User's Manual

MVPX2UM/D Rev. 0.4, 11/2001

MVP X2 RISC Microprocessor Evaluation Platform User's Manual

MOTOROLA intelligence everywhere" digitaldna"

CPD Applications

Welcome to MVP, Motorola's Multi-processing Verification Platform.

MVP is a hardware and software development platform which can be used to evaluate the performance and features of a multi-processing system using Motorola microprocessors which implement the PowerPC architecture.

This User's Manual covers the following issues:

Торіс	Page
Section 2, "Setup"	3
Section 3, "Configuration"	5
Section 4, "Programmers Model"	12
Section 5, "Development Issues"	16
Section 6, "Other Information"	20

To locate any published errata or updates for this document, refer to the website at http://www.mot.com/SPS/RISC/smartnetworks/.

1.1 Introduction

The Multi-processing Verification Platform, or "MVP" for short, is an evaluation board which contains two MPC7450 "V'ger" processors coupled with the Marvell GT64260 Memory/PCI Controller. In addition MVP contains four PCI slots and a VIA PIPC providing USB, IDE and other typical PC I/O peripherals. Figure 1. shows a block diagram of the MVP system.

Figure 1 shows a general block diagram of the major MVP components.

Figure 1. MVP Block Diagram

Refer to the MVP Design Workbook for details on the architecture and design of MVP.

2 Setup

MVP is shipped with the DINK32 Version 12.3 (or newer) debugger loaded into one of the two flash memory arrays. DINK has the capability to download and save to flash other OS bootloaded code such as for QNX, Linux or VxWorks. If you will be running other operating systems, refer to the respective installation and setup instructions. Most OS boot code makes some use of the serial port, if only for progress messages, so the typical DINK setup may be useful.

To setup your system, you will need the following material:

- MVP system
- Mac, PC or workstation running a terminal program.
- Null-modem cable (not included -- see appendix for details).

Connect the system as shown in Figure 2. Figure 2.

Figure 2. MVP Setup Diagram

Installation steps:

- 1. Connect the MVP system to a 120 VAC source using the supplied AC power code. For international operation at 240 VAC, replace the connector with an appropriately-keyed power cable and change the voltage operation switch from "115" to "230".
- 2. Attach a null-modem cable between the MVP COM1 port (top-most of the stacked DB9 connectors, as shown in Figure 2.) to the PC (or workstation) serial port (usually COM1).
- 3. Startup a terminal emulator program. Common terminal emulators include "Hyperterminal", available for free with most Windows PCs, and many commercial programs such as Hayes "SmartComm". Setup the PCs terminal program to use the following settings:
 - 9600 Baud
 - 8 Bits
 - No Parity
 - 1 Stop Bit
 - No Handshaking

Introduction

- Terminal Emulation: any
- 4. Turn the power supply on using the switch at the back of the MVP chassis near the power cord. DINK will start and print a banner:

```
Memory Enabled: [ 128MB at CL=3 ]
Caches Enabled: [ L1-ICache L1-DCache L2-Cache(256K) L3-Cache(2M) ]
Register Inits: [ 32 GPRs, 32 FPRs, 286 SPRs ]
Assembler Init: [ 286 opcodes ]
###### ### #
                 # #
                       # #####
                                  #####
#
     #
        # ##
                 # # # # #
                                     #
#
     #
        #
           # #
                 # # #
                               #
                                       #
     #
        #
           # # # ##
                          #####
                                 #####
#
#
     #
        #
           #
              # # # #
                            # #
#
     #
        # #
                ## # # #
                               # #
###### ### #
                 # # # ##### #######
            ( ((AltiVec)))
(
        (
                                 )
                                            )
  Version : 12.3, Metaware Build
 Released : Oct 25, 2001
Written by : Motorola's RISC Applications Group, Austin, TX
    System : MVP Multi-processor V'ger Platform, 60XBus
 Processor : MPC7450 V2.1 @ 800 MHz, Memory @ 100 MHz
   Memory : 128MB at 3/1/1/1
Copyright Motorola Inc. 1993-2001
Refer to 'history.c' for release info, changes, errata and fixes.
MultiProcessor Status:
  CPU0: MPC7450 @ 800 MHz active
  CPU1: MPC7450 @ 800 MHz active
DINK32 [MPC7450 #0] >>
```

At this point, DINK is ready to accept user commands such as downloading and starting code or assembling user programs. Refer to the DINK User's Manual for more details on using DINK. If using another ROM, such as for an OS, follow the instructions for the ROM.

