

For more information please contact:

Genomatix Software GmbH Bayerstr. 85a 80335 Munich Germany

 Phone:
 +49 89 599766 0

 Fax:
 +49 89 599766 55

 Email:
 info@genomatix.de

 WWW:
 http://www.genomatix.de

ChipInspector

Table of Contents

Introduction to ChipInspector	4
What is Genomatix ChipInspector?	4
Data Analysis	4
Analysis Background	4
File Requirements	6
Steps in the Statistical Analysis of Microarrays in ChipInspector	6
Technical Requirements	9
Memory Requirements	9
Operating Systems	9
Java Runtime Environment	. 10
Browser	. 11
Installation and Configuration of ChipInspector	. 12
Download	. 12
Get Login and Password	. 14
Registration	14
Change Password	16
Password Policy	17
Installation	18
Configuration of ChinInspector	20
Proxy Configuration	21
SSI Configuration	22
Check for Lindates	23
Configuration of Statistical Analysis Behavior	26
Data Storage Settings	27
The ChinInspector Workspace Area	28
Project Management Panel	28
Main Panel	28
Memory Monitor	29
Log File Monitor	29
Project Tree	30
Creating a New Project Tree	30
Opening an Existing Project Tree	30
Saving the Project Tree	30
Deleting a Project Tree	30
Projects	31
Creating a New Project	31
Importing Data Files into a Project	32
Data Import Interface	32
Editing a Project	37
Deleting a Project	37
Project Data Files	37
Editing a Data File	37
Deleting a Data File	38
Analyses	38
Creating a New Analysis	38
Editing an Analysis	30
Decigning an Analysis	30
Analysis Settings	47
Starting an Analysis	46
Committing an Analysis for a Batch Joh	47
Creating and Starting a Batch Job	47
Redoing an Analysis	40
Statistics Curve	40
Cluster View	52
Regult List	52
Exporting Results	54
	51

© 2007 Genomatix Software GmbH

56
57
58
58
58
59
59
59
59
60
60
60
60
61
61
61
61
61
61
61
61
62

Introduction to ChipInspector

What is Genomatix ChipInspector?

ChipInspector extracts significant information from the expression level of single probes of Affymetrix GeneChip© microarrays. Sophisticated analysis techniques and state-of-the-art genomic knowledge increase the number of significant features while simultaneously reducing false positive rates by an order of magnitude.

ChipInspector uses the world's largest database of alternative transcripts and promoters to achieve superior signal-to-noise ratios in microarray analysis. It is unique in removing statistical and gene calling errors at the single probe level. This technology provides the basis for unmatched accuracy in significance analysis of microarray data. The resulting lists of significantly regulated genes from the experiment are directly usable as input for Genomatix BiblioSphere PathwayEdition.

Data Analysis

Analysis Background

Genomatix calculates a proprietary annotation for the database ElDorado. ChipInspector data is based on this. On 86 of the 87 currently supported chips, more than 85% of the perfect match probes are used to calculate the statistics. The following tables show the data for each chip.

Affymetrix exon arrays	Number of columns / rows	Perfect match probes (Genomatix optimized)	Transcripts (Genomatix annotated)	Species
Human Exon 1.0 ST	2560	4983374	60194	H.sapiens
Human Gene 1.0 ST	1050	737465	52642	H.sapiens
Mouse Exon 1.0 ST	2560	4401613	143709	M.musculus
Rat Exon 1.0 ST	2560	3729669	21779	R.norvegicus

Affymetrix tiling arrays	Number of	Perfect match	Analysis is	Species
	columns /	probes (Genomatix	annotation	
	rows	optimized)	independent	
Human Promoter 1.0 R	2166	3967233		H.sapiens
Human Tiling 1.0 R Chip 1	2560	t.b.d.		H.sapiens
Human Tiling 1.0 R Chip 2	2560	2972683		H.sapiens
Human Tiling 1.0 R Chip 3	2560	3067917		H.sapiens
Human Tiling 1.0 R Chip 4	2560	3046879		H.sapiens
Human Tiling 1.0 R Chip 5	2560	3020832		H.sapiens
Human Tiling 1.0 R Chip 6	2560	3036710		H.sapiens
Human Tiling 1.0 R Chip 7	2560	t.b.d.		H.sapiens
Human Tiling 1.0 R Chip 8	2560	2900753		H.sapiens
Human Tiling 1.0 R Chip 9	2560	3018060		H.sapiens
Human Tiling 1.0 R Chip 10	2560	3045500		H.sapiens
Human Tiling 1.0 R Chip 11	2560	2942269		H.sapiens
Human Tiling 1.0 R Chip 12	2560	2942359		H.sapiens
Human Tiling 1.0 R Chip 13	2560	2951350		H.sapiens
Human Tiling 1.0 R Chip 14	2560	1254212		H.sapiens
Human Tiling 2.0 R Chip 1 ver 1	2560	t.b.d.		H.sapiens
Human Tiling 2.0 R Chip 2 ver 1	2560	t.b.d.		H.sapiens
Human Tiling 2.0 R Chip 3 ver 1	2560	t.b.d.		H.sapiens
Human Tiling 2.0 R Chip 4 ver 1	2560	5887585		H.sapiens
Human Tiling 2.0 R Chip 5 ver 1	2560	5829518		H.sapiens
Affymetrix tiling arrays (cont.)	Number of columns /	Perfect match	Analysis is annotation	Species
		p. c. co (cononium	a. motorion	

Introduction to ChipInspector

	rows	optimized)	independent	
Human Tiling 2.0 R Chip 6 ver 1	2560	5860214		H.sapiens
Human Tiling 2.0 R Chip 7 ver 1	2560	5746726		H.sapiens
Chromosome 21/22 1.0F Chip A	914	312159		H.sapiens
Chromosome 21/22 1.0R Chip A	914	313581		H.sapiens
Chromosome 21/22 1.0F Chip B	914	295946		H.sapiens
Chromosome 21/22 1.0R Chip B	914	296329		H.sapiens
Chromosome 21/22 1.0F Chip C	914	320535		H.sapiens
Chromosome 21/22 1.0R Chip C	914	320231		H.sapiens
Chromosome 21/22 2.0R	2166	2058473		H.sapiens
ENCODE01-Forward_4x	1280	2082877		H.sapiens
ENCODE01-Reverse_4x	1280	2082877		H.sapiens
ENCODE 2.0R	1280	760199		H.sapiens
Arabidopsis Tiling 1.0R	2560	2888551		A.thaliana
Arabidopsis Tiling 1.0F	2560	2888550		A.thaliana
Drosophila Tiling 1.0R	2166	3004387		M.musculus
Mouse Promoter 1.0 R	2166	3943515		M.musculus
Mouse Tiling 2.0R Chip 1 ver2	2560	5618536		M.musculus
Mouse Tiling 2.0R Chip 2 ver2	2560	4952181		M.musculus
Mouse Tiling 2.0R Chip 3 ver2	2560	t.b.d.		M.musculus
Mouse Tiling 2.0R Chip 4 ver2	2560	5539462		M.musculus
Mouse Tiling 2.0R Chip 5 ver2	2560	5481706		M.musculus
Mouse Tiling 2.0R Chip 6 ver2	2560	5607960		M.musculus
Mouse Tiling 2.0R Chip 7 ver2	2560	5373354		M.musculus

Affymetrix expression arrays	Number of Perfect match		Transcripts	Species
	columns / probes (Genomatix		(Genomatix	
	rows	optimized)	annotated)	
Arabidopsis Genome	534	114960	10635	A.thaliana
Arabidopsis ATH1 Genome	712	220039	29840	A.thaliana
Bovine Genome	732	199713	16861	B.taurus
C.elegans Genome	712	213496	20501	C.elegans
Canine Genome Ver 2	732	383133	39164	C.familiaris
Chicken Genome	984	315499	15996	G.gallus
Drosophila Genome	640	192332	17686	D.melanogaster
Drosophila Genome 2.0	732	243002	19174	D.melanogaster
Human Genome Focus	448	82235	23040	H.sapiens
Human Genome U133 Plus 2.0	1164	525438	61158	H.sapiens
Human Genome U133A	712	207689	39876	H.sapiens
Human Genome U133A 2.0	732	207689	39876	H.sapiens
Human Genome U133B	712	222339	22693	H.sapiens
Human Genome U95Av2	640	169901	24755	H.sapiens
Human Genome FL (6800)	536	103884	15267	H.sapiens
Human X3P	1164	582006	59331	H.sapiens
500K_Sty	2560	1610660	12329	H.sapiens
500K_Nsp	2560	1612024	10303	H.sapiens
Mouse Expression Set 430 A	712	207750	62161	M.musculus
Mouse Expression Set 430 B	712	220386	34676	M.musculus
Mouse Genome 430 2.0	1002	427307	89895	M.musculus
Mouse Genome 430A 2.0	732	207750	62161	M.musculus
Murine Genome U74v2 A	640	141087	37949	M.musculus
Murine Genome U74v2 B	640	159254	28735	M.musculus
Murine Genome U74v2 C	640	101224	14067	M.musculus
Rat Expression Set 230 A	602	144141	18676	R.norvegicus
Rat Expression Set 230 B	602	141572	10871	R.norvegicus
Affymetrix expression arrays	Number of	Perfect match	Transcripts	Species
(cont.)	columns /	probes (Genomatix	(Genomatix	
	rows	optimized)	annotated)	
Rat Genome 230 2.0	834	284875	26353	R.norveaicus

© 2007 Genomatix Software GmbH

Introduction to ChipInspector

_				
undore	tandina	aono	rogui	ation
unucia	Lanung	yene	regui	alivii

Rat Genome U34 A	534	100954	8056	R.norvegicus
Rat Genome U34 B	534	106552	7533	R.norvegicus
Rat Genome U34 C	534	106005	8160	R.norvegicus
Rhesus Macaque Genome	1164	590073	40644	M.mulatta
Rice Genome	1164	513875	55024	O.sativa
Zebrafish Genome	712	152434	8716	D.rerio

Other Array providers	Number of identifiers	Perfect match probes (Genomatix optimized)	Transcripts (Genomatix annotated)	Species
Illumina Human Expression	48701	t.b.d.	t.b.d.	H.sapiens
Illumina Mouse Expression	46643	t.b.d.	t.b.d.	M.musculus
BeadChip Version 1.1				
Agilent Human Genome	43931	t.b.d.	t.b.d.	H. sapiens
Agilent Mouse Genome	41174	t.b.d.	t.b.d.	M.musculus
Agilent Human Promoter	476024	t.b.d.		H. sapiens
Agilent Mouse Promoter	474380	t.b.d.		M.musculus

Each of the Genomatix optimized perfect match probes is analyzed separately for its behavior under the experimental conditions. Statistical analysis is carried out after calculating the base 2 logarithm of the fold-changes between experiment and control.

The user chooses the statistical stringency of the observed signals over the background. The measure of stringency is expressed as False Discovery Rate (FDR). The probes are then mapped onto the relevant transcripts using Genomatix' proprietary genome annotation. The resulting Coverage value shows the number of significantly regulated probes for each transcript.

More than one transcript can be annotated at a locus, therefore many (if not most) probes are mapped to multiple transcripts.

If a time-course/titration experiment was performed, it is possible to cluster the significantly regulated probes according to their profiles over the experimental point. This is done by hierarchical tree clustering (average linking) of the Euclidean distances of the profiles

File Requirements

ChipInspector has a number of requirements for the data files. The files as they are produced in the experiment usually meet all of them, but if the files cannot be analyzed, it might be advisable to check the following list:

- 1. The data files should not have names with spaces in them (this is possible on Windows systems).
- 2. The chip type given in the data file must be compliant with the (currently) 87 chips supported (cf. the list of accepted chip types).
- 3. The files should be stored locally or on a mounted drive. Please be aware that, depending on the file format and your network protocol, remote storage could cause increased time demand.
- 4. File extension: ChipInspector analyzes files with the .cel or .CEL extensions in case of Affymetrix microarrays. For other chip providers, tab-delimited files are expected and a data import interface is shown.

We recommend a minimum of three replicates per experimental point. It is possible to work with two replicates, but it is not recommended. It is not possible to have less than two replicates per experimental point, because this makes statistics non-utilizable.

Steps in the Statistical Analysis of Microarrays in ChipInspector

Design Correction

Previous annotations of the single oligonucleotide probes are disregarded together with the grouping of the probes in probe sets. Mismatch probes are disregarded. The sequence of each single probe is mapped against the current genome of its target organism and against ElDorado, Genomatix' database of transcripts. Only probes that meet quality criteria such as uniqueness in the genome, mismatch proof and other criteria are used for the analysis. Generally, more than 500.000 single probes (depending on the chip type) fulfill these quality criteria.

As knowledge on the genomic sequences grows and consolidates, these mappings are repeated and ChipInspector is automatically updated with this information.

Normalization

A linear total intensity normalization algorithm is used.

Statistical Analysis

A significance test is performed at the single probe level. This is done basically via a standard permutational T-Test, similar to SAM (Tusher et al., 2001). The exact method depends on the type of the experiment:

One class analysis (Experiment versus Control)

A single sided permutation T-test analysis is performed.

Multiclass analysis

For a timeline analysis or an analysis including multiple stages a multiclass permutational T-test analysis is performed.

Presence/Absence calling

It is also possible to measure expression values relative to the average expression on the chip, e.g. for gene expression values in one specific tissue. In this case a permutational T-test analysis detecting probes which are significant above the experiment average is performed.

Hierarchical Clustering

For the time series/dose response option of analysis, ChipInspector offers a Hierarchical Tree Clustering of the significantly regulated single probes. It is based on Euclidean distance matrix calculations. It doubles as a quality check, when those single probes that describe the same transcript are also found to cluster together.

Mapping the Significantly Regulated Probes to the Transcripts

The probes determined to be significantly regulated in the experiment are subsequently matched with the transcripts that they describe. For each transcript, coverage of regulated probes is thus calculated. Previous experiments have shown that coverage of 3 or more probes per transcript provides sufficiently stringent evidence of the transcript being regulated in the experiment.

Exporting the Resulting Transcript Lists

The list of regulated transcripts is saved in MS Excel format and can be directly uploaded into Genomatix' BiblioSphere Pathway Edition, where they can be displayed as gene networks together with their signal values.

