Getting top performance from
NXP’s

LPC processors

Maarten Pennings

2009 November 17

1 Introduction

This document tries to explain the speed of opamati anLPC processor oNXP. It looks at the PLL
settings, checks the effects of the MAM settingsl shows the difference in speed between runnong fr
flash and running from RAM. It shows the differerfmmween newer “fast” GPIO and the older “slow”
GPIO via the APB bus. Finally, it explains measypediormance figures using the theoretical figdrem
the ARM manual.

All in all, an optimized “GPIO pin toggler” is ndgr250 times as fast as one using default settings.

1.1 The experiment

The practical work has been done on a Keil MCB2évdluation board, containing an NXP LPC2148
processor. The processor has an ARM7TDMI core emdral peripherals, amongst others general purpose
input/output (GPI10O), a memory accelerator modulé\f), a phase locked loop (PLL), a pulse width
modulator (PWM), an several other more functiomas) but less interesting from the point of view of
performance evaluation. We used an older ULINK UHB\G probe to program the LPC and an even
older Fluke PM3082 scope.

The software was written with the evaluation vengieersion 3.80a) of Keil's uVision IDE with ARM’s
RealView compiler.

1.2 References

[NXP’s LPC2xxx] http://www.standardics.nxp.com/products/Ipc2000
[Keil's MCB2140 board] http://www.keil.com/mcb2140

[Keil's old ULINK] http://www.keil.com/ulink1

[Keil's IDE] http://www.keil.com/arm/mdk.asp

[ARM’s ARM7TDMI core]  http://www.arm.com/products/CPUs/ARM7TDMI.html

[NXP LPC2148 manual rev2]http://www.standardics.nxp.com/support/documentsfotiontrollers
[pdf/user.manual.lpc2141.lpc2142.lpc2144.1pc21 4214 8. pdf

[Wikipedia PLL] http://en.wikipedia.org/wiki/Phase-locked_loop
[ARM7TDMI-S ref manual] http://infocenter.arm.com/help/topic/com.arm.do@@84f/DD10084.pdf

1.3 Version history

V3 2009 November 17  Textual improvements after review
V2 2009 October 04 Added MAM, fast GPIO, and theory
V1 2009 September 17  Created first version



1.4 Table of contents

N 011 o o U1 o o S PPRU U 1.
3 R N 0 To T o =TT 1= o | PR 1
1.2 TS (=] (=] o = USSR 1
R T V=T o TN 1] 1o Y2 1
O - T o] (=T o] ot (=T | £ PUSERURRR 2

2 Using PWM to get a reliable MeasSUIrEMENT . .. e eeeeeeeeeieeeiiiiiieee e s e e e e e e eeeeeeeaeasannsae s e e e eaeaeeeeanns 3
pZ2000 R I 4 = o = Tod (o o 11 o PR 3
2.2 THE SOMWAIE ...ttt e e e e e e e e e ettt e e e e e e e e e aaaaeeaeas 3
2.3 ] =T (0 o TP PPN 4
2.4 The PraCliCal FESUILS.......oiii ittt e e st e e e s e e e s anneeeeee s 4
2.5 S0ME after tNOUQGNLS... ..o e e e e e e e e e et a e e e e e e e e e e 5

3 Using the PLL t0 SPEEA UP CCLK ... .uiiiii ettt 5
0 A I 1 1= o F= Ted (o [ {0 0] o TP P PP PPP PP 5
3.2 TRE SOMWANE ..ottt e e e oo oot e e e e e e e e e e e e e e e e e e e bbb e eee e 7
3.3 The PractiCal FESUILS........eeiiiiiii et e et e e et e e e e enneas 7

4  Faster code fetches With the MAM ... e 8
ot R I 0T o =Tt (o [ (o 10 o T T PO PP UPPPPPP PP 8
4.2 The SOfWAIE Pt L.....cciiieeeeeiiet e e e e e e e e et e et s aeaeeeseaaeeeeeeeeaesannaeseeeaeaaeeeees 8
R R ) 0TI 0 11 A1V V= o = o 10
4.4 The PractiCal FESUIS..........oeii et e e 10
A5 OLNEI FTESUILS ...ttt et e e e e e e e e e e e s st e e e e et ettt e e aeaeeeeesaeaaaannnnnae 11

I | £ 0 ox (o] o I 1] 41 oo [ PO P PP PPPPRPP 12
L0 R I (=o)L= U PP PP P PP PPPPPPPPPPP 12
B 2 TRE TESUILS ..ttt ettt e e e e e e e e e e e s bbb b et e et e et e e eeeaeeeeeeeeaaaannnae 12
5.3 IMIOPE FESUIES ...ttt oottt ettt e et e e e e e e e e e e e e e s e e e eaaab it et e e e e eeeeaaaaeeaeaeesaaaaaannnnnnes 13

6  Using fast GPIO instead Of SIOW GPIO .......coommemieiiiiiiiei e e e e e e e e e e e 13
6.1  THE SOMWAIE ...ttt e e e e e e e e ettt e e e e e e e e aaaaeaeeaae s 13
8.2  TRE FESUILS ...ttt et e e e e e e e e s e e s et r e ettt et e e e e e e e e e e e e e e aa e 14
6.3 SOME fINAI TNEOIY ...ceiiiiiiiie e et e et e e e et reeeaeean 14