3 Configuration

MVP is shipped ready to run the DINK firmware by default. Memory and cache configuration is set by the DINK software (see the DINK user's manual for details). Other options, such as system bus frequency are set with switches on the MVP motherboard.

To re-configure the system, remove the AC cord and open the chassis cover by removing the four Philips-head screws from the back of the chassis, exposing the motherboard.

It may be easier to reconfigure the system by also removing the two screws holding the slide-in motherboard frame to the chassis. If desired, slide it out partially so the front-panel switches are not disconnected.

All options on MVP are set via four 8-position 'DIP' switches, as shown in Figure 3.

Figure 3. MVP in an ATX Chassis

The switches have the same orientation; with the system standing vertically, the switches operate as shown where "ON" is to the left and "OFF" is to the right.

All configuration switches should be changed with the power off; most changes only take effect on a system power-on reset. The system pushbutton reset is not necessarily sufficient.

Table 1.	MVP	Configuration	Switches
----------	-----	---------------	----------

Switch	No	Option	Default Setting	Description
SW7	1:8	Clock Code		See Section 3.1

Switch	No	Option	Default Setting	Description
SW5	8	Bus Mode	1	0 = MPX Bus Mode <u>1 = 60X Bus Mode</u>
	7	reserved	1	0 = Normal
	6	SSCG Enable	1	0 = SS Enable <u>1 = SS Disable</u>
	1:5	Primary CPU PLL(0:4)	01100	See MPC745X HW spec
SW6	7:8	ROM Mode	00	See Table 9
	6	Registered SDRAM Mode	0	<u>0 = Normal DIMMs</u> 1 = Registered DIMMs
	1:5	Secondary CPU PLL(0:4)	01100	See MPC745X HW spec
SW4	1	reserved	0	<u>0 = Normal</u> 1 = TBD
	2	Flash Write Protect	0	0 = Flash Writes Disabled 1 = Flash Writes Enabled
	3	Discovery Serial Initialize	1	0 = Serial Init Enabled 1 =Serial Init Disabled
	4	Discovery Bus Mode	0	<u>0 = 60X Bus Mode</u> 1 =MPX Bus Mode
	5	Discovery Arbiter Enable	1	0 = Arbiter Disabled 1 =Arbiter Enabled
	6:8	Discovery PLL Tune	000	000 = GT64260 Default

Table 1. MVP Configuration Switches

3.1 SW7 Options

SW7 is located near the right side of the first PCI slot. This switch sets the system processor and memory bus frequency by directly controllering various dividers and operating modes of the MPC972 and MPC961C clock generators. SW7 controls the features shown in Table 2.

Switch	Name	Definition	Default
1-8	CLOCK	Clock Code	8 -
			7 -
			6 -
			5 -
			4 -
			3 -
			2 -
			1-

Table 2. MVP SW7 Options

The are numerous possible settings of the eight switchs; most of them are not valid or not useful. Table 3. shows the most useful settings.

ROMSEL - SW7								Definition		
1	2	3	4	5	6	7	8	System Bus	3.3V PCI Bus	5.0V PCI Bus
On	Off	On	Off	On	Off	On	Off	66 MHz	66 MHz	33 MHz
Off	Off	Off	Off	Off	On	Off	On	100 MHz	66 MHz	33 MHz
On	Off	On	On	On	On	Off	On	133 MHz	66 MHz	33 MHz

Table 3. MVP Clock Options

Refer to the MVP Design Workbook for details on other possible settings.

3.2 SW5 Options

SW5 is located near the primary processor heatsink, near the middle of the board. This switch controls the PLL settings for the primary (booting) CPU, as well as some clock and system configuration options. SW5 controls the features described in Table 4.

Switch	Name	Definition	Default
8	CPUBUS	CPU MPX Bus Mode	8 -
7	reserved	reserved	7 -
6	SSCGEN	SSCG Enable	6 -
1-5	pPLL(0:4)	CPU #1 PLL Code	5 -
			4 -
			3 -
			2 -
			1 - 🗌

Table 4. MVP SW5 Options

The default setting may change depending upon processor speed enhancements.

3.2.1 CPUBUS

The CPUBUS switch is used to switch the processors between MPX and 60X bus protocols. 60X bus protocol is required for multiprocessing with the GT64260, while MPX or 60X may be used in single-processor configurations. For MP-equipped systems, switching the bus protocol to MPX prevents DINK from activating the second processor, which remains idling.

