
A product of SEGGER Microcontroller GmbH & Co. KG

emLib

Document: UM12001
Software version: 1.0

Revision: 0
Date: July 17, 2013

User & Reference Guide

Library collection

www.segger.com

2

Disclaimer

Specifications written in this document are believed to be accurate, but are not guar-
anteed to be entirely free of error. The information in this manual is subject to
change for functional or performance improvements without notice. Please make sure
your manual is the latest edition. While the information herein is assumed to be
accurate, SEGGER Microcontroller GmbH & Co. KG (SEGGER) assumes no responsibil-
ity for any errors or omissions. SEGGER makes and you receive no warranties or con-
ditions, express, implied, statutory or in any communication with you. SEGGER
specifically disclaims any implied warranty of merchantability or fitness for a particu-
lar purpose.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without
the prior written permission of SEGGER. The software described in this document is
furnished under a license and may only be used or copied in accordance with the
terms of such a license.

© 2013 SEGGER Microcontroller GmbH & Co. KG, Hilden / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respec-
tive holders.

Contact address

SEGGER Microcontroller GmbH & Co. KG

In den Weiden 11
D-40721 Hilden

Germany

Tel.+49 2103-2878-0
Fax.+49 2103-2878-28
E-mail: support@segger.com
Internet: http://www.segger.com
UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

3

Manual versions

This manual describes the current software version. If any error occurs, inform us
and we will try to assist you as soon as possible.
Contact us for further information on topics or routines not yet specified.

Print date: July 17, 2013

Software Revision Date By Description
1.00 0 130321 JL Initial release
UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

4

UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

5

About this document
Assumptions

This document assumes that you already have a solid knowledge of the following:

� The software tools used for building your application (assembler, linker, C com-
piler)

� The C programming language
� The target processor
� DOS command line

If you feel that your knowledge of C is not sufficient, we recommend The C Program-
ming Language by Kernighan and Richie (ISBN 0-13-1103628), which describes the
standard in C-programming and, in newer editions, also covers the ANSI C standard.

How to use this manual
This manual explains all the functions and macros that the product offers. It assumes
you have a working knowledge of the C language. Knowledge of assembly program-
ming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for

Body Body text.

Keyword
Text that you enter at the command-prompt or that appears on the
display (that is system functions, file- or pathnames).

Parameter Parameters in API functions.

Sample Sample code in program examples.

Sample comment Comments in programm examples.

Reference Reference to chapters, sections, tables and figures or other docu-
ments.

GUIElement Buttons, dialog boxes, menu names, menu commands.

Emphasis Very important sections.

Table 1.1: Typographic conventions
UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

6

EMBEDDED SOFTWARE
(Middleware)

emWin
Graphics software and GUI
emWin is designed to provide an effi-
cient, processor- and display control-
ler-independent graphical user
interface (GUI) for any application that
operates with a graphical display.

embOS
Real Time Operating System
embOS is an RTOS designed to offer
the benefits of a complete multitasking
system for hard real time applications
with minimal resources.

embOS/IP
TCP/IP stack
embOS/IP a high-performance TCP/IP
stack that has been optimized for
speed, versatility and a small memory
footprint.

emFile
File system
emFile is an embedded file system with
FAT12, FAT16 and FAT32 support. Var-
ious Device drivers, e.g. for NAND and
NOR flashes, SD/MMC and Compact-
Flash cards, are available.

USB-Stack
USB device/host stack
A USB stack designed to work on any
embedded system with a USB control-
ler. Bulk communication and most stan-
dard device classes are supported.

SEGGER TOOLS

Flasher
Flash programmer
Flash Programming tool primarily for micro con-
trollers.

J-Link
JTAG emulator for ARM cores
USB driven JTAG interface for ARM cores.

J-Trace
JTAG emulator with trace
USB driven JTAG interface for ARM cores with
Trace memory. supporting the ARM ETM (Embed-
ded Trace Macrocell).

J-Link / J-Trace Related Software
Add-on software to be used with SEGGER�s indus-
try standard JTAG emulator, this includes flash
programming software and flash breakpoints.

SEGGER Microcontroller GmbH & Co. KG develops
and distributes software development tools and ANSI C
software components (middleware) for embedded sys-
tems in several industries such as telecom, medical
technology, consumer electronics, automotive industry
and industrial automation.

SEGGER�s intention is to cut software development time
for embedded applications by offering compact flexible and easy to use middleware,
allowing developers to concentrate on their application.

Our most popular products are emWin, a universal graphic software package for embed-
ded applications, and embOS, a small yet efficient real-time kernel. emWin, written
entirely in ANSI C, can easily be used on any CPU and most any display. It is comple-
mented by the available PC tools: Bitmap Converter, Font Converter, Simulator and
Viewer. embOS supports most 8/16/32-bit CPUs. Its small memory footprint makes it
suitable for single-chip applications.

Apart from its main focus on software tools, SEGGER develops and produces programming
tools for flash micro controllers, as well as J-Link, a JTAG emulator to assist in develop-
ment, debugging and production, which has rapidly become the industry standard for
debug access to ARM cores.