A @ o Tox 1171 o LS PR 15
7.1 PEITOIMMIENCE ...ttt et e e e e e e e e s e e bbb bbb e et e et e e e e e e aeaeeeeeaaas 15
2 1170 YOO OO PP P PUPPPPP 16
7.3 FFULUIE WOTK ...ttt ettt ettt ettt e e e e e e e e e e e s e e s e bbb bbb n e e e e e eeeeeas 16



2 Using PWM to get a reliable measurement

We need a reliable way to determine the performaffitee LPC. Only then, we can reliably see thedff
of a change in the configuration. One of the cruaigredients for the processor performance isctbek
that drives the core. In this section we will tHere focus on measuring the clock speed.

2.1 The background

The ARM core runs on a clock known as the CCLK. Hram we reliable measure the CCLK? We could
run a program on the core that toggles a pin, irretare too many settings influencing the reSdf.
instead, we decided to try to get the CCLK on aemmal pin.

F CCLK
crystal — PLL o > A(‘:g:\g

The three main frequencies (s, CCLK and PCLK) and their relation.

As the figure above shows, the PLL generates thiekC(Core clock) from the crystal (k). The PCLK
(peripheral clock) is derived from the CCLK withetBo-called APB divider. The peripheral clock dsive
many peripherals like the UARTS, the timers, etae@eripheral in particular seems to suit our nethes
PWM block. It is a hardware only block; once configd by software, it runs standalone.

2.2 The software
To drive the PWM we used the following code.
void pwminit( void)

/1 We use P0.21/PWM5 as output pin

/| Power the pwm block (note: it's on by default after reset)

PCONP | = 1<<5;

/| Set the peripheral clock divider (to 1, so that PCL K=CCLK), VPBDIV is the APB divider
VPBDIV = 1; // 0->PCLK=1/4CCLK, 1->PCLK=1/1CCLK, 2-> PCLK = 1/2 CCLK

/| Configure pin (PWMS5 is function 01)
PINSEL1 &= ~ ( 3<<10 );

PINSELL | = ( 1<<10 ):
/'] Setthe PWM prescaler (so that the PWM clock=PCLK=C CLK)
PWPR = O;

e the PWM curve
2; /1 Set PWM period to 2 PWM clock ticks
1; /1 Flipline after 1 tick (so, we run at half the CCLK )

/| Configur
P

/| Configure the PWM block

PWWCR = 0x00000002; // Reset TC on MRO

PWWPCR = 0x1<<13; /1 Enable PWM5 (and set it to single edge)
PWWLER = Ox7f; /1 Latch O and5

/'] Start PWM-ing

PWPC = 0; /| Prescale counter to 0

PWMIC = 0; /| Resettimerto 0

PWMTCR = 0x09; // Enable PWM mode and start timer
}

Observe the following aspects@fm init():
We use PWM5 output via pin P0.21
» The APB divider, known in Keil agPBDIV, is set to 1

« The PWM period is set to 2 PCLK ticks; the PWM auitgtarts low, and after 1 tick the PWM output
is raised. Effectively, the PWM5 output runs aff laé PCLK, and since the APB divider is 1, PWM5
runs at half the CCLK.



2.3 Startup
Our first measurement program is very simphain() first calls the functiopwm _init() from the previous
section, next it runs an infinite loop. See theecrdgment below.
int main( void)
pwminit();
while( 1)
;11 infinite loop

}

It should be noted that Keil's uVision generatesaasembler file that (to put it simply) maps theete
vector tomain(). This assembler file may also initialize the Rithe MAM and some other things, but for
these performance experiments, we disabled thatfigere below).

B C:\Documents and Settings\Maarten\Deskioplspeedie. .. g@@

Al Collapze Al

Cption Walue

+- Skack Configuration {Stack Sizes in Bytes)
+- Heap Configuration

0

i i .

][

Text Editor  # Configuration Wizard f{

Keil's configuration wizard tab for startup.s (instead of text file tab), with most settings disabled

When one runs the program, and breaks it, a vesy fieiature of uVision is available in the menu
Peripherals | System Control Block | Phase LoclaaplO. It is a dialog showing the current PLL sefs
(and even allows one to make live changes).

Phase Locked Loop O (PLLO) X
Contral Register
PLLOCON: [0:00 [ PLLE I~ PLLC

Configuration R egister
PLLOCFG: |0=00 MSEL: |1 =| PSEL:|1

Status Register

PLLOSTAT: (00000 MSEL: PSEL:

[~ PLLE [~ PLLC |~ PLOCK

Feed Register
PLLOFEED: |0<00

Crystal Dzcillator & Processzor Clock.

HTAL: 12.000000 MHz Crystal Oscillator [Fosc)

CLOCK. 12.000000 MHz Processar Clack [CCLE]

PLL dialog from Keil's uVision, showing the PLL is not enabled (top left checkbox labeled
PLLE). It also confirms the CCLK is 12 MHz (bottom line).