Table 5. MVP CPUBUS Switch

MPXBUS	Definition	Notos	
SW5-8	Definition	Notes	
On	Select MPX Bus Protocol	For single-processor only.	
Off	Select 60X Bus Protocol	Normal (required for MP-support).	

Note that a separate configuration switch, GTBUS, must be selected to put the GT64260 in MPXBus or 60XBus mode as well. Do not change one without changing the other.

3.2.2 SSCGEN

The SSCGEN switch is used to enable the spread-spectrum modulation of the clock generator.

SSCGEN	Definition	Notes	
SW5-6		Notes	
On	Enable spread-spectrum clock generation	Modulate clock by -1.25%	
Off	Disable SSCG	Normal	

Table 6. MVP SSCGEN Switch

The SSCG option is for test purposes only. It modulates the system clock downward -1.25%. While the system is expected to operate fully, there is a slight decrease in performance due to the slowed clock.

3.2.3 pPLL

The pPLL switches are used to select the bus-to-core frequency multiplier PLL for the primary (startup) processor. The switch settings below called pPLL(0:4) follow the PLL settings table of the MPC745X hardware specification, where pPLL(0:4) is the same as [PLL_EXT plus PLL_CFG(0:3)], in order. To set a bit to "0", set the switch "ON".

pPLL(0:4): SW5-			SW5	-	100 MHz Bus
1	2	3	4	5	Definition
On	Off	On	Off	Off	5.0X - 500 MHz
On	Off	On	Off	Off	5.5X - 550 MHz
On	Off	Off	On	Off	6.0X - 600 MHz
On	On	Off	On	Off	6.5X - 650 MHz
On	On	On	Off	On	7.0X - 700 MHz
On	On	On	On	Off	7.5X - 750 MHz
On	Off	Off	On	On	8.0X - 800 MHz
Off	On	Off	Off	Off	9.0X - 900 MHz

Table 7. MVP pPLL Switches

Any valid PLL setting in the hardware specification may be used, provided it meets any restrictions of the hardware specification (i.e. if new PLL settings are added to a hardware spec, they may be used here).

3.3 SW6 Options

SW6 is located near the secondary processor heatsink, near the USB ports. This switch controls the PLL settings for the secondary (non-booting) CPU, as well as some memory configuration options. SW6 controls the features described in Table 8.

Switch	Name	Definition	Default
8	ROMMODE	Flash Selection	8 -
7			7 -
6	REGE	Registered SDRAM Enable	6 -

Table 8. MVP SW6 Options

Switch	Name	Definition	Default
1-5	sPLL(0:4)	CPU #2 PLL Code	5 -
			4 -
			3 -
			2 -
			1 -

Table 8. MVP SW6 Options

The default setting may change depending upon processor speed enhancements.

3.3.1 ROMMODE

The ROMMODE switches select the connections between the GT64260 boot and device chip selects (\overline{BOOTCS} and $\overline{DCS3}$, respectively) and the two flash arrays and the PromJet header. Different ROMMODE settings allow simultaneous use of both flash arrays, or selective replacement of one of the arrays with the PromJet header allowing for quick download of embedded software (such as DINK or OS boot code).

MPXBUS	MPXBUS	Definition	Notes	
SW6-8	SW6-7	Definition	Notes	
On	On	Boot from boot	Normal	
Off	On	Boot from aux	-	
On	Off	Boot from PromJet	-	
Off	Off	Boot from boot, PromJet is aux	-	

Table 9. MVP ROMMODE Switch

To run DINK, both switches must be on. It is recommended that user code be stored in the auxiliary flash, so that DINK is always available for system recovery.

3.3.2 REGE

The REGE switch is used to select registered-mode SDRAM. This switch asserts REGE to the SDRAM DIMMs, enabling registered mode, and asserts MPP port 25 (so software can set required bits in the SDRAM control registers).

Table 10. MVP REGE Switch

MPXBUS	Definition	Notes
SW6-6	Definition	notes
On	Standard SDRAM DIMMs	Normal
Off	Registered SDRAM DIMMs	-

Note: DINK does not support registered SDRAM DIMMs as of version 12.3. Instead it uses this switch to select between high (6/2/2/2) and low memory loads (3/1/1/1). The former may be necessary if two highly-loaded SDRAM DIMMs are installed.

