FANUC

GE Fanuc Automation

Programmable Control Products

Series 90" Programmable
Coprocessor Module
and Support Software

User’'s Manual

GFK0255K November 1999

GFL-002

Warnings, Cautions, and Notes
as Used in this Publication

Warning

Warning notices are used in this publication to emphasize that
hazardous voltages, currents, temperatures, or other conditions that
could cause personal injury exist in this equipment or may be
associated with its use.

In situations where inattention could cause either personal injury or
damage to equipment, a Warning notice is used.

Caution

Caution notices are used where equipment might be damaged if care is
not taken.

Note

Notes merely call attention to information that is especially significant to
understanding and operating the equipment.

This document is based on information available at the time of its publication. While
efforts have been made to be accurate, the information contained herein does not
purport to cover all details or variations in hardware or software, nor to provide for
every possible contingency in connection with installation, operation, or maintenance.
Features may be described herein which are not present in all hardware and software
systems. GE Fanuc Automation assumes no obligation of notice to holders of this
document with respect to changes subsequently made.

GE Fanuc Automation makes no representation or warranty, expressed, implied, or
statutory with respect to, and assumes no responsibility for the accuracy, completeness,
sufficiency, or usefulness of the information contained herein. No warranties of
merchantability or fitness for purpose shall apply.

The following are trademarks of GE Fanuc Automation North America, Inc.

Alarm Master Genius ProLoop Series Three
CIMPLICITY Helpmate PROMACRO VersaMax
CIMPLICITY 90-ADS Logicmaster SeriesFive VersaPro
CIMSTAR Modelmaster Series 90 VuMaster
Field Control Motion Mate Series One Workmaster
GEnet PowerTRAC SeriesSix

Copyright 1993 - 1999 GE Fanuc Automation North America, Inc.
All Rights Reserved

Preface

The Programmable Coprocessor Module (PCM), from GE Fanuc Automation North
America, Inc., is a high-performance microcomputer designed to perform coprocessor
functions in a Series 90™ PLC system. It combines the function of the Communications
Module (CCM) and the ASCII/BASIC Module (ABM), used on the Series Six ™
programmable logic controller (PLC), into a single module with significantly greater
capacity and performance than that of the ASCII/BASIC module.

Revisions to this Manual

Changes have been made to this version of the PCM manual, GFK-0255K, to add
information about CPUs on page 3-5 (Series 90-70 and Series 90-30 Minor Type codes) and
page 3-29 (minimum system window time values). Additionally; this manual describes
configuration of the PCM using Logicmaster 90 configuration software; however, the
PCM can also be configured with Control software. For information about Control
software topics, refer to the Online Help for Control Programming software.

Content of this Manual

GFK-0255K

This manual contains the following chapters and appendixes:

Chapter 1. Introduction: describes the features of the PCM. System operation, module
specifications, hardware features, and the use of various software tools are introduced in
this chapter.

Chapter 2. Installing the PCM: explains how to install and configure the PCM in a
Series 90-70 or 90-30 PLC system and how to install the necessary software.

Chapter 3. CCM Operation: describes CCM operation and features, and explains how
to the use the PCM for CCM applications.

Chapter 4. MegaBasic Operation: describes MegaBasic operation and features, and
explains how to the use the PCM for MegaBasic applications.

Chapter 5. Advanced MegaBasic Programming: describes the extensions to MegaBasic,
as developed by GE Fanuc. These extensions allow MegaBasic to take full advantage of
the special capabilities of the PCM and the Series 90 PLC system.

Chapter 6. Troubleshooting Guide: contains a self-guided demonstration of the steps
involved in troubleshooting the PCM and application programs.

Appendix A. PCM Cabling Information: provides cabling specifications and wiring
diagrams for the Series 90 PCM.

Appendix B. Resetting the PCM from a PLC Program: explains how COMMREQ
function blocks may be used to reset the PCM.

Appendix C. PCM Commands: describes commands for loading, storing, and executing
applications.

Preface

Appendix D. PCM Batch Files: describes how to create and use batch files.
Appendix E. Example MegaBasic Programs: provides a Megabasic test program.

Appendix F. TERMF File Descriptions: lists the files placed on the PCM programmer’s
hard disk during the INSTALL procedure.

iv Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

Preface

Related PCM Publications

For more information on PCM, refer to these publications:

Series 90 ™ PCM Development Software (PCOP) User’s Manual (GFK-0487)
MegaBasic™ Programming Language Reference Manual (GFK-0256)

Programmable Coprocessor Module (PCM) Quick Reference Guide (GFK-0260)

PCM Development Software (PCOP) Quick Reference Guide (GFK-0657)

PCM Support Software (TERMF) Quick Reference Guide (GFK-0655)

Important Product Information for PCM Development Software (PCOP) (GFK-0352)
Important Product Information for PCM Support Software (TERMF) (GFK-0654)
Important Product Information for Series 90 ™-70 PCM (GFK-0351).

Important Product Information for Series 90 ™ -30 PCM (GFK-0494)

Related Series 90 Publications

For more information on Series 90 programmable controllers, refer to these publications:
Series 90 ™ -70 Programmable Controller Installation Manual (GFK-0262)

Logicmaster™ 90-70 Programming Software User’s Manual (GFK-0263)

Series 90 ™ -70 Programmable Controller Reference Manual (GFK-0265)

Series 90 ™ -30 Programmable Controller Installation Manual (GFK-0356)

Logicmaster™ 90 Series 90 ™-30 and 90-20 Programming Software User’s Manual (GFK-0466)
Series 90 ™ -30/90-20 Programmable Controllers Reference Manual (GFK-0467)

Series 90 ™ PLC Serial Communications User’s Manual (GFK-0582)

Series Six ™ Data Communications Manual (GEK-25364)

Series 90 ™ -70 Programmable Controller User’s Guide to Integration of Third Party VME
Modules (GFK-0448)

Series 90 ™ -70 System Manual for Control Software Users (GEK-1192)
Control User’s Manual (GEK-1295)

We Welcome Your Comments and Suggestions

At GE Fanuc Automation, we strive to produce quality technical documentation. After
you have used this manual, please take a few moments to complete and return the
Reader’s Comment Card located on the next page.

Henry Konat
Technical Writer

GFK—-0255K Preface \%

Contents

Chapter 1 Introduction........ e

Sectionl: System OVerviewcoiiiiiinnanen...

Section 2: Functional Overview

CCM Operationt e
MegaBasic Operation
RAMDISK .
PCM Operation Modes
PCM Support Utilities for Personal Computers

User-Defined LEDs (USER1and USER2)
BatlerY .o
Serial CoNNECLOrS

Section 4;: Hardware Overview for the Series 90-70PCM
Section 5: Hardware Overview for the Series 90-30PCM

Section 6: ConfiguringthePCM,

Configuring the PCM for CCM Operation
Configuring the PCM for MegaBasic Operation

Section7: Who ShouldUsePCOP

Chapter 2 InstallingthePCM i

GFK-0255K

What You Will Need

Section 1: Installingthe PCM Hardware

OVEIVIBW . .o
Installinga Series 90-70 PCM
Installing a Series 90-30 PCM
Adding Expansion Memory to the Series 90-70PCM

Section 2: Configuring the PCM with Logicmaster 90 Software

I/O0Configuration Rack Screen
AddingaPCMtotheRack Screen i,
PCM ConfigurationData,
PCM Configuration Modes i
Configuration Modes and the PCOP Display
Series 90-30 PCM Autoconfig

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999

vii

Contents

Chapter 3

Section 3: Configuring the Series 90-30 PCM with the HHP

Freezing the Configuration
Example of EditingaPCM

Section4: TERMF Installation and Configuration

Installing TERMF
Adding the PCOP Directory to the MS-DOS Search Path

Section5: Using TERMSET to Configure TERMF or PCOP

Local Configuration File i i
Connecting the PCM to the Programmer
Diagnosing Serial Communication Problems

CCMOPperation e

Section 1: Series 90 CCM TargetMemory Types

CCMScratch Pad
Diagnostic StatusWords i

Section 2: Series 90 CCM Memory AddressingConventions . . .

Target/SourceMemory Addresses,
Data Length
CCMCOMPANISONS . . o e ettt e e e e e e

Section 3: Communications Request(COMMREQ)

Format of the COMMREQ FunctionBlock
Other COMMREQ Faults i
Power-UpDelayo
CommandBlock
CCM Status WOrdo

Section4: CCM COMMREQ DataBlock
Section5: CCM COMMREQ StatusWord
Section6: CCM COMMREQExample

Section 7: PLC System Communications Window

Series 90-70 System Communications Window
PLC Service Request (SVCREQ)t
Series 90-30 System Communications Window
SVCREQ Examples

viii Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999

3-25

3-28
3-28
3-28
3-30
3-30

GFK-0255K

Contents

Chapter 4 MegaBasSiCt e 4-1
Section 1: Programming the PCM inMegaBasic 4-2
Getting Started with the MegaBasic Interpreter 4-3
Loading and Saving MegaBasic Programs 4-4
BackingUp Your Program 4-5

Exiting the MegaBasic Interpreter 4-6

Saving Data through a Power CycleorReset 4-6
Compatibility with MS-DOSMegaBasic 4-7
MegaBasic Features Not Supported by the PCM 4-8
Modifying Existing BASIC Programs for MegaBasic 4-8
Printing a MegaBasic TextFile 4-9

Using a Text Editor to Create MegaBasic Programs 4-9
MegaBasic Program and Data Size 4-9
Determining the Size of a MegaBasic Program 4-10
MegaBasic Program Packages i 4-11
Changing the MegaBasic Workspace Size 4-11
Compacting and Encrypting Programs 4-12
Section 2: Interfacing to the PCM Hardware and Series 90 CPU 4-13
Input and Output to the PCM Serial Ports 4-14

Serial Port Controland Status 4-14
ACCeSSINGPLC DAtaot 4-15
SYSLINK 4-17
SYSREAD, SYSWRITE,and SYSTATUSS, 4-20

Status Record 4-22
UNLINK Statement e 4-24

Data COherenCyot 4-24
Accessingthe PCMI'SLEDSo 4-25
Section 3: MegaBasic ProgrammingExamples................ 4-26
Chapter 5 Advanced MegaBasicProgramming 5-1
Section 1: MegaBasicErrorCodes, 5-3
Section 2: Screen FormattingCommands 5-5
CLS 5-8

CURS 5-9

CUR 5-10

AT TR 5-11

AT TR 5-12

MV _CURS . 5-13

MV _CUR 5-15

GFK-0255K Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 iX

Contents

Section 3: Accessing %P, %L, and Password-Protected Data 5-16

CHG PRIV . 5-17
SMSG W EXT o 5-18
Section 4: Access to PLC Fault Tablesand PLC Status 5-21
READ _FAULT TBL ..ttt 5-23
RDEL_FAULT TBL ...ttt et et 5-24
FLT PRESENT O . ottt et ettt et e 5-25
FLT _CHANGEDY . ..ottt e e i 5-26
WORD YO .ottt 5-27
Fault Table Header Records, 5-28
PLCFaultTable Records i 5-28
I/OFault Table Records e 5-29
Short Status Records 5-30
Time Stamp Subrecords 5-32
PLC Fault AddressSubrecords i, 5-32
I/OReference AddressSubrecords i 5-32
I/OFault AddressSubrecords i 5-33
Known Problems with Fault Table Accesst 5-33

Section5: Gathering PLC Information from MegaBasic Programs 5-34

READ_PLC_STATUS .. e e 5-39
READ_PLC_TIME_AND _DATE i 5-41
READ_PLC_RUN_STATUS i 5-43
READ_PLC _CPU_ID ... e 5-45
CHECK_CPU_HEALTH e 5-46
READ_PLC _FAULT BIT ..o i 5-48
UTILITY _INIT e 5-49
Section 6: Loading and Storing PCM Data Files Using TERMF . 5-50
L o(Load) ... 5-51
S (SAVE) . 5-51
D (file DIreCtory)o 5-51
X (eXterminatefile) 5-51
Section 7: Serial Port Setup with IOCTL and PORT_CTL.BIN .. 5-52
Serial Port Setup with IOCTLo e 5-52
Serial Port Control Using PORT_CTL.BIN 5-55
Section 8: Timersand Logical Interrupts 5-57
Timer INterrupts 5-59
Backplane Interrupts 5-60

X Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

Contents

Section9: COMMREQs and Other Backplane Messages 5-64
PROCESS_MESSAGE Statementoiuiiiiiiinnnannn. 5-64

Using the BKP_MSG Interrupto 5-66
Interpreting COMMREQ MeSSagesuiiiiininninannan.n. 5-67
Programming the PLC COMMREQ FunctionBlock 5-68

Format of the COMMREQ Instruction 5-68
MegaBasic COMMREQ Command Block 5-71
MegaBasic COMMREQ Example 5-72
MegaBasic Blink LED Program Example 5-75
Controlling COMMREQSt 5-76
Identifying the Source of Backplane Messages 5-82
Backplane Messages to AnotherPCM 5-86
Section 10: Asynchronous Serial Inputand Output 5-91
NOWAIT_OPEN ... e 5-92
NOWAIT_READand NOWAIT_WRITE, 5-94
NOWAIT _CLOSE . .. e 5-96
NOWAIT_SEEK . ..o e 5-96
NOWAIT_READ_ABORT ... 5-97
NOWAIT_WRITE_ABORT ... 5-97
Example NOWAITProgramt 5-98
Section11: VME FUNCLIONS 5-100
VME Function Blocks for Communicating withthe PCM 5-100

Some Rules for VME Bus Operations in Series 90-70 PLCs 5-101
General VME Information forthe PCM 5-101

.PCM Dual Port RAM Available for Applications 5-102

VME Read FUNCLION e 5-103

VME Write Function 5-105
VMRead/Modify/Write Function 5-107

VME Testand Set FUNCLiON e 5-108
MegaBasic Program Access to PCM Dual PortRAM 5-109
Section 12: Programming Example using VME Functions 5-110
Section 13: Optimizing Backplane Communication 5-114
Backplane Processing for the Series 90-70PCM 5-114
Backplane Processing for the Series 90-30PCM 5-115
Chapter 6 TroubleshootingGuide 6-1

GFK-0255K Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 xi

Contents

“OK”LED NOtON ..o e e 6-1
Reset Blinks User LED1OrLED2 6-1
Communication Failure 6-2
PLC FaultTable Entries e 6-3
Backplane Transfer Failure i, 6-4
Insufficient Memory Error 6-4
LossofCharacters/MegaBasicTx/RxFailure 6-6
CCMDataTx/RxFailure e 6-7
Configuration Problems 6-8
Appendix A PCMCablingInformation A-1
Cable and Connector Specifications A-1
Serial CoNNECLOrS i A-2
Cabling A-5
RS-232 Cables A-7
RS-422/RS-485Cables A-10
Appendix B Resettingthe PLC fromaPCM Program B-1
AppendixC PCMCOMMANdSt C-1
Accessing the Command Interpreter i, C-1
Interactive Mode C-2
Command Format C-2
Notation CoNVENTIONSt C-3
CommMaANdS C-3
@ (executeabatchfile) C-4

B (configure LEDS) i C-4

C (Clearthe PCM) e C-5

D (file DIrectory)ot C-5

F (Show Free memory) C-5

G (Gethardware ID)ot C-6

H (get PCM firmware revisionnumber) C-6

I (Initializedevice) C-7

J (format EEROMdeVvice)co i C-9

K (Killatask) C-9
Loo(Load) ..o C-10

M (createamemoryModule) Cc-11

O (getLED configuration) Cc-11

P (requeststatusdata) C-12

Q (setprotectionlevel) C-13

R (RUN) . C-14

S (8AVE) C-15

U (reconfigurethe PCM) e C-15

Vo (Verifyafile) ... C-15

W (Wait) o C-16

X (eXterminatefile) C-16

Y (setupper memorylimit) C-17

Xii Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

Contents

Appendix D PCMBatch Files i D-1
Running Batch Files D-1
PCMEXEC.BAT FIles i D-2
HARDEXEC.BATFiles D-2
User-Installed PCMEXEC.BAT and HARDEXEC.BAT Files D-3
Appendix E Example MegaBasicProgram i, E-1
Appendix F TERMF FileDescriptions ..., F-1
Appendix G Synchronous Serial Mode Operation G-1
Port 1Pin ASSIQNMEeNtS G-1
Synchronous Operation Modes for Port1 G-2
Synchronous Mode PCMAS (Port 1) Control Registers G-3
NEC720011/O0AdAIeSSES .. vttt e G-3
NEC72001 Synchronous Clock Source Selection (CR15) G-4
For Further Information i i G-4

GFK-0255K Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 xiii

Contents

Figure 1-1. Series 90-70 PCM 1-4
Figure 1-2. Series 90-30 PCM 1-5
Figure 1-3. Series 90-70 PCM Hardware Block Diagram i 1-9
Figure 1-4. Series 90-30 PCM Hardware Block Diagram i 1-11
Figure 2-1. Series 90-70 PCM Configurations i e 2-3
Figure 3-1. Series One Jr. PLC Vs Series Q0 PLC 3-9
Figure 3-2. SeriesOne PLC vs Series 90 PLC i e 3-9
Figure 3-3. SeriesOne PIusSPLC vsSeries 90 PLC i e 3-10
Figure 3-4. Series Three PLC vs SeriesS Q0 PLC o e 3-10
Figure 3-5. Series Five PLC VS SerieS 90 PLC i 3-11
Figure A-1. Serial Port Pin Assignments for the Series90-70PCM oot A-2
Figure A-2. Serial Port Pin Assignments for the Series90-30 PCM A-3
Figure A-3. WYE Cable Connections for the Series 90-30PCM A-4
Figure A-4. PCM to Workmaster COMPULEEt e A-5
Figure A-5. PCM to PC-AT Personal Computer e A-5
Figure A-6. PCM to Cimplicity Model W Computer i A-5
Figure A-7. PCM to Workmaster Il Computer or PS/2 Computer ..., A-6
Figure A-8. PCM to PCM with Hardware Flow Control (RS-232only) A-7
Figure A-9. CCM2t0PCM (RS-2320N1Y) .. o e A-7
Figure A-10. PCM to OIT with Hardware Flow Control (RS-232only) A-8
Figure A-11. PCM to OIT without Hardware Flow Control (RS-232only) A-8
Figure A-12. PCM to a 5-Pin Device, Full Hardware Flow Control A-9
Figure A-13. PCM to a 5-Pin Device, No Flow Control or Hardware Flow Control A-9
Figure A-14. PCM to PCM without Hardware Flow Control (RS-422/RS-485) A-11
Figure A-15. CCM2tOPCM (RS-422/RS-485) . .. ittt e e A-11
Figure A-16. PCM to OIT without Hardware Flow Control (RS-422/RS-485) A-12
Figure A-17. PCM to Series One/Series Three DCA(RS-422/RS-485), A-12
Figure A-18. 2-Wire RS-422/RS-485PCMHoO0OKUp A-13
Figure A-19. CCM2 or Host Computer to Multiple PCMs (Multidrop) A-14
Figure A-20. PCM or Host Computer to Multiple PCMs (4-Wire Multidrop) A-15
Figure B-1. SOft ReSEL B-2
Figure B-2. Hard Reset o B-3

Xiv Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

Contents

Table 1-1. Series 90-70 PCM Expansion Memory and ACCESSONESoieii e 1-10
Table 1-2. Series 90-30 PCM FEAtUIESottt et e 1-12
Table 1-3. Series 90-30 PCM ACCESSOIIES . .. oottt ettt ettt 1-12
Table 2-1. Expansion Memory Boards 2-5
Table 2-2. PCM Configuration Modes e 2-10
Table 2-3. Logicmaster 90 Configuration Mode i 2-17
Table 2-4. Autoconfig Default ConfigurationValues i, 2-18
Table 3-1. Memory Types Supported by SerieS90 CCM 3-2
Table 3-2. Memory Types for the CCM Single Bit Write Function (6110) 3-2
Table 3-3. Series Six Memory Types NOT Supported by Series90CCM 3-2
Table 3-4. Series One Memory Types vs. Series 90 CCM Memory Types, 3-3
Table 3-5. Series Five Memory Types vs. Series 90 CCM Memory Types, 3-3
Table 3-6. Scratch Pad MemoryAllocation i 3-4
Table 3-7. CCM Diagnostic Status Word Definitions i, 3-6
Table 3-8. Target/SourceMemory AdAreSSeSottt e e 3-7
Table 3-9. Unit Lengths of Series 90 CCM Memory TYPES . ..o ittt 3-8
Table 3-10. COMMREQ Data Block for CCM Commands ..., 3-20
Table 3-11. COMMREQ Data Block for CCM Commands (Explanations for Table 3-10) 3-21
Table 3-12. Series Six CCM Commands NOT Supported by Series90CCM 3-22
Table 3-13. CCM Serial Port Secondary Error Codes

(High Byte of Diagnostic StatusWord 1)c. ... 3-23
Table 4-1. Default Program Workspace and RAM Disk Sizes 4-10
Table 5-1. MegaBasiC Error Codest 5-3
Table 5-2. VT100.PGM Functions and Proceduresttt 5-6
Table 5-3. Integer and String CONStaNTS o i 5-7
Table 5-4. Request and Access Codes for PLC Memory TYPeSt 5-19
Table 5-5. READ_FLT.PGM Functions and Proceduresc. i, 5-21
Table 5-6. READ_FLT.PGM Shared Definitionsand Constants 5-22
Table 5-7. UTILITY.PGM Package Procedures 5-35
Table 5-8. UTILITY.PGM Package Shared Constants and Variables............................. 5-36
Table 5-9. PCM Interrupts and Associated Defaults i, 5-58
Table 5-10. Structure of Backplane MeSsagesot 5-65
Table 5-11. Backplane Message Fields 5-65
Table 5-12. Message Type, Rack, Slot,and ID Values i, 5-83
Table 5-13. PCM Address Allocation by Slot and Rack for Standard Non-Privileged Access-39H ... 5-102
Table G-1. Port 1 Pin Assignments: RS-232 (Synchronous Serial Mode Operation) G-1
Table G-2. Port 1 Pin Assignments: RS-422 (Synchronous Serial Mode Operation) G-2
Table G-3. Port 1 Control RegiSters i e e G-3
Table G-4. Serial Controller POrt ASSIQNMENTS e G-3
Table G-5. Synchronous Clock Source Selection i e G-4

GFK-0255K Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 XV

Chapter

Section 1;

GFK-0255K

Introduction

System Overview

The Programmable Coprocessor Module (PCM), from GE Fanuc Automation North
America, Inc., is a high-performance microcomputer designed to perform coprocessor
functions in a Series 90™ PLC system. It combines the function of the Communications
Module (CCM) and the ASCII/BASIC Module (ABM), used on the Series Six ™
programmable logic controller (PLC), into a single module with significantly greater
capacity and performance than that of the ASCII/BASIC module.

The PCM is closely coupled to the Series 90 PLC and may be configured to function as:

® One or two independent CCM ports.
® One CCM port and one MegaBasic application using one serial port.
® One MegaBasic application using one or both serial ports.

The PCM communicates with the PLC CPU over the backplane and can access user and
system data using extensions to the MegaBasic language. No application support is
required in the PLC CPU. Dual tasking allows the PCM to run a MegaBasic program
and support a CCM communications channel at the same time.

For CCM and smaller MegaBasic applications, the PCM can use on-board memory. The
Series 90-70 PCM has 128K bytes of memory; however, some Series 90-70 MegaBasic
applications require a daughter board that can expand memory by 64K, 128K, 256K, or
512K bytes. The Series 90-30 PCM is available with various memory sizes to support
different applications. All PCM memory is supported by a long-life lithium battery,
located on the module.

Each PCM occupies a single slot in a Series 90 rack. Up to 63 PCMs may be installed in a
single Series 90-70 PLC system to improve access to serial I/0 devices and to access PLC
memory. In the Series 90-30 PLC, the Model 331, or higher model CPU may have up to 4
PCMs in the main rack. The number of PCMs allowed in a rack may be restricted if the
power consumed in the rack exceeds the rating of the power supply.

The PCM can be configured to run CCM and/or MegaBasic programs using Logicmaster
90 configuration software. Additional configuration capabilities are provided through
the PCM development software package (PCOP) or by using PCM batch files.

Section 2: Functional Overview

CCM Operation

For CCM applications, each port behaves like an independent window into the PLC for
access by other devices using the CCM protocol, such as industrial computers and color
graphic terminals. The implementation of CCM on the PCM supports access to most
user references. Many applications which accessed Series Six user references using CCM
can now support the Series 90 PLC with little or no change.

Either port of the PCM can be configured in CCM MASTER SLAVE or PEER mode. In
this capacity, the PCM acts much like a Series Six CCM module, transfering data between
the PLC and an external device. Configuration of the port parameters is done in the
Logicmaster 90 configuration package, using CCMmode. In SLAVE or PEER mode, an
external CCM device, such as a computer, can request and send PLC CPU data to the
PCM’s ports. In MASTERor PEER mode, the application program in the PLC CPU can
use the COMMREQ instruction to initiate data transfers to a CCM device attached to a
PCM port.

MegaBasic Operation

RAM Disk

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999

Asa programmable coprocessor, the PCM may be programmed with a powerful BASIC
language interpreter called MegaBasic to perform data acquisition, data storage and
retrieval, real-time computing, and operator interface functions. GE Fanuc has added
extensions to MegaBasic to permit the reading and writing of user references in the PLC.
These extensions also access program and system status information, permitting the
development of operator interface programs to control and monitor processes.

MegaBasic programs may be developed off-line, using a standard text editor on a
personal computer, or on-line with a terminal attached to the PCM programming port.
A separate version of the MegaBasic interpreter also allows programs to be developed
off-line in the MS-DOS environment. The MS-DOS version, however, does not support
the PCM extensions to MegaBasic.

A MegaBasic program must be loaded to PCM RAM prior to being run on the PCM. If
the program is saved to the PCM RAM Disk (RAM:), the PCM can be configured so that
the MegaBasic program is automatically copied into the MegaBasic program execution
RAM and executed by the MegaBasic interpreter upon power-up or reset.

The RAM Disk is an area of RAM used to simulate a disk drive. It contains all memory
not used by MegaBasic. Like any other storage medium (hard disk or floppy disk), the
RAM Disk is used to store program and data files. RAM Disk files are preserved by a
battery when the PLC is powered off.

GFK-0255K

Caution

If you store files to a RAM Disk, they will remain only as long as power is
present or the battery is connected and working.

Application programming errors, battery failure, battery disconnection, and
the removal of the daughter board from a Series 90-70 PCM have the
potential to destroy files stored in RAM. All RAM files should be backed up
to a more permanent storage medium (hard disk or floppy disk).

PCM Operation Modes

The PCM has a Restart/Reset pushbutton that is used to place the module in RUN mode
or PROGRANNOde.

If the Restart/Reset pushbutton is pressed for less than 5 seconds, the PCM is placed in
RUNmode. This reset is referred to as a softreset. CCM is started up on ports
configured for CCM operation. If the PCM has been configured to run a MegaBasic
program and that program has been saved to the PCM RAM Disk (RAM:), the program
is automatically copied to the program workspace and executed by the MegaBasic
interpreter. A power cycle also causes the PCM to go to RUN mode.

If the Restart/Reset pushbutton is pressed continuously for 10 seconds, the PCM
performs a reset operation and enters PROGRAM DEVELOPMEMiode. CCM operation
and MegaBasic programs are stopped. This reset is referred to as a hardreset. Program
and configuration development are performed in this mode.

PCM Support Utilities for Personal Computers

GFK-0255K

TERME IC641SWP063, is a terminal emulation software package for personal
computers. Itis used to program MegaBasic programs on the PCM and transfer
program files between the PCM and the personal computer. Setup of TERMF terminal
configuration data is performed through a companion program called TERMSET. (For
more information on TERMF, refer to chapter 2, section 4, TERMF Installation and
Configuration.)

PCOP, IC641SWPO061, is a development system for the PCM, used for applications
requiring configuration beyond that supplied by Logicmaster 90 software. PCOP
provides functions for configuration, programming and running MegaBasic, loading and
saving files, and other status and control functions. PCOP also supports folder and file
maintenance.

TERMF and PCOP may be run directly from the MS-DOS prompt, or they may be
accessed through the Logicmaster 90 main menu by selecting PCM development
package (F3).

TERMEF, PCOR, and Logicmaster 90 configuration software may be run on a
Workmaster 1I, Workmaster, or Cimstar™ | industrial computer with a hard disk, or
on an IBM-PC , PC-XT, PC-AT, IBM System/2, or 100% compatible personal computer
with a hard disk, at least 640K of RAM, and DOS Version 3.0 or later. For information on
choosing whether to use TERMF or PCOP, see section 7, Who Should Use PCOP.

IBM-PC and IBM System/2 are registered trademarks of International Business Machines Corporation.

Chapter 1 Introduction 1-3

Section 3: PCM Module Description

The Programmable Coprocessor Module has a battery and three LEDs. The Series 90-70
PCM has two serial port connectors, while the Series 90-30 PCM has a single connector
supporting two serial ports. Both the Series 90-70 PCM and the Series 90-30 PCM have a
Restart/Resetpushbutton.

LED Indicators

The three LED indicators, shown in the following figures, are mounted along the top
front edge of the PCM.

a42733
DOOR
BD OK 0
USER 1 A ||
(PLOK) ~J° .
1
USER2 __§ —
(P2 OK)
RESTART —#9 I:q:l
MODEL 70
PCM 711]
BATTERY X MODULE Ok
CONNECT K useRi 1
— 4
ON = OK, ACTIVE
1 O | OR USER
9o
So PUSH TO RESTART
03 APPLICATION.
So PUSH AND HOLD
PORT 1 K o L |
99 g STOP AND RESET. L
03 BATTERY O
90 CONNECTIONS
04 a
] INSTALL NEW —
— BATTERY BEFORE
UNPLUGGING OLD
BATTERY. USE
IC697ACCT0L
PORT 1
RS-232 OR
RS-422/RS-485
COMPATIBLE
MODULE FUNCTION
o SERIES 90-70
PROGRAMMABLE
> COPROCESSOR,
99 COMMUNICATIONS
o
3o OPTIONAL MEMORY
88 USE IC697TMEM71—
0
PORT 2—®53
So PORT 2
03 RS-232 OR
So RS-422/RS-485
) COMPATIBLE

O]

MODULE
/ IC697PCM711
LAl

BEL
44A726758-203

O OPTION CONNECTOR

Figure 1-1. Series 90-70 PCM

1-4 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

OKLED

a43734

PCM300 oK B0 ok—~C
COPROC us1 P1 OK—>Cl
us2 P2 OK——’(_JL

o
> RESTART —#[Z| |
o [E—

BATTERY —%

000000000000
0000000000000

Figure 1-2. Series 90-30 PCM

The OK LED indicates the current status of the PCM. It has three states:

State

Description

off

When the LED is off, the PCM is not functioning. This is the result of a hardware
malfunction, e.g., the diagnostic checks detect a failure, the PCM fails, or the PLC
CPU isnot present. Corrective action is required in order to get the PCM
functioningagain.

When the LED is on steadily, the PCM is functioning properly. Normally, this LED
shouldalways be on, indicating that the diagnostic tests were successfully
completed and the configuration data for the module is good.

Flashing

The LED flashes during power-updiagnostics.

Note

The PCM has a hardware watchdog timer that is periodically reset by
the PCM software. If the watchdog timer expires, the PCM stops
functioning and the OK LED turns off.

GFK-0255K Chapter 1 Introduction

User-Defined LEDs (USER1 and USER2)

Battery

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999

The remaining two LED indicators, USER1 and USER?2, are user-definable LEDs. By
default, these LEDs blink to indicate activity on the serial ports. USER1 blinks when port
1 sends or receives; USER?2 blinks when port 2 sends or receives. The use of either or
both user LEDs may be redefined.

Alithium battery is installed, as shown in figures 1-1 and 1-2. This battery maintains
user memory when power is removed. Before the battery reaches the end of its useful
life, a low battery fault is reported in the PLC fault table. See tables 1-1 and 1-3 for
replacement battery catalog numbers.

When replacing a lithium battery, be sure to connect the new battery into the unused
PCM battery connector before removing and discarding the old battery. Use the
following procedure to replace the battery.

1. Open the front cover. Refer to figures 1-1 and 1-2 for the location of the battery on
the module. (For a new PCM, the battery is not connected.)

Note

When the PCM is to be stored for an extended period of time, the
battery should first be disconnected. However, if it is to be stored as a
spare for a running application, you may wish to retain memory by
leaving the battery connected.

2. Connect the battery to either battery connector on the module. If an old battery is
present, connect the replacement battery to the unused battery connector before
disconnecting the old battery. The tab on the connector should face to the right,
away from the module surface.

3. Press down firmly to lock the battery connector in place, but do not force the battery

connector into place.

Warning

Do not discard the lithium battery in a fire. Do not attempt to recharge
the battery. Do not short the battery. The battery may burst, burn, or
release hazardous materials. Manufacturer’s instructions are available
upon request.

GFK-0255K

Serial Connectors

GFK-0255K

The serial connectors on the PCM are used to communicate with external devices, such
as operator interface terminals, bar code readers, and programming devices.

The Series 90-70 PCM has two serial connectors; each one supports both RS-232 and
RS-485 operation. The serial ports are identical, and either port can be used for most
applications. The two ports are configurable for different communication parameters.

Note
RS-485 is basically compatible with RS-422 devices.

Series 90-30 PCMs have a single serial connector that supports two ports. One port has a
fixed interface. Port 1 uses RS-232 operation only. The 160K PCM, IC693PCM300 is
restricted to using RS-485 on port 2. All other Series 90-30 PCM modules may select
either RS-232 or RS-485 operation on port 2.

Caution

The serial ports on almost all versions of the PCM are connected to
electrical ground within the PLC. Serial communication must be
limited to distances of 50 feet (15 meters) unless ground isolation is
provided by an external device. Failure to observe this caution may
result in damage to the PCM or communicating device.

The serial ports on Series 90-70 PCMs using PCMA3 or newer
hardware have limited isolation from electrical ground. These ports
can withstand 200 volts DC plus instantaneous peak AC between any
serial port connector pin (except shield) and PLC frame ground. This
level of isolation is not adequate for many applications, for example,
communication between devices on different power systems or where
serial cables are exposed to intense electromagnetic fields. For
applications like these, an external optical isolation device should be
installed in the serial connection.

A WYE cable is supplied with each Series 90-30 PCM. The purpose of the WYE cable is
to separate the two ports from a single physical connector; i.e., the cable separates the
signals. In addition, the WYE cable makes cables used with the Series 90-70 PCM fully
compatible with the Series 90-30 PCM.

The WYE cable is 1 foot in length and has a right-angle connector on one end that
connects to the PCM. On the other end, it has a dual connector with one connector for
port 1 and the other for port 2.

In order to use an RS-232 cable on port 2 of a Series 90-30 PCM, either a special cable
must be made according to the serial port pin assignments shown in appendix A or a
WYE cable must be used. Standard Series 90-70 PCM cables can be used for the Series
90-30 PCM when the WYE cable is used.

Chapter 1 Introduction 1-7

Caution

The WYE cable should not be used with Series 90-30 PCMs connected
to an RS-485 multidrop network because it introduces signal
reflections on the cable. Multidrop networks should be cabled
directly to the PCM serial connector.

The connector pin assignments for the Series 90-70 PCM, Series 90-30 PCM, and the

WYE cable shipped with each Series 90-30 PCM are shown in appendix A, PCM Cabling

Information.

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999

GFK-0255K

Section 4;

GFK-0255K

Hardware Overview for the Series 90-70 PCM

The Series 90-70 PCM features include:

A 12.5mHz 80C186 microprocessor.
128 Kbytes on-board RAM.

Up to 512 Kbytes optional RAM on memory expansion boards. These are the same
expansion boards used by the Series 90-70 CPU 731/32 and CPU 771/772.

Two RS-232/RS-485 serial ports.

Backplane access to PLC memory.

A real-time calendar clock synchronized to the PLC.
ARestart/Resetpushbutton.

Three status LEDs.

Soft configuration (no dip switches or jumpers).
Occupies a single slot in Series 90-70 racks.

Memory on the Series 90-70 PCM consists of PROM, local RAM, and dual port RAM.
PROM contains the operating system, the CCM protocol, a built-in MegaBasic
interpreter, and related utilities. Local RAM is divided into two data areas, one for PCM
internal use and the remainder for the user’s data and programs. Dual port RAM is used
for communications between the PCM and the Series 90-70 PLC CPU.

e a42748
BUS
LOGIC RACK
CONNECTOR
DUAL PORT 7 l
RAM || SYSTEMBUS COS‘IEIF;IOAI}LER
(32K X 16) INTERFACE
NMI
INTI
~ vV 4 4 /'y N
INT. DMA
PCMOKLED |O| — D E—
USER 1LED | O |4—— Rs-2321485 Y v
USER 2 LED | o SEL PORT PORT
—| one [P Two
NMI
RiSBET @—> MICROPROCESSOR
-~
INT1
MB PROM INT3 v
(64K X 16) v LocAL
SYSTEM PROM OPTION RAM
(64K X 16) CONNECTOR (64KX 16)
| LOCAL BUS |

Figure 1-3. Series 90-70 PCM Hardware Block Diagram

Chapter 1 Introduction 1-9

Two serial ports are provided for communication with a programming terminal, CRTSs,
bar code readers, and other devices. These ports are identical in function. On the Series
90-70 PCM, both ports support RS-232 and RS-485 operation through software
configuration.

The PCM has three LED indicators that enable you to determine the state of the PCM
without having a terminal connected. The OK LED (top LED) indicates the current
status of the PCM. The function of the USER1 and USER?2 LED indicators (middle and
bottom LEDs, respectively) can be configured by the user program or PCOP. By default,
these LEDs indicate transmit and receive activity on serial ports 1 and 2, respectively.

The option connector on the Series 90-70 PCM provides for the addition of expansion
memory. The Series 90-30 PCM does not have an option connector.

Table 1-1. Series 90-70 PCM Expansion Memory and Accessories

Catalog No. Description

IC697TMEM713 | Expansionmemory, 64 Kbytes.

IC697TMEM715 | Expansionmemory, 128 Kbytes.

IC697TMEM717 | Expansionmemory, 256 Kbytes.

IC697TMEM719 | Expansionmemory, 512 Kbytes.

1IC697ACCT701 Replacementbattery, package of 2.

1C690CBL701 PCM to IBM XT compatible 9-pin serial connector.
1C690CBL702 PCM to IBM AT compatible 9-pin serial connector.
1C690CBL705 PCMtoIBMPS/2compatible 25-pinserial connector.

1-10 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

Section 5:

GFK-0255K

Hardware Overview for the Series 90-30 PCM

The Series 90-30 PCM features include:

Three status LEDs.

An 8 mHz 80C188 microprocessor.
On-board RAM, options of 160, 192, or 640 Kbytes.

Two serial ports, one RS-232 and one RS-232/RS-485.
Backplane access to PLC memory.
A real-time calendar clock synchronized to the PLC.
ARestart/Resetpushbutton.

Soft configuration (no dip switches or jumpers for most users).
Occupies a single slot in the Series 90-30 1/0 rack.

Memory on the Series 90-30 PCM consists of PROM and local RAM. PROM contains the
operating system, the CCM protocol, a built-in MegaBasic interpreter, and related
utilities. Local RAM is divided into two data areas, one for PCM internal use and the
remainder for the user’s data and programs.

90-30 RACK
(SERIAL)

LOGIC RACK
CONNECTOR

U

BACKPLANE
SERIAL
CONTROLLER

USER2LED | O

RESET @
PB

a44362

SERI

AL

CONTROLLER

N DMAL

PCMOKLED |O
USER1LED | O [4—]

NMI
—>

SYSTEM PROM
256K X 8
(VARIES)

MICROPROCESSOR

'

'

PORT
ONE

PORT
TWO

RS-232/485 SEL T

-

192K X

LOCAL RAM

(VARIES)

8

s
7

s
4

i
4

ZON

A4

LOCAL BUS

Figure 1-4. Series 90-30 PCM Hardware Block Diagram

Chapter 1 Introduction

Two serial ports are provided for communication with a programming terminal, CRTSs,
bar code readers, and other devices. These ports are identical in function and support
RS-232 and/or RS-485/RS-422 operation through software configuration.

On the Series 90-30 PCM, connections to both ports are made through a single 25-pin

D-type connector. A WYE cable is supplied with each PCM module. This cable is 1 foot
in length and has a right-angle connector on one end that connects to the PCM. On the
other end, it has a dual connector with one connector for port 1 and the other for port 2.

The PCM has three LED indicators that enable you to determine the state of the PCM
without having a terminal connected. The OK LED (top LED) indicates the current
status of the PCM. The function of the USER1 and USER?2 LED indicators (middle and
bottom LEDs, respectively) can be configured by Logicmaster 90 software, the user
program, or PCOP. By default, these LEDs are used to indicate transmit and receive
activity on serial ports 1 and 2, respectively.

Several versions of the Series 90-30 PCM are available. The best one for a particular
application may be selected on the basis of memory and serial port requirements. The
following table lists the PCM versions by catalog number, along with the total RAM
memory available on each module.

Table 1-2. Series 90-30 PCM Features

Module Total RAM Port 1 Port 2
1C693PCM300 160K RS-232 RS-485
1C693PCM301 192K RS-232 RS-232

RS-485
1C693PCM311 640K RS-232 RS-232
RS-485

Table 1-3. Series 90-30 PCM Accessories

Catalog No. Description

IC693ACC301A | Replacementbattery, package of 2.

1C693CBL305 Series 90-30 PCM “WYE" cable.

1C690CBL701 PCM to IBM XT compatible 9-pin serial connector.
1C690CBL702 PCM to IBM AT compatible 9-pin serial connector.
1C690CBL705 PCMtoIBMPS/2compatible 25-pinserial connector.

1-12 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

Section 6: Configuring the PCM

Before a PCM can be used in a Series 90-70 or 90-30 PLC system, it must be configured
for the CCM or MegaBasic functions it is to perform.

For some CCM-only applications, the Series 90-30 PCM requires no configuration at all.
The Model 331, or higher model CPU provides an autoconfig setting for CCM to permit
automatic operation. These autoconfig default settings for the Series 90-30 PCM in CCM
mode are described in the next chapter.

Configuration information can be provided in two ways: through Logicmaster 90
configuration (or the Series 90-30 Hand-Held Programmer) and/or a user configuration
created by the PCOP development software. For most MegaBasic and CCM
applications, Logicmaster 90 configuration is all that is needed. Logicmaster 90
configuration of the PCM is described in section 2 of the next chapter.

When the PCM is configured for a MegaBasic application by Logicmaster 90 or the Series
90-30 Hand-Held Programmer, PCM batch files may be used to set certain PCM
parameters. PCM batch files are described in appendix D of this manual.

For some advanced applications, the PCM may be configured using the PCOP
development software. The configuration created by PCOP is called UserConfiguration
Data (UCDF). The UCDF is similar in function to the CONFIG.SYS file in a DOS
personal computer system. The PCM uses the information found in the UCDF to
determine its function. For more information on creating user configuration data, refer
to the Series 90 PCM Development Software (PCOP) User’s Manual, GFK-0487.

Configuring the PCM for CCM Operation

GFK-0255K

If the PCM is configured for CCM ONLYor BAS/CCM mode using the Logicmaster 90
configuration package, CCM operation is automatically started on the specified port(s)
on power-up or following a soft reset. The configuration of port characteristics (data
rate, etc.), unit ID, and assignment to port 1 or port 2 is also done with the Logicmaster
90 configuration package.

Chapter 1 Introduction 1-13

Configuring the PCM for MegaBasic Operation

If the PCM has firmware version 2.50 or greater, it may be configured for BASIC or
BAS/CCMmode using Logicmaster 90 software. With these modes, the MegaBasic
program in RAM: automatically loads and starts on power-up or following a soft reset
(pressing the Restart/Reset pushbutton for less than 5 seconds). A hard reset (pressing
the Restart/Reset pushbutton for 10 seconds) will cause MegaBasic to start in PROGRAM
DEVELOPMENTMode. For more information on MegaBasic operation, see chapter 4,
MegaBasic.

Note

PCMs with firmware versions 2.04 and earlier do not recognize BASIC
or BAS/CCMmode. Using one of these modes will cause a fault to be
posted in the PLC fault table for the PCM rack and slot location:
“Unsupported feature in configuration.”

Warning

The UCDF, PCM batch files, and MegaBasic program(s) in the PCM
RAM: device are preserved during a PLC power loss by the PCM
battery. The Logicmaster 90 configuration is preserved by the PLC
CPU battery (Series 90-70) or power supply battery (Series 90-30).
Failure to replace either of these batteries when necessary may prevent
the PCM from operating normally.

1-14 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

Section 7:

GFK-0255K

Who Should Use PCOP

Everyone who develops MegaBasic applications for the PCM will need to use either
TERMF or PCOP. (See PCM Support Utilities in section 1 of this chapter for catalog
numbers and brief descriptions of TERMF and PCOPR) TERMF provides a simple
command line interface to the PCM command processor, while PCOP provides a
menu-oriented interface similar to Logicmaster 90 software plus EXPERT mode
shortcuts. PCOP also provides project folder support for multiple PCM applications.

Certain PCM configurations are available only from PCOP; users who need these
configurations must use PCOP. Other users may prefer PCOP. We recommend PCOP
for these users:

e CCM application developers who need to adjust CCM timeouts and turnaround
times in finer increments than the ones provided by Logicmaster 90 configuration
must configure the PCM with PCOP.

Note

Beginning with Release 3.00, timeouts and retry counts may be set using
COMMREQs to the CCM task. Refer to the Series 90 PLC Serial
Communications User’s Manual, GFK-0582.

® Users who already use PCOP, are comfortable with it, and have existing User
Configuration Data (UCDF) Files in their PCMs should continue to use PCOP.
UCDFs can be created and stored to the PCM only by using PCOP.

® New users who are uncomfortable with the MS-DOS command line interface in
personal computers will often be more productive using PCOP.

e Users who need the PCM command interpreter and file server active on serial port 2
during normal operation (i.e., while MegaBasic is using serial port 1) can set this up
only with PCOP.

® Users of PCMs with firmware versions 2.04 and earlier must use PCOP to run
MegaBasic. These users should consider upgrading firmware as an alternative.
Contact the GE Fanuc PLC Technical Support Hotline at 1-800-GEFANUC for details.

If you decide to use PCOP, please refer to the Series 90 PCM Development Software User’s
Manual, GFK-0487, and skip section 4, TERMF Installation and Configuration, of chapter 2
in this manual.

Chapter 1 Introduction 1-15

Chapter

GFK-0255K

Installing the PCM

This chapter explains how to install a Programmable Coprocessor Module (PCM) in a
Series 90 PLC system and how to install the necessary software. There are several easy
steps in preparing the PCM for CCM communication or developing and executing a
MegaBasic program.

This chapter is divided into the sections listed below. The necessary equipment and
software packages required for the installation process are included in the following
table. After that, each section describes one step of the installation procedure in detail.
Notallstepsarenecessary for everyapplication.

Section Title Description Page
1 Installingthe PCM Section 1 contains the first step in the installation 2-3
Hardware procedure. Thisstep isalways requried. It describes
the physical installation of the PCM in a Series 90

rack. Hardware descriptionsare alsoincluded.

2 ConfiguringthePCM | Section 2 contains the second step in the installation 2-6
with Logicmaster 90 procedure. Thisstep is always required for a Series
Software 90-70 application and for most Series 90-30

applications (those not relying on autoconfig.)

It describes how to add a PCM to the Series 90 1/0
configuration,usingLogicmaster90configuration
software.

3 Configuringthe Series | The PCM parameters can be edited with the Hand- 2-19
90-30 PCM with the Held Programmer if you have a Release 3 or later
HHP CPU and a Release 2.51 or later PCM. Section 3

describes how to do this.

4 TERMFInstallation Section 4 describes how to install TERMF software 2-24
andConfiguration onaprogramming computer and configure TERMF

for the computer. This step is required for MegaBasic
programming.

5 Using TERMSET to Section 5 describes how to run TERMSET to modify 2-26
Configure TERMFor the TERM.DAT file. If you are using PCOP refer to
PCOP the Series 90 PCM Development Software (PCOP)

User’'sManual, GFK-0487, for instuctions oninstalling
PCOP.
2-1

What You Will Need

Before you can begin the installation procedure, you must have the following
equipment:

® A Series 90-70 programmable controller (PLC) system or a Series 90-30 PLC system
containing a model 331, or higher CPU.

® AProgrammable Coprocessor Module (PCM) to install and test.

If your application is CCM with standard default settings for a Series 90-30 PCM., no
other equipment or software is required.

For other applications, the following is also required:

® An MS-DOS based computer with a hard disk and MS-DOS version 3.0 or later. The

computer may be:
o AWorkmaster Il industrial computer.

o An IBM PC-XT, PC-AT, industrial PC-AT, or PS/2 personal computer with an
83-key or 101-key keyboard.

o AWorkmaster or Cimstar™ | industrial computer with an 83-key or 101-key
keyboard.

® | ogicmaster 90 programming software.

For most CCM applications, no other equipment or software is required.

For MegaBasic and advanced CCM applications, you also need:

® PCM support software (TERMF), IC641SWP063, or PCM development software
(PCOP), IC641SWP061.

® One of the standard RS-232 cables described in appendix A, PCM Cabling
Information.

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999

GFK-0255K

Section 1: Installing the PCM Hardware

Overview

GFK-0255K

The first step in the installation procedure is to physically install the PCM hardware and
verify that it is working properly.

In a single rack system, the PCM resides in the same rack as the PLC CPU. In a multiple
rack Series 90-70 PLC, the PCM can reside in either the CPU rack or an expansion rack.
The Series 90-30 PCM must reside in the main rack with the CPU.

The following illustration shows two possible system configurations for installing a
Series 90-70 PCM in either a local or expansion rack.

LOCAL RACK CONFIGURATION a42732
Plclp
s|P|C
° ulm
CPU RACK EXPANSION RACK

Plc|B P|B|P

s|P|T s [R|C

° ulm o M[M

Figure 2-1. Series 90-70 PCM Configurations

The power supply, CPU, and Series 90-70 Bus Transmitter (BTM) or Bus Receiver Module
(BRM) must reside in specific slots within each rack. The CPU module must be located
in slot 1 of rack 0.

The Series 90-70 system usually includes a Bus Transmitter Module (BTM). The Bus
Transmitter Module may be located in any slot as long as it is not to the right of an
empty slot. If the PLC system has more than one rack, a Bus Receiver Module (BRM)
must be located in slot 1 of each expansion rack.

Note

Version A of the Bus Transmitter Module must be installed to the right of
all other GE Fanuc modules. There must be no empty slots between the
Bus Transmitter Module and the CPU module.

Chapter 2 Installing the PCM 2-3

The Programmable Coprocessor Module (PCM) may be placed in any unused slot in any
rack, provided that these conditions are met:

The configuration created by Logicmaster 90 configuration software must match the
physical configuration of the modules. If it does not, the PLC may not operate as
expected. Configuration faults are logged in the PLC fault table. Refer to the
Logicmaster 90 Programming Software User’s Manual, GFK-0263 or GFK-0466, for more
information on PLC configuration using Logicmaster 90 software.

When PCMs are installed in a Series 90-70 rack, all the slots between the PCM and
the PLC CPU (CPU rack) or the Bus Receiver Module (expansion rack) must be
occupied. If any of these slots is empty, the PCM cannot communicate across the
backplane to the Series 90-70 PLC CPU or Bus Receiver Module.

A Series 90-30 PCM must be in the main rack with the PLC CPU.

Installing a Series 90-70 PCM

To install a Series 90-70 PCM, follow these steps:

1.

Set the CPU Run/Stop switchto STOP. This prevents the PLC program from
initiating any command that may affect the operation of the module.

Power down the Series 90-70 PLC system.
Locate the desired rack and slot.

Remove the Series 90-70 PCM from the shipping carton, but leave it in its anti-static
plastic bag. Touch an exposed metal surface of the PLC rack to discharge any
electrostatic charge you may have picked up. Then remove the PCM from the
protective bag.

Slide the PCM completely into the slot. The three LEDs are located at the top of the
module.

Press the module firmly against the front rails of the PLC rack, but do not use
excessive force.

Power up the PLC rack. The OK LED (top LED) on the faceplate flashes during
power-up diagnostics. It continues to flash while waiting for configuration data
from the CPU. If no signal is received across the backplane for 2 minutes, the PCM
assumes that the CPU is not there and continue to power up without it. Once the
PCM is ready, this LED should be continuously on.

Installing a Series 90-30 PCM
To install a Series 90-30 PCM, follow these steps:

1.

Use Logicmaster 90 software or the Hand Held Programmer to stop the PLC. This
prevents the PLC program from initiating any command that may affect the
operation of the module.

Power down the Series 90-30 PLC system.
Locate the desired rack and slot.

Hook the top of the PCM case to the PLC baseplate and then guide the latch on the
bottom of the case into its slot in the baseplate. The three LEDs are located at the
top of the module.

2-4 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

Press down firmly to lock the module in place, but do not use excessive force.

Power up the PLC rack. The OK LED (top LED) on the faceplate of the PCM begins
to flash during power-up diagnostics if a PLC CPU has been installed in the rack.
When the PCM successfully completes diagnostics, it continues to flash while
waiting for configuration data from the CPU. Once the PCM is ready, this LED
should be continuously on.

Adding Expansion Memory to the Series 90-70 PCM

To increase the total available memory, an expansion memory daughter board may be
added to a Series 90-70 PCM. The daughter board mounts on a single connector on the
PCM. Expansion memory cannot be added to a Series 90-30 PCM.

Four versions of the expansion memory board are available:

Table 2-1. Expansion Memory Boards

Catalog Number | Memory Size
1IC697MEM713 64K Bytes
1IC697MEM715 128K Bytes
IC697MEMT717 256K Bytes
1IC697MEM719 512K Bytes

To mount the daughter board, follow these steps:

1.

Touch an exposed metal surface of the PLC rack in order to discharge any
electrostatic charge you may have.

Power down the Series 90-70 PLC system, and remove the PCM.
Remove the memory expansion module from its anti-static bag.

Carefully align the pins on the bottom side of the daughter board with the connector
on the PCM.

Align the holes on the opposite end of the PCM with the daughter board standoffs.
Push the daughter board into the connector.

Make sure the daughter board is fully seated and the standoffs are snapped into
both boards.

If an expansion memory board is installed on a PCM that has already been configured
for no expansion memory or for a different expansion memory size, the Logicmaster 90
configuration must be updated and stored to the PLC CPU.

GFK-0255K Chapter 2 Installing the PCM 2-5

Section 2: Configuring the PCM with Logicmaster 90 Software

The second step in the PCM installation procedure is to add a PCM to the Series 90 170
configuration, using Logicmaster 90 configuration software. The configuration software
is used to describe the modules present in the PLC racks. Rack and slot location and
other features for individual modules are specified by completing setup screens that
represent the modules in a rack. Editing features make it easy to copy, move, replace, or
delete module configurations.

After completing the Logicmaster 90 configuration, you must store it to the PLC where
your PCM is installed. The configuration has no effect until it is stored to the PLC. The
Logicmaster 90 status line must display CONFIGEQUAL after the configuration is
stored to the PLC.

Note

For a Series 90-30 PCM using standard CCM default operation, this step
is not required. Refer to the information on autoconfig at the end of this
section for information on the default CCM operation.

I/0 Configuration Rack Screen

From the main menu of the Logicmaster 90 configuration software, press I/0 (F1). A
screen representing the modules in a rack is displayed.

This example represents a Series 90-70 PLC rack.

/| ZCEM |COPY |REF WU |DELETE |UNDEL |CFGSEL | | | |)
70 _ioffayeniusfeben Rps JRrcksellficonn Wgume Riother B ilgzoon |

Rk 7] o |
============= P R 0 G RIGELILEE D * co N5F 16 uﬁn AT I?III N :::E::::::::::

PUR?11|CPU ?31|MDL 240 BEM 731|ADC 701

1004 I AC 16|13 GEC1 ADC
Ref Adr |3 Devices
» 100001 BUS1: 0

1
D :\LMIO\LESSON E& ONFIG VALID
NEEPLACE Y,

2-6 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

This example represents a Series 90-30 PLC Model 331 rack.

/|3 |COPY |REF VU [DELETE |UNDEL | | N\

| | |
(130 iofweniusl [bs [rckselfonn g [ibther I Hezoom |

RACK 3
1 | 2 | 3 | 4 | 5 | 6 | ? | i] | 9 | 10
BEEEEE--——-- PROGRAMMED CONFIGURATION ===============
CPU331|MDLZ40|QI 32 |APU300|PCM300
I AC16 HSC PCH

Reffdr |Ref fdr
»10001|Q10017

(]
:NLMIONLESSON mﬂ ONFIG UALID
REPLACE W,

The current module on a Series 90 1/0 Configuration rack screen is highlighted in
reverse video. Upon entering the rack screen, the Power Supply module is shown in
reverse video. Use the left or right cursor keys to move from module to module. Use
the up and down cursor keys to move between racks in descending or ascending order,
respectively.

The rack screen presents an overview perspective of one Series 90 PLC rack. To add a
PCM, press Other (F8) and then PCM (F1). To display the current configuration of the
module in a slot, press Zoom (F10).

CONFIGVALID is displayed in the lower right corner of each display screen after the
configuration is successfully validated. When CONFIGINVALID is indicated, the
configuration may not be stored to the PLC. A CONFIGINVALID status is most likely
to occur when:

® Aslotin a Series 90-70 rack to the left of a module that generates interrupts, such as
the PCM, is vacant.

® Input reference addresses (%l and %Al) overlap.

® Bus Transmitter and/or Receiver Modules in a multi-rack Series 90-70 PLC are
missing.

® A Series 90-70 Version A BTM modaule is not located to the right of all other modules.

GFK-0255K Chapter 2 Installing the PCM 2-7

Addinga PCM to the Rack Screen

A PCM must first be entered before its memory expansion board may be selected. To do
this, follow these steps:

1. Press Other (F8) and then PCM (F1) from the 1/0 Rack Configuration screen.

gIRACK

1=

>
3

| | | [[| | | [)
shse & Rbi E K K Ebother Ebxpbd |

ERIES 90-70 MODULE IN RACK J SLOT

SLOT
3

SOFTWARE CONF IGURATION

Catalog t#:
CATALOG # DESCRIPTION TYPE
1 IC637PCH?11 PROGRAMMABLE COPROCESSOR MDL PCH

<< CURSOR T0 THE DESIRED CATALOG NUMBER AND PRESS THE ENTER KEY >>

<< PRESS PGDN KEY FOR NEXT FAGE, PGUF KEY FOR PREVIOUS PAGE >>

(]
D : \LMION\LESSON mﬂ ONF 16 VALID
REPLACE])

2. Press the Enter key to enter the catalog number shown in reverse video and display
the PCM detail screen.

Rk N\
T e e o —— o S —
>

SERIES 90-70 MODULE IN RACK § SLOT
SOFTWARE CONFIGURATION
SLOT Catalog #: J{8sErige, rabl PROGRAMMABLE COPROCESSOR MDL
3
HELF (ALT-H) for Serial Port Restrictions
PCH 711
Config Mode: CCM ONLY ———— Port 1 ——- ——— Port 2 ———

PCH Battery Req: YES CCH Enable : YES CCH Enable : YES
CCM Mode ¢ SLAVE CCM Mode ¢ SLAVE
Interface : R3232 Interface : R3Z32
Data Rate : 19200 Data Rate : 19200

0 KB Flow Contrl: NONE Flouw Contrl: NONE
Parity ;. 0DD Parity : ODD
Retry Count: NORMAL Retry Count: NORMAL
Timeout : LONG Timeout : LONG
Turnfl Delay: NONE Turnfi Delay: NONE
CPU ID : 1 CPU ID : 1

1
D : \LMIO\LESSON ﬁ%
\EFPLQCE W,

2-8 Series90Program

mable Coprocessor Module and Support Software User’s Manual — November 1999

GFK-0255K

3. To enter a Memory Expansion board (for Series 90-70 systems only), press Expansion
Board (F9) and then Memory (F1). The following list is displayed.

. | | |DELETE | [| | | [)
herorglr K E O E K E OE
>

SERIES 90-70 MODULE IN RACK § SLOT
SOFTWARE CONF IGURATION

3LOT Catalog t#:
3

CATALOG # DESCRIPTION TYPE

1 IC697YMEN?13 MEMORY 64 KB CHOS EXPANSION EXPMEN
Z [IChI97MEM?15 MEMORY 128 KB CMOS EXPANSION EXPMEM
3 IC697MEM?17 MEMORY Z56 KB CMOS EXPANSION EXPMEM
4 [IC697MEM?19 MEMORY 512 KB CMOS EXPANSION EXPMEM

<< CURSOR T0 THE DESIRED CATALOG NUMBER AND PRESS THE ENTER KEY >>
<< PRE3SS PGDN KEY FOR NEXT FPAGE, PGUF KEY FOR PREVIOUS PAGE >>

(]
D : \LMION\LESSON mﬂ ONF 16 VALID
REPLACE] J

4. Cursor to the desired catalog number, and press the Enter key.

5. After selecting the desired memory expansion board, press the Escape key to return
to the PCM detail screen.

PCM Configuration Data

After selecting the module and the expansion memory, the PCM is configured for CCM
and/or MegaBasic operation from the PCM module detail screen. The PCM
configuration mode is selected from the Config Mode field on the detail screen.

To select a different configuration mode, repeatedly press the Tab key until the desired
mode is displayed on the screen. Then, press the Enter key. Use the Cursor and Tab
keys to complete the detail screen for the desired configuration mode, and press the
Enter key.

Once the PCM has been configured, press the Escape key again to save the module
configuration and return to the rack display. The display screen should now include the
PCM in the slot you selected. Complete the configuration procedure for each module
you wish to add to the Series 90 PLC rack.

Once the Series 90 system configuration is complete, Logicmaster 90 software is used to
store the configuration to the PLC CPU. If the PCM configuration has changed since the
last configuration store, the PCM is automatically reset and restarts using the new
configuration.

GFK-0255K Chapter 2 Installing the PCM 2-9

PCM Configuration Modes

Before configuring the PCM with Logicmaster 90 software, it is necessary to understand
the various configuration modes and how they affect the operation of the PCM. Each
mode is described in the table below. Many PCM applications use one of three
configuration modes: CCM ONLY, BASIC, or BAS/CCM. Some applications use PCM
CFG, PROG PRT, PROG/CCM, or CCM/PROG. These modes all require that the PCM
itself be configured using the PCOP software package.

Table 2-2. PCM Configuration Modes

Mode

Description

CCMONLY

CCM ONLY mode permits complete configuration for CCM execution on one
or both PCM ports. After a softreset, the PCM automatically starts CCM on
the designated port(s).

BASIC

BASIC mode is used to configure the PCM for a standard MegaBasic
application. The ports are configured for use by the MegaBasic program and
for connection to the TERMF package (port 1), which is used to program the
MegaBasic application. The program must be saved to the PCM RAM Disk
(RAM:) as“BASIC.PGM'. Afterasoftreset,the PCM automatically starts the
MegaBasic program. BASIC mode is not available in Release 2 of Logicmaster
90-70 software. This mode is not supported by PCM firmware version 2.04 or
earlier

BAS/CCM

BAS/CCM modeissimilartoBASIC mode, except that port 2 is configured for
CCM execution and is, therefore, not available to the MegaBasic application
program. After a soft reset, the PCM automatically starts the MegaBasic
program, along with CCM on port2. BAS/CCM mode isnot available in
Release 2 of Logicmaster 90-70 software. This mode is not supported by PCM
firmware version 2.04 or earlier.

NONE

NONE is only used when the PCM does not support Logicmaster 90
configuration, as for a Release 1 PCM. NONE mode is only available in
Logicmaster90-70software.

PCMCFG

PCM CFG indicates that all configuration data for the PCM is selected using
PCOP and loaded to the PCM as User Configuration Data (UCDF) or thata
PCMEXEC.BA file specifies the configuration to be used.

PROG PRT

PROG PRT is a special mode used to configure port settings for the PCM
withoutautomaticallyrunning a MegaBasic program or CCM. PROG PRT
mode is selected for special applications using PCOP for configuration. The
serial port configuration specified with this mode becomes effective only after
a hard reset or if no other configuration exists on the PCM.

PROG/CCM
CCM/PROG

PROG/CCMand CCM/PROG modesare acombination of CCM onone port
and PCOP program part settings on the other port.

Note

If User Configuration Data (UCDF) has been loaded to the PCM from
PCOP, the UCDF configuration is used after a power cycle or soft reset.
The Logicmaster 90 configuration is ignored. The PCOP CLEAR
command or MDE (Module Delete) command can be used to delete
the UCDF from the PCM.

2-10 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999

GFK-0255K

GFK-0255K

CCM ONLY Mode

When CCM ONLY mode is selected, the PCM is used only for CCM operation on one or
both ports. When this mode is selected in Logicmaster 90 software, the following PCM
detail screen is displayed.

T |

>

| | |
hen Ehee & Roi & fi K Eother Kbopbd 0|

SERIES 90-70 MODULE IN RACK § SLOT

| [[| I)

SOFTWARE CONF IGURATION

SLOT Catalog #: IC6I7PCHM?11 PROGRAMMABLE COPROCESSOR MDL
3
HELF (ALT-H) for Serial Port Restrictions
PCH 711
Config Mode: MOGIR] ———- Port 1 ——— ——- Port 2 ———
PCH Battery Req: YES CCH Enable : YES CCH Enable : YES
CCM Mode ¢ SLAVE CCM Mode ¢ SLAVE
Interface : R3232 Interface : R3Z32
Data Rate : 19200 Data Rate : 19200
64 KB Flow Contrl: NONE Flouw Contrl: NONE
Parity ;. 0DD Parity : ODD
Retry Count: NORMAL Retry Count: NORMAL
Timeout : LONG Timeout : LONG
Turnfl Delay: NONE Turnfi Delay: NONE
CPU ID : 1 CPU ID : 1

(]
D : \LMION\LESSON mﬂ ONF 16 VALID
NREPLACE J

Parameter

Description

ConfigurationMode

Setto CCM ONLY

BatteryRequired

Specify whether a battery is required. Choicesare YES or NO

CCMEnable Specify whether the port is to be configured for use asa CCM port.
Choicesare YES or NO
CCM Mode This parameter displays the availability of ports for CCM access.
Choices are SLAVE, PEER or MASTER
Interface The interface parameter for port 1 of a Series 90-30 PCM is RS-232, port 2
of the 192K and 640K Series 90-30 modules may have an interface value
of either RS-232* or RS-485. The interface parameter is not used or
displayed for the 160K module, IC693PCM300. RS-232* and RS-485
are valid for both ports of the Series 90-70 PCM.
DataRate Data rate (bits per second or bps) for the port.
Choices are 300, 600, 1200, 2400, 4800, 9600, or 19200*.
FlowControl Type of flow control to be used for the port.
Choices are HARDWARE&r NONE
Parity Type of parity to be used for the port. Choices are NONEor ODD.
Retry Count Retry counts for CCM mode. Choicesare NORMAL or SHORT
Timeout Length of timeouts used for CCM on the port.

Choicesare LONG, MEDIUM SHORTor NONE

Turnaround Delay

Turnaround delay time to be used for CCM on the port.
Choicesare NONE, 10 ms, 100ms, or 500 ms .

CPUID

Address of the port on a multi-drop network. This value is used to
calculate the backoff delay upon an inquiry collision in peer mode. The
range of values allowed in this field is 1* to 254. Adifferentvalue
must be selected for each CCM device on the network.

* Defaultselection.

Chapter 2 Installing the PCM

2-11

BASIC Mode

Warning

BASIC mode is not supported in PCM firmware version 2.04 or earlier.
Attempting to use it will result in an “ Unsupported feature in
configuration” fault for the PCM in the PLC fault table.

When BASIC mode is selected, the PCM automatically runs a MegaBasic program
named BASIC.PGM, if it exists. CCM operation is not started on either port. When this
mode is selected in Logicmaster 90 software, the following PCM detail screen is
displayed.

(T | | | [[| | | [)
hen Phse K Foi K K [Eother Eoxphd i |
>

SERIES 90-70 MODULE IN RACK § SLOT
SOFTWARE CONF IGURATION

SLOT Catalog #: IC6I7PCHM?11 PROGRAMMABLE COPROCESSOR MDL
3
HELF (ALT-H) for Serial Port Restrictions
PCH 711
Config Mode: ([0 ———— Port 1 ——— ——- Port 2 ———
PCH Interface : R3232 Interface : R3Z32
Data Rate : 19200 Data Rate : 19200
Flow Contrl: HARDUARE Flow Contrl: HARDWARE
Parity : NONE Parity . MONE
64 KB Stop Bits : 1 Stop Bits : 1
Bits/Char : 8 Bits/Char : B8

(]
D : \LMION\LESSON mﬂ ONF 16 VALID
REPLACE])

Parameter Description
ConfigurationMode | Setto BASIC.
Interface The interface parameter for port 1 of a Series 90-30 PCM is RS-232;

port 2 of the 192K and 640K Series 90-30 modules may have an interface
value of either RS-232* or RS-485. The interface parameter is not
used or displayed for the 160K module, IC693PCM300. RS-232* and
RS-485 are valid for both ports of the Series 90-70 PCM.

DataRate Data rate (bits per second or bps) for the port. Choices are 300, 600 ,
1200, 2400, 4800, 9600, or 19200*. The Series 90-70 PCM also
supports38400.

FlowControl Type of flow control to be used for the port.
Choices are HARDWARE SOFTWAREor NONE
Parity Type of parity to be used for the port. Choices are NONE, ODD or EVEN
Stop Bits The number of stop bits for the part. Choicesare 1* or 2.

Bits per Character The number of bits per character for data transfer on the port.
Choicesare 7 or 8*,

* Defaultselection.

2-12 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

BAS/CCM Mode

Warning

BAS/CCM mode is not supported in PCM firmware version 2.04 or
earlier. Attempting to use it will result in an “Unsupported feature in
configuration” fault for the PCM in the PLC fault table.

When BAS/CCM mode is selected, the PCM automatically runs a MegaBasic program
named BASIC.PGM, if it exists, on port 1 and CCM on port 2. When this mode is
selected in the Logicmaster 90 software, the following PCM detail screen is displayed.

grick | | | [| | [[| ™\
hen [Ehse £ Roi K 5 K [Kother Kexpbd 8 |

>
SERIES 90-70 MODULE IN RACK § SLOT
SOFTWARE CONF IGURATION

SLOT Catalog #: IC6I7PCHM?11 PROGRAMMABLE COPROCESSOR MDL
3
HELF (ALT-H) for Serial Port Restrictions
PCH 711
Config Mode: —— Port 1 BASIC - — Port 2 CCM ——
PCH Interface : R5232 CCH Enable : YES
Data Rate : 19200 CCM Mode ¢ SLAVE
Flow Contrl: HARDUARE Interface : RS232
Parity : NONE Data Rate : 19200
64 KB Stop Bits : 1 Flow Contrl: NONE
Bits/Char : 8 Parity : ODD
Retry Count: NORMAL
Timeout : LONG
Turnfi Delay: NONE
CPU ID : 1

(]
D : \LMION\LESSON mﬂ ONF 16 VALID
NREPLACE)/

The configuration mode is set to BAS/CCM The remainder of configurable parameters
are as described previously for BASIC mode on port 1 and CCM mode on port 2.

GFK-0255K Chapter 2 Installing the PCM 2-13

2-14

PCM CFG and NONE Modes

When PCM CFG or NONE mode is selected in Logicmaster 90 software, there are no

other parameters on the detail screen to be set. These modes require configuration data

stored in the PCM. Either a PCMEXEC.BATTfile or User Configuration Data (UCDF)

may be used. For information on PCMEXEC.BATTfiles, see appendix D, PCM Batch Files.

UCDFs are created and stored to a PCM using the PCOP development software. For
more information on PCOP and UCDFs, see the Series 90 PCM Development Software
(PCOP) User’s Manual, GFK-0487. When one of these modes is selected, the PCM uses
its default serial port settings unless they have been overridden by the PCMEXEC.BAT

or UCDF configuration.

An example detail screen showing NONE mode is displayed below. The detail screen

for PCM CFG mode is identical to this.

(T | | | [[|

>
SERIES 90-70 MODULE IN RACK § SLOT
SOFTWARE CONF IGURATION

SLOT Catalog #: ICEIYPCHYIL
3

| | |
hen Ehee & Roi & fi K Eother Kbopbd 0|

~

PROGRAMMABLE COPROCESSOR MDL

HELF (ALT-H) for Serial Port Restrictions

PCH 711

Conf ig Mode: IR

PCH

64 KB

[)
D : \LHIO\LESSON E&
REPLACE

ONFIG VALID

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999

GFK-0255K

PROG PRT Mode

PROG PRT mode is used to configure the PCM ports without automatically configuring
the PCM for MegaBasic or CCM operation. This mode requires configuration data
stored in the PCM. Either a PCMEXEC.BATTfile or User Configuration Data (UCDF)
may be used. For information on PCMEXEC.BATTfiles, see appendix D, PCM Batch Files.
UCDFs are created and stored to a PCM using the PCOP development software. For
more information on PCOP and UCDFs, see the Series 90 PCM Development Software
(PCOP) User’s Manual, GFK-0487. PROG PRT mode is similar to PCM CFG mode and
NONE mode but permits specifying serial port settings which are different from the
default. However, the Logicmaster 90 serial port settings will be overridden by the
PCMEXEC.BATor UCDF configuration data, if any.

Typically, use of this mode is to insure that port 2 has the same setup when PCM is in
factory mode (hard reset) as when PCM is in user mode (soft reset). This is useful when
developing MegaBasic programs that use port 2. When this mode is selected in
Logicmaster 90 software, the following PCM detail screen is displayed.

(1T | | | [[| | | L)
hen Phse K Foi K K [Eother Eoxphd i |

>
SERIES 90-70 MODULE IN RACK § SLOT
SOFTWARE CONF IGURATION

SLOT Catalog #: IC6I7PCHM?11 PROGRAMMABLE COPROCESSOR MDL
3
HELF (ALT-H) for Serial Port Restrictions
PCH 711
Config Mode: JCHEH ——— Port 1 ——— ——- Port 2 ———
PCH Interface : R3232 Interface : R3Z32
Data Rate : 19200 Data Rate : 19200
Flow Contrl: HARDUARE Flow Contrl: HARDWARE
Parity : NONE Parity . MONE
64 KB Stop Bits : 1 Stop Bits : 1
Bits/Char : 8 Bits/Char : B8

(]
D : \LMION\LESSON mﬂ ONF 16 VALID
NREPLACE J

Parameter Description
ConfigurationMode | Setto PROG PRT
Interface The interface parameter for port 1 of a Series 90-30 PCM is RS-232;

port 2 of the 192K and 640K Series 90-30 modules may have an interface
value of either RS-232* or RS-485. The interface parameter is not
used or displayed for the 160K module, IC693PCM300. RS-232* and
RS-485 are valid for both ports of the Series 90-70 PCM.

