offers level 6 (the default) and the client asks for level 1, level 2 is used.

Compression is worth using if your connection is slow (for example a modem connection). The efficiency of
the compression depends on the type of the file, and varies widely. It is close to 0% for already compressed
files like zip and often 50% or even more for text files.

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

20 Chapter 3. Configuring SSH Secure Shell

3.1.5 Configuring Root Logins

If you want to permit someone to login directly to the root login account via ssh, you can define three methods
of control in the sshd2 config file:

PermitRootLogin no

This will disable all root logins. To enable root logins with any authentication method, use the following
setting:

PermitRootLogin yes

You can limit the authentication methods by using the following setting:

PermitRootLogin nopwd

This allows root logins only when an authentication method other than password is used.

It is also possible to create a separate subconfiguration file for root. See Section 3.2 (Subconfigurations) for
more information.

3.1.6 Restricting User Logins

By default, SSH Secure Shell does not impose any login restrictions in addition to those provided by the
operating system. However, you can restrict connections based on host, user name, or group.

The restrictions are defined in the sshd2 config file using the following syntax:

keyword pattern

Note: All the patterns used in the examples below are in accordance with SSH REGEX SYNTAX EGREP,
which is the default regex syntax in SSH Secure Shell version 3.0 and above. However, the regex syntax can
be chosen by using the metaconfig block in the beginning of ssh2 config and sshd2 config:

SSH CONFIGURATION FILE FORMAT VERSION 1.1

REGEX-SYNTAX egrep

end of metaconfig

Possible values of REGEX-SYNTAX are ssh, egrep, zsh fileglob and traditional. For more
information, please see the sshregex man pages.

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

3.1. Basic Configuration 21

Previous versions of SSH Secure Shell always use SSH REGEX SYNTAX ZSH FILEGLOB.

Available keywords are the following:

� AllowHosts/DenyHosts

Login is allowed/denied from hosts whose name matches one of the specified patterns.

Example 1. Listing complete hostnames.

AllowHosts localhost, foobar\.com, friendly\.org

This allows connections only from specified hosts.

Example 2. Using patterns with hostnames.

AllowHosts h..s.\..*

This pattern matches, for example, house.foobar.com, house.com, but not house1.com. Note that you
have to input the string ”

�
.” when you want to specify a literal dot.

Example 3. Using patterns with IP-addresses.

AllowHosts ([[:digit:]]{1\,3}\.){3}[[:digit:]]{1\,3}

This pattern matches any IP address (xxx.xxx.xxx.xxx). However, some host’s hostname could also
match this pattern.

Example 4 Using
�
i.

AllowHosts "\i192.*\.3"

When
�
i is used in the beginning of a pattern, only the host IP addresses are used. The above pattern

matches, for example, 192.0.0.3.

� AllowSHosts/DenySHosts

The .shosts, .rhosts, /etc/shosts.equiv and /etc/hosts.equiv entries are honored
only for hosts whose name matches one of the specified patterns. It is recommended to use these
keywords with host-based authentication.

� AllowUsers/DenyUsers

Login is allowed/denied as users whose name matches one of the specified patterns.

Example 1 Using complete user names

DenyUsers devil@evil\.org,warezdude,1337

This denies login as devil when the connection is coming from evil.org. It also denies login (from all
addresses) as warezdude and as user whose UID is 1337.

Example 2 Using patterns with user names

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

22 Chapter 3. Configuring SSH Secure Shell

AllowUsers "sj*,s[:digit:]+,s(jl|amza)"

This pattern matches, for example, sjj, sjjj, s1, s123, and samza but not s1x or slj.

Example 3 Using
�
i.

AllowUsers "sjl@\i192.*\.3"

This would allow login as user sjl from only those hosts whose IP address matches the specified pattern.

� AllowGroups/DenyGroups

Login is allowed/denied when one of the groups the user belongs to matches one of the specified
patterns.

Example 1

AllowGroups root,staff,users

For more information on keywords, please see the sshd2 config man pages.

3.2 Subconfigurations

You can also specify configuration options in so-called subconfiguration files, which have the same basic
format as the main configuration file. The process forked to handle the user’s connection reads these files.
They are read at run-time, so if they are modified, it is not necessary to restart the server process.

If parsing of the subconfiguration files fails, the connection is terminated (for host-specific configuration), or
access denied (for user-specific configuration) by the server.

The subconfiguration files are divided into two categories: host-specific and user-specific.

Subconfiguration files are very flexible and because of that, dangerous if the logic of the files is not carefully
planned. Note: Host-specific subconfiguration files are always read before the user-specific subconfigura-
tion files. See the example file sshd2 config.example and the host-specific and user-specific files in
/etc/ssh2/subconfig.

3.2.1 Host-Specific Subconfiguration

The HostSpecifiConfig variable specifies host-specific subconfiguration files for sshd2. The syntax is
the following:

HostSpecificConfig pattern subconfig-file

pattern will be used to match the client host as specified under AllowHosts (see the
sshd2 subconfig man page). The file subconfig-file will then be read, and configuration data
amended accordingly.

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

3.3. Configuring SSH Secure Shell for TCP Wrappers Support 23

The file is read before any actual protocol transactions begin, and you can specify most of the options allowed
in the main configuration file. You can specify more than one subconfiguration file, in which case the patterns
are matched and the files read in the order specified. Later defined values of configuration options will either
override or amend the previous value depending on which option it is. The effect of redefining an option is
described in the documentation for that option. For example, setting Ciphers in the subconfiguration file
will override the old value, but setting AllowUsers will amend the value.

For more information, please see the sshd2 subconfig and sshd2 config man pages.

3.2.2 User-Specific Subconfiguration

User-specific subconfiguration files are read when the client has stated the user name it is trying to log in
with. At this point, the server will obtain additional information about the user: does the user exist, what
is the user’s UID, and what groups does the user belong to. With this information, the server can read the
user-specific configuration files specified by UserSpecifiConfig in the main sshd2 configuration file.
The syntax is the following:

UserSpecificConfig pattern subconfig-file

You can use patterns of the form:

user[%group][@host]

where user is matched with the user name and UID, group is matched with the user’s primary and sec-
ondary groups, both group name and GID, and host is matched as described under AllowHosts (see the
sshd2 subconfig man page).

For example, the following would match any user in group ”sftp” connecting from company.com:

.*%sftp@company_com

See the sshd2 subconfig man pages for more information.

3.3 Configuring SSH Secure Shell for TCP Wrappers Support

To enable usage of TCP Wrappers with SSH Secure Shell, perform the following operations:

1. If SSH Secure Shell was previously installed from binaries, you may want to uninstall it before contin-
uing.

2. Compile the source code:

./configure --with-libwrap

make

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

24 Chapter 3. Configuring SSH Secure Shell

Then, become root and run

make install

Note: If configure does not find libwrap.a, do the following:

� Locate libwrap.a
� Run configure again:

make distclean

./configure --with-libwrap=/path_to_libwrap.a/

Note: It is only necessary to specify the path to libwrap.a if the library and the include files
are located in a non-standard directory, i.e. if the library has been compiled to a local directory,
or has been installed to somewhere else than the default location.

3. Create or edit the /etc/hosts.allow and /etc/hosts.deny files.

When a user tries to connect to the SSH Secure Shell server, the TCP wrapper daemon (tcpd)
reads the /etc/hosts.allow file for a rule that matches the client’s hostname or IP. If
/etc/hosts.allow does not contain a rule allowing access, tcpd reads /etc/hosts.deny
for a rule that would deny access. If neither of the files contains an accept or deny rule, access is
granted by default.

The syntax for the /etc/hosts.allow and /etc/hosts.deny files is as follows:

daemon : client_hostname_or_IP

The typical setup is to deny access to everyone listed in the /etc/hosts.deny file. (This example
shows both ssh1 and ssh2.)

sshd1: ALL

sshd2: ALL

sshdfwd-X11 : ALL

or simply

ALL: ALL

And then allow access only to trusted clients in the /etc/hosts.allow:

sshd1 : trusted_client_IP_or_hostname

sshd2 : .ssh.com foo.bar.fi

sshdfwd-X11 : .ssh.com foo.bar.fi

Based on the /etc/hosts.allow file above, users coming from any host in the ssh.com domain or
from the host foo.bar.fi are allowed to access.

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

3.4. Configuring SSH2 for SSH1 Compatibility 25

3.3.1 Troubleshooting TCP Wrappers

If configuring TCP wrappers causes problems, please check the following:

1. Make sure that you are not experiencing any network connectivity problems.

2. Make sure that SSH Secure Shell server is running:

kill -0 ‘cat /var/run/sshd2_22.pid‘

or

kill -0 ‘cat /etc/ssh2/sshd2_22.pid‘

If you receive the message ”No such process”, restart the sshd2 daemon.

3. Check your /etc/hosts.allow and /etc/hosts.deny files.

� Ensure that the client’s IP address or host name is correct.
� If you are using a host name, you must supply the fully qualified domain name.

4. If you changed something in the sshd2 config file, you need to HUP the sshd2 daemon.

5. Run tcpdchk and tcpdmatch. These programs are used to analyze and report problems with your
TCP Wrappers setup. Please see the man pages for more information on these commands.

3.4 Configuring SSH2 for SSH1 Compatibility

Note: SSH Communications Security considers the Secure Shell version 1 protocol deprecated and does not
recommend the use of it. For more information, see http://www.ssh.com/company/newsroom/
article/210/).

The SSH1 and SSH2 protocols are not compatible with each other. This inconvenience is necessary, since
the SSH2 protocol includes remarkable security and performance enhancements that would not have been
possible if protocol-level compatibility with SSH1 had been retained.

However, the current implementations of ssh2 and ssh1 software are designed so that both can be run on
the same computer. This makes the transition from the old but well-established SSH1 protocol to the more
secure and more flexible SSH2 protocol much easier. The ssh2 server daemon includes a fallback function
that automatically invokes the ssh1 server when required. Furthermore, the SSH Secure Shell client now
contains internal ssh1 emulation, allowing it to communicate with ssh1 servers without using an external
ssh1 program.

With the Ssh1Compatibility option, sshd1 is executed when the client supports only SSH 1.x protocols.
The argument must be ”yes” or ”no”. The default is ”no”, which means that you have to manually set ssh2 to
use ssh1 even if ssh1 is installed.

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

26 Chapter 3. Configuring SSH Secure Shell

Sshd1Path Specifies the path to the sshd1 executable to be executed in SSH1 compatibility mode. The
arguments for sshd2 are passed on to sshd1.

Sshd1ConfigFile specifies the alternate configuration file for sshd1 when sshd2 runs in compatibility
mode. It is only used if sshd2 is executed with the -f command line option, otherwise the default sshd1
configuration file is used.

See the sshd2 config man page for more information.

To set up both ssh1 and ssh2 servers on the same Unix system, you should do the following:

1. Install the latest available version of ssh1, available on the SSH Communications Security FTP site
(ftp://ftp.ssh.com/pub/ssh). As of this publication of this document, the latest version is
ssh-1.2.33. SSH1 compatibility fallback requires version 1.2.26 or later.

2. Install ssh2.

3. If you previously had ssh1 installed, please make sure that the old sshd is no longer run at boot.
Only sshd2 should be run. If you have the ssh1 version of sshd running, you should kill the master
daemon. You can find its process id in /var/run/sshd.pid or if the directory /var/run does
not exist, in /etc/ssh2/sshd2 22.pid.

4. Make sure that /usr/local/sbin/sshd2 is run automatically at boot. On most systems, you
should add the command to start it to /etc/rc.local or under /etc/rc.d.

� When you run sshd2, the ssh1 daemon should not be running. When using ssh2 with ssh1
compatibility, you should only run sshd2. It will then automatically start the ssh1 daemon as
needed.

5. If you do not want to reboot, you should now manually run /usr/local/sbin/sshd2 (or
/etc/rc.d/init.d/sshd2 start).

3.5 Forwarding

The SSH2 connection protocol provides channels that can be used for a wide range of purposes. All of these
channels are multiplexed into a single encrypted tunnel and can be used for forwarding (”tunneling”) arbitrary
TCP/IP ports and X11 connections.

3.5.1 Port Forwarding

Port forwarding, or tunneling, is a way to forward otherwise insecure TCP traffic through SSH Secure Shell.
You can secure for example POP3, SMTP and HTTP connections that would otherwise be insecure - see
Figure 3.1 (Encrypted SSH2 tunnel).

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

3.5. Forwarding 27

Figure 3.1: Encrypted SSH2 tunnel

The client-server applications using the tunnel will carry out their own authentication procedures, if any, the
same way they would without the encrypted tunnel.

The protocol/application might only be able to connect to a fixed port number (e.g. IMAP 143). Otherwise
any available port can be chosen for port forwarding.

Privileged ports (below 1024) can be forwarded only with root privileges.

There are two kinds of port forwarding: local and remote forwarding. They are also called outgoing and
incoming tunnels, respectively. Local port forwarding forwards traffic coming to a local port to a specified
remote port.

For example, if you issue the command

ssh2 -L 1234:localhost:23 username@host

all traffic coming to port 1234 on the client will be forwarded to port 23 on the server (host). Note that
localhostwill be resolved by the sshdserver after the connection is established. In this case localhost
therefore refers to the server (host) itself.

Remote port forwarding does the opposite: it forwards traffic coming to a remote port to a specified local
port.

For example, if you issue the command

ssh2 -R 1234:localhost:23 username@host

all traffic which comes to port 1234 on the server (host) will be forwarded to port 23 on the client
(localhost).

It is important to realize that if you have three hosts, client, sshdserver, and appserver, and you
forward the traffic coming to the client’s port x to the appserver’s port y, only the connection between
the client and sshdserver will be secured. See Figure 3.2 (Forwarding to a third host). The command
you use would be something like the following:

ssh2 -L x:appserver:y username@sshdserver

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

28 Chapter 3. Configuring SSH Secure Shell

Figure 3.2: Forwarding to a third host

Forwarding FTP

With SSH Secure Shell version 3.0 and above it is possible to easily forward FTP connections by using a
command with the following syntax:

ssh2 -L ftp/x:ftpdserver:y username@sshdserver

FTP forwarding is an extension to the generic port forwarding mechanism. The FTP control channel can
be secured by using generic port forwarding, but since the FTP protocol requires creating separate TCP
connections for the files to be transferred, all the files would be transferred unencrypted when using generic
port forwarding, as these separate TCP connections would not be forwarded automatically.

To protect also the transferred files, use FTP forwarding instead. It works similarly to generic port forwarding,
except that the FTP forwarding code monitors the forwarded FTP control channel and dynamically creates
new port forwardings for the data channels as they are requested. To see exactly how this is done, two
different cases need to be examined: the active mode and the passive mode of the FTP protocol.

FTP in passive mode

In passive mode, the FTP client sends the command ’PASV’ to the server, which reacts by opening a listener
port for the data channel and sending the IP address and port number of the listener as a reply to the client.
The reply is of the form ’227 Entering Passive Mode (10,1,60,99,6,12)’.

When the Secure Shell client notices the reply to the PASV command, it will create a local port forwarding
to the destination mentioned in the reply. After this the client will rewrite the IP address and port in the reply
to point to the listener of the newly created local port forwarding (which exists always in a local host address,
127.0.0.1) and pass the reply to the FTP client. The FTP client will open a data channel based on the reply,
effectively tunneling the data through the SSH connection, to the listener the FTP server has opened. The net
effect is that the data channel is secure all the way except from the Secure Shell server to the FTP server, if
they are on different machines. This sequence of events happens automatically for every data channel.

Since the port forwarding is opened to a local host address, the FTP client must be run on the same machine
as the Secure Shell client if passive mode is used.

FTP in active mode

In active mode, the FTP client creates a listener on a local port, for a data channel from the FTP server to the
FTP client, and requests the channell by sending the IP address and the port number to the FTP server in a

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

3.5. Forwarding 29

command of the following form: ’PORT 10,1,60,99,6,12’. The Secure Shell client intercepts this command
and creates a remote port forwarding from the Secure Shell server’s localhost address to the address and port
specified in the PORT command.