3.3.3 sPLL

The sPLL switches are used to select the bus-to-core frequency multiplier PLL for the secondary (non-startup) processor. The switch settings below called sPLL(0:4) follow the PLL settings table of the MPC745X hardware specification, where sPLL(0:4) is the same as [PLL_EXT plus PLL_CFG(0:3)], in order. To set a bit to "0", set the switch "ON".

sPLL(0:4) : SW6-			SW6	;-	100 MHz Bus
1	2	3	4	5	Definition
On	Off	On	Off	Off	5.0X - 500 MHz
On	Off	On	Off	Off	5.5X - 550 MHz
On	Off	Off	On	Off	6.0X - 600 MHz
On	On	Off	On	Off	6.5X - 650 MHz
On	On	On	Off	On	7.0X - 700 MHz
On	On	On	On	Off	7.5X - 750 MHz
On	Off	Off	On	On	8.0X - 800 MHz
Off	On	Off	Off	Off	9.0X - 900 MHz

Table 11. MVP sPLL Switches

Any valid PLL setting in the hardware specification may be used, provided it meets any restrictions of the hardware specification (i.e. if new PLL settings are added to a hardware spec, they may be used here).

3.4 SW4 Options

SW4 is located near the flash headers, adjacent to the ethernet ports. This switch controls the GT64260 modes described in Table 12.

Switch	Name	Definition	Default
8	reserved	reserved	8 -
7			7 -
6			6 -
5	reserved	reserved	5 -
4	GTBUS	GT64260 Bus Mode	4 -
3	reserved	reserved	3 -
2	ROM_WP	Flash Write Protect	2 -
1	reserved	reserved	1-

Table 12. MVP SW4 Options

3.4.1 GTBUS

The GTBUS switch is used to switch the GT64260 between MPX and 60X bus protocols. 60X bus protocol is required for multiprocessing with the GT64260, while MPX or 60X may be used in single-processor

configurations. For MP-equipped systems, switching the bus protocol to MPX prevents DINK from activating the second processor, which remains idling.

MPXBUS	Definition	Notos	
SW4-4	Definition	Notes	
On	Select 60X Bus Protocol	Normal (required for MP-support).	
Off	Select MPX Bus Protocol	For single-processor only.	

Table 13. MVP GTBUS Switch

Note that a separate configuration switch, CPUBUS, must be selected to put the processor in MPXBus or 60XBus mode as well. Do not change one without changing the other.

Note that GTBUS is the opposite sense of CPUBUS, so the two switches should always be set oppositely.

3.4.2 ROM_WP

The ROM_WP switch is used to write-protect the local flash devices. If set, writes to the devices will be ignored.

MPXBUS	Definition	Notes
SW4-2		Notes
On	Flash is write-protected.	-
Off	Flash may be written to.	Normal

Table 14. MVP ROM_WP Switch

Note that if flash is write-protected, the DINK flash programming algorithm cannot detect the flash device type, so it will produce erroneous errors.

4 Programmers Model

This section describes support information which may be useful to hardware or software designers who are using MVP.

4.1 Address Map

Table 15.shows the general address map of the MVP, and Table 15 shows the specific location of ISA/PCI I/O addresses.

START	END	Definition	Notes
0000_0000	13FF_FFFF	SDRAM	
1400_0000	14FF_FFFF	GT64260 registers	1
1500_0000	1DFF_FFFF	SDRAM	
1E00_0000	1EFF_FFFF	sPCI IO space	2
1F00_0000	1FFF_FFFF	SDRAM	
2000_0000	F0FF_FFFF	unused	
F100_0000	F1FF_FFFF	GT64260 registers	3
F200_0000	FDFF_FFFF	unused	
FE00_0000	FEFF_FFFF	Alternate flash space	
FF00_0000	FFFF_FFFF	Boot flash space	

Table 15. Global Address Map

NOTES:

1. Optional, obsolete GT64260 register space.

2. Used by DINK; requires programming of GT64260 registers.

3. Default GT64260 register space.

The detailed address map in Table 16 assumes that the PnP devices have not been changed from the default locations.