Technical Requirements

Memory Requirements

The following chapter explains the technical requirements to install the ChipInspector client application on your computer.

The table shows the maximum possible number of CEL-files in a control/treatment setup (exhaustive combinations) for one single analysis run in relation to different computer configurations. This table is intended to give the user a perception of possible setups with the current version of ChipInspector, depending on the available main memory (RAM in Gigybyte GB).

Chip Type	Gene Chip	Promoter Tiling		Exon	Tiling
Chip Size	712 x 712**	2166 x 2166		2560 :	x 2560
Mapping Type	Annotation	Annotation	Position	Annotation	Position
1 GB RAM 32bit O/S	10 x 10	3 x 3*	2 x 2*	3 x 3*	Not possible***
2 GB RAM 32bit O/S	10 x 10	4 x 4*	3 x 3	4 x 4*	Not possible***
4 GB RAM 64bit O/S	30 x 30	6 x 6	4 x 4*	5 x 5	4 x 4*

*) The memory that is allocated to the program may need to be increased from the default settings. It is best to first test how much memory to allocate: Go to

~GenomatixApplications/apps/chipinspector/conf and edit the file chipinspector.bat. Change the parameter –Xmx895m to e.g. –Xmx1400m.

Then save the file and start ChipInspector by double-clicking on the file chipinspector.bat. If it works, then the program starts with an additional console window, but otherwise works normally. If the parameter is false, then the program does not start at all. In this way, the allocated memory can be maximized by trial and error. Theoretical limitations with a 32bit O/S are around 1600m depening on the individual configuration of the computer.

**) different GeneChip types have different sizes

***) this problem will be addressed in future versions

Operating Systems

The application runs on the following operating systems:

Windows systems:

- Windows 98, SE, 2000, ME, XP
- 5 GB hard disc space
- Minimum of 1 GB RAM required (*)
- 1 GHz processor speed

Macintosh systems:

- At least MacOS X 10.3
- 5 GB hard disc space
- Minimum of 1 GB RAM required (*)

© 2007 Genomatix Software GmbH

• 1 GHz processor speed

Linux/Unix systems:

- SuSE Linux 8.0 or higher, or equivalent version of other distributors
- 5 GB hard disc space
- Minimum of 1 GB RAM required (*)
- 1 GHz processor speed

(*) Although ChipInspector will run on the listed hardware, it may not complete a <u>position-based</u> <u>analysis</u> or the analysis of large chip sets. For these kinds of analysis 2 GB RAM is needed. It is essential that ChipInspector be reinstalled after upgrading RAM.

If you do not have any of these operating systems, or if you are not sure about your operating system, please contact the Genomatix customer support (<u>support@genomatix.de</u>).

Java Runtime Environment

In order to run the ChipInspector application, you will need Java 1.5.0 or higher.

To test if you have an appropriate Java version already installed on your system, type "**java –version**" on command line.

Here is an example for windows users how to check the installed java version:

Click on Start/All Programs/Accessories/Command Prompt (see screenshot below).

A command window will pop up:

ChipInspector

C:\WINDOWS\System32\cmd.exe	_ 🗆 🗙
C:\WINDOWS>_	
	-

Type in *java –version* and press Enter.

If Java is installed, you will get an output like:

```
C:\>java -version
java version "1.5.0_06"
Java(TM> 2 Runtime Environment, Standard Edition (build 1.5.0_06-b05)
Java HotSpot(TM> Client VM (build 1.5.0_06-b05, mixed mode, sharing)
```

If Java is **not** yet installed on your computer, or if you have a Java version older than 1.5.0, please follow the link http://www.java.com/ to download and install the newest version of Java (at least version 1.5.0).

Browser

ChipInspector is a Java program which can be run without an internet browser but provides links to the Genomatix tools which use the W3C standard SVG for graphical output.

To fully explore the interactive SVG output of Genomatix tools (currently available for ElDorado, Gene2Promoter, MatInspector, and FrameWorker), the **Adobe SVG Viewer 3.0 is necessary**. Older versions will not work, as several v3.0 specific features are used for the graphics.

If the graphics are not displayed properly, please follow the links below to get more information about installation of SVG for your computer system:

- Windows: Adobe SVG Viewer 3.0 release notes for Windows (PDF)
- Macintosh <u>Adobe SVG Viewer 3.0 release notes for the Mac</u> (PDF)
- Linux/Unix beta versions of Adobe SVG Viewer 3.0 available for the RedHat Linux 7.1 and Solaris 8 systems.

Installation and Configuration of ChipInspector

ChipInspector is a JAVA program which must be installed locally on your computer. Please proceed for download and installation as follows.

Download

To download ChipInspector, please follow the following steps:

- 1. Create a folder on you hard disk where you want to store the installer
- 2. Switch to http://www.genomatix.de/products/ChipInspector/ChipInspector6.html
- 3. Choose your operating system from the download
- 4. Click on the download button next to your operating system

Clicking on the download-icon will result in the following screen:

Opening InstallGenomatixApplications.exe
The file "InstallGenomatixApplications.exe" is of type application/x-msdos-program (Anwendung), and Mozilla does not know how to handle this file type. This file is located at: http://www.genomatix.de
What should Mozilla do with this file?
O Open it with
• Save it to disk
Always perform this action when handling files of this type
OK Cancel

Choose the option "save to disk" and click "ok"

A window will show up, where you can choose a folder to save the file. Choose the folder where you would like to save the installer and press ok.

If the installer is successfully downloaded, windows users should see the following icon with the subtitle "InstallGenomatixApplication.exe"

Mac users will find a folder named "GenomatixApplications" on their desktop or in their designated download folder. It contains an installer package, a ReadMe and the license file. Double clicking the "GenomatixApplications" installer package will start the installation of the software.

ChipInspector

Get Login and Password

To apply the ChipInspector application you need a login and a password. Registration is **free of charge**. An e-mail with your personal username and password will be sent to you right away.

Registration

Open your internet browser and switch to <u>www.genomatix.de</u>. Click on "Login" in the left frame of the webpage.

If you do not have an account yet, please click on "Register".

📓 Genomatix: Login Page - Mozilla	
Ele Edt View Go Bookmarks Tools Window Help Back -	🤌 🚽 🌆
Genomatix Genomatix	Portal
Please log in:	
Username: Password: Login Register for a free of charge evaluation account, if you haven't done so yet. Lost your password? Click here to retrieve your account info if you lost your username and/or p	bassword.
For <u>comments</u> , questions, or bug reports, please contact <u>support@genomatix.de</u> .	
© Genomatix Software GmbH 1998-2006 - All rights reserved.	ense Agreement
🔆 🖾 🎸 🛱 🕫) 🛶 🕫 🔮

Fill in the form – please enter your e-mail correctly.

🧱 Genomatix: GenomatixPortal Registration - Mozilla		
Eile Edit <u>Vi</u> ew <u>G</u> o <u>B</u> ookmarks <u>T</u> ools <u>W</u> indow <u>H</u> elp		
Back - Porward - Porward - Porward - Porward - Porward - Porward - - -	🖌 🌌 Search	Print -
🕺 🚮 Home 🛛 🤹 Bookmarks 🖌 mozilla.org 🖌 mozillaZine 🦨 mozdev.org		
Conditions:		^
ACADEMIC USERS get the following number of analyses for FREE every r	nonth	
 20 ElDorado analyses 5 Gene2Promoter analyses with at most 5 accession numbers each 20 BiblioSphere analyses 20 GEMS Launcher / MatInspector analyses 		
and the following number of analyses once		
 2 ChipInspector analyses 		
COMMERCIAL USERS get these analyses for FREE only once.		
For free accounts some <u>limitations</u> apply. For online demonstrations and unlimited <u>sales@genomatix.de</u> .	access, please conta	act
First name (*):		
Last name (*):		
Company/Organization (*):		
Department:		
Affiliation (*): 🔿 academic 💿 commercial		
Address:		
P.O.Box:		
ZIP/Postal code:		
City (*):		
State/Province:		
Country (*): Please select your country		
Phone number:		
Email address (*):		
The fields marked with "(*)" are required fields. Please provide your full First name and Last name.		
We allow for one free account per user . Please fill in your full and correct details above. arrangements for academic teaching courses. Any account with wrong or incomplete regi without pre-notice. Your IP address is being monitored.	We offer free of cha istration details will t	rge special se cancelled
After the registration you will immediately receive an email with fur evaluation acc password!	count information ar	ıd
Register now! Reset the Form		
For <u>comments</u> , questions, or bug reports, please contact <u>support@q</u>	enomatix.de.	
© Genomatix Software GmbH 1998-2006 - All rights reserved.	Lice	nse Agreement
💥 🕮 🌽 🔯 🗹		

Check your e-mail. A mail with your login data should be sent to you right away.

ChipInspector

Dear Bernd Mustermann,

your registration for a Genomatix evaluation account was successful! Here are your account details:
login name: bmustermann password: nUDbjPn₩
Please note that username AND password are case-sensitive.
You will find the GenomatixSuite at <u>http://portal1.0.genomatix.de/cgi-bin/./eldorado/main.pl</u> You can change your password using the "change password" link at the top of the program page or on your "Personal profile" page.
You can also subscribe to unlimited MatInspector access on your "Personal profile" page.
If you should run into trouble logging onto our server, please first read http://portal1.0.genomatix.de/online help/help/techfaq.html
After that do not hesitate to contact us in case of any problems or questions.
Best regards,
Your Genomatix support team
For comments or suggestions please contact Genomatix Software at support@genomatix.de !

The login and password is not only valid for ChipInspector but for all Genomatix products.

Change Password

Open your internet Browser and switch to <u>www.genomatix.de</u>. Click on "Login" in the upper right corner of the webpage (see above) Enter your login and password which was sent to you via e-mail.

📕 Genomatix: Login I	age - Mozilla			
Eile Edit View Go	<u>B</u> ookmarks <u>T</u> ools <u>W</u> indow	Help		
Back Forward	Reload Stop	rtal1.0.genomatix.de/cgi-bin/sessions	/k 💙 🌌 Search 🍏 Print	- M
🕺 🚮 Home 🛛 😻 Bookmark	🖌 mozilla.org 🦨 mozillaZine 🛛	🖉 mozdev.org		
Genom	ati x /	G	aenomati <mark>x</mark> P	Portal
Switch to encrypted	login page!			
Please log in:				
Username: bmuster Password: Togin	Click	here		
	Register for a free	of charge evaluation account	<u>t,</u> if you haven't done s	o yet.
Lost y	Dur password? Click here and/or pa	e to retrieve your account info assword.) if you lost your userna	ame
For <u>co</u>	<u>nments</u> , questions, or bug	reports, please contact <u>sup</u>	port@genomatix.de.	
© Genomatix Software	mbH 1998-2006 - All rights res	erved.	Licens	<u>se Agreement</u>
💥 🕮 🎸 🔝 eZ				- 1 - 1

understanding gene regulation

After login you will see the following page. Click on "Password".

enomatix: Welcome to Genomatix Su	ite, Bernd Mustermann!	- Mozilla			
Edit Yew Go Bookmarks Tools	Window Help				
- 🌲 - 3 🎚 👔	http://portal1.0.genomatix.de	e/cgi-bin/welcome/welcome.pl?s=f87ee8b	d4236dd7e87f1c2d583dd6cd3		🗸 🎽 Search
K Forward Reload Stop	nila7ina 🥒 mandau ana				Print
one gebooxnans zinozia.org zino	chiazine 🦗 nicedev.org				
<u>enomatix</u>	si Personal	e Password	😡 New Messages	0 Logout	GenomatixPor
	Conomativ		ElDevede Come ODvermeter	Diblic Cabava	
	denomative of	FAQ Resul	ts Sequences Protocol	Biblioaphere	
Login information:		P	M		
2006 02 17		\leq	Click here		
Welcome to Cenomativ Suite	Bornd Mustermanni	4			
Tercome to denominada suite,	ser na Prascer manne				
6 new messages					
Our database contains no reco	ords about your former li	ogins.			
 transcription factor mat promoter module librar 	trix database (more the Y	an 200 matrices of our matrix	library have been improved)		
(For more information see the	e Release Notes)				
For consistency and a smooth	transition, for the nex	t few months you will be able t	to choose between		
GenomatixPortal Rev		Genomatix Suite			
Current Release, December '	05 Pre	vious Release, April '05			
Account upgrades					
If you have purchased an acco	unt upgrade in our onlin ntinue" and a confirmati	e shop and received a voucher	code or if you received a voucher during	a conference you can er	nter the voucher code here -
Instanting the addition click. CO	Continue	an page win open searing that y	ea. seesane nas peen apgraaea.		
Users will not receive a yourbe	r code if their account b	as already been ungraded durin	on the online shop purchase or if the Go	nomatix staff did the und	rade manually.
	a bode a choir debourtern	as anota, soon upgraded dum	g are anima shop parallable of it are der	ternaen sean ala ale apg	add manadh) -
	For	comments, questions, or bug n	eports, please contact <u>support@genoma</u>	tix.de.	
nomatix Software GmbH 1998-2006 - All	rights reserved.				License Agr
a 🌾 🖬 🕬					

Fill in the form and click on "Change Password" to change your password.

Datei Bearbeiten Ansicht Chronik Lesezeichen Extras Hilfe
🕐 Getting Started 🔂 Latest Headlines
Genomatix Service Personal Personal Messages October GenomatixPortal
Change password for your Genomatix online account
Your username is bmustermann
Please enter your old password:
Please enter your new password:
Please re-type your new password:
Change Password Reset Form
Please note:
 password length must be at least 6 characters password must contain at least one non-alpahabetic or capital character password must not contain blanks or tabs
For <u>comments</u> , questions, or bug reports, please contact <u>support@qenomatix.de</u> .
© Genomatix Software GmbH 1998-2007 - All rights reserved.
Fertig

Password Policy

Genomatix's password policy requires all passwords to be at least 6 characters long and must contain at least one non-alphabetic or capital character. No blanks or tabs are allowed.