DataRate Data rate (bits per second or bps) for the port. Choices are 300, 600,
1200, 2400, 4800, 9600 , or 19200 *. The Series 90-70 PCM also
supports38400.

FlowControl Type of flow control to be used for the port.
Choices are HARDWARE SOFTWAREOr NONE.
Parity Type of parity to be used for the port. Choices are NONE, ODD or EVEN

Stop Bits The number of stop bits for the target port. Choicesare 1* or 2.

Bits per Character The number of bits per character for data transfer on the target port.
Choicesare 7 or 8*,

* Defaultselection.

GFK-0255K Chapter 2 Installing the PCM 2-15

2-16

PROG/CCM and CCM/PROG Modes

PROG/CCMand CCM/PROG modes are used to configure the PCM programming and
CCM ports without automatically configuring the PCM for MegaBasic operation. These

modes require configuration data atored in the PCM. Either a PCMEXEC.BATTfile or

User Configuration Data (UCDF) may be used. For information on PCMEXEC.BATTiles,

see appendix D, PCM Batch Files. UCDFs are created and stored to a PCM using the

PCOP development software. For more information on PCOP and UCDFs, see the
Series 90 PCM Development Software (PCOP) User’s Manual, GFK-0487.

When PROG/CCM this mode is selected in Logicmaster 90 software, the following PCM
detail screen is displayed.

1=

>

T | N
oo B R kK Eoter Bowd B

SLOT
3

PCH 711

PCH

64 KB

Catalog #: ICEIYPCHYIL

SERIES 90-70 MODULE IN RACK § SLOT
SOFTWARE CONF IGURATION

PROGRAMMABLE COPROCESSOR MDL

HELF (ALT-H) for Serial Port Restrictions

Config Mode: -— Port 1 PROG -—— — Port 2 CCM —
Interface : R5232 CCH Enable : YES
Data Rate :@ 19200 CCM Mode ¢ SLAVE
Flow Contrl: HARDUARE Interface : RS232
Parity : NONE Data Rate : 19200
Stop Bits : 1 Flow Contrl: NONE
Bits/Char : 8 Parity : ODD

Retry Count: NORMAL
Timeout : LONG
Turnfi Delay: NONE
CPU ID : 1

[)
D : \LHIO\LESSON E&
REPLACE

ONFIG VALID

)

The configuration mode is set to PROG/CCM The remainder of configurable parameters

are as described previously for PROG PRT mode on port 1 and CCM ONLY mode on

port 2.

The screen displayed for CCM/PROG mode is similar. 1t shows CCM port options in the
Port 1 column and PROG options in the Port 2 column.

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999

GFK-0255K

Configuration Modes and the PCOP Display

GFK-0255K

When the PCOP development software is running and connected to a PCM, it attempts
to display the current PCM operating mode on its status line. The following table shows
the modes displayed by PCOP for various combinations of Logicmaster 90 configuration
modes, presence or absence of UCDF configurations, and reset conditions. A soft reset
occurs when the PCM Reset/Restart pushbutton is pressed and held for less than 5
seconds. A hard reset occurs when the button is held for 10 seconds.

Table 2-3. Logicmaster 90 Configuration Mode

Configuration Present Soft Reset Hard Reset
Logicmaster 90 Mode Mode
Configuration Configuration Displayed Configuration Displayed

Mode UCDF Used by PCOP Used by PCOP

NONE None | Factory Default FACTORY | Factory Default FACTORY

PCMCFG None | Factory Default FACTORY | Factory Default FACTORY

CCM ONLY None | LM90CCM Config LM CFG Factory Default FACTORY

PROG PRT None | Factory Default LM CFG Factory Default FAC MOD
LM90 PROG Port Def LM90 PROG Port Def

PROG/CCM None | LM90CCM Config LM CFG Factory Default FAC MOD
LM90 PROG Port Def

NONE Yes PCM User Config USER Factory Default FACTORY

PCMCFG Yes PCM User Config USER Factory Default FACTORY

CCM ONLY Yes PCM User Config USER Factory Default FACTORY

PROG PRT Yes PCM User Config USER Factory Default FAC MOD
LM90 PROG Port Def

PROG/CCM Yes PCM User Config USER Factory Default FAC MOD
CCM/PROG LM90 PROG Port Def

Note that BASIC and BAS/CCM modes have been omitted from the table. When
MegaBasic is started by the Logicmaster 90 configuration, PCOP will display either LM
CFG when it can communicate with the PCM or NO COMM when it cannot.

Chapter 2 Installing the PCM

2-17

Series 90-30 PCM Autoconfig

The Series 90-30 PLC Model 331, or higher CPU provides automatic default
configuration called Autoconfig for many of the system modules.

The configuration provided for the Series 90-30 PCM is similar to configuring the PCM in
Logicmaster 90-30 software for CCM ONLY mode. Thus, if Logicmaster 90-30 software
has not been used to configure the Model 331, or higher CPU system, the Series 90-30
PCM can still be plugged into the rack and will communicate to a CCM device.

In order to initiate the autoconfig default settings, either clear the PLC or delete the PCM
slot from the Logicmaster 90-30 configuration and then read it with the Hand-Held
Programmer.

The default values for autoconfig, listed in the following table, are the same as the
default configuration values provided by the Logicmaster 90-30 software in CCM ONLY
mode.

Table 2-4. Autoconfig Default Configuration Values

Port 1 Port 2
CCMEnable Yes CCMEnable Yes
CCM Mode Slave CCM Mode Slave
Interface RS-232 Interface RS-422/RS-485
DataRate 19200 DataRate 19200
FlowControl None FlowControl None
Parity Odd Parity Odd
Retry Count Normal Retry Count Normal
Timeout Long Timeout Long
TurnADelay None TurnADelay None
CPUID 1 CPUID 1

To change any of the default configuration values provided or to use a different mode
for the Series 90-30 PCM, you must use Logicmaster 90-30 software, PCOP, or both to
configure the PCM. To use PCOP, refer to the Series 90 PCM Development Software
(PCOP) User’s Manual, GFK-0487.

Note

If you have Release 3.00 or later PLC CPU and Release 2.50 or later
PCM, the Hand-Held Programmer (HHP) may also be used to configure
the PCM. Refer to the section 3 for more information on using the
Hand-Held Programmer.

2-18 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

Section 3: Configuring the Series 90-30 PCM with the HHP

Programmable Coprocessor Module parameters can be edited with the Hand-Held
Programmer if you have a Release 3 or later CPU and a Release 2.51 or later PCM. The
parameters are edited in exactly the same manner as for Intelligent 1/0 Modules
described previously in this chapter.

Freezing the Configuration

GFK-0255K

Processing a change to the PCM’s configuration takes 15 seconds or more. Processing
multiple parameter changes simultaneously takes the same time as processing a change
to a single parameter. Since changing several parameters at once is a common
occurrence, changes to individual parameters are remembered by the module but are
not processed and do not take effect until specifically commanded to do so.

When a PCM parameter is changed, an asterisk (*) will appear before the module name
on the top line of the HHP screen. This indicates that the module’s previous
configuration has been “frozen”, and that the module is not yet using the change(s) you
have just made. You can continue editing, and this and all subsequent changes will be
remembered by the module. However, if power is lost while a module’s configuration is
frozen, the changes (edits) you have made made will be lost.

When the configuration for a module is frozen in this manner, you can tell the system
that editing of all of the parameters is complete by pressing the WRITE and ENT keys.
The edited changes are then processed all at once by the PCM and the asterisk will
disappear from the display, indicating that the new values are being used by the PCM
and have been saved in the PLC’s non-volatile memory.

If you decide to abandon the changes that you have made so far, they can be discarded
by pressing the CLR and ENT keys. If you do this, the configuration parameters will
revert to the values they had before the configuration was frozen.

If you attempt to leave the current slot (either by pressing the , — or # key) while the
module’s configuration is frozen, you will be prompted to indicate whether to use the
new combination of values, discard the new values and return to the old configuration,
or to continue editing the changes. If you attempt to change the HHP mode or go to
RUN mode, the “FROZEN" error message will be displayed.

Note

Once changes have been made which are not being used by the
module, you cannot leave the slot until the changes are saved or
discarded.

Chapter 2 Installing the PCM 2-19

Example of Editing a PCM

For this example, assume that a 192K PCM (IC693PCM301) module resides in slot 2 of
the CPU rack and that the PLC was powered up with the CLR and M/T keys depressed
(that is, the PLC was cleared). In our example, we want to change the mode from CCM
only (the default) to PROGRAMMER PORT and to change the data rate for both ports to
9600 baud.

Initial display: 523%%?\:“338% <S

To view the mode parameter:

Press the|| wmp [key: R0:02 PCM301 <S
MODR:CCMONLY

To view other possible modes,

Pressthe || /+| key: R0:02 PCM301 <S
MODE:PROGRAM PRT

Each time that you press the -/+ key, other modes will be displayed. When the desired
mode is displayed (it will be blinking),

ENT

Pressthe | 3 || key: R0:02*PCM301 <S
MODE:PROGRAM PRT|

The asterisk to the left of PCM indicates that the module’s configuration is now frozen.
That is, the new mode value of PROGRAMMER PORT is remembered and displayed,
but the module is still using the old value of CCM ONLY. If power were cycled at this
time, the mode parameter would have the old value of CCM ONLY.

If you should attempt to change HHP modes or go to RUN mode when the module’s
configuration is frozen, the FROZEN error message will be displayed. For example:

Press the [mopg| key: R0:08 FROZEN <S
MODE:PROGRAMPRT]

2-20 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

To refresh the display of the module name, press any key, for example:

ENT

Press the J key: RO0O:02*PCM301 <S
MODE:PROGRAM PRT]

If an attempt is made to view the configuration of a module in another slot at this time,
the HHP will prompt you for the changes. For example:

Press the

key: SAVE CHANGES? <S
<ENT>=Y <CLR>=N

Since the port baud rate parameters have not yet been edited at this point in our
example, we do not want to save the changes yet.

Press the || CLR || key: D||§S|\|C:]'AR$ Ccl:':_%S? ;S
< >=Y < >=

If the changes are discarded at this time, we will lose the change we made to the mode
parameter. That is, the configuration would revert to CCM ONLY, which is what it was
before the configuration was frozen. Since we have more parameters to edit:

Again, the asterisk indicates that the module’s configuration is still frozen and the edited
changes are not yet being used by the module. To display the baud rate parameter for
port 1,

Press the key sequence || = = | - R0:02*PCM301 <S
DATART 1:19200

Notice that the asterisk remains to the left of the module’s name. This indicates that the
module’s configuration is still frozen. It is possible to edit this and other parameters at
this time, however none of the changes will be used by the module until they are saved
as indicated below.

GFK-0255K Chapter 2 Installing the PCM 2-21

To change the port 1 baud rate to 9600:

Pressthe || /+| key: R0O:02*PCM301 <S
DATA RT 1:9600

To display the baud rate parameter for port 2:

Press the|| =» || key six times: R0O:02*PCM301 <S
DATART 2:19200

To change the port 2 baud rate to 9600:

Pressthe || /+| key: R0O:02*PCM301 <S
DATA RT 2:9600

To save the edited changes that we have made:

Press the &RITE key: SAVE CHAIéG ES?<S
<ENT>=Y <CLR>=N

If the CLR key is pressed at this time, the SAVE operation will be aborted. Since we do
want to save the changes,

ENT

Press the J key: PROCESSING <S
CHANGES

The word PROCESSING will contiue to blink until the module has completed processing
of the new values. The HHP will then redisplay the last parameter that had been
displayed:

R0:02 PCM301 <S
DATA RT 2:9600

Notice that the asterisk to the left of PCM301 is gone, indicating that the configuration is
no longer frozen and that the module is using the new values.

2-22 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

GFK-0255K

To continue the example, suppose that you start changing parameters, then realize that
you have made a mistake. The changes made so far (that is, since the configuration was
frozen) can be discarded, reverting to the previous configuration.

Change the baud rate parameter for port 2 to 4800:

Press the

Notice that the configuration is frozen and that the actual baud rate being used by the
PCM is 9600 (the previously configured baud rate).

7+

ENT

J

To discard the changes,

Press the

CLR

key:

key sequence:

R0O:02*PCM301 <S
DATA RT 2:4800

DISCARD CHGS?<S
<ENT>=Y <CLR>=N

If you press CLR again at this time, the discard operation would be aborted.

Press the

The module’s configuration is no longer frozen. The parameters have the same value
they had before we changed the baud rate to 4800.

ENT

<

key:

Chapter 2 Installing the PCM

R0:02 PCM301 <S
DATA RT 2:9600

2-23

Section 4: TERMF Installation and Configuration

In order to use your personal computer to program the PCM, TERMF or PCOP must be
installed and then configured. This section describes how to install TERMF on your
computer and how to use TERMSET, the configuration program for TERMF and PCOP.
For information on installing PCOR, refer to the PCOP Quick Reference Guide, GFK-0657,
in the front of this manual, or to the Series 90 PCM Development Software (PCOP) User’s
Manual, GFK-0487.

Installing TERMF

2-24

The PCM support software package, TERMF (IC641SWP063), includes one 5.25-inch and
one 3.5-inch installation diskette. Choose the diskette that fits a diskette drive in your
computer.

1. Select the TERMF installation diskette which fits your computer’s A drive and place
it in your computer. TERMF must be installed from drive A.

A. To install TERMF to hard drive C, type a:install at the MS-DOS prompt and
press the Enter key.

B. If your computer has more than one hard drive or your hard drive is partitioned
into two or more logical drives, you can install TERMF to hard drive D or E
rather than C. To install TERMF to hard drive D, type a:install d: and
press the Enter key at the MS-DOS prompt.

2. The TERMF installation program creates these directories on the specified hard drive
if they do not already exist:

\PCOP
\PCOP\EXAMPLES.PCM
\PCOP\UTILS

The files listed in appendix F TERMF File Descriptions, are copied to these
directories. If a previous version of TERMF or PCOP was already on the hard drive
before this installation, there may be additional files in these directories. Any files
that are not listed in appendix F may be deleted from the hard disk in order to
conserve storage space.

3. The CLEANUP batch file in the \PCOP directory may be used to delete
unnecessary files. To use it, be sure that the hard drive where TERMF is installed is
the current drive. Then, type the following at the MS-DOS prompt:

CD\PCOP
CLEANUP

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

Addingthe PCOP Directory to the MS-DOS Search Path

The MS-DOS operating system in your computer uses a search path to find programs
that are not in the current directory. The PCOPdirectory should be added to the search
path so that TERMF and TERMSET can be used without typing the name of the
directory where they are stored.

The MS-DOS PATH command may be used to determine what directories are currently
in the search path. The PATH command can also be used to add the PCOPdirectory to
the search path.

To determine what directories are currently in the search path, type path at the
MS-DOS prompt and press the Enter key. MS-DOS will display a list of the directories,
separated by semicolons, in the current search path on your computer’sdisplay. If no
search path has been defined, the words No Path are displayed on the screen. If the
PCOP directory is not already included in the search path, it should be added.

The search path is defined in the AUTOEXEC.BATfile, located in the root directory of
the disk drive from which MS-DOS is started (the boot drive, which is usually drive C).
Using any text editor program, edit the \AUTOEXEC.BAT file. If the file does not
contain a path command similar to path=c:\dos , add the following command as the
first line of the file:

path=c:\pcop
If there is already a PATH command, add this text at the end of the path definition:
;c:\pcop

If TERMF was not installed on the C drive, use the correct drive letter in place of “c”.

If there is no AUTOEXEC.BAT file in the root directory of the boot drive, create one
with your text editor. Include only a PATH command, as above, which specifies the
PCOHRdirectory on the correct hard drive.

Note

The AUTOEXEC.BAT file may begin with an ECHO OFF command in
the first line. If one is present, the PATH command should appear in
the second line.

GFK-0255K Chapter 2 Installing the PCM 2-25

Section 5: Using TERMSET to Configure TERMF or PCOP

2-26

Before TERMF or PCOP can be used to program the PCM, it requires information about
the display hardware in your computer and the serial port settings to be used for
communication with the PCM. This information is provided by a data file named
TERM.DAT A default version of TERM.DAT installed with TERMF or PCOP, contains
display hardware settings for the Workmaster industrial computer from GE Fanuc.
These settings will work with any computer that uses an IBM Color Graphics Adapter
(CGA)display. The default TERM.DAT also contains serial port settings identical to the
PCM default settings.

If your computer uses different display hardware, such as the IBM Monochrome Display
Adapter (MDA), Enhanced Graphics Adapter (EGA) or Video Graphics Array (VGA), you
need to use the TERMSETprogram. If you change your computer’s hardware
configuration, you will need to use TERMSET again. You also need to run TERMSETin
order to use PCM serial port settings that are different from the defaults. TERMSETasks
you about your computer’s display hardware and the serial port settings you plan to
use; then it makes the necessary changes to the TERM.DAT file.

The file DEFAULT.DAT contains the same default settings as the initial version of
TERM.DAT installed with TERMFE

Caution

The file DEFAULT.DAT should never be modified. It is very useful
when troubleshooting for providing default settings to TERMF or
PCOP

Torun TERMSET
1. Type CD\PCOP atthe MS-DOS prompt.

2. To make changes to the TERM.DAT file, type TERMSETto display the TERMSET
main menu. There are three parts to the main menu: Basic Setup, Custom
Configurations, and Exit TERMSET. To configure TERMF or PCOP for your
computer, you need to use only the two Basic Setup functions (items 3 and 4, below)
to set up the serial port and display adapter. For information on Custom
Configurations, see items 5 through 8 on the following pages.

3. To change the serial port settings, first type 1 to display the current values. Then
type the number corresponding to the setting to be changed. A new menu will
appear, showing all possible values for the selected setting. Choose one of the
values from this menu. Be sure the new port settings match the configuration of the
PCM port used for programming. When all the settings are correct, type E to
return to the main menu.

4. To change the video adapter (display hardware) settings, type 2. If the display
settings are correct, answer N to the prompt to avoid changing them. Generally, the
display adapter type is the only setting that should need to be changed. Ifitis
incorrect, type Y. An explanation of the display parameters is provided in the
following table.

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

Value

Description

Video Adapter Type

Specifies the type of display adapter your personal computer
uses to drive the attached video monitor (CRT). The six
hardwareselectionsare:

1 = Enhanced Graphics Adapter/\¥deo Graphics Array
(EGA/V@A).

2 = ColorGraphicsAdapter (CGA)
(e.g. Workmaster computer). *

3 = Good CGA without snow
(i.e.anon-IBM CGA-compatibleadapter).

4 = MonochromeDisplay Adapter (MDA).

5 = \ega7 Deluxe/Multisync(usingEGABIOS.SYS).

6 EGAdrivingaMonochrome Display.

Display Page Length

Specifies the number of lines to be displayed on one video
page. Range = 10 - 60 lines (Default = 25).

DisplayControl Sequences

Display control character sequences from the PCM. Choices are
ENABLED or DISABLED*. Ifdisplay isenabled, control
sequences are visible but have no effect. If display is disabled,
control sequences perform their intended functions.

Normal Display Video Mode

Controlscharacterwidthand color/monochromefeaturesofthe
display. Range is normally 0-3and 7. Recommended values
are:

3 = Colordisplay (video adapter type 1, 2, 3, or 5). *

7 = Monochromedisplay (video adapter type 4 or 6).

Display Long Lines

Specifies whether TERMF will honor the Set 132 column escape
sequence, <ESC> ?3h. Choices are ENABLED or DISABLED*.

Itis recommended that you disable this feature unless you

have a display adapter and driver software that interpret one of
the two video modes listed above to display a 120 or 132-column
screen. Ifyou enable this selection, a second option allows

you to specify which display mode represents your long-lines
displaymode.

Character Font

Thisselectionis valid only for EGA/V@ adapters with the
capability of using a user-loaded character font for textdisplay.
The four font selections are:

1 = Normal fontin ROM*. This allows for 25 lines of text
perscreen.

2 = Double dot fontin ROM. This allows 43 to 50 lines of
text per screen.

3 = Userspecified 256-character font. Thisallows 10 to 60
lines of text per screen and up to 256 user-defined
characters.

4 = Userspecified 512-character font. Thisallows 10 to 60
lines of text per screen and up to 512 user-defined
characters in two font files of 256 characters each. The
font sizes in the two files must be the same.

* Defaultselection.

GFK-0255K Chapter 2 Installing the PCM

2-27

When all the display settings are correct, return to the main menu by typing N (or
any key except Y) at the prompt that asks whether you want to change the settings.
Then type E to save the changes and exit from TERMSET If you do not want to
save the new settings, type Q

In addition to the settings previously described, some custom configuration options
are available from the TERMSET main menu. These options are seldom, if ever,
used with TERMF or PCOP. They are included here to help you configure TERMF as
a general purpose terminal emulation program for use with serial devices other than
the PCM. These options are explained in the remainder of this section.

5. Item 3 in the TERMSET main menu selects a screen that describes the keyboard
input queue, special key handling, multi-character transmission delay, size of the
received character buffer, key assignments for exiting from TERMF and for sending a
break from the serial port, and the delay count which determines the length of the
break. To change any of these parameters, type Y. A short explanation of each
parameter is given below:

Value Description
Keyboard Input Options include:

Queue
SuppliedbyBIOS*: The capability to type ahead is limited to 15
characters. This mode is reliable on everycomputer. Itisstrongly
recommended
Supplied by program: The capability to type ahead is expanded to 255
characters. This mode is not reliable on all computers, and is not
recommended.

Special Key Special keys include the function keys, ALT keys, and keypad keys,
Handling which have a “keybinding” associated with them.

Sentascharacter sequencesfrom keybindings: When a key is pressed,
the appropriate key binding sets are searched for that key. If found, the
keystrokeistranslated accordingly. With TERMF in cursor mode, all
three sets (cursor, application, and normal) are searched in that order.
Inapplication mode, only application and normal sets are searched;

in normal mode, only the normal key binding set is searched.

Sentas MegaBasiccontrolcharacters*:. When a key is pressed, a search
isfirst performed in a predefined set of MegaBasic key bindings. (Refer
to the MegaBasic Programming Language ReferenceManual, GFK-0256.)
The MegaBasic key bindings are designed to allow the same use of
special keys for MegaBasic in both the PCM and a personal computer.

If the keystroke does not match a MegaBasic key binding, translation is
performed as described in the preceding option (sent as character
sequences from keybindings).

Multi-character Thisdelay valueisarbitrary and varies among different computer models.
TransmissionDelay | Itisacountof the number of times a software delay loop is repeated
before putting the next character into the transmit buffer. This parameter
isused only when TERMF is communicating with very slow devices.

Itis included here only for the sake of completeness. The PCM does not
requirethisdelay. Range = 0* to 32,767. The value zero (0) is strongly
recommended

* Defaultselection.

2-28 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

Value Description

ReceivedCharacter | This buffer size affects the overall speed of TERMF when flow control is
Buffer Size enabled. With no flow control, it affects the probability that a received
character may be lost. It also affects the responsiveness of the display
when a key is pressed: the smaller the buffer, the more responsive.
If you use the Scroll Lock key to start and stop continuous output from a
device, a 1000-character buffer isrecommended. Ifyou are simply starting
and stopping a MegaBasic listing from the PCM using the space bar, then
a 100-character buffer*isadequate.

Exit Term Key This selection changes the key combination which exitsfrom TERMFE. The
defaultsetting, 2092*, assigns ALT-Z. (Pressthe Z key while holding the
ALT key.) You can also exit from TERMF by using the CTRL-BREAKkey
combination.

The scan codes used for this setting do not correspond to keyboardscan
codes documented in IBM personal computer manuals. Use Show Scan
Code, below, to determine the correct setting for the key or key
combination (Shift, CTRL or ALT plus another key) you select.

Do not change this setting if you use PCOP. The Series 90 PCM
DevelopmentSoftware (PCOP) User’sManual, GFK-0487,specifiesALT-Z as
the key combination to return to PCOP after communicating with PCM
MegaBasic. If you change this setting, PCOP will not function as expected.

Send Break Key This selection changes the key combination which causes TERMF to send
aserial break. The default setting, 2152*, assigns ALT-F1. (Press the F1
function key while holding ALT)

The scan codes used for this setting do not correspond to keyboardscan
codes documented in IBM personal computer manuals. Use Show Scan
Code, described below, to determine the correct setting for the key or key
combination (Shift, CTRL or ALT plus another key) you select.

PCM MegaBasic does not respond to Break, although user programs can.

Break Delay Thisdelay valueisarbitrary and varies among different computer models.
Itis a count of the number of times a software delay loop is repeated
between the start and end of a break. The default is 20,000* counts.

Show Scan Code | This menu item is shown after you answer Y to the prompt that asks
whether you wish to change a selection. You should use Show Scan Code
to discover the scan code for the key or key combination you want to
assign to the Send Break function or exitTERMFE

* Defaultselection.

Caution

The key assignment for exiting from TERMF should never be changed
when using PCOP. A change to this setting will prevent PCOP from
functioning as expected.

When these selections are correct, type N.

GFK-0255K Chapter 2 Installing the PCM 2-29

6. Menu item 4 selects a screen that displays the current values for display attributes.
These values select the foreground and background colors for characters based on
the status of the graphics rendition modes reverse, intensify, underline, and blink.
This selection allows you to change the colors of the display used by TERMF and
PCOP. The values are coded as two hexadecimal digits representing a string of eight
bits. The three least significant bits (1 through 3) code the foreground color; bit 4
specifies high intensity; bits 5 through 7 code the background color; and bit 8
specifies blinking.

TERMSETshows the names of the colors which correspond to the numeric values
selected for foreground and background colors. These are the colors displayed on
CGA, EGA and VGA color displays. If your computer has a monochrome display,

you should use the default display attributes.

To redefine any of the display attributes, type Y and respond to the prompts for
attribute combination number and hexadecimal attribute value. When the settings
are correctly displayed, type N

7. Menu items 5, 6, and 7 select screens that display the scan codes contained in the
normal, application, and cursor key binding sets, respectively. Key bindings are used
to redefine keys for various operational modes. A single keystroke may send up to
80 characters via these key bindings.

Note

Custom key bindings have limited value when using TERMF or PCOP
with the PCM. This description is provided only for completeness.

When using MegaBasic special key handling, only ordinary keys (i.e.,
those that produce a non-null character code can be used for
keybindings. For example, CTRL-A can be used to produce the
character code 1.

If MegaBasic special key handling is selected from main menu item 3, many of these
custom binding in these sets will be replaced with MegaBasic defaults.

To view or modify the normal key bindings, type Y, select the appropriate function,
and answer the prompts:

Look at a table entry.

Replace atable entry.

Delete atable entry.

Add atable entry.

Show the scan code for the key.

g B~ W N -

When the key bindings are correct, type N.

8. Menu item 8 selects a screen which displays the current values for the display color
palette settings. These settings are only available for EGA/V@\ adapters. The EGA
color palette has 16 entries. The colors are defined in RGB notation (i.e., three digits
with values 0 to 3 each to indicate the intensity of Red (first digit), Green (second
digit), and Blue (third digit). The range for each color is 000 to 333, giving a palette
of 64 possible colors.

If you wish to change any of these settings, type Y and respond to the prompts for
register number, RGB value, and color name. If the settings are correct as displayed,
type N.

2-30 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

Local Configuration File

GFK-0255K

If you frequently use more than one TERMF or PCOP setup, you can save each
configuration in its own file. You can specify the local configuration file by naming it
when you invoke TERMSETas follows:

TERMSET [new filename]

For example, to switch between using an EGA and monochrome display, type:

COPY DEFAULT.DAT TERM.EGA
TERMSETTERM.EGA

and modify the default settings to use your EGAdisplay. When you exit from TERMSET
these settings are saved to the file TERM.EGA Then, create a file named TERM.MONto
describe the monochrome display by typing:

COPYDEFAULT.DAT TERM.MON
TERMSETTERM.MON

Whenever you need to change your configuration to the EGA setup, type:

COPY TERM.EGA TERM.DAT or PCOP
TERMF

Or, for the monochrome monitor, type:

COPY TERM.MON TERM.DAT or PCOP
TERMF

You could also specify which file to use when you invoke TERMF or PCOR, as follows:

TERMF TERM.EGA or PCOP TERM.EGA or

TERMF TERM.MON or PCOP TERM.MON

Chapter 2 Installing the PCM 2-31

Connecting the PCM to the Programmer

2-32

Cables for connecting the PCM to a display terminal or personal computer are described
in appendix A, PCM Cabling Information. To connect the PCM to the programmer:

1. Connect the cable between the PCM programmer port (usually port 1) and the serial
port on the VT100™ or OIT terminal or IBM PC-XT, PC-AT,PS/2,Workmaster,
Workmaster I1, or Cimstar | industrial computer.

If you are using a computer as the programmer, be sure the cable is connected to the
serial port (COM1 or COM2) specified by TERM.DAT If you are using PCOP, refer
to the Series 90 PCM Development Software (PCOP) User’s Manual, GFK-0487, for
additional information on establishing communication with the PCM.

2. If you are using a computer as the programmer, type TERMFat the MS-DOS
prompt and press the Enter key.

3. Press the PCM Restart/Reset pushbutton for 10 seconds to initiate a hard reset and
place the PCM in programming (factory) mode.

4. If the PCM has firmware version 2.50 or greater and has been configured using
Logicmaster 90 software for BASIC or BAS/CCM mode, the MegaBasic banner
should be displayed at the top of the screen, followed by the “Ready” prompt.

MegaBasic Version 5.602, under PCM VTOS v2.50
IEEE/Software floating point on an 80186/88 CPU

(c)Copyright 1985-1990 by Christopher Cochran
MegaBasic Support BBS: 415-459-0896, PO Box 723
Fairfax, CA. USA 94930 — Serial #0000

Ready

With other Logicmaster 90 configuration modes, you should see a “->" prompt from
the PCM command interpreter. If your PCM has firmware version 2.04 or lower, you
must use PCOP to program the PCM.

™ VT100isatrademark of Digital Equipment Corporation.

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

Diagnosing Serial Communication Problems

Before proceeding, verify that the OK LED on the PCM is on. If the LED is off, refer to
the information in section 1 of this chapter.

This procedure is used to determine if there is a hardware problem with the
programmer serial ports.

1. Verify that both the PCM and the programmer are using the same baud rate, parity,
number of data bits, number of stop bits, and the same type of handshaking
(HARDWARESOFTWAREor NONB.

Note

If you configured the PCM using Logicmaster 90 software, review
section 2 of this chapter. If you used the Series 90-30 Hand-Held
Programmer, review section 3 of this chapter. When verifying the
programmer serial port configuration, review section 5 of this chapter.

2. Verify that the cable connections, described in appendix A, PCM Cabling Information,
are correct and that the cable is firmly secured at both ends.

3. Press the PCM Restart/Reset pushbutton for 10 seconds. The middle light on the
PCM should blink. If it does not, remove the connector from the PCM, jumper pins
4 and 5 on the PCM with a paper clip, and press the Reset/Restart pushbutton again
for 10 seconds. If the LED still does not blink at least once, there is a problem with
the PCM. Otherwise, the cable, programmer configuration, or programmer
hardware is the problem; continue with step 4.

4. Reconnect the cable to the PCM. If the programmer has more than one serial port,
be sure the cable is connected to COM1. Set the programmer serial port to the PCM
default settings. To do this when using a computer as the programmer, type TERMF
DEFAULT.DAT at the MS-DOS prompt and press the Enter key.

5. Press and hold the Restart/Reset pushbutton for 10 seconds to initialize the PCM to
its factory default settings.

6. Press the programmer Enter key while watching the USER1 LED for serial port 1 or
USER2 LED for serial port 2. Each time the key is pressed the LED should blink. If
the PCM has been configured by Logicmaster 90 in BASIC or BAS/CCM mode, the
“Ready” prompt should also be repeated on the programmer screen; otherwise the
“>" prompt should appear. If the LED does not blink or the “Ready” or “>" prompt
is not displayed, either the connection from the programmer to the PCM is bad or
the programmer hardware is defective.

7. Cycle power on the programmer to make sure its serial port hardware is fully reset.
Problems with the programmer are very rare. When they do occur, they can often
be fixed with a power cycle. If your programmer is a computer, type TERMF
DEFAULT.DAT again. If the LED still does not blink when a key is pressed, itis
likely that there is a problem with the cable. See appendix A, PCM Cabling
Information, for information on PCM cables. Occasionally, problems occur with the
PCM or PC serial port hardware.

8. Press CTRL-BREAK or ALT-Z to exit TERMFE

If PCOP establishes communication with the PCM but the PCOP status never switches
to ONLINE, refer to the Series 90 PCM Development Software (PCOP) User’s Manual,
GFK-0487, for additional suggestions.

GFK-0255K Chapter 2 Installing the PCM 2-33

Chapter CCM Operation

This chapter contains information relevant to the operation of the CCM communication
protocol on the Series 90 PCM. The PCM must be configured for CCM operation, using
Logicmaster 90 configuration software or PCOP, before attempting CCM
communication. Refer to chapter 2, section 2 of this manual for a guide to configuring
the PCM.

This chapter contains the following sections:

Section Title Description Page
1 Series90 CCM Target | Section 1 defines the memory types for the Series 90 3-2
Memory Types PLC. Memory allocation for the CCM scratch pad
and diagnostic status words isalso described in this
section.
2 Series90 CCM Section 2 explainsthe addressing conventionsand 3-7

Memory Addressing | datalengths for each memory type.
Conventions

3 Communications Section 3 describes the Communications Request 3-12
Request (COMMREQ) function.
(COMMREQ)
4 CCM COMMREQ Section 4 describes the CCM COMMREQ data 3-19
DataBlock block and includesasummary of the data blocks for
the Series 90 command set.
5 CCM COMMREQ Section 5 describes the status word returned by a 3-23
Status Word CCM COMMREQ. Alsoincluded isatable of return
statuserrorcodes.
6 CCM COMMREQ Section 6 provides acomplete Series 90 PLC ladder 3-25
Example logic program containing CCM COMMREQ function

blocks for the PCM. The sample program is suitable
for both Series 90-30 and Series 90-70 PLCs.

7 PLC System Section 7 describes the effect this configurable portion | 3-28
Communications of the Series 90-70 PLC CPU execution sweep can
Window have on CCM communication. Also included is how

to adjust the window time from the PLC program.

Comparisons of the CCM implementations in Series 90 ™, Series Six ™, Series Five ™,

and Series One ™ PLCs are included in sections 1 and 2 of this chapter to assist those
who are already experienced in the operation of CCM on other GE Fanuc programmable
logic controllers. If you need information on Series 90 CCM only, skip to section 3 of this
chapter.

GFK-0255K 3-1

Section 1. Series 90 CCM Target Memory Types

Series 90 CCM supports a subset of the memory types available in Series Six CCM.
Tables 3-1 and 3-2 below list the Series 90 CCM memory types. The types for the CCM
single bit write function (listed in table 3-2) are functional memory types. They map to
the same input and output tables as memory types 1 and 2, but are assigned unique
memory type humbers because they are used to perform bit set and bit clear special
operations on the input and output tables.

Table 3-1. Memory Types Supported by Series 90 CCM

CCM Memory Type CCM Target Table

1 Register Table (%R)
Input Table (%l)

Output Table (%Q)
CCM Scratch Pad
Diagnostic Status Words

O o wN

Table 3-2. Memory Types for the CCM Single Bit Write Function (6110)

CCM Memory Type CCM Target Table Bit Operation
13 Input Table (%l) Bit Set
14 Output Table (%Q) Bit Set
17 Input Table (%l) BitClear
18 Output Table (%Q) BitClear

Those Series Six memory types that are not supported are listed in the following table.

Table 3-3. Series Six Memory Types NOT Supported by Series 90 CCM

CCM Memory Type CCM Target Table Bit Operation
0 Absolute -
4 Input Override Table -
5 Output Override Table -
7 UserLogic -
8 Quick AccessBuffer -
10 Timers -
11 Counters -
15 Input Override Table Bit Set
16 Output Override Table Bit Set
19 Input Override Table BitClear
20 Output Override Table BitClear
21 Input Override Table Bit Toggle
22 Output Override Table Bit Toggle

3-2 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999

GFK-0255K

GFK-0255K

The next two tables compare the Series One and Series Five CCM memory types with
those supported by the Series 90 CCM.

Table 3-4. Series One Memory Types vs. Series 90 CCM Memory Types

Series One CCM Series 90 CCM
Memory Type Target Table Memory Type Target Table
1 Timer/Counter/DafRegister 1 Register Table
3 Discretel/01 2,3 Input Table, Output Table
6 Scratch Pad 2 6 CCM Scratch Pad
7 UserLogic Not Supported
9 Diagnostic Status Words 3 9 Diagnostic Status Words

1 The addressing scheme for the Series One PLC differs from that of the Series 90 PLC when accessing
170 points. Refer to the next section for more information.

2 scratch pad definitions are not the same in the Series One PLC and the Series 90 PLC.
See table 3-6 for the Series 90 scratch pad layout.

3 Diagnostic status words and error code definitions are different in the Series One PLC and the Series 90
PLC. Seetable 3-7 for the Series 90 diagnostic status words, and refer to table 3-12 for the Series 90 CCM
error code definitions.

Table 3-5. Series Five Memory Types vs. Series 90 CCM Memory Types

Series Five CCM Series 90 CCM
Memory Type Target Table Memory Type Target Table
1 Registers 1 Register Table
2 Inputs 13 2 Input Table
3 Outputs 23 3 Output Table
6 Scratch Pad 4 6 CCM Scratch Pad
7 UserLogic Not Supported
9 Diagnostic Status Words 9 Diagnostic Status Words

1 The Series Five local and special inputs do not exist in the Series 90 input table. All inputs are
equivalent, and it is up to you to determine their functionality.
2 The Series Five local and internal outputs do not exist in the Series 90 output table. All outputs are
equivalent, and itis up to you to determine their functionality. For example, an output to be used
as an internal coil must not be tied to a real output.
3 The addressing scheme for the Series Five PLC differs from that of the Series 90 PLC when accessing
170 points. Refer to the next section for more information.
4 scratch pad definitions are not the same in the Series Five PLC and Series 90 PLC. See table 3-6 for
the Series 90 scratch pad layout.
5 Diagnostic status words and error code definitions are different in the Series Five PLC and the Series
90 PLC. See table 3-7 for the Series 90 diagnostic status words, and refer to table 3-12 for the Series 90
CCM error code definitions.

Chapter 3 CCM Operation

CCM Scratch Pad

The entire scratch pad is updated every time an external READ request is received by

CCM with a memory type of 6. All scratch pad locations are readonly. The scratch pad
is a byte-oriented memory type.

Table 3-6. Scratch Pad Memory Allocation

Bits
SP Address Field Identifier 7]le|[s]4a[3]2]1]o
00 CPU Run Status 0 0 0 0
01 CPU Command Status Bit pattern same as SP(00)
02 CPU Type Major 22 (in hexadecimal)
03 Minor 20 (in hexadecimal)
04 - 0B CPUID 7 ASCII characters + termination character =0
0oC CPU Firmware Revision No. Major (in BCD)
0D Minor (in BCD)
0E PCM FirmwareRevisionNo. | Major
OF Minor
10-11 Reserved (00H)
1232 Node Type Identifier (90-70: 0CH; 90-30: 0DH) 3b
13-15 Reserved (00H)
Master/Slave: 1-90 (decimal)
16 CCMCPUID Peer-to-Peer: 1 — 254
UniversalResponder: 255
17 Reserved (00H)
18 - 33 Sizes of Memory Types See Note (4)
18 - 1B RegisterMemory %R size
1C - 1F Analog Input Table %Al size
20 - 23 Analog Output Table %AQ size
24 - 27 Input Table %I size
28 - 2B Output Table %Q size
2C - 2F Internal Discrete Memory %M size
30 -33 User ProgramCode See Note (5)
34 - FF Reserved (00H)

3-4 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999

GFK-0255K

Scratch Pad Memory Allocation Footnotes (for table 3-6)

1

2a

2b

0000 = Run_Enabled
0001 = Run_Disabled
0010 = Stopped

0011 = Stopped_Faulted

PLC CPU Major Type Codes:

0100 = Halted
0101 = Suspended
0110 = Stopped_IO_Enabled

$9070_PLC_CPU 12 (0ch) Series 90-70 PLC CPU
$9030_PLC_CPU 16 (10h) Series 90-30 PLC CPU

Series 90-70 Minor Types for CPU:
CPU_731 31 (1Fh) Series 90-731 CPU.
CPU_732 32 (20h) Series 90-732 CPU
CPU_771 71 (47h) Series 90-771 CPU
CPU_772 72 (48h) Series 90-772 CPU
CPU_780 80 (50h) Series 90-780 CPU
CPU_781 81 (51h) Series 90-781 CPU
CPU_782 82 (52h) Series 90-782 CPU
CPU_788 88 (58h) Series 90-788 CPU
CPU_789 89 (59h) Series 90-789 CPU
CPU_914 92 (5¢ch) Series 90-914 CPU
CPU_924 24 (18h) Series 90-924 CPU

Series 90-30 Minor Types for CPU:

CPU_31130(1eh) Series 90-30 311 CPU
CPU_31333(21h) Series 90-30 313 CPU
CPU_32334(22h) Series 90-30 323 CPU
CPU_33135(23h) Series 90-30 331 CPU
CPU_34038(26h) Series 90-30 340 CPU

CPU_34136 (24h) Series 90-30 341 CPU.

Located in the same position as in the Series Six scratch pad. Series One, Three and Five PLC users,

CPU_790 90 (5ah)
CPU_915 15 (0fh)
CPU_925 25 (19h)
CPX_772 73(49h)
CPX_782 83(53h)
CPX_928 28 (1ch)
CPX_935 35(23h)
CGR_772 74 (4ah)
CGR_935 36 (24h)

CPU_350 44 (2ch)
CPU_351 37 (25h)
CPU_352 39 (27h)
CPU_360 40 (28h)
CPU_363 41 (29h)
CPU_364 42 (2ah)

Series 90-790 CPM CPU
Series 90-915CPM CPU
Series 90-925 CPM CPU
Series 90-772 CPX CPU
Series 90-782 CPX CPU
Series 90-928 CPX CPU
Series 90-935 CPX CPU
Series90-772 CGR CPU
Series 90-935 CGR CPU

Series 90-30 350 CPU
Series 90-30351 CPU
Series 90-30 352 CPU
Series 90-30 360 CPU
Series 90-30363 CPU
Series 90-30 364 CPU

who need to determine the node type, should note this location and make driver modifications where necessary.

Scratch Pad Bytes 18h-33h:

Bytes Length of Memory Size Returned In
18-1B %R Register Memory Words
1C-1F | %Al Analog Input Table Words
20-23 %AQ Analog Output Table Words

24-27 %I Input Table Points (Bits)
28-2B %Q Output Table Points (Bits)
2C-2F | %M Internal Discrete Memory Points (Bits)
30-33 User Program Code Bytes
Note: Four bytes hold the hexadecimal length of each memory type with the most significant word reserved for

future expansion. For example, the 731 default register memory size of 1024 words (0400h) would be
returned in the following format:

Word LeastSignificant | MostSignificant
SP Byte 18 19 1A 1B
contains 00 04 00 00

5 The amount of program memory occupied by the logic program. Also appears on the Logicmaster 90 PLC
Memory Usage screen in the User Program field.

GFK-0255K Chapter 3 CCM Operation 3-5

Diagnostic Status Words

In addition to the status word, which is automatically transferred from the CCM task to
the CPU, there are 20 diagnostic status words maintained and updated within CCM.
These status words are not automatically transferred to the CPU; the internal
COMMREQ command 6003 (Read Diagnostic Status Words to Source Registers) is used
to transfer these status words to the CPU. An external device can access these status
words using a READ command with target memory type 9. Table 3-7 explains the
purpose of each diagnostic status word.

When CCM runs concurrently on both PCM serial ports, each has its own copy of
diagnostic status words. Neither can report on the status of the other.

The Series Six diagnostic status words contain data referring to both ports. Because the
Series 90 maintains two separate sets of diagnostic status words, the words referring to
the other port have been removed in the Series 90 and the diagnostic status words
reorganized, as outlined in the following table. The serial configuration data for both
ports has also been removed. The software version number remains in the same
location as in the Series Six PLC.

Table 3-7. CCM Diagnostic Status Word Definitions

Diagnostic Word
Status Word Contents
Byte 2 Byte 1 (LSB)

1 00H Serial Port Error Code 1
2 Number of Successful Conversations 2
3 Number of Aborted Conversations?2
4 Number of Header Retries
5 Number of Data Block Retries
6 Number of Q-SequenceSuccesses
7 Number of Peer-to-PeerCollisions

8 -11 Reserved (00H)
12 CCM Software Version Number3
13 COMMREQ Error Code 4
14 Reserved (00H)

15-20 COMMREQ Data Block Contents

1 Seetable 3-12, CCM Serial Port Error Codes, for a list of the
possibleerror codes and their definitions.

2 Internal commands do not modify this count. The term
“conversation” refers to communications across the serial port.

3 Same as the PCM Firmware Revision Number in the scratch
pad (OE-OF). This value always remains in word 12 of the
diagnostic status words, even when the diagnostic status
words are cleared by issuing internal command 6002 or by an

external device request.

4 Refer to section 5 of this chapter for a description of the returned
status fora CCM COMMREQ.

3-6 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

Section 2: Series 90 CCM Memory Addressing Conventions

In order to carry out a data transfer, the CCM protocol must be given the address where
the transfer is to begin and the length of the data to be transferred. The starting address
plus the length must not go past the end of a table boundary. The requirements for
specification of the starting address and data length are explained in this section,
followed by general guidelines for replacing a Series One, Series Three, Series Five or
Series Six PLC with a Series 90 PLC in an application using the CCM protocol.

Target/Source Memory Addresses

The memory addresses in the following table are target addresses when the
non-initiating device is a Series 90 PLC. When the initiating device is a Series 90 PLC,
they are source addresses.

Table 3-8. Target/Source Memory Addresses

Memory Type Description Address Ranges !
1 Register Specifiedthe register with which the data 1-Maximum Units
transferisto begin.
2 InputTable Specifies the input or output point with which | 1-Maximum Units
3 Output Table the data transfer is to begin. Source memory
addrezss must be on abyte boundary (i.e., 1, 9,
17..).
6 CCMScratchPad | Specifies the scratch pad byte with which the 0-255
Memory3 datatransfer is to begin.
9 CCMDiagnostic | Specifiesthe diagnostic status word with 1-20
Status Words3 which the data transfer is to begin.
13 BitSet Input Specifies the input or output point to be set. 1-Maximum Units
14 Bit Set Output
17 BitClear Input Specifies the input or output point to be 1-Maximum Units
18 BitClear Output | cleared.

1 The maximum addressable ranges for each memory type depends on the model of CPU and memory
configuration.

2 ForI/0 references, the Series 90 and Series Six CCM implementations use point-oriented addressing,
rather than the byte-oriented addressing of the Series One, Three and Five PLCs. The starting address is
interpreted by the Series 90 PLC as the bit number at which the transfer is to begin. Series 90 source
memory addresses must be on a byte boundary. (See the examplesthatfollow.)

Software packages which use the byte-oriented addressing method to interface with a Series One, Three,
or Five PLC may need to be modified for the Series 90 PLC.

3 Scratch pad and diagnostic status words are residentin PCM/CMM memory.

GFK-0255K Chapter 3 CCM Operation 3-7

Data Length

3-8 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999

Examples:

To read target Series 90 inputs 9 through 16 into source Series 90 inputs 17 through 24,
the source address is 17, the target address is 9, and the data length is 8.

To read target Series One inputs 9 through 16 into source Series 90 inputs 17 through 24,
the source address is 17, the target address is 2 (Series One 1/0 addressing is
byte-oriented), and the data length is 8.

To read target Series 90 input 27 into source Series 90 input 3, you must specify a source
address of 1, a target address of 25, and a data length of 8. Inputs 1 through 8 of the
source input table are overwritten with the values of inputs 25 through 32 of the target
input table.

To read target Series One input 27 into source Series 90 input 3, you must specify a
source address of 1, a target address of 4, and a data length of 8. Inputs 1 through 8 of
the source input table are overwritten with the values of inputs 25 through 32 of the
target input table.

Data length refers to the length of the data transfer. The units are determined by the
source memory type and are listed in the following table.

Table 3-9. Unit Lengths of Series 90 CCM Memory Types

Memory Type UnitLength Length Accessible
1. Registers 1Register =16 bits Register(s)
2,3: Inputsand Outputs 1 Point = 1bit Multiple(s) of 8 Points
6: Scratch Pad 1 Byte = 8 bits Byte(s)
9: Diagnostic StatusWords | 1 Word = 16 bits Word(s)
13,14: BitSetlnputs/Outputs 1 Point = 1hbit 1 Point
17,18: BitClearlnputs/Outputs

Examples:

To read 12 bytes of the target Series 90 scratch pad into Series 90 (or Series Six) registers,
the data length is 6 since the unit length for the source memory type (registers) is a
register. To read 12 diagnostic status words into the registers, the data length would be
12 because both registers and diagnostic status words have equivalent unit lengths
(register = word = 2 bytes).

To read 8 target Series 90 inputs into Series 90 (or Series Six) inputs, the data length is 8
points since the unit length is the same for each. CCM memory types 2 and 3 (inputs
and outputs) can be accessed only in multiples of 8.

To read 8 target Series 90 registers into Series 90 (or Series Six) inputs, the data length is 8
registers times 16 points per register = 128 points.

GFK-0255K

CCM Comparisons

GFK-0255K

The following diagrams compare the CCM implementations on the Series 90 PLC with

those on the Series One ™, Series Three™, and Series Five™ PLCs.

The mapping of the Series 90 is the same as that of the Series Six™ PLC. Note, however,

that memory organization within the diagnostic status words and scratch pad differs

between Series 90 PLCs and Series Six PLCs.

SERIES a44246
ONE JUNIOR <)E> SERIES 90

MEMORY TYPE 1 MEMORY TYPE 1
TIMERS/ REGISTER
COUNTERS TABLE
@r--=--=--- S——m——— - -+
MEMORY TYPE 3 MEMORY TYPE2 |
EXTERNAL I/O INPUT |
[I TABLE I
|
INTERNAL COILS |
AND MEMORY TYPE 3
SHIFT REGISTER I
POINTS OuUTPUT I
TABLE |
|
|

Figure 3-1. Series One Jr. PLC vs Series 90 PLC

O ——— - -

Chapter 3 CCM Operation

SERIES a44247
ONE <)E> SERIES 90

MEMORY TYPE 1 MEMORY TYPE 1
TIMERS/ REGISTER
COUNTERS TABLE

‘l
MEMORY TYPE 3 MEMORY TYPE2 |
EXTERNAL I/O INPUT '
________ TABLE |
INTERNAL I/O I
———————— [
SHIFT MEMORY TYPE 3 |
REGISTER OUTPUT I
POINTS TABLE |

|

_

Figure 3-2. Series One PLC vs Series 90 PLC

3-9

3-10

SeRIES 244248
ONE PLUS <:E:> SERIES 90

MEMORY TYPE 1

MEMORY TYPE 1

TIMER/COUNTER REGISTER
ACCUMULATORS TABLE
DATA
REGISTERS
Br-—=—===————-———————- 1
MEMORY TYPE 3 MEMORY TYPE2 |
EXTERNAL I/O INPUT '
________ TABLE I
INTERNAL COILS I
———————— |
SHIFT REGISTER |
POINTS MEMORY TYPE3 |
TIMER/COUNTER OUTPUT |
STATUS TABLE I
|
L o _____ _
Figure 3-3. Series One Plus PLC vs Series 90 PLC
SERIES a44249
S EREE <E> SERIES 90
MEMORY TYPE 1 MEMORY TYPE 1
DATA REGISTER
REGISTERS TABLES
TIMER/COUNTER
ACCUMULATORS
___________________ -
| MEMORY TYPE MEMORY TYPE 2 |
' EXTERNAL I/O INPUT '
e e —] TABLE |
I INTERNAL I/O I
| fb——= === I
| SHIFT |
I REGISTERS MEMORY TYPE 3 |
| | TIMER/COUNTER OUTPUT |
I UP STATUS TABLE I
| |
L - ___ J

Figure 3-4. Series Three PLC vs Series 90 PLC

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999

GFK-0255K

GFK-0255K

ad4241
SERIESFIVE Vs SERIES 90

MEMORY TYPE 1 MEMORY TYPE 1
REGISTERS —> REGISTER TABLE
MEMORY TYPE 2 MEMORY TYPE 2
11+ INPUTS —— INPUT TABLE
12+ INPUTS

SPECIALINPUTS

MEMORY TYPE 3 MEMORY TYPE 3
01+ OUTPUTS }——p> OUTPUT TABLE

S rouTRUTS

" oGALOUTRUTS |

"~ INTERNALCOIS | CCRACHPAD

LAYOUTDIFFERENT
FROM SERIES FIVE

MEMORY TYPE 6 MEMORY TYPE 6
SCRATCHPAD |—nouwup» SCRATCH PAD
MEMORY TYPE 7
USERLOGIC —y NOTSUPPORTED
CCM DSW's
MEMORY TYPE 9 MEMORY TYPE 9

00-01H ——#| 01 PORT ERROR CODE
ceM 02-03H —®| 02SUCCESSFUL CONVERSATION
DSW's 04-05H ———| 03 ABORTED CONVERSATION
06-07H ——| 04 HEADER RETRIES
08-09H ——>| 05 DATABLOCK RETRIES

Figure 3-5. Series Five PLC vs Series 90 PLC

Notes Relating to Figures 3-1 through 3-5:

A. The Series One and Series Three PLCs have one table for I/0. The Series 90 PLC has
two separate tables, one for inputs and one for outputs. Depending upon the I/0
type of the data being retrieved, it is necessary to use memory type 2 or 3, instead of
just 3.

B. The Series One, Series Three, and Series Five PLCs use byte-oriented addressing
(117: start address = 3). The Series Six and Series 90 use bit-oriented addressing (117:
start address = 17).

Chapter 3 CCM Operation 3-11

Section 3: Communications Request (COMMREQ)

When a PCM is configured as a CCM master or peer, it can initiate CCM messages only
when the PLC CPU commands it to do so. Communications Request (COMMREQ)
function blocks in the ladder logic program are used for this purpose. The PLC CPU
uses the parameters of a COMMREQ and its associated command block to send a
command to the PCM. The PCM, in turn, sends the CCM message that was specified in
the command.

When a COMMREQ function block receives power flow, the CPU may send a CCM
command and wait for a reply. This mode of operation is referred to as WAIT mode.
The maximum length of time the PLC will wait for CCM to respond is specified in the
command block of the COMMREQ. If CCM does not respond within that time, program
execution resumes.

If the COMMREQ command block specifies that the PLC program should not wait for a
reply, a CCM command is sent and program execution resumes immediately. The
timeout values for the command block are ignored. This mode is referred to as NOWAIT
mode.

Caution

NOWAITmode should always be used. Otherwise, the time spent waiting
for CCM communication will significantly degrade PLC sweep time. If
WAIT mode is used, the sum of the maximum PLC sweep time plus the
longer of the two COMMREQ timeout values must be no larger than the
PLC watchdog timer setting. Information on the two COMMREQ
timeout values is presented later in this section.

3-12 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

Format of the COMMREQ Function Block

GFK-0255K

The COMMREQ function block has four inputs which specify the command block
location in PLC memory and the identity of CCM. A fault output indicates errors. The
Series 90-70 COMMREQ function block also has an OK output; the Series 90-30
COMMREQ does not.

|
(enable) —|[COMM_|— (ok, pele{e] VIV lIEs only)
| _
| REQ |

IN: Specifies the memory location of the command block. It may be any
word-oriented user reference (%R, %Al, or %AQ in both the Series
90-70 and Series 90-30 COMMREQ); %P or %L in the Series 90-70
COMMREQ only).

SYSID: SYSID is a hexadecimal value containing the rack and slot location of the
PCM to which the COMMREQ is being sent. Entries have this format:

RS 0102

[|l
rack || rack1__ ||
slot | slot 2 |

If SYSID is incorrectly programmed for a rack and slot which does not
contain a PCM or other intelligent module, no communications request
will be sent, the OK output (if any) will remain inactive, and the FT
output will become active.

Note

No error occurs if SYSID specifies a rack and slot which
contains an intelligent module that is not a PCM.

Additional examples:

Hexadecimal
Rack Slot Word Value
0 4 0004h
3 4 0304h
2 9 0209h
7 2 0702h
Chapter 3 CCM Operation 3-13

3-14

TASK:

OK and FT:

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999

The following table lists the applicable task numbers for CCM.

Task Number Description
1 CCMonPCM Port 1
2 CCMon PCM Port 2

If the task number programmed for CCM is not valid,a COMMREQ
BAD TASK ID application fault is logged in the PLC fault table. This can
occur if the TASK value is misprogrammed, if the PCM has been hard
reset so that CCM is inactive, or if the PCM is not configured correctly
for the specified CCM task.

The OK and FT (function faulted) outputs can provide power flow to
optional logic to verify successful completion of the COMMREQ. Note
that the Series 90-30 COMMREQ has no OK output. OK and FT may
have these states:

ENable Error? OK output FT output
active no true false
active yes false true

notactive no execution false false

In NOWAIT mode, a COMMREQ always passes power flow to the OK
output whenever it executes. In WAIT mode, the function passes
power flow to the OK output unless the timeout expires before the
COMMREQ is completed or a zero timeout period is specified. Then,
OK remains inactive and FT becomes active.

The FT output also becomes active in WAIT or NOWAIT mode if:

® There is no PCM or other intelligent module in the rack and slot
specified by the SYSID input.

® The data length specified in the command block is zero.
In WAIT mode, the FT output also becomes active if:

® The PCM port specified by the TASK input is not configured as a
CCM master or peer, CCM is not enabled, or the PCM has been hard
reset. In either WAIT or NOWAITmode a BAD TASK ID faultis
logged in the PLC fault table.

If there are errors in the portion of the command block used specifically
by CCM, these errors are reflected in the value returned in the status
location, and not in the FT output.

GFK-0255K

Other COMMREQ Faults

If the CCM status pointer address specified in the command block does not exist, the
status information returned by CCM will be lost. This may occur when either the user
reference type specified in the command block or the offset address within that
reference type is invalid.

If CCM receives COMMREQs from the PLC faster than they can be processed, a
MAILBOX QUEUE FULL fault may eventually be logged in the PLC fault table:

MOD: Other S/W error COMMREQ MB FULL START

It is good programming practice to have no more than one COMMREQ outstanding at a
time on each CCM port. The example CCM application in section 6 of this chapter
shows how the CCM status register can be used to send one COMMREQ at a time.

MAILBOX QUEUE FULL faults can also occur if CCM has been stopped by a hard reset
or if the PCM has stopped functioning.

Power-Up Delay

The first COMMREQ sent to CCM after a power cycle or ACFAIL must be delayed until
the PCM has finished power-up initialization. A good rule of thumb is to wait 5 seconds
before trying to send a CCM COMMREQ. The absolute minimum time is 1 second.
Refer to the example in section 6 of this chapter.

Command Block

GFK-0255K

The command block provides additional information needed by the COMMREQ
function.

The address of the command block is specified for the IN input to the COMMREQ
function. This address may be in any word-oriented user reference (%R, %Al or %AQ in
both the Series 90-70 and Series 90-30 COMMREQ); %P or %L in the Series 90-70
COMMREQ only). The length of the command block depends on the specific CCM
command being sent.

The command block has the following structure:

DataBlock Length address(word1)

Wait/NdMaitFlag address + 1 (word 2)
Status Pointer Memory Type address + 2 (word 3)
Status Pointer Offset address + 3 (word 4)
Idle Timeout Value address + 4 (word 5)

MaximumCommunicationTime address + 5 (word 6
address + 6 (word 7)
DataBlock through

address + 11 (word 12)

Information required for the command block can be placed in the designated memory
area using the MOV or BLKMOV function block.

Chapter 3 CCM Operation 3-15

When entering information for the command block, refer to these definitions:

Data Block This word contains the number of data words starting with the CCM

Length: command number at address + 6 (word 7) to the end of the command
block, inclusive. The data block length of CCM commands ranges from
1to 6 words. Each CCM command has its own COMMREQ data block

length.

Wait/No Wait This word selects whether or not the program should wait for CCM

Flag: communications to be completed.
For Enter
No wait 0
Wait for reply 1

The flag bit is stored in the least significant bit (LSB) at address + 1
(word 2). The rest of the word is filled with zeros. If the command
block is programmed using integer values, this is taken care of
automatically.

Caution

It is recommended that the COMMREQ WAIT/NOWAIT
flag be set to NOWAIT. Otherwise, CCM communication
time can significantly degrade the PLC sweep time. If
WAIT mode is used, the sum of the maximum PLC sweep
time plus the longer of the two COMMREQ timeout
values must be no larger than the PLC watchdog timer
setting. If two or more COMMREQs can occur during a
single PLC sweep, the total of the timeout values for all the
COMMREQs must be considered. Failure to observe this
precaution can cause the PLC watchdog timer to expire,
halting PLC execution, when a CCM problem occurs.

Information on the two COMMREQ timeouts is presented below. For
information on reading PLC watchdog timer settings and configuring
the Series 90-70 watchdog timer, refer to the Logicmaster 90-70
Programming Software User’s Manual, GFK-0263. The Series 90-30 PLC
watchdog timer is not configurable.

3-16 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

GFK-0255K

Status
Pointer
Memory

Type:

Status
Pointer
Offset:

Idle Timeout
Value:

Maximum
Communica-
tion Time:

Data Block:

Chapter 3 CCM Operation

The two status pointer words specify a PLC memory location where the
status word returned by CCM will be written when the COMMREQ

completes.

Status Pointer Memory Type address + 2 (word 3)
Status Pointer Offset address + 3 (word 4)

Status pointer memory type contains a numeric code that specifies the
user reference memory type for the CCM status word. The table below
shows the code for each reference type:

For This Memory Type Use This Value
%I Discreteinputtable 16
%Q Discrete outputtable 18
%R Registermemory 8
%Al Analoginputtable 10
%AQ | Analogoutputtable 12

The high byte at address + 2 should contain zero.

The word at address + 3 contains the offset for the CCM status word
within the selected memory type.

Note

The status pointer offset is a zero-based value. %R00001,
for example, is at offset zero in the register table. %R00300
is at offset 299.

The idle timeout value is the maximum time the PLC CPU waits for
CCM to acknowledge receipt of the COMMREQ. This value is ignored
in NOWAITmode. If WAIT mode is selected, address + 4 specifies the

idle timeout period in 100-microsecond increments.

The value at address + 5 specifies the maximum time the PLC CPU
waits for CCM to complete the COMMREQ. This time is also specified
in 100-microsecond increments and is ignored in NOWAIT mode.

The CCM data block contains the CCM command number in address +

6 plus any command data words required for each specific command.
For more information on CCM COMMREQ data blocks, see section 4 in

this chapter.

CCM Status Word

The CCM status word is written to one of five PLC memory types, at the location
defined by the status pointer memory type, at address + 2, and the status pointer offset,
at address + 3, in the command block. The content of this word is defined as:

Low byte Completion code or major error code:
lindicatessuccess.

Highbyte | Secondary errorcode.

Clear the status word before issuing the COMMREQ to CCM. Different memory
locations should be used for status words associated with different COMMREQs in
order to avoid the possibility of two outstanding COMMREQs writing to the same
location. A single status word location should never be used for more than one
COMMREQ unless they are all WAIT mode requests.

Follow these guidelines for programming the status word:

1. CCM never returns zero for the status word. If the user program needs to know
that the command is complete, it can zero the status word before issuing the
COMMREQ and then check the status word for a non-zero value.

2. CCM uses a status code value of 1 to indicate that the operation was completed
without errors.

3. Display the status word in hexadecimal format to read the two bytes of data. When
an error occurs, the least significant byte is greater than 1.

Refer to section 5 of this chapter for a complete list of secondary error codes for CCM.

3-18 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

Section 4: CCM COMMREQ Data Block

GFK-0255K

Data blocks for CCM on the PCM are similar to the command registers used by the
Series Six™ CCM modules. The first word of the data block must be a command word in
the range 6000 to 6199 (decimal).

Subrange Description
6000-6099 Usedfor general utility type functions involving only local data storage on the
PCM. These commands may be used in all CCM modes (MASTER SLAVE
PEER-NON-INITIATOR, and PEER-INITIATOR).
6100-6199 Used for operations that require initiating serial communication. These
commands are restricted to MASTERand PEER-INITIATOR CCM modes.

Chapter 3 CCM Operation 3-19

The following table lists the valid command words and the required parameters for
each. For more detailed information and examples of each command, refer to the Series
Six™ Data Communications Manual, GEK-25364.

Table 3-10. COMMREQ Data Block for CCM Commands

DataBlock Words
(Xindicates“Required”; —— indicates “NotUsed")
Target Target Source
Data Command Target Memory Memory Data Memory
Command Block Word ID Type Address | Length [Address
Description Size Word 7 Word 8 Word 9 Word 10 Word Word 12
11
Set Q-Response 12 6001
(SLAVE modeonly) 3words (1770H) X 3a X 3b — — —
Clear CCM Diagnostic! 6002
Status Words 1word (1771H) — — — — —
Read CCM Diagnostic! 6 words
Status Words to (2words 6003
SourceRegisters unused) (1772H)
Software Configuration! 15words 6004 See SerialCommunicationUser’s Manual
(1774H) (GFK-0582) for details.
Read from Target to 6101
Source Register Table 6 words (17D5H) X X X X X
Read from Target to 6102 X X X
Source Input Table 6 words (17D6H) X X
Read from Target to 6103
Source Output Table 6 words (17D7H) X X X X X
Read Q-Response 6 words
to Source (3words 6109 X — — — X
Register Table unused) | (17DDH)
6110
Single Bit Write 4words (17DEH) X X X — —
Write to Targetfrom 6111
Source Register Table 6 words (17DFH) X X X X X
Write to Targetfrom 6112
Source Input Table 6 words (17E0H) X X X X X
Write to Targetfrom 6113
Source Output Table 6 words (17E1H) X X X X X

1 Internal Command (no communications across the serial port).
2 Only the slave half of the Q-Sequence is supported by Series 90 CCM. The Q-Response may be set viacommand 6001,
and the slave will respond to a Q-Sequence Enquiry received from an external device on the serial port. For a description of the

Q-Sequence, refer to pages 4-18 through 4-21 in GEK-25364.

32 Databytes1and 2.
3b Databytes 3and 4.

3-20

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999

GFK-0255K

Table 3-11. COMMREQ Data Block for CCM Commands (Explanations for Table 3-10)

Word

Description

Command Word,
Word 7

The COMMREQ data block begins at the seventh word (address +
6) of the command block and consists of up to six contiguous
words of memory starting at this location.

Target D,
Word 8

To execute a transfer of data between CCM devices, one CCM
device must request the transfer and the other must comply with
the request. The device requesting or initiating the transfer is the
source ; the device complying with, but not initiating, the request
isthe target . Data may flow from source to target, as well as
from target to source.

The Target ID is the identification number of the target device;

for Series 90 CCM, itis the CCM CPU ID number. Each PCM port
can be configured with a different CPU ID number. This number
can be assigned using the Logicmaster 90 configuration package.
Refer to chapter 2, section 2, Configuring the PCM with Logicmaster
90 Software, for more information on using Logicmaster 90
software to assign the CCM CPU ID.

The automatic default configuration provided by the Series 90-30
PLC model 331 CPU sets the CCM CPU ID to 1 on both ports. A
CPU ID value of 1 is also the initial default configuration from
Logicmaster 90 software.

The value of the target ID number may be from 1 to 255 in
PEER-TO-PEERmMode or from 1 to 90 in MASTER-SLAVENode.
Target ID Oisreserved. Any peer CCM device, regardless of its ID,
responds to target ID 255.

TargetMemory Type,
Word 9

Specifies the type of user reference being accessed in the CCM
targetdevice. There are nine accessible Series 90 target memory
types (1, 2,3,6,9,13, 14,17, and 18). The memorytypesassociated
with each number are listed in chater 3, section 1, Series90 CCM
Target Memory Types. Other CCM devices support different types.

TargetMemory Address,
Word 10

Specifies the address within the CCM target device where the data
transfer is to begin. The address range for each Series 90 memory
type is listed in table 3-8.

Note: Forbothtarget memory type and target memoryaddress,
error checking is done by the non-initiating device and not by the
initiating PCM. Consequently, Series 90 CCM can initiate requests
for targetmemory types and addresses which are invalid for Series
90 targets, as long as the target device is not a Series 90 PLC.

DataLength,
Word 11

Specifiesthe length of the data transfer. The units are determined
by the source memory type, which is specified by the command
number. Table 3-9 shows the unit length and accessible increment
for each memory type.

Source Memory Address
Word 12

Specifies the address within the Series 90 CPU where the data
transfer is to begin. The source memoryaddressdescriptionsand
ranges are the same as for target memory, as shown in table 3-8.

Chapter 3 CCM Operation

3-21

3-22

The following table summarizes those Series Six commands which are not supported by

Series 90 CCM.

Table 3-12. Series Six CCM Commands NOT Supported by Series 90 CCM

Command Number Description
6004 - 6009 Quick AccessBuffer Manipulations
6106
6116
6010 Set CPU Memory Write Protect
6011 Reinitialize CCM Task
6012 Set OIU Timersand Counters
6104 1/00verride TableManipulations
6105
6114
6115
6108 CharacterStringManipulations
6118 (unformattedead/write)
6128
6118
6128
6117 Write to Target from Source User Logic
6130 Set CCM Retries
6131 Set CCM Timeouts

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999

GFK-0255K

Section5: CCM COMMREQ Status Word

A general description of the status word for a COMMREQ appears in section 3 of this
chapter. There are several points to remember when interpreting the contents of the
CCM COMMREQ status word:

1. CCM never returns a status word value of zero to the PLC CPU. If the user ladder
program needs to know when the command is complete, it can zero the status word
before issuing the COMMREQ and then check the status word for a non-zero value.

Note

It is strongly recommended that only one CCM COMMREQ be
outstanding for each CCM port at any time. The status word can be
used to control the timing of COMMREQs. See the example ladder
program in section 6 of this chapter.

2. CCM uses a status code value of 1 to indicate that the operation was completed
without errors. Refer to the table below for a complete listing of secondary error
codes for CCM.

3. Display the status word in hexadecimal format to read the two bytes of data. When
an error occurs, the least significant byte is greater than 1.

The following table lists the CCM serial port error codes that are reported (as secondary
error codes) in the most significant byte of the COMMREQ status word after the
execution of a CCM COMMREQ. These codes also appear in the least significant byte of
CCM Diagnostic Status Word 1.

Table 3-13. CCM Serial Port Secondary Error Codes
(High Byte of Diagnostic Status Word 1)

Error Code
Decimal | Hexadecimal Description
0 00 Successfultransfer.
1 01 Atimeoutoccurred on the serial link.
2 02 A COMMREQ attempted to write data to a section of the CCM
scratch pad that is permanently write-protected by the CCM.
3 03 A COMMREQ attempted to read or write a non-existentl/Opoint.
04 A COMMREQ attempted to access more data than is available in a
particularmemory type.
5 05 A COMMREQ attempted to read or write an odd number of bytes
toregister memory or the diagnostic status words.
6 06 A COMMREQ attempted to read or write one or more non-existent
registers.
7 07 A COMMREQ specified the transfer of zero data bytes.
08 A COMMREQ attempted to write to protected memory.
9 09 A COMMREQ attempted to transfer data to or from an invalid
memory type or absolute source address.
10 0A A COMMREQ attempted to read or write one or more non-existent
diagnosticstatuswords.

GFK-0255K Chapter 3 CCM Operation 3-23

Table 3-13. CCM Serial Port Secondary Error Codes
(High Byte of Diagnostic Status Word 1) — cont'd

Error Code
Decimal | Hexadecimal Description
11 0B A COMMREQ attempted to transfer data beginning at an invalid
scratch pad address or an input/outputtable address noton a byte
boundary (e.g.,1,9,17..).
12 oC Serial communication was aborted after a data block transfer was
retried three times, or anumber specified by the configuration.
13 0D Serial communication was aborted after a header transfer was
retried three times, or anumber specified by the configuration.
14 OE Serial communication was aborted after a Q-Requestwasretried
three times, or anumber specified by the configuration.
15 OF An attempt was made to set the Q-Response data on a device not
configured asaslave.
20 14 One or more of the following errorsoccurred during a data block
transfer:
¢ Aninvalid STX character was received.
¢ Aninvalid ETBcharacter was received.
¢ Aninvalid ETX character was received.
¢ Aninvalid LRC character was received.
e Aparity, framing, or overrun erroroccurred.
21 15 CCM expected to receive an EOT character from an external
device and did not receiveit.
22 16 CCM expected to receive an ACK or NAK character and did not
receive either one.
23 17 Communication was aborted when CCM did not receive avalid

acknowledge to a master enquire sequence after 32 attempts, or a
number specified by the configuration.

24 18 Communication was aborted after a peer enquire was NAKed 32
times by the external device, or anumber specified by the
configuration.

25 19 Communication was aborted when the CCM did not receive a valid
response to a peer enquire after 32 attempts, or a number specified
by the configuration.

26 1A Atimeoutoccurred during an attempt to transmit on a port due to
CTS being in an inactive state too long.

29 1D Anerroroccurred when data was being transferred between the
CCM and the Series 90 CPU.

30 1E Aparity, framing, or overrun erroroccurred during a serial header
transfer.

31 1F Aparity, framing, or overrun erroroccurred during a serial data
blocktransfer.

34 22 Bad Q-Responsereceived.

48 30 COMMREQ attempted to initiate conversation on a port in use.

65 41 The COMMREQ command number is invalid.

66 42 Aninvalid COMMREQ data block length was specified.

68 44 The COMMREQ is invalid on a peer port.

69 45 The COMMREQ isinvalid on aslave port.

70 46 The COMMREQ is valid only on a master port.