Start	End	Mode	Register	Notes
1E00_0000		R/W	DMA Channel 0 Base/Current Address	
1E00_0001		R/W	DMA Channel 0 Base/Current Word	
1E00_0002		R/W	DMA Channel 1 Base/Current Address	
1E00_0003		R/W	DMA Channel 1 Base/Current Word	
1E00_0004		R/W	DMA Channel 2 Base/Current Address	
1E00_0005		R/W	DMA Channel 2 Base/Current Word	
1E00_0006		R/W	DMA Channel 3 Base/Current Address	
1E00_0007		R/W	DMA Channel 3 Base/Current Word	
1E00_0008		R	DMA Controller 1 Status	
		W	DMA Controller 1 Command	
1E00_0009		W	DMA Controller 1 Request	
1E00_000A		W	DMA Controller 1 Mask	

Table 16. Detailed ISA I/O Address Map

Table 16. Detailed ISA I/O Address Map

Start	End	Mode	Register	Notes
1E00_000B		W	DMA Controller 1 Mode	
1E00_000C		W	DMA Controller 1 Clear Byte Pointer	
1E00_000D		W	DMA Controller 1 Master Clear	
1E00_000E		W	DMA Controller 1 Clear Mask	
1E00_000F		W	DMA Controller 1 Write All Mask	
1E00_0010	FE00_001F		unassigned	
1E00_0020		R/W	PIC 1 Command	
1E00_0021		R/W	PIC 1 Command	
1E00_0022	FE00_003F		unassigned	
1E00_0040		R/W	Counter 0	
1E00_0041		R/W	Counter 1	
1E00_0042		R/W	Counter 2	
1E00_0043		W	Timer/Counter Control	
1E00_0044	FE00_005F		unassigned	
1E00_0060		R/W	Keyboard Controller Data	1
1E00_0061		R/W	NMI Status/Control	
1E00_0062	FE00_0063		unassigned	
1E00_0064		R/W	Keyboard Controller Command	1
1E00_0065	FE00_006F		unassigned	
1E00_0070		R/W	RTC/APC Index	1
	"	W	RTC Index (shadow)	
1E00_0071	FE00_0077		unassigned	
1E00_0078	FF80_0079	R/W	BIOS Timer	
1E00_007A	FF80_007B	R/W	BIOS Timer Reserved	
1E00_007C	FE00_007F		unassigned	
1E00_0080		-	DMA Reserved Page	
1E00_0081		R/W	DMA Memory Page 2	
1E00_0082		R/W	DMA Memory Page 3	
1E00_0083		R/W	DMA Memory Page 1	
1E00_0084	FF80_0086	-	DMA Reserved Page	
1E00_0087		R/W	DMA Memory Page 0	
1E00_0088		-	DMA Reserved Page	
1E00_0089		R/W	DMA Memory Page 6	
1E00_008A		R/W	DMA Memory Page 7	
1E00_008B		R/W	DMA Memory Page 5	
1E00_008C	FF80_008E	-	DMA Reserved Page	
1E00_008F	FE00_0091		unassigned	
1E00_0092		R/W	Port 92: System Reset	
1E00_0093	FE00_009F		unassigned	
1E00_00A0		R/W	PIC 2 Command	
1E00_00A1		R/W	PIC 2 Command	

Start	End	Mode	Register	Notes
1E00_00A2	FE00_00BF		unassigned	
1E00_00C0		R/W	DMA Channel 4 Base/Current Address	
1E00_00C1		R/W	DMA Channel 4 Base/Current Word	
1E00_00C2	FE00_00C3		unassigned	
1E00_00C4		R/W	DMA Channel 5 Base/Current Address	
1E00_00C5			unassigned	
1E00_00C6		R/W	DMA Channel 5 Base/Current Word	
1E00_00C7			unassigned	
1E00_00C8		R/W	DMA Channel 6 Base/Current Address	
1E00_00C9			unassigned	
1E00_00CA		R/W	DMA Channel 6 Base/Current Word	
1E00_00CB			unassigned	
1E00_00CC		R/W	DMA Channel 7 Base/Current Address	
1E00_00CD			unassigned	
1E00_00CE		R/W	DMA Channel 7 Base/Current Word	
1E00_00CF			unassigned	
1E00_00D0		R	DMA Controller 2 Status	
		"W	DMA Controller 2 Command	
1E00_00D3			unassigned	
1E00_00D2		W	DMA Controller 2 Request	
1E00_00D3			unassigned	
1E00_00D4		W	DMA Controller 2 Mask	
1E00_00D5			unassigned	
1E00_00D6		W	DMA Controller 2 Mode W	
1E00_00D7			unassigned	
1E00_00D8		W	DMA Controller 2 Clear Byte Pointer	
1E00_00D9			unassigned	
1E00_00DA		W	DMA Controller 2 Master Clear	
1E00_00DB			unassigned	
1E00_00DC		W	DMA Controller 2 Clear Mask	
1E00_00DD			unassigned	
1E00_00DE		W	DMA Controller 2 Write All Mask	
1E00_00DF	FE00_00EF		unassigned	
1E00_00F0		W	Coprocessor Error	
1E00_00F1	FE00_016F		unassigned	
1E00_0170	FE00_0177	R/W	IDE Channel 2 Primary	
1E00_0178	FE00_01EF		unassigned	
1E00_01F0	FE00_01F7	R/W	IDE Channel 1 Primary	
1E00_01F8	FE00_0375		unassigned	
1E00_0376		R/W	IDE Channel 2 Secondary	
1E00_0377	FE00_03F5		unassigned	