Installation

Switch to the folder on your hard disk where the installer was saved. Execute the installer (see below) and follow the instructions. By default, the installer will install both ChipInspector and BiblioSphere PathwayEdition.

install		
P	Windows 9x, 2000, XP	doubleclick on the Genomatix install icon in the folder (requires administrator privileges!)
<mark>∵</mark> ⊊ Mac	MacOS X (10.3 or higher)	run the GenomatixApplications installer from the downloaded disk image/folder (requires administrator privileges!)
Δ	Linux/Unix	type "java -jar InstallGenomatixApplications.jar"

Please note that the Genomatix licensing model for ChipInspector is a single-user floating license. This means that you may install the program on any number of machines, however not run several instances of the program at the same time. If a second instance of ChipInspector is started while another instance is running, the user is given the choice of ending the concurring session. This can lead to data loss on the first instance if the analysis results have not been stored yet.

If you run a windows system, the following screen will pop up:

Click "Next >" and follow the instructions.

After ChipInspector is installed successfully, you can start the application in different ways:

1. Start ChipInspector from the program group

After successful installation, windows users should have a new Program Group "Genomatix Applications" with an executable "ChipInspector". Click "Start", "All Programs", "GenomatixApplications", "ChipInspector".

Alle Program	mme Þ	💼 GenomatixApplications 🔹 🕨	G	BiblioSphere
			G	ChipInspector
			G	UninstallGenomatixApplications
🐉 Start 💦	6 🖂 🔇			Carlos a Section of the section of

2. Start ChipInspector from desktop

After installation you should find an Icon on your desktop:

A double click on the icon will launch the ChipInspector application

3. Start ChipInspector per batch file (MS Windows only)

On Windows systems, if ChipInspector does not start when you double click the desktop icon, you can use a batch file that you find the in a subdirectory of your Genomatix installation directory. The default location is C:\Program Files\GenomatixApplications\apps\chipinspector\conf\chipinspector.bat. Double click on the file in your windows explorer or, in the Windows start menu, choose "Execute...", type in the complete file name including the path and click OK.

4. Start ChipInspector from the Genomatix Portal (see below)

<u>Genomatix</u>	si Personal	e Password	Messages	0 Logout	GenomatixPortal
FAQ		Genoma Relea	ntixPortal se Notes		Help
ChipInspec Genomatix MicroArra BiblioSpl Literature Network GEMS Lau Sequence Analysis & Mod MatInspec	y Analysis Analysis Mining Mining Chere	Re Sequ Pro	sults lences tocol	Extende Extende Genou Retrieve Genoma	El Dorado ed Genome Annotation E 2Promoter e & Analyze Promoters GPD tix Promoter Database MatBase
Search Transcription Facto	or Binding Sites			Transcr	iption Factor Database
	For comm	ents, questions, or bug repor	ts, please contact <u>support@genoma</u> t	<u>tix.de</u> .	
© Genomatix Software GmbH 1998-2006 - All rig	phts reserved.				License Agreement

ChipInspector

Configuration of ChipInspector

Before you start working with ChipInspector you should configure the ChipInspector concerning

- Proxy configuration (for internet access)
- Security configuration (for secure information transfer over the internet)
- Application update (to get the latest version of ChipInspector online)

ChipInspector offers a form for configuration which can be accessed as follows:

In the ChipInspector application, go to menu **"Extras"** and select **"Preferences**" to launch the preferences configuration dialog

You will get the following dialog which consists of three forms for the different configurations:

Preferences					×
Proxy Configuration	Update Frequency	SSL Configuration	Statistical Analysis	Data Storage	
	ion to the Internet				
Server-					
H	ITTP Proxy:		Port	::	
2	SSL Proxy:		Port		
	SOCKS Host.				4
Automatic pro: Enter URL	xy Configuration URL	:			
🔘 Automatic sea	rch for proxy configu	ration			
	ОК	Cancel	Help		

ChipInspector

Proxy Configuration

Many companies and institutions use proxies and firewalls for secure and fast access to the Web. Thus you need to configure the ChipInspector application to get through your proxy or firewall.

Please proceed as follows:

Get the **proxy settings** from your internet browser.

If you use internet explorer: Go to: Tools->Internet Options->Connections->LAN settings If you use Netscape or Mozilla: Go to: Edit->Preferences->Advanced->**Proxies**

Below you see an example for the Mozilla browser

Category		Drovies			
Languages	^	TTORICS			
Helper Applicat		Configure Proxies to	Access the Internet		
-Smart Browsing		Direct connection	n to the Internet		
Internet Search			-figuration		
-Tabbed Browsing		Manual proxy cu			
Downloads		HTTP Pro <u>x</u> y:	proxy.your.org	Port:	3128
Composer			Use these settings for SSL, FTP	and Gophe	r
Mail & Newsgroups		SSL Proxy:	proxy.your.org	Port:	3128
E Privacy & Security		ETP Proxy:		Port:	3128
		Cophor Drown		Dorte	0120
E Advanced Serieta & Diug ing	_	Gopher Proxy:	proxy.your.org	Port:	3128
Scripts & Piug-Iris Keyboard Navi	=	SO <u>C</u> KS Host:		Por <u>t</u> :	0
Cache			SOCKS v4 SOCKS v5		
Provies		<u>N</u> o Proxy for:	localhost, 127.0.0.1		
HTTP Networking			Example: .mozilla.org, .net.nz		
Software Insta		🚫 Automatic proxy	configuration URL:		
-Mouse Wheel					eload
DOM Inspector					
System					
-,	~				

Configure the settings according to the configuration of your browser and press **"ok"**. Below you see an example for manual proxy configuration.

Preferences					X	Dreferences					×
Category	Drovies					Broxy Configuration	Lindata Constant	CCL Configuration	Charlinhing LAngelouis	Data Chanana	
🗄 Appearance 🛛 🔼	FIGAICS					Proxy coningulation	Update Frequency	55L Conriguration	Statistical Analysis	Data Storage	
🗆 Navigator	Configure Proxies to	Access the Internet				~ F:					
History		- to the Tabauaat				O Direct connecti	on to the Internet				
Languages	O Direct connection					Manual Proxy (Topfiguration				
-Helper Applicat	Manual proxy co	nfiguration				.					
-Smart Browsing	HTTP Proxy:	proxy.your.org	Port:	3128	-	_Server-					
Internet Search		Use these settings for SSL, FTP a	nd Goph	er							
Tabbed Browsing			1		-						
Downloads	≥SL Proxy:	proxy.your.org	Port:	3128		Н	TTP Proxy:		Port		
Composer	ETP Proxy:	proxy.your.org	Port:	3128		9	SL Proxy:		Port	:	
Mail & Newsgroups	Gopher Proxy:	proxy.your.org	Port:	3128		9	OCKS Host:		Port	:	
	SOCKS Host:		Port:	0							
Advanced	No Destructions	harbert 107.0.0.1			- 1	 Automatic prov 	v Configuration LIRI				
-Scripts & Plug-ins	NO PROXY TOP:	localnost, 127.0.0.1				Hacomade prov	cy configuration ora				
-Keyboard Navi	<u> </u>	Example: .mozilla.org, .net.nz									
-Cache	 Automatic proxy 	configuration URL:				Enter URL	here				
Proxies				Reload							
-HTTP Networking											
-Software Insta						Automatic sear	chi for proxy conrigu	ration			
Mouce Wheel							OK	Cancel	Help		
		OK Canc		Help			UK				

SSL Configuration

ChipInspector allows for encrypted communication with the server via internet via Secure Socket Layer (SSL). If you would like to use the encrypted protocol proceed as follows:

Start ChipInspector (see above)

Go to menu "Extras" and select "Preferences" to launch a preferences dialog for proxy configuration

Click on "SSL Configuration":

Preferences					×
Proxy Configuration	Update Frequency	SSL Configuration	Statistical Analysis	Data Storage	
SSL Short for Secure Soc for transmitting priva A private key is used otherwise easily be in	<mark>kets Layer</mark> is a proto ate documents via the I to encrypt informati ntercepted by a third	col e Internet. ion that can I party.			
We strongly recomm	end to enable encryp	otion for sensitive da	ta.		
Use encrypted co	nnection to Genomat	ix server			
	ОК	Cancel	Help		

Check the box next to "Use encrypted connection to Genomatix server" and then click "ok".

ChipInspector

Check for Updates

Periodically Genomatix provides important ChipInspector updates. The Genomatix Update Service helps you to keep your application current.

Click on "Update Frequency" in the Configuration dialog.

There are two modes for update: "Automatically check for updates" and "Manually check for updates":

Turning on Automatic Update Notification

The Automatic Update Service checks for updates at regular intervals. Any time a product update becomes available, you receive a notification. Once you receive the notification, the Update Service guides you toward the download and installation of the updates you need. The Automatic Update Service is activated as follows:

Select "automatically check for updates" and choose your preferred update frequency (choices are "daily", "weekly" and "monthly"). Then press the "ok"-button.

Preferences	×
Proxy Configuration Update Frequency SSL Configuration Statistical Analysis Data Storage	
Get the latest version of chipinspector	
Automatically check for updates.	
weekly	
Checking for updates requires an active Internet connection	
Manually check for updates. Check now!	
Current version: 1.30	
Last check for updates: 01.09.06 14 Advanced	
OK Cancel Help	

Updating your Application Manually

In some situations, you might want to update your application manually.

Select "Manually check for updates". This will activate the "Check now"-button.

Press the **"Check now"**-button. If an update is available the update service will guide you through the update process.

G Preferences					×
Proxy Configuration	Update Frequency	SSL Configuration	Statistical Analysis	Data Storage	
Get the latest ver Weekly Checking for upda Current version: 1 Last check for upda	sion of chipinspector atomatically check for ates requires an activ anually check for upd Check now! 1.30 dates: 01.09.06 14	updates. e Internet connectio ates.	on Adva	anced	
	ОК	Cancel	Help		

Selecting an Update Server

If update speed is slow, click the "Advanced..." button in the Update Frequency panel and select a different update server from the list. To go back to the main panel, click the "General Options" button.

Preferences					×
Proxy Configuration	Update Frequency	SSL Configuration	Statistical Analysis	Data Storage	
Select an upda	ate server:				
munich					
tokyo					
	G	eneral Options			
	ОК	Cancel	Help		

Configuration of Statistical Analysis Behavior

To ensure reproducibility of analysis results, the random seed used by the algorithm is a fixed default number used for all analyses. To use a different number, select the "Statistical Analysis" tab in the Preferences dialog and either enter a value in the number field, or generate one randomly by clicking the "Generate new seed" button. The "Reset seed" button sets the value to default. Changes to this "fixed random" number are reflected in the protocol to facilitate retrieval of any number seed for later use.

😡 Preferences 🛛 🔀						
Proxy Configuration Update Frequency SSL Configuration Statistical Analysis Data Storage						
Statistical analysis requires a random seed						
O Use new random seed for each analysis						
Use fix random seed 2359 Generate new seed Reset seed						
OK Cancel Help						

Alternatively, you can select an altogether different behavior by activating the "Use new random seed for each analysis" option. The fixed number will be ignored, and for each analysis, a newly generated random number will be used as a seed.

Preferences							
Proxy Configuration	Update Frequency	SSL Configuration	Statistical Analysis	Data Storage			
Statistical analysis requires a random seed							
💿 Use new randon	⊙ Use new random seed for each analysis						
🔘 Use fix random :	seed 2359 G	ienerate new seed	Reset see	d			
	ОК	Cancel	Help				

Data Storage Settings

You can set the directory where ChipInspector data will be saved in the Data Storage panel. The default is the subdirectory \.ChipInspector\dat in your home directory. To change it, click the "Search..." button to open a dialog and select a different directory.

© Preferences
Proxy Configuration Update Frequency SSL Configuration Statistical Analysis Data Storage
Select the directory where ChipInspector data will be saved:
C:\Documents and Settings\genomatix\.ChipInspector\dat Search
OK Cancel Help

The ChipInspector Workspace Area

Project Management Panel

The project management panel on the left side of the screen shows the projects and analyses in a tree structure. Right-clicking on an item in the tree opens a context menu for performing actions on the respective object. Only the menu items with a meaningful function for the current state of the object will be activated.

Main Panel

The main panel provides input forms for actions and displays analysis results.

Memory Monitor

The memory monitor displays information on recent memory usage by ChipInspector on your computer. The green line indicates the allocated memory, and the red line shows the percentage of memory that is free. Current values are displayed numerically.

Log File Monitor

The log file monitor displays the latest entries in the log file. To display the whole log file, double click the log file monitor

Toolbar Elements

Only the buttons that are functional in the current program state will be activated.

Project Management

	Open Project Tree	Open an existing project tree
	New Project Tree	Create a new project tree
	Save	Save the project tree
	New Project	Add a new project to the project tree
	New Batch Job	Add a new batch job to the project tree
¢.	New Analysis	Add a new analysis to the selected project
\sim	Edit Project	Edit the selected project
1	Delete Project	Delete the selected project including all its analyses
	Edit Analysis	Edit the selected analysis
> 3	Design Analysis	Change the design of the selected analysis
23	Redo Analysis	Redo the selected analysis
	Delete Analysis	Delete the selected analysis
	Import Data Files into Project	Import CEL raw data files into the selected project
Ś	Data Quality Overview	Show data quality overview of all project data files
	Edit Data File	Edit properties of the selected data file
×	Delete Data File	Remove the selected data file from the list
3	Calculate Data Quality Statistics	Calculate data quality statistics for selected data files

Transcript Graph

	View Locus in ElDorado	View the currently selected locus in ElDorado	
4	Go Back to the Result List	Display the result list	
	Export Graph	Export the graph	
	Change Scale	Change the length scale of the graph	
A	Fit Graph to Window	Set the graph's length scale to fit the window	
2	Select	Select an element or a region in the graph	
Aa	Add Text	Add text to the graph	
	Mark a Region	Draw a labeled marker frame	
	Export this Region	Export the marked region	
	Bring Item to Front	Bring the selected item in the graph to the front	
	Send Item to Back	Send the selected item in the graph to the back	
	Toggle Grid	Toggle display of the grid on/off	
	Delete Item	Delete the selected item	

Other

😴 Free Unused Computer Memory Free unused memory on your machine
--

ChipInspector

Project Tree

Your analyses are grouped into projects; projects are grouped in a project tree. At any time, one project tree can be open in the program.

Creating a New Project Tree

To create a new project tree, select File – New Project Tree from the menu, or click on the New Project Tree () toolbar button. Any other open project tree will be closed automatically.

