
MICROCOMPUTER MN10300

MN10300 Series
C Source Code Debugger
User’s Manual

 Pub.No.13130-022E

If you have any inquiries or questions about this book or our semiconductors, please contact one of our sales

offices listed at the back of this book or Matsushita Electronics Corporation's Sales Department.

(1) An export permit needs to be obtained from the competent authorities of the Japanese Government if any of

the products or technologies described in this book and controlled under the "Foreign Exchange and Foreign

Trade Law" is to be exported or taken out of Japan.

(2) The contents of this book are subject to change without notice in matters of improved function.When

finalizing your design, therefore, ask for the most up-to-date version in advance in order to check for any

changes.

(3) We are not liable for any damage arising out of the use of the contents of this book, or for any infringement

of patents or any other rights owned by a third party.

(4) No part of this book may be reprinted or reproduced by any means without written permission from our

company.

Request for your special attention and precautions in using the technical

informaition and semiconductors described in this book

PanaXSeries is a trademark of Matsushita Electric Industrial Co., Ltd.

Sun, Sun OS, SPARC station2, and OpenWindows are registered trademarks of Sun Microsystems, Inc. (USA).

UNIX is a registered trademark of X/Open Company Ltd. in the USA, where it is licensed, and in other countries.

The other corporation names,logotype and product names written in this book are trademarks or registered trademarks of their

corresponding corporations.

About This Manual

This manual is intended for engineers who will be debugging programs for the MN10300 Series. Chapters 1 through

3 provide an overview of the C Source Code Debugger, describe its organization, and explain how to start it up. Chapter

4, intended for beginners, is a detailed guide to debugging work. Chapter 5 introduces the options that can be specified

when starting up the C Source Code Debugger. Chapter 6 explains the window commands, while chapters 7 and 8

explain the dialog commands and macro commands, respectively. These chapters also include specific command execu-

tion examples. Chapter 9, an appendix, includes specifications and notes concerning the In-circuit Emulator, probe

specifications, an explanation of the operation of the interface board switches, error messages, and a quick reference for

the commands.

■ Organization of This Manual

Each section in this manual generally consists of a title, summary, main text, indications of the keys that are used,

notes, and reference information. Chapters 7 and 8 also include commands, command patterns, and examples of usage.

The layout of each section and the meaning of each element are explained below.

Header icon

The shading of the icon
varies according to the
content of that section.

From overview to
startup

Tutorial

Command expla-
nation

Appendix

Intermediate
title

Summary

This is an intro-
duct ion to the
section in ques-
tion.

Subtitle

Main text

T h i s i n d i c a t e s
where related in-
formation can be
referenced.

Reference
symbol

These indicate the
keys that are to be
pressed. Those that
are not enclosed are
keys that are used for
option commands or
local commands.

Keys

36

4 Debugging Tutorial

This section provides an overview of the debugging process and the operating

methods of the C source code debugger, from start to finish, by actually using the

C source code debugger to debug the sample program (SAMPLE.C). Knowledge

of these operating methods combined with a knowledge of the window com-

mands and dialog commands will enable you to operate the C source code

debugger.

4-1 Starting up the C source code debugger

Confirm that the current directory contains the following files. If one of these

files is not contained in the current directory, copy the file from the master disk.

PICE103.EXE C source code debugger 10300

PINS103.EXE Environment setup utility

ENV103.TXT Type definition file

PICE103.MAC Macro command definition file

PICE103.MES Message file

PT103.HLP Help file for the C source code debugger 10300

MON103.EX In-circuit emulator monitor program file

SAMPLE.EX Executable file of the sample program

SAMPLE.C............... Sample program source file

STARTUP.ASM Sample program startup routine source file

To start up the C source code debugger, input the following as an MS-DOS

command:

PICE103 -NOTARGET ↵

When this command is input, the C source code debugger startup screen ap-

pears. Specify “-NOTARGET” when there is no target system connected.

This example assumes that there is about 500KB of available space

in main memory.

Debugging Tutorial

Notes

< About This manual-1>

Command

This shows the spe-
cific command pat-
tern.

On-the-fly function

Command
pattern

Command
definition

Footer
This indicates the
type of each com-
mand.

■ Finding Information

This manual allows you to find information quickly by one of four methods:

(1) To find the beginning of each chapter, refer to the index at the beginning.

(2) To find the titles, refer to the Table of Contents at the beginning.

(3) Chapter titles are indicated at the top of right-hand pages, while intermediate titles are indicated

at the bottom of each page. These can be used to get a quick idea of the content of each section

of the manual as you flip through the pages of the manual.

(4) To find a command, refer to the index at the end of the manual. A command index is also

indicated on the edge of each right-hand page; this index can be used to find the desired com-

mand as you flip through the pages of the manual.

1337. Dialog Commands

Event-Related Commands

BPA Set AND break

BPA <list>

This command sets an AND break.

The hardware break events specified in <list> become AND conditions.

Once all of the conditions are satisfied, a break occurs.

Specify up to eight break event numbers in <list>, delimited by commas.

If an AND break is set while a program is running, it becomes valid immedi-

ately. To cancel an AND break, execute the BD or BC/EC command on one of

the break events set as part of the AND break.

B

B P A <list>

Example
>bp
 No. Sadr - Eadr st. Data/Symbol Sz Cnt Command
E 1 80000039 SF _0main 1
E 2 00000100 RW @0xxxx100 - 1
E 3 00000800 RW _i - 1
E 4 80000058 EX _0cnt60 1
>bpa 2,3
>bp
 No. Sadr - Eadr st. Data/Symbol Sz Cnt Command
E 1 80000039 SF _0main 1
E 2 (&) 00000100 RW @0xxxx100 - 1
E 3 (&) 00000800 RW _i - 1
E 4 80000058 EX _0cnt60 1
>

Break event Nos.
2 and 3 form
an AND break.

Reference: The base used in <list> is assumed to be decimal regardless of the N

command specification. If “0x” is added, the base is hexadecimal.

On-the-fly
functionNO INFLUENCES

This is an index for
all of the commands.

Command index

Commentary

Explains the under-
lined portions.

Reference
information

This label On-the-fly
function appears

if the command can be
used with the on-the-fly
function.

< About This manual-2>

< About This manual-3>

■ Related Manuals

In addition to this manual, Panasonic also provides the following manuals for related products:

"MN103S00 Series Instruction Manual"

<Describes the instruction set>

"MN10300 Series Cross-assembler User's Manual

<Describes the assembler syntax and notation>

"MN10300 Series C Compiler User's Manual: Usage Guide"

<Describes the installation, the commands, and options of the C Compiler>

"MN10300 Series C Compiler User's Manual: Language Description"

<Describes the syntax of the C Compiler>

"MN10300 Series C Compiler User's Manual: Library Reference"

<Describes the the standard library of the C Compiler>

"MN10300 Series C Source Code Debugger for Windows(R) User's Manual"

<Describes the use of the C source code debugger for Windows>

"MN10300 Series Installation Manual"

<Describes the installation of the C compiler, cross-assembler and C source code debugger and the

procedure for bringing up the in-circuit emulator>

■ Contact Information

If you have any comments or questions concerning this manual, contact the nearest Semiconductor Design Center.

Refer to the list at the back of this manual for addresses, etc.

CONTENTS

Chapter 1 C Source Code Debugger Overview

Chapter 2 C Source Code Debugger Configuration

Chapter 3 Connections and Startup

Chapter 4

Chapter 5

Characteristic C Source Code Debugger

Functions and Their Usage

C Source Code Debugger Startup Method

and Options

Chapter 6 Window Commands

Chapter 7 Dialog Commands

Chapter 8 Macro Commands

Chapter 9 Appendix

Index

0
1
2
3
4
5
6
7
8
9
10

< Contents - 2 >

Chapter 1 C Source Code Debugger Overview

1 C Source Code Debugger Overview ... 2

2 Notes on Use .. 13

2-1 Hardware Notes .. 13

2-2 Software Notes .. 14

2-3 ROM, RAM .. 14

2-4 Program Execution ... 14

2-5 Breaks ... 15

2-6 Tracing ..15

2-7 On-the-fly .. 16

2-8 Miscellaneous ...16

Chapter 2 C Source Code Debugger Configuration

1 Hardware List .. 18

2 Descriptions of Each Device .. 19

2-1 In-circuit Emulator ... 19

2-2 C Source Code Debugger 10300 Floppy Disk 20

Chapter 3 Connections and Startup

1 Installing the Interface Board .. 22

1-1 Installation in the PC-9800 Series .. 22

1-2 Installation in the PC-98 NOTE Series 23

1-3 Installation in the PC/AT (DOS/V) Series 23

2 Connection Procedure ... 24

2-1 Connection Procedure .. 24

3 Host Computer Settings .. 26

3-1 Starting up the Installer .. 27

3-2 Debugger Test Startup ... 29

4 Power On/Off ... 30

CONTENTS

< Contents - 3 >

Chapter 4 Characteristic C Source Code Debugger Functions

and Their Usage

1 Overview of Window Display ... 32

2 Debugging Work Flow ... 33

3 Creation of Executable Files .. 34

4 Debugging Tutorial .. 36

4-1 Starting up the C source code debugger 36

4-2 Help .. 38

4-3 Loading executable files ... 40

4-4 Screen control/file handling .. 42

4-5 Program execution and break .. 44

4-6 Memory referencing ... 47

4-7 Subprocesses ... 49

4-8 Macro commands ... 51

4-9 Exiting the C source code debugger 52

4-10 Program completion (gaining familiarity with

C source code debugger operation) .. 53

Chapter 5 C Source Code Debugger Startup Method and Options

1 C Source Code Debugger

Startup Method and Options .. 56

Chapter 6 Window Commands

1 Window Displays ... 62

2 Window Commands ... 66

2-1 Screen control .. 66

2-2 Execution/Breaks ... 70

2-3 Getting/selecting strings ... 72

2-4 File display .. 74

2-5 Process control/RAM monitor ... 77

2-6 Shell functions ... 78

2-7 Memos .. 82

2-8 Other window commands ... 83

< Contents - 4 >

3 Data Reference Functions .. 84

3-1 Inspect function .. 84

3-2 Struct and Union Inspection ... 88

3-3 Local commands within the Inspect window 89

3-4 Watch functions .. 92

3-5 View function .. 93

Chapter 7 Dialog Commands

1 Rules for Using Dialog Commands ... 96

1-1 Conventions used in command explanations 96

1-2 Command input format ... 96

1-3 Symbols in the C source code debugger 97

1-4 Numbers in the C source code debugger 100

1-5 Operational expressions... 104

1-6 Data Expressions at the C Language Level 106

Command Index

2 Program Loading/Execution .. 112

L/LP (Load executable file) ... 114

RD (Read file into memory) .. 115

WR (Write to file) .. 116

T (Single-step execution of user program) 117

P (Function step execution of user program) 119

G (Execute user program) .. 121

RESET (Reset user microprocessor) 123

3 Event-related Commands .. 124

EV (Set/display event) .. 127

BP (Set/display break event) .. 130

BPA (Set AND break) .. 133

BPS (Set sequential break) .. 134

BC/EC (Cancel break event) .. 136

BD (Temporarily disable break event) 137

< Contents - 5 >

BE (Enable break event) .. 139

4 Other Hardware-related Commands ... 141

TM (Set/display trace mode) ... 142

TG (Start trace) .. 146

TS (Stop trace) ... 147

TD/TDU (Display trace) .. 148

TDW (Display trace window) .. 151

TI (Measure/display execution time) 153

TRIG (Set/display trigger) ... 156

MAP/EX (Assign memory) .. 158

5 Performance Measurement ... 160

SM (Set/release sample area) .. 161

PROF (Tabulate access status) ... 164

6 Data Display/Change ... 166

D (Display dump of contents of memory) 167

E (Change specified memory contents) 169

C (Compare specified memory contents) 171

F (Fill specified range of memory with data value) 172

M (Block transfer of specified range of memory) 174

S (Memory pattern search) ... 175

R (Display/change register value) .. 177

H (Display expression operation results) 179

PRINTF/PF (Display format) ... 180

X (Display currently registered symbols) 182

. (Register/change/delete symbol) .. 184

7 Code Display/Change .. 186

V (Display source lines from specified position in Code

window) .. 187

U (Display disassembled code) .. 188

A (Input assembly language line) ... 190

K (Back trace) ... 191

8 Watch Display .. 192

INS (Inspect) .. 193

W (Register watch) .. 195

< Contents - 6 >

VAL/? (Evaluate C expression) .. 197

Y (Delete watch) .. 199

9 System Control Commands ... 200

Q/EXIT (Quit C source code debugger) 201

HELP (Display help screen) ... 202

! (Execute subprocess) ... 203

!!/! (Display/search history) ... 205

10 Other Commands .. 206

CLS (Clear Command window screen) 208

HOME (Move cursor to home position) 208

LIST (Specify display output) ... 209

NLIST (Suppress display output) ... 209

BEL (Sound beep) .. 210

TIME (Display current time) .. 210

WAIT (Wait) .. 211

PRMPT (Change prompt) ... 211

* (Comment) ... 212

> (Output log) ... 213

< (Batch) ... 214

MEM (Display/register/delete memo) 215

N (Change input format base) .. 216

OPTION (Set option) .. 217

Chapter 8 Macro Commands

1 Macro Command Overview ... 220

1-1 Macro function .. 220

Command Index

2 Macro Commands ... 222

{<> <>} .. 223

[] .. 225

DO{ }WHILE (Macro control execution 227

FOR{ } (Macro control execution .. 228

< Contents - 7 >

WHILE{ } (Macro control execution 229

REPEAT{ } (REPEAT {..} Macro control execution 230

BREAK (Exit macro .. 231

LALL (Macro display output specification 232

SALL (Macro display suppression specificationj 233

MLIST (Display macros .. 234

KILL (Delete macro .. 235

IF{ } (Conditional execution .. 236

KEYIN (Specify input from the keyboard 237

Chapter 9 Appendix

1 In-circuit Emulator Specifications .. 240

1-1. Functional Specifications .. 240

1-2. Electrical Specifications .. 241

1-3. Environment Specifications .. 241

1-4. External Dimensions .. 241

1-5. Target Interface .. 242

2 Interface Board Switch Settings .. 243

2-1. When the Host Computer is the PC-9800 Series 243

2-2. When the Host Computer is the PC-98 NOTE Series 245

2-3. When the Host Computer Is a PC/AT (DOS/V Series)

Machine .. 247

3 Special Notes on the Probe ... 248

3-1. Electrical Specifications .. 248

3-2. Environment Specifications .. 248

4 C Source Code Debugger Error Messages 249

5 Quick Reference .. 260

5-1. Window Commands ... 260

5-2. Dialog Commands .. 264

6 Supplement for the PC/AT (DOS/V) Version ... 273

6-1. Screen Operations .. 273

6-2. Data Change/Reference Commands 274

6-3. Process Control Commands ... 274

6-4. Shell Commands ... 275

6-5. Other Window Commands .. 275

< Contents - 8 >

Symbols ... 278

Alphabetic .. 278

Chapter 1
C Source Code Debugger
Overview

1. C Source Code Debugger
Overview

2. Usage Precautions

2

1 C Source Code Debugger Overview

C Source Code Debugger Overview

PC-9800 Series

At least 500K

MS-DOS Ver. 3.x or later

One standard personal computer
expansion slot

I/O system

PC/AT Series
(DOS/V-compatible machine)

At least 500K

MS-DOS Ver. 6.2

One standard personal computer
expansion slot

I/O system

Host computer

Memory

OS

Slot

Interface systems

C Source Code Debugger Operating Environment

31. C Source Code Debugger Overview

Overview

The C Source Code Debugger and the In-circuit Emulator are integrated Develop-

ment Tools for Panasonic’s MN10300 Series 32-bit microcomputers. The In-

circuit Emulator consists of the main unit and the emulator controller. Because

the emulator’s control circuits are implemented on a single chip, it was possible to

greatly reduce the size, weight, and power consumption of the emulator.

The control software (the Debugger) permits efficient debugging of C and assem-

bly programs at the source level. The Debugger also offers sophisticated func-

tions and excellent operability with multi-window display, macro functions,

multi-job functions, various break functions, memory emulation functions, trace

functions, and EMS memory support.

Software Overview

Multi-window

Five windows (Code, Register, Watch, Command and Option) can be displayed

simultaneously. Excellent operability is provided through a wide variety of op-

eration functions including pop-up menus, window commands and dialog com-

mands.

C Source Code Debugger Overview

4

Source level debugging

The software permits source level debugging of C and assembly programs. (Fea-

tures include specification of breaks by line numbers in the source code, referenc-

ing/changing variables specified in the source listing, and step execution at the

source level).

Macro function

The software provides a powerful macro function (language) that supports control

structures (if, for, while, do, break, etc.) similar to those found in C. The macro

function can be used to define new commands that are combinations of multiple

commands, and to perform debugging work efficiently when combined with the

break function.

Multi-job function

This function makes it possible to execute (and then return from) an MS-DOS

command with a single keystroke at any time during debugging work from within

the C Source Code Debugger.

Event function

This functions sets up triggers for hardware breaks, trace functions, and time mea-

surement functions. The In-circuit Emulator continually monitors for the occur-

rence of events without halting user program execution.

There are two types of events:

(1) Execution address event

In this case, an event is generated on the basis of the address of the instruction

that was executed. Conditions can be set, such as a specified address range or

a count of the number of passes through an address.

(2) Data event

In this case, an event is generated on the basis of the data that was accessed.

Conditions can be set, such as a specified address range, specified data, access

width, match/no match, or a count.

Events that are conditions for break functions are called “break events;” events

that are conditions for starting or stopping tracing are called “trace events;” and

events that are conditions for starting or stopping time measurement are called

“time measurement events.”

C Source Code Debugger Overview

51. C Source Code Debugger Overview

Break functions

These functions halt user program execution.

(1) Software break

Software breaks are implemented by the Debugger by inserting PI codes

(0xff) into the user program. Therefore, these breaks can only be set in writ-

able program areas; they cannot be set in data areas and the target ROM space.

In addition, because software breaks halt program execution before the in-

struction in the address where the break was set is executed, it is not possible

to set conditions such as a specified address range or a count of the number of

passes through an address.

(2) Hardware breaks

This type of break halts execution when an event occurs. Program execution

does not actually stop until several instruction cycles after the event.

(3) AND breaks

AND breaks halt program execution once all of the specified events occur,

regardless of the sequence in which they occur.

(4) Sequential breaks

Sequential breaks halt program execution once the specified events occur in

the specified sequence.

(5) Trace full break

This type of break halts program execution when the trace memory becomes

full.

(6) Forced break

This function forcibly halts execution of the user program when the ESC key

on the host computer is pressed.

C Source Code Debugger Overview

6

Memory Emulation Function

This function emulates a microprocessor’s internal instruction memory (ROM/

RAM) space and the target memory (extended RAM) space with the memory

(called “emulation memory”) in the In-circuit Emulator. There are two types of

emulation memory:

(1) Emulation ROM

This is readable/writable memory (RAM) that emulates the microprocessor’s

internal ROM (including internal instruction RAM). In the In-circuit Emula-

tor, 256K of RAM is installed (fixed addresses from 0x40000000 to

0x4003FFFF) for use as emulation ROM. Note that emulation ROM is valid

only in modes that can use internal ROM (internal instruction RAM), such as

when the microprocessor’s memory mode is single chip mode or extended

mode; emulation ROM cannot be used in processor mode.

C Source Code Debugger Overview

0xC0000000

0x80000000

0x40000000

0x20000000

0x00000000

0x40000000

Total: no more than 1MBExtended RAM

Internal ROM

Internal RAM

 256Kbyte

Microprocessor memory space
(extended mode)

Emulation memory in
In-ciruit emulator

Internal RAM space and
special registers use space
within the microprocessor

Emulation RAM

Emulation ROM (readable/writable)

))

)
)

Access prohibited

Fixed address

71. C Source Code Debugger Overview

(2) Emulation RAM

This is memory (RAM) that emulates memory (extended RAM) in the target.

The In-circuit Emulator has two sets of 512K of emulation RAM (for a total of

1MB). One set is used for high-speed dedicated memory, and can operate

with no wait cycles with an external bus cycle of up to 20MHz (50nsec). The

other set can operate with no wait cycles with an external bus cycle of up to

12MHz (approximately 83nsec).

Emulation RAM permits allocation of ranges of addresses (blocks) in the

microprocessor’s extended RAM space (0x80000000 to 0xBFFFFFFF in ex-

tended mode, and 0x40000000 to 0xBFFFFFFF in processor mode). When an

address in the shaded portion of the extended RAM space in Fig. A is ac-

cessed, the emulation RAM in the emulator is accessed. This allocation of

emulation memory to a portion of the microprocessor’s memory space is

called “mapping.” A continuous segment of mapped memory is called a

“block.” With this emulator, a maximum of eight blocks can be mapped.

The size of one block can be selected as either 4K, 8K, 16K, 32K, 64K, 128K,

256K, 512K, or 1024K. The address boundaries of blocks must coincide with

boundaries for that unit of memory space. For example, if one block is 64K,

that block must fall on a 64K boundary in memory.

The aspect of the mapping process that requires the most attention is matching

the block size with the boundaries. For example, consider Fig. B, where a

continuous 64K space is to be mapped, starting from address 0x80002000

(which is an 8K boundary). Because the block boundary and the block size

must match, an 8K block must be mapped from address 0x80002000. Be-

cause address 0x80004000 is a 16K boundary, a 16K block must then be

mapped from that address. In the end, as shown in the Fig. B, four blocks are

actually used in order to allocate this 64K block. Thus, depending on the

addresses to which memory is being allocated and the amount of memory

being allocated, two or more blocks are sometimes required even though the

memory space is continuous.

C Source Code Debugger Overview

8

If there are not enough mapping blocks, then in the above example, the shortage

can be relived by mapping the space from 0x80000000 to 0x8001FFFF (128K)

with a single block, as shown in Fig. C. Finally, note that with the In-circuit

Emulator, it is not possible to map internal RAM or special registers to emulation

RAM, since these use the microprocessor’s internal resources. [☞ MAP/EX

Command]

C Source Code Debugger Overview

Memory Emulation RAM
in the emulator

Extended RAM space

Memory on the target is
accessed for the space
that is not allocated to
emulator RAM

Allocates a part of the1Gbyte space
in the emulation RAM
(no more than toal of 1M)

Block1

Block2

Block3

Block4

Block5

Fig A

0x80002000 0x80000000

0x80004000

0x80008000

0x80010000

0x8001FFFF

Block 1

Block 0

Block0

8K

16K

32K

128K8K

Total: 64K
(logical block）

Block2

Block 3

Fig. B

Fig. C

))
physical block

91. C Source Code Debugger Overview

Trace Function

This function makes it possible to view the execution path of the user program.

The data that is traced includes execution addresses, data addresses, data values,

and the bus status. Data addresses and data values can be switched between the

microprocessor’s internal bus (the CPU core bus) and the external bus. The fol-

lowing modes can be selected to establish the trace storage conditions and the

trace halt conditions.

- Trace storage conditions

(1) Normal trace (default)

In this mode, all of the microprocessor’s execution cycles are traced. Up to

16K steps can be traced.

(2) Branch trace

In this mode, only branch instructions are stored in trace memory, and the

software compensates for the portions between branch instructions. As a re-

sult, this mode makes it possible to trace longer than in normal mode. How-

ever, no tracing information is displayed from the time when tracing starts

until the first branch instruction is encountered.

(3) Conditional trace

In conditional trace mode, tracing is performed only while a specified event is

true.

- Trace halt conditions

(1) Trace continue mode (default)

In this mode, tracing continues until the user program halts, even if trace

memory becomes full. When execution of the user program halts, the last 16K

steps remain as trace data.

C Source Code Debugger Overview

Event true
Flow of User program

16 K step

Flow of
user program

execution starts

16 K step

User program stop

10

(2) Trace full halt mode

In this mode, tracing begins when user program execution begins (or re-

sumes), and continues until trace memory is full (16K steps). The user pro-

gram does not halt even if tracing is halted.

(3) Delayed trigger trace

In this mode, once a specified event occurs, tracing halts after a specified

number of steps. This mode can be used to monitor the execution status of a

program before and after the occurrence of an event.

Time measurement function

This function measures the execution time of a user program. The following

modes are available.

(1) Continuous measurement mode

This mode measures the time from the point when user program execution

begins (or resumes) to the point when it halts.

(2) Partial measurement modes

These modes measure the time from the occurrence of one event until the

occurrence of another event. There are two partial measurement modes.

FIRST mode: This mode measures the time between two events only

for the first time.

MIN/MAX mode: This mode always measures the time between two

events, and then determines the minimum and maximum

times.

Flow of
user program

event occurs
trace stop

delay count

16 K step

C Source Code Debugger Overview

Flow of
user program

execution starts
　　　

16 K step

trace stop

111. C Source Code Debugger Overview

Profile function

This function measures how much time each function (subroutine) consumed dur-

ing user program execution.

RAM monitor function

This function monitors accesses to data RAM by the In-circuit Emulator and dis-

plays the contents of data RAM on the screen, all without halting user program

execution.

On-the-fly function

This function can be used to set break events, set and display tracing, and refer-

ence and change memory, all without halting user program execution. These ca-

pabilities make it possible to debug programs without halting the operation of the

target CPU.

[☞ 2-7 On-the-fly]

Inspect function

This function makes it possible to reference or change variables, arrays and bit

values in a format that reflects the data structure of the variables, just by specify-

ing the source file variables, arrays and bit values displayed in the Code window.

C Source Code Debugger Overview

12

EMS memory support

The C Source Code Debugger allocates work areas in EMS memory for the main

body of the debugger, debugging information areas, etc. This ability makes it

possible to debug even programs that have large amounts of debugging informa-

tion.

Overlap function

With this function, only the barest minimum of essential functions for executing

the debugging program reside in main memory; the main body of the C Source

Code Debugger and the work areas are saved to DOS files or EMS memory. This

overlap function is used in order to make it possible to debug very large programs.

In order to use this function, specify the -F or -FEMS options when starting up the

C Source Code Debugger.

Other functions

History function, Template function, Logging/Batch function, Help function

EMS memory

Real mode Overlap mode
Purgeable area

File

EMS memory

Debug areaDebug area

C source code
 debugger main unit

about 100K

about 500K
Work area Resident area

Debug information
 area

-FEMS

-F

-B

640K

C Source Code Debugger Overview

131. C Source Code Debugger Overview

2
2-1. Hardware Notes

Notes concerning the use of the In-circuit Emulator in debugging work are

indicated below.

• The tip of the probe is manufactured with extreme precision. Handle it care-

fully so that it is not subjected to any impacts.

• Do not touch any of the boards inside the In-circuit Emulator, the interface

board, etc.

• Only separately excited oscillation can be supported when using oscillation

signals from the target (OSC, XI).

The In-circuit Emulator will not operate normally in the following cases:

• When the clock is supplied from the target, and the level of the clock wave-

form is inadequate or there is noise in the clock signal.

• When the target’s power is off.

• When the current capacity of the target power supply is inadequate.

• When the bus request signal from the target remains active for more than a

certain period of time (approximately 0.1 seconds).

• When the target hardware is not operating normally.

Notes on Use

Notes on Use

14

2-2. Software Notes

• Before using the software, make a backup of the C Source Code Debugger

floppy disk. Copying this floppy disk is permitted only for maintenance and

archival purposes. To copy the disk, use the DISKCOPY command or COPY

command in MS-DOS.

2-3. ROM, RAM

• Only eight blocks out of the 4GB address space can be allocated to emulation

memory. The total size of the eight blocks of memory must not exceed the

size of the memory installed in the In-circuit Emulator (1MB standard). Each

block can be set so that it starts and ends in units of 4K of memory.

• Operation is not guaranteed if data accesses to special register areas are not

performed with the correct access data size and address boundaries.

2-4. Program Execution

• Programs cannot be executed (including single-step and function-step execu-

tion) while the microprocessor is in STOP, HALT, or SLEEP mode.

[☞ G Command, T Command, P Command]

• The stack pointer (SP register) value must always be set so that its value is a

multiple of four.

• The correct value is not displayed when the In-circuit Emulator measures the

execution time (TI command) during single-step or function-step execution.

Notes on Use

151. C Source Code Debugger Overview

2-5. Breaks

• If a software break is set in other than an op-code, the value of the operand is replaced

with the PI code (0xff).

• Because software breaks halt execution before the instruction where the break was

set is executed, the pass count specification cannot be made.

• Hardware breaks halt execution after executing as many as nine instructions after

executing the instruction for which the break event was set. The actual number of

instructions that are executed after the break but before execution stops depends on

the specific combination of instructions involved.

2-6. Tracing

• The contents of trace memory are cleared if single-step or function-step execution is

performed.

• When fewer than 16K steps were traced, the first instruction that was executed when

tracing started might not be included in the trace information.

• When the “trace full” break is used, the last several instructions immediately before

the user program was halted might not be included in the trace information.

• A disassembled display of the trace information is not possible when the micropro-

cessor is in STOP, HALT, or SLEEP mode, or if the user target has initiated a reset.

• If the contents of the microprocessor’s internal instruction RAM is overwritten while

trace information is being collected or after trace information has been collected, the

disassembled display of the trace information from the microprocessor’s internal in-

struction RAM space will not be correct.

• If an event setting is changed while using the delayed trigger trace, the trace function

will operate incorrectly.

Notes on Use

16

2-7. On-the-fly

• If the contents of memory are referenced or changed (including a disassembled dis-

play) while a user program is being executed, program execution is halted momen-

tarily. (For a one-byte access to emulation memory, program execution is halted for

a maximum of 14 machine cycles; for a one-byte access to the microprocessor’s in-

ternal special registers, internal data RAM, internal instruction RAM, or external

memory in the target, program execution is halted for a maximum of 150 machine

cycles.)

• While a user program is executing, the microprocessor is in STOP, HALT, or SLEEP

mode, or during a reset initiated by the user target, it is not possible to reference or

change the microprocessor’s internal special registers, internal data RAM, internal

instruction RAM, or external memory in the target, nor is it possible to display disas-

sembled trace information.

• If an event setting is changed while a user program is executing, all “event true” flags

that were set up to that point are cleared.

• If a break is set while a user program is executing, there may be a time differential

between the occurrence of the cause of the break and the point when program execu-

tion breaks.

• Following three icons are used for quick reference of the on-the-fly function.

:No limitation on command functions.

 No influences on the program execution.

:No limitation on command functions.

 Some influences on the program execution.

:On-the-fly function cannot be used.

2-8. Miscellaneous

• If the measured execution time is long, a slight amount of error may begin to creep in.

• If using handshake mode, the In-circuit Emulator does not generate an acknowledge

signal when the microprocessor accesses an external memory space. Therefore, it is

necessary for the user to include a circuit (or other mechanism) that generates an

acknowledge signal in all external memory spaces that will be used.

Notes on Use

INFLUENCES

NO INFLUENCES

CANNOT BE USED

Chapter 2
C Source Code Debugger
Structure

1. Equipment List
2. Equipment Description

18

1

Hardware List

Hardware List

The development environment is configured from the following devices. Confirm

that all of this hardware is provided before using this system. If any components are

missing or damaged, contact our sales office.

C Source Code 10300 Floppy disk Micro Driver

Emulator Controller

In-circuit Emulator DIL Conversion Board

QFP Adapter Flat-DIL Conversion Board Dummy Adapter

Surface Mount Socket Socket Cover Interface Board

 34-wire Flat Cable Option Probe Manual

(C Source Code Debugger Installation)

192. C Source Code Debugger Configuration

2

Descriptions of Each Device

Descriptions of Each Device

2-1. In-circuit Emulator

■ LED Display

There are three LEDs on the In-circuit Emulator main unit. Their functions

are described below.

Red (MEMV): This LED lights when power is being supplied to the In-

circuit Emulator main unit. Note that the power for the In-

circuit Emulator is supplied from the Emulator Controller.

Yellow (TVDD): This LED lights when the power is being supplied to the

target (microprocessor).

Green (RUN): This LED lights when the user program is executing.

In-Circuit Emulator Main Unit - Bottom View

In-Circuit Emulator Main Unit - Side View 1

In-Circuit Emulator Main Unit - Side View 2

TRIGOUT

RUN TGT
PWR

ICE
PWR

CONTROLLER

20

■ Option Probe Connector (TRIGOUT)

This is the connector for the external trigger output.

2-2. C Source Code Debugger 10300 Floppy Disk

Before using the software, make a backup of the C Source Code Debugger

floppy disk. Copying this floppy disk is permitted only for maintenance and ar-

chival purposes.

To copy the disk, use the DISKCOPY command or COPY command in MS-

DOS.

Files on the floppy disk

(1) PICE103.EXE C Source Code Debugger 10300 main pro-

gram

(2) PINS103.EXE Environment setting utility (Installer)

(3) ENV103.TXT Model definition file

(4) PICE103.MAC................. Macro instruction definition file

(5) PICE103.MES Message file

(6) PT103.HLP C Source Code Debugger 10300 help file

(7) MON103.EX In-circuit Emulator Monitor Program File

(8) SAMPLE.EX Executable sample program file

(9) SAMPLE.C Sample program source file

(10) STARTUP.ASM Sample program startup routine source file

Descriptions of Each Device

Chapter 3
Connection and Booting

1. Interface Board Installation
2. Connection Procedure
3. Host Computer Settings
4. Power ON/OFF

22

1

Installing the Interface Board

Installing the Interface Board

The interface board is installed in the host computer as described below.

Set the switches on the interface board before installing it in the host computer.

[☞ Chapter 9, section 2, Interface Switch Settings]

1-1. Installation in the PC-9800 Series

(1) Before beginning, turn the computer off.

(2) Remove the cover from an expansion slot on the rear of the computer.

(3) Connect a 34-wire flat cable to the connector (CN2) on the top side of

the interface board.

(4) With the components on the board facing up, align the board with the

card guide grooves and then push the board firmly into the slot until it

clicks into place. Then pull gently on the board to make sure that it

does not come out.

233. Connections and Startup

1-2. Installation in the PC-98 NOTE Series

(1) Before beginning, turn the computer off.

(2) Tighten the two screws on the interface board and then pull gently on

the board to make sure that it does not come out.

(3) Connect a 34-wire flat cable to the connector (CN2) on the interface

board.

1-3. Installation in the PC/AT (DOS/V) Series

(1) Before beginning, turn the computer off.

(2) Remove the top cover.

(3) With the board’s connector facing down, push the connector into the

connector inside the computer until the connector is fully seated. Then

pull on the board gently to make sure that it does not come out.

(4) Connect the 34-wire flat cable to the connector on the interface board.

�

Connection Procedure

24

2

Connection Procedure

Connection Procedure

The host computer is connected to the Emulator Controller via a 34-wire flat

cable. One of the connectors on the In-circuit Emulator main unit is for connec-

tion to the Emulator Controller. The In-circuit Emulator also has a connector

(TRIGOUT) for the trigger output.

2-1. Connection Procedure

After confirming that all devices are off, perform the following proce-

dure.

1. Connect the other end of the 34-wire flat cable (1.5m) that is connected

to the interface board to the HOST I/F connector on the Emulator Con-

troller.

2. Connect the ICE MODULE connector on the Emulator Controller to the

CONTROLLER connector on the In-circuit Emulator main unit.

[☞ “MN10300 Series PanaX Series Installation Manual”]

3. Attach the dummy adapter (PRB-EX-DMY103XXX) to the In-circuit

Emulator main unit. (Do this step only when installing the debugger so

that the In-circuit Emulator can run on a standalone basis without con-

necting a target.)

253. Connections and Startup

3 Host Computer Settings

After connecting the equipment, set up the environment for the control soft-

ware (debugger).

Environment variable settings

The C Source Code Debugger references the following environment vari-

ables. If any of these variables need to be set, use the MS-DOS SET command.

PATH : If COMMAND.COM, MON103.EX, PICE103.MES, or

PICE103.MAC is not found in the current directory, the C

Source Code Debugger searches for them in the directories in-

dicated by PATH.

HELP : If the help file (PT103.HLP) is not found in the current direc-

tory, the C Source Code Debugger searches for it in the direc-

tory indicated by HELP.

PANASRC : This specifies the directory where the source file for the ex-

ecutable file that is being debugged is stored. The L and V

commands, for example, display the source files in the direc-

tory indicated by PANASRC. If PANASRC is not set, the

source files in the current directory are displayed.

TMP/TEMP :This specifies the directory where the C Source Code

Debugger work files are stored. In order to shorten the

debugger’s internal processing time, it is recommended that

this directory be set up in a RAM disk area.

If TMP/TEMP is not set, work files are created in the current

directory.

Host Computer Settings

26

3-1. Starting up the Installer

1. Turn on the host computer.

2. Connect the AC cable for the emulator controller to a 100V AC power

source, and turn on the power switch.

3. When the computer is waiting for command input, input PINS103 ↵ .
Set the following items.

(1) I/F Board Select

Select the interface method between the host computer and the in-

circuit emulator.

(2) I/F Port Address

Specify the I/O address that was set by a rotary switch on the inter-

face board. Use the arrow keys to specify the low-order address

and the SHIFT+arrow keys to specify the high-order address.

[Rotary switch ☞ Chapter 9, section 2]

(3) CPU Select

Use the arrow keys to select the CPU being used.

(4) Memory Mode

Use the arrow keys to select the memory mode.

(5) Bus Size

Use the arrow keys to select the microprocessor bus size.

(6) SP setting Reset Start

Input the initial value for the stack pointer. (It must be set to an

address for which physical memory is installed.)

After setting the above six items, press the ESC key to quit the

Installer.