After creating the port forwarding, the Secure Shell client rewrites the address and port in the PORT command
to point to the newly opened remote forwarding on the Secure Shell server and sends it to the FTP server.
Now the FTP server will open a data channel to the address and port in the PORT command, effectively
forwarding the data through the SSH connection. The Secure Shell client passes the incoming data to the
original listener created by the FTP client. The net effect is that the data channel is secure the whole way
except from the Secure Shell client to the FTP client. This sequence of events happens automatically for
every data channel.

Since the port forwarding is made to a local host address on the Secure Shell client machine, the FTP client
must be run in the same host as the Secure Shell client if passive mode is used.

Where end-to-end encryption of FTP data channels is desired, the FTP server and Secure Shell server need
to reside on the same host, and the FTP client and the Secure Shell client will likewise need to reside on the
same host. If this is the case, both active or passive mode can be used.

Note: Consider using sftp2 or scp2 instead of FTP forwarding to secure file transfers. It will require
less configuration than FTP forwarding, since the SSH Secure Shell server already has sftp-server2 as a
subsystem, and sftp2 and scp2 clients are included in the distribution. Managing remote user restrictions on
the server machine will be easier, since you do not have to do it also for FTP.

3.5.2 Dynamic Port Forwarding

Dynamic port forwarding is a transparent mechanism available for applications, which support the SOCKS4
or SOCKS5 client protocol. Instead of configuring port forwarding from specific ports on the local host
to specific ports on the remote server, you can specify a SOCKS server which cab be used by the user’s
applications. Each application is configured in the regular way except that it is configured to use a SOCKS
server on a local host port. The Secure Shell client application opens a port in the local host and mimics a
SOCKS4 and SOCKS5 server for any SOCKS client application.

When the applications are connecting to services such as IMAP4, POP3, SMTP, HTTP, and FTP, they provide
the necessary information to the SOCKS server, which is actually the Secure Shell client mimicking a SOCKS
server. The client will use this information in creating port forwarding to the Secure Shell server and relying
the traffic back and forth securely, as with user-specified port forwarding.

For more information, please see the ssh2(1) man pages.

3.5.3 X11 Forwarding

To enable X11 forwarding:

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

30 Chapter 3. Configuring SSH Secure Shell

1. Make sure that the SSH Secure Shell software was compiled with X forwarding support. The binary
packages contain runtime X detection in SSH Secure Shell version 3.2 and above. However, if X
security extensions are wanted, it is necessary to compile from source. When compiling, make sure not
to run ./configure with any X disabling options.

2. Ensure that xauth is in the path of the user running ./configure. Also, make sure that you have
the following line in your /etc/ssh2/sshd2 config file:

AllowX11Forwarding yes

X11 forwarding also needs to be enabled in the client by setting the following line in the
ssh2 config file:

ForwardX11 yes

3. Log into the remote system and type xclock &. This starts a X clock program that can be used
for testing the forwarding connection. If the X clock window is displayed properly, you have X11
forwarding working.

Note: Do not set the DISPLAY variable on the client. You will most likely disable encryption. (X connections
forwarded through Secure Shell use a special local display setting.)

In SSH Secure Shell 3.2 and above, if X11 SECURITY extension is compiled in, the X11 client applications
are treated as untrusted by default (the effects of this depend on your Xserver’s security policy). For more
information, please see the ssh2 config man pages.

3.5.4 Agent Forwarding

For information about agent forwarding, see Section 6.5 (Using Authentication Agent).

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

31

Chapter 4

Authentication

SSH Secure Shell provides mutual authentication - the client authenticates the server and the server authenti-
cates the client. Both parties are assured of the identity of the other party.

4.1 Server Authentication

The remote host can authenticate itself using either traditional public-key authentication or certificate authen-
tication.

At the beginning of the connection the server sends its public host key to the client for validation. If certificate
authentication is used the public key is included in the certificate the server sends to the client.

4.1.1 Public-Key Authentication

Server authentication is done during Diffie-Hellman key exchange through a single public-key operation.
When public-key authentication is used to authenticate the server, the first connection is very important.
During the first connection the SSH Secure Shell client will display a message similar to the one in Figure
4.1 (Windows client’s first connection to a remote host):

At this point, you should verify the validity of the fingerprint, for example by contacting the administrator
of the remote host computer (preferably by telephone) and asking her to verify that the key’s fingerprint is
correct. If the fingerprint is not verified, it is possible that the server you are connecting to is not the intended
one (this is known as a man-in-the-middle attack).

After verifying the fingerprint, it is safe to continue connecting. The server’s public key will then be
stored on the client machine. The location depends on the client implemantation (on UNIX it is the
˜/.ssh2/hostkeys directory).

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

32 Chapter 4. Authentication

Figure 4.1: Windows client’s first connection to a remote host

After the first connection, the local copy of the server’s public key will be used in server authentication.

If you want to avoid the risk associated with the first connection, you can copy the server public key in advance
to the /etc/ssh2/hostkeys directory on the client computer and set the StrictHostKeyChecking
keyword in the ssh2 config file to yes. After this, ssh2 will refuse to connect if the server’s public key
is not in the /etc/ssh2/hostkeys directory.

The key pair used for server authentication is defined on the server in the sshd2 config file with the
following parameters:

HostkeyFile <private hostkey>

PublicHostKeyFile <public hostkey>

During the installation process, one DSA key pair (with the file names hostkey and hostkey.pub) is
generated and stored in the /etc/ssh2/ directory. By default this key pair is used for server authentication.

Beginning with SSH Secure Shell version 3.0, each server daemon can have multiple host keys. The daemon
supports one DSA and one RSA key pair. You could have, for example, the following set of parameters in
your sshd2 config file.

RSA key

HostkeyFile hostkey_rsa

PublicHostKeyFile hostkey_rsa.pub

DSA key

HostkeyFile hostkey_dsa

PublicHostKeyFile hostkey_dsa.pub

Both keys are stored in memory when the sshd2 process is started, which means that either one of them can
be used to authenticate the server.

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

4.1. Server Authentication 33

4.1.2 Certificate Authentication

Certificate support is included in the commercial version of SSH Secure Shell.

Server authentication is performed using the Diffie-Hellman key exchange. This is what happens when
certificates are used:

� The server sends its certificate (which includes its public key) to the client.

� As the server certificate is signed with the private key of a certification authority (CA), the client can
verify the validity of the server certificate by using the CA certificate.

� The client checks that the certificate contains the fully qualified domain name of the server.

� The client verifies that the server has a valid private key by using a challenge.

When certificates are used, a man-in-the-middle attack is no longer a threat during key exchange, because the
system checks that the server certificate has been issued by a trusted CA.

During authentication the system checks that the certificate has not been revoked. This can be done either
by using the Online Certificate Status Protocol (OCSP) or a Certificate Revocation List (CRL), which can be
published either to a Lightweight Directory Access Protocol (LDAP) or HTTP repository.

OCSP is automatically used if the certificate contains a valid authority info access extension. Cor-
respondingly, CRLs are automatically used if the certificate contains a valid CRL distribution point

extension. If LDAP is used as the CRL publishing method, the LDAP repository location can also be defined
in the ssh2 config file (see below).

Server-Side Configuration

To configure the server-side functionality, perform the following tasks:

1. Enroll a certificate for the server. This can be done with the supplied ssh-certenroll2 command line
utility.

Note that the DNS Address parameter needs to correspond to the fully qualified domain name of the
server.

Example: Enrollment using ssh-certenroll2:

$ /ssh-certenroll2 -g -p id:key -e

-s "C=FI,O=SSH,CN=testserver;dns=testserver.trusted.org"

-a "http://test-ca.trusted.org:8080/pkix/"

-o /etc/ssh2/hostcert_rsa /etc/ssh2/test-ca-certificate.crt

Generated 1024 bit private key saved to file

/etc/ssh2/hostcert_rsa.prv.

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

34 Chapter 4. Authentication

Remember to also define the SOCKS server (-S) or the HTTP proxy (-P), if required.

For more information on the ssh-certenroll2 syntax, see Appendix A.2 (ssh-certenroll2).

2. The server’s private host key must be in the ssh2 format. To convert X.509 keys to ssh2 format, use the
-x flag with ssh-keygen2:

$ ssh-keygen2 -x <keyname>

Private key imported from X.509 format

Successfully saved private key to <keyname>_ssh2

PKCS #12 keys can be converted to ssh2 format by using the -k flag with ssh-keygen2.

Note: As the server’s private key must have an empty passphrase, just press enter when you are
prompted for the new passphrase.

$ ssh-keygen2 -k <keyname>

Password needed for PFX integrity check :

Integrity check ok.

Got shrouded key.

New passphrase for private key :

Again :

Successfully saved private key to <keyname>_ssh2

Safe decrypted succesfully.

Got certificate.

Certificate written to file <keyname>_ssh2.crt

3. Define the private key and the server certificate in the sshd2 config file:

HostkeyFile <private key>

HostCertificateFile <server-certificate>

Client-Side Configuration

To configure the client-side functionality, perform the following tasks:

1. Copy the CA certificate(s) to the client machine.You can either copy the X.509 certificate(s) as such,
or you can copy a PKCS #7 package including the CA certificate(s).

Certificates can be extracted from a PKCS #7 package by specifying the -7 flag with ssh-keygen2.

2. Define the CA certificate(s) to be used in host authentication in the ssh2 config file:

HostCA <ca-certificate>

Only one CA certificate can be defined per a HostCA keyword. The client will only accept certificates
issued by the defined CA.

You can disable the use of CRLs by using the HostCANoCrls keyword instead of HostCA:

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

4.2. User Authentication 35

HostCANoCrls <ca-certificate>

Note: CRL usage should only be disabled for testing purposes. Otherwise it is highly recommended to
always use CRLs.

3. Also define the LDAP server(s) in the ssh2 config file.

LDAPServers ldap://server1.domain1:port1,ldap://server2.domain2:port2,...

4. If necessary, define also the SOCKS server in the ssh2 config file.

SocksServer socks://socks_server:port/network/netmask,network/netmask...

The SOCKS server must be defined if CA services (OCSP,CRLs) are located behind a firewall.

4.2 User Authentication

Different methods can be used to authenticate users in SSH Secure Shell. These authentication methods can
be combined or used separately, depending on the level of functionality and security you want.

User authentication methods used by the client by default are, in the following order: public-key, keyboard-
interactive, and password authentication (if available). Public-key and certificate authentication are combined
into the public-key authentication method. The server allows public-key and password authentication by
default.

Different authentication methods are discussed in more detail in the following sections.

4.2.1 Password Authentication

With passwords, it is also possible to use keyboard-interactive authentication. See Section 4.3 (Keyboard-
Interactive Authentication) for more information.

The password authentication method is the easiest to implement, as it is set up by default. Password authenti-
cation uses the /etc/passwd or /etc/shadow file on a UNIX system, depending on how the passwords
are set up.

To enable password authentication, make sure that the AllowedAuthentications field of the
/etc/ssh2/sshd2 config and /etc/ssh2/ssh2 config configuration files contain the param-
eter password:

AllowedAuthentications password

Other authentication methods can be listed in the configuration files as well.

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

36 Chapter 4. Authentication

4.2.2 Public-Key Authentication

Per-user configuration information and encryption keys are by default stored in the .ssh2 subdirectory of
each user’s home directory.

In the following instructions, Remote is the SSH Secure Shell server machine into which you are trying to
connect, and Local is the machine running an SSH Secure Shell client.

Keys Generated with ssh-keygen2

In order to set up user public-key authentication,

do a manual setup according to the following instructions.

The following terms will be used in this example: Remote is the SSH Secure Shell server into which you are
trying to connect. RemoteUser is the user name on the server into which you would like to login. Local is the
machine running a SSH Secure Shell client. LocalUser is the user name on the client machine that should be
allowed to login to Remote as RemoteUser.

1. To make sure that public-key authentication is enabled, the AllowedAuthentications field in
both the /etc/ssh2/sshd2 config file on Remote and in the /etc/ssh2/ssh2 config file
on Local should contain the word publickey:

AllowedAuthentications publickey

Other authentication methods can be listed in the configuration file as well.

2. Create a key pair by executing ssh-keygen2 on Local.

Local> ssh-keygen2

Generating 2048-bit dsa key pair

1 oOo.oOo.o

Key generated.

2048-bit dsa, user@Local, Wed Mar 22 2002 00:13:43 +0200

Passphrase :

Again :

Private key saved to /home/user/.ssh2/id_dsa_2048_a

Public key saved to /home/user/.ssh2/id_dsa_2048_a.pub

Ssh-keygen2will now ask for a passphrase for the new key. Enter a sufficiently long (20 characters
or so) sequence of any characters (spaces are OK). Ssh-keygen2 creates a .ssh2 directory in your
home directory (if it is not already present), and stores your new authentication key pair in two separate
files. One of the keys is your private key which must never be made available to anyone but yourself.
The private key can only be used together with the passphrase.

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

4.2. User Authentication 37

In the example above, the private key file is id dsa 2048 a. The other file id dsa 2048 a.pub

is your public key, which can be distributed to other computers.

Note: Beginning with version 3.0, SSH Secure Shell includes support for RSA keys. They can be
generated by specifying the -t flag with ssh-keygen2.

Local> ssh-keygen2 -t rsa

Generating 2048-bit rsa key pair

2 oOo.ooOo.oOo

Key generated.

2048-bit rsa, user@Local, Wed May 02 2002 14:15:41 +0300

Passphrase :

Again :

Private key saved to /home/user/.ssh2/id_rsa_2048_a

Public key saved to /home/user/.ssh2/id_rsa_2048_a.pub

3. Create an identification file in your ˜/.ssh2 directory on Local.

Local> cd ˜/.ssh2

Local> echo "IdKey id_dsa_2048_a" > identification

You now have an identification file which consists of one line that denotes the file containing
your identification (your private key). For special applications, you can create multiple identifications
by executing ssh-keygen2 again. This is, however, not usually needed.

4. Copy your public key (id dsa 2048 a.pub) to your ˜/.ssh2 directory on Remote.

5. Create an authorization file in your ˜/.ssh2 directory on Remote. Add the following line to
the authorization file:

Key id_dsa_2048_a.pub

This directs the SSH Secure Shell server to use id dsa 2048 a.pub as a valid public key when
authorizing your login. If you want to login to Remote from other hosts, create a key pair on the hosts
(steps 1 and 2) and repeat steps 3, 4, and 5 on Remote. (Remember to specify a different file name for
each key pair.)

6. Now you should be able to login to Remote from Local using SSH Secure Shell.

Try to login:

Local>ssh Remote

Passphrase for key "/home/user/.ssh2/id_dsa_1024_a

with comment "2048-bit dsa, created by user@Local

Wed Mar 22 2002 00:13:43 +0200":

After you have entered the passphrase of your private key, a Secure Shell connection will be established.

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

38 Chapter 4. Authentication

Keys Generated with ssh-keygen1

Beginning with version 3.0, SSH Secure Shell enables the usage of keys generated with ssh-keygen1.
However, the keys must be converted from the ssh1 format to ssh2 format.

$ ssh-keygen2 -1 <keyname>.pub

Successfully converted public key to <keyname>.pub_ssh2

$ ssh-keygen2 -1 <keyname>

Passphrase :

Successfully converted private key to <keyname>_ssh2

PGP Keys

SSH Secure Shell only supports the OpenPGP standard and the PGP programs conforming to it. GnuPG is
used in the following instructions. If you use PGP, the only difference is that the file extension is pgp instead
of GnuPGP’s gpg.

1. To make sure that user public-key authentication is enabled, the AllowedAuthentications field
both in the /etc/ssh2/sshd2 config file on Remote and the /etc/ssh2/ssh2 config file
on Local should contain the word publickey:

AllowedAuthentications publickey

Other authentication methods can be listed in the configuration file as well.