71 47 The COMMREQ target ID isinvalid.

127 F Genericmiscellaneouserror.

3-24 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

Section 6: CCM COMMREQ Example

This example shows a complete PLC ladder program which sends CCM COMMREQs to
the PCM. The program was developed for Series 90-70 PLCs, but it can be used with
Series 90-30 PLCs by removing the OK output from the COMMREQ function block in
rung 9.

On the first scan, the data for the COMMREQ command block and data block is
initialized using the two BLKMOV functions in rung 5. The command block is in
%R00050-%R00055. %R00050, the data block length, is 4 since the CCM 6110 command
requires 4 words of data. %R00051 contains 0 for NOWAITmode. The CCM status word
isreturned in %R00107 since %R00052 is 8 for %R memory and %R00053 contains
zero-based offset 106. %R00054 and %R00055 are ignored in NOWAIT mode and are
simply initialized to zero.

The data block begins at %R00056. The first word in the data block is the CCM
command 6110, single bit write. This command requires three additional words of data,
moved into %R00057-%R00059: target ID, memory type, and target memory address.
The target ID is 4, the memory type is 14 for bit set in the output table, and the target
memory address is 296. Consequently, the command sets %Q00296 on CCM CPU ID 4.

On the first scan, the program ensures that the PCM has had time to initialize itself
before sending the first COMMREQ. This is done with a 5-second TMR block in rung 8.
The initial count value for the timer was cleared to 0 by one of the MOVE_UINT
function blocks in rung 6. After the timer has expired, %T00001 latches on.

When %T00001 is on, the CCM status word in %R00107 is checked for a non-zero value
by the NE_UINT function block. Its value was initialized to 1 on the first scan (by
another MOVE_UINT function block in rung 6) to allow the first COMMREQ to be sent.
When the status word is not equal to 0, power flow is provided first to a MOVE_UINT
function block, which clears the status word, and then to the COMMREQ. Note that the
COMMREQ IN parameter specifies %R00050 as the command block location. SYSID is
0002, so the PCM must be located in rack 0, slot 2. The TASK parameter on the
COMMREQ indicates that this COMMREQ is for CCM on port 1 of the PCM.

After the COMMREQ completes, a non-zero CCM status word value is moved to
%R00107. The NE_UINT block then permits another COMMREQ to be sent.

When the program is run, an error may cause the COMMREQ FT output to become
active or cause the PCM to post a fault to the PLC fault table. Either kind of error will
prevent the COMMREQ from completing and setting %R00107 to a non-zero value.
Additional logic should be provided to detect these faults using PLC fault or system
contacts and to recover from them. For more information on Series 90 fault and system
contacts, refer to the Series 90-30/90-20 Programmable Controllers Reference Manual,
GFK-0467, or the Series 90-70 Programmable Controller Reference Manual, GFK-0265.

GFK-0255K Chapter 3 CCM Operation 3-25

3-26

05—04—91 11:05 GE FANUC SERIES 90—70 DOCUMENTATION (v3.01)
Program to Send CCM COMMREQs As Often As Possible

[START OF LD PROGRAM EXAMPLE | (* *)

[VARIABLE DECLARATIONS]

[PROGRAM BLOCK DECLARATIONS]

[INTERRUPTS]

[START OF PROGRAM LOGIC]

<< RUNG 5 >>

FST SCN — -
Tl |BLKMV| |BLKMV|—
[INT | [INT |

CONST —|IN1 Q+—%R00057 CONST —|IN1 Q+—9%R00050
+00004 | | +00004 | |

| 1 [
CONST —|IN2 | CONST —|IN2

|
+00014 | | +00000 | |
| 1 [
CONST —|IN3 | CONST —|IN3 |
+00296 | | +00008 | |
| 1 |
CONST —|IN4 | CONST —|IN4 |
+00000| | +00106 | |
|
CONST —|IN5 | CONST —|IN5 |
+00000| | +00000 | |
|
CONST —|IN6 | CONST —|IN6 |
+00000| | +00000 | |
| 1 |
CONST —|IN7 | CONST —|IN7 |
+00000 ——— +06110
<< RUNG 6 >>
FST SCN — -
+—] I[MOVE_| [MOVE_|—
[UINT| | UINT]
CONST —|IN Q|—%R00001 CONST —|IN Q|—%R00107
+00000 | LEN | +00001 | LEN |
|00001] |00001]
<< RUNG 7 >>
COMMDLY

(* COMMENT *)

Program: EXAMPLE C:\LM90O\EXAMPLE Block: _MAIN

Page

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999

GFK-0255K

Page 2

05—04—91 11:05

GE FANUC SERIES 90—70 DOCUMENTATION (v3.01)
Program to Send CCM COMMREQs As Often As Possible

(* transitions to RUN mode.

(
(* Delay the first COMMREQ 5 sec. %T1 is guaranteed to be off when the PLC *)
“)

)

(

<< RUNG 8 >>

%T00001

%T00001

+00005| |

|
CONST —|PV CV|—

%R00001

<< RUNG 9 >>

%T00001

1L
| UINT|

+00000

COMFLT

[]
%R00107—|I1 Q|

[|
CONST —|12

INE_|—

%T00002

|COMM._|

IMOVE_|

| UINT|

|00001|
0002 |

[] | IIREQ |
| CONST —|IN Q|—%R00107 %R00050—|IN FT|
+00000 | LEN | [

%T00003

CONST —|SYSID|

|
CONST —|TASK |

00000001

<< RUNG 10 >>

(* COMMENT *)

()

(* Additional rungs should be added to recover when the COMMREQ FT output

(* becomes active or when the PCM posts a fault to the PLC fault table. *)
)

")

(

[END OF PROGRAM LOGIC

Program: EXAMPLE

]

C:\LM90O\EXAMPLE Block: _MAIN

GFK-0255K

Chapter 3 CCM Operation

3-27

Section 7:

PLC System Communications Window

Communication between the PLC CPU and the PCM occurs during a portion of the PLC
sweep called the systemcommunicationswindow or systemwindow. In particular, the
CPU can receive COMMREQ response messages from the PCM only during the system

window.

In Series 90-30 CPUs, the system window time is fixed. The rest of the information in
this section applies only to Series 90-70 PLCs.

Series 90-70 System Communications Window

The system window in Series 90-70 PLC CPUs is normally allowed as much time as
necessary to process every message to the CPU from every intelligent module in the
PLC. This mode of window operation, called RUN TO COMPLETIONmode, allows the
most efficient communication possible. However, some time critical PLC applications
require a limit for the system window time.

The system window mode and time in Series 90-70 PLC CPUs can be changed by
Logicmaster 90-70 configuration software and by the PLC program. Using Logicmaster
90-70 configuration software is the simpler and faster method. However, if the PLC
program must guarantee that the system window is set to the desired configuration, or if
the window configuration must change to accommodate different conditions, then the
program must configure the system window. The remainder of this section describes
how to use the SVCREQ function block to adjust the system window.

PLC Service Request (SVCREQ)

The SVCREQ function block may be used to request a number of services from the PLC
CPU. For general information on the SVCREQ function, refer to the Series 90-70
Programmable Controller Reference Manual, GFK-0265.

The SVCREQ function block can be used to set the system window as follows:

[
(enable) —|SVC_ |— (ok) —|SVC_ |—
| _

| REQ]|

FNC: Specifies the PLC service to be requested. The value used to set the
system window is 4.

3-28 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

PARM: Specifies the memory location of the parameter block. It may be any
word-oriented user reference (%R, %Al, %AQ, %P or %L). The
parameter block used to set the system window consists of two byte
values in a single word:

High Byte Low Byte

Mode Value inms

The mode value 0 requests LIMITED mode, which permits the window
to use as much time as required to process messages, up to the specified
limit value. Message processing which is not completed within the time
limit is deferred until the next PLC sweep. Time limit values from 0 to
255 milliseconds, in 1 millisecond increments, may be specified. The
time limit value 0 prevents the PLC CPU from receiving any messages
from PCMs or other intelligent modules. For information on other
system window modes, refer to the Series 90-70 Programmable Controller
Reference Manual, GFK-0265.

The following table shows the minimum system window time values
which will not degrade CCM performance, for various CPU models in a
PLC which contains one PCM (but no other intelligent modules)
configured for CCM on one port:

Minimum System
Series 90-70 CPU Model Window Time
CPW31/732 5ms
CPW71/772 3ms
Cr0/781/782/788/789 2ms
CP19D/914/924/915/925 1ms
CRX2/782/928/935 1ms
CGR772/935 1ms

The window time limit must be increased when the PCM is configured
for CCM on both ports, and when the PLC contains two or more PCMs
or other intelligent modules.

The requirement for fast, predictable PLC sweep times conflicts with the
requirement for efficient CCM communication. Different applications
will assign different weights to these conflicting requirements. Some
applications will emphasize control of sweep time, some will emphasize
efficient CCM communication, while others will need a good balance of
the two. This complex mix of application requirements, plus the large
number of possible combinations of PCMs (and other intelligent
modules), makes it virtually impossible to provide a useful rule of
thumb for the system window time. Developers of time critical CCM
applications will need to tune the system window time for their specific
needs.

GFK-0255K Chapter 3 CCM Operation 3-29

Series 90-30 System Communications Window

In Series 90-30 CPU versions earlier than 4.4, the system window time is fixed. Starting
with version 4.4, however, the default mode of system window operation is RUN TO
COMPLETIONWwhich is actually limited to 50 milliseconds). PLC programs may use the
SVCREQ function block in CPU version 4.4 or later to change the window to LIMITED

mode. In Series 90-30 CPUs, LIMITED mode is fixed at 6 milliseconds.

SVCREQExamples

3-30

The following ladder program rung sets the Series 90-70 system window to LIMITED
mode and the time limit to the value in the low byte of %R00010 whenever contact

%MO00001 is active.

%M0001 -
1L | AND_| | SVC_|—
| WORD] | REQ |
| 1

CONST —|I1 Q|—%R0011 CONST —|FNC |

00FF |LEN| 00004 | |
|00001]

%R0010—]12 | %R0011—|PARM |

This ladder program rung sets the Series 90-30 system window mode to LIMITED
mode whenever contact %MO00001 is active. The window time is fixed at 6 milliseconds.

%M0001 —— _
][I[MOVE_| | SVC_|—
| INT | | REQ |

CONST —|I1 Q|—%R0010 CONST —|FNC |
00000 | LEN | 00004 | |

|00001] |
| | %R0010 —|PARM |

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999

GFK-0255K

Chapter

GFK-0255K

MegaBasic

This chapter contains information on developing and running MegaBasic applications in
the Series 90 PCM. A PCM with firmware version 2.50 or greater may be configured for
BASIC or BAS/CCM operation using Logicmaster 90 configuration software. PCMs with
firmware version 2.04 or lower must be configured for BASIC using PCOP, and other
PCMs may be configured using PCOP. One of these methods must be used before the
PCM can be used for MegaBasic. Refer to chapter 2, section 2, Configuring the PCM with
Logicmaster 90 Software, for a guide to configuring the PCM.

Chapter 4 contains the following sections:

Section Title Description Page

1 Programming the PCM in Section 1 describes the steps required to 4-2
MegaBasic programaPCM MegaBasicapplication.

2 Interfacing to the PCM Section 2 covers PCM serial portand PLC 4-13
Hardware and Series90 CPU | dataaccessfrom MegaBasic.

3 MegaBasicProgramming Section 3 contains exampleMegaBasic 4-26
Examples programs.

4-1

Section 1:

Programming the PCM in MegaBasic

MegaBasic is a powerful BASIC language interpreter which is built into the PCM.
MegaBasic programs can be created using:

® Any VT100-compatible terminal.

® TERMIEF the PCM support software, running in a Workmaster industrial computer or
IBM PC-XT, PC-AT or PS/2 personal computer. Many IBM-compatible personal
computers can also run TERMFE

® PCOPR the PCM development software, running in one of the personal computers
described above.

MegaBasic programs can be saved in PCM user RAM; they can also be loaded and saved
to a Workmaster computer or compatible PC by using TERMF or PCOP.

MegaBasic on the PCM provides backplane access to Series 90 PLC CPUs and other
features to support process control and real-time programming. These MegaBasic
extensions developed by GE Fanuc, are also built into the PCM and are automatically
accessed by all MegaBasic programs.

PCM MegaBasic programs can be developed off-line, using any editor that creates ASCII
text files. However, programs created off-line can be executed only when installed in the
PCM.

A separate version of the MegaBasic interpreter allows you to create and execute
programs in a DOS-based personal computer. The MS-DOS version of MegaBasic,
however, does not provide the PCM extensions. It is available from GE Fanuc as catalog
number IC690SHP403 (for 3.5-inch diskettes) or IC690SHP404 (for 5.25-inch diskettes).

The remainder of this chapter describes how to use MegaBasic in the PCM. For
information on MegaBasic commands and the MegaBasic language itself, refer to the
MegaBasic Programming Language Reference Manual, GFK-0256.

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

Getting Started with the MegaBasic Interpreter

GFK-0255K

Before the PCM can be used for MegaBasic applications, it must be configured. If your
PCM has firmware version 2.50 or greater, you can use Logicmaster 90 configuration
software to configure the PCM for MegaBasic only (BASIC mode) or for simultaneous
MegaBasic and CCM operation (BAS/CCM mode). Refer to chapter 2, section 2,
Configuring the PCM with Logicmaster 90 Software, for information on BASIC mode
configuration.

The PCM can also be configured and programmed for MegaBasic using the PCM
development software (PCOP). PCMs with firmware version 2.04 or lower must use
PCOP. Refer to the Series 90 PCM Development Software (PCOP) User’s Manual,
GFK-0487, for information on configuration and programming the PCM using PCOP.

When the PCM is configured by Logicmaster 90 for BASIC or BAS/CCMmode, a hard
reset (pressing the Restart/Reset pushbutton for 10 seconds) places the PCM
programming port at the MegaBasic command level. If your PCM is connected to an
ASCII terminal or to a personal computer running TERMF, you can enter MegaBasic
commands and program lines. If you are using TERMF, you can load an existing
program from a file on the PC.

A soft reset (pressing the Restart/Reset pushbutton for less than 5 seconds) will cause
MegaBasic to load and run a user program with the reserved name BASIC.PGM, if one
is present in PCM RAM. If there is no user program named BASIC.PGM, MegaBasic
behaves as if it had received a hard reset.

To type new MegaBasic program lines, enter a line number followed by one or more
program statements, separated by semicolons. Use a carriage return to terminate the
program line. Lines may be up to 254 characters long. New lines may be entered in any
order, regardless of the line number. The line number simply tells MegaBasic where to
insert the new line in the current program.

Chapter 4 MegaBasic 4-3

Loading and Saving MegaBasic Programs

4-4

The default device for PCM file locations is RAM:, the PCM RAM Disk. File access, using
the MegaBasic LOAD and SAVE commands or the ACCESSstatement, assumes the
RAM Disk unless another device is explicitly specified. On any file access, the device
name may be added in front of the file name. For example, RAM:BASIC.PGM fully
specifies a file called BASIC.PGM on the PCM RAM Disk. PC:BASIC.PGM is afile
located in the current directory of the current PC disk drive.

To load an existing MegaBasic program file to the PCM MegaBasic workspace from the
default device, type LOAD <filename> , where <filename> is the name of the
program file.

Add a device name to explicitly specify the PCM RAM: device or the current PC disk
drive. For PC files, you can also specify the MS-DOS file directory path:

LOAD <device> : <path> <filename> , Where <device> is the storage device,

<path> is directory path to the program, when applicable, and <filename> isthe
program name. You can also specify a PC disk drive by using two device names. For

example:

Path Description
LOAD MYPROG.PGM Currentdirectory of default device.
LOAD RAM:MYPROG.PGM PCMRAM Disk.
LOAD PC:MYPROG.PGM Currentdirectory of current PC disk drive.
LOAD PC:\MYPROG.PGM Rootdirectory of current PC disk drive.
LOAD PC:C:MYPROG.PGM Currentdirectory of PC drive C.
LOAD PC:\MB\WMYPROJWMYPROG.PGM Directory \MB\MYPROJ of current PC disk drive.
LOAD PC:C:\MB\MYPROJWMYPROG.PGM | Directory \MB\MYPROJof PC drive C.

Note that there are no paths on the PCM RAM: device.

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

To save a MegaBasic program to default device and directory, type
SAVE <filename> . You can also save programs explicitly to the PCM RAM Disk or a
specified PC disk drive and/or file path:

Path Description
SAVE MYPROG.PGM Currentdirectory of default device.
SAVE RAM:MYPROG.PGM PCMRAM Disk.
SAVE PC:MYPROG.PGM Currentdirectory of current PC disk drive.
SAVE PC:\MYPROG.PGM Rootdirectory of current PC disk drive.
SAVE PC:C:MYPROG.PGM Currentdirectory of PC drive C.
SAVE PC:\MB\MYPROJ\MYPROG.PGM Directory \MB\MYPROJ of current PC disk drive.
SAVE PC:C:\MB\MYPROJ\MYPROG.PGM | Directory \MB\MYPROJof PC drive C.

If you want a program to run automatically after power is applied to the PLC or a PCM
soft reset occurs, save the program to RAM: and use the file name BASIC.PGM

When you load a program into a new workspace, MegaBasic remembers where it was
loaded from and uses the same device and file name as defaults when the program is
saved. For example, if you type LOAD PC:<filename> , make some changes, and
then SAVE the program, itis saved to PC:<filename> . You can specify a new file
name on the default device. For example, typing SAVE <newfilename> , would save
the program to PC:<newfilename> . You can also specify a new device for the default
file name or a new device with a new file name. Typing SAVE RAM: or

SAVE RAM:<newfilename> saves the program to the RAM Disk.

For most file access commands, MegaBasic prompts you for confirmation. The
confirmation prompt includes the destination device before the file name, providing a
check to verify that the device you intend will actually be used. To ensure that the
correct destination for a file access command will be used, you can always fully qualify
file names with the device name.

Backing Up Your Program

If you perform a power cycle or reset the PCM while adding lines to a MegaBasic
program, the program statements entered in the current session are lost. Therefore,
when you develop a program on-line, you should back it up to a PC: file often.

Although use of the RAM Disk for program storage is much faster than using the PC,
programs stored on the RAM Disk can be corrupted under certain conditions. In
particular, if a MegaBasic program uses assembly language routines or the FILL
statement, the program and data files should always be backed up to PC: before
running. Itis good programming practice to back up every change to programs and
data files to the PC hard disk.

GFK-0255K Chapter 4 MegaBasic 4-5

Exiting the MegaBasic Interpreter

Most MegaBasic programs developed for the PCM are programmed to run in a
continuous loop and are restarted only when the PCM is reset. During debug, however,
it may be necessary to stop a program. There are three ways a MegaBasic program can
be stopped. If a syntax error occurs, CTRL-C is pressed, or a STOP statement is
encountered, MegaBasic stops and returns to PROGRAM DEVELOPMEMTode. Pressing
the Enter key displays the last few lines that were executed.

If a MegaBasic program terminates instead of looping continuously, or if an END
statement is encountered, there are two possible results. If the program was started
from MegaBasic in PROGRAM DEVELOPMENTode, MegaBasic returns to PROGRAM
DEVELOPMENTode just as if it were stopped. If the program was run automatically
(by configuring the PCM with Logicmaster 90 software, saving the program to
RAM:BASIC.PGM and resetting the PCM), however, MegaBasic itself will exit. This also
happens if you type BYE from the MegaBasic command line.

If your PCM was configured using Logicmaster 90 software, and you type BYE or press
the Enter key after the PCM has completed running a MegaBasic program, the “>"
character is displayed. At this point, you are no longer communicating with MegaBasic.
A hard reset (pressing the Restart/Reset pushbutton for 10 seconds) returns the PCM to
MegaBasic PROGRAM DEVELOPMENMTode.

If MegaBasic was started with PCOP, exiting MegaBasic will return you to a PCOP menu.
Refer to the Series 90 PCM Development Software (PCOP) User’s Manual, GFK-0487, for
details.

Saving Data through a Power Cycle or Reset

When the PCM is reset, the MegaBasic program is restarted and all of its variables are
initialized to zero. If data must be saved through a power failure, it can be written to a
RAM Disk file on the PCM. RAM Disk files are always saved through power-up. When
the program starts up, it should open the RAM file, check to see if it contains data from
the previous run, and take the appropriate action. For details on creating and using
MegaBasic files, refer to the MegaBasic Programming Language Reference Manual,
GFK-0256.

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

Compatibility with MS-DOS MegaBasic

GFK-0255K

MegaBasic is also available in an MS-DOS version, which may be ordered from GE Fanuc
as catalog number IC690SHP403 (for 3.5-inch diskettes) or IC690SHP404 (for 5.25-inch
diskettes). This version consists of the MegaBasic Programming Language Reference
Manual, GFK-0256, and diskettes containing the software. The PCM extensions to
MegaBasic are not included in the MS-DOS version. You can develop MegaBasic
programs which run in either the PCM or an MS-DOS computer if you avoid the PCM
extensions. A good technique is to isolate all the PCM extensions within a single
MegaBasic package. A different version of the package, using the same package name
but none of the PCM extensions, can be substituted when the program is run in a
MS-DOS computer.

Programs and data files for the PCM version of MegaBasic are compatible with the
MS-DOS version. The one difference is the method used to specify files that are not on
the current PC disk drive. In the MS-DOS version, you can specify a disk drive for files
in the device portion of the file path. For example:

Path Description
MYDATA.DAT Currentdirectory of the currentdrive.
\MB\MYPROJ\MYDATA.DAT Directory \MB\MYPROJ of the currentdrive.
A:MYDATA.DAT Currentdirectory of drive A.
C:\MB\MYDATA.DAT Directory \MB of drive C.

In the PCM version, however, the usual device part of the file path is used to distinguish
between the PCM RAM Disk and the current disk drive in the PC. Consequently, a
second device must be specified in the path of PC files which are not in the current
drive:

Path Description
RAM:MYDATA.DAT PCMRAM Disk.
PC:MYDATA.DAT Currentdirectory of the current PC drive.
PCAMB\WMYPROJ\MYDATA.DAT | Directory WMIB\MYPRODf the current PC drive.
PC:A:MYDATA.DAT Currentdirectory of PC drive A.
PC:C:\\MB\MYDATA.DAT Directory \MB of PC drive C.

You can also hide this difference between the PCM and MS-DOS versions of MegaBasic
in the single package which you change when switching between them. Define string
variables in this package for all file path and name specifications, and assign different
string values to them in the PCM and MS-DOS versions of the package. Then, use the
string variables as arguments in all MegaBasic statements and functions which specify
the files by name.

Unlike PC disk drives in DOS version 2.0 or later, the PCM RAM Disk does not support
multiple directories.

Chapter 4 MegaBasic 4-7

MegaBasic Features Not Supported by the PCM

Background processing and network support are not provided by the PCM version of
MegaBasic, nor is debug mode screen switching. The time and date may be read but not
changed, since clock synchronization is maintained with the PLC CPU. Also, there are
no environment string processing routines for the PCM version of MegaBasic.

In addition, the following statements and functions are not supported in the PCM:

Command Description
Rename Change the name of afile.

DOS (with parameters) | Execute OS shell-level command from the user program.
Param(2) Param function, which resets the disk drive.
Filedate$ Return date file last modified.

Filetime$ Return time file last modified.
Dir$ Display or change currentdirectory.
Subdir$ Returnsubdirectory names in a directory.
Envir$ Access DOS environment strings.
loctl Testifdevice supports IOCTL strings.
Space Return disk space.
Free Return a portion of memory to the operating system.

The IOCTL$() function can be used to send a configuration string to the PCM serial
ports COML1: and COMZ2:, as described in chapter 5, Advanced MegaBasic Programming,
but it cannot be used for any other device. Furthermore, IOCTL$ cannot be used to
return input strings from any device.

The DIR command can be used to display the directory contents of various PCM
devices, but it cannot be used to change the default directory. Type DIR to display the
PCM’sRAMdirectory. To display the current directory for an attached PC, type DIR
“PC: .

Finally, when using the PCM version of MegaBasic, device names must include a colon.
For example, to open the second serial port, type OPEN #5, “COM2:” . Thecolon is
optional with the MS-DOS version.

Modifying Existing BASIC Programs for MegaBasic

4-8

It is possible to load many programs developed for other BASICs directly into
MegaBasic. Using either the CHECKor RUNcommand will cause the MegaBasic
interpreter to indicate any instructions that are not supported. Lines with unsupported
statements or functions can be replaced with equivalent MegaBasic statements or
functions. While this is a quick way to convert a program to MegaBasic or estimate the
size of an application, it is not recommended for the final application because it does not
take advantage of the strength and efficiency of programs written specifically for
MegaBasic.

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

Printing a MegaBasic Text File

When a PCM MegaBasic program is saved, it is stored in a special format. It can be
printed when in this format only by using the MegaBasic LIST command, which by
default prints it to the screen.

To print the program or obtain the text version for editing off-line, you must LIST itto
a PCfile. First, invoke MegaBasic and load the program. Then, type OPEN #5,
“PC:filename.lIst” to create an output file. Any unused channel number can be
used instead of 5, and you can, of course, use any file name instead of filename.Ist
When MegaBasic responds with the “Ready” prompt, type LIST #5 to list the
program to the PC file specified by the file name. Once this is done, you can exit
MegaBasic and use the MS-DOS PRINT command to print the file or a text editor
program to edit it. If you do not exit MegaBasic right away, type CLOSE #5 before
continuing.

Using a Text Editor to Create MegaBasic Programs

Any text editor that creates or uses ASCII text files can be used to create or modify
MegaBasic programs. To create a MegaBasic program, simply type MegaBasic
statements. Line numbers are not required and are added during the automatic text file
conversion process in MegaBasic. Save the text file to disk, and use it as any other
MegaBasic program.

To edit an existing MegaBasic program on your PC, list the program to a file, following
the instructions above. The resulting file may be edited.

When loading the text file into MegaBasic, the message “Text file conversion” is
displayed. You can check the syntax of your program before running it by using the
CHECKcommand.

MegaBasic Program and Data Size

GFK-0255K

MegaBasic is more efficient than many other BASIC interpreters because it uses
structured programming concepts to minimize program size. Conversion of a program
originally written for a different BASIC “dialect” to MegaBasic often reduces its size
significantly, especially if the powerful MegaBasic features are used. A good rule of
thumb for estimating the size of a typical MegaBasic application intended for an
operator interface terminal is 50K bytes plus 4K bytes per screen.

When MegaBasic executes a user program, it must first load the program into an internal
workspace. During execution, the program is continually optimized to provide the best
possible performance. In order to restart the application following a reset, the original
copy of the program must be stored on the PCM RAM Disk. This reduces the effective
amount of memory available for storing programs on the PCM, since the PCM must
hold both a working copy and an original copy of the program.

When MegaBasic starts up, it takes part of the PCM memory for program workspaces
and leaves the rest of memory for the PCM RAM Disk. When you LOAD a program into
MegaBasic, it is copied from the RAM Disk (or from your PC) into a program workspace.
When you SAVE a program, it is copied from program workspace to the RAM Disk (or
your PC).

Chapter 4 MegaBasic 4-9

The division of PCM memory between RAM Disk and MegaBasic workspace is
performed automatically when the PCM is configured by Logicmaster 90 software for
BASIC or BAS/CCM mode. PCOP configuration also allocates PCM memory between
RAM Disk and MegaBasic workspace. In addition, PCOP allows you to modify the
workspace allocation. Refer to the Series 90 PCM Development Software (PCOP) User’s
Manual, GFK-0487, for information on using PCOP to configure the amount of PCM
memory allocated to MegaBasic.

The following table lists the maximum sizes for RAM Disk and program workspace,
corresponding to the various PCM memory configurations. Note that the program
workspace is larger than the RAM Disk space because the program workspace must
contain executing programs, data (variables used by MegaBasic), and the PCM
extensions, while the RAM Disk needs to hold only the MegaBasic program files.

Table 4-1. Default Program Workspace and RAM Disk Sizes

Series 90-70 PCM
Default
RAM Sizes Mega Basic Default RAM
OptionRAM | Total RAM | Workspace Size Disk Size
None 128K 48K 20K
64K 192K 86K 45K
128K 256K 133K 60K
256K 384K 213K 105K
512K 640K 374K 199K
Series 90-30 PCM
RAM Size Default Default
MegaBasic
Total RAM Workspace Size Disk Size
160K 66K 30K
192K 86K 45K
640K 374K 199K

Determining the Size of a MegaBasic Program

4-10

The MegaBasic STAT command can be used to determine the size of a program’s code
and data, as well as the remaining workspace size. The value for bytes remaining is the
unused workspace available for program and data at that time. The SHOWommand
prints the program and data sizes of all programs loaded into MegaBasic workspace.

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999

GFK-0255K

MegaBasic Program Packages

MegaBasic programs may be partitioned into packages. The main program can execute
one or more ACCESS statements to load additional packages into the MegaBasic
workspace. This feature permits a logically related collection of variables, procedures,
and functions to be grouped together in a package. The main program can then have a
more compact, easily understood structure.

The cost of storing multiple packages in the PCM is at most a few bytes per package.
The RAM Disk space needed to store several smaller packages is about the same as the
space for the equivalent larger one.

The length of MegaBasic packages, including the main program, is limited to 64K bytes.
MegaBasic complains if you attempt to load a longer program in either ASCII text or
processed format. Consequently, programs larger than 64K bytes must be divided into
two or more packages.

Only the main program and the package which is currently executing need to be in
MegaBasic workspace. The DISMISS statement can remove a package from the
workspace when its work is done, making room for another package. This technique
permits significantly larger PCM applications because all the code does not have to be in
MegaBasic workspace at once.

For more information on packages, see the MegaBasic Programming Language Reference
Manual, GFK-0256.

Changing the MegaBasic Workspace Size

Under certain conditions, it may be desirable to change the division of the PCM memory
between MegaBasic workspace and RAM Disk. For example, if the MegaBasic program
is fairly small but uses a lot of data, you may want to use less memory for the RAM Disk,
which only needs to hold the program, and use the remainder of PCM memory for
MegaBasic workspace.

If your PCM has firmware version 2.50 or greater, you may change the workspace size
for MegaBasic ina PCMEXEC.BATfile. See appendix D, PCM Batch Files, for
information on PCM batch files. See appendix C, PCM Commands, for information on
using the /D option of the R (Run) command to assign a workspace size.

The MegaBasic workspace size can also be changed using the PCM development
software, PCOP. Refer to the Series 90 PCM Development Software (PCOP) User’s Manual,
GFK-0487, for information on using PCOP to allocate PCM memory.

GFK-0255K Chapter 4 MegaBasic 4-11

Compacting and Encrypting Programs

CRUNCH.EXHs a program compaction utility. It is supplied with both TERMF and
PCOP software. Itis installed in the \PCOP\UTILS directory on the PC hard disk for
TERMF and in the \PCOP directory for PCOP. The program is run from the MS-DOS
prompt to process programs in PC files. It removes comments and extra spaces,
including indentation, from programs. CRUNCHed programs can be LISTed and
modified, but they are far less readable than unCRUNCHed programs.

CRUNCHis useful for squeezing large applications into PCM memory. Fully commented
programs with indentation are often more than twice as large as their CRUNCHed
versions. During development, you can save the unCRUNCHed version of your
application to your PC and keep only the MegaBasic workspace copy on the PCM.
Then, when development is complete, CRUNCH the application and save it to the PCM
RAM Disk. The total PCM memory used by both the RAM Disk and MegaBasic
workspace copies of the CRUNCHed version will be about equal to the workspace used
by the unCRUNCHed version.

CRUNCHloes not work with MegaBasic programs in ASCII text file format. Before you
can CRUNCH an ASCII text program, you must load it to MegaBasic and then save it to
the PC.

The syntax of the command is CRUNCH <filename> <newfilename> , where
<filename> is the unCRUNCHed program and <newfilename> is the
CRUNCHed version (for example, CRUNCH old.pgm new.crn). CRUNCHdrompts you
for various option choices.

CRUNCH.EXEhas an encryption option, which uses a cipher or scrambling technique to
prevent unauthorized users from reading or modifying programs. This feature can be
used with PCM MegaBasic programs; however, the main program may not be
encrypted. A CRUNCHed or unCRUNCHed main program can access subprograms or
packages that are CRUNCHed or CRUNCHed and encrypted.

Caution

Make sure that you save your source program in a safe place before
CRUNCHing or encryption. There are no unCRUNCH or decryption
utilities.

CRUNCHed and encrypted MegaBasic packages cannot be loaded to MegaBasic
workspace using the MegaBasic LOAD command. They must be loaded to the PCM
RAM Disk using TERMF or PCOP. See chapter 5, section 6, Loading and Storing PCM
Data Files Using TERMF, for more information on using TERMF to load files to the PCM.

4-12 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

Section 2: Interfacing to the PCM Hardware and Series 90 CPU

MegaBasic has access to all the PCM input/output devices. Through Release 3, these
include the RAM Disk (RAM:), two PCM serial ports (COM1: and COMZ2:) and a file
server (PC:), which can be attached to either serial port. Finally, there isa NULL device
(NULL:), which can be used to discard output.

Note

When using the PCM version of MegaBasic, device names must include
acolon. The colon is optional with the MS-DOS version.

MegaBasic programs can perform input and output (1/0) operations using either
standard or specified devices. MegaBasic is normally configured to use COM1: as its
input and output device. For example, executing the line:

10 Print “HelloWorld ”

causes the string “Hello World” to be printed out port 1 of the PCM.

To read or write one of the other devices, the program must first open the device and
assign it a specified channel number. This channel number is then used in subsequent
170 statements. For example, the following two lines:

10 Open #5, “Com2’
20 Print #5 “Hello World

print the string “Hello World” to serial port 2.

In the MS-DOS version of MegaBasic, channel numbers 0, 1, and 2 are reserved for the
console, printer, and auxiliary device, respectively. In the PCM version of MegaBasic, the
channel numbers 0, 1, and 2 are assigned to the logical devices standard input, standard
output, and standard error, respectively. They are set to COM1 by default, although they
can be changed, if necessary, with a PCM batch file or PCOP. Changing them is required,
for example, to prevent the MegaBasic startup banner from appearing on a display
terminal attached to the PCM. For information on changing the port assigned to
standard channels, refer to the R(Run) command in appendix C, PCM Commands, in this
manual or to the Series 90 PCM Development Software (PCOP) User’s Manual, GFK-0487.

Channel numbers 3 and 4 are reserved for future use by GE Fanuc. Your programs
should assign channel numbers from 5 through 31 to avoid possible conflicts with future
PCM releases.

GFK-0255K Chapter 4 MegaBasic 4-13

Input and Output to the PCM Serial Ports

The PCM has two high-performance serial ports that can be used to connect the PCM to
any device that uses the RS-232, RS-422, or RS-485 physical connection protocol. The
COML1: and COM2: device drivers, which come with the PCM, support asynchronous
communication at data rates up to 38.4K bits per second.

There are several ways to input characters from a serial port to a MegaBasic program.
The simplest (although not the recommended) method is the MegaBasic INPUT
statement. When an INPUT statement is executed, the MegaBasic program waits until
the Enter key is pressed. All the keys pressed, including the Enter key, are collected and
echoed to the screen as they are pressed. You can delete and retype characters. The
INPUT1 and INPUT2 statements are similar to INPUT, except that INPUT1
suppresses the Enter key echo and INPUT2 suppresses all character echoing and
editing.

Because the INPUT statements wait forever if the Enter key is not pressed, they should
never be used in applications which need to perform other functions on a regular time
schedule. The MegaBasic INCHR$ function is recommended for these applications; it
can be programmed to time out when no input is typed. It can also be programmed to
return its input after a specified number of characters has been typed or when any one
of a specified set of terminating characters is typed.

The NOWAIT_IO functions, developed for MegaBasic by GE Fanuc, are also
recommended. These functions provide the capability for interrupt-drivenl/Ofrom
MegaBasic. For information on these functions, refer to chapter 5, section 9,
COMMREQs and Other Backplane Messages.

Other MegaBasic 1/0 statements and functions which are not recommended are INP,
INP$, and OUT. These require direct access to the PCM serial hardware. Using them
can seriously interfere with the operation of higher level MegaBasic 1/0 statements and
functions as well as CCM, which can operate simultaneously with MegaBasic.

Most program output is done with the MegaBasic PRINT statement. It provides a large
number of formatting capabilities. TERMF and PCOP provide several utilities that are
useful for writing to terminals, such as routines to clear the screen and position the
cursor. Refer to chapter 5, Advanced MegaBasic Programming, for information on these
utility programs.

The PRINT statement always waits until output is complete before continuing. The
NOWAIT_IO functions, described in chapter 5, provide buffered output, which allows
the program to continue while output occurs.

Serial Port Control and Status

4-14

MegaBasic has several built-in statements and functions for controlling devices and
determining their status. The two status functions are INPUT() and OUPUT(). These
are used to determine the input status and output status, respectively, of any device.
The INPUT() function is particularly useful for determining when input data is
available from an operator or external device.

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

Accessing PLC Data

GFK-0255K

Because the PCM and Series 90 PLC CPU are connected by the PLC backplane, PCM
MegaBasic programs can transfer data between the PCM and the PLC CPU very
efficiently. In order to transfer data, a MegaBasic program must first create an
association between a MegaBasic variable and an area in the PLC memory. This is done
with the SYSLINK statement. Once a MegaBasic variable has been associated with PLC
data, the PLC data can be copied to or from the MegaBasic variable using the SYSREAD
and SYSWRITEstatements. The SYSTATUS$function is used to monitor data
transfers between the PCM and PLC. Each of these is described in detail on the
following pages.

The maximum number of PLC data areas that can be associated with MegaBasic
variables at one time is 32. PLC data areas can be as small as a single point. In Series
90-70 PCMs, the size of each PLC data area is limited to 2048 bytes. In principle, Series
90-30 PLC data areas can be as large as 65,535 bytes, although there were no data areas
that large when this manual went to press. MegaBasic arrays or structures can be linked
to move multiple data references from or to the PLC CPU in one SYSREAD/SYSWRITE
operation, as shown in the following example.

This example assumes that PLC registers 250 through 329 contain 16 character ASCII
formatted real numbers. The numbers are read from the PLC CPU, converted from
ASCII to binary format, and written back to the PLC, starting at register 1000.

10 Rem This program reads a large string of ascii numbers and
20 Rem converts them to individual real elements of an array.
30 Dim STR1$(160)

40 Dim real REAL_ARR(9)

50 SYSLINK STR1$, “%R250

60 SYSLINK REAL_ARR, “%R1000
70 SYSREAD STR1$

801% =0

90 While 19 < 10

100 REAL_ARR(I%) = val(STR1$(1%*16+1:16))
110 Print REAL_ARR(1%)

120 1% = 1%+1

130 Next

140 SYSWRITE REAL_ARR

150 Print STR1$

More than 32 individual PLC data areas can be associated with MegaBasic variables, if
necessary, by using the UNLINK statement to disassociate PLC data areas not needed
immediately.

A MegaBasic program can read and write any of the PLC data areas shown below using
the SYSLINK, SYSREAD and SYSWRITEstatements. The names for the areas are
shown as they appear in the SYSLINK statement:

%IXXXXX - Input contacts
%QXXXXX - Output coils
%MXXXXX - Internal coils
%TXXXXX - Temporary coils
%SXXXXX - System status
%RXXXXX - CPU registers
%GXXXXX - Genius global data
YAIXXXXX - Analog inputs
%AQXXXXX - Analog outputs

Chapter 4 MegaBasic 4-15

Note

For information on how to access Series 90-70 %P and %L references
from PCM MegaBasic programs, refer to chapter 5, Advanced MegaBasic
Programming.

In addition, the PCM can read fault information for %l, %Q, %Al and %AQ references;
override information for %l, %Q and %M references; and, in Series 90-70 PLCs,
transition information for %I, %Q, %M, and %T references. To access this information, a
comma followed by an F, O, or T (for fault, override, or transition, respectively) is added
to the end of the reference name.

For example, the fault bit for input 39 is accessed as “%I139,F”. The transition bit for
temporary coil 15 is accessed as “%T15,T". Fault, override, and transition bits can be
accessed as single bits or groups of bits. They can only be read by the PCM. Any
attempt to write to these areas results in an error.

PLC data references may be accessed as single items or arrays. Arrays containing up to
64K bytes of contiguous PLC data may be transferred using a single MegaBasic
statement. At least 256 bytes of large arrays are transferred during each PLC execution
sweep.

Data transfers between the PLC CPU and a PCM are most efficient when they contain
256 bytes or less. PLC data which is accessed by PCM programs should be collected into
contiguous groups when the PLC program is developed.

There is a PLC status variable, called #SSTAT which may be read by the PCM. Through
this status variable, the PCM can find out information about the PLC state, sweep time,
and various other status information. The #SSTAT variable is described in chapter 5,
Advanced MegaBasic Programming.

PLC nicknames are not directly accessible from the PCM.

4-16 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

SYSLINK

GFK-0255K

The SYSLINK statement is used to identify variables located in the PLC CPU.
SYSLINK tells the PCM to establish a link with the CPU, allowing the PCM to access

user reference data in the CPU. Before any PLC data can be read or written by the PCM,

it must be SYSLINKed.
The SYSLINK statement has the form:

SYSLINK<local_name>, <cpu_symbol>, [type], [handle]

Argument

Description

LocalName

This argument contrains the name of the MegaBasic variable to be associated with
the PLC data. The MegaBasic variable must be defined in the MegaBasic program
before it can be SYSLINKed. It can be a string of any length, an integer, areal, or a
numericarray of up to 3 dimensions. String arrays, sub-strings,andindividual
elements of arrays cannot be SYSLINKed.

CPUSymbol

This argument contains the PLC reference with optional suffix for override,
transition, or fault data, as described above. It can be either a quoted string
(e.g., “%R500”) or astring variable that contains a properly formatted CPU
reference.

Type

This argument contains the MegaBasic type of the CPU reference, as it exists in the
PLC. This type may differ from the type of the local variable defined in the
MegaBasic program. For example, a MegaBasic local variable may be defined

as an integer, which in MegaBasic is a 32-bit number. If the correspondingCPU
variableisaregister, which is a 16-bit number, the type argument can be used to
convertitto 32-bits when it is read by the MegaBasic program.

If atypeis specified, the PCM automatically performs a type conversion between
the CPU type and the local type whenever the variable is read or written.
MegaBasic has three “native” data types, 32-bit integers, 64-bit real numbers,
and strings. The following PLC CPU data types may be specified:

BOOL = single bit.

BYTE = 8 hits.

INT16 = 16-bit signed integer.
UINT = 16-bit unsigned integer.
DINT = 32-bit signed integer.
REAL32 =32-bit IEEE real number.
REAL64 = 64-bit IEEE real number.

If the type argument is omitted, the PCM assumes that the PLC reference is in

the same format as the local MegaBasic variable (32-bit integer, 64-bit real number,
or string). For numeric data, this is usually not true since the CPU and MegaBasic
have different numeric data types. However, there may be some circumstances
(e.g., one or more PCMs moving data through the CPU) where numeric data does
not have to be converted.

Handle

Thisargumentcontainsanarbitrary, user-specified integer used when backplane
interrupts are enabled. (For more information on backplane interrupts, refer to
chapter 5, AdvancedMegaBasicProgramming.) A MegaBasic program may be
interrupted when backplane transfers occur, rather than waiting for each transfer.
The handle is used to identify the variable that was transferred. If the handle
argument is used, the type argument must also be present, because arguments
can be omitted only from right to left.

Chapter 4 MegaBasic

4-17

Example:

In the following example, SYSLINK is used to associate a MegaBasic variable called
PUSHBUTTON with input %1100. The variable TEMPERATURE is associated with
register %R25:

110 Def integer PUSHBUTTON

120 Def integer TEMPERATURE

130 SYSLINK PUSHBUTTON, “%I1100", BOOL
140 SYSLINK TEMPERATURE, “%R25, UINT

When the MegaBasic program does a SYSREADfrom the PUSHBUTTON variable, the
PCM reads %1100, converts it to an integer, which is either 0 or 1, and copies it to the
PUSHBUTTON variable.

When the MegaBasic program does a SYSREADfrom TEMPERATURE, the PCM reads
%R25 and converts it to an integer between 0 and 65,535. If %R25 is specified as INT16
rather than UINT, the PCM converts it to a number between -32,768 and 32,767.

When the MegaBasic program does a SYSWRITEto PUSHBUTTON, it sets %1100 if
PUSHBUTTON is non-zero. If PUSHBUTTON is equal to zero, %1100 is cleared. A
SYSWRITEto TEMPERATURE copies the least significant 16 bits of the TEMPERATURE
variable to %R25.

Example:

Another useful application of MegaBasic’s automatic type conversion is to convert PLC
integers to MegaBasic real numbers. The MegaBasic real numbers can then be operated
on with real number arithmetic and copied back to the PLC as integers. For example:

110 Def real CURRENT
120 SYSLINK CURRENT, “%R45, UINT

A SYSREADfrom CURRENT converts %R45 to a real and copies it to the CURRENT
variable. It can now be used in real number expressions with no loss of accuracy. A
SYSWRITE to CURRENT copies the integer part back to %R45.

Using the SYSLINK Statement

It is best to put all the SYSLINK statements at the beginning of a MegaBasic program,
immediately after the variable declarations, or in the prologue section of a package. This
makes the program easier to read and provides a way to document the different data
transfers done with the PLC. The only exception to this rule occurs when a single
MegaBasic variable is alternately SYSLINKed and UNLINKed to different PLC data
areas during program execution. This should be avoided, if possible.

When a CPU location is referred to, the size of the CPU data object is determined
automatically from the size of the MegaBasic local variable and the type argument of the
SYSLINK statement. This is done automatically by the PCM.

4-18 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

GFK-0255K

For numeric data, the size of the CPU data object is equal to the number of elements of
the MegaBasic local variable (if it is an array variable), multiplied by the size specified by
the type argument of the SYSLINK statement. A single MegaBasic integer or real
variable SYSLINKed with a type argument of BOOLean would refer to a single bit in the
PLC CPU. An array of 5 integers or reals SYSLINKed with type BOOLean would refer
to 5 bits. Anarray of 16 MegaBasic integers or reals SYSLINKed with type UINT would
refer to 16 contiguous 16-bit locations or 256 bits.

For string data, the size of the CPU data object is equal to the maximum size of the string
in bytes. MegaBasic keeps two types of size information for each string: current size
and maximum size. When strings are first created, their current size and their maximum
size are equal to their dimensioned size. When an assignment is made to the string, its
current size changes according to the assignment that is made. However, when the
string is transferred using SYSREADor SYSWRITE, the number of bytes in its
maximum size is transferred. Furthermore, whenever a string is used asa SYSREAD
variable argument, its current size is set equal to its maximum size.

Caution

Once a MegaBasic array or string variable has been SYSLINKed, it
must not be redimensioned until itis UNLINKed, or erratic behavior
results. Although MegaBasic allows redimensioning, it is nota good
programming practice and should be avoided.

If the variable to be passed between the PLC and the PCM is a MegaBasic array variable,
the type argument can be used to convert all elements of the array from one
representation to another. For example, a MegaBasic program could use the type
argument to convert 10 consecutive input points at %1300 to an array of ten MegaBasic
integers as follows:

1000 Dim integer CPU_INPUTS (9)
1010 SYSLINK CPU_INPUTS, “%]I300”, BOOL

The program could now transfer the variables using the statement:

1030SYSREAD CPU_INPUTS

This sets each of the ten integers in CPU_INPUTS to 1 or 0, corresponding to the bit
values of the ten CPU inputs in %1300 through %1309.

Chapter 4 MegaBasic 4-19

SYSREAD, SYSWRITE, and SYSTATUSS$

To reference a Series 90 PLC CPU variable, the PCM MegaBasic program must define the
variable locally and SYSLINK it to a CPU variable. Once this is done, the variable can be
manipulated with the SYSREADand SYSWRITEcommands. The status of any variable
can be determined with the SYSTATUSS$function at any time.

4-20

The forms of these statements are:

SYSREAD«<variable name>,[NOWAIT],[frequency]
SYSWRITE<variablename>,[NOWAIT],[frequency]
<status string>=SYSTATUSS$ (<variable name>)

Parameter

Description

VariableName

The name of the local MegaBasic variable. Inthe SYSREADtatement, this
argument is the destination in the PCM for data to be read from the PLC
CPU. Inthe SYSWRITEstatement, it is the source for data to be written to
the PLC CPU. Any type conversion specified in the SYSLINKcommand
that associated the MegaBasic variable with the PLC data is performed.

NOWAIT

When this option is used, the MegaBasic program continues to execute
following the SYSREADor SYSWRITEcommand, rather than wait for the
CPU to respond with the data. The NOWAIT optionishighly recommended
for time-critical PCM applications.

AMegaBasiclogical interrupt is generated when the transfer has completed.
Thisallows the program to handle backplane traffic asynchronously with
MegaBasic programexecution. (Refer to chapter 5, Advanced MegaBasic
Programming, for more information on backplane interrupts.) The
SYSTATUS%Hunction can then be used to determine when the data has
arrived and if there are any errors. This mode is useful when the CPU
response time is long or when data is being transferredcontinuously.

When NOWAIT is not specified (NORMAbDr WAIT mode), the MegaBasic
program waits until the CPU has transferred the data before continuing to
execute the next line in the program. WAIT mode is the default.

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999

GFK-0255K

GFK-0255K

Parameter

Description

Frequency

Both the SYSREADand SYSWRITEstatements may include thisargument,
which tells the PCM to transfer the data at a periodic rate. The frequency
argument is an integer from 1 to 65,535, which specifies the number of
milliseconds between each transfer. Thisargument may only be specified
when the NOWAIT argumentis also supplied. The frequency argument
should not be less than the CPU sweep time.

When the value of the frequency argument is zero, the variable is transferred
as often as possible. The minimum time for a transfer is once per CPU sweep,
assuming that all system communication processing by the CPU can be

done inits allotted window and that the size of the variable is less than

256 bytes. Transfer times will be longer if the variable size is greater than 256
bytes or the CPU is heavily loaded with communication processing.

If the number of milliseconds specified by the frequency argument is shorter
than the time the variable can be transferred in, the variable is transferred as
fastas possible. For fast update times, specify a frequency argument of zero.
This results in the fastest possible update time and requires less internal
processing by the PCM than using a small frequency argument, since no
timers are associated with the transfers.

For repeated transfers, the MegaBasic program is periodically interrupted in
order to move data in and out of MegaBasic variables. If logical interrupts
are disabled, either explicitly or by executing an instruction which takes a
long time, the variables are no longer updated. For the SYSREADtatement,
the PCM continues to read data from the PLC. When interrupts are
re-enabled, the MegaBasic variable is updated to the most recent PLC value.
For the SYSWRITEstatement, writes to the PLC are suspended until
interrupts are enabled.

If the frequency argument is used witha SYSREADor SYSWRITE
statement to specify the repetitive update of a variable, and at some time the
program wishes to stop repetitive transfers, the program must execute a new
SYSREADor SYSWRITEcommand for the variable without the frequency
argument. The frequency of transfers can also be changed by executinga
new SYSREADor SYSWRITEcommand with a new frequency argument.

When a Series 90-70 PCM MegaBasic application needs to obtain PLC CPU
data as often as it is updated in the CPU (once per sweep), the PLC
communications window mode should be setto RUN TO COMPLETION
(defaultsetting). If there are too many requests or if there are several PCMs,
this may actually cause the PLC CPU watchdog timer to halt the CPU. In this
case, reduce the number of requests or the number of PCMs in the system, or
runin LIMITEDWINDOW mode.

The NOWAIT frequency should be greater than or equal to the PLC CPU
sweep time when the PLC CPU communications window mode is LIMITED
WINDOW

Chapter 4 MegaBasic

4-21

Status Record

Ifa SYSREADor SYSWRITE is called without the NOWAIT argument, any errors that
occur during the transfer cause an error trap. Otherwise, the SYSTATUSS$function is
used to monitor variables that have been SYSLINKed to the PLC CPU. It is called with a
MegaBasic variable name as its argument. It returns a string record containing three
integers:

1. The first integer holds the current status of the PLC variable.
2. The second integer contains a status history.
3. The third integer specifies the time that the variable was last updated.

The status record is defined as follows:

Structinteger CUR_STAT, integer STAT_HIST, integer STAT_TIME

Current Status
The possible valid CUR_STATcodes are listed as hexadecimal values in the following
table:
Code Status Description
0001 STABLE Variablehas been linked, but is not currently being transferred.

0002 READ_PENDING | Variable is being read from the CPU.

0003 READ_RECEIVED | Variable has been read and is waiting for a timer to start a new
read.

0004 READ_TIMEOUT | Timer to start a new read has expired, butthe previousread
request has not completed.

0005 WRITE_PENDING | Variable is being written to the CPU.

0006 WRITE_RECEIVED | Variable has been written and is waiting for a timer to starta
new write.

0007 WRITE_TIMEOUT | Timer to start a new write has expired, but the previous write
request has not completed.

0008 WRITE_FINISHED | Variable is waiting to be refreshed with the latest MegaBasic
value, so that the new contents can be written to the PLC.

000B NO_CPU No response from the CPU. Status code 000B is an error code
that occurs when the PLC does not respond to the PCM
within 10 seconds of the PCM’s request. This generally
indicates the PLC CPU is not functioning.

0ooC XFER_REJECT Error response from the CPU. Status code 000C is an error
code that occurs when an invalid transfer request passes the
PCM’serror checking but is stopped by the PLC. The most
common reason for this is that a transfer to a PLC data area
exceeded the bounds of that area.

For example, if the PLC has 8K of register space, a transfer of
any length to %R9000 would result in a status of 000C,
as would a 4-byte transfer to %R8192.

4-22 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

Status History

The STAT_HIST contains information on what has happened to the variable since the
last time the status was checked. The status history contains several bit flags, which are
set upon various events. Consequently, it may be more convenient to deal with it as a bit
string rather than an integer.

The status history is defined as follows:

15 0
NN

[
| |__ Read occurred.
| Write occurred.
Read timed out before transfer.
Write timed out before transfer.
PLC timed out during transfer.
PLC returned error during transfer.
] Reserved (all zeros).

Each time one of these events occurs, the corresponding bit in the status history is set.
The bits are cleared each time the SYSTATUSS$function is called.

The timeout bits may be used with repeated backplane transfers to verify that a
repeated transfer is occurring at the designated rate. If either the PLC or PCM is delayed
longer than the frequency value specified ina SYSREADor SYSWRITE statement, the
read or write timeout bit is set. This is particularly useful when sampling PLC values to
ensure that the sampling is taking place at the designated rate.

Status Time

The STAT_TIME field of the status record may be used to find out the last time a
variable was transferred. This time is the number of milliseconds since the beginning of
the current day, counted from 0:00:00.000 (midnight).

Each read or write in a Series 90-70 PCM takes about 3 milliseconds of internal
processing time on the PCM, plus 10 microseconds for each byte of the transfer. If the
type of PLC variable is different from the MegaBasic variable type, additional time is
required to convert each byte. Transfers in Series 90-30 PCMs are slower.

If several variables are transferred as often as possible, and the PLC sweep time is small,
it is possible that the PCM may spend most of its time transferring data; the MegaBasic
program will execute slowly. In this case, the response of the application may be
improved by transferring the data less frequently.

For a sample MegaBasic program which uses SYSLINK, SYSREAD and SYSWRITE
extensively, see appendix E, Example MegaBasic Program.

GFK-0255K Chapter 4 MegaBasic 4-23

UNLINK Statement

The UNLINK statement is used when a MegaBasic program no longer needs to transfer
a variable that has been SYSLINKed. The UNLINK statement tells the PCM that it is no
longer necessary to maintain the data structure set up by the PCM to track the variable.
This structure can then be reused to SYSLINK another variable.

The UNLINK statement has the form:

UNLINK<variable_name>

Once a variable has been UNLINKed, it cannot be used with SYSREAD SYSWRITE or
SYSTATUSS$until it is SYSLINKed again. Any attempt to do so results in a “Remote
variable unknown” error.

Data Coherency

When a frequency argument is used with SYSREADor SYSWRITE the variable is
periodically updated. Special steps must be taken to ensure that the PCM’s copy of a
PLC CPU variable is not updated while the MegaBasic program is manipulating it. This
is especially important for arrays of data.

All data updates take place at the end of a MegaBasic statement. Once an update begins,
the next statement does not execute until the update is completed. Consequently,
coherency of a PLC variable is guaranteed if it can be processed in one statement.

Whenever a PLC variable is manipulated by more than one statement, you must ensure
that an update of the variable between instructions does not cause erroneous results. To
ensure that the variable is not corrupted, copy it to a temporary variable and use the
copy for subsequent processing. Since the copy can be made with a simple assignment
statement (one instruction), the temporary variable is guaranteed to contain a coherent
copy of the PLC variable.

MegaBasic has two data types that enable large blocks of data to be copied with a single
assignment statement. The first is the vector which can be used to copy arrays of
numbers. The second is the stringrecord, which allows arbitrary groupings of data,
defined within the same record, to be transferred.

After the PCM updates a variable with a SYSREADor SYSWRITEcommand, either the
PCM or CPU can change its copy of the variable. There is no guarantee that both copies
of the variable are the same, unless you take steps to ensure that only one program
updates the variable and always notifies the other about changes to the variable.

4-24 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

Accessing the PCM’s LEDs

The PCM has three green LEDs, located at the top of the front panel. The topmost LED
is designated as the BOARD OK LED. During normal operation, this LED is always on.
The two LEDs below the BOARD OK LED are designated as USER1 and USER2. These
LEDs may be configured to indicate serial port or backplane activity, or they may be
manipulated directly by a user program. The default configuration is that USER1 flashes
when there is activity on port 1; USER?2 flashes when there is activity on port 2.

The configuration of the PCM LEDs cannot be changed with Logicmaster 90 software.
However, it may be done with a PCMEXEC.BATTile if your PCM has firmware version
2.50 or greater. See appendix D, PCM Batch Files, for information on PCM batch files
and appendix C, PCM Commands, for information on the B (Configure LEDS)
command. The PCOP configuration editor can also be used to give control of the LEDs
to a MegaBasic program (see GFK-0487).

The SET_LED statement is used by the MegaBasic program when an LED is
configured to be under the control of MegaBasic. This utility can be used to setan LED’s
state to ON OFF BLINK ONCE, or BLINK CONTINUOUSLY

The format of the SET_LED statement is:

Set_ledled_number,operation_code

Parameter Description

LEDNumber The number of the user-configurable LED, either 1 or 2.

OperationCode | The state of the LED. The four states are:

1 =TurnLEDon.

2 = Turn LED off.

3 =Blink LED once.

4 =Blink LED continuously.

If the LED is not configured to be under MegaBasic control, the SET_LED command
has no effect. However, no error is returned. The operating system maintains virtual
LEDs for each task, but only the configured task actually causes the physical LED state to
change.

GFK-0255K Chapter 4 MegaBasic 4-25

Section 3: MegaBasic Programming Examples

4-26

There are two examples in this section, one showing the steps to develop a simple
MegaBasic program and the second showing how to get the example program
SAMPLE.PGMrunning on the PCM. These examples assume the PCM has been
configured using Logicmaster 90 for BASIC mode or by PCOP for BASIC operation.

Program development is begun by connecting the programming cable from the
programmer to the PCM, setting the default directory to \PCOP\EXAMPLES.PCM and
typing TERMFto start up the TERMF terminal emulation program. Then, press the
PCM Restart/Reset pushbutton for 10 seconds to place the PCM in PROGRANNode.
The MegaBasic banner is displayed on the screen, followed by the “Ready” prompt.

MegaBasic Version 5.602, under PCM VTOS v2.50
IEEE/Software floating point on an 80186/88 CPU

Copyright (C)1985-1990 by Christopher Cochran
MegaBasic Support BBS: 415-459-0896, PO Box 723
Fairfax, CA. USA 94930 -- Serial #0000

Ready

Now, enter the single line of the program shown below. After typing the line, save the
program to the RAM Disk as BASIC.PGM using the SAVE command. Answer Y to
the program creation prompt:

Ready

10 print “hello, world

Ready

save basic.pgm

RAM:BASIC.PGM file not found, create it? y
2 lines 20 code bytes

Ready

When a soft reset is initiated, the MegaBasic banner is displayed and the program is
executed:

MegaBasic Version 5.602, under PCM VTOS v2.50
IEEE/Software floating point on an 80186/88 CPU

Copyright (C)1985-1990 by Christopher Cochran
MegaBasic Support BBS: 415-459-0896, PO Box 723
Fairfax, CA. USA 94930 -- Serial #0000

hello, world

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999

GFK-0255K

After pressing the PCM Restart/Reset pushbutton again for 10 seconds to place the PCM
in PROGRANode, the example program distributed with TERMF and PCOP can be
transferred to the PCM. Because this is a large program, there is a long delay after
executing the LOAD command before the PCM again displays the “Ready” prompt.
Note that the LOAD command must specify PC: as the source since the program is being
loaded from the programmer.

MegaBasic Version 5.602, under PCM VTOS v2.50
IEEE/Software floating point on an 80186/88 CPU

Copyright (C)1985-1990 by Christopher Cochran
MegaBasic Support BBS: 415-459-0896, PO Box 723
Fairfax, CA. USA 94930 -- Serial #0000

Ready

load pc:sample.pgm

405 lines 15,529 code bytes
Ready

Now save this program as BASIC.PGM Since the old copy of BASIC.PGM still exists on
the RAM Disk, the PCM prompts as to whether to overwrite the old copy.

Ready

save ram:basic.pgm

RAM:BASIC.PGM file already exists, OK? y
405 lines 15,529 code bytes

Ready

This example program accesses one of the utility packages, VT100_5.PGM, included
with the PCM programming software. VT100_5.PGM contains routines for writing to a
VVT100 compatible screen. Since VT100_5.PGM must be available to the main program
following a reset, it is loaded from the EXAMPLES.PCMlirectory into the PCM RAM
Disk.

Ready

load pc:vt100_5.pgm

Into a new workspace? n

150 lines 3930 code bytes

Ready

save ram:

RAM:VT100_5.PGM file not found, create it? y
150 lines 3930 code bytes

Ready

The DIR command shows that the RAM Disk contains three files: BASIC.PGM
VT100_5.PGM, and HARDEXEC.BAT HARDEXEC.BATis the startup program used by
the PCM after a hard reset.

Ready

dir

VT100_5.pgm BASIC.pgm HARDEXEC.bat
Ready

GFK-0255K Chapter 4 MegaBasic 4-27

4-28

If a soft reset is initiated, the PCM comes up executing the example program. By
following the displayed instructions, this program can be used to monitor and change

references in the PLC’s %R, %l, and %Q tables.

10 Rem *** EXAMPLE MEGABASIC PROGRAM FOR PCM ***

20 Rem

30 Rem This program implements a simple operator interface, which can
40 Rem be easily modified for a particular application. This program

60 Rem and extensions. It can be run using either port of the PCM and
70 Rem assumes that a VT100, OIT or PC running Termf is connected.
80 Rem

90 Rem First, access the MegaBasic subroutine package which handles
100 Rem screen formating. It must have been previously loaded into RAM.
110 Rem

120 Access “RAM:VT100_5.PGM’

130 Rem Now assigh MegaBasic channel number #5 to whatever port is
140 Rem is being used for the display. The screen formatting package
150 Rem accessed above assumes that #5 is the output device

160 Rem

170 Open #5, “COM1”

180 Rem Disable control-C processing so that it doesn’t interfere with
190 Rem the keyboard handling routines. Since automatic control-C
200 Rem detection will be disabled, the program must do its own

210 Rem checking, if a control-C stop is desired.

220 Rem

230 Param(1)=1

240 Rem Assign each menu a number, for switching between the menus.
250 Rem

260 Def integer MAIN_MENU

270 Def integer REG_MENU

280 Def integer INPUT_MENU

290 Def integer OUTPUT_MENU

300 MAIN_MENU =1

310 REG_MENU =2

320 INPUT_MENU =3

330 OUTPUT_MENU =4

340 Rem All of the menus are implemented as subroutines and are called

360 Rem keep track of the next menu to display. When the user wants to
370 Rem change menus, the active menu subroutine sets the NEXT_MENU
380 Rem variable and returns to the main loop. To add a new menu, define
390 Rem a new number for it, as above, write a subroutine to implement
400 Rem the menu, and add another case statement in the loop below.
410 Rem

420 Def integer NEXT_MENU

430 NEXT_MENU = MAIN_MENU; Rem Run the main menu first

440 Repeat

450 Case begin on NEXT_MENU

460 Case MAIN_MENU

470 DO_MAIN_MENU

480 Case REG_MENU

490 DO_REG_MENU

500 Case INPUT_MENU

510 DO_INPUT_MENU

520 Case OUTPUT_MENU

530 DO_OUTPUT_MENU

540 Case end

550 Next

50 Rem provides examples of the most commonly used MegaBasic commands

350 Rem from the main loop below. A variable called NEXT_MENU is used to

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999

GFK-0255K

GFK-0255K

560 Rem This is the main menu subroutine. It displays the various

570 Rem options and checks for input. Note that this is the only menu
580 Rem in which the user can type a control-C to exit. This is optional.
590 Rem

600 Def proc DO_MAIN_MENU

610 CLS; Rem Clear the screen

620 ATTR; Rem Reset line attributes

630 CUR 4,10; Rem Position cursor to row 4 column 10

640 Print #5, DW_DH_TOPS$,

650 Print #5, “EXAMPLE MAIN MENU,; Rem Print top half of banner
660 CUR 5,10

670 Print #5, DW_DH_BOTS$,

680 Print #5, “EXAMPLE MAIN MENU,; Rem Print bottom half of banner
690 CUR 9,25

700 Print #5, “1 - DISPLAY REGISTERS ”,; Rem Print the rest of the menu
710 CUR 11, 25

720 Print #5, “2 - DISPLAY INPUTS ",

730 CUR 13, 25

740 Print #5, “3 - DISPLAY OUTPUTS ",

750 CUR 15, 25

760 Print #5, “4 - EXIT PROGRAM ",

770 CUR 21, 24

780 ATTR BLINK; Rem Make the next line blink

790 Print #5, “w% ENTER NUMBER *** ",

800 ATTR

810 Rem The following loop continuously checks for user input
820 Rem

830 Repeat

840 KEY$=inchr$(5,1, ™.0,0); Rem Check for a character
850 Case begin on KEY$

860 Case “17; Rem Display register menu
870 NEXT_MENU = REG_MENU

880 Return

890 Case “2"; Rem Display input menu
900 NEXT_MENU = INPUT_MENU

910 Return

920 Case “3"; Rem Display output menu
930 NEXT_MENU = OUTPUT_MENU

940 Return

950 Case “4; Rem Exit the program

960 Print

970 Stop

980 Case chr$(03); Rem Handle Control C

990 Print

1000 Stop

1010 Case end,; Rem Ignore all other characters
1020 Next

1030 Rem This is the register display subroutine. It displays a block
1040 Rem of eight registers at a time. The user can change the value of
1050 Rem a register or display a different group of registers. No error
1060 Rem checking is done, and the display freezes while the operator
1070 Rem is entering data.

1080 Rem

1090 Def proc DO_REG_MENU

1100 Rem

1110 Local BASE_REG%; Rem Sets which registers to display
1120 Local WRITE_REG%; Rem Used for writing to PLC

1130 Local WRITE_DATA%,; Rem Used for writing to PLC

1140 Local 1%; Rem General purpose loop counter

1150 Local CMD_LINES; Rem Used to write command line
1160 Local CLR_CMD_LINES$; Rem Used to clear command line
1170 Dim integer REG_ARRAY(7); Rem Used for reading PLC

Chapter 4 MegaBasic

4-29

4-30

1180 Rem

1190 Rem The following few lines draw the static part of the register
1200 Rem menu screen, using the same format as the main menu
1210 Rem

1220 CLS

1230 ATTR

1240 CUR 4,10

1250 Print #5, DW_DH_TOP$,

1260 Print #5, “REGISTER DISPLAY",

1270 CUR 5,10

1280 Print #5, DW_DH_BOTS$,

1290 Print #5, “REGISTER DISPLAY”,

1300 CUR 20,20

1310 Print #5, “1 - DISPLAY NEW REGISTERS 7",
1320 CUR 21, 20

1330 Print #5, “2-WRITE AREGISTER 7,

1340 CUR 22, 20

1350 Print #5, “3 - EXIT TO MAIN MENU 7,

1360 CUR 24, 24
1370 ATTR BLINK

1380 Print #5, “#rx ENTER NUMBER *** 7,

1390 ATTR

1400 Rem Build some strings for handling the command line
1410 Rem

1420 CMD_LINE$ = ATTR$(BLINK)+ “** ENTER NUMBER ** "+ATTR$(ATTR_OFF)
1430 CLR_CMD_LINE$ = CURS$(24,24)+(" "*32)+CUR$(24,24)

1440 Rem SYSLINK the REG_ARRAY variable with %R1 in the PLC.
1450 Rem The SYSREAD command below will then copy the 8 registers
1460 Rem starting at %R1 to REG_ARRAY.

1470 Rem

1480 SYSLINK REG_ARRAY, “%RI, UINT

1490 BASE_REG% =1

1500 Rem This is the main processing loop for the register menu

1510 Rem

1520 Repeat

1530 SYSREAD REG_ARRAY; Rem Read PLC registers and display them
1540 Forl% =0to7

1550 CUR 9+1%, 27

1560 Print #5, “%R”, % “515 7, BASE_REG%+I%,” ",
1570 ATTR REVERSE
1580 Print #5, % “515 7, REG_ARRAY(1%),

1590 ATTR
1600 Next 1%

1610 Rem Check for input and process if necessary. Note that the

1620 Rem Input commands used below will cause the display to freeze

1630 Rem while the operator is entering data. It is possible to handle

1640 Rem operator input using the inchr$ statement, or with NOWAIT_READs
1650 Rem of the keyboard, however, a fairly complicated state machine

1660 Rem would have to be used to figure out what to do when each key
1670 Rem is struck.

1680 Rem

1690 KEY$=inchr$(5,1, ™ .,0,0)
1700 Case begin on KEY$

1710 Case “1”

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999

GFK-0255K

GFK-0255K

1720 Rem To display new registers, first UNLINK with

1730 Rem the old registers and SYSLINK with the new ones.

1740 Rem The SYSREAD at the top of the loop will then

1750 Rem read the registers from the new location

1760 Rem

1770 Print #5, CLR_CMD_LINES$,

1780 Input #5, “NEW REGISTER TO DISPLAY ? ", BASE_REG%
1790 UNLINK REG_ARRAY

1800 SYSLINK REG_ARRAY, “%R+str$(BASE_REG%, “515 "), UINT
1810 Print #5, CLR_CMD_LINES$,

1820 Print #5, CMD_LINES,

1830 Case 27

1840 Rem To write a register, SYSLINK with the register

1850 Rem which is to be written and do a SYSWRITE to write

1860 Rem the data. Since the register to be written always

1870 Rem changes, UNLINK the register after writing it

1880 Rem

1890 Print #5, CLR_CMD_LINES,

1900 Input #5, “REGISTER TO WRITE ? ”, WRITE_REG%
1910 Print #5, CLR_CMD_LINES$,

1920 Input #5, “VALUE ? ", WRITE_DATA%

1930 SYSLINK WRITE_DATA%, “%R+str$(WRITE_REG%, “515 "), UINT
1940 SYSWRITE WRITE_DATA%

1950 UNLINK WRITE_DATA%

1960 Print #5, CLR_CMD_LINES$,

1970 Print #5, CMD_LINES,

1980 Case “3" Rem Go back to main menu

1990 NEXT_MENU = MAIN_MENU

2000 UNLINK REG_ARRAY

2010 Return

2020 Case end; Rem Ignore all other characters

2030 Next

2040 Rem This is the input display subroutine. It displays a block

2050 Rem of sixty four inputs at a time. The user can change the value of
2060 Rem an input or display a different group of inputs. No error

2070 Rem checking is done, and the display freezes while the operator
2080 Rem is entering data.

2090 Rem

2100 Def proc DO_INPUT_MENU 2110 Rem

2120 Local BASE_INPUT%; Rem Sets which inputs to display
2130 Local WRITE_INPUT%; Rem Used for writing to PLC
2140 Local INPUT_DATA%; Rem Used for writing to PLC

2150 Local 1%; Rem General purpose loop counter

2160 Local CMD_LINES$; Rem Used to write command line
2170 Local CLR_CMD_LINES$; Rem Used to clear command line
2180 Dim integer INPUT_ARRAY(7); Rem Used for reading PLC
2190 Rem

2200 Rem The following few lines draw the static part of the input
2210 Rem menu screen, using the same format as the main menu
2220 Rem

2230 CLS

2240 ATTR

2250 CUR 4,9

2260 Print #5, DW_DH_TOPS,

2270 Print #5, “INPUT TABLE DISPLAY ",

2280 CUR 5,9

2290 Print #5, DW_DH_BOTS,

Chapter 4 MegaBasic

4-31

4-32

2300 Print #5,"INPUT TABLE DISPLAY ",
2310 CUR 20,20

2320 Print #5, “1 - DISPLAY NEW SET OF INPUTS 7,
2330 CUR 21, 20

2340 Print #5, “2 - WRITE AN INPUT”,

2350 CUR 22, 20

2360 Print #5, “3 - EXIT TO MAIN MENU 7,

2370 CUR 24, 24
2380 ATTR BLINK

2390 Print #5, “#rx ENTER NUMBER *** 7,

2400 ATTR

2410 Rem Build some strings for handling the command line

2420 Rem

2430 CMD_LINE$ = ATTR$(BLINK)+ “xxx ENTER NUMBER ***"+ATTR$(ATTR_OFF)
2440 CLR_CMD_LINE$ = CUR$(24,24)+(" "32)+CUR$(24,24)

2450 Rem SYSLINK the INPUT_ARRAY variable with %l1 in the PLC.
2460 Rem The SYSREAD command below will then copy the 64 inputs
2470 Rem starting at %I1 to INPUT_ARRAY.