Opening an Existing Project Tree

To open a previously saved project tree, select File - Open Project Tree from the menu, or click on the Open Project Tree () toolbar button, and select a project tree file from the dialog.

Saving the Project Tree

To save the project tree, including all projects, analyses and results, select "Save Project Tree" from the File menu, or click on the Save () toolbar button.

Deleting a Project Tree

To delete a project tree, including all projects, analyses and results, select "Delete Project Tree" from the File menu.

Projects

Creating a New Project

To create a new Project in the project tree, right-click the tree's root node and select "New Project" from the context menu. You can also use the New Project () button in the toolbar.

The main panel will display a form that allows you to enter a name for your project and add data files for analysis. Clicking the "Add Files" button opens a dialog for data file selection.

You can also add description for your project, as well as a general description for the analyses in the project. The project start date can be selected; the default is the current date. ChipInspector automatically generates a protocol file for each analysis. You can upload any external file into this protocol (e.g. a MAS 5.0 .RPT file). If the file is in ASCII format, the contents will be added to the protocol of each analysis in the project; otherwise, only the path and file name will be embedded.

New Project		
Project Name:	ExampleProject	
Project Data Files:	GSM51674_24_24 GSM51676_24_0 GSM51677_13_24 GSM51680_17_24 GSM51682_17_0 GSM51683_31_24 GSM51685_31_0	Add Files
Project Description:	Example description	
Basic Description for all Analyses in the Project:	Example basic description for all analyses in this project	
Start Date:	Month: 3 Day: 30 Year: 2007	
External Protocol File Name:		Upload
	Commit	

Click on "Commit" to save your input.

If you are not logged in yet, you will be asked to do so now. Please enter your username and password and click OK.

Authentication request								
i)	Host requests Authentication: www.genomatix.de Realm: online account Protocol: http Username							
	Password							
	Ok Cancel							

A dialog opens, which displays information on your account and system.

Account Information							
		\searrow					
Account	:	trainer					
Type of Account	:	You may analyze GeneChip Arrays					
	:	You may analyze Exon Arrays					
	:	You may analyze Promoter Arrays					
Java Version	:	1.5.0_10					
Max Memory	:	895 Megabyte					
o/s	:	Windows XP					
Blue entries signif meet the requiren	y tł nen	nat your computer and/or account settings ts to run ChipInspector.					
Red entries point to possible problems due to restricted licensing or inadequate hardware.							
Ok							

Importing Data Files into a Project

After creation of a new project, the specified data files are loaded. For data files based on Affymetrix chips, this is done automatically, without any more user interaction. To import chip data of other manufacturers, a data import interface is used. A progress bar informs you about the status of the process. You can add more files to a project at any time by selecting it in the project tree, right-clicking and choosing "Import Data Files into Project" from the popup menu. Alternatively, click the Import Data Files into Project () toolbar button to open the import dialog.

After the file import is completed, a data quality overview is displayed. For each file, the percentage of legible data and the expression average is shown. Non-legible data are e.g. expression values that cannot be interpreted as a number. If legibility of a file is below 99% or the expression average differs markedly (> 8 standard deviations) from the mean of the loaded files, the entry will be highlighted in red. This overview can be also accessed by selecting the "Project Data Files" node of a project an clicking the Data Quality Overview () button in the toolbar or, alternatively, right-clicking and selecting the according item from the context menu.

understanding ge	ene regulatio
------------------	---------------

1	110	Legibility (%)	Expr. Av.
1	G5M51712_2_0	100.0	187.65
2	G5M51710_2_24	100.0	167.05
3	GSM51709_25_0	100.0	210.65
4	GSM51707_25_24	100.0	214.27
5	GSM51706_20_0	100.0	128.65
5	GSM51704_20_24	100.0	111.32
7	G5M51703_43_0	100.0	164.78
3	G5M51701_43_24	100.0	144.42
Ð	GSM51700_40_0	100.0	154.64
10	GSM51698_40_24	100.0	119.09
11	G5M51697_38_0	100.0	182.4
12	G5M51695_38_24	100.0	177.41
13	GSM51694_37_0	100.0	206.55
14	G5M51692_37_24	100.0	174.1
15	G5M51691_33_0	100.0	172.89
16	G5M51689_33_24	100.0	189.39
17	G5M51688_32_0	100.0	182.57
18	G5M51686_32_24	100.0	137.77
19	GSM51685_31_0	100.0	145.26
20	G5M51683_31_24	100.0	143.6
21	GSM51682_17_0	100.0	157.36
22	G5M51680_17_24	100.0	143.14
23	GSM51679_13_0	100.0	177.19
24	GSM51677_13_24	100.0	157.95
25	GSM51676_24_0	100.0	258.63
26	GSM51674 24 24	100.0	203.03

To continue with creating analyses, click OK.

Data Import Interface

For array results from Illumina BeadStudio and Agilent, a data import interface is employed. ChipInspector will open any unrecognized file with the following view:

🔞 Genomatix ChipInspect	tor 1.40 Data Import Assistant	×
Steps		
Select data import format	The Data Import Assistant tries to recognize the data format of your imported file. Please make sure that the file format was recognized correctly, before you con	tinue.
Select import columns	Select the description that fits best for the type of file you want to import:	
	© Delimited - Characters such as commas or tabs separate fields	
	Begin import at line 1 👘 Select the number of experiments 1 👘	
	Preview of import file:	
	Data Import Format	
	1 [TargetID 1855529030_A.AVG_Signal 1855529030_A.Detection Pval 1855529030_B.AVG_Signal 1855529030_B.Detection Pval 1855529030_C.AVG_Sign.	. 🔺
	2 ILMN_10000 258.3616 0 227.6658 0 217.7724 0 197.6116 0 69.52918 0.008474576 60.08723 0.01129944 77.73146 0.009867005 62.95.	
	3 ILMN_10001 2863.813 0 2821.772 0 3341.095 0 2575.455 0 628.14 0 492.1759 0 500.1208 0 424.0716 0 ILMN_10001 SLC38A2 Ho.	
	4 ILMN_10002 42.33633 0.8785311 40.49209 0.9646893 35.40835 0.9858757 34.96893 0.960452 37.57663 0.9816384 36.5513 0.84887 41	-
	5 ILIMN_10004 116.6699 [0.002824859]110.8969 [0.002824859]108.90/5 [0.002824859]97.1858 [0.002824859]128.3616 [0.001412429]100.2108].	-
	6 JLMN_10005 1225.932 0 1243.437 0 1223.552 0 988.4049 0 2027.737 0 1792.731 0 1655.021 0 1571.125 0 JLMN_10005 CCNBI H	4
	7 JLMN_10006 [63,73986 [0.01336158] [63,87054 [0.0137401] 66,63824 [0.009887005] 61,36385 [0.01271186 [55,93807 [0.09463277] 53,29926 [0.0.	
	8 JLMN_10009 [61.8875] 0.02965102 [65.94782 [0.01977401] 58.0418 [0.0051073 [57.66104] 0.05508475 [58.26299 [0.04661017] 45.33628 [0.2288.	<u> </u>
	9 JLMMV_10010 149.12000 [0.3997173] 43.57440 [0.6400452] 50.03922 [0.2169265] 45.59773 [0.2764237] 46.51262 [0.4615364] 37.5101 [0.7669492]	-
		-
	11 Junin_1012 11 56254 10 499706 10 79990 10 400605 10 19754 10 946042 14 4454 1 992564 15 402021 0 20077576 150 5157 1	-
	12 JILMIN_10012 [47.00204 [0.4007000 [49.70000 [0.4000043 [40.10043 [0.600432 [44.24034 [0.500704] 0.40042 [0.2001306] 37.7145] 0.627106]	4
	13 JLMIN_101013 [44:1524] 0.7010735 [51:51514] 0.5105042 [44:00051] 0.0500502 [42:50411] 0.4717514] 47.53254 [0.4159416] 41:27355 [0.5050497] [14 JLMIN_101014] [44:0620] [0.14EEEE] [45:5707] 0.271152 [44:00051] [0.650502] [0.25221 [0.252725] [27:705] [0.405041] (0.25251 [0.25275] [0.270173] [0.2	9
	14 mini, 1014 [31, 7054] 0.115330 [35,2370] 0.275135] 35,00051 [0.050073] 76,5323 [0.130776] 37,750 [0.100237] 75,6523 [0.220771]	-
	12 Junio 1002 (4.2504) 0.00500 (0.1043776 0.005753 0.005753 0.005700 0.005700 0.00573 0.005376 0.0057760 0.00577760 0.00577760 0.00577760 0.00577760 0.00577760 0.00577760 0.00577760 0.00577760 0.00577760 0.00577760 0.00577760 0.00577760 0.00577760 0.00577760 0.00577760 0.00577760 0.00577760 0.00577760 0.00577760 0.00577760 0.005777760 0.005777760 0.005777760 0.005777777777777777777777777777777777	-
	17 Juniu 1000 1557 8556 10 1555 1000 10 1501 3000 11 10 1000 100	4
	12 Junio 2002 101 0021 1045 1055 10 1044 1083 10 100 755 10 107 2086 10 101 71317 10 1220 0144 10 563 5168 10 11010 10021 1163 10 000	<u> </u>
	19 JUM 1002 157 7118 0.0756361 51.06229 0.361582 57.2034 0.04661017 58.8539 0.09345762 68.26679 0.009887005 51.06229 0.361582 57.2034 0.04661017 58.8639 0.09345762 68.26679 0.009887005 51.06229 0.361582 57.2034 0.04661017 58.8639 0.09345762 68.26679 0.009887005 51.06229 0.361582 57.2034 0.04661017 58.8639 0.09345762 68.26679 0.009887005 51.06229 0.361582 57.2034 0.04661017 58.8639 0.09345762 68.26679 0.009887005 51.06229 0.361582 57.2034 0.04661017 58.8639 0.09345762 68.26679 0.009887005 51.06229 0.361582 57.2034 0.04661017 58.8639 0.09345762 68.26679 0.009887005 57.2034 0.04661017 58.8639 0.09345762 68.26679 0.009887005 57.2034 0.04661017 58.8639 0.09345762 68.26679 0.009887005 57.2034 0.04661017 58.8639 0.0945762 68.26679 0.009887005 57.2034 0.04661017 58.8639 0.0945762 68.26679 0.009887005 58.99450 0.0536 57.2034 0.00005 57.2034 0.04661017 58.8639 0.0945762 58.26679 0.00005 58.2679 0.0005 58.26679 0.0005 57.2034 0.04661017 58.8639 0.0005 57.2034 0.04661017 58.8639 0.0005 58.2679 0.0005 57.2034 0.0	<u> </u>
	20 IU M023 144.45338 10.7570621 144.55884 10.7980226 137.19926 10.9590396 134.72148 10.9675141 138.58713 10.9646833 136.26468 10.8859322	-
	21 0 00 10024 53 61399 0 1822034 51 0671 0 3361582 43 61153 0 6341808 48 92468 0 1426554 50 98011 0 2570621 44 22242 0 2909605 1	Ë I
	22 [UM_10025] 51.4192 [0.2254237] 47.18692 [0.6016949] 40.12283 [0.8474576] 45.4942 [0.3079096] 47.42356 [0.4491575] 41.26156 [0.5070621]	-
	23 ILMN 10026 489.0385 0 475.6335 0 489.3262 0 437.8949 0 381.5711 0 290.4016 0 470.2182 0 414.6302 0 1LMN 10026 MTHED1	-
	24 ILMN 10028 94.82355 0.005649718 99.67298 0.004237288 98.24065 0.004237288 84.83588 0.005649718 46.3243 0.5183616 42.05635 0.	
	25 ILMN_10029 51.15371 0.2923729 51.28206 0.3262712 49.30336 0.2528249 42.79147 0.4759887 932.1022 0 767.8195 0 1087.021 0 99.	
	Cancel < Back Continue > Finist	

The user now chooses if and how many header lines are skipped and the number of experiments contained in this file.

ChipInspector

🔞 Genomatix ChipInspect	cor 1.40 Data Import Assistant
Steps	
Select data import format Choose Data Separator Select import columns	The Data Import Assistant tries to recognize the data format of your imported file. Please make sure that the file format was recognized correctly, before you continue. Original Format Select the description that fits best for the type of file you want to import: O Delimited - Characters such as commas or tabs separate fields
	Begin import at line 2 x Select the number of experiments 8 x
	Data Import Format
	1 TargetD 1855529030 A.AVG Signal 1855529030 A.Detection Pval 1855529030 B.AVG Signal 1855529030 B.Detection Pval 1855529030 C.AVG Sign
	1 TargetD 1855529030_A.AVG_Signal 1855529030_A.Oetection Pval 1855529030_B.Detection Pval 1855529030_C.AVG_Signal 19608705 0.008474576 6 0.0824459 0.9012894859 126.3616 0.001412429 100.2108 4 LLMN_10002 126.3831 0 1282.352 0 986.4049 0 12072.737 0 1 1792.731 0 1655.021 0 1571.125 0 1 LMM_10005 C.NB1 H 5 LLMN_10005 123.592 0 1 1243.437 0 123.552 0 1986.4049 0 12072.737 0 1 1792.731 0 1 655.021 0.1571.125 0 1 LMM_10005 C.NB1 H 7 LLMN_10006 6.3.875 0.0286412 6.3.97478 0.01977401 66.63824 0.009887005 61.36385 0.01271186 55.39307 0.09463277 53.32926 0.2.8 9 LLMN_10019 49.1266 0.3997175 4.4.39942 0.8022599 42.64043 0.6836158 40.22696 0.6765537 52.89584 0.1765537 47.02253 0.1539548 10 LLMN_10011 18.6551 0.002824859 1134.9048 0.01412429 102.3118 10.0114242 72.80332 0.0884785 58.61549 12 LLMN_10012 47.8624 0.489706 64.978888 0.496915 0.486452 44.24654 0.3827684 50.40232 0.288156 3.7748 5.7798 0.10667457 55.55777 0.279133 54.00851 0.0884787 84.95323 0.1387782 57.798 0.1086754 9.49558 0.2404731 12 L
	23 µLMM_10026 489.0385 0 475.6335 0 489.3262 0 437.8949 0 381.5711 0 290.4016 0 470.2182 0 414.6302 0 1LMN_10026 MTHFD1 24 µLMN_10028 94.82355 0.005649718 99.67298 0.004237288 98.24065 0.004237288 84.83588 0.005649718 46.32243 0.5183616 42.05635 0
	25 JLMN_10029 51.15371 0.2923729 51.28206 0.3262712 49.30336 0.2528249 42.79147 0.4759887 932.1022 0 767.8195 0 1087.021 0 99 💌
	Cancel < Back Continue > Finish

After clicking "Continue", the type of delimiter (Data Separator) needs to be determined. The resulting file setup is shown in the interface.