Corporate Office:
http://www.segger.com

United States Office:
http://www.segger-us.com
UM12001 User & Reference Guide for © 2013 SEGGER Microcontroller GmbH & Co. KG

7

Table of Contents
1 Introduction to emLib ...9

1.1 What is emLib ...10
1.2 Features...10
1.3 Available modules..10
1.3.1 Cryptographic modules...10

2 AES..11

2.1 What is AES? ..12
2.2 Using emLib AES ...13
2.3 AES API functions ..14
2.4 Example codes ..26
2.5 Sample applications ...30
2.5.1 AESCrypt..31
2.5.2 AESSpeedtest ...32
2.5.3 AESValidate ..33
2.6 Performance and memory footprint ..34
2.6.1 Performance test ...34

3 DES..35

3.1 What is DES? ..36
3.2 Usind emLib DES ...37
3.3 DES API functions..38
3.4 Example codes ..45
3.5 Sample applications ...47
3.5.1 DESSpeedtest ...48
3.5.2 DESValidate..49
3.6 Performance and memory footprint ..50
3.6.1 Performance test ...50
UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

8

UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

9

Chapter 1

Introduction to emLib
This chapter provides an introduction to emLib. It explains the basic concept behind
emLib and its modules.
UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

10 CHAPTER 1 Introduction to emLib
1.1 What is emLib
emLib is a collection of software modules for different purposes. It currently includes
AES and DES encryption. Modules for CRC, compression and aysmmetric encryption/
decryption are planned.
The software is designed for portability to any device. The modules can be used in PC
applications, as well as on embedded target devices.
emLib is optimized for speed performance and a small memory footprint.
The sources are completely written in ANSI-C and MISRA-C 2004 compliant.
Validation code for the APIs using standard test patterns is included.

1.2 Features
emLib is written in ANSI-C and can be used on virtually any CPU.

Some features of emLib:

� Easy to integrate by using a simple API.
� Same modules and same API can be used in PC programs as well as on embed-

ded targets.
� Sample applications for tests and validation of the modules included.

1.3 Available modules

1.3.1 Cryptographic modules
AES module

Implemention of the AES 128 bit and 256 bit algorithm including chained block pro-
cessing for en-/decryption of more than 16 Byte of data.

DES module

Implementation of the DES (56 bit) algorithm, also including CBC for processing
more than 8 Byte of data.
The DES functions can be called multiple times to achieve a higher security (TDES,
tripel-DES).
UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

11
Chapter 2

AES
The emLib AES module allows encryption and decryption of data using AES, the
Advanced Encryption Standard as standardized by NIST in 2001. This chapter
describes the AES API functions and shows their usage based on example codes.
UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

12 CHAPTER 2 AES
2.1 What is AES?
The Advanced Encryption Standard, short AES, is a symmetric-key algorithm used for
encryption an decryption of data. It was established by the U.S. National Institute of
Standards and Technology (NIST) and is the standard for encrypting electronic data
since 2001. AES supersedes the Data Encryption Standard (DES).

AES is a substitution-permutation network block cipher using a fixed block size of
128 bits and a key size of 128, 192 or 256 bits.
The data block is stored in a 4-row matrix with a cell size of 8 bits. Based on the key
length, these blocks are transformed using parts of the key in a number of rounds.
AES 128 uses 10 rounds, AES 256 14. Therefore encryption with AES 256 is ~40%
slower than AES 128.
In each round a round key is derived from the original key. Afterwards each byte is
non-linear substituted according to a lookup table, the rows of the data matrix are
shifted cyclically and mixed.

emLib AES uses a key of 128 or 256 bits to encrypt a block of 16 bytes of data at a
time. To optimize the performance of the algorithms the generation of the round keys
can be done before the actual encryption or decryption and used more than one time.
For the substitution and mixing steps, emLib can be built with pre-calculated lookup
tables, to increase the speed performance. emLib can also be built without these
tables, to save memory.

AES can also be used in cipher block chaining (CBC) mode to process a multiple of 16
Bytes.
In CBC mode every chunk of 16 Bytes is XOR linked with the result of the previous
encryption (the cipher text), before being encrypted. To decrypt one block, all previ-
ous blocks have to be known.
For the encryption of the first block an initialization vector which will be linked with
the block, can be used to make sure the first block cannot be brute-force decrypted
by comparing it to common first data blocks.
UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

13
2.2 Using emLib AES
The emLib AES module has a simple yet powerful API. It can be easily integrated into
an existing application.
The code is completely written in ANSI-C and MISRA-C compliant.

All functionality can be verified with standard test patterns using the Validation API
functions. The functions for generating the tables used for higher optimization levels
are also included for full transparency.

The module can be built with configurable optimizations to fit any requirement of
high speed or low memory usage.

To simply encrypt or decrypt data the application would only need to call one func-
tion.
If more than one block needs to be processed with the same key, a context contain-
ing the round keys calculated from the key can be prepared and directly used by the
encryption and decryption functions. For more than one call of these functions this
method results in a slightly higher processing speed.