2480 Rem

2490 SYSLINK INPUT_ARRAY, “%I1”, BYTE

2500 BASE_INPUT% =1

2510 Rem This is the main processing loop for the input menu

2520 Rem

2530 Repeat

2540 SYSREAD INPUT_ARRAY; Rem Read PLC inputs and display them
2550 Forl%=0to7

2560 CUR 9+1%, 26

2570 Print #5, “%Il ", % “515 ", 8*1%+BASE_INPUT%, " ",
2580 ATTR REVERSE
2590 Print #5, % “8B8", INPUT_ARRAY(1%),

2600 ATTR
2610 Next 1%

2620 Rem Check for input and process if necessary. Note that the

2630 Rem Input commands used below will cause the display to freeze

2640 Rem while the operator is entering data. It is possible to handle

2650 Rem operator input using the inchr$ statement, or with NOWAIT_READs
2660 Rem of the keyboard, however, a fairly complicated state machine

2670 Rem would have to be used to figure out what to do when each key
2680 Remis struck.

2690 Rem

2700 KEY$=inchr$(5,1, ™.,0,0)

2710 Case begin on KEY$

2720 Case "1”

2730 Rem To display new inputs, first UNLINK with

2740 Rem the old inputs and SYSLINK with the new ones.

2750 Rem The SYSREAD at the top of the loop will then

2760 Rem read the inputs from the new location

2770 Rem

2780 Print #5, CLR_CMD_LINES$,

2790 Input #5, “NEW INPUT TO DISPLAY ? ", BASE_INPUT%
2800 UNLINK INPUT_ARRAY

2810 SYSLINK INPUT_ARRAY, “%I|" +str$(BASE_INPUT%, “515 "), BYTE
2820 Print #5, CLR_CMD_LINES$,

2830 Print #5, CMD_LINES,

2840 Case “2"

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999

GFK-0255K

2850 Rem To write an input, SYSLINK with the input

2860 Rem which is to be written and do a SYSWRITE to write

2870 Rem the data. Since the input to be written always

2880 Rem changes, UNLINK the input after writing it

2890 Rem

2900 Print #5, CLR_CMD_LINES$,

2910 Input #5, “INPUT TOWRITE ? ", WRITE_INPUT%
2920 Print #5, CLR_CMD_LINES$,

2930 Input #5, “VALUE ? ", INPUT_DATA%

2940 SYSLINK INPUT_DATA%, “%I" +str$(WRITE_INPUT%, “515 "), BOOL
2950 SYSWRITE INPUT_DATA%

2960 UNLINK INPUT_DATA%

2970 Print #5, CLR_CMD_LINES$,

2980 Print #5, CMD_LINES,

2990 Case “3" Rem Go back to main menu

3000 NEXT_MENU = MAIN_MENU

3010 UNLINK INPUT_ARRAY

3020 Return

3030 Case end; Rem Ignore all other characters

3040 Next

3050 Rem This is the output display subroutine. It displays a block

3060 Rem of sixty four outputs at a time. The user can change the value of
3070 Rem an output or display a different group of outputs. No error

3080 Rem checking is done, and the display freezes while the operator
3090 Rem is entering data.

3100 Rem

3110 Def proc DO_OUTPUT_MENU

3120 Rem

3130 Local BASE_OUTPUT%; Rem Sets which inputs to display
3140 Local WRITE_OUTPUT%; Rem Used for writing to PLC
3150 Local OUTPUT_DATA%; Rem Used for writing to PLC
3160 Local 1%; Rem General purpose loop counter

3170 Local CMD_LINES$; Rem Used to write command line
3180 Local CLR_CMD_LINES$; Rem Used to clear command line

3190 Dim integer OUTPUT_ARRAY(7); Rem Used for reading PLC

3200 Rem

3210 Rem The following few lines draw the static part of the input
3220 Rem menu screen, using the same format as the main menu
3230 Rem

3240 CLS

3250 ATTR

3260 CUR 4,8

3270 Print #5, DW_DH_TOPS,

3280 Print #5, “OUTPUT TABLE DISPLAY",

3290 CUR 5,10

3300 Print #5, DW_DH_BOTS,

3310 Print #5, “OUTPUT TABLE DISPLAY”,

3320 CUR 20,20

3330 Print #5, “1 - DISPLAY NEW SET OF OUTPUTS ",
3340 CUR 21, 20

3350 Print #5, “2 - WRITE AN OUTPUT ",

3360 CUR 22, 20

3370 Print #5, “3 - EXIT TO MAIN MENU 7,

3380 CUR 24, 24
3390 ATTR BLINK

3400 Print #5, “#r* ENTER NUMBER *** 7,

3410 ATTR

3420 Rem Build some strings for handling the command line

3430 Rem

3440 CMD_LINE$ = ATTR$(BLINK)+ “xxx ENTER NUMBER *** "+ATTR$(ATTR_OFF)
3450 CLR_CMD_LINE$ = CUR$(24,24)+(“ "*32)+CUR$(24,24)

GFK-0255K Chapter 4 MegaBasic 4-33

4-34

3460 Rem SYSLINK the OUTPUT_ARRAY variable with %Q1 in the PLC.

3470 Rem The SYSREAD command below will then copy the 64 outputs

3480 Rem starting at %Q1 to OUTPUT_ARRAY.

3490 Rem

3500 SYSLINK OUTPUT_ARRAY, “%Q1, BYTE

3510 BASE_OUTPUT% =1

3520 Rem This is the main processing loop

3530 Rem

3540 Repeat

3550 SYSREAD OUTPUT_ARRAY; Rem Read PLC outputs and display them
3560 Forl%=0to7

3570 CUR 9+1%, 26

3580 Print #5, “%Q", % “515 ", 8*1%+BASE_OUTPUT%, “ ",
3590 ATTR REVERSE

3600 Print #5, % “8B8”, OUTPUT_ARRAY (%),

3610 ATTR

3620 Next 1%

3630 Rem Check for input and process if necessary. Note that the

3640 Rem Input commands used below will cause the display to freeze

3650 Rem while the operator is entering data. It is possible to handle

3660 Rem operator input using the inchr$ statement, or with NOWAIT_READs
3670 Rem of the keyboard, however, a fairly complicated state machine

3680 Rem would have to be used to figure out what to do when each key
3690 Rem is struck.

3700 Rem

3710 KEY$=inchr$(5,1, ™ ,0,0)

3720 Case begin on KEY$

3730 Case “1”

3740 Rem To display new outputs, first UNLINK with

3750 Rem the old outputs and SYSLINK with the new ones.

3760 Rem The SYSREAD at the top of the loop will then

3770 Rem read the outputs from the new location

3780 Rem

3790 Print #5, CLR_CMD_LINES$,

3800 Input #5, “NEW OUTPUT TO DISPLAY ? ", BASE_OUTPUT%
3810 UNLINK OUTPUT_ARRAY

3820 SYSLINK OUTPUT_ARRAY, “%Q+str$(BASE_OUTPUT%, “5I5 "), BYTE
3830 Print #5, CLR_CMD_LINES$,

3840 Print #5, CMD_LINES,

3850 Case “2"

3860 Rem To write an output, SYSLINK with the output

3870 Rem which is to be written and do a SYSWRITE to write

3880 Rem the data. Since the output to be written always

3890 Rem changes, UNLINK the output after writing it

3900 Rem

3910 Print #5, CLR_CMD_LINES$,

3920 Input #5, “OUTPUT TO WRITE ? ", WRITE_OUTPUT%
3930 Print #5, CLR_CMD_LINES$,

3940 Input #5, “VALUE ? "7, OUTPUT_DATA%

3950 SYSLINK OUTPUT_DATA%, “%Q+str$(WRITE_OUTPUT%, “5I5 "), BOOL
3960 SYSWRITE OUTPUT_DATA%

3970 UNLINK OUTPUT_DATA%

3980 Print #5, CLR_CMD_LINES$,

3990 Print #5, CMD_LINES,

4000 Case “3" Rem Go back to main menu

4010 NEXT_MENU = MAIN_MENU

4020 UNLINK OUTPUT_ARRAY

4030 Return

4040 Case end; Rem Ignore all other characters

4050 Next

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999

GFK-0255K

Chapter

GFK-0255K

Advanced MegaBasic Programming

MegaBasic is a powerful implementation of the BASIC language which runs under

twelve different operating systems and a host of different hardware configurations.

One of the strengths of MegaBasic is that the language can be “extended” to support the
underlying hardware. This chapter describes the additions, called extensions that GE
Fanuc has made to MegaBasic. These additions or extensions allow MegaBasic to take
full advantage of the special capabilities of the PCM and the Series 90 system.

This chapter contains the following sections:

Section Title Description Page

1 MegaBasicError Section 1 lists common error codes from the PCM 5-3
Codes extensionsto MegaBasic.

2 Screen Formatting Section 2 describes predefined control sequences for 5-5
Commands manipulatingaVT100compatibledisplay. These

functions and procedures are located in VT100.PGM

3 Accessing %P, %L, Section 3 describes definitions and procedures used to 5-16
and Password- access user references not directly supported by the
Protected Data PCM backplane driver and to access data protected

by a user password. These procedures are found in
GENERIC.PGM

4 Access to PLC Fault Section 4 describes how to accessthe PLC and I/O fault | 5-21
Tablesand PLC tables from a MegaBasic program, usingRD_FLT.PGM
Status

5 Gathering PLC Section 5 describes how to use UTILITY.PGM to 5-34
Information from obtain a variety of PLC CPU data.

MegaBasicPrograms

6 Loadingand Section 6 describes how to load MegaBasic data files 5-50
Storing PCM Data and utility packages in binary form to the PCM using
FilesUsing TERMF TERMF and the PCM command interpreter.

7 Serial Port Setup Section 7 describes how to change the PCM serial port | 5-52
with IOCTL and configuration, send and detect serial breaks, and use
PORT_CTL.BIN the modem control and status signals of the serial ports

inMegaBasicprograms.

8 Timersand Logical Section 8 describes timer and backplane interrupts. 5-57
Interrupts

9 COMMREQs and Section 9 describes the processing of messages from 5-64
Other Backplane COMMREQ function blocks and other sources.

Messages
5-1

5-2

Section Title Description Page

10 AsynchronousSerial | Section 10 describes the the NOWAITI/O commands | 5-91
Input and Output thatsupportasynchronousserialcommunications.

Thesecommandsinclude:

¢ NOWAIT_OPEN

¢ NOWAIT_CLOSE

¢« NOWAIT_READ

¢ NOWAIT_WRITE

¢ NOWAIT_SEEK

¢ NOWAIT_READ_ABORT

¢ NOWAIT_WRITE_ABORT

11 VME Functions Section 11 describes the use of Series 90-70 VME 5-100

functionsasalternatives for communicating with a
Series90-70 PCM.

12 PCM Programming Section 12 providesacomplete programming 5-110
Example using example containing PLC VME functions and EXAM
MegaBasic and FILL MegaBasic statements.

13 Optimizing Section 13 describes how to maximize data throughput | 5-114
Backplane between the PCM and the PLC CPU.

Communication
Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

Section 1: MegaBasic Error Codes

GFK-0255K

The table in this section explains error codes returned by PCM extensions to MegaBasic.

Table 5-1.

MegaBasic Error Codes

Code

Status

Description/Corrective Action

100

MissingArgument

One or more arguments to a PCM extensionismissing.

101

Argument Out of Range

One or more arguments to a PCM extension is out of
bounds.

102

Argument of Wrong Type

One or more arguments to a PCM extension is of an
invalid type.

103

InsufficientMemory

The PCM does not have enough system memory to
complete the requested operation. Thiserror is not

to be confused with error 0, which occurs if the
MegaBasic interpreter does not have enough memory.
If this error occurs, configure MegaBasic to use less
memory, leaving more for PCM system memory.

104

Remote VariableUnknown

The PCM could not complete a SYSLINK This could
be due to an invalid CPU name specified by SYSLINK
or the CPU may not be responding.

105

Too Many Remote Variables

Too many SYSLINKs are active. UNLINK those that
are not used all of the time.

106

PCM Hardware Not Present

Thiserror is generated if an MS-DOS version of
MegaBasic tries to access the PCM extensions, or if the
version number of an extension package does not
match the PCM MegaBasic version number.

107

Not Enough Timers

The PCM has run out of system timers. Use fewer
timers in the MegaBasic program.

108

Bad Timer Definition

An invalid argument has been passed to the TIMER
statement.

109

Task Not Active

The MegaBasic program attempted to manipulate an
LED that was not configured to be under the control
of auser program. If your PCM has firmwareversion
2.50 0r greater, you can use a PCMEXEC.BATile
containing the B (Configure LEDS) command to
assign the LED to your MegaBasic program. With
lower firmwareversions,you must use PCOP to
configure the LED.

110

Bad LED Definition

Either an invalid LED number or invalid mode was
specified by the MegaBasic program.

111

Duplicate Remote Variable

A MegaBasic local variable being SYSLINKed is the
object of another SYSLINK call. A MegaBasic local
variable can be SYSLINKed to only one PLC CPU
variable.

Chapter5 Advanced MegaBasic Programming

5-3

5-4

Table 5-1. MegaBasic Error Codes (cont’d)

Code Status Description/Corrective Action

112 Backplane Transfer Failure | Abackplane transfer cannot be completed. Thiscould
be caused by a timeout waiting for a response from the
PLC CPU, attempting to SYSREADor SYSWRITE
more data than a particular PLC memory type
contains, or attempting to write into a protected region
of PLC CPU memory.

113 Undefined Local Variable Thiserroroccurs if aMegaBasic local variable is made
the object of a SYSLINK call before it has been
declared.

114 ImproperVariable Type Thiserroroccurs ifastring array or an array with more
than three dimensions is SYSLINKed.

115 CPU Name String Too Long | CPU name strings must be eight characters or less,
including the ASCII NUL terminationcharacter.

116 Basic Extensions The internal revision numbers for the PCM extension

Incompatible packages do not match those of the interpreter.

117 Illegal Backplane Operation | A MegaBasic programtriedto SYSWRITEa variable
while itis in the process of being read, ora SYSREAD
occured while the variable is being written.

118 Backplane Timeout The CPU backplane driver timed out during an
attemptedtransfer. Itis agood idea to check for this
error on the first SYSLINK inaprogram, in case the
CPU has not yet completed its initialization.

119 Illegal NOWAITI/0O A NOWAIT_READr NOWAIT_WRITEs attempted

Operation after a channel has been closed.

120 Buffer Space Exceeded The user program exceeded the maximum designated
outstanding buffer space for NOWAITI/O . The
program must specify that this condition should cause
an error; otherwise no error is posted.

122 Invalid IOCTL String Either an invalid serial port setup string was passed
tothe IOCTL statement or the IOCTL$()
function, or MegaBasic attempted to reconfigure
aserial port used by another task.

123 DeviceUnavailable An invalid device name was passed to the OPEN
statement or to the DIR or DESTROYommand.

124 Serial Port Parity A parity error was detected in received serial data.

125 Serial Port Overrun Anoverrun error was detected in received serial data.

126 Serial Port Framing Aframingerror was detected in received serial data.

127 Serial PortMultiple Two or more different parity, overrun or framing errors

were detected in received serial data.

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999

GFK-0255K

Section 2;

GFK-0255K

Screen Formatting Commands

Because the PCM is often used with alphanumeric display devices, additional MegaBasic
statements have been provided to deal with these devices. At present, the display
statements are only available for terminals that use DEC VT100 compatible control
sequences.

VT100.PGM supplies several procedures and functions, as well as predefined control
sequences for driving VT100 style displays. A companion file, VT100_5.PGM, isalso
available. The difference between these two files is that VT100.PGM prints to STDOUT,
while VT100_5.PGM prints to the device opened as #5.

To use the functions, procedures, and data structure definitions supplied in VT100.PGM,
add the line:

”

xxx Access “vt100.pgm

to the beginning of a MegaBasic program or in the PROLOGUE section of a user written
package. The file VT100.PGM should have been loaded to the PCM RAM Disk before
running a MegaBasic program which accesses it. The file is located in the \PCOP or
\PCOP\EXAMPLES.PCMdirectory of your PC hard disk, depending on which release of
PCOP or TERMF you use.

The functions and procedures found in VT100.PGM are summarized in the following
tables and are fully described on the pages following these tables.

Chapter5 Advanced MegaBasic Programming 5-5

Table 5-2. VT100.PGM Functions and Procedures

Function/
Procedure

Description

CLS

Astatement that prints the control sequence to clear the screen
(ERASE_SCREEN$.

CUR$!

A function that takes row and column integer parameters and returns a control
string that, when printed to the VT100 device, positions the cursor at the
desired location. This function may be used to build up larger control and text
sequences (screens) for later display.

CUR!?

A statement that takes row and column integer parameters, and prints the
resulting cursor positioning string.

ATTR$?

A function that takes a list of desired screen display attributes and returns a
formatted Set Graphic Rendition (SGR) control string that, when printed to the
VT100 device, sets the desired screen attributes to be used for the next text
printed. The attributes defined by this package for use with the ATTR$
functionand ATTR statementare ATTRIB_OFFE BLINK, BOLD ,
UNDERSCORENd REVERSE In addition, if the device supports additional
SGR controls such as TERMF’s controls for foreground and background color
(parameter values 30 - 37 and 40 - 47), these controls may also be supplied to the
ATTR$ function and the ATTR statement.

ATTR?2

A statement that takes a list of the desired screen display attributes and prints
the resulting SGR control string to the VT100 device. See ATTR$ function
above.

MV_CUR$3

A function that takes direction and count parameters, and returns the
appropriate relative move cursor control string for use in relative cursor
movement commands that may be printed at a later time (i.e., arelocatable
section of a screen display). The directionisoneof C_UP C_DN, C_RT or
C_LFE which are the cursor up, down, right and left direction constants.

MV_CUR3

A statement that takes direction and count parameters, and prints the
appropriate relative cursor movement control string. See MV_CUR%unction
above.

1 The row and column parameters are optional. The default row is the top row (row 1), and the default
column is the leftmost column (column 1).

2 The list of parameters is completely optional. The default SGR string, produced when no parameters are
supplied, results in turning all screen attributes off.

3 Thedirection and count parameters are optional. The default direction is C_UP, and the default count is

one location.

Several integer and string constants are also defined in the VT100.PGM package. These
constants are summarized in the following table.

5-6 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999

GFK-0255K

GFK-0255K

Table 5-3. Integer and String Constants

Constant Description
ATTRIB_OFF Aninteger constant (= 0) used in the ATTR$ function or ATTR statement
parameter list to indicate that all existing screen display attributes are to be
reset. Typically, this is the first parameter in a sequence that also sets one or
more attributes. When simply turning offall attributes, itis recommended
that you use the ATTR$ function or ATTR statement with no parameters.
BLINK An integer constant (= 5) that turns on the blinking text screen display
attribute.
BOLD An integer constant (= 1) that turnsonthe high intensity/bold text screen
display attribute.
UNDERSCORE | An integer constant (= 4) that turns on the underline textscreendisplay
attribute.
REVERSE An integer constant (= 7) that turnsontheforeground/background
reversed text screen display attribute.
C_UP An integer constant (= 1) used in the MV_CUR%unction or MV_CUR
statement to move the cursor up.
C_DN An integer constant (= 2) used in the MV_CUR%unction or MV_CUR
statement to move the cursor down.
C_RT An integer constant (= 3) used in the MV_CUR%unction or MV_CUR
statement to move the cursor right.
C_LF An integer constant (= 4) used in the MV_CUR$unction or MV_CUR
statement to move the cursor left.
CP$ A string constant (= <esc>[) used as the prefix for many of the VT100
control strings.
CURHOME$ A string constant (= <esc>H) used to set the cursor position to the home
position (row 1/column1).
SAVECUR$ A string constant (= <esc>7) used to save the present cursor position and
screen display attributes.
RESTORECURS$ | A string constant (= <esc>8) used to restore the previously saved cursor
position and screen display attributes.
DW_DH_TOP$ | A string constant (= <esc>3) used to set the currentlinetodoublewide/
double high top half display format.
DW_DH_BOT$ | A string constant (= <esc>4) used to set the currentlinetodoublewide/
double high bottom half display format.
SW_SH$ A string constant (= <esc>5) used to set the currentlinetosinglewide/
single high display format.
DW_SH$ A string constant (= <esc>6) used to set the currentlinetodoublewide/
single high display format.
ERASE_EOLS$ A string constant (= <esc>K) used to erase the present line from the
cursor to the end of the line.
ERASE_BOLS$ A string constant (= <esc>1K) used to erase the present line from the
beginning of the line to the cursor.
ERASE_LINE$ | A string constant (= <esc>2K) used to erase the entire present line.
ERASE_BOT$ A string constant (= <esc>J) used to erase the screen from the cursor to
the bottom of the screen.
ERASE_TOP$ A string constant (= <esc>1J) used to erase the screen from the top of the

screen to the cursor.

ERASE_SCREENS$

A string constant (= <esc>2J) used to erase the entire screen.

Chapter5 Advanced MegaBasic Programming

5-7

CLS

5-8

The CLS statement clears the VT100 display screen and sets the cursor at the home
position (row 1, column 1).
The format for the CLS statement is:

xxX CLS

The following example uses the CLS statement:

50 Access “vt100.pgm "
100 CLS
110 Print “* <—— This is home position for the cursor "

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999

GFK-0255K

CURS$

The CURS$ function formats a cursor positioning string for use in constructing displays
for the VT100 screen. The first integer parameter indicates the desired row; the second
integer parameter indicates the desired column where the cursor is to be placed. Both

parameters are optional, with the defaults being row 1 and column 1.

The format for the CUR$ function is:

xxx A$ = CUR$(row,col)

Argument Description

Row Aninteger number specifying the desired row.

Column An integer number specifying the desired column where the cursor is
to be located.

In the following example, the string A$ is constructed so that the screen is erased.
Then, a double high and wide “HELLO” is displayed in the center of the VT100 screen.
Note that, when the VT100 line is in double wide mode, the cursor positioning is based
on a 40-column line.

50 Access “vt100.pgm "

100 A$ = ERASE_SCREEN$ + CUR$(10, 20) + DW_DH_TOP$ + “HELLO
101 A$(:0) := CUR$(11, 20) + DW_DH_BOTS$ + “HELLO

200 Print A$

In the next example, a column of numbers is printed down the left side of the screen on
every third line, and then the cursor is placed at the home position.

50 Access “vt100.pgm "

100 For 1% = 2 to 20 by 3

110 Print CUR$(1%),% “2i 7 ,1%,
120 Next

130 Print CURS,

GFK-0255K Chapter5 Advanced MegaBasic Programming 5-9

CUR

The CURstatement prints a cursor positioning control string to the VT100.

The format of the CUR statement is:

xxX CUR row, col

Argument

Description

Row

Aninteger number specifying the desired row.

Column

An integer number specifying the desired column where the cursor is
tolocated.

Internally, the CUR statement calls the CURS$ function with the parameters that were
passed to the CURstatement and then prints the resulting string. As with CUR$ both
parameters are optional and default to the home position values (row 1, column 1).

In the following example, the screen is cleared, the cursor is positioned to the center of

the screen, and then a hello message is printed.

100 CLS
110 CUR 12,35

50 Access “vt100.pgm "

120 Print “Hello Yall

In the next example, the operation that was performed in the second example for the

CURS$ function is repeated using the CUR statement.

50 Access “vt100.pgm "
100 For 1% = 2 to 20 by 3

110 CUR 1%

120 Print % “2i 7 ,1%,
130 Next

140 CUR

5-10 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999

GFK-0255K

ATTRS

GFK-0255K

The ATTRS$ function formats a Set Graphic Rendition (SGR) control string for later
display on a VT100 terminal or other compatible display device. The optional list of
parameters specifies the desired attributes for the following text to be displayed on the
VT100 device. The list of attributes that may be specified includes the constants
ATTRIB_OFFE BLINK, BOLD UNDERSCORENd REVERSE When all parameters are
omitted, the resulting control string turns all attributes off when printed to the VT100
device.

The format of the ATTRS$ function is:

xxx A$ = ATTR$(p1, p2, ...)

Argument Description
P1 Aninteger number specifying the desired attribute number 1.
P2 The desired attribute number 2.

In the following example a string, consisting of an erase screen control string and various
combinations of attributes and related text strings, is constructed and then printed to the
VT100 device. The effect of the various attributes is additive until a clear screen or an
ATTRIB_OFF isissued. The ATTR$ function can accept more than one attribute per
call, and more than one attribute may be turned on in the string returned by the ATTR$
function.

50 Access “vt100.pgm "

60 Dim A$(300), CRLF$(2)

70 CRLF$ = chrseq$(13, 10)

100 A$ = ERASE_SCREENS$ + ATTR$(BLINK) + “Blink " + CRLF$
110 A$(:0) := ATTR$(BOLD) + “Bold Blink " + CRLF$

120 A$(:0) := ATTR$(UNDERSCORE) + “Bold Blink Underscore

130 A$(:0) := CRLF$ + ATTR$(REVERSE)

140 A$(:0) := “Bold Blink Underscore Reverse " + CRLF$
150 A$(:0) := ATTR$(ATTRIB_OFF, UNDERSCORE, REVERSE)

160 A$(:0) := “Underscore Reverse " + CRLF$

170 A$(:0) ;= ATTR$(BOLD) + “Bold Underscore Reverse " + CRLF$
200 Print A$

In the next example, a string, consisting of an SGR control string activating blink and
bold modes, the text “Working” and finally an SGR control string for all attributes off, is
constructed. The string A$ is then printed at the home position, along with text to
show that the attributes had been turned off.

50 Access “vt100.pgm "
100 A$ = ATTR$(ATTRIB_OFF, BLINK, BOLD) + “Working " + ATTR$
200 Print CURHOMES, A$, “ | think

Note

The TERMF terminal emulator supports the use of color selection
control strings, using parameter values 30 - 37 and 40 - 47 to select the
foreground and background color.

Chapter5 Advanced MegaBasic Programming 5-11

ATTR

The ATTR statement formats and prints an SGR control string to a VT100 terminal, or
other compatible display device. The optional list of parameters specifies the desired
attributes for the following text to be displayed on the VT100 device. The list of
attributes that may be specified includes the constants ATTRIB_OFF BLINK, BOLD
UNDERSCORENd REVERSE When all parameters are omitted, the resulting control
string turns all attributes off on the VT100 device.

The format of the ATTR statement is:

xxx ATTR p1, p2, ...

Argument Description
P1 Aninteger number specifying the desired attribute number 1.
P2 The desired attribute number 2.

In the following example, the VT100 screen is cleared, the attributes set to bold and
underscore, some text is printed at the home position, and then the attributes are turned

off.
50 Access “vt100.pgm "
100 CLS
110 ATTR BOLD, UNDERSCORE
120 Print “GE Fanuc Automation N.A.
130 ATTR

In the next example, the operation that was performed in the second example for the
ATTRS function is repeated using the ATTR statement.

50 Access “vt100.pgm "
100 Print CURHOME$
110 ATTR ATTRIB_OFF, BLINK, BOLD

120 Print “Working "
130 ATTR
140 Print “ | think

5-12 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

MV_CUR$

GFK-0255K

The MV_CURS$function formats a relative cursor movement control string for later
display on a VT100 terminal, or other compatible display device. The optional list of
parameters specifies the desired direction for the move and the count of how many
cursor positions to move in the selected direction. The list of directions that may be
specifiedare C_UP C_DN C_RT and C_LFE

All parameters are optional. The count defaults to one. The direction defaultsto C_UP
for the first pair, and no action for the rest of the pairs. If the final parameter in the list is
a direction specifier, the count associated with that move is one location.

The format of the MV_CUR$function is:

XXX A$ = MV_CUR$(dir1, cntl, dir2, cnt2, ...)

Argument Description
Direction x | Pairs of integers, specifying the direction and count for each cursor
and move. Thedirl/cntl pair is processed first; then, the remaining pairs
Count x are added to the resulting control string before the function
completes.

In practical terms, the maximum number of parameters for this
function is 4 (2 pairs), since any location on the VVT100 screen can be
reached in two relative moves of the cursor. The direction parameters
have arange of 1to 4 (C_UP to C_LF). The count parameters

specify how many positions to move the cursor (default=1) in the
specifieddirection.

In the following example, a relocatable graphic string (BIG_PLUSS$) is created and then
displayed at several locations on the VT100 screen. The only characters on the screen
that are overwritten are those characters that are directly overlapped by the printable
characters (“= " “|" “+ " <sp>) of the BIG_PLUS$ graphic.

50 Access “vt100.pgm "
100 BIG_PLUS$ = MV_CUR$ + “| " + MV_CUR$(C_LF, 4, C_DN)
110 BIG_PLUS$(:0) := “—+— " +MV_CURS$(C_LF, 4, C_DN) +

200 Print CUR$(10, 20), BIG_PLUS$
210 Print CUR$(20, 40), BIG_PLUS$

Chapter5 Advanced MegaBasic Programming 5-13

5-14

In the next example, the MV_CUR$function is used to construct some line-drawing
primitives (lines 70-85). Then, a procedure is defined to use these line drawing
primitives (lines 100-190). Finally, the main program clears the screen, draws a few lines,
and then puts the cursor toward the bottom of the screen at the end of the program.

50 Access “vt100.pgm "

70 LINE_UP$ = MV_CUR$(C_LF, 1, C_UP) +
75 LINE_DN$ = MV_CURS$(C_LF, 1, C_DN) + ‘v
80 LINE_RTS$ = “sn

85 LINE_LF$ = MV_CUR$(C_LF, 2) + v
100 Def proc LINE_DRAW DIR%=C_UP, CNT%=1
105 Local 1%, LINE_OUT$

110 Print R

115 Case begin on DIR%

120 Case C_UP

125 LINE_OUTS$ = LINE_UP$

130 Case C_DN

135 LINE_OUTS$ = LINE_DN$

140 Case C_RT

145 LINE_OUTS$ = LINE_RT$

150 Case C_LF

155 LINE_OUT$ = LINE_LF$

160 Case end

165 For 1% = 1 to CNT%

170 Print LINE_OUTS,

175 Next

180 Print MV_CURS$(C_LF),

185 Return

190 Proc end

1000 CLS

1010 LINE_DRAW C_RT, 20

1020 LINE_DRAW C_DN, 10

1030 LINE_DRAW C_LF, 10

1040 LINE_DRAW C_RT, 5

1050 LINE_DRAW C_UP, 5

1060 LINE_DRAW C_RT, 30

1070 CUR 23

WA

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999

GFK-0255K

MV_CUR

GFK-0255K

The MV_CURstatement formats and prints relative cursor movement control strings on
a VT100 terminal, or other compatible display device. The optional list of parameters
specifies the desired direction for each move and the count of how many cursor
positions to move in the selected direction. The directions that may be specified are
C_UR C_DN C_RT and C_LE All parameters are optional. The count defaults to one
location to move. The direction defaults to C_UP for the first move, and no operation
for subsequent moves.

The format of the MV_CURstatement is:

xxxX MV_CUR dirl, cntl, dir2, cnt2, ...

Argument Description
Direction x | Pairs of integers specifying the direction and count for each cursor
and move. Thedirl/cntl pair is processed first; then, the remaining

Count x pairs, if any, are processed before the statement completes.

In practical terms, the maximum number of parameters for this
statement is 4 (2 pairs), since any location on the VVT100 screen can be
reached in two relative moves of the cursor. The direction
parameters have arangeof1to4 (C_UP to C_LF). The count
parameters specify how many locations to move the cursor

(default = 1 location) in the specified direction.

In the following example, a procedure is defined (BIG_PLUS) that duplicates the action
shown previously in the first example for the MV_CUR$function.

50 Access “vt100.pgm "
100 Def proc BIG_PLUS
110 MV_CUR
120 Print ‘1,
130 MV_CUR C_LF, 4, C_DN
140 Print et 7,
150 MV_CUR C_LF, 4, C_DN
160 Print “
170 Return
180 Proc end
1000 CUR 10, 20
1010 BIG_PLUS
1020 CUR 20, 40
1030 BIG_PLUS

In the next example, a simple procedure is defined and used to waste time by bouncing
the cursor left and right.

50 Access “vt100.pgm "
100 Def proc WASTE_TIME
110 Local 1%
120 For 1% = 20 to 1 by —4
130 MV_CURC_LF, 1%, C_RT,1% —1,C_LF,1% —2,C_RT, 1% —3
140 Next
150 Return
160 Proc end
1000 CUR 10, 40
1010 WASTE_TIME

Chapter5 Advanced MegaBasic Programming 5-15

Section 3: Accessing %P, %L, and Password-Protected Data

GENERIC.PGMsupplies definitions and procedures to access Series 90-70 PLC reference
data types not directly supported by the PCM backplane driver (e.g., %P and %L) and to
access data protected by a user password in the Series 90-30 or Series 90-70 PLCs.
Attempting to SYSWRITEPLC data when PLC privilege level 2 is protected by a
password will result in an error unless the PCM can gain access to level 2, as described
here.

In addition, GEN_TEST.PGMs a sample program using GENERIC.PGM
GENERIC.DOCis a line-number referenced documentation of GENERIC.PGMand
GEN_TEST.PGM These files are installed with TERMF in the \PCOP or
\PCOP\EXAMPLES.PCMdirectory of your PC hard disk, depending on which release of
PCOP or TERMF you use.

To use the functions in GENERIC.PGM add the line:

xxx Access “RAM:generic.pgm "

at the beginning of a MegaBasic program. The file GENERIC.PGMshould be loaded to
the PCM RAM Disk before running a MegaBasic program which accesses it.

The procedures found in GENERIC.PGMare listed in the following table:

Procedure Description

CHG_PRIV Change the currentprivilege level for MegaBasic communication with
the PLC.

SMSG_WTEXT | rormat and send a message to the PLC.

Several shared structures and constants are also defined in GENERIC.PGM These

include:
Constant/Structure Description
SMSG_TEXT$ The string used with SMSG_WTEXWhich contains the program
and block names.
ACC_CODES$ Astring containing the access codes for various PLC reference data
types.
R_TMEM$ Definition of request code to read task memory (%P).
R_PBMEMS$ Definition of request code to read program subblock memory (%L.).
W_TMEMS$ Definition of request code to write task memory (%P).
W_PBMEMS$ Definition of request code to write program sub-block memory (%L.).

5-16 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

CHG_PRIV

GFK-0255K

CHG_PRIV is used to change the privilege level for communication between the PCM
MegaBasic task and the PLC CPU Service Request Processor (SRP). For more
information on privilege levels and passwords, refer to the Series 90-70 Programmable
Controller Installation Manual, GFK-0262, and the Logicmaster 90-70 Programming Software
User’s Manual, GFK-0263.

The format for using the CHG_PRIV procedure is:

xxX CHG_PRIV n, str

Parameter Description
n Therequested privilege level.
str An optional string variable containing the password for that level.

In the following example, 3 is the requested privilege level and ABCD is the password
for that level.

150CHG_PRIV3, “ABCD
No password is supplied in the next example.

200CHG_PRIV 2

In either case, an ACK/NAK message is returned from the Service Request Processor
(SRP) to the MegaBasic task, indicating a grant or refusal to grant the requested privilege
level. The returned message may be obtained by the MegaBasic program through the
use of the PCM extension PROCESS_MESSAQ#rocedure, either through a MegaBasic
interrupt or through periodic use of the PROCESS_MESSAGHatement. Section 8 of
this chapter contains a sample program which uses a MegaBasic interrupt to determine
whether the CHG_PRIV command succeeded. The GEN_TEST.PGMpackage,
provided with TERMEF also contains an example using the PROCESS_ MESSAGE
statement.

Note

When CHG_PRIVfails because an invalid password was provided, a
Password access failed fault is logged to the PLC fault table.

For PCM Release 3.00 and later, a simpler method is available for changing the privilege
level. Simply include the following MegaBasic statements in your program:

150 Open #5, “CPU:#5"
160 loctl #5, “PASSWD
170 Close #5

The correct password string for the desired privilege level should be substituted for
PASSWD.

Chapter5 Advanced MegaBasic Programming 5-17

SMSG_WTEXT

SMSG_WTEXTs a general-purpose procedure that makes requests of the Service
Request Processor (SRP) by sending a message with text string to the SRP.

The format for using the SMSG_WTEXprocedure is:

xxXxSMSG_WTEXT req_code, acc_code, offset, length, handle

Parameter Description

RequestCode | Therequestcode for the particular PLC reference data type (see below).
AccessCode The access code for this user reference type (see below).

Offset The zero-based offset from the beginning of the specified user reference
data.

Length The number of data words to transfer.

Handle A user identification for thistransfer. The procedure sends a message

and a text string definedas SMSG_TXT$

Note

The current size of the data in the text string SMSG_TXT$must be in
the range 0 through 256 bytes.

The SRP response message from a call to SMSG_WTEXTay be obtained by using the
PROCESS_MESSAGHatement, which can be used periodically, or by an interrupt
procedure invoked by the response.

Before using SMSG_WTEXThe PLC program name, which is the same as the
Logicmaster 90 folder name used to create the program, and block name must first be
put into the shared string variable SMSG_TXT$ If %L data is to be accessed, its
sub-block name must be added to SMSG_TXT$starting at character position 9.

5-18 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

GFK-0255K

The request and access codes for PLC memory types are:

Table 5-4. Request and Access Codes for PLC Memory Types

User Reference Request Code Access Code Use
%L R_PBMEM$2 ACC_CODES$(1:) Read %L
(Series90-70) W_PBMEM$2 ACC_CODES$(1:) Write %L
%P R_TMEM$! ACC_CODES$(2:) Read %P
(Series90-70) W_TMEM$! ACC_CODES$(2:) Write %P
%I R_SMEM$3 ACC_CODE$(3:) Read %l
W_SMEM$3 ACC_CODE$(3)) Write %l
%Q R_SMEM$3 ACC_CODE$(4:) Read %Q
W_SMEM$3 ACC_CODE$(4:) Write %Q
%R R_SMEM$3 ACC_CODE$(5:) Read %R
W_SMEM$3 ACC_CODE$(5)) Write %R
%T R_SMEM$3 ACC_CODE$(6:) Read %T
W_SMEM$3 ACC_CODE$(6:) Write %T
%M R_SMEM$3 ACC_CODES$(7:) Read %M
W_SMEM$3 ACC_CODE$(7:) Write %M
%Al R_SMEM$3 ACC_CODE$(8:) Read %Al
W_SMEM$3 ACC_CODE$(8:) Write %Al
%AQ R_SMEM$3 ACC_CODE$(9:) Read %AQ
W_SMEM$3 ACC_CODE$(9:) Write %AQ
%SA R_SMEM$3 ACC_CODE$(10:) Read %SA
%SB R_SMEM$3 ACC_CODE$(11:) Read %SB
%SC R_SMEM$3 ACC_CODE$(12:) Read %SC
%S R_SMEM$3 ACC_CODE$(13:) Read %S

1

R_TMEM = Read task memory;
W_TMEM = Write task memory.

R_PBMEM = Read program block memory;
W_PBMEM = Write program block memory.

R_SMEM = Read system memory;
W_SMEM = Write system memory.

Chapter5 Advanced MegaBasic Programming

5-19

In the following example, the SMSG_WTEXprocedure is used to read %L20. GEN_MSG
is the PLC program name/folder name, and LMEMis the program subblock name
associated with the particular %L memory that is to be read. R_PBMEM¢is the request
code used to read %L memory. ACC_CODE$(1:) is used for %L memory, 19 is the
offset from the beginning of %L memory to %L 20, 1 is the number of %L registers to
read, and 123 is a code that the MegaBasic program can use to recognize the PLC
response message for this request if PROCESS_MESSAQEturns more than one
message. Note that SMSG_TEXT$is shared from the GENERIC.PGMpackage and is

the actual text string sent by SMSG_WTEXT

220 SMSG_TEXT$(1:8)= “GEN_MSG+ chr$(0)
230 SMSG_TEXT$(9:5)= “LMEM + chr$(0)
330 SMSG_WTEXT R_PBMEM$, ACC_CODES$(1:), 19, 1, 123

In the next example, the SMSG_WTEXPprocedure is used to write %P15-%P19.
GEN_MSGs the PLC program name/folder name. W_TMEMSs the request code needed
to write %P memory. ACC_CODE$(2:) is used for %P memory, 14 is the offset from
the beginning of %P memory to %P15, 5 is the number of %P registers to write, and 26 is
the handle. Note that a block name is not necessary for %P memory.

220 SMSG_TEXT$(1:8)= “GEN_MSG+ chr$(0)
225 SMSG_TEXT$(9:) = SEND_P$
330 SMSG_WTEXT W_TMEMS$, ACC_CODES$(2:), 14, 5, 26

5-20 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

Section 4: Access to PLC Fault Tables and PLC Status

READ_FLT.PGMprovides access to the PLC and 1/0 fault tables from a MegaBasic
program. In addition, PRN_FLT.PGMand TEST_FLT.PGM explain how to use the
fault information supplied by READ_FLT.PGM PRN_FLT.PGMprovides several
routines that break down and print information contained in the fault records.
TEST_FLT.PGM explains how to use the functions and procedures from the other two
files to read and display the fault table information.

To use the functions, procedures, and data structure definitions supplied in
READ_FLT.PGM add the line:

xxx Access “READ_FLT.pgn{

at the beginning of a MegaBasic program or in the PROLOGUE section of a user-written
package. The READ_FLT.PGMfile must be loaded to the PCM RAM Disk before
running the MegaBasic program which accesses it. The file is located in the \PCOP or
\PCOP\EXAMPLES.PCMdirectory of your PC hard disk, depending on which release of
PCOP or TERMF you use.

Note

In PCOP version 2.04 and earlier, READ_FLT.PGM PRN_FLT.PGM and
TEST_FLT.PGM are called RD_FLT.PGM PR_FLT.PGM and
RP_TEST.PGM respectively.

The functions and procedures found in READ_FLT.PGMare listed below:

Table 5-5. READ_FLT.PGM Functions and Procedures

Function/Procedure Description

READ_FAULT_TBL Aprocedure that reads the table header information and zero (0) or
more faultrecords fromthe I/0 or PLC fault table.
RDEL_FAULT_TBL A procedure that reads and deletes the first fault record in either fault
table.

FLT_PRESENT%() A function that reads PLC short status information and returns the

fault table present boolean from the PLC status word for either fault
table.

FLT_CHANGED%() | AfunctionthatreadsPLC shortstatusinformationand returns the
fault table changed boolean from the PLC status word for either fault
table.

WORD%() A function that converts the first two bytes of a string to an integer.

Although some Series 90 PLC services require the requester to be a programmer (i.e., a
device authorized to change the PLC program), none of the procedures or functions in
this section requires it. As a result, there is no interference between these functions or
procedures and Logicmaster 90 software, except that the use of RDEL_FAULT_TBLwill
cause faults to disappear from the Logicmaster 90 fault table displays, and the
Logicmaster 90 clear fault table function may cause the MegaBasic program to miss
faults.

GFK-0255K Chapter5 Advanced MegaBasic Programming 5-21

Several shared structure definitions and constants are also defined in READ_FLT.PGM
These include:

Table 5-6. READ_FLT.PGM Shared Definitions and Constants

Constant/Structure Description

I0_FLT _TBL Aconstant (1) used to indicate the selection of the /0 fault
table in the above functions and procedures. These
functionsand procedures default to the 1/0 fault table
when the table selection parameter is omitted.

PLC_FLT _TBL A constant (2) used to indicate the selection of the PLC fault
table in the above functions and procedures.
PLC_FAULT_HDR$ Asstring variable of length 12 containing the header

information from the PLC fault table. Thisstringisfilled in
asaresult of acall tothe READ_FAULT_TBlprocedure
that explicitly selectsthe PLC_FLT_TBL

I0_FAULT_HDR$ Astring variable of length 12 containing the header
information from the 1/0 fault table. Thisstringisfilled

in as aresult of acall tothe READ_FAULT_TBlprocedure
that selects the default I0_FLT_TBL .

SHORT_STATUS$ Astring variable of length 12 containing the data returned
by a short status request to the PLC CPU. This variable is
updated by every callto FLT_PRESENT%r
FLT_CHANGED®%nd may also be updated by a SYSREAD

CLEAR_TS$ Astructure definition of the header records from either
faulttable.
SS_NUM_CONTROL_PROGS$ | Astructure definition of the short status record.
TS _SEC$ Astructure definition of time stamp fields.
10_FT$ Astructure definition of the /O faulttable records.
IORA_SEG$ Astructure definition of the 1/0O reference address field of
thel/Ofaultrecord.
IOFA_RACKS$ Astructure definition of the /0 fault address field of the
1/Ofaultrecord.
PLC_FT$ Astructure definition of the PLC fault table records.
PLCFA_RACK$ Astructure definition of the PLC fault address field of the

PLCfaultrecord.

These structures are predefined in READ_FLT.PGM Any field of these structures can
be accessed by name; for example:

IO_FLT_RECS$(1%+*42:42).10_FLT_ADD$.IOFA_RACK$

Other examples can be found in PRN_FLT.PGMand TEST_FLT.PGM PRN_FLT.PGM
shows the use of the structures defined in READ_FLT.PGM Refer to a listing of
PRN_FLT.PGMfor examples of the use of these structures. TEST_FLT.PGM provides
an example of the use of READ_FLT.PGMand PRN_FLT.PGM

5-22 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

READ_FAULT TBL

The Read Fault Table (READ_FAULT_TBL) procedure enables entries from either fault
table to be read into a user-supplied string. The read performed by READ_FAULT_TBL
is not destructive, so that other users (e.g., Logicmaster 90 software) may read the same
fault table entries.

The user-supplied string must be at least 42 bytes long (one fault record length). The
maximum number of fault records that may be read from the 1/0 fault table is 32. Up to
16 fault records may be read from the PLC fault table.

The actual number of faults read from the table can be determined by looking at the
NUM_READ#ield of the appropriate header string (10_FAULT_HDR$.NUM_READ%r
PLC_FAULT_HDR$.NUM_READ®Iepending on the selected fault table) after using the
READ_FAULT_TBLprocedure.

The format for using the READ_FAULT_TBLprocedure is:

xxXREAD_FAULT_TBL str, select, start, num

Parameter Description

String The string where the procedure puts the fault record(s) read from the
PLCCPU.

Select IO_FLT_TBL or PLC_FLT_TBL The defaultis IO_FLT_TBL.

Start The starting fault record number to begin reading the fault table.
The defaultis 1, the first entry.

Number The number of fault records to read. The default is 0, which returns

only the fault table header.

Note

All parameters except String are optional.

In the following example, fault records are read from the 1/0 fault table, starting with the
first record and reading up to 32 records. The fault records are placed in the string
IO_FLTS$.

50 Access “READ_FLT.pgnT
100 Dim I0_FLTS$(32*42)
2000 READ_FAULT_TBL IO_FLTS$, IO_FLT_TBL, 1, 32

In the next example, only the I/0 fault table header string, |IO0_FAULT_HDR$ is read.

50 Access “READ_FLT.pgnT
100 Dim TEMP$(42)
300 READ_FAULT_TBL TEMP$

GFK-0255K Chapter5 Advanced MegaBasic Programming 5-23

RDEL_FAULT TBL

The Read and Delete Fault Table (RDEL_FAULT_TBL) procedure reads and deletes the
first entry in either fault table. The deleted first entry is returned in a user-defined
string. The string must be at least 42 bytes long (one fault record length).

The format for using the RDEL_FAULT_TBL procedure is:

xxXRDEL_FAULT_TBL str, select

Parameter Description
String The string where the procedure puts the fault record, if any, read from
the PLC CPU.
Select I0_FLT_TBL or PLC_FLT_TBL The select parameter is optional.
The defaultis IO_FLT_TBL.

In this example, the first fault record in the PLC fault table is placed in the string FLT$
and then deleted.

50 Access “READ_FLT.pgnT
100 Dim FLT$(42)
400 RDEL_FAULT_TBL FLT$, PLC_FLT_TBL

In the next example, the first fault record in the 1/0 fault table is placed in the string
FLT$ and then deleted. Note the default selection of the 1/0 fault table.

50 Access “READ_FLT.pgnT
100 Dim FLT$(42)
600 RDEL_FAULT_TBL FLT$

5-24 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

FLT_PRESENT%

The Fault Present (FLT_PRESENT%function checks either fault table to see if there are
faults present in the table. The return value of the function is a boolean (true/falsel/0)
value. The return value is true if faults are present in the selected table and false if there
are no faults.

The format for using the FLT_PRESENT%unction is:

xxxresult=FLT_PRESENT%(select)

Parameter Description
Select IO_FLT_TBL or PLC_FLT_TBL
Result Aboolean true/falseorl/Ovalue.

The following example uses the FLT_PRESENT%function:

50 Access “READ_FLT.pgnT

100 If FLT_PRESENT%(PLC_FLT_TBL) then [

110 Print “There are faults in the PLC fault table.
120] else [

130 Print “The PLC fault table is empty.

140]

Thistime the FLT_PRESENT%unction is used to check the 1/0 fault table:

50 Access “READ_FLT.pgnT

100 If FLT_PRESENT% then [

110 Print “There are faults in the I/O fault table.
120] else [

130 Print “The I/O fault table is empty.

140]

Note

When the optional parameter for selection of the fault table is omitted,
the parentheses around the parameter list must also be omitted.

GFK-0255K Chapter5 Advanced MegaBasic Programming 5-25

FLT_CHANGED%

The Fault Changed (FLT_CHANGED%dunction checks either fault table to see if faults
have been added to or removed from the table since the last time it was checked. The
return value of the function is a boolean (true/false, 1/0) value. Thereturn value is true if
the selected fault table contents have changed since the last check of the fault table and
false if there have been no changes.

The format for using the FLT_CHANGED%unction is:

xxxresult=FLT_CHANGED%(select)

Parameter Description

Select FLT_TBL or PLC_FLT_TBL
Result Aboolean (true/falseorl/0)value.

The following example uses the FLT_CHANGED%unction:

50 Access “READ_FLT.pgnT
100 Dim PLC_FLTS$(16*42)
3000 If FLT_CHANGED%(PLC_FLT_TBL) then [
3100 READ_FAULT_TBL PLC_FLTS$, PLC_FLT_TBL, 1, 16
3200]

An example using the FLT_CHANGED%unction to check the 1/0 fault table is:

50 Access “READ_FLT.pgnT
100 Dim I0_FLTS$(32*42)
3000 If FLT_CHANGED% then [
3100 READ_FAULT_TBL IO_FLTSS$, IO_FLT_TBL, 1, 32
3200]

Note

When the optional parameter for selection of the fault table is omitted,
the parentheses around the parameter list must also be omitted.

5-26 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

WORD%

GFK-0255K

The WORD%unction provides access to 2-byte integer fields present in the fault records,
header records and short status record. The return value of the function is the integer
value of the first two bytes of the string parameter passed to the function.

The format for using the WORD%unction is:

xxx result = WORD%(str)

Parameter Description

String Astring with current size of at least 2.

Result An integer value containing the first two bytes of the string combined
into asingle word.

In the following example, the WORD%unction converts the PLC status word field of the
short status record to an integer. The integer is then formatted as a 16-bit hex number
and printed. Note that %"4h4” is a print format that displays 16-bit values as 4 digit hex
numbers, including leading zeroes if necessary. (More information on the PLC status

word is provided later in this section.)

50 Access “READ_FLT.pgnT
600 SYSREAD SHORT_STATUSS$
610 Print % “4h4” WORD%(SHORT_STATUS$.SS_PLC_STATUSS$)

In the next example, the header record for the I/0 fault table is read. The number of
faults field is converted by WORD%unction and then printed.

50 Access “READ_FLT.pgnT

100 Dim TEMP$(42)

300 READ_FAULT_TBL TEMP$

310 Print WORD%(IO_FAULT_HDR$.NUM_FLTS$), “ /O faults present.

Chapter5 Advanced MegaBasic Programming

5-27

Fault Table Header Records

When using the READ_FAULT_TBLprocedure, a header record is returned through the
IO_FAULT_HDR$or PLC_FAULT_HDRS$string variables. Header records are the same

for both fault tables and contain the following information:

Field

Description

CLEAR_TS$

Asix-byte field containing the time stamp when the fault table was last
cleared. (Refer to the discussion below of time stamp subrecords for a
definition of thisfield.)

FLTS_SINCE_CLEAR$

Atwo-byte integer (WORDY6ield containing a count of the
number of faults that have occurred since the last time the fault table
wascleared.

NUM_FLTS$ Atwo-byte integer (WORD}4ield containing a count of fault
records presently in the fault table.
NUM_READS$ Atwo-byte integer (WORD}4ield containing a count of the actual

number of faultrecords returned as a result of the READ_FAULT_TBL
call.

PLC Fault Table Records

When requesting a non-zero number of fault records from the PLC fault table, you may
receive one or more PLC fault records. The actual number of records returned may be
determined from the NUM_READSield of the PLC_FAULT_HDR%$record described

above. Each PLC fault record consists of 42 bytes with the following format:

Field

Description

PLC FT$

Aone-byte flag indicating the type of fault record and how
much of the PLC_FLT_SPECS$ field is valid data. The codes
used for this field are:

0 = FaultrecordisaPLC faultrecord; only the first
8 bytes of PLC_FLT_SPEC$dataare valid.

1 = FaultrecordisaPLC faultrecord;all 24 bytes of
PLC_FLT_SPEC%dataare valid.

Spare/reseved

Threebytes.

PLC_FLT ADD$

Afour-byte field containing the address of the module that
reported the fault. (See discussion below of PLC fault
addresses.)

PLC_FLT GRP$

A one-byte integer specifying the fault group * of the fault.

PLC_FLT ACT$

A one-byte integer specifying the action code * of the fault.

PLC_FLT_ERROR_CODE$ | Atwo-byte integer (WORDYspecifying the actual error

code * for the fault.

PLC_FLT SPEC$

8 or 24 bytes of fault-specific or extrafault data (rarely used).

PLC FLT TS$

A six-byte field containing the time stamp when the fault
occurred. See discussion below of time stamp subrecords.

* Refer to the Series90-70 Programmable Controller Installation Manual, GFK-0262, for additional terms
associated with Series 90 faults.

5-28 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999

GFK-0255K

I/O Fault Table Records

When a non-zero number of fault records is requested from the 1/0 fault table, you may
receive one or more 1/0 fault records. The actual number of records returned may be
determined from the NUM_READSield of the 10_FAULT_HDRS$ record described
above. Each 1/0 fault record contains 42 bytes and has the following format:

Field Description

10_FT$ Aone-byte flag indicating the type of fault record and how much of the
IO_FLT_SPEC$field is valid data. The codes used for this field are:

2 = Faultrecordisan /0 faultrecord. Only the first5 bytes of
IO_FLT_SPEC$ dataare valid.

3 = Faultrecordisan /0 faultrecord. All21bytesof
IO_FLT_SPEC$dataare valid.

I0_REF_ADD$ Athree-byte field describing the 170 reference address where the fault
was reported. See the discussion of the I/0 reference address sub-record
below.

I0_FLT_ADDS$ A six-byte field describing the physical address of the fault. See the
discussionofthe /0O faultaddresssub-record below.

IO_FLT_GRP$ A one-byte integer specifying the fault group * of the fault.

I0_FLT_ACT$ A one-byte integer specifying the action code * of the fault.
I0_FLT_CAT$ A one-byte integer specifying the category * of the fault.
I0_FLT_TYPE$ A one-byte integer specifying the type code * of the fault.
I0_FLT_DESC$ A one-byte integer specifying the description code * of the fault.
I0_FLT_SPEC$ 5 or 21 bytes of fault-specific or extrafaultdata (rarely used).

I0_FLT_TS$ Asix-byte field containing the time stamp when the fault occurred.

See the discussion below of the time stamp subrecord.

* Refer to the Series90-70 Programmable Controller Installation Manual, GFK-0262, for additional terms
associated with Series 90 faults.

GFK-0255K Chapter5 Advanced MegaBasic Programming 5-29

Short Status Records

When using the FLT_PRESENT%or FLT_CHANGED%unction, or when using

SYSREADto update SHORT_STATUS®r a variable SYSLINKed to #SSTAT a short

status record is created:

Field

Description

SS_NUM_CONTROL_PROGS$

Aone-byte integer containing the number of control
programtaskscurrently defined in the PLC CPU
(range =0 to 8).

SS_PROGRAMMER_FLAGS$

Asetofboolean flags indicating which control program
tasks have programmerscurrently attached to them.

Spare/Reseved

4 bytes.

SS_CONTROL_PROG_NUMS$

A one-byte integer number indicating which control
program the MegaBasic program s currently attached to
(range =-1to 7, -1 means not currently attached to a
controlprogram).

SS_PRIV_LEVELS$

The current privilege level of the MegaBasic program for
accessingmemory in the PLC CPU.

SS_SWEEP_TIME$

Atwo-byte integer (WORD}Y6ontaining the time interval
from the end of the second most recent PLC sweep to the
end of the most recent sweep. This value is in 100
microsecond increments; it is zero when the PLC is not
running auser program.

SS_PLC_STATUS$

Atwo-byte set of boolean flags and bit fields describing
the current status of the PLC CPU. Using the MegaBasic
bit numbering convention, the following bit fields are
defined:

0:1 = Enable/Disableswitchsetting.

1 = Disableoutputs.
0 = Enableoutputs.

1:1 = Programmerattachmentpresentflag.

1 = Thereisaprogrammer attachmentfor
theindicated control program number.

0 = Thereisnoprogrammer attached to that
controlprogram.

2:1 = |/Ofaulttableentry presentflag. Thisflagis
alsoreturned by the FLT_PRESENT%unction.
1 = Thereisafaultrecordinthe /0O fault

table.
0 = Thereisnofaultrecordinthel/0 fault
table.

3:1 = PLCfaulttableentry presentflag. Thisflagis
alsoreturned by the FLT_PRESENT%
(PLC_FLT_TBL) function.

1 = Thereisafaultrecord inthe PLC fault
table.

0 = Thereisno faultrecord inthe PLC fault
table.

4:1 = I/Ofaultentry changed flag. This flagisalso

returned by the FLT_CHANGED%inction.

1 = I/Ofaulttable haschangedsincethe
last time the table was read.
0 = Tablehasnotchanged.

5-30

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999

GFK-0255K

GFK-0255K

5:1 = PLCfaultentrychanged flag. Thisflagisalso
returned by the FLT_CHANGED%
(PLC_FLT_TBL) function.

1 = PLCfaulttable has changed since the
last time the table was read.

0 = Tablehasnotchanged.

6:1 = Constant sweep mode setting.

1 = Constantsweep mode of PLC CPU
operation has been enabled.

0 = Constantsweep modeisdisabled.

7:1 = Oversweep flag (valid only if constant sweep
modeisenabled).

1 = Constantsweep value was exceeded on
the last sweep.

0 = Constantsweep value was not
exceeded.

8:4 = CurrentPLC CPU state (as opposed to switch
settings or commanded state). Possiblevalues
are:

0 = PLCrunning,l/Oenabled.

1 = PLCrunning,l/Odisabled.

2 = PLCstopped.

3 = PLCstopped dueto afatal fault.

4 = PLChalted.

5 = PLCsuspended.

6 = PLCstopped,|/Oenabled.

12:2= Sparereserved.

14:1 = Program/Configuration/Symbadtatusable
changedflag.

1 = Achange has been made tothe PLC
user program, configuration data or
symbol status table. The latter
requires anew resolve of any symbols
currently resolved by the MegaBasic
program. This function is not presently
used by the system.

0 = Nochanges.

15:1= RUN/STOP switch setting from the front panel.
1 = RUN.

0 = STOPR

Chapter5 Advanced MegaBasic Programming

5-31

Time Stamp Subrecords

Time stamps are used in the fault header records to indicate when the fault table was last
cleared. They are also used in fault records to indicate when the faults occurred. The

structure of these time stamps is explained in the following table:

Time Stamp Description
TS _SEC$ Aone-byte BCD integer (range 0-59) indicating the seconds count.
TS_MINS$ A one-byte BCD integer (range 0-59) indicating the minutes count.
TS_HOURS$ A one-byte BCD integer (range 0-23) indicating the hour count.
TS_DAY$ A one-byte BCD integer (range 1-31) indicating the day of the month.
TS_MONS$ A one-byte BCD integer (range 1-12) indicating the month.
TS_YEARS$ A one-byte BCD integer (range 0-99) indicating the year.

PLC Fault Address Subrecords

In the PLC fault records, the fault address has this structure:

Integer Description
PLCFA_RACKS$ | Aone-byte integer indicating the rack number of the source of the
fault.
PLCFA_SLOT$ | A one-byte integer indicating the slot number of the source of the
fault.

PLCFA_UNIT$ | Aone-byteinteger indicating the unit, task, or connection point of
the source of the fault.

I/0 Reference Address Subrecords

In the 1/0 fault records, the reference address has this structure:

Integer Description
IORA_SEG$ | Aone-byte userreference indicator with the following typical decimal
values:
16or 70 Input table (%l).
18or 72 Output table (%Q).

10 Analog inputtable (%Al).
12 Analog outputtable (%AQ).

IORA_ADDS$ | Atwo-byte integer (WORDYvith range 1 to maximum table size.

5-32 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

I/O Fault Address Subrecords

In the 1/0 fault records, the fault address has this structure:

Integer Description
IOFA_RACKS$ Aone-byte integer indicating the rack number for the source of the
fault.
IOFA_SLOT$ A one-byte integer indicating the slot number for the source of the
fault.
IOFA_BUS$ A one-byte integer indicating the bus number for the source of the
fault.
IOFA_BUS_ADDS$ | Aone-byteinteger indicating the bus address for the source of the
fault.
IOFA_PT_OFFSET$ | Atwo-byte integer (WORDYAndicating the offset for the source of
the fault.

If the fault is slot-related, the lower level parts of the fault address (bus, bus address, and
point offset) may be set to -1.

Known Problems with Fault Table Access

There are several known problems with fault table access in early versions of the PLC
CPU firmware for the Series 90-30 and 90-70 PLCs.

PLC Description

Series90-70PLC | The faultentry present bits in the PLC status word are not cleared if the table
isemptied by doing repeated read and delete operations
(RDEL_FAULT_TBL).

Series90-30PLC | The faultentry changed bits are not cleared after reading the fault table(s),
except for the programmer attachment (READ_FAULT_TBIL

Series90-30PLC | ThePLC CPU returns the second fault in the table when doing a read and
delete sequence, instead of the first fault in the table (RDEL_FAULT_TBI).

Series90-30PLC | The PLC CPU does not return any response at all to a read and delete
sequence if the requested fault table is empty.

GFK-0255K Chapter5 Advanced MegaBasic Programming 5-33

Section 5: Gathering PLC Information from MegaBasic Programs

The UTILITY.PGM package supplies several procedures, as well as several data buffers
and flag variables, for gathering system information from the Series 90 CPU.

To use the procedures, data buffers and flag variables supplied in this UTILITY.PGM
package, add the line:

”

xxx Access “utility.pgm

to the beginning of the MegaBasic program or in the PROLOGUE section of a user
written package. The file UTILITY.PGM should have been loaded to the PCM RAM
Disk before running the MegaBasic program which accesses it. The file will be located in
the \PCOP or \PCOP\EXAMPLES.PCMdirectory of your hard disk, depending on
which version of PCOP or TERMF you use.

During the PROLOGUE processing that takes place as part of the first access to the
UTILITY.PGM package, the following interrupts are linked to procedures in the
package: BKP_MSGTIMER1, TIMER2, TIMER3, TIMER4, and TIMERS. The timers
associated with these five timer interrupts are also stopped.

If the user changes these interrupt linkages, the original settings can be restored through
the UTILITY_INIT procedure described below.

Some of the procedures in the UTILITY.PGM package support a NOWAIT operation.
As a result of the NOWAIT mode of operation, the requested data may not be available
immediately after returning from the called procedure. However, there is a global status
variable (typically “..._ VALID") that indicates when the data has arrived via the
BKP_MSGinterrupt.

The NOWAIT operation also allows some of the procedures in the package to obtain the
requested data repetitively. When the procedure has setup a repetitive read operation,
one of the timer interrupts listed above may be used in addition to the BKP_MSG
interrupt. The data valid flag is incremented every time new data arrives and rolls over
from 255 to 1. The only time that the data valid flag is a zero (a logical false) is when the
first transfer of the data after the procedure call has not yet taken place.

The procedures found in the UTILITY.PGM package are summarized in the following
table.

5-34 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

GFK-0255K

Table 5-7. UTILITY.PGM Package Procedures

Procedure

Description

READ_PLC_STATUS

Aprocedure used to get the PLC status word. The optional

parameters for this procedure indicate the method of return: wait for
completion of the read operation (default) or returnimmediately
(NOWAIT) with the data valid flag being used to indicate when the
actual data hasarrived. In addition, for NOWAIT the command may
be automatically repeated at aspecified frequency, as fast as possible,

or no repeats at all. The PLC status word is placed in the integer
variable PLC_STATUS_WORBNd the PLC_STATUS_WORD_VALID
integer variable is used to indicate when the status word is updated.

READ_PLC TIME_
AND_DATE

A procedure used to get the time and date information from the PLC
CPU. The time value is formatted (hh:mm:ss format) into the 8-byte
string variable PLC_TIME, and the date is formattedmm/dd/yy
format) into the 8-byte string variable PLC_DATE The integer
variable PLC_TIME_AND_DATE_VALIDis used to indicate when the
time and date variables have been updated.

Optional parameters for this procedure are the same as
those previously described for READ_PLC_STATUS

READ_PLC_RUN_
STATUS

A procedure that gets the PLC run status from the PLC status word
and sets the PLC_RUN_STATU#$hteger variable according to the
value found in the PLC status word as follows:

PLC runenabled.

PLC rundisabled.
PLCstopped.
PLGtopped/faulted.
PLC halted.
PLCsuspended.
PLCstopped!/Oenabled.

OO0 wWwNEO
L T O O |

The integer variable PLC_RUN_STATUS_VALIDOSs used to indicate
when the PLC run status variable has been updated.

Optional parameters for this procedure are the same as
those previously described for READ_PLC_STATUS

READ_PLC_CPU_ID

A procedure that gets the PLC ID string from the PLC CPU long status
information (#LSTAT). The length of the string is adjusted to permit
proper printing of the PLC CPU ID (ie, itis converted from zero-
terminated ASCII formatto MegaBasic string format). The string
variable PLC_CPU_IDcontains the ID string after it is read, and the
integer variable PLC_CPU_ID_VALID indicates when the ID has
been read.

The only optional parameter for this procedure is to select NOWAIT
mode, if desired.

Chapter5 Advanced MegaBasic Programming

5-35

5-36

Table 5-7. UTILITY.PGM Package Procedures (cont’d)

Procedure

Description

CHECK_CPU_
HEALTH

A procedure that performs a short status read and, if the PLC CPU

responds properly, the integer variable CPU_RESPONDINGS set to true.

If the PLC CPU does not respond properly after three (3) tries, the
CPU_RESPONDINGnNteger variable is set to false. Every time the CPU
responds, the local time and date is recorded in string variables
TIME_OF_LAST_CPU_RESP and DATE_OF_LAST_CPU_RESP
The validity of the time and date strings is indicated by the integer
variable TIME_AND_DATE_OF_LAST_CPU_RESP_VALID

The only optional parameter for this procedure specifies how often to
check the PLC CPU’s health, specified in milliseconds. The default
selection is to stop checking the CPU’s health. Unlike other
procedures, calling this procedure with no parameters does not
perform a one-time check of the CPU’s health.

READ_PLC_
FAULT BIT

A procedure used to obtain the status of a fault summary bit from the
PLC CPU. Faultsummary bits indicate the presence of one or more
faults in a specified rack, slot, bus, or module.

Optional parameters for this procedure include four parameters to
indicate the desired faultsummary bit and two parameters for the
selection of NOWAIT and the repetition rate. The default selection
isto return the rack 0 fault summary bit waiting for the response
and to do the transfer only once.

UTILITY_INIT

A procedure used to (re)initialize the interrupt linkages used for the
varioustimersand backplane interrupts for the proper functioning of
the rest of the procedures in this package. This procedure is called
automatically in the PROLOGUE section of the package but may

also be called at any time to re-establish the interruptroutine linkages
and timer states after the executionofother packages/routinesusing
the same interrupt(s) or timer(s) as the UTILITY.PGM package.

Shared constants and variables, defined in the UTILITY.PGM package, are described in

the following table:

Table 5-8. UTILITY.PGM Package Shared Constants and Variables

Name Description
TRUE Aconstant (= 1) used to indicate a logical true condition.
FALSE A constant (= 0) used to indicate a logical false condition.

PLC_STATUS_WORD

An integer variable that contains the PLC status word, as last read
from the PLC CPU. This word is a set of binary flags and bit fields
thatindicate various information about the PLC CPU’s state. When
numbered so that the LSB is bit 0, the following information is
available:

0 = Oversweep flag, valid only if constant sweep mode is
enabled.
1 = Constantsweep value was exceeded on last sweep.
0 = Constantsweep value was not exceeded.

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999

GFK-0255K

GFK-0255K

Table 5-8. UTILITY.PGM Package Shared Constants and Variables (cont’d)

PLC_STATUS_WORD
(cont’d)

=
|

= Constantsweep mode setting.
= Constant sweep mode isenabled.
Constant sweep mode isdisabled.

1
0
2 = PLCfaultentrychanged flag.
1 = PLCfaulttable has changed since last time the table
wasread.
0 = Tablehasnotchanged.

Thisvalueisreturned by the FLT_CHANGEDY%PLC_FLT_TBL)
function.

3 = 1/Ofaultentry changed flag.

1 = I/Ofaulttable haschangedsince lasttime the table
was read.
0 = Tablehasnotchanged.

Thisvalueisreturned by the FLT_CHANGED#%inction.

4 = PLCfaulttableentry presentflag.
1 = Thereisafaultrecordinthe PLC fault table.
0 = Thereisnofaultrecord inthe PLC faulttable.

Thisvalueisreturned by the FLT_PRESENT%PLC_FLT_TBL)
function.

5 = I/Ofaulttableentry presentflag
1 = Thereisafaultrecordinthe /0 faulttable.
0 = Thereisnofaultrecordinthe /0 faulttable.

Thisvalueisreturned by the FLT_PRESENT%unction.

6 = Programmerattachmentpresentflag.
1 = Thereisaprogrammer attachment for the indicated
control programnumber.

0 = Noprogrammer isattached to that control program.

7 = Enable/Disableswitchsetting.
1 Outputsaredisabled.
0 Outputsare enabled.

8 = RUN/STOPswitchsettingfromthefrontpanel.

1 = RUN.
0 = STOPR
9 = Symbolstatustable changedflag.
1 = Symbolstatustable has changed, requiring a new

resolve of any symbols currently resolved by the
MegaBasicprogram.

Note: This function is not presently used by the system.

10and11 = Sparereserved.

12thrul5 = CurrentPLC CPU state, as opposed to switch
settings or commanded state. Possiblevaluesare:
0 = PLC runenabled.
1 =PLC rundisabled.
2 = PLC stopped.
3=PLCstopped/faulted.
4 = PLC halted.
5 = PLC suspended.
6 =PLC stopped I/0 enabled.

Chapter5 Advanced MegaBasic Programming

5-37

5-38

Table 5-8. UTILITY.PGM Package Shared Constants and Variables (cont’d)

Name Description
PLC_STATUS_ Aninteger variable that is incremented by 1 every time the PLC
WORD_VALID status word is read. The value of the variable increments up to 255 and
then rollsoverto 1. A zero value (false) indicates that the PLC status
word has never been read.

PLC_TIME A string variable of length 8 that supplies the PLC time value read as
aresult of the READ_PLC_TIME_AND_DATrocedure. Thisstring is
formatted as hh:mm:ss, with the leading digit of the hours field being
set to blank if itis a zero.

PLC_DATE A string variable of length 8 that supplies the PLC date value read

asaresult of the READ_PLC_TIME_AND_DATjrocedure. This
string is formattechsnm/dd/yy, with the leading digit of the month
field being set to blank if it is a zero.

PLC_TIME_AND_
DATE_VALID

An integer variable that is incremented by 1 every time the PLC time
and date isread. The value of the variable increments up to 255 and
then rollsoverto 1. A zero value (false) indicates that the PLC time
and date have never been read.

CPU_RESPONDING

An integer variable that contains the true/falseflag,indicatingwhether
the PLC CPU is responding to the check CPU health requests (ie, short
statusreads).

TIME_OF LAST_
CPU_RESP

A string variable of length 8 that records the local time (time$
function) at which the CPU last responded to a health check. This
string is formatted as hh:mm:ss, with the leading digit of the hours
field being set to blank if it is a zero.

DATE_OF LAST_
CPU_RESP

A string variable of length 8 that records the local date (date$
function) at which the CPU last responded to a health check. This
string is formattechsnm/dd/yy, with the leading digit of the month
field being set to blank if it is a zero.

TIME_AND_DATE_
OF LAST CPU_
RESP_VALID

Aninteger variable that indicates (true/false) whether the timeand
date of last CPU response are valid. Note that the check CPU health
procedure mustrun with arep. rate greater than zero and successfully
get aresponse before this integer variable is set to true.

PLC_RUN_STATUS

An integer variable that contains the PLC run status field from the

PLC status word (bits 12-15) that is the result of the
READ_PLC_RUN_STATUSocedure. See the PLC_STATUS_WORD
discussion for the coding of the values in this variable.

PLC_RUN_
STATUS_VALID

An integer variable that indicates when the run status has been
read/updated. The value of this variable increments up to 255 and
then rollsoverto 1. A zero value (false) indicates that the PLC run
status has never been read.

PLC_CPU_ID

A string variable of maximum length 8, as a result of the
READ_PLC_CPU_lprocedure. The actual length depends on the
current length of the CPU’s ID string.

PLC_CPU_ID_VALID

Aninteger variable that indicates (true/false) whetherthe PLC CPU ID
has been read.

PLC_FAULT BIT

An integer variable that indicates the presence (true) or absence (false)
of afaultin the rack, slot, bus, or module selected through the
READ_PLC_FAULT_BITprocedure.

PLC_FAULT BIT_
VALID

An integer variable that indicates when the fault summary bit has been
read/updated. The value of this variable increments up to 255 and
then rolls over to 1. A zero value (false) indicates that the fault
summary bit has never been read.

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999

GFK-0255K

READ_PLC_STATUS

The READ_PLC_STATUSprocedure gets the PLC status word from the short status data
from the PLC CPU’s Service Request Processor (SRP). This data is obtained either in a
wait for data mode (default) or a NOWAIT mode. In NOWAIT mode, the user must
check the PLC_STATUS_WORD_VALlIBag to determine when the data has actually
arrived inthe PLC_STATUS_WORIfzariable.

Also in NOWAIT mode, the user can specify a repeat delay time so that the PLC status
word is read and updated on a continuing basis. When the delay time is specified as
something other than 0 (0= as fast as possible), the TIMER1 interrupt is used to supply
the delay between repeats of the read request.