Table 16. Detailed ISA I/O Address Map

Table 16.	Detailed	ISA I/O	Address	Map

Start	End	Mode	Register	Notes
1E00_03F6		R/W	IDE Channel 1 Secondary	
1E00_03F7	FE00_0409		unassigned	
1E00_040A		R	DMA Scatter/Gather Interrupt Status	
1E00_040B		W	DMA Controller 1 Extended Mode	
1E00_040C	FE00_0414		unassigned	
1E00_0415		W	DMA Scatter/Gather Channel 5 Command	
1E00_0416		W	DMA Scatter/Gather Channel 6 Command	
1E00_0417		W	DMA Scatter/Gather Channel 7 Command	
1E00_0418	FE00_041C		unassigned	
1E00_041D		R	DMA Scatter/Gather Channel 5 Status	
1E00_041E		R	DMA Scatter/Gather Channel 6 Status	
1E00_041F		R	DMA Scatter/Gather Channel 7 Status	
1E00_0420	FE00_0433		unassigned	
1E00_0434	FE00_0437	R/W	DMA Scatter/Gather Channel 5 Table Pointer	
1E00_0438	FE00_043B	R/W	DMA Scatter/Gather Channel 6 Table Pointer	
1E00_043C	FE00_043F	R/W	DMA Scatter/Gather Channel 7 Table Pointer	
1E00_0440	FE00_0480		unassigned	
1E00_0481		R/W	DMA Page Register 2	
1E00_0482		R/W	DMA Page Register 3	
1E00_0483		R/W	DMA Page Register 1	
1E00_0484	FE00_0486		unassigned	
1E00_0487		R/W	DMA Page Register 0	
1E00_0488			unassigned	
1E00_0489		R/W	DMA Page Register 6	
1E00_048A		R/W	DMA Page Register 7	
1E00_048B		R/W	DMA Page Register 5	
1E00_048C	FE00_04CF		unassigned	
1E00_04D0		R/W	PIC 1 Interrupt Control	
1E00_04D1		R/W	PIC 2 Interrupt Control	
1E00_04D2	FE00_080F		unassigned	
1E00_0810		W	RTC CMOS RAM Protect 1	
1E00_0812		W	RTC CMOS RAM Protect 2	
1E00_0813	FEBF_FFFF		unassigned	

5 Development Issues

The following sections cover a few issues related to developing software on the MVP platform.

5.1 Code Development

Software can generally be developed on a Unix workstation or PC and downloaded to the MVP using the DINK serial S-record download facility, third-party COP controllers, or the PromJetTM device.

Refer to:

http://e-www.motorola.com/webapp/sps/design_tools/index_dt.jsp

for further details. There are several ways of doing this, depending on the resources available.

5.2 Code Download via PromJet

DINK provides serial download of S-record files and binary image file through a serial port. This can be slow for large images, so MVP provides an alternate way of debugging code via a Flash/ROM emulator, such as the PromJET from Emulation Technologies (http://www.emutec.com/pjetmain.html). MVP has two high-density 50-pin headers which can communicate with two 16-bit PromJet emulators. The following components are needed:

Qty	Part Number	Description
2	PJ-16M-85	PROMJet 16 MBit
2	OPT-BWS	Byte-Word-Sw to support 16Bit
2	CBL-FLEX	Flex Cable

Table 17. PromJet Components

Install one PromJet and cable to each header (J1 and J2). Connect the PC parallel port to the topmost (J2) and the second PromJet to the first. Set the download parameters to:

Settings	Value
Format	S-Record
Size (each)	256K
Offset	0
Swap	Yes
Flash	Off
Reset	On

Table 18. PromJet Settings for DINK

Set the ROMMODE switches to boot from the PromJet, and download DINK into the PromJet. If it starts up, the system has been properly configured and may be used to download other code.

A two pin header is provided near the PromJet headers. If pin 1 of the cable is connected to the $\overline{\text{RESET}}$ pin of either PromJet device, the system can be reset remotely and/or automatically when code is downloaded.