2. Copy your private key ring (secring.gpg) to the ˜/.ssh2 directory on Local.

3. Create an identification file in your ˜/.ssh2 directory on Local if you do not already have
one. Add the following lines to the identification file:

PgpSecretKeyFile <filename of the user’s private key ring>

IdPgpKeyName <name of the OpenPGP key in PgpSecretKeyFile>

IdPgpKeyFingerprint <fingerprint of OpenPGP key in PgpSecretKeyFile>

IdPgpKeyId <id of the OpenPGP key in PgpSecretKeyFile>

4. Copy your public-key ring (pubring.gpg) to the ˜/.ssh2 directory on Remote

scp2 pubring.gpg user@remote_host:.ssh2

5. Create an authorization file in your ˜/.ssh2 directory on Remote. Add the following lines to
the authorization file:

PgpPublicKeyFile <filename of the user’s public-key ring>

PgpKeyName <name of the OpenPGP key>

PgpKeyFingerprint <fingerprint the OpenPGP key>

PgpKeyId <id of the OpenPGP key>

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

4.2. User Authentication 39

6. Now you should be able to login to Remote from Local using Secure Shell.

Try to login:

Local>ssh Remote

Passphrase for pgp key "user (comment) <user@Local>":

After you have entered the passphrase of your PGP key, a Secure Shell connection will be established.

Optional Additional Configuration Settings

The following configuration steps are optional:

� It is possible to use different settings depending on which key is used in public-key authentication.
Your authorization file could, for example, contain the following:

Key master.pub

Key maid.pub

Options allow-from=".*\.trusted\.org"

Key butler.pub

Options deny-from=".*\.evilcrackers\.org",deny-from="phoney.org",no-pty

When someone now logins using the master key, the connection is not limited in any way by the
authorization file. However, if the maid key is used, only connections from certain hosts will be
allowed. And if the butler key is used, connections are denied from certain hosts, and additionally
the allocation of tty is prevented.

Note: The options keyword is available only in SSH Secure Shell version 3.0 and later. In the
previous versions, the only key-specific keyword is command.

More information on options (and command) keywords is available in the ssh2 man pages.

� The per-user configuration directory can be changed by setting the UserConfigDirectory key-
word in the sshd2 config file and on the client settings.

4.2.3 Host-Based Authentication

The following terms will be used in this example: Remote is the SSH Secure Shell server to which you are
trying to connect. RemoteUser is the user name on the server into which you would like to login. Local is the
machine running a SSH Secure Shell client. LocalUser is the user name on the client machine that should be
allowed to login to Remote as RemoteUser.

1. First, install SSH Secure Shell on the Local and Remote machines. Do not forget to generate a
host key. If your installation took care of this automatically, or if you already have a copy of your
/etc/ssh2/hostkey and /etc/ssh2/hostkey.pub, you can skip the host-key generation.
Otherwise, give the following command:

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

40 Chapter 4. Authentication

ssh-keygen2 -P /etc/ssh2/hostkey

Note: Beginning with SSH Secure Shell version 3.0, you can also use RSA keys.

2. Copy the Local machine’s /etc/ssh2/hostkey.pub file over to the Remote machine and name
it like this:

/etc/ssh2/knownhosts/hostname.domain.ssh-dss.pub

Replace hostname.domain with the long host name of the Local machine (the fully qualified
domain name). You will run into problems if the system does not recognize the host name as
hostname.domain.somewhere.com but recognizes it only as hostname. You can find this
out while running sshd2 in verbose mode when trying to establish connections.

The Remote machine now has the Local machine’s public key, so the Remote machine can verify the
Local machine’s identity based on a public-key signature. By contrast, rsh only uses the IP address
for host authentication.

Note: If you use RSA keys, the name of Local’s /etc/ssh2/hostkey.pub file which is copied
over to the Remote needs to be /etc/ssh2/knownhosts/hostname.domain.ssh-rsa.pub.

3. To make sure that SSH Secure Shell finds your complete domain name (not just the host name), edit
the following line in the /etc/ssh2/ssh2 config file on Local:

DefaultDomain yourdomain.com

Note: The keyword mentioned in this and the following steps will only be effective in the global
ssh2 config file.

4. On Remote, create a file in the home directory of RemoteUser named .shosts. The contents of this
file should be the long host name of Local, some tabs or spaces, and LocalUser’s user name.

Contents of ˜/.shosts:

localhostname.yourdomain.com LocalUser

Be sure to chown and chmod the .shosts file. The .shosts file must be owned by RemoteUser
and should have mode 0400.

5. Check the files /etc/ssh2/sshd2 config on Remote and /etc/ssh2/ssh2 config on Lo-
cal. Make sure that the AllowedAuthentications field contains the word hostbased. For
example, it may read:

AllowedAuthentications hostbased,password

It does not matter what other authentication methods are allowed. Just make sure that the hostbased
keyword is first in the list.

6. Also check that IgnoreRhosts is set to no in the /etc/ssh2/sshd2 config file on Remote:

IgnoreRhosts no

If you had to modify the sshd2 config file, you will have to send a HUP signal to sshd2 to make
the change take effect.

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

4.2. User Authentication 41

kill -HUP ‘cat /var/run/sshd2_22.pid‘

or

kill -HUP ‘cat /etc/ssh2/sshd2_22.pid‘

7. Now you should be all set.

On Local, log in as LocalUser and give the command

ssh RemoteUser@Remote uptime

You should now get the results of uptime run on Remote.

The first time you run ssh to that particular server, you will have to answer yes when asked if you want
to connect to the server. This is because the local ssh does not yet have the remote server’s public key.
For maximum security, it is highly recommended to verify the fingerprint of the remote host’s public
key, as described in Section 4.1.1 (Public-Key Authentication) to avoid man-in-the-middle attacks.
This will only be necessary when connecting for the first time.

Troubleshooting Host-Based Authentication

If you have problems with host-based authentication, check the following:

� Did you name the local host key file appropriately on Remote? It should be either

/etc/ssh2/knownhosts/HOSTNAME.ssh-dss.pub

or

/etc/ssh2/knownhosts/HOSTNAME.ssh-rsa.pub

where HOSTNAME has to be the long host name (fully qualified domain name).

� Did you copy the host key properly?

� Check that the key on Remote is actually the same as hostkey.pub on Local.

On Local:

$ ssh-keygen2 -F /etc/ssh2/hostkey.pub

On Remote:

$ ssh-keygen2 -F /etc/ssh2/knownhosts/hostname.domain.ssh-dss.pub

or

$ ssh-keygen2 -F /etc/ssh2/knownhosts/hostname.domain.ssh-rsa.pub

The key fingerprints should match.

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

42 Chapter 4. Authentication

� Check your spelling in the .shosts file.

� Make sure the .shosts file is owned by RemoteUser and check that its permissions are 0400.

ls -la ˜/.shosts

-r-------- 1 RemoteUser users 178 May 28 15:05 /home/RemoteUser/.shosts

� Make sure that RemoteUser’s home directory on Remote is owned by RemoteUser and is not writable
by anyone byt RemoteUser.

� Run the server and the client with the -d3 option. This is a good way to see if a host key file is missing,
or if something is misconfigured.

Using Certificates

It is possible to use a certificate instead of the traditional public key pair to authenticate the Local host. To
use certificates, perform the following tasks:

1. Enable host-based authentication in ssh2 config on Local and in sshd2 config on Remote by
using the AllowedAuthentications keyword.

2. Define Local’s server certificate in sshd2 config on Local:

HostKeyFile <private key>

HostCertificateFile <server-certificate>

The certificate must contain a dns extension which contains the fully qualified domain name of Local.

3. Set the DefaultDomain value in ssh2 config on Local.

4. Set the HostCA and LdapServers values in sshd2 config on Remote.

HostCA <trusted-ca-certificate>

LdapServers ldap://server.domain:port

5. Make sure that the ˜/.shosts file on Remote contains the following:

localhostname.yourdomain.com LocalUser

More information is available in the ssh-certificates man pages and in Sections 4.1.2 (Server) and
4.2.4 (User).

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

4.2. User Authentication 43

Optional Additional Configuration Settings

To make the host-based authentication more secure, you may want to consider the following optional config-
uration settings:

� Setting the AllowSHosts and DenySHosts keywords in the sshd2 config file you can filter
the .shosts, .rhosts, /etc/hosts.equiv and /etc/shosts.equiv entries.

� If you want to allow only global configuration files (/etc/hosts.equiv and
/etc/shosts.equiv), make sure that you have the following entry in your sshd2 config file:

IgnoreRhosts yes

After this modification the .shosts and .rhosts files will not be used in host-based authentication.

� To force an exact match between the host name that the client sends to the server and the client’s DNS
entry, make sure that you have the following definition in your sshd2 config file:

HostbasedAuthForceClientHostnameDNSMatch yes

Please note that with the above-mentioned definition, host-based authentication through NAT will not
work.

Note: This keyword is available in SSH Secure Shell version 3.0 and later.

4.2.4 Certificate Authentication

The commercial version of SSH Secure Shell includes support for certificate authentication.

Also certificate authentication is performed via the public-key authentication method. Instead of the client
sending just a public key, it sends a certificate containing a public key.

In brief, certificate authentication works in the following way:

� The client sends the user certificate (which inludes the user’s public key) to the server.

� The server uses the CA certificate to check that the user’s certificate is valid.

� The server uses the user certificate to check from its mapping file(s) whether login is allowed or not.

� Finally, if connection is allowed, the server makes sure that the user has a valid private key by using a
challenge.

Compared to traditional public-key authentication, this method is more secure because the system checks
that the user certificate was issued by a trusted CA. In addition, certificate authentication is more convenient
because no local database of user public keys is required on the server.

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

44 Chapter 4. Authentication

It is also easy to deny a user’s access the system by revoking his or her certificate. The status of a certifi-
cate can be checked either by using the Online Certificate Status Protocol (OCSP) or Certificate Revocation
Lists (CRLs), which can be published either to a Lightweight Directory Access Protocol (LDAP) or HTTP
repository.

OCSP is used if the certificate contains a valid authority info access extension. Correspondingly,
CRLs are used if the certificate contains a valid CRL distribution point extension. If LDAP is used
as the CRL publishing method, the LDAP repository location can be also defined in the sshd2 config file
(see below).

Server-Side Configuration

To configure the server, perform the following tasks:

1. Acquire the CA certificate and copy it to the server machine. You can either copy the X.509 certifi-
cate(s) as such or you can copy a PKCS #7 package including the CA certificate(s).

Certificates can be extracted from a PKCS #7 package by specifying the -7 flag with ssh-keygen2.

2. Certificate authentication is a part of the publickey authentication method. Make sure that you have
enabled it in the sshd2 config file:

AllowedAuthentications publickey

3. Specify the CA certificate and the mapping file(s) in the sshd2 config file:

Pki <ca-cert-path>

MapFile <map-file-path>

You can disable the use of CRLs by adding the PkiDisableCRLs keyword below the Pki keyword.

PkiDisableCRLs yes

Note: CRL usage should only be disabled for testing purposes. Otherwise it is highly recommended to
always use CRLs.

You can define several CA certificates by using several Pki keywords.

Pki <ca-cert-path1>

MapFile <map-file-path1>

Pki <ca-cert-path2>

MapFile <map-file-path1>

MapFile <map-file-path2>

Note that multiple MapFile keywords are permitted per Pki keyword. Also, if no mapping file
is defined, all connections are denied even if user certificates can be verified using the defined CA
certificate.

Server will accept only certificates issued by defined CA(s).

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

4.2. User Authentication 45

4. Also define the LDAP server(s) in the sshd2 config file.

LDAPServers ldap://server1.domain1:port1,ldap://server2.domain2:port2,...

5. If necessary, define also the SOCKS server in the sshd2 config file.

SocksServer socks://socks_server:port/network/netmask,network/netmask...

The SOCKS server must be defined if CA services (OCSP and CRLs) are located behind a firewall.

6. Next you need to create the map file. It specifies which certificates authorize logging into which
accounts.

The format of the file is the following:

<account-id> <keyword> <argument>

The keyword can be either Email, Subject, SerialAndIssuer, EmailRegex, or
SubjectRegex. The arguments depend on the keyword.

� Email: The argument is the email address which must be present in the certificate.
� Subject: The argument is the required subject name in LDAP DN (distinguished name) string

format.
� SerialAndIssuer: The argument is the required serial number and issuer name in LDAP DN

string format, separated by spaces or tabs.
� EmailRegex: The argument is the regular expression which must match an email ad-

dress in the certificate. If account-id contains the string %subst%, it is substituted
with the first parenthesized part of the regular expression.The patterns are matched using
SSH REGEX SYNTAX EGREP.

� SubjectRegex: The argument is the regular expression which must match a subject
name in the certificate. If account-id contains the string %subst%, it is substituted
with the first parenthesized part of the regular expression. The patterns are matched using
SSH REGEX SYNTAX EGREP.

Examples

The following are examples of different map file definitions:

testuser email testuser@ssh.com

testuser subject C=FI,O=SSH,CN=Secure Shell Tester

testuser serialandissuer 1234 C=FI,O=SSH,CN=Secure Shell Tester

%subst% subjectregex C=FI, O=SSH, CN=([a-z]+)

%subst% emailregex ([a-z]+)@ssh\.com

The last line permits logging with any email address with only letters in the user name. See man

sshregex for more information on the regular expression syntax.

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

46 Chapter 4. Authentication

Client-Side Configuration

Configure the client side according to the certificate storage method used; a software or a PKCS #11 token
(for example, a smart card).

Software Certificates

To configure the system for software certificates, perform the following tasks:

1. Enroll a certificate for yourself.

Example: Enrollment using ssh-certenroll2

$ /ssh-certenroll2 -g -p id:key -e

-s "C=FI,O=SSH,CN=user;email=user@trusted.org"

-a "http://test-ca.trusted.org:8080/pkix/"

-o /home/user/.ssh2/user_rsa /etc/ssh2/test-ca-certificate.crt

Generated 1024 bit private key saved to file

/home/user/.ssh2/user_rsa.prv.

Remember to define also the SOCKS server (with the -S flag) or an HTTP proxy (with the -P flag), if
necessary.

2. The private key must be in the ssh2 format. To convert X.509 keys to ssh2 format, specify the -x flag
with ssh-keygen2:

$ ssh-keygen2 -x <keyname>

Private key imported from X.509 format

Successfully saved private key to <keyname>_ssh2

Also PKCS #12 keys can be converted to ssh2 format. This is done by specifying the -k flag with
ssh-keygen2.

$ ssh-keygen2 -k <keyname>

Password needed for PFX integrity check :

Integrity check ok.

Got shrouded key.

New passphrase for private key :

Again :

Successfully saved private key to <keyname>_ssh2

Safe decrypted succesfully.

Got certificate.

Certificate written to file <keyname>_ssh2.crt

3. Make sure that public-key authentication is enabled in the ssh2 config file.

AllowedAuthentications publickey

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

4.2. User Authentication 47

4. Specify the private key of your software certificate in the ˜/.ssh2/identification file.

CertKey <private-key-path>

The certificate itself will be read from private-key-path.crt.

PKCS #11 Tokens

To configure the system for PKCS #11 tokens (for example smart cards), perform the following tasks:

1. Enable public-key authentication in the ssh2 config file.

AllowedAuthentications publickey

2. Also define the external key provider and the initial string.

EkProvider <provider-name>

EkInitString <init-string>

The above-mentioned options can be also defined using the - E and -I flags with ssh2, respectively.

4.2.5 Kerberos Authentication

When Kerberos support is enabled, it is possible to authenticate using Kerberos credentials, forwardable TGT
(ticket granting ticket) and passing TGT to remote host for single sign-on. It is also possible to use Kerberos
password authentication. Please note that SSH Secure Shell only supports Kerberos5.

To enable Kerberos support, perform the following tasks:

1. Compile the source:

./configure --with-kerberos5

make

make install

2. Make sure that you have the following line in your /etc/ssh2/sshd2 config file:

AllowedAuthentications kerberos-1@ssh.com,kerberos-tgt-1@ssh.com

Other authentication methods can be listed in the configuration file as well.

3. Also, make sure that you have the following line in your /etc/ssh2/ssh2 config file (for SSH
Secure Shell versions 2.3 and 2.4):

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

48 Chapter 4. Authentication

AllowedAuthentications kerberos-1@ssh.com,kerberos-tgt-1@ssh.com

If you are using SSH Secure Shell version 3.0 or later, make sure that you use the new versions of kerberos
authentication methods:

AllowedAuthentications kerberos-2@ssh.com,kerberos-tgt-2@ssh.com

Note: SSH Communications Security does not provide technical support on how to configure Kerberos. Our
support only covers SSH Secure Shell applications and source code.

4.2.6 Pluggable Authentication Module (PAM)

We recommend the use of keyboard-interactive authentication with PAM.