2.4 The practical results

As the scope shows, at this high frequency, wead@et nice square pulses; there are ripples when
swinging low and there are ripples when swingirghhiNevertheless, we get 3 V pulses at a clear @ MH
pulse frequency. In other words, the CCLK is 12 Mhz



chl: aT= 167ns Ff=599MHz

MTE OdMs |

The PWM output on the scope. The two vertical dashiElines are so-called track lines; the text at
the top of the scope shows they are 167 ns aparb the pulse rate is 5.99 MHz). The black line
show the theoretical square pulses.

2.5 Some after thoughts

When we compare the crystal schematics of the M&B2140 board (see below) with Figure 4-7 in thg \what does
LPC214x user manual, we conclude that we havedweae layout matching the “b) oscillation mode o} this mean?

operation”.

o
v
XTALA 62 OIIN12.000MHZ
61 == L
xtaz =]k
o O«

Zooming in on the crystal in the schematics of Keé# MCB2140 board

In this mode, the crystal should generate a freqpéetween 1 MHz and 30 MHz. Indeed, the MCB2140
board has a crystal running at 12 MHz. This meam$iawe E,=12 MHz. Since the PLL is not enabled,
CCLK is also 12 MHz. Since the APB divider is 1¢ tALCK is also 12 MHz. And since the PWM runs at
half the frequency, it is 6 MHz.

3 Using the PLL to speed up CCLK
To speed up the CCLK we need to configure the PLL.

3.1 The background

Hardware-wise it is easy thvide a clock signal (see e.g. the APB divider). Howeitds not possible to
multiply a clock signal. But it is possible to run anotbscillator of a much higher frequency, whose
(output) frequency is automatically raised or logekuntil it matches a reference (input) oscillatopoth
frequency and phase. This control system is knasa phase-locked loop (“loop” from the feedbackpat

input phase detectorvariable oscillator output

ﬁ—r#fﬁiﬁ -

<

A diagram of a PLL



The figure above is a diagram of a PLL; it featusae more element, namely a frequediyder in the
feedback path. This allows the output frequendye@ factohigher than the input frequency. So, with a
PPL and a divider, we implement a multiplier.

The LPC2148 features a PLL with two dividers, thes known as M and P. The so-called current
controlled oscillator (CCO) has a working range56 MHz to 320 MHz. The leads to the following
diagram.

Fosc

CCLK
—_—

cC0,, > By 2P
(156..320 MHz) div by 2P

The PLL in the LPC2148 with two dividers and a curent controlled oscillator

Since the + input of the phase detector is 12 Mhiz— input should also be 12 MHz. By setting M {@,
3, 4, or 5 respectively, CCLK needs to be 12, B4 48, or 60 MHz respectively60 MHz is the
maximum for the LPC2148). The trick is not in g&jtiM, because that’s just a matter of picking the
wanted CCLK from the five possibilities. The triiskin selecting a P so that the CCO can operaits in
working range (156MHz..320MHz). P can only be 1, 2, 4, or 8.

The table below shows which P we have to picklierd CCLKs we can chose from (with,E12 MHz).
The table also lists options for P in cagg Would have been 10 MHz, just to illustrate thahstimes
there is more than one option for P.

Fose M CCLK Feeo

P=1 p=2 P=4 P=8
10 1 10 20 40 80 160
10 2 20 40 80 160 320
10 3 30 60 120 240 480
10 4 40 80 160 320 640
10 5 50 100 200 400 800
10 6 60 120 240 480 960
12 1 12 24 48 96 192
12 2 24 48 9 192 384
12 3 36 72 144 288 576
12 4 48 96 192 384 768
12 5 60 120 240 480 960

The M and P combinations where CCO is in its workig range 156 MHz ... 320 MHz (light gray)

The bit fields MSEL and PSEL relate to dividers Ml& according to the following table.

P PSEL M MSEL
1 00 1 00000
2 01 2 00001
4 10 3 00010
8 11 4 00011
5 00100

Mapping of P and M to PSEL and MSEL bit fields

The PLLCFG register has MSEL in bits 0..4 and & R&EL in bits 5 and 6. So, for our (12 MHz) board
the only legal values for PLLCFG are given in thblé below.

! The relation between,& CCLK and M is CCLK = Mx F,s, Therefore, M is known as the multiplier.
Mathematically (functionally) this is true but tegally, it is not.



Fosc= 12 MHz
ccLK |[M|P] PSEL | MSEL | PLLCFG (bin) PLLCFG (hex)
12 | 18] 11 | ooooo 110 0000 60
24 | 2| 4] 10 | oooo1 100 0001 41
36 | 3| 4] 10 | oooio 100 0010 42
a8 | 4| 2] o1 | ooo11 010 0011 23
60 | 5]2] o1 [ oo1o0 010 0100 24

An overview of all possible values for CCLK, the asociated values for M and P, the underlying
bit-fields MSEL and PSEL, the “complete” register ALLCFG (binary) and finally the PLLCFG
value in hex.