Host Computer Settings

273. Connections and Startup

After the Installer has been run, the environment settings file

(PICE103.ENV) is created. This file is loaded when the C Source

Code Debugger is started up. Be careful to avoid deleting this file

accidentally or otherwise changing its contents.

Host Computer Settings

28

3-2. Debugger Test Startup

4. With the system waiting for an MS-DOS command to be input

Input “PICE103 -NOTARGET ↵ ”. Once the screen is displayed and

Debugger startup has been confirmed, input “Q ↵ ” to quit.

• Specify the “-NOTARGET” option only when the In-circuit Emula-

tor is being used on a stand-alone basis.

Never specify this option when a target system is connected to

the In-circuit Emulator.

In the worst case, the In-circuit Emulator main unit could be dam-

aged as a result.

• When the C Source Code Debugger is started up, the PICE103.ENV

file that was created in item 3 is loaded, as is the In-circuit Emulator

monitor file (MON103.EX), the message file (PICE103.MES), and

the macro instruction definition file (PICE103.MAC). If

MON103.EX, PICE103.MES, and PICE103.MAC are not found in

the current directory, they are searched in directories specified by the

environment variable PATH. Note that the PICE103.ENV file must

be placed in the current directory.

[C Source Code Debugger Startup Method/Startup Options

☞ Chapter 5, section 1]

Host Computer Settings

293. Connections and Startup

4 Power On/Off

Turn the power on in the following sequence: host computer, target system,

and Emulator Controller. This sequence will prevent overcurrent from flowing in

either direction. Note that the In-circuit Emulator is particularly vulnerable to

damage from overcurrent.

When using the In-circuit Emulator on a standalone basis (with no target sys-

tem connected), simply turn on the host computer first and then the Emulator

Controller.

When turning off the power, do so in the reverse sequence (Emulator Control-

ler, target system, and then host computer).

Power On/Off

30

Chapter 4
Characteristic C Source Code
Debugger Functions and Their
Usage

1. Overview of Window Display
2. Debugging Work Flow
3. Creation of Executable Files
4. Debugging Tutorial

32

1

Overview of Window Display

Overview of Window Display

The C source code debugger provides five windows (Watch, Code, Com-

mand, Register, and Option) that display information that is required for debug-

ging work.

[☞ Chapter 6-1, "Window Displays"]

(1) Watch window

Displays user-specified variables and the contents of memory.

(2) Code window

Displays source code or a combination of assembly and source code.

(3) Command window

Displays and allows input of dialog commands (key input, macros).

(4) Register window

Displays the contents of the registers and the status of the flags.

(5) Option window

Displays either the Memo, Back Trace, Stack, or Local window.

(2)

(3)

(1) (4)

(5)

334. Characteristic C Source Code Debugger Functions and Their Usage

2

Debugging Work Flow

1. Creation of program

specifications

2. Creation of executable

files (editor, compiler,

assembler, and linker)

↑↓

↓

3. Debugging (debugger)

↓
4. Program completion

Debugging Work Flow

This section uses a simple sample program to describe the work flow of pro-

gram creation, focusing on debugging work, and also describes the basic opera-

tions involved in running the C source code debugger.

A program is designed to serve a specific

purpose. Typical examples include a pro-

gram that is used to add a timer-based re-

cording function to a VCR or a program

that controls the motor in a washing ma-

chine. Normally, these functional speci-

fications determine the program specifi-

cations (algorithms).

Once the program specifications have

been defined, an editor is used to create

(code) the source listing. Once the source

listing has been created, compiling and

linking are performed. If any errors are

generated during compiling and linking,

make the appropriate corrections in the

source listing. In this example, we will

assume that the source listing of the

sample program shown on the following

pages has been created.

[☞ Chapter 4, section 3]

If no errors occur during the compiling

and linking process, debugging work can

begin. Steps 2 and 3 are repeated until the

program is completed.

[☞ Chapter 4, section 4]

34

3 Creation of Executable Files

The sample program (SAMPLE.C) is written in C language. This program is

a simple one that increments the contents of the sec[] variable. sec[0] is

incremented each time the cnt60() function is called. When the value of sec[0]

reaches 10, it is cleared to zero and the value of sec[1] is incremented by one.

sec[1] is also cleared to zero when its value reaches 6. This operation is repeated

continuously.

Refer to the source listing of SAMPLE.C below.

■ Sample program (SAMPLE.C)

Creation of Executable Files

0001

0002

0003

0004

0005

0006

0007

0008

0009

0010

0011

0012

0013

0014

0015

0016

0017

0018

0019

0020

0021

0022

0023

0024

0025

0026

0027

/* MN10300 SERIES C SAMPLE PROGRAM */

/* MN10300 COUNTER PROGRAM */

#define INIT_DISPDATA_L 0x00

#define INIT_DISPDATA_H 0x00

int *i;

struct abc {

int tst1;

int tst2;

};

struct abc test;

int sec[2];

main(){

 struct aaa {

int a1;

int a2;

 }tmp;

initialize();

for(;;){

display();

354. Characteristic C Source Code Debugger Functions and Their Usage

Creation of Executable Files

0028

0029

0030

0031

0032

0033

0034

0035

0036

0037

0038

0039

0040

0041

0042

0043

0044

0045

0046

0047

0048

0049

0050

0051

0052

0053

0054

0055

0056

0057

0058

0059

}

}

initialize(){

init_data();

}

display(){

cnt60();

}

cnt60(){

sec[0]++;

if(sec[0] == 10){

sec[0] = 0;

sec[1]++;

if(sec[1] == 6)

sec[1] = 0;

}

}

init_data(){

test.tst1=0;

test.tst2=0;

sec[0] = INIT_DISPDATA_L;

sec[1] = INIT_DISPDATA_H;

}

The sample program is then compiled and linked, and an executable file is

created.

36

4 Debugging Tutorial

This section provides an overview of the debugging process and the operating

methods of the C source code debugger, from start to finish, by actually using the

C source code debugger to debug the sample program (SAMPLE.C). Knowledge

of these operating methods combined with a knowledge of the window com-

mands and dialog commands will enable you to operate the C source code

debugger.

4-1 Starting up the C source code debugger

Confirm that the current directory contains the following files. If one of these

files is not contained in the current directory, copy the file from the master disk.

PICE103.EXE C source code debugger 10300

PINS103.EXE Environment setup utility

ENV103.TXT Type definition file

PICE103.MAC Macro command definition file

PICE103.MES Message file

PT103.HLP Help file for the C source code debugger 10300

MON103.EX In-circuit emulator monitor program file

SAMPLE.EX Executable file of the sample program

SAMPLE.C............... Sample program source file

STARTUP.ASM Sample program startup routine source file

To start up the C source code debugger, input the following as an MS-DOS

command:

PICE103 -NOTARGET ↵

When this command is input, the C source code debugger startup screen ap-

pears. Specify “-NOTARGET” when there is no target system connected.

This example assumes that there is about 500KB of available space

in main memory.

Debugging Tutorial

374. Characteristic C Source Code Debugger Functions and Their Usage

The upper portion of the screen, the Code window, displays either the C

source code or a disassembled listing of the program.

The lower portion of the screen, the Command window, is used to execute

commands input through the keyboard and to display the results of the execution

of those commands. Characters that are input through the keyboard are displayed

on the screen at the cursor position in the lower left corner of the Command win-

dow.

The bottom line of the screen displays the functions of the ten function keys

(F1 to F10). These function keys can be used to easily execute a program, set a

breakpoint, etc.

Debugging Tutorial

38

4-2 Help

After starting the C source code debugger, the first step is to load the execut-

able file (SAMPLE.EX in this case). However, you do not yet know how to load

a file. In a case such as this, where you do not know how to perform a certain task,

either type:

HELP ↵

or else press the Help key:

The Help screen now appears.

Find the item corresponding to the process that you wish to perform. The item

“LOAD PROGRAM” appears near the middle of the third column. Use the cur-

sor keys to move the cursor (the highlighted item) to the desired item. Select

LOAD PROGRAM by moving the highlighted cursor to LOAD PROGRAM and

then pressing the Return key.

Debugging Tutorial

Displaying the Help screen

HELP or W

[☞ page 202]

394. Characteristic C Source Code Debugger Functions and Their Usage

Debugging Tutorial

The Help screen changes so that the LOAD PROGRAM help screen is dis-

played. This screen indicates that the Load command is:

L [<file name>]

Press the ESC key to return to the original C source code debugger screen.Closing the Help screen

ESC

40

4-3 Loading executable files

Now that we know that the L command is used to load executable files

(SAMPLE.EX in this example), type the following:

L SAMPLE ↵

(If the file extension is omitted from the file specification after the L com-

mand, “.EX” is assumed.)

The Code window display now changes to a display of the STARTUP.ASM

source listing.

The source line highlighted in yellow in the Code window indicates the line

that is currently pointed to by the program counter (PC register).

Debugging Tutorial

Program counter

Loading a program

L <file name>

[☞ page 114]

414. Characteristic C Source Code Debugger Functions and Their Usage

Debugging Tutorial

Next, press the F2 (OptWin) key. A new window appears on the right side of

the screen. The top portion of this new window is the Register window, which

always displays the current contents of the registers.

The bottom portion of this window is used to display one of four windows: the

Local window, the Memo window, the Back Trace window, or the Stack window.

To select one of these windows, hold down the CTRL key and then press the F2

(OptWin) key. (Note that the Local and Back Trace windows can only be dis-

played in C debugging mode.)

Press the F2 (OptWin) key again to close this window. The F2 (OptWin) key

is used to both open and close the window.

Switching the Option window

Ctrl + F2

Closing the Register window

and Option window

F2

Opening the Register window

and Option window

F2

42

4-4 Screen control/file handling

How do you view the portion of the source listing below the bottom of the

Code window?

First, press the HOME key. The cursor in the Command window disappears

and moves to the Code window. Pressing the HOME key again brings the cursor

back to the Command window.

Move the cursor to the Code window (if the cursor is in the Command win-

dow, press the HOME key) and then press the Cursor Down key (↓). The cursor

moves down one line.

Keep pressing the Cursor Down key. The cursor moves down, line by line.

Once the cursor reaches the bottom of the Code window, the Code window dis-

play begins to scroll up. Now press the Cursor Up key (↑). The cursor then moves

up the screen, and once it reaches the top of the Code window, the Code window

display scrolls down. In addition, the ROLL UP and ROLL DOWN keys can be

used to control the Code window display in a fashion similar to most screen edi-

tors.

Next, press the F1 (File) key. The File Select window appears on the screen.

In this example, the SAMPLE.C and STARTUP.ASM files are displayed. When

debugging a program that has more source files, the name of each source file is

displayed in this window. After selecting a file by using the cursor keys to high-

light the desired file name in yellow, press the Return key. The File Select win-

dow then closes and the selected file is displayed in the Code window.

Debugging Tutorial

Selecting a file

<program name> ↵

Moving the cursor between

windows

Home

[☞ page 66]

Moving the cursor down and

scrolling the screen up

↓
[☞ page 66]

Moving the cursor up and

scrolling the screen down

↑
[☞ page 66]

Displaying the File Select

window

F1

[☞ page 74]

434. Characteristic C Source Code Debugger Functions and Their Usage

Debugging Tutorial

Once the Return key has been pressed and the File Select window has been

closed, press the F3 (SrcSW) key. The Code window display switches to a mixed

display of disassembled code and the C source code. This display is useful for

more detailed debugging than is possible with the source listing alone.

Press the F3 (SrcSW) key again. Now the display shows the source code only

again.

You have loaded the executable file (SAMPLE.EX), and now know about the

contents of the windows displayed on the screen. You are now ready to execute

the program.

Displaying the disassembled

code and C source code

F3

[☞ page 69]

44

Debugging Tutorial

Program function step

execution

F10

[☞ page 71]

4-5 Program execution and break

This section explains how to execute a program, and how to set and cancel

breaks.

There are two methods for executing a program one line at a time (“step ex-

ecution”): function step execution and single step execution. First we will try

function step execution. Press the F10 (FncStp) key. The current line (the line

highlighted in yellow) in the Code window moves down one line. This means that

one step has been executed. Press the F10 (FncStp) key several more times. The

current line keeps changing one line at a time.

Now look at the register display in the Register window. (If the Register win-

dow is not displayed on the screen, press the F2 (OptWin) key.) The most recent

register values are displayed each time the F10 (FncStp) key is pressed.

There is another method of step execution. Press the F8 (SglStp) key. The

current line moves in the same fashion as in function step execution. Press the F8

(SglStp) key several more times. The current line then steps sequentially (one

step at a time) through the functions “display()” and “cnt60()”.

(This method is referred to as “single-step execution.”)

Program single-step execution

F8

[☞ page 71]

454. Characteristic C Source Code Debugger Functions and Their Usage

Debugging Tutorial

The difference between function step execution with the F10 (FncStp) key and

single-step execution with the F8 (SglStp) key is whether called functions as a

whole are regarded as one step, or are also executed internally one step at a time.

Next, we will set a break (software break). Move the cursor to the Code win-

dow (if the cursor is currently in the Command window, press the HOME key),

and move the cursor to the 45th line of the SAMPLE.C file. Once the cursor has

been positioned in the 45th line, press the F9 (Break) key. The 45th line is now

underlined. A break has now been set in the 45th line of the source listing.

To delete a break, move the cursor back to the line where breakpoint is set, and

press the F9 (Break) key. The underline disappears, indicating that the break has

been deleted.

Setting/deleting break

(software break)

F9

[☞ page 71]

46

Now we will execute the program by pressing the F5 (Go) key. The program

then stops at the 45th line of the source listing, where we set our break (software

break).

Input the following from the keyboard:

BC* ↵

This command deletes all break events that were set with the dialog command.

Now press the F5 (Go) key again. Because there is no break event set, execu-

tion continues uninterrupted. To interrupt program execution while a program is

running, press the ESC key. This forcibly stops program execution.

Executing the program

F5

[☞ page 70]

Debugging Tutorial

Deleting all break events

B C *

[☞ page 136]

Program forced stop

ESC

[☞ page 71]

474. Characteristic C Source Code Debugger Functions and Their Usage

4-6 Memory referencing

The values of the variables sec[0] and sec[1] are the most important elements

in the sample program. To reference the value of sec, input the following from the

keyboard:

D sec ↵

The following values are displayed in the Command window:

0000000C 0A 00 00 00 00

The contents of sec[0] in address 0x0000000C and of sec[1] in 0x00000010

are displayed in hexadecimal. (sec was declared as type “int”.)

The values indicated above are examples only, and will not neces-

sarily match the actual values.

Input the following from the keyboard:

W? sec ↵

A new Watch window is opened above the Code window, displaying the de-

clared type, address, and value of sec.

Debugging Tutorial

Referencing the contents of

memory in the Command

window

D <address>

[☞ page 167]

Referencing the contents of

memory in the Watch window

W ? <symbol>

[☞ page 195]

48

The data registered for watching is continuously updated and displayed in the

window. As an example, set a break (software break) (using the F9 (Break) key)

in the 45th line of the source listing. Next, execute the program using the F5 (Go)

key. The Watch window is updated. Continue to press the F5 (Go) key; it should

be apparent that the values are updated continuously.

To cancel all Watch windows, input the following from the keyboard:

Y* ↵

All watch windows disappear from the screen.

Debugging Tutorial

Canceling all Watch windows

Y *

[☞ page 199]

494. Characteristic C Source Code Debugger Functions and Their Usage

4-7 Subprocesses

The C source code debugger is equipped with a function that allows another

MS-DOS command to be started up while debugging work is in progress, and

permits immediate switching between that command and the C source code

debugger. In short, it is possible to simultaneously start up the C source code

debugger and another MS-DOS command on one computer and switch between

the two processes with a simple key operation while debugging is in progress. In

the C source code debugger, this second process is called the “subprocess.”

We will now start up a subprocess. To do so, input the following from the

keyboard:

! ↵

This causes the MS-DOS command input screen to appear. While in this

state, MS-DOS commands can be used normally. Use a text editor to open the

SAMPLE.C file that we have been using to practice debugging operations.

If the message “Insufficient Memory” is displayed when shifting to

the subprocess, refer to the C source code debugger startup option

“-B”.

[☞ Chapter 5, Startup Options]

Debugging Tutorial

Starting up a subprocess

!

[☞ page 203]

50

To return to the C source code debugger screen, hold down the CTRL key and

then press the “0” key on the numeric keypad. Next, hold down the CTRL key

and then press the “1” key on the numeric keypad in order to return to the editor.

Simple operations such as these can be used to switch between the C source code

debugger and an editor or other MS-DOS commands (applications). This func-

tion makes it possible to reference source files and specification document files

while debugging, or to correct the portion of a source file where a bug was found.

When switching processes, the C source code debugger does not

switch data within the MS-DOS system (such as the current direc-

tory, etc.). Therefore, if the current directory, etc., was changed in

the subprocess, restore the original status before returning to the C

source code debugger. In addition, because there is no exclusive

control of files between the two processes, extra caution is required

when both processes access the same file.

Returning from a subprocess

Ctrl + 0

Debugging Tutorial

Returning to a subprocess

Ctrl + 1

[☞ page 77]

514. Characteristic C Source Code Debugger Functions and Their Usage

4-8 Macro commands

The C source code debugger has a macro function that makes it possible to

combine several commands in order to create new commands, or to judge condi-

tions. While the macro function may seem daunting to the novice user at first,

once it is mastered it makes debugging work easier.

We will create a macro that sets a breakpoint in the 45th line of SAMPLE.C

and then, when the value of sec[0] is “9”, displays a dump starting from the ad-

dress sec.

The first line of the macro, the declaration, declares the name of the macro as

“TESTMACRO”. The second line sets a break (software break) in the 45th line

of the source listing. (The BP command can be used to set a break (software

break) in the same fashion as the F9 (Break) key.) The third line executes the user

program. The fourth and fifth lines form a “while” loop that waits until the user

program is stopped (i.e., the break is triggered). The sixth and seven lines consist

of the processing that is performed after the break is triggered.

In order to execute this macro, simply input the following from the keyboard:

TESTMACRO ↵

The macro previously defined is then executed.

After the user program is executed, the macro waits until the program is

stopped; once the program is stopped, if the value of sec[0] is “9”, a dump starting

from the address sec is displayed. The macro then terminated.

Debugging Tutorial

Executing a macro command

“Registered macro name”

[☞ page 223]

{testmacro

 bp .sample.c:45

 g

 while{_ _run_ _

 }

 if{val(sec[0]==9)

 d sec

}

52

4-9 Exiting the C source code debugger

The final step is to quit the C source code debugger and return to MS-DOS.

Input the following from the keyboard:

Q ↵

You should now be back at the MS-DOS screen.

If the message “Not terminated subprocess” was displayed, press CTRL + 1 to

return to the subprocess and then terminate that program. For example, if the MS-

DOS prompt is shown in the subprocess, input the following:

EXIT ↵

The following message is then displayed:

“Please hit the SPACE key to return to PICE.”

Pressing the space bar returns you to the debugger screen. Now that the sub-

process has been terminated, input the following again:

Q ↵

Now the C source code debugger terminates and you are returned to the MS-

DOS prompt.

Debugging Tutorial

Exiting the C source code

debugger

Q

[☞ page 201]

534. Characteristic C Source Code Debugger Functions and Their Usage

4-10 Program completion (gaining familiarity with

C source code debugger operation)

In actual program development, completing a program is not a simple matter.

The process of editing, compiling, assembling, linking, and debugging will be

repeated a number of times before the program is complete.

After operating the C source code debugger as we went through the basic pro-

cess in this tutorial, you should now have a general understanding of how to use

the C source code debugger. Now you are ready to use the C source code

debugger on an actual program and discover more advanced uses of the debugger.

Debugging Tutorial

54

Chapter 5
C Source Code Debugger
Startup Method and Options

1. C Source Code Debugger Startup
Method and Options

56

C Source Code Debugger Startup Method and Options

1
C Source Code Debugger

Startup Method and Options

To start up the C source code debugger, input the following at the MS-DOS

command level:

PICE103 [<option>] [<debug file> [<parameter>]] ↵

If the INIT.MCR file is located in the current directory when the C source

code debugger is started up, the C source code debugger automatically loads and

executes this file. This file is equivalent to an MS-DOS AUTOEXEC.BAT file.

The C source code debugger startup options are listed below. (A space is

required between options.)

Startup option Description of option

-B [<size D>][,<size M>] Specifies the size of the debugging information area and

the macro area.

-BEMS [,<size M>] Reserves the debugging information area in EMS

memory.

-E<extension> Specifies the default extension.

-F Specifies overlap mode (save to file).

-FEMS Specifies overlap mode (save to EMS memory).

-N Disables indicators.

-TAB<tab size> Specifies tab size.

-X Specifies assembler debugging mode.

-XC Specifies CC103 compiler debugging mode.

-NOTARGET Specifies startup without target system.

575. C Source Code Debugger Startup Method and Options

C Source Code Debugger Startup Method and Options

This option specifies the size of the debugging information area and the

macro area.

A wide variety of information is stored in the debugging information area,

including symbol names and line number information. This information area

must be about 1/2 the size of the executable file (the EX file when compiled with

all debugging options), including the debugging information. As a result, if the

debugging information area is reserved in conventional memory (the memory

area up to 640KB), it will be impossible to debug a large program. In such a case,

reserve the debugging information area in EMS memory.

-B [<size D>][,<size M>]

Specify numeric values for the size of the debugging information area <size

D> and the macro area <size M>.

<size D> Size (in 16KB units) of the area where the debugging informa-

tion is to be stored.

Reserves an area of the specified size in a memory area of less

than 640KB. If omitted, a 64KB area is reserved.

<size M> Size (in 1KB units, up to a maximum of 32KB) of the macro

command registration area.

If omitted, a 3KB area is reserved.

Reference: For example, in order to reserve 128KB for the debugging informa-

tion area and 5KB for the macro area, input the following:

PICE103 -B128,5 ↵

-BEMS [,<size M>]

This option reserves the debugging information area in EMS memory.

Specify a numeric value for the size of the macro area <size M>.

Reference: For example, in order to reserve the debugging information area in

EMS memory and also reserve 10KB for the macro area, input the

following:

PICE103 -BEMS, 10 ↵

Specifying the size of

the debugging information

area and the macro area

-B

58

C Source Code Debugger Startup Method and Options

This option specifies overlap mode, in which only the bare minimum of

essential functions for executing the debugging program are loaded into

main memory, while the C source code debugger itself and the work area

are saved to EMS memory or to a file.

[☞ Chapter 1, section 1 for the Overlap function]

-F

This option uses a file as the save area for overlapping.

If the -F option is specified, the overlap file is created in the directory speci-

fied by the environment variable TMP or TEMP. Therefore, the overlap time can

be greatly reduced by specifying a RAM disk for an overlap disk. If this environ-

ment variable is not set, the file is created in the current directory.

[☞ Chapter 3, section 3]

-FEMS

This option uses EMS memory as the save area for overlapping.

This option allows faster task swapping than when saving to a file.

This option specifies the default source file extension.

<extension> becomes the default source file extension. If this option is omit-

ted, .C becomes the default extension.

This option disables the display of the indicators that indicate the screen

type.

If the indicators are disabled, “S” and “U” (the subprocess screen and user

screen indicators) are not displayed in the lower left corner of the screen.

(This option can be specified for the PC-9800 Series only.)

This option specifies the tab size when displaying a source listing in the

Code window.

-TAB (tab size)

The tabs are adjusted to the number specified by the tab size. If this option is

omitted, the tab size is set to “8”.

This function is useful for displaying files in which the tab size was changed

with an editor.

Specifying overlap mode

-F

Specifying the default

extension

-E <extension>

Disabling indicators

-N

Setting the tab size

-TAB

595. C Source Code Debugger Startup Method and Options

C Source Code Debugger Startup Method and Options

Reference: To set the tab size to four columns, input the following:

PICE103 -TAB4 ↵

This option specifies either the assembler or various C debugging modes.

-X

This option specifies the assembler debugging mode. If the C source code

debugger is started up in this mode, commands related to C (stack back tracing,

local variables) cannot be used.

-XC (default)

This option specifies the CC103 compiler debugging mode.

This option specifies that the in-circuit emulator is to be used by itself (with-

out being connected to a target system).

This option must be specified if there is no target system.

Never specify this option if a target system is connected. Doing so

will cause the voltage of the target and that of the in-circuit emula-

tor to be different, causing the in-circuit emulator to operate incor-

rectly and damaging the system.

Starting up with no target

system

-NOTARGET

Specifying assembler

debugging mode

-X

60

C Source Code Debugger Startup Method and Options

Chapter 6
Window Commands

1. Window Displays
2. Window Commands
3. Data Reference Functions

62

Window displays

1 Window Displays

The C source code debugger supports two types of command specification,

Window commands and Dialog commands, using either the function keys or the

Control key. This chapter explains the Window commands and how to use them.

For details on Dialog commands, refer to Chapter 7, “Dialog Commands.”

(1) Code window

This window displays either source code or a combination of source code and

disassembled code. If the cursor is located in this window, the Window com-

mands can be used to change the display by scrolling the source code up or down,

for example, or set/cancel software breaks where the cursor is located.

(2) Command window

This window is used to input Dialog commands and to display commands.

This window stores the display contents in the Command window display buffer

(reserved as an 8KB area) at the same time that the information is displayed on the

screen. If the cursor is located within this window, the cursor keys can be used to

scroll the display up and down over the range of the display buffer.

(1)

(2)

636. Window Commands

Window displays

(3) Register window

This window displays the contents of the registers and the statuses of the flags.

This window can be easily opened or closed as necessary.

(3)

64

Window displays

(5)
(6)

(8)

(7)

(4)

(4) Option window

One of four windows (Memo, Back Trace, Stack, and Local) can be selected

for display in this window. The Back Trace and Local windows can only be

displayed in C debugging mode.

Memo window: Displays the contents of the memos registered by the

MEM command.

Back Trace window: Displays the back trace for the C functions.

Stack window: Displays the contents of stack memory.

Local window: Displays the list of local variables for the function where

the program counter (PC register) is.

(5) Watch window

This window always displays the most recent values for symbols and memory

specified by the W command (the watch registration dialog command).

This window is not displayed if nothing is registered for watching.

(6) Status display area

The causes of breaks are listed below.

(The display messages are shown in parentheses.)

Software break (Break-point No. = xx)

Program execution stops before executing an address where a software break

was set by the BP command.

656. Window Commands

Window displays

Hardware break (Break-point No. = xx)

Program execution stops when an event that was set by the BP command oc-

curs.

And break (And Break)

Program execution stops when all of the events set by the BPA command

occur.

Sequential break (Sequential Break)

Program execution stops when all of the events set by the BPS command oc-

cur in sequence.

Trace-full break (Trace-full Break)

Program execution stops when the trace memory is full of data.

Forced break (ESC Break)

User program execution is forcibly stopped when the ESC key on the host

computer is pressed.

Undefined instruction break (Illegal Instruction Break)

This type of break occurs when an attempt is made to execute an undefined

instruction.

Illegal memory access break (Illegal Memory-access Break)

This type of break occurs when an illegal memory access is made.

RAM error break (RAM Error Break)

This type of break occurs when an attempt is made to access an area for which

memory accesses are not allowed.

Data misalignment break (Data Miss-alignment Break)

This type of break occurs when an attempt is made to read or write long-word

(32-bit) data in an address that is not a multiple of four, or word (16-bit) data

in an odd address.

In addition to messages that indicate the causes of breaks, the following mes-

sages are also displayed:

Trace stop

This message is displayed when tracing has stopped (but the user program is

still running).

Trace full stop

This message is displayed when tracing has stopped because trace memory is

full of data (but the user program is still running).

(7) Title display

In source mode, this displays the name of the source file displayed in the Code

window; in assembler mode, this displays the name of the function in the ad-

dress where the cursor is located and the offset from the start address of the

function.

(8) Program counter

The current position pointed to by the program counter is highlighted in yel-

low.

66

Window commands

2 Window Commands

2-1 Screen control

This section explains screen control (cursor movement, scrolling, etc.) in the

Command window and the Code window.

Note that the operation of each key differs according to whether the cursor is

located in the Command window or the Code window.

Moves the cursor between the Command window and the Code window.

When the cursor is in the Command window, pressing this key moves the cursor

to the Code window, and when the cursor is in the Code window, pressing this key

moves the cursor to the Command window.

Moves the cursor one character to the left.

Moves the cursor one character to the right.

When the cursor is in the Code window, pressing these keys moves the

cursor up one line.

When the cursor is in the Command window, pressing these key scrolls the win-

dow down one line. The contents displayed in the command window are logged

in the display buffer (reserved as an 8KB area); any contents remaining in the

buffer can be referenced by scrolling the window up or down.

When the cursor is in the Code window, pressing these keys moves the

cursor down one line.

When the cursor is in the Command window, pressing these key scrolls the win-

dow up one line. However, immediately after a D or TD command, pressing these

keys displays the next line that follows the displayed results of the D or TD com-

mand.

[☞ D command and TD command]

[HOME]

[↓ / Ctrl + X]

[← / Ctrl + S]

[→ /Ctrl + D]

[↑ / Ctrl + E]

676. Window Commands

Window commands

When the cursor is in the Code window (with a source listing displayed),

pressing these keys moves the cursor one word to the left.

When the cursor is in the Command window, pressing these keys moves the cur-

sor to the beginning of the line.

When the cursor is in the Code window (with a source listing displayed),

pressing these keys moves the cursor one word to the right.

However, when disassembled code is displayed, pressing these keys moves the

cursor in the sequence address to code to mnemonic.

When the cursor is in the Command window, pressing these keys moves the cur-

sor to the end of the line.

Pressing these keys moves the cursor to the beginning of the line.

This command is valid only when a source listing is displayed in the Code win-

dow, and the cursor is located in the Code window.

Pressing these keys moves the cursor to the end of the line.

This command is valid only when a source listing is displayed in the Code win-

dow, and the cursor is located in the Code window.

When the cursor is located in the Code window, pressing these keys

scrolls the contents of the Code window (whether a source listing is dis-

played or disassembled code is displayed) up one screen.

When the cursor is located in the Command window, pressing these keys scrolls

the contents of the Command window up one screen.

CTRL + C can also be used to interrupt long display operations caused by the D

command, and repeated step execution by the T command or the P command.

When the cursor is located in the Code window, pressing these keys

scrolls the contents of the Code window (whether a source listing is dis-

played or disassembled code is displayed) down one screen.

When the cursor is located in the Command window, pressing these keys scrolls

the contents of the Command window down one screen.

press [Ctrl +Q]

then [Ctrl +S]
)

[Ctrl + Q • S]

[Ctrl + Q•D]

[Ctrl + F]

[Ctrl + A]

[RollUp / Ctrl +C]

[RollDown / Ctrl +R]

(

68

Window commands

Pressing these keys moves the cursor to the beginning of the source file

that is currently displayed.

This command is valid only when a source listing is displayed in the Code win-

dow, and the cursor is located in the Code window.

Pressing these keys moves the cursor to the end of the source file that is

currently displayed.

This command is valid only when a source listing is displayed in the Code win-

dow, and the cursor is located in the Code window.

Pressing these keys enlarges the Option window.

In other words, this command moves the vertical boundary between the Option

window and the Command and Code windows to the left.

Pressing these keys reduces the Option window.

In other words, this command moves the vertical boundary between the Option

window and the Command and Code windows to the right.

Pressing these keys enlarges the Command window (and reduces the

Code window).

In other words, this command moves the boundary between the Command win-

dow and the Code window up one line.

Pressing these keys reduces the Command window (and enlarges the

Code window).

In other words, this command moves the boundary between the Command win-

dow and the Code window down one line.

Pressing these keys redisplays the screen.

Pressing these keys enlarges the Command window to its maximum size

(and reduces the Code window to its minimum size).

Pressing these keys reduces the Command window to its minimum size

(and enlarges the Code window to its maximum size).

Pressing these keys restores all windows to their initial window sizes.

[Ctrl + Q• R]

[Ctrl + Q • C]

[Ctrl + ←]

[Ctrl + J]

[Ctrl + →]

[Ctrl + ↓]

[Ctrl + ↑]

[Ctrl + Q •W]

[Ctrl + Q • Z]

[Ctrl + Q • J]

696. Window Commands

Window commands

Pressing these keys turns the Register window and Option window display

on and off.

If the Register window is not displayed, pressing these keys causes the Register

window to appear. If the Register window is displayed, pressing these keys

causes the Register window to disappear.

These keys switch the contents of the Option window display.

This command changes the Option window from the Memo window to the Stack

window. (When there is debugging information in the user program, this com-

mand changes the Option window in the following cycle: Memo to Back Trace to

Stack to Local.)

This command is valid only when the Register window and the Option window

are displayed.

When the Code window is displayed, pressing this key changes the

source listing display to the disassembled code display, or changes the

disassembled code display to the source listing display.

[☞ page 43]

The code listing is displayed so that the line that the program counter (PC register)

is currently pointing at is displayed. However, when displaying a source listing, if

there is no source line that corresponds to the current value of the program

counter, the last source line that was displayed, is displayed.

When the Code window is displayed, pressing this key changes the

source listing display to the disassembled code display, or changes the

disassembled code display to the source listing display.

The screen switches, starting the new display from the line in the Code window

where the cursor is currently located. However, when displaying a source listing,

if there is no source line that corresponds to the line where the cursor is currently

located, the last source line that was displayed, is displayed.

[F2(OptWin) / Ctrl + 4]

(Press the "4" on the numeric

keypad.)

[Ctrl + F2(Optsw)]

[Ctrl + O]

F3(SrcSW)

[Ctrl + F3(SrcSW1)]

70

Window commands

2-2 Execution/Breaks

The C source code debugger can be used to perform debugging work while a

program is in progress by using the execution/break commands. The execution/

break commands include not only the Window commands described below, but

also Dialog commands such as the G and BP commands.

[☞ Chapter 7, sections 2 and 3]

The line pointed to by the program counter (PC register) is highlighted in

yellow. Lines where breaks (software breaks) are set are underlined.

In normal debugging work, load the executable file that is to be

debugged before using an execution/break command. The execut-

able file can be loaded by the L dialog command, or can be speci-

fied when the C source code debugger is started up.

[☞ Chapter 7, section 2 for the L command]

Pressing this key executes the user program from the current location indi-

cated by the program counter (PC register).

All enabled break events are valid, and when the user program reaches a break

event or is forced to break because the ESC key was pressed, the user program

stops executing.

[☞ G command]

Command set with the BP~ and /C <command> cannot be ex-

ecuted.

Pressing this key executes the user program from the current location indi-

cated by the program counter (PC register) to the current cursor location.

All enabled break events are valid, and when the user program reaches a break

event or is forced to break because the ESC key was pressed, the user program

stops executing.

[☞ G command]

[F7(Come)]

F5 (Go)

716. Window Commands

Window commands

Pressing this key executes single-step execution (in which the program is

executed one step at a time, even within called functions (subroutines)).

[☞ T command]

Pressing this key sets/cancels breaks (software breaks).

When the F9 key is pressed, a break is set at the line where the cursor is located

within the Code window; the line is displayed with an underline to indicate the

break. If a break is already set at the line where the cursor is located, that

breakpoint is cancelled.

[☞ BP command]

Pressing this key executes function step execution (in which called func-

tions (subroutines) are regarded and executed as one step).

[☞ P command]

This key stops (forced break) user program execution.

Reference: The actual operation during function step execution of a subroutine

consists of setting a breakpoint after the subroutine call instruction

and then executing the user program. Therefore, if there is a

breakpoint set within the subroutine, the user program will stop ex-

ecuting there. However, if there is an infinite loop within the sub-

routine, the user program will not stop since control will not return

from the subroutine. (To stop the user program, press the ESC key

(forced break).)

If the microcontroller hangs for some reason and the command that was

input does not terminate, press these keys in order to forcibly exit that

command.

One possible cause is that the target system is not operating properly.

[F8 (Sg1Stp)]

[F9 (Break)]

[F10 (FncSp)]

[Esc]

[Ctrl + Shift + Graph]

72

Window commands

2-3 Getting/selecting strings

This command uses the cursor to specify character strings (variable

names, function names, etc.) displayed in the Code window and then input

them in the Command window.

With this command it is possible to get a long variable name simply by specifying

it with the cursor, making Dialog command input easier. The Select String (Sel)

command makes it possible to use the Inspect, Watch, View, and Memo functions

with the selected symbol.

Pressing these keys gets a character string in the Code window and inputs

it into the Command window.

Move the cursor to the Code window (source code display), and position it at

the character string to be gotten. Pressing CTRL + G or CTRL + F9 then copies

the character string to the Command window, where the command string has the

same validity as if it had been input through the keyboard.

Character strings gotten by this function must consist only of letters

[from “a” (“A”) to “z” (“Z”)], the underscore symbol (“_”), and

numerals (from “0” to “9”).

[Ctrl + F9(Get) / Ctrl + G]

736. Window Commands

Window commands

These keys are used to select a character string.

First, move the cursor to the beginning of the character string to be selected, and

then press CTRL + F10. The character where the cursor is located is then high-

lighted in yellow, and the function key display changes to the Select String local

command display. Next, move the cursor to the end of the desired character

string.

The local commands that are available when selecting a character string

are described below.

Pressing one of these keys (F1 to F5, and F10) registers the selected

character string in a memo number area with the same number as the

function key that was pressed.

[☞ MEM command]

These keys are used to inspect the selected character string as a C ex-

pression.

[☞ Chapter 6, section 3-1 “Inspect function”]

These keys are used to register the selected character string as a C ex-

pression in the Watch window.