🔞 Genomatix ChipInspect	Genomatix ChipInspector 1.40 Data Import Assistant									×												
Steps	Choos	hoose Data Separator																				
Select data import format	This Di Delim	This Dialog allows you to specify the delimiter used in your imported file. The preview shows you how your file will be processed. Delimiter																				
Select import columns	. т	ab						O Se	emicolon						0.0	omma						
	O S	pace						00	ther :													
	Text	Qualifier:	u u	•		Jse first	line as o	olumn h	eaders						,							
	Preview	n of impo	ort file:	2	3	4	5	6	7	8	0	10	11	12	13	14	15	16	17	18	10	
	1	IILMN	258	0	227	0	217	0	197	0	69.5	0.00	60.0	0.01	77.7	0.00	62.9	0.01	ILM	THB53	Hom	
	2	ILMN	2863	0	2821	0	334	0	257	0	628.14	0	492	0	500	0	424	0	ILM	SLC3	Hom	
	3	ILMN	42.3	0.87	40.4	0.96	35.4	0.98	34.9	0.96	37.5	0.98	36.5	0.84	41.6	0.92	34.5	0.98	ILM	XG	Hom	
	4	ILMN	116	0.00	110	0.00	108	0.00	97.1	0.00	128	0.00	100	0.00	150	0.00	133	0.00	ILM	DDR1	Hom	
	5	ILMN	1235	0	1243	0	123	0	988	0	207	0	179	0	165	0	157	0	ILM	CCNB1	Hom	
	6	ILMN	63.7	0.01	63.8	0.01	66.6	0.00	61.3	0.01	55.9	0.09	53.2	0.02	64.5	0.01	57.1	0.03	ILM	ZNF	Hom	- 1
	7	ILMN	61.8	0.02	63.9	0.01	58.0	0.03	52.6	0.05	58.2	0.04	45.3	0.22	63.9	0.02	60.9	0.01	ILM	CRYM	Hom	- 1
	8	TL MIN	49.1	0.39	43.5	0.84	42.4	0.21	45.9	0.27	46.9	0.48	37.9	0.75	48.5	0.49	42.1	0.68	1LM		Hom	-
	10	TLMN	118	0.45	112	0.00	134	0.00	102	0.07	72.8	0.17	56.6	0.15	85.5	0.40	70.6	0.03	TLM	SMAD7	Hom	-
	11	TLMN	47.8	0.48	49.7	0.40	40.1	0.84	44.2	0.38	50.4	0.28	39.7	0.62	51.8	0.28	44.1	0.51	ILM	SLC7	Hom	-
	12	ILMN	44.1	0.78	51.5	0.31	44.0	0.58	42.9	0.47	47.9	0.41	41.2	0.50	50.6	0.34	45.8	0.39	ILM	LALBA	Hom	- 1
	13	ILMN	54.4	0.14	55.2	0.27	54.0	0.08	48.9	0.13	57.798	0.10	49.8	0.24	58.9	0.12	55.2	0.21	ILM	KIR2	Hom	-
	14	ILMN	71.9	0.00	64.5	0.01	65.8	0.00	56.5	0.02	63.0	0.01	51.5	0.04	59.2	0.06	55.6	0.05	ILM	DI03	Hom	
	15	ILMN	46.2	0.60	45.8	0.69	39.6	0.88	42.1	0.52	43.5	0.73	34.5	0.92	46.1	0.67	39.8	0.84	ILM	K6IRS4	Hom	1
	16	ILMN	557	0	525	0	591	0	495	0	203	0	171	0	225	0	215	0	ILM	TRPC1	Hom	
	17	ILMN	467	0	451	0	444	0	396	0	607	0	480	0	592	0	563	0	ILM	LIG3	Hom	
	18	ILMN	57.7	0.07	51.0	0.33	57.2	0.04	50.8	0.09	68.2	0.00	50.8	0.05	59.4	0.06	52.5	0.09	ILM	GHSR	Hom	- 1
	19	ILMN	44.4	0.75	44.5	0.79	37.1	0.95	34.7	0.96	38.5	0.96	36.2	0.85	43.6	0.84	37.5	0.92	ILM	HSD	Hom	-
	20	ILMN	53.6	0.18	51.0	0.33	43.6	0.63	48.9	0.14	50.9	0.25	44.2	0.29	51.3	0.30	50.4	0.16	ILM	FLJ3	Hom	- 1
	22	TLMN	490	0.27	47.1	0.60	40.1	0.84	45.4	0.30	97.9	0.44	91.Z 200	0.50	45.2	0.74	45.0	0.40	TLM	КІХА	Hom	-
	23	TLMN	94.8	0.00	99.6	0.00	98.2	0.00	84.8	0.00	46.3	0 51	42.0	0 43	48.0	0.52	45.5	0 41	TLM	100	Hom	-
	24	ILMN	51.1	0.29	51.2	0.32	49.3	0.25	42.7	0.47	932	0	767	0	108	0	995	0	ILM	NALP7	Hom	
	25	TI MANI	42.2	0.97	E4 2	0.17	20.2	0.02	40.4	0.45	41.0	0.94	20.0	- 40	47 5	0 54	11 G	0.47	TI M	DODAE	Hom	
															Cancel		< Back	C	ontinue	>	Finish	

After clicking "Continue" again, the feature ID for the experiment needs to be chosen. For Illumina BeadStudio output (raw data without normalization), the column with the ILMN number is the recognized feature ID, for Agilent arrays, the corresponding identifier needs to be selected:

ChipInspector

🔞 Genomatix ChipInspect	or 1.40 [ata Impor	t Assistan	ıt																J	x
Steps	Data Sel	ection																			
V Select data import format																					
V Choose Data Separator	Please ide	ntify the colu	umn contain	ning the Feal	ture IDs.																
Select import columns	- EXPR	(= expression	n value) an	idse identility: id																	
	-STDD_(= standard	deviation).																		
	All other o	olumns are id	gnored.																		
	Fe •	Ign 💌	Ign 💌	Ign 💌	Ign 🔻	Ign 👻	Ign 🔻	Ign 💌	Ign 💌	Ign 💌	Ign 💌	Ign 💌	Ign 💌	Ign 👻	Ign 🔻	Ign 💌	Ign 👻	Ign 👻	Ign 💌	Ign 💌	
	Feature	258.3616	0	227.6658	0	217.7724	0	197.6116	0	69.52918	0.00847	60.08723	0.01129	77.73146	0.00988	62.95547	0.01129	ILMN_1	THB53	Homo s	*
	EXPR_1	2863.813	0	2821.772	0	3341.095	0	2575.455	0	628.14	0	492.1759	0	500.1208	0	424.0716	0	ILMN_1	SLC38A2	Homo s	=
	STDD_1	42.33633	0.8785311	1 40.49209	0.9646893	35.40835	0.9858757	34.96893	0.960452	37.57663	0.9816384	36.5513	0.84887	41.65676	0.920904	34.51966	0.9887006	ILMN_1	XG	Homo s	
	EXPR_2-	116.6699	0.00282	. 110.8969	0.00282	108.9075	0.00282	97.1858	0.00282	128.3616	0.00141	100.2108	0.00141	150.1815	0.00141	133.7284	0.00141	ILMN_1	DDR1	Homo s	
	STDD_2	1235.932	0	1243.437	0	1233.552	0	988.4049	0	2072.737	0	1792.731	0	1655.021	0	1571.125	0	ILMN_1	CCNB1	Homo s	
	EXPR_3	63.73986	0.01836	. 63.87054	0.01977	66.63824	0.00988	61.36385	0.01271	55,93807	0.09463	53.29926	0.02824	64.56262	0.01977	57.18704	0.03107	ILMN_1	ZNF496	Homo s	
	STDD_3	61.8875	0.02966	. 63.94782	0.01977	58.0418	0.03531	52.66104	0.05508	58.26299	0.04661	45.33628	0.2288136	63.91237	0.0240113	60.96475	0.01271	ILMN_1	CRYM	Homo s	
	EXPR_4	49.12666	0.3997175	543.57446	0.8460452	50.03922	0.2189265	45.99773	0.2754237	46.91262	0.4816384	37.9101	0.7669492	48.6974	0.490113	42.1618	0.6864407	ILMN_1	SCIN	Homo s	
	TLMIN_1	. 48.41275	0.4519774	4 44.39942	0.8022599	42.64043	0.6836158	40.22696	0.6765537	22,89584	0.1765537	47.02253	0.1539548	48.76018	0.4830509	20.40400	0.05225	TLMIN_1	APUH CMAD7	Homo s	
	TLMIN_1	47.00001	0.00282	. 112.219	0.00262	104,9040	0.00141	102.3116	0.00141	72,00332	0.00047	00.01049	0.01030	00.09090	0.00504	70.09402	0.00966	TLMIN_1	DIMAD7	Homo s	
	TLMN 1	44 1524	0.7810735	5 51 51314	0.3163842	44 06080	0.5961592	42 06411	0.3027001	47 00292	0.2001330	41 27395	0.0271100	51.65095	0.2024035	45 97157	0.313774	TLMN 1	LALBA	Homo c	
	TLMN 1	54 40639	0.145556	55 25707	0.2791353	54.00851	0.0001002	48 95323	0.1387782	57 798	0.1086254	49.85258	0.3030497	58 92333	0.3403933	55 29068	0.3920334	TLMN 1	KTR 2DI 54	Homo s	
	TLMN 1	71 99544	0.00988	64 54778	0.01694	65 8765	0.0000000	56 56443	0.02259	63.05314	0.01977	51 56913	0.04661	59 25553	0.06638	55 63391	0.05084	TLMN 1	DIOS	Homo s	
	TLMN 1	46.25101	0.6045198	8 45 88445	0.6949152	39.6535	0.8841808	42.16034	0.5268362	43.58592	0.7372881	34,58591	0.9279661	46.13308	0.6723164	39.89708	0.8403955	TLMN 1	K6IR54	Homo s	
	ILMN 1.	. 557.8535	0	525,1909	0	591.3917	0	495.5972	0	203.3817	0	171.9177	0	225.8547	0	215.4209	0	TLMN 1	TRPC1	Homo s	
	ILMN 1.	. 467.0959	0	451.0353	0	444.1983	0	396.765	0	607.0986	0	480.6988	0	592.0144	0	563.5168	0	ILMN 1	LIG3	Homo s	
	ILMN 1	. 57.7118	0.07768	. 51.06229	0.3361582	57.2034	0.04661	50.86394	0.09745	68.26679	0.00988	50.89344	0.05367	59.42413	0.06497	52.51367	0.09463	ILMN 1	GHSR	Homo s	
	ILMN_1	. 44.45938	0.7570621	1 44.55884	0.7980226	37.19926	0.9590396	34.72148	0.9675141	38.58713	0.9646893	36.26468	0.8559322	43.67613	0.84887	37.56795	0.9265537	ILMN_1	HSD11B1	Homo s	
	ILMN_1	. 53.61399	0.1822034	4 51.0671	0.3361582	43.61153	0.6341808	48.92468	0.1426554	50.98011	0.2570621	44.22242	0.2909605	51.32259	0.3036723	50.44941	0.1666667	ILMN_1	FLJ32784	Homo s	
	ILMN_1	. 51.4192	0.2754237	7 47.18692	0.6016949	40.17283	0.8474576	45.4942	0.3079096	47.42356	0.4491525	41.26156	0.5070621	45.21894	0.7415254	45.63202	0.4096045	ILMN_1	RNASE2	Homo s	
	ILMN_1	. 489.0385	0	475.6335	0	489.3262	0	437.8949	0	381.5711	0	290.4016	0	470.2182	0	414.6302	0	ILMN_1	MTHFD1	Homo s	
	ILMN_1	. 94.82355	0.00564	. 99.67298	0.00423	98.24065	0.00423	84.83588	0.00564	46,32243	0.5183616	42.05635	0.4322034	48.0656	0.5268362	45.58775	0.4166667	ILMN_1	LOC149	Homo s	
	ILMN_1	. 51.15371	0.2923729	9 51.28206	0.3262712	49.30336	0.2528249	42.79147	0.4759887	932.1022	0	767.8195	0	1087.021	0	995.513	0	ILMN_1	NALP7	Homo s	
	ILMN_1	42.26553	0.8785311	1 54.24371	0.1793785	38.36568	0.9364407	40.48227	0.6567796	41.87622	0.8403955	39.98058	0.6073446	47.52484	0.5649717	44.6801	0.4774011	ILMN_1	P2RY5	Homo s	
	ILMN_1	48.38057	0.4519774	4 53.62049	0.2132768	45.59653	0.4830509	47.83719	0.1892655	46.00497	0.5522599	38.0216	0.759887	52.34723	0.2641243	49.53832	0.200565	ILMN_1	GUCY2F	Homo s	-
	ILL RAKE 4	14.4 177717	10 2400020	00010		140 22101		14.4 17.747	10.0201205	100.002.40	10.000575	144 OAFE2	10.0000475		0.0004465	Consel	0 140717F	. 1		1 Rinich	ī
																Cancel	< Back		nunue >	FILIER	
																					-

For every experiment in the file, the expression value must be identified along with an optional standard deviation value.