When PAM is used, SSH Secure Shell transfers the control of authentication to the PAM library, which will
then load the modules specified in the PAM configuration file. Finally, the PAM library tells SSH Secure
Shell whether or not the authentication was successful. SSH Secure Shell is not aware of the details of the
actual authentication method employed by PAM. Only the final result is of interest.

To enable PAM support, perform the following tasks:

1. Compile the source:

./configure

make

make install

By default, the PAM service name is sshd2. If you want to change it, you can add the configure flag
--with-daemon-pam-service-name=name.

2. When using keyboard-interactive PAM submethod, make sure that you have the following lines in the
/etc/ssh2/sshd2 config file:

AllowedAuthentications keyboard-interactive

AuthKbdInt.Optional pam

And the following line in the /etc/ssh2/ssh2 config file:

AllowedAuthentications keyboard-interactive

In case you are not using keyboard-interactive, make sure that you have the following line in both your
/etc/ssh2/sshd2 config file and /etc/ssh2/ssh2 config file:

AllowedAuthentications pam-1@ssh.com

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

4.2. User Authentication 49

The PAM configuration settings are located either in /etc/pam.conf or in /etc/pam.d/sshd2. The
modules are usually either in the /lib/security directory or in the /usr/lib/security directory.
Currently, SSH Secure Shell supports PAM on Linux and on Solaris 2.6 or later.

There must be at least one auth, one account, and one session module in the configuration file. Oth-
erwise the connection will be refused. Also, modules which require PAM TTY will not work because TTY
allocation is done in SSH Secure Shell after the authentication.

PAM Examples

The following are examples of different PAM configurations.

1. The /etc/pam.d/sshd2 file on Red Hat Linux:

auth required /lib/security/pam_pwdb.so shadow nullok

auth required /lib/security/pam_nologin.so

account required /lib/security/pam_pwdb.so

password required /lib/security/pam_cracklib.so

password required /lib/security/pam_pwdb.so shadow nullok use_authtok

session required /lib/security/pam_pwdb.so

2. The /etc/pam.conf entry on Solaris:

sshd2 auth required /usr/lib/security/pam_unix.so debug

sshd2 account required /usr/lib/security/pam_unix.so debug

sshd2 password required /usr/lib/security/pam_unix.so debug

sshd2 session required /usr/lib/security/pam_unix.so debug

See Section 4.3 (Keyboard-Interactive Authentication) for more information on keyboard-interactive authen-
tication.

Note: SSH Communications Security does not provide technical support on how to configure PAM. Our
support only covers SSH Secure Shell applications and source code.

4.2.7 SecurID

If SecurID is to be used, the Keyboard-Interactive authentication method must be enabled on the client.

Please familiarize yourself with the RSA ACE/Server documentation before reading further.

In the instructions below, the /top directory refers to the RSA ACE/Server top-level directory.

1. In order to enable SecurID support, you need to compile the source code on a computer where RSA
ACE/Server (master or slave) or RSA ACE/Agent software is already installed, configured, and running.

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

50 Chapter 4. Authentication

./configure --with-serversecurid[=/PATH]

make

make install

Replace /PATH with the absolute PATH to the directory containing the sdiclient.a file.

For RSA ACE/Server 4.0 the file is usually located in the /top/ace/examples directory, for 5.0
in the /top/ace/inc directory.

Note: If you do not want to make the compilation as root, make sure that all the above-mentioned files
are readable by the user you are compiling as.

2. When using the Keyboard-Interactive SecurID submethod, make sure that you have the following lines
in the /etc/ssh2/sshd2 config file:

AllowedAuthentications keyboard-interactive

AuthKbdInt.Optional securid

And the following line in the /etc/ssh2/ssh2 config file:

AllowedAuthentications keyboard-interactive

In case you are not using Keyboard-Interactive, make sure that you have the following line both in your
/etc/ssh2/sshd2 config file and in your /etc/ssh2/ssh2 config file:

AllowedAuthentications securid-1@ssh.com

3. Check that the user’s shell is not /top/ace/prog/sdshell.

4. Start RSA ACE/Server.

5. Check that the VAR ACE environment variable is set. It has to be set before starting sshd2, and its
value must be /top/ace/data.

6. Start sshd2.

See Section 4.3 (Keyboard-Interactive Authentication) for more information on keyboard-interactive authen-
tication.

Note: SSH Communications Security does not provide technical support on how to configure RSA
ACE/Server. Our support only covers SSH Secure Shell applications .

4.3 Keyboard-Interactive Authentication

Keyboard-Interactive is a generic authentication method that can be used to implement different types of
authentication mechanisms.

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

4.3. Keyboard-Interactive Authentication 51

4.3.1 Overview

What Is Keyboard-Interactive?

Keyboard-interactive is a relatively new authentication method, designed in the Secure Shell Working Group
of the Internet Engineering Task Force (IETF). The Working Group’s abstract contains the following intro-
duction to the subject:

This document describes a general-purpose authentication method for the SSH protocol, suitable for interac-
tive authentications where the authentication data should be entered via a keyboard. The major goal of this
method is to allow the SSH client to support a whole class of authentication mechanism(s) without knowing
the specifics of the actual authentication mechanism(s)

What Can Be Done with It?

Basically, any currently supported authentication method that requires only the user’s input, can be performed
with Keyboard-Interactive.

Currently, the following methods are supported:

� password

� SecurID

� PAM (but see Section 4.3.1 (What Cannot Be Done With It?)).

What Cannot Be Done with It?

If passing of some binary information is required (as in public-key authentication), keyboard-interactive
cannot be used.

PAM has support for binary messages and client-side agents, and those cannot be supported with keyboard-
interactive. However, currently there are no implementations that take advantage of the binary messages in
PAM, and the specification may not be cast in stone yet.

4.3.2 Configuring the Server and Client

Client Configuration

To enable keyboard-interactive authentication, make sure that you have the following line in the
/etc/ssh2/ssh2 config file:

AllowedAuthentications keyboard-interactive

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

52 Chapter 4. Authentication

Keyboard-interactive is enabled by default on the client.

Note: The client cannot request any specific keyboard- interactive submethod if the server allows several
optional submethods. The order in which the submethods are offered depends on the server configuration.
However, if the server allows for example two optional submethods SecurID and password, the user can
skip SecurID by pressing enter when SecurID is offered by the server. The user will then be prompted for
password.

Server Configuration

Keyboard-interactive is not enabled by default on the server. Make sure that you have the following line in
the /etc/ssh2/sshd2 config file:

AllowedAuthentications keyboard-interactive

The submethods and policy for keyboard-interactive are configured as follows:

SSH CONFIGURATION FILE FORMAT VERSION 1.1

REGEX-SYNTAX egrep

...

AuthKbdInt.Required securid

AuthKdbInt.Optional pam, password

AuthKbdInt.NumOptional 1

AuthKbdInt.FailureTimeout 2

...

This allows for maximum configurability without being too hard to implement. See the sshd2 config

man pages for more information on the keywords.

The default for required submethods is 0, although if no required submethods are specified, the client must
always pass at least one optional submethod.

4.3.3 Adding New Authentication Methods

This sections covers advanced implementation of keyboard-interactive.

Please note that SSH Communications Security does not provide technical support on how to implement your
own keyboard-interactive submethod. Also, consider carefully the security implications when implementing
a submethod of your own.

New submethods are added to the submethods array in apps/ssh/auths-kbd-int-submethods.c.
You need to create an initialization and uninitialization function for the submethod. The initialization function

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

4.3. Keyboard-Interactive Authentication 53

will create a method context for the submethod, and start the authentication, using the specified conversation
function.

You need to define three functions: init, free and a callback for the conversation function.

init Type

typedef void (*init)(void **method context,

SshAuthKbdIntSubMethods methods,

SshKbdIntSubMethodConv conv,

void *conv context);

Description The initialization function.

Arguments

method context

Should be assigned to the pointer to the context allocated. Assigning something to method context

is mandatory. (This simplifies the main method’s bookkeeping on what submethods have actually been
initialized.) This context is passed to the free function.

methods

Should be stored by the submethod. It contains for example the SshServer structure and an
SshUser structure that can be used in the authentication process by the submethod.

conv

The conversation function, called by the submethod when it has the requests. The prototype is described
below.

conv context

Should be given to the conv function.

free Type

typedef void (*free)(void *method context);

Description free is called by the main method during uninitialization. The submethod should free all
state, including method context at this stage.

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

54 Chapter 4. Authentication

Arguments

method context

Should be assigned to the pointer to the context allocated.

SshKbdIntSubMethodCB Type

typedef void (*SshKbdIntSubMethodCB)(size t num resp,

char **resps,

Boolean cancel,

void *context);

Description A function of this type is passed to the conversation function. It is called after the responses
are received from the client.

Arguments

num resp

The size of the resps array.

resps

The responses received from the client.

cancel

If this value is TRUE, the submethod should abort the authentication, and get ready to be destroyed
(with the free function).

context

The allocated context.

SshKbdIntSubMethodConv Type

typedef void (*SshKbdIntSubMethodConv)(SshKbdIntResult code,

const char *instruction,

size t num reqs,

char **reqs,

Boolean *echo,

SshKbdIntSubMethodCB method cb,

void *method ctx,

void *context);

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

4.3. Keyboard-Interactive Authentication 55

Description The submethod calls this function when it has the requests.

Arguments

code

Indicates the state of the authentication. If the submethod authentication is a
success, this should be SSH KBDINT SUBMETHOD RESULT SUCCESS, if failed,
SSH KBDINT SUBMETHOD RESULT FAILED, and if the authentication is not complete,
SSH KBDINT SUBMETHOD RESULT NONE YET.

instruction

This field should contain a short description of what the user should do.

num reqs

Indicates the size of reqs and echo arrays. If the code is not
SSH KBDINT SUBMETHOD RESULT NONE YET, this should be 0, and reqs and echo should
be NULL.

reqs

The requests sent to the client.

echo

Tells the client whether the user’s response to the corresponding request should be echoed.

method cb

The main method will call this when it has obtained the responses from the client.

method ctx

This is given to method cb by the main method.

context

The allocated context.

Please see auths-kbd-int-submethods.c for an example of using a ’password’ submethod. This
submethod is implemented in auths-kbd-int-passwd.[ch].

Please follow the style of those files when creating new submethods. Complete documentation for the API is
located in apps/ssh/auths-kbd-int-submethods.h.

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

56 Chapter 4. Authentication

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

57

Chapter 5

Log Messages

The log messages generated by SSH Secure Shell for Servers are listed in the following sections based on
their subject matter.

5.1 Log Message Reference

5.1.1 User Authentication - Common

Authentication failed

<methodname> authentication failed. Login to account

<loginname> not allowed or account non-existent.

The system administrator has denied logging in for the user, or the user is trying to log in using a non-existent
account.

Authentication failed, user does not exist

User <login-name> does not exist.

Authentication failed because the specified user account does not exist.

Authentication failed, system policy doesn’t allow user’s login

User <login-name>’s login is not allowed due to system

policy

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

58 Chapter 5. Log Messages

Authentication failed because the system policy does not allow the user to log in. The account may be locked
or expired, for example.

Authentication failed, username is on deny list

User <login-name> is denied login because username matched with

deny list.

Authentication failed because the specified user name is included in the server’s deny list.

Authentication failed, username not on allow list

User <login-name> is denied login because allow list exists, and

username was not matched.

Authentication failed because the specified user name is not included in the server’s allow list.

Authentication failed, user’s group is on deny list

User <login-name> is denied login because user’s group is on

group deny list.

Authentication failed because the user’s group is included in the server’s group deny list.

Authentication failed, user’s group is not on group allow list

User <login-name> is denied login because group allow list

exists, and user’s group didn’t match.

Authentication failed because the user’s group is not on the server’s group allow list.

Authentication not allowed from a host

<methodname> authentication failed. Connection from <hostname>

denied. Authentication as user <loginname> was attempted.

The server has determined that the user is not allowed to login from the current host.

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

5.1. Log Message Reference 59

Authentication not allowed, unable to reverse map hostname

Login not allowed because host’s IP address (<ip-address>) could

not be mapped to a host name and reverse mapping is required.

The server could not map the connecting host’s IP address to a host name and the configuration option
RequireReverseMapping is on.

Authentication not allowed, host is on the deny list

Login not allowed because the connecting host (<hostname>) is on

the server’s deny list.

The connecting host is on the server’s deny list, so the authentication is not allowed.

Authentication not allowed, host is not on the allow list

Login not allowed because the connecting host (<hostname>) is

not on the server’s allow list.

The connecting host is not on the server’s allow list, so the authentication is not allowed.

5.1.2 User Authentication - Host-Based

Using host-based authentication denied for a host

Use of <filename> denied for <hostname>

Use of host-based authentication is denied for the host in server configuration.

Configuration files missing for host-based authentication

hostbased-authentication (rhosts) refused for <loginname> no .shosts

or .rhosts files and no system-wide files (ie: /etc/shosts.equiv)

The required files for host-based authentication are missing.

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

60 Chapter 5. Log Messages

Home directory missing in host-based authentication

hostbased-authentication (rhosts) refused for <loginname>: no

home directory <directory>

The user’s home directory does not exist.

Home directory ownership or permissions invalid in host-based authentication

hostbased-authentication (rhosts) refused for <loginname>: bad

ownership or modes for home directory.

If the StrictModes option for the server is switched on, then this message means that the user’s home
directory is not owned by either the user or the root, or that its permission bits are not correct.

.rhosts file ownership or permissions invalid in host-based authentication

hostbased-authentication (rhosts) refused for <loginname>: bad

modes for <file>

If the StrictModes option for the server is switched on, then this message means that the user’s .rhosts
file is not owned either by the user or by the root, or that its permission bits are not correct.

Host-based authentication refused for user

hostbased-authentication (rhosts) refused: client user

<loginname>, server user <loginname>, client host <hostname>.

The host-based authentication attempt has failed.

Client’s host certificate is not valid in host-based authentication

Hostbased: User <loginname>’s client host certificate not

valid.

The host certificate sent by the client during host-based authentication could not be successfully validated.

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

5.1. Log Message Reference 61

Client’s host certificate does not contain host names in host-based authentication

Certificate does not contain any hostnames.

The host certificate sent by the client during host-based authentication does not contain any host names.

Certificate does not contain the client host name in host-based authentication

Certificate does not contain client hostname <hostname>.

The host certificate sent by the client during host-based authentication does not contain the client’s host name.

Certificate could not be decoded in host-based authentication

Received certificate could not be decoded

The host certificate sent by the client during host-based authentication could not be decoded.

Public key could not be extracted from the received certificate in host-based authentication

Could not extract public key from received certificate

Extracting the public key from the received certificate failed during host-based authentication.

Cryptographic operation failed in host-based authentication

Hostbased: Crypto operation failed for public key (for user

<loginname>).

Changing the hashing scheme in the public key failed in host-based authentication.

Verifying the signature failed in host-based authentication

Hostbased authentication failed for <loginname>.

Verifying the signature failed in host-based authentication.

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

62 Chapter 5. Log Messages

Host-based authentication successful

Hostbased authentication for user <loginname> accepted.

Authentication using the host-based authentication method succeeded for the user.

Root logins not permitted in host-based authentication

Root logins are not permitted.

The server has been configured not to allow root logins.

Could not decode packet in host-based authentication

Error decoding "hostbased" packet.

Decoding the host-based authentication protocol packet failed.

The host name given by the client does not match the one given by the client in host-based authentica-
tion

Client gave us a hostname (<hostname>) which doesn’t match the

one we got from DNS (<hostname>) (sending failure)

The server has been configured to use strict host name checking and the host name gotten using reverse DNS
lookup does not match the one in the host-based authentication packet.

The host name given by client does not match the one given by the client in host-based authentication,
ignored

Client gave us a hostname (<hostname>) which doesn’t match the

one we got from DNS (<hostname>) (trusting that client is valid, if

signature verification succeeds)

The host name gotten using reverse DNS lookup does not match the one in the host-based authentication
packet, but the server does not require a match.

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

5.1. Log Message Reference 63

Invalid packet received in host-based authentication

Invalid packet. (extra data at end)

The received packet in host-based authentication contains extra data and will be discarded as invalid.