3.2 The software

To set the PLL, one must configure and enableéxtNas a security measfirehe PLL must be “fed” with
“magic” values. This makes the CCO running, andf¢ieelback path and the detector will tune it. keta
some time before the PLL is stable (“locked”), saahird step, the PLLSTAT must be checked farci.|
If everything is ok, the PLL may be “connected”dahis must again be followed by a feed.

void pll_init( int cfg)
{
int |oop_ctr;

/1 Step 1: Set CFG and CON
PLLOCFG = cfg;
PLLOCON = 0x01; // PLL Enable

/| Step 2: Security measure: feed
pll_feed();

/1 Step 3: Wait for the lock into the new frequency

| oop_ctr = 10000;

whi | e( ((PLLOSTAT&( 1<<10))==0) && (loop_ctr>0) ) | oop_ ctr
/| if PLLOSTAT & (1<<10) does not hold, we have an iss

/| Step 4: Connect the PLL
PLLOCON | = 0x03;

/| Step 5: Security measure: feed
pll_feed();
}

Wherepll_feed() is defined as

static void pll_feed( void )

PLLOFEED = OxAA,
PLLOFEED = 0x55;

}
Themain() function now becomes:

int main( void)

I _init(0x24); // legalvalues: 60, 41, 42, 23, 24

wminit();
iTe(1);

%

/'] infinite loop

3.3 The practical results
We run this program, checking pin P0.21 (PWM) angbope. The practical results are as expected:

2 Quoting the user manual: “Since all chip operatjancluding the Watchdog Timer, are dependenhen t
PLLO when it is providing the chip clock, acciddrihanges to the PLL setup could result in unexgubct
behavior of the micro controller”.

3 If you have interrupts active, this functiomist correct: no bus operation may take place betweemo
feeds, so interrupts have to be temporarily dighble



PLLCFG CCLK | Measured| CCLK from t|
passed topll_init() | in theory | frequency | measuremen
24 60 30.1 60.2
23 48 24.1 48.2
42 36 18.0 36.0
41 24 12.0 24.0
60 12 5.99 12.0

The possible PLLCFG values, the theoretical resultig CCLK, the measured frequency,
and the associated practical CCLK.

So, by configuring the PLL, we achieve a speedfupfactor of 5.

4 Faster code fetches with the MAM

We now know how to control the CCLK, and we haweay (PWM output pin) to actually measure it. The
next step is to measure execution speed of ingingtSince the ARM is pipelined, we would hopedae
instruction per CCLK tick.

4.1 The background

To execute instructions, they need to be fetchatl fThere are three possible routes. Firstlynatruiction
can come directly from the flash. Secondly, the M&kkmory acceleration module) might be enabled; it
pre-fetches instructions, speeding up the rattway bash. Thirdly, the arm core may fetch instraos

from ram (if code happens to be located there).

| Flash MAM
ARM

core

RAM

\ 4

The arm core and the three sources of an instructio(flash, MAM, RAM)

The address range 4000 0000 up to 4000 7FFF (32k)gnd 7FDO 0000 7FDO 1FFF (8k bytes) are
mapped to RAM. So code fetches in these rangefetatees from RAM. The address range 0000 0000 up
to 0007 FFFF (512k bytes) is mapped to flash. Stedetches in this range are fetches from flash,
optionally via the MAM.

The MAM is a sort of mini cache. It can either bsadbled or enabled. If it is enabled, an instrucfigtch
from the ARM is usually satisfied by the 128 b#swords, or 4 instructions) “pre-fetch buffer” imet
MAM. If the pre-fetch buffer does not contain timstruction, the ARM is stalled and the MAM fetclzas
entire line of 128 bits into the pre-fetch buff8milarly, a data fetch causes the MAM to fetcheatire
line of 128 bits which is stored in “data buffeThere is a third buffer, the “branch trail buffedlso 128
bits, that is used when there is a break in theeaipl flow of instruction fetches.

When the MAM is enabled, we have to configure hoangnCCLK ticks the MAM should use for flash
access. This register is known as MAMTIM and hdses1 up to 7. When MAMTIM is 1 the ARM core
runs at native speed. For high CCLK frequencies MAM must be greater than 1, because of the speed
limitations of the flash.

4.2 The software part 1

How do we measure the actual instruction speed?&¥igle to set and clear pin P1.16. We attach aescop
to that pin so that we can measure how fast itlesgdNote: a ‘toggle’ here means a full period bflB
first being low and next being high.

To be in full control of the instructions, we cattiem in assembler. We added the rou8BEnk() to the
assembler file startup.s, which is already padwfproject.