[☞ Chapter 6, section 3-4 “Watch function”]

These keys are used to view the selected character string as a C expres-

sion.

[☞ Chapter 6, section 3-5 “View function”]

These keys are used to get the selected character string for input to the

Command window.

[Ctrl + F10(Se1)]

[F6(Inspct)/ Ctrl + I / I]

[F7(Watch) /

Ctrl +W/ W]

[F8(View) / Ctrl +V/ V]

[F9(Get)/ Ctrl + G/ G / ↵]

[F1 -- F5, F10]

74

Window commands

2-4 File display

This section explains commands for listing/modifying those files that can be

referenced and for searching for character strings.

The file display function is valid only when source code is dis-

played in the Code window and the cursor is located in the Code

window.

Pressing these keys switches the Code window display to the next source

file display.

This command is valid when source code is displayed in the Code window.

Pressing this key opens the file selection window and displays the files

that can currently be selected.

The file that is highlighted in the file selection window is the currently selected

source file. Use the cursor keys to move the highlighted bar to the name of the

desired source file and press the Return key; the contents of the selected source

file are then displayed in the Code window.

In addition, the V command is used to reference the contents of files other than

those displayed in the file selection window.

[☞ V command]

[Shift + Home]

[F1(File)]

File selection window

756. Window Commands

Window commands

When no search string has been specified, this key opens the window that

is used to request input of the search string. Once a search string has

been input in this window, the function searches for the search string in the

forward direction, starting from the current cursor position and proceeding

towards the end of the file.

When a search string has already been specified, the function searches for the

search string in the forward direction, starting from the current cursor position

and proceeding towards the end of the file. Use CTRL + Q or CTRL + F to input

a new search string.

If the search string is found, the corresponding string is highlighted and the search

is terminated. To continue the search, press the F4 key again. If no search string

is found, the message “No Search String Found.” is displayed and the search is

interrupted.

Pressing these keys opens the window that is used to request input of the

search string.

If a search string was previously input, that string is highlighted. If any key is

pressed, the highlighted string is no longer highlighted and the debugger awaits

normal input. When inputting a new string, the shell function history and line

editing functions can be used. Once the search string has been input, the function

searches for the search string in the forward direction, starting from the current

cursor position and proceeding towards the end of the file.

Pressing these keys causes the function to search for the search string

(specified previously by using CTRL + Q, CTRL + F, or F4) in the forward

direction, starting from the current cursor position and proceeding towards

the end of the file.

[F4(Search)]

[Ctrl + Q • F]

[Ctrl + L]

76

Window commands

Pressing these keys causes the function to search for the search string

(specified previously by using CTRL + Q, CTRL + F, or F4) in the reverse

direction, starting from the current cursor position and proceeding towards

the beginning of the file.

The message “Searching [Interrupt with ESC key]” is displayed at the top

of the screen when a string search is in progress. To interrupt the search,

press the ESC key. The message “Cancelling String Search” is displayed

and the search is cancelled.

[Ctrl + F4(Srch↑) /

Ctrl + B]

[Esc]

776. Window Commands

Window commands

2-5 Process control/RAM monitor

Process control and RAM monitor screen switching are performed using the

CTRL key in conjunction with the keys on the numeric keypad.

Pressing these keys while a subprocess is being executed pauses the

subprocess and returns control to the C source code debugger.

These keys are valid only while a subprocess is being executed.

Pressing these keys while the subprocess is paused pauses the C source

code debugger and passes control to the subprocess.

These keys are ignored if the subprocess was not started up by the “!” command.

[☞ Chapter 4, section 4-7 for the “!” command]

These keys turn the display of the Register window and Option window on

and off.

If the Register window is not displayed, pressing these keys displays the Register

window. If the Register window is displayed, pressing these keys closes the Reg-

ister window. (These keys have the same function as the F2 key.)

[☞ Chapter 6, section 2-1 “Screen control”]

Pressing these keys changes the display to the RAM monitor.

To return to the debugger screen, press CTRL + 5 again.

[Ctrl+ 0]

[Ctrl + 1]

[Ctrl + 4]

[Ctrl + 5]

78

Window commands

2-6 Shell functions

The C source code debugger registers in sequence all key input other than

Window commands in the history buffer (an area of about 1500 characters). The

contents of this history buffer can be searched and line edited. Unlike the MS-

DOS template functions, the cursor can be moved freely in the line being edited,

and characters can be inserted, deleted or changed in a fashion similar to a screen

editor. Making full use of the shell functions makes it possible to reduce the

volume of keyboard operations during debugging.

 Each operation described here is valid for Command window input, search

string input (refer to the search function), and inputting the array elements

(Range)/changing values (Change) for the Inspect function.

History search and line editing using the shell commands is pos-

sible only when the cursor is located in the Command window.

Reference: In the C source code debugger, when the cursor is in the Code win-

dow, pressing the Shift key causes the cursor to shift temporarily to

the Command window. Releasing the Shift key causes the cursor to

return to the Code window. Therefore, the standard for many shell

functions is SHIFT + [key].

Pressing these keys deletes the last character that was input.

Pressing these keys moves the cursor to the left.

Pressing these keys moves the cursor to the right.

If the cursor is already located at the end of the line, the operation is identical to

that of SHIFT + F1 (C1).

Pressing these keys moves the cursor to the beginning of the line.

[← / Shift + ← /
Ctrl + S]

[→/ Shift + → / Ctrl + D]

[Shift + F4(LnTop) /

 Ctrl +A]

[BS / Ctrl + H]

796. Window Commands

Window commands

Pressing these keys moves the cursor to the end of the line.

If the cursor is already located at the end of the line, the operation is identical to

that of SHIFT + F3 (CA).

Pressing these keys deletes the character located at the cursor position.

Pressing these keys deletes all of the characters in the line currently being

edited.

Pressing these keys switches between Insert mode and Replace mode.

Pressing these keys displays the preceding portion of the history buffer.

In addition, if a character string has been input on the command input line, a

search is conducted for a character string beginning with that character string

within the history buffer, going from newest to oldest. If a character string that

satisfies the conditions is found, it is displayed. If these keys are then pressed

again, the search continues in the older part of the history buffer.

[☞ "!" command and "!!" command]

Example

If SHIFT + ↑ is then pressed, the previously input commands are searched for

a character string that begins with “bp”; the character string that is found, “bp

count” is then displayed. If SHIFT + ↑ is then pressed again, “bp tcirq” is dis-

played.

Pressing these keys displays the subsequent portion of the history buffer.

In addition, if a character string has been input on the command input line, a

search is conducted for a character string beginning with that character string

within the history buffer, going from oldest to newest. If a character string that

satisfies the conditions is found, it is displayed. If these keys are then pressed

again, the search continues in the newer part of the history buffer.

>bp tcirq

>U main

>bp count

>bp ■

[Shift + F7(ln Can) /

Ctrl + U]

[Ins/ Ctrl + V]

[Shift + ↑ / Ctrl + W]

[Shif + ↓ / Ctrl + Z]

[SHIFT +F5)LNBOT) /

CTRL+ F]

[Del / Ctrl + G]

80

Window commands

Pressing these keys copies the character at the current cursor position

from the preceding portion of the history buffer and displays it.

This function is equivalent to the F1 key of the MS-DOS template functions.

Pressing these keys opens the History window and displays the contents

of the history buffer.

If a character string has been input in the command input line, a character string

that begins with that character string is displayed in the History window. The

highlighted line in the window is the currently selected line.

■ Key operations in the History window/Symbol extension window

ESC Closes the window.

↑/CTRL + E Moves the selected line up one line.

↓/CTRL + X Moves the selected line down one line.

ROLL DOWN/CTRL + R Moves the displayed item up one item.

ROLL UP/CTRL + C Moves the displayed item down one item.

↵ (Return) Copies the currently selected line to the command line and

then closes the window.

0, 1...9 (Numeric keys) Selects a line according to the numbers at the left end,

copies the line to the command line, and then closes the

History window.

[Shift + F2(Histry)]

[Shift + F1(C1) /

Shift + →/ Ctrl + D]

816. Window Commands

Window commands

Pressing these keys copies the character string following the current cur-

sor position from the preceding portion of the history buffer and displays it.

This function is equivalent to the F3 key of the MS-DOS template functions.

Pressing these keys opens the Symbol Extension window and displays

the symbol extensions.

The function searches for a symbol that begins with the last character string in the

command input line and displays it in the window. For example, after inputting

the following command:

>d cnt

pressing SHIFT + F6 starts a search for a symbol name that begins with “cnt” (for

example, cntd, cnt123, cnt_time, etc.), which is then displayed.

The line that is highlighted in the window is the currently selected line. Key

operations within the Symbol Extension window are the same as for the History

window.

Pressing these keys deletes all of the characters in the line that is currently

being edited and deletes all of the contents of the history buffer as well.

[Shift + F3(CA)]

[Shift + F6(ExtSym)]

[Shift + F8(AllCan)]]

82

Window commands

2-7 Memos

The contents of memos (character strings) can be used in line input in the

Command window, etc. Frequently used function names and variable names can

be easily called up by registering them in memos.

The String Select (Sel) local command and Dialog command MEM is used to

register character strings in memos.

[☞ Chapter 6, section 2-3 for the MEM command]

The currently registered memo character strings can be displayed in the func-

tion key display by pressing the SHIFT key and the CTRL key simultaneously.

Pressing the function key corresponding to the desired character string causes

that character string to be displayed/input in the input portion of the Command

window.

Pressing these keys specifies a memo character string.

The character strings (1 through 10) that were set by the MEM command can be

called up by pressing CTRL + SHIFT + function key.

CTRL + SHIFT + F1 calls up memo character string 1, CTRL + SHIFT + F2 calls

up memo character string 2, and so on, up to CTRL + SHIFT + F10, which calls

up memo character string 10.

[☞ MEM command]

[Ctrl + Shift + F1

to

[Ctrl + Shift + F10]

836. Window Commands

Window commands

2-8 Other window commands

Pressing these keys displays and changes the various options.

If these keys are pressed, the Option display window opens and the statuses of the

various options are displayed. The ↑ and ↓ keys can be used to select an option

item (the selected item is highlighted), and the → and ← keys can be used to

change the contents of the option. Press the ESC key or the Return key to close

this window.

[☞ OPTION command]

This key is used to forcibly break the program this is running; to stop a

macro command or batch function that is currently executing; to stop a

search; to exit the Inspect, Help, or Option menus, etc.

The ESC key can be used to interrupt or terminate the majority of Window com-

mands.

These keys halt execution of a long display operation initiated by the D

command, etc., or interrupt the repeated step execution of a program initi-

ated by the T or P command.

These keys are used in order to pause the Command window display.

The display resumes when any other key is pressed.

These keys direct the Command window display output to the printer as

well.

These keys are used to toggle printer output on and off.

This key saves the debugging screen and displays a help screen.

When this key is pressed, the help screen for the previous Dialog command is

displayed. For example, if an input error was made in a Dialog command, press-

ing this key displays the help screen for that command. If this key is pressed

while using the Inspect function or String Select, the help screen for the respective

local command is displayed. Press the ESC key to exit the help screen and return

to the debugger screen.

[☞ HELP command]

[Shift + F10(Option)]

[Esc]

[Ctrl + S]

[Ctrl + P]

[Help]

[Stop / Ctrl + C]

84

Data Reference Functions

3 Data Reference Functions

The data reference and modification functions are frequently used in conjunc-

tion with the execution/break functions. The data reference functions include the

Inspect, Watch, and View functions are the most powerful feature of the C source

code debugger. The Inspect function in particular can be used to reference and

modify data structures simply by using the cursor to specify variables, arrays,

structs and unions in the source file displayed in the Code window.

During debugging, first use the execution/break commands to execute the ex-

ecutable file up to the desired position. Next, use the data reference/modification

commands to reference the states of variables at that point in order to determine

the locations of bugs or confirm that the program is running properly. Then ex-

ecute the program and reference the data again. The vast majority of debugging

work consists of repeating this process. If a bug is found, the file is debugged by

repeating the process of correcting the source file, recompiling and reloading the

file, executing the file, and referencing the data. It is clear, therefore, that the

degree to which the data referencing functions are simple and easy to understand

can determine how useful a debugger is. Once the user has a solid understanding

of the data referencing functions, this C source code debugger provides an excel-

lent debugging environment.

3-1 Inspect function

The Inspect function makes it possible to reference or change a variable,

array, struct, or union in the source file displayed in the Code window, in a

format suited to the data structure of that variable, simply by specifying the

variable, array, struct, or union with the cursor.

To do so, move the cursor to the Code window and then position the cursor on

the variable to be referenced/changed in the source file. It does not matter which

portion of the variable name on which the cursor is positioned. Next, press F6 or

CTRL + I. This opens the Inspect window, in which the data structure of the

variable in question is displayed. To close the Inspect window, either press the

ESC key, or else press the F6 or CTRL + I key. There are four types of Inspect

windows: scalar, pointer, array, and struct. The display format and the local com-

mands that can be used differ for each type of Inspect window.

[☞ Chapter 6, section 3-3 for the local commands]

The only variables (symbols) that can be inspected are those that are currently

valid. Therefore, local variables that are currently not in use and static variables

described in a source file other than the source file currently pointed to by the

program counter cannot be inspected.

Opening/closing the Inspect

window

F6(Inspct) / Ctrl + I

[☞ page 89]

856. Window Commands

Data Reference Functions

■ Pointer inspection

Pointer values only hold information on address values within memory.

However, the information stored in that address is meaningful.

For example, if:

char *p=“MEC”;

is coded, the variable “p” stores not string “MEC” itself but the address infor-

mation where the string “MEC” is stored.

If a variable with the pointer attribute is inspected, the content of that variable

(an address value) is displayed in hexadecimal with an asterisk (“*”). The 0th

element (the information stored in memory indicated by the variable address) of

the pointer is displayed. If the pointer has the character attribute, that element is

recognized as a character string, and the characters are displayed as the element

until the null character (¥0) is reached. If the pointer has multiple elements, such

as a struct array, those elements are enclosed in brackets (“{}”) and as much in-

formation as possible that fits on one line is displayed.

Example

(int)ip=*1500 /*integer pointer*/

 [0]=10 (0xA) /*pointer element*/

86

Data Reference Functions

(Char)p=*1550 "MEC\0" /*character pointer*/

 [0]='M' 77(0x4D) /*subsequent character elements*/

 [1]='E' 69(0x45)

 [2]='C' 67(0x43)

 [3]='\0' 0(0x0)

■ Array inspection

An array has multiple elements, as the name indicates. There are also a num-

ber of variations, such as multidimensional arrays with two or more dimensions,

and struct arrays. These arrays can be inspected in an easy and efficient manner.

In array inspection, the array attributes are displayed in cast format, the array

elements are enclosed in brackets (“{}”), and as many elements as possible are

displayed. In the second and subsequent lines, all of the array elements are dis-

played in order: 0th, 1st, 2nd, ... nth. If the array has multiple elements, such as a

struct array, those elements are enclosed in brackets (“{}”) and as much informa-

tion as possible that fits on one line is displayed.

For example, when inspecting the two-dimensional array int x[3][2], the dis-

play appears as shown below.

Example

When referencing an array with a large number of elements, it can be enlarged

with the Zoom function to fill the screen.

[☞ Chapter 6, section 3-3]

(int [3][2])x={{1,2},{3,4},{5,6}} /*array inspection*/

 [0]={1,2} /*x[0] element display*/

 [1]={3,4} /*x[1] element display*/

 [2]={5,6} /*x[2] element display*/

876. Window Commands

Data Reference Functions

■ Inspection display for a variable with an array attribute

88

Data Reference Functions

3-2 Struct and Union Inspection

Structs (including the bit field) and unions allow different types of data

structures (scalar, pointer, array, struct, union, etc.) to be combined into

one unit which can then be handled as a new data structure.

Using structs and unions makes it extremely easy to handle even complex data

structures, which makes it hard for bugs to crop up and also makes the program

easier to read.

In struct/union inspection, the attributes are displayed in cast format, the ele-

ments (members) are enclosed in brackets (“{}”), and as many elements as pos-

sible are displayed. In the second and subsequent lines, all of the element names

(member names) and their contents are displayed. If the struct array has multiple

elements, those elements are enclosed in brackets (“{}”) and as much information

as possible that fits on one line is displayed. For example, consider a struct con-

taining members x, y, and z, representing a point in three-dimensional space.

If the variable p is inspected, the following is displayed:

The only difference in the display format between structs and unions is that

the attribute display is either “struct struct-name” or “union union-name”.

struct point {

int x; /*X coordinate*/

int y; /*Y coordinate*/

int z; /*Z coordinate*/

} p;

(struct point)p = {x=10,y=20,z=30} /*struct inspection*/

(int)x = 10 (0xA) /*subsequent struct element display*/

(int)y = 20 (0x14)

(int)z = 30 (0x1E)

896. Window Commands

Data Reference Functions

Inspection display for a

variable with the struct

attribute

3-3 Local commands within the Inspect window

If the Inspect window is opened, the contents of the variables are displayed in

window; at the same time, the function key display changes, showing the local

commands that can be used in the Inspect window. These local commands can be

used to find more detailed information on the contents of data structures that have

multiple elements, such as arrays and structs. Elements can be selected in the

array and struct display with the key operations described below. The currently

selected element is highlighted.

↑, CTRL + E Moves the selected element line up one line.

↓, CTRL + X Moves the selected element line down one line.

ROLL DOWN, CTRL + R Moves the displayed item up one item.

ROLL UP, CTRL + C Moves the displayed item down one item.

ESC Closes the Inspect window.

90

Data Reference Functions

There are seven local commands for the Inspect window.

Zoom: Zooms the window in and out.

Hex/decimal Changes the base of the values displayed in the

 conversion: window.

Inspect: Inspects the contents of the window.

Watch: Registers items for watching.

Range: Changes the array/pointer display range.

Change: Changes the value of an inspected variable.

When inspecting a pointer, array, or struct, pressing this key enlarges the

window to fill the screen.

This function is useful when referencing an array with a large number of ele-

ments. Pressing this key again while the window is in the enlarged state returns

the window to its original size.

In a scalar display, values are displayed in both hexadecimal and decimal

form.

However, when displaying an array or struct with multiple elements, values are

displayed only in decimal (default) form or hexadecimal form, in order to display

as many elements as possible on one line. The F5 key is used to switch the base

for display.

(unit [3])abc={4096, 32768, 65535} /*decimal display*/

(unit [3])abc={1000, 8000, FFFF} /*hexadecimal display*/

Pressing these keys displays the array or struct element that was selected

by using the cursor keys in a newly opened Inspect window.

The ESC key is used to close one Inspect window at a time.

Pressing these keys registers either the variable that is being inspected or

the selected element for watching in the Watch window.

[☞ Chapter 6, section 3-4 “Watch function”]

F6 (Inspct) / Ctrl + I / I

F7 (Watch) / Ctrl + W / W

F4 (Zoom)

F5 (16 < > 10)

916. Window Commands

Data Reference Functions

Pressing these keys displays either the variable that is being inspected or

the selected element for viewing in the Command window.

[☞ Chapter 6, section 3-5 “View function”]

These keys are used to change the number of the displayed array or

pointer element, and to change the maximum number.

When one of these keys is pressed, the window that is used to input the number of

the element to be referenced opens, with the element that is currently being dis-

played and the maximum element number highlighted. Input the display element

number and the maximum display element number (may be omitted). During this

line input, the History and Line Edit shell functions can be used.

This command is an extremely useful function for referencing large arrays and

for referencing areas around pointers.

Pressing these keys changes the value of either the variable that is being

inspected or the selected element.

The only variables that can be changed with this command are those that have a

scalar attribute (char, int, etc.) or the pointer attribute.

If these keys are pressed, the window that is used for inputting the numeric

value (expression) to be changed opens. Input a C expression or a numeric value

in this window; the expression or value is then evaluated, and if no error is found,

the value of the variable is changed to that value. (In certain cases, the type of the

value is converted.) During line input, the History and Line Edit shell functions

can be used.

F8 (View) / Ctrl + V / V

F9 (Range) / R

F10 (Change) / C

92

Data Reference Functions

3-4 Watch functions

The Watch function is used in order to constantly display the most recent

values for important variables, arrays and expressions in the Watch win-

dow while debugging is in progress.

The C source code debugger provides two methods for registering items to be

watched. One is registration using a Window command (registration is also pos-

sible via local commands for Inspect or String Select), and the other is registration

using the W command of the Dialog commands. Registration using a Window

command is explained in this section.

Watch registration is accomplished by moving the cursor to the Code window,

positioning it on the variable that is to be registered for watching, and then press-

ing CTRL + F7 or CTRL + W. Once an item is registered for watching, the

variable name and its contents (value) are displayed in the Watch window. When

the item registered for watching has multiple elements, such as a struct or an

array, each element is enclosed in brackets (“{}”) and as many items as can be

displayed on one line are displayed.

Use the Y command of the Dialog commands to cancel a watch registration.

A local variable can be registered for watching only while the pro-

gram counter is pointing within the function in which the local vari-

able was declared. The scope (specification of the range over

which the variable can be used) of the local variable registered for

watching is naturally limited to the function in which it was de-

clared. Therefore, once the program counter points outside of that

function, the display for the variable registered for watching

changes to “????”.

Static variables also have scope, and so, in the same fashion as local

variables, once the program counter points outside of that scope,

the display for the variable registered for watching changes to

“????”.

Watch registration

Ctrl + F7(Watch) / Ctrl + W

936. Window Commands

Data Reference Functions

Viewing

Ctrl + F8(View) / Ctrl + V

3-5 View function

The View function is used to display in the Command window the value of

the variable or expression where the cursor is located.

View function is accomplished by moving the cursor to the Code window, posi-

tioning it on the symbol that is to be viewed, and then pressing CTRL + F8 or

CTRL + V. When a variable is viewed, the variable and its contents are displayed

on the last line of the Command window. When the item being viewed has mul-

tiple elements, such as a struct or an array, each element is enclosed in brackets

(“{}”) and as many items as can be displayed on one line are displayed.

The View function is useful for making a temporary record of the current state

of a variable and for checking its subsequent changes over time. The View func-

tion is also included in the local commands for Inspect or String Select (Sel).

Only currently valid variables can be viewed. Accordingly, it is not

possible to view local variables for a function that is not currently

being used, nor is it possible to view static variables defined in a

source file other than the one that the program counter is currently

pointing to. These restrictions are the same as the restrictions on

which variables can be inspected.

94

Data Reference Functions

Chapter 7
Dialog Commands

1. Rules for Using Dialog Commands
2. Program Loading/Execution
3. Event-related Commands
4. Other Hardware-related Commands
5. Performance Measurement
6. Data Display/Change
7. Code Display/Change
8. Watch Display
9. System Control Commands
10. Other Commands

96

Rules for Using Dialog Commands

1 Rules for Using Dialog Commands

1-1 Conventions used in command explanations

The C source code debugger commands consist of the command name and

parameters. (Sometimes, parameters can be omitted. Parameters that can be

omitted are enclosed in square brackets (“[...]”). If there are two or more options

that may be chosen for a parameter, they are enclosed in rounded brackets (“{}”)

and are separated by vertical lines, as follows: {...|...}

If a parameter is omitted, the C source code debugger’s initial value may be

used, or the value used by the last command may be used.

, Parameter delimiter

[...] May be omitted

{A|B} Select either A or B

ABCD Underlining indicates keyboard input

1-2 Command input format

Dialog commands can be input when the prompt is displayed in the Command

window. However, when inputting a macro, the macro input request prompt (“?”)

is displayed; when the trace display command TD (U) has been input, the

subprompt (“*”) is displayed.

The C source code debugger command input format is as follows:

<command name>[<parameters>] ↵

“<command name>” consists of a character string of one or more characters.

“<parameter>” can be a numeric value, operational expression, symbol, line num-

ber, register name or other item that represents an address or data that the com-

mand uses. Uppercase and lowercase characters may be used as desired in the

commands and parameters. The number of parameters differs for each command.

If there are multiple parameters, they should be delimited by commas (“,”). In

addition, as a general rule, a space should be used to separate the command from

the parameters.

977. Dialog Commands

Rules for Using Dialog Commands

1-3 Symbols in the C source code debugger

The C source code debugger can handle two types of symbols: global symbols

(which are valid through the entire program) and local symbols (which are valid

only within a function). (Local symbols can be either local variables or static

variables.)

■ Global symbols

Global symbols are used in place of address values when inputting disas-

sembled labels and addresses. External variables and function names are regis-

tered in the global symbols.

If a symbol has the same name as a CPU register, the register name takes

precedence. Therefore, it is not possible to reference a symbol that has the same

name as a register.

In C, symbol names generally have an underscore (“_”) before or

after the variable name or function name. However, because it is

inconvenient to input an underscore each time a global symbol is

input, the C source code debugger is designed to allow the under-

score before or after a global symbol to be omitted.

It is also possible to specify whether or not to distinguish between

uppercase and lowercase characters.

[☞ OPTION command and SHIFT + F10 (Option)]

For example, assuming a global symbol with the name “_main”:

Example

>u _main /*display disassembled label from _main symbol value*/

>u main /*same as above*/

98

Rules for Using Dialog Commands

In addition, global symbols also function as C source code debugger internal

variables (most commonly used together with the IF command and macro com-

mands).

Example

1. This line places the value 0x10 in symbol “i”. (If “i” is an undefined symbol

name, “i” is also registered as a symbol.)

2. This line compares the value of the symbol “i” with zero (“0”).

3. In this line, if “i” is not “0”, single-step execution is initiated by the T com-

mand.

4. This line decrements the value of “i” by one (“1”).

5. This line ends the “while” command. If this line is executed, the conditional

evaluation is made again by the “while” command.

If this command is actually executed, the T command will execute 16 times

before exiting the loop of “while” command.

In the above example, the symbol “i” is handled in the same manner as a C

variable. When using symbol names, make sure to not duplicate previously regis-

tered global symbol names and local symbol names.

>i=0x10 /*1st line*/

symbol is loaded.

>while{ i!=0 /*2nd line*/

? T /*3rd line*/

? i=i-1 /*4th line*/

?} /*5th line*/

997. Dialog Commands

Rules for Using Dialog Commands

■ Local symbols

Local symbols are symbols (names) both for variables that are valid only

within a certain function (such as an automatic variable of C or a function argu-

ment) and for variables that are statically declared. Local symbols are automati-

cally registered when normal debugging information is loaded.

In addition to address values, local symbols include information on the scope

(valid range) and attributes (char, int, long, double, etc.) of the local symbols.

[☞ Inspect function, “?” command, and VAL command]

■ Special symbols

_ _ERR_ _

The value of the special symbol “_ _ERR_ _” is “1” when the command that was

just executed generated an error, and is “0” when the last command was executed

normally.

“_ _ERR_ _” can be used in error processing within macro commands.

_ _RUN_ _

The value of the special symbol “_ _RUN_ _” is “1” while the user program is

executing, and “0” when the program is stopped. This symbol can be used for

purposes such as waiting for a user program break in processing within a macro.

100

Rules for Using Dialog Commands

1-4 Numbers in the C source code debugger

The C source code debugger can handle binary, octal, decimal, and hexadeci-

mal numbers. The base of a number is identified by a symbol in front of the value.

Numeric values for which the symbol indicating the base was omitted are handled

according to the base specified by the N command.

[☞ N command]

Symbol Base

@<numeric value> Binary

¥<numeric value> Octal

_<numeric value> Decimal

$<numeric value> Hexadecimal

0x<numeric value> Hexadecimal

numeric value Accords with the base specification

(either hexadecimal or decimal)

For example, @11001010, ¥312, _202, $CA, and 0xCA all represent the same

numeric value.

In addition, there are also commands (DS, DL, etc.) that handle 4-and 8-byte

real numbers (in IEEE format).

■ Addresses

The address format used by the C source code debugger is shown below:

XXXXXXXX

Address (32 bits)

Example: >D 80001234

Symbol names and line numbers (explained below) can be input as command

parameters wherever an address needs to be specified.

1017. Dialog Commands

Rules for Using Dialog Commands

■ Line numbers

The C source code debugger supports debugging at the source code

level using the line numbers in the source file.

The line numbers are used to specify specific lines within the source file. Line

numbers are valid only when the source line information is included within the

executable file that was loaded.

There are three line number input formats:

Format 1: [<file name>:]<line number>

Format 2: ±<line number>

Format 3: <symbol>±<line number>

Line numbers specify a specific source line in the user program as a combina-

tion of a decimal number (<line number>) and the file name or symbol name.

Format 1 indicates the absolute line number. If <file name> was input, this

format specifies the nth line (where “n” is <line number>) of the specified file. If

<file name> is omitted, this format specifies the nth line (where “n” is <line num-

ber>) of the current file (the file currently displayed in the Code window).

>v .100 /*specifies the 100th line of the currently selected

source file*/

>v .test:120 /*specifies the 120th line of test.c*/

Format 2 specifies a line in terms of its relative position to the source line

currently pointed at by the program counter.

The +<line number> specification points at the line that is <line number> lines

beyond the current source line, while the –<line number> specification points at

the line that is <line number> lines in front of the current source line.

However, if there is no corresponding source line for the program counter

when a format 2 line number specification is made, an input error results.

>v .+10 /*specifies the 10th line from the source line currently

pointed at by the program counter*/

102

Rules for Using Dialog Commands

Format 3 specifies a line in terms of its relative position to the source line

corresponding to the address value of the specified <symbol>.

The +<line number> specification points at the line that is <line number> lines

beyond the corresponding source line, while the –<line number> specification

points at the line that is <line number> lines in front of the corresponding source

line.

However, if there is no corresponding source line for the specified <symbol>

when a format 3 line number specification is made, an input error results.

>bp .main+10 /*specifies the 10th line from the symbol “main”*/

■ Character strings

The C source code debugger can handle character strings (as ASCII codes) in

place of numeric values. A character string is enclosed in single quotes (‘).

Example: ‘A’ = 0 x 41

‘AB’ = 0 x 4142

‘ABCD’ = 0 x 41424344

In the E/EB command data input mode (when the data specification in the

command line was omitted and the Return key was pressed), up to 16 characters

can be set at one time in a character string.

>E 1000

address asc oct dec hex data

00001000 . 000 0 00 ‘1234567890abcd’

00001010.................

1037. Dialog Commands

Rules for Using Dialog Commands

■ Register names

In the C source code debugger, the contents of registers can be handled as

variables. The register names that can be used are listed below.

Register names Flag names

D0, D1, D2, D3 (data registers) CF (carry flag)

A0, A1, A2, A3 (address registers) ZF (zero flag)

MDR (multiply and divide register) NF (negative flag)

PC (program counter) VF (overflow flag)

SP (stack pointer) IE (interrupt enable flag)

LIR IM0, IM1, IM2 (interrupt mask level)

(branch destination instruction register)

LAR (instruction fetch address register)

PSW (processor status word)

Example

In the above example, the T (single-step execution command) is executed un-

til D0 and D1 are the same. If a register and a symbol have the same name, the

register takes precedence.

>while{ D0!= D1 /*compare the contents of the D0 register and

the D1 register*/

? T /*execute trace command*/

? } /*end of macro*/

>

104

Rules for Using Dialog Commands

1-5 Operational expressions

An operational expression has one value derived from a combination of nu-

meric values, symbols, registers and function arguments linked together by opera-

tors. The C source code debugger uses numeric and logical operators that are

similar to those in C.

Operational expressions can be used in any command where a value needs to

be specified (data or addresses).

The monadic and binary operators that can be used in operational expressions

are listed below.

(1) Monadic operators

* 32-bit data at a specified address (pointer or long word)

+ Monadic plus

– Monadic minus

~ NOT (one’s complement)

! Logical NOT

(2) Binary operators

Priority Operator Description

 (1) * Multiplication

/ Division

% Modulo operation (remainder)

 (2) + Addition

– Subtraction

 (3) >> Right shift

<< Left shift

 (4) <= Compare operation

(1 if right side is greater than or equal to left side, 0 otherwise)

>= Compare operation

(1 if right side is less than or equal to left side, 0 otherwise)

< Compare operation

(1 if right side is greater than left side, 0 otherwise)

> Compare operation

(1 if right side is less than left side, 0 otherwise)

 (5) == Compare operation

(1 if right side is equal to left side, 0 otherwise)

!= Compare operation

(1 if right side is not equal to left side, 0 otherwise)

 (6) & AND

 (7) ^ XOR

 (8) | OR

 (9) && Logical AND

(10) || Logical OR

1057. Dialog Commands

Rules for Using Dialog Commands

The numerals in the left-hand column indicate operational priority. If adja-

cent operators have the same priority, the expression is evaluated from left to

right. The priority within an expression can be changed by the use of parentheses,

however.

In addition, compare operators and logical AND and logical OR operators are

provided for conditional decision processing in macros (FOR and WHILE com-

mands, etc.) and conditional decision processing commands (IF command, etc.)

In addition, the compare operators and logical AND and logical OR instructions

only use the lower 16 bits in processing their operations.

Example

(3) System function

VAL (C expression)

The contents of the parentheses are evaluated as a C expression.

>h -(1+2*3)

oct dec hex asc float

37777777771 -7 FFFFFFF9 '. . . .' -6.805644e+38

106

Rules for Using Dialog Commands

1-6 Data Expressions at the C Language Level

Up to this point, we have explained expressions that simply compute global

symbols and local symbols or line number information as address values. These

expressions can be used with most of the Dialog commands. However, because

expressions within the user program being debugged are naturally coded accord-

ing to C conventions, that treatment is inadequate for handling C expressions.

Therefore, the C source code debugger has been provided with Window and Dia-

log commands that can handle C expressions as is. Specifically, inspection-re-

lated commands, the watch registration command, the VAL command, and the

“?” command can handle C expressions with C syntax.

■ C expressions

Descriptions at the C language level and expressions coded in the manner

explained up to this point, even if they appear to be the same expression, are

evaluated differently. These differences are explained below, using the C global

variable “abc”.

Example

As this example illustrates, the meaning of the description of “abc” or “abc +

10” is different as a normal expression (as in the case of the D command in the

above example) versus a C expression (as in the case of the “?” command above).

In the Inspect, Watch, VAL, and “?” commands, “abc” would be evaluated as a

C variable; in other commands, the variable “abc” would be evaluated as an ad-

dress.

>d abc /*memory display from address of variable abc*/

00001000 00 01 02 03 0D 0E 0F

>d abc+10 /*memory display from address +10 of variable abc*/

00001010 10 20 30 40 D0 E0 F0 . 0@P

>? abc /*display value of variable abc

(int) 1 (0x1) (evaluates as C expression)*/

>? abc+10 /*display value of variable abc +10

(int) 11 (0xB) (evaluated as a C expression) */

1077. Dialog Commands

Rules for Using Dialog Commands

■ C variables

The variables and functions that can be used in C expressions are limited to

those that were declared in a source file compiled with the option that attaches

detailed debugging information. Registers and flags can be used as pseudo-vari-

ables. All register pseudo-variables and flag pseudo-variables are of the “un-

signed int” type.

Register pseudo-variables Flag pseudo-variables

_D0 ,,, _D3 _Z

_A0 ,,, _A3 _N

_MDR _C

_PC _V

_SP _IM

_LIR _IE

_LAR

_PSW

■ C variable scope

When writing or debugging a C program, it is necessary to be aware of the

scope (available range) of variables. For example, variables declared with

“extern” are valid in all program areas. In other words, their scope is the entire

program. On the other hand, automatic variables declared within a function are

valid only within that function. Therefore, the scope of such a variable is limited

to that function.

When a variable declared with “extern” and an automatic variable declared

within a function have the same name, within the function only the automatic

variable is valid, and the “extern” variable cannot be accessed. In addition, auto-

matic variables of functions not currently being used cannot be viewed.

In the C source code debugger, this type of processing is performed automati-

cally on the basis of the scope information derived from the debugging informa-

tion.

108

Rules for Using Dialog Commands

■ Constants

The use of constants is exactly the same as in C syntax. (The default base is

always base ten, regardless of the setting of the N command (base change com-

mand).)

Notation Base

number Decimal constant

0xnumber Hexadecimal constant

0Xnumber Hexadecimal constant

0number Octal constant

For example, 4096 (decimal), 0x1000 (hexadecimal), and 010000 (octal) all

represent the same value.

The C escape sequence listed below is supported for character constants.

C character Value Meaning

'¥a' 0x7 Bell

'¥b' 0x8 Backspace

'¥f' 0xC Form feed

'¥n' 0xA Line feed

'¥r' 0xD Return

'¥t' 0x9 Horizontal tab

'¥v' 0xB Vertical tab

'¥¥' 0x5C ¥ (Yen) symbol

'¥nnn' nnn Octal (8 bits)

'¥xnn' nn Hexadecimal (8 bits)

1097. Dialog Commands

Rules for Using Dialog Commands

■ Operators

The same operators as those used in C are supported. However, operators

other than the “=” operator (substitution operation) cannot be used with floating

point decimals.

The priority ranking of the operators is indicated below.

Priority ranking Operator

 (1) Function (n) Array [n] n.n n–>n n++ n– –

 (2) &n *n –n ~n !n ++n – –n sizeof n

 (3) (cast)n

 (4) n%n n/n n*n

 (5) n+n n–n

 (6) n<<n n>>n

 (7) n>n n<n n>=n n<=n

 (8) n==n n!=n

 (9) n&n

(10) n^n

(11) n|n

(12) n&&n

(13) n||n

(14) nn?nn:nn

(15) n=n n*=n n/=n n%=n n+=n n–=n n<<=n n>>=n n&=n

n^=n n|=n

(16) n, n

The number indicated in the left-hand column indicates the priority ranking of

the operators listed on the right. (The smaller the number, the higher the priority

ranking.) If adjacent operators have the same priority, the expression is evaluated

from left to right. An exception is the substitution operators (priority ranking

(15)), which are evaluated from right to left. The priority within an expression

can be altered through the use of parentheses.