Client is using a public-key algorithm not supported by server in host-based authentication

Client’s public key algorithms are not supported by us. (client

sent <algorithmname>)

The public key sent by the client in host-based authentication uses a public key algorithm not supported by
the server.

User’s .ssh2 directory is missing in host-based authentication

Couldn’t find or create user <loginname>’s .ssh2 directory.

The user’s .ssh2 directory could not be found or created in host-based authentication.

Received host key and stored host key differ in host-based authentication

The public key stored in %s and the one given by the client were

different.

The host key sent by the client and the one stored in the known host keys directory differ in host-based
authentication.

Invalid client host key in host-based authentication

Importing client pubkey failed.

There was an error when decoding the host key sent by the client during host-based authentication.

5.1.3 User Authentication - Keyboard-Interactive PAM

Pipe creation failed in Keyboard-Interactive PAM authentication

kbd-int:pam: pipe creation failed.

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

64 Chapter 5. Log Messages

An error occurred when trying to fork and create a pipe.

Error happened during PAM transaction

PAM transaction resulted in error.

There was an error during PAM transaction.

Malformed packet received from PAM subprocess

kbd-int:pam: PAM subprocess sent a malformed packet. (packet

type: <packet-type>)

The PAM subprocess sent a malformed packet of the specified type.

Wrong packet received from PAM subprocess

kbd-int:pam: PAM subprocess returned packet

SSH_PAM_OP_SUCCESS_WITH_PAYLOAD, expecting SSH_PAM_OP_SUCCESS.

The PAM subprocess sent a packet of wrong type.

Error returned by PAM subprocess

kbd-int:pam: PAM subprocess returned packet

<packet-type>. (err_num: <errornumber>, err_msg:

<error-message)

The PAM subprocess returned an error.

Invalid packet type returned by PAM subprocess

kbd-int:pam: PAM subprocess returned invalid packet type

<packet-type>.

The packet type returned by the PAM subprocess was invalid.

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

5.1. Log Message Reference 65

5.1.4 User Authentication - Keyboard-Interactive Password

Login with empty password denied for user

kbd-int: passwd: login with empty password denied for user

’<login-name>’.

The server policy forbids login with empty password.

Login with overtly long password denied

kbd-int: passwd: user ’<login-name>’ tried to login with too

long password (256)

The server does not allow logins with passwords longer than 256 characters.

Kerberos password accepted

kbd-int: passwd: kerberos password accepted for user

<login-name> (<kerberos-name>).

The server accepted the user’s Kerberos password in Keyboard-Interactive password authentication.

Password accepted

kbd-int: passwd: user <login-name>’s local password accepted.

The server accepted the user’s local password. This message is only generated on Windows platforms.

Password not accepted

kbd-int: passwd: wrong password given for user

’<login-name>’.

The password supplied by the client was invalid.

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

66 Chapter 5. Log Messages

Password must be changed

kbd-int: passwd: user ’<login-name>’ forced to change

password.

The server has determined that the user’s password must be changed.

5.1.5 User Authentication - Keyboard-Interactive

Client sent fewer responses than server sent requests

auth-kbd-int: client sent us fewer responses than we sent

requests (sent: <sent-requests>, recv: <received-responses>).

Protocol error: the client sent fewer responses that the server sent requests.

Login denied, faking transaction

auth-kbd-int: User ’<login-name>’ login denied, faking real

transaction.

The user is not allowed to login, but the rest of the transaction proceeds normally, except that all results are
marked as failures.

5.1.6 User Authentication - Kerberos TGT

Login denied for user

Kerberos TGT authentication as <login-name> denied for

<kerberos-name>

The server received a negative result from Kerberos authentication module for logging in as the specified
user.

Kerberos V5 ticket-granting ticket rejected for user

Kerberos V5 TGT rejected for user <login-name>:

<error-message>

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

5.1. Log Message Reference 67

The server received a result from the Kerberos authentication module: the user’s ticket-granting ticket has
been rejected.

The Kerberos TGT authentication succeeded

Kerberos TGT authentication as user <login-name> accepted for

<kerberos-name>.

The user’s login has been accepted by the Kerberos authentication.

5.1.7 User Authentication - Kerberos

Login denied for user

Kerberos authentication as <login-name> denied for

<kerberos-name>

The server received a negative result from Kerberos authentication module for logging in as the specified
user.

Login accepted for user

Kerberos authentication as user %.100s accepted for

%.100s.

The server received a positive result from Kerberos authentication module for logging in as the specified user.

5.1.8 User Authentication - PAM

Malformed packet from PAM subprocess

auths-pam: PAM subprocess sent a malformed packet. (packet type:

%d)

The server received a malformed packet from the PAM subprocess.

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

68 Chapter 5. Log Messages

Wrong packet received from PAM subprocess

auths-pam: PAM subprocess returned packet

SSH_PAM_OP_SUCCESS_WITH_PAYLOAD, expecting SSH_PAM_OP_SUCCESS.

The PAM subprocess sent a packet of wrong type.

Error returned by PAM subprocess

kbd-int:pam: PAM subprocess returned packet

<packet-type>. (err_num: <errornumber>, err_msg:

<error-message)

The PAM subprocess returned an error.

Invalid packet type returned by PAM subprocess

auths-pam: PAM subprocess returned packet %d, which is

invalid.

The packet type returned by the PAM subprocess was invalid.

Client sent response packet prematurely

auths-pam: client sent response packet, and we weren’t expecting

any (yet).

The client sent a response packet prematurely.

Client sent invalid packet

auths-pam: client sent invalid packet as a response to our

conversation message.

The client sent an invalid packet.

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

5.1. Log Message Reference 69

Client sent continuation packet when expecting start packet

Client sent continuation packet when expecting start packet for

PAM-auth..

The client sent continuation packet when the server was expecting a start packet.

Extra data in SSH MSG USERAUTH REQUEST packet from client

Extra data at end of SSH_MSG_USERAUTH_REQUEST packet for PAM

authentication.

Extraneous data was included in the SSH MSG USERAUTH REQUEST packet received from client.

Pipe creation failed in PAM authentication

ssh_server_auth_pam: pipe creation failed.

The forking and pipe creation to the subprocess failed in PAM user authentication.

Error happened during the PAM transaction

PAM transaction resulted in error.

There was an error during the PAM transaction.

5.1.9 User Authentication - Password

User not allowed to log in after password change

User ’<login-name>’ not allowed to log in after password change

(strange).

For some reason, the system disallows login for the user after a mandatory password change.

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

70 Chapter 5. Log Messages

Password change required after password change

User ’<login-name>’ password must be changed after password

change (strange).

For some reason, the system requires the user to change their password even after a mandatory password
change.

Password change failed

Password change for user ’<login-name>’ failed (reason:

<error-message>).

Password change failed.

The server does not allow root logins

root login denied for user ’<login-name>’.

The server’s configuration doesn’t allow root logins or doesn’t allow root logins with a password.

The server does not allow logins with empty passwords

attempt to login as <login-name> with empty password

denied.

The server’s configuration does not allow logins with empty passwords.

The server does not allow logins with passwords longer than 256 characters

attempt to login as <login-name> with password longer than 256

characters denied.

The server does not allow logins with passwords longer than 256 characters.

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

5.1. Log Message Reference 71

Kerberos password accepted

Kerberos password accepted for user <login-name>

(<kerberos-name>).

The server accepted the Kerberos password for the user.

Password accepted

User <login-name>’s local password accepted.

The server accepted the user’s local password.

Password not accepted

Wrong password given for user ’<login-name>’.

The password supplied by the client was invalid.

Password authentication accepted

Password authentication for user <login-name> accepted.

The client passed the password authentication, but the server still needs to check whether the password needs
to be changed.

Badly formatted password change request

Badly formatted password change reques, denying already

successful authentication.

The server received a badly formatted password change request, and the authentication will be noted as failed.

Changing user’s password

Changing <login-name>’s password.

The server is now trying to change the user’s password.

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

72 Chapter 5. Log Messages

Password change needed for the user

User <login-name> forced to change password.

The server has determined that the user’s password must be changed.

5.1.10 User Authentication - Public Key

Certificate not authorized for login

Authorization check for user <login-name>’s certificate

rejected[, reason: <error-message>].

The server’s authorization check for the certificate produced a negative result, meaning that public-key au-
thentication with this certificate is denied.

Error in public key decoded from certificate

Couldn’t get info from certificate public key used by user

<login-name>.

After extracting the public key from the received certificate, the server could not get the public key informa-
tion from the public key.

Key length too small in certificate

Use of certificate for user <login-name> is not allowed, because

public key is too small (pk size <key-size>, min size

<minimum-size>).

The server has rejected the authentication using the certificate sent by the client, because the public key in
the certificate is too short.

Key length too large in certificate

Use of certificate for user <login-name> is not allowed, because

public key is too large (pk size <key-size>, max size

<maximum-size>).

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

5.1. Log Message Reference 73

The server has rejected the authentication using the certificate sent by the client because the public key in the
certificate is too long.

Signature check failed

Signature verify failed for certificate from user

<login-name>.

The signature verify failed for the user in certificate authentication.

Certificate authentication accepted

Certificate authentication for user <login-name> accepted.

The server has accepted the certificate authentication for the user.

Certificate authentication rejected

Certificate authentication for user <login-name> rejected.

The server has rejected the certificate authentication for the user.

Public key options prohibit using the key

Use of public key <key-name> is not allowed in public key options for

the host the user <login-name> is logging in from.

Using the public key for the user and host has been denied based on the public key options set on the server
for the key.

Error in public key

Couldn’t get info from public key <key-name> used by user

<login-name>.

The server could not get the public key information from the public key.

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

74 Chapter 5. Log Messages

Key length too small

Use of public key <key-name> by user <login-name> is not

allowed, because public key is too small (pk size <key-size>, min size

<minimum-size>).

The server has rejected the authentication using the public key sent by the client because the key is too short.

Key length too large

Use of public key <key-name> by user <login-name> is not

allowed, because public key is too large (pk size <key-size>, max size

<maximum-size>).

The server has rejected the authentication using the public key sent by the client because the key is too long.

Crypto operation failed for RSA key

Crypto operation failed for RSA key of user <login-name>.

A cryptographic operation failed for a key.

Root logins not permitted

root logins are not permitted.

The server has been configured to not allow root logins.

Root login permitted for forced command

root login permitted for forced command.

The server has been configured to not allow root logins, but will allow forced commands as root.

Public-key authentication accepted

Public key authentication for user <login-name> accepted.

The server has accepted the public-key authentication for the user.

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

5.1. Log Message Reference 75

Bad packet when verifying key

got bad packet when verifying user <login-name>’s publickey.

The server received an invalid packet when trying to verify the user’s public key.

Public key is authorized

Public key <filename> authorized for user <login-name>,

verifying signature.

The server has determined that the public key supplied by the client is authorized for a login, and will now
verify the signature supplied by the client.

5.1.11 User Authentication - SecurID

The server does not allow root logins

root login denied for user ’<login-name>’.

The server’s configuration does not allow root logins.

5.1.12 Certificate-specific code

Certificate verification failed

Certificate verification failed: search-state = { <search-state>

}

Verifying a certificate failed in user or host authentication. � search-state � contains the search status bits that
give information about what went wrong.

5.1.13 SFTP Server

Starting SFTP subsystem

Starting SFTP-subsystem for user ’<login-name>’ parent sshd2 PID

[<pid-number>].

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

76 Chapter 5. Log Messages

The SFTP server is starting.

Stopping SFTP subsystem

Stopping SFTP-subsystem for user ’<login-name>’ parent sshd2 PID

[<pid-number>].

The SFTP server is stopping.

5.1.14 Agent Forwarding

Agent forwarding requested

Agent forwarding requested, creating a listener.

The client has requested agent forwarding, and the server is creating a listener for it.

Agent forwarding request has been denied

Agent forwarding request denied in configuration.

The client has requested agent forwarding, but the server configuration forbids it.

Forwarding an agent connection

Opening an agent forwarding channel

The server has received an agent connection in the agent forwarding listener, and is opening an agent for-
warding channel to the client.

Closing an agent connection

Closing an agent forwarding channel

The agent forwarding channel from the server to the client has been closed.

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

5.1. Log Message Reference 77

5.1.15 Session Channels

Session channel open request received

Received a channel open request, type <channel-type>, channel id

<channel-number>

Received a session channel open request of the specified type with specified channel id.

Closing session channel

Destroying session channel <channel-number>

The server is destroying the session channel with the specified id number.

Session channel extension request received

Received a session channel extension request of type

<extension-type> for channel number <channel-number>

Received a session channel extension request of the specified type for the channel with specified id number.

Setting environment variable denied

User tried to set environment variable ’<environment-variable>’

to ’<variable-value>’ in "<filename>", but was denied by

policy.

Setting the environment variable denied by server policy.

Opening log for internal SFTP server

Opening log for internal sftp-server.

The server opened the log for the internal SFTP server.

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

78 Chapter 5. Log Messages

Chrooting user

User ’<login-name>’ will be chrooted to directory

’<directory-name>’.

The server is chrooting the user into a directory.

Changed to run on user privileges

Now running on <login-name>’s privileges.

The server has dropped root privileges and is now running on user’s privileges.

Setting environment variable denied by public key options

User tried to set environment variable ’<environment-variable>’

to ’<variable-value>’ in public key options, but was denied by

policy.

Setting the environment variable denied by public key options.

Starting internal SFTP server

Starting internal sftp-server for user ’<login-name>’, sshd2 PID

[<pid-number>].

The internal SFTP server is starting.

Stopping internal SFTP server

Stopping internal sftp-server for user ’<login-name>’, sshd2 PID

[<pid-number>].

The internal SFTP server is stopping.

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

5.1. Log Message Reference 79

Bad data received in environment variable setting

Bad data on ssh_channel_request_env().

Decoding an environtment variable setting request failed in the ssh channel request env function.

Invalid values received in environment variable setting

Invalid values on request to set environment variable:

name=’<variable-name>’,value=’<variable-value>’.

The environment variable setting request contained invalid values.

Environment variable setting forbidden by policy

Client tried to set environment variable ’<variable-name>’ to

’<variable-value>’, but it is forbidden by policy.

The environment variable setting failed because of server policy.

Terminal access denied

Terminal access is denied for user ’<login-name>’.

The server configuration doesn’t allow a terminal for the user.

5.1.16 SSH1 Agent Forwarding

SSH1 agent forwarding request has been denied

SSH1 agent forwarding request denied in configuration.

The client has requested SSH1 agent forwarding, but the server configuration forbids it.

SSH1 Agent forwarding requested

Agent forwarding requested, creating a listener.

The client has requested agent forwarding, and the server is creating a listener for it.

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

80 Chapter 5. Log Messages

Forwarding an SSH1 agent connection

Opening an agent forwarding channel

The server has received an agent connection in the agent forwarding listener, and is opening an agent for-
warding channel to the client.

Closing an SSH1 agent connection

Closing an agent forwarding channel

The agent forwarding channel from the server to the client has been closed.

5.1.17 Port Forwarding

Direct TCP port forwarding request denied

Direct TCP/IP forwarding request (<host>:<port>) denied for user

in configuration.

A direct TCP port forwarding request has been denied because of system policy.

Direct TCP port forwarding forbidden

Direct TCP/IP forwarding request denied in configuration.

A direct TCP port forwarding request was denied because the system policy forbids TCP port forwarding.

Connection received to forwarded port

Connection to forwarded port <forwarded-port>

from <host>:<port>

The forwarded port received a connection.

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

5.1. Log Message Reference 81

Remote port forwarding connect received

Remote fwd connect from <connection-originator> to local port

<port>

A remote port forwarding request was received.

Remote listener creation failed

Creating remote listener for <address>:<port> failed.

A remote listener creation failed.

Port set up for remote forwarding

Port <port> set up for remote forwarding.

A port was successfully set up for remote forwarding.

Received a remote forwarding request

Remote TCP/IP forwarding request received from host "<host>", by

authenticated user "<login-name>".

Received a remote forwarding request.

Forwarding a privileged port

Privileged user "<login-name>" forwarding a privileged

port.

Forwarding a privileged port (under 1024) for a privileged user.

Remote TCP port forwarding forbidden

Remote TCP/IP forwarding request denied in configuration.