The following section lists and describes the available API functions of the emLib AES
module.
UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

14 CHAPTER 2 AES
2.3 AES API functions
The table below lists the available API functions.

Function Description

AES128_CBC_Decrypt() Decrypts data with AES 128 Bit using CBC.
AES128_CBC_Encrypt() Encrypts data with AES 128 Bit using CBC.
AES128_Decrypt() Decrypts 16 Bytes with AES 128 Bit.
AES128_Encrypt() Encrypts 16 Bytes with AES 128 Bit.
AES128_Prepare() Prepares the context for de-/encryption.
AES256_CBC_Decrypt() Decrypts data with AES 256 Bit using CBC.
AES256_CBC_Encrypt() Encrypts data with AES 256 Bit using CBC.
AES256_Decrypt() Decrypts 16 Bytes with AES 256 Bit.
AES256_Encrypt() Encrypts 16 Bytes with AES 256 Bit.
AES256_Prepare() Prepares the context for de-/encryption.
AES_Validate() Test function for validation of AES.

Table 2.1: AES API function overview
UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

15
2.3.1 AES128_Prepare()
Description

Prepares the context depending on the key used for AES 128bit de-/encryption.

Prototype
void AES128_Prepare (AES_CONTEXT * pContext,
 const U8 * pKey);

Additional information

The key has to be 128 bit (16 Byte) long.

Example

See AES 128bit en-/decryption of 16 Bytes on page 26

Parameter Description

pContext Pointer to the context for de-/encryption.
pKey Pointer to the buffer which holds the encryption key (128bit).

Table 2.2: AES128_Prepare() parameter list
UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

16 CHAPTER 2 AES
2.3.2 AES128_Encrypt()
Description

Encrypts a block of 16 Bytes (128 bit) using a context prepared with a 128 bit key.

Prototype
void AES128_Encrypt (AES_CONTEXT * pContext,
 U8 * pDest,
 const U8 * pSrc);

Additional information

The data which will be encrypted has to be 16 Bytes.

For more than 16 Bytes see AES128_CBC_Encrypt() on page 21.

Example

See AES 128bit en-/decryption of 16 Bytes on page 26

Parameter Description

pContext Pointer to the previously prepared context.
pDest Pointer to the buffer which will hold the encrypted data.
pSrc Pointer to the buffer which holds the unencrypted data.

Table 2.3: AES128_Encrypt() parameter list
UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

17
2.3.3 AES128_Decrypt()
Description

Decrypts a block of 16 Bytes (128 bit) using a context prepared with a 128 bit key.

Prototype
void AES128_Decrypt (AES_CONTEXT * pContext,
 U8 * pDest,
 const U8 * pSrc);

Additional information

The key has to be the same as the one used for encryption.

The data which will be decrypted has to be 16 Bytes.

For more than 16 Bytes see AES128_CBC_Decrypt() on page 22.

Example

See AES 128bit en-/decryption of 16 Bytes on page 26

Parameter Description

pContext Pointer to the previously prepared context.
pDest Pointer to the buffer which will hold the decrypted data.
pSrc Pointer to the buffer which holds the encrypted data.

Table 2.4: AES128_Decrypt() parameter list
UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

18 CHAPTER 2 AES
2.3.4 AES256_Prepare()
Description

Prepares the context depending on the key used for AES 256bit de-/encryption.

Prototype
void AES256_Prepare (AES_CONTEXT * pContext, const U8 * pKey);

Additional information

The key has to be 256 bit (32 Byte) long.

Example

See AES 256bit en-/decryption of 16 Bytes on page 28

Parameter Description

pContext Pointer to the context for de-/encryption.
pKey Pointer to the buffer which holds the encryption key (256bit).

Table 2.5: AES256_Prepare() parameter list
UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

19
2.3.5 AES256_Encrypt()
Description

Encrypts a block of 16 Bytes (128 bit) using a context prepared with the 256 bit key.

Prototype
void AES128_Encrypt (AES_CONTEXT * pContext, U8 * pDest, const U8 * pSrc);

Additional information

The data which will be encrypted has to be 16 Bytes.

For more than 16 Bytes see AES256_CBC_Encrypt() on page 23.

Example
See AES 256bit en-/decryption of 16 Bytes on page 28

Parameter Description

pContext Pointer to the previously prepared context.
pDest Pointer to the buffer which will hold the encrypted data.
pSrc Pointer to the buffer which holds the unencrypted data.

Table 2.6: AES256_Encrypt() parameter list
UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

20 CHAPTER 2 AES
2.3.6 AES256_Decrypt()
Description

Decrypts a block of 16 Bytes (128 bit) using a context prepared with the 256 bit key.

Prototype
void AES128_Decrypt (AES_CONTEXT * pContext, U8 * pDest, const U8 * pSrc);

Additional information

The key has to be the same as the one used for encryption.

The data which will be decrypted has to be 16 Bytes.

For more than 16 Bytes see AES256_CBC_Decrypt() on page 24.

Example
See AES 256bit en-/decryption of 16 Bytes on page 28

Parameter Description

pContext Pointer to the previously prepared context.
pDest Pointer to the buffer which will hold the decrypted data.
pSrc Pointer to the buffer which holds the encrypted data.

Table 2.7: AES256_Decrypt() parameter list
UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

21
2.3.7 AES128_CBC_Encrypt()
Description

Encrypts data using cypher block chaining and a 128 bit key.

Prototype
void AES128_CBC_Encrypt (AES_CONTEXT * pContext, U8 * pDest, const U8 *
pSrc, int NumBytes, const U8 * pIV);

Additional information

The length of the data has to be a multiple of 16 bytes.