EXPORT SBlink
SBl i nk

LDR RO, =0x00010000 ; mask for pin 16

LDR R1, =0xE0028010 ; base address of the slow GPIO port
SBl i nkLoop

STR RO, [ R1, #0x04] ; set port pin

STR RO, [ R1, #0x0C] ; clear port pin

B SBl i nkLoop

Observe the following points:
* RO is loaded with the mask for pin 16
» Rlisloaded with the base address (E002 801®easlbw SFRs controlling port 1
*  We first store RO in R1+04 (so in E002 8014, or 88T) which raises P1.16
* Later, we store RO in R1+0C (so in E0O02 801C, drQOR) which lowers P1.16 again.
» Atthe end there is a (relative) jump back to tBSET instruction.
«  The NOPs are added to have some “meat” in the“ctitiecomplete routine is now 20 instructions.
Themain function now looks as follows

void SBlink( void ); // in assenbler

int main( void)

pl 1 _init(0x60) /1 12MHz CCLK

pwminit(); /'l To check CCLK

mam.init(4); /1 Init MAM

/| Configure port P1.16 for slow general purpose outpu t

SCS &= ~(1<<1); /'l Select slow mode (for port 1)

PINSEL2 &= ~ (1<<3); /1 Set port 1 (pins 16..25) to GPIO in one go
IODIRL | = (1<<16); /1 Set pin 16 for output

/| Start blinking the slow /O port
SBlink();
}

The usednam_init is new:

void maminit( int cycles )

MAMCR = 0x00; /| Disable the Memory Accelerator Module
MAMTI M = cycl es; // MAM fetch cycles
MAMCR = 0x02; /1 Enable the Memory Accelerator Module

}
Observe the following points:
* We run at the lowest CCLK of 12MHz.
«  We still enable the PWM to check the clock.
» The MAM is enabled (and set to 4 fetch cycles).
» Port 1 is configured foslow (traditional, legacy) GPIO.

* The MAM has a small buffer, so without any NOP® whole 3-instruction program would fit in the
MAM buffer. Secondly, as explained later, the STBtiuctions take unexpectedly many clock ticks.
Adding NOPs mitigates this somewhat.

® As it appears later, th@vm init() sets VPBDIV, and this also influences IO1SET #8CLR speed
(since slow I/O is done by a the GPIO peripheralhenAPB bus).



* Pins P1.16..P1.25 are configured for funci@® O.
« Pin P1.16 is given directiooutput.
» Finally, we call the never endirg@Blink() routine (whose prototype is added just befoain).

4.3 The software part 2
A second experiment is runniiglink() from RAM. This is achieved by declaring an ar(agmedcode in
the fragment below), copying sufficient bytes framction SBlink to arraycode, and executing arragode
(using a typecast). This requires some jugglindpwipe casts as the code below illustrates.

void SBlink( void ); // inassembler

typedef void(*func_t) (void);

int main(void)

char code[ 500]; /1 Array to hold the SBlink code in RAM
pll_init(0x60); /1 12 MHz CCLK

pwminit(); /'l To check CCLK

/| Configure port P1.16 for slow general purpose outpu t

SCS &= ~(1<<1); /'l Select slow mode (for port 1)

PINSEL2 &= ~ (1<<3); /1 Setport 1 (pins 16..25) to GPIO in one go
IODIRL | = (1<<16); /1 Set pin 16 for output

/1 Copy SBlink to code, and run it
nmencpy( (int*)code, (int*)&SBlink , sizeof(code) );
((func_t)code) ();

}

The MAM is not needed for execution from RAM.

4.4 The practical results

The first program (from flash) is run 8 times. Sevienes with MAMTIM from 1 up to 7, and once with
mam _init() not called (so with MAM left in disabled statbe hardware default). The second program
(from RAM) is run once. In each run, the time otdnggle on P1.16 is measufetihe last column shows
the toggle time not in nano-seconds but in CCLK4gifeach of 83 ns, since the CCLK runs at 12 MHz,
since the PLL is configured with Ox60).

Code in MAMCR MAMTIM T (toggle) | clock ticks @ 12 MHz
Flash Disabled N/A 13600 ng 168
Flash Enabled 7 4080 np 40
Flash Enabled 6 3730 np 5
Flash Enabled 5 3410 ng @M
Flash Enabled 4 3070 ng J7
Flash Enabled 3 2980 ng PH
Flash Enabled 2 2900 ng PH
Flash Enabled 1 2820 np H
RAM N/A N/A 2810 ns 34

Time of one toggle on P1.16 (in nano seconds anddlock ticks) for different MAM settings
(CCLK is 12MHz).

We see that the flash éensiderably slower than RAM: nearly a factor of 5 (13600/28 M/e also see that
the MAM really helps in closing that gap (2820 essus 2810 ns). We also noticed that with the MAM
enabled, the predictability decreased: toggle perdiffer in length.

Since the size of the code is 20 instructions(4h&ord) pre-fetch buffer should be reloaded 4 simper
toggle period (the branch trail buffer is also udee to the branch at the end of the toggle periblik

® Actually two periods are measured (and that tisneasilved) because the scope shows that periods iiff
length (and one shorter seems always to be folldweohe longer one).

10

Operational
model?




means a penalty of 4 ticks per increment of MAMTNMe do see this for MAMTIM 4 to 5, 5to 6, and 6
to 7. We can not explain the smaller penalty forlWIAM 1 to 2, 2 to 3, and 3 to 4.

4.5 Other results
We added some variation to the experiment.

The first variation was toncrease the number of NOP instructions. As we see in #indet below (compare
columns 2str+17nop+1b and 2strabp+1b), when going from 17 to 18 NOP instructioms,consistently
get 1 clock tick of extra time spent (for RAM amat flash through MAM with any timing setting).