A remote TCP port forwarding request was denied because the system policy forbids TCP port forwarding.

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

82 Chapter 5. Log Messages

Remote TCP port forwarding request denied

Remote TCP/IP forwarding (<host>:<port>) request denied for user

in configuration.

A remote TCP port forwarding request has been denied because of system policy.

Connection to direct forwarding received

direct fwd connect from <connection-originator> to local port

<port>

Received a connection to forwarded port.

5.1.18 X11 Forwarding

X11 connection refused by tcp wrappers

Fwd X11 connection from <connection-originator> refused by

tcp_wrappers.

The X11 connection was refused by tcp wrappers.

X11 connection received

X11 connection from <ip-address>:<port> (<host>)

An X11 connection was received.

5.1.19 Common Code

Disconnection happened

[Local|Remote host] disconnected: <reason-message>

The connection was disconnected by the local or the remote end for the reason given.

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

5.1. Log Message Reference 83

5.1.20 Host Key I/O

PIN request received

PIN requested, PIN label <pin-label> at keypath <keypath>,

ignoring.

A PIN request was received when reading host keys, and since the user is not available at this point, the
request is ignored.

5.1.21 General Server Log Messages

Disconnect: Host not allowed to connect

Disallowed connect from denied host. ’<message>’

The server has disconnected the client because the client is not allowed to connect.

Disconnect: Protocol error

Protocol error in [local|remote]: ’<message>’

Disconnecting because of a protocol error in local or remote end.

Disconnect: Key exchange failed

Key exchange failed in [local|remote]: ’<message>’

Disconnecting because key exchange failed in local or remote end.

Disconnect: Illegal code

RESERVED (this is an illegal code) in [local|remote]:

’<message>’

Disconnecting, with illegal code as reason.

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

84 Chapter 5. Log Messages

Disconnect: MAC failed

MAC failed in [local|remote], disconnecting: ’<message>’

Disconnecting because MAC failed in local or remote end.

Disconnect: Compression error

compression error in [local|remote], disconnecting:

’<message>’

Disconnecting because of a compression error.

Disconnect: Service not available

service not available: ’<message>’

Disconnecting because a requested service was not available.

Disconnect: Protocol version not supported

protocol version not supported in [local|remote]:

’<message>’

Disconnecting because the protocol version was not supported.

Disconnect: Host key not verified

host key not verifiable in [local|remote]: ’<message>’

Disconnecting because the host key could not be verified.

Disconnect: Connection was lost

connection lost: ’<message>’

Disconnecting because the connection was lost.

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

5.1. Log Message Reference 85

Disconnect: Disconnected by application

disconnected by application in [local|remote]:

’<message>’

Disconnected by application.

Disconnect: Too many connections

too many connections : ’<message>’

Disconnected because the internal connection limit was exceeded.

Disconnect: User authentication failed

User authentication failed: ’<message>’

Disconnected because the user authentication failed. This message should only occur when the other end is
of version 2.0.13 or older.

Disconnect: Authentication cancelled by user

authentication cancelled by user: ’<message>’

Disconnected because the authentication was cancelled by the user.

Disconnect: No more authentication methods

no more authentication methods on [local|remote]:

’<message>’

Disconnected because of running out of authentication methods. This generally means that the client failed
in all the authentication methods available on the server.

Disconnect: Illegal user name

illegal user name : ’<message>’

Disconnected because the user name was illegal.

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

86 Chapter 5. Log Messages

Disconnect: Unknown reason

Unknown reason code ’<reason-code>’ for disconnect. msg:

’<message>’

Disconnected, reason code unknown.

Idle timeout exceeded

Idle timeout exceeded.

The idle timeout limit was exceeded.

Remote protocol version string received

Remote protocol version: <version-string>

The server has received the remote protocol version string from the client.

User authenticated

User <login-name> (uid <uid-number>), coming from <host>,

authenticated.

A general message stating that the user has successfully authenticated herself.

User authenticated, root login

ROOT LOGIN: User <login-name> (uid <uid-number>), coming from

<host>, authenticated.

General message stating that a superuser has successfully authenticated herself.

User authentication failed

Authentication failed for user <login-name>,

coming from <host>.

An user tried to log in, but failed the user authentication.

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

5.1. Log Message Reference 87

User logged out

Logout for user <login-name>.

The specified user has now logged out or has been logged out.

Login grace time exceeded

LoginGraceTime exceeded.

The LoginGraceTime value was exceeded. This means that the client did not succeed in logging in during
time limit defined by the configuration option LoginGraceTime.

Connection received

connection from "<host>" (listen port: <listen-port>)

The server has received a connection from a host.

Connection received in interface

connection from "<host>" (listen iface: <address>:<port>)

The server has received a connection from a host to a port on specific interface.

Refusing connection: too many open connections

Refusing connection from "<host>". Too many open connections

(max <maximum-connections>, now open <open-connections>).

The server has refused a connection because it would have otherwise exceeded the limit of simultaneously
open connections.

Denied connection because of tcp wrappers

Denied connection from <connection-originator> by tcp

wrappers.

The server has refused a connection because it was denied by tcp wrappers.

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

88 Chapter 5. Log Messages

Forking for new connection failed

Forking a server for a new connection failed.

The server tried to fork to handle a new connection, but the forking failed.

Server warning

WARNING: <message>

A warning was received from the server.

Fatal server error

FATAL ERROR: <message>

The server has encountered a fatal error condition.

SIGHUP-handler received an invalid signal

Invalid signal received by SIGHUP-handler.

Server’s SIGHUP-handler received an illegal signal.

License file error

License file error: <message>

The server encountered an error when checking the license file.

Server restarting

restarting...

The server is restarting.

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

5.1. Log Message Reference 89

Server starting in inetd mode

Starting daemon in inetd mode.

The server is starting in inetd mode.

Server created a listener

Listener created on <address>:<port>.

The server has successfully created a listener.

Server created an UDP listener

UDP Listener created on <address>:<port>.

The server has successfully created an UDP listener.

Setsid failed

setsid: <error-message>

A call to setsid failed in the server.

Server running

Daemon is running.

The server process has successfully performed all initialization operations and is now listening for connec-
tions.

5.1.22 SFTP

File closed

File ’%s’ closed (written: <bytes-written>, read:

<bytes-read>).

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

90 Chapter 5. Log Messages

A file has been closed. This is the only log message of a completed transfer of a file. Typically the whole file
is read or written, but this is not the only possibility. This log message will report the sum of all reads and
the sum of all writes since the opening of the file. (Note: even the same client can open a file multiple times,
which will result in multiple closes, each with possibly different number of read and written bytes.)

Bad message received

Received bad message <message-number>.

The protocol code received a bad message from the client.

Got wrong message before receiving INIT

Got message type %d before receiving INIT. This is a protocol

error, destroying the file-server.

A protocol error occurred, and the file server is being terminated.

Received SSH FXP INIT

Received SSH_FXP_INIT

The file server received the SSH FXP INIT message from the client.

Could not decode request id

Couldn’t decode request id. Destroying file-server.

A protocol error happened, and the file server is being terminated.

Received SSH FXP OPEN

Received SSH_FXP_OPEN

The file server received an SSH FXP OPEN message from the client.

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

5.1. Log Message Reference 91

Received SSH FXP CLOSE

Received SSH_FXP_CLOSE

The file server received an SSH FXP CLOSE message from the client.

Received SSH FXP READ

Received SSH_FXP_READ

The file server received an SSH FXP READ message from the client.

Received SSH FXP WRITE

Received SSH_FXP_WRITE

The file server received an SSH FXP WRITE message from the client.

Received SSH FXP STAT

Received SSH_FXP_STAT

The file server received an SSH FXP STAT message from the client.

Received SSH FXP LSTAT

Received SSH_FXP_LSTAT

The file server received an SSH FXP LSTAT message from the client.

Received SSH FXP FSTAT

Received SSH_FXP_FSTAT

The file server received an SSH FXP FSTAT message from the client.

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

92 Chapter 5. Log Messages

Received SSH FXP SETSTAT

Received SSH_FXP_SETSTAT

The file server received an SSH FXP SETSTAT message from the client.

Received SSH FXP FSETSTAT

Received SSH_FXP_FSETSTAT

The file server received an SSH FXP FSETSTAT message from the client.

Received SSH FXP OPENDIR

Received SSH_FXP_OPENDIR

The file server received an SSH FXP OPENDIR message from the client.

Received SSH FXP READDIR

Received SSH_FXP_READDIR

The file server received an SSH FXP READDIR message from the client.

Received SSH FXP REMOVE

Received SSH_FXP_REMOVE

The file server received an SSH FXP REMOVE message from the client.

Received SSH FXP MKDIR

Received SSH_FXP_MKDIR

The file server received an SSH FXP MKDIR message from the client.

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

5.1. Log Message Reference 93

Received SSH FXP RMDIR

Received SSH_FXP_RMDIR

The file server received an SSH FXP RMDIR message from the client.

Received SSH FXP REALPATH

Received SSH_FXP_REALPATH

The file server received an SSH FXP REALPATH message from the client.

Received SSH FXP RENAME

Received SSH_FXP_RENAME

The file server received an SSH FXP RENAME message from the client.

Received SSH FXP READLINK

Received SSH_FXP_READLINK

The file server received an SSH FXP READLINK message from the client.

Received SSH FXP SYMLINK

Received SSH_FXP_SYMLINK

The file server received an SSH FXP SYMLINK message from the client.

Received SSH FXP EXTENDED

Received SSH_FXP_EXTENDED

The file server received an SSH FXP EXTENDED message from the client.

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

94 Chapter 5. Log Messages

Received bad SSH FXP INIT

Received bad SSH_FXP_INIT

The server received a bad SSH FXP INIT message.

Negotiated protocol version

Negotiated version <version-number>.

The server has negotiated to use the specified protocol version with the client.

Uploading file

Uploading ’<filename>’ (flags [append] [trunc] [creat] [excl])

The server has received a write request for the specified file with the specified flags.

Downloading file

Downloading ’<filename>’

The server has received a read request for the specified file.

Failed to open file

Failed to open file ’<filename>’. Error <errornumber>.

The server failed to open the specified file.

Closed file

[Closed | Received error when closing] file ’<filename>’

(handle=<handle>)

The server closed the file, possibly with an error happening during the close.

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

5.1. Log Message Reference 95

Statting file

Statting file ’<filename>’

The server is statting the specified file.

Lstatting file

Lstatting file ’<filename>’

The server is lstatting the specified file.

Fstatting file

Fstatting file ’<filename>’

The server is fstatting the specified file.

Setstatting file

Setstat file ’<filename>’ ([size] [uidgid] [perms]

[acmodtime])

The server is setstatting the attributes of the specified file.

Fsetstatting file

Fsetstat file ’<filename>’ ([size] [uidgid] [perms]

[acmodtime])

The server is fsetstatting the attributes of the specified file.

Opening directory

Opening directory ’<filename>’

The server is opening the specified directory.

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

96 Chapter 5. Log Messages

Failed to open directory

Failed to open dir ’<filename>’. Error <errornumber>.

The server failed to open the specified directory.

Readdir on directory

Readdir on directory ’<filename>’ (handle=<handle>)

The server performed a readdir operation on the specified directory.

Removing file

Removing file ’<filename>’

The server is removing the specified file.

Failed to remove file

Failed to remove file ’<filename>’. Error <errornumber>.

The server failed to remove the specified file.

Creating directory

Creating directory ’<filename>’

The server is creating the requested directory.

Failed to create directory

Failed to make dir ’<filename>’. Error <errornumber>.

The server failed to create the requested directory.

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

5.1. Log Message Reference 97

Removing directory

Removing directory ’<filename>’

The server is removing the specified directory.

Failed to remove directory

Failed to remove dir ’<filename>’. Error <errornumber>.

The server failed to remove the requested directory.

Resolving path

Resolving path to ’<filename>’

The server is resolving the path to the specified file.

Renaming file

Renaming file ’<filename>’ to ’<new-filename>’

The server is renaming the specified file.

Failed to rename file

Failed to rename ’<filename>’. Error <errornumber>.

The server failed to rename the specified file.

Reading link

Reading link ’<linkname>’

The server is reading the specified link.

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

98 Chapter 5. Log Messages

Readlink failed

Readlink failed for ’<linkname>’. Error <errornumber>.

The readlink operation failed in the server.

Creating link

Creating link ’<linkname>’ with value ’<target>’

The server is creating the specified link.

Creating link failed

Failed to create symlink ’<linkname>’. Error <errornumber>.

Creating the specified link failed in the server.

Got EXTENDED request

got EXTENDED request <request-number>

The server received an extended request from the client.

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

99

Chapter 6

Using SSH Secure Shell

This chapter provides information on how to use the SSH Secure Shell software suite after it has been suc-
cessfully installed and set up.

6.1 Using the Secure Shell Server Daemon (sshd2)

The server daemon program for Secure Shell is called sshd2.

Sshd2 is normally started at boot time from /etc/rc.local or its equivalent. It forks a new daemon for
each incoming connection. The forked daemons handle key exchange, encryption, authentication, command
execution, and data exchange.

The Secure Shell daemon is normally run as root. If it is not run as root, only the user the daemon is running as
will be authorized to log in, and password authentication may not work if the system uses shadow passwords.
An alternative host key pair must also be used.

6.1.1 Manually Starting the Secure Shell Server Daemon

To manually start the Secure Shell daemon, type the command /usr/local/sbin/sshd2.

Note: If the installation was successfully completed, sshd is a symbolic link to sshd2. If you also have
ssh1 installed, the ssh2 installation process modifies the existing link. If ssh1 compatibility is desired, sshd2
can be configured to execute sshd1 when the client only supports ssh1. However, it is recommended to use
sshd2 because sshd may start an OpenSSH server.

The sshd2 daemon can be configured using command-line options or a configuration file. Command-line
options override values specified in the configuration file.

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

100 Chapter 6. Using SSH Secure Shell

6.1.2 Automatically Starting the Server Daemon at Boot Time

If you have installed from RPM packages on RedHat or on SuSE, sshd2 is already starting at boot time.
The same is true if you have installed from depot on HP-UX.

In the following sections, two different methods for starting the Secure Shell Daemon at boot time are intro-
duced. If neither of these methods work on your system, consult your operating system documentation on
how to start services at boot time.

Starting from /etc/rc.d/rc.local

In order to start sshd2 automatically at boot time on System V based operating systems, the startup script
sshd2 should be located in the /etc/rc.d/init.d directory, and there should be symbolic links to
sshd2 startup script in /etc/rc.d/rc?.d, where ”?” is the runlevel. You can either add these links
manually or use chkconfig.

Note: chkconfig is only available on RedHat distributions. With SuSE, add the symbolic links manually.

If you want to use chkconfig, check that the first lines in sshd2 are similar to the following:

#!/bin/sh

#

Author: Sami Lehtinen <sjl@ssh.com>

#

sshd2 This shell script takes care of starting

and stopping sshd2.

#

chkconfig: 345 34 70

description: Secure Shell daemon

#

This means that sshd will be started in runlevels 3, 4 and 5, its starting priority is 34, and its killing priority
is 70. You can choose the runlevels and priorities as you want as long as sshd is started after the network is
up.

After adding the links manually or giving the command

chkconfig --add sshd2

you should have the links /etc/rc.d/rc?.d, similar to

lrwxrwxrwx 1 root root 14 Aug 16 10:07 S34sshd -> ../init.d/sshd

lrwxrwxrwx 1 root root 14 Aug 16 10:07 K70sshd -> ../init.d/sshd

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

6.1. Using the Secure Shell Server Daemon (sshd2) 101

Starting from /etc/rc.local

On BSD based operating systems, you have to add a similar line to the following to the rc.local file in
the /etc directory:

echo "Starting sshd2..."; /usr/local/sbin/sshd2

After this, the Secure Shell daemon will start automatically at boot time.

6.1.3 Operation of the Server Daemon

When sshd2 is started, it begins to listen on a port for a socket. The default port is port 22, now a well-
known port for Secure Shell. This can be changed to suit any custom environments, e.g. if you want to run
sshd2 from a non-privileged account; however, make sure that no other process is using the port you are
planning to use.