If pIV is NULL the first block will not be linked.

pDest and pSrc may be the same, if the plain data is not needed after encryption.

Example

See AES 128bit en-/decryption of 32 Bytes using CBC on page 27

Parameter Description

pContext Pointer to the previously prepared context.
pDest Pointer to the buffer which will hold the encrypted data.
pSrc Pointer to the buffer which holds the data.
NumBytes Number of Bytes which have to be encrypted
pIV Pointer to the buffer which holds the initialization verctor.

Table 2.8: AES128_CBC_Encrypt() parameter list
UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

22 CHAPTER 2 AES
2.3.8 AES128_CBC_Decrypt()
Description

Decrypts data using cypher block chaining and a 128 bit key.

Prototype
void AES128_CBC_Decrypt (AES_CONTEXT * pContext, U8 * pDest, const U8 *
pSrc, int NumBytes, const U8 * pIV);

Additional information

The key and the initialization vector have to be the same as used for encryption.

The length of the data has to be a multiple of 16 bytes.

If pIV is NULL the first block will not be linked.

pDest and pSrc must be different.

Example

See AES 128bit en-/decryption of 32 Bytes using CBC on page 27

Parameter Description

pContext Pointer to the previously prepared context.
pDest Pointer to the buffer which will hold the decrypted data.
pSrc Pointer to the buffer which holds the encrypted data.
NumBytes Number of Bytes which have to be decrypted
pIV Pointer to the buffer which holds the initialization verctor.

Table 2.9: AES128_CBC_Decrypt() parameter list
UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

23
2.3.9 AES256_CBC_Encrypt()
Description

Encrypts data using cypher block chaining and a 256 bit key.

Prototype
void AES128_CBC_Encrypt (AES_CONTEXT * pContext, U8 * pDest, const U8 *
pSrc, int NumBytes, const U8 * pIV);

Additional information

The length of the data has to be a multiple of 16 bytes.

If pIV is NULL the first block will not be linked.

pDest and pSrc may be the same, if the plain data is not needed after encryption.

Example

See AES 256bit en-/decryption of 32 Bytes using CBC on page 29

Parameter Description

pContext Pointer to the previously prepared context.
pDest Pointer to the buffer which will hold the encrypted data.
pSrc Pointer to the buffer which holds the data.
NumBytes Number of Bytes which have to be encrypted
pIV Pointer to the buffer which holds the initialization vector.

Table 2.10: AES256_CBC_Encrypt() parameter list
UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

24 CHAPTER 2 AES
2.3.10 AES256_CBC_Decrypt()
Description

Decrypts data using cypher block chaining and a 256 bit key.

Prototype
void AES128_CBC_Decrypt (AES_CONTEXT * pContext, U8 * pDest, const U8 *
pSrc, int NumBytes, const U8 * pIV);

Additional information

The key and the initialization vector have to be the same as used for encryption.

The length of the data has to be a multiple of 16 bytes.

If pIV is NULL the first block will not be linked.

pDest and pSrc must be different.

Example

See AES 256bit en-/decryption of 32 Bytes using CBC on page 29

Parameter Description

pContext Pointer to the previously prepared context.
pDest Pointer to the buffer which will hold the decrypted data.
pSrc Pointer to the buffer which holds the encrypted data.
NumBytes Number of Bytes which have to be decrypted
pIV Pointer to the buffer which holds the initialization vector.

Table 2.11: AES256_CBC_Decrypt() parameter list
UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

25
2.3.11 AES_Validate()
Description

This function can be used to test the AES implementation.

It en- and decrypts specified data and checks for valid output.

Prototype
int AES_Validate (void);

Return values

 0: O.K. No error.

<0: Error. The implementation is not working correctly.

Additional information

The data for the validation is taken from RFC 3062 (http://www.rfc-editor.org/rfc/
rfc3602.txt Chapter 4).
UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

26 CHAPTER 2 AES
2.4 Example codes

2.4.1 AES 128bit en-/decryption of 16 Bytes
This sample shows how to encrypt and afterwards decrypt 16 bytes of data with AES
and a 128 bit key.

#include “AES.h”

const U8 _aKey[16] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f};

const U8 _aPlaintext[16] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff};

int main() {
 U8 aEncrypted[16];
 U8 aDecrypted[16];
 AES_CONTEXT Context;
 //
 // Prepares the AES Context with _aKey
 //
 AES128_Prepare(&Context, &_aKey[0]);
 //
 // Encrypts the data from _aPlaintext and stores it in aEncrypted
 //
 AES128_Encrypt(&Context, &aEncrypted[0], &_aPlaintext[0]);
 //
 // Decrypts the data from aEncrypted and stores it in aDecrypted
 //
 AES128_Decrypt(&Context, &aDecrypted[0], &aEncrypted[0]);
 //
 // Check if aDecrypted is the same as _aPlaintext
 //
 if (memcmp(&aDecrypted[0], _aPlaintext, 16)) {
 return -1;
 }
 return 0;
}

UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

27
2.4.2 AES 128bit en-/decryption of 32 Bytes using CBC
This sample shows how to encrypt and afterwards decrypt 32 bytes of data with AES
and a 128 bit key using Cipher Block Chaining.