The format of the READ_PLC_STATUSrocedure call is:

xxXREAD_PLC_STATUSwait_flag, delay

where both parameters are optional; and, if omitted, a single read of the PLC status
word takes place in wait mode. The wait_flag is normally programmed with the
NOWAIT constant (= 1 or true) from the PCMEXT.PGMpackage that is accessed
automatically by the MegaBasic program. The delay parameter is only used if NOWAIT
mode is active and is the minimum number of milliseconds that the UTILITY.PGM
package will wait before rereading the PLC status word.

An example of the use of the READ_PLC_STATUSrocedure is:

50 Access “utility.pgm "
100 READ_PLC_STATUS NOWAIT, 500
200 OLD% = PLC_STATUS_WORD_VALID
1000 Repeat
1010 While (OLD% = PLC_STATUS_WORD_VALID); Next
1020 STS% = PLC_STATUS_WORD
1030 OLD% = PLC_STATUS_WORD_VALID
1040 Print “PLC status word = ",%"“4h4” STS%
1050 Next

where the PLC status word is being read every 1/2 second as a result of the
READ_PLC_STATUSrocedure call.

The sequence of operations is:
1. First wait for a change inthe PLC_STATUS_WORD_VALIRlag (line 1010).
2. Record the state of the PLC_STATUS_WORIi2ariable (line 1020).

3. Record the state of the PLC_STATUS_WORD_VALIWDariable for waiting for a
change the next time through the loop (line 1030).

4. Finally, use the recorded state of the PLC_STATUS_ WORD further calculations.

The reason for this particular sequence of events is to insure that all processing is done
with the same sample of the PLC status word and that a new sample of the PLC status
word arrives before further processing.

GFK-0255K Chapter5 Advanced MegaBasic Programming 5-39

Another example of the READ_PLC_STATUSrocedure is:

50 Access “utility.pgm

100 READ_PLC_STATUS

110 Print “Constant sweep mode is ,

120 If (PLC_STATUS_WORD & 2) = 0 then Print “not
130 Print “active.

where a read of the PLC status word is done in wait mode so that the data is available
immediately after the call to the READ_PLC_STATUSrocedure. Then, the constant
sweep mode of the PLC status word is checked, and an appropriate message, reflecting
the current state of the constant sweep mode, is printed. Note that the “div 2” part of
the If statement eliminates bits below the constant sweep mode bit and the “mod 2” part
eliminates bits above, leaving a logical value that is only the contents of the constant
sweep mode bit.

5-40 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

READ_PLC_TIME_AND_DATE

The READ_PLC_TIME_AND_DATProcedure obtains the PLC time and date in a form
that is ready to print. The time is supplied in the PLC_TIME string variable, and the date
is supplied in the PLC_DATEstring variable.

As with the previous procedure, there are two optional parameters for the
READ_PLC_TIME_AND_DATHProcedure. The first parameter specifies the mode that
the procedure is to operate in; wait mode is the default and NOWAIT mode is optional.
When NOWAIT mode is active, the PLC_TIME_AND_DATE_VALIDinteger flag variable
is used to determine when the time and date has been read/updated. Also in NOWAIT
mode, a second parameter can specify the minimum delay between repeats of the
READ_PLC_TIME_AND_DATHEnformation. Omitting the second parameter results in a
single read of the time and date, as well as turning off any previous repetitive read
operation for the time and date. When the delay time is specified as something other
than 0 (0= as fast as possible), the TIMER2 interrupt is used to supply the delay
between repeats of the read request.

The format of the READ_PLC_TIME_AND_DATprocedure call is:

xxXREAD_PLC_TIME_AND_DATEwait_flag,delay

where both parameters are optional; and, if, omitted a single read of the PLC time and
date takes place in wait mode. The wait_flag is normally programmed with the
NOWAIT constant, if used at all. The delay parameter is only used if the NOWAIT mode
is active and is the minimum number of milliseconds that the UTILITY.PGM package
will wait before rereading the PLC time and date.

An example of the READ_PLC_TIME_AND_DATPprocedure is:

50 Access “utility.pgm”

60 Access “vt100.pgm”

100 READ_PLC_TIME_AND_DATE NOWAIT, 5000
200 OLD% = PLC_TIME_AND_DATE_VALID

300 CLS

1000 Repeat

1010 While (OLD% = PLC_TIME_AND_DATE_VALID); Next

1020 Print CUR$(12, 30),PLC_DATE, “ " PLC_TIME(1:5),CUR$(24),
1030 OLD% = PLC_TIME_AND_DATE_VALID

1040 Next

where the READ_PLC_TIME_AND_DATrocedure is used to set up a read of the time
and date every 5 seconds. Then, the screen is cleared. Every time the time and date is
updated, the date and the hours:minutes part of the time is displayed in the center of
the VT100 style screen. Due to the slow update rate, no attempt was made to insure that
the time and date string variables are time coherent. It is assumed that any processing
(in this case, printing) can be done before the next update arrives.

GFK-0255K Chapter5 Advanced MegaBasic Programming 5-41

Another example of the READ_PLC_TIME_AND_DATIprocedure is:

50 Access “utility.pgm
100 Repeat
110 READ_PLC_TIME_AND_DATE

120 If PLC_TIME <> time$(1:8) then Print “time mismatch
130 Next

where the PLC time and date are read in wait mode, and then compared with the
current local time (hours:minutes:seconds only). A message is printed out if they don’t

match. Note that the two time values generally won’t match once a second at the time
of the second’s tick.

Caution

This operation is not a recommended procedure since reading the time

of day as fast as possible from the PLC CPU may have an adverse
impact on the PLC sweep time.

5-42 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

READ_PLC_RUN_STATUS

The READ_PLC_RUN_STATUS§Srocedure allows the user to get the PLC run status from
the short status data from the SRP. This data is obtained either in a wait for data mode
(default) or a NOWAIT mode. In NOWAIT mode, the user must check the
PLC_RUN_STATUS_VALIDflag to determine when the data has actually arrived in the
PLC_RUN_STATUSrariable. In NOWAIT mode, the user can specify a repeat delay time
so that the PLC run status is read and updated on a continuing basis. When the delay
time is specified as something other than 0 (0= as fast as possible), the TIMER3
interrupt is used to supply the delay between repeats of the read request.

The format of the READ_PLC_RUN_STATUSBrocedure call is:

xxXREAD_PLC_RUN_STATUSwait_flag, delay

where both parameters are optional; and, if omitted, a single read of the PLC run status
takes place in wait mode. The wait_flag is normally programmed with the NOWAIT
constant from the PCMEXT.PGNpackage that is accessed automatically by the
MegaBasic program. The delay parameter is only used if NOWAIT mode is active and is
the minimum number of milliseconds that the UTILITY.PGM package will wait before
rereading the PLC run status.

An example of the READ_PLC_RUN_STATUS§$rocedure is:

50 Access “utility.pgm
100 READ_PLC_RUN_STATUS NOWAIT, 500
200 OLD% = —1
1000 Repeat
1010 While (OLD% = (Let NEW% = PLC_RUN_STATUS); Next
1020 OLD% = NEW%
1030 Print;Print date$, ‘T times$, “ PLC CPU
1040 Case begin on NEW%
1050 Case 0
1060 Print “is running with I/O enabled
1070 Case 1
Print “is running with I/O disabled
1090 Case 2
1100 Print “is stopped with 1/O disabled
1110 Case 3
1120 Print “is stopped with 1/O disabled and faults”,
1130 Case 4
1140 Print “is halted with I/O disabled
1150 Case 5
1160 Print “is suspended with I/O disabled
1170 Case 6
1180 Print “is stopped with 1/0O enabled ”,chr$(7)*32,
1190 Case end
2000 Next

where the CPU run status is read every 1/2 second. Every time that it changes, a time
stamped descriptive message is printed. For state 6 (stop 1/0 enabled) 32 <bel>
characters are also sent to the terminal as a type of alarm notification.

GFK-0255K Chapter5 Advanced MegaBasic Programming 5-43

Another example of the READ_PLC_RUN_STATUS$rocedure is:

50 Access “utility.pgm "
100 READ_PLC_RUN_STATUS
200 If PLC_RUN_STATUS < 2 then [

210 Print “CPUisrunning "

220] else [

230 Print “CPU is not running "
240]

where the PLC CPU run status is checked once, and an indication of the run/stopstatus
of the PLC CPU program is given.

5-44 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

READ_PLC_CPU_ID

The READ_PLC_CPU_IDprocedure obtains the PLC CPU ID string from the long status
data from the SRP. This data is obtained either in a wait for data mode (default) or a
NOWAIT mode.

In NOWAIT mode, the user must check the PLC_CPU_ID_VALID flag to determine
when the data has actually arrived in the PLC_CPU_ID string variable. There is no
provision for repetitively obtaining the PLC CPU ID data since it is assumed that this
data would not change very often.

The format of the READ_PLC_CPU_IDprocedure call is:

xxXREAD_PLC_CPU_IDwait_flag

where the parameter is optional; and, if omitted, the read of the PLC CPU ID string
takes place in wait mode. The wait_flag is normally programmed with the NOWAIT
constant from the PCMEXT.PGNpackage that is accessed automatically by the
MegaBasic program.

An example of the READ_PLC_CPU_IDprocedure is:

50 Access “utility.pgm "

100 READ_PLC_CPU_ID NOWAIT
1000 While (not PLC_CPU_ID_VALID); Next
1010 Print PLC_CPU_ID

where the PLC CPU ID string is read in NOWAIT mode. After checking that the data
has arrived, the PLC CPU ID string is printed.

Another example of the READ_PLC_CPU_IDprocedure is:

50 Access “utility.pgm
100 READ_PLC_CPU_ID
110 Print PLC_CPU_ID

where the PLC CPU ID is read in wait mode and then printed.

GFK-0255K Chapter5 Advanced MegaBasic Programming 5-45

CHECK_CPU_HEAITH

The CHECK_CPU_HEALTHrocedure checks that the PLC CPU is still alive and talking
to the PCM by reading the short status data from the SRP on a periodic basis. This data
is obtained only in NOWAIT mode. The user must check the CPU_RESPONDING@®ag to
determine if the CPU is still responding.

In addition, the user may check the TIME_OF LAST_CPU_RESRand
DATE_OF_LAST_CPU_RESBtring variables for a time stamp of the last CPU response.
These two string variables are known to be valid when the
TIME_AND_DATE_OF_LAST_CPU_RESP_VALlgical flag variable is set to true.

The user is also permitted to specify a repeat delay time so that the PLC is checked on a
continuing basis. When the delay time is specified as something greater than 0, the
TIMER4 interrupt is used to supply the delay between repeats of the read short status
request. When the repeat delay is set to zero or negative, then the checking of the PLC
CPUr’s health is stopped.

The format of the CHECK_CPU_HEALTHrocedure call is:

xxXCHECK_CPU_HEALTHdelay

where the parameter is optional; and, if omitted, the checking of the CPU’s health is
stopped. The delay parameter is the minimum number of milliseconds that the
UTILITY.PGM package will wait before rechecking the PLC CPU'’s health.

An example of the CHECK_CPU_HEALTIdrocedure is:

50 Access “utility.pgm
100 CHECK_CPU_HEALTH 1000
1000 Repeat
1010 If not CPU_RESPONDING then [

1020 Print “PLC CPU not responding to PCM

1030 If TIME_AND_DATE_OF_LAST_CPU_RESP_VALID then [

1040 Print “CPU'’s last response was at

1050 Print DATE_OF_LAST_CPU_RESP, “ 7, TIME_OF_LAST_CPU_RESP
1060]else [

1070 Print “CPU has never responded to the PCM

1080]

1090]

2000 Next

where the CHECK_CPU_HEALTIigrocedure is used to setup the periodic read of the
PLC CPU'’s short status from the SRP every second. In the main loop of the program,
the CPU_RESPONDIN@®ag is checked every time through the loop. If it indicates that
the CPU has stopped responding, a time stamped message is put out, indicating that the
CPU has stopped talking to the PCM.

5-46 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

Another example of the CHECK_CPU_HEALTIdrocedure is:

50 Access “utility.pgm

100 PROLOGUE:

110 CHECK_CPU_HEALTH 1000

120 Return

200 EPILOGUE:

210 CHECK_CPU_HEALTH

220 Return

1000 Repeat

1010 If not CPU_RESPONDING then Print chr$(7)*32

9999 Next

where, in the prologue to this example package, a check of the CPU’s health is set up to
occur every second; and, in the epilogue, this check of the CPU’s health is stopped. In
the main part of the package, the CPU_RESPONDING@®ag is checked. Every time
through the main loop that the CPU is not responding, 32 <bel> characters are printed.

5-47

GFK-0255K Chapter5 Advanced MegaBasic Programming

READ PLC_FAULT BIT

The READ_PLC_FAULT_BIT procedure gets one bit of the PLC fault summary status
from the SRP. This fault summary bit is obtained either in a wait for data mode (default)
or a NOWAIT mode. In NOWAIT mode, the user must check the
PLC_FAULT_BIT_VALID flag to determine when the data has actually arrived in the
PLC_FAULT _BIT integer variable. In NOWAIT mode, the user is also permitted to
specify a repeat delay time so that the selected fault summary bit is read and updated on
a continuing basis. When the delay time is specified as something other than 0 (0 = as
fast as possible), the TIMERS interrupt is used to supply the delay between repeats of
the read request.

The format of the READ_PLC_FAULT_BIT procedure call is:

xxXREAD_PLC_FAULT_BIT rack, slot, bus, module, wait_flag, delay

where all parameters are optional; and, if omitted, a single read of the rack 0 fault
summary bit takes place in wait mode. The wait_flag is normally programmed with the
NOWAIT constant from the PCMEXT.PGMpackage that is automatically accessed by the
MegaBasic program. The delay parameter is only used if NOWAIT mode is active and is
the minimum number of milliseconds that the UTILITY.PGM package will wait before
rereading the PLC run status. To “skip” some of the intervening parameters before the
wait_flag and delay values, use -1 for these parameters so that the
READ_PLC_FAULT_BIT procedure knows what is desired.

An example of the READ_PLC_FAULT_BIT procedure is:

50 Access “utility.pgm "

100 READ_PLC_FAULT_BIT 0, —1, —1, —1, NOWAIT, 2000
200 OLD% = —1
1000 Repeat
1010 |If (OLD% = (Let NEW% = PLC_FAULT_BIT)) then Next
1020 OLD% = NEW%

1030 Print date$, “ ", time$, “ Rack 0 fault summary bit is
1040 If not OLD% then Print “not ",

1050 Print “active.

2000 Next

where a repetitive read of the fault summary bit for rack 0 is set up to occur every two
seconds. Every time it changes, a time stamp message indicating the new state is
printed.

Another example of the READ_PLC_FAULT_BIT procedure is:

50 Access “utility.pgm

100 READ_PLC_FAULT_BITO, 3, 1, 23

200 Print “The fault summary bit for module 23 on bus 1 of the "
210 Print “ Genius Bus Controller in slot 3 is: ", PLC_FAULT_BIT

where the fault summary bit for module 23 of bus 1 of the GBC in slot 3 of rack 0 is read
and printed.

5-48 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

UTILITY_INIT

GFK-0255K

The UTILITY_INIT procedure returns all interrupt linkages and timer setups used by
the UTILITY.PGM package to the initial state that they were upon initial access to the
package. This provides a fast way to turn off all timers that may be used by the
UTILITY.PGM package, or to make sure that the interrupt linkages are still in good
condition so that the procedures in the UTILITY.PGM package may be used in a
NOWAIT/repetitivemanner.

The format of the UTILITY_INIT procedure call is:

XXXUTILITY_INIT

where there are no parameters.

An example of the UTILITY_INIT procedure is:

50 Access “utility.pgm
100 CHECK_CPU_HEALTH 1000
110 READ_PLC_FAULT_BIT 0, —1, —1, —1, NOWAIT, 2000
120 READ_PLC_RUN_STATUS NOWAIT, 500
3000 UTILITY_INIT

where several repetitive operations using the UTILITY.PGM package are started.
Then, at some later time, they are all stopped by the UTILITY_INIT procedure call.

Another example of the UTILITY_INIT procedure is:

50 Access “utility.pgm
100 Interrupt TIMER4, end
110 Interrupt TIMER4, DELAY_STARTUP_PROC
120 Interrupt TIMER4, on
130 TIMER 4, TSTART, 10000
3000 Def proc DELAY_STARTUP_PROC
3010 UTILITY_INIT
3020 CHECK_CPU_HEALTH 1000
3030 Return
3040 Proc end

where the checking of the CPU'’s health is delayed 10 seconds from system startup
before being checked every second. The use of UTILITY_INIT in this example is due
to the use of TIMER4 for the delay timer. TIMER4 is also used by the UTILITY.PGM
package for control of the repeat rate of the check of the CPU’s health. As a result the,
interrupt linkage for the UTILITY.PGM package must be re-established before
beginning the CHECK_CPU_HEALTidrocedure.

Chapter5 Advanced MegaBasic Programming 5-49

Section 6: Loading and Storing PCM Data Files Using TERMF

This section contains information on using TERMF to load data files from a personal
computer (PC) to the PCM, store data files from the PCM to a PC, show a list of files
stored in the PCM, and delete PCM files.

Note

Your PCM must have firmware version 2.50 or greater to use the
techniques described in this section. If your PCM firmware is version
2.04 or lower, you should use PCOP to transfer files.

The MegaBasic LOAD and STOREcommands work only with MegaBasic program files.
If you need to load or store data files or binary files containing MegaBasic functions and
procedures (such as the BITFUNCS.BIN and BYTESWAP.BINfiles distributed with
TERMF and PCOP), some other method must be used. There are two choices; you can
use either TERMF or PCOP.

Caution

Using the MegaBasic LOAD command to load files which are not
MegaBasic programs to the PCM will cause unexpected results. The
MegaBasic LOAD command modifies text files as they are loaded.

PCOP provides menu-driven utility functions for loading and storing PCM files. If you
are uncomfortable with command line computer interfaces (such as the MS-DOS
command line), then PCOP is probably a better choice. Refer to the Series 90 PCM
Development Software (PCOP) User’s Manual, GFK-0487, for details on using PCOP to load
and store PCM files. In order to transfer files with TERMF, you must exit from
MegaBasic. You can do this from the “Ready” prompt by typing the BYE command.
You may need to initiate a hard reset to get to the “Ready” prompt.

After you exit from MegaBasic, you may not see a prompt on your screen until you press
the Enter key. Pressing the Enter key repeatedly will display a “>" prompt on the same
line each time you press it. This prompt is from the PCM command interpreter. The
interpreter is in its PCOP mode and does not echo the keys you type to the screen. You
can switch to the interpreter’s interactive (DEBUG) mode by typing two exclamation
points (!) and then pressing the Enter key. For Release 3.00 or later, the following
message will appear:

INTERACTIVE MODE ENTERED
type *?’ for a list of commands

If your PCM firmware is a version lower than 3.00, you will see “DEBUG” rather than
“INTERACTIVE.

The full set of interactive mode commands is described in appendix C, PCM Commands.
The commands used to load, store, delete, and show a list of files in the PCM RAM Disk
are described in the remainder of this section.

5-50 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

L (Load)
Format: L <pc_filename> [<pcm_filename>]

This command directs the PCM to load the file specified by <pc_filename> to
<pcm_filename> in the PCM RAM Disk. If the optional <pcm_filename> is
omitted, the PC file name will be used, but without any device or file path prefix. If the
file already exists in the PCM, it will be overwritten. Possible errors are:

File not found.
lllegal file type.
Insufficient memory.

The PC file name may begin with a device name. If there is no device name, the default
device PC: is used to load the file. A PC disk drive and file path specification may be
included in <pc_filename> , as shown for the MegaBasic LOAD command in chapter
4, MegaBasic. However, if a PC disk drive is specified, the PC: device must also be
explicitly specified; for example: L PC:A:MYFILE.BIN . The file name is not case
sensitive.

S (Save)
Format: S <pcm_filename> [<pc_filename>]

The S (Save) command causes a file named <pcm_filename> inthe PCM RAM
Disk to be saved to a PC file. If the optional <pc_filename> is omitted, the PCM
filename will be used and the file will be saved to the current directory on the current
disk drive. If the file does not already exist on the PC, it is created; otherwise the existing
PC file will be overwritten. The <pc_filename> may include aPC disk drive and/or
file path, as described above for the L (Load) command.

D (file Directory)

Format: D

This command prints the names of the files in the PCM RAM Disk. It returns no errors.

X (eXterminate file)
Format: X <file_name>

This command deletes a file named <file_name> inthe PCM RAM Disk. An error is
reported if the file is not found or is in use.

Caution

The specified file is deleted immediately. There is no confirmation
prompt, nor is there any method for recovering a deleted file.

Note
See appendix C, PCM Commands, for additional PCM commands.

GFK-0255K Chapter5 Advanced MegaBasic Programming 5-51

Section 7: Serial Port Setup with IOCTL and PORT_CTL.BIN

This section contains information on using the MegaBasic IOCTL statement to change
the existing serial port configuration. There is also information on using the procedures
and functions in PORT_CTL.BIN to send and receive serial BREAKs and to use the
serial port modem control and status signals.

Serial Port Setup with IOCTL

The MegaBasic IOCTL statement can be used to change the Logicmaster 90 or PCOP
configuration of the two PCM serial ports during program execution. I0CTL can
change the port settings for data rate, parity, number of data bits per character, number
of stop bits, flow control type and physical protocol.

Note

The IOCTL statement is not available in PCM firmware version 2.04 or
earlier.

The format of the IOCTL statement is:

IOCTL <channel_number>, <ioctl_string>

Before the port can be configured, a channel for the port must be opened. The
<channel_number> argument is the channel number which was specified when the
port was opened.

The <ioctl_string> argument sets the port characteristics for both transmit and
receive. The string must be in double quotes. The format of an IOCTL string is:

BAUD,PARITY,DATABITS,STOPBITS,FLOWCTL,PHYSICAL,DUPLEXMODE, TURNOFFDELAY,TABUFSIZE

Parameter Values Description

BAUD 300,600, 1200, Specifies the number of bits per second. Note that 38,400 baud
2400,4800,9600, | issupported only by the Series 90-70 PCM, and only for
19200%, 0or 38400 | RS-422or RS-485 portconfigurations.

PARITY O, E, N* Specifies the type of parity checking: Odd, Even, or None.
DATABITS |7 or8* Specifies the number of data bits per character. Use 8 unless text
with 7 bit characters will be the onlydata transferred.
STOPBITS |1*or2 Specifies the number of stop bits per character. The normal
selection for 300 baud and higheris 1.
FLOWCTL |[H* S,orN Specifiestheflowcontrol method: Hardware (CTS/RTS), Software

(X-ON, X-OFF) or None.

With Hardware flow control, RTS is turned on when the port is
ready to transmit. Then, transmission begins when CTS becomes
active. RTS remains on until the TURNOFFDELAY expiresafter
the last character is sent.

With Software or Noneflow control, RTS is not turned on, and
transmissionbeginsimmediately.

* Defaultselection.

5-52 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

GFK-0255K

Parameter

Values

Description

PHYSICAL

232*,422, or 485

Specifies the physical connection protocol for the port: RS-232,
RS-422, or RS-485. RS-422 isequivalent to RS-485. All Series
90-30 PCMs support RS-232 only on COML1. IC693PCM300 sup-
portsRS-422/485only on COMZ2. Invalid selectionsareignored.

DUPLEX-
MODE

2,4% orp

Specifies the type of physical connection:
2 = half duplex(2wireforRS-422/485),
4 = full duplex(4wireforRS-422/485),
p = point-to-point.
Availablein PCM firmware version 3.00 or later.

In point-to-point (p) mode:

« Thereceiver for the specified portis always enabled.

« When PHYSICAL =422 or 485, all RS-485 line drivers for
the specified port are enabled when the command is
executed and remain on continuously.

In fullduplex (4) mode:

» Thereceiver for the specified port is always enabled.

* When PHYSICAL = 422 or 485, the RS-485 line drivers for
RTS and transmitted data outputs on the specified port are
turned on immediately before transmitting and remain on
until TURNOFFDELAY expires after the last character is sent.
At all other times, these drivers are in their high-impedance
state (tri-stated).

In halfduplex (2) mode:

» Thereceiver for the specified port is disabled immediately
before transmitting and remains off until TURNOFFDELAY
expires after the last character is sent.

* When PHYSICAL = 422 or 485, the RS-485 line drivers for
RTS and transmitted data outputs on the specified port are
turned on immediately before transmitting and remain on
until TURNOFFDELAY expires after the last character is sent.
At all other times, these drivers are in their high-impedance
state (tri-stated).

TURNOFF-
DELAY

0-65534
Default = 0.

Specifies the time in milliseconds between the end of the last
outgoing character and the time RTS is turned off (ifapplicable),
RS-485 linedriversare tri-stated (if applicable), the receiveris
enabled in half duplex mode (if applicable), and WAITmode
output statements complete execution. Availablein PCM firm-
ware version 3.00 or later.

TABUFSIZE

64 -32750
Default = 320.

Specifies the typeahead buffer size in characters for the port.

The port can accept up to one less than this number of characters
withoutoverflow before an application reads the port. When
overflow occurs, any additional characters will be lost. Any size
in the range 64 - 32750 bytes may be specified, but the maximum
may be limited by available systemmemory. AvailableinPCM
firmware version 3.00 or later.

* Defaultselection.

Any of the IOCTL parameters may be omitted. If omitted, the current value for the
parameter is used. When a parameter is omitted from the middle of the string, the
surrounding commas must remain to mark its place. For example, these statements:

Open#5, “COM2"
loctl #5, “9600,,,H "~

Chapter5 Advanced MegaBasic Programming 5-53

set the COM2 port to 9600 baud and HARDWARE flow control with whatever other
parameters are currently assigned. This statement restores the PCM default settings to
the port opened as channel 5:

loctl #5, “19200,N,8,1,H,232,4,0,320 "

The default physical protocol is RS-232, except for the IC693PCM300 module, which can
have RS-485 only on port 2. Also, note that the physical protocol setting, RS-232, for port
1 on the IC693PCM300, IC693PCM301, and IC693PCM311 modules cannot be changed.

5-54 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

Serial Port Control Using PORT_CTL.BIN

The file PORT_CTL.BIN is distributed with TERMF and PCOP, and is built into PCM
firmware version 2.51 or later. It provides functions and procedures for sending and
detecting serial breaks, for controlling the output state of serial port modem control
signals, and for detecting the state of modem status signals.

If your PCM has firmware version 2.50 or earlier, you must load PORT_CTL.BIN to the
PCM RAM disk before you can use any of its MegaBasic statements or functions. If you
have version 2.50, you may use TERMF, as described in chapter 5, section 6, Loading and

Storing PCM Data Files Using TERMFE For earlier versions, you must use PCOP.

Your MegaBasic program must use the ACCESSstatement to make PORT_CTL.BIN
available to your program. For firmware versions 2.50 and earlier, program:

xxx Access “RAM:PORT_CTL.BIN

For firmware versions 2.51 and later, program:

xxx Access “PORT_CTL.BIN’

PORT_CTL.BIN provides two procedures for sending a serial break: BREAK_ONand
BREAK_OFF Their format is:

BREAK_ON <port_number>
BREAK_OFKport_number>

The <port_number> argument specifies the serial port, 1 or 2, where the break is to be
sent. BREAK_ONsets the Transmit Data line of the specified port to its logic 0 (space)
state, while BREAK _OFFsets it to the logic 1 (mark) state.

A MegaBasic timer may be used to control the time duration of the break. For
information on MegaBasic timers, see chapter 5, section 8, Timers and Logical Interrupts.

The CHECK_BREAK() and BREAK_STATUS() functions may be used detect a
received break. Their formats are:

brk_rcvd%= CHECK_BREAK(<port_number>)
brk_status%=BREAK_STATUS(<port_number>)

The <port_number> argument specifies the serial port, 1 or 2, where the break is to be
detected. When CHECK_BREAK() iscalled, it returns 1 if a break has been detected
since the last time it was called (or the start of program execution on the first call).
BREAK_STATUS() returns 1 when break is active at the time it is called and 0 when
break is not active.

The PCM serial ports detect a break when 12 or more consecutive zero (or SPACE) bits
are received on the Receive Data input. The break condition goes away when the next 1
(or MARK) bit is received.

GFK-0255K Chapter5 Advanced MegaBasic Programming 5-55

The RTS_ONand RTS_OFF procedures are used to turn the Request To Send (RTS)
output of the serial ports on and off, respectively, while DTR_ONand DTR_OFF
perform the same operations for the Data Terminal Ready (DTR) output. Their formats
are:

RTS_ON <port_number>
RTS_OFF <portnumber>
DTR_ON <port number>
DTR_OFF<port_number>

The <port_number> argument specifies the serial port, 1 or 2, where the RTS or DTR
output is to be turned on or off.

The CTS_STATUS() and DCD_STATUS() functions may be used to detect the
status of the Clear To Send (CTS) and Data Carrier Detect (DCD) inputs, respectively.
Note that DCD is also known as Receive Line Signal Detect (RSLD) and Carrier Detect
(CD).

Their formats are:

cts_state%=CTS_STATUS(<port_number>)
dcd_state% =DCD_STATUS(<port_number>)

Again, the <port_number> argument specifies the serial port, 1 or 2, where the status
is to be tested. These functions return 1 when the corresponding status input is TRUE
and 0 when FALSE.

Note that when a serial port is configured as RS-485, the DCD_STATUS function always
returns TRUE.

Note
If the serial port is configured for hardware flow control, using RTS and
DTR ON/OFF procedures is not recommended.
These functions and procedures are available in PCM firmware version 3.00 or later:

1. ALL_SENT_STATUS (<port_number>) returns 1 if the port has no more
characters to send and 0 if the port is still sending characters.

2. IN_LENGTH (<port_number>) returns the number of characters which are in the
type-ahead buffer of the selected port and are waiting to be processed.

3. FLUSH_PORT <port_number> empties the type-ahead buffer of the selected port.

This procedure, available in PCM firmware 4.03 or later, permits masking any
combination of parity, overrun and framing errors on either serial port. Because serial
port errors cause MegaBasic program termination unless the program explicitly handles
them, you may prefer to mask these errors.

MASK_PORT_ERRORS<port_number>, <mask>

The <port_number> parameter specifies the serial port, 1 or 2, where errors will be
masked. The <mask> parameter contains a set of bits to specify the errors that will be
masked:

0010H - Parity error mask
0020H - Overrun error mask
0040H - Framing error mask

For example, 0010H masks parity errors only, 0050H masks both parity and framing
errors, 0070H masks all three.

5-56 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

Section 8: Timers and Logical Interrupts

Using the interrupt handling capabilities in MegaBasic can result in programs with
superior response time to external events.

Note

Logical interrupt handling in MegaBasic is described in chapter 9,
Advanced MegaBasic Programming Features, of the MegaBasic Programming
Language Reference Manual, GFK-0256. Because the interface between
MegaBasic and the PCM operating system relies heavily on MegaBasic
logical interrupts, it is important that you read this chapter before using
any MegaBasic interrupt instructions.

The MegaBasic language supports 32 software interrupts. Of these, 8 are reserved for
the PCM operating system, 16 for user programmable timers, 2 to indicate activity on the
PCM MegaBasic program’s standard input and output channels, 1 for communication
timeouts, 2 for asynchronous reads and writes, and 2 for backplane communication. The
remaining interrupt may be defined by your application program.

The linkage between the MegaBasic interrupt structures and the PCM hardware is done
automatically during the MegaBasic initialization.

Note

Do not execute an INTERRUPT = <interrupt number>
assignment, as you would with other versions of MegaBasic.

The discussion of foreground and background processing under
MS-DOS does not apply to MegaBasic on the PCM.

At any point in a MegaBasic program, an interrupt can be defined with the following
statement:

INTERRUPT <interrupt name>, <procedure name=>, [priority]

This statement associates one of the PCM interrupts, specified by an interrupt name,
with a user procedure, which may be either a MegaBasic or an assembly language
procedure. The priority argument, if included, can be used to override the default
priority of the PCM interrupt. However, do not assign priorities above 23 to the user
program. Priorities above 23 are required internally to interface MegaBasic to the
operating system, and the PCM will act erratically if these are used.

GFK-0255K Chapter5 Advanced MegaBasic Programming 5-57

The following PCM interrupts and their associated default priorities are available:

Table 5-9. PCM Interrupts and Associated Defaults

Interrupt Name Default Priority
BKP_MSG 23
BKP_XFER 22

TIMER16 21
TIMER15 20
TIMER14 19
TIMER13 18
TIMER12 17
TIMER11 16
TIMER10 15
TIMER9 14
TIMERS 13
TIMER7 12
TIMERG6 11
TIMERS 10
TIMER4 9
TIMER3 8
TIMER2 7
TIMER1 6
NOWAIT-RD 5
NOWAIT_WR 4
STD_IN 3
STD_OUT 2
COM_TIMEOUT 1
USER 0

Any of the interrupts listed in this table can be assigned a priority from 0 to 23 to
override the default priority. Priorities do not have to be unique; the highest priority for
a PCM MegaBasic program is 23.

Caution

Although MegaBasic permits the assignment of priorities above 23,
they must not be used in any program that runs on the PCM. These
interrupts are used to interface MegaBasic to the PCM operating
system. Any attempt to define or use these interrupts will resultin
erratic behavior of the program.

Once an interrupt is associated with a procedure and priority, it is still necessary to
enable the interrupt. This is done with the statement:

INTERRUPT <interrupt name>, ON
At any point during program execution, an interrupt can be disabled with the statement:

INTERRUPT<interrupt name>, STOP

5-58 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

If the <interrupt name> is omitted from either of these instructions, the ON or
STOP operation is applied to all of the defined interrupts.

Caution

Disabling all interrupts also disables interaction between MegaBasic
and the PCM operating system. Therefore, this operation must be
used with care. A PCM MegaBasic program may not be able to recover
from fault conditions if interrupts are disabled when the fault occurs.

Once an interrupt has been defined, it can be redefined with a new procedure name
and/or priority; but first, its old definition must be erased with this statement:

INTERRUPT<interrupt name>, END

Caution

Like the ONand STOP arguments, if the interrupt name is omitted,
the END argument applies to all interrupt definitions. Although
MegaBasic permits this, it should never be executed on a program that
runsonaPCM.

Timer Interrupts

A MegaBasic program running on the PCM has 16 available timers, in addition to the
timers that are automatically associated with many of the data movement routines.

These 16 timers are associated with interrupts, so that a timeout on any of the timers will
cause an interrupt to be posted.

The 16 timers are manipulated from a MegaBasic program with the statements:

Timer <timer number>, TSTART, <timer count>, [REP]
Timer <timer number>, TSTOP

Parameter

Description

TimerNumber

A number from 1 to 16, corresponding to timer 1 through timer 16.

TSTART or TSTOP

TSTART starts the timer counting from zero. TSTOP stops the timer.

Timer Count

The maximum count in milliseconds. Thisisanumber from1to
86,400,000, the number of milliseconds in a day.

REP

This qualifier specifies that the timer TSTART operation is to repeat. Thus,
an interrupt from the specified timer is generated repetitively. If the
timer countargument is a relative number (e.g., REP] is included), the
interrupt occurs at the specified interval.

For example, the statement “ Timer 1, TSTART, 1000, REP” would generate
an interrupt from timer 1 every second, beginning one second from the
time that the statement is executed. Note that the timer 1 interrupt

must be defined and enabled before the program can recognize it.

GFK-0255K Chapter5 Advanced MegaBasic Programming

5-59

The timer interrupt procedure is specified by these statements:

10 Interrupt TIMER1, end
20 Interrupt TIMER1, TIMER_INT_PROC
30 Interrupt TIMERL1, on

where TIMER_INT_PROC is assumed to be the name of the interrupt procedure to
process the timeout.

Although the timer utilities have resolutions of one millisecond, you must be careful
when using timers with small values, especially when many timers are used. Some of
the more powerful MegaBasic instructions can take a millisecond or more to execute.
This can potentially cause interrupts to be missed. In cases where this may be a
problem, the INTERRUPT function can be used to determine if interrupts are being
missed. Programs can be debugged using this function, which can later be edited out for
increased speed.

The function call INTERRUPT(3) returns zero when a timer interrupt has been posted
but has not been serviced. The function call INTERRUPT(2) returns the timer number.
For more information on the INTERRUPT function, refer to the MegaBasic Programming

Language Reference Manual, GFK-0256.

Backplane Interrupts

5-60

Two interrupts are provided by the PCM for backplane communication:

Interrupt Description

BKP_XFER | The BKP_XFERinterrupt (number 22) is executed whenever NOWAITmode
SYSREADor SYSWRITEdata transfers between the PLC and PCM are
completed.

BKP_MSG | The BKP_MSGnterrupt (humber 23) is used when a message is received from
elsewhere in the Series 90 system. This may be the result of a COMMREQ block
sent by the PLC CPU ladder program or a message from another PCM.

The BKP_XFERinterrupt occurs whenever the PCM and CPU complete a NOWAIT
data exchange, either through SYSREADor SYSWRITE If no user procedure has been
supplied for this interrupt, all backplane transfers proceed transparently. The only
indication that data is being moved is the changing values of variables and the
SYSTATUSS$function.

If NOWAIT backplane transfers are to be handled by a user interrupt procedure, the
default interrupt definition must be erased and a new definition activated by the user
program, as shown below.

10 Interrupt BKP_XFER, end
20 Interrupt BKP_XFER, USER_BKP_XFER_PROC
30 Interrupt BKP_XFER, on

where USER_BKP_XFER_PROG® the name of the user procedure to handle the
backplane interrupt processing. The interrupt must be redefined before any NOWAIT
backplane transfers occur.

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

The BKP_MSGinterrupt occurs when data is received from transfers other than
SYSREADand SYSWRITE with the PLC.

In some applications, it is possible that, when the BKP_MSGinterrupt is installed by the
MegaBasic program, incoming messages have already arrived and are waiting to be
processed. The backplane interface allows up to sixteen incoming messages to be
pending. Additional incoming messages are rejected by the PCM and logged as faults in
the PLC fault table.

To process any incoming messages that may have arrived before the BKP_MSG
interrupt was installed, the MegaBasic program should call the BKP_MSGinterrupt
procedure as soon as it is installed and any other necessary data structures are
initialized. Alternatively, the program could simply flush out the old messages, as
shown in the following message:

10 Interrupt BKP_MSG, end
20 Interrupt BKP_MSG, USER_INT_PROC
30 Interrupt BKP_MSG, on

40 Repeat

50 PROCESS_MESSAGE MSG_HEADERS$, MSG_STRING$
60 If MSG_HEADER = “ Then exit

70 Next

When the BKP_XFERinterrupt occurs, any data read from the PLC is in a temporary
buffer and has not been copied into its associated MegaBasic variable. In addition, the
status information for the variable has not yet been updated. To complete the transfer,
the BKP_XFERinterrupt procedure must use the PROCESS_XFERtatement.

PROCESS_XFER<pointer>, <handle>

Argument Description

Pointer AMegaBasic integer variable which, when PROCESS_XFEBompletes,
contains a pointer to the variable that was transferred. Additionalinformation
can be found by passing the pointer to the SYSTATUSS$ function. For more
information on pointers, refer to chapter 9 in the MegaBasicProgramming
Language ReferenceManual, GFK-0256.

Handle A MegaBasic integer variable which, when PROCESS_XFEBbmpletes, contains
the handle specified for the variable that was transferred when it was
SYSLINKed. If no handle was specified, zero is returned. The handle can be
used for any purpose by the application. Typically itis used to organize variables
intogroupsthatreceive similar processing.

Note

Both the pointer and handle arguments are MegaBasic variables whose
values are set by PROCESS_XFERor later use in the interrupt service
routine. Since they are set by PROCESS_XFERthey do not have to be
initialized before the PROCESS_XFERtatement is executed.

GFK-0255K Chapter5 Advanced MegaBasic Programming 5-61

The interface between the PCM and PLC allows several backplane transfers to complete
at once. In order to ensure that all transfers are processed, the BKP_XFERinterrupt
procedure must use the PROCESS_XFERtatement repeatedly until zero is returned in
the pointer variable, indicating that there are no more unprocessed transfers. In the
following example, the BKP_XFERinterrupt procedure does not return until the
pointer variable is set to zero by PROCESS_XFER

500 Def Proc USER_BKP_XFER_PROC

510 Local POINTER%, HANDLE%

520 Repeat

530 PROCESS_XFER POINTER%, HANDLE%

540 If POINTER% = 0 Then Return

550 Rem Process the data, use POINTER% and

560 Rem HANDLE% to find out what was just transferred
570 Next

580 Proc end

If a user procedure is supplied for the BKP_XFERor BKP_MSGinterrupt, the previous
interrupt definition must be erased and a new definition activated by the user program
before the new procedure is used, as shown above and in the following example.

Example using NOWAIT SYSREAD Commands

In this example, a MegaBasic program monitors four analog input channels. The data
from each channel is read and scaled by the PCM, checked for overrange, and displayed
as a bar graph on a screen.

channel 1 XXXXXXXXX
channel 2 XXXXXXXXXXXXXXXXXX
channel 3 XXXXXXXXXXXXXXXXXXXXXXXXX
channel 4 XXXXXXXXXXXX
+ + + +. + +

There are several ways to solve this problem. If the analog inputs were located together
in the PLC and the MegaBasic program did not have to do any other processing, the
program could wait in a loop, reading the inputs and displaying them as follows:

10 Dim integer INPUT_TBL(3)

20 SYSLINK INPUT_TBL, “%AI001", INT16
30 Do

40 SYSREAD INPUT_TBL

50 Forl=0to3

60 SCALE INPUT_TBL(l)

70 DISPLAY INPUT_TBL(l)

80 If INPUT_TBL(l) > OVERRANGE Then [
90 SEND_ALARM I

100]

110 Next

120 Next

Note

It is assumed that the OVERRANGEonstant and the SCALE DISPLAY,
and SEND_ALARMprocedures are defined elsewhere in the program or
in another package.

5-62 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

If the four input channels are not located in contiguous PLC memory and the MegaBasic
program has additional processing to do, so that it cannot stay in a dedicated loop, the
inputs can be processed more efficiently with an interrupt procedure as follows:

10 Def integer INPUT_TBLO
20 Def integer INPUT_TBL1
30 Def integer INPUT_TBL2
40 Def integer INPUT_TBL3

50 SYSLINK INPUT_TBLO, “%AIl001", INT16, O
60 SYSLINK INPUT_TBL1, “%AIl025", INT16, 1
70 SYSLINK INPUT_TBLZ2, “%AIl079”, INT16, 2
80 SYSLINK INPUT_TBLS3, “%AI133", INT16, 3

90 SYSREAD INPUT_TBLO, NOWAIT, 100
100 SYSREAD INPUT_TBL1, NOWAIT, 100
110 SYSREAD INPUT_TBL2, NOWAIT, 100
120 SYSREAD INPUT_TBL3, NOWAIT, 100
130 Interrupt BKP_XFER, end

140 Interrupt BKP_XFER, PROCESS_INPUTS
150 Interrupt on

500 Def Proc PROCESS INPUTS

510 Local DATA_PTR%, CHANNEL_NUM%

520 Repeat

530 PROCESS_XFER DATA_PTR%, CHANNEL_NUM%
540 If DATA_PTR% =0 Then [

550 Return

560]

570 SCALE *DATA_PTR%

580 DISPLAY *DATA_PTR%, CHANNEL_NUM%
590 If *DATA_PTR% > OVERRANGE Then [

600 SEND_ALARM CHANNEL_NUM%

610]

620 Next

630 Proc end

The BKP_XFERinterrupt and the PROCESS_XFERtatement are used here because
the data messages are transferred from PLC memories to the PCM. BKP_MSGand
PROCESS_ MESSAQGKould be used if the PLC sent this data viaa COMMREQ.

This second solution is more complex than the first because four separate variables are
defined, linked and transferred. However, they can all be processed with the same
interrupt procedure. Also, since each variable is transferred only once every 100
milliseconds, the MegaBasic program can be spend most of its time on other processing.
In either case, the SCALE DISPLAY and SEND_ALARNMrocedures are identical to the
procedures in the previous example and are called with the same arguments.

GFK-0255K Chapter5 Advanced MegaBasic Programming 5-63

Section 9: COMMREQs and Other Backplane Messages

The previous section describes processing of data sent by the PLC CPU in response to
SYSREADand SYSWRITE statements. It is also possible for MegaBasic programs to
receive unexpected messages from the CPU or elsewhere in the PLC. These messages
can be messages from COMMREQ function blocks in the PLC program, responses to
request messages sent to the CPU (for example, by the GENERIC.PGMpackage), or
messages from another PCM. Since they reach the PCM on the PLC backplane, they are
referred to in this section as backplanemessages.

PROCESS_MESSAGE Statement

When backplane messages arrive, the PCM stores them in a temporary holding queue.
MegaBasic programs must use the PROCESS_MESSAGCdHatement to move them into
MegaBasic variables. The format of the PROCESS_MESSAGdHatement is:

PROCESS_MESSAGE <header string> [<message string>]

The PROCESS_MESSAGHguments are described in the following table.

Field Description

<header string> | This parameter must contain the name of a string variable which has been
dimensioned to at least 32 bytes. Executing the PROCESS_MESSAGE
statement puts the message header into it. Tables5-9 and 5-10 describe the
header format.

<message string> | Thisoptional parameter contains the name of a string variable which has
been dimensioned to at least 256 bytes. After the PROCESS_MESSAGE
statement is executed, it may or may not contain data. The current length
indicates whether there is data and, if so, how much. The actual data
format depends on the application.

Note

If the optional message string parameter is omitted and the message
included a message string, the data in the message string will be lost.

5-64 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

GFK-0255K

After the PROCESS_ MESSAGHatement is executed, the header string variable will
contain this data:

Table 5-10. Structure of Backplane Messages

0
Status 2 bytes
2
Reserved 3 bytes
5
Priority 1 byte
6
Application Defined 1 byte
7
Message Type 1 byte
8
Source 4 bytes
12
Destination 4 bytes
16
Reserved 0 or 8 bytes
Application Defined 16 or 8 bytes
32

The parts of backplane messages are explained in the following table:

Table 5-11. Backplane Message Fields

Field Description

Status Thisfield is zero when there are no errors. All non-zero status values are error
values from the operating system.

Priority Specifies whether the message was sent high or low priority. Bit 7 is setto 1 to

indicatehighpriority.

As arule of thumb, all messages that do not require single-sweep response
time should be sent low priority. However, high priority does not, in itself,
guarantee that transfers complete in one PLC sweep.

Message Type | Used by the receiving task to aid in decoding the message. The message type
depends on the source of the message. See “ldentifying the Source of
BackplaneMessages,” below.

Source Identifies the sender of the message. The two upper bytes, starting at offset
10, are unused. The two lower bytes are formatted as follows:
16 10 9 5 4 1

[Taskid# | | slot# | | Rack # |

7 bits 5 bits 4 bits
Rackand slot numbers are used to identify a given module in the Series 90
PLC system. ID identifies a particular program or software process on the
module. For messages to other PCM tasks, IDs 1 and 2 are used by CCM on
ports1and 2, respectively, and ID 3 is used by MegaBasic.

Destination Identifies the destination of the message. When MegaBasic receivesiit, the ID
value is 3, and the slot and rack values correspond to the location of the PCM.
Reserved The data in these fields varies.

Chapter5 Advanced MegaBasic Programming 5-65

Using the BKP_MSG Interrupt

5-66

COMMREQ messages and messages from another smart module are sometimes

referred to as unsolicitedcommunication because they are not requested by the PCM.
These messages arrive at unexpected times. However, the arrival time of all backplane

messages is somewhat unpredictable. After a generic request message is sent to the PLC

CPU, several MegaBasic statements are usually executed before the response message
arrives.

The most efficient way to handle unpredictable messages is with the BKP_MSG
interrupt. This program fragment shows how to use it.

100 Dim MESSAGE_HDR$(32)
110 Dim MESSAGE_TXT$(256)
120 Def proc USER_BKP_MSG_PROC

130 Repeat

140 PROCESS_MESSAGE MESSAGE_HDR$, MESSAGE_TXT$
150 If MESSAGE_HDRS$ = “" then Return

160 Rem process the data here

170 Next

180 Proc end

500 Interrupt BKP_MSG, end
510 Interrupt BKP_MSG, USER_BKP_MSG_PROC
520 Interrupt BKP_MSG, on

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999

GFK-0255K

Interpreting COMMREQ Messages

Execution of a COMMREQ function block in the PLC CPU will cause one of these four
message types to be sent to the target PCM. All COMMREQ messages contain rack 0,
slot 1, ID 9 in the source field.

The following table explains how these four message types differ:

Type

Description

1300r 131

The body of the COMMREQ message is contained in a message string that is
copied to the string provided as the second argument to PROCESS_MESSAGE.
The word at offset 18 in the header specifies the length of the text string in bytes.
The length can also be found by calling the LEN function with the message
string as an argument.

A message type of 131 indicates that the PLC CPU is waiting for the completion of
message processing. This message type are used when the WAIT optionis
specified in the COMMREQ command block. This option is not recommended,
however, because execution of the PLC program will not continue until the
MegaBasic program sends a status message back to the CPU. When multiple
tasks are active in the PCM, a significant amount of time may elapse before

the MegaBasic program can do so.

194

The body of the COMMREQ message is contained in the last 12 bytes of the
messageheader. No information is provided on the length of the message,
unlessitisbuiltinto the message itself.

195

The body of the COMMREQ message is contained in the last 8 bytes of the message
header. No information is provided on the length of the message, unless it is built
into the message itself.

A message type of 195 indicates that the PLC CPU is waiting for the completion of
message processing. This message type are used when the WAIT option is
specified in the COMMREQ command block. This option is not recommended,
however, because execution of the PLC program will not continue until the
MegaBasic program sends a status message back to the CPU. When multiple
tasks are active in the PCM, a significant amount of time may elapse before

the MegaBasic program can do so.

This MegaBasic program fragment shows how to extract data from a COMMREQ

message.

630]

100 Dim MESSAGE_HDR$(32)
110 Dim MESSAGE_TXT$(256)
120 Dim COMMREQ_DATA$(256)

500 PROCESS_MESSAGE MESSAGE_HDR$, MESSAGE_TXT$
510 MSG_TYPE% = asc(MESSAGE_HDR$(8))

520 If MSG_TYPE% = 194 then [

530 COMMREQ_DATA_SIZE% = 12

540 COMMREQ_DATA$ = MESSAGE_HDR$(21:12)

550] Else If MSG_TYPE% = 195 then [

560 COMMREQ_DATA_SIZE% =8

570 COMMREQ_DATA$ = MESSAGE_HDR$(25:8)

580] Else If MSG_TYPE% = 130 or MSG_TYPE% = 131 |

590 COMMREQ_DATA_SIZE% = len(MESSAGE_TXT$)

600 COMMREQ_DATAS$ = MESSAGE_TXT$(1:COMMREQ_DATA_SIZE%)
610] Else [

620 Rem not a COMMREQ — do something else

GFK-0255K Chapter5 Advanced MegaBasic Programming

5-67

Programming the PLC COMMREQ Function Block

The PLC CPU uses the parameters of the COMMREQ function block and a command
block to define the data required to communicate with the PCM. When the COMMREQ
function receives power flow, a block of data is sent to the PCM. The Communications
Request may either send a message and wait for a reply, or send a message and continue
without waiting for a reply. If the command block specifies that the program will not
wait for a reply, the command block contents are sent to the PCM and program
execution resumes immediately. This is referred to as NOWAIT mode.

If the command block specifies that the program waits for a reply, the command block
contents are sent to the PCM and the CPU waits for a reply. The maximum length of
time the PLC will wait for the device to respond is specified in the command block. If
the device does not respond in that time, program execution resumes. This is referred to
as WAIT mode.

Caution

It is recommended that the flag be set to NOWAIT. Otherwise, the
time spent by MegaBasic could negatively impact the CPU sweep.

Format of the COMMREQ Instruction

The COMMREQ instruction has four input parameters and two output parameters.
When the COMMREQ function receives power flow, a command block of data is sent to
the communications TASK. The command block begins at the reference specified using
the parameter IN. The PCM to be communicated with is indicated by entering its rack
and slot number for SYSID.

[]
(enable) —|[COMM_|— (ok (ue{e{e]VIVIlE0—70 only)
| _

| REQ |

IN: Specifies the location of the command block. It may be any
word-oriented user reference (%P, %L, %R, %Al, or %AQ).

5-68 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

SYSID: A hexadecimal value that gives the rack and slot location of the PCM to
which the COMMREQ is being sent. Entries have this format:

RS 0102
[|l
rack || rack1__ ||
|
slot | slot 2 |

If the SYSID is incorrectly programmed for a rack and slot that does not
contain a PCM, the PLC will detect the error and will not send the
communications request.

Additional examples:

Rack | Slot | HexWord Value
0 4 0004h
3 4 0304h
2 9 0209h
7 2 0702h
TASK: The following table lists the applicable task numbers for the PCM.
Task Number Description
3 MegaBasic

If the task number programmed for the PCM is not valid, an application
fault, “"COMMREQ BAD TASKID,” is logged in the PLC fault table. This
can occur if the task on the COMMREQ is misprogrammed, if the PCM
has been hard reset so that MegaBasic is not running, or if the PCM is
not configured correctly for MegaBasic.

GFK-0255K Chapter5 Advanced MegaBasic Programming 5-69

5-70

OK and FT:

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999

The OK and FT (function faulted) output parameters can provide power

flow to optional logic, which can verify successful completion of the

COMMREQ. Note that the Series 90-30 COMMREQ has no OK output.
OK and FT may have these states:

ENable Error? OK output FT output
active no true false
ctive yes false true

notactive no execution false false

The COMMREQ always passes power flow to the OK output in

NOWAIT mode. In WAIT mode, the function passes power flow to the

OK output, unless the timeout period is exceeded or a zero timeout

period has been specified. The FT output may be set true if:

® The specified target address is not present.

® The specified task is not valid for the device.

® The data length is 0.

® The status pointer address (part of the command block) does not

exist. This may be due to an incorrect user reference type selection,

or an address that is out of range within that reference type.

If there are errors in the portion of the command block used specifically
by the PCM, these errors are reflected in the value returned in the status

location, not in the FT output.

GFK-0255K

MegaBasic COMMREQ Command Block

The format of the command block is shown below.

GFK-0255K

Length address(word 1)
Wait/NdMaitFlag address + 1 (word 2)
Status Pointer Memory address + 2 (word 3)
Status Pointer Offset address + 3 (word 4)
Idle Timeout Value address + 4 (word 5)
MaximumCommunicationTime address + 5 (word 6)
address + 6 (word 7)
DataBlock to
address + 133 (word 134)
Parameter Description
Length The length, in words, of the application specific data block is the first word

in the command block. The data block may contain from 1 to 128 words
(2 - 256 bytes) of data to be sent to a MegaBasic program on the PCM.

The length and content of the data are determined by the user. The
application could, for example, send the PCM a single word with bits set
to enable certain operations on the PCM. This would be similar to the
control byte in the Series Six ASCII BASIC Module, except that 16 bits are
available instead of eight. Alternatively, the PLC could send a 256-byte
block of data for the MegaBasic program to process.

Wait/NdwVait
Flag

The Wait/NodWait flag should be set to 0 (NOWAIT mode). While 1 (WAIT
mode) can be used with MegaBasic programs, NOWAIT mode isstrongly
recommended.

Status Pointer

The status pointer specifies the PLC memory location where the PCM
programshouldreturn status information. Unlike CCM COMMREQs,
no status information is returnedautomatically. The PCM program must
contain code for this purpose.

The first word of the status pointer (memory type) contains a reference
type selector value:

16 = discreteinputtable (%l).
18 = discrete outputtable (%Q).
8 = registermemory (%R).

10 = analoginputtable (%Al).
12 = analogoutputtable (%AQ).

The second word (offset) contains the offset within the specified reference
type to the status data. The location and content of the status information
depends upon the user application.

Idle Timeout Set the value to zero (e.g., NOWAIT).
Value
Maximum Set the value to zero (e.g., NOWAIT).
Communication
Time

Chapter5 Advanced MegaBasic Programming

5-71

MegaBasic COMMREQ Example

5-72

The following example is a complete MegaBasic COMMREQ application for the PCM,
including PLC Ladder logic and MegaBasic program segment. For this example, the
PCM must be configured using PCOP to permit LED 1 to be controlled by the MegaBasic
program. The PLC program uses the COMMREQ to command the PCM to blink or turn
off the PCM’s User LED 1. This is done by sending a single word with the following
translation in the MegaBasic program:

Blink LED continuously.
Blink LED once.

Turn LED off.

Blink LED continuously.

~wWN P

Note that it is also possible to simply turn the LED on, but this program does not use
that indication.

On the first scan, the COMMREQ command block and its data block are initialized using
the BLKMV function block. The command block is located in %R50-%R55. %R50, the
data block length, is 1; it contains a single word command for the MegaBasic program.
%R51 contains a 0 for NOWAIT mode. The status return is in %R200, since %R52 is 8 for
%R memory and %R53 is 199. %R54 and %R55 are ignored in NOWAIT mode and are
simply initialized to 0. The data block begins at %R56 and contains one word. In this
example, the PLC ladder instructs the PCM to blink the LED continuously since %R56 is
set to 4.

The program ensures that the PCM has had time to initialize before sending the first
COMMREQ. This is done with a 5.0 second timer function block in rung 7. The timer
count register, %R0001, was also initialized to 0 by a MOVE_INT block in rung 5. After
the timer has expired, %T0001 transitions on to stop the timer, and %T0002 is on for one
sweep.

When %T0002 is on, power flow is provided to rung 9. The return status location for the
COMMREQ block, %R0200, is set to zero by a MOVE_INT function block. Then the
COMMREQ is sent to the PCM. The IN parameter to the COMMREQ gives location
%R50 for the command block. SYSID is 0002, indicating the PCM is located in rack 0, slot
2. The TASK parameter indicates that this COMMREQ is for the MegaBasic program
since its value is 3.

The MegaBasic program defines two string variables, CMRQ_HDR$&nd CMRQ_TXT%or
receiving the COMMREQ data block. Lines 110-140 remove any messages that may
have been received by the PCM before this program was started. Applications should
flush the incoming buffer in this way. Lines 150-160 keep MegaBasic from terminating
the program.

Lines 80-100 install a user procedure called USER_BKP_MSG_PROfGr the COMMREQ
interrupt. The procedure processes any received messages until the message string
CMRQ_HDR$® NULL, indicating no more available messages. PROCESS_MESSAGHIs
CMRQ_HDR&nd CMRQ_TXT9$with the next incoming message. Note that CMRQ_TXT$
is not used in this example. Also note that the REMstatements on lines 250-270 can be
uncommented to display the actual message contents to the screen.

Line 280 converts the first (and only) word in the COMMREQ data to an integer and
stores the value in LED_CMD% The IF statements in lines 290-330 determine the proper
action to take, based on the value of LED_CMD%. Note that if the program needs to
return a status for the COMMREQ to the PLC, a SYSLINK to %R200 in the main
program and a line at 205 to SYSWRITEa value to %R200 would be added. The format
and value of %R200 is totally user-definable.

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

GFK-0255K

02—21—92 09:07 GE FANUC SERIES 90—30/90—20 DOCUMENTATION (v3.00)
MegaBasic COMMREQ example

[START OF LD PROGRAM MB_CRQ3] (* *)

[VARIABLE DECLARATIONS]

[BLOCK DECLARATIONS]

[START OF PROGRAM LOGIC]

()
(* Initialize the delay timer and the MegaBasic COMMREQ command block. %)
()

<< RUNG 5 STEP #0002 >>

FST SCN — -
+—] |BLKMV| [MOVE_|—
[INT | [INT |
| 1 []
CONST —|IN1 Q+—%R0050 CONST —|IN Q|—%R0001
+00001| | +00000 | LEN |
| |00001]|
CONST —|IN2 |
+00000| |
| 1
CONST —|IN3 |
+00008| |
| 1
CONST —|IN4 |
+00199| |
CONST —|IN5 |
+00000| |
| 1
CONST —|IN6 |
+00000| |
| 1
CONST —|IN7 |
+00004

()

(* Delay the COMMREQ 5.0 Sec. %T0001 is guaranteed to be off when the PLC *)
(* transitions to RUN mode. %T0002 is on for only one sweep when the timer *)

(* times out. *)

()

Program: MB_CRQ3 C:\LM90\MB_CRQ3 Block: _MAIN

Page

1

Chapter5 Advanced MegaBasic Programming

5-73

5-74

02—21—92 09:07 GE FANUC SERIES 90—30/90—20 DOCUMENTATION (v3.00) Page
MegaBasic COMMREQ example

<< RUNG 7 STEP #0006 >>
%T0001 —— %T0001

2

——1[[TMR |
[0.10s]|

%T0002

[1l
CONST —|PV |
+00050 | |

%R0001

()

(* Clear the COMMREQ return status location; then send a MegaBasic COMMREQ *)
(*to TASK ID 3 in the PCM at rack 0, slot 2. If there is an error, *)

(* %T0003 will latch. *)

()

<< RUNG 9 STEP #0011 >>

%T0002 %T0003

|{COMM_||

+ [[MOVE |
[INT | | REQ [|

| 1
CONST —|IN Q+—%R0200 %R0050 —|IN FT]|
+00000 | LEN | |

|00001] |
CONST —|SYSID|

0002 | |

|
CONST —|TASK |
00000003

[ENDOF PROGRAM LOGIC]

Program: MB_CRQ3 C:\LM90\MB_CRQ3 Block: _MAIN

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999

GFK-0255K

MegaBasic Blink LED Program Example

GFK-0255K

10 Rem
20 Rem * This example program controls the PCM user LED 1 basedona *

30 Rem * command value received in a COMMREQ message. The LED must be *
40 Rem * configured for use by the MegaBasic task.

50 Rem
60 Dim CMRQ_HDR$(32)

70 Dim CMRQ_TXT$(32)

80 Interrupt BKP_MSG, end

90 Interrupt BKP_MSG, USER_BKP_MSG_PROC
100 Interrupt BKP_MSG, on

110 Repeat

120 PROCESS_MESSAGE CMRQ_HDR$, CMRQ_TXT$
130 If CMRQ_HDRS$ = “” then Exit

140 Next

150 Repeat

160 Next

170 Def proc USER_BKP_MSG_PROC

180 Repeat

190 PROCESS_MESSAGE CMRQ_HDRS$, CMRQ_TXT$
200 If CMRQ_HDRS$ = “” then Return

210 Rem

220 Rem * Uncomment the next 3 lines to print the COMMREQ message The *
230 Rem * message bytes are printed in decimal format.

240 Rem
250 Rem For 1% = 1 to 16; Print asc(CMRQ_HDR$(1%)), “ ", Next 1%; Print
260 Rem For 1% = 17 to 32; Print asc(CMRQ_HDR$(1%)), “ ", Next 1%; Print

270 Rem Print
280 LED_CMD% = asc(CMRQ_HDR$(21))
290 If LED CMD% =1 or LED_CMD% = 4 then [

300 SET_LED 1,4 ;Rem blink LED 1 continuously
310]Elself LED_CMD% =2 or LED_CMD% = 3 then [

320 SET_LED 1, LED_CMD% ;Rem 2: blink LED 1 once
330] ;Rem 3: turn LED 1 off

340 Next

350 Return

360 Proc end

Chapter5 Advanced MegaBasic Programming

5-75

Controlling COMMREQs

The temporary queue where backplane messages are stored can hold only a limited
number. When the queue overflows, the PCM is unable to receive another backplane
message until PROCESS_MESSAGEcalled. COMMREQs sent to the PCM are lost, and
a fault is posted to the PLC fault table. Overflow can be prevented by regulating the
rate at which the PLC CPU sends repeated COMMREQs. The next example shows how.

The PLC ladder program for this example is based on the previous one. However, it
sends COMMREQs repeatedly rather than just once. As before, the first COMMREQ is
delayed 5 seconds after the program runs. Then, the PLC waits for the PCM to signal
that it is ready for another COMMREQ. The PCM sends its signal by using the
SYSWRITE statement to put a non-zero value into the COMMREQ status register in the
PLC CPU.

Rung 9 is added to the ladder to test the COMMREQ status register, %R0200, for a
non-zero value. When the PCM has sent its signal, the test succeeds, and %T0003 is
turned on to permit another COMMREQ.

The first COMMREQ needs to be sent before the PCM can send a signal. A new
MOVE_INT block in rung 5 sets the status register to one on the first scan. Then rung 9
permits the first COMMREQ.

The MegaBasic program in this example finds the status register location for each
COMMREQ, prints its data, and then signals the PLC CPU to send the next one. Most of
the work is done in USER_BKP_MSG_PRQO®@hich begins at line 550.

The string variables used in the program are dimensioned in lines 80-110. The main
program begins at line 120. In lines 150-180, it processes and discards any messages
which were in the temporary queue when the program started. Then, in lines 220-240,
USER_BKP_MSG_PRG€assigned to the MegaBasic BKP_MSGogical interrupt.
Finally, the COMMREQ signal is initialized in line 290, and the program waits in an
endless loop for a COMMREQ to be received.

When a COMMREQ message arrives, USER_BKP_MSG_PRQdlits it into CMRQ_HDR$
by calling PROCESS_MESSAGH line 630. This version of USER_BKP_MSG_PRCdIs0
pocesses messages in a loop, and normally exits at line 640 the second time through.
When there is a message, CMRQ_RCVD#set to one in line 730, and CMRQ_TXTds
tested in line 740. If CMRQ_TXT%ontains no data, the status pointer in CMRQ_HDR$
starts at character position 17 in CMRQ_HDR$here are 12 data bytes or less, and the
data starts at character position 21. Twelve bytes are are copied to CMRQ_DATAS$n line
780, because the actual data size is unknown.

If there is data in CMRQ_TXTg$the status pointer in CMRQ_HDRS$tarts at character
position 25. The data size is found from the current length of CMRQ_TXT$and the
actual number of data bytes is copied to CMRQ_DATA%$n line 830.

The status pointer type is in a single byte whose position in CMRQ_HDR$ stored in T%.
It is converted from a character to a value in line 890. The status pointer offset value is a
16 bit unsigned value. MegaBasic has no built-in facility for extracting two characters
from a string and converting them to an unsigned integer, so line 900 does it the crude
way.

5-76 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

The CASE block beginning at line 910 converts any one of the status pointer types it
recognizes to the corresponding string. Unrecognized types result in a NULL string,
which is ignored. If the type was recognized, the offset value is converted to a string
and added to the pointer type string in line 1070. The complete COMMREQ status
address is printed at line 1080. This completes the processing done by
USER_BKP_MSG_PROC

When the BKP_MSdogical interrupt ends, the main program loop resumes. At line 310
it detects that a COMMREQ was received, and it resets CMRQ_RCVD& line 320. Lines
370-420 print the data size and the data. The data is presented as bytes in hexadecimal
format, which often makes it easier to interpret 16 bit values separated into bytes. If you
prefer decimal integer format, you can remove the format specifier string, % 3H3", plus
its trailing comma, from the print statement in line 400.

In lines 480-510, NEXT_CMRQ%s SYSLINKed to the status register address in
STAT_PTR$ Thena SYSWRITEstatement is used to signal the PLC CPU, and
NEXT_CMRQ% UNLINKed. When the loop repeats, the test at line 310 fails until the
next COMMREQ arrives.

The technique for regulating COMMREQs shown in this example could be used with a
ladder program containing several COMMREQ function blocks. Each WAIT mode
COMMREQ block must have its own status separate status register. This program
responds to the appropriate status register for each COMMREQ message. The
developer of the MegaBasic program does not need to know in advance what the status
registers will be.

Here is a tip to make the process of debugging a program using this regulation method
easier. The design of the ladder program assumes the PCM program starts before the
first COMMREQ is sent and continues to respond to COMMREQs indefinitely. But
MegaBasic programs are started and stopped frequently while they are being
developed. When this program stops, the PLC CPU never receives a signal to send the
next COMMREQ.

The ladder program can be stopped and then started at the same time as the MegaBasic
program, but is is easier to leave the CPU running. After line 290 in the example, add 3
linesto SYSLINK CMRQ_RCVD%o %R020Q SYSWRITEIt,and UNLINK it. The
added lines will cause the ladder program to send a COMMREQ whenever the
MegaBasic program starts. When the program is working correctly, these lines can be
remarked out.

GFK-0255K Chapter5 Advanced MegaBasic Programming 5-77

5-78

02—20—92 15:46 GE FANUC SERIES 90—30/90—20 DOCUMENTATION (v3.00) Page
Regulating MegaBasic COMMREQs
[START OF LD PROGRAM REG_CRQ] * *)
[VARIABLE DECLARATIONS]
[BLOCK DECLARATIONS]
[START OF PROGRAM LOGIC]
)
(* Initialize the delay timer, the MegaBasic COMMREQ command block, and *)
(* its status location. *)
()
<< RUNG 5 STEP #0002 >>
FST_SCN ——— _— _
+— [|BLKMV| |IMOVE_| |IMOVE_|{+—
[INT | | INT | | INT |
| | |
CONST —|IN1 Q]—%R0050 CONST — | IN Q]—%R0001 CONST —|IN Q|—%R0200
+00010| | +00000 | LEN | +00001 | LEN |
| 100001 | |00001|
CONST —|IN2 | _—
+00000 | |
| 1
CONST —|IN3 |
+00008 | |
| 1
CONST —|IN4 |
+00199 | |
| 1
CONST —|IN5 |
+00000 | |
CONST —|IN6 |
+00000 | |
| 1
CONST —|IN7 |
+00004
)
(* Delay the first COMMREQ 5.0 Sec. %T0001 is guaranteed to be off when *)
(* the PLC transitions to RUN mode. *)
()
Program: REG_CRQ C:A\LM90\REG_CRQ Block: _MAIN
Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

GFK-0255K

Regulating MegaBasic COMMREQs

<< RUNG 7 STEP #0007 >>
%T0001 —— %T0001

02—20—92 15:46 GE FANUC SERIES 90—30/90—20 DOCUMENTATION (v3.00) Page

+ 1] | TMR |

[0.10s]|

%T0002

[1l
CONST —|PV |
+00050 | |

%R0001

()

(* After the initial delay, enable the first COMMREQ. Then, wait until ~ *)

(* the PCM acknowledges each one before enabling the next. *)
)

(
<< RUNG 9 STEP #0012 >>

%T0002 ——— %T0003

+—]1 [NE_]|
[INT ||

|
%R0200 —|I1 Q|—

CONST —+12 |
+00000+———+

()
(* Send a MegaBasic COMMREQ in NOWAIT mode to ID 3 in the PCM atrack 0, *)
(* slot 2, but only when the previous one is successfully acknowledged. *)

()
<< RUNG 11 STEP #0016 >>

%T0003 %T0004
+ 1T |IMOVE_| |{COMM_|
PNTI [REQ ||
CONST —|IN Q+—%R0200 %R0050 —|IN FT|—
+00000 | LEN | |]
|00001| |
_ CONST —|SYSID|
0002 | |
I
CONST —|TASK |
00000003
[END OF PROGRAM LOGIC]
Program: REG_CRQ C:A\LM90\REG_CRQ Block: _MAIN

Chapter5 Advanced MegaBasic Programming

5-79

10 Rem
20 Rem * This example program shows how to:
30 Rem * 1. Determine the COMMREQ status location in PLC memory; *

40 Rem * 2. Regulate COMMREQs from the PLC program so that the PCM *

*

50 Rem * backplane message queue never overflows; and *
60 Rem * 3. Determine the amount of data in the COMMREQ. *
70 Rem

80 Dim CMRQ_HDR$(32)
90 Dim CMRQ_TXT$(256)
100 Dim CMRQ_DATAS$(256)
110 Dim STAT_PTR$(8)

120 Rem
130 Rem * Throw away messages already in the backplane queue. *
140 Rem
150 Repeat

160 PROCESS_MESSAGE CMRQ_HDR$, CMRQ_TXT$
170 If CMRQ_HDRS$ = “” then Exit

180 Next

190 Rem
200 Rem * Assigh USER_BKP_MSG_PROC to the BKP_MSG interrupt. *
210 Rem
220 Interrupt BKP_MSG, end

230 Interrupt BKP_MSG, USER_BKP_MSG_PROC
240 Interrupt BKP_MSG, on

250 Rem
260 Rem * Initialize the NEXT_CMRQ% as the PLC signal. Then wait for *
270 Rem * COMMRERQs in an endless loop

280 Rem
290 NEXT_CMRQ% =1

300 Repeat

310 If CMRQ_RCVD% <> 0 then [
320 CMRQ_RCVD% =0

330 Rem

340 Rem * A COMMREQ arrived. Print the data size and then the data. *

350 Rem * The data is shown as bytes in hexadecimal format. *

360 Rem

370 Print “COMMREQ data size = ", CMRQ_DATA_SIZE%, “ bytes "
380 Print “COMMREQ data:”

390 For 1% =1 to CMRQ_DATA_SIZE%

400 Print % “3H2", asc(CMRQ_DATA$(1%)),

410 Next 1%
420 Print; Print

430 Rem
440 Rem * Signal the PLC CPU to send the next COMMREQ. NEXT_CMRQ% is *
450 Rem * SYSLINKed and UNLINKed each time through the loop; the CPU *
460 Rem * could use a different status register for each COMMREQ. *

470 Rem
480 If STAT_PTR$ <> “ then [

490 SYSLINK NEXT_CMRQ%, STAT_PTRS$, UINT
500 SYSWRITE NEXT_CMRQ%

510 UNLINK NEXT_CMRQ%

520

530]

540 Next

5-80 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

550 Rem

560 Rem * This procedure handles the BKP_MSG interrupt. *
570 Rem * Process messages until no more are available. *
580 Rem

590 Def proc USER_BKP_MSG_PROC

600 Local T% ;Rem Type Index

610 Local 0% ;Rem Offset Index

620 Repeat

630 PROCESS_MESSAGE CMRQ_HDR$, CMRQ_TXT$

640 If CMRQ_HDR$ = “" then Return

650 Rem

660 Rem * There is a COMMREQ message. Itis assumed to be a NOWAIT *
670 Rem * mode COMMREQ. Put the data size into CMRQ_DATA_SIZE%. If *
680 Rem * there are 12 data bytes or less, there is no way to know the *

690 Rem * exact data size unless it is included in the COMMREQ data *

700 Rem * itself. *

710 Rem * Next, copy the COMMREQ data to CMRQ_DATAS. *
720 Rem

730 CMRQ_RCVD% =1

740 If CMRQ_TXT$ = “ then [

750 T% =17
760 0% =19

770 CMRQ_DATA_SIZE% = 12 ;Rem it could be less
780 CMRQ_DATA$ = CMRQ_HDR$(21:12)
790]Else][

800 T%=25
810 0% =27

820 CMRQ_DATA_SIZE% = len(CMRQ_TXT$)

830 CMRQ_DATAS$ = CMRQ_TXT$(1:CMRQ_DATA_SIZE%)
840]

850 Rem
860 Rem * Construct a string containing the PLC reference address of *
870 Rem * the COMMREQ status register in STAT_PTRS$. *
880 Rem
890 STAT_PTR_TYPE% = asc(CMRQ_HDR$(T%))

900 STAT_PTR_OFFSET% = asc(CMRQ_HDR$(0%)) + 256*asc(CMRQ_HDR$(0%+1))
910 Case begin on STAT_PTR_TYPE%

920 Case 8; STAT_PTR$ = “%R

930 Case 10; STAT_PTR$ = “%AlI’

940 Case 12; STAT_PTR$ = “%AQ

950 Case 16; STAT_PTR$ = “%l”

960 Case 18; STAT_PTR$ = “%Q

970 Case; STAT_PTR$= ;Rem The status pointer type is
980 Case end ;Rem unrecognized; ignore it.

990 Rem

1000 Rem * If a valid status pointer type was received, add the offset *

1010 Rem * to STAT_PTR$. Remember that the offset value in the COMMREQ *
1020 Rem * is zero—based; add 1 to it. The trim$ function removes the *

1030 Rem * leading space which str$ adds when it converts numbers to *

1040 Rem * strings. *

1050 Rem

1060 If STAT_PTR$ <> “ then [

1070 STAT_PTR$ = STAT_PTRS$ + trim$(str$(STAT_PTR_OFFSET% + 1))
1080 Print “The COMMREQ status pointer is ", STAT_PTR$
1090]

1100 Next

1110 Proc end

GFK-0255K Chapter5 Advanced MegaBasic Programming 5-81

Identifying the Source of Backplane Messages

The PROCESS_MESSAGHatement processes backplane messages from three sources:
COMMREQ function blocks in the PLC program, messages from the PLC CPU in
response to generic requests, and messages sent by another PCM or Series 90 smart
module. If your MegaBasic program can receive more than one of these message types,
it will need to examine each message to identify it.