We alsoreduced the number of NOPs to below 3 as in the code feagrbelow.

SBl i nkLoop
STR RO, [ R1, #0x04] ; set port pin
NOP

STR RO, [ R1, #0x0C] ; clear port pin
NOP
B SBl i nkLoop

In this case, the MAM buffers need never to beaddm (presumably the pre-fetch buffer holds trst fir
and the branch trail buffer holds the last insiargt so the toggle period does not vary with th&NWTIM

setting. See the table below for measurements2nvithd 1 NOP in the code (compare 2str+2nop+1b with

2str+3nop+1b).
Time of one toggle (ns, clock ticks) — CCLK=12 MHz

Code | MAM TIM 2str+lnop+1b] 2str+2nop+1b] 2str+3nop+1lb| 2str+17nop+1b] 2str+18nop+1b
Flash | disableqg N/A 4540, 44 5100, p1 5700] 68 13600§ 163 4400, 173
Flash en 7 1505, 1F 1585, |19 2180,126 4084, 49 418p, 50
Flash en 6 1505, 1P 1585, |9 2095)25 3734, 45 383p, 46
Flash en 5 1510, 1P 1575, |19 199524 3414, 41 354D, 42
Flash en 4 1505, 1P 1575, |19 191023 3074, 37 316p, 38
Flash en 3 1505, 1P 1580, |9 181522 3004, 36 308p, 37
Flash en 2 1510, 1|B 1575, L9 1775)21 2904, 35 301p, 36
Flash en 1 1505, 1B 1575, L9 1675,|20 2824, 34 294D, 35
RAM N/A N/A 1505, 18 1580, 1 1665, 40 2810,p4 2890 35

Time of one toggle on P1.16 for different MAM settigs and various number of NOP instructions
(note ‘2str+3nop+1b’ stand for anSBlink() routine containing 2 store, 3 nop and 1 branch
instruction).

The second variation was to change the PLL sesiintpat we get a higher CCLK. See the table betow f
the results. We see that the number of clock tieksains the same. In other words, the real-world
performance increases linearly with the clock sp&drephrased, the flash can keep up with thedspé
the ARM core.

Time of one toggle (ns, clock ticks) -- 2str, 17nofdb
Code | MAM TIM 12MHz 36MHz 60MHz
Flash | disable] N/A 13600, 16B 4610, 1¢6 2750, 165
Flash en 7 4080, 4 1355, 49 815, 9
Flash en 6 3730, 41 1245, 45 750, §5
Flash en 5 3410, 4] 1135, 41 690, 1
Flash en 4 3070, 3} 1025, 7 620, B7
Flash en 3 3005, 34 1005, 36 600, p6
Flash en 2 2900, 3§ 975, 3 585, 35
Flash en 1 2820, 34 945, 34 crash
RAM N/A N/A 2810, 34 945, 34| 565, 34

Time of one toggle on P1.16 for different MAM settigs and various CCLK speeds

11

Who can?




There is one exception: when running at full sp@dMHz), and no waits in the MAM (MAMTIM=1),
the micro controller crashed. The surprise hetbdscrashes didn't happen sooner (on all lighygra
boxes). As the LPC manual explains:

For system clock slower than 20 MHz, MAMTIM can be 001. For system clock

between 20 MHz and 40 MHz, Flash accesstime is suggested to be 2 CCLKs, whilein

systems with system clock faster than 40 MHz, 3 CCLKSs are proposed.

If we put these suggestions in a table we getdheviing result.

Just luck?

CCLK Suggested MAMTIM | Flash access time
10..20MHz 1 100ns..50ns
20..40MHz 2 100ns..50ns
40..60MHz 3 75ns..50ns

The MAMTIM setting from the LPC2148 manual for vari ous CCLK speeds,
suggest a flash access time of 50 ns minimal

The suggested MAMTIM setting for various CCLK spgesliggest a flash access time of 50 ns minimal.

So, in the test 60MHz/MAMTIM=1, we amser-clocking the system. This is out of spec!

5 Instruction timing

The previous section shows that a 20-instructiatime (known above as “2str+17nop+1b”) execute®4in
cycles instead of the 20 one might expect fronpalpied RISC processor like the ARM. This section
explains the less than expected performance. Tkteseetion shows a way to speed it up.

5.1 The software

We use three versions of the blinker: a base progitae base program with an extra STR instructiwh a
the base program with an extra B instruction. Bysuing the difference in run-time, we know thetcos
(in ticks) of the STR and B instruction.