#include “AES.h”

const U8 _aKey[16] = { 0xc2, 0x86, 0x69, 0x6d, 0x88, 0x7c, 0x9a, 0xa0,
 0x61, 0x1b, 0xbb, 0x3e, 0x20, 0x25, 0xa4, 0x5a};

static const U8 _aIV[16] = { 0x56, 0x2e, 0x17, 0x99, 0x6d, 0x09, 0x3d, 0x28,
 0xdd, 0xb3, 0xba, 0x69, 0x5a, 0x2e, 0x6f, 0x58};

static const U8 _aPlaintext[32] = {
 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f};

static const U8 _aCiphertext[32] = {
 0xd2, 0x96, 0xcd, 0x94, 0xc2, 0xcc, 0xcf, 0x8a,
 0x3a, 0x86, 0x30, 0x28, 0xb5, 0xe1, 0xdc, 0x0a,
 0x75, 0x86, 0x60, 0x2d, 0x25, 0x3c, 0xff, 0xf9,
 0x1b, 0x82, 0x66, 0xbe, 0xa6, 0xd6, 0x1a, 0xb1};

int main() {
 U8 aEnc[32];
 U8 aPlain[32];
 AES_CONTEXT Context;
 //
 // Prepare the context with _aKey
 //
 AES128_Prepare(&Context, &_aKey[0]);
 //
 // Encrypt the data of _aPlaintext
 // and compare it with the desired result.
 //
 AES128_CBC_Encrypt(&Context, &aEnc[0], &_aPlaintext[0], 32, &_aIV[0]);
 if (memcmp(&aEnc[0], &_aCiphertext[0], 32)) {
 return -1;
 }
 //
 // Decrypt the data of aEnc
 // and compare it with the previously used _aPlaintext
 //
 AES128_CBC_Decrypt(&Context, &aPlain[0], &aEnc[0], 32, &_aIV[0]);
 if (memcmp(&aPlain[0], &_aPlaintext[0], 32)) {
 return -1;
 }
 return 0; // AES 128 CBC works fine.
}

UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

28 CHAPTER 2 AES
2.4.3 AES 256bit en-/decryption of 16 Bytes
This sample shows how to encrypt and afterwards decrypt 16 bytes of data with AES
and a 256 bit key.

#include “AES.h”

const U8 _aKey[32] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f};

const U8 _aPlaintext[16] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff};

int main() {
 U8 aEncrypted[16];
 U8 aDecrypted[16];
 AES_CONTEXT Context;
 //
 // Prepares the AES Context with _aKey
 //
 AES256_Prepare(&Context, &_aKey[0]);
 //
 // Encrypts the data from _aPlaintext and stores it in aEncrypted
 //
 AES256_Encrypt(&Context, &aEncrypted[0], &_aPlaintext[0]);
 //
 // Decrypts the data from aEncrypted and stores it in aDecrypted
 //
 AES256_Decrypt(&Context, &aDecrypted[0], &aEncrypted[0]);
 //
 // Check if aDecrypted is the same as _aPlaintext
 //
 if (memcmp(&aDecrypted[0], _aPlaintext, 16)) {
 return -1;
 }
 return 0;
}

UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

29
2.4.4 AES 256bit en-/decryption of 32 Bytes using CBC
This sample shows how to encrypt and afterwards decrypt 32 bytes of data with AES
and a 256 bit key using Cipher Block Chaining.

#include “AES.h”

const U8 _aKey[32] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f};

static const U8 _aIV[16] = { 0x56, 0x2e, 0x17, 0x99, 0x6d, 0x09, 0x3d, 0x28,
 0xdd, 0xb3, 0xba, 0x69, 0x5a, 0x2e, 0x6f, 0x58};

static const U8 _aPlaintext[32] = {
 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f};

int main() {
 U8 aEnc[32];
 U8 aPlain[32];
 AES_CONTEXT Context;
 //
 // Prepare the context with _aKey
 //
 AES256_Prepare(&Context, &_aKey[0]);
 //
 // Encrypt the data of _aPlaintext
 //
 AES256_CBC_Encrypt(&Context, &aEnc[0], &_aPlaintext[0], 32, &_aIV[0]);
 //
 // Decrypt the data of aEnc
 // and compare it with the previously used _aPlaintext
 //
 AES256_CBC_Decrypt(&Context, &aPlain[0], &aEnc[0], 32, &_aIV[0]);
 if (memcmp(&aPlain[0], &_aPlaintext[0], 32)) {
 return -1;
 }
 return 0; // AES 256 CBC works fine.
}

UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

30 CHAPTER 2 AES
2.5 Sample applications
emLib includes some sample applications to show the modules functionality and pro-
vide an easy to use starting point for your application.
The application�s source code is included within the module.

The following applications are included in emLib AES:

Application name Target platform Description

AESCrypt.exe Windows Commandline tool to en-/decrypt a file
using AES 256.

AESSpeedtest.exe Windows Console application testing the speed of
emLib AES.

AESValidate.exe Windows Console application validating emLib AES
with standard test patterns.