5.2.1 PromJet Offsets

The PromJet has the capability of limiting the apparent size of the PromJet. This can speed up downloads and more accurately reflect the target system, but makes offset setting tricky. In the previous section, the PromJets were set to 256K, for a total of 512K. Why was the offset '0'? Because the image is 'replicated' when smaller than the target size. Code at 0xFFF0_0100 is also found at

Had the size been set to 512K, code would not have been replicated, but since it is 512K from the top, the vectors would be placed at 0xFFE0_0100 -- incorrect. So if the size were set to 512K, offset must be set to 0x10_0000. Then DINK would reside at 0xFFF0_0000-0xFFFF_FFFF and the area from 0xFFE0_0000-0xFEFF_FFFF would be available for user code.

In a similar manner, a size of 1M would require an offset of $0x30_{0000}$ to get the vectors in the proper position (note that the changes are all powers-of-two, or masks thereof).

Address	Size = 256K	Size = 512K	Size = 1M	Size = 2M	Size = 4M	Size = 8M
FFF8_0000						
FFF0_0000						
FFE8_0000						
FFE0_0000						
FFD8_0000						
FFD0_0000						
FFC8_0000						
FFC0_0000						
FFB8_0000						
FFB0_0000						
FFA8_0000						
FFA0_0000						
FF98_0000						
FF90_0000						
FF88_0000						
FF80_0000		1				

Table 19. PromJet Offsets

Each "block" in the above table represents a copies of the same downloaded image. Only the "8M" setting fills the entire space ($2 \times 8M = 16MB$, the space allocated for each flash array and corresponding to the two Am29LV641 64MBit/8MB flash devices used on MVP).

5.3 User Code in Flash

DINK has the capability of saving user code to the flash. Generally, user code is written to the auxiliary flash array. The main flash array contains DINK and can be overwritten; however, if DINK is not present it may be difficult to recover and will make it difficult for you to get support from the RISC Applications group.

To save an image to the auxiliary flash:

Saving Bootable Images to Flash

1. Issue the command:

fu -l <src_addr> fef00000 100000

where "src_addr" is the address of your code, which could be an SDRAM address (e.g. "100000") where code was downloaded as an S-record, or a flash address (e.g. "fff00000") which contains code (possibly in an PromJet device).

 If you want to boot your code through DINK (i.e. DINK initializes the system, enter the following: "ENV BOOT=0xFEF00000"
 In the second entry of draws for your processing

or whatever is the correct entry address for your program.

5.4 Saving Bootable Images to Flash

While the above procedure saves data to flash, two additional factors must be considered if the goal is to have the system boot the code immediately after reset. Motorola implementations of the PowerPC architecture begin executing code at 0xFFF0_0100, so valid reset vector.

If the compiler/linker places the exception vectors at the start of the code image, as is the case with DINK, then the code must be in memory starting at 0xFFF0_0100. When programming to the auxiliary space and then swapping flash banks, the equivalent address is 0xFEF0_0100.

Since the top of memory is at 0xFFFF_FFFF, a code image produced this way cannot be larger than 1MB.

Address as Main Flash	Address as Aux. Flash	Size	
0xFFF0_0000	0xFEF0_0000	1MB	Boot vectors must be loaded here!
0xFFE0_0000	0xFEE0_0000	1MB	
0xFFD0_0000	0xFED0_0000	1MB	
0xFFC0_0000	0xFEC0_0000	1MB	
0xFFB0_0000	0xFEB0_0000	1MB	
0xFF10_0000	0xFE10_0000	1MB	
0xFF00_0000	0xFE00_0000	1MB	Bottom of flash areas.

Table 20. Aliased Flash Addresses

To write larger images, the vectors must in the proper position such that the reset vector code ends up at 0xFFF00100. For example, a 2MB program could be 'flashed' at address 0xFFE0_0000 or 0xFEE0_0000 (depending on how you do it), and this program must be linked such that the vectors start 1MB within the image.

Most linkers are capable of positioning special sections at dedicated addresses. Each linker is a little different, so consult the compiler vendor for details.

The second issue to consider is that DINK performs a great deal of setup; if you have developed code and run it through DINK, you might not have all needed system initialization. For independant bootable images, you will have to provide the proper system initialization code.

