
John Blodgett 
Urban Information Center 
University of Missouri 
St. Louis, Mo. 63121 

A PROGRAMMER FRIENDLY APPROACH TO GEOCODING 

ABSTRACT. Geocoding - the process of linking data files 
containing street addresses to a master street reference file - is a 
problem which has been "solved*' with the Census Bureau's 
DIME/ADMATCH (or UNIMATCH) system. However, the value of these 
extremely useful tools is diminished somewhat because of the 
complexity of the programming involved in applying them. There are 
perils involved in creating your reference ("nickel") file using 
DIME and ADMATCH/PREP. Mistakes are easy to make and hard to find. 
More serious are the problems involved in applying the system to a 
wide variety of files in a timely, ef f i cient and reliable manner. 
The system developed by the UMSL Urban Information Center provides a 
programmer familiar with the general workings of ADMATCH a set of 
powerful software tools that can greatly simplify the complex and 
error - prone data management aspects of using ADMATCH. These tools 
are provided in the form of SAS £r) preprocessor macros, and are 
written with total flexibility and ease of use (by a programmer 
familiar with the SAS language) in mind. Because they are in source 
code format and because they rely heavily on easily modified 
"default" parameter values, they can very easily be customized to 
fit the needs of a wide variety of users. 

INTRODUCTION 

Figure 1 is a reproduction of the ADMATCH system flowchart as 
it appears in the ADMATCH User's Manual. While it may be a useful 
depiction of the basic steps involved in geocoding with ADMATCH, i t 
is a very partial depiction of most real life applications of the 
software. It does not show, for example, any program or subsystem 
that does anything about preprocessor rejects or nonmatched address 
records. They are simply written to a file and/or listed in an 
exception report. What happens to them next is beyond the scope of 
the ADMATCH software. But in terms of a practical geocoding system, 
an efficient and relatively easy-to-use subsystem for fixing 
rejected and nonmatched records is critical for many if not most 
applications. 

The flowchart also omits the "post-processing" phase (this is 
covered in a separate manual for some reason) in which the various 
matched, nonmatched and rejected records are all brought back into 

- 171 -



ADMATCH SYSTEM 

FIGURE 1 

- 172 -



one or more final output files. In the portion of the flowchart 
dealing with preprocessing the "reference file" (presumably a DIME 
file or its equivalent) there is no indication of the need for a 
special preprocessor step to split the 2-sided "DIME" records into 
single-sided "nickel" records prior to preprocessing. There is also 
no indication that more than one system sort may be required in order 
to produce multiple versions of the reference file for matching or 
different criteria (e.g. one version for matching on ZIP, another 
for matching on state and place.) 

Our purpose here is not to be critical of the ADMATCH system or 
its authors. We think the basic ADMATCH program modules, the 
preprocessor and the matcher are two of the most clever, useful and 
reliable software products ever written. However we feel that as a 
software system for dealing with the entire complex problem of 
geocoding - especially in an environment requiring a lot of 
flexibility as well as computer resource economy and where 
programmer time is at a premium - ADMATCH simply does not do 
enough. What we would like to do in this paper is to discuss an 
approach to geocoding that retains the valuable program modules from 
ADMATCH, but incorporates them into a more complete geocoding 
system. The system we have developed has been very much customized 
to fit the needs of our own environment, and may not be totally 
appropriate for another shop (many shops could undoubtedly do with 
something a lot simpler.) What we would really like to emphasize 
here is not the specifics of our system, but rather the underlying 
approach or philosophy behind it. 

DESIGNING THE GEOCODING SYSTEM: ASSUMPTIONS AND REQUIREMENTS 

In designing a "complete" geocoding system (or any other system 
for that matter) it is a good idea to start with a list of features 
and capabilities that you would like your system to have. The 
following list describes the major functions we wanted our system 
to be able to perform, and includes some specific guidelines on how 
we wanted these capabilities implemented. The list reflects our 
assumptions and rather subjective evaluations ("filling out the 
preprocessor control card is tedious and error-prone"). It is based 
on several years experience running ADMATCH software without a 
structured set of software modules to complete the system. 

1. The process of filling out the PREP (ADMATCH preprocessor) 
control card is tedious and error-prone. The errors are 
usually not detected (you pointed to the wrong column but PREP 
didn't know the difference), and often result in complete runs 
which are a waste of time and computer resources. Control 
cards used in other modules, especially SAVE cards in the 

- 173 -



matcher module, are fraught with similar perils. There is far 
too much column-counting going on. 