2str+1b
SBl i nkLoop
STR RO, [ R1, #0x04] ; set port pin
STR RO, [ R1, #0x0C] ; clear port pin
B SBl i nkLoop
3str+1b
SBl i nkLoop
STR RO, [ R1, #0x04] ; set port pin
STR RO, [ R1, #0x04] ; set port pin
STR RO, [ R1, #0x0C] ; clear port pin
B SBli nkLoop
2str+2b
SBl i nkLoop

STR RO, [ R1, #0x04] ;

B Sbl i nkLoopCont
SBl i nkLoopCont

STR RO, [ RL, #0x0(Q] ;

B SBl i nkLoop

set port pin

clear port pin

5.2 Theresults

We run the three blinkers from RAM, with CCLK setl2 MHz.
2str+1b 3str+1b

1420ns (17ticks) 1995ns (24ticks

2str+2b
1670ns (20ticlks)

Measuring individual instructions (slow GPIO)

We now have measured individual instructions:
* The STR instruction takes 7 ticks (24 ticks fortf34b” minus 17 ticks for “2str+1b”)

12




* The B instruction takes 3 ticks (20 ticks for “2&b” minus 17 ticks for “2str+1b”)

* The NOP instruction takes 1 tick (35 ticks for f24t8nop+1b” minus 34 ticks for “2str+17nop+1b”;
see previous chapter)

These timing figures explain to the digit the tiguiresults of the previous chapter: 2str+17nop+hs io
2x7 + 171 + 1x3 =14 + 7 + 3 = 34 cycles.

5.3 Moreresults

It suddenly struck us that slow GPIO runs on thevAperipheral Bus (APB). The APB bus runs on the
PCLK, which is derived from CCLK via the APB dividd he controlling SFR VPBDIV is setto 1 in
pwm_init(). We decided to rerun the three tests, with vayyCLKSs.

2str+1b 3str+1b
VPBDIV=1 (PCLK=1/1xCCLK=12MHz) 1420ns (17ticks) 1995ns (24ticks
VPBDIV=2 (PCLK=1/2CCLK=6MHz) 1820ns (22ticks) 2660ns (32ticks
VPBDIV=0 (PCLK=1/4xCCLK=3MHz) 2980ns (36ticks) 4315ns (52tickg

Measuring individual instructions (slow GPIO) with varying PCLK

When we look at the STR instruction we see thaShR instruction takes 24-17=7 ticks when the APB
divider is 1, that it takes 32-22=10 ticks when &iB divider is 2 and that it takes 52-36=16 tieksen

the APB divider is 4. Who knows
We can explain this by assuming that the STR iotyn takes 4 internal ARM core cycles and 3 APB by about the

cycles. When the APB divider is 1, we get 4+3=7ewlhe APB divider is 2 we get 4%2=10 and when ARM/LPC
the APB divider is 4, we indeed get 43416. interaction?

6 Using fast GPIO instead of slow GPIO

We now know that the STR instruction for the sloRIG SFRs takes 7 ticks (when PCLK=CCLK). We
expected 1 tick, so that is indeed slow. How madtdr would the new “fast” GPIO be? We repeat the
experiment of the previous chapter, now with faBIG.

6.1 The software
Themain() function changes slightly; we have to set uplBXorfast GPIO.

void FBlIink( void ); // inassembler

int mai n(void)
char code[ 500] ; /1 Array to hold the FBlink code in RAM
pll_init(0x60); /1 12MHz CCLK

// Configure port P1.16 for fast general purpose output

SCS | = 1<<1; /] Select fast node (for port 1)

PINSEL2 &= ~ (1<<3); /1 Set port 1 (pins 16..25) to GPIOin one go
FlI OLMASK &= ~(1<<16); /1 Enable pin for set/clear

FIOLDI R | = (1<<16); /1 Set pin for output

/| Copy FBIlink to code, and run it
mencpy( (int*)code, (int*)&FBlink , sizeof(code) );
((func_t)code)();

}

We also have to writEBlink (in assembler startup.s) to use the fast SFRtsadsof the slow SFR’s.

EXPORT FBI i nk
FBl i nk

LDR RO, =0x00010000 ; mask for pin 16

LDR R1, =0x3FFFC020 ; base address of the fast GPIO port
FBl i nkLoop

STR RO, [ R1, #0x18] ; set port pin

STR RO, [ RL, #0x1C] ; clear port pin

B Fbli nkLoop

Note

13



* Rlisloaded with the base address (3FFF CO20edést SFRs controlling port 1

*  We first store RO in R1+18 (so in 3FFF C038, or FBBT) which raises P1.16

* Later, we store RO in R1+1C (so in 3FFF C03C, @KILR) which lowers P1.16 again.
» Atthe end there is a (relative) jump back.

6.2 Theresults
We run the three blinkers from RAM, with CCLK setl2 MHz.

2str+1b 3str+1b 2str+2b
585ns (7ticks) 755ns (9ticks) 840ns (10tickg

~

Measuring individual instructions (fast GPIO)

We now have measured individual instructions:
* The STRinstruction takes 2 ticks (9 ticks for t34tb” minus 7 ticks for “2str,+1b”)
* The B instruction still takes 3 ticks (10 ticks f@str+2b” minus 7 ticks for “2str+1b”)

The conclusion is that a STR to slow GPIO is 31%e8 as slow as an STR to fast GPIO (7 ticks vetsus
times as slow (10 ticks versus 2) or even 8 tinsesl@wv (16 ticks versus 2) depending on the APEddiv

6.3 Some final theory

The LPC2148 contains an ARM7TDMI-S core. As the ARNDMI-S reference manual explains that this
core uses a pipeline to increase the speed ofaveof instructions. This allows several operatitmsake
place simultaneously, and the processing, and megystems to operate continuouslythiee-stage
pipeline is used, so instructions are executetirieet stages:

*  Fetch (the instruction is fetched from memory)
» Decode (the registers used in the instruction are decpded
» Execute (registers are read from register bank, the ALErafes, and the registers are written back)

The ARM7TDMI-S has a “VYon Neumann” architecturetiwa single 32-bit data bus carrying both
instructions and data. Only load, store, and swafructions can access data from memory.