110

Rules for Using Dialog Commands

■ Expressions with secondary effects

Substitution operators, such as ++, – –, and =, and function calls have second-

ary effects that change data, such as the contents of variables, in the user program

being debugged while processing for that particular operation is performed.

While there may be occasions where a substitution operator is used to intention-

ally change data, the majority of the time during debugging work it is more com-

mon to want to simply reference data rather than change it. Therefore, in order to

prevent data from being accidentally changed during the evaluation of an expres-

sion in an Inspect, Watch, or “?” command, the use of operators with secondary

effects is prohibited in the C source code debugger. Operators with secondary

effects can only be used in the VAL command.

• When referencing data, use the “?” command or the Inspect com-

mand instead of the VAL command. The VAL command should

only be used when using an operator that has a secondary effect,

such as changing the value of data.

Function calls using the VAL command are even more dangerous.

It is possible that a global variable or static variable could be

changed or data in another data area could be changed by a pointer

during function processing. It is also possible that an infinite loop

could be created within such a function. If the user is unaware of

this, it might be impossible to resume execution.

Use caution when you use a function call with the VAL command.

Example

>? abc=1234

Cannot use operators with secondary effects.

>val abc=1234 /*substitutes 1234 in abc*/

(int) 1234 (0x4D2)

>val fnc=(1, 2, 3) /*fnc function call*/

(int) 10 (0xA)

1117. Dialog Commands

Rules for Using Dialog Commands

B

E

M

N

O

P

Q

S

T

U

V

W

X

Y

Z

Command Index

This is an alphabetized index

of the commands.

Symbol

C
D

R

F

A

G

H

K

I

 J

 L

Symbol

112

Program Loading/Execution

Program Loading/Execution

The commands that are used to load user programs are the L and LP Dialog

commands; the commands that are used to execute user programs are the T, P, and

G Dialog commands.

L command, LP command

These commands load the program (EX format file) that is to be debugged into

memory.

RD command

This command loads either a Motorola S format file, an Intel HEX format file

or a binary format files into memory.

WR command

This command writes the contents of memory to a file in either Motorola S

format, Intel HEX format or binary format.

T command

When a source file is displayed in the Code window, this command step ex-

ecutes the file one line at a time. When disassembled code is displayed in the

Code window, this command step executes the code one instruction at a time.

Step execution continues within subroutines (functions). (Single-step execution)

P command

When a source file is displayed in the Code window, this command step ex-

ecutes the file one line at a time. When disassembled code is displayed in the

Code window, this command step executes the code one instruction at a time.

Subroutines (functions) are also executed as one step. (Function step execution)

G command

This command executes the user program.

RESET command

This command resets the microprocessor.

2

1137. Dialog Commands

Program Loading/Execution

The screen is updated to reflect the changes in status caused by the execution

of each command. The position currently pointed to by the program counter is

highlighted in yellow on the Code window. The current register contents are

displayed in the Register window. The contents of the Watch window and the

Option window are also updated to reflect any changes in status.

114

Program Loading/Execution

L/LP Load executable file

L [<file name>]

LP [<file name>]

These commands load an executable file (an EX format file) into memory

(either emulation memory, target memory, or internal instruction RAM). A pe-

riod (“.”) is displayed in the Command window while the file is being loaded; the

number symbol (“#”) is displayed while the debugging information is being pro-

cessed. Press the ESC key in order to interrupt a file load operation while it is in

progress. A message asking whether to abort or continue then appears. If “con-

tinue” is selected, the loading operation continues from where it was interrupted.

1. Loads an executable file.

If the file includes debugging information (symbol information, source line

information), the debugging information is automatically loaded into the debug-

ging information area. If the file does not include debugging information, a mes-

sage is displayed and only the executable file is loaded. If the debugging informa-

tion is loaded by the L command, all registered debugging information is erased

and the new debugging information is registered in its place.

2. The L command deletes all existing break event settings and watch

registrations, initializes the trace function, the time measurement func-

tion, and the profile function, and resets the user CPU (microproces-

sor).

If source line information is included in the file loaded by the L command, the

Code window changes to source code display.

The LP command loads only the specified executable code and data, and

resets the microprocessor.

• If the <file name> specification is omitted, the file with the same

file name that was specified for the last L or LP command is

loaded.

• Use the RD command when loading a Motorola S format file, an

Intel HEX format file or a binary format file.

• When the environment variable PANASRC is set after an execut-

able file has been loaded, the source files in the directory specified

by the environment variable are displayed. If PANASRC is not

set, the source files in the current directory are displayed.

[☞ RD command and WR command]

L [<file>]

L P [<file>]

1157. Dialog Commands

Program Loading/Execution

RD Read file into memory

RD <file name{.S|.HEX}>

RD <file name>,<address>

This command loads the specified data or program in either Motorola S

format or Intel HEX format.

If the file extension is “.S”, the file is treated as a Motorola S format file; if the

file extension is “.HEX”, the file is treated as an Intel HEX format file.

This command loads the specified data or program at the specified ad-

dress in binary format.

Specify a file extension other than “S.” or “HEX.”.

EX format file cannot be specified.

Example

[☞ WR command and L command]

R D <file>,<address>

R D <file{.S|.HEX}>

>rd sample.s

Read SAMPLE.S

80000000 - 80000FFF

Complete

>

L

R

116

Program Loading/Execution

WR Write to file

WR <file name>,<address S>,<address E>

This command writes the contents of memory from <address S> to <ad-

dress E> to a file.

The file name extension can be used to select either Motorola S format, Intel

HEX format, or binary format.

Extension File format

“.S” Motorola S format

“.HEX” Intel HEX format

Other than “.S” or “.HEX” Binary format

EX format file cannot be specified.

Example

[☞ L command and RD command]

>wr sample.s,80000000,80000fff

Write SAMPLE.S at 80000000-80000FFF

>

1177. Dialog Commands

Program Loading/Execution

T Single-step execution of user program

T [<count>]

The T command executes one step at a time the number of steps specified

by <count> from the address currently pointed to by the program counter.

The <count> specification can be made either in decimal or hexadecimal

depending on the base. The difference between the P command and the T

command is that with the T command called functions (subroutines) are

also executed internally one step at a time.

[☞ N command]

The maximum <count> specification is 65,535. (If <count> is omitted, “1” is

assumed.)

When C source code is displayed in the Code window, one line of source code

is executed as one step; when disassembled code is displayed in the Code win-

dow, one instruction is executed as one step.

If another function is called from the current function when executing lines

of source code one at a time, single-step execution continues within that

function.

Although nothing is displayed in the Command window during single-step

execution of source code, the contents of the registers are displayed in the Com-

mand window each time a single step is executed during single-step execution of

individual instructions.

• Single-step execution is not possible when the microprocessor is

in STOP, HALT, or SLEEP mode. To perform single-step execu-

tion, it is necessary to first overwrite the microprocessor’s CPUM

register.

• The contents of trace memory are erased by single-step execution.T

W

118

Program Loading/Execution

Example

>T

—— IM=0 S=0 D0 =0X00000000 D1 =0X00000000 D2 =0X00000000 D3 =0X00000000

PSW=0X0000 A0 =0X00000000 A1 =0X00000000 A2 =0X00000000 A3 =0X00000000

PC =0X80000000 MDR=0X00000000 LIR=0X40000000 LAR=0X00000000 SP =0X00000100

 _RESET: JMP 0X80000006

>T

—— IM=0 S=0 D0 =0X00000000 D1 =0X00000000 D2 =0X00000000 D3 =0X00000000

PSW=0X0000 A0 =0X00000000 A1 =0X00000000 A2 =0X00000000 A3 =0X00000000

PC =0X80000006 MDR=0X00000000 LIR=0X80000000 LAR=0X00000000 SP =0X00000100

MOV 0X100,A0

>T

—— IM=0 S=0 D0 =0X00000000 D1 =0X00000000 D2 =0X00000000 D3 =0X00000000

PSW=0X0000 A0 =0X00000100 A1 =0X00000000 A2 =0X00000000 A3 =0X00000000

PC =0X80000009 MDR=0X00000000 LIR=0X80000006 LAR=0X00000000 SP =0X00000100

MOV A0,SP

>T 5

—— IM=0 S=0 D0 =0X00000000 D1 =0X00000000 D2 =0X00000000 D3 =0X00000000

PSW=0X0000 A0 =0X00000100 A1 =0X00000000 A2 =0X00000000 A3 =0X00000000

PC =0X8000000B MDR=0X00000000 LIR=0X80000009 LAR=0X00000000 SP =0X00000100

MOV 0X0 _I ,A0

—— IM=0 S=0 D0 =0X00000000 D1 =0X00000000 D2 =0X00000000 D3 =0X00000000

PSW=0X0000 A0 =0X00000000 A1 =0X00000000 A2 =0X00000000 A3 =0X00000000

PC =0X8000000D MDR=0X00000000 LIR=0X8000000B LAR=0X00000000 SP =0X00000100

MOV 0X2000,D1

—— IM=0 S=0 D0 =0X00000000 D1 =0X00002000 D2 =0X00000000 D3 =0X00000000

PSW=0X0000 A0 =0X00000000 A1 =0X00000000 A2 =0X00000000 A3 =0X00000000

PC =0X80000010 MDR=0X00000000 LIR=0X8000000D LAR=0X00000000 SP =0X00000100

SUB D0,D0

——Z IM=0 S=0 D0 =0X00000000 D1 =0X00002000 D2 =0X00000000 D3 =0X00000000

PSW=0X0001 A0 =0X00000000 A1 =0X00000000 A2 =0X00000000 A3 =0X00000000

PC =0X80000012 MDR=0X00000000 LIR=0X80000010 LAR=0X00000000 SP =0X00000100

MOV D0,(A0)

——Z IM=0 S=0 D0 =0X00000000 D1 =0X00002000 D2 =0X00000000 D3 =0X00000000

PSW=0X0001 A0 =0X00000000 A1 =0X00000000 A2 =0X00000000 A3 =0X00000000

PC =0X80000013 MDR=0X00000000 LIR=0X80000012 LAR=0X00000000 SP =0X00000100

ADD 0X4 _TEST ,A0

>

1197. Dialog Commands

Program Loading/Execution

P Function step execution of user program

P [<count>]

The P command executes one step at a time the number of steps speci-

fied by <count> from the address currently pointed to by the program

counter. The <count> specification can be made either in decimal or

hexadecimal depending on the base. The difference between the P com-

mand and the T command is that with the P command called functions are

executed as one step.

[☞ N command]

The maximum <count> specification is 65,535. (If <count> is omitted, “1” is

assumed.)

When C source code is displayed in the Code window, one line of source code

is executed as one step; when disassembled code is displayed in the Code win-

dow, one instruction is executed as one step.

When executing lines of source code one at a time, function steps within

the current function are executed. (When a function is called from the

current function, that entire function is executed normally until control re-

turns from that function.) Therefore, a function called from the current

function is executed as if it were a single instruction line. When executing

instructions one at a time, subroutine calls are executed as if they were a

single instruction.

Although nothing is displayed in the Command window during function step

execution at the source level, the contents of the registers are displayed in the

Command window each time a single step is executed during function step execu-

tion of individual instructions.

• Single-step execution is not possible when the microprocessor is

in STOP, HALT, or SLEEP mode. To perform single-step execu-

tion, it is necessary to first overwrite the microprocessor’s CPUM

register.

• The contents of trace memory are erased by single-step execution.

P

T

120

Program Loading/Execution

Example

>P

—— IM=0 S=0 D0 =0X00000000 D1 =0X00000000 D2 =0X00000000 D3 =0X00000000

PSW=0X0000 A0 =0X00000000 A1 =0X00000000 A2 =0X00000000 A3 =0X00000000

PC =0X80000000 MDR=0X00000000 LIR=0X40000000 LAR=0X00000000 SP =0X00000100

 _RESET: JMP 0X80000006

>P

—— IM=0 S=0 D0 =0X00000000 D1 =0X00000000 D2 =0X00000000 D3 =0X00000000

PSW=0X0000 A0 =0X00000000 A1 =0X00000000 A2 =0X00000000 A3 =0X00000000

PC =0X80000006 MDR=0X00000000 LIR=0X80000000 LAR=0X00000000 SP =0X00000100

MOV 0X100,A0

>P

—— IM=0 S=0 D0 =0X00000000 D1 =0X00000000 D2 =0X00000000 D3 =0X00000000

PSW=0X0000 A0 =0X00000100 A1 =0X00000000 A2 =0X00000000 A3 =0X00000000

PC =0X80000009 MDR=0X00000000 LIR=0X80000006 LAR=0X00000000 SP =0X00000100

MOV A0,SP

>P 5

—— IM=0 S=0 D0 =0X00000000 D1 =0X00000000 D2 =0X00000000 D3 =0X00000000

PSW=0X0000 A0 =0X00000100 A1 =0X00000000 A2 =0X00000000 A3 =0X00000000

PC =0X8000000B MDR=0X00000000 LIR=0X80000009 LAR=0X00000000 SP =0X00000100

MOV 0X0 _I ,A0

—— IM=0 S=0 D0 =0X00000000 D1 =0X00000000 D2 =0X00000000 D3 =0X00000000

PSW=0X0000 A0 =0X00000000 A1 =0X00000000 A2 =0X00000000 A3 =0X00000000

PC =0X8000000D MDR=0X00000000 LIR=0X8000000B LAR=0X00000000 SP =0X00000100

MOV 0X2000,D1

—— IM=0 S=0 D0 =0X00000000 D1 =0X00002000 D2 =0X00000000 D3 =0X00000000

PSW=0X0000 A0 =0X00000000 A1 =0X00000000 A2 =0X00000000 A3 =0X00000000

PC =0X80000010 MDR=0X00000000 LIR=0X8000000D LAR=0X00000000 SP =0X00000100

SUB D0,D0

——Z IM=0 S=0 D0 =0X00000000 D1 =0X00002000 D2 =0X00000000 D3 =0X00000000

PSW=0X0001 A0 =0X00000000 A1 =0X00000000 A2 =0X00000000 A3 =0X00000000

PC =0X80000012 MDR=0X00000000 LIR=0X80000010 LAR=0X00000000 SP =0X00000100

MOV D0,(A0)

——Z IM=0 S=0 D0 =0X00000000 D1 =0X00002000 D2 =0X00000000 D3 =0X00000000

PSW=0X0001 A0 =0X00000000 A1 =0X00000000 A2 =0X00000000 A3 =0X00000000

PC =0X80000013 MDR=0X00000000 LIR=0X80000012 LAR=0X00000000 SP =0X00000100

ADD 0X4 _TEST ,A0

>

1217. Dialog Commands

Program Loading/Execution

The G command is used to execute user programs. With the G command, one

temporary software break (<address B>) can be specified. Any break points

specified by the BP command are also valid. The ESC key can also be used to

interrupt (forcibly break) execution of the user program at any time.

The G command initiates execution of the user program from the address

specified by <address S> (execution start address), and stops at the ad-

dress specified by <address B>. <Address B> is a temporary software

break.

This command initiates execution of the user program from the address

specified by the current program counter value and stops at the address

specified by <address B>.

This format is valid only when the C source code debugger was started up

in C debugging mode. When the program to be debugged is executed by

the G@ command, execution stops once control returns from the function

that is currently being executed. This command has the same function as

the CTRL + F5 (Return) Window command.

/W Executes the program, with on-the-fly functions prohib-

ited. In other words, once the user program has begun

executing, no other commands will be accepted until ex-

ecution stops. The screen is also not updated. This op-

tion is useful when starting the next command after user

program execution stopped within a macro.

Reference: • While a program is executing, the message “Target executing” is

displayed at the division between the Command window and the

Code window.

• The C source code debugger has a built-in time measurement

function that measures the amount of time that was needed for

user program execution.

[☞ TI command]

G Execute user program

G [=<address S>][,<address B>][,/W]

G@[,/W]

G [=<address S>]

[,<address B>][,/W]

 G [<address B>][,/W]

G @ [,/W]

G

P

122

Program Loading/Execution

User program execution is not possible when the microprocessor is

in STOP, HALT, or SLEEP mode. In this case, either execute the

RESET command or else use the E command to overwrite the

microprocessor’s CPUM register and then execute the user pro-

gram.

[☞ BP command, BC command, BD command, BE command, F5 (Go),

F7 (Come) key (Window command), and SM command]

Example
>RESET
>G CNT60
>
——Z IM=0 S=0 D0 =0X00000000 D1 =0X00000000 D2 =0X00000000 D3 =0X00000000
PSW=0X0001 A0 =0X00002000 A1 =0X00000000 A2 =0X00000000 A3 =0X00000000
PC =0X80000056 MDR=0X80000053 LIR=0X40000000 LAR=0X00000000 SP =0X000000EC

 _CNT60: MOV (0X0C _SEC),D0
>
>G@
>
>RESET
>G =MAIN,CNT60
>
——Z IM=0 S=0 D0 =0X00000000 D1 =0X00000000 D2 =0X00000000 D3 =0X00000000
PSW=0X0001 A0 =0X00000000 A1 =0X00000000 A2 =0X00000000 A3 =0X00000000
PC =0X80000056 MDR=0X80000053 LIR=0X40000000 LAR=0X00000000 SP =0X000000F0

 _CNT60: MOV (0X0C _SEC),D0
>

1237. Dialog Commands

Program Loading/Execution

RESET Reset user microprocessor

RESET

This command makes the microprocessor’s reset input active.

The program counter (PC register) is set to address 0x40000000.

The value of all of the CPU registers is undefined when a reset is executed.

However, with this debugger, the value set by the Installer is set in the stack

pointer (SP register).

[☞ “MN10300 Series PanaX Series Installation Manual,”

Hardware volume, section 5, “Installer Startup and Settings.”]

This command is used to execute a program from the start, or if the program

has hung and the debugger is not able to accept commands.

G

R

On-the-fly
functionINFLUENCES

124

Event-Related Commands

3 Event-related Commands

Event functions set triggers that initiate hardware breaks, tracing, time mea-

surement functions, etc. The in-circuit emulator monitors the occurrence of

events without stopping execution of the user program.

There are two types of events:

(1) Execution address events

An event is generated by the address of the instruction that was executed.

Conditions including a range of addresses and a number of passes through an

address can be specified. Up to four events can be set.

(2) Data events

An event is generated by a data access. Conditions including read, write, ad-

dress range, data, access width, match/no match, and number of accesses can be

specified. Up to four events can be set in the microprocessor’s internal data RAM

space and in the external memory space, respectively.

No more than a combined total of eight execution address event and data event

points can be set, however.

An event that is a condition for the break function is called a “break event,” an

event that is a condition for starting or stopping tracing is called a “trace event,”

and an event that is a condition for starting or stopping time measurement is called

a “time measurement event.” The respective commands used for setting these

events are as follows:

Break events: BP command

Trace events: EV command

Time measurement events: EV command

The BC or EC command is used to delete events.

Data events can even be set for the microprocessor’s internal in-

struction ROM/RAM space or special register space and areas re-

served for the system. However, there is still a limit of four events

on the combined total number of events that can be set in these

areas and internal data RAM.

1257. Dialog Commands

Event-Related Commands

The table below indicates which types of events can be used with memory ac-

cesses by the microprocessor, internal DMA accesses and external DMA accesses.

Accesses marked with an “X” cannot be used to generate an event.

Microprocessor Internal DMA External DMA

memory access

Execution address event ❍ ✕ ✕

Microprocessor’s internal

data RAM space

Microprocessor’s internal

special register space

Microprocessor’s internal

instruction ROM/RAM space

External memory space ❍ ❍ ✕

System reserved space ❍ ❍ ✕

The break function halts user program execution.

The different types of breaks are described below.

(1) Software breaks

These are implemented by inserting PI codes (0xff) into user programs.

Therefore, these types of breaks can only be set in a program area, and cannot be

set in a data area. When this type of break is set in an external memory space, the

address that is set must either be in memory within the emulator or in RAM in the

user target; this type of break cannot be set in ROM.

Software breaks stop execution before the instruction in the address that was

set is executed. A combined total of 32 software breaks and events can be set. (BP

command)

(2) Hardware breaks

The execution address and data accesses are monitored by the hardware, and

when the conditions are met, a break is generated externally for the microproces-

sor. The features of software breaks and hardware breaks are shown below.

Software break Hardware break

Settable conditions Emulation memory or Instruction address break
external RAM program area • Possible for both ROM and RAM

• Count specification
Data break
• Address, data, bit mask
• Read, write, access
• Count specification
Others
• AND break
• Sequential break
• Trace full break

Stopping position Before instruction execution After execution of several instruc-
tions after event conditions are met

Number that can Up to 32, including hardware Up to four execution address
be set breaks breaks and four data breaks

Implementation Inserting PI codes in the Monitoring of status by external
program hardware

D
at

a
ev

en
t

❍ ❍ ✕

❍ ✕ ✕

❍ ❍ ✕

126

Event-Related Commands

(3) AND break

This is a type of hardware break.

A break occurs when all of the specified event conditions are satisfied simul-

taneously. Only one set of AND break conditions can be specified. (BPA com-

mand)

(4) Sequential break

This is a type of hardware break.

A break occurs when all of the specified event conditions are satisfied in the

sequence in which they were specified. Only one set of sequential break condi-

tions can be specified. (BPS command)

(5) Trace full break

This is a type of hardware break.

A break occurs when the trace memory is filled with data. (TM command)

In addition, a forced break can be executed, forcibly stopping user program

execution, by pressing the ESC key on the host computer.

EV command

Sets/displays events.

BP command

Sets/displays hardware breaks and software breaks.

BPA command

Sets AND break.

BPS command

Sets sequential break.

BC/EC command

Cancels events, hardware breaks, and software breaks.

BD command

Temporarily disables events, hardware breaks and software breaks.

BE command

Enables events, hardware breaks and software breaks.

1277. Dialog Commands

Event-Related Commands

EV Set/display event

EV <address S>[˜<address E>][,<status>][,<data>[,{/B|/W|/D}] [,/N]][,/<count>]

EV/C{<list>|*}

EV

E V <address S>[,<~ This command sets an event.

The following table lists the options that can be specified for each event type.

Event type Execution address event Data event

<address S> ● ●

<address E> ❍ ❍

<status> EX RW/R/W

<data> ❍

/B,/W,/D ❍

/N ❍

(●: Required, ❍: may be omitted, blank: may not be specified)

<address S> Specify a memory address or symbol. When specifying a

memory range, specify the start address versus the end address in

<address E>.

<address E> Specify a memory address or symbol. Specify the end address

versus the start address in <address S>.

<status> EX: Execution address event

RW: Data event in read or write operation

R: Data event in read operation

W: Data event in write operation

Omitted: “RW” (data event in read or write operation) is assumed

if <data> is specified, and “EX” (execution address

event) is assumed if <data> is not specified.

E

On-the-fly
functionNO INFLUENCES

128

Event-Related Commands

<data> Specify the data for a data event. If omitted, the data is ignored

and only the address becomes the event target. The <data> can

be specified in binary format if the “@” symbol is added at the

start of the data. If the “@” symbol is omitted, hexadecimal

specification is assumed. In addition, as the examples show be-

low, it is also possible to include masked bit specifications.

Specify “X” to indicate “don’t care” for a bit. The high-order

bits are also “don’t care.”

@10xx The following values satisfy the condition:

@1000, @1001, @1010, and @1011.

C5xxAny value from C500 to C5FF satisfies the condi-

tion.

Symbols can not be used in the <data> specification.

/B, /W, /D Specify the data access width for a data event: 8-bit data (/B), 16-

bit data (/W), or 32-bit data (/D). If omitted, the access width

mode is “no specific size/don’t care.”

/N Specifies that the event condition is met when the data accessed

in the data event did not match the value specified by <data>. If

this specification is omitted, the event condition is met when the

data does match.

/<count> In the case of an execution address event, specify the pass count.

In the case of a data event, specify the access count. The event

occurs after the event condition is met the specified number of

times. The maximum setting is 256; if <count> is omitted, 1 is

assumed. Regardless of the setting of the N command, the base

of the count specification is decimal, unless 0x is added to the

value, which makes the base of the count specification hexadeci-

mal.

When an event specified in the <list> occurs, program execution is not

halted; instead, all event flags are cleared, the pass count and access

count counters are initialized to “0”, and the counts are restarted.

This setting is not allowed for AND breaks, sequential breaks, and software

breaks. When an event whose number is specified in the <list> occurs, all events

are initialized.

E V / C {<list>|*}

1297. Dialog Commands

Event-Related Commands

EV/C 1, 2, 7 ↵

In the above example, if any one of events 1, 2, or 7 occur, all events are

initialized.

Reference: The base used in <list> is assumed to be decimal regardless of the N

command specification. If “0x” is added, the base is hexadecimal.

This command displays the events that have been set.

Reference: • “No.” is the number assigned to the event that was set. This number is

used by the BC/EC, BD, BE, BPA, BPS, TM, and TI commands for vari-

ous settings.

• The “E” or “D” indicates whether that event is currently enabled (E) or

disabled (D).

• The meanings of the codes in the “st.” column are explained below:

EX: Execution address event

RW: Data event in read or write operation

RD: Data event in read operation

WR: Data event in write operation

• The "sz" column means the accessive range for data event:

B: 8-bit data

W: 16-bit data

D: 32-bit data

- : size don't care

• * (asterisk): Indicates that the event in question was assigned to one of the

following functions:

BRK: Break [☞ BP command]

TRC: Trace with event conditions [☞ TM command]

DLY: Delayed trigger trace event [☞ TM command]

TS: Time measurement start event [☞ TI command]

TE: Time measurement end event [☞ TI command]

CLR: Event clear [☞ EV/C command]

E V

E

>EV MAIN
>EV CNT60,/3
>EV SEC,5
>EV
 NO. SADR - EADR ST. DATA/SYMBOL SZ CNT BRK TRC DLY TS TE CLR
E 1 80000039 EX _0main 1
E 2 80000058 EX _cnt60 3
E 3 0000080C RW 05 - 1
>tm 3
>ti max, /s1, /e2
>ev
 NO. Sadr - Eadr st. Data/Symbol SZ CNT BRK TRC DLY TS TE CLR
E 1 80000039 EX _main 1 *
E 2 80000058 EX _cnt60 3 *
E 3 0000080C RW 05 - 1 *
>

Example

130

Event-Related Commands

This command sets an internal event, and that event is set in a hardware

break.

The following table lists the options that can be specified for each break type.

Break type Execution address break Data break Software break

<address S> ● ● ●

<address E> ❍ ❍

<status> EX RW/R/W

<data> ❍

/B,/W,/D ❍

/N ❍

/<count> ❍ ❍

/C<command> ❍ ❍ ❍

(●: required, ❍: may be omitted, blank: may not be specified)

<address S> Specify a memory address or symbol. When specifying a

memory range, specify the start address versus the end address in

<address E>.

<address E> Specify a memory address or symbol. Specify the end address

versus the start address in <address S>.

<status> EX: Execution address break

RW: Data break in read or write operation

R: Data break in read operation

W: Data break in write operation

Omitted: “RW” is assumed if <data> is specified, “EX” is as-

sumed if <data> is not specified and <address E> or

<count> is specified, and a software break is assumed

in all other cases.

BP Set/display break event

BP<address S>[˜<address E>][,<status>][,<data>[,{/B|/W|/D}] [,/N]][,/<count>][,/C<command>]

BP

B P <address S>[,<~

On-the-fly
function

NO INFLUENCES

INFLUENCES

Set/display sofware break :

Set/display sotware break :

1317. Dialog Commands

Event-Related Commands

<data> Specify the data for a data break. If omitted, the data is ignored

and only the address becomes the break target. The <data> can

be specified in binary format if the “@” symbol is added at the

start of the data. If the “@” symbol is omitted, hexadecimal

specification is assumed. In addition, as the examples show be-

low, it is also possible to include masked bit specifications.

Specify “X” to indicate “don’t care” for a bit. The high-order bits

are also “don’t care.”

@10xx The following values satisfy the condition:

@1000, @1001, @1010, and @1011.

C5xxAny value from C500 to C5FF satisfies the condi-

tion.

Symbols can not be used in the <data> specification.

/B, /W, /D Specify the data access width for a data break: 8-bit data (/B),

16-bit data (/W), or 32-bit data (/D). If omitted, the access width

mode is “no specific size/don’t care.”

/N Specifies that the break condition is met when the data accessed

in the data break did not match the value specified by <data>. If

this specification is omitted, the break condition is met when the

data does match.

/<count> In the case of an execution address break, specify the pass count.

In the case of a data break, specify the access count. The break

occurs after the break condition is met the specified number of

times. The maximum setting is 256; if <count> is omitted, 1 is

assumed. Regardless of the setting of the N command, the base

of the count specification is decimal, unless 0x is added to the

value, which makes the base of the count specification hexadeci-

mal.

/C<command> A C source code debugger command or macro of up to 40 char-

acters can be specified for <command>. If this specification is

made, the specified <command> is automatically executed after

the break. If execution was initiated by using the F5 key, how-

ever, the <command> is not executed after the break.

B

132

Event-Related Commands

This command displays the breaks that have been set.

Reference: • The “No.” column indicates the number applied to the break event. This

number is used in the BC/EC, BD, and BE commands to specify the

break even to be cancelled, disabled, or enabled.

• The “E” or “D” indication indicates whether the break event is currently

enabled (E) or disabled (D).

• The meanings of the codes in the “st.” column are explained below:

SF: Software break

EX: Execution address break

RW:Data break in read or write operation

RD: Data break in read operation

WR:Data break in write operation

• The "sz" column means the accessive range for data event:

B: 8-bit data

W: 16-bit data

D: 32-bit data

- : size don't care

[☞ BC/EC command, BD command, BE command, G command,

L command, or LP command]

B P

Example

>bp main
>bp sec,w,5
>bp 100,rw
>bp
 No. Sadr - Eadr st. Data/Symbol Sz Cnt Command
E 1 80000039 SF _0main 1
E 2 0000080C WR 05 - 1
E 3 00000100 RW - 1
>bp cnt60,ex
>bp
 No. Sadr - Eadr st. Data/Symbol Sz Cnt Command
E 1 80000039 SF _0main 1
E 2 0000080C WR 05 - 1
E 3 00000100 RW - 1
E 4 80000058 EX _cnt60 1
>ev
 No. Sadr - Eadr st. Data/Symbol Sz Cnt BRK TRC DLY TS TE CLR

E 2 0000080C WR 05 -1 *
E 3 00000100 RW -1 *
E 4 80000058 EX _0cnt60 1 *
>

1337. Dialog Commands

Event-Related Commands

BPA Set AND break

BPA <list>

This command sets an AND break.

The hardware break events specified in <list> become AND conditions.

Once all of the conditions are satisfied, a break occurs.

Specify up to eight break event numbers in <list>, delimited by commas.

If an AND break is set while a program is running, it becomes valid immedi-

ately. To cancel an AND break, execute the BD or BC/EC command on one of

the break events set as part of the AND break.

B

B P A <list>

Example
>bp
 No. Sadr - Eadr st. Data/Symbol Sz Cnt Command
E 1 80000039 SF _0main 1
E 2 00000100 RW @0xxxx100 - 1
E 3 00000800 RW _i - 1
E 4 80000058 EX _0cnt60 1
>bpa 2,3
>bp
 No. Sadr - Eadr st. Data/Symbol Sz Cnt Command
E 1 80000039 SF _0main 1
E 2 (&) 00000100 RW @0xxxx100 - 1
E 3 (&) 00000800 RW _i - 1
E 4 80000058 EX _0cnt60 1
>

Break event Nos.
2 and 3 form
an AND break.

Reference: The base used in <list> is assumed to be decimal regardless of the N

command specification. If “0x” is added, the base is hexadecimal.

On-the-fly
functionNO INFLUENCES

134

Event-Related Commands

BPS Set sequential break

BPS <list>

This command sets a sequential break.

The hardware break events specified in <list> are set as a sequential

break.

Multiple break events can be specified in <list>, up to a maximum of eight.

A sequential break is generated if the break events occur in the specified se-

quence. A break event that is used in an AND break can also be used in a sequen-

tial break. To cancel a sequential break, execute the BD or BC/EC command on

one of the break events set as part of the sequential break.

If a sequential break is set while the user program is being executed

(on-the-fly) , all events are temporarily disabled and then are en-

abled. (There is an interval during which the events are temporarily

ignored.)

B P S <list>

On-the-fly
functionNO INFLUENCES

1357. Dialog Commands

Event-Related Commands

Example

B

>bp

 No. Sadr - Eadr st. Data/Symbol Sz Cnt Command

E 1 80000039 SF _0main 1

E 2 00000100 RW @0xxxx100 - 1

E 3 00000800 RW _i - 1

E 4 80000058 EX _0cnt60 1

>bps 2,3,4

>bp

 No. Sadr - Eadr st. Data/Symbol Sz Cnt Command

E 1 80000039 SF _0main 1

E 2 (1) 00000100 RW @0xxxx100 - 1

E 3 (2) 00000800 RW _i - 1

E 4 (3) 80000058 EX _0cnt60 1

>bd*

>be*

>bp

 No. Sadr - Eadr st. Data/Symbol Sz Cnt Command

E 1 80000039 SF _0main 1

E 2 00000100 RW @0xxxx100 - 1

E 3 00000800 RW _i - 1

E 4 80000058 EX _0cnt60 1

>

Break event Nos. 2,
3, and 4 form a
sequential break.

Reference: The base used in <list> is assumed to be decimal regardless of the N

command specification. If “0x” is added, the base is hexadecimal.

136

Event-Related Commands

BC/EC Cancel break event

BC {<list>|*}

EC {<list>|*}

These commands cancel software break/hardware break events that were

set by the EV command and BP command.

The BC command can be used to cancel software breaks, and hardware

events/breaks. The EC command can only be used to cancel hardware events/

breaks. If <list> is specified, the break events with the specified numbers are

cancelled. If “*” is specified, all break events that were set are cancelled.

BC 1, 2, 7 ↵

In the above example, break events 1, 2, and 7 are cancelled.

BC * ↵

In the above example, all break events are cancelled.

If a cancelled event is used in an AND break, a sequential break, as a trace

event, or as a time measurement event, these functions are also cancelled.

Reference: The base used in <list> is assumed to be decimal regardless of the N

command specification. If “0x” is added, the base is hexadecimal.

[☞ EV command, BP command, BD command, and BE command]

Example

>BP

 NO. SADR - EADR ST. DATA/SYMBOL CNT COMMAND

E 1 80000029 SF _MAIN 1

E 2 00000100 RW @0XXXX100 1

E 3 00000000 RW _I 1

E 4 80000056 EX _CNT60 1

>BC 1,4

>BP

 NO. SADR - EADR ST. DATA/SYMBOL CNT COMMAND

E 2 00000100 RW @0XXXX100 1

E 3 00000000 RW _I 1

>BC 2

>BP

 NO. SADR - EADR ST. DATA/SYMBOL CNT COMMAND

E 3 00000000 RW _I 1

>

On-the-fly
functionINFLUENCES

NO INFLUENCESHardware break:

Software break:

1377. Dialog Commands

Event-Related Commands

BD Temporarily disable break event

BD {<list>|*}

This command temporarily disables software break/hardware break

events that were set by the EV command and BP command.

If <list> is specified, the break events with the specified numbers are disabled.

If “*” is specified, all break events that were set are disabled.

BD 1, 2, 7 ↵

In the above example, break events 1, 2, and 7 are temporarily disabled.

BD * ↵

In the above example, all break events are temporarily disabled.

If a disabled event is used in an AND break, a sequential break, as a trace

event, or as a time measurement event, these functions are also cancelled.

Even if a break event disabled by the BE command is subsequently enabled, these

break events remain cancelled.

B

E

On-the-fly
function

NO INFLUENCES
INFLUENCES

Hardware break:

Software break:

138

Event-Related Commands

Example

Reference: The base used in <list> is assumed to be decimal regardless of the N

command specification. If “0x” is added, the base is hexadecimal.

[☞ EV command, BP command, BC/EC command, and BE command]

>bp

 No. Sadr - Eadr st. Data/Symbol Sz Cnt Command

E 1 80000039 SF _0main 1

E 2 00000100 RW @0xxxx100 - 1

E 3 00000000 RW 05 - 1

E 4 80000058 EX _0cnt60 1

>bd 2,3

>bp

 No. Sadr - Eadr st. Data/Symbol Sz Cnt Command

E 1 80000039 SF _0main 1

D 2 00000100 RW @0xxxx100 - 1

D 3 00000000 RW 05 - 1

E 4 80000058 EX _0cnt60 1

>bd *

>bp

 No. Sadr - Eadr st. Data/Symbol Sz Cnt Command

D 1 80000039 SF _0main 1

D 2 00000100 RW @0xxxx100 - 1

D 3 00000000 RW 05 - 1

D 4 80000058 EX _0cnt60 1

>

1397. Dialog Commands

Event-Related Commands

BE Enable break event

BE {<list>|*}

This command enables software break/hardware break events that were

temporarily disabled by the BD command.

If <list> is specified, the break events with the specified numbers are enabled.

If “*” is specified, all break events that were set are enabled.

BE 1, 2, 7 ↵

In the above example, break events 1, 2, and 7 are enabled.

BE * ↵

In the above example, all break events are enabled.