All backplane messages contain two fields which can be used to identify them: message
type and source. Here is a MegaBasic program fragment showing how to extract
message type and source information from a message. Note that the MegaBasic bitwise
AND (&) and right shift (>>) operators are available in PCM firmware versions 2.50
and later. Megabasic displays the firmware release as PCM VTOS vX.XX, whenever it
starts, where X.XX is the firmware release number. For more information on the
message type and source fields, see Table 5-10.

100 Dim MESSAGE_HDR$(32)
110 Dim MESSAGE_TXT$(256)

500 PROCESS_MESSAGE MESSAGE_HDR$, MESSAGE_TXT$

510 MSG_TYPE% = asc(MESSAGE_HDR$(8))

520 SOURCE% = asc(MESSAGE_HDR$(9)) + 256*asc(MESSAGE_HDR$(10))
530 RACK% = SOURCE% & 1111b

540 SLOT% = (SOURCE% >> 4) & 11111b

550 ID% = (SOURCE% >> 9) & 1111111b

Line 510 puts the message type value into MESSAGE_TYPE%nd line 520 puts the two
byte (16 bit) source value into SOURCE%In line 530, the & operator is used to hide or
mask all but the four least significant bits of SOURCE%vhen they are copied to RACK%

The >> operator is used in line 540 to shift the 5 bits in SOURCE%wvhich contain the
slot value into the five least significant bits of the result. Then, the & operator assures
that only these five bits are copied to SLOT% Similarly, these same operators are used
in line 930 to copy just the seven ID bits to ID%.

5-82 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

GFK-0255K

The following table explains the interpretation of MSG_TYPEYRACK%SLOT% and
ID% values.

Table 5-12. Message Type, Rack, Slot, and ID Values

Value of MSG_TYPE% Datain
Decimal | Hexadecimal | MESSAGE_TXT$? Source of Message
130 82 Yes The PLC CPU senta COMMREQ
messagefromRACK% = 0, SLOT% = 1,
131 83 Yes and ID% =9. For more informationon
COMMREQ messages, see “Interpreting
COMMREQ Messages” in this section.
194 Cc2 No
195 C3 No
148 94 Yes A genericrequestmessage completed
successfully This completion
212 D4 No acknowledgment message fromthe PLC
CPUcamefromRACK% = 0, SLOT% =
1, and ID% = 7.
209 D1 No A generic request message failed. This
PLC message came from RACK% = 0,
SLOT% =1, and ID% = 7.
128-191 80-BF Yes If MSG_TYPE% is not one of the specific
Inclusive Inclusive valueslisted above,abackplane message
was received from another PCM or
Series90smartmodule.
192-255 CO-FF No The RACK% and SLOT% values contain
Inclusive Inclusive the physical location of the module
which sent the message, and the 1D%
valueidentifiesaparticular process
within the module.
For information on sending messages to
another PCM, see “Sending Backplane
Messagesto Another PCM” in this
section.

The next MegaBasic example program shows how to distinguish between COMMREQ
messages and the response messages returned by the PLC CPU when the PCM sends a
generic request message. It is used with the REG_CRQadder program shown earlier in
this section.

In line 90, the GENERIC.PGMpackage is accessed from the PCM RAM Disk.
GENERIC.PGMmust be saved to RAM Disk before the example program can be run.

The backplane message queue is emptied in lines 160-190, and USER_BKP_MSG_PROC
is installed as the BKP_MSGinterrupt procedure in lines 230-250, just as in the previous
example.

At line 300, however, the CHG_PRIV procedure from GENERIC.PGMis used to send a
generic message to the PLC CPU. CHG_PRIVis described in chapter 5, section 3,
Accessing %P, %L, and Password-Protected Data.

To make this example shorter and clearer, the COMMREQ status register is assumed to
be %R0200. However, the technique of the previous example is better. Here, the
NEXT_CMRQ%ignal is initialized and SYSLINKed in lines 350-360, and the program
waits for messages in the loop starting at line 370.

Chapter5 Advanced MegaBasic Programming 5-83

COMMREQ data is printed in lines 440-490, in the same way as in the previous example.
If a message is not a COMMREQ), the message type is printed in line 580.

This version of the USER_BKP_MSG_PRQ®ocedure, starting at line 630, has an
additional complication. It identifies messages by testing the message type field at
character position 8. The hexadecimal values 94, D1, and D4 (148, 209, and 212 decimal)
identify generic message responses, while 82, 83, C2, and C3 (130, 131, 194, and 195
decimal) identify COMMREQs. To reduce the number of conditions that need to be
evaluated by If statements, the MegaBasic bitwise AND operator, &, masks the bit that
differs between 94 and D4 hexadecimal as well as the two bits that differ among 82, 82,
C2,and C3.

Line 820 announces that a generic response arrived, while line 980 announces each
COMMREQ. COMMREQ data is processed as in the previous example.

10 Rem
20 Rem * This example shows how to distinguish between PLC responses *

30 Rem * to generic request messages and COMMREQ messages. *

40 Rem * The program uses the MegaBasic bitwise AND operator, ‘&, to*
50 Rem * hide specific bits in an integer value. This featureis *

60 Rem * available in PCM firmware version 2.50 and later. Note that *

70 Rem * variables used as “&" operands MUST be defined as integers. *
80 Rem
90 Access “ram:generic.pgm "

100 Dim RCV_HDR$(32)
110 Dim RCV_TXT$(256)
120 Dim CMRQ_DATA$(256)

130 Rem
140 Rem * Throw away messages already in the backplane queue.
150 Rem
160 Repeat

170 PROCESS_MESSAGE RCV_HDRS$, RCV_TXT$
180 If RCV_HDRS$ = “ then Exit

190 Next

*

200 Rem
210 Rem * Assign USER_BKP_MSG_PROC to the BKP_MSG interrupt. *
220 Rem
230 Interrupt BKP_MSG, end

240 Interrupt BKP_MSG, USER_BKP_MSG_PROC
250 Interrupt BKP_MSG, on

260 Rem
270 Rem * Send a CHG_PRIV generic message to trigger a response *
280 Rem * message from the PLC CPU.

290 Rem
300 CHG_PRIV 3

310 Rem
320 Rem * Initialize the NEXT_CMRQ% as the PLC signal. Then wait for *
330 Rem * two COMMREQSs.

340 Rem
350 NEXT_CMRQ% =1

360 SYSLINK NEXT_CMRQ%, “%R200, UINT
370 Repeat

380 If MSG_TYPE% <> 0 then [

5-84 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

GFK-0255K

390 Rem
400 Rem * A backplane message arrived. If itis a COMMREQ, prlnt the *
410 Rem * data size and then the data in hexadecimal format.

420 Rem

430 If CMRQ_RCVD% <> 0 then [

440 Print “COMMREQ data size = ", CMRQ_DATA_SIZE%, “ bytes
450 Print “COMMREQ data.”

460 For 1% = 1 to CMRQ_DATA_SIZE%

470 Print % “3H2", asc(CMRQ_DATA$(1%)),

480 Next 1%
490 Print; Print

500 Rem
510 Rem * Signal the PLC CPU to send the next COMMREQ. *
520 Rem
530 SYSWRITE NEXT_CMRQ%
540]Else][

550 Rem
560 Rem * A generic message response arrived; print the message type. *
570 Rem
580 Print “message type = ", MSG_TYPE%; Print
590

600 MSG_TYPE% =0

610]

620 Next

630 Rem
640 Rem * This procedure handles the BKP_MSG interrupt. *
650 Rem * Process messages until no more are available. *
660 Rem
670 Def proc USER_BKP_MSG_PROC

680 Repeat

690 PROCESS_MESSAGE RCV_HDR$, RCV_TXT$
700 If RCV_HDRS$ = “" then Return

710 Rem
720 Rem * There is a message. Set CMRQ_DATA_SIZE% to zero. Ifthe *
730 Rem * message is a COMMREQ, change it later. Put the message type *
740 Rem * into MSG_TYPE%.

750 Rem
760 CMRQ_DATA_SIZE% =0

770 MSG_TYPE% = asc(RCV_HDR$(8))

780 Rem

790 Rem * Is the message is a generic message response? *

800 Rem

810 If (MSG_TYPE% & 10111111b) = 94h) or (MSG_TYPE% = 0D1h) then [
820 Print “a PLC generic response message arrived:

830 Rem

840 Rem * Is the message a COMMREQ? Note that the CPU uses the *

850 Rem * MSG_TYPE% values 82, 83, 0C2, and 0C3 hexadecimal only for *

860 Rem * COMMRERQs. All four values are detected with one “If
870 Rem * statement by ignoring the bits which vary. *

880 Rem
890]Else If (MSG_TYPE% & 10111110b) = 82h then [

”

*

Chapter5 Advanced MegaBasic Programming

5-85

900 Rem
910 Rem * The message is a COMMREQ. It is assumed to be a NOWAIT *
920 Rem * mode COMMREQ. Put the data size into CMRQ_DATA_SIZE%. If *
930 Rem * there are 12 data bytes or less, there is no way to know the *

940 Rem * exact data size unless it is included in the COMMREQ data *

950 Rem * itself. *

960 Rem * Next, copy the COMMREQ data to CMRQ_DATAS. *
970 Rem

980 Print “a COMMREQ message arrived:

990 CMRQ_RCVD% =1

1000 If RCV_TXTS$ = “ then [

1010 CMRQ_DATA_SIZE% = 12

1020 CMRQ_DATA$ = RCV_HDR$(21:12)

1030] Else [

1040 CMRQ_DATA_SIZE% = len(RCV_TXT$)

1050 CMRQ_DATAS$ = RCV_TXT$(1:CMRQ_DATA_SIZE%)
1060]

1070]

1080 Next

1090 Proc end

Backplane Messages to Another PCM

A MegaBasic program can send backplane messages to the MegaBasic program in
another PCM. There are two steps: the sending program simply constructs a message
in a string variable. Then, the message is sent by calling the SEND_MESSAGRBrocedure
from the MegaBasic PCM extensions. The final example in this section shows how to do
it. No PLC ladder program is used.

This example clears the backplane message queue and installs the
USER_BKP_MSG_PROQ&ocedure, just as in the previous examples. Then it waits five
seconds at line 340. Waiting assures that when two PCMs run this same program at
about the same time, (with suitable changes to the message destinations), neither one
will send a message before the other is ready. If you have two PCMs, try it.

In lines 400-440, a backplane message is initialized and then sent by calling procedure
SEND_UNSOLICITED_MSGThe destination rack, slot and ID passed to
SEND_UNSOLICITED_MSG@urre the address of MegaBasic in the PCM where this
program will run. The message type, EO hexadecimal (224 decimal), was chosen to avoid
conflict with PLC CPU messages and to be consistent with the empty SEND_TXT$
Table 5-11 shows the range of valid message type values when the message has extra
data in SEND_TXT$ the range which is valid when there is no extra data, and the
values which are used by the PLC CPU.

In lines 490-520, another message is sent to the same destination. This message includes
20 characters of text data in SEND_TXT$ so A0 hexadecimal (160 decimal) was chosen
as the message type.

After sending the two messages, the program waits for messages in the endless loop at
lines 560-570.

The USER_BKP_MSG_PRQO@terrupt procedure in this example, starting at line 580,
uses the technique of the previous example to identify each message by testing the type
field. If the test at line 750 passes, the message came from the PLC.

5-86 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

Lines 830 and 840 check for messages being returned because they are undeliverable. If
you try to send a message to a physically invalid rack/slot combination, it will be
returned by the PCM operating system with non-zero error codes in the first two bytes.
Messages addressed to a valid rack/slot which is empty, or to a non-existent ID in a
rack/slot where there is a PCM, are returned over the backplane. These messages
contain 20 hexadecimal (32 decimal) in byte 6.

Finally, messages which are not returned messages or messages from the CPU are
processed in lines 900-950. The rack, slot, and ID are extracted from the source field of
the message, as described above, and printed.

After identifying the source of the message, USER_BKP_MSG_PRQ#ints it, along with
its data string, if any, by calling the PRINT_MSGprocedure, which is described below.

Procedure SEND_UNSOLICITED_MSGoeginning at line 1060, sends the message which
was passed as string argument MSGS$, to the rack, slot and ID destination specified in the
R%, 1%, and 1D% arguments. The bitwise AND (&) and left shift (<<) operators are
used in line 1130 to construct the destination field for the message. The two byte
destination value is put into the message, one byte at a time, in lines 1140-1150. Then
the message is sent by calling SEND_MESSAGEIf the TXT$ argument is empty, only
MSGS$ is passed to SEND_MESSAGBtherwise, both MSG$and TXT$ are passed.

The PRINT_MSGprocedure prints either a backplane message or a message data string
passed in the string argument. It prints the hexadecimal values of the message bytes
and, for printable ASCII codes, the character as well. There is quite a bit of extra
complexity, but it makes the text data in the main program’s messages easy to see.

Lines 1370-1380 complain when an empty string is passed and skip the rest. Line 1400
initializes the line length and the position in MSG$ of the first character on the first
printed line.

The While loop starting at line 1410 does all the work. Line 1420 handles the short
printed line that occurs at the end when the length of MSG#$is not an exact multiple of
the line length. Line 1430 prints the hexadecimal values for each line. Line 1440 pads
the short line, if any, with enough spaces to make it as long as the preceding lines. Line
1450 prints some spaces and the single quote which introduces the ASCII characters.
The For Loop in lines 1460-1530 prints either a character, if it is printable, or a dot if not.
Line 1540 prints a trailing single quote and ends the printed line. Line 1550 adjusts the
count of characters left to print and the position in MSGS$ of the first character on the
next line. Then the While Loop exits if all the characters have been printed; otherwise it
continues.

The main program uses separate message header and text strings for messages to be
sent on the PLC backplane and messages received from the PLC backplane. They are
dimensioned in lines 70-100. Separate strings are necessary to prevent scrambled
messages that would occur if one backplane message arrived while the main program
was getting ready to send another one.

Programs which send a lot of messages sometimes need to identify them easily. The
SEND_UNSOLICITED_MS@rocedure can add a serial number to the messages it sends.
This MegaBasic fragment shows how:

1152 SERIAL_NUM% = SERIAL_NUM% + 1
1154 If SERIAL_NUM% >= 256 then SERIAL_NUM% = 1
1156 MSG$(7) = chr$(SERIAL_NUM%)

GFK-0255K Chapter5 Advanced MegaBasic Programming 5-87

Finally, here is the example program which sends backplane messages between PCMs.

10 Rem
20 Rem * This example sends two backplane messages to itself. One *
30 Rem * has less than 16 bytes of data; the other has more than 16. *

40 Rem * Try modifying the program to send messages to other modules *
50 Rem * and non—existent modules or IDs.

60 Rem * *

70 Rem * This program uses the MegaBasic bitwise AND operator, ‘& *
80 Rem * the binary shift left operator, “<<”, and the binary shift *

90 Rem * right operator, “>>". Note that variables used as operands *

100 Rem * for these operators MUST be defined as integers. They are *

110 Rem * available in PCM firmware version 2.50 and later. *

120 Rem

130 Dim RCV_HDR$(32)
140 Dim RCV_TXT$(256)
150 Dim SEND_HDR$(32)
160 Dim SEND_TXT$(256)

170 Rem
180 Rem * Throw away messages already in the backplane queue. *
190 Rem
200 Repeat

210 PROCESS_MESSAGE RCV_HDRS$, RCV_TXT$
220 If RCV_HDRS$ = “ then Exit

230 Next

240 Rem
250 Rem * Assigh USER_BKP_MSG_PROC to the BKP_MSG interrupt. *
260 Rem
270 Interrupt BKP_MSG, end

280 Interrupt BKP_MSG, USER_BKP_MSG_PROC
290 Interrupt BKP_MSG, on

300 Rem
310 Rem * Wait 5 seconds to give the other PCM (if one is used) tlme *
320 Rem * to get ready to receive backplane messages.

330 Rem
340 Wait 5

350 Rem
360 Rem * Build a backplane message in MSG_HDRS$ and send itto ID 3 in *
370 Rem * the module at rack O, slot 2. Since that is the backplane *

380 Rem * address of this program, an unsolicited message will arrive. *

390 Rem

400 SEND_HDRS$ = chr$(0) * 32 ;Rem initialize message
410 SEND_HDR$(8) = chr$(0EOh) ;Rem message type

420 SEND_HDR$(17:5) = “HELLO ;Rem message data

430 SEND_TXT$ = “
440 SEND_UNSOLICITED_MSG SEND_HDRS$, SEND_TXTS$, 0, 2, 3

450 Rem
460 Rem * Build a backplane message with more than 16 bytes of data. *
470 Rem * Send it to task 3 in this module.

480 Rem

490 SEND_HDRS$ = chr$(0) * 32 ;Rem initialize message
500 SEND_HDR$(8) = chr$(0A0h) ;Rem message type
510 SEND_TXT$ = “abcdefghijklmnopqrst "

520 SEND_UNSOLICITED_MSG SEND_HDR$, SEND_TXT$, 0, 2, 3

5-88 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

530 Rem

540 Rem * Repeat forever while messages arrive. *
550 Rem

560 Repeat

570 Next

580 Rem

590 Rem * This procedure handles the BKP_MSG interrupt. *
600 Rem * Process messages until no more are available. *
610 Rem

620 Def proc USER_BKP_MSG_PROC

630 Local MT% ;Rem Message type

640 Local ER% ;Rem Message error

650 Repeat

660 PROCESS_MESSAGE RCV_HDRS$, RCV_TXT$

670 If RCV_HDRS$ = “" then Return

680 MSG_COUNT% = MSG_COUNT% + 1

690 Rem

700 Rem * There is a message. Put the message type into MSG_TYPE%. *
710 Rem * Is the message from the PLC CPU? Check the message type for *
720 Rem * Hexadecimal values 82, 83, 94, 0C2, 0C3, 0D1, and 0DA4. *
730 Rem
740 MT% = asc(RCV_HDR$(8))

750 If (MT% & 10111111b) = 94h or MT% = 0D1h or (MT% & OBEh) = 82h then [

760 Print “a message arrived from the PLC CPU: "

770]Else][

780 Rem

790 Rem *Isita “return to sender " message? Eitherbit5settol *
800 Rem * in RCV_HDR$(6) or an error code in RCV_HDR$(1) and *

810 Rem * RCV_HDR$(2) indicate a rejected message.

820 Rem

830 ER% = asc(RCV_HDR$(1)) + 256*asc(RCV_HDR$(2))
840 If asc(RCV_HDR$(6)) = 20h or ER% <> 0 then [

850 Print “an outbound message was rejected: "
860] Else [

870 Rem

880 Rem * Extract the rack, slot, and ID of the sender. *

890 Rem

900 SOURCE% = asc(RCV_HDR$(9)) + 256*asc(RCV_HDR$(10))
910 RACK% = SOURCE% & 1111b
920 SLOT% = (SOURCE% >> 4) & 11111b

930 ID% = (SOURCE% >>9) & 1111111b

940 Print “an unsolicited message arrived from rack ", RACK%,
950 Print “slot ", SLOT%, *“ID", ID%, o

960]

970]

980 Rem

990 Rem * Print the message type. Call PRINT_MSG to print the message.*
1000 Rem

1010 Print “message type= ", MT%

1020 PRINT_MSG RCV_HDR$

1030 If RCV_TXT$ <> “ then PRINT_MSG RCV_TXT$

1040 Next

1050 Proc end

GFK-0255K Chapter5 Advanced MegaBasic Programming 5-89

5-90

1060 Rem
1070 Rem * This procedure sends the unsolicited backplane message in *

1080 Rem * the MSG$ argument to the Series 90 smart module in the rack, *
1090 Rem * slot, and task ID passed in the R%, S%, and ID% arguments. *
1100 Rem
1110 Def proc SEND_UNSOLICITED_MSG MSGS$, TXT$, R%, S%, ID%

1120 Local DEST% ;Rem A rack, slot and task |D

1130 DEST% = (R% & 1111b) + ((S% & 11111b) << 4) + ((ID% & 1111111b) << 9)
1140 MSG$(13) = chr$(DEST% mod 256)

1150 MSG$(14) = chr$(DEST% / 256)

1160 If TXT$ = “ then [

1170 SEND_MESSAGE MSG$

1180]Else[

1190 SEND_MESSAGE MSGS$, TXT$
1200]

1210 Return
1220 Proc end

1230 Rem
1240 Rem * This procedure prints strings containing binary data as well *
1250 Rem * as text. Each byte is displayed in both hexadecimal and *
1260 Rem * character format; non—printable characters are displayed as *

1270 Rem * “.". Note that 2 byte integer values are printed with the *
1280 Rem * least significant byte on the left. *

1290 Rem

1300 Def proc PRINT_MSG MSG$

1310 Local 1% ;Rem Position in current line

1320 Local J% ;Rem Starting char position in MSG$ of current line
1330 Local M_LEN% ;Rem Chars from MSG$ left to print

1340 Local L_LEN% ;Rem Length of current line

1350 Local CODE% ;Rem Current ASCII code in MSG$

1360 M_LEN% = len(MSG$)

1370 If M_LEN% = 0 then [

1380 Print “PRINT_MSG error: zero length string ”
1390]Else[

1400 L_LEN% =16;J%=0

1410 While M_LEN% >0

1420 If L_LEN% > M_LEN% then L_LEN% = M_LEN%

1430 For 1% = 1 to L_LEN%,; Print % “3H2”, asc(MSG$(1%+J%)),; Next 1%
1440 For 1% = L_LEN% + 1 to 16; Print “ ”,; Next 1%
1450 Print oo

1460 Forl1%=1to L LEN%
1470 CODE% = asc(MSG$(1% + J%))

1480 If (CODE% < asc(“ ")) or (CODE% > asc(“~")) then [
1490 Print

1500] Else [

1510 Print chr$(CODE%),

1520]

1530 Next 1%

1540 Print "

1550 M_LEN% —=L_LEN%; J% +=L_LEN%
1560 Next

1570 Print

1580]

1590 Return
1600 Proc end

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999

GFK-0255K

Section 10: Asynchronous Serial Input and Output

Most of the MegaBasic statements and functions for reading and writing devices cause
the MegaBasic program to wait until the input or output has completed. During this
time, all MegaBasic execution stops, including backplane interrupt servicing and
Control-C processing. In order to provide fast response time to interrupts, it is a good
idea to keep inputs and outputs small in length. At 19.2K bits per second, it takes 0.5
milliseconds to send a single character.

For applications where standard 1/0 causes timing problems, the program can elect to do
NOWAIT I/O . There are five NOWAIT I/O statements:

NOWAIT_OPEN
NOWAIT_CLOSE
NOWAIT_READ
NOWAIT_WRITE
NOWAIT_SEEK

Beginning with Release 2.51, there are two additional NOWAIT I/O statements:

e NOWAIT_READ_ABORT
o NOWAIT_WRITE_ABORT

Unlike normal MegaBasic 1/0 statements, the NOWAIT statements, except for
NOWAIT_OPENdo not wait for their operation to complete before allowing the
MegaBasic program to continue. In addition, NOWAIT_READand NOWAIT_WRITEcan
cause the MegaBasic program to be interrupted when the operation completes. This
allows the MegaBasic program to do remote file access, collect input, and do output
without sacrificing program speed or responsiveness.

Note

The one limitation to NOWAIT I/O processing is that only strings can
be read and written. This is because the NOWAIT I/O statements
bypass the normal 1/0formatting that is done by the MegaBasic
interpreter’s PRINT statement. The strings can be formatted using
other MegaBasic functions such as STR$

NOWAIT_READand NOWAIT_WRITEare unnecessary for the RAM Disk and the NULL
device because these accesses always complete immediately. NOWAIT_READand
NOWAIT_WRITE therefore, are not recommended for these devices.

GFK-0255K Chapter5 Advanced MegaBasic Programming 5-91

5-92

NOWAIT_OPEN

The NOWAIT_OPENunction opens a channel for subsequent asynchronous
communication. Its format is:

handle= NOWAIT_OPEN (< “name’ >, <mode>, [buffer size], [error])

Argumen

t

Description

Name

The name of the device to be read or written. It may be a device, such as COM1,
or afile, suchas PC:data.out . Ifitisa file name, the name must be fully
qualified as device:filename . For adevice, the name can be a literal string
orastring variable containing a properly formatted name.

Mode

Specifies how the file is to be opened. It is formatted as shown below.

Read Bit: If set to 1, the channel for the device or file has read privilege.
If the file does not exist, an error is returned.

Write Bit: I1f set to 1, the channel for the device or file has read and write

privilege. If afile already exists, its contents are erased.
If it does not exist, the file is created.

AppendBit: If setto 1, the channel for the device or file has read and write
privilege. If the file already exists, its contents are not erased.
If it does not exist, an error is returned.

Write bit.
Append bit.

1] Unused (must be 0).

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999

GFK-0255K

GFK-0255K

Argument

Description

Buffer Size

When a NOWAIT_READr NOWAIT_WRITEis done, an intermediate buffer is
used to transfer the data between the MegaBasic program and the device. The
buffer size argument specifies the maximum total number of bytes that can be
buffered at once. This may span several outstanding NOWAIT_READr
NOWAIT_WRITEtatements. If this value is omitted or set to zero, the amount
of data that can be buffered is limited only by the amount of free memory in the
PCM.

Specifying a maximum buffer size does not actually cause a buffer to be allocated.
Itonly places a limit on the total size of subsequent outstanding allocations.

That is, NOWAIT_READand NOWAIT_WRITg&are not being satisfied as fast as
new buffers (additional requests) are allocated. It is possible to run out of
memory on the PCM before the maximum buffer size is reached. OPENJoes,
however, verify that the maximum buffer size is available at the time that the
NOWAIT_OPEMall is made.

Error

Determines what action to take if subsequent transfers exceed the maximum
buffer size or cause the PCM to run out of memory. If the error flag is omitted or
setto zero, the MegaBasic program waits until memorybecomesavailable

and then continues. Otherwise,amemory errorisgenerated.

NOWAIT_OPENreturns a handle for the channel that is an integer in the range 0 through
65,535. This handle must be saved in order to use it with the other NOWAIT statements.

Chapter5 Advanced MegaBasic Programming

5-93

NOWAIT_READ and NOWAIT_WRITE

The NOWAIT_READand NOWAIT_WRITEstatements handle the movement of data
between the MegaBasic program and various devices. Their formats are:

NOWAIT_READ<channel handle>, <str_vb1$>, [xfer handle]
NOWAIT_WRITE <channelhandle>, <str_vb1$>, [xferhandle]

Argument Description

ChannelHandle | Anintegerthat was returned as the result of a previous NOWAIT_OPE®II.

String Variable | A MegaBasicstring variable that has already been defined in the program.
The length of this string variable may up to 65,535 bytes. The number of
bytes read or written depends upon the current size of the string variable.

TransferHandle | Anoptional integer number in the range 0 through 65,535 that identifies a
particular transfer. When the transfer completes, an interruptis generated.
This number is then made available to the interruptprocedure.

When a NOWAIT_READor NOWAIT_WRITEcompletes, an interrupt is posted to the
interpreter. If there is no interrupt procedure defined, the interrupt is ignored. In most
cases, however, it is advantageous to use interrupt procedures.

If user procedures are supplied for the NOWAIT_READor NOWAIT_WRITEinterrupts,
the old interrupt definition must be erased and a new definition activated by the user
program before the new procedures are used, much the same as for backplane interrupt
procedures. For example:

100 Interrupt NOWAIT_RD, end
110 Interrupt NOWAIT_RD, USER_ISR_PROC
120 Interrupt NOWAIT_RD, on

where USER_ISR_PROCis the name of the user procedure that handles NOWAIT_READ
processing.

Multiple NOWAIT_READ and NOWAIT_WRITE can be done simultaneously over a
single channel, as long as the maximum buffer space for the channel is not exceeded.
The transfers are processed in the order that the statements are executed.

If an interrupt is defined for NOWAIT_RDor NOWAIT_WR5 and 4) and the interrupt
occurs, the MegaBasic interrupt procedure must use either the PROCESS_READr
PROCESS_WRITEtatement to complete the processing and obtain a pointer to the
variable, the handle and an error code. The formats of the PROCESS REARNd
PROCESS_ WRITEtatements are:

PROCESS_READ<vb1_ptr>, <handle>, <error>
PROCESS_WRITE<vb1_ptr>,<handle>,<error>

5-94 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

Argument Description

VariablePointer | AMegaBasicpointer. After the statement is executed, the pointer points to the
string variable that was transferred.

Handle Contains the transfer handle passed by the NOWAIT_READr
NOWAIT_WRITEtatement that initiated the transfer. If none was passed,

the handle argument is set to zero.

Error Set to an error code or zero when there is no error.

This example isa NOWAIT_READLOnNterrupt procedure using PROCESS_READ

500 Def Proc USER_NOWAIT_RD

510 Local VBLPTR%, HANDLE%, ERR

520 Repeat

530 PROCESS_READ VBLPTR%, HANDLE%, ERR
540 If VBLPTR% = 0 then Return

550 If ERR then PROCESS_ERR ERR

560 Rem Process data

570 Next

580 Proc end

Beginning with PCM firmware version 3.00, NOWAIT_READoperations on COM1 and
COM2 may be terminated by receipt of a specific character. This is done using a slightly
different NOWAIT_OPENor the COM port. For example:

1%=NOWAIT_OPEN(COM1:13',6)
DIM A$(20)
NOWAIT_READI%,A$

This NOWAIT_READwill complete if a <CR> (CHR$(13)) is received or when twenty
characters are received. The termination character is placed into the string before the
string is returned to the MegaBasic program. The current length of the string will reflect
the actual number of characters received.

Serial Port Error Codes Returned by PROCESS_READ

When a serial port error occurs ina PROCESS_REAIBtatement, the variable specified
by the Error argument will contain a non-zero value. This value will consist of one, two,
or three bits OR’ed together:

Code Status
10H Parity error.
20H Overrun error.
40H Framingerror.
Note

These codes are different than the ones listed in section 1 of this chapter,
which apply to the MegaBasic INCHR$ function.

The PROCESS_ERRrocedure called in line 530 of the example above, is not shown.
The specific actions required to recover from serial port errors will depend on the
application.

GFK-0255K Chapter5 Advanced MegaBasic Programming 5-95

NOWAIT CLOSE

The NOWAIT_CLOSEstatement is used to close a channel that has been opened for
NOWAITaccess. Once a channel is closed, subsequent NOWAIT_REA® and
NOWAIT_WRITE to the channel result in errors, although all outstanding transfers are
completed. The format of NOWAIT_CLOSHS:

NOWAIT_CLOSE<channel handle>

NOWAIT_SEEK

The NOWAIT_SEEKstatement is used for setting the file pointer of a NOWAIT channel.
This is mainly used when accessing files over the PCM’s remote file server. Its format is:

NOWAIT_SEEK <channel handle>, <position>

Since the completion of a NOWAIT_SEEKdoes not generate an interrupt, any error that
occurs on a NOWAIT_SEEKis not recognized until a subsequent NOWAIT_READor
NOWAIT_WRITEis done. Depending on the device,a NOWAIT_WRITEbeyond the end
of file may or may not be considered an error. Fora NOWAIT_READan end of file error
isreturned in the error variable of a PROCESS_READall. In addition, the string
variable contains only those bytes read before the end of the file.

Care must be taken when stopping and restarting programs that do NOWAIT I/O
particularly NOWAIT_REABR If a program is in the middle of a NOWAIT_READbr
NOWAIT_WRITEwhen it stops, it tries to finish the operation before it runs again. In the
case of a device that is not responding, this can cause MegaBasic to wait indefinitely or

until the PCM is reset.

Another consideration for NOWAIT I/O programming occurs when a PC is attached to
the PCM and is being used as both a file server and a terminal. In this case the PC:
device and the COM: port to which it is attached should not be accessed in NOWAIT
mode unless it is certain that file traffic and terminal traffic do not occur at the same
time. Otherwise, terminal traffic will interfere with the file server protocol.

5-96 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

NOWAIT_READ_ABORT

The NOWAIT_READ_ABOR3dtatement is used to prematurely stop any NOWAIT_READ
that are active on a particular channel. If interrupts are being used for the NOWAIT_RD
handling, an interrupt will be generated to signal the completion of the NOWAIT_READ

The <error> field of the PROCESS_ READBtatement will indicate that the transfer was
aborted. The current length of the string will indicate how many characters were
received before the abort. Typically, an application will program a timer at the beginning
of a NOWAIT_READ If the timer elapses before the NOWAIT_READcompletes, then the
application stops the NOWAIT_READwith a NOWAIT_READ_ABORTT he format of a

NOWAIT_READ_ABORIE:

NOWAIT_READ_ABORT <channel handle>

All NOWAIT_READoperations active on the channel will be aborted by this statement.

NOWAIT_WRITE_ABORT

The NOWAIT_WRITE_ABORTtatement is used to prematurely stop any
NOWAIT_WRITE that are active on a particular channel. Typically, a
NOWAIT_WRITE_ABORWould be used to flush output upon receipt of a break or upon
detection of a loss of connection (no DCD/CTS TRUE status). If interrupts are being
used for the NOWAIT_WHhhandling, an interrupt will be generated to signal the
completion of the NOWAIT_WRITE

The <error> field of the PROCESS_ WRITEtatement will indicate that the write was
aborted. The format of a NOWAIT_WRITE_ABORTS:

NOWAIT_WRITE_ABORT<channel handle>

All NOWAIT_WRITEoperations active on the channel will be aborted by this statement.

GFK-0255K Chapter5 Advanced MegaBasic Programming 5-97

Example NOWAIT Program

5-98

The following example program illustrates the use of NOWAITstatements for serial 1/0:

10 Rem *** Program to exercise NOWAIT functions of MegaBasic for serial
20 Rem *** input and output.

30 Access “ram:vt100.pgm ”

40 Dim TEXT_STR1%$(80)

50 Dim TEXT_STR2%$(80)

60 Dim TEXT_STR3%$(80)

70 Def integer HANDLE1

80 Def integer HANDLE?2

90 Def integer HANDLE3

100 Interrupt NOWAIT_RD, end

110 Interrupt NOWAIT_WR, end

120 Interrupt NOWAIT_RD, READ_INT

130 Interrupt NOWAIT_WR, WRITE_INT

140 Interrupt on

150 HANDLE1 = NOWAIT_OPEN (“COM17, 0)
160 HANDLE2 = NOWAIT_OPEN (“COM17, 0)
170 HANDLE3 = NOWAIT_OPEN (“COM17, 0)
180 Len (TEXT_STR1$)=5

190 Len (TEXT_STR2$)=5

200 Len (TEXT_STR3$) =5

210 NOWAIT_READ HANDLE1, TEXT_STR1$, 1
220 NOWAIT_READ HANDLE1, TEXT_STR2$, 2
230 NOWAIT_READ HANDLE1, TEXT_STR3$, 3
240 CLS

250 Rem *** Enter non—terminating loop
260 Repeat
270 Next

280 Def proc READ_INT

290 Local VBLPTR%, HANDLE%, XFERERR%

300 Repeat

310 PROCESS_READ VBLPTR%, HANDLE%, XFERERR%
320 If VBLPTR% = 0 then Return

330 If XSFERERR% <> 0 then Stop “Transfer error "
340 NOWAIT_WRITE HANDLE2, *VBLPTR%, HANDLE%
350 Next

360 Proc end

370 Def proc WRITE_INT

380 Local VBLPTR%, HANDLE%, XFERERR%

390 Repeat

400 PROCESS_WRITE VBLPTR%, HANDLE%, XFERERR%

410 If VBLPTR% = 0 then Return

420 If XSFERERR% <> 0 then Stop “Transfer error "
430 Print HANDLE%

440 NOWAIT_READ HANDLEL, *VBLPTR%, HANDLE%

450 Next

460 Proc end

This example program uses two interrupt procedures, READ_INT and WRITE_INT, to
process NOWAITserial /0. The main program simply initializes program variables,
opens serial port 1, assigns the interrupt procedures to the NOWAIT_RDand
NOWAIT_WRnterrupts, makes three NOWAIT_READrequests, and then goes into the
non-terminating loop at line 260.

When one of the main program’s NOWAIT_READrequests completes, READ_INT is
called to process the data. READ_INT uses a NOWAIT_WRITEstatement to send the
new data back out port 1.

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

Try running this program yourself. First, load VT100.PGM into MegaBasic from the
\PCOP\EXAMPLES.PCMdirectory created when you installed TERMF or PCOP. Save
VT100.PGM to the PCM RAM disk. Then, load the example program and run it. Each
time you type five characters, they will be received by READ_INT and echoed back to
your PC display by NOWAIT_WRITE When the write operation completes,
WRITE_INT will be called. It will print the handle value of the NOWAIT_READrequest
which received your five characters.

GFK-0255K Chapter5 Advanced MegaBasic Programming 5-99

Section 11: VME Functions

Series 90-70 PLC ladder program can also communicate with the PCM using the VME
Read (VMERD and VME Write (VMEWRT functions. These functions are not available
for Series 90-30 PLCs.

VMERD VMEWRTand other associated functions treat the PCM as a standard VME
board. Data is moved to and from the PCM’s VME bus dual port RAM.

VME functions usually execute faster than the equivalent COMMREQ for the same data
transfer. These functions can also be useful in situations when the PLC System
Communications Window must be severely shortened or eliminated.

However, many of the advantages of the COMMREQ are not present for a VMERDor
VMEWRTincluding:

e Guaranteed data coherency.

® Automatic protection against simultaneous access to the same data location by the
PCM and PLC CPU.

® Fault reporting of some user programming errors, such as an invalid task or the
wrongrack/slot.

® No requirement for user knowledge or manipulation of dual port addresses.

Most applications should use the COMMREQ function to transfer data between the
ladder program and the PCM. The VME functions should be used only when timing
constraints or other factors dictate their use.

VME Function Blocks for Communicating with the PCM

Agroup of PLC functions blocks is available in Logicmaster 90 software to allow a Series
90-70 PLC CPU to communicate with VME modules, including the PCM. These
functions include:

e VME Read (VMERD.
o VME Write (VMEWRY.
e VVMRead/Modify/Write (VMERMW

® VME Test and Set (VMETS).

Each of these function blocks is discussed in detail later in this section.

5-100 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

Some Rules for VME Bus Operations in Series 90-70 PLCs

VME bus block move transfers are not supported by Series 90-70 PLCs.

Do not place the PCM, or any other GE Fanuc board, in a standard VME rack. GE Fanuc
boards must be installed only in Series 90-70 PLC racks. For more information about
VME in the Series 90-70 PCM, refer to the Series 90-70 Programmable Controller User’s
Guide to the Integration of Third Party VME Modules, GFK-0448.

General VME Information for the PCM

When the PCM is used for VME functions, it should be configured in the Logicmaster 90
configuration package. That is, configure the PCM in the same way it would be selected
for non-VME functions. The PCM should not be configured as a foreign VME module.

Addresses on the Series 90-70 VME bus consist of two parts, an address modifier (AM)
code and a 24 bit address. The AM code consists of 6 bits and is used to select the type of
VME access (e.g., the number of address bits used). The AM code for the PCM is 39H. It
specifies the StandardNon-privileged access type.

VME bus addresses for PCM modules used as VME function block targets depend on the
rack and slot location of the PCM. The PCM must be addressed in the range allocated to
the rack and slot where it is located. Address allocations for PCMs are provided in the
following table.

GFK-0255K Chapter5 Advanced MegaBasic Programming 5-101

Table 5-13. PCM Address Allocation by Slot and Rack for Standard Non-Privileged Access - 39H

Rack Slot Number
Number 2 3 4 5 6 7 8 9
000000H 020000H 040000H 060000H 080000H 0AO0000H 0CO0000H OEOO0OH
0 to to to to to to to to
07FFFH 027FFFH | 047FFFH | 067FFFH | 087FFFH | 0A7FFFH | OC7FFFH | OE7FFFH
0 100000Hthrough 7FFFFFH; User Defined for Rack 0 Only
E00000H E20000H E40000H E60000H E80000H EA0000H | ECO000H EEO000H
1 to to to to to to to to
EO7FFFH E27FFFH E47FFFH E67FFFH E87FFFH EA7FFFH | EC7TFFFH | EE7FFFH
D00000H D20000H D40000H D60000H D80000H DAO00OH | DCO000H | DEOOOOH
2 to to to to to to to to
DO7FFFH | D27FFFH | D47FFFH | D67FFFH | D87FFFH | DA7FFFH | DC7FFFH | DE7FFFH
CO00000H C20000H C40000H C60000H C80000H CAOQ0000H | CCO0000H | CEO0000H
3 to to to to to to to to
CO7FFFH | C27FFFH | CA7FFFH | C67FFFH | C87FFFH | CA7FFFH | CC7FFFH | CE7FFFH
BOOOOOH B20000H B40000H B60000H B80000OH BAOOOOH | BC0O00OH | BEOOOOH
4 to to to to to to to to
BO7FFFH B27FFFH B47FFFH B67FFFH B87FFFH BA7FFFH | BC7FFFH | BE7FFFH
AO00000H | A20000H | A40000H | A60000H | AB80000H | AAO0000H | ACO0000H | AE0000H
5 to to to to to to to to
AO7FFFH | A27FFFH | A47FFFH | AG67FFFH | A87FFFH | AA7YFFFH | AC7FFFH | AE7FFFH
900000H 920000H 940000H 960000H 980000H 9A0000H 9C0000H 9E0000H
6 to to to to to to to to
907FFFH 927FFFH 947FFFH 967FFFH 987FFFH 9A7FFFH | 9C7FFFH | 9E7FFFH
800000H 820000H 840000H 860000H 880000H 8A0000H 8CO0000H 8EO0000H
7 to to to to to to to to
807FFFH 827FFFH 847FFFH 867FFFH 887FFFH 8A7TFFFH | 8C7FFFH | 8E7FFFH

* Rack 0 is the CPU rack.

PCM Dual Port RAM Available for Applications

5-102

The PCM system software uses the first 4000h bytes of the PCM dual port RAM.

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999

Addresses within the first 4000h should never be used for user VME

Caution

communication with the PCM. Use only addresses at or above

0A4000h.

Future PCM enhancements are likely to use dual port RAM above the
first 4000h bytes. Applications should use the highest possible address
for VME communication.

GFK-0255K

VME Read Function

The VMERDfunction can be used to read data from the dual port RAM of the Series
90-70 PCM to the CPU. This function should be executed before the data is needed in
the PLC ladder program.

The format of the VMERDfunction block is:

|
(enable) —| VME_|— functi s RV V=g s
| _

|
| RD

_|
address | BYTE]|
modifier —|AM |

| LEN |

module |00001|
address —|ADR Q|— destination for VME data

Parameter

Description

Enable

Power flow input that, when true, enables the execution of the function.

Type

Function type, either byte or word, to select the corresponding type of VME
bus access to be performed.

Length

Aninternal parameter that, depending on the function type, specifies the
number of bytes or words to be transferred.

AddressModifier

Hexadecimal value coded to specify the address modifier for the PCM.
The PCM AM code is always 39H (see above).

Address

A double word specifying the hexadecimal address where the first word
or byte is read from the VME bus. It may be a constant or the reference
address of the first (low) word of two words containing the module
address. The address is based on the rack and slot where the PCM is
located. (Refer to “Address Allocation by Rack and Slot” in this section.)

OK

Power flow output that is true when the function is enabled and completes
successfully

Specifies the first PLC user reference location into which the data read from
the PCM is to be stored.

When the VMERDfunction receives power flow through its ENABLE input, the function
accesses the PCM at the specified address ADR and copies LEN data units (words or

bytes) from the PCM to PLC locations beginning at the output parameter Q. When the

operation is successfully completed, the VMERDfunction passes power to the right
through the OK output.

For information on PCM module addressing using addresses and address modifier
codes, refer to “General VME Information for the PCM,” presented earlier in this section.

GFK-0255K Chapter5 Advanced MegaBasic Programming

5-103

Example VMERD Function

In the following example, 256 bytes of data are read from a PCM in rack 4, slot 7 into
registers %R00001 through %R00128 when enabling input %100001 goes true. Unless an
error occurs while reading the data, output %Q00001 is set to true.

%I00001 [%Q00001
1T

11 | VME_|
| RD_|

| BYTE|
CONST —|AM |
0039 |LEN|
|00256]
CONST —|ADR Q|— %R00001
0BA4000 | |

In Series 90-70 PCMs, VME dual port memory occupies 32K bytes, starting at address
0A0000h:0000h, regardless of the rack and slot where the PCM is installed. In this
example, the VME bus address 0BA7000h corresponds to the PCM internal address
0A000h:7000h.

There are several ways a MegaBasic program could move data to this address in VME
dual port RAM. One of the simplest ways is to use the FILL statement:

FILLOAOOOA:7000h, <data list>

where <data list> is a list of data items expressed as MegaBasic variables, constants,
or expressions. For more information, refer to the MegaBasic Programming Language
Reference Manual, GFK-0256.

5-104 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

VME Write Function

The VMEWRTunction can be used to write data from the Series 90-70 CPU to the VME
dual port RAM of the PCM. Locate the function block at a place in the program where
the output data is ready to send.

The format of the VMEWRTunction block is:

[
(enable) —| VME_|— functioues RV =g e
[-

| WRT_|
data to be | BYTE]|
written —|IN |

| LEN |
address |00001]
modifier —|AM |

module |
address —|ADR |

Parameter Description
Enable Power flow input that, when true, enables the execution of the function.
Type Function type, either byte or word, to select the corresponding type of VME
bus access to be performed.
Length Aninternal parameter that, depending on the function type, specifies the
number of bytes or words to be transferred.
In Specifies the first PLC user reference location where the data to be written

to the PCM is stored. This parameter may be a constant, in which case the
constant value is written to all VME addresses covered by the function’s
length.

AddressModifier | Hexadecimal value coded to specify the address modifier of the PCM.
The PCM AM code is always 39H (see above).

Address A double word specifying the hexadecimal address where the first word

or byte is written to the VME bus. It may be a constant or the reference
address of the first (low) word of two words containing the module address.
The address is based on the rack and slot where the PCM is located. Refer to
“Address Allocation by Rack and Slot” in this section.

OK Power flow output that is true when the function is enabled and completes
successfully

When the VMEWRTunction receives power flow through its enable input, LEN data
units (words or bytes) from the PLC locations beginning at the input parameter IN are
written to the PCM at the specified address ADR. When the operation is successfully
completed, the VMEWRTunction passes power to the right through the OK output.

For information on PCM module addressing using address and address modifier codes,
refer to “General VME Information for the PCM,” presented earlier in this section.

GFK-0255K Chapter5 Advanced MegaBasic Programming 5-105

Example VMEWRT Function

In the following example, the hexadecimal value FFFF is written to each of 20 words on
the PCM during every sweep when enabling input %MO00001 is true. The starting
(lowest) PCM address is specified by the contents of %R00019 (low word) and %R00020
(high word). Unless an error occurs while writing the data, internal coil %MO00055 is set
to true.

%MO00001 | %MO00055
1T

1L | VME_|
| WRT_|
| WORD|
CONST —|IN |
FFFF | LEN |
|00020]|
CONST —|AM |
0039 | |

|]
%R00019 —|ADR |

The PCM must be located in the rack and slot corresponding to the address contained in
%R00019 and %R00020. The MegaBasic user program would read this data from the
PCM dual port RAM, using an EXAMstatement at the appropriate address.

5-106 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

VME Read/Modify/Write Function

GFK-0255K

The VMERMMunNction can be used to update a data element in the dual port RAM of the
Series 90-70 PCM.

The format of the VMERMMunction block is:

[]
(enable) —| VME_|— functio RV g ==
| |

| RMW_|
| BYTE]|
operation —|OP |

[]
data mask —|MSK |

address | |
modifier —|AM |

module | |
address —|ADR |

Parameter Description
Enable Power flow input that, when true, enables the execution of the function.
Type Function type, either byte or word, to select the corresponding type of VME
bus access to be performed.
Operation A constant which specifies whether an AND or OR function is to be used to
combine the data and the mask. 0 specifies AND; 1 specifies OR.
Mask Aword value containing a mask to be ANDed or ORed with the data read

from the bus. If the type is byte, only the low 8 bits of the mask are used.

AddressModifier | Hexadecimal value coded to specify the rack in which the module resides
and the access mode of the VME bus access to be performed.

Address A double word specifying the hexadecimal address of the word or byte to be
accessed. It may be a constant or the reference address of the first (low)
word of two words containing the module address. The address is based on
the rack and slot where the module is located. Refer to “AddressAllocation
by Rack and Slot” in this section.

OK Power flow output that is true when the function is enabled and completes
successfully

When the VMERMMUNction receives power flow through its enable input, the function
reads a word or byte of data from the module at the specified address (ADR) and
address modifier (AM). This byte or word of data is combined (AND/OR) with the data
mask (MSK). Selection of AND or OR is made using the input OP. If byte data is
specified, only the lower 8 bits of MSK are used. The result is then written back to the
same VME address from which it was read. When the operation is successfully
completed, the VMERMMWUnNction passes power to the right through the OK output.

For information on PCM module addressing using address and address modifier codes,
refer to “General VME Information for the PCM,” presented earlier in this section.

Chapter5 Advanced MegaBasic Programming 5-107

VME Test and Set Function

The VMETSfunction can be used to handle semaphores located in the dual-port RAM of
the Series 90-70 PCM. The VMETSfunction exchanges a boolean true (1) for the value
currently at the semaphore location. If that value already was true, then the VMETS
function does not acquire the semaphore. If the existing value was false, the semaphore
is set and the VMETSfunction block has control of the semaphore and the use of the
memory area it controls. The semaphore is cleared and ownership relinquished by using
the VMEWRTunction to write false (0) to the semaphore location.

The format of the VMETSfunction block is:

[]
(enable) —| VME_|— functiofsRVIVI=gyE
| _ | -

[TS_|
address | BYTE]|
modifier —|AM Q|— semaphore acquired

module | |
address —|ADR |

Parameter Description
Enable Power flow input that, when true, enables the execution of the function.
Type Function type, either byte or word, to select the corresponding type of VME

bus access to be performed.

AddressModifier | Hexadecimal value coded to specify the rack in which the module resides
and the access mode of the VME bus access to be performed.

Address A double word specifying the hexadecimal address of the first word or
byte to be accessed. It may be a constant or the reference address of the
first (low) word of two words containing the module address. The
address is based on the rack and slot the module is located. Refer to
“Address Allocation by Rack and Slot” in this section.

OK Power flow output that is true when the function is enabled and completes
successfully
Q Set to true if the semaphore was acquired. Set to false if the semaphore was

not available, i.e., was owned by another task.

When the VMETSfunction receives power flow, a boolean true is exchanged with the
data at the address specified by ADR using the address mode specified by AM. The
VMETSfunction sets the Q output to true if the semaphore (false) was available and
acquired. When the operation is successfully completed, the VMETSfunction passes
power to the right through the OK output.

For information on PCM module addressing using address and address modifier codes,
refer to “General VME Information for the PCM,” presented earlier in this section.

For more information on Series 90-70 PLC programming, refer to the Logicmaster 90-70
Programming Software User’s Manual, GFK-0263, and the Series 90-70 Programmable
Controller Reference Manual, GFK-0265. For more information about Series 90-70 VME bus
applications, refer to the Series 90-70 Programmable Controller User’s Guide to the Integration
of Third Party VME Modules, GFK-0448.

5-108 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

MegaBasic Program Access to PCM Dual Port RAM

GFK-0255K

The PCM memory map places the dual port RAM in the address range 0A0000h to

0A7FFFh for the current revision of the Series 90-70 PCM.

The PCM User MegaBasic program uses EXAMand FILL statements to access the PCM

Dual Port RAM. The EXAMstatement is used to read data from a specified location in

the PCM dual port RAM. The FILL statement is used to write to a location in the dual

portRAM.

The format of the EXAMstatement is:

EXAMst_addr, var_list

Parameter Description
Starting Address The starting address of the data.
VariableList Thelistof variables, separated by commas.

The format of the FILL statement is:

FILLst_addr, data_list

Parameter Description
Starting Address The starting address of the data.
DatalList The list of data items, separated by commas.

The address of the data in the PCM dual port RAM is usually represented as a

segmented address using two words, segment and offset.

Example EXAMand FILL statements:

EXAM 0A000h:4000h, @DATA
FILL OAOOOh:605Ah, @1

The @ character in the examples above denotes word (16-bit) access to

the memory location.

For more information on the EXAMand FILL statements, refer to the MegaBasic

Note

Programming Language Reference Manual, GFK-0256.

The next section of this chapter contains an example of PLC VME functions and

MegaBasic EXAMand FILL statements.

Chapter5 Advanced MegaBasic Programming

5-109

Section 12: Programming Example using VME Functions

The following programming example uses the VME functions of the Series 90-70 PLC to
communicate with a PCM. The PCM is located in slot 3 of rack 0, corresponding to the
address programmed in the VME functions. Modules in that rack and slot location may
use addresses 020000H-027FFFH as shown in table 5-4 in section 4 of this chapter. Note
that the AM code is always 39H. A semaphore, located at address 0A4000H in the PCM,
is used to prevent simultaneous access to the data by the PCM and the PLC.

The address programmed in the VME functions indicates rack, slot, and data offset in
the PCM dual port RAM. The segment word on the PCM side is always 0A0000h.
Allowable offsets are in the range 4000h-7FFFh. (Refer to the preceeding section in this
chapter.) The 4000h in the VME address corresponds to the offset 4000h in PCM dual
portRAM.

In the example ladder, when %R1 contains 2, the semaphore at offset 4000h on the PCM
is read. If the semaphore has the value 1, the value of %R1 is incremented to 3. If the
semaphore is 0, %R1 remains 2. As long as %R1 is 2, the VME read of the semaphore
0CCurs on every sweep.

When %R1 contains 3, the program writes 22 bytes to the PCM from %R20 using the
VMEWRT function block. The data is placed at offset 4002h in PCM dual port RAM.
Note that the semaphore (offset 4000h) is immediately cleared after the VMEWRT. %R1
is changed to 2 to permit the operation to be repeated.

The MegaBasic program sets up variables containing the locations of the data in dual
port RAM: DPR_SEG, FLAG_OFFSET and DPR_OFFSET. The program writes 1 to the
semaphore location using the FILL statement to start processing data. As long as the
semaphore value is 1, the MegaBasic program remains in a loop waiting for the PLC to
complete its transfer of data. When the semaphore becomes 0, the program uses the
EXAMstatement to move data from dual port RAM to a local MegaBasic array. This data
is printed to an attached terminal for display.

5-110 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

GFK-0255K

01—05—80 01:36

GE FANUC SERIES 90—70 DOCUMENTATION (v2.02)

Page 5
<< RUNG 5 >>
FST_SCN -
%S00001 |
][IMOVE_|—
| INT |
I
CONST —|IN Q|]—%R00001
+00002 | LEN |
|00001|
|
<< RUNG 6 >>
[
| EQ_|—
| INT |
| | | %Q00099
%R00001—|I11 Q] | VME_| | EQ_|
| | | RD_| [INT | —
| | | WORD] | | |
CONST —|I2 | CONST —|AM | CONST —|I1 Q] | ADD_|—
+00002 | | 0039 |LEN| +00001| | | INT |
|00001| |]
CONST —|ADR Q] [I2 | CONST —|I1 Q|]— %R00001
00024000 | | | | +00001 | |
%R00001—|I12 |
REFERENCE NICKNAME = REFERENCE DESCRIPTION
%Q00099
%R00001

%S00001 FST_SCN

Program: PCMDEMO

C:\LM9O\PCMDEMO Block: _MAIN

Chapter5 Advanced MegaBasic Programming

5-111

)_

01—05—80 01:36

GE FANUC SERIES 90—70 DOCUMENTATION (v2.02)

Page 6
<< RUNG 7 >>
I
————EQ_|—
| INT | - -
[| | | || []
%R00001—|I11 Q] | VME_| | VME_| MO
| | WRT_| | WRT_| | INT |
| | BYTE]| | WORD
CONST —|I2 | %R00020—]|IN | CONST —|IN | CONST —|IN Q|— %R00001
+00003 | | | LEN | 0000 |LEN| +00002 | LEN |
100022| |00001| |00001|
CONST —|AM | CONST —|AM | | |
0039 | | 0039 | |
| |
CONST —|ADR | CONST —|ADR |
00024002 | | 00024000 | |
[END OF PROGRAM LOGIC

]

REFERENCE NICKNAME
%R00001

REFERENCE DESCRIPTION
%R00020

Program: PCMDEMO

C:\LM9O\PCMDEMO Block: _MAIN

5-112 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999

GFK-0255K

GFK-0255K

10 Rem This program displays data from Series 90—70 PLC on attached terminal.
20 Rem

30 Access “VT100”

40 Dim integer PLC_DATA(20) ;Rem — Array for manipulating data
60 Def integer DPR_OFFSET ;Rem — 8086 style offset

70 Def integer FLAG_OFFSET ;Rem — 8086 style offset

80 Def integer DPR_SEG ;Rem — 8086 style segment

90 Rem — Clear the screen and print a banner

100 Rem

110 CLS

120 CUR 5,25

130 Print “DISPLAY OF PLC DATA VALUES "

140 Rem — Get physical address of buffer and convert to segment:offset
150 Rem

170 DPR_SEG = 0A000h

180 FLAG_OFFSET = 4000h

190 DPR_OFFSET = FLAG_OFFSET + 2

200 Rem — Set flag to start transfers and start processing data

210 Rem

220 Fill DPR_SEG:FLAG_OFFSET, @1

230 Repeat

240 While exam(DPR_SEG:FLAG_OFFSET) = 1; Next ;Rem — Check flag
250 Forl=0to 20

260 Exam DPR_SEG:DPR_OFFSET+I*2, @PLC_DATA(l) ;Rem — Copy data
270 Nextl

280 Fill DPR_SEG:FLAG_OFFSET, @1 ;Rem — Clear flag

290 Forl=0to 10 ;Rem — Print data

300 CUR I+8, 27

310 Print “REGISTER ", % “5I5 ", 1+20, “: ", % “515 ", PLC_DATA(l)
320 Next

330 Next

Chapter5 Advanced MegaBasic Programming

5-113

Section 13: Optimizing Backplane Communication

Backplane Processing for the Series 90-70 PCM

5-114

The backplane communication channel between the Series 90-70 PCM and the PLC CPU
consists of a high speed parallel VMEbus using a 16 bit wide data path. On the PCM
side, there are two queues for messages from the PCM to the PLC CPU and two queues
for messages from the CPU to the PCM. The four queues may contain as many as 32
messages; 16 going in each direction. MegaBasic SYSREADand SYSWRITE
statements, as well as many of the MegaBasic utility packages described in this chapter,
send service request messages to the PLC CPU.

Messages from the PCM to the PLC CPU are processed during the PLC system
communication window, which opens once per PLC program execution sweep. If the
system window is configured for run to completion mode, the default, the CPU
processes all of the requests in the PCM’s two outgoing queues during each sweep. As
each message is processed, a response message is sent back to the PCM.

Messages from the CPU to the PCM include both responses to PCM messages and the
messages sent by PLC COMMREQ function blocks. Incoming messages are generally
processed immediately by the PCM.

If a PCM user program sends a large number of NOWAIT request messages in a short
time (by executing SYSREADand SYSWRITE statements, for example), the outgoing
message queue may fill faster than the PLC CPU can empty it. The queues may fill even
faster when CCM and a user program are both running. Eventually, one or both of the
gueues may fill up. When a queue is full, a new message for that queue is delayed until
the PLC CPU can make room for it by servicing a message already in the queue.

In order to guarantee that every message is transferred to the PLC CPU on the next
sweep, the total number of pending messages must not exceed the capacity of the PCM’s
backplane queue. No more than 8 low priority messages plus 8 high priority messages
may be pending at any time. In addition, the system communications window must be
configured for run to completion mode, or, if it is configured for limited mode, the
window time limit must be long enough to service the queues.

Repeated Transfers

When a MegaBasic variable is transferred repeatedly, a timer is used to transfer it
automatically at a specified interval. If a repeat value of zero is used, the variable is
retransferred immediately after the previous transfer completes. This can be used to
transfer data on every sweep, provided that the following requirements are met:

The PCM is configured for MegaBasic only.

Less than eight variables are being transferred.

Serial port communication is light.

There is only one PCM in the system, and it is is the only intelligent option board.
The PLC System Communications Window time is at least 10 milliseconds.
MegaBasic does not wait for long periods of time.

Any deviation from these conditions may prevent data from being transferred on every
sweep.

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

MegaBasic programs wait for file server activity, input on the serial ports, backplane
commands issued without the NOWAITargument, and the WAIT statement. During
these times, MegaBasic variables are not updated. However, variables that are
periodically read from the PLC CPU continue to be transferred into temporary buffers so
that, when the program finishes waiting, it gets the latest copies of CPU variables.
Periodic writes are suspended while MegaBasic is waiting.

Backplane Processing for the Series 90-30 PCM

The communication channel between the Series 90-30 PCM and the PLC CPU consists of
a high speed serial backplane link. On the PCM side, there is one queue for outgoing
messages from the PLC and one queue for incoming messages to the PCM. These
gueues may each contain two messages each.

On average, Series 90-30 PLCs can process one message or less per sweep. If CCM and
the user program attempt to send several NOWAIT messages at once, the outgoing
message queue may run out of space very quickly. If there are two or more PCMs in a
Series 90-30 system, or if a PCM shares a system with other intelligent modules, The
gueue cam fill up even more quickly. When the queue is full, the PCM allocates a buffer
in memory for each additional message. Eventually, the PCM may run out of free
memory.

Messages from the CPU to the PCM, including both responses to PCM messages and the
messages sent by PLC COMMREQ function blocks, are generally processed immediately
by the PCM.

The handling of repeated SYSREADand SYSWRITErequests works as described above
for the Series 90-70 PCM (see “ Repeated Transfers”).

GFK-0255K Chapter5 Advanced MegaBasic Programming 5-115

Chapter

Troubleshooting Guide

This chapter provides procedures for diagnosing PCM operational problems. If the
procedure given does not lead to a diagnosis, or if a problem is encountered that is not
covered here, contact the GE Fanuc Series 90 Hotline (1-800-GEFANUC) for assistance.

“OK” LED Not On

1.

Confirm that power is being supplied to the 1/0 rack containing the PCM. Verify that
the PLC CPU “BD OK” LED is on. Reseat the PCM in the rack.

Turn the power off and then back on. Initiate a hard reset of the PCM by pressing
the Restart/Reset pushbutton continuously for 10 seconds. Connect PCOP or
TERME If the Ready prompt is displayed (TERMF) or the PCOP screen indicates
that it is online, the PCM “BD OK” LED is burned out.

Turn the power off again, disconnect the battery cable from the connector on the
circuit board, and then short the two pins on the circuit board connector. This clears
PCM memory. Reconnect the battery and turn the power on again. Initiate a hard
reset by pressing the Restart/Reset pushbutton continuously for 10 seconds. Check
to see if the light goes on. Also, check to see if PCOP or TERMF is communicating
with the PCM.

If the BD OK LED still is not lit and PCOP or TERMF does not respond or go online,
the board may need to be returned for repair. Check the PLC fault table for a “Bad
or missing module” fault. If there is a fault, return the board for repair. If there is no
fault, contact the GE Fanuc Hotline for assistance.

Reset Blinks User LED1 or LED2

If the User LEDs on the PCM blink (alternating between LED1 and LED?2) each time the
Restart/Reset pushbutton is pressed, the PCM has not completed its power-up
diagnostics. This condition occurs when the PLC CPU firmware or Logicmaster 90
software used to configure the PLC is out of date with respect to the PCM. The model
number of the PCM is not recognized by the PLC or Logicmaster 90 configuration data.
Upgrade both the PLC CPU firmware and Logicmaster 90 software. If both the PLC
CPU and Logicmaster 90 software are up-to-date and the User LEDs on the PCM
continue to blink, the PCM is at fault and should be returned for repair.

GFK-0255K

Communication Failure

General

1. Verify that both the PCM and the programmer are using the same baud rate, parity,
number of data bits, number of stop bits, and the same type of handshaking
(HARDWAREOFTWAREor NONB.

2. \Verify that the cable connections, described in appendix A, PCM Cabling Information,
are correct and that the cable is firmly secured at both ends.

3. The middle light on the PCM should blink. If it does not, remove the connector from
the PCM, jumper pins 4 and 5 on the PCM with a paper clip, and press the
Reset/Restart pushbutton again for 10 seconds. If the LED still does not blink at least
once, there is a problem with the PCM. Otherwise, the cable, programmer
configuration, or programmer hardware is the problem.

4. Reconnect the cable to the PCM. If the programmer has more than one serial port,
be sure the cable is connected to COM1. Set the programmer serial port to the PCM
default settings. To do this when using a computer as the programmer, type TERMF
DEFAULT.DAT or PCOP DEFAULT.DAT as appropriate, at the MS-DOS prompt
and press the Enter key.

5. Press and hold the Restart/Reset pushbutton for 10 seconds to initialize the PCM to
its factory default settings.

6. Press the programmer Enter key while watching the USER1 LED for serial port 1 or
USER2 LED for serial port 2. Each time the key is pressed the LED should blink. If
the PCM has been configured by Logicmaster 90 in BASIC or BAS/CCM mode, the
“Ready” prompt should also be repeated on the programmer screen; otherwise the
“>" prompt should appear. If the LED does not blink or the “Ready” or “>" prompt
is not displayed, either the connection from the programmer to the PCM is bad or
the programmer hardware is defective.

7. Cycle power on the programmer to make sure its serial port hardware is fully reset.
Problems with the programmer are very rare. When they do occur, they can often
be fixed with a power cycle. If your programmer is a computer, type TERMF
DEFAULT.DAT or PCOP DEFAULT.DAT again. If the LED still does not blink when
a key is pressed, there is a problem with the cable or the programmer serial port
hardware.

PCOP Does Not Go Online/MegaBasic Application Does Not Run

1. If you are not using PCOR, skip to step 4 below. If PCOP does not go online when
the PCM is running and port 1 has been assigned through configuration to
MegaBasic or CCM, initiate a hard reset by pressing the Restart/Reset pushbutton
continuously for 10 seconds.

2. If the PCOP screen had gone blank or was displaying data from a MegaBasic
program, press ALT-Z. A PCOP screen should be displayed, and PCOP will go
online after a delay of up to 10 seconds.

3. If PCOP continues to go to TERMF after the hard reset and you have version 2.02 of
PCOP, you should upgrade PCOP. To work around this problem, disconnect the
PCM cable from the PCM and press ALT-Z again. Wait for PCOP to display
NO COMM. Use the Enter key to get PCOP past the initial banner page; then,
reconnect the PCM cable.

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

4. \erify that both the PCM and the programmer port are using the same serial port
setup, especially the same type of handshaking (hardware, software, or none). If
they are not using the same serial port setup, operation of the serial ports is
unpredictable.

5. This should first be checked in the Logicmaster 90 software. Also, check the PCM
configuration mode. If PROGor BASIC mode is selected in one of the ports, this is
the serial setup used in FACTORYmode. Either use a different mode to determine
the problem, set the serial settings to the factory default settings, or create a new
TERM.DAT file for this setup. Repeat the previous step, using the new TERM.DAT
file.

6. If the configuration mode is not PROGor BASIC for the port in question, the
default settings are used in FACTORYmode. If you have not already done so,
initiate a hard reset by pressing the Restart/Reset pushbutton continuously for 10
seconds.

7. If you are using PCOP, check the PCOP configuration using the configuration editor.
If you are online, select Advanced functions (F10) and then Read UCDF (F8). Refer
to the port screen for the serial setup for this port. Does the serial configuration
match the required serial setup for the application? If not, change the PCOP
configuration on this screen or reconfigure the attached device to match.

8. Type PCOPor TERMFat the MS-DOS prompt. If you still encounter
communications problems between PCOP or TERMF and the PCM, the problem
may be with PCOP or TERMFE Press CTRL-BREAK to return to MS-DOS. If this
does not work, press CTRL-ALT-DELETE to reboot the programmer. Then, start up
the PCOP or TERMF software again. If PCOP still does not go online or TERMF
problems remain, a configuration mismatch probably exists between the PC and the
PCM (see above).

MegaBasic Application Appears Not to Run

Refer to the errors described under the headings, “Backplane Transfer Failure,”
“Insufficient Memory,” “MegaBasic Data Size,” and “Soft Reset.” An error may not be
reported when the program is started on a soft reset.

PLC Fault Table Entries

1. Ifthe PLC fault table indicates that the PCM has been lost (e.g., loss of module),
check the PCM OK LED. Ifitis not lit, refer to the steps described in the beginning
of this chapter. If the problem continues, it may be an application programming
error setting the PCM watchdog timer off.

2. If the PLC fault table indicates that the rack and slot containing the PCM has an
“Addition of module” fault, the PCM has not been properly configured for that slot.
Check the Logicmaster 90 configuration and location of the PCM.

3. If the PLC fault table has any other fault for the PCM rack and slot, such as one of
the COMMREQ faults, the problem is related to your application.

4. The PLC fault entry “Unsupported feature in configuration” indicates the PCM has
firmware version 2.04 or lower and was configured for BASIC or BAS/CCM mode
using Logicmaster 90 software. Change the configured mode to PROG PRTor
PROG/CCM

GFK-0255K Chapter 6 TroubleshootingGuide 6-3

Backplane Transfer Failure

1.

When MegaBasic aborts with a “Backplane Transfer Failure” error, it is indicating
that the PLC is not communicating with the PCM. If communication with the PLC
has never been established (i.e., this is shortly after starting the program and no data
has been successfully moved to or from the PLC), check the PLC configuration for
the PCM slot. If the PLC is configured for another module in this slot or no module
at all, the PCM cannot communicate with the PLC. Reconfigure the PLC, or move
the PCM to the correct slot.

If this is a Series 90-70 system, check that there are no empty slots to the left of the
PCM (i.e., between the PLC and the PCM or between the BRM and the PCM). Blank
slots prevent the PCM from communicating with the PLC and must be eliminated.
After eliminating the blank slots, it is necessary to cycle power on the PLC, even if
the PCM is in a remote rack.

Note

This condition does not occur with the Series 90-30 system, where
empty slots are permitted.

If communication had been occurring with the PLC, data had been transferred and
the application was running, contact the GE Fanuc Hotline for assistance. For version
1.04 or earlier of a Series 90-30 PLC Model 331, you may need to upgrade your PLC
to the latest version in order to correct the problem.

Insufficient Memory Error

When this message is received, the PCM does not have enough available RAM in a large
enough block to execute the requested operation. It is possible that memory has simply
been fragmented through excessive use of the RAM Disk or other memory. Initiate a
soft reset of the PCM by pressing the Restart/Reset pushbutton for less than 5 seconds.
Then, try the operation again.

Caution

If the operation that received the original message was to save a
MegaBasic program from within the MegaBasic interpreter, save the
program to your hard disk by typing SAVE PC:filename toensure
that your work is not lost.

Too Many Files/RAM Disk Overflow

1.

If files/modules have been saved to the RAM Disk through the life of this PCM, or if
the PCM has been used for some other purpose before this application, the RAM
Disk may be too full to permit the desired operation. Make sure that all files in the
RAM Disk have been backed up by saving them to your computer’s hard disk.
Then, clear the PCM by using PCOP utility functions, or by disconnecting the
battery and shorting the battery terminal pins on the circuit board connector while
rack power to the PCM is off.

If you are using PCOP, check the PCM folder for unnecessary or unused files, which
could be deleted or moved to another directory on the hard disk of the programmer.
Then, load the PCM folder to the PCM and attempt the operation again.

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

GFK-0255K

If you are using TERMF, reload BASIC.PGM and other application files to the RAM
Disk and attempt the operation again.

MegaBasic Program Save (Versions Earlier Than 2.50)

1. Ifthe PCMisin FACTORYmode (a hard reset has been performed or no user
configuration information is available), MegaBasic occupies almost all of the
available memory in the PCM. A save to the RAM Disk in this situation could cause
an insufficient memory error, since not enough room has been reserved fora RAM
Disk.

2. Save the program to the PC hard disk by typing SAVE PC:filename to ensure
that your work is not lost. You may load the program later by using the PCOP
Utility functions or by typing LOAD PC:filename in MegaBasic.

3. Exit MegaBasic by typing BYE

4. Configure the PCM for BASIC using PCOP. Take note of the MegaBasic RAM size
assigned to MegaBasic but do not change this value (at least initially). If program
development is still in process, do not select to start the program on reset; this is
selected later when program development is more complete.