The Secure Shell daemon can also be started from the Internet daemon inetd. For the purpose of this text,
it is assumed that sshd2 is not invoked through inetd but started on its own.

When the daemon is listening for a socket, it waits until a client initiates a socket connection. Once con-
nected, the daemon forks a child process, which in turn initiates key exchange with the client. The child
process handles the actual connection with the client, including authentication, supported cipher negotiation,
encrypted data transfer, and termination of the connection. After the connection has been terminated, the
child process terminates as well. The parent process continues listening for other connections until explicitly
stopped.

Login Process

When a user successfully logs in, sshd2 performs the following operations:

1. Changes to run with normal user privileges.

2. Sets up a basic environment.

3. Reads /etc/environment if it exists.

4. Changes to the user’s home directory.

5. Runs the user’s shell or specified command.

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

102 Chapter 6. Using SSH Secure Shell

6.1.4 Resetting and Stopping the Server Daemon

When the Secure Shell daemon is started, its process identifier (PID) is stored
in /var/run/sshd2 22.pid or, if the directory /var/run does not exist, in
/etc/ssh2/sshd2 22.pid. This makes it easy to kill the appropriate daemon:

kill ‘cat /var/run/sshd2_22.pid‘

or send signals to it:

kill -SIGNAL ‘cat /var/run/sshd2_22.pid‘

The Secure Shell daemon handles signals like inetd: you can send it a SIGHUP signal to make it reread its
configuration file. The daemon can be stopped by sending the SIGKILL signal.

All sshd processes can be terminated if needed. This should be done only when root is logged in locally, as
the server process for the root user who is remotely logged in will also be terminated. Another option is to
start a new sshd2 daemon on a different port before terminating sshd processes:

sshd2 -p 1234

Only the sshd processes (e.g. /usr/local/sbin/sshd) will be terminated:

killall sshd

6.1.5 Daemon Configuration File and Command-Line Options

Sshd2 reads configuration data from /etc/ssh2/sshd2 config (or the file specified with the -f flag
on the command line). The file contains keyword-value pairs, one per line. Lines starting with the number
sign (#) as well as empty lines are interpreted as comments.

Subconfiguration files can also be specified in the main configuration file. See Section 3.2 (Subconfigurations)
for more information.

For detailed information about the options available in the configuration file and on the command line, please
refer to the sshd2 config(5) and to the sshd2(8) manual pages.

6.1.6 Subsystems

Subsystems can be defined in the sshd2 config file using the following syntax.

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

6.2. Using the Secure Shell Client (ssh2) 103

subsystem-<name> argument

The argument is the command which will be executed when the subsystem is requested.

$ ssh2 -s <name> user@remote

The argument can be a list of commands separated with semicolon (;), or it can, for example, refer to a
script.

One example of a subsystem is sftp.

subsystem-sftp /usr/local/bin/sftp-server

The sftp subsystem also has an internal alternative. This should be used for example when the user is
chrooted and does not have access to the sftp-server binary.

subsystem-sftp internal://sftp-server

6.2 Using the Secure Shell Client (ssh2)

The basic Secure Shell client program is called ssh2.

Ssh2 can be used either to initiate an interactive session, resembling rlogin, or to execute a command in
a way similar to the rsh command.

The Secure Shell client connects to the server on port 22, which is a well-known port for Secure Shell.

6.2.1 Starting the Secure Shell Client

Ssh2 has a very simple syntax:

ssh [options] hostname [command]

The most common usage is to establish an interactive session to a remote host. This can be done simply by
typing ssh hostname.domain. A real-world example could be ssh root@somehost.ssh.com.
As with rsh and rlogin, the user ID to be used can also be specified with the -l option, for example ssh
-l root somehost.ssh.com.

Note: As shown in the above example, in the normal case, you do not have to type ssh2. The installation
process creates a symbolic link, ssh, that points to the actual ssh2 executable. If ssh1 was installed before
ssh2, you will need to type ssh1 to run the ssh1 client.

The ssh2 command-line options are documented in detail on the ssh2(1) manual page.

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

104 Chapter 6. Using SSH Secure Shell

6.2.2 Client Configuration File and Command-Line Options

Ssh2 reads configuration data from /etc/ssh2/ssh2 config and from
$HOME/.ssh2/ssh2 config (or the file specified with the -F option on the command line). The
last-obtained value will prevail.

The file contains keyword-value pairs, one per line. Lines starting with the number sign (#) as well as empty
lines are interpreted as comments. For detailed information about the options available in the configuration
file and on the command line, please refer to the ssh2 config(5) and ssh2(5) manual pages.

6.3 Using Secure Copy (scp2)

Scp2 is a program for copying files securely over the network. It uses ssh2 for data transfer, and uses the
same authentication and provides the same security as ssh2.

Scp2 uses a sftp2 over ssh2 for data exchange between the client and server. This is not to be confused
with FTP.

The basic syntax for scp2 is like this:

scp user@source:/directory/file user@destination:/directory/file

Note: As shown in the example above, in the normal case, you do not have to type scp2. The installation
process creates a symbolic link, scp, that points to the actual scp2 executable. If ssh1 was installed before
ssh2 was, you will need to type scp1 to run the ssh1 client.

Scp2 can be used to copy files in either direction; that is, from the local system to the remote system or vice
versa. Local paths can be specified without the user@system: prefix. Relative paths can also be used;
they are interpreted relative to the user’s home directory.

The scp2 command-line options are documented in detail on the scp2(1) manual page.

6.4 Using Secure File Transfer (sftp2)

Sftp2 is an FTP-like client that works in a similar fashion to scp2. Just like scp2, sftp2 runs with normal
user privileges and uses ssh2 for transport. Even though it functions like ftp, sftp2 does not use the FTP
daemon or the FTP client for its connections. The sftp2 client can be used to connect to any host that is
running the Secure Shell server daemon (sshd2).

The basic syntax for sftp2 is like this:

sftp2 [options] [user@]host

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

6.5. Using Authentication Agent (ssh-agent2, ssh-add2) 105

Note: As shown in the example above, in the normal case, you do not have to type sftp2. The installation
process creates a symbolic link, sftp, that points to the actual sftp2 executable. sftp was not included
in ssh1.

Actual usage of sftp2 is similar to the traditional ftp program.

The sftp2 command-line options and commands are documented in detail on the sftp2(1) manual page.

6.5 Using Authentication Agent (ssh-agent2, ssh-add2)

Ssh-agent2 is a program to hold private keys for authentication. With the Ssh-add2 command, you can add
identities to the authentication agent. When you use the authentication agent, it will automatically be used
for public-key authentication. This way, you only have to type the passphrase of your private key once to
the agent. Authentication data does not have to be stored on any other machine than the local machine, and
authentication passphrases or private keys never go over the network.

Start ssh-agent2 with the command

eval ‘ssh-agent2‘

or with the command

exec ssh-agent $SHELL

After that, you can add identities like this:

% ssh-add2 id_dsa_1024_a

Adding identity: id_dsa_1024_a

Need passphrase for id_dsa_1024_a (1024-bit dsa,

user@localhost, Tue Aug 01 2000 19:41:42).

Enter passphrase:

When you connect to a remote host and use public-key authentication, you will get straight in.

If you want the connection to the agent to be forwarded over ssh remote logins, you should have this line in
your /etc/ssh2/sshd2 config file:

AllowAgentForwarding yes

The ssh-agent2 and ssh-add2 command-line options are documented in detail on the ssh-agent2(1)
and ssh-add2(1) manual pages.

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

106 Chapter 6. Using SSH Secure Shell

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

107

Appendix A

Tool Syntax

The basic syntax of ssh-keygen2 and ssh-certenroll2 is explained here. For more information, see
the relevant man pages.

A.1 ssh-keygen2

ssh-keygen2 is a tool that generates and manages authentication keys for ssh2. Each user wishing to use
ssh2 with public-key authentication can run this tool to create authentication keys. Additionally, the system
administrator may use this to generate host keys for the server.

(Please note that PKI and PKCS #11 support is only available in commercial distributions of SSH Secure
Shell for Servers.)

SYNOPSIS

ssh-keygen2 [-b bits] [-t dsa|rsa] [-c comment_string]

[-e file] [-p passphrase] [-P] [-h] [-?] [-q] [-1 file] [-i file]

[-D file] [-B number] [-V] [-r file] [-x file] [-k file]

[-7 file] [-F file] [key1 key2 ...]

OPTIONS

-b bits

Length of the key in bits, for example 1024 bits.

-t dsa | rsa

Choose the type of the key. Valid options are

dsa and rsa.

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

108 Appendix A. Tool Syntax

-c comment_string

Specify the key’s comment string.

-e file

Edit the specified key. Makes ssh-keygen2 interactive.

You can change the key’s passphrase or comment.

-p passphrase

Specify the passphrase used.

-P Specify that the key will be saved with an empty

passphrase.

-h | -?

Print a short summary of ssh-keygen2 commands.

-q Hide the progress indicator.

-1 file

Convert key from ssh1 format to ssh2 format.

-i file

Load and display information on ’file’.

-D file

Derive the public key from the private key ’file’.

-B number

The number base for displaying key information (default 10).

-V Print version string and exit.

-r file

Stir in data from file to the random pool.

-x file

Convert private key from X.509 format to ssh2 format.

-k file

Convert a PKCS #12 file to an ssh2 format certificate

and private key.

-7 file

Extract certificates from a PKCS #7 file.

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

A.2. ssh-certenroll2 109

-F file

Dump the fingerprint of a given public key. The finger-

print is given in the Bubble Babble format, which

makes the fingerprint look like a string of "real"

words (making it easier to pronounce).

A.2 ssh-certenroll2

ssh-certenroll2 allows users to enroll certificates. It will connect to a CA (certification authority) and
use the CMPv2 protocol for enrolling a certificate. The user may supply an existing private key when creating
the certification request, or allow a new key to be generated.

SYNOPSIS

ssh-certenroll2 [-V] [-S SOCKS-server] [-P proxy-url] [-g

] [-t rsa|dsa] [-l key-size] [-o base-name] [-p cmp-ref-

num:cmp-key] [-e] -a ca-access-url -s subject-name ca-

cert-file [private-key]

OPTIONS

-V Print version string and exit.

-S SOCKS-server

The SOCKS server URL to be used when connecting to

the certification authority.

-P proxy-url

The HTTP proxy server URL to be used when connect-

ing to the certification authority.

-g Generate a new private key.

-t rsa|dsa

Type of key to be generated. Valid types are "rsa"

or "dsa". Rsa is the default.

-l key-size

The size of the key to be generated (in bits).

1024 is the default.

-o base

Specify the base prefix of the generated files.

The private key (if generated) will be <base>.prv

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

110 Appendix A. Tool Syntax

and the certificate will be <base>-num.crt

-p cmp-ref-num:cmp-key

Specify the CMP enrollment reference number and

key (the pre-shared secret).

-e Enable extensions in the subject name. If, for

example, ip, dns, or email extensions are used, the

-e flag must be present.

-a ca-access-url

The full URL to the certification authority.

-s subject-dn-name

Specify the subject name for the certificate. For

example, "c=ca,o=acme,ou=development,cn=Rami Romi"

would specify the common user name "Rami Romi" in

the organizational unit "Development" in the orga-

nization "Acme" in "ca" (Canada).

-u number

Optionally gives the key usage bits.

EXAMPLES

1. Enroll a certificate and generate a DSA private key:

ssh-certenroll2 -g -t dsa -o mykey -p 12345:abcd -S

socks://fw.myfirm.com:1080 -a http://www.ca-

auth.domain:8080/pkix/ -s "c=fi,o=acme,cn=Rami Romi" ca-

certificate.crt

This will generate a private key called mykey.prv and a certificate called mykey-0.crt.

2. Enroll a certificate using a supplied private key and provide an email extension:

ssh-certenroll2 -o mykey -p 12345:ab -a http://www.ca-

auth.domain:8080/pkix/ -s "c=ca,o=acme,cn=Rami

Romi;email=rami@acme.ca" ca-certificate.crt my_pri-

vate_key.prv

This will generate and enroll a certificate called mykey-0.crt.

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

111

Appendix B

Technical Specifications

B.1 Supported Cryptographic Algorithms and Standards

This section lists the supported cryptographic algorithms and standards supported by SSH Secure Shell.

B.1.1 Public-Key Algorithms

The following public-key algorithms are the supported:

� RSA (768-, 1024-, 2048- or 3072-bit key)

� DSA (768-, 1024-, 2048- or 3072-bit key)

B.1.2 Data Integrity Algorithms

The following data integrity algorithms are supported:

� SHA-1 (20-byte key, RFC 2104)

� MD5 (16-byte key, RFC 2104)

B.1.3 Symmetric Session Encryption Algorithms

For symmetric session encryption, the following algorithms are supported:

� AES (128-, 192- or 256-bit key)

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

112 Appendix B. Technical Specifications

� Blowfish (128-bit key)

� Twofish (128-, 192- or 256-bit key)

� CAST-128 (128-bit key)

� Arcfour (128-bit key)

� 3DES (168-bit key)

� DES

B.1.4 Certificate Standards

The supported certificate standards and drafts are:

� RFC 2315, PKCS #7: Cryptographic Message Syntax Version 1.5, B. Kaliski, March 1998.

� RFC 2459, Internet X.509 Public Key Infrastructure Certificate and CRL Profile, R. Housley, W. Ford,
W. Polk, and D. Solo, January 1999.

� PKCS #12 v1.0: Personal Information Exchange Syntax, RSA Laboratories, June 1999.

� draft-ietf-pkix-rfc2510bis-03.txt (RFC 2510bis), Internet X.509 Public Key Infrastructure Certificate
Management Protocols, C. Adams and S. Farrel, February 2001.

B.1.5 Certificate and CRL Publishing Solutions

For certificate and CRL publishing, the following solutions are supported:

� RFC 2585, Internet X.509 Public Key Infrastructure Operational Protocols: FTP and HTTP, R. Hous-
ley, SPYRUS, P. Hoffman, IMC, May 1999.

� RFC 2559, Internet X.509 Public Key Infrastructure Operational Protocols - LDAPv2, S. Boeyen, T.
Howes, and P. Richard, April 1999.

� RFC 2560, X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP, M.
Myers, VeriSign, R. Ankney, CertCo, A. Malpani, ValiCert, S. Galperin, My CFO, C. Adams, Entrust
Technologies, June 1999.

B.1.6 Cryptographic Token Standards

Supported smart card and cryptographic token related supported standards are:

� PKCS #11 v2.10: Cryptographic Token Interface Standard, RSA Laboratories, December 1999.

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

B.2. Authentication Methods 113

B.1.7 Other Supported Standards

Other supported standards are:

� RFC 2460, Internet Protocol, Version 6 (IPv6) Specification, S. Deering, Cisco, R. Hinden, Nokia,
December 1998.

B.1.8 Additional Information

Additional information on RFCs and Internet-Drafts is available at the IETF Web site:

http://www.ietf.org/

At the RSA Web site you can find additional information on the Public-Key Cryptography Standards (PKCS):

http://www.rsasecurity.com/rsalabs/pkcs/

B.2 Authentication Methods

The following table shows the available authentication methods and limitations on their use.

Available Suitable for Requires Requires
from scripting additional additional

binaries software hardware

Password x

User public key
- ssh2 keys x x

�

- ssh1 keys x x
�

- PGP keys x x
�

x
�

Certificates
- software x x
- PKCS #11 tokens x x

Host-based x x

Kerberos5
- client x

�

- server x
�

RSA securID
- client x x

�

- server x
�

PAM
- client x
- server x

�

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

114 Appendix B. Technical Specifications

If Available from binaries is not checked, the authentication method in question can be enabled by compiling
from source. See Chapter 4 (Authentication) for instructions.

Explanation:

1. Use ssh-agent2 or NULL passphrase. Note that in the latter case it is extremely important that no one
else can access your private key.