Table 2.12: Sample Applications
UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

31
2.5.1 AESCrypt
AESCrypt is a windows application, encrypting and decrypting a file with the given
keyword. The tool can be used to easily keep files secured.

Usage

�AESCrypt� <sourcefile> [<password>] [<option>]

Additional information

The password can contain any character and does not have a fixed required length.
The output file after encryption will have the extension �.enc�.

If present, the original file will be renamed to <Filename>.orig, when decrypting a
file with the same name.

Parameter Description

<sourcefile> Path to the file, which has to be en-/decrypted.
<password> Password used for en-/decryption.

<option>
(optional) �-en�: Force encryption of the source file. �-de�: Force
decryption of the source file. If no option is given, operation
depends on source file extension.

Table 2.13: AESCrypt parameter list
UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

32 CHAPTER 2 AES
2.5.2 AESSpeedtest
AESSpeedtest is a windows application, testing the performance of the emLib AES
algorithms.
UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

33
2.5.3 AESValidate
AESValidate is a Windows application used to test and validate the implementation of
the AES algorithms.
The application uses the Validation API and compares the results of encryption and
decryption with the expected results.

AESValidate will show an error message, if a validation test fails.
UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

34 CHAPTER 2 AES
2.6 Performance and memory footprint
emLib AES aims for portability and is designed to fit speed and size requirements for
different targets.
It includes configurable defines to switch between speed and size optimizations.
The values can be changed in AES_Config.h.

2.6.1 Performance test
The following system has been used to measure the performance and memory foot-
print of the module with different optimization levels.

Results

The following table shows the en- and decryption speed of emLib AES128:

The performance depends on the MCU speed and the flash memory speed. Results
may vary if a different setup is used.

#define Values Description

OPTIMIZE_MIX_SUBST 0 (No opt.)
1 (default)

Use a 32-bit table to perform "MixCol-
umns" and "SubBytes" at the same time.

OPTIMIZE_MIX_COLUMNS
0 (default)
1
2 (highest)

Use tables for matrix multiplication.

Table 2.14: Optimization defines

Detail Description:

Target STM32F417 running at 168 MHz, internal flash used
Tool chain IAR EWARM V6.40E

Table 2.15: Performance test configuration

Compiler options Module #defines Speed ROM usage

Optimize high for speed OPTIMIZE_MIX_SUBST 1
OPTIMIZE_MIX_COLUMNS 2

~1.3 MByte/sec ~11.8 KBytes

Optimize high for size
OPTIMIZE_MIX_SUBST 0
OPTIMIZE_MIX_COLUMNS 0

~0.4 MByte/sec ~3.4 KBytes
UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

35
Chapter 3

DES
The emLib DES module allows encryption and dycryption of data using DES, the Data
Encryption Standard as published in 1976. This chapter describes the DES API func-
tions and shows their usage based on example codes.

In this chapter, you will find a description of the DES module API functions and sam-
ples for their implementation.
UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

36 CHAPTER 3 DES
3.1 What is DES?
The Data Encryption Standard, short DES, is a symmetric-key algorithm for en- and
decryption of data. It was developed in the 1970�s and established as a standard for
the United States by the National Bureau of Standards (NBS, now NIST). DES has
been superseded by AES.

DES is a block cypher, taking a fixed-length block of data (64 bits). The key used for
processing consists of 64 bits, where only 56 are actually used for transformations
and 8 bits are used for parity checks.
DES performs an initial permitation of the data, 16 rounds of transformation, and a
final permitation, the inverse of the initial permutation. In the transformations the
data block is initially splitted in two 32 bit blocks where the first block is transfor-
mated with the round key using a Feistel cipher and XOR-linked with the second
block. The first block and the resulting block are used for the next round.

emLib DES uses a key of 64 bits to encrypt a block of 68 bits of data at a time. To
optimize the performance of the algorithms the generation of the round keys can be
done before the actual encryption or decryption and used more than one time.

DES can also be used in cipher block chaining (CBC) mode to process more than 64
bits.
In CBC mode every chunk of 64 bits is XOR linked with the result of the previous
encryption (the cipher text), before being encrypted. To decrypt one block, all previ-
ous blocks have to be known.
For the encryption of the first block an initialization vector which will be linked with
the block, can be used to make sure the first block cannot be brute-force decrypted
by comparing it to common first data blocks.
UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

37
3.2 Usind emLib DES
The emLib DES module has a simple yet powerful API. It can be easily integrated into
an existing application.
The code is completely written in ANSI-C and MISRA-C compliant.

All functionality can be verified with standard test patterns using the Validation API
functions. The functions for generating the tables used for higher optimization levels
are also included for full transparency.

To simply encrypt or decrypt data the application would only need to call one func-
tion. If more than one block needs to be processed with the same key, a context con-
taining the round keys calculated from the key can be prepared and directly used by
the encryption and decryption functions. For more than one call of these functions
this method results in a slightly higher processing speed.

The following section lists and describes the available API functions of the emLib DES
module.
UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

38 CHAPTER 3 DES
3.3 DES API functions
The table below lists the available API functions.

Function Description

DES_CBC_Encrypt() Encrypts data with DES using CBC.
DES_CBC_Decrypt() Decrypts data with DES using CBC.
DES_Decrypt() Decrypts 8 Bytes with DES.
DES_Encrypt() Encrypts 8 Bytes with DES.
DES_Prepare() Prepares the context for de-/encryption.
DES_Validate() Test function for validation of DES.