5.5 Upgrading DINK

Occasionally, DINK is upgraded with new facilities and bug fixes. DINK has the ability to update itself using the "fupdate" command. To update DINK with a new version, follow this sequence:

- 1. Obtain the S-record or binary image of the DINK upgrade. Be sure to select the MVP version, as versions for Sandpoint or Excimer will not run. DINK images are available in the "Design Tools" section of the Motorola 32-bit embedded processors webpage.
- 2. Consider writing DINK to the auxiliary flash so that in the event of an error the previous version of DINK will be available. If DINK is erased there is no way to restore it other than with an external PromJet header or through a COP controller.
- Download the S-record file to the Sandpoint platform using the command: dl -k -o 100000 with the terminal program, in the usual manner. You can also convert it to binary for faster download, as described in the DINK manual).
- 4. Issue the command:

fu -h 100000 fff00000 7ff00 if writing to the standard flash bank, and fu -h 100000 fef00000 7ff00 if writing to the auxiliary flash bank.

Restart, and the new version of DINK should activate (switch to the auxiliary bank if needed).

6 Other Information

6.1 Null Modem Cable

DINK requires only a simple null-modem cable, with no flow control. Figure 4 shows a simple example.

6.2 Reference Documentation

Table 21 describes reference documentation which may be useful for understanding the operation of the Sandpoint or an attached MPPMC card:

Document	Number/Reference
Sandpoint 3 Technical Summary Schematics Errata	http://www.mot.com/SPS/PowerPC/teksupport/r efdesigns/sandpoint.html
MPPMC Schematics Documentation Errata	http://www.mot.com/SPS/PowerPC/teksupport/r efdesigns/sandpoint.html
MPC8240 User's Manual	http://e-www.motorola.com/brdata/PDFDB/MIC ROPROCESSORS/32_BIT/POWERPC/MPC8 2XX/MPC8240UM.pdf
MPC107 User's Manual	http://e-www.motorola.com/brdata/PDFDB/MIC ROPROCESSORS/32_BIT/POWERPC/MPC1 XX/MPC107UM.pdf
DINK User's Manual and code updates	http://www.mot.com/SPS/PowerPC/teksupport/t ools/DINK32/dinkindex.htm
Draft Standard Physical and Environmental Layers for Processor PCI Mezzanine Cards: PrPMC	http://www.vita.com/vso/
PCI 2.1 Specification	http://www.pcisig.com
Draft Standard Physical and Environmental Layers for PCI Mezzanine Cards: PMC	IEEE P1386.1/Draft 2.0 04-APR-1995

Table 21. Reference Documentation

Document	Number/Reference
Draft Standard for a Common Mezzanine Card Family: CMC	IEEE P1386/Draft 2.0 04-APR-1995
Winbond W83C553 Datasheet	http://www.winbond.com.tw/sheet/w83c553f.pdf or http:///www.winbond.com.tw/
National Semi. PC87307/97307 Datasheet	http://www.national.com/pf/PC/PC97307.html or http:///www.national.com/design/

Table 21. Reference Documentation

6.3 Glossary

Table 22 explains some terminology used in this document:

Table 22. Terminology

Term	Definition
ATA	AT (PC format) Attach - protocol for communicating over IDE bus.
ATX	Form factor for chassis.
BBRAM	Battery-Backed Random Access Memory
IDE	Integrated Device Electronics common disk interface signalling.
MPPMC	Motorola Processor PCI Mezzanine Card an superset of the VITA PrPMC specification proposal which adds PCI arbitration.
PCI	Peripheral Connect Interface
PMC	PCI Mezzanine Card a small form-factor PCI-2.0 compliant daughtercard standard.
PPMC	Processor PCI Mezzanine Card an early name for PrPMC; no longer used.
PrPMC	Processor PCI Mezzanine Card an extension to the IEEE1386 PMC standard adding host-related functions and PCI-2.1 compatibility (was formerly called PPMC).
RAM	Are you kidding?
RTC	Real Time Clock
SIO	System I/O (or SuperIO) - National Semi. PC-I/O device.
WB	WinBond, manufacturer of the ISA/IDE interface.

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217 1-303-675-2140 or 1-800-441-2447

JAPAN:

Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan 81-3-3440-3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong 852-26668334

TECHNICAL INFORMATION CENTER:

1-800-521-6274

HOME PAGE:

http://www.motorola.com/semiconductors

DOCUMENT COMMENTS:

FAX (512) 933-2625, Attn: RISC Applications Engineering Information in this document is provided solely to enable system and software implementers to use Motorola products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office. digital dna is a trademark of Motorola, Inc. All other product or service names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. © Motorola, Inc. 2001

MVPX2UM/D