2. A system for displaying unmatched addresses and providing 
for updating of these rejects is required. 

3. An ADMATCH project creates too many datasets and requires 
far too much coding of error-prone JCL statements. Our system 
should standardize as many files as possible so that the DD 
statements can be stored as part of a JCL procedure, and never 
have to be coded by the user. A more systematic way of dealing 
with all the permanent datasets is required. 

4. As a record passes through the geocoding process it can 
appear on many different files: the original input, the 
preprocessed file, the sorted preprocessed file, the initial 
match run reject file, the sorted match run reject file, the 
updated match run reject file, the preprocessed (again) updated 
match run reject file, etc., etc. It is not uncommon for these 
records to be several hundred characters long, and for the 
files to contain thousands, tens of thousands and occasionally 
even hundreds of thousands of records. Since ADMATCH looks at 
only a small part of each record in order to standardize and 
match it, this information should be stripped off and only 
these relatively small records should ever be processed by any 
but the first and last geocoding system modules. This should 
result in significant savings in storage and processing costs. 

5. It can be very expensive to pass a relatively small address 
file (of say, a few thousand records) against our full 200,000 
+ - record reference file (the St. Louis SMSA preprocessed 
"Nickel" file.) It would be a significant improvement if we 
could do a "pre-check" of the addresses against a much smaller 
disk-resident reference summary file, to see which records can 
be matched at the ZIP and/or preprocessed street name level, 
and to be able to correct these "won't match" records before 
actually doing a match run against the full tape f ile. At the 
same time, this would be a good place to use an "alias file" to 
substitute for common misspelling or true alias street names. 

6. The subsystem for going from the DIME file to a preprocessed 
nickel file should be streamlined and made more flexible. It 
would be nice not to have to preprocess every DIME record 
twice, i.e. to preprocess the actual DIME record prior to 
splitting into 2 block face records. The subsystem should 
allow for creating the compact summary datasets at the ZIP and 
PREPNAME levels, and for printing out compact well labeled 
reports that can be used to assist in looking up unmatched 
records. 

- 174 -



7. Programmers in our shop do almost all their work using 
SAS. It would therefore be extremely beneficial if our 
geocoding system could at least begin and end with SAS 
data sets. This would not only save us from having to write 
PUT/INPUT statements but would go a long way towards solving 
the data management problems referred to under item 3, above. 

8. Programmers and self-reliant users should be able to set up 
and run simple geocoding applications without having to read 
the pink and purple ADMATCH manuals. 

A SAS-BASED SOLUTION: WHY AND HOW 

We chose the SAS software package as the basis for our 
geocoding system, not because of any of its considerable 
statistical capabilities, but because of its excellent facilities 
for sequential file management and powerful programming language. 
When we first began coding the system (around 1979) we were not 
particularly impressed with the capabilities for writing 
"user-friendly" systems in SAS, but felt that its macro features 
would be adequate. Our first SAS-based system, written using 
"old style" SAS macros was a major improvement over what we had 
been doing, but was not as flexible and easy to use as we would have 
liked. It worked off a lot. of "parameter macros", and you wound up 
going in and modifying the actual source code a lot to handle 
"special" cases. The system was then rewritten (or more accurately, 
is still in the process of being rewritten) with the introduction of 
the much more powerful SAS preprocessor macro language which became 
available in late 1982. 

URISA imposes time and space requirements that mercifully 
prohibit any detailed description of how the SAS/ADMATCH system works. 
But here are some of its more notable features: 

1. The system is driven by a set of "programmer friendly" 
macros that allow the user to supply parameter values which are 
used by the SAS preprocessor to (sometimes conditionally) 
generate the appropriate SAS statements. 

2. The ADMATCH system modules PREP and MTCH (the actual load 
modules, unaltered for over 10 years) are invoked from inside 
SAS. In terms of CPU time these two modules still do most of 
the work. 

- 175 -



3. All files passed to the PREP program are in exactly the same 
format. Each record consists of a 7-digit numeric KEY field, a 
33-character ADDRESS field and a 5-character ZIP field. It 
always has the same LRECL and blocking factor. This means that 
the error-prone PREP control card becomes a "constant", and 
does not have to be prepared anew for each run. It also means 
that the file which is read by PREP (SYS004) can be written by 
SAS to a temporary dataset that is a "constant" (JCL-wise) for 
all runs. Similarly, the PREP output files (SYS005 and 
SYS006)are "constant" temporaries that can be easily converted 
to SAS datasets. The user normally only needs to code one DD 
statement defining his SAS data library, while the 3 DD 
statements for SYS004, SYS005 and SYS006 become "invisible" to 
the user because they are coded as part of a standard JCL 
procedure. Similar savings occur in all subsequent phases. 
Storing files as SAS datasets makes them more compact and much 
easier to sort, list, document, delete, edit, merge, summarize 
and generally take-care of. 