B
On-the-fly
functionINFLUENCES

NO INFLUENCESHardware break:

Software break:

140

Event-Related Commands

Example

Reference: The base used in <list> is assumed to be decimal regardless of the N

command specification. If “0x” is added, the base is hexadecimal.

[☞ EV command, BP command, BC/EC command, and BD command]

>bp

 No. Sadr - Eadr st. Data/Symbol Sz Cnt Command

D 1 80000039 SF _0main 1

D 2 00000100 RW @0xxxx100 - 1

D 3 00000000 RW 05 - 1

D 4 80000058 EX _0cnt60 1

>be 1,3

>bp

 No. Sadr - Eadr st. Data/Symbol Sz Cnt Command

E 1 80000039 SF _0main 1

D 2 00000100 RW @0xxxx100 - 1

E 3 00000000 RW 05 - 1

D 4 80000058 EX _0cnt60 1

>be *

>bp

 No. Sadr - Eadr st. Data/Symbol Sz Cnt Command

E 1 80000039 SF _0main 1

E 2 00000100 RW @0xxxx100 - 1

E 3 00000000 RW 05 - 1

E 4 80000058 EX _0cnt60 1

>

1417. Dialog Commands

Other Hardware-related Commands

4 Other Hardware-related Commands

TM Command

Sets and displays trace mode.

TG command

Starts tracing.

TS command

Stops tracing.

TD command, TDU command

Displays trace information.

TDW command

Displays trace information in a window format.

TI command

Sets and displays the timer.

TRIG command

Sets and displays the trigger.

MAP command (EX command)

Assigns memory.

B

142

Other Hardware-related Commands

TM Set/display trace mode

TM [<mode>][{/B|/C|/S|/T[<count>],<event number>}]

TM/F

TM

The trace function stores a record of the user program execution status in trace

memory, allowing the program execution status to be analyzed later. Execution

addresses, data addresses, data values, and information on the bus status can be

stored for up to 16K steps.

This command specifies the trace mode. The mode specification items in-

clude the bus specification, the trace storage conditions, and the trace stopping

conditions; these items can all be specified simultaneously, delimited by commas.

If a specification is omitted, the default value for that item is assumed.

Bus specification Select one of the following:

INT Internal RAM bus (default)

In internal RAM bus tracing, accesses to the

microprocessor’s internal RAM and special registers

and to external memory (excluding internal DMA ac-

cesses) can be traced in conjunction with the actual in-

struction operation timing.

EXT Extended RAM bus

In extended RAM bus tracing, only accesses to the

microprocessor’s external memory (including internal

DMA accesses) can be traced in conjunction with the

external bus operation timing. In the MN10300 Se-

ries, because the external bus is accessed via the

microprocessor’s store buffer, operations are per-

formed more slowly than the instruction operation

timing.

Trace storage condition Select one of the following:

ALL Normal trace mode (default)

All cycles executed by the microprocessor are stored in

trace memory. Tracing of up to 16K steps is possible.

T M [<mode>][{/B|/C~

On-the-fly
functionNO INFLUENCES

1437. Dialog Commands

Other Hardware-related Commands

JMP Branch trace mode

Only branch instructions are stored in trace memory;

compensation for the intervals between branch instruc-

tions is made by the software, making it possible to ap-

pear to trace for a longer time than normal tracing. How-

ever, after starting the trace, the trace display does not

appear until the first branch instruction appears.

<event number> Trace mode with event condition

In tracing with an event condition, tracing is performed

only while the event condition specified by <event num-

ber> is satisfied.

Trace stop condition Select one of the following.

/B Trace full break mode

Tracing stops and user program execution also stops

(breaks) when trace memory becomes full.

/C Trace continue mode (default)

Even if the trace memory becomes full, tracing contin-

ues until the user program stops. The last 16K of steps

executed before the user program stopped then remain as

the trace data.

/S Trace full stop mode

Tracing is performed from the start (or resumption) of

user program execution until the trace memory becomes

full (16K steps). When the trace memory becomes full,

tracing stops, but the user program continues.

/T[<count>],<event number>

Delayed trigger trace mode

Once the event specified by <event number> occurs,

tracing continues for the number of cycles specified by

<count>, after which tracing stops. This mode makes it

possible to monitor the execution status of a program

before and after the occurrence of an event. <count> can

be specified over a range from 257 to 16,384. If omitted,

“257” is assumed for <count>. <event number> cannot

be omitted.

T

144

Other Hardware-related Commands

This command sets the trace mode to default mode:

Bus selection: Internal RAM bus

Trace storage condition: Normal trace mode

Trace stop condition: Trace continue mode

This command displays the trace mode that have been set.

If a trace event is cancelled or disabled, the emulator stops tracing

and trace mode is set to the default mode.

The table below indicates which modes can be used with memory accesses by

the microprocessor, internal DMA accesses, and external DMA accesses.

A “X” indicates that the space in question cannot be accessed through that

type of access in that mode.

Microprocessor
Internal DMA External DMA

memory access

Microprocessor’s internal

data RAM space

Microprocessor’s internal

special register space

Microprocessor’s internal

instruction ROM/RAM space

External memory space ❍ ✕ ✕

Microprocessor’s internal

data RAM space

Microprocessor’s internal

special register space

Microprocessor’s internal

instruction ROM/RAM space

External memory space ❍ ❍ ✕

(∆: Possible only with a DMA access with an external memory space)

T M / F

T M
E

X
T

 m
od

e
IN

T
 m

od
e

❍ ❍ ✕

❍ ❍ ✕

❍ ❍ ✕

✕ ∆ ✕

✕ ∆ ✕

✕ ∆ ✕

1457. Dialog Commands

Other Hardware-related Commands

Example

Reference: The base used in <event number> (trace with event conditions and

directory triggered trace) and <count> is assumed to be decimal

regardless of the N command specification. If “0x” is added, the

base is hexadecimal.

[☞ EV command]

T

>tm

Trigger = OFF

Trace Full = Continue

Trace Cycle = ALL & INT

Sample Event = NONE

>ev main~cnt60,ex

>tm 1

>ev

 No. Sadr - Eadr st. Data/Symbol Sz Cnt BRK TRC DLY TS TE CLR

E 1 80000039 ~ 80000058 EX _0main 1 *

>tm

Trigger = OFF

Trace Full = Continue

Sample Event = 1

Trace Cycle = INT

>ev sec,w,5

>tm /t1000,2

>ev

 No. Sadr - Eadr st. Data/Symbol Sz Cnt BRK TRC DLY TS TE CLR

E 1 80000039 ~ 80000058 EX _0main 1

E 2 0000080C WR 05 - 1 *

>tm

Trigger = ON (Delay=1000/Sample Event=2)

Trace End = Stop

Trace Cycle = ALL & INT

Sample Event = NONE

>tm /f

>tm

Trigger = OFF

Trace Full = Continue

Trace Cycle = ALL & INT

Sample Event = NONE

>

146

Other Hardware-related Commands

TG Start trace

TG

If tracing was stopped due to the TS command or a “trace full” stop while

the user program was running, the TG command can be used to restart

tracing.

If tracing was stopped by a trigger being tripped in delayed trigger

trace mode, the TG command cannot be used to resume tracing.

The TG command can only be executed while the user program is

running.

Example

>tm

Trigger = OFF

Trace Full = Continue

Trace Cycle = ALL & INT

>g

>ts

Trace stop

>tg

>

On-the-fly
functionINFLUENCES

1477. Dialog Commands

Other Hardware-related Commands

TS Stop trace

TS

This command stops tracing while the user program is running.

To restart tracing, use the TG command.

When TS is valid, the message “Trace stop” is output.

The TS command can only be executed while the user program is

running.

T

On-the-fly
functionNO INFLUENCES

148

Other Hardware-related Commands

TD/TDU Display trace

TD

TDU

This command displays a hexadecimal dump (TD) or a disassembled

code dump (TDU) of the contents of trace memory every machine cycle.

If the contents of the frame to be displayed are identical to those of the previ-

ous frame, a semicolon (“:”) is displayed.

If this command is executed, the number of frames sampled is displayed and

trace display mode is initiated. In this mode, the prompt changes to “*” and the

system waits for a key to be pressed. The sub-commands that can be used are

shown on the following page.

If the TD command is executed while tracing, the message “Stop Trace? (Y/

N)” is displayed on the screen. Pressing “Y” stops tracing and displays the con-

tents of trace memory. Pressing “N” does not stop tracing and returns control to

the command input state.

If trace display mode is exited while a program is running, the message “Go

Trace? (Y/N)” is displayed on the screen. To resume tracing, press “Y”.

In delayed trigger trace mode, this message is not displayed because tracing can-

not be resumed.

If the Return key is pressed without pressing any other key, “N” is

assumed.

Trace memory hexadecimal dump display

Trace memory disassembled code display

T D

T D U

On-the-fly
function

INFLUENCES

NO INFLUENCES

Dump :

Disassemble :

1497. Dialog Commands

Other Hardware-related Commands

The available subcommands when the TD command is input are shown be-

low.

B This command displays the start of trace

memory.

-B This command displays the end of trace

memory.

Pn This command moves the display start frame “n”

pages, and then displays one page.

If a “-” is added in front, this command moves the

display back “n” pages. If the number of pages is

omitted, “1” is assumed. If only the Return key is

P1 pressed, the frame moves to the next page, which is

then displayed.

Nn This command sets the display start frame at

“n”.

The first frame is frame 0, which contains the oldest

data.

D This command changes the display mode to

hexadecimal display every machine cycle.

If “s” and “e” are specified, the data from frame ad-

dress S to frame address E is displayed.

L This command changes the display mode to dis-

assembled code display.

If “s” and “e” are specified, the data from frame ad-

dress S to frame address E is displayed.

C This command erases frames indicated by “:”

from the screen.

If this command is executed again, “:” is displayed.

Q/. This command quits the trace display mode.

• If less than 16K steps were traced, the first instruction after trace

start might not be traced.

• If a “trace full” break was used, several instructions prior to the

stopping of the user program might not be traced.

[<frame address S>]

[,<frame address E>]

[<frame address S>]

[,<frame address E>]

T

150

Other Hardware-related Commands

Example
>bp sec,rw,5,/d

>g

>

------IM=0 S=0 D0 =00000005 D1 =00000000 D2 =0000001C D3 =00000014

PSW=0000 A0 =00000000 A1 =80000098 A2 =FFFFF870 A3 =20000000

PC =8000005F MDR=80000055 LIR=02A544F0 LAR=FFFFF0E0 SP =00000FF8

MDRQ=00800000

 mov (80C _sec),d0

>td

 Sampled Frame Number = 16384

*d 0

Frame ROM_A RAM_A Data R/W

00000 80000015 00000EE4

00001 :

00002 :

*c 1000

Frame ROM_A RAM_A Data R/W

01008 E 80000017 00000EFC

01009 80000017 00000EFC

01088 JE 80000013 00000EFC

*u 2000

Frame Addr. Mnemo. Opr. RAM_A Data R/W

STARTUP.ASM:0058 mov d0, (a0)

02048 JE 80000013 mov d0,(a0) 00000F14

STARTUP.ASM:0059 inc4 a0

02049 E 80000014 inc4 a0 00000F18 00000000 (wr)

*

Frame Addr. Mnemo. Opr. RAM_A Data R/W

STARTUP.ASM:0060 add -4,d1

02050 E 80000015 add -4,d1 00000F18

02051 80000015 00000F18

*c

*q

>

1517. Dialog Commands

Other Hardware-related Commands

TDW Display trace window

TDW

This command displays the contents of the trace memory in a window.

When this command is specified, it is possible to switch between the dump

display and the disassembled code display just as with the TD command. The F1

through F10 keys are used for this purpose. If the TDW command is executed

during tracing, the message “Stop Trace? (Y/N)” is displayed on the screen.

Pressing “Y” stops tracing and displays the contents of trace memory. Pressing

“N” does not stop tracing and returns control to the command input state.

If the trace display is exited while a program is running, the message “Go

Trace? (Y/N)” is displayed on the screen. To resume tracing, press “Y”. Note

that in delayed trigger trace mode, this message is not displayed because tracing

cannot be resumed.

This function key jumps from the frame that is currently being displayed to

the next frame to be viewed.

This function key searches for a character string in the trace information.

To interrupt the search, press the ESC key.

In search mode, this function key searches the trace information for the

character string that was specified by the F2 key, searching in the direc-

tion of the end of the trace information (the most recent trace information).

In search mode, this function key searches the trace information for the

specified character string, searching in the direction of the beginning of the

trace information.

This function key switches the display between dump and disassembled

code.

This function key displays the beginning of the trace memory.

This function key displays the end of the trace memory.

This function key displays/erases the frames indicated by “:”.

This key quits this mode and returns to the debugging screen of the C

source code debugger.

F1 (Jump)

F2 (Search)

F3 (Next)

F4 (Back)

F6 (First)

F7 (Last)

F10 (Compres)

ESC

TF5 (D/AS)

On-the-fly
functionINFLUENCES

NO INFLUENCESDump:

Disassemble:

152

Other Hardware-related Commands

• If less than 16K steps were traced, the first instruction after trace

start might not be traced.

• If a “trace full” break was used, several instructions prior to the

stopping of the user program might not be traced.

• If the microprocessor’s internal instruction RAM is overwritten

while collecting trace information, the trace disassembled code

display will be incorrect.

Sample screen

1537. Dialog Commands

Other Hardware-related Commands

TI Measure/display execution time

TI [<mode>][,/S<event number>][,/E<event number>]

TI <clock>

TI STOP

TI

* Except TI RUN

T I [<mode>~

These commands measure the user program execution time in units of the

timer clock. The maximum error is ± (timer clock). The timer clock can be

selected from among 25ns, 50ns, and 100ns. The available modes are

described below.

Continuous measurement mode

In this mode, the execution time of the user program is measured from begin-

ning (or resumption) to end.

Partial mode

In this mode, the execution time of the user program is measured from the

occurrence of one event until the occurrence of another event. There are two

partial measurement modes:

FIRST mode

The execution time is only measured the first time between the two events.

MIN/MAX mode

The execution time is measured continuously between the two events, and

then the minimum and maximum execution times are determined.

This command specifies the timer operation mode.

<mode> RUN: Continuous measurement mode

In this mode, the execution time of the program is measured

from beginning to end. However, the execution time of the

first instruction is not included in the measured time.

This mode cannot be set while the program is running.

T

On-the-fly
functionNO INFLUENCES

154

Other Hardware-related Commands

FIRST: Partial one-shot mode

This mode measures the execution time between two events

one time.

MIN: Partial minimum/maximum mode

MAX: This mode measures the execution time continuously be-

tween two events, and then determines the minimum and

maximum execution times. If the timer clock is 25ns, a

maximum time of up to approximately 107 seconds can be

measured. The operation is the same, regardless of whether

“MAX” or “MIN” is displayed.

/S<event number>

This specifies the time measurement starting event.

/E<event number>

This specifies the time measurement ending event.

• The /S, /E<event number> specification cannot be made in con-

tinuous measurement mode.

• If an event being used by the timer is deleted (or disabled), the

measurement mode automatically switches to continuous mea-

surement mode.

Reference: The base used in <event number> is assumed to be decimal regard-

less of the N command specification. If “0x” is added, the base is

hexadecimal.

Clock setting

This command sets the timer clock.

<clock> /T1: 25ns resolution

/T2: 50ns resolution

/T4: 100ns resolution

/M: Microprocessor clock

If “/M” is specified, the measured value is the number of machine

cycles, not the actual time.

Timer mode cancellation

This command halts time measurement.

(

T I <clock>

T I S T O P

1557. Dialog Commands

Other Hardware-related Commands

T I

Exapmle

[☞ EV command]

This command displays the timer mode that is currently set and the timer

value.

If the interval between a time measurement ending event and a time

measurement starting event is four clocks or less, the execution time

will not be measured correctly.

T

>ti

Timer : Stop

>

>ev init_data,ex

>ev sec,rw

>ti max,/s1,/e2

>ev

 No. Sadr - Eadr st. Data/Symbol Sz Cnt BRK TRC DLY TS TE CLR

E 1 80000083 EX _init_data 1 *

E 2 0000000C RW _sec 1 *

>g

>ti

Timer Clock = 1/1

Timer Start Event = 1

Timer End Event = 2

MAX TIME = 2,025 (nS)

MIN TIME = 0 (nS)

>

---- IM=0 S=0 D0 =00000005 D1 =00000000 D2 =0000001C D3 =00000014

PSW=0000 A0 =00000000 A1 =80000098 A2 =FFFFF870 A3 =20000000

PC =8000005F MDR=80000055 LIR=02A544F0 LAR=FFFFF0E0 SP =00000FF8

MDRQ=00800000

Timer Clock = 1/1

Timer Start Event = 1

Timer End Event = 2

MAX TIME = 2,025 (nS)

MIN TIME = 0 (nS)

>

>ti stop

>

156

Other Hardware-related Commands

These commands set and display trigger output.

This command outputs the 8-bit port data <data>.

When the microprocessor accesses <address>, this command outputs

the contents of <address>.

This command outputs the event occurrence status.

If a sequential break was set with the BPS command, the correspon-

dence between an event output that is output due to a trigger and its

event number may change, so use the TRIG command to check the

correspondence of the numbers.

This command displays the trigger output that is currently set.

TRIG Set/display trigger

TRIG OUT <data>

TRIG RAM <address>

TRIG EVENT

TRIG

T R I G E V E N T

T R I G R A M

<address>

T R I G O U T

<data>

T R I G

On-the-fly
functionNO INFLUENCES

1577. Dialog Commands

Other Hardware-related Commands

Example

T

>trig

Trigger mode = Port Data (00/00000000)

>

>ev cnt60,ex

>ev sec,rw

>ev 80000100,ex

>trig event

>trig

Trigger mode = Event

Trig. No. #7 #6 #5 #4 #3 #2 #1 #0

Event No. — — — — — — — 3 2 1

>

>trig ram sec

>trig

Trigger mode = RAM Monitor

Address = 0000000C (Data is invalid.)

>

158

Other Hardware-related Commands

MAP/EX Assign memory

MAPI <address S>,<address E>[,{/F|/S}]

MAPE <address S>,<address E>

MAP

EXI <address S>,<address E>[,{/F|/S}]

EXE <address S>,<address E>

EX

These commands specify which memory space will be assigned to in

memory within the in-circuit emulator (emulation memory).

The total memory (emulation RAM) assigned to the in-circuit emulator must

be less than the installed memory (512KB of standard/fast emulation RAM and

512KB of slow emulation RAM). The start and end of each block can be set in

4KB units. If an attempt is made to set a block in other than a 4KB unit, the

debugger will make adjustments automatically.

The MAP command and the EX command have the same function.

This command assigns the memory within the specified range so that

when it is accessed, the memory inside the in-circuit emulator (emulation

memory) is used instead. A maximum of 8 blocks in 4KB units can be

specified.

“/F” assigns the memory to fast emulation RAM, and “/S” assigns the memory

to slow emulation RAM. If omitted, “/F” (fast emulation RAM) is assumed.

MAPI 80000000, 80000FFF, /F

In the above example, the 4KB space from address 0x80000000 to

0x80000FFF is assigned to fast emulation RAM inside the in-circuit emulator.

Depending on the assigned addresses, it may only be possible to set

a size that is smaller than the total size of the memory installed in

the in-circuit emulator.

[☞ Memory emulation function]

M A P I / E X I

<address S>,<address E>

[,{/F|/S}]

On-the-fly
function

NO INFLUENCES

CANNOT BE USED

Display:

Set:

1597. Dialog Commands

Other Hardware-related Commands

M A P E / E X E

<address S>,

<address E>

This command assigns the memory within the specified range so that

when it is accessed, user target system resources are used instead.

When the MAPE (EXE) command is used on the user target system side to

assign a space to be used as a stack, RAM must be installed in the user target

system for that space.

MAPE 80000000, BFFFFFFF

In the above example, the 1GB space from address 0x80000000 to

0xBFFFFFFF is assigned to a user target system resource (external memory).

This command displays the current settings.

Reference: The meanings of the codes in the “Memory” column are explained

below:

Int RAM: Internal RAM

Int REG: Special register

Int ROM: Internal ROM (or internal instruction RAM)

ICE ROM: Emulation ROM

ICE RAM (fast): Fast emulation RAM

ICE RAM (slow): Slow emulation RAM

TARGET: User target system memory (external memory)

ERROR: Access prohibited

MONITOR: Area used by monitor (reserved for system)

M A P / E X

Example

E

M

>mape 80020000 - 8003ffff
CPU MEMORY MODE : EXMODE
 Sadr - Eadr Memory
 00000000 - 00003FFF :Int RAM
 00004000 - 1FFFFFFF :---
 20000000 - 3FFFFFFF :Int REG
 40000000 - 40003FFF :Int ROM
 40004000 - 7FFFFFFF :---
 80000000 - 8001FFFF :ICE RAM (fast)
 80020000 - BFFFFFFF :TARGET
 C0000000 - FFFFFFFF :MONITOR
>mapi 90000000~9001ffff
CPU MEMORY MODE : EXMODE
 Sadr - Eadr Memory
 00000000 - 00003FFF :Int RAM
 00004000 - 1FFFFFFF :---
 20000000 - 3FFFFFFF :Int REG
 40000000 - 40003FFF :Int ROM
 40004000 - 7FFFFFFF :---
 80000000 - 8001FFFF :ICE RAM (fast)
 90000000 - BFFFFFFF :TARGET
 C0000000 - FFFFFFFF :MONITOR
>

160

Performance Measurement

5 Performance Measurement

SM command

This command sets/releases the RAM monitor sample area.

PROF command

This command tabulates the access status.

1617. Dialog Commands

Performance Measurement

SM Set/release sample area

SM <address>

SMB <address>

SMC <number>

SMW

SM

The commands select the RAM monitor function sample area.

The sample area consists of 32 blocks consisting of 64 bits (8 bytes each, for a

total of 256 bytes), starting from <address>.

CTRL + 5 can be used to switch between the RAM monitor screen and the C

source code debugger screen. To change the sample area while the RAM monitor

is displayed, press the SHIFT + arrow keys. (The sample area can be changed

only while the user program is running.)

Press CTRL + 5 again to return to the debugger screen.

While the user program is running, the memory data area (particularly the

RAM area) is sampled at a constant interval, allowing the user to see changes to

the data. (This is the RAM monitor function.) This function naturally does not

affect the execution of the user program. Only data accessed in memory is moni-

tored and displayed.

The RAM monitor can display changes in data either in hexadecimal or in bit

units.

An underscore (_) indicates an address that has not been accessed.

This command specifies the starting address of the sample area.

This command specifies an address to be displayed in bit units.

This command clears an address displayed in bit units.

This command displays the RAM monitor screen.

This command displays the current sample area.

S M B <address>

S M <address>

S M

S M C <number>

S M W

S

On-the-fly
functionNO INFLUENCES

162

Performance Measurement

RAM monitor screen

Hexadecimal display example

RAM monitor screen

Bit unit display example

The following sub-commands can be used when being displayed RAM

monitor.

F1 (Slow) prolongs sampling cycle

F2 (Fast) shortens sampling cycle

F3 (Bit) displays in bits

F4 (Hex) displays in hex

F5 (Rev) displays in reverse order

1637. Dialog Commands

Performance Measurement

S

>sm
 RAM MONITOR MODE

Monitor Area = 00000000 - 000000FF
>sm 0x800
>smb sec
>smb 0x8f0
>sm
 RAM MONITOR MODE

Monitor Area = 00000800 - 000008FF
NO Address
0 0000080C
1 000008F0
>smc 1
>sm
 RAM MONITOR MODE

Monitor Area = 00000800 - 000008FF
NO Address
0 0000080C
>sm 1000
>sm
 RAM MONITOR MODE

Monitor Area = 00001000 - 000010FF
>

164

Performance Measurement

PROF Tabulate access status

PROF [ON|OFF|CLR]

PROF

P R O F

P R O F C L R

P R O F O N

P R O F O F F

On-the-fly
function

NO INFLUENCES

These commands tabulate which functions (subroutines) are accessed

what percentage of the time while the user program is running.

This command specifies the start of tabulation for the profile.

This command stops tabulation for the profile.

This is the state in effect when the C source code debugger is started up.

This command clears the profile information.

This command displays, based on the tabulated profile information, the

time that each function (subroutine) was executing and the percentage of

the total time that each function accounted for. The functions are dis-

played in order of time consumed, starting from the function that con-

sumed the most time.

Because PROF ON/OFF can be specified whenever desired, it is possible to

create profile information concerning only a particular portion of a program.

• In order to use the profile function, it is necessary for the debug-

ging information to be loaded beforehand.

• If an overlay load is made to the microprocessor’s internal instruc-

tion RAM during profile tabulation, the profile information will

not be tabulated correctly.

1657. Dialog Commands

Performance Measurement

P

>reset

>prof on

>g

>

—— IM=0 S=0 D0 =0001B072 D1 =00000000 D2 =00000000 D3 =00000000

PSW=0000 A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

PC=8000007D MDR=8000007A LIR=40000000 LAR=00000000 SP =00001FE0

_0cnt60: mov (200C _sec), d0

>

>prof

 **** Profile ****

Total sampling count = 36784

User sampling count = 36784 100.%

System sampling count= 0 0.0%

 No. Addr Name Percent (Sum) Samples

 1. 8000007D _0cnt60 44.9% (44.9%) 16541

 2. 8000004B _0main 31.0% (75.9%) 11407

 3. 80000073 _0display 24.0% (100.%) 8836

>

>prof clr

>prof

Sampling was not performed.

>prof off

>

Number of samples
within in-circuit
emu la to r (t ime
used by the system)

Total number of

samples

Number of
samples within
user program
(number used by
the debugging
program)

Example

166

Data Display/Change

6 Data Display/Change

The C source code debugger can easily display and change memory, register,

and symbol data.

D command

This command displays a dump of the contents of memory. The display can

be modified by changing the display base number, etc.

E command

This command changes a value stored in memory to the specified value.

C command

This command compares the specified areas in memory.

F command

This command fills the specified area in memory with one repeated value.

M command

This command performs a block transfer of the specified area in memory.

S command

This command searches for data within the specified area memory.

R command

This command displays/changes the contents of registers.

H command

This command indicates the value of an expression in octal, decimal, hexa-

decimal and ASCII.

PRINTF/PF command

This command displays data in the specified format. (The format is similar to

that of the “printf” function in C.)

X command

This command displays symbols.

. command

This command registers/changes symbols.

1677. Dialog Commands

Data Display/Change

D Display dump of contents of memory

D [<address S>][,<address E>][,<count>][,{/H|/D|/O}]

DB [<address S>][,<address E>][,<count>][,{/H|/D|/O}]

DW [<address S>][,<address E>][,<count>][,{/H|/D|/O}]

DD [<address S>][,<address E>][,<count>][,{/H|/D|/O}]

DS [<address S>][,<address E>]

DL [<address S>][,<address E>]

DA [<address S>][,<address E>][,<count>]

These commands display the contents of memory in the specified base

(octal, decimal, hexadecimal, or ASCII).

When the C source code debugger is started up, the display base for the D

command is hexadecimal. After the D command has been executed, input either

the ↓ key or CTRL + X to display the next line of the D command display.

<count> specifies the number of data items to be displayed on one line; the

maximum is 29 (0 x 1D).

Option Use When omitted

<address S> Display start address Starts display from the next address that follows the last displayed address.

<address E> Display end address Displays one line.

<count> Number of data items Displays either 16, 8, or 4 (however many can fit on one line).

displayed on one line

/H Hexadecimal display Uses the base in effect for the last display.

specification

/D Decimal display specification Uses the base in effect for the last display.

/O Octal display specification Uses the base in effect for the last display.

D

On-the-fly
functionINFLUENCES

168

Data Display/Change

Byte (8 bits) display

Word (16 bits) display

Double word (32 bits) display

4-byte real number (short floating-point) display

8-byte real number (long floating-point) display

ASCII display

Example

D / D B

D S

D W

D D

D L

D A

>d 100

00000100 86 74 CD 70 E8 95 98 BA B1 B6 EB D2 7F 2A 99 4E

>d main

80000029 F8 FE F8 DD 16 00 00 00 00 08 DD 19 00 00 00 00

>dw main

80000029 FEF8 DDF8 0016 0000 0800 19DD 0000 0000

>dd main,/o

80000029 33576177370 00000000026 03167204000 00000000000

1697. Dialog Commands

Data Display/Change

E Change specified memory contents

E [<address S>][,<data>]

EB [<address S>][,<data>]

EW [<address S>][,<data>]

ED [<address S>][,<data>]

ES [<address S>][,<data>]

These commands change the contents of memory at the specified ad-

dresses in units of 8 bits, 16 bits, or 32 bits.

When changing the data with a real number, the contents of memory at the

specified addresses are replaced with a 4-byte real number.

Option Use When omitted

<address> Start address for change Starts from the next address that follows the address used for the last E

command.

<data> Data values to be written Enters data input mode, displays the specified address and the current

(up to 16 values) memory contents in ASCII, octal, decimal, or hexadecimal, and waits for

the new data to be input.

Byte (8 bits) change

Word (16 bits) change

Double word (32 bits) change

4-byte real number (short float) change

E /EB

E W

E D

E S

D

E

On-the-fly
functionINFLUENCES

170

Data Display/Change

Reference: Data input mode rules

(1) After the contents of memory at the specified address are dis-

played, the function enters data input mode. Up to 16 data val-

ues, delimited by commas, can then be input. With the E com-

mand it is also possible to input a character string of up to 16

characters enclosed by single quotation marks (’).

(2) To proceed to the next address without making any changes,

simply press the Return key. The next address and the contents

of that address are then displayed, and the function enters data

input mode.

(3) To return to the previous address, input a minus sign (“–”).

The previous address and the contents of that addrss are then

displayed, and the function enters data input mode.

(4) In data input mode, the address can be changed to a specified

address by inputting “org<address> ↵”, or simply “/<address> ↵”.

(5) Input “.↵” to terminate the E command.

Example

A verify error will occur if a value is changed in data RAM with

unmounted bits (such as a special register area), write-only data

RAM, or read-only data ROM.

>e sec

address asc oct dec hex data

0000000C ‘£’ 243 -93 A3 0

0000000D ‘.’ 373 -5 FB 0

0000000E ‘!’ 041 33 21 5

0000000F ‘I’ 111 73 49 -

0000000E ‘.’ 005 5 05 -

0000000D ‘.’ 000 0 00 /100

00000100 ‘.’ 206 -122 86 0

00000101 ‘t’ 164 116 74 0

00000102 ‘Õ’ 315 -51 CD .

>

1717. Dialog Commands

Data Display/Change

C Compare specified memory contents

C <address S>,<address E>,<address D>

This command compares the contents of memory from <address S> to

<address E> with the contents of memory starting from <address D>; if a

difference is found, the addresses and data are displayed in the Com-

mand window.

If the differences do not fit in the window, a message asking whether or not

to continue the comparison appears. To stop, press CTRL + C; to con-

tinue, press any other key.

Example

C

E

>d 0,2f

00000000 DC 06 00 00 00 FF 24 00 01 F2 F0 D7 00 2D 00 20

00000010 F1 00 60 20 04 29 FC 08 FB F8 FE FC FC FF 0D 00

00000020 00 00 F8 FE 04 CA F4 CB CB F8 FE F8 DD 16 00 00

>d 80000000,8000002f

80000000 DC 06 00 00 00 CB 24 00 01 F2 F0 90 00 2D 00 20

80000010 F1 00 60 20 04 29 FC C1 FB F8 FE FC FC FF 0D 00

80000020 00 00 F8 FE 04 CA F4 CB CB F8 FE F8 DD 16 00 00

>

>c 0,2f,80000000

 Start to compare.

00000005 FF CB 80000005

0000000B D7 90 8000000B

00000017 08 C1 80000017

 End to compare.

>

On-the-fly
functionINFLUENCES

172

Data Display/Change

These commands fill memory from <address S> to <address E> with the

value <data>.

When the length of <data> is shorter than the address range, <data> will be

repeated until the specified range of memory is filled. From 1 to 16 data items can

be specified for <data>.

Byte (8 bits) fill

Word (16 bits) fill

Double word (32 bits) fill

The fill function cannot be used in the special register areas.

F Fill specified range of memory with data value

F <address S>,<address E>,<data>

FB <address S>,<address E>,<data>

FW <address S>,<address E>,<data>

FD <address S>,<address E>,<data>

F / FB

F W

F D

On-the-fly
functionINFLUENCES

1737. Dialog Commands

Data Display/Change

Example

F

>d 80000000,8000003f

80000000 DC 06 00 00 00 CB 24 00 01 F2 F0 90 00 2D 00 20

80000010 F1 00 60 20 04 29 FC C1 FB F8 FE FC FC FF 0D 00

80000020 00 00 F8 FE 04 CA F4 CB CB F8 FE F8 DD 16 00 00

80000030 00 00 08 DD 19 00 00 00 00 08 DC F9 FF FF FF DF

>f 80000000,8000002f,55

>d 80000000,8000003f

80000000 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55

80000010 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55

80000020 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55

80000030 00 00 08 DD 19 00 00 00 00 08 DC F9 FF FF FF DF

>

174

Data Display/Change

M Block transfer of specified range of memory

M <address S>,<address E>,<address D>

Example

>d 0,2f

00000000 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

00000010 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

00000020 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

>d 80000000,8000002f

80000000 DC 06 00 00 00 CB 24 00 01 F2 F0 90 00 2D 00 20

80000010 F1 00 60 20 04 29 FC C1 FB F8 FE FC FC FF 0D 00

80000020 00 00 F8 FE 04 CA F4 CB CB F8 FE F8 DD 16 00 00

>m 80000000,8000002f,0

>d 0,2f

00000000 DC 06 00 00 00 CB 24 00 01 F2 F0 90 00 2D 00 20

00000010 F1 00 60 20 04 29 FC C1 FB F8 FE FC FC FF 0D 00

00000020 00 00 F8 FE 04 CA F4 CB CB F8 FE F8 DD 16 00 00

>

This command performs a memory block transfer of the contents of

memory from <address S> to <address E> to a position in memory starting

at <address D>.

A block transfer cannot be made to special regiter areas.

On-the-fly
functionINFLUENCES

1757. Dialog Commands

Data Display/Change

S Memory pattern search

S <address S>,<address E>,<search pattern>

SB <address S>,<address E>,<search pattern>

SW <address S>,<address E>,<search pattern>

SD <address S>,<address E>,<search pattern>

These commands display the addresses in memory, from <address S> to

<address E>, where the data matches <search pattern>.

Option Use

<address S> Search starting address

<address E> Search ending address

<search pattern> Up to 16 items of data can be specified; up to 16 characters enclosed in single quotation marks (’)

can be specified for <search pattern> in the S and SB commands.

Byte (8 bits) search

Word (16 bits) search

Double word (32 bits) search

S / SB

S W

S D

M

S

On-the-fly
functionINFLUENCES

176

Data Display/Change

Example

>d 80000000,8000002f

80000000 DC 06 00 00 00 FF 24 00 01 F2 F0 90 00 2D 00 20

80000010 F1 00 60 20 04 29 FC C1 FB F8 FE FC FC FF 0D 00

80000020 00 00 F8 FE 04 CA F4 CB CB F8 FE F8 DD 16 00 00

>s 80000000,8000002f,ff

80000005

8000001D

>

1777. Dialog Commands

Data Display/Change

R Display/change register value

R

R {<register name>|<flag name>}

<register name>+REG=<value>

<flag name>+FLG=<value>

These commands display and change the contents of registers.

The register and flag names that can be used with the R command are listed

below:

<register name> A0, A1, A2, A3, D0, D1, D2, D3, MDR, LIR, LAR, SP,

PC, PSW

<flag name> C (carry flag)

Z (zero flag)

N (negative flag)

V (overflow flag)

IE (interrupt enable flag)

IM (interrupt mask level)

This command displays the contents of all registers and flags in hexadeci-

mal.

This command displays the contents of <register name>/<flag name> and

then waits for input.

If a value is input at this point, the value in the register is replaced with the new

value. Pressing just the Return key returns control to the C source code debugger

without changing the value in the register.

These commands change the value of the specified register/flag.

To change the status of a flag, code “flag name + FLG”. (For example, to

change the C flag, use “CFLG”.)

Reference: If the Register window is left open (F2 or CTRL + 4), the most

recent register contents can always be seen.

R {<register name>~

<register name>+REG=<value>

<flag name>+FLG=<value>

R R

S

178

Data Display/Change

Example

>r

--- IM=0 S=0 D0 =00000000 D1 =00000000 D2 =00000000 D3 =00000000

PSW=0000 A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

PC =40000000 MDR=00000000 LIR=00000000 LAR=00000000 SP =00000100

jmp 0x80000000

>d0reg=12345678

>r

--- IM=0 S=0 D0 =12345678 D1 =00000000 D2 =00000000 D3 =00000000

PSW=0000 A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

PC =40000000 MDR=00000000 LIR=00000000 LAR=00000000 SP =00000100

jmp 0x80000000

>cflg=1

>r

—C— IM=0 S=0 D0 =12345678 D1 =00000000 D2 =00000000 D3 =00000000

PSW=0004 A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

PC =40000000 MDR=00000000 LIR=00000000 LAR=00000000 SP =00000100

jmp 0x80000000

>_d2=abcdef

>r

—C— IM=0 S=0 D0 =12345678 D1 =00000000 D2 =00ABCDEF D3 =00000000

PSW=0004 A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

PC =40000000 MDR=00000000 LIR=00000000 LAR=00000000 SP =00000100

jmp 80000000

>

1797. Dialog Commands

Data Display/Change

H Display expression operation results

H <expression>

H <expression 1>,<expression 2>

These commands display the expression operations.