2. Only the OpenPGP standard and programs using it are supported.

3. Only Kerberos5 is supported

4. SecurID tokens

5. RSA ACE/Server or RSA ACE/Agent software

6. Only PAM on Linux and on Solaris 2.6 or later is supported.

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

Index

.rhosts, 21, 43, 59, 60

.shosts, 21, 40, 43, 59

.ssh2, 15, 36, 63

/etc/passwd, 35

/etc/shadow, 35

/etc/ssh2, 15, 32

%subst%, 45

3DES, 112

3des, 18

account, 49

account-id, 45

ACE/Agent, 49

ACE/Server, 49

active mode, 28

adding authentication methods, 52

AES, 111

aes, 18

agent, 105

agent forwarding, 30

agent forwarding log messages, 76

agent forwarding: SSH1, log messages, 79

allow list, 58

allow list: group, 58

allow list: host, 59

AllowedAuthentications, 35, 36, 38, 42

AllowGroups, 22

AllowHosts, 21

AllowSHosts, 43

AllowUsers, 21

AnyCipher, 18

AnyMac, 19

AnyStdCipher, 18

AnyStdMac, 19

Arcfour, 112

arcfour, 18

auditing, 57

auth, 49

authentication, 31

authentication agent, 105

authentication log messages, 57

authentication log messages: host-based, 59
authentication log messages: Kerberos, 67
authentication log messages: Kerberos TGT, 66
authentication log messages: Keyboard-Interactive, 66
authentication log messages: Keyboard-Interactive

PAM, 63
authentication log messages: Keyboard-Interactive

password, 65

authentication log messages: password, 69
authentication log messages: public-key, 72
authentication log messages: SecurID, 75
authentication methods, 31, 113
authentication: adding new methods, 52
authentication: certificate, 33, 43
authentication: failed, 57–59
authentication: host-based, 16, 39
authentication: Kerberos, 47
authentication: Keyboard-Interactive, 49, 50

authentication: keyboard-interactive, 35, 48
authentication: PAM, 48, 51
authentication: password, 35, 51
authentication: public-key, 31, 36, 43
authentication: SecurID, 49, 51
authentication: server, 31, 33
authentication: user, 35
authority info access, 33, 44
authorization, 37–39

automatically starting server daemon, 100

basic configuration, 15
Berkeley services, 11

Blowfish, 112
blowfish, 18
BSD, 101

CA (certification authority), 33

CA certificate, 44
cast, 18
CAST-128, 112
certificate, 33, 42, 43
certificate authentication, 33, 43
certificate revocation list (CRL), 33, 34, 43

115

116 INDEX

certificate-specific log messages, 75
certificate: revoked, 33

certificate: software, 46
certification authority (CA), 33
channel, 26

channel: session, log messages, 77
chkconfig, 100

cipher negotiation, 101
ciphers, 17

client command-line options, 104
client configuration file, 104

client program, 103
client-side configuration, 34, 46

client: starting, 103
command, 39
command-line options: client, 104

command-line options: daemon, 102
commercial user, 14

common code log messages, 82
compatibility: SSH1, 25

compression, 19
configuration, 15

configuration file locations, 15
configuration file: client, 104

configuration file: daemon, 102
configuration: client-side, 34, 46
configuration: root logins, 20

configuration: server-side, 33, 44
configuration: SSH1 compatibility, 25

configuration: TCP wrappers, 23
converting key format, 34, 46

CRL (certificate revocation list), 33, 34, 43
CRL distribution point, 33, 44

CRL: disabling, 34, 44
cryptographic algorithms, 111
customer support, 14

daemon, 25, 99
daemon command-line options, 102

daemon configuration file, 102
daemon: operation, 101

daemon: resetting, 102
daemon: starting, 99, 100
daemon: stopping, 102

data transfer, 101
DefaultDomain, 42

deny list, 58
deny list: group, 58

deny list: host, 59
DenyGroups, 22

DenyHosts, 21
DenySHosts, 43

DenyUsers, 21

deprecation of SSH1 protocol, 13
DES, 112

des, 18

Diffie-Hellman key exchange, 31, 33
disabling CRL, 34, 44

DNS Address, 33
DNS entry, 43

documentation conventions, 10

draft-ietf-pkix-rfc2510bis-03, 112
DSA, 111

DSA key pair, 32

dynamic port forwarding, 29

eavesdropping, 12

egrep, 20

Email, 45
EmailRegex, 45

encrypted data transfer, 101

encryption, 13
encryption algorithm, 17

encryption: legal issues, 13

environment, 101
environment variable, 16

evaluation, 14

evaluation version, 16
export regulations, 13

EXTENDED, 98

failed authentication, 57–59

faking network addresses, 12

fallback functionality, 13
file locations, 15

File Transfer Protocol (FTP), 11, 12, 104, 112

fingerprint, 31
firewall, 35

forwarding, 26

forwarding: agent, 30
forwarding: agent, log messages, 76, 79

forwarding: FTP, 28

forwarding: local, 27
forwarding: port, log messages, 80

forwarding: remote, 27

forwarding: X11, 29
forwarding: X11, log messages, 82

free, 53
FTP (File Transfer Protocol), 11, 12, 104, 112

FTP forwarding, 28

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

INDEX 117

general server log messages, 83
generating host key, 16

GNU ZLIB (LZ77), 19

GnuPGP, 38
group allow list, 58

group deny list, 58

hijacking, 12
hmac-md5, 18

hmac-md5-96, 18
hmac-ripemd160, 18

hmac-ripemd160-96, 19

hmac-sha1, 18
hmac-sha1-96, 18

host allow list, 59

host deny list, 59
host key, 31

host key generation, 16

host key I/O log messages, 83
host key: multiple, 32

host-based authentication, 16, 39

host-based user authentication log messages, 59
hostbased, 40

HostCA, 34, 42

HostCANoCrls, 34
hostkey, 16, 32

hostkey.pub, 16, 32

hostkeys, 16
hosts.allow, 24

hosts.deny, 24
hosts.equiv, 43

HostSpecificConfig, 22

HP-UX, 100
HTTP (HyperText Transfer Protocol), 112

HTTP proxy, 46

HTTP repository, 33, 43
HTTP tunneling, 26

HUP, 25, 40

HyperText Transfer Protocol (HTTP), 112

identification, 37, 38, 47

IETF (Internet Engineering Task Force), 12

IETF-secsh Internet-Drafts, 13
IETF-SecSH-draft, 18, 19

incoming tunnel, 27

inetd, 89, 101
INIT, 90

init, 53
Internet Engineering Task Force (IETF), 12

Internet Protocol (IP), 11

Internet Protocol version 6 (IPv6), 113
IP (Internet Protocol), 11

IP spoofing, 12

IPv6 (Internet Protocol version 6), 113

Kerberos, 47

Kerberos authentication log messages, 67
Kerberos TGT authentication log messages, 66

key exchange, 31, 33, 101

key fingerprint, 31
key format: converting, 34, 46

key format: ssh2, 34, 46

key format: X.509, 34, 46
key generation, 16

key: host, log messages, 83

key: PGP, 38

key: PKCS #12, 46
key: private, 105

key: ssh1 format, 38

Keyboard-Interactive authentication, 49, 50
keyboard-interactive authentication, 35, 48

Keyboard-Interactive PAM authentication log mes-
sages, 63

Keyboard-Interactive password authentication log mes-
sages, 65

Keyboard-Interactive user authentication log messages,
66

knownhosts, 16

LDAP (Lightweight Directory Access Protocol), 33, 43,
112

LDAP server, 35, 44

LdapServers, 42

legal issues, 13
libwrap.a, 24

license file, 16

license: commercial, 14
license: non-commercial, 14

license ssh2.dat, 16

Lightweight Directory Access Protocol (LDAP), 33, 43,
112

Linux, 13
list: allow, 58

list: allow host, 59

list: deny, 58
list: deny host, 59

list: group allow, 58

list: group deny, 58
listening, 101

local forwarding, 27

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

118 INDEX

location of files, 15
log message reference, 57
logging, 57
login process, 101
login: restricting, 20
login: root, 20
LoginGraceTime, 87

MAC (Message Authentication Code), 18
maintenance, 14
man pages, 9
man-in-the-middle attack, 31, 33
manual pages, 9
manually starting server daemon, 99
MapFile, 44

MD5, 111
Message Authentication Code (MAC), 18
message reference: log, 57
Microsoft Windows, 13
multiple host keys, 32

NAT (Network Address Translation), 43

negotiation, 101
Network Address Translation (NAT), 43
network security risks, 11
non-commercial user, 14

OCSP (Online Certificate Status Protocol), 33, 43, 112
Online Certificate Status Protocol (OCSP), 33, 43, 112

OpenPGP standard, 38
operating system, 13
operation of server daemon, 101
options, 39
OS/2, 14
outgoing tunnel, 27

PAM (Pluggable Authentication Module), 48, 51, 63
PAM authentication log messages: Keyboard-

Interactive, 63
pam.conf, 49
PAM TTY, 49
passive mode, 28
passphrase, 36
password authentication, 35, 51
password authentication log messages, 69

password authentication log messages: Keyboard-
Interactive, 65

password: shadow, 99
PermitRootLogin, 20
permitting root logins, 20
PGP keys, 38

PID (process identifier), 102
PKCS #11 token, 46, 47

PKCS #11 v2.10, 112
PKCS #12 key, 46
PKCS #12 v1.0, 112

PKCS #7, 112
PKCS #7 package, 34, 44

Pki, 44
PkiDisableCRLs, 44

platforms, 13
Pluggable Authentication Module (PAM), 48, 51, 63

policy: system, 57
POP3 tunneling, 26

port 22, 101, 103
port forwarding, 26
port forwarding log messages, 80

port forwarding: dynamic, 29
private key, 105

process identifier (PID), 102
protocol version, 12, 13, 25

public key, 31
public key ring, 38

public-key authentication, 31, 36, 43
public-key authentication log messages, 72

Public-Key Cryptography Standards (PKCS), 113
publickey, 38

rc.local, 100, 101

rcp, 11, 12
RedHat, 100

reference: log messages, 57
remote forwarding, 27
RequireReverseMapping, 59

resetting server daemon, 102
restricting user login, 20

reverse mapping, 59
revoked certificate, 33

rexec, 12
RFC 1950, 19

RFC 1951, 19
RFC 2315, 112

RFC 2459, 112
RFC 2460, 113
RFC 2510bis, 112

RFC 2559, 112
RFC 2560, 112

RFC 2585, 112
rhosts, 21, 59, 60

rlogin, 11, 12, 103
root login, 20

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

INDEX 119

RSA, 49, 111
RSA ACE/Agent, 49

RSA ACE/Server, 49
RSA key pair, 32
RSA SecurID, 49

rsh, 11, 103

scp, 104

scp1, 104
scp2, 19, 104
Secsh Working Group, 12

secure copy, 104
secure file transfer, 104

Secure Shell, 11
Secure Shell version 1 protocol (SSH1), 13

Secure Shell version 2 protocol (SSH2), 12, 13
SecurID, 49, 51

SecurID authentication log messages, 75
security policy: Xserver, 30

security risks, 11
SerialAndIssuer, 45
server authentication, 31, 33

server certificate, 33
server daemon, 25, 99

server daemon: operation, 101
server daemon: resetting, 102

server daemon: starting, 99, 100
server daemon: stopping, 102

server deny list, 58
server log messages, 83

server-side configuration, 33, 44
server: SFTP, log messages, 75
session, 49

session channel related log messages, 77
setsid, 89

sftp, 103, 105
SFTP log messages, 89

SFTP server log messages, 75
sftp2, 104

SHA-1, 111
shadow password, 99

shosts, 21, 40, 59
shosts.equiv, 43, 59
SIGHUP, 88, 102

SIGKILL, 102
smart card, 46, 47

SMTP tunneling, 26
socket connection, 101

SOCKS server, 29, 35, 45, 46
software certificate, 46

software version, 13
spoofing, 12
ssh, 103
SSH Secure Shell, 11
ssh-add2, 105
ssh-agent2, 105
ssh-certenroll2, 33, 46, 109

ssh-keygen1, 38
ssh-keygen2, 17, 34, 36, 37, 44, 46, 107
ssh1, 103
SSH1 agent forwarding log messages, 79
SSH1 compatibility, 25
ssh1 key format, 38
SSH1 protocol, 13, 25
ssh2, 19, 63, 103

ssh2 key format, 34, 46
SSH2 protocol, 12, 13, 25
ssh2 server daemon, 25
ssh2(1), 29
ssh2 config, 15, 17–20, 32–36, 38, 40, 42, 46, 47,

104
ssh channel request env, 79

SSH FXP CLOSE, 91
SSH FXP EXTENDED, 93
SSH FXP FSETSTAT, 92
SSH FXP FSTAT, 91
SSH FXP INIT, 90, 94
SSH FXP LSTAT, 91
SSH FXP MKDIR, 92
SSH FXP OPEN, 90

SSH FXP OPENDIR, 92
SSH FXP READ, 91
SSH FXP READDIR, 92
SSH FXP READLINK, 93
SSH FXP REALPATH, 93
SSH FXP REMOVE, 92
SSH FXP RENAME, 93

SSH FXP RMDIR, 93
SSH FXP SETSTAT, 92
SSH FXP STAT, 91
SSH FXP SYMLINK, 93
SSH FXP WRITE, 91
SSH LICENSE FILE, 16
SSH MSG USERAUTH REQUEST, 69
SSH PAM OP SUCCESS, 64

SSH PAM OP SUCCESS WITH PAYLOAD, 64
SSH REGEX SYNTAX EGREP, 20, 45
SSH REGEX SYNTAX ZSH FILEGLOB, 21
sshd, 99
sshd2, 15, 25, 32, 48, 99, 101, 102

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

120 INDEX

sshd2 22.pid, 102
sshd2 config, 15, 17, 18, 20, 23, 25, 32, 34–36,

38–40, 42–45, 47, 102

sshd2 subconfig, 23
SshKbdIntSubMethodCB, 54

SshKbdIntSubMethodConv, 54
sshregex, 20
standards, 111

starting client, 103
starting server daemon, 99, 100

stopping server daemon, 102
StrictHostKeyChecking, 32

StrictModes, 60
subconfigurations, 22

Subject, 45
SubjectRegex, 45

subsystem, 102
support, 14

supported cipher negotiation, 101
supported platforms, 13
supported standards, 111

SuSE, 100
Symbian OS, 14

symmetric encryption, 17
system configuration, 15

system policy, 57
System V, 100

taking over a communication, 12
TCP traffic tunneling, 26
TCP wrappers, 23

TCP/IP, 11
tcp wrappers, 82, 87

tcpd, 24
tcpdchk, 25

tcpdmatch, 25
technical support, 14

Telnet, 11, 12
termination of connection, 101

TGT (ticket granting ticket), 47
third-party products, 14
ticket granting ticket (TGT), 47

traditional, 20
transfer, 101

trusted CA, 43
TTY allocation, 49

tunnel: incoming, 27
tunnel: outgoing, 27

tunneling, 26
tunneling log messages, 80

tunneling: agent, 30
tunneling: FTP, 28
tunneling: X11, 29
tunneling: X11, log messages, 82
Twofish, 112
twofish, 18

UNIX, 13
usage, 99
user authentication, 35
user authentication log messages, 57
user authentication log messages: host-based, 59
user authentication log messages: Kerberos, 67
user authentication log messages: Kerberos TGT, 66
user authentication log messages: Keyboard-

Interactive, 66
user authentication log messages: Keyboard-Interactive

PAM, 63
user authentication log messages: Keyboard-Interactive

password, 65
user authentication log messages: password, 69
user authentication log messages: public-key, 72
user authentication log messages: SecurID, 75
user certificate, 43

user login: restricting, 20
UserConfigDirectory, 39
UserSpecificConfig, 23
using authentication agent, 105
using secure copy, 104
using secure file transfer, 104
using server daemon, 99
using the client, 103

VAR ACE, 50
version number, 13
VMS, 14
vulnerability of SSH1 protocol, 13

well-known port, 101
Windows 2000, 13
Windows 98, 14
Windows Me, 14
Windows NT, 13
Windows XP, 13

X.509 certificate, 44
X.509 key format, 34, 46
X11, 11
X11 connection, 26
X11 forwarding, 29
X11 forwarding log messages, 82

c
�

2003 SSH Communications Security Corp. SSH Secure Shell Admin Guide

INDEX 121

X11 SECURITY extension, 30
xauth, 30
Xserver: security policy, 30

zlib compression, 19
zsh fileglob, 20

SSH Secure Shell Admin Guide c
�

2003 SSH Communications Security Corp.