4. Preprocessing the reference (DIME) files is handled with a 
3-macro subsystem. The fi rst converts the sequential DIME file 
to a SAS dataset; the second preprocesses the file and stores 
the result as a SAS NICKEL dataset; and the final macro sorts 
and writes a specific sequential nickel file. (The second 
module has options to generate reference SAS datasets of all 
ZIPs and ZIP/PREPNAME combinations.) 

5. It is still possible to get 37% match rates in high growth 
areas, but you get such nice concise informative reports 
depicting your failures. 

6. This system is rarely used to do the same thing twice. 
Yet, we can usually give 48-hour turnaround (assuming no 
reject lookups) with almost total reliability that the geocodes 
v .11 be where you wanted them on your output file or dataset 
(converting final results back to sequential files instead of 
SAS datasets is not a problem.) 

7. Programmers can be taught how to use the system in a day or 
two. They do not need to know all the details of the PREP and 
MTCH program logic, although it is important that at least one 
person in the shop be knowledgeable in these areas. 

8. Many geocoding applications have as their final goal the 
linking of aggregated geocoded files with census data for 
market penetration reports. For example, after you attach 
tracts to the student data base you want to get a report 
showing both total students per tract and perhaps total 
students per tract per capita. It is also common to then 

- 176 -



want to display this information in a computer drawn map. All 
of this type of postprocessing is made relatively simple with 
SAS and SAS/GRAPH. 

9. We have not done any careful benchmarking or conducted any 
experiments to see how geocoding with our SAS/ADMATCH system 
compares to how we were doing with PL1 and IBM utilities. But 
our guess is that this system requires about a fifth of the 
programmer effort, about half of the computer resources 
(CPU time, tape and disk I/O, permanent data storage), and is 
several times more likely to do the job right the first time. 
Overall turnaround time has improved dramatically. 

CONCLUSIONS 

Geocoding is a tough problem. Even with excellent public 
domain softwa re products like ADMATCH available, most shops are 
justifiably reluctant to get into this specialized kind of 
processing. You have to be willing to invest a certain amount of 
time in learning about the specifics of how a geocoding system 
works. You also are going to run into problems with very poor match 
rates in certain areas unless you are willing to take on the task of 
keeping your reference file up to date. And, finally, unless you 
have some very fixed requirements for what kinds of files you will 
be geocoding and just how you want to handle them, you should expect 
to spend a fair amount of time in developing auxiliary software to 
handle the very considerable housekeeping tasks involved in managing 
all the data sets you* 11 be creating. If you are in an environment 
where computer resource costs are a significant consideration, 
geocoding large files can get very expensive. This has resulted in 
a lot fewer shops actually doing in-house geocoding. They are either 
sending it out to a service bureau, doing it by hand, or getting by 
with ZIP data. This is an unfortunate waste of some good software 
and some very expensive DIME files. 

While we certainly don* t think our specific software is any 
universal cure for the under-geocoding phenomenon, we do think that 
the general approach we have taken has certainly solved a good part 
of the problem in our shop. This approach can be characterized as 
follows: 

1. Avoid starting over. Somebody has probably already solved 
all or part of the problem. Don' t waste good solutions just 
because they're not perfect. 

2. Find a good general-purpose data management tool and build 
your solutions around it. SAS is an excellent tool for such 

- 177 -



things; IBM JCL and IBM utilities are not. 

3. Avoid building solutions that cannot be easily modified to 
handle all the special cases you111 never be able to 
anticipate. Avoid constants where parameters will fit nicely. 
But make the parameters easy to specify, with lots of defaults. 

4. Instead of end-user friendly solutions, build programmer 
friendly solutions, that programmers can easily customize into 
user-friendly ones. 

5. Use preprocessors or meta-languages to build your system. 
Then you can enjoy lots of flexibility with lots of 
parameterization, with almost no sacrifice in efficiency. 

6. Spend most of your time worrying about exactly what you want 
your system to do, then find someone who can tell the computer 
exactly how to do it. 

7. If you decide to write a paper describing your system, 
don't wait until two days before the manuscript is due to give 
it. to your secretary. If you do, they will not be programmer 
friendly. 

ACKNOWLEDGEMENTS 

SAS is a registered trademark of SAS Institute, Cary, North 
Carolina. 

- 178 -