5. Load the configuration to the PCM.

6. Initiate a soft reset of the PCM by pressing the Restart/Reset pushbutton for less
than 5 seconds. Re-enter MegaBasic, if desired, and continue with program
development. If a start on reset had been selected, use CTRL-C to interrupt the
program and continue development/debug.

MegaBasic Data Size

The PCM defaults the MegaBasic workspace size to the values given in table 4-1 in
chapter 4, MegaBasic. If an insufficient memory error is reported on an attempt to load a
program to the MegaBasic workspace, you may need to increase the RAM allocated to
the MegaBasic workspace, either by upgrading the memory board (Series 90-70 PCM) or
PCM model (Series 90-30 PCM), or by changing the allocation setting. The setting can be
adjusted either by editing the PCMEXEC.BATfile (see appendix C, PCM Commands) or
by using the PCOP utility.

An alternative solution if the program is too large for the RAM size available on the PCM
is to CRUNCH the program. This saves program storage space in the PCM RAM Disk.
Refer to chapter 4, MegaBasic, for information on CRUNCH.EXE

Note

Crunching removes comments and extra white space. Be sure to keep a
copy of the original program for documentation and maintenance
purposes.

Chapter 6 TroubleshootingGuide 6-5

Run Mode Errors

If an application does not run when the PCM is placed in RUN mode with a soft reset, it
may be due to an insufficient memory error. Place the PCM in PROGRANNode by
pushing the Restart/Reset pushbutton for 10 seconds, manually starting MegaBasic, and
manually run the program to see additional error messages reported by MegaBasic.

Loss of Characters/MegaBasic Tx/Rx Failure

1. For CCM, refer to the information following this section. For MegaBasic
applications, first check the serial port configuration, as previously described. The
flow control characteristics on both the PCM and attached devices are particularly
important.

2. InPCM firmware version 2.04, when a MegaBasic program receives characters on its
STDIN channel (serial port 1 by default), input characters will be lost if a CTRL-C
character is received unless CTRL-C checking is disabled. This MegaBasic statement
disables CTRL-C checking:

xxx PARAM(1) =1

Note that CTRL-C checking is usually disabled when program development is
completed, regardless of the PCM firmware version. Otherwise, program execution
will stop when a CTRL-C is received.

3. If you have Release 2.02 or earlier of the Series 90-70 PCM and are using the INCHR$
function on port 1 of the PCM, a problem exists in the PCM firmware. An upgrade
to version 2.04 or later should correct the problem. Meanwhile, you may use port 2,
if available, or the NOWAIT READfunction to work around the problem.

Note

This problem does not exist in the 90-30 PCM.

4. Another possible problem could be that the type ahead buffer on the PCM has
overflowed. The type ahead buffer can hold up to about 320 characters. You may
want to clear the type ahead buffer periodically in your program by adding this
statement:

xxx WHILE LEN (INCHR$ (<dev num>, 50, *,,0)); NEXT

5. If you have unsuccessfully tried all of these suggestions, an application error may be
the problem. If you still cannot determine the cause of the problem after debug, you
may need to send a copy of your program to the GE Fanuc Hotline.

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

CCM Data Tx/Rx Failure

1.

Verify that the Logicmaster 90 or PCOP configuration for the PCM port specifies
CCM, with the correct serial settings and CCM characteristics. If not, correct the
specifications or change the device.

Confirm that the PCM is in RUN mode ; that is, it was powered up or placed in
RUN mode by a soft reset. If the PCM was hard reset most recently, CCM will not
function (an ACK “>" is returned). To begin CCM communications, initiate a soft
reset of the PCM.

If this is an RS-485 network, ensure that there are no RS-422 devices on the network
(check converter boxes, amplifiers, repeaters, etc.). If there are RS-422 devices on the
network, you must derate the link to an RS-422 network. Are all RS-485 lines
properly terminated? Is the final node terminated? Are the cables properly made?
Do they contain enough lines for full duplex operation? (See appendix A, PCM
Cabling Information.) Are signal ground voltage differences reasonable? Are signal
pairs twisted together in the cable?

For a Series 90-70 PLC system, check that there are no empty slots to the left of the
PCM (e.g., between the PLC CPU and the PCM, or the BRM and the PCM). Blank
slots prevent the PCM from communicating with the CPU or BRM and must be
eliminated. This is not true of the Series 90-30 PLC system, where empty slots are
permitted.

If the PCM is a master on the network or initiating peer, has the PLC ladder
programming (COMMREQ) been done? Is the PLC CPU in RUNmode? If so, have
you checked the status word return from the CCM COMMREQ? (See chapter 3,
CCM Operation.) If you see the entry “other module software” faults in the PLC
fault table, ensure that each COMMREQ is not enabled until the previous
COMMREQ has completed.

If the PCM is a slave or non-initiating peer, is the Port LED (USR1 or USR2) blinking
when the enquiry is sent from the initiating side? If not, check for a communications
failure, as described above. Is the initiating device properly programmed?

If some CCM communication is obtained, but a failure is occurring during part of the
communication, try selecting a different set of timeouts/retries/td value in
Logicmaster 90 software or PCOP, or fine-tune the values using PCOP.

If this does not work, call the GE Fanuc Hotline.

GFK-0255K Chapter 6 TroubleshootingGuide 6-7

Configuration Problems

Confirm that the PCM is in RUN mode; that is, it was powered up or placed in RUN
mode by a soft reset to initiate the configuration. If the PCM was hard reset most
recently, the configuration is not used (a “> " is returned to <ENQ>). To begin the
configured action, initiate a soft reset of the PCM.

Series 90-30 Autoconfig

1. Ifyou are trying to use Autoconfig with the Series 90-30 PLC and the PCM is not
functioning in CCM SLAVE mode with the default configuration (see chapter 2,
Installing the PCM), clear the PCM by using PCOP Utility functions or by removing
the battery and shorting the battery terminal leads with a screwdriver. This is done
in case the board has an old PCOP configuration that would take precedence over
the autoconfig data.

2. Ifyou have PLC revision 1.03 or earlier (IC693CPU331D or earlier), an upgrade is
required for correct operation. Contact the GE Fanuc Hotline.

3. If multiple PCMs are present, especially of different catalog numbers (such as an
ADC, CMM, or PCM301), you must configure the PCM using Logicmaster 90
software or upgrade to Release 2.0 PLC.

Logicmaster 90 Configuration

1. If you have configured the PCM using Logicmaster 90 software and the PCM is not
functioning correctly in the selected mode, clear the PCM by using PCOP utility
functions or by disconnecting the battery from the circuit board connector and
shorting the circuit board terminal pins with a screwdriver. This is done in case the
board has an old PCOP configuration that would take precedence over the
Logicmaster 90 configuration data.

2. Ensure that the correct mode and setting have been chosen. See chapter 2, Installing
the PCM, for details on configuration modes and associated parameters.

3. If multiple PCMs are present, especially of different catalog numbers (such as an
ADC, CMM, or PCM301), you may need to upgrade to Release 2.0 PLC in order to
configure the PCM.

4. PCMs with firmware version 2.04 or earlier do not support the Logicmaster BASIC
or BAS/CCMconfiguration modes.

6-8 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

PCOP Configuration

1.

Using the configuration editor, verify that the configuration specifies the desired
operation. Did you load the configuration data to the PCM? In ONLINE mode,
press MDIR from the Utility screen. A file called UCDF should be present on the
PCM.

Edit UCDF (from the Advanced functions, press READ UCDF) to make sure the file
contains the correct configuration.

For CCM configuration, is CCM enabled on this port? Refer to the procedure above,
under the heading, “CCMTx/RxFailure.”

For MegaBasic configuration, is MegaBasic enabled on the desired port? Are STDIN,
STDOUT, and STDERR set to the desired port or other location? Have you selected
to start the program automatically from reset and entered the program name? (This
isusually desired.)

If the configuration does not take effect, check the PCM Runtime Errors screen.
Possible configuration errors, which might be displayed on this page, include
“Insufficient Memory” and “Module not Found.”

PCOP Screen Goes Blank or PCOP Locks Up

1.

Check that there are no drivers or other packages (e.g., communication or
networking) loaded on the PC by the CONFIG.SYS or AUTOEXEC.BAT Serial port
and high memory usage packages are especially a problem.

In PCOP Release 2.02, a known bug existed on some PCs that would cause PCOP to
jump to the TERMF page immediately. If this happens, you can work around it by
disconnecting the PC-to-PCM cable at one end, proceeding into PCOP beyond the
Folder Select screen, and then attaching the cable. An upgrade to PCOP is
recommended.

If the PCM is running a MegaBasic or CCM application, PCOP may detect characters
on the serial port and switch to TERMEFE Initiate a hard reset and then press ALT-Z to
return to PCOP.

If the screen is either completely blank or the menus are incorrectly displayed, use
the TERMSETutility function to verify that the proper monitor is selected in
TERM.DAT. The default display adapter and monitor is set for a Workmaster or
Workmaster Il industrial computer, CGA driving a monochrome monitor. The
default may also be obtained by using DEFAULT.DAT

Make sure that there is no other equipment, other than a PCM, attached to the serial
port being used by PCOP (COML1 by default). If a foreign device is detected, PCOP
jumps to TERMFE Pressing ALT-Z usually flickers the screen and returns to TERMFE
Disconnect the other device and connect the cable to a PCM or work offline.

GFK-0255K Chapter 6 TroubleshootingGuide 6-9

Appendix

A

PCM Cabling Information

This appendix provides cabling specifications and wiring diagrams for the Series 90
PCM.

Cable and Connector Specifications

Cable connector to PCM Ports 1 or 2: Male, Subminiature-D Type, Cannon DB25P
(solder pin) with DB110963-3 Hood; AMP shell 207345-1 and connector 205208-1
with crimp pin, 66506-1, or solder pin, 66570-3; or equivalent standard RS-232C
connector.

GFK-0255K

Connectors for ports 1 and 2 are located on the Series 90-70 PCM board. Both ports
are brought out a single connector on the Series 90-30 PCM board. A Wye cable is
provided with each Series 90-30 PCM board.

Length (maximum):

o 50 feet (15 meters) for RS-232C.
o 50 feet (15 meters) for RS-422/RS-485 without isolation at the remote end.
O 4000 feet (1200 meters) for S-422/RS-485 with isolation at the remote end.
Overall shield.

24 AWG (minimum).

Connector to external device, specified by external device manufacturer.

The following cables provide acceptable operation at data rates up to 19.2K BPS and
distances up to 4000 feet for RS-422/RS-485.

Belden
Catalog Construction Application
No.
9505 5 pairs #24 AWG stranded, overall shield. RS-232,
RS-422 or RS-485 at 19,200 BPS or below.
9306 6 pairs #22 AWG solid, overall shield. RS-232,
RS-422 or RS-485 at 19,200 BPS or below.
9832 5 pairs #24 AWG stranded, overall shield. RS-422 up to 38,400 BPS.
9731 6 pairs #24 AWG stranded, pairs RS-422 up to 38,400 BPS.
individuallyshielded,lowcapacitance.
8105 5 pairs #24 AWG stranded, overall shield, RS-422 up to 38,400 BPS.
lowcapacitance.
9844 4 pairs #24 AWG stranded, overall shield, RS-485 up to 38,400 BPS.

lowcapacitance.

At shorter distances under 50 feet (15 meters), almost any twisted pair or shielded

twisted pair cable will work, as long as the wire pairs are connected correctly. Do not use

the shield as a signal ground conductor.

When using RS-422/RS-485, the twisted pairs should be matched so that both transmit
signals make up one twisted pair and both receive signals make up the other twisted

pair. If this is ignored, cross-talk resulting from the mismatching could affect the
performance of the communications system.

When routing communication cables outdoors, transient suppression devices can be

used to reduce the possibility of damage due to lightning or static discharge.

Caution

Care should be exercised to ensure that both the PCM and the device
to which it is connected are grounded to a common point. Failure to
do so could result in damage to the equipment.

Serial Connectors

A-2

The Series 90-70 PCM has two serial connectors; each one supports both RS-232 and
RS-485 operation. The serial ports are identical, and either port can be used for most
applications. The two ports are configurable for different communication parameters.

Note

The connector pin assignments for the Series 90-70 PCM are shown below:

SHIELD
RS-232 TD
RS-232 RD

RS-232 RTS

RS-232 CTS

NO CONNECTION
SIGNAL GROUND
RS-232 DCD
RS-485 SD (A)
RS-485 RTS (A)
RS-485 CTS (A')
TERMINATION (CTS)

RS-485RD (A')

5

60000066006
90009000000

%

a42734
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED
RESERVED

RS-232 DTR
RS-485 SD (B)
RS-485 RTS (B)
RS-485 CTS (B')
TERMINATION (RD)

RS-485 RD (B')

Figure A-1. Serial Port Pin Assignments for the Series 90-70 PCM

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999

GFK-0255K

GFK-0255K

Note

In figure A-1, SD (Send Data) and RD (Receive Data) are the same as
TXD and RXD (used in Series Six PLC publications). (A) and (B) are the
same as — and +. A’ and B’ denote inputs, and A and B denote outputs.
To terminate the RS-485 CTS input signal, jumper pins 11 and 12; to
terminate the RD input signal, jumper pins 24 and 25.

The Series 90-30 PCM has a single serial connector that supports two ports. One port
has a fixed interface. Port 1 uses RS-232 operation only. The IC693PCM300 module is
restricted to using RS-485 on port 2. All other Series 90-30 PCM modules may select
either RS-232 or RS-485 operation on port 2.

The connector pin assignments for the Series 90-30 PCM are shown below.

a44357

SHIELD —

%

— RS-232 TD (PORT 2)
(PORT 1) RS-232 TD —
— RS-232 CTS (PORT 2)
(PORT 1) RS-232 RD —
— RS-232 RD (PORT 2)
(PORT 1) RS-232 RTS —
— RS-232 DTR (PORT 2)
(PORT 1) RS-232 CTS —
— RS-232 DCD (PORT 2)
NO CONNECTION —
RS-232 RTS (PORT 2)
SIGNAL GROUND —
— RS-232DTR (PORT 1)
(PORT 1) RS-232 DCD —
— RS-485SD (B) (PORT 2)
(PORT 2) RS-485 SD (A) —
— RS-485RTS (B) (PORT 2)
(PORT 2) RS-485 RTS (A) —
— RS-485CTS (B') (PORT 2)
(PORT 2) RS-485 CTS (A') —
— TERMINATION (RD) (PORT 2)

®OOOEOOOOOO

(PORT 2) TERMINATION (CTS) —|

209000000000

— RS-485RD (B') (PORT 2)

(PORT 2) RS-485RD (A') —

X

Figure A-2. Serial Port Pin Assignments for the Series 90-30 PCM

AWYE cable is supplied with each Series 90-30 PCM. The purpose of the WYE cable is
to separate the two ports from a single physical connector; i.e., the cable separates the
signals. In addition, the WYE cable makes cables used with the Series 90-70 PCM fully
compatible with the Series 90-30 PCM.

The WYE cable is 1 foot in length and has a right angle connector on one end that
connects to the PCM. On the other end, it has a dual connector with one connector for
port 1 and the other for port 2.

Appendix A PCM Cabling Information A-3

a44357

SHIELD —

— RS-232 TD (PORT 2)
(PORT 1) R$-232 D ——(2)

@—— RS-232 CTS (PORT 2)
(81— RS-232RD (PORT 2)

@—— RS-232 DTR (PORT 2)
— RS-232 DCD (PORT 2)
@9-— RsS-232 RTS (PORT 2)
@91— RsS-232DTR (PORT 1)

@) Rs-4855D (B) (PORT 2)

(PORT 1) RS-232 RD —(3)
(PORT 1) Rs-232 RTS —(2)
(PORT 1) RS-232 CTS ——@

NO CONNECTION —(6)

SIGNAL GROUND —~7)

(PORT 1) R$-232 DCD —(8)
(PORT 2) RS-485 SD (A) ——@
(PORT 2) RS-485 RTS (A) —-10)
(PORT 2) RS-485 CTS (A') —11)

(@){— Rs-485RTS (B)(PORT2)
@—— RS-485 CTS (B’) (PORT 2)

— TERMINATION (RD) (PORT 2)

(@)J— Rs-485RD (B') (PORT 2)

(PORT 2) RS-485RD (A) __@\./

(PORT 2) TERMINATION (CTS) ——@

PORT 1 PORT 2 44358
sHIELD —(D) sHiELD —{D)
©) ©
RS-232 TD ——@@ RS-232 TD ——@@
RS-232 RD — RS-232 RD —
-® -®
RS-232 RTS —(3) © Rs-232 RTS —(&) ®
Rs-232 cTs —(5) Rs-232 cTs —(5)
® ®
SIGNAL GROUND —(7) SIGNAL GROUND —(7)
os-232 DCD] 2 RS-232 DTR s 252 0cD] o RS-232 DTR
@@ RS—485$D(A)——@@_ RS-485 SD (B)
@ RS—485RTS(A)—@_ RS-485 RTS (B)
@ A RS-485 CTS (B')
@ ® TERMINATION (CTS) —12) = TERMINATION (RD)
C@/ RS-485 RD (A) —@@ RS-SSRD(8)
/
RS-232 ad4225
25-PIN FEMALE
| 1FOOT N CONNECTOR PIN'1
| (+2.0 INCH, -0 INCH) O 10
PORT1 4
PORT2 ¥

e Ju I_ILI—Q\I_I

X

pIN1 RS-232 RS-232/RS-485 p|N 1
25-PIN MALE 25-PIN FEMALE
CONNECTOR CONNECTOR

Figure A-3. WYE Cable Connections for the Series 90-30 PCM

In order to use an RS-232 cable on port 2 of the Series 90-30, either a special cable must
be made according to the serial port pin assignments shown above or a WYE cable must
be used. Standard Series 90-70 PCM cables can be used for the Series 90-30 PCM when
the WYE cable is used.

A-4 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

Cabling
The prewired cables shown below provide the required signal connections between the
RS-232 serial port on a PCM and a serial port on the programmer. Each of the cables
physically appear the same; the only difference is the internal pin connections.
An IC697CBL701 cable provides the required signal connections between a PCM and a
Workmaster industrial computer.
a42829 a42831
PIN PIN
WORKMASTER > - ~ T
== s PCM o | = T 1 =
==|L]| icesocairon apt PO i e I 1o =
== ||E|| (RS-2320) og —{ c19 5 20| DTR = PcM
®m o [O DEFAULT PORT 0, [= bcg 8 _f T 8| DCD =
0 <— DTR 9 1| SHLD —
D’l:E—\K :_|4F’L 0% J={ eng 7 ! +_ 7l oD =
(] 9-PIN 9-PIN 25-PIN 25-PIN
FEMALE MALE MALE FEMALE
Figure A-4. PCM to Workmaster Computer
An IC697CBL702 cable provides the required signal connections between a PCM and an
IBM PC-AT personal computer.
a42830 a42832
PC-AT PIN PIN
PCM L — o -
IC690CBL702 . "ro| 2 oo 0
RS-232 :]SPL = ™| 3 3lro =] %0
PC-AT I — 8| DCD = 00 PCM
o (DEFAULT PORT) DTR| 4 0
— RTS| 7 T 5| CTS F— 0 0
o :]4p|_ — cTs| 8 | 20| DTR = | g0
— GND| 5 U 7| GND — 0
————————— 9-PIN 9-PIN 25-PIN 25-PIN
/ [\[:D\ MALE FEMALE MALE FEMALE
[]
Figure A-5. PCM to PC-AT Personal Computer
The following illustration shows the connection between a PCM and a Cimplicity Model
W industrial computer. The IC697CBL702 cable may be used for this connection.
a44237 a42832
CIMPLICITY
PIN PIN
% = DCD| 11— @y— 1| SHLDE= (0
= RD| 2 2| TD = 0
,_T = | 3 3l ro =%
IC697CBL702 PC-AT [—, DTR| 4 8| ocp =| %0 | Pcm
RS-232 :] spL = RTS| 7 5 TS (= {0
@ (DEFAULT PORT) = g;g g 2‘7) <D31T\|I§> = og
= Y a
_ O :]4PL 9-PIN 9-PIN 25-PIN 25-PIN
MALE FEMALE MALE FEMALE

Figure A-6. PCM to Cimplicity Model W Computer

GFK-0255K Appendix A PCM Cabling Information A-5

An IC697CBL705 cable provides the required signal connections between a PCM and a
Workmaster Il industrial computer or an IBM Personal System/2 personal computer.

WORKMASTER I a43744
PCM
" IC690CBL705
j] 3PL
RS-232
(DEFAULT PORT)

I:l j] 4PL

a44033

PIN PIN
M
— TD 2 T 3| RD —
— RD 3 T 2| ™ |—
— RTS 4 T 5| CTS |—
— crs| 5 I 20| DR |— PCM
= DCD 8 jl— 8| DCD [—
— DTR 20 | +— 1| SHLD —
— GND 7 U 7| GND =
25-PIN 25-PIN 25-PIN 25-PIN
MALE FEMALE MALE FEMALE

Figure A-7. PCM to Workmaster Il Computer or PS/2 Computer

Connect the cable’s 25-pin male connector to the top serial port female connector on the
front of the PCM. Then, connect the cable’s 9-pin or 25-pin female connector to the male
RS-232 connector (serial port) on the selected programming device.

For more information on these cables, refer to the Series 90-70 Programmable Controller
Cables — PCM to Programmer Data Sheet, GFK-0359.

A-6 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

RS-232 Cables

Typical cable wiring for many PCM RS-232 applications is shown in the following

illustrations.
ad44245
PIN PIN
Y T T T T T yah)
0 — TD 2 | | | | 3 RD 0
0 g [RD 3] T 2 TD 0 0
0
— RTS 4 8| DcD
PCM 0 0 [[0 0 PCM
PORT 0 — cTs 5 20| DTR 0 10R2
10R2 0 | [[0
0 DCD 8 T T 4| RTS 0
O — O
0 DTR 20 1 1 5| cTs 0
0 0
0 0 < G&ND 7 7| GND 0 0
0 —— SHLD 1 4‘— ————— 1| SHLD 0
\
25-PIN 25-PIN 25-PIN 25-PIN
FEMALE MALE MALE FEMALE

Figure A-8. PCM to PCM with Hardware Flow Control (RS-232 only)

a44240

PIN PIN
0 L TD 2 | | o 3 RD — 0
0 g — RD 3 1 T 2 TD — g 0
PCM
Rs232 | 0 o | = RTS 4 Lo Lo I: 4| RTS | 0 0
0 o | = cTs 5 L - 5| cTs b— 0 0
PORT 0 — Dbcp 8 8| bcb = 0
1 0 (. [0
0 0 — DR | 20 Lo L 20| DR = 0
0 —= GND 7 ‘ 7] oND — 0
0 0| — shwo 1 4 _____ J . 0 0
25-PIN 25-PIN 25-PIN 25-PIN
FEMALE MALE MALE FEMALE

Figure A-9. CCM2 to PCM (RS-232 only)

GFK-0255K Appendix A PCM Cabling Information A-7

a44234

PIN PIN
/S iyt [
0 0 =S D 2 T 0] 3] RxD | 0 0 —
0 — RD 3 2| X0 |0 —
0 1 r 0
0 — RTS 4 | | | | 0 [— orr
0 0| — cTs 5 a4l rTS |0 0| —
PCM 0| — [[0| — DTE
0, DTR | 20 I] 5] ¢c1s | 0, CONNECTOR
0 0 — DCD 8]] 20| DTR | O 0 —
0 <= GND 7 71 enD | 0 —
00,= SHLD 1—k.)— ————— U 00,=
\ \
25-PIN 25-PIN 25-PIN 25-PIN
FEMALE MALE FEMALE MALE
Figure A-10. PCM to OIT with Hardware Flow Control (RS-232 only)
a44239
PIN PIN
0 XD 3 —IKT _____ ﬁ 3| RD . 0
0 g RXD 2 —;I | C> :|] 2| 1D — g 0
o 0 cTs 5 - - I: 4| RTs | o 0
0 0 DCD 8 - - 5| cTs | 0 0
DCE
CONNECTOR | 0 0 DTR 20 |l I I: 8 DCD = 0
0 0 L L 20| DR |— 0 0
0 GND 7 7| oND o — 0
0 0 A L 1| SHWD [— 0 0
25-PIN 25-PIN 25-PIN 25-PIN
FEMALE MALE MALE FEMALE

Figure A-11. PCM to OIT without Hardware Flow Control (RS-232 only)

Note

Some versions of the GE Fanuc Operator Interface Terminal (OIT) have
an RS-232 DCE connector (labeled “Secondary Port”) as well asa DTE
connector (labeled “Primary Port). Other versions have only a DTE
connector.

A-8 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

GFK-0255K

a44831

I—o

TXD
RXD
CTs
5-PIN
DEVICE
RTS
GND

PIN
2| ™ 0
3| RrD 0 0
20| DR 0y
8| bcp g 0 PCM
5| cTs 0
0
0
0
0
7| onD 0y
25-PIN 25-PIN
MALE FEMALE

Figure A-12. PCM to a 5-Pin Device, Full Hardware Flow Control

In the following illustration, the 5-pin device cannot flow control the PCM:

a44832

TXD
RXD
CTs

5-PIN
DEVICE RTS
GND

Figure A-13. PCM to a 5-Pin Device, No Flow Control or Hardware Flow Control

Appendix A PCM Cabling Information

PIN
2 D I 0
3 RD - 0 0
0
20 DTR 0 0
8 DCD [— 0 0 PCM
4 RTS 0 0
5 cTs = 0 0
=, 0
7 GND —1 0
25-PIN 25-PIN
MALE FEMALE

A-9

RS-422/RS-485 Cables

A-10

The RS-422/RS-485 signal nomenclature used in this manual can be cross-referenced to
EIA standard RS-422, as shown below:

CCM Signal Name RS-422 Standard Signal Name
RS-422SD(B) B
RS-422SD(A) A
RS-422RD(B) B’
RS-422RD(A) A

During a mark state (logic 1), B is positive with respect to A. During a space state (logic
0), B is negative with respect to A.

When connecting the PCM to a non-Series 90 device using the RS-422/RS-485 standard,
the non-Series 90 device’s line receiver must contain “’fail safe” capability. This means
that in an idle, open, or shorted line condition, the output of the line receiver chip must
assume the mark (logic 1) state.

When using RS-422/RS-485, the twisted pairs should both be matched so that both
transmit signals make up one twisted pair and both receive signals make up another
twisted pair.

The PCM is supplied with a 120 Ohm terminating resistor in each RS-422/RS-485
receiver circuit. 1f the module is at either end of an RS-422/RS-485 multidrop or
point-to-point link, these resistors should be in the circuit. 1f the module is an
intermediate drop on the multidrop link, the appropriate resistors should be
disconnected from the circuit by removing their jumpers.

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999

GFK-0255K

a44235
PIN PIN
_____ o~
o N =] sow 9 I/ il X IT\I 13| RD(A) (o
0 g — so@) | 21 i — 25| RD(@®) — g 0
09— ~ro@® | 13 9| sp@) — 1%
00| — ro@® | 25 L XX 21| sp@) — | % oou
PCM 03 —] % RT 12 :’ Il . 12| RT % — go
PORT 0 — * RT 24 o h ™~ 24 RT x — 0 PORT
2 0% =] rTs® 10 (| [10 | RTS(A) . 0 0 2
0% = FrTsE 22 [1 22| RTS(B) — | %
00| csw | 1 [(| ul| crs@ |—| %,
0 g —| «cTs@® | 23 : : : : 23| crs® =] %
0 | = ov 7 7| ov — g 0
0 0 — SHLD 1 —————— LJ 1 SHLD — 0
_ ~—
25-PIN 25-PIN 25-PIN 25-PIN
FEMALE MALE * 120 OHMS MALE FEMALE
Figure A-14. PCM to PCM without Hardware Flow Control (RS-422/RS-485)
a44360
PIN SHIELDED
2 a1 TWISTED PIN
PAIRS
o = | | | ____PARS_ 24| RT « e
0% | = ™o+| @] 18 I/ Il |7 \I 25| RD(®B) 9%
0 g —| ™0-|] 17 I 1 13| RD(A) . g 0
0% | =] rxo+| ®] 13 21| sp(®) 1%
0 | = rxpo-| @] 14 L XX 9| sp@A) 1%, PCM
cem2 | o0 | =] rrs | @] 4 ([([| rRs@w |9 PORT
0 0 —| CTS G| 5 :I (I (I 22 RTS (B) — 0 0 2
0% | = Il Il u| crs@) |— g 0
0 g —] : : : : 23 CTS (B) — 0 0
0% | = ov @] 7 7| ov =N
00] =l sHp 1 _k’J_ _____ U 1| sHLD 10,
25-PIN — 25-PIN 4000 FEET 25-PIN - 25-PIN
FEMALE MALE |<— (12&%%5{15'\?5) —’| MALE FEMALE
* 120 OHMS

Figure A-15. CCM2 to PCM (RS-422/RS-485)

GFK-0255K Appendix A PCM Cabling Information A-11

a44232

PIN PIN
T~ —T o ~—————
00 1= sow 9 (T XX _If\l 22| RD (@A) 0,1
g o | = SD (B) 21 I] 10| RD (B) 0 0 —
= RD(A) | 13 23| sb(a) 0, | =
pcM | 0 g < RD@®) | 25 : : XX : : 1| sb) 0 g =
0 0 | RTS(A) 10 9| & 0 0 —
POZRT 00 | Rrtse | 22 h . 25| TERMRX | 04 | o
00| ctsw | 1 Il Fo |: 4| RTs 0 o | T
O | cse | 2 L o s oo [0 || pomr
% | RT | 24 : : : :] 5| crs 0 | =
g o | % - - 20| DTR g o |
0 ov 7 i) 70 ov 0
0)= SHLD 1 ¢ 1| sHLD _0/ —
25-PIN 25-PIN 25-PIN 25-PIN
FEMALE MALE * 120 OHMS FEMALE MALE

Figure A-16. PCM to OIT without Hardware Flow Control (RS-422/RS-485)

a44233

PIN PIN
0 Y= sb® 9 m ﬁ 24| RXD- = (0
0 g — sD(@®) 21 T) = 25| RxD+ = | 0
0 0 < RD(A) 13 T T 23| TXD- = | o 0
PCM 00 1= RD (B) 25 ~ T T 22| TXD+ = |0
0. |=| RTs@ | 10 12| CTS+ | 40
PorT |0 | = rrs@) | 22| (! (! 13l el 1% DCA
2 00 | =] rr 24 - o h 10| RTS+ | %
00 = =« [[1| RTS- — g 0
0 g — crs | 1 : : : : =1
0, | =] cts® | 20 L L = |40
0 — ov 7 7 ov — 0 0
0% J = sho 1 4\0L ————— O — 0
25-PIN 25-PIN % CONNECT 120 OHMS 25-PIN 25-PIN
FEMALE MALE x% INSTALL TERMINATING RESISTOR MALE FEMALE

Figure A-17. PCM to Series One/Series Three DCA (RS-422/RS-485)

A-12 Series 90 Programmable Coprocessor Moduleand Support Software User’s Manual — November 1999 GFK-0255K

GFK-0255K

a45362

PIN
sD@A) | o N A ®—| sorRD ()
sD@) | 21 || >C>< || ® SDIRD (B)
RD ()| 13 b b
RD(8)| 25 . .
RT| 24 . .
SHID| 1 4 ————— —\T) SHLD
GND| 7 ® GND
PCM k - T T) OTHER
25-PIN e DEVICE
CONNECTOR | |
| |
| |
| |
I OTHER
) DEVICE
L _ |-
®—| soRrD ()
® SDIRD (B)
120 OHM
TERMINATING
RESISTOR
NN
SHLD
GND

Figure A-18. 2-Wire RS-422/RS-485 PCM Hookup

Appendix A PCM Cabling Information

A-13

PIN a44361
TXD
D 2
<4
RD 3 RXD >
RTS 4 :| RTS X
cTS 5 cTS RX
DCD 8 DCD ¢
GND 7 GND
% PCM MODEM
(MASTER)
PIN
—» —»
D 2 [q— - TXD
RD 3) RXD »
RTS 4 < < RTS X —@
CTS 5 " " CTS RX < ®
DCD 8 DCD
GND 7 GND
PCM MODEM
(SLAVE) (SWITCHED CARRIER)
PIN
D 2 TXD
<4 <4
RD 3 > > RXD >
RTS 4 q= < | RS > [—®
CTS 5 cTS RX @
i <4 <
DCD 8 DCD
GND 7 GND
PCM MODEM
(SLAVE) (SWITCHED CARRIER)
% % TO ADDITIONAL
SLAVE MODEMS

* IF MASTER IS HOST COMPUTER, CONSULT COMPUTER
MANUAL FOR WIRING SCHEME.

* * NUMBER OF SLAVES POSSIBLE DEPENDS ON PARTICULAR MODEMS
USED. THE PCM’s SOFTWARE IS CAPABLE OF HANDLING 90 SLAVES.

Figure A-19. CCM2 or Host Computer to Multiple PCMs (Multidrop)

A-14 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

SHIELDED MAKE CONNECTIONS 44236
TWISTED INSIDE D-CONNECTORS
PAIRS
PIN # PIN
0 Y= so® 9 I’ ;I X |7 \I 13| RD (@A) — 70
0 g —] SD (B) 21] T 25| RD (B) =, 0
0 0 [am— RD (A) 13 | | >O< | | 9 SD (A) — 0 0
RD (B 25 21| sSD(@B —
series | 0 o | <= TEéN)I 12 1 1 2 TER(M) 0 0 SERIES
90-30 00 | = * =1 9 0 90-30
PCM [e R Il Il 24| TERM = ,0 PCM
MASTER! SLAVE
() | o 1= RTS (A) 10 — [[] 10| RTS(A) — | ,0 ()
0. | = RTS(® 22 LA [>k 2| RTS(B) =, 0
0 g — cTs@ | 1] (. L] 1| crs o) = ,0
0 0 <—| cTs(B) 23 : : : : 23| CTs(B) =0
0 — ov 7 ® 71 ov — 0
0 0
0 — SHLD 1 l | u 1| sHLD 1| "o
N I S ~ |
25-PIN 25-PIN | 1: g 25-PIN 25-PIN
FEMALE MALE bl el el i e MALE FEMALE
| |
| |
| |
| |
| |
'S EEED, PN
13 RD (A) — 0 0
UPTOA ® 25| RD(B) =—| "0
MAXIMUM OF 9| so@ g 0
4000 FEET —
(1200 METERS) ® 21 SD (8) 1o 0 SERIES
12| TERM =, 0 90.30
24| TERM —| "o PCM
10| RTS@A) L% (SLAVE)
* %
NOTE 22 RTS (B) — g 0
WHEN WIRING RS-422 /485 MULTIDROPCABLES, L] u| ems Q) el P
REFLECTIONS ON THE TRANSMISSION 23| crs@) =S
LINE CAN BE REDUCED BY CONFIGURING THE 0
¢ 7 ov = 0
CABLE IN A DAISY CHAIN FASHION AS S Y U D SHLD 0
SHOWN BELOW. ’_ BERE }— 1 — \0
| | 25-PIN 25-PIN
MASTER PCM SLAVE 1 | | MALE FEMALE
| |
| |
if I
- A PIN
PCM SLAVE 3 PCM SLAVE 2
@ 13 RD (A) — 0 0
[25| RD(B) — 0 0
9| SD(A) — 0
0
(Y 21| SD(B) =2 0 SERIES
\\ J \ } 12 TERM — 0 0 90-30
24| TERM == 0 PCM
ALSO IT IS RECOMMENDED TO MAKE ANY 0 (SLAVE)
10| RTS(A) — 0
NECESSARY CONNECTIONS INSIDE THE * % 0
CABLE CONNECTOR TO BE MOUNTED ON 22| RTS(B) 1 ¢ 0
THE PCM. IT IS NOT RECOMMENDED TO L 1| CTs(A) =S
USE TERMINAL STRIPS OR OTHER TYPES 2| s @ L]0 0
OF CONNECTORS ALONG THE LENGTH OF ®) 0
[W
THE TRANSMISSION LINE. 7| ov 1 0 0
5 || ||) SHLD — 0
[& 1 .
[I A I
| | 25-PIN 25-PIN
MALE FEMALE
* TERMINATIONS ON SIGNAL RD WILL BE Y
CONNECTED ONLY ON PCM's AT THE TO OTHER PCM's % OPTIONAL, BASED
END OF LINES. (MAXIMUM OF 8 PCM's ON A MULTIDROP) ON CONFIGURATION

Figure A-20. PCM or Host Computer to Multiple PCMs (4-Wire Multidrop)

Note

If the PCM is configured for no flow control, the jumpering of RTS/CTS
is not required.

GFK-0255K Appendix A PCM Cabling Information A-15

Appendix

GFK-0255K

B

Resetting the PLC from a PCM Program

PLC programs can reset any PCM, CMM, ADC, or GDC module by sending a backplane
message from a COMMREQ function block. The reset message produces exactly the
same effect as switching PLC power off and on or pressing the module Restart/Reset
pushbutton for less than five seconds. However, if the module watchdog timer expires,
causing the OK LED to go off, the reset message will have no effect.

The COMMREQ function block SYSID parameter must be programmed to send the
message to the rack and slot where the target module is installed. The TASK parameter
must be 127 decimal (7F hexadecimal). The COMMREQ command/data block must be
initialized as shown below. Note that there is never a return status; the COMMREQ

must be sent in NOWAIT mode.

COMMREQ Data Block Field Value

Length 2

WAIT/NOVWAITFlag 0(Ignored)

Status Pointer Memory Type 0(Ignored)

Status Pointer Memory Offset 0(Ignored)

Idle Timeout Value 0(Ignored)

MaximumCommunicationTime 0(Ignored)

Reset Status Value 0(Ignored)

Reset Command Value 4320 Hexadecimal (soft reset)
8640 Hexadecimal (hardreset)

B-1

B-2

The two Logicmaster 90-70 ladder program rungs shown below will send a soft reset to a
Series 90-70 PCM whenever contact %T00001 is active and contact %T00002 is inactive.
Latching contact %T00002 assures that only one reset COMMREQ is set.

I _ -
|[FST_SCN| | |
+BLKMV+ +MOVE_+—

|

CONST —+IN1 Q+—%R00001 CONST —+IN Q+—9%R00008
+00002| | 4320 | LEN |

| |00001
CONST —+IN2 |
+00000 | |

| |
CONST —+IN3
+00000| |

|
CONST —+IN4 |
+00000 | |

| |
CONST —+IN5
+00000| |

| |
CONST —+IN6
+00000| |

| |
CONST —+IN7 |
+00000 |

%T00001 %T00002 | | %T00002
|| 1/r

1 +COMM_+
| REQ |
I %T00003
%R00001—+IN FT+

| 1
CONST —+SYSID|
0003 | |

| 1
CONST —+TASK |
0000007F | |

Figure B-1. Soft Reset

Series 90 Programmable Coprocessor Moduleand Support Software User’s Manual — November 1999 GFK-0255K

GFK-0255K

The next Logicmaster 90-70 program fragment will send a hard reset to a Series 90-70
PCM whenever contact %T00011 is active and latching contact %T00012 is inactive.

I _ -
|[FST_SCN| | |
+BLKMV+ +MOVE_+—

|

CONST —+IN1 Q+—%R00011 CONST —+IN Q+—9%R00018
+00002| | 8640 | LEN |

| |00001
CONST —+IN2 |
+00000| |

| |
CONST —+IN3 |
+00000| |

|
CONST —+IN4 |
+00000 | |

| |
CONST —+IN5 |
+00000| |

||
CONST —+IN6 |
+00000| |

| |
CONST —+IN7 |
+00000 |

%T00011 %T00012 | | %T00012
|| 1/r

1 +COMM_+
| REQ |
I %T00013
%R00011—+IN FT+

| 1
CONST —+SYSID|
0003 | |

| 1
CONST —+TASK |
0000007F | |

Figure B-2. Hard Reset

Logicmaster 90-30 versions of these rungs are slightly different because the Logicmaster

90-30 COMMREQ function block does not have a power flow output.

Appendix B Resetting the PCM from a PLC Program

B-3

Appendix

C

PCM Commands

The PCM includes a command interpreter which is similar in principle to the MS-DOS
command line interpreter or UNIX shell. PCM commands provide complete control for
loading and storing applications, and for executing them.

Note

Your PCM must have firmware version 2.50 or greater in order to use
the commands described in this appendix.

Accessing the Command Interpreter

GFK-0255K

The PCM command interpreter is connected by default to PCM serial port 1 whenever
the PCM is not configured by Logicmaster 90 in CCM ONLY mode and is not executing
an application program. In addition, the command interpreter can be accessed through
the PCM backplane, as described earlier in this document. The following discussion
assumes that you are trying to access the command interpreter through serial port 1
using the TERMF terminal emulation program. TERMF is described fully in chapter 2,
section 4, TERMF Installation and Configuration.

When a PCM is configured in PCM CFG mode using Logicmaster 90 software and there
are no files stored in it, the command interpreter will be connected to serial port 1
whenever the PCM is reset by holding the restart button for 10 seconds (a hard reset).
Pressing the Enter key displays a “> " prompt from the interpreter when it is active.
Pressing the Enter key repeatedly adds another “> " prompt on the same line each time
you press the Enter key.

Depending on the Logicmaster 90 configuration for the PCM, the MegaBasic interpreter
may start at power-up or a reset. MegaBasic prints a startup banner message (by default
to port 1) whenever it starts. When you see the startup message and a Ready prompt,
you can type BYEand press the Enter key to exit from MegaBasic to the command
interpreter. If you see the startup message but no Ready prompt, MegaBasic is running
a program. You can usually stop the program by typing CTRL-C. (Press and hold down
the CTRL key while typing C.)

If you cannot access the command interpreter after trying the procedures described
above, use the Logicmaster 90 configuration software to check the PCM configuration. If
a configuration has been stored to the PLC, load it to the Logicmaster software and then
check the PCM configuration mode to be sure it is either BASIC, BAS/CCM or PCM CFG.
If the PCM mode is not one of these, change it and store the new configuration to the
PLC. If there is no PLC configuration, create one with the PCM configured to PCM CFG
mode and then store it to the PLC.

C-1

As a last resort, try turning off power, disconnecting the battery cable from the connector
on the circuit board, and shorting the two pins on the circuit board connector. This clears
PCM memory. Reconnect the battery and turn the power on again. If there is no
MegaBasic startup banner or command prompt, and you are sure the PCM

configuration mode is correct, refer to chapter 6, Troubleshooting Guide.

Interactive Mode

When the PCM connects you to the command interpreter after power up or a reset, you
should see this prompt:

-

When you return to the command interpreter from MegaBasic, you may not see a
prompt on your screen immediately, but pressing the Enter key should display a “> "
prompt. At this point, the interpreter is in its default mode, which is used to
communicate with the PCM development software package, PCOP. Default mode does
not respond to you with text messages, nor does it echo the keys you type back to your
screen. You must switch to INTERACTIVE mode by typing two exclamation points (!!)
and pressing the Enter key. This message will appear:

INTERACTIVEMODE ENTERED
type '?’ for a list of commands

If your PCM firmware version is earlier than 3.00, you will see “DEBUG” rather than
“INTERACTIVE” in this message.

To display a list of PCM commands, type a question mark (?) and press the Enter key. If
you are using PCOP, you need to type three exclamation points (!) and then press
the Enter key in order to return to it. PCOP cannot communicate with the command
interpreter while it is in interactive mode.

Caution

When using Megabasic, make sure all your programs have been saved
to your computer (the PC: device) before attempting to use the
command interpreter.

Command Format

AlIPCM commands begin with a single letter which identifies the command. The
complete command is an ASCII string, terminated by an ASCII CR (0D hexadecimal)
character. Command arguments are separated from the command character and each
other by one or more spaces.

Note

When using PCM commands in batch files with certain PCM firmware
versions (see appendix D, PCM Batch Files), the command letter must be
uppercase characters. You can avoid batch file errors by using uppercase
characters exclusively in PCM commands.

C-2 Series90 Programmable Coprocessor Moduleand Support Software User’s Manual — November 1999 GFK-0255K

Notation Conventions

Commands

GFK-0255K

Arguments are shown as symbolic names within angle brackets (< >). For example,
<file_name> represents a string of ASCII characters containing the name of a file,
<pcm_filename> represents a string of ASCII characters containing the name of a
PCMfile, <led_use_code> represents two ASCII characters containing a one-byte
hexadecimal value, etc.

Optional arguments are shown in square brackets ([]). They may be omitted; all
other arguments are required.

PCM commands are summarized in the following table:

Command Description
L Load a file from the PC.
S Save afile to the PC.
D Show adirectory of files in memory.
X eXterminate (delete) afile.
R Run an executablefile.
K Killarunningtask.
C Clearthe PCM.
@ Execute a batch file.
F Showavailable memory.
G GetPCM memory ID.
H Get the PCM revision number.
B Configureauser LED.
U Reconfigurethe PCM.
M Createamemory module.
PT Show PCM task information.
PC Show PCM config errors.
PM Show reset type and mode.
PL Show the location of the PCM.
PD Dump the state of the PCM just before the last soft reset to a PC file.
1l Enterinteractive (DEBUG) mode.
n Exitinteractive(DEBUG)

The following commands are also available, although most of these are seldom used
except by PCOP

Command Description

Initializeadevice.

Format the ROM: device.
GetLED configuration.

Set protection level.

\erify afile.

Wait for abackground task.
Setupper memory limit.

<=2 <00 <« -—

The remainder of this section provides detailed descriptions of the commands listed in
the preceding tables. The commands are presented in alphabetical order.

Appendix C PCM Commands

C-3

@ (execute a batch file)

Format: @<file_name>

This command executes the PCM batch file <file_name> . No intervening space is
permitted between the @ command and the file name. These examples show how the
@ command is used. The file extension is optional; in the last example, MYFILE.BAT
is executed. If no device is specified, as in the first and last examples, RAM: is assumed.

@MY.BAT
@PC:A\MYDIR\MY.BAT
@MYFILE

These errors can be returned:

File not found <file_name>
lllegal module type <file_name>

For more information on PCM batch files, refer to appendix D, PCM Batch Files.

B (configure LEDSs)

Format: B <led_number> <led_use _code> [<task_number>]

This command configures either of the bottom two PCM LEDs (USER1 and USER?2).
The LED number can be either of the ASCII characters 1 or 2. The LED use code is a
two-digit ASCII hexadecimal code that specifies a configuration byte for the LED.
Binary values for the LED use code are as follows:

Bit 76 543210

+
Value |0[0]0[0]0[0]|0]0]
+

1] | Serial port 1 transmit

|1 Serial port 1 receive

|] Serial port 2 transmit

| Serial port 2 receive
Backplane transmit
Backplane receive
| Must be zero

Combine the bits for the desired LED action into a single byte value in hexadecimal
format. For example, to blink LED USER1 when characters are transmitted or received
on serial port 2, use binary code 00001100. This is equivalent to 0C hexadecimal, so the
commandis B10C .

The task number, if specified, is an ASCII hexadecimal digit that specifies which task will
control the indicated LED. The task number must be the number of a valid task (0-0F
hexadecimal). When an LED is assigned to a task, the LED use code must be specified as
40 hex. To configure LED 1 to be controlled by task 7, use B 1407

Task 7 will then be able to change the behavior of LED 1. A second B command may be
used specify a default communication event or events which will flash the LED before
task 7 programs it.

C-4 Series90 Programmable Coprocessor Moduleand Support Software User’s Manual — November 1999 GFK-0255K

C

D

F

GFK-0255K

(Clear the PCM)

Format: C

This command deletes all RAM Disk files on the PCM, including the UCDF, resets the
PCM, and initializes it in factory mode. The C command returns an error if any files are
in use. When this happens, the PCM must be put in factory mode (U FDEF) before it can
be cleared.

(file Directory)

Format: D [<option>]

This command prints the names of the files stored in the PCM RAM Disk or other file
devices. It returns no errors. Asingle letter <option> , separated by a space from the
D command, may be used. The following table shows the data returned by this
command and its options.

Option Description
D The D command used alone shows the names of non-hidden files in the PCM
RAMDisk.
DH This command option shows all files, hidden and non-hidden, in the PCM RAM

Disk. Hidden files may include files loaded to the PCM using the Hidden
attribute as well as file data blocks appended to files created by PCM applications.

DP This command option shows files in the PCM system EPROM. These files
provide VTOS functionality.
DR This command option shows files in the PCM option EPROM. These files

provide functionality such as MegaBasic, CCM, etc.

(show Free memory)

Format: F

In interactive mode, this command displays the amount of free PCM memory as two
decimal numbers:

Total available memory is xxxxxx bytes
Largest available block is yyyyyy bytes

The first is the total of all available memory. The second is the size of the largest free
memory block. Both sizes are expressed in bytes. No errors are returned.

Note

The largest available block size is often used to determine the amount of
memory to allocate to MegaBasic. The MegaBasic data space must be
smaller than the largest available block size.

Appendix C PCM Commands C-5

G

H

C-6

(Get hardware ID)

Format:

G

This command returns the ID number of the PCM hardware configuration. The value is

an ASCII string containing two hexadecimal digits which specify the ID. One of the

following codes is returned:

Code Description
00 Series90-70 PCM with no daughter board.
1D Series 90-70 PCM with a 512K daughter board (640K bytes total).
1E Series 90-70 PCM with a 256K daughter board (384K bytes total).
1F Series 90-70 PCM with a 128K daughter board (256K bytes total).
1C Series 90-70 PCM wiith a 64K daughter board (192K bytes total).
FF Series 90-30 PCM model IC693PCM300 (160K bytes).
FE Series 90-30 PCM model IC693PCM301 (192K bytes).
FC Series 90-30 PCM model IC693PCM311 (640K bytes).
80 Graphics Display Coprocessor Module with avideo daughter board.
81 Series90-70 AlphanumericDisplay Coprocessor Module.
82 Series90-30 AlphanumericDisplay Coprocessor Module.

(get PCM firmware revision number)

Format:

H

This command returns the firmware release number of the PCM. The ASCII string
returned by the PCM contains a single digit for the major revision number, a period, and
two digits for the minor revision number. For example:

Softwarerevision number is 3.03

Series90 Programmable Coprocessor Moduleand Support Software User’s Manual — November 1999

GFK-0255K

GFK-0255K

(Initialize device)

Format: | <device_name> <device_initialization_string>

This command sends the specified initialization string to the specified device. Currently,
the two serial devices, COM1 and COM2, and the CPU device support this command.

A space character is required between the device name and initialization string. The
parameters in <device_initialization_string> must occur in the order listed in
the table below with no intervening spaces. Any number of parameters may be omitted
at the right end of the string. Parameters to the left of the last one may be omitted, but
all the surrounding commas must be included. Omitted parameters retain their
previous settings.

Device Initialization String
CcOoM1: <baud_rate>,<parity>,<data_bits>,<stop_bits>,<flow_contr ol>,
COoM2: <physical_interface><duple x_mode>,<delay_value>,
<typeahead_size>
where:

<baud_rate> =300, 600, 1200, 2400, 4800, 9600, 19200*, or 38400 — the number of bits
per second. Note that 38,400 baud is supported only by the Series 90-70 PCM, and
only for RS-422 or RS-485 port configurations.

<parity> = O, E, N* - the type of parity checking: Odd, Even, or None.

<data_bits> =7 or 8* - the number of data bits per character. Use 8 unless text with
7 bit characters will be the onlydata transferred.

<stop_bits> =1* or 2 - the number of stop bits per character. The normalselection
for 300 baud and higheris 1.

<flow_control> = H*, S, or N - the flow control method: Hardware (CTS/RTS), Soft-
ware (X-ON, X-OFF) or None.

With hardware flow control, RTS is turned on when the port is ready to transmit.
Then, transmission begins when CTS becomes active. RTS remains on until
<delay_value> expires after the last character is sent.

With software or no flow control, RTS is not turned on, and transmission begins
immediately

<physical_interface> =232*, 422, or 485 - the physical connection protocol for the
port: RS-323, RS-422, or RS-485. RS-422 is equivalent to RS-485. All Series 90-30
PCMssupportRS-232only on COML1. IC693PCM300 supports RS-422/485only on
COM2.

<duplex_mode> = 2, 4*, or p - the type of physical connection: 2 = half duplex (2
wire for RS-422/485), 4 =full duplex (4 wire for RS-422/485), p = point-to-point.
Availablein PCM firmware version 3.00 or later.

In point-to-pointmode:
® The receiver for the specified port is always enabled.

® When <physical_inter face> = 422 or 485, all RS-485 line drivers
for the specified port are enabled when the command is executed
and remain on continuously.

* Default selection.

Appendix C PCM Commands C-7

Device

Initialization String

COML1:

COM2:

(Continued)
w

<duplex_mode> (Continued)
In full duplex mode:
® Thereceiver for the specified portis always enabled.

® When <physical_interface> =422 or 485, the RS-485 line drivers for
RTS and transmitted data outputs on the specified port are turned on
immediately before transmitting and remain on until <delay_value>
expires after the last character is sent. Atall other times, these driversarein
theirhigh-impedancestate (tri-stated).

In halfduplex mode:

® Thereceiver forthe specified portis disabled immediately before
transmitting and remains off until <delay_value> expires after the last
character is sent.

® When <physical_interface> =422 or 485, the RS-485 line drivers for RTS
and transmitted data outputs on the specified port are turned on
immediately before transmitting and remain on until <delay_value>
expires after the last character is sent. Atall other times, these driversarein
theirhigh-impedancestate (tri-stated).

<delay_value> =the time in milliseconds between the end of the last outgoing charac
and the time RTS is turned off (if applicable), RS-485 line drivers are tri-stated (if ag
ble), the receiver is enabled in half duplex mode (if applicable), and WAIT mode ou
statements complete execution.
Default = 0. Available in PCM firmware version 3.00 or later.

<typeahead_size> = the typeahead buffer size in characters for the port. The port car
cept up to one less than this number of characters without overflow before an appli
reads the port. When overflow occurs, any additional characters will be lost. Any g
the range 64 — 32750 bytes may be specified, but the maximum may be limited by
able system memory. Default = 32@vailable in PCM firmware version 3.00 or later.

er
plica-
put

ac-
Cation
ize in
avail-

CPU#5

<PLC_access_password>,<disable_clock_sync>
where:

<PLC_access_password> = the PLC access password for privilege level 2 or higher. |
passwords are enabled in the PLC CPU and the PLC has passwords at level 2 ang
the PCM will be unable to read or write PLC memory until the PCM sends a valid pj
word. Passwords are case sensitive, and valid passwords may have upper case le|
numbers, and underbar (‘_’) characters only. If an empty string is specified for
<PLC_access_password>, a password consisting of eight NUL characters will be §
to the PLC CPU. There is no default.

<disable_clock_sync> = N - disables backplane messages the PCM normally sends ¢
per second to synchronize its internal time of day with the PLC CPU. Any charactq
er than ‘N’ or ‘n’ enables clock synchronizatiofwailable in PCM firmware version
4.03 or later.

Some applications may be sensitive to the impact that clock synchronization mess4

have on PLC sweep time or backplane message rates. If these issues are more im
than time of day accuracy, use this option. Default = synchronization enabled.

i
higher,
ASS-
fters,

ent

nce
r oth-

ges
portant

Examples:

C-8 Series90 Programmable Coprocessor Moduleand Support Software User’s Manual — November 1999

| COM1: 9600,,,,S
| COM2: 38400,0,8,1,5,485,2,10,1024

GFK-0255K

The first example sets the port 1 data rate to 9,600 baud and selects software flow
control. Selections for parity, data bits, and stop bits are the omitted items between the
four consecutive commas; they are unchanged.

The second example sets port 2 for RS-485 two wire half duplex operation at 38,400
baud, odd parity, 8 data bits, and one stop bit; using software flow control, a ten
millisecond time delay, and a 1024 character typeahead buffer.

| CPU:#5 PASSWD
| CPU:#5 MYPASWD,N
| CPU#5 Y

The third example sets the PCM privilege to the access level protected by the password
“PASSWD”.

The fourth example sets the PCM privilege to the access level protected by “MYPASWD”
and also disables PCM clock synchronization.

The last example re-enables PCM clock synchronization but has no effect on PLC access
level.

J (format EEROM device)

Format: J ROM:

This command causes an electrically erasable ROM (EEROM) device installed in a PCM
301 to be erased and formatted as the file device ROM:. Once the EEROM has been
formatted, files can be loaded to and run from it just as they are in RAM:. Note that only
the PCM 301, IC693PCM301, supports an optional EEROM device.

Attempting to format an invalid device produces this message:

Unknowndevice

K (Kill a task)

Format: K <task id>

This command stops the specified task and frees the resources it was using. The task is
unlinked from all associated modules (all link counts are decremented). Timers used by
the task are cancelled, pending ASTs are discarded, pending 1/0 is aborted, open files are
closed, and memory used by the task is returned to the operating system.

The task ID argument must be in the range of 4 — OF hexadecimal. If itis not, or if the
task is not active, the PCM responds with the error message:

Can'tterminate task

Note

PCM firmware version 2.51 or earlier limits the task number to a range
of 4 -7.

GFK-0255K Appendix C PCM Commands C-9

L (Load)

Format: L [<options>] <pc_filename> [<pcm_filename>]

This command directs the PCM to load the file specified by <pc_filename> to
<pcm_filename> inthe PCM RAM Disk. The file names are not case sensitive. If the
optional <pcm_filename> is omitted, the PC file name will be used without any
device or file path prefix. If the file already exists in the PCM, it will be overwritten.

If <pc_filename> has the extension .EXE, and the file begins with a valid MS-DOS
relocatable EXE file header, the PCM will attempt to convert the file to an absolute load
image in RAM.

Two optional qualifiers may be specified with the load command: display mode and
protection mode. The display mode determines whether or not the file will be included
in a module directory listing. The two modes are normal (N) and hidden (H)
Normal mode is the default.

The protection mode is used to determine whether the PCM file will be volatile

(V) , semi-volatile (S) , or protected (P) . For certain file types (for example,
EXE files) , the protection level is fixed at P by default; a protection option in the load
command is ignored. Data files are volatile by default, but this may be overridden by
the load command.

If options are used in the load command, they follow the command directly, with no
intervening spaces. For example, LH is used to load a hidden module, and LHP is used
to load a protected hidden module.

Possible errors are:

File not found
lllegal module type
Insufficient memory

The PC file name may begin with a device name. If there is no device name, the default
device PC: isassumed. A PC disk drive and file path specification may be included in
<pc_filename> . However, if a PC disk drive is specified, the PC: device must also be
explicitly specified; for example:

LPC:A:MYFILE.DAT
L PC:.C:\MYDIR\WMYFILE.EXE

C-10 Series90 Programmable Coprocessor Moduleand Support Software User’s Manual — November 1999 GFK-0255K

M (create a memory Module)

Format: M <module_name> <size>

The create memory module command creates a PCM data module using the specified
<module_name> and <size> arguments. The size is interpreted as a hexadecimal
number.

The command has no effect if the module already exists. If the module does not exist, it
will be created and initialized to all zeros. No checksum protection will be applied to the
module; it may be freely read and written. The location of the module may change after
a reset, but its contents will remain the same.

0 (get LED configuration)

Format: 0

This command is used to return the LED configuration for the PCM. Two words of
binary data are returned. The first word holds the configuration of LED 1, and the
second holds the LED 2 configuration. However, TERMF does not display the binary
values correctly.

Note

The O command is provided mainly for PCOP and does not return
meaningful data when invoked from interactive mode.

GFK-0255K Appendix C PCM Commands C-11

P (request status data)

Format:

Px

This command requires a second uppercase letter (x), which specifies the type of status
data requested. The information returned is explained in the following table:

Option

Description

PC

Show the status of the PCM configuration. If the last configuration completed
withouterrors, the PCM returns the > prompt. If there were errors, the PCM
returns an errorstring.

PD

Dump the operating status of PCM at the most recent PCM soft reset. When the
PCM is soft reset, it saves the contents of its task control blocks plus the top 64
words of the stack for the task which was executing at the time and the top 32
words of all other tasks. The PD command causes the PCM to write this
information to abinary file called PCMDUMP.OUGdn the PC default directory.
This data can be formatted as text with the PCMDUMP.EXHtility or the
MegaBasic program PCMDUMP.PGM he information is useful when the PCM
resets or locks up unexpectedly

PL

Show the PCM rack/slot location. The PCM returns two ASCII digits. The first
digitspecifies the rack number, and the second digit specifies the slot number. The
ASCII digits may be followed by a string that contains the CPU ID. Ifthe PLC
CPU does not have an ID, no string is returned. If the PCM cannot establish
communication with the CPU, the message ”"NO CPU” is sent.

PM

Show the type and mode of the most recent PCM reset. The PCM returns two ASCII
digits.

The first digit specifies the type of the most recent PCM reset:
0 = Powerup reset.
1 = Soft reset.
2 = Hard reset.
3 = ACFAILreset.
4 = Reset caused by receipt of new soft switch data.
5 = Internal software error reset.
6 = Backplane (COMMREQ) reset.

The second digit specifies the type of configuration data used during the most
recent reset:

0 = User configuration data.

1 = Factory default configuration data.

2 = Logicmaster 90 configuration.

3 =Acombination of Logicmaster 90 and factory default data.

PT

Show the status of PCM tasks. For each active task, the PCM returns the task
number and the names of the task’s code and environment modules.

C-12 Series90 Programmable Coprocessor Moduleand Support Software User’s Manual — November 1999

GFK-0255K

Q

GFK-0255K

(set protection level)

Format:

Q <file_name> <protection_level>

This command is used to change the protection level of a module or modules on the
PCMRAM Disk.

Level

Description

0

Unprotectthe file: the file is not checksum protected and may be freely written. The
checksum is not verified on power up or reset.

Protect the file: a checksum is calculated for it, and it may no longer be written to.
On power-up or reset, the checksum of the module is verified and, if it is not
correct, the module is discarded.

Appendix C PCM Commands

C-13

R (Run)

Format:

R <file_name> [<options>]

This command causes the PCM to run the executable file specified by <file_name>
The following options are available:

Option

Description

>outchnl

Redirectstandard output to the channel specified by outchnl . Choices are
COM1¥, COM2; RAM:<pcm_filename> , and PC:<pc_filename> ,
where <pcm_filename> and <pc_filename > are the names of PCM
RAM Disk and PCfiles, respectively. A device must be explicitlyspecifiedfor
files; the colon isrequired. A <pc_filename> may contain a PC device
and/orfilepathspecification:

R MYFILE.EXE >PC:C:[backsl]MYDIR[backsl]MYFILE.OUT

<inchnl

Take standard input from the channel specified by inchnl . Choices are
identical to the ones for the >outchnl option.

?errchnl

Redirectstandarderror output to the channel specified by errchnl . Choices
are identical to the ones for the >outchnl option.

/ SXXXX

Use a stack size of xxxx hexadecimal bytes; 400 is the default.

/ DXXXX

Allocatexxxxhexadecimal bytes of data space to the task. The balance is reserved
for RAM Disk or other tasks.

/EXx

Specify the executable task type; the defaultis 1 (priority based) .
For PCM version 3.00 or later, a 2 (time slice) optionisalsoavailable.

VAN

Use a specified task ID value in the range 4 — OF hexadecimal; by default the
lowest unused value. Release 2.51 and earlier PCMs limit the task number to a
range of 4 - 7.

/TXX

Allocate an execution time slice of xx hexadecimalmilliseconds.Time slice options
only apply to release 3.00 or later PCMs.

/Mname

Link the task to memory module name (may occur multiple times).

/B

Run the task in background mode.

Note: If the task and the PCM command interpreter share a serial port, the
command interpreter remains active and may interfere with the task.

/K

Keep the task’s environment block in memory after task termination.

* Default selection. The default selection is whatever port is being used by the command interpreter;
normally, this is COML1..

Allstrings in the command line which do not begin with the special characters (>, <, ?,
or /) are assumed to be command line data strings. They are passed to the executable
program for processing.

If the file specified by the R command is not present in the PCM RAM Disk, the PCM
attempts to load it from the default device PC: using the specified file name. If it cannot
find the file in either device, an error message is returned. Errors that can be returned

are:

Module not found <file_name>
File not found
Insufficient memory

C-14 Series90 Programmable Coprocessor Moduleand Support Software User’s Manual — November 1999

GFK-0255K

S (Save)

Format: S <pcm_filename> [<pc_filename>]

This command causes a file named <pcm_filename> in the PCM RAM Disk to be
saved to a PC file. If the optional <pcm_filename> is omitted, the PCM file name
will be used, and the file will be saved in the current directory of the current drive. If the
file does not already exist on the PC, it is created; otherwise, the existing PC file is
overwritten. The <pcm_filename> may include a PC disk drive and/or file path, as
described above for the L (Load) command.

EXE files which have been loaded to PCM RAM no longer contain relocation
information. They cannot be saved to PC files.

Possible errors are:

Module not found <file_name>
Cant save module <file_name

U (reconfigure the PCM)

Format: U <configuration_file>

This command reconfigures the PCM according to the specified

<configuration_file> . If any of the modules specified in the configuration file are
missing, or if errors are encountered while initializing the new configuration, the PCM is
placed in its factory default configuration.

The <configuration_file> argument must be either FDEF (factory) or UCDF
(user). UDCF configuration data is stored only by PCOP. Any other file name results in
one of these error messages:

Module not found <file_name>
lllegal module type <file_name

v (Verify a file)

Format: V <file_name>

This command causes the PCM to verify the checksum of the specified file on the PCM
RAM Disk. The file must have checksum protection. If the checksum calculated for the
file matches the checksum stored in it, the PCM returns just the > prompt. If the
checksums do not match, the PCM prints an invalid file error code, followed by the >
prompt.

The Q command is used to enable and disable checksum protection for files.

GFK-0255K Appendix C PCM Commands C-15

W (Wait)

Format: W <time>

This command causes PCM command interpreter to wait for the specified time, in
seconds, before initiating or responding to any activity on the serial ports. After the
specified time, the PCM prints the > prompt or executes the next command in the .BAT
file.

This command is provided to allow tasks running in background mode to access the PC
file server. Since the PCM command interpreter and file server usually share the same
serial port, the command interpreter has to be kept from using the port while the
background task is using the file server. This is not a problem with tasks run in
foreground mode, because the command interpreter is suspended until the foreground
task completes.

This command is also useful for insuring that one task is completely initialized before
starting another task. It is commonly used in .BAT files.

X (eXterminate file)

Format: X <file_name>
This command deletes a file named <file_name> inthe PCM RAM Disk.

Possible errors are:

Moduleis use <file_name>
Module not found <file_name

Note

The specified file is deleted immediately. There is no confirmation
prompt, nor is there any method for recovering a deleted file.

C-16 Series90 Programmable Coprocessor Moduleand Support Software User’s Manual — November 1999 GFK-0255K

Y (set upper memory limit)

Format: Y [<limit>]

PCM memory may be divided between the operating system and one or more
applications. Setting a limit on the memory used by the operating system causes it to
ignore all memory above the limit. It will never load programs or allocate memory
buffers there. Application programs can determine the limit with the GET_MEM_LIM
utility and access memory above the limit through the use of pointers or absolute
addresses.

The optional <limit> argument is the amount of memory, in 16-byte paragraphs, to
be retained by the operating system. It is specified as a hexadecimal value and must be
at least 800 (32K bytes), to leave space for operating system data. If the specified value is
too small or exceeds the total amount of memory on the PCM, this error message
”Insufficient memory” is returned.

If the command is entered with no argument, the operating system uses all the RAM on
the PCM, and the GET_MEM_ LIMutility will indicate that no limit has been set. When a
limit is set, it does not actually take effect until the PCM is reset.

GFK-0255K Appendix C PCM Commands C-17

Appendix

D

PCM Batch Files

The PCM supports batch files which are superficially similar to those used with
MS-DOS. You can specify a batch file to be executed interactively. In addition, you can
create batch files which are executed automatically when power is applied or a soft reset

occurs, or when a hard reset occurs. These files must be named PCMEXEC.BATand
HARDEXEC.BATrespectively.

Note

Your PCM must have firmware version 2.50 or greater in order to use
PCM batch files.

PCM batch files may consist of any number of commands. All the commands described
in appendix C, PCM Commands, may be used in batch files. Unlike MS-DQOS, there are no
commands, such as IF ECHO, or GOTO, which work only in batch files.

Caution

When using PCM commands in batch files for PCMs with firmware
release 2.51 or earlier, the command letter must be upper case. You can
avoid batch file errors by using uppercase characters exclusively in
PCM batch files.

Running Batch Files

GFK-0255K

Suppose you want to create a simple batch file that starts MegaBasic. Using a text editor
on your computer, create a file called TEST.BAT, which contains the single line:

RBASIC.EXE

After saving the file, invoke TERMF on your PC and then enter the PCM command
interpreter interactive mode as described in appendix C, PCM Commands. Load the
batch file to the PCM by typing:

LTEST.BAT

and pressing the Enter key.

D-1

Caution

Do not attempt to load batch files to the PCM using the MegaBasic
LOAD command. The MegaBasic LOAD command converts files to
MegaBasic program format, which is not understood by the PCM
command interpreter. Using the MegaBasic LOAD command for batch
files will prevent them from executing as expected.

To run the batch file, type @TESTand press the Enter key.

You should see the command in TEST.BAT followed by the MegaBasic start-up
banner, indicating that the command interpreter executed the command to run
MegaBasic. If you type BYE again, you should once again be communicating with the
command interpreter in interactive mode. Verify this by pressing the Enter key, and
note that the > prompt appears on a new line.

PCMEXEC.BAT Files

When the PCM powers up or a soft reset occurs, the operating system looks for a file
named PCMEXEC.BATIn the RAM Disk. If it is not found, and the PCM has been
configured by Logicmaster 90 software in BASIC or BAS/CCM mode, a new one is
created. This file contains a single R (Run) command which instructs the command
interpreter to allocate a specified block of PCM RAM to MegaBasic, to send a message to
MegaBasic to execute a program named BASIC.PGM, and then to run the MegaBasic
interpreter. If BASIC.PGM is found, it is then executed.

When the command interpreter starts, it executes the commands in PCMEXEC.BATjust
as the MS-DOS command interpreter uses the AUTOEXEC.BATfile when MS-DOS is
booted. However, PCMEXEC.BAT is not executed following a hard reset.

HARDEXEC.BA Files

When a hard reset occurs, the operating system looks for a file named HARDEXEC.BAT
in the RAM Disk. If this file is not found, and the PCM has been configured for BASIC or
BAS/CCM mode, anew HARDEXEC.BATIs created. It containsan R (Run) command
which allocates a block of memory to MegaBasic and then starts the MegaBasic
interpreter. In this case, no MegaBasic program name is specified, and MegaBasic starts
in command mode.

D-2 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — November 1999 GFK-0255K

User-Installed PCMEXEC.BAT and HARDEXEC.BAT Files

GFK-0255K

You can create your own version of PCMEXEC.BATand/or HARDEXEC.BATand load
them to the PCM RAM Disk. The commands you put in your PCMEXEC.BATwill
control the PCM whenever it powers up or a soft reset occurs. Similarly, commands in
your HARDEXEC.BATcontrol the PCM when a hard reset occurs. Use your computer
and any text editor which produces ASCII text files to create these files. Then use the
L (Load) command, described in appendix C, PCM Commands, to load them to the
PCM RAM Disk.

If it exists, PCMEXEC.BATis always run on power up and a soft reset, regardless of
whether or not PCOP has stored User Configuration Data (UCDF) to the PCM.
Although PCMEXEC.BATcan be thought of as a configuration tool, its function is
different from the UCDFE A UCDF can define the entire operating environment of the
PCM, while PCMEXEC.BATis limited to defining the environment for application tasks.

Caution

Do not attempt to use both a PCMEXEC.BAT file and UCDF
configuration data. There are subtle interactions between them which
can prevent the PCM from operating as expected.

The most common use of the PCMEXEC.BATTile is to run application programs. Batch
file commands can also be used to configure the user LEDs on the PCM and set the serial
port communication parameters, as described in appendix C, PCM Commands.

Another way to create a PCMEXEC.BATTfile on the PCM RAM Disk is to use MegaBasic.
This example creates a file to run BASIC.EXE with standard input, standard output,
and standard error redirected to the NULL device. Type the statements below with no
line numbers so that MegaBasic will execute them immediately.

Open #5, “PCMEXEC.BAT”
Print #5, “R BASIC.EXE TEST.PGM <NULL: <NULL: ?NULL: /D20000”
Close #5

Appendix D PCM Batch Files D-3

Appendix

GFK-0255K

E

Example MegaBasic Program

The following program is a MegaBasic test program.