Steps Data Selection ✓ Select data inport format Please identify the colume containing the Feature IDs. For each of the 8 experiments please identify: Please identify the colume containing the Feature IDs. For each of the 8 experiments please identify: Please identify the colume containing the Feature IDs. For each of the 8 experiments please identify: Ign Ign </th <th></th>											
 Select data input forma Pease identify the column containing the Feature IDs. represent value and v											
Please identify: the column containing the Feature IDs. For each of the 8 copyrements plases identify:	Select data import format										
Select import columns For each of the 3 experiments please identify: Select import columns - STDD_(= standard deviation). All other columns are ignored. For											
Setter indicit Columns Strop (= standard deviation). All other columns are ignored. Fm. [Fm.											
All other columns are ignored. Fer. © Fer. © Fer. © Fer. © Fer. Ign EX Ign<											
Per. EX Ign EX Ign EX Ign EX Ign											
LINN_1 ESS.3616 0 227.6658 0 217.7724 0 197.7545 0.00847 5TD 5 0 177.7146 0.00988 62.9547 0.01129 177.7146 0.00988 62.9547 0.01129 177.7146 0.00988 62.9547 0.01129 177.7146 0.00988 62.9547 0.0129 177.7146 0.00988 62.9547 0.0129 177.7146 0.00988 62.9547 0.0129 177.7146 0.00988 62.9547 0.0129 177.7146 0.00988 62.9547 0.0129 177.7146 0.00988 62.9547 0.0129 177.7146 0.00988 62.9547 0.0128 177.7546 0.00988 62.9547 0.0128 177.7546 0.00988 62.9547 0.0128 177.7546 0.00988 62.9547 0.0128 177.7546 0.00988 62.9547 0.0128 177.7546 0.04987 116.5679 0.04877 116.5679 0.00111 177.7548 0.00141 137.7249 0.0117 0.											
LIVML_I B63.813 0 282.1772 0 3341.095 0 275.748 0.0128 0 500.1208 0 424.0716 0 LIVML_I S2.038.2 F LIVML_I 42.3355 0.07551 0.04953 5.04557 340.6953 39.0452 37.5563 0.04554 10.04567 10.2068 10.445.165 0.9877 14.6569 0.04587 11.04576 0.20000 LIVM_I 15.6593 0.0141 15.9576 0.20000 LIVM_I 10.145.15 0.0141 15.0155 0.0141 15.0155 0.0141 15.0155 0.0141 15.0155 0.0141 15.0155 0.0141 15.0155 0.0141 15.0125 0 LIVM_I 15.016 0.0141 15.0155 0.0141 15.0155 0.0141 15.0155 0.0141 15.0155 0.0141 15.0155 0.0141 15.0157 0.0141 15.0157 0.0141 15.0157 0.0141 15.0157 0.0141 15.0157 0.0141 0.0) S 🔺										
LINN_1 42.38533 0.038531 40.44209 0.046493 55.0857 0.98587 76.45633 0.981534 FTD_6 0.94577 0.54577 0.54577 0.94587 0.98587 0.98587 0.985877 0.98587 0.985877 0.98487 0.98587 0.985877 0.98587 0.985877 0.98587 0.985877 0.98587 0.985877 0.98587 0.985877 0.98587 0.985877 0.98587 0.985877 0.98587 0.98577 0.99577 0.01111 0.10111 0.10111 0.10111 0.10111 0.10111 0.10111 0.10111 0.10111 0.10111 0.10111 0.10111 0.10111 0.10111 0.10111 0.10111 0.10111 0.10111 0.10111 0.10111<	5										
LINM_1 116.6699 0.00282 1108.999 0.00282 123.352 0.0028 123.352 0.0014 Upre, 7	I S										
LINN_1 1255.932 0 1233.552 0 988.409 0 207.277 0 570.7 0 1571.25 0 LINN_1 6/3.073 LINN_1 63.73966 0.00566 63.83054 0.01777 66.63824 0.00986 61.36365 0.01271 55.9367 0.0461 570.7 0 20281365 20.28214 64.53624 0.0177 LINN_1 20.878 0.03107 LINN_1 20.878	15										
LLMN 1 63,73966 0.01830 653.87054 0.01977 666.6324 0.00988 61.63659 0.01271 (55.9307 0.09463 (D9463 (D9463 045.000 0.01977 (57.18704 0.0107 [LMN 1 2149499 b.(LLMN 1 61.8875 0.02966 63.94782 0.01977 (58.0418 0.03510 52.66104 0.05508 58.26290 0.04661 5TD 6 0.2288136 63.9127 0.0240113 60.96475 0.01271 [LMN 1 214949 b.(LLMN 1 49.1266 0.399775 43.7446 0.9460452 50.03922 0.218925 45.99773 0.27742746.91262 0.481584 [proce 0.7654942 44.6674 0.490113 42.1618 [0.60471 0.4011] [LM1 1 214945 b.(LLMN 1 49.1266 0.399775 43.7446 0.9460452 50.03922 0.218925 45.99773 0.27742746.91262 0.481584 [proce 0.7654942 44.6674 0.490113 42.1618 [0.60471 0.4011] [LM1 1 214945 b.(LLMN 1 49.1266 0.39775 45.0312 0.218925 45.99773 0.27742746.91262 0.481584 [proce 0.7654942 44.6674 0.490113 42.1618 [0.60471 0.4011] [LM1 1 214945 b.(LLM1 1 49.1266 0.39775 45.0312 0.218925 45.99773 0.27742746.91262 0.481584 [proce 0.7654942 44.6674 0.490113 42.1618 [0.60471 0.4011] [LM1 1 214945 45.074 0.49011] [LM1 1 214945 45.074 0.49011] [LM1 1 214945 [DM1 1 214945 45.074 0.49011] [LM1 1 214945 [DM1 1 214955 [DM1 1 2149	/5										
ILMM_1 61.8875 0.02966 63.94782 0.01977 58.0418 0.03531 52.66104 0.03538 58.26299 0.04661 5TDD_6 0.2288136 63.91237 0.0240113 60.96475 0.01271 LMM_1 CRYM Ho ILMM_1 9.12666 0.3997175 0.57446 0.9460452 50.03922 0.2189265 45.99773 0.2754237 46.91262 0.4816384 Ignore = 0.7669492 48.6974 0.490113 42.1618 0.6864407 LMM_1 STIM Ho	/5										
ILIMN_1 49.12666 0.3997175 43.57446 0.8460452 50.03922 0.2189265 45.99773 0.2754237 46.91262 0.84616384 Ignore 💌 0.7669492 48.6974 0.490113 42.1618 0.6864407 ILMN_1 5CIN Ho	/5										
	/ 5										
ILMN_1 48.41275 [0.4519774]44.39942 [0.8022599]42.64043 [0.6836158]40.22696 [0.6765537]52.89584 [0.1765537]52.09584 [48.76018 [0.4830509]55.11598 [0.05225]LMN_1 [APOH Ho	/ S										
ILMN_1 118.6551 0.00282112.219 0.00282134.9048 0.00141102.3118 0.0014172.80332 0.0084756.61549 0.018685.59898 0.0056470.69402 0.00988ILMN_1 SMAD7 Ho	/ S										
ILMN_1 47.86264 0.4887006 49.78888 0.4096045 40.18734 0.446045 44.24654 0.3827684 50.40232 0.2881356 39.71463 0.6271166 51.85095 0.2824859 44.14235 0.519774 ILMN_1 5LC7A2 10	5										
ILINN_1 44.1524 0.7810735 51.51314 0.3163842 44.00099 0.5861582 42.96411 0.4717514 47.99294 0.4138418 41.27385 0.5056497 50.64647 0.3403955 45.87157 0.3926554 [LINN_1 LALBA 40	5										
ILMN_1 54.40639 [0.145556 55.25707 [0.2791353]54.00051 [0.08388] 48.95323 [0.1387782]57.798 [0.1086254 49.85258 [0.240473] 55.92333 [0.1207986]55.29068 [0.210197][LMN_1 [dlR2DL5A [40	· S										
ILINN_1 /1.99544 0.0098864.54/78 0.01694 65.8765 0.0098856.56443 0.02259 63.05314 0.0197/ 51.56913 0.04661 59.25553 0.06638 55.63391 0.05084 ILINN_1 DIO3 Ho	· S										
ILMM 1 66.25101 0.6045198 49.88449 0.6949152 39.6552 0.6841808 42.16034 0.5268362 43.58552 0.73728613455591 0.927966146.13308 0.67231643949708 0.4413955 0.6841808 42.16034 0.5268362 43.58552 0.73728613455591 0.927966146.13308 0.6723164394 0.6841804 42.16034 0.5268362 43.58552 0.73728613455591 0.927966146.13308 0.6723164394 0.5268362 43.58552 0.73728613455591 0.927966146.13308 0.67231643 0.67231643 0.67231643 0.57231643 0.572316434 0.572316434 0.57286134554 0.672316434 0.57286134554 0.672316434 0.57286134556550 0.73728613455591 0.927966146.13308 0.67231643 0.572316434 0.57286134550 0.772861345550 0.77231643400 0.57231643400 0.57231643400 0.57231643400 0.57231643400 0.57231643400 0.57231643400 0.57231643400 0.57231643400 0.57231643400 0.57231643400 0.5723164300000000000000000000000000000000000	· S										
LIMM_1557.8555 U 525.1999 U 551.3917 U 495.5972 U 203.3817 U 171.9177 U 225.8547 U 215.4209 U LIMM_11RPL I NO	. 5										
	.5										
	5										
	3										
	3										
	15										
II MN 1. 94.82355 0.00564. 99.62298 0.00423. 98.4055 0.00564. 46.32243 0.5183616142.0565 0.432034148.0556 0.526836245.58775 0.41666678 MN 1. J. OCT49. He	15										
IIMN 1., 51,15371 0,2923729 51,28206 0,3262712 49,30336 0,2528249 42,79147 0,4759887 932,1022 0 767,8195 0 1087,021 0 995,513 0 IIMN 1., NALPZ He	5										
ILMN 1 42.26553 0.878531154.24371 0.179378538.36568 0.936440740.48227 0.656779641.87622 0.840395539.98058 0.607344647.52484 0.564971744.6801 0.47740111LMN 1 P2RY5 Ho	5										
1LMN 1 48.38057 0.4519774 53.62049 0.2132768 45.59653 0.4830509 47.83719 0.1892655 46.00497 0.5522599 38.0216 0.759887 52.34723 0.2641243 49.53832 0.200565 1LMN 1 GUCY2F Ho	5										
In mu - la reste la sociale contra la seconda estas la sociale estas la sociale estas la social la seconda la social de	and the second sec										
Cancel < Back Continue >											

understanding gene regulation

Finally, the user needs to identify the chip type. Please refer to the above list of accepted chip types.

The file import proceeds normally from here.

ChipInspector

Editing a Project

Right-click on a project node in the tree structure and select "Edit Project" from the context menu, or click on the Edit Project(\bowtie) button in the toolbar to open the Edit Project panel. This looks much the same as the New Project panel and allows you to edit the project data.

Deleting a Project

To delete a project, choose the "Delete Project" option from its context menu, or click the Delete Project () button in the toolbar. The project will be deleted, including all its analyses and data file associations. The data files themselves will not be deleted from the file system.

Project Data Files

The imported data files are available in the project manager under the node of the project they have been imported to.

ExampleProjectTree							
🔄 🗔 ExampleProject							
🗄 🖳 💽 Analyses							
🖮 🔄 Project Data Files							
💿	GSM51676_24_0						
🔁	GSM51677_13_24						
0	GSM51679_13_0						
5	GSM51680_17_24						
🖸	GSM51682_17_0						
🖸	GSM51683_31_24						
💽	GSM51685_31_0						
0	GSM51686_32_24						
5	GSM51688_32_0						
🖸	GSM51689_33_24						
🖸	GSM51691_33_0						
	GSM51692_37_24						
	GSM51694_37_0						
	GSM51695_38_24						
	GSM51697_38_0						
	GSM51698_40_24						
	GSM51700_40_0						
	GSM51701_43_24						
	GSM51703_43_0						
	GSM51704_20_24						
	GSM51706_20_0						
	GSM51707_25_24						
	GSM51709_25_0						
	GSM51710_2_24						
[GSM51712_2_0						

Editing a Data File

Choose "Edit Data File" from the context menu of a data file, or click on the Edit Data File (\mathbb{M}) toolbar button to open the data file editing panel, which displays the file's properties and allows you to edit some of them.

-Edit Data File MPRO_0hr_D									
- Editable Properties									
Data File Name: MPRO_0hr_D									
Add Data From a Text File: file:G:/chip_projects/binary_test/multi/MPRO_Ohr_D.CEL Browse									
- Basic Data File Properties									
Chip: MG_U744	w2								
Rows: 640	<i>is:</i> 640								
Columns: 640	Iolumns: 640								
Average Signal: 509.68946320251564									
	Commit								

Deleting a Data File

To delete a data file from the list, right-click and choose "Delete Data File" or left click and click on the Delete Data File (\square) button in the toolbar.

Analyses

Creating a New Analysis

The ExampleProjectTree	-New Analysis for Project ExampleProject	
ExampleProject		
🖃 🔲 Project Data Files		
GSM51674_24_24	Name of Apalysis:	Example@palucic
GSM51676_24_0	Name of Analysis.	LXanpicAnalysis
GSM51677_13_24		GSM51674 24 24
GSM51679_13_0		G5M51676 24 0
GSM51680_17_24		G5M51677 13 24
GSM51682_17_0	Analusia Data Eilaat	G5M51679_13_0
G5M51683_31_24_	(Drag files from the project data file list	GSM51680_17_24
GSM51685_31_0	and drop them here.)	GSM51682_17_0
GSM51686_32_24		G5M51683_31_24
GSM51688_32_0		G5M51685_31_0
	Type of Apalycic:	Treatment/Control Pairing
OGSM51694_37_0	Type of Analysis.	
GSM51695_38_24		1 description of the englysiz can be
GSM51697_38_0		added and modified have
GSM51698_40_24		added and modified here
GSM51700_40_0		
GSM51701_43_24	Description of Analysis:	
GSM51703_43_0		
GSM51704_20_24		
GSM51706_20_0		
GSM51707_25_24		
GSME1710 2 24		
G5M51710_2_24	External Protocol File Name:	Upload
		Commit

To create a new analysis, click on a project node and click on the New Analysis (\bigcirc) button in the toolbar, or choose the New Analysis item from the project's context menu. This will open the New Analysis panel, where you can enter a name for your analysis, choose the data files you want to use in this analysis from the list for the project, and add them to the File Subset list by dragging and dropping. Here and in any other list in the program, you can change the order of entries by selecting one and clicking on the Up (P) and Down (P) buttons, remove entries with the Remove (R) button, and undo/redo your last changes with the Undo (P) and Redo (\swarrow) buttons.

Choose an analysis type from the selection; available types are:

Treatment/Control Pairing

Use this option if you want to perform a one-class analysis, which compares a treated sample to a control. A single sided permutation T-test analysis is performed.