This command displays the specified expression in octal, decimal, hexa-

decimal, and ASCII.

This command displays the results of addition and subtraction of the val-

ues of the two expressions <expression 1> and <expression 2>.

In addition, this command also displays the 8-byte real number (long float)

value of the two expressions when combined into 64 bits (with <expression 1> as

the upper 32 bits and <expression 2> as the lower 32 bits).

The H command handles all expressions as 32-bit values. For ex-

ample, when the decimal number “–1” is displayed as a hexadeci-

mal number, it is displayed not as “0xffff” but as “0xffffffff”.

Example

H <expression>

H <expression 1>,

<expression 2>

H

R
>h 1234>>8

 oct dec hex asc

 00000000022 18 00000012 '....'

>h 1a+b

 oct dec hex asc

 00000000045 37 00000025 '...%'

>h 20*5

 oct dec hex asc

 00000000240 160 000000A0 '...†'

>

On-the-fly
functionNO INFLUENCES

180

Data Display/Change

PRINTF/PF Display format

PRINTF <format>[,<parameter>]

PF <format>[,<parameter>]

This command displays data in a format similar to that of the “printf” func-

tion in C.

The PRINTF command and the PF command perform the same function.

<parameter>

Up to 10 data items with a 16-bit data width can be specified.

Two parameters are required for the long (32-bit) format specification.

Minus sign (“–”)

This sign is used to left-justify the converted parameter in its field.

Value (decimal indicating the field width)

The converted value or character string is displayed in a field specified by the

numeric value. If a numeric value or character string field is shorter than the field

width specified by the value, the left end of the field (or the right end if the left-

justification specification was made with the minus sign) is filled out with blanks.

Conversion characters

&d Converts the parameter to a decimal number.

&u Converts the parameter to an unsigned decimal number.

&x Converts the parameter to a hexadecimal number.

&o Converts the parameter to an octal number.

&c Handles the parameter as a character.

&s Handles the parameter as a character string.

On-the-fly
functionNO INFLUENCES

1817. Dialog Commands

Data Display/Change

Example

Reference: • The symbol “&” is used as the equivalent of the conversion start

character “%” in the “printf” function in C.

• The field format can be specified between “&” and the conversion

character (“d”, “c”, “s”, etc.).

• Just as in C, the “/” symbol is used as an escape character.

P

>?sec

(int [2]) @0000200C {7, 3}

>pf ‘&x’,sec

200C

>pf ‘&x’,*sec

7

>pf ‘&x’,*sec|10

17

>pf ‘&x’,*sec&4

4

>pf ‘&x’,*sec&8

0

>r

—CN- IM=0 S=0 D0 =00000007 D1 =00000000 D2 =00ABCDEF D3 =00000000

PSW=0006 A0 =00002000 A1 =00000000 A2 =00000000 A3 =00000000

PC=0x80000094 MDR=8000007A LIR=40000000 LAR=00000000 SP =00001FE0

jmp 800000C3

>pf ‘&x’,mdrreg

8000007A

>

182

Data Display/Change

X Display currently registered symbols

X

X <symbol name>

This command displays the names and contents of the currently registered

global symbols.

This command displays all symbols.

This command displays the symbols specified by <symbol name>.

The wildcard characters “*” and “?” (which function in the same manner as

the MS-DOS wildcard characters) can be used in the <symbol name> specifica-

tion.

* Matches all patterns

? Matches all individual characters

Unlike normal symbol description, the underscore character (“_”)

that the C compiler adds to the front of all symbol names cannot be

omitted in the <symbol name> specification.

X <symbol name>

X

On-the-fly
functionNO INFLUENCES

1837. Dialog Commands

Data Display/Change

Example

X

>x
00000000 _i
00000004 _test
0000000C _sec
80000000 _Reset
80000029 _main
8000002C _0main
80000042 _initialize
80000042 _0initialize
8000004C _display
8000004C _0display
80000056 _0cnt60
80000056 _cnt60
8000009F _init_data
8000009F _0init_data
>
>tmp1=80001234
Registered symbol name.
>x
00000000 _i
00000004 _test
0000000C _sec
80000000 _Reset
80000029 _main
8000002C _0main
80000042 _initialize
80000042 _0initialize
8000004C _display
8000004C _0display
80000056 _0cnt60
80000056 _cnt60
8000009F _init_data
8000009F _0init_data
80001234 tmp1
>
>tmp1=*
>x
00000000 _i
00000004 _test
0000000C _sec
80000000 _Reset
80000029 _main
8000002C _0main
80000042 _initialize
80000042 _0initialize
8000004C _display
8000004C _0display
80000056 _0cnt60
80000056 _cnt60
8000009F _init_data
8000009F _0init_data
>__debinf__=*
>x
No debugging information found.
>d 100
00000100 86 74 CD 76 E8 95 98 BA B1 B6 EB D2 7F 2A 99 4E
>j=*100
Registered symbol name.
>x
76CD7486 j
>

184

Data Display/Change

. Register/change/delete symbol

[.] <symbol name>=<address>

 <symbol name> ↵ <address>

[.] <symbol name>= *

Example

These commands are used to register, change, or delete symbols.

The period [“. ”] at the start of the line may be omitted.

This command sets (registers) the immediate <address> for <symbol

name>.

This command inputs the symbol name and then its setting value.

If “.<symbol name>” is input in the C source code debugger’s command

mode, the mode changes to one-line keyboard input mode, even from within a

macro command, and then the program waits for the setting value to be input.

This input method is useful when setting data within a macro. In the case of this

specification, the period [“.”] may not be omitted.

This command deletes the specified symbol from the symbol table.

The C source code debugger has a special reserved symbol “_ _DEBINF_ _”.

If the following line is input:

_ _DEBINF_ _=* ↵

all registered symbols will be deleted. In this case, the source line information

is also deleted.

Symbols are used as variables in macro commands. An example is shown

below.

In this example, the symbol “i” is used as a loop variable in the DO{..}WHILE

command. This sample macro code causes three steps to be executed.

[.] <symbol name>

=<address>

. <symbol name> ↵
<address>

[.]<symbol name>=*

i=0

do {

T ; Single-step execution command

i=i+1

} while i<3

On-the-fly
functionNO INFLUENCES

1857. Dialog Commands

Data Display/Change

Example

When registering a symbol with the same name as a CPU register

name [☞ R command], the period (“.”) cannot be omitted. If the

period is omitted, the command will be interpreted as a “change

register” command.

[☞ R command and X command]

>x
00000000 _i
00000004 _test
0000000C _sec
80000000 _Reset
80000029 _main
8000002C _0main
80000042 _initialize
80000042 _0initialize
8000004C _display
8000004C _0display
80000056 _0cnt60
80000056 _cnt60
8000009F _init_data
8000009F _0init_data
>tmp1=80001234
Registered symbol name.
>tmp1=80000020
Registered symbol name.
>x
00000000 _i
00000004 _test
0000000C _sec
80000000 _Reset
80000020 tmp1
80000029 _main
8000002C _0main
80000042 _initialize
80000042 _0initialize
8000004C _display
8000004C _0display
80000056 _0cnt60
80000056 _cnt60
8000009F _init_data
8000009F _0init_data
80001234 tmp2
>__debinf__=*
>x
No debugging information found.
>
>d 100
00000100 86 74 CD 76 E8 95 98 BA B1 B6 EB D2 7F 2A 99 4E
>j=*100
Registered symbol name.
>x
76CD7486 j
>k=*100&ffff
Registered symbol name.
>x
00007486 k
76CD7486 j
>

 Symbol

186

Code Display/Change

7 Code Display/Change

The C source code debugger displays the source code or the results of disas-

sembly in the Code window. Changes in the displayed contents can easily be

referenced by using Window commands to switch between the source code and

the disassembled code. The V and U Dialog commands can also be used to ex-

ecute similar processing.

[☞ Chapter 6, “Window Commands”]

V command

This command displays the source code in the Code window.

U command

This command displays the disassembled results in the Code window.

A command

This command performs line assembly.

K command

This command back traces the C stack frame.

1877. Dialog Commands

Code Display/Change

V Display source lines from specified position in Code window

V [.][<file name>:][<line>]

V <symbol>

These commands display the specified source lines in the Code window.

This command displays the contents of the file specified by <file name>,

starting from the specified line.

If the <line> specification is omitted, the first line of the file is assumed. If

<file name> is omitted, the source file currently displayed in the Code window is

assumed. The V command also permits the specification of a file without source

information. In other words, it is possible to load any ASCII file into the Code

window, in a similar manner to a text editor.

This command displays a source file containing the function specified by

<symbol name>.

The F1 Window command can be used to open the file selection window and

change the displayed file.

• If a file that has no source line information is opened with the V

command, source level execution within the file and command

input with source line specifications are not possible.

If the environment variable PANASRC has been set, the V com-

mand displays the files in the directory specified by PANASRC.

If PANASRC is not set, the V command displays the files in the

current directory.

• Even if the line number is omitted, the “:” after the file name is

required.

[☞ Chapter 6, Window Commands for the U command]

Displays the file “startup.
asm” in the Code window.

V [.][<file name>:][<line>]

>v init_data

>v startup.asm:

V <symbol name>

Example

Display the source code
in the Code window,
starting from the loca-
tion where the symbol
“init_data” is defined.

V

On-the-fly
functionNO INFLUENCES

188

Code Display/Change

U Display disassembled code

U [<address>]

UPUSH [<address>]

UPOP

UEND

UX [<address S>][,<address E>]

These commands display one screen of disassembled code in memory,

starting from <address>, in the Code window or the Command window.

The display of disassembled code in the Code window can be easily scrolled

up and down by using the ↑ and ↓ keys, or the ROLL UP and ROLL DOWN keys.

This command displays the disassembled code, starting from the speci-

fied address, in the Code window.

Valid symbols can be used in the <address> specification.

This command PUSHes the current displayed address onto the address

stack (an 8-level internal stack) and then displays the disassembled code,

starting from the specified address.

This command POPs the last address that was UPUSHed onto the stack

and displays the disassembled code, starting from that address.

This command displays the disassembled code, starting from the last ad-

dress that was UPUSHed onto the stack.

This command displays the disassembled code, starting from the speci-

fied address, in the Command window.

If <address E> is specified, the code is displayed in the Command window up

to that address. If <address E> is omitted, as many lines of code as are needed to

fill the Command window are displayed. This command is useful for saving the

results of disassembly in a file.

[☞ “>” command]

U P O P

U P U S H

[<address>]

U E N D

U X [<address S>]

[<address E>]

U [<address>]

On-the-fly
functionINFLUENCES

1897. Dialog Commands

Code Display/Change

[☞ V command and A command]

Reference: Disassembled code display rules

(1) Differentiating register names and immediate values

In order to differentiate register names from immediate values,

immediate values are displayed in upper-case letters.

<Example>

MOV d0, a0 D0 register → A0 register

MOV D0, a0 Immediate value 0xd0 → A0 register

(2) The display of disassembled code in the Code window can

be scrolled up and down by using the ↑ and ↓ keys, or the

ROLL UP and ROLL DOWN keys.

However, when the ↑ or ROLL UP key is pressed, if the first

address that is displayed happens to be an operand, the display

is shifted so that the subsequent instruction is displayed.

Example

Display the disassembled
code in the Command
window, starting from the
symbol “main”.

>u main

>ux cnt60

_cnt60:

SAMPLE.C:0043: sec[0]++;

80000056 FCA40C000000 mov (0x0C _sec),d0

8000005C 40 inc d0

8000005D FC810C000000 mov d0,(0x0C _sec)

>

>>test.log

>ux 80000000,8000005f

>>

>

Save the disassembled
code output in ad-
dresses 80000000 to
8000005F in the file
“test.log”.

U

190

Code Display/Change

A Input assembly language line

A [<address>]

If the A command is input, the system enters mnemonic input mode, dis-

plays the specified address, and waits for a mnemonic to be input.

If the <address> specification is omitted, input starts at the next address fol-

lowing the last address used by the A command.

The mnemonic that is input is then assembled, and the resulting instruction

code is stored in memory at the specified address. If the mnemonic that was input

is correct, the machine language code that was stored in the address is displayed

to the right of the address, and then the system begins waiting for the next input.

Press the [Return] key to return to the C source code debugger’s command

mode from assembly language input mode.

Reference: Subcommands in assembly language input mode

/<address> Changes the address.

ORG<address> Changes the address.

↵ (Return) Proceeds to the next address.

– Returns to the previous address

<symbol>: Registers a symbol.

DB<data> Stores 8-bit data.

DW<data> Stores 16-bit data.

DD<data> Stores 32-bit data.

In order to differentiate hexadecimal immediate values that begin

with the letters “A” through “F” from register names, add a zero in

front of the immediate value.

[☞ V command and U command]

Example
>a 80000000

80000000 add 16,sp

80000003 jmp 80000062

80000006 /80000062

80000062 add &ffee,sp

???

80000062 add ffee,sp

80000068 .

>

Change the address to
80000062.

“???” indicates an input
error.

On-the-fly
functionINFLUENCES

1917. Dialog Commands

Code Display/Change

K Back trace

K

This command back traces the C stack frame and displays the process

(addresses) by which the current function was called from the “main” func-

tion.

If back tracing is selected for the Option window, the most recent back trace

information is always displayed in the Option window.

The K command is valid only in C debugging mode.

A

K

192

Watch Display

8 Watch Display

The C source code debugger is equipped with a function that displays the con-

tents of memory, variables, and other information important for debugging work

in the Watch window in the specified format. This function can be used to con-

tinuously display the most recent contents of data at those checkpoints that must

be monitored most carefully during debugging. As a result, it is possible carry out

debugging work smoothly, without interruption and without the need to input data

display commands each time a break or trace is executed, as is required in conven-

tional debuggers.

INS command

This command displays the contents of the specified C expression or symbol.

W command

This command registers the specified memory contents or variables for watch-

ing.

VAL/? command

This command displays the contents of a C expression or variable.

Y command

This command deletes the specified watch point.

1937. Dialog Commands

Watch Display

INS Inspect

INS <variable name>[,<function name>]

This command displays the specified variable, array, or bit value in the

Inspect window according to the variable data.

Local variables can be displayed by specifying <function name> for the func-

tion in which that local variable is used. If <function name> is omitted, the cur-

rent function is assumed.

The following local commands can be used.

When inspecting pointers, arrays, or structs, this command enlarges the

window to fill the screen.

This function is extremely useful when referencing an array with a large num-

ber of elements, etc. If this key is pressed again while the window is enlarged to

fill the screen, the window is reduced to its original size.

In the scalar display, values are displayed in both decimal and hexadecimal

format. However, if the number of elements in an array or struct is such that they

cannot all be displayed on one line, they are displayed in either decimal format

(default) or hexadecimal format, not both.

The F5 key is used to switch the base.

This command displays an array or struct element that is selected (high-

lighted) through the use of the cursor keys in a newly opened Inspect win-

dow.

The ESC key is used to close the current Inspect window.

This command registers the variable that is inspected, or the element that

is selected, for watching in the Watch window.

F4 (Zoom)

F6 / Ctrl+I / I

(Inspct)

F7 / Ctrl +W / W

(Watch)

I

F5 (16 < > 10)

On-the-fly
function

INFLUENCES
CANNOT BE USED

Global variable:

Local variable:

194

Watch Display

This command displays the variable that is inspected, or the element that

is selected, for viewing in the Command window.

This command changes the array or pointer display element number or

the maximum element number.

If these keys are pressed, the window that is used to input the number of the

element to be referenced opens. At this point, the current display element and the

maximum element number are displayed, highlighted. Input the new display ele-

ment number and maximum display element number (may be omitted). During

line input, the history and line edit shell functions can be used.

This command is extremely useful when referencing a large array or when

referencing the area around a pointer.

This command changes the value of the variable that is inspected, or the

element that is selected. The variables that can be changed by this com-

mand must have either the scalar attribute (char, int, etc.) or the pointer

attribute.

Pressing this key opens a window that is used to input the new value (expres-

sion). Once the expression has been input, it is evaluated; if no errors are found,

the value of the variable is changed to the new value. During line input, the

history and line edit shell functions can be used.

[☞ Chapter 6, section 2-1 for the Inspect function]

F8 / Ctrl + V / V

(View)

F9 / Ctrl +R / R

(Range)

F10 (Change)

1957. Dialog Commands

Watch Display

W Register watch

W <address>[,<count>][,{/H|/D|/O}]

WB <address>[,<count>][,{/H|/D|/O}]

WW <address>[,<count>][,{/H|/D|/O}]

WD <address>[,<count>][,{/H|/D|/O}]

WA <address>[,<count>][,{/H|/D|/O}]

WS <address>

W? C expression

These commands register the specified memory contents or symbol for

watching.

Just as with the D command, the watch specification has a number of display

patterns (formats). When an address or symbol is registered for watching, its

content is displayed in the Watch window in the specified format.

<count> specifies the number of data items to be displayed in one line, up to a

maximum of 29 (0x1D). WA (only) supports a maximum of 99 (0x63).

Option Use When omitted

<address> Watch address Error

<count> Number of data items 1 data item is displayed; in the case

displayed on one line of WA, 32 characters are displayed

/H Hexadecimal display specification Hexadecimal display

/D Decimal display specification Hexadecimal display

/O Octal display specification Hexadecimal display

I

W

On-the-fly
function

NO INFLUENCES

CANNOT BE USED

Global variable:

Local variable:

196

Watch Display

Byte (8 bits) display

Word (16 bits) display

Double word (32 bits) display

ASCII display (8-bit units)

4-byte real number (short floating point) display

C expression display

[☞ Y command]

Reference: Some C variables, such as local variables, have a limited scope

(range of use). As a result, some variables cannot be evaluated, de-

pending on the position of the program counter. In case such as

when local variables are assigned to registers automatically by the

C compiler, the value of the C expression in the Watch window

changes to “????”.

W A

W / W B

W W

W D

W S

Example

W ?

>W SEC

>W? SEC[1]

>W 100,5

>

1977. Dialog Commands

Watch Display

VAL/? Evaluate C expression

VAL <C expression>[,<function name>]

VAL <variable name>[,<function name>]

? <C expression>[,<function name>]

? <variable name>[,<function name>]

This command displays the contents of a C expression or a variable.

Local variables can be displayed by specifying <function name> for the func-

tion in which that local variable is used.

If <function name> is omitted, the current function is assumed.

These commands display the expression type and its value.

These commands display the variable type, variable name, and variable

value.

The “*” and “?” wild cards can be used in <variable name>.

* Matches all patterns

? Matches all single characters

For example, if the command “? ab*↵” is input, all variables that begin with

“ab” are displayed.

When displaying a C expression or variable that has multiple elements, such

as an array, the elements are enclosed in rounded brackets (“{}”) and as many

elements as will fit on one line are displayed.

V A L <C expression>~

? <C expression>~

V A L <variable name>~

? <variable name>~

V

W

On-the-fly
function

NO INFLUENCES

CANNOT BE USED

Global variable:

Local variable:

198

Watch Display

The VAL command can use substitution operators and op-

erators with secondary effects, such as “++” or “– –”. If an

operator with a secondary effect is used with the “?” com-

mand, the message “Operator with possible harmful side

effect cannot be used” is displayed and an error is gener-

ated.

• When only referencing data, do not use the VAL command; use

the “?” command.

• When using an operator that has a secondary effect, such as

changing data, use the VAL command. Doing so will eliminate

inadvertent changes to variables in a program resulting from mis-

takes in the evaluation of C expressions (for example, mixing up

“==” and “=”).

• In the VAL command and the “?” command, all variables con-

tained in a C expression must be in a usable state.

The following example uses a cast operator as an example of how to use the

“?” command. Proper use of the cast operator makes it possible to display the

contents of memory in an easy-to-understand format.

[☞ Chapter 6, section 3-1 “Inspect function”]

Example

>d sec

0000000C 08 00 00 00 03 00 00 00 00 00 00 00 00 00 00 00

>? sec

(int [2]) @0000000C {8,3}

>d

0000001C 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

>

1997. Dialog Commands

Watch Display

Y Delete watch

Y {<list>|*}

This command deletes the watch registrations set with the W command.

If <list> is specified, the watch registrations with the specified numbers are

deleted. If “*” was specified, all watch registrations that were set are deleted and

the Watch window is closed.

Y 1, 2, 7 ↵

In the above example, watch registrations 1, 2 and 7 are deleted.

Y * ↵

In this example, all watch registrations are deleted and the Watch window is

closed.

[☞ W command]

V

Y

On-the-fly
functionNO INFLUENCES

200

System Control Commands

9 System Control Commands

The Dialog commands listed below are provided for system control, such as

quitting the C source code debugger, and for help, subprocesses, and history.

Q/EXIT command

This command quits the C source code debugger.

HELP command

This command displays a help message.

! command

This command executes a subprocess.

!!/! command

This command displays/searches the command history.

2017. Dialog Commands

System Control Commands

Q/EXIT Quit C source code debugger

Q

EXIT

These commands quit the C source code debugger and return control to

MS-DOS.

However, if a subprocess is running when this command is issued, the C

source code debugger cannot be terminated. In such a case, the following error

message is displayed and control returns to the C source code debugger prompt:

“Not terminated subprocess.”

In this case, terminate the subprocess first and then execute the Q/EXIT com-

mand.

E

Q

On-the-fly
functionINFLUENCES

202

System Control Commands

This command switches to the help display screen and displays the help menu.

The highlighting on the screen can be moved to the desired menu item by using

the →, ←, ↑, or ↓ key.

When the [Return] key is pressed, the content of the item selected on the help

menu is displayed. To return to the debugging menu, press the ESC key.

In order to use the C source code debugger’s help function, the help file

PT103. HLP must be located either in the current directory or in the directory

specified by the environment variable HELP.

After the command is input, the screen switches to the help screen.

Sample screen

On-the-fly
function

HELP Display help screen

HELP

NO INFLUENCES

2037. Dialog Commands

System Control Commands

! Execute subprocess

!

! <MS-DOS external command name>

It is possible to execute MS-DOS commands in parallel with debugging.

An MS-DOS command initiated by the “!” command is called a “subprocess.”

Once a subprocess is initiated by the “!” command, it is possible to switch back

and forth between the subprocess and the C source code debugger by means of

certain key sequences (multi-job function).

CTRL + 1 (numeric keypad):Shifts from C source code debugger to subpro-

cess

CTRL + 0 (numeric keypad):Returns from subprocess to C source code

debugger

This function makes it possible to startup an editor as a subprocess and per-

form debugging work while referencing the source listing. In addition, by using

the overlap function and correcting and assembling the program in the subpro-

cess, it is possible to load the executable file again.

This command executes COMMAND.COM.

This command executes the specified MS-DOS external command

(.COM, .EXE).

!

! <MS-DOS external

command name>

H

 Symbol

On-the-fly
functionNO INFLUENCES

204

System Control Commands

• This function does not run processes simultaneously (multi-task-

ing). The subprocess does not run until control is switched to it.

In addition, the different processes do not handle files in an exclu-

sive fashion from each other. Therefore, the subprocess must not

modify or delete files that the C source code debugger is using

(such as the environment variable TEMP or the TMP work file,

etc.). In addition, some applications cannot be used as subpro-

cesses.

• In order to differentiate this command from the history display

and search command, always insert at least one space or tab be-

tween the “!” and <character string>.

! <MS-DOS external command name> Subprocess initiation

! <character string> History display/search

• The message “Insufficient memory” may be output after inputting

the “! ” command or an MS-DOS external command.

In this case, if EMS memory is available for use, the problem can

be resolved by specifying the -F or -B option when starting up the

debugger so that EMS memory is used.

[☞ Chapter 5 for the startup options]

[☞ Chapter 6, section 2-6 “Shell functions”]

2057. Dialog Commands

System Control Commands

The C source code debugger has an internal 16-level command line input

buffer that can be used to display up to the last 16 command lines that were input.

It is also possible to search for character strings in the buffer, from most recent to

oldest. The information displayed by this command can be freely edited within

the Command window.

This command displays the previous command that was input (history dis-

play).

This command searches for a character string in the history buffer that

begins with <character string>, starting from the most recent command.

If a character string that meets the condition is found, it is displayed.

In order to differentiate this command from the subprocess initia-

tion command, do not insert a space or tab between the “!” and

<character string>.

! <MS-DOS external command name> Subprocess initiation

! <character string> History display/search

[☞ Chapter 6, section 2-6 “Shell functions”]

!!/! Display/search history

! !

! <character string>

! <character string>

! !

Symbol

On-the-fly
functionNO INFLUENCES

206

Other Commands

10 Other Commands

The C source code debugger is provided with other commands for Command

window display control (cursor control, clear screen, etc.), memos, option set-

tings, log output, and batch execution.

CLS command

This command clears the Command window.

HOME command

This command moves the Command window cursor to the home position.

LIST command

This command enables Command window display output.

NLIST command

This command disables Command window display output.

BEL command

This command sounds a beep.

TIME command

This command displays the current time.

WAIT command

This command causes the system to wait.

PRMPT command

This command changes the prompt.

* command

This command specifies comments.

2077. Dialog Commands

Other Commands

> command

This command outputs a log of the Command window display contents.

< command

This command performs batch processing.

MEM (memo) command

This command displays, registers, and deletes memos.

N command

This command selects the base used for parameters as either decimal or hexa-

decimal.

OPTION command

This command sets options.

208

Other Commands

HOME Move cursor to home position

HOME

CLS Clear Command window screen

CLS

This command clears the Command window.

This command is used in combination with the HOME, PRINTF/PF, LALL,

and SALL commands for display control within macro commands.

[☞ HOME command]

This command moves the Command window cursor to the home position

(the left end of the command input line).

This command is used in combination with the CLS, PRINTF/PF, LALL, and

SALL commands for display control within macro commands.

[☞ CLS command]

On-the-fly
function

On-the-fly
function

NO INFLUENCES

NO INFLUENCES

2097. Dialog Commands

Other Commands

LIST Specify display output

LIST

This command resumes Command window display output after it has

been suppressed by the NLIST command.

The LIST state is the default state when the C source code debugger is started

up. The LIST command and the NLIST command have opposing functions.

[☞ NLIST command, SALL command, and LALL command]

This command suppresses Command window display output.

This command can be used to suppress the display of unnecessary data.

The NLIST command and the LIST command have opposing functions.

[☞ LIST command, SALL command, and LALL command]

NLIST Suppress display output

NLIST

C

H

L

N

On-the-fly
function

On-the-fly
function

NO INFLUENCES

NO INFLUENCES

210

Other Commands

This command causes the host computer to beep.

This command can be used in macro commands, etc., to sound a beep.

This command displays the current time in the Command window.

TIME Display current time

TIME

BEL Sound beep

BEL

Example

>time

11:45:17

>

On-the-fly
function

On-the-fly
function

NO INFLUENCES

NO INFLUENCES

2117. Dialog Commands

Other Commands

WAIT Wait

WAIT [<count>]

PRMPT Change prompt

PRMPT <prompt character>

This command causes the system to wait either until a key is pressed or

until the specified time (<count> x 0.1) elapses.

If <count> is omitted, the system waits until a key is pressed.

This command can be used in macros to cause the system to wait.

This command changes the prompt used by the C source code debugger.

When the C source code debugger is first started up, the prompt character is “>”.

Only one character can be specified for <prompt character>.

>wait ; Stops for one second

>wait ; Waits until a key is pressed

>

Example

Example

>prmpt %

%prmpt !

!prmpt >

>

B

P

T

W

On-the-fly
function

On-the-fly
function

NO INFLUENCES

NO INFLUENCES

212

Other Commands

* Comment

* [<character string>]

This command allows the use of comments (specified in <character

string>).

Therefore, anything may be written in <character string>; it will not affect the

operation of the C source code debugger in any way.

Use this command in macros, etc., to include comments in the code.

Example

>* This is a comment.

>

On-the-fly
functionNO INFLUENCES

2137. Dialog Commands

Other Commands

> Output log

> <file name>

>> <file name>

>

The C source code debugger is provided with a log output function that out-

puts the information that is output to the command window during debugging to a

file simultaneously with the screen display.

This command creates a new file with the specified <file name> and be-

gins log output to that file.

If the specified file already exists, that file is deleted and a new one is created.

The <file name> specification can include a drive name and path name.

This command adds (appends) the screen output information to an exist-

ing file.

If the specified file does not already exist, a new file is created.

The <file name> specification can include a drive name and path name.

This command stops the log output operation.

Example

>>test.log

>UX 0,1FF

>>

>>>test1.log

>t 10

>>

>

Appends log information
to the file “test1.log”

Stops the log output
operation

> <file name>

> > <file name>

>

 Symbol

On-the-fly
functionNO INFLUENCES

214

Other Commands

< Batch

< <file name>

This batch function inputs and executes a series of commands from a file

instead of from the keyboard.

The C source code debugger sequentially executes the commands that it reads

from the file that was specified by this command. The file name can include a

drive name and path name. This function is similar to batch processing in DOS,

and is useful for repeated execution of a predetermined sequence of operations.

However, unlike DOS batch processing, it is not possible to pass parameters to

this function. If the ability to pass parameters is needed, use a macro function.

In addition, if the INIT.MCR file is located in the current directory when the C

source code debugger is started up, the C source code debugger loads and ex-

ecutes automatically. This file is equivalent to the AUTOEXEC.BAT file in

DOS.

In other words, by writing any preprocessing (such as loading the user pro-

gram) essential for program debugging in this file, it is possible to automatically

execute that processing when the C source code debugger starts up.

The batch function is useful if used for macro definition (registration). Al-

though macros can be defined from within the C source code debugger, it is also

possible to use a text editor to write large macros outside of the C source code

debugger, and then use the batch function to register those macros in the C source

code debugger.

It is also possible to use the MLIST command to load macros written in a file.

Batch execution can be interrupted by pressing the ESC key.

[☞ MLIST command and macro definition]

Example

Execute commands
from the file “m1.mcr”

><m1.mcr

.

.

.

.

>

On-the-fly
functionNO INFLUENCES

2157. Dialog Commands

Other Commands

MEM Display/register/delete memo

MEM <number>[,<character string>]

MEM*

MEM

These commands are used to display, register, and delete memos.

The contents of the memos are displayed in the Memo window, one of the

Option windows. A character string set by the MEM command can also be called

up by the CTRL + SHIFT + function key sequence.

This command registers the specified character string in the memo indi-

cated by <number>.

If <character string> is omitted, any memo registered in the specified memo

number is deleted.

This command deletes all of the memos that are currently registered.

This command displays the contents of the memos that are currently reg-

istered.

[☞ Chapter 6, section 2-7 for the Memo command]

Example

 M E M <number>

[,<character string>]

M E M *

M E M

 Symbol

M

>mem1,Panasonic

>mem2,PanaX

>mem3,MN10300

>mem

MEMO 1 : Panasonic

MEMO 2 : PanaX

MEMO 3 : MN10300

>mem2

>mem

MEMO 1 : Panasonic

MEMO 3 : MN10300

>mem *

>mem

>

On-the-fly
functionNO INFLUENCES

216

Other Commands

N Change input format base

N {10|16}

This command changes the base for parameters input in Dialog com-

mands to either decimal or hexadecimal.

When the C source code debugger starts up, the base is 16.

N 10 Changes the input base to 10.

N 16 Changes the input base to 16.

Example

>N 10

On-the-fly
functionNO INFLUENCES

2177. Dialog Commands

Other Commands

OPTION Set option

OPTION <reg>[,<code>[,<case>]]

This command can be used to set various C source code debugger options.

The items that can be set by this command can also be displayed/changed by

using the Window command SHIFT + F10. The options that can be set by this

command are listed below.

Option Parameters Description

<reg> (ON|OFF) Register window display control

<code> (SRC|ASM) Code window source/disassembled code display switching

<case> (ON|OFF) Symbol name uppercase/lowercase discrimination on/off

Example
>option ON,SRC,OFF

>option OFF

>

>

N

O

On-the-fly
function

NO INFLUENCES

218

Other Commands

Chapter 8
Macro Commands

1. Macro Command Overview
2. Macro Commands

220

Macro Command Overview

1 Macro Command Overview

1-1 Macro function

The macro function makes it possible to construct new commands by combin-

ing existing commands. In the C source code debugger, it is possible to create

sophisticated macro commands by using a wide variety of commands and power-

ful macro control structures.

The features of the C source code debugger’s macro function are listed below.

(1) The macro function supports control structures similar to those used in C,

making it possible to describe easy-to-understand macros in a block format

without using GOTOs.

(2) It is possible to nest up to 255 IF statements, making it possible to handle

different possibilities with tremendous detail.

(3) It is possible to nest up to 15 macros, so that separate macros can be used as

subroutines and expanded within other macros.

(4) Up to 10 parameters can be passed to a macro command.

(5) It is possible to define macro commands that use combinations of cursor con-

trol commands, the PRINTF/PF command, etc., to create formatted screen

output, and that use combinations of symbol definition functions to perform

interactive processing.

Macro commands can be used in the same manner as the C source code

debugger’s internal commands. In other words, there is no special command that

is needed in order to execute a macro command. A macro command can be inter-

rupted by using the ESC key.

By using special symbols, execution control commands can be used to make

even more efficient debugging possible. Some specific examples are shown be-

low.

Example

{test1

bp sec,w

do{

 g

 while{_ _run_ _

 }

}while val(sec[0]!=9)

}

2218. Macro Commands

Macro Command Overview

This macro sets a hardware break at the address assigned to the variable “sec”.

The 3rd through 7th lines form a “do{}while” loop, and as long as the condition

sec!=9 that follows the “do{}while” loop is not met, the G command is executed.

In this example, a break point is set in the 45th line first. The third line mea-

sures the execution speed of the timer command. The fourth line initiates execu-

tion. Then, in the 9th line, if the user program is stopped, the time required to

execute from the 45th line to the 45th line is displayed and the macro is exited.

On the other hand, if the user program is running in the 9th line, the macro inputs

“ESC”, displays a message indicating that fact, and exits the macro. (User pro-

gram execution can be interrupted by inputting ESC from within a macro.)

These are just two examples of how macros can be used to make more effi-

cient debugging possible. This function can also be used in durability testing by

collecting the results of macro command execution in a file and determining

whether the same commands yield the same results.

Example
{TEST2

bp .45

ti run

g

while{_ _run_ _

}

if{val(sec[1]==1)

g

}

if {_ _run_ _!=1

ti

}else{

esc

pf 'Forced break was executed'

}

}

222

Macro Commands

Macro Commands

The following Dialog commands are provided as macro definition/execution

commands and as control commands supported by the C source code debugger to

provide control structures similar to those in C.

DO{ }WHILE command

This command executes do{..}while macro control.

FOR{ }command

This command executes for{..} macro control.

WHILE{ }command

This command executes while{..} macro control.

REPEAT{ }command

This command executes repeat macro control.

BREAK command

This command exits a macro.

LALL command

This command specifies display output by a macro.

SALL command

This command suppresses display output by a macro.

MLIST command

This command displays the registered macros.

KILL command

This command deletes registered macros.

IF{ } command

This command executes a command under conditional control.

KEYIN command

This command specifies input from the keyboard.

2

2238. Macro Commands

Macro Commands

{< > < >} Execute macro command

{<macro name><macro body>}

 Symbol

This command defines a macro command.

<macro name> is the name of the macro being defined.

If {<macro name> ↵ is input, the macro input prompt “?” appears and the

system waits for the input of the body of the macro being defined.

Multiple internal commands and macro commands can be freely written in the

<macro body> portion; there is no limit on the number of commands that can be

included, except for the capacity of the macro buffer.

No error checking of the commands is performed while <macro body> is be-

ing input. Error checking is performed only when the macro is executed. The

input of <macro body> is terminated by inputting “} ↵”. If a macro is defined

with the same name as an internal command of the C source code debugger, the

following error message appears:

“Conflicting Dialog command.”

In addition, if a macro is defined with a name that is the same as that of a

previously defined macro, the old macro definition is deleted.

A macro command cannot be defined from within a macro command.

In other words, macro commands can only be defined in the C source code

debugger command input mode (when the “>” prompt is displayed).

Reference: The user can change the “>” prompt to a different character by us-

ing the PRMPT command.

While this command can be used to define simple macro commands after the

C source code debugger has been started up, large macro commands can be more

easily described by using an editor beforehand and then using the batch function

for macro registration.

In addition, in order to save macro commands that were defined within the C

source code debugger, it is possible to use the MLIST command to write the mac-

ros to a file.

224

Macro Commands

[☞ < command and MLIST command]

Notes on macro description

(1) An error will result if the description “%0” is made within a

macro.

Example of a description that generates an error:

{test

while{_ _ run _ _

}

repeat {wi0, wi1, wi2

d %0

}

}

In order to implement “%0” in a macro, use “%%”.

Example of a description that does not generate an error:

repeat {wi0, wi1, wi2,

d %%0

}

(2) In the case of <macro command>{<parameter list, etc.>}, a

space between the macro command and the “{” will prevent the

macro from being properly recognized. The “{” should follow

immediately after the macro command.

Examples where macro is recognized normally:

for{<command 1>,<expression>,<command 2>

<macro body>

if{<parameter list>

Examples where macro is not recognized normally:

for {<command 1>,<expression>,<command 2>

<macro body>

if {<parameter list>

Example
>{TEST1

? bp sec, ex

? do{

? g

? while{_ _run_ _

? }

? }while val(sec[0]!=9)

?}

>

2258. Macro Commands

Macro Commands

A defined macro can be executed with the same input format as an internal

command of the C source code debugger. In other words, there is no special

command that is needed in order to execute a macro command. (As long as the C

source code debugger prompt is displayed, a macro command can be executed

simply by inputting the macro name.)