1000 Rem MEGABASIC BACKPLANE INTERFACE TEST ROUTINES
1010 Rem TEST.PGM

1040 Rem Define local variables to be used during backplane testing
1050 Def integer INTVBL1

1060 Def integer INTVBL2

1070 Def integer SUCCESS

1080 Def real REALVBL1

1090 Def real REALVBL2

1100 Rem Define “STATUS Structure
1110 Struct integer CUR_STAT, integer STAT_HIST, integer STAT_TIME
1120 Dim STATSTR$(12)

1130 STABLE =1

1140 READ_PENDING =2

1150 READ_RECEIVED =3

1160 READ_TIMEOUT =4

1170 WRITE_PENDING =5

1180 WRITE_RECEIVED =6

1190 WRITE_TIMEOUT =7

1200 NO_CPU =11

1210 XFER_REJECT =12

1220 SUCCESS =0

1230 Rem First make sure that all parts of CPU memory can be accessed
1240 CHECKPLC “%R100, 12345

1250 CHECKPLC “%I001", 12345

1260 CHECKPLC “RQO001", 12345

1270 CHECKPLC “%MO001, 12345

1280 CHECKPLC “%T001", 12345

1290 CHECKPLC “%Al1", 12345

1300 CHECKPLC “%AQ1, 12345

1310 Rem Check to make sure that SYSTATUSS$ function works correctly
1320 CHECKSTAT

1330 Rem Display Results of MegaBasic Test Program

1340 If SUCCESS =0 then [

1350 Print “ s Print “MegaBasic Test Program Completed Successfully "

1360]

1370 Else [

1380 Print “ s Print “MegaBasic Test Program Failed: " SUCCESS," Failures Detected
1390]

1400 End

”

E-1

E-2

1410 Rem Define The “CHECKPLCProcedure

1420 Def proc CHECKPLC PLCLOCS$, PATTERN%

1430 Local STATSTR$

1440 Errset XFERERR1

1450 SYSLINK INTVBL1, PLCLOC$

1460 Errset XFERERR2

1470 STATSTR$ = SYSTATUSS (INTVBL1)

1480 If STATSTR$.CUR_STAT <> STABLE then Goto 1790
1490 SYSLINK INTVBL2, PLCLOC$

1500 Errset XFERERRS3

1510 STATSTR$ = SYSTATUSS (INTVBL2)

1520 If STATSTR$.CUR_STAT <> STABLE then Goto 1780
1530 INTVBL1 = PATTERN%

1540 INTVBL2 =0

1550 SYSWRITE INTVBL1

1560 SYSREAD INTVBL2

1570 STATSTR$ = SYSTATUSS (INTVBL1)

1580 If STATSTR$.CUR_STAT <> STABLE then Goto 1780
1590 STATSTR$ = SYSTATUSS (INTVBL2)

1600 If STATSTR$.CUR_STAT <> STABLE then Goto 1780
1610 Errset XFERERR2

1620 UNLINK INTVBL2

1630 Errset XFERERR1

1640 UNLINK INTVBL1

1650 If INTVBL2 <> PATTERN% then [

1660 Print “CPU WORD ACCESS FAILURE FOR”, PLCLOC$

1670 SUCCESS +=1

1680]

1690 Else [

1700 Print “CPU WORD ACCESS SUCCESS FOR PLCLOC$

1710 Print “THE VALUE IN CPU WORD ADDRESS ”,PLCLOCS, “ IS ",INTVBL2
1720]

1730 Return

1740 XFERERRS3: UNLINK INTVBL2

1750 XFERERR2: UNLINK INTVBL1

1760 XFERERRL: Print “BACKPLANE TRANSFER FAILURE FOR”, PLCLOCS$; SUCCESS +=1
1770 Return

1780 UNLINK INTVBL2

1790 UNLINK INTVBL1

1800 Print “WRONG SYSTATUS VALUE FOR, PLCLOCS$; SUCCESS +=1

1810 Return

1820 Proc end

1830 Def proc CHECKSTAT

1840 Local STATSTR$

1850 Errset LINKERR2

1860 SYSLINK INTVBL1, “%R1

1870 Errset

1880 STATSTR$ = SYSTATUSS$(INTVBL1)

1890 If STATSTR$.CUR_STAT <> STABLE then [
1900 Print “Bad status for %R1 after syslink ", SUCCESS +=1
1910 UNLINK INTVBL1

1920 Return

1930]

1940 T1 = STATSTRS$.STAT_TIME

1950 Wait (5)

Series 90 Progrmmable Coprocessor Module and Support Software User’s Manual — November 1999

GFK-0255K

GFK-0255K

1960 Errset WRITERR2

1970 SYSWRITE INTVBL1

1980 Errset

1990 STATSTR$ = SYSTATUSS$(INTVBL1)

2000 If STATSTR$.CUR_STAT <> STABLE then [
2010 Print “Bad status for %R1 after syswrite ", SUCCESS +=1
2020 UNLINK INTVBL1

2030 Return

20401]

2050 T2 = STATSTR$.STAT_TIME

2060 Wait (5)

2070 Ifabs ((T2—-T1)—5000) > 100 then [

2080 Print “Status time for syswrite is wrong ", SUCCESS +=1
2090]

2100 Else [

2110 Print “Good status time for syswrite "

2120]

2130 Errset READERR2

2140 SYSREAD INTVBL1

2150 Errset

2160 STATSTR$ = SYSTATUSS$(INTVBL1)

2170 If STATSTR$.CUR_STAT <> STABLE then [
2180 Print “Bad status for ",PLCLOCS$, “ after sysread ", SUCCESS +=1
2190 Return

2200]

2210 T3 = STATSTR$.STAT_TIME

2220 Ifabs ((T3—T2)—5000) > 100 then [
2230 UNLINK INTVBL1

2240 Print “Status time for sysread is wrong ", SUCCESS +=1
2250]

2260 Else [

2270 Print “Good status time for sysread "

2280]

2290 Errset UNLINKERR2

2300 UNLINK INTVBL1

2310 Print “No status errors detected during transfer of %R1 "
2320 Return

2330 LINKERR2:

2340 Print “Error detected for %R1 during syslink ", SUCCESS +=1
2350 Print errtyp, “ " errmsg$, “ " errpkg$

2360 Return

2370 WRITERR2:

2380 Print “ Error detected for %R1 during syswrite ", SUCCESS +=1
2390 Print errtyp, “ " errmsg$, “ " errpkg$

2400 UNLINK INTVBL1

2410 Return

2420 READERR2:

2430 Print “Error detected for %R1 during sysread ", SUCCESS +=1
2440 Print errtyp, “ " errmsg$, “ " errpkg$

2450 UNLINK INTVBL1

2460 Return

2470 UNLINKERR2:

2480 Print “Error detected for %R1 during unlink ", SUCCESS +=1
2490 Print errtyp, “ " errmsg$, “ " errpkg$

2500 Return

2510 Proc end

Appendix E Example MegaBasic Program

E-3

Appendix

F

TERMF File Descriptions

The following files are placed on the hard disk during the TERMF INSTALL procedure. The
AUTOEXEC.BATand CONFIG.SYS files are optional; you can select not to install them.

File

Description

\PCOP

CLEANUP.BAT
DEFAULT.DAT
INSTALL.DOC
TERM.DAT
TERMF.EXE
TERMSET.EXE

Adirectory.

Cleans up (deletes) old files in the \PCOP directory.

TERM settings for factory mode on a Workmastercomputer.
Listsdirectories installed by TERMF INSTALL program.
TERM settings for factory mode on a Workmastercomputer.
Terminal emulator with file transfer protocol.

Installation utility for setting TERM parameters.

\PCOP\EXAMPLES.PCM

ALM_RD.PGM
BINARIES.DOC
BITFUNCS.ASM
BITFUNCS.BIN
BYTESWAP.BIN
EXAMPLES.DOC
GENERIC.DOC
GENERIC.PGM

GEN_TEST.PGM
GRAPH.PGM
MBCRC.PGM
PORT_CTL.BIN

PRN_FLT.PGM

READ_FLT.PGM
SAMPLE.PGM
TEST_FLT.PGM

UTILITY.DOC
UTILITY.PGM
VT100.PGM

VT100_5.PGM

Adirectory.

MegaBasic example reading %M bits.

Documents features of BYTESWAP.BIN and PORT_CTL.BIN.

Source file with documentation for BITFUNCS.BIN.

MegaBasic utilities package for bit string operations.

MegaBasic utilities for checksum and reversing byte order in words.
Documentation of MegaBasic .PGM packages.

Line number referenced documentation of GENERIC.PGMind GEN_TEST.PGM
Definitions and procedures to access user references not directly supported by the
PCM’sbackplanedriver.

Sample program using GENERIC.PGM

Sample graph program.

MegaBasic CRC checksum package.

PCM serial port control and status utilities. In firmware versions 2.51 and later,
PORT_CTL.BIN is provided in firmware. This file is needed only with version
2.50 or earlier.

MegaBasic functions and procedures to analyze and print PLC and 1/0 fault
records.

MegaBasic functions and procedures to access PLC and 1/0 fault tables.
Sample MegaBasic program.

How to use READ_FLT.PGMand PRN_FLT.PGMto read and display fault
information.

Documentation for using UTILITY.PGM .

Procedures for gathering system information from the Series 90 CPU.

PCM MegaBasic extentions for VT100-style escape sequences.

This file printsto STDOUT

A companion fileto VT100.PGM that prints to the device opening as #5.

\PCOP\UTILS

ASMCHK.PGM
ASMDEFS.ASM
ASMPKG.BAT
CRUNCH.EXE
README.DOC

Adirectory.

Refer to GFK-0256.

Refer to GFK-0256.

Refer to GFK-0256.

Compaction and encryption utility for MegaBasic program.
MegaBasic release notes.

GFK-0255K

Appendix| Synchronous Serial Mode Operation

G

This appendix outlines the technical information required to use the synchronous serial
modes of the Series 90-70 PCMAS3 and newer hardware. The PCMA3 has two separate
ports (Port 1 and Port 2) which are isolated from each other and optically isolated from
the host system. Only Port 1 is capable of synchronous mode serial operation.

The serial controller used on the PCMAS3 is a NEC pPD72001 Multiprotocol Serial Controller
(MPSC). For detailed information on programming NEC72001, please contact NEC at
1-800-632-3531 (8 am to 4 pm Pacific time) and request a User’s Manual for this product.

Port 1 Pin Assignments

Connector PL3 contains signals for both RS-232 and RS-485 communication circuits. The
pin-out for RS-232 signals conforms to the RS-232 specification with the exception that
pins normally unused for RS-232 are used for RS-485 signals.

Table G-1. Port 1 Pin Assignments: RS-232 (Synchronous Serial Mode Operation)

RS-232
ASYNCHRONOUS SYNCHRONOUS
PIN ™ FUNCTION | SIGNALNAME | FUNCTION | SIGNALNAME | V©

1 Shield - Shield - -

2 TransmittedData TD TransmittedData TD Output
3 Received Data RD Received Data RD Input
4 Request to Send RTS Transmit Clock Out TXCLKO Output
5 Clear to Send CTS ReceiveClock RXCLK Input
7 SignalGround ov Signal Ground oV -

8 Data Carrier Detect DCD Transmit Clock In* TXCLKI Input
20 | DataTerminalReady DTR Data TerminalReady DTR Output

* Note: The Transmit Clock Input is used only with RS-232 synchronous mode communications.
RS-422 synchronous mode uses only the RXCLK and TXCLKO lines.

GFK-0255K G-1

Table G-2. Port 1 Pin Assignments: RS-422 (Synchronous Serial Mode Operation)

RS-422
ASYNCHRONOUS SYNCHRONOUS

PIN PEUNCTION SIGNAL NAME |FUNCTION SIGNALNAME | 7O
9 Send Data (A) SD(A) Send Data (A) SD(A) Output
10 Requestto Send (A) RTS(A) Transmit Clock Out (A) TXCLKO (A) Output
11 Clearto Send (A) CTS(A) Receive Clock (A) RXCLK(A") Input
12 Termination - Termination - -
13 Receive Data(A) RD (A) Receive Data(A) RD (A) Input
21 Send Data (B) SD (B) Send Data (B) SD (B) Output
22 Request to Send (B) RTS (B) Transmit Clock Out (B) TXCLKO (B) Output
23 Clear to Send (B) CTS(B") Receive Clock (B) RXCLK (B’) Input
24 | Termination - Termination - -
25 Receive Data (B) RD (B’) Receive Data (B) RD (B’) Input

Synchronous Operation Modes for Port 1

Due to connector pin limitations, the asynchronous mode CTS/RTS lines are also used for
the synchronous mode clock lines.

There are three possible synchronous operation modes for Port 1 of the PCMAS3:
1. RS-232, Transmit Timing from PCM (TLCKO), Receive Timing from Other (RXCLK)
2. RS-232, Transmit Timing from Other (TLCLKZ1), Receive Timing from Other (RXCLK)

G-2

3. RS-422/485,Transmit Timing from PCM (TXCLKO), Receive Timing from Other

Other

(DCE)

(RXCLK)
RS-232 RS-422/485
SD (A
= - SD EB; >
PCMA3 TXCLKO PCMA3
» Other TXCLKO (A)
TXCLKI TXCLKO (B >
RD (A)
RD : RD (B’)
- <
€
D —
PCMA3 TXCLKOgy N Other
TXCLKI
(DTE) |g— (DCE)
< RD
< RXCLK

Series 90 Programmable Coprocessor Module and Support Software User’s Manual — NovembeG#@9255K

Synchronous Mode PCMA3 (Port 1) Control Registers

The PCMAZ3 has several hardware registers for controlling the Synchronous mode

operation. The I/0 Addresses listed in the table below assume a programmable base

address of 0000H.
Table G-3. Port 1 Control Registers
DATABITS
1/0 Reset
Address [7]6]5[4]3[2]|1 0 FUNCTION Value
0106H XIX[X[X|X]|X]|X 232SL1 0 = RS-232 for Port 1, 1 = RS-422/485 for Port 1 0
010AH [X|X[X|X|X|X]|X 422EN1 0 = Port 1 RS-422A85 Drivers Disabled, 1 = Drivers Enabled 0
0304H XXX [X]X|X]X| TXCLK_EN TXCLKI input enabled on DCD line 0= Off, 1 = On 0
0306H XX XXX |X]|X] SYNCH_EN | TXCLKO output enabled on RTS line(s) 0= Off, 1 = On 0
030CH | X|X[X|X]|X]|X]X PCMA3 Set PCMAZ3 = 1 then read Status register at 0101H, bit 3. 0
If0101H, bit 3is also set, identifies PCMAZ3 as hardware
platform

NEC72001 I/O Addresses

The serial controller used on the PCMAZ3 is an NEC72001. The serial controller is located
in 1/0 address space at addresses 0000H - 0006H (even addresses only). The table below
shows the port assignments.

GFK-0255K

Table G-4. Serial Controller Port Assignments

1/0 Address Function
0000H Serial Port 1 Data
0002H Serial Port 2 Data
0004H Serial Port1Control / Status
0006H Serial Port2 Control / Status

Appendix G Synchronous Serial Mode Operation

G-3

NEC72001 Synchronous Clock Source Selection (CR15)

In synchronous mode, the PCMA3 hardware defines the STRxC input as the Receive
Clock (RxCLK) and the TRxC pin as either Transmit Clock In (TXCLKI) or Transmit Clock
Out (TXCLKO). Control Register 15 (CR15) in the NEC72001 is used to control the
synchronous clock sources. The three operating modes listed previously correspond to
the following settings of CR15 and the PCMAS3 control registers defined in table G-3.

Table G-5. Synchronous Clock Source Selection

Operation 232SL1 422EN1 TXCLK_EN | SYNCH_EN | NEC72001.CR15
Mode Bit In Bit In Bit In Bit In
0106H 010AH 0304H 0306H
1.RS-232,
Tx Clk Out, 0 X 0 1 15H
RxClkIn
2.RS-232,
TxCIk In, 0 X 1 1 08H
RxClkIn
3RS-422/485 1 = Drivers On
Tx Clk Out, 1 0 = Drivers Off 0 1 15H
RxClkIn

For Further Information

For further information on the NEC72001 Serial controller, please refer to the NEC Users
Manual for the uyPD72001-11 available from NEC Corporate Headquarters at
1-800-632-3531 8 am to 4 pm Pacific Time.

For technical support of the PCMAS, please call the GE Fanuc PLC Technical Support
Hotline toll free at 1-800-GEFANUC.

G-4 Series 90 Programmable Coprocessor Module and Support Software User’s Manual — NovembeG#@9255K

Index

GFK-0255K

Symbols

@ (execute a batch file) command,

A

ACC_CODES$,[5-16]
access codes for PLC memory types,m

ACCESS statement,

Access to PLC fault tables and PLC status,
-5-21

Accessing %P, %L, and
password-protected data,m

Accessing PLC data,

Adding a memory expansion board to the
Series 90-70 PCM,[2-9|

Adding a PCM to the rack screen,
Address allocations for the PCM,|5-102
Addressing,

data length,

target/sourcememory addresses,
Advanced MegaBasic programming,
ALL_SENT_STATUS,
ALM_RD.PGM]F-1]
Arent of wrong type (error code 102),

Argument out of range (error code 101),
-5-3

ASMCHK.PGM[F-]
ASMDEFS.ASM|F-1|
ASMPKG BAT, [F-1]

Asynchronous serial input and output,
-5-91

ATTR statement,

ATTRS$ function, [5-6][5-11]
ATTRIB_OFF,

Autoconfig,
AUTOEXEC.BAT,

B (configure LEDs) command,[4-25][C-4|

Backing up your program,
Backplane communication|5-114

backplane processing for the Series
90-30 PCM, 5-115

backplane processing for the Series
90-70 PCM, 5-114
Backplane interru
BKP_MSG,I_‘S-_ﬂ
BKP_XFER,|5-60}5-61
NOWAIT I/0 statements|5-94 |

Backplane messages,@
datain MESSAGE_TXT$,[5-83]
identifying the source of backplane

messages,|5-82

message type,[5-82
source of the message,|5-82||5-83|
structure of backplane messages,|5-65|

application defined, 5-65

destinatior|, 5-6p

message typg, 5-65

priority,

to another PCM,|5-86

value of MSG_TYPE%,{5-83

Backplane processing for the Series 90-30
PCM|5-115

Backplane processing for the Series 90-70
PCM|5-114

Backplane timeout (error code 118),
Backplane transfer failure,[6-4]
Backplane transfer failure (error code

112),[5-4]
Bad LED definition (error code 110),
Bad timer definition (error code 108),

BACM configuration mode
4-3
BASIC configuration mode[2-10][2-12|[4-3]

Basic extensions incompatible (error code
116),[5-4]

BASIC.PGM[4-3)[4-5]4-6]4-26]4-27]D2
Batch files,

creating a simple batch file,

PCMEXEC.BAT,
running batch fi

TESTBAT,
Battery,

Index-1

Index

Index-2

BINARIES.DOC, [F-1]
BITFUNCS.ASM,[F-1]
BITFUNCS.BIN,[5-50][F-1]
BKP_MSG,[5-34]5-60] 5-61][5-76]5-77]

BKP_XFER,[5-60]5-61]

BLINK,[5-7]
BOLD,[5-7|
BREAK_OFF[5-55]
BREAK_ON,[5-55]

BREAK_STATUS(),

Buffer space exceeded (error code 120),

Bus receiver module (BRM),
Bus transmitter module (BTM),

BYE command,
BYTESWARBIN,
C

C (Clear the PCM) command,
C_DN,[5-7|

C_LF[5-7]

C_RT,

C_UP

Cable and connector specifications,

Cabling

connecting the PCM to the

programmer,
RS-232 cables,
RS-422/RS-485cables| A-10]

Cabling information, PCM,

Catalog numbers for expansion memor
boards for the Series 90-70 PCM,

Catalog numbers for Series 90-30 PCM,
1-12

CCM COMMREQ data block,[3-19]
CCM COMMREQ example,[3-25]
CCM COMMREQ status word,[3-23]
CCM comparisons,(3-9|

CCM dataTx/Rxfailure,

CCM ONLY configuration mode,|2-10]
-2-11

CCM operation,

CCM commands not supported,

CCM COMMREQ data block,[3-19|

CCM COMMREQ example,|3-25

CCM COMMREQ status word,|3-23

CCM comparisons,

CCM dataTx/Rxfailure,

CCM status word,[3-18|

command block,3-15
data blocK

data block length, 3-16
idle timeout value, 3-17

maximum communication timge, 3-17
status pointer memory type, 3{17
, 3-16

status pointer offsg 7
wait/no wait fla
COMMREQ, leq|

COMMREQ IN parameter,3-13]

COI\“?EQ OK and FT parameters,
3-14

COMMREQ SYSID parameter,|3-13]|

COMMREQ TASK parameter,3-14]

communications request,|3-12]

data length,

diagnostic status Words,

format of the COMMREQ function
block[3-13]

memory types not su oported,

NOWAIT mode,[3-12]

other COMMREQ faults,[3-15]

power-up delay,

run to completion mode,

scratch pad,

Series 90 CCM memory addressing
conventions,

Series Five vs. Series 90 CCM memory
types,

Series One vs. Series 90 CCM memory
types,

service request (SVCREQ),

SVCREQ example,

SVCREQ FNC parameter,(3-28|
SVCREQ PARM parameter,3-29
system communications Window,m
target memory types,
target/sourcememory add resses,
WAIT mode[3-12]

CCM status word ,[3-18|

CCM/PROG configuration mode,|2-10]
-2-16

CHECK command,

GFK-0255K

Index

GFK-0255K

CHECK_BREAK(),/5-55|
CHECK_CPU_HEALTH,

CHG_PRIV,
CHG_PRIV procedure,

CLEANURBAT,
CLEAR command,|2-10|
Clear the PCM (C) command,

CLEAR_TS$/5-22|[5-28]
CLS statement,

CMRQ_DATA$/[5-76]
CMRQ_HDRS$[5-76]
CMRQ_RCVD%,[5-76]5-77]
CMRQ_TXT$[5-76]

Color graphics adapter (CGA),

Command block,|3-15
data block,[3-17]
data block length,|3-16|
idle timeout value,[3-17|
maximum communication time,(3-17|
status pointer memory type,[3-17]
status pointer offset,[3-17|
wait/nowaitflag,3-16]

Command format for PCM commands,

=

Command interpreter,
accessing the command interpreter,

COMMREQ,[3-12][5-64]
CCM COMMREQ example,[3-25
CCM COMMREQ status word,[3-23]
CCM status word [3-18]

command block,|3-15]
data block

data block length, 3-16
idle timeout value, 3-1J7
maximum communication?
status pointer memory type, 3417
status pointer offset, 3-17
wait/no wait flag, 3-16
controlling COMMREQS,
data block,E
format of the COMMREQ function
block,3-13
IN parameter,|3-13}5-68]
inteing COMMREQ messages,
5-67
Me%lsic blink LED program example,
5-75

Communications request,|5-64}

MegaBasic COMMREQ command
block[5-71]

MegaBasic COMMREQ example,

mestypes 130, 131, 194, and 195,
5-67

NOWAIT mode [3-12]5-68]

OK and FT parameters,|3-14 5 70

other COMMREQ faults 3-15]

power-up delay,[3-15]

programming the PLC COMMREQ
function block,

resetting the PCM from a PLC program,

SYSID parameter,

TASK parameter,|3-145-69]
WAIT mode,

Communication failure,
Communication, unsolicited,5-66]

CCM COMMREQ example,|3-25|
CCM COMMREQ status word,|3-23]
CCM status word,[3-18|
command block,3-15]

data bloc

data block length, 3-16
idle timeout value, 3-1{7

maximum communication timi, 3-17
status pointer memory type, 3{17
, 3-11

status pointer offset, 3-17
wait/no wait flag}, 3-1
controlling COMMREQS,
data block,
format of the COMMREQ function
block,3-13]
IN parameter,|3-13}5-68|
inteing COMMREQ messages,
5-67
MegaBasic blink LED program example,
h5-75
MegaBasic COMMREQ command
block,5-71
MegaBasic COMMREQ example,
mestypes 130, 131, 194, and 195,

NOWAIT mode [3-12]5-68|

OK and FT parameters,|3-14 5 70

other COMMREQ faults 3-15]

power-up delay,

programming the PLC COMMREQ
function block,|5-68

SYSID parameter,|3-13||5-69

TASK parameter,|3-14,5-69

WAIT mode,

Index-3

Index

Index-4

Communications request (COMMREQ),
3-12

Compacting programs,m

Compatibility with MS-DOS MegaBasic,

Config mode,
CONFIG.SYS, [6-9][F-1]
Configuration data,
Configuration file, IocaI,

Configuration modes,|2-10)
BAS/CCM[2-10]2-13
BAS/CCMmode|4-3|
BASIC,[2-10]2-12
BASIC mode,
CCM ONLY,[2-10]2-11]
CCM/PROG[2-10[2-16

Configuration modes and the PCOP
display,

Configuration problems,
configure LEDs (B) command,

Configuring the PCM,
adding a memory expansion board to
the Series 90-70 PCM,[2-9|
adding a PCM to the rack screen,
aut(ﬁm‘ig for the Series 90-30 PCM,
1-13

autoconfig of the Series 90-30 PCM,|2-18]

config mode,

configuring the Series 90-30 PCM with
the hand-held programmer,

default configuration for the Series
90-30 PCM,[1-13)2-18

for CCM operation,|1-13

for MegaBasic operation,@

170 configuration rack screen,|2-6

local configuration file,[2-31|

PCM configuration data,|2-9|

PCM configuration modes,|2-10|

PCM configuration modes and the
PCOP display,

Series 90-30 PCM plug-and-go
operation,ﬁ

TERME installation and configuration,
-2-24

using TERMSET to configure TERMF or
PCORP, [2-26
with Logicmaster 90 software,
Connecting the PCM to the programmer,
2-32
Connts, integer and string constants,
5-6

CcPs$[5-7]

CPU name string too long (error code
115),[5-4]

CPU_RESPONDING,|5-38]

create a memory Module (M) command,
C-11

CRUNCH,[4-12]

CRUNCH.EXE,[4-12][6-5| [F-1]

CTS_STATUS(),

CUR statement, [5-6|[5-10]

CURS$ function,[5-6][5-9]

CUR_STAT codes,
NO_CPU,[4-22]
READ_PENDING [4-22]
READ_RECEIVED
READ_TIMEOUT (4-22]
STABLE [4-22]
WRITE_FINISHED,[4-22]
WRITE_PENDING,[4-22|
WRITE_RECEIVED [4-22]
WRITE_TIMEOUT,|4-22|
XFER_REJECT,4-22]

CURHOMES,
Current status,[4-22|

D

D (file Directory) command,
D-type connector,

Data bIock,

Data block Iength,

Data coherency,|4-24|
string record,|4-24|

vector,m

Data length, [3-8]

Data size, MegaBasic program and,
ACCESS,&

changing the MegaBasic workspace
sizem

GFK-0255K

Index

GFK-0255K

determining the size of a MegaBasic
program,|4-10

DISMISS,[4-11

MegaBasic program packages,m

SHOW,|4-10

STAT,
Data, accessing PLC,[4-15]

DATE_OF LAST_CPU_RESR[5-38]

Dauer board for the Series 90-70 PCM,
2-5

DCD_STATUS(),
Default confii uration for the Series 90-30

PCM,[1-13]2-18]
DEFAULT.DAT, 4-26, p-33,15-2|6-9][F-1]

Deleting PCM data files using TERMF,
i5-50

Development package, PCM, [1-3]
Device unavailable (error code 123),

Diagnosing serial communication
problems,[2-33]

Diagnostic status words,[3-6|
DIR command, [4-8][4-27]
DIR_OFF,[5-56]
DIR_ON,[5-56]

DISMISS statement,[4-11]
Dual port RAM/[5-109 |

Dual port RAM available for applications,
5-102

Duplex Mode
Full Duplex,|5-53|
Half Duplex,|5-53]
Point-to-Point,|5-53|

Duplicate remote variable (error code
111),[5-3]

DW_DH_BOTS,
DW_DH_TOPS,

DW_SH$,[5-7]
Encrypting programs,[4-12]
END statement,

Enhanced graphics adapter (EGA),[2-26)

ERASE_BOLS$,[5-7]
ERASE_BOT$,[5-7]

ERASE_EOLS$,5-7]
ERASE_LINE$[5-7]
ERASE_SCREENS$,5-7|
ERASE_TOPS$,5-7]

Error codes, MegaBasic,

argument of wrong type (102),5-3
argument out of range (101),[5-3
Backplane timeout (118),[5-4|

backplane transfer failure 112),

bad LED definition (110),

bad timer definition (108),

Basic extensions incompatible 116),
buffer space exceeded (120),

CPU name string too long 115),
Device unavailable (123),(5-4]

duplicate remote variable (111),(5-3]
illegal backplane operation (117),
illegal NOWAIT I/0 operation (119),/5-4}
improper variable type (114),
insufficient memory (103),|5-3|

5-3
PCM hardware not present (106
5-3

remote variable unknown (104),

task not active (109),

too many remote variables (105),/5-3

undefined local variable (113),
EXAM statement, 5-1065-109,/5-110 |
Example MegaBasic program,
EXAMPLES.DOCF-1]
EXAMPLES.PCM[4-27]
Examples, MegaBasic programming,
execute a batch file (@) command,
Exiting the MegaBasic interpreter,

Expansion memory,

Expansion memory boards for the Series
90-70 PCM, catalog numbers,

Expansion memory for the Series 90-70
PCM,[2-9|

Extensions to MegaBasic,[1-2}[4-2][5-1]

Index-5

Index

Index-6

eXterminate file (X) command,

F

F (show Free memory) command,
Fault table entries, PLC,

Fault table header records
CLEAR_TS$,5-28]
FLTS_SINCE_CLEARS$

NUM_FLTS$,
NUM_READS$ [5-28]
Fault tables
access to PLC fault tables and PLC
status,[5-21]
fault table header records,|5-28]
I/0 fault address subrecords,5-33|

I/0 fault table records,5-29|
I/0 reference address subrecords, 5-32

known problems with fault table access,

5-33
PLC fault address subrecords,|5-32
PLC fault table records, 5-28
time stamp subrecords,|5-32

Features not supported by the PCM,
MegaBasic,

File descriptions, TERMF,
ALM_RD.PGM|/F-1]
ASMCHK.PGM
ASMDEFS.ASM
ASMPKG.BAT,
BINARIES.DOC [F-1]
BITFUNCS.ASM,[F-1
BITFUNCS.BIN,
BYTESWAPBIN,
CLEANUPBAT,
CRUNCH.EXE
DEFAULT.DAT, F-1
EXAMPLES.DOCJF-1
GEN_TESTPGM,[F-1
GENERIC.DOC,[F-1
GENERIC.PGM,[F-1
GRAPH.PGM,[F-1
INSTALL.DOC,F-1
MBCRC.PGM,|F-1
PORT_CTL.BIN,F-1
PRN_FLT.PGM,[F-1
READ_FLT.PGM,[F-1
README.DOC|F-1
SAMPLE.PGM/F-1
TERM.DAT, [F-1
TERMEEXE,[F-1

TERMSETEXE,|F-1]
TEST_FLTPGM,[F-1
UTILITY.DOC,|F-1]
UTILITY.PGM

file Directory (D) command,[5-51][C-5]
Files, loading and storing PCM data files
using TERMF|5-50

FILL statement,(4-5| 5-109,/5-110|
FLT_CHANGED%,5-26]

short status records,|5-30]
FLT_CHANGED%(),5-21|
FLT_PRESENT%,|5-25

short status records,|5-30]
FLT_PRESENT%(),
FLTS_SINCE_CLEAR$
FLUSH_PORT,|5-56
format EEROM device (J) command,
Format of the COMMREQ function block,
Full Duplex,|5-53]
full duplex mode,
Functional overview,|1-2

CCM operation,

extensions to MegaBasic,

hard reset,

MegaBasic operation,

PCM development packae,

PCM operation modes,

PCM support utilities for personal

comp uters,
PCOP,

RAM disk,[1-2
restart/resetp ushbutton,
soft reset,

G (Get hardware ID) command,

Gathering PLC information from
MegaBasic programs,|5-34|

GEN_TESTPGM,[5-16][F-1]

GENERIC.DOC [5-16]|[F-1]
GENERIC.PGM [5-16]5-64|[5-83][F-1]
procedures

CHG_PRIV| 5-16, 5-1]

GFK-0255K

Index

GFK-0255K

SMSG_WTEXT[5-18, 5-18

structures and constants

Get hardware ID (G) command,

get LED configuration (O) command,

get PCM firmware revision number (H)
command,

GET_MEM_LIM
GRAPH.PGM,[F-1]

H

H (get PCM firmware revision number)
command,

Half Duplex,|5-53]
half duplex mode,
Hand-held programmer,m

Hard reset,
HARDEXEC.BAT, #-27,[D-1,D-2]|D-3|

Hardware
adding expansion memory to the Series

90-70 PCM
battery, --

cable and connector specifications,

cabling,
cataloi numbers for Series 90-30 PCM,

1-12
D-type connector,
installing a Series 90-30 PCM, |2-4}
installing a Series 90-70 PCM, |2-4|
installing other modules,
installing the PCM hardwaree,
LED indicators,
memory on the Series 90-30 PCM,|1-11
memory on the Series 90-70 PCM,

OK LED,[1-5|
option connector,|1-10}

overview of the Series 90-30 PCM,|1-11
overview of the Series 90-70 PCM,
PCM module description,

RS-232 cables,[A-7]
RS-422/RS-485cables| A-10]

serial connectors,

serial ports on the Series 90-30 PCM,

serial ports on the Series 90-70 PCM,
il-lo

usefined LEDs (USER1 and USER?2),
1-6

USER1 and USER2,/1-6|
watchdog timer,
what you will need
WYE cable, n

I (Initialize device) command,
170 configuration rack screen,
|70 faultaddress subrecords,
170 faulttable records,

I1/0 reference address subrecords,
structure

IOFA_BUS$[5-33
IOFA_BUS_ADD$| 5-33
IOFA_PT_OFFSET$, 5-33
IOFA_RACK$
IOFA_SLOT$:
IORA_ADDS,
IORA_SEGS$

Idle timeout value --

Illegal backplane operation (error code
117),[5-4]

Illegal NOWAIT I/O operation (error code
119),[5-4]

Imper variable type (error code 114),
5-4

IN_LENGTH,[5-56|

INCHR$ function,
Initialize device (1) command,
INPUT statement,|4-14

Input to the PCM serial ports,m
INPUT() function,m
INSTALL.DOC [F-1]

Installing the PCM -
adding expansmn memory to the Series

90-70 PCM
cabling

configuring the PCM with Logicmaster
90 software,

Index-7

Index

Index-8

configuring the Series 90-30 PCM with
the hand-held programmer,

connecting the PCM to the
programmer,

diagnosing serial communication
problems,

installing a Series 90-30 PCM,|2-4]

installing a Series 90-70 PCM,|2-4]

installing other modules,

installing the PCM hardware,

local configuration file,

TEITM:F'nstaIIation and configuration,
2-24

using TERMSET to configure TERMF or
PCOP|[2-26]

what you will need,[2-2]

Insufficient memory (error code 103),

Insufficient memory error,

Integer constants, (5-6
ATTRIB_OFF,[5-7
BLINK,[5-7
BOLD,[5-7]
C_DN,[5-7
C_LRB7
C_RT,[5-7
C_UPB7
REVERGSE,[5-7]
UNDERSCORE, [5-7]

Interactive mode,

Interfacing to the PCM hardware and
Series 90 CPU,|4-13

INTERRUPT function,[5-60]

Interrupts,
backplane interrupts,
BKP_MSG,[5-34]
INTERRUPT statement,|5-57|
PROCESS_READ,|5-94|
PROCESS_WRITE,[5-94]
timer interrupts,|5-59
TIMER1,/5-3415-39
TIMER2,/5-34{5-41
TIMERS,|5-34}5-43
TIMER4,/5-3415-46]5-49
TIMERS5,|5-345-48

Invalid IOCTL string (error code 122),
|O_FAULT_HDRS$,[5-22]
|O_FAULT_HDR$.NUM_READ$/5-23]
|O_FLT_ACT$,[5-29]

|O_FLT_ADD$/[5-29]

|O_FLT_CAT$[5-29)
|O_FLT_DESC$[5-29]
|O_FLT_GRP$/5-29)
|O_FLT_SPEC$/5-29)
|O_FLT_TBL[5-22]
|O_FLT_TS$,[5-29]
|O_FLT_TYPES$,[5-29]
10_FT$,[5-22]5-29]
|O_REF_ADDS$,5-29]
IOCTL,[5-52]

parameters,

IOCTL$() function,
IOFA_BUS$[5-33]
IOFA_BUS_ADD$[5-33]
|IOFA_PT_OFFSET$[5-33]
IOFA_RACK$,[5-22]5-33]
|IOFA_SLOT$/5-33]
IORA_ADDS$ 5-32]
IORA_SEGS$,5-22]5-32]

J

J (format EEROM device) command,

K

K (Kill a task) command,
Kill a task (K) command,

L

L (Load) command,
LED indicators,

on Series 90-30 PCM,
on Series 90-70 PCM,

LIST command,
Load (L) command,
LOAD command,

Loading MegaBasic programs, [4-4]
Loadini PCM data files using TERMF

5-50
Local configuration file,|2-31}

GFK-0255K

Index

GFK-0255K

Local RAM,[1-9][1-11]

Logicmaster 90 software,

adding a memory expansion board to
the Series 90-70 PCM,[2-9]

adding a PCM to the rack screen,

autoconfig for the Series 90-30 PCM,

autoconfig of the Series 90-30 PCM, [2-18]

config mode,[2-9]

configuration data,

configuration modes and the PCOP
display

configuration problems,

default configuration for the Series
90-30 PCM,[1-13]2-18]

1/0 configuration rack screen,[2-6)

PCM configuration modes,|2-10|

Series 90-30 PCM plug-and-go
operation,|1-13|

Loss of characters,[6-6|
M (create a memory Module) command,
Maximum communication time,|3-17}5-71]
MBCRC.PGM|[F-1]
MDE (module delete) command,[2-10]
MegaBasic,[4-1]

access to PLC fault tables and PLC

status,|5-21]

accessing %P, %L, and
password-protected data,m

accessing PLC data,

accessing the PCM’s LEDs,[4-25|

additions or extensions created by GE
Fanuc,

advanced programming,

asynchronous serial input and output,
[5-91]

backing up your program,|4-5

backplane interrupts, 5-60

BASlc.PGM,ﬂ] 4-26

changing the MegaBasic workspace

size|4-11]
CHG_PRIV,
commands
BYE,[5-50

CHECK, 4-8[4-9
DIR,[4-6] 4-27
LIST,[4-9

LOAD,[4-4[4-4[4-1F] 4-27

RUN,[4-§

SV e 22
SHOW| 4-10
STAT,[4-10
COMMREQ command block,
idle timeout valu¢, 5-71
Iength
maximum communication time, 5-F1
status pointer, 5-71
wait/no wait flag), 5-7]
compacting programs,4-12|
compatibility with MS-DOS MegaBasic,
controlling COMMREQS,
data coherency,
data types
string record, 4-24
vector[4-24
determining the size of a MegaBasic
program,@
encrypting prorams,m
error codes,

argument of wrong type (10 -3
argument out of range (10 -3
backplane timeout (118), §-4

backplane transfer failure (11R), b-4
bad LED definition (110), 5{3

bad timer definition (108 3

Basic extensions incompatible (116), |5-4
buffer space exceeded (140), |5-4

CPU name string too long (115), b-4
Device unavailable (123), 5-4

duplicate remote variable (11@-3
illegal backplane operation (11
illegal NOWAIT I/O operation (119), 5}4
improper variable type (114), 5-4
insufficient memory (103), 5}3

invalid IOCTL string (122), 54

missing argument (10%—3
not enough timers (10 -3
PCM hardware not present (1d6), -3
remote variable unknown (104), %-3
serial port framing (126), 5}4
serial port multiple (12
serial port overrun (125
serial port parity (124)), 5
task not active (10 3
too many remote variables (105), 5-3
undefined local variable (11 3), §-4
example program,
exiting from MegaBasic,5-50]
exiting the MegaBasic interpreter,|4-6|

extensions developed by GE Fanuc,[4-2|
fault table header records,|5-28

Index-9

Index

Index-10

features not supported by the PCM,

FLT_CHANGED%,5-26

FLT_PRESENT%,|5-25

functions
ATTRS,[5-6[5-11
BREAK_STATUS()

CTS_STATUS(
CURS[5:6[5

IOCTL$,[4-8
MV_CURS$,[5-6
NOWAIT READ,|6-6
NOWAIT_IO,
OUTPUT()| 4-14
SYSTATUSS, 4-14, 4-2), 4-22, 4-P3
gathering PLC information from
MegaBasic pro rams,@
GEN_TEST.PGM,|5-16
GENERIC.DOC,|5-16
GENERIC.PGM,|5-16
getting started with the MegaBasic
interpreter,
HARDEXEC.BAT,
I/0 faultaddress subrecords,
1/0 faulttable records,
I/0 reference address subrecords,
input andﬁut to the PCM serial

ports,|4-14
interfacing to the PCM hardware and
Series 90 CPU,[4-13]
INTERRUPT statement,(5-57
interrupts
BKP_MSG| 5-34
TIMERL1,[5-34| 5-39
TIMER2,[5-34| 5-41
TIMERS,[5-34| 5-48
TIMERA4,[5-34| 5-46, 5-4
TIMERS5,[5-34] 5-4

known problems with fault table access,
5-33

loading and saving MegaBasic
programs,|4-4
loss of characters, |6-6

MegaBasic application does not run,
MegaBasic blink LED program example,
5-75

MegaBasic COMMREQ example,

MegaBasic program access to PCM dual
port RAM,5-109

MegaBasic program and data size,

MegaBasich/RxfaiIure,

modifying existing BASIC programs,

MS-DOS version of MegaBasic,

NOWAIT I/0 statements {5-91
example NOWAIT program, 5-98
NOWAIT_CLOSE[5-91; 5-9
NOWAIT_OPEN)| 5-9%
NOWAIT_READ,[5-91
NOWAIT_READ_ABORT
NOWAIT_SEEK | 5-91
NOWAIT_WRITE, | 5-94, 5-96,
NOWAIT_WRITE_ABORT/ 5-91, 5-9

opt.'mizinf backplane communication,

5-114
PCMEXEC.BAT,
PLC fault address subrecords,
PLC fault table records,
printing a MegaBasic text file,
PRN_FLTPGM,[5-21][5-22]
procedures

BREAK_OF

BREAK_ON| 5-55

CHECK_CPU HEALTH, 5-36, 5-46

CHG_PRIV[5-83
DIR_OFF[5-56
DIR_ON

READ_PLC_CPU_ID[5-3p, 5-45

READ-PLC_TIME_AND_DATE 5-35,
5-4
RTS_OFH, 5-5
RTS_ON]| 5-56
UTILITY_INIT,
program packages,|4-11]
programming example using VME
functions,| 5-110|
programming examples,
programming the PCM in MegaBasic,
4-2
programming the PLC COMMREQ
function block,[5-68
RDEL_FAULT TBL,[5-24]
READ_FAULT_TBL,|5-23]
READ_FLTPGM,
repeated transfers of a MegaBasic
variable
SAMPLE.PGM
saving data through a power cycle or
reset,
screen formatting commands,
VT100.PGM| 5-5

GFK-0255K

Index

GFK-0255K

VTl%PGM functions and procedures,
5-6

VT100.PGM integer and string
constantg, 547
VT100_5.PG

serial port control and status,[4-14|
short status records,F
SMSG_WTEXT,|5-16{|5-18
standard or specified devices,4-13|
statements

DISMISS
END,[4-§
EXAM,[5-106[5-109, 5-11p
FILL,[4-5] 5-109, 5-11¢
INPUT,[4-14
IOCTL,[5-52
MV_CUR,|5-6[5-15

OPEN| 4-9
PRINT/ 4-1

PROCESS_XFE
SET_LED[4-2%

STOP[4-6

SYSLINK,

SYSREAD] 4-19, 4-1§, 4-2D, 4-}2, 4]23,
4-24

SYSWRITE] 4-1%, 4-18, 4-20, 4-P2,
4-23) 4-2

UNLINK, [4-15|4-19, 4-24
status record,4-22|
string variables
CMRA_DATAS,|5-76
CMRQ_HDR$[5-72, 5-76
CMRQ_RCVD%| 5-76, 5-
CMRQ_TXT$
TEST_FLTPGM,
time stamp subrecords,|5-32}
timer interrupts,lm
timers and logical interrupts,|5-57|
using a text editor to create MegaBasic

programs,(4-9|

UTILITY.PGM file,
variables, #SSTAT,[4-16|
VME functions,5-100

VM EWRT,
WORDSH 527
MegaBasic application does not run,
MegaBasic operation,
MegaBasic program packages,(4-11|
MegaBasic TX/ RXfaiIure,

MegaBasicPasswords,
MegaBasicService request processor,m

MegaBasicSet graphic rendition (SGR)
control string,|5-11

Memory
insufficient memory error,la
on the Series 90-30 PCM,|1-11
on the Series 90-70 PCM,[1-9
request and access codes for PLC
memory types,

Memory addressing,
data length,
target/sourcememory add resses,

Memory types,
memory types not supported,
request and access codes for PLC

memory types,|5-19|
Series Five vs. Series 90 CCM memory

types,
Series One vs Series 90 CCM memory
types,[3-3]

Missing argument (error code 100),

Modes of operation,

Modifying existing BASIC programs for
MegaBasic,

Module description

battery,

cataumbers for Series 90-30 PCM,
1-12

D-type connector,

hardware overview of the Series 90-30
PCM,[1-11]

hardware overview of the Series 90-70
PCM,[1-9|

LED indicators,

OK LED,[1-§]

option connector,|1-10

serial connectors,|1-7

serirts on the Series 90-30 PCM,
1-12

serirts on the Series 90-70 PCM,

1-10

Index-11

Index

Index-12

user-defined LEDs (USER1 and USER?2),
USER1 and USER2 LEDs,
watchdog timer,[1-5

WYE cable,[1-7|[1-12]

Module description, PCM,

Monochrome display adapter (MDA)

MS-DOS, compatibility with MS-DOS
MegaBasic,

MS-DOS version of MegaBasic,
MV_CUR statement,
MV_CUR$ function,
MYFILE.BAT,

N

NO_CPU,
NONE configuration mode,|2-10}
Not enough timers (error code 107),

Notation conventions for PCM
commands,|C-3

NOWAIT example program,m

NOWAIT I/0 statements[5-91]
example NOWAIT program,|5-98
NOWAlT_cLOSE,!JEﬁa 5-96
NOWAIT_OPEN [5-91]5-92
NOWAIT_READ)|5-91]5-94]5-96]5-97]
NOWAIT_READ ABORT,[5-91][6-97
NOWAIT_SEEK [5-91/[5-96|
NOWAIT WRITE,[5-91][5-94][5-96]5-97]
NOWAIT_WRITE_ABORT,[5-91]5-97]

NOWAIT mode,|3-125-68]
NOWAIT READ function,[6-6]

NOWAIT SYSREAD commands, example,
-5-62

NOWAIT_IO functions[4-14|
NUM_FLTSS$,
NUM_READ$

O

O (get LED configuration) command,

OK LED,[1-5|

OK LED not on,[6-1]
OPEN statement,
Operation modes,

Option connector,|1-10)
Output from the PCM serial ports,m

OUTPUT() function,[4-14]

P

P (request status data) command,{C-12]
Password-protected data,m

Path, MS-DOS search,|2-25|

PCM batch files,[D-1|
creating a simple batch file,

HARDEXEC.BAT,
PCMEXEC.BAT,)
running batch fi

TESTBAT,
PCM CFG configuration mode, 2-10]
PCM commands,

@ (execute a batch file),

accessing the command interpreter,(C-1
B (configure LEDs),
C (Clear the PCM)

D (file Directory),[5-51|C-5]
displaying a list of PCM commands,
entering interactive mode,|C-2]

H (CM firmware revision number),
C-6

I (Initialize device),El

J (format EEROM device),m

K (Kill a task),/C-9|

L (Load),[5-51]C-10

L (Load) command,|D-3|

M (create a memory Module),

notation conventions,

O (get LED configuration),|C-11]

P (request status data),C-12]

Q (set protection level),C-13]

R (Run),[C-14]

R (Run) command,|D-2

R (run) command, 4-11

S (Save),[5-51]C-15
summary of PCM commands,
U (reconfigure the PCM),|C-15)

M (Verify afile),[C-15]

W (Wait),[C-16]

GFK-0255K

Index

GFK-0255K

X (eXterminate file),[5-51}
X (eXterminate),[C-16
Y (set upper memory limit),[C-17

PCM development package,

PCM hardware not present (error code
106),[5-3]

PCM module

battery,

cable and connector specifications,

cabling,
cataloi numbers for Series 90-30 PCM,

1-12

D-type connector,

hardware overview of the Series 90-30
PCM,[1-11]

hardware overview of the Series 90-70
PCM,[1-9]

LED indicators,

memory on the Series 90-30 PCM,|1-11

memory on the Series 90-70 PCM, |1-9

OK LED,[1-5|

option connector,|1-10}

RS-232 cables,

RS-422/RS-485cables|A-10

serial connectors, A-2

serirts on the Series 90-30 PCM,
1-12

serial ports on the Series 90-70 PCM,
1-10

user-defined LEDs (USER1 and USER?2),

USER1 and USER2 LEDs,

watchdog timer,|1-5|

WYE cable,[1-7|[1-12]
PCM module description,

PCM support utilities for personal
computers,

PCI\ﬁEC.BA‘I’, #-11|p-256-5]p-1][D-2]
D-3

PCMEXTPGM,|5-39,|5-435-45|5-48|

PCOP
communication failure,|6-2|(6-3
configuration problems, @
configuring and programming for

MegaBasic,|4-3|
DEFAULT.DAT,
PCOP does not go on-Iine,
troubleshooting,
usiRMSET to configure PCOPR,

2-26
PCOP does not go on-line,

PCOP locks up,

PCOP screen goes blank,

PLC fault address subrecords,
structure
PLCFA_RACKS$| 5-31
PLCFA _SLOT$| 5-3!
PLCFA_UNIT$/ 5-31

PLC fault table entries,

PLC fault table records,|5-28]

format
IO_FLT_ACT$, 5-24
IO_FLT_ADD$, 5-24

IO_FLT_CAT$) 5-29

IO_FLT _TYPES$

10_FT$[5-29

|IO_REF_ADDS$

PLC_FLT TS$
PLC_FT$[5-2

B
spare/reservef, 5-1{8, 5:|30
SS_CONTROL_PROG_NUM, 5-30
SS_NUM_CONTROL PRoeio
SS_PLC_STATUSS, 5-30
SS_PRIV_LEVEL$, 5-3
SS_PROGRAMMER_FLAGS§, 5-30
SS_SWEEP_TIME$, 5-30

PLC status, access to PLC fault tables and
PLC status,|5-21|

PLC_CPU_ID/5-38]
PLC_CPU_ID_VALID/5-3§|
PLC_DATE,[5-38]

PLC_FAULT BIT,
PLC_FAULT_BIT_VALID,[5-38]
PLC_FAULT_HDRS$,[5-22
PLC_FAULT_HDR$.NUM_READ$ 5-23]
PLC_FLT_ACT$,[5-28]
PLC_FLT_ADD$[5-28]

PLC_FLT ERROR_CODES,
PLC_FLT_GRP$,[5-28]
PLC_FLT_SPEC$,[5-28]

Index-13

Index

Index-14

PLC_FLT_TBL/[5-22]
PLC_FLT_TS$,[5-28]
PLC_FT$[5-22]5-28]
PLC_RUN_STATUS,[5-38]
PLC_RUN_STATUS_VALID,[5-38
PLC_STATUS_WORD,[5-36]
PLC_STATUS_WORD_VALID,[5-3§|
PLC_TIME,5-38]
PLC_TIME_AND_DATE_VALID,[5-3§]|
PLCFA_RACKS,
PLCFA_SLOT$/[5-32]
PLCFA_UNIT$/5-32]

Plug-and-go operation,m
point-to-point mode,
Poit-to-Point Mode,
PORT_CTL.BIN/5-50|[5-55|[F-1]

functions and procedures
ALL_SENT_STATUS[5-56

FLUSH_POR
IN_LENGTH, 5-56
requires an ACCESS statement,
Power-up deIay,
PRINT statement,|4-14
PRINT_MSG,[5-87]
Printing a MegaBasic text file,
PRN_FLT.PGM, [5-21][5-22][F-1]
PROCESS_MESSAGE,[5-17]5-18]

PROCESS _MESSAGE statement,
arguments,|5-64|
PROCESS_READ statement,|5-94}5-97/

PROCESS_WRITE statement,|5-94

PROCESS_XFER,|5-61
arguments,|5-61]
PROG PRT configuration mode,|2-10)2-15]
PROG/CCM configuration mode,|2-10}
-2-16

Program and data size, MegaBasic,

ACCESS, [4-11]
changini the MegaBasic workspace

size,|4-11

determining the size of a MegaBasic
program,(4-10
DISMISS (4-11

MegaBasic program packages,[4-11]
SHOW,|4-10
STAT, [4-10

Program compaction utility, CRUNCH,
4-12

Program packages, MegaBasic,m
Program, example MegaBasic,

Programming example using VME
functions,|5-110

Programming examples, MegaBasic,m
Programming the PCM in MegaBasic, [4-2]
Programming the PLC COMMREQ

function block,|5-68]
Programming, advanced MegaBasic,
PROM, [1-9[1-11]

Pushbutton, restart/ reset,

Q

Q (set protection level) command,|C-13]

R

R (Run) command,

R (run) command,
R_PBMEMS$ [5-16]
R_TMEM$5-16]

Rack screen,

RAM, [1-9][1-11]

local RAM,
shared RAM,

RAM disk,[1-2]
RAM, dual port|5-109
RDEL_FAULT__TBL,[5-21]

RDEL_FAULT TBL,|5-24]
known problems with fault table access,
i5-33

Read only memory,

READ_FAULT_TBL,[5-21]5-23]

fault table header records|5-28]
CLEAR_TS$[5-28

GFK-0255K

Index

GFK-0255K

FLTS_SINCE_CLEARY, 5-28
NUM_FLTS$
NUM_READ$] 5-28
known problems with fault table access,
is-se

READ_FLT.PGM,

functions and procedures,5-21
FLT_CHANGED%
FLT_CHANGED%
FLT_PRESENT%, 5-2
FLT_PRESENT%(}, 5-21
RDEL_FAULT_TBL, | 5-24
READ_FAULT _TBL,|5-21f 5-238
WORD%, 5-2
WORD%()| 5-21

shared definitions and constants,m
CLEAR_TS$| 5-22
IO_FAULT_HDRS${ 5-2
IO_FLT_TBL,|5-2

I0_FT$|5-22
IOFA_RAC
IORA_SEG$] 5-2P
PLC_FAULT_HDR$| 5-2?
PLC_FLT_TBL[5-22
PLC_FT$| 5-2»
PLCFA_RACKS$[5-22
SHORT_STATUSY, 5-2p

SS_NUM_CONTROL_PROGS$, 5-p2
TS_SECY, 5-2p

READ_PENDING/[4-22]
READ_PLC_CPU_ID/5-35][5-45]

READ PLC_FAULT BIT,
READ_PLC_RUN_STATUS,[5-35)5-43]
READ_PLC_STATUS,
READ_PLC_TIME_AND_DATE,[5-35/5-41]
READ_RECEIVED|[4-22)
READ_TIMEOUT[4-22]

README.DOC [F-1]
reconfigure the PCM (U) command,|C-15]

Remote variable unknown (error code
104),[5-3]

Request codes for PLC memory types,
5-19

request status data (P) command,/C-12}
Reset blinks user LED1 or LED2,

Reseﬁing the PCM from a PLC program,
B-1

Restart/reset pushbutton,
RESTORECURS,

REVERSE,[5-7
RS-232 cables,[A-7]
RS-422/RS-485cables|A-10]
RTS_OFF,[5-56]

RTS_ON,[5-56]

Run (R) command,
RUN command,

Run mode errors,

Run to completion mode,

S

S (Save) command,
SAMPLE.PGM [4-26][F-1]

Save (S) command,
SAVE command,
SAVECURS,[5-7|

Saving data through a power cycle or

reset,
Saving MegaBasic programs,

Scratch pad,
Screen formatting commands,
VT100.PGM,[5-5]

VTlPGM functions and procedures,
5-6

VT100.PGM integer and string
constants,

VT100 5.PGM,[5-5
SEND_MESSAGE,|5-86)5-87]
SEND_UNSOLICITED_MSG,|5-86]
Serial connectors, A-2

for the Series 90-30 PCM,|A-3
for the Series 90-70 PCM,|A-2

Serial port control and status,m
Serial port framing (error code 126),
Serial port multiple (error code 127),
Serial port overrun (error code 125),
Serial port parity (error code 124),

Serial port setup with IOCTL and
PORT_CTL.BIN,|5-52]

Index-15

Index

Index-16

Serial port status functions
INPUT(),[4-14]
OUTPUT(),[4-14

Serial ports1-10]1-12)
four wire full duplex mode,
input and outi ut to the PCM serial

ports,|4-14

point-to-point,
serial port control and status,|4-14}
two wire half duplex mode,
Serial ports,, two wire half duplex mode,
Series 90-30 PCM

autoconfig,[1-13]2-18]

catalog numbers,|1-12)]

configuration problems, autoconfig,
D-type connector,|1-12]
default configuration,|1-13]
hardware overview,|1-11]
memory,@
plug-and-go operation,mm

serial connector,|A-3
serial ports,|1-12]
WYE cable,|1-12]

Series 90-70 PCM

adding expansion memory,

catalog numbers for expansion memory
boards,

daughter board,
hardware overview,

memory,
option connector,
serial connectors,|/A-2)|

serial ports,m

Service request

example,[3-30]
FNC parameter,
PARM parameter,(3-29)

Service request (SVCREQ),|3-28

set protection level (Q) command, C-13]

set upper memory limit (Y) command,
C-17

SET_LED statement,|4-25|
LED number,[4-25

operation code,[4-25/
SGR control string,5-11
Shared RAM, [1-9]

Short status records,
SHORT_STATUSS,

2-18

SHOW command,

show Free memory (F) command,[C-5|

Showing PCM data files using TERMF,
5-50

SMSG_TEXT$[5-16]

SMSG_WTEXT,

Soft reset,

Specified devices,[4-13]
SS_CONTROL_PROG_NUMS$, [5-30|

SS_NUM_CONTROL_PROGSS,
[5-30]

SS_PLC_STATUS$[5-30]
SS_PRIV_LEVEL$[5-30]
SS_PROGRAMMER_FLAGS$,[5-30]
SS_SWEEP_TIMES$5-30|

STABLE [4-22

Standard devices,|4-13]

standard non-privileged access type,
5-101

STAT command,

STAT_HIST,
STAT_TIME,[4-23]

Status history,

Status pointer,m

Status pointer memory type,[3-17|
Status pointer offset,m

Status record,
current status,

status time,[4-23
Status time,m
Status variable #SSTAT,
Status words, diagnostic,

STOP statement,
Storing PCM data files using TERMF,
String constants,

CP$,[5-7]

CURHOMES$,
DW_DH_BOTS$,
DW_DH_TOPS,
DW_SHS,

ERASE_BOLS,
ERASE_BOTS,

GFK-0255K

Index

ERASE_EOLS$,
ERASE_LINES$,5-7
ERASE_SCREEN$,5-7]

ERASE_TOPS,
RESTORECURS$,[5-7]

SAVECURS,
SW_SHS$,
String record,|4-24|

Support utilities, PCM for personal

computers,

SVCREQ,
example,[3-30]
FNC parameter,
PARM parameter,|3-29]

SW_SH$,[5-7]

SYSLINK statement [4-15|[4-17]5-72][5-77|
arguments

CPU symbo
handl
local namg, 4-1
type| 4-17

examples,|4-18|
using the SYSLINK statement,|4-18

SYSREAD, short status records,|5-30}

SYSREAD statement,4-15]|4-19,4-20)4-22
4-23] 4-24)5-60)5-61}|5-64,5-114)5-115
arguments

frequency, 4-21
data coherency, 4-24

NOWAIT,[4-20
variable name, 4-20

SYSTATUSS function,

[4-23][5-60

System communications Window,m

System overview,|1-1

System window,|3-28]

4-22
[5-76,
arguments
frequency, 4-2]

data coherency, 4-24

NOWAIT, [4-20
variable name, 4-20

T

Target memory types,
memory types not supported,
Series Five vs. Series 90 CCM memory
types,
Series One vs. Series 90 CCM memory

types,[3-3]
Target/sourcememory addresses,
Task not active (error code 109),

TERM.DAT,
TERMF,

access-from the MS-DOS search path,

2-25

communication failure,

DEFAULT.DAT,

Deleting data files,

descriptions of files placed on the hard

disk during INSTALL[F-1]

ALM_RD.PGM,|F-1
ASMCHK.PGM
ASMDEFS.ASM
ASMPKG.BAT,| F-1
BINARIES.DOC
BITFUNCS.ASM
BITFUNCS.BIN,| F-]
BYTESWAP.BIN/| F-]
CLEANUP.BAT,
CRUNCH.EXE| F-1
DEFAULT.DAT,
EXAMPLES.DOC
GEN_TEST.PGM, F1
GENERIC.DOC
GENERIC.PGM
GRAPH.PGM| F-
INSTALL.DOC,|F-1i
MBCRC.PGM
PORT_CTL.BIN
PRN_FLT.PGM| F-I
READ_FLT.PGM| F-]
README.DOC
SAMPLE.PGM
TERM.DAT,|F-1
TERMF.EXE, F-1
TERMSET.EXE| F-|
TEST_FLT.PGM, F-]
UTILITY.DOC,
UTILITY.PGM,

VT100 5.PGM, F-]
installation and configuration,(2-24

Loading data files, 5-50
local configuration file,|2-31

Index-17

Index

Index-18

Showing data files,|5-50)

Storing data files,|5-50)

troubleshooting,

usiRMSET to configure TERMR,
2-26

TERMFEXE, [F-1]
TERMSET,

TERMSETEXE, [F-1]

TESTBAT,
TEST_FLTPGM,[5-21]5-22][F-1]

Text editor, using a text editor to create
MegaBasic programs,

Time of day clock, disabling
synchronization messages,

Time stamp subrecords,|5-32)
structure

TS_DAY$
TS_HOURS$, 5-3]
TS_MINS,
TS_MON$
TS_SECH
TS_YEARS$| 5-32

TIME_AND_DATE_OF LAST_CPU_RESP
_VALID[5-3§|

TIME_OF_LAST_CPU_RESP[5-38]

Timer interru
parameters,| 5-59)
TIMERL,[5-34]5-39]
TIMER2,[5-34]5-41]
TIMERS3,[5-34]5-43]
TIMER4,[5-34]5-46]5-49)]
TIMERS,[5-34]5-48]
Timers,m

Too many remote variables (error code

105),[5-3]
Troubleshooting,

backplane transfer failure,

CCM data Tx/Rxfailure,

communication failure,

configuration problems, |6-§

insufficient memory error,

known problems with fault table access,
i5-33

lossofcharacters/MegaBasicTx/Rx

failure,
OK LED not on,

PCOP screen goes blank or PCOP locks

up,[6-9)
PLC fault table entries,
reset blinks user LED1 or LED2,[6-1]

TS_DAYS,
TS_HOURS,[5-32]
TS_MIN$,[5-32]
TS_MONS,[5-32]
TS_SEC$[5-22]5-32
TS_YEAR$5-32)

U

U (reconfigure the PCM) command,|C-15]
UCDF (user configuration data),

Unoﬁned local variable (error code 113),
5-4

UNDERSCORE, [5-7]
UNLINK statement,
Unsolicited communication,m

User configuration data (UCDF),|1-13]
2-10

User-defined LED indicators,m

Usefined LEDs, USER1 and USER?2,
1-6

User-installedPCMEXEC.BAT and
HARDEXEC.BAT files,[D-3|

USER_BKP_MSG_PROC, 5-7215-76] 5-77]

[5-83][5-84]5-86[5-87]
USERL [L[425
USER2,[1-6][4-25]

Utilities, PCM support for personal
computers,

UTILITY.DOC,[F-]
UTILITY,PGM, |5-34)/5-39/[5-41||5-43|5-46 |

5-48|/5-49
interrupts

BKP_MSG[5-34
TIMER1, 5-34} 5-39
TIMER2, 5-34] 5-41
TIMERS3, 5-34} 5-48
|
3

TIMERA4,[5-34} 5-4¢

TIMER5, 5-34| 5-4
procedures

CHECK_CPU_HEALTH, 5-36, 5-46
READ_PLC_CPU_ID, 5-3p, 5-45

GFK-0255K

Index

READ_PLC_RUN_STATU ! 3

READ_PLC_TIME_AND_DATE[5-35,
[5-41
UTILITY_INIT, B-36,[(5-49)
shared constants and variables
CPU_RESPONDING, 5-38
DATE_OF_LAST_CPU_RESP, 5-38
PLC_CPU_ID| 5-3B
PLC_CPU_ID VALID[5-38%
PLC_DATE[5-38
PLC_FAULT_BIT[5-38
PLC_FAULT BIT_VALID,
PLC_RUN_STATUS] 5-38
PLC_RUN_STATUS_VALID[5-38
PLC_STATUS_WORL], 5-36
PLC_STATUS_WORD_VALID| 5-38
PLC_TIME[5-38
PLC_TIME_AND_DATE_VALID,[5-39
TIME_AND_DATE OF LAST_CPU R
ESP_VALID]5-38
TIME_OF LAST _CPU_RESP, 5-38
true/false, 5-3p

UTILITY_INIT,[5-36][5-49]

E(Verify afile) command,
Vector,|4-24

Verify a file (V) command,
Video graphics array (VGA),

VME functions|5-100
general VME information for the PCM,
5-101

programming example|5-110

rules for VME bus operations in Series
90-70 PLCs,

VME function blocks for
communicating with the PCM,

VMERD, 5
exampl
VMERMW,|5
VMETS|5
VMEWRT 5- 100
examplg,
VT100.PGM, .-

functions and rocedures,
ATTR, |5-6}f 5-12
ATTRS$,[5-6

GFK-0255K

CLS,[5-6} 5-
CUR, 5-6} 5-10
CURS$/5-6, 5-9

MV_CUR,[5-6] 5-1
MV_CUR$[5-6] 5-1

integer and string constants,[5-7|
ATTRIB OFF,

CURHOMES$[5-7
DW_DH_BOT$] 5-1
DW_DH_TOP$} 5-F

DW_SH$[5-T
ERASE_BOLS$[5-7
ERASE_BOT$| 5-
ERASE_EOLS$)} 5-]
ERASE_LINES$[5-7
ERASE_SCREEN$, 517
ERASE_TOPY, 5]
RESTORECURY, 5{7
REVERSE[5-7
SAVECURS$[5-T
SW_SH$| 5-F
UNDERSCORH, 57

VT100_5.PGM[4-27|[5-5][F-1]
W

W (Wait) command,
W_PBMEMS$,[5-16]
W_TMEM$/5-16]

Wait (W) command,
WAIT mode,[3-12|[5-68]
Wait/no waitflag,
Watchdog timer,
WORD%,|5-27

WORDY%(),[5-21]
Workspace size, MegaBasic,|4-11|
WRITE_FINISHED,
WRITE_PENDING [4-22]
WRITE_RECEIVED,
WRITE_TIMEOUT,[4-22]

WYE cable,

Index-19

Index

X

X (eXterminate file) command,[5-51} C-16]
XFER_REJECT[4-22)

Y

Y (set upper memory limit) command,
C-17

Index-20 GFK-0255K

	Chapter 1 Introduction
	Section 1: System Overview
	Section 2: Functional Overview
	CCM Operation
	MegaBasic Operation
	RAM Disk
	PCM Operation Modes
	PCM Support Utilities for Personal Computers

	Section 3: PCM Module Description
	LED Indicators
	OK LED
	User-Defined LEDs (USER1 and USER2)
	Battery
	Serial Connectors

	Section 4: Hardware Overview for the Series 90-70 PCM
	Section 5: Hardware Overview for the Series 90-30 PCM
	Section 6: Configuring the PCM
	Configuring the PCM for CCM Operation
	Configuring the PCM for MegaBasic Operation

	Section 7: Who Should Use PCOP

	Chapter 2 Installing the PCM
	What You Will Need
	Section 1: Installing the PCM Hardware
	Overview
	Installing a Series 90-70 PCM
	Installing a Series 90-30 PCM
	Adding Expansion Memory to the Series 90-70 PCM

	Section 2: Configuring the PCM with Logicmaster 90 Software
	I/O Configuration Rack Screen
	Adding a PCM to the Rack Screen
	PCM Configuration Data
	PCM Configuration Modes
	CCM ONLY Mode
	BASIC Mode
	BAS/CCM Mode
	PCM CFG and NONE Modes
	PROG PRT Mode
	PROG/CCM and CCM/PROG Modes
	Configuration Modes and the PCOP Display
	Series 90-30 PCM Autoconfig

	Section 3: Configuring the Series 90-30 PCM with the HHP
	Freezing the Configuration
	Example of Editing a PCM

	Section 4: TERMF Installation and Configuration
	Installing TERMF
	Adding the PCOP Directory to the MS-DOS Search Path

	Section 5: Using TERMSET to Configure TERMF or PCOP
	Local Configuration File
	Connecting the PCM to the Programmer
	Diagnosing Serial Communication Problems

	Chapter 3 CCM Operation
	Section 1: Series 90 CCM Target Memory Types
	CCM Scratch Pad
	Diagnostic Status Words

	Section 2: Series 90 CCM Memory Addressing Conventions
	Target/Source Memory Addresses
	Data Length
	CCM Comparisons

	Section 3: Communications Request (COMMREQ)
	Format of the COMMREQ Function Block
	Other COMMREQ Faults
	Power-Up Delay
	Command Block
	CCM Status Word

	Section 4: CCM COMMREQ Data Block
	Section 5: CCM COMMREQ Status Word
	Section 6: CCM COMMREQ Example
	Section 7: PLC System Communications Window
	Series 90-70 System Communications Window
	PLC Service Request (SVCREQ)
	Series 90-30 System Communications Window
	SVCREQ Examples

	Chapter 4 MegaBasic
	Section 1: Programming the PCM in MegaBasic
	Getting Started with the MegaBasic Interpreter
	Loading and Saving MegaBasic Programs
	Backing Up Your Program
	Exiting the MegaBasic Interpreter
	Saving Data through a Power Cycle or Reset
	Compatibility with MS-DOS MegaBasic
	MegaBasic Features Not Supported by the PCM
	Modifying Existing BASIC Programs for MegaBasic
	Printing a MegaBasic Text File
	Using a Text Editor to Create MegaBasic Programs
	MegaBasic Program and Data Size
	Determining the Size of a MegaBasic Program
	MegaBasic Program Packages
	Changing the MegaBasic Workspace Size
	Compacting and Encrypting Programs

	Section 2: Interfacing to the PCM Hardware and Series 90 CPU
	Input and Output to the PCM Serial Ports
	Serial Port Control and Status
	Accessing PLC Data
	SYSLINK
	SYSREAD, SYSWRITE, and SYSTATUS$
	Status Record
	UNLINK Statement
	Data Coherency
	Accessing the PCM s LEDs

	Section 3: MegaBasic Programming Examples

	Chapter 5 Advanced MegaBasic Programming
	Section 1: MegaBasic Error Codes
	Section 2: Screen Formatting Commands
	CLS
	CUR$
	CUR
	ATTR$
	ATTR
	MV_CUR$
	MV_CUR

	Section 3: Accessing %P, %L, and Password-Protected Data
	CHG_PRIV
	SMSG_WTEXT

	Section 4: Access to PLC Fault Tables and PLC Status
	READ_FAULT_TBL
	RDEL_FAULT_TBL
	FLT_PRESENT%
	FLT_CHANGED%
	WORD%
	Fault Table Header Records
	PLC Fault Table Records
	I/O Fault Table Records
	Short Status Records
	Time Stamp Subrecords
	PLC Fault Address Subrecords
	I/O Reference Address Subrecords
	I/O Fault Address Subrecords
	Known Problems with Fault Table Access

	Section 5: Gathering PLC Information from MegaBasic Programs
	READ_PLC_STATUS
	READ_PLC_TIME_AND_DATE
	READ_PLC_RUN_STATUS
	READ_PLC_CPU_ID
	CHECK_CPU_HEAL TH
	READ_PLC_FAULT_BIT
	UTILITY_INIT

	Section 6: Loading and Storing PCM Data Files Using TERMF
	L (Load)
	S (Save)
	D (file Directory)
	X (eXterminate file)

	Section 7: Serial Port Setup with IOCTL and PORT_CTL.BIN
	Serial Port Setup with IOCTL
	Serial Port Control Using PORT_CTL.BIN

	Section 8: Timers and Logical Interrupts
	Timer Interrupts
	Backplane Interrupts

	Section 9: COMMREQs and Other Backplane Messages
	PROCESS_MESSAGE Statement
	Using the BKP_MSG Interrupt
	Interpreting COMMREQ Messages
	Programming the PLC COMMREQ Function Block
	Format of the COMMREQ Instruction
	MegaBasic COMMREQ Command Block
	MegaBasic COMMREQ Example
	MegaBasic Blink LED Program Example
	Controlling COMMREQs
	Identifying the Source of Backplane Messages
	Backplane Messages to Another PCM

	Section 10: Asynchronous Serial Input and Output
	NOWAIT_OPEN
	NOWAIT_READ and NOWAIT_WRITE
	Serial Port Error Codes Returned by PROCESS_READ
	NOWAIT_CLOSE
	NOWAIT_SEEK
	NOWAIT_READ_ABORT
	NOWAIT_WRITE_ABORT
	Example NOWAIT Program

	Section 11: VME Functions
	VME Function Blocks for Communicating with the PCM
	Some Rules for VME Bus Operations in Series 90-70 PLCs
	General VME Information for the PCM
	PCM Dual Port RAM Available for Applications
	VME Read Function
	VME Write Function
	VME Read/Modify/Write Function
	VME Test and Set Function
	MegaBasic Program Access to PCM Dual Port RAM

	Section 12: Programming Example using VME Functions
	Section 13: Optimizing Backplane Communication
	Backplane Processing for the Series 90-70 PCM
	Repeated Transfers
	Backplane Processing for the Series 90-30 PCM

	Chapter 6 Troubleshooting Guide
	OK LED Not On
	Reset Blinks User LED1 or LED2
	Communication Failure
	PLC Fault Table Entries
	Backplane Transfer Failure
	Insufficient Memory Error
	Loss of Characters/MegaBasic Tx/Rx Failure
	CCM Data Tx/Rx Failure
	Configuration Problems

	Appendix A PCM Cabling Information
	Cable and Connector Specifications
	Cabling
	RS-232 Cables
	RS-422/RS-485 Cables

	Appendix B Resetting the PLC from a PCM Program
	Appendix C PCM Commands
	Accessing the Command Interpreter
	Interactive Mode
	Command Format
	Notation Conventions
	Commands
	@ (execute a batch file)
	B (configure LEDs)
	C (Clear the PCM)
	D (file Directory)
	F (show Free memory)
	G (Get hardware ID)
	H (get PCM firmware revision number)
	I (Initialize device)
	Examples:
	J (format EEROM device)
	K (Kill a task)
	L (Load)
	M (create a memory Module)
	O (get LED configuration)
	P (request status data)
	Q (set protection level)
	R (Run)
	S (Save)
	U (reconfigure the PCM)
	V (Verify a file)
	W (Wait)
	X (eXterminate file)
	Y (set upper memory limit)

	Appendix D PCM Batch Files
	Running Batch Files
	PCMEXEC.BAT Files
	HARDEXEC.BAT Files
	User-Installed PCMEXEC.BAT and HARDEXEC.BAT Files

	Appendix E Example MegaBasic Program
	Appendix F TERMF File Descriptions
	Appendix G Synchronous Serial Mode Operation
	Port 1 Pin Assignments
	Synchronous Operation Modes for Port 1
	Synchronous Mode PCMA3 (Port 1) Control Registers
	NEC72001 I/O Addresses
	NEC72001 Synchronous Clock Source Selection (CR15)
	For Further Information

	Index