Table 3.1: DES API function overview
UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

39
3.3.1 DES_Prepare()
Description

Prepares the context depending on the 64bit key used for DES de-/encryption.

Prototype
void DES_Prepare(DES_CONTEXT * pContext, const U8 * pKey);

Additional information

The key has 1 parity bit per byte, so the effective key length is 56bit.

A pointer to a 64bit key has to be provided to the function.

Example

See DES en-/decryption of 8 Bytes on page 45

Parameter Description

pContext Pointer to the context for de-/encryption.
pKey Pointer to the buffer which holds the encryption key (64bit).

Table 3.2: DES_Prepare() parameter list
UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

40 CHAPTER 3 DES
3.3.2 DES_Encrypt()
Description

Encrypts a block of 8 Bytes (64 bit) using a context prepared with the 64 bit key.

Prototype
void DES_Encrypt (DES_CONTEXT * pContext, U8 * pDest, const U8 * pSrc);

Additional information

The data has to be 64bit.

For more than 64 bit see DES_CBC_Encrypt() on page 42.

Example

See DES en-/decryption of 8 Bytes on page 45

Parameter Description

pContext Pointer to the prepared context for DES encryption.
pDest Pointer to the buffer for the encrypted data
pSrc Pointer to the plain text data buffer which has to be encrypted.

Table 3.3: DES_Encrypt() parameter list
UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

41
3.3.3 DES_Decrypt()
Description

Decrypts a block of 8 Bytes (64 bit) using a context prepared with the 64 bit key.

Prototype
void DES_Decrypt (DES_CONTEXT * pContext, U8 * pDest, const U8 * pSrc);

Additional information

The key has to be the same as the one used for encryption.

The data which will be decrypted has to be 64bit long.

For more than 64bit see DES_CBC_Decrypt() on page 43.

Example

See DES en-/decryption of 8 Bytes on page 45

Parameter Description

pContext Pointer to the prepared DES conctext.
pDest Pointer to the buffer for the decrypted data.
pSrc Pointer to the buffer with the encrypted data.

Table 3.4: DES_Decrypt() parameter list
UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

42 CHAPTER 3 DES
3.3.4 DES_CBC_Encrypt()
Description

Encrypts a block of data using DES with cypher blcok chaining.

Prototype
void DES_CBC_Encrypt (DES_CONTEXT * pContext, U8 * pDest, const U8 * pSrc,
int NumBytes, const U8 * pIV);

Additional information

The data has to be a multiple of 8 Byte.

To prepare the context use DES_Prepare().

If pIV is NULL, an initialization vector of 0 is used.

Example

See DES en-/decryption of 16 Bytes using CBC on page 46

Parameter Description

pContext Pointer to the DES context.
pDest Pointer to the data buffer for the encrypted data.
pSrc Pointer to the plain data buffer.
NumBytes Number of Bytes, which has to be encrypted.
pIV [optional] Initialization vector for the first block of data.

Table 3.5: DES_CBC_Encrypt() parameter list
UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

43
3.3.5 DES_CBC_Decrypt()
Description

Decrypts a data block using DES with cypher block chaining.

Prototype
void DES_CBC_Decrypt (DES_CONTEXT * pContext, U8 * pDest, const U8 * pSrc,
int NumBytes, const U8 * pIV);

Additional information

The context has to be generated with the same key as for encryption. The initializa-
tion vector has to be the same as for encryption.

If pIV is NULL an initialization vector of 0 is used.

The data has to be a multiple of 8 Bytes.

Example

See DES en-/decryption of 16 Bytes using CBC on page 46

Parameter Description

pContext Pointer to the DES context.
pDest Pointer to the buffer for the decrypted data.
pSrc Pointer to the buffer with encrypted data.
NumBytes Number of Bytes which has to be decrypted.
pIV [optional] Initialization vector used for the first data block.

Table 3.6: DES_CBC_Decrypt() parameter list
UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

44 CHAPTER 3 DES
3.3.6 DES_Validate()
Description

This function is used to test the DES implementation.

It uses defined plain data and a defined key for encryption and checks if the encryp-
tion result is correct. The initialization vector is 0.

Prototype
int DES_Validate (void);

Return values

 0: O.K. No error.

-1: Error. Encryption failed. The implementation is not working correctly.

-2: Error. Decryption failed. The implementation is not working correctly.