Time Course/Titration Experiment

Select this option if you want to compare a set of data points in a multi-class analysis and perform a cluster analysis on the results. In this case a multi-class permutation T-test analysis is performed.

Presence/Absence Calling

Choose this option if you want to measure expression values relative to the average expression on the chip, e.g. for gene expression values in one specific tissue. In this case a permutation T-test analysis detecting probes which are significantly above the experiment average is performed. Biological replicates with n>=2 are still required.

You can also enter a description of your analysis, and upload an external protocol file, whose content will be added to the analysis protocol generated by ChipInspector if it is ASCII readable (otherwise only the file name will be embedded).

To get to the next step, analysis design, click the Commit button.

Editing an Analysis

If you want to edit an existing analysis, right-click its symbol in the project tree and choose "Edit Analysis" from context menu, or click the Edit Analysis (20) toolbar button to open the Edit Analysis panel, which offers the same editing options as the New Analysis panel.

Designing an Analysis

After the editing of analysis is committed, or if you choose "Design Analysis" from the analysis context menu or click on the Design Analysis (12) toolbar button, the Analysis Design panel opens. The design options depend on the type of the analysis:

Treatment/Control Experiment

From the Analysis Data Files list in the project manager, drag the files you want to use as treatment and control onto the respective list fields. You can choose the file combinations and view the pairings resulting from your choice; see "File Combinations" for details.

ChipInspector

Design Analysis ExampleAnalysis

Type of Analysis: Treatment/Control Pairing	@
Treatment	Control
	2 4 A A J
Commit Settings	View File Pairing Start

Time Course Experiment

Choose the number of experimental classes from the selection; the matching number of list fields will be displayed. From the Analysis Data Files list in the project manager, drag the files you want to use as treatment and control for each class onto the respective list fields. You can choose the file combinations and view the pairings resulting from your choice; see chapter "File Combinations" for details.

Design Analysis ExampleAnalysis			
Type of Analysis:	Time Course/Titration	Experiment	?
Number of Experimental Classes/Points:	3 🗸		_
		Control	
- reacheric			
			<u> </u>
Treatment		Control	
8 4 1	•	* * * * *	,
Treatment		Control	
	T V		
Commit	Settings	View File Pairing Start	

Presence/Absence Calling

From the Analysis Data Files list in the project manager, drag the files you want to analyze into the file list.

Design Analysis ExampleAnalysis		
Type of Analysis: Presence/Absence Calling		
× • / • •		
Commit Settings Start		

Analysis Settings

Clicking the Settings button in the Analysis Design panel opens a dialog that allows you to set further analysis parameters:

FDR

The False Discovery Rate (FDR) can either be set manually during the analysis, or alternatively, preselected and then automatically set in the analysis.

Genomatix ChipInspector 1.40				
File Combinations Result Inform	mation FDR			
 Show curve during analysis 	to set manually			
O Automatic FDR				
Positive FDR:	<=	\sim	0%	~
Negative FDR:	<=	$\mathbf{\mathbf{v}}$	0%	~
	Ok			

understanding gene regulation

If automatic FDR is selected, the FDR for up-regulated features (Positive FDR) and down-regulated features (Negative FDR) can be set separately. Negative FDR setting is only available for treatmentcontrol experiments. The FDR percentage can be set to values between 0 and 99 in increments of 1. The exact selected value might not be attainable in a specific analysis; you can set the behavior of the program for this case: with (<=), the largest value that is smaller than or equal to the selected value will be used, whereas (~) uses the value with the smallest absolute difference to the selected value.

Genomatix ChipInspector 1.40				
File Combinations Result Informat	ion FDR			
 Show curve during analysis to Automatic FDR 	set manually			
Positive FDR:	<=	*	0%	~
Negative FDR:	<=	*	0%	~
	Ok			

File Combinations

Click on the File Combinations button to open a dialog where you can select the desired manner of file combinations. The View File Pairing button displays a list of the resulting pairs.

Exhaustive Matching

Exhaustive matching combines every one of the files from one experimental class with every file in the respective control group. This is the default setting.

Genomatix ChipInspector 1.40		
File Combinations	Result Information FDR	
 Match list ent Match list ent 	tries exhaustively tries pairwise	
🔿 Match list ent	tries randomly 2 💙 time	s
	Ok	

Pairwise Matching

Pairwise matching combines the files one by one in the order they appear in the lists.

Genomatix Chi	pinspector 1.40	
File Combinations	Result Information FDR	
 Match list ent Match list ent Match list ent 	tries exhaustively tries pairwise tries randomly 2	times
	Ok	

Random Matching

Random matching compares a randomly selected set of control files to each of the files in the experimental classes. The number of control files in a set can be selected (between 2 and 10).

Genomatix ChipInspector 1.40	×
File Combinations Result Information FDR	
 Match list entries exhaustively Match list entries pairwise 	
Match list entries randomly Imes	
Ok	

File combination examples:

Exhaustive matching

🕲 Matching Table 🛛 🛛 🔀		
Analysis Option Type: EXHAUSTIVE		
Treatment	Control	
MPRO_8hr_A	MPRO_0hr_A	
MPRO_8hr_A	MPRO_0hr_B	
MPRO_8hr_A	MPRO_0hr_C	
MPRO_8hr_A	MPRO_0hr_D	
MPRO_8hr_B	MPRO_0hr_A	
MPRO_8hr_B	MPRO_0hr_B	
MPRO_8hr_B	MPRO_0hr_C	
MPRO_8hr_B	MPRO_0hr_D	
MPRO_8hr_C	MPRO_0hr_A	
MPRO_8hr_C	MPRO_0hr_B	
MPRO_8hr_C	MPRO_0hr_C	
MPRO_8hr_C	MPRO_0hr_D	
MPRO_8hr_D	MPRO_0hr_A	
MPRO_8hr_D	MPRO_0hr_B	
MPRO_8hr_D	MPRO_0hr_C	
MPRO_8hr_D	MPRO_0hr_D	

Pairwise matching

Matching Table		
Analysis Option Type: EACH_LIST_ENTRY_ONCE		
Treatment	Control	
MPRO_8hr_A	MPRO_0hr_A	
MPRO_8hr_B	MPRO_0hr_B	
MPRO_8hr_C	MPRO_0hr_C	
MPRO_8hr_D	MPRO_0hr_D	

Random matching (2 controls each)

Matching Table	\mathbf{X}
Analysis Option Type: RAN	IDOM Random Number: 2
Treatment	Control
MPRO_8hr_A	MPRO_0hr_D
MPRO_8hr_A	MPRO_0hr_B
MPRO_8hr_B	MPRO_0hr_A
MPRO_8hr_B	MPRO_0hr_D
MPRO_8hr_C	MPRO_0hr_B
MPRO_8hr_C	MPRO_0hr_B
MPRO_8hr_D	MPRO_0hr_A
MPRO_8hr_D	MPRO_0hr_C

Result Information

Depending on the chip type, the analysis results can be displayed in different ways.

Genomatix ChipInspector 1.40
File Combinations Result Information FDR
 Annotation-based (display the significant transcripts as annotated in ElDorado) Position-based (display the significant single features ordered by genomic position)
Ok

Annotation based

This view is available for all chip types. It displays the significantly regulated transcripts as annotated in ElDorado. The statistical analysis is based on the single probes that map to the exons (for expression arrays and exon arrays) or the promoter region (for promoter arrays) of the annotated transcripts.

Position based

This option is available for promoter and exon arrays. The significant probes are displayed in the order in which they appear on the genome.

Starting an Analysis

To start the analysis on the fly, click the Start button in the analysis panel.

If haven't logged in yet, you will be asked to do so now. Please enter your user name and password in the login dialog, and click OK.

Authen	tication request 🛛 🔀					
٩	Host requests Authentication: www.genomatix.c Realm: online account Protocol: http Username					
	Password Ok Cancel					

A dialog opens, which displays information on your account and system.

Account Information						
Account	:	trainer				
Type of Account	:	You may analyze GeneChip Arrays				
	:	You may analyze Exon Arrays				
	:	You may analyze Promoter Arrays				
Java Version	:	1.5.0_10				
Max Memory	:	895 Megabyte				
0/S	:	Windows XP				
Blue entries signify that your computer and/or account settings meet the requirements to run ChipInspector.						
Red entries point to possible problems due to restricted licensing or inadequate hardware.						
Ok						

While the analysis is running, its progress is displayed (the exact layout may vary with the analysis type):

Progress for Analysis Time Course Example of Project Multiclass Experiment								
Updating Probe Information:	100%	Total Time: 3' 36						
log2 Transformation	100%	Total Time: 0' 02"						
Statistical Analysis:	72%	Elapsed time: 4' 18" Remaining time: 1' 38"						
Saving Intermediate Results:	0%							
Clustering:	0%							
Map to Transcripts:	0%							
Preparing Transcripts:	0%							
Processing analysis. Please be patient	200							

ChipInspector

Committing an Analysis for a Batch Job

Clicking the Commit button in the Analysis Design panel does not start the analysis immediately, but saves the design and flags the analysis in the project manager panel with a green arrowhead symbol for later addition to a batch job (see below).

Creating and Starting a Batch Job

To run one or more analyses in a batch job, commit each analysis after design (see above); then, create a batch job by right-clicking on the root element of the project tree, and selecting "New Batch Job" from the context menu, or by clicking the **button** in the toolbar. The Batch Job panel will be displayed.

Add your committed analyses to the batch by dragging them from the project manager into the analysis list.

Master Settings

Some analysis parameters can be set uniformly for all analyses in a batch, overriding the settings in the individual analyses. By default, the individual settings apply. To define and activate master settings, click the "Master Settings" button and select "Apply master settings to all analyses" in the dialog.

Add Analyses for Batch J	b
ExampleProject: Example, ExampleProject: Example,	Analysis Analysis2
Master Settings	Start
	Genomatix ChipInspector 1.40
	Apply settings of each single analysis
	O Apply master settings to all analyses
	Settings This will override all single analysis settings!
	Ok

Click the "Settings" button to open the settings dialog.

In the settings dialog, select the tab for each of the settings you want to define and click OK. You can change the settings for FDR and result information. Please refer to <u>File Combinations</u> for a detailed description of the possible parameter values.

Genomatix ChipInspector 1.40 🛛 🔀								
File Combinations Result Information FDR								
Show curve during analysis to set manually Automatic FDR								
Positive FDR:	<=	*	0%	~				
Negative FDR:	<=	*	0%	~				
Ok								

Redoing an Analysis

Redoing an analysis means taking the same set of data files and re-analyzing them, e.g. in different combinations. In order to redo an analysis, choose "Redo Analysis" from its context menu, or select the analysis in the project tree and click the Redo (button in the toolbar. You are asked to provide an extension of the analysis name; the default is the current timestamp. A copy of the analysis with the original design, but without any results, is created. Choose "Design Analysis" from context menu of the copy (or use the Design Analysis (toolbar button) to open the Analysis Design panel. Edit the design and start the analysis as described in "Designing an Analysis".

Statistics Curve

The statistics curve (blue) displays the result of the statistical analysis as a plot of the observed expression ratio over an artificial background based on randomized expression ratios (expected ratio) for each perfect match probe. As to details concerning statistics please refer to chapter "Data Analysis".

The diagonal line passing through the origin represents observed ratio = expected ratio; two more lines represent observed ratio = expected ratio + $Delta_{(+)}$ and observed ratio = expected ratio + $Delta_{(-)}$. $Delta_{(+/-)}$ are threshold values; the change in the expression of a single probe (feature) is considered significant if observed ratio > expected ratio + $Delta_{(+)}$ (up-regulated features), or if observed ratio < expected ratio + $Delta_{(-)}$ (down-regulated features).

The False Discovery Rate (FDR) is estimated for a given Delta by dividing the average number of features that are called significant in the background data (the falsely called features) by the number of significant features resulting from the experimental assignment. The default Delta values for the thresholds calculated by ChipInspector maximize the number of significant features while maintaining low FDRs.

Sliders can be used to adjust the Delta values in order to change the numbers of significant and of falsely called features, and thus the FDR. You can always reset to the default values by clicking the Default Value button.

The display and the options available for further data processing vary depending on the different types of analyses:

Treatment/Control Experiment or Presence/Absence Calling

understanding gene regulation

The diagonal line is plotted in black, the cut-off thresholds are displayed in red. Two sliders, one each for negative and positive significant features, allow for adjustment of the cut-off values. Clicking the Continue button maps the significant features to the transcripts and displays the resulting transcript list.

Time Course Experiment

The diagonal line is displayed in yellow, the positive and negative cut-off lines in green and cyan, respectively. One slider is used to adjust the Delta value.

Clicking the Clustered Result List button maps the significant features to the transcripts and displays a cluster tree view of the transcripts and their relative expression values. Clicking the Unordered Result List button maps the significant features to the transcripts and displays a non-clustered transcript list.

Cluster View

The results of the cluster analysis of a time course experiment are displayed as a hierarchical cluster tree. The logarithmic expression ratios for each file pairing are displayed as green (down-regulated) and red (up-regulated) squares. The degree of differential expression is indicated by the color saturation. Positioning the mouse pointer over any square displays the experimental class it belongs to. Clicking on a tree node displays a blue bar to the right that shows the range of the cluster.

You can extract a result list for a cluster of interest by right-clicking a tree node, optionally assigning a name to the cluster in the dialog box that will be displayed, and clicking OK.

The cluster will appear shaded grey in the cluster view, and a mouse-over will display its name.

Result List

If the transcript based view has been selected in the analysis design, the result list is displayed after the mapping of the significant features. It lists the significantly regulated transcripts and their probe coverage (i.e. the number of significant probes that map to the transcript exons). You can filter the list by minimum probe coverage (default is 3).

Clicking the Gene ID displays functional information on the gene, retrieved from ElDorado. Clicking the accession number will open a detailed graph of the transcript and all other transcripts of its locus. If there is significant evidence for both up and down regulation of a transcript, two entries are listed for it, displaying the according positive and negative expression ratios.

The list can be sorted by any column by clicking on its header. Depending on the analysis type, further information is available:

Treatment/Control Analysis or Presence/Absence Calling

For each significant transcript, the base 2 logarithm of the expression ratio is displayed. You can filter by its minimum absolute value. If there is evidence for both up- and down-regulation of a transcript, the Ambiguous (\cong) symbol appears in the first column. The Varying (\checkmark) icon indicates that there is high variability in the expression ratios of the significant probes that map to the transcript.