The ARM7TDMI-S has four basic types of memory cycle
* lIdle cycle (1)

* Non-sequential cycle (N)

» Sequential cycle (S)

» Coprocessor register transfer cycle (C)

In the pipelined architecture of the ARM7TDMI-S, ehone instruction is beinfgtched, the previous
instruction is beinglecoded, and the one prior to that is beiegcuted. The table below (taken from the
ARM manual) lists the number of cycles requiredanyinstruction, when that instruction reaches the
execute stage.

Instruction Qualifier Cycle count
Any unexecuted Condition codes fall +S

Data processing Single-cycle +S

B, BL - +N +2S

STR - +N +N

SWP - +N +N +1 +S
MCR - +(b)l +C +N
... more ...

Excerpt from the timing table from ARM7TDMI-S refer ence manual

We see that a B instruction has a fetch, decodesequential, sequential, and sequential cycle. The
ARM7TDMI-S reference manual explains the operationte threeexecute steps:

14



1. During the first cycle, a branch instruction caltek the branch destination while performing a pre-
fetch from the current PC. This pre-fetch is danall cases because, by the time the decisiorké ta
the branch has been reached, it is already toddgieevent the pre-fetch.

2. During the second cycle, the ARM7TDMI-S performBedch from the branch destination.
3. During the third cycle, the ARM7TDMI-S performs atEh from the destination.

The STR instruction has a fetch, decode, non-sédiglieand non-sequential cycle. The ARM7TDMI-S
reference manual explains the operations in theetvezute steps:

1. During the first cycle, the ARM7TDMI-S calculatdsetaddress to be stored.

2. During the second cycle, the ARM7TDMI-S performs thase modification, and writes the data to
memory (if required).

7 7
A
e ' Y
| | | | | | | | | | | | | | | | | | |
[O[1[2[3[4[5][6[7[8]9]10[11[12[13[14[15]16]17[18]
STR F D [XN[XN
STR FID| [XNIXN
B F|D XN[XS[XS
STR F|D [XN[XN
STR FID| [XNXN
B F|D XN[XS[XS
STR F| D [XN[XN

The timing of the fast GPIO loop (bounded by the excution phase) is indeed 7 ticks

The figure above illustrates the timing of flast GPIO loop.
Fordow GPIO, the STR takes 7 cycles instead of 2. Théstdalo with the slow GPIO going through th¢

ARM Peripheral Bus. An explanation would be thatredl access does have a wait state introducedeb
AHB wrapper, and that there is an additional wai® &PB clocks (see figure below). This resultsii

Confirm-
ation?

clock execute phase (as measured). Furthermaispitexplains why an APB divider set to 2 makes the
execute phase of the store last #3210 ticks.

17
A
- I
| | | | | | | | | | | | | | | | | | | | | | |
[O[1]2[3[4[5[6[7[8][9[10[11[12][13[14[15][16][47][18[49]20]21]22]
STR| [ F | D [XIN] ws |APB|APB|APB|X2N] ws
STR F|D XIN| ws |APB|APBJAPB[X2N] ws
B F|D XN | XS [ XS [
STR F | D [XIN] ws [APB[AP

A possible explanation of the timing of the slow GB® loop

7 Conclusions

7.1 Performance
We have looked at several aspects of tuning theesyfor performance.

* The PLL allows us to boost an external clock witimiaimum frequency of 10MHz to 60MHz. A
speed-up of a factor of 6 (our board had a crygtaPMHz, not 10MHz).

e With an enabled MAM with minimal timing (or whenmaing from RAM) we get a speedup of nearly
5 with respect to running from flash directly.

* Fast GPIO is 3.5 times (or 5 or 8 times) as fasi@s GPIO (depending on the APB divider).
Total speedup achieved is<&1.8x 8 = 230.4.
So, the system’s performance window (for GPIO) fiacior230 wide.

15




7.2 Theory

We now understand the purpose and architectufeed®PLL in the system, namely multiplying the ex#drn
clock. The details of choosing an oscillator areyet clear.

We understand the purpose of the MAM in the systeamely bridging the speed gap between the flash
and the ARM core. The details of the timing andghepose of the three buffers is not completelgrcle
We have seen that code in RAM performs optimally.

We have seen that STR instructions to slow GPIOs3te&Rform really poor (hon sequential accesses
delayed by the APB bus), and that STR instructtorfast GPIO performs much better. The slow GPIO is
even slower when the APB divider kicks in.

The details of why each instruction clocks as messare not yet completely understood, but thertheo
roughly matches the practice.

7.3 Future work
We used 32 bits ARM instructions. As a future stepcould check ththumb instructions.

(end of doc)

16