Additional information

Validation set from NIST special publication 800-17.
UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

45
3.4 Example codes

3.4.1 DES en-/decryption of 8 Bytes

#include <DES.h>

int main(void) {
 DES_CONTEXT Context;
 const U8 aKey[8] = {0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF};
 const U8 aPlain[8] = {0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xE7};
 U8 aRefPlain[8];
 U8 aCipher[8];
 int r;

 //
 // Prepare the DES Context with aKey
 //
 DES_PrepareKey(&Context, &aKey[0]);
 //
 // Encrypt the data of aPlain
 //
 DES_Encrypt(&Context, &aCipher[0], &aPlain[0]);
 //
 // Decrypt the data of aCipher
 //
 DES_Decrypt(&Context, &aRefPlain[0], &aCipher[0]);
 r = memcmp(&aPlain[0], &aRefPlain[0], sizeof(aRefPlain));
 if (r != 0) {
 return -2;
 }
 return r; // DES works fine.
}

UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

46 CHAPTER 3 DES
3.4.2 DES en-/decryption of 16 Bytes using CBC
#include <DES.h>

int main(void) {
 DES_CONTEXT Context;
 const U8 aKey[8] = {0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF};
 const U8 aPlain[16] = {0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xE7,
 0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xE7};
 U8 aRefPlain[16];
 U8 aCipher[16];
 int r;

 //
 // Prepare the DES Context with aKey
 //
 DES_PrepareKey(&Context, &aKey[0]);
 //
 // Encrypt the data of aPlain
 //
 DES_CBC_Encrypt(&Context, &aCipher[0], &aPlain[0], sizeof(aPlain), NULL);
 //
 // Decrypt the data of aCipher
 //
 DES_CBC_Decrypt(&Context, &aRefPlain[0], &aCipher[0], sizeof(aCipher), NULL);
 r = memcmp(&aPlain[0], &aRefPlain[0], sizeof(aRefPlain));
 if (r != 0) {
 return -2;
 }
 return r; // DES works fine.
}

UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

47
3.5 Sample applications
emLib includes some sample applications to show the modules functionality and pro-
vide an easy to use starting point for your application.
The application�s source code is included within the module.

The following applications are included in emLib DES:

Application name Target platform Description

DESSpeedtest.exe Windows Console application testing the speed of
emLib DES.

DESValidate.exe Windows Console application validating emLib DES
with standard test patterns.

Table 3.7: Sample Applications
UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

48 CHAPTER 3 DES
3.5.1 DESSpeedtest
DESSpeedtest is a windows application, testing the performance of the emLib DES
algorithms.
UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

49
3.5.2 DESValidate
DESValidate is a Windows application used to test and validate the implementation of
the DES algorithms.
The application uses the Validation API and compares the results of encryption and
decryption with the expected results.

DESValidate will show an error message, if a validation test fails.
UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

50 CHAPTER 3 DES
3.6 Performance and memory footprint
emLib DES aims for portability and is designed to fit speed and size requirements for
different targets.

3.6.1 Performance test
The following system has been used to measure the performance and memory foot-
print of the module with different optimization levels.

Results

The following table shows the en- and decryption speed of emLib DES:

The performance depends on the MCU speed and the flash memory speed. Results
may vary if a different setup is used.

Detail Description:

Target STM32F417 running at 168 MHz, internal flash used
Tool chain IAR EWARM V6.40E

Table 3.8: Performance test configuration

Compiler options Speed ROM usage

Optimize high for speed ~0.8 MByte/sec ~3.2 KBytes
Optimize high for size ~0.6 MByte/sec ~3.0 KBytes
UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

51
Index
A
AES ...12

C
CBC ...36
Ciphertext ..12

D
DES ...36

F
Feistel cipher36

I
Initialization Vector12

S
Syntax, conventions used 5
UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

52 Index
UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

Index 53
UM12001 User & Reference Guide for emLib © 2013 SEGGER Microcontroller GmbH & Co. KG

	About this document
	Table of Contents
	Introduction to emLib
	1.1 What is emLib
	1.2 Features
	1.3 Available modules
	1.3.1 Cryptographic modules

	AES
	2.1 What is AES?
	2.2 Using emLib AES
	2.3 AES API functions
	2.3.1 AES128_Prepare()
	2.3.2 AES128_Encrypt()
	2.3.3 AES128_Decrypt()
	2.3.4 AES256_Prepare()
	2.3.5 AES256_Encrypt()
	2.3.6 AES256_Decrypt()
	2.3.7 AES128_CBC_Encrypt()
	2.3.8 AES128_CBC_Decrypt()
	2.3.9 AES256_CBC_Encrypt()
	2.3.10 AES256_CBC_Decrypt()
	2.3.11 AES_Validate()

	2.4 Example codes
	2.4.1 AES 128bit en-/decryption of 16 Bytes
	2.4.2 AES 128bit en-/decryption of 32 Bytes using CBC
	2.4.3 AES 256bit en-/decryption of 16 Bytes
	2.4.4 AES 256bit en-/decryption of 32 Bytes using CBC

	2.5 Sample applications
	2.5.1 AESCrypt
	2.5.2 AESSpeedtest
	2.5.3 AESValidate

	2.6 Performance and memory footprint
	2.6.1 Performance test

	DES
	3.1 What is DES?
	3.2 Usind emLib DES
	3.3 DES API functions
	3.3.1 DES_Prepare()
	3.3.2 DES_Encrypt()
	3.3.3 DES_Decrypt()
	3.3.4 DES_CBC_Encrypt()
	3.3.5 DES_CBC_Decrypt()
	3.3.6 DES_Validate()

	3.4 Example codes
	3.4.1 DES en-/decryption of 8 Bytes
	3.4.2 DES en-/decryption of 16 Bytes using CBC

	3.5 Sample applications
	3.5.1 DESSpeedtest
	3.5.2 DESValidate

	3.6 Performance and memory footprint
	3.6.1 Performance test

	Index