/	Graph Lini	k Probe Covera	age Filter Expre	ession Ratio Filter					
Treatment Control Exampl Minimum Probe Coverage: 3 🗢 Minimum Ratio: 0.0 🗢 Number of Resulting Transcripts: 3394									
A/V	Gene_ID	Gene_Symbol	Accession_No	Coverage	Log Ratio				
<mark>∨</mark> <u>55273</u>	1	TMEM100	MM 018286	11	0,826 🔨				
V <u>55273</u>	1	TMEM100	AK001832	11	0,826 🥏				
✓ <u>113791</u>	1	MGC17330	<u>NM 052880</u>	22	0,789				
✓ <u>113791</u>	I	MGC17330	AK074688	22	0,789				
✓ <u>113791</u>	1	MGC17330	AK093768	21	0,783				
V 8651		50CS1	<u>AK127621</u>	15	0,756				
V 8651		50C51	NM 003745	15	0,756				
<mark>∨944</mark>	1	TNFSF8	NM 001244	9	0,755				
<u>A 7277</u>	1	TUBA1	AK054731	5	0,751				
<u>A 7277</u>	1	TUBA1	<u>NM_006000</u>	5	0,751				
✓ <u>160622</u>		GRASP	<u>NM 181711</u>	5	0,727				
V 90427	E	BMF	<u>NM 033503</u>	11	0,723				
V 90427	E	BMF	NM 001003943	11	0,723				
<u>∨</u> 90427	E	BMF	NM 001003942	11	0,723				
90427	E	BMF	NM 001003940	11	0,723				
5026	F	P2RX5	<u>AK092966</u>	10	0,703				
5026	F	P2RX5	<u>NM 175080</u>	10	0,703				
5026	4	P2RX5	<u>NM_002561</u>	10	0,703				
✓ <u>256380</u>		5CML4	AK093571	4	0,689				
V <u>64744</u>		5MAP1L	NM 022733	11	0,683				
2908	r	NR3C1	NM 001020825	3	0,674				
3669]	I5G20	<u>AK122793</u>	11	0,671				
V <u>694</u>	E	BTG1	NM 001731	18	0,669				
27244		SESN1	<u>AK001886</u>	3	0,669				
27244		SESN1	NM 014454	3	0,669				
3669	1	ISG20	NM 002201	12	0,665				

ElDorado More Gene Info Link

ChipInspector

Time Course Experiment

The mean log2 ratios of every pairing in the analysis for each transcript are displayed. If the list represents a cluster in a time course experiment, the cluster's name, if set, is shown as well.

ElDorado More Gene Info Link

Graph Link Probe Coverage Filter											
	\setminus										
Time Cobice Example Minimum Probe Coverage: 3 🗢 Number of Resulting Transcripts: 369											
	Cluster Name	Gene_ID	Gene_Symbol	Accession_No	Coverage	MPRO_1hr	MPRO_1hr	MPRO_1hr	MPRO_1hr	MPRO_1hr	MPRO_1hr
1	Cluster01	<u>18741</u>	Pitx2	NM 011098	3	-0,273	-0,345	-0,335	-0,253	0,067	-0 🔨
2	Cluster01	<u>230157</u>	Tmeff1	<u>NM 021436</u>	3	-0,261	-0,318	-0,197	-0,266	0,12	0.
3	Cluster01	108686	A430106J12	AK049976	7	-0,289	-0,385	-0,335	-0,324	0,119	0
4	Cluster01	16542	Kdr	AK031739	3	-0,189	-0,359	-0,195	-0,204	0,194	0
5	Cluster01	230163	Aldob	AK167566	3	-0,333	-0,553	-0,376	-0,392	0,173	-0,
5	Cluster01	<u>16516</u>	Kcnj15	AK165436	4	-0,164	-0,281	-0,196	-0,218	0,159	0,
7	Cluster01	<u>16516</u>	Kcnj15	AK143004	4	-0,164	-0,281	-0,196	-0,218	0,159	0,
3	Cluster01	22329	Vcam1	AK162954	3	-0,371	-0,463	-0,445	-0,404	0,09	-0,
Э	Cluster01	11498	Adam4	NM 009620	3	-0,099	-0,33	-0,253	-0,231	0,316	0
10	Cluster01	13178	Dck	AK145353	3	-0,184	-0,357	-0,26	-0,288	0,18	0.
11	Cluster01	13178	Dck	AK145390	3	-0,184	-0,357	-0,26	-0,288	0,18	0.
12	Cluster01	22259	Nr1h3	AK159250	3	-0,27	-0,446	-0,238	-0,279	0,033	-0,
13	Cluster01	16560	Kif1a	AK147640	3	-0,214	-0,391	-0,21	-0,184	0,072	-0.
14	Cluster01	23965	Odz3	AK011924	3	-0,163	-0,412	-0,234	-0,273	0,296	0,
15	Cluster01	72147	Btbd4	AK033385	3	-0,229	-0,305	-0,199	-0,273	0,158	0.
16	Cluster01	17349	MIF1	NM 010801	3	-0,207	-0,297	-0,214	-0,253	0,156	0.
17	Cluster01	21744	Tenr	NM 009350	3	-0,274	-0,441	-0,332	-0,279	0,184	0,
18	Cluster01	11363	Acadl	AK167537	3	-0,323	-0,434	-0,294	-0,328	0,02	-0,
19	Cluster01	13132	Dab2	NM 00100870	4	-0,34	-0,415	-0,348	-0,365	0,187	0
20	Cluster01	11363	Acadl	AK151845	3	-0,323	-0,434	-0,294	-0,328	0,02	-0,
21	Cluster01	21824	Thbd	AK044928	3	-0,248	-0,384	-0,241	-0,264	0,096	-0.
22	Cluster01	14290	Fpr-rs3	NM 008040	3	-0,133	-0,284	-0,222	-0,213	0,186	0,
23	Cluster01	21808	Tgfb2	AK029306	3	-0,194	-0,383	-0,235	-0,327	0,097	-0.
24	Cluster01	11306	Abcb7	AK151967	3	-0,146	-0,255	-0,161	-0,149	0,171	0.
25	Cluster01	114332	Xlkd1	AK004182	3	-0,181	-0,334	-0,188	-0,252	0,129	-0,
26	Cluster01	214899	Jarid1a	XM 978167	3	-0,112	-0,277	-0,153	-0,101	0,048	-0.
77	Clucter01	b14800	larid1 a	им атакал	3	-0.112	-0 277	-0.153	-0 101	0.048	-0 ×

Exporting Results

You can export the results in different formats for further analysis. To do so, click on "File" in the menu and choose from the available export options:

Export Values per Transcripts

This will create a list with the mean expression ratio logs for every significantly regulated transcript in every comparison done in the analysis. It can be either a tab delimited or an Excel file.

Export Values per Feature

This will create a list with the expression ratio logs for every significant single probe in every comparison done in the analysis. It can be either a tab delimited or an Excel file.

Export for BiblioSphere Analysis

This will create an MS Excel file that is compliant with the Genomatix BiblioSphere PathwayEdition format requirements for input files.

Position Based View

If the position based result view was selected in the settings dialog of the analysis design, the probes are displayed from top to bottom in their order on the genome. Significantly regulated (exon tiling arrays) or enriched (ChIP experiments with promoter tiling arrays) probes are marked with double asterisks. Move the mouse pointer over a probe to display its log2 expression ratio in a tool tip.

For each chromosomal strand, ElDorado based genome annotation in the regions covered by probes appears alongside the probes on the selected chromosome. The graph shows the chromosomal position of each probe, as well as locus annotation including promoter, exon and intron regions. Promoter regions are depicted in yellow, exon and intron regions in green and grey, respectively. Transcription start regions based on CAGE tag evidence are shown as red arrowheads.

The distances between the tiled probes covering a region are roughly similar. However, gaps in the tiling pattern can occur. In the graph, gaps of at least two probe lengths are represented by an interruption of the transcript graph. A grey separator indicates a gap of at least 1000 nucleotides.

Chromosome selection

Set the chromosome by stepping through the selector list or entering the requisite denominator. Click the arrow button to display the probes mapping to the selected chromosome.

Changing significance thresholds

Move the sliders for the Delta values to change the stringency settings for significant features. For promoter tiling arrays, only positive features are available.

Navigation

The graph can be navigated by clicking the respective buttons for jumping to the next significant feature or the next promoter region.

Genomic mapping in ElDorado

Regions that are covered by contiguous probes can be selected by clicking and drawing the mouse. A selected region is mapped onto the genome by clicking the ElDorado mapping button and may then be viewed in ElDorado.

Chromosome selector

Transcript Graph

The Transcript Graph is only available if the annotation based result view was selected in the analysis design. It is displayed when an Accession No link of a transcript in the result list is followed. It shows a graphical representation of all transcripts that map to the locus of the selected transcript. You can modify and export the diagram.

Graph Overview

Probes

Expression values and positions of significant probes are displayed at the top of the graph as vertical red (significant probes) or blue (non-significant probes) bars. The height of a bar reflects the probe's relative expression value. Click on a probe to display its Delta value.

Possible probe positions depend on the chip type: for expression and exon arrays, only the probes that map to an exon of at least one transcript in the displayed locus appear, while for promoter tiling arrays, the probes mapping to an annotated promoter region or up to 1000 bp upstream of the transcription start site of a transcript are shown.

Transcripts

The transcripts of the selected locus are displayed aligned by their genomic location. The primary transcripts are grey, exons green, promoter regions yellow, and UTRs cyan. The display of SNPs (brown) is switched off by default. The gene name, Genomatix transcript ID, contig number, length, and accession number of each transcript are displayed in a frame, which is colored red if a single transcript fits the probes, orange for multiple fitting transcripts, and pink for transcripts that don't fit. The probes are displayed in-line with the transcript graph, red for significant probes, blue for non-significant probes. Clicking an element displays its start and end position, as well as its strand orientation.

Legend

The legend explains the meanings of the graphical elements. A checkbox lets you toggle the display of each element type. A scale bar is provided to facilitate estimation of the lengths of transcript elements.

ChipInspector

Modifying and Exporting the Graph

Saving a JPEG Image

The graph view lets you export the diagram, or parts of it, in JPEG format. To export the whole diagram, click on the Export Graph () button; this will open a save dialog. You can adjust the image quality in this dialog with a slider. If you want to export only a certain region of the graph, first click the Export this Region () button and draw a marker frame around the region of interest. Then, use the Export Graph button as before.

Changing the Scale of the Graph

Zoom in and out of the graph incrementally by clicking the Zoom buttons. Clicking on the Change Scale (\checkmark) button opens a dialog with a slider that lets you change the transcripts' length scale. You can use the mouse or the left and right arrow keys to use it. The Fit Graph to Window (\circledast) button adjusts the scale to the current window size. Scaling and zooming affects the size of the exported file.

Adding Your Own Elements

To add text to the diagram, click the Add Text () button, and then click at the position in the graph where you want to place the text. You can edit and format it in the edit panel that opens at the bottom of the window.

Clicking the Mark a Region (\checkmark) button and drawing a frame with the mouse adds a labeled frame to the graph. A panel at the bottom lets you format the frame and edit the label. To adjust the frame size, click and drag one of the resizing squares at its corners.

Added text or frames can be moved around in the diagram by clicking and dragging. If the grid is toggled on with the Toggle Grid () button, elements are snapped to it when you draw or drag them.

Other Formatting Options

Clicking on the Bring Item to Front () and Send Item to Back () buttons places the currently selected item in front of or behind all other elements.

If you click on a legend item, a dialog will open that allows you to change the color of all elements of the according type.

Deleting Elements

The Delete Item (³) button deletes the currently selected element.

Protocol

The protocol shows the parameters for the analysis, data quality assessment and any errors which may have occurred during the analysis. External protocol files can be embedded here (see "<u>Creating a new Project</u>" for details).

ChipInspector

ChipInspector Online Help

Online Resources

To access the online help, click on "Help" in the ChipInspector main menu and select "Help", or click on the Help () button in the ChipInspector main panel.

Contacting Genomatix

If you encounter any problems, please contact support@genomatix.de.

Literature

Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. PNAS 98, 5116-5121

Appendix: Description of the Algorithm

Probe to Transcript Assignment

The basis for ChipInspector is the Genomatix proprietary probe to transcript assignment based on mapping of all probes of a microarray against the most current version of the genome of interest. Mapping is performed on with a proprietary high-performance algorithm which is able to find exact and similar matching positions in the genome. Probes are evaluated according to the mapping result and according to the correlation analysis based on the up-to-date annotation of EIDorado. Only probes which fulfill the high-quality criteria are used for the analysis. Annotation and quality information is saved in mapping files which are an integral part of the program. The files are updated regularly with every new version of the annotation and provided for download as soon as an updated version of a genome becomes available.

Normalization

Ratios of the single probe signals are calculated and a logarithmic transformation (log2) is performed. Normalized of the ratio values are done via total intensity normalization.

Statistical Analysis

Statistical analysis is an integral part of ChipInspector. The aim of the analysis is to identify probes which show significant changes according to the experiment. Therefore at least three replicates per experiment are needed. Significant probes are discovered by a permutated T-test with false discovery rate (FDR) calculation. This approach is derived from the SAM algorithm by Tusher et al. (2001).

One Class Analysis (Experiment versus Control)

A single sided permutation T-test analysis is performed.

Multiclass Analysis

For a timeline analysis or an analysis including multiple stages a multiclass permutation T-test analysis is performed.

Presence/Absence calling

It is also possible to measure expression values relative to the average expression on the chip, e.g. for gene expression values in one specific tissue. In this case a permutation T-test analysis detecting probes which are significant above the experiment average is performed.

Projection

Significant probes are projected to transcripts using the mapping files described under 1. As default value, three significant probes are needed to detect a transcript as significant. This figure of three probes was determined empirically via spike-in experiments and proved to produce a low false positive rate while maintaining high sensitivity. However, the number of probes to define a transcript can be adapted by the user.

Cluster Analysis

For multiclass analyses ChipInspector provides an option for hierarchical clustering by calculating the Pearson distance between two data points.