In addition, up to 10 parameters can be specified for a macro command. The

parameters are delimited by commas. The parameters specified in the macro

command replace the pseudo-parameters %0, %1, ..., %9 within <macro body>

when the command is executed.

%0 Corresponds to the first parameter in the macro command

%1 Corresponds to the second parameter in the macro command

.

.

.

%9 Corresponds to the tenth parameter in the macro command

A macro command that is executing can be interrupted by pressing the ESC

key. When specifying parameters, commas (“,”) and single quotation marks (’)

can be enclosed in square brackets ([..]) when they are included within a character

string so that the string is treated as a single parameter. In this case, the square

brackets are deleted from the character string when it is passed to the macro as a

parameter.

[] Execute macro command

<macro name>[<parameter list>]

 Symbol

226

Macro Commands

Example
>{calc

?h %0

?}

>calc 1,2

>h 1

 oct dec hex asc float

00000000001 1 00000001 '....' 0.000000e+00

>calc [1,2]

>h 1,2

oct dec hex asc float

+: 00000000003 3 00000003 '....' 0.000000e+00

-: 37777777777 -1 FFFFFFFF '....' -6.805647e+38

double: 0.000000000000000e+00

>

2278. Macro Commands

Macro Commands

DO{ }WHILE Macro control execution

DO {<macro body>} WHILE <expression>

In the same manner as a macro command definition, if “DO{↵” is input, the

macro input prompt “?” is displayed and the system enters macro input mode.

Multiple commands and macros can be freely written in the <macro body> por-

tion; there is no limit on the number of commands that can be included, except for

the capacity of the macro buffer.

The input of <macro body> is terminated by inputting

“{WHILE<expression>↵”.

After the entire <macro body> is executed, the value of <expression> is evalu-

ated. If the value is 0, the macro terminates; if the value is not 0, <macro body> is

executed again, starting from the beginning. The commands in <macro body> are

always executed at least once in a DO{..}WHILE macro.

[☞ Macro command definition]

Example

 Symbol

D

{test3

reset

do{

t

}while val(sec[0]!=9)

}

228

Macro Commands

FOR{ } Macro control execution

FOR {<command 1>,<expression>,<command 2><macro body>}

In the same manner as a macro command definition, if “FOR{<command

1>,<expression>,<command 2>}↵” is input, the macro input prompt “?” is dis-

played and the system enters macro input mode. Multiple commands and macros

can be freely written in the <macro body> portion; there is no limit on the number

of commands that can be included, except for the capacity of the macro buffer.

The input of <macro body> is terminated by inputting “}↵”.

In the FOR{..} macro, <command 1 > is executed and then the value of <ex-

pression> is evaluated. If the value is 0, the macro terminates; if the value is not

0, <macro body> is executed from the beginning. After <macro body> is ex-

ecuted, <command 2> is executed and then <expression> is evaluated again.

<macro body> and <command 2> are then executed in turn until the value of the

expression is 0. In the FOR{..} macro, if the value of <expression> is 0 the first

time it is evaluated, the commands in <macro body> are not executed even once.

This macro command writes the data specified by parameter 3 in every other

byte in memory, starting from the address indicated by parameter 1 and continu-

ing to the address indicated by parameter 2.

[☞ Macro command definition]

Example
{fort

 for{j=0x100,j<0x200,j=j+1

 e j,ff

 }

}

2298. Macro Commands

Macro Commands

WHILE{ } Macro control execution

WHILE {<expression><macro body>}

In the same manner as a macro command definition, if “WHILE{<expression> ↵”

is input, the macro input prompt “?” is displayed and the system enters macro

input mode. Multiple commands and macros can be freely written in the <macro

body> portion; there is no limit on the number of commands that can be included,

except for the capacity of the macro buffer.

The input of <macro body> is terminated by inputting “}↵”.

In the WHILE{..} macro, the value of <expression> is evaluated first. If the

value is 0, the macro terminates; if the value is not 0, <macro body> is executed

from the beginning. After <macro body> is executed, <expression> is evaluated

again. <macro body> is executed continually until the value of the expression is

0. In the WHILE{..} macro, if the value of <expression> is 0 the first time it is

evaluated, the commands in <macro body> are not executed even once.

 4000009f

This macro command step executes the program until the PC register reaches

0x4000009f.

[☞ Macro command definition]

Example

F

W

>while{_PC!=

?t

?}

>

>

230

Macro Commands

REPEAT{ } REPEAT {..} Macro control execution

REPEAT {<parameter list><macro body>}

Example

In the same manner as a macro command definition, if “REPEAT{<parameter

list>} ↵” is input, the macro input prompt “?” is displayed and the system enters

macro input mode. Multiple commands and macros can be freely written in the

<macro body> portion; there is no limit on the number of commands that can be

included, except for the capacity of the macro buffer.

The input of <macro body> is terminated by inputting “}↵”.

In the REPEAT{..} macro, the pseudo-parameter “%0” in <macro body> is

replaced by each element in <parameter list>, one by one, as <macro body> is

executed. Therefore, <macro body> is repeatedly executed a number of times

equal to the number of elements in <parameter list>. The maximum number of

parameters that can be specified is 10.

[☞ Macro command definition]

>d 80000000

80000000 A3 06 86 00 ED CB 31 00 01 F2 F0 90 00 2D 00 20

>repeat{80000000,80000002,80000004,80000006

?e %0,ff

?}

>e 80000000,ff

>e 80000002,ff

>e 80000004,ff

>e 80000006,ff

>d 80000000

80000000 FF 06 FF 00 FF CB FF 00 01 F2 F0 90 00 2D 00 20

>

2318. Macro Commands

Macro Commands

This command can only be used within the <macro body> portion of a

macro command. If a BREAK command is executed in a macro, that

macro is forcibly exited one level.

In this example, when the IF condition in the CHKGO macro is satisfied, the

BREAK command is used to exit the WHILE loop.

BREAK Exit macro

BREAK

Example

B

R

>{chkgo

?bp .45

?while{1

? g

while{_ _run_ _

}

? if{val(sec[0]==9)

? break

? }

?}

?}

>

232

Macro Commands

LALL Macro display output specification

LALL

This command resumes display of the commands within the macro com-

mand and of the prompt in the Command window after such display was

suppressed by the SALL command.

The C source code debugger is in the LALL state when it is started up. The

LALL command and the SALL command have opposite functions.

[☞ SALL command, LIST command, and NLIST command]

Example

>{test

?sall

?t

?d 80000000

?lall

?t

?d

?}

>test

>sall

—— IM=0 S=0 D0 =00000000 D1 =00000000 D2 =00000000 D3 =00000000

PSW=0000 A0 =00002000 A1 =00000000 A2 =00000000 A3 =00000000

PC=80000008 MDR=00000000 LIR=80000006 LAR=00000000 SP =00002000

add -0C,sp

80000000 FC DC 00 20 00 00 F2 F0 F8 FE F4 FC CD 14 20 00

>t

—— IM=0 S=0 D0 =00000000 D1 =00000000 D2 =00000000 D3 =00000000

PSW=0000 A0 =00002000 A1 =00000000 A2 =00000000 A3 =00000000

PC=8000000B MDR=00000000 LIR=80000008 LAR=00000000 SP =00001FF4

mov 2014,d1

>d

80000010 00 A5 00 C3 0F FC DC 00 00 00 00 00 60 50 29 FC

>

2338. Macro Commands

Macro Commands

SALL Macro display suppression specification

SALL

This command suppresses display of the commands within the macro

command and of the prompt in the Command window.

The SALL command and the LALL command have opposite functions.

[☞ LALL command, LIST command, and NLIST command]

Example

L

S

>{test

?sall

?t

?d 100

?}

>

>test

>sall

—— IM=0 S=0 D0 =00000000 D1 =00000000 D2 =00000000 D3 =00000000

PSW=0000 A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

PC=80000000 MDR=00000000 LIR=40000000 LAR=00000000 SP =00000100

mov 2000 _i ,a0

00000100 D7 16 B1 F0 E7 79 FD 7B DE 1D D2 86 B7 8F 33 D3

>

>

234

Macro Commands

MLIST Display macros

MLIST

MLIST <macro name>

MLIST> <macro file name>

These commands display the macros.

This command displays all of the macro names currently defined.

This command displays the macro body (the contents of the macro defini-

tion) of the macro command specified by <macro name>.

This command writes the contents of all of the currently defined macros

into the file specified by <macoro file name>.

This file can be loaded by means of the C source code debugger batch function

(“<” command).

[☞ “<” command]

Example

M L I S T >

<macro file name>

M L I S T

<macro name>

M L I S T

>mlist

Q

TLALL

TSALL

>mlist tlall

sall

t

d10

lall

t

d

>mlist>macro.log

>

2358. Macro Commands

Macro Commands

KILL Delete macro

KILL <macro name>

KILL*

These commands delete currently registered macro commands.

This command deletes the macro command specified by <macro name>.

This command deletes all of the macro commands that were defined by

the user.

[☞ Macro command definition]

Example

K I L L <macro name>

K I L L *

K

M

>mlist

BKSET

DISP

INIT

Q

RUN

>kill run

>mlist

BKSET

DISP

INIT

Q

>kill *
>mlist

Q

>

236

Macro Commands

IF{ } Conditional execution

IF {<expression><command>[} ELSEIF{<expression>]<command>[} ELSE{]<command>}

This macro command is valid only within a <macro body>. First, <expres-

sion> is evaluated, and if the value is not 0, the next <command> is executed.

If the evaluated value is 0, the <command> that follows the ELSE that corre-

sponds to the IF is executed.

If the data in address 70
is “8”, output the mes-
sage; otherwise, output
the data in address 70.

Example

{chkgo

 g

 esc

 while{_ _run_ _

 }

 if{_PC==0x4000009f

 d sec

 }else{

 t 5

 }

}

{chkram

 t 5
 if{(*70&0xff)==8

 pf'test OK'

 }else{

 pf'&x',*70&0xff

 }

}

If the value of the pro-
g r a m c o u n t e r i s
“0x4000009f”, dump
the contents of memory,
starting from the “sec”
symbol address; other-
wise execute five steps.

2378. Macro Commands

Macro Commands

This command is used within a user-defined macro command to ask for the

next line to be input from the keyboard.

In this example, the “55” in address 80000104 was input from the keyboard;

all of the other data was input through macro expansion.

KEYIN Specify input from the keyboard

KEYIN

Example
>{setd

?e 80000100

?11

?22

?33

?44

?keyin

?66

?.

?}

>setd

>e 80000100

address asc oct dec hex data

80000100 ‘.’ 370 -8 F8 11

80000101 ‘.’ 347 -25 E7 22

80000102 ‘.’ 003 3 03 33

80000103 ‘$’ 044 36 24 44

80000104 ‘¡’ 301 -63 C1 55

80000105 ‘&’ 046 38 26 66

80000106 ‘{‘ 173 123 7B .

>

I

K

238

Macro Commands

Chapter 9
Appendix

1. In-circuit Emulator Specifications
2. Switch Settings for Interface Board
3. Notes for Probe Section
4. C Source Code Debugger

Error Messages
5. Quick Reference
6. Supplement for the PC/AT (DOS/V)

Version

240

In-circuit Emulator Specifications

1-1. Functional Specifications

Item Specifications

Target device MN10300 Series

Memory capacity Emulation memory 1024K (standard)

(high-speed memory:512K,

low-speed memor:512K)

2560K (maximum)

(high-speed memory:512K,

low-speed memory:2048K)

Break functions Execution address 4 events maximum

breaks Conditions: area specification,

pass count specification

Data breaks 4 events maximum

Conditions: area specification,

pass count specification, bit

mask, read/write/access specifi-

cation, data width specification,

match/no match specification

AND breaks Available

Sequential breaks 8 levels

“Trace full” breaks Available

External breaks None

Trace functions Trace memory 16K steps

capacity
Data acquired Execution address, data address,

through tracing data, bus status information

Trace mode Normal mode, branch trace

mode, event condition trace

mode

Timer functions Measurement mode Continuous measurement mode,

maximum/minimum execution

time measurement mode

Time measurement Switchable among 25ns/50ns/

resolution 100ns

Trigger output Trigger outputs 8 signals

function

RAM monitor Sample memory 256 bytes

function
Display mode Dump list mode

Bitmap mode

Performance Profile Execution ratio (%) display

measurement measurement
function

Clock OSC1 Target side

(separate excitation only)

XI Target side

(separate excitation only)

In-circuit Emulator Specifications

1

2419. Appendix

1-2. Electrical Specifications

Item Rating

Emulator and probe supply voltage 0.5 to 3.6V

Trigger output voltage -0.3 to 3.6V

Trigger output current ±4mA

1-3. Environment Specifications

Item Rating

Temperature During operation 10°C to 30°C
During storage 0°C to 45°C

Humidity During operation 20% to 80%
During storage No more than 90%

1-4. External Dimensions

Length x Width x Height 130mm x 100mm x 40mm

In-circuit Emulator Specifications

242

1-5. Target Interface

Trigger output section (PROBE CN2)

2˚PROBE CN2

CMOS driver

ICE Control chip

In-circuit Emulator Specifications

2439. Appendix

2 Interface Board Switch Settings

The interface between the host computer and the In-circuit Emulator uses one

byte of I/O space in the host computer. Only the lower eight bits of the I/O ad-

dress are decoded. The upper eight bits are used within the board. Set the inter-

face board switches in accordance with the computer system being used. Al-

though any address may be used as an I/O address, as long as it is an unused

address, the addresses shown in the table that follows should normally be set.

2-1. When the Host Computer is the PC-9800 Series

The function of the fuseless circuit breaker is to protect the 5V power sup-

ply from damage due to overcurrent. If overcurrent flows through the

breaker for any reason, the white button pops out and the current is inter-

rupted. If the fuseless circuit breaker is tripped, determine what the cause

was before pushing the white button back in. When pushing the white

button, do not use too much force.

The white button is deemed to have popped out when it extends 1 or 2 mm

out from the fuseless circuit breaker when viewed from above.

Interface Board Switch Settings

Fuseless circuit breaker

DSW3

DSW6

DSW1 DSW2 DSW4 DSW5 DSW7 DSW8

DIP switches

Rotary switches

CN2

244

• Rotary switch settings (DSW1,2,4,5,7,8)

I/O address DSW1 DSW2 DSW4 DSW5 DSW7 DSW8

xxD0H -- -- 0 -- D 0

xxD1H -- -- 0 -- D 1

 : : : : : : :

xxDFH -- -- 0 -- D F

xxE0H -- -- 0 -- D F

xxE1H -- -- 0 -- E 1

 : : : : : : :

xxEFH -- -- 0 -- E F

Note: “The “-” indicates any position is fine.

Set an unused address from xxD0H to xxEFH as the I/O address.

• DIP switch (DSW3, 6) settings

1 2 3 4

DSW3 OFF OFF ON ON

DSW6 OFF OFF OFF ON

Interface Board Switch Settings

2459. Appendix

2-2. When the Host Computer is the PC-98 NOTE Series

Interface Board Switch Settings

PanaXSeries

Open this panel to set the switches.

DC jack

Connector to
PC-98 NOTE

ICE POWER

+

Rotary switch 4 [A3-A0]

ICE POWER

› ›››12345678

Rotary switch 3 [A7-A4]
Rotary switch 2 [A15-A12]
Rotary switch 1 [A19-A16]

DIP switch

The DC jack is used to supply the power for
Panasonic EPROM programmers used independently.
(The AC adapter, sold separately, is required.)
It is not required when the power for PanaX is
used.
The ICE POWER indicator lights when the
power is supplied from the DC jack.

246

Interface Board Switch Settings

1

ON

4

OFF

5

ON

6

ON

DSW2
–
–

:

–
–

–

:
–

DSW3
D
D

:

D
E

E

:
E

DSW4
0
1

:

F
0

1

:
F

DSW1
–

–
:

–

–
–

:

–

7

ON

• Rotary Switch (DSW1 to 4) settings

Note: The “-” indicates any position is fine.

Set an unused address from xxD0H to xxEFH as the I/O address.

• DIP switch settings

2

ON

3

OFF

8

OFF

I/O address
xxD0H
xxD1H

:

xxDFH
xxE0H

xxE1H

:
xxEFH

2479. Appendix

1

2

3

4

O
F

F

1

2

3

4

O
F

F

0
F EDCBA

9
87

654321
0

F EDCBA

9
87

654321
0

F EDCBA

9
87

654321
0

F EDCBA

9
87

654321
0

F EDCBA

9
87

654321

IBM PC/AT (XT) I/F BOARD

Rotary DIP switch

DIP switch
DSW6

DSW4

DSW3

DSW7

DSW1

DSW5

DSW2

Rotary DIP switches

DIP switches

2-3. When the Host Computer Is a PC/AT (DOS/V Series)

Machine

• Rotary switch (DSW1, 2, 3, 4, 6) settings

I/O address DSW3 DSW2 DSW1 DSW4 DSW6

0300H 3 0 0 – –
0301H 3 0 1 – –

: : : : : :
030FH 3 0 F – –
0310H 3 1 0 – –
0311H 3 1 1 – –

: : : : : :
03FFH 3 F F – –

Note: “-” indicates any position is fine.

Set an unused address from 0300 to 03FFH as the I/O address.

• DIP switch (DSW5, 7) settings

1 2 3 4

DSW5 OFF OFF OFF ON

DSW7 OFF ON ON ON

Interface Board Switch Settings

248

3

Special Notes on the Probe

Special Notes on the Probe

3-1. Electrical Specifications

The absolute maximum ratings and electrical characteristics are the same as

those of the microcomputer inside the probe. When power is supplied from the

target, the supply voltage must be between -0.5V and 3.6V, and while the unit is

in operation, stable voltage between 2.5V and 3.6V must be supplied. Operation

is not guaranteed if the supply voltage is not stable.

3-2. Environment Specifications

Item Ratings

Temperature During operation 10°C to 30°C
During storage 0°C to 45°C

Humidity During operation 20% to 80%
During storage No more than 90%

2499. Appendix

C Source Code Debugger Error Messages

4
C Source Code Debugger Error

Messages

The C source code debugger displays an error message when an error is found in

a command that was input by the user.

The C source code debugger error messages are explained below.

Not enough memory.

The C source code debugger could not be started up because there is not enough

available memory. Restart the C source code debugger with the -B or -F option.

EMS driver not found./Not enough free space in EMS.

This error message appears when an attempt was made to use EMS memory as a

work area with the -FEMS or -BEMS option, but either the EMS driver could not

be found or there was not enough free space in the EMS memory. Check the

EMS-related settings in the CONFIG.SYS file.

Help file not found.

The PT103.HLP file was not found. Place the PT103.HLP file either in the cur-

rent directory or in the directory specified by the environment variable HELP.

The Emulator is operating abnormally (free-run timer error).

The timer in the in-circuit emulator is not operating properly. If this error occurs,

contact us at the address indicated at the end of this manual.

The Emulator is operating abnormally (profile address latch error).

The profile address latch function (get execution address function) in the in-cir-

cuit emulator is not operating properly. If this error occurs, regardless of whether

or not the target system is operating correctly, contact us at the address indicated

at the end of this manual.

The emulator controller power is off.

The in-circuit emulator could not be started up because the emulator controller

power is off. Turn the power adapter on and restart the C source code debugger.

250

C Source Code Debugger Error Messages

The target system power is off.

The target system power is off. Turn the target system on and restart the C source

code debugger. When starting up the C source code debugger without a target

system, use the -NOTARGET option.

The “-NOTARGET” option cannot be specified while a target system is connected.

Only specify the “-NOTARGET” option when using the in-circuit emulator by

itself without connecting a target system. The “-NOTARGET” option cannot be

specified while a target system is connected.

The emulator controller is not outputting any voltage.

The C source code debugger could not be started up because the emulator control-

ler is not outputting any voltage. If this error occurs, contact us at the address

indicated at the end of this manual.

Check for an address conflict, etc., with the interface board.

Check to see whether the interface board address and the address set by the In-

staller (PINS103.EXE) are the same.

Monitor program loading failed.

The loading of the Monitor program (MON103.EX) failed. There is most likely a

problem either in the hardware or in the Monitor program file.

Monitor program (MON103.EX) not found.

The Monitor program file (MON103.EX), which is needed in order to start up the

C source code debugger, was not found. Copy the MON103.EX file either into

the current directory or into the directory specified by the environment variable

PATH.

Monitor program initialization failed.

The Monitor program was not started up. There is most likely a problem either in

the hardware or in the Monitor program file.

Wrong Monitor program version.

The C source code debugger could not be started up because the Monitor program

is the wrong version. Copy the Monitor program file that is suited to this

Debugger either into the current directory or into the directory specified by the

environment variable PATH.

2519. Appendix

C Source Code Debugger Error Messages

Overvoltage from the target system was detected.

Turn off all power, eliminate the cause of the problem, and then restart.

Overvoltage from the target system was detected. Turn off all power, and then

check the target system for any problems.

An error occurred in communications between the Emulator and the microcontroller.

An error occurred in communications between the in-circuit emulator and the

microcontroller. Check whether the microcontroller is hung up or if there is a

problem in the target system.

Quit the Debugger.

A problem occurred in the in-circuit emulator, microcontroller, or emulator con-

troller (including cases where the power is off). Quit the Debugger immediately.

Execute the INIT command.

Execute the INIT command to initialize the in-circuit emulator because a problem

occurred in the in-circuit emulator.

Execute the RESET command.

Execute the RESET command to initialize the microcontroller because a problem

occurred in the microcontroller.

Insufficient overlap area.

There is insufficient overlap area (free disk space). Either use the -B option to

reduce the size of the debugging information area or the macro registration area,

or else allocate free space on the disk.

Cannot be used in overlap mode.

An attempt was made to execute a command that cannot be used in overlap mode.

Illegal command name.

The specified command name could not be recognized as a C source code

debugger internal command or as a macro command.

Illegal command format.

The command input format, parameter specification method or number of param-

eters is incorrect.

252

C Source Code Debugger Error Messages

Illegal parameter.

The parameter specification method or number of parameters is incorrect.

Illegal address specification.

This error occurs when either an address that is not appropriate for the address

input field was input, or the start address and end address are reversed. This error

also occurs when an unregistered symbol name was used.

Illegal data specification.

This error occurs when a value that is not appropriate for the data specification

field (because it is outside of the allowable range, etc.) was specified. This error

also occurs when an unregistered symbol name was used.

Illegal alignment.

This error occurs when the address alignment for the F or S command is not cor-

rect (i.e., an odd address was specified for 16-bit data or an address that is not a

multiple of four was specified for 32-bit data).

C equation calculation error.

An error occurred in a C equation calculation in the “?” command or the VAL

command.

C variable not found.

The C variable specified by the “?” command or the VAL command was not

found.

Operators with secondary effects cannot be used.

Operators with secondary effects (=, +=, –=, etc.) cannot be used in the “?” com-

mand. Use the VAL command with operators with secondary effects.

A macro cannot be defined within a macro.

Define macro commands at the C source code debugger command level. Macro

commands cannot be defined within a macro command.

A macro cannot be deleted within a macro.

Delete macro commands at the C source code debugger command level. Macro

commands cannot be deleted within a macro command.

2539. Appendix

C Source Code Debugger Error Messages

Macro name duplicates an internal command.

The macro name that was being defined matches the name of an internal com-

mand of the C source code debugger. Use a different macro name.

Insufficient macro registration area.

Either the macro command registration area is full, or else too many macro com-

mands are being defined. Use the -B option to expand the macro command regis-

tration area and then start up the C source code debugger.

Macro command definition was not terminated properly. { }

There is an error in the correspondence of the brackets (“{}”) within the macro

command definition.

Macro nesting has exceeded 15 levels.

Macro commands can be nested (i.e., a macro command can be executed from

within a macro command) up to a maximum of 15 levels.

Specified file not found.

The specified file was not found.

Specified file cannot be opened.

The specified file could not be opened. Confirm that the file exists. This error

also occurs if there are too many files open at one time.

File cannot be created.

The file could not be created, either because there is not enough free disk space, or

because there are too many files open at one time. First, confirm the amount of

free disk space; if there is adequate disk space, close any unnecessary files.

Insufficient free disk space.

There is not enough free disk space.

Checksum error.

A loading operation failed because there is a problem in a Motorola S format or

Intel HEX format file.

254

C Source Code Debugger Error Messages

Illegal file format.

Subprocess execution failed because of a problem in the contents of the MS-DOS

command file (execution format: .COM/.EXE).

No debugging information found.

The debugging information was not found when an execution format file

(Matsushita EX format) was loaded with the L command. Compile/assemble the

file with the option that outputs debugging information.

Bad debugging information.

There is a problem in the format of the debugging information. This error should

normally not occur; if it does occur and it is reproducible, contact us at the address

indicated at the end of this manual.

Insufficient debugging information area.

There is no free space in the debugging information area. Use the -B option to

enlarge the debugging information area and then start up the C source code

debugger.

Subprocess not terminated.

When a subprocess has been started up, the C source code debugger cannot be

quit before the subprocess is terminated. Terminate the subprocess first, before

quitting the C source code debugger.

Cannot return to PICE without terminating the subprocess.

(Press the space bar to return to the subprocess.)

It was not possible to return to the C source code debugger because the subprocess

is using too much memory. Terminate the subprocess first, before returning to the

C source code debugger.

Corresponding command does not exist.

The help screen could not be displayed because the specified command does not

exist.

User program cannot be executed because the reset pin is low.

A user program could not be executed because the user reset pin is low. Set the

user reset pin high before executing the user program.

2559. Appendix

C Source Code Debugger Error Messages

User program cannot be executed.

The user program cannot be executed. Check the target system for any problems.

The stack pointer cannot be set to an address that is not a multiple of four.

The stack pointer must be set to an address that is a multiple of four. This error

occurs if the stack pointer is set to an address that is not a multiple of four and an

attempt is made to execute a user program.

Stack pointer cannot be set to internal ROM area./

Stack pointer cannot be set to special register area./

Stack pointer cannot be set to an unmounted area.

The stack pointer can only be set to internal RAM, external memory, and emula-

tion RAM areas. These errors occur if the stack pointer is set to any other area and

then an attempt is made to execute a user program.

User reset was generated.

This warning message is displayed when a user reset was generated in the target

system.

Data strobe error.

This error is generated when an external bus access in a user program does not

terminate within a certain period of time.

Forced break failed.

Although a forced break was issued, the user program did not terminate. Check

the target system for problems.

User program is running.

This error occurs when an attempt was made to execute a command that does not

have an on-the-fly function while a user program was running.

User program is halted.

The TG and TS commands cannot be executed while the user program is halted.

Tracing is in progress.

The trace results cannot be displayed without halting the tracing operation.

256

C Source Code Debugger Error Messages

Tracing has already been halted.

Because tracing has already been halted, the TS command cannot be used to halt

tracing.

Tracing has not been halted.

Because tracing did not halt even though the trace halt processing was executed,

the trace results cannot be displayed. Because it is likely that there is a problem

with the in-circuit emulator, contact us at the address indicated at the end of this

manual.

Trace contents have been cleared.

If the trace contents have been cleared or if tracing has not been performed even

once since the C source code debugger was started up, the commands that display

the trace results (TD and TDW) cannot be executed.

The delay counter specification is not correct.

An attempt was made to specify a value for the delay counter that was outside of

the permitted range from 257 to 16,384.

Cannot be used after delay trigger has been tripped.

In delay trigger trace mode, tracing cannot be resumed (with the TG command)

once tracing was halted because the conditions were met.

Canceling a trace event.

This warning message indicates that a trace event is being cancelled or disabled.

Event/break cannot be set. (32 maximum)

No more than 32 software breaks and hardware breaks in total can be set.

Software break has already been set at the same address.

A software break has already been set at the specified address. Multiple software

breaks cannot be set at the same address.

Command cannot be registered.

A command could not be registered because there was insufficient area to register

<command> with the BP ~ or /C<command> command.

2579. Appendix

C Source Code Debugger Error Messages

No further events/breaks can be set.

Up to four execution address events can be set, up to four data events each can be

set in internal data RAM and the external memory space, respectively, and a fur-

ther 8 events total can be set. These numbers cannot be exceeded. (The same

applies to hardware breaks.)

Event/break was not set.

This error occurs if a nonexistent break number was specified, or if a software

break was specified in a location that calls for a hardware event/break.

Event status does not change.

Hardware events/breaks cannot be set or changed while the microcontroller is in a

state where it does not operate, such as STOP, HALT, or SLEEP.

Could not map to the specified area.

An attempt was made to map emulation memory/extend memory to an area (inter-

nal RAM, special register area, etc.) that can not be mapped.

Could not map due to insufficient mapping blocks./

Could not map due to insufficient emulation blocks.

An attempt was made to map in excess of 8 emulation blocks.

Could not map due to insufficient emulation memory.

An attempt was made to map emulation memory in excess of the memory capac-

ity installed in the in-circuit emulator.

Changing mapping addresses to 4KB units.

Although mapping is performed in 4KB units, if the addresses were specified in

other than 4KB units, the C source code debugger adjusts the addresses so that

they are in 4KB units before mapping. This warning message is displayed in such

a case.

Changing time measurement to continuous mode.

This warning message indicates that time measurement was changed to continu-

ous mode because a timer event was cancelled or disabled.

258

C Source Code Debugger Error Messages

Paused time measurement.

Time measurement is paused if a timer event was changed while the user program

was running with time measurement in partial mode. Furthermore, the measured

results up to that point are cleared. This warning message is displayed in such a

case.

Time measurement error occurred.

While the time measurement mode was partial mode, the length of time that the

in-circuit emulator can measure was exceeded.

Time measurement not completed.

While the time measurement mode was partial mode, time measurement was not

completed because a timer event (time measurement start/stop events) did not

occur.

Time measurement events not set.

The time measurement start and stop events were not set when the time measure-

ment mode was set as partial mode (measurement of time from the occurrence of

one event until the occurrence of a different event).

Memory access failed. (timeout)

An emulation memory read or write operation failed. If this error occurs fre-

quently, it is likely that there is a problem with the in-circuit emulator, so contact

us at the address indicated at the end of this manual.

Verify error.

Data was not written to memory properly. This error occurs when data was writ-

ten to an address in memory that has not been installed, or if a write was made to

write-only I/O, etc.

Cannot write special registers.

A fill and block transfer (F or M command) cannot be made to the special register

area.

Duplicate watch point specification.

A watch point specification with the same contents has already been made.

2599. Appendix

C Source Code Debugger Error Messages

Watch point cannot be set.

This error occurs when an attempt was made to set more than 16 watch points.

Specified setting does not exist.

The watch point registration that was to be deleted by the Y command does not

exist.

Sampling was not performed.

An attempt was made to display profile results before sampling the execution

status of each function with the profile function.

PICE internal error.

This error message is displayed when an error occurs in the C source code

debugger’s internal processing. This error should normally not occur; if it does

occur and it is reproducible, contact us at the address indicated at the end of this

manual.

260

Quick Reference

5-1. Window Commands

5
■ Screen Control

Switch cursor (command/code) HOME

Move cursor one character to left ← (CTRL+S)

Move cursor one character to right → (CTRL+D)

Move cursor up one line ↑ (CTRL+E)

Move cursor down one line ↓ (CTRL+X)

Move cursor one word to left CTRL+A

Move cursor one word to right CTRL+F

Move cursor to beginning of line CTRL+Q•S

Move cursor to end of line CTRL+Q•D

Scroll up one screen ROLL UP (CTRL+C)

Scroll down one screen ROLL DOWN (CTRL+R)

Move cursor to beginning of text CTRL+Q•R

Move cursor to end of text CTRL+Q•C

Enlarge Option window CTRL+←

Reduce Option window CTRL+→

Enlarge Command window CTRL+↑

Reduce Command window CTRL+↓

Redisplay screen CTRL+J

Maximize Command window CTRL+Q•W

Minimize Command window CTRL+Q•Z

Redisplay screen (and restore window to initial size) CTRL+Q•J

Display/hide Option window F2 (CTRL+4)

Switch option window CTRL+F2 (CTRL+O)

Switch between source and disassembled display F3

Switch between source and disassembled display CTRL+F3
(cursor specification)

Quick Reference

2619. Appendix

■ Execution/Breaks

Execute (Go) F5

Execute up to cursor position (Come) F7

Single-step execution (SglStp) F8

Set/cancel break (software break) (Break) F9

Function-step execution (FncStp) F10

Forced break ESC

Forcibly terminate command CTRL+SHIFT+GRPH

■ Get/Select Text String

Get text string at cursor position (Get) CTRL+F9 (CTRL+G)

Select text string according to cursor position (Sel) CTRL+F10

Local commands for text string selection

Register memo (Memo) F1~F5,F10

Inspect (Inspct) F6 (CTRL+I) (I)

Register watch (Watch) F7 (CTRL+W) (W)

Display view (View) F8 (CTRL+V) (V)

Get text string (Get) F9 (CTRL+G) (G)

■ File-related Commands

Switch source file SHIFT+HOME

Select file (File) F1

Search for text string (down↓) (Search) F4 (CTRL+L)

Input/search for text string (down↓) CTRL+Q•F

Search for text string (up↑) (Srch↑) CTRL+F4 (CTRL+B)

Stop search ESC

Quick Reference

262

■ Process Control

Return to Debugger CTRL+0

Go to subprocess CTRL+1

Display/hide Option window CTRL+4

Display/hide RAM monitor CTRL+5

■ Shell

Backspace (delete one character) BS (CTRL+H)

Move cursor one character to left ← SHIFT+← (CTRL+S)

Move cursor one character to right → SHIFT+→ (CTRL+D)

Move cursor to beginning of line (Ln Top) SHIFT+F4 (CTRL+A)

Move cursor to end of line (Ln Bot) SHIFT+F5 (CTRL+F)

Delete one character at cursor position DEL (CTRL+G)

Delete all characters (Ln Can) SHIFT+F7 (CTRL+U)

Switch between insert mode and replace mode INS (CTRL+V)

Display/find last history buffer SHIFT+↑ (CTRL+W)

Display/find next history buffer SHIFT+↓ (CTRL+Z)

Copy one character from history buffer (C1) SHIFT+F1 SHIFT+→ (CTRL+D)

Display History window (Histry) SHIFT+F2

Copy from history buffer (CA) SHIFT+F3

Display Extended Symbol window (ExtSym) SHIFT+F6

Clear history buffer (All Can) SHIFT+F8

Quick Reference

2639. Appendix

■ Others

Specify memo text string CTRL+SHIFT+F1~F10

Display/change option menu (Option) SHIFT+F10

Interrupt/quit Window command ESC

Interrupt display, interrupt step execution, etc. STOP (CTRL+C)

Pause/resume Command window display CTRL+S

Echo output to printer CTRL+P

Display help HELP

■ Referencing/changing data

Inspect variables (Inspct) F6 (CTRL+I)

Local commands for Inspection

Zoom in/out (Zoom) F4

Change base (16<>10) F5

Inspect (Inspct) F6 (CTRL+I) (I)

Register watch (Watch) F7 (CTRL+W) (W)

Display view (View) F8 (CTRL+V) (V)

Specify array range (Range) F9 (R)

Change value (Change) F10 (C)

Register variable watch (Watch) CTRL+F7 (CTRL+W)

Display variable view (View) CTRL+F8 (CTRL+V)

Quick Reference

264

5-2. Dialog Commands

■ Loading Programs

L [<file name>] Loads both the program that is to be debugged and the de-

bugging information for that program.

LP [<file name>] Loads just the program that is to be debugged.

■ Reading/Writing Files

RD<file name>[,<address>]

Loads the specified file at the specified address.

WR<file name>,<address S>,<address E>

Writes the contents of memory in the specified range of ad-

dresses to the specified file.

■ Running Programs

T [<count>] Runs a program under single-step execution. (F8)

P [<count>] Runs a program under function-step execution. (F10)

G [=<address S>][,<address B>][,/W]

Runs a user program. (F5, F7)

/W : Runs a user program, with the on-the-fly functions

disabled.

RESET Resets the microprocessor.

■ Breaks/Events

EV<address S>[~<addressE>][,<status>][,<data>[,{/B|/W|/D}][,/N]][,/<count>]

Sets an event.

<status> EX : Execution address event

RW : A data event is generated upon a read or write

operation

R : A data event is generated upon a read operation

W : A data event is generated upon a write

operation

Omitted : If <data> is specified, RW (a data event is

generated upon a read or write operation) is

assumed. If <data> is not specified, EX

(execution address event) is assumed.

<access width> Specifies the data access width for a data event.

/B : An event is generated upon a 8-bit data access

/W : An event is generated upon a 16-bit data access

/D : An event is generated upon a 32-bit data access

Omitted : Access width does not matter

Quick Reference

2659. Appendix

 /N An event is generated when the data does not match <data>.

EV /C {<list|*>} When the specified event is generated, all event generation flags

and counters are cleared.

EV Displays the events that have been set.

BP <address S>[~<address E>][,<status>][,<data>[,{/B|/W|/D}] [,/N]][,/<count>]

[,/C<command>]

Sets a break event. (F9)

 <status> EX : Execution address break

RW : A data break is generated upon a read or write

operation

R : A data break is generated upon a read operation

W : A data break is generated upon a write operation

Omitted : If <data> is specified, RW is assumed. If <data> is not

specified, and <address E> or <count> is specified,

EX is assumed. Otherwise, a software break is

assumed.

<access width> Specifies the data access width for a data break.

/B : A break is generated upon an 8-bit data access

/W : A break is generated upon a 16-bit data access

/D : A break is generated upon a 32-bit data access

Omitted : Access width does not matter

 /N A break is generated when the data does not match <data>.

 /C <command> Executes <command> automatically after the break.

BP Displays the breaks that have been set.

BPA <list> Sets the break events specified in the list as AND breaks.

BPS <list> Sets the break events specified in the list as sequential breaks.

BC/EC {<list>|*} Cancels the break events specified in the list.

BD {<list>|*} Temporarily disables the break events specified in the list.

BE {<list>|*} Enables the break events specified in the list.

■ Hardware-related

TM [<mode>][{/B|/C|/S|/T[<count>],<event number>}]

Sets the trace mode.

 <mode> INT : Internal RAM bus (default)

EXT : Extended RAM bus

ALL : Normal trace mode (default)

JMP : Branch trace mode

<event number> : Event conditional trace mode

Quick Reference

266

/B Breaks when the trace memory becomes full.

/C Tracing continues until program execution is halted.

/S Only tracing halts when the trace memory becomes full.

(User program execution does not halt.)

/T [<count>],<event number>

After the event condition specified by <event number> has

been met the number of times specified by <count>, tracing

halts.

TM /F Sets the default trace mode (INT,ALL,/C)

TM Displays the current trace mode settings.

TG Resumes tracing.

TS Halts tracing.

TD Displays the contents of trace memory (as a hex dump).

TDU Displays the disassembled contents of trace memory.

 Subcommands for trace display mode:

 [-]B Displays the top (bottom) of trace memory.

 P <pages> Moves the display start frame the number of pages specified

by <pages>, and then displays one page.

 N <frame address> Sets the display start frame to <frame address>.

 D [<frame address S>][<frame address E>]

Displays the contents of the range of frames in hexadecimal.

 L [<frame address S>][<frame address E>]

Displays the disassembled contents of the range of frames.

 C Hides frames labelled with “:”. Executing this command

displays frames labelled with “:” again.

 Q/. Terminates trace display mode.

TDW Displays the contents of trace memory in window mode.

 TI [<mode>] Sets the timer mode.

 <mode> RUN : Measures the time from the start of program

execution until it halts.

FIRST : Measures the time between events once.

MIN/MAX : Continuously measures the time between

events, and determines the maximum and

minimum times.

/S<event number> Specifies the event at which time measurement is to start.

/E<event number> Specifies the event at which time measurement is to end.

TI <clock> Sets the timer clock.

 <clock> /T1 : 25ns resolution

/T2 : 50ns resolution

/T4 : 100ns resolution

/M : Microprocessor clock

Quick Reference

2679. Appendix

TI STOP Cancels timer mode.

TI Displays the current timer mode and the timer value.

TRIG OUT <data> Outputs the 8-bit port data <data>.

TRIG RAM <address> Outputs the contents of <address> when the microprocessor

accesses <address>.

TRIG EVENT Outputs the event status.

TRIG Displays the trigger outputs that are currently set.

MAPI/EXI <address S>,<address E>[,{/F|/S}]

Allocates memory to emulation RAM.

/F Fast emulation RAM

/S Slow emulation RAM

MAPE/EXE <address S>,<address E>

Allocates memory to a resource in the user target.

MAP/EX Displays the memory allocation settings.

■ Measuring Performance

SM [<address>] Specifies the starting address of the sample area.

SMB [<address>] Specifies the address to be displayed at the bit level.

SMC <number> Clears the address to be displayed at the bit level.

SMW Displays the RAM monitor screen.

SM Displays the current sample area.

PROF [<mode>] Tabulates the subroutine access status. (Profile function)

 <mode> ON : Profile ON

OFF : Profile OFF

CLR : Clears the profile results.

PROF Displays the profile results.

Quick Reference

268

■ Memory

D [<type>][<address S>,<address E>][,<count>][,<base>]

Displays the contents of memory from <address S> to

<address E> in the specified base.

 <type> B : Byte (8 bits) display

W : Word (16 bits) display

D : Double-word (32 bits) display

S : 4-byte real number (short floating point) display

L : 8-byte real number (long floating point) display

A : ASCII display

 <base> /H : Hexadecimal display specification

/D : Decimal display specification

/O : Octal display specification

E [<type>][<address>][<data>]

Changes the contents of memory, starting from the specified

address, to the format specified by <type>.

 <type> B : Changes format to byte (8 bits) format.

W : Changes format to word (16 bits) format.

D : Changes format to double-word (32 bits) format.

S : Changes format to 4-byte real number (short

floating point) format.

C <address S>,<address E>,<address D>

Compares the contents of memory extending from <address

S> to <address E> with the contents of memory starting at

<address D>.

F [<type>]<address S>,<address E>,<data>

Fills the specified range of addresses with the value <data>

in the format specified by <type>.

 <type> B : Byte (8 bits) fill

W : Word (16 bits) fill

D : Double-word (32 bits) fill

M <address S>,<address E>,<address D>

Transfers the memory block extending from <address S> to

<address E> to the position in memory starting at <address

D>.

S [<type>]<address S>,<address E>,<target pattern>

Displays the memory addresses within the range of ad-

dresses whose contents match <target pattern>.

 <type> B : Byte (8 bits) search

W : Word (16 bits) search

D : Double-word (32 bits) search

Quick Reference

2699. Appendix

■ Registers

R Displays the contents of all flags and registers in

hexadecimal.

R <register name> Changes the contents of <register name>/<flag name>.

<register>+REG=<value> Changes the value of the specified register.

<flag>+FLG=<value> Changes the value of the specified flag.

■ Displaying Expressions

H <expression> Displays the value of <expression> in octal, decimal, hexa-

decimal and ASCII.

H <expression 1>,<expression 2>

Displays the sum and difference of <expression 1> and

<expression 2>.

PRINTF/PF <format>[,<parameter>]

Displays in the same format as the “printf” function in C.

■ Symbols

X <symbol name> Displays <symbol name>. (All symbols are displayed if

none is specified.)

[.]<symbol name>=<address> Sets (registers) the immediate value <address> in <symbol

name>.

[.]<symbol name>=* Deletes <symbol name> from the symbol table.

■ Displaying Code

V[.][<file name>:][<line>] Displays the specified line of the specified file in the Code

window.

V <symbol name> Displays the source file for the specified symbol in the Code

window.

U [<address>] Displays disassembled code starting from the specified ad-

dress in the Code window.

UPUSH [<address>] Pushes the currently displayed address onto the address

stack and then displays disassembled code starting from the

specified address in the Code window.

UPOP Displays disassembled code starting from the last address

that was UPUSHed, and pops the address from the address

stack.

UEND Displays disassembled code starting from the last address

that was UPUSHed.

UX [<address S>] Displays disassembled code starting from the specified ad-

 [,<address E>] dress in the Command window.

K Function backtrace

Quick Reference

270

■ Assembly

A [<address>] Assembles code starting from the specified address and

expands it directly in memory.

■ Referencing/Changing C Data

INS <variable name>[,<function name>]

Displays (inspects) the variable, array, etc., specified by

variable name.

W [<type>]<address>[,<count>][,<base>]

Registers an address for watching.

 <type> B : Byte (8 bits) display

W : Word (16 bits) display

D : Double-word (32 bits) display

A : ASCII display (units of 8 bits)

S : 4-byte real number (short floating point) display

 <base> /H : Hexadecimal display specification

/D : Decimal display specification

/O : Octal display specification

W? <C expression> Registers the C expression display for watching.

VAL/? <C expression>[,<function name>]

Evaluates and displays the C expression.

Y {<list>|*} Deletes the watch registrations specified by the list.

■ System

Q/EXIT Quits the C source code debugger.

HELP Displays the Help screen.

!<command> Executes <command>.

!! Displays history.

!<character string> Searches for the history indicated by <character string>

■ Screen Control/Miscellaneous

CLS Clears the Command window.

HOME Moves the Command window cursor to the Home position.

LIST Command window display output specification

NLIST Command window display output suppression specification

BEL Rings the bell.

TIME Displays the current time (HH:MM:SS).

WAIT Pauses the system.

PRMPT <prompt character> Changes the system prompt to the specified character.

* Comment line specification

Quick Reference

2719. Appendix

■ Log Output/Batch Processing

> <file name> Outputs the Command window display/input log to the

specified file. (Log Output function)

>> <file name> Appends log output to the specified file.

> Halts log output (closes the log file).

<<file name> Reads Command window input from a file (batch function).

Batch processing can be interrupted by the ESC key.

■ Memo

MEM <number>[,<character string>]

Registers the character string in the memo indicated by

<number>.

MEM * Deletes all memos that are currently registered.

MEM Displays the contents of all memos that are currently

registered.

■ Changing Base

N {10|16} Changes the input base to either decimal or hexadecimal.

■ Setting Options

OPTION <reg>[,<code>[,<case>]]

Sets various options. (SHIFT+F10)

 <reg> {ON|OFF} : Suppresses Register window display.

 <code> {SRC|ASM} : Switches the Code window between

source and disassembled code.

 <case> {ON|OFF} : Controls discrimination between upper-

and lower-case characters in symbol

names.

Quick Reference

272

■ Macro Commands

{<macro name><macro body>} Defines the macro body for a macro name.

DO {<macro body>} WHILE <expression>

A macro command similar to the “do...while” statement in

C.

FOR {<command 1>,<expression>,<command 2><macro body>}

A macro command similar to the “for” statement in C.

WHILE {<expression><macro body>}

A macro command similar to the “while” statement in C.

REPEAT {<parameter list><macro body>}

Repeat macro command.

BREAK Exits the macro.

LALL Display output specification in a macro.

SALL Display output suppression specification in a macro.

MLIST<macro name> Displays <macro name>.

MLIST ><file name> Writes all macros that are currently defined to the specified

file.

KILL <macro name> Deletes <macro name>.

IF {<expression><command>[} ELSEIF {<expression>]<command>[} ELSE {]<command>}

Conditional control command similar to the “if, elseif, else”

statement in C.

KEYIN Instructs that the next line is to be input from the keyboard.

<{file name} Loads a macro from the specified macro file.

■ Special Symbols

__ERR__ “1” when the previously executed command generated an

error, “0” when the command was executed normally.

__RUN__ “1” while a user program is running, “0” otherwise.

__DEBINF__ Special debugger symbol that is used delete all symbols.

Quick Reference

2739. Appendix

This section explains the differences in keyboard functions when using the PC/

AT (DOS/V) version of the C Source Code Debugger, as compared to those of the

PC-9800 Series version.

* The key combinations shown in parentheses are those used in the PC-9800 Se-

ries.

6-1. Screen Operations

When the cursor is located in the Code window, pressing these keys scrolls the

contents of the Code window up one screen. (Applies to both C source code

display and disassembled code display.)

When the cursor is located in the Code window, pressing these keys scrolls the

contents of the Code window down one screen. (Applies to both C source code

display and disassembled code display.)

Pressing these keys enlarges the Option window. In other words, the vertical

division between the Option window and the Command/Code window moves to

the left.

Pressing these keys reduces the Option window. In other words, the vertical divi-

sion between the Option window and the Command/Code window moves to the

right.

Pressing these keys enlarges the Command window (and reduces the Code win-

dow). In other words, the division between the Command window and the Code

window moves up one line.

Pressing these keys reduces the Command window (and enlarges the Code win-

dow). In other words, the division between the Command window and the Code

window moves down one line.

Supplement for the PC/AT (DOS/V) Version6

Supplement for the PC/AT (DOS/V) Version

PageUp / Ctrl + C

(RollUp / Ctrl + C)

[☞ p67]

PageDown / Ctrl + R

(RollDown / Ctrl + R)

[☞ p67]

Alt + F1

(Ctrl+ ←)

[☞ p68]

Alt + F2

(Ctrl + →)

[☞ P 68)

Alt + F3

(Ctrl + ↑)

[☞ P68]

Alt + F4

(Ctrl + ↓)
[p68]

274

6-2. Data Change/Reference Commands

Local commands within the Inspect window

Pressing these keys moves the displayed item up one item.

Pressing these keys moves the displayed item down one item.

6-3. Process Control Commands

Pressing these keys while a subprocess is being executed pauses (halts) the sub-

process and returns control to the C Source Code Debugger.

Pressing these keys while a subprocess is paused pauses (halts) the C Source

Code Debugger and passes control to the subprocess.

These keys are used to hide and display the Register window and the Option win-

dow. If the Register window and Option window are not currently displayed,

pressing these keys displays the windows. If the windows are currently dis-

played, pressing these keys hides the windows. (These keys function in the same

manner as the F2 key.)

Pressing these keys switches to the RAM monitor display. To return to the

Debugger screen display, press “Alt+5” again.

Supplement for the PC/AT (DOS/V) Version

PageUp / Ctrl + R

(RollUp / Ctrl + R)

[☞ p89]

PageDown / Ctrl + C

(RollDown / Ctrl + C)

[☞ p89]

Ctrl + Pause /

Ctrl + Break

(Ctrl + 0)

[☞ p77]

Ctrl + 1(ten-key pad)

Alt + 1

(Ctrl + 1)

[☞ P 77)

Ctrl+ 4(ten-key pad)

Alt + 4

(Ctrl + 4)

[☞ P77]

Alt + 5

(Ctrl + 5)

[☞ p77]

2759. Appendix

6-4. Shell Commands

Key operations for the History window and the Extended Symbol window

Pressing these keys scrolls the displayed items up one page.

Pressing these keys scrolls the displayed items down one page.

6-5. Other Window Commands

Pressing this key saves the debugging screen and displays help. When this key is

pressed, help for the last dialog command is displayed. For example, if this key is

pressed after there was an input error in a dialog command, the help screen for the

dialog command in question is displayed. In addition, if this key is pressed during

an Inspect operation or during character string selection (Sel), help is displayed

for the various local commands. To close the help screen, press the ESC key.

 [HELP command]

If the microprocessor is hung up for some reason and the command that was input

will not terminate, press these keys in order to forcibly terminate the command.

☞

Supplement for the PC/AT (DOS/V) Version

PageUp / Ctrl + R

(RollDown / Ctrl + R)

[☞ p80]

PageDown / Ctrl + C

(RollUp / Ctrl + C)

[☞ p80]

End

(Help)

[☞ p83]

Ctrl + Shift + Alt

(Ctrl + Shift + Grph)

[☞ P 71)

276

Index

Symbols
Alphabetic

278

Index
Symbols

! command

History function command ----------------------- 205

Subprocess startup command -------------------- 203

!! command (History function) ----------------------- 205

* command (comment) -------------------------------- 212

. command (register/change/delete symbol) ----- 184

< command (batch processing) ----------------------- 214

> command (log output) ------------------------------- 213

? command (evaluate C expression) ----------------- 197

__DEBINF__ --- 184

__ERR__ --99

__RUN__ --99

Alphabetic

A

A (Assemble) command------------------------------- 190

Access status tabulation command (PROF) -------- 164

Assemble command (A)------------------------------- 190

B

BC (Cancel Break) command ------------------------ 136

BD (Disable Break) command ----------------------- 137

BE (Enable Break) command ------------------------ 139

BEL (Bell) command ---------------------------------- 210

BP (Set/Display Break) command ------------------- 130

BPA (Set AND Break) command-------------------- 133

BPS (Set Sequential Break) command -------------- 134

BREAK (Exit Macro) command --------------------- 231

Backtrace command (K) ------------------------------ 191

Batch command (<) ------------------------------------ 214

Bell command (BEL) ---------------------------------- 210

Binary operator --- 104

Break Point Control commands

BC/EC command ---------------------------------- 133

BD command --------------------------------------- 137

BE command --------------------------------------- 139

BP command-- 130

BPA command ------------------------------------- 133

BPS command -------------------------------------- 134

Break Program --45

Break source --64

Breaks

Cancel command (BC/EC) ----------------------- 136

Disable command (BD) --------------------------- 137

Enable command (BE) ---------------------------- 139

Set AND Break command (BPA) --------------- 133

Set Sequential Break command (BPS)---------- 134

Set/Display command (BP)----------------------- 130

C

C (Compare Memory) command -------------------- 171

C Source Code Debugger --------------------------- 36,53

C Source Code Debugger Floppy Disk ---------------20

C source code display -----------------------------------43

CLS (Clear Screen) command------------------------ 208

Cancel all break events ---------------------------------- 46

Cancel break --45

Cancel event command (EC) ------------------------- 136

Change Base command (N)--------------------------- 216

Change Memory command (E) ---------------------- 169

Change Prompt command (PRMPT) ---------------- 211

Character Strings

Values that can be handled by the C Source

Code Debugger ------------------------------------- 100

Clear Screen command (CLS)------------------------ 208

Code window --- 62

Command input format ---------------------------------- 96

Command window ---------------------------------------62

Comment command (*) ------------------------------- 212

Compare Memory command (C) -------------------- 171

Cursor Home command (HOME) ------------------- 208

Symbols/Alphabetic

2799. Appendix

D

D (Display Memory) command ---------------------- 167

DIP switches -------------------------------------- 243-247

DO{}WHILE

(Execute “do...while” Macro) command ----------- 227

Data Reference function-----------------------------84-94

Default extension specification, startup option (-E) 58

Delete Watch command (Y) -------------------------- 199

Delete all in watch window ----------------------------- 48

Device Connection Procedure -------------------------- 25

Dialog command ----------------------------------- 95-218

Disassembled code display ----------------------------- 43

Display Disassembled Code command (U) -------- 188

Display Expression command (H) ------------------- 179

Display Format commands

PF 180

PRINTF-- 180

Display Help command

HELP -- 202

Display Memory command (D) ---------------------- 167

Display Output Specification command (LIST) --- 209

Display Output Suppression Specification

command (NLIST) ------------------------------------- 209

Display Source Line command (V)------------------ 187

Display Time command (TIME) --------------------- 210

Display Trace Dump Window command (TDW) - 151

Display Watch command

W command -- 195

Display/Change Data commands

. command -- 184

A command --- 190

C command --- 171

D command --- 167

E command --- 169

F command-- 172

H command --- 179

M command--- 174

PF command -- 180

PRINTF command --------------------------------- 180

R command --- 177

S command-- 175

U command --- 188

V command --- 187

X command --- 182

Display/Change Registers command (R) ----------- 177

E

E (Change Memory) command ---------------------- 169

EC (Cancel Break Event) command----------------- 136

EV (Set event) command ----------------------------- 127

EX (Allocate Memory) command ------------------- 158

EXIT (Exit) command --------------------------------- 201

Electrical Specifications-------------------------- 241,248

Environment Specifications --------------------- 241,248

Environment Variables

HELP -- 25,202

PANASRC --------------------------------- 24,114,187

PATH --25

TMP/TEMP ---25

Error Messages --- 249

Execute Program commands

G command --- 121

P command-- 119

T command --- 117

Execution --70

External dimensions ----------------------------------- 241

F

F (Fill Memory) command---------------------------- 172

FOR {} (Execute “for...” Macro) command ------- 228

File selection --- 42, 43

File selection window display --------------------------42

Fill Memory command (F) ---------------------------- 172

Flat cable --18

Flow of debugging operations --------------------------33

Forced termination ---------------------------------------83

Function key --82

Function-step execution ---------------------------------44

Function-step execution command (P) -------------- 119

G

G (Go) command --------------------------------------- 121

Go command (G) --------------------------------------- 121

Go to Editor Screen --------------------------------------50

Alphabetic

280

H

H (Display Expression) command ------------------- 179

HELP (Display Help) command --------------------- 202

HELP (environment variable) ------------------------ 202

HOME (Cursor Home) command ------------------- 208

Hardware List ---18

Hardware break --- 125

Hardware-related commands

MAP/EX command -------------------------------- 158

TD/TDU command -------------------------------- 148

TDW command ------------------------------------ 151

TG command --------------------------------------- 146

TI command -- 153

TM command --------------------------------------- 142

TRIG command ------------------------------------ 156

TS command -- 147

Help

Display Help window -------------------------------38

Hide Help window -----------------------------------39

History function commands

! --- 205

!! -- 205

Host computer settings ----------------------------------25

I

IF {}

(Conditional Execution of Macro) command ------ 236

INS (Inspect) command ------------------------------- 193

In-circuit Emulator ------------------------------- 16,18,19

Indicator disabled specification (-N),

startup options --56

Inspect command (INS) ------------------------------- 193

Inspect function---84

Interface board -------------------------------------- 18,243

Installation --22

K

K (Backtrace) command ------------------------------ 191

KEYIN (Keyboard Input) command ---------------- 237

KILL (Delete Registered Macro) command ------- 235

L

L/LP (Load Program) command --------------------- 114

LALL (Output Macro Display) command---------- 232

LIST (Display Output Specification) command --- 209

Load Program --- 40

Load Program command ------------------------------ 112

L/LP command ------------------------------------- 114

RD command --------------------------------------- 115

WR command -------------------------------------- 116

M

M (Transfer Memory) command--------------------- 174

MAP/EX (Allocate Memory) command ------------ 158

MEM (Memo) command------------------------------ 215

MLIST (Display Registered Macros) command--- 234

Macro -- 51

Macro command execution ----------------------------- 51

Delete Registered Macros command (KILL) -- 235

Display Registered Macros

command (MLIST) -------------------------------- 234

Keyboard Input command (KEYIN) ------------ 237

Macro Break command (BREAK) -------------- 231

Macro Conditional Execution

command (IF{}) ------------------------------------ 236

Macro Display Output Suppression

command (SALL) ---------------------------------- 233

Macro Display Output command (LALL) ----- 232

Repeat Macro Execution

command (REPEAT{}) --------------------------- 230

“do...while” Macro Execution

command (DO{}WHILE) ------------------------ 227

“for...” Macro Execution command (FOR{}) - 228

“while...” Macro Execution

command (WHILE{}) ------------------------ 229

Measure Execution Time command (TI) ----------- 153

Memo -- 82

Memo command (MEM)------------------------------ 215

Memo window --64

Display --41

Hide --41

Memory allocation (MAP/EX) ----------------------- 158

Monadic operator--------------------------------------- 104

Alphabetic

2819. Appendix

Move cursor between windows ------------------------42

N

N (Change Base) command--------------------------- 216

NLIST (Display Output Specification) command - 209

O

OPTION (Set Options) command ------------------- 217

On-the-fly functions --------------------------------- 11,16

Operating environment ----------------------------------- 2

Operations --- 104

Option window ---64

Output Log command (>) ----------------------------- 213

Overcurrent prevention -------------------------------- 243

P

P (Function-step Execution) command ------------- 119

PANASRC (Environment Variable) ------- 25,114,187

PATH (Environment Variable) ------------------------25

PF (Format Display) command ---------------------- 180

PRINTF (Format Display) command --------------- 180

PRMPT (Change Prompt) command ---------------- 211

PROF (Access Status Tabulation) command ------ 164

Pause command (WAIT) ------------------------------ 211

Power ON/OFF ---29

Process control --77

Profile function ------------------------------------- 11,164

Program execution ---------------------------------------44

Q

Q/EXIT (Exit) command ------------------------------ 201

Quit command (Q/EXIT) ----------------------------- 201

Quitting the C Source Code Debugger ----------------52

R

R (Display/Change Register Value) command ---- 177

RAM Monitor --- 77

RD (Fail/Program Read) command ----------------- 115

REPEAT {}

(Repeat Macro Execution) command --------------- 230

RESET (Reset User CPU) command --------------- 123

Read File/Program command (RD) ----------------- 115

Real-time Trace Display command (TD/TDU) ---- 148

Reference memory ---------------------------------------47

Register Watch command (W) ----------------------- 195

Register window--63

Display --41

Hide --41

Reset command (RESET) ----------------------------- 123

S

S (Search Memory) command------------------------ 175

SALL

(Macro Display Output Suppression) command--- 233

SM (Set/Cancel Sample Area) command ----------- 161

Screen control ---66

Scrolling ---42

Search Memory command (S)------------------------ 175

Set Option command (OPTION)--------------------- 217

Set break ---45

Set event command (EV) ----------------------------- 127

Set/Cancel Sample Area command (SM) ----------- 161

Set/Display Trigger command (TRIG)-------------- 156

Shell function ---78

Single-step execution ------------------------------------44

Single-step execution command (T) ----------------- 117

Size specification (-B), startup options ---------------56

Software break -- 125

Special symbols --99

Stack window ---64

Display --41

Hide --41

Start Trace command (TG) --------------------------- 146

Startup ---56

Status display area ---------------------------------------64

Stop Trace command (TS) ---------------------------- 147

Structure and union inspection -------------------------88

Subprocess --49

Return from subprocess ----------------------------- 50

Startup --- 49

Startup command (!) ------------------------------- 203

Alphabetic

282

Supplied power --- 241

Symbols

Display command (X) ----------------------------- 182

Register/Change/Delete command (.) ----------- 184

Symbols handled

by the C Source Code Debugger-------------------97

System Control commands

! command -- 203-205

!! command --- 205

? command -- 197

HELP command -- 202

Q command --- 201

T

T (Single-step Execution) command ---------------- 117

TD/TDU (Real-time Trace Execution) command - 148

TDW (Trace Dump Window Display) command - 151

TG (Trace Start) command1 -------------------------- 146

TI (Timer) command ---------------------------------- 153

TIME (Time Measurement) command-------------- 210

TM (Set/Display Trace) command ------------------ 142

TMP/TEMP (environment variable) ------------------25

TRIG (trigger setting/display) command ----------- 156

TS (Halt Trace) command ---------------------------- 147

Target interface --- 242

Timer command (TI) ---------------------------------- 153

Title display ---65

Trace Memory command (TM) ---------------------- 142

Transfer Memory command (M)--------------------- 174

U

U (Disassembled Code Display) command -------- 188

V

V (Display Source Line) command------------------ 187

VAL/? (Evaluate C expression) command --------- 197

Values that can be handled as addresses

by the C Source Code Debugger --------------------- 100

Values that can be handled as line numbers

by the C Source Code Debugger --------------------- 101

Values that can be handled by the C Source Code

Debugger in register names --------------------------- 100

View function --- 93

W

W (Watch Registration) command ------------------ 195

WAIT (Pause) command ------------------------------ 211

WHILE {}

(Execute “while...” Macro) command -------------- 229

WR (Write File/Program) command ---------------- 116

Watch Window ---64

Watch function ---92

Window --32

Window command ----------------------------- 66-83,256

Window display --------------------------------------62-65

Write File/Program command (WR) ---------------- 116

X

X (Display Symbol) command ----------------------- 182

Y

Y (Delete Watch) command -------------------------- 199

Alphabetic

MN10300 Series
C Source Code Debugger User's Manual

March, 2000 2nd Edition 2nd Printing

Issued by Matsushita Electric Industrial Co., Ltd.

© Matsushita Electric Industrial Co., Ltd.

Semiconductor Company, Matsushita Electronics Corporation
Nagaokakyo, Kyoto, 617-8520 Japan

Tel: (075) 951-8151
http://www.mec.panasonic.co.jp

■ U.S.A. SALES OFFICE
Panasonic Industrial Company [PIC]
● New Jersey Office:

2 Panasonic Way, Secaucus, New Jersey 07094
Tel: 201-392-6173
Fax: 201-392-4652

● Milpitas Office:
1600 McCandless Drive, Milpitas, California 95035
Tel: 408-945-5630
Fax: 408-946-9063

● Chicago Office:
1707 N. Randall Road, Elgin, Illinois 60123-7847
Tel: 847-468-5829
Fax: 847-468-5725

● Atlanta Office:
1225 Northbrook Parkway, Suite 1-151,
Suwanee, Georgia 30174
Tel: 770-338-6940
Fax: 770-338-6849

● San Diego Office:
9444 Balboa Avenue, Suite 185
San Diego, California 92123
Tel: 619-503-2940
Fax: 619-715-5545

■ CANADA SALES OFFICE
 Panasonic Canada Inc. [PCI]

5700 Ambler Drive Mississauga, Ontario, L4W 2T3
Tel: 905-624-5010
Fax: 905-624-9880

■ GERMANY SALES OFFICE
Panasonic Industrial Europe G.m.b.H. [PIEG]
● Munich Office:

Hans-Pinsel-Strasse 2 85540 Haar
Tel: 89-46159-156
Fax: 89-46159-195

■ U.K. SALES OFFICE
Panasonic Industrial Europe Ltd. [PIEL]
● Electric component Group:

Willoughby Road, Bracknell, Berkshire RG12 8FP
Tel: 1344-85-3773
Fax: 1344-85-3853

■ FRANCE SALES OFFICE
Panasonic Industrial Europe G.m.b.H. [PIEG]
● Paris Office:

270, Avenue de President Wilson
93218 La Plaine Saint-Denis Cedex
Tel: 14946-4413
Fax: 14946-0007

■ ITALY SALES OFFICE
Panasonic Industrial Europe G.m.b.H. [PIEG]
● Milano Office:

Via Lucini N19, 20125 Milano
Tel: 2678-8266
Fax: 2668-8207

■ HONG KONG SALES OFFICE
Panasonic Shun Hing Industrial Sales (Hong Kong)
Co., Ltd. [PSI(HK)]

11/F, Great Eagle Centre, 23 Harbour Road,
Wanchai, Hong Kong.
Tel: 2529-7322
Fax: 2865-3697

SALES OFFICES
■ TAIWAN SALES OFFICE

Panasonic Industrial Sales Taiwan Co.,Ltd. [PIST]
● Head Office:

6th Floor, Tai Ping & First Building No.550. Sec.4,
Chung Hsiao E. Rd. Taipei 10516
Tel: 2-2757-1900
Fax: 2-2757-1906

● Kaohsiung Office:
6th Floor, Hsien 1st Road Kaohsiung
Tel: 7-223-5815
Fax: 7-224-8362

■ SINGAPORE SALES OFFICE
Panasonic Semiconductor of South Asia [PSSA]

300 Beach Road # 16-01
The Concourse Singapore 199555
Tel: 390-3688
Fax: 390-3689

■ MALAYSIA SALES OFFICE
Panasonic Industrial Company (Malaysia) Sdn. Bhd.
● Head Office: [PICM]

Tingkat 16B Menara PKNS PJ No.17,Jalan Yong
Shook Lin 46050 Petaling Jaya Selangor Darul Ehsan
Malaysia
Tel: 03-7516606
Fax: 03-7516666

● Penang Office:
Suite 20-17,MWE PLAZA No.8,Lebuh Farquhar,10200
Penang Malaysia
Tel: 04-2625550
Fax: 04-2619989

● Johore Sales Office:
39-01 Jaran Sri Perkasa 2/1,Taman Tampoi
Utama,Tampoi 81200 Johor Bahru,Johor Malaysia
Tel: 07-241-3822
Fax: 07-241-3996

■ CHINA SALES OFFICE
Panasonic SH Industrial Sales (Shenzhen)
Co., Ltd. [PSI(SZ)]

7A-107, International Business & Exhibition Centre,
Futian Free Trade Zone, Shenzhen 518048
Tel: 755-359-8500
Fax: 755-359-8516

Panasonic Industrial (Shanghai) Co., Ltd. [PICS]
1F, Block A, Development Mansion, 51 Ri Jing Street,
Wai Gao Qiao Free Trade Zone, Shanghai 200137
Tel: 21-5866-6114
Fax: 21-5866-8000

■ THAILAND SALES OFFICE
Panasonic Industrial (Thailand) Ltd. [PICT]

252/133 Muang Thai-Phatra Complex Building,31st
Fl.Rachadaphisek Rd.,Huaykwang,Bangkok 10320
Tel: 02-6933407
Fax: 02-6933423

■ PHILIPPINES SALES OFFICE
National Panasonic Sales Philippines [NPP]

102 Laguna Boulevard Laguna Technopark Sta.
Rosa. Laguna 4026 Philippines
Tel: 02-520-3150
Fax: 02-843-2778

181199
Printed in JAPAN Matsushita Electronics Corporation 2000

	Cover
	Special Attention and Precatuions
	About This Manual
	Chapter Table
	Contentes
	1 C Source Code Debugger Overview
	1 C Source Code Debugger Overview
	2 Notes on Use
	2.1 Hardware Notes
	2.2 Software Notes
	2.3 ROM, RAM
	2.4 Program Execution
	2.5 Breaks
	2.6 Tracing
	2.7 On-the-fly
	2.8 Miscellaneous

	2 C Source Code Debugger Structure
	1 Hardware List
	2 Descriptions of Each Device
	2.1 In-circuit Emulator
	2.2 C Source Code Debugger 10300 Floppy Disk

	3 Connection and Booting
	1 Installing the Interface Board
	1.1 Installation in the PC-9800 Series
	1.2 Installation in the PC-98 NOTE Series
	1.3 Installation in the PC/AT (DOS/V) Series

	2 Connection Procedure
	2.1 Connection Procedure

	3 Host Computer Settings
	3.1 Starting up the installer
	3.2 Debugger Test Startup

	4 Power On/Off

	4 Characteristic C Source Code Dubugger Functions and Their Usage
	1 Overview of Window Display
	2 Debugging Work Flow
	3 Creation of Executable Files
	4 Debugging Tutorial
	4.1 Starting up the C Source Code Debugger
	4.2 Help
	4.3 Loading executable files
	4.4 Screen control/ file handling
	4.5 Program execution and break
	4.6 Memory referencing
	4.7 Subprocesses
	4.8 Macro commands
	4.9 Exiting the C source code debugger
	4.10 Program completion (gaining familiarity with C source code debugger operation)

	5 C Source Code Debugger Startup Method and Options
	1 C Source Code Debugger Startup Method and Options

	6 Window Commands
	1 Window Displays
	2 Window Commands
	2.1 Screen control
	2.2 Executon/ Breaks
	2.3 Getting/ selecting strings
	2.4 File display
	2.5 Process control/ RAM monitor
	2.6 Shell functions
	2.7 Memos
	2.8 Other window commands

	3 Data Reference Functions
	3.1 Inspect function
	3.2 Struct and Union Inspection
	3.3 Local commands within the Inspect window
	3.4 Watch functions
	3.5 View function

	7 Dialog Commands
	1 Rules for Using Dialog Commands
	1.1 Converntions used in command explanations
	1.2 Command input format
	1.3 Symbols in the C source code debugger
	1.4 Numbers in the C source code debugger
	1.5 Operational expressions
	1.6 Data Expressions at the C Language Level

	Command index
	2 Program Loading/ Execution
	L/LP(Load executable file)
	RD(Read file into memory)
	WR(Write to file)
	T(Single-step execution of user program)
	P(Function ste execution of user program)
	G(Execute user program)
	RESET(Reset user program)

	3 Event-related Commands
	EV(Set/display event)
	BP(Set/disply break event)
	BPA(Set AND break)
	BPS(Set sequential break)
	BC/EC(Cancel break event)
	BD(Temporarily disable break event)
	BE(Enable break event)

	4 Other Hardware-related Commands
	TM(Set/display trace mode)
	TG(start trace)
	TS(Stop trace)
	TD/TDU(Display trace)
	TDW(Display trace window)
	TI(Measure/display execution time)
	TRIG(Set/display trigger)
	MAP/EX(Assign memory)

	5 Performance Measurement
	SM(Set/release sample area)
	PROF(Tabulate access status)

	6 Data Display/Change
	D(Display dump of contents of memory)
	E(Change specified memory contents)
	C(Compare specified memory contents)
	F(Fill specified range of memory with data value)
	M(Block transfer of specified range of memory)
	S(Memory pattern search)
	R(Display/change register value)
	H(Display expression operation results)
	PRINTF/PF(Display format)
	X(Display currently registered symbol)

	7 Code Display/Change
	V(Display source lines from specified position in Code window)
	U(Display disassembled code)
	A(Input assembly language line)
	K(Back trace)

	8 Watch Display
	INS(Inspect)
	W(Register watch)
	VAL/?(Evaluate C expression)
	Y(Delete watch)

	9 System Control Commands
	Q(Quit C Souce code debugger)
	HELP(Display help screen)
	!(Execute subprocess)
	!!/!(Display/ search history)

	10 Other Commands
	CLS(Clear Commands window screen)
	HOME(Move cursor to home position)
	LIST(Specify display output)
	NLIST(Suppress display output)
	BEL(Sound beep)
	TIME(Diplay current time)
	WAIT(Wait)
	PRMPT(Change prompt)
	*(Comment)
	>(Output log)
	<(Batch)
	MEM(Display/ register/ delete memo)
	N(Change input format base)
	OPTION(Set option)

	8 Macro Commands
	1 Macro Command Overview
	1.1 Macro function

	2 Macro Commands
	{< > < >}
	[]
	DO{ } WHILE
	FOR{ }
	WHILE { }
	REPEAT{ }
	BREAK
	LALL
	SALL
	MLIST
	KILL
	IF { }
	KEYIN

	9 Appendix
	1 In-circuit Emulator Specifications
	1.1 Functional Specifications
	1.2 Electrical Specifications
	1.3 Environment Specifications
	1.4 External Dimensions
	1.5 Target Interface

	2 Interface Board Switch Settings
	2.1 When the Host Computer is the PC-9800 Series
	2.2 When the Host Computer is the PC-98 NOTE Series
	2.3 When the Host Computer is a PC/AT (DOS/V Series) Machine

	3 Special Notes on the Probe
	3.1 Electrical Specifications
	3.2 Environment Specifications

	4 C Source Code Debugger Error Messages
	5 Quick Reference
	5.1 Window Commands
	5.2 Dialog Commands

	6 Supplement for the PC/AT(DOS/V) Version
	6.1 Screen Operations
	6.2 Data Change/ Reference Commands
	6.3 Process Control Commands
	6.4 Shell Commands
	6.5 Other Window Commands

	Index
	Colophon
	Sales Offices

