Pana \ Series

The OnetoWatch for Constant Innovation-Making the Future Come Alive

MICROCOMPUTER MN10300

MN10300 Series
C Source Code Debugger
User’s Manual

Pub.N0.13130-022E

Panasonic

PanaXSeries is a trademark of Matsushita Electric Industrial Co., Ltd.
Sun, Sun OS, SPARC station2, and OpenWindows are registered trademarks of Sun Microsystems, Inc. (USA).

UNIX is a registered trademark of X/Open Company Ltd. in the USA, where it is licensed, and in other countries.

The other corporation names,logotype and product names written in this book are trademarks or registered trademarks of their
corresponding corporations.

1)

()

3)

(4)

Request for your special attention and precautions in using the technical
informaition and semiconductors described in this book

An export permit needs to be obtained from the competent authorities of the Japanese Government if any of

the products or technologies described in this book and controlled under the "Foreign Exchange
Trade Law" is to be exported or taken out of Japan.

and Foreign

The contents of this book are subject to change without notice in matters of improved function.When
finalizing your design, therefore, ask for the most up-to-date version in advance in order to check for any

changes.

We are not liable for any damage arising out of the use of the contents of this book, or for any infringement

of patents or any other rights owned by a third party.

No part of this book may be reprinted or reproduced by any means without written permission from our

company.

If you have any inquiries or questions about this book or our semiconductors, please contact one of
offices listed at the back of this book or Matsushita Electronics Corporation's Sales Department.

our sales

About This Manual

This manual is intended for engineers who will be debugging programs for the MN10300 Series. Chapters 1 through

3 provide an overview of the C Source Code Debugger, describe its organization, and explain how to start it up. Chapter
4, intended for beginners, is a detailed guide to debugging work. Chapter 5 introduces the options that can be specified
when starting up the C Source Code Debugger. Chapter 6 explains the window commands, while chapters 7 and 8
explain the dialog commands and macro commands, respectively. These chapters also include specific command execu-
tion examples. Chapter 9, an appendix, includes specifications and notes concerning the In-circuit Emulator, probe
specifications, an explanation of the operation of the interface board switches, error messages, and a quick reference for
the commands.

m Organization of This Manual
Each section in this manual generally consists of a title, summary, main text, indications of the keys that are used,
notes, and reference information. Chapters 7 and 8 also include commands, command patterns, and examples of usage
The layout of each section and the meaning of each element are explained below.

Header icon
] 36
The shading of the icon /
varies according to the
content of that section. 4 Debugging Tutorial

This is an intro-
. duction to the
@ From overview to

This section provides an overview of the debugging process and the operating section in ques-

Intermediate
title

Summary

Startup methods of the C source code debugger, from start to finish, by actually using the tion.
Tut . | C source code debugger to debug the sample program (SAMPLE.C). Knowledge
@ utoria of these operating methods combined with a knowledge of the window com- S b H |
. . ubtitle
mands and dialog commands will enable you to operate the C source code

Command expla- dob
L nation eeaser re Main text

4-1 Starting up the C source code debugger

l_l Appendix
Confirm that the current directory contains the following files. If one of these
files is not contained in the current directory, copy the file from the master disk.
PICE103.EXE C source code debugger 10300
PINS103.EXE Environment setup utility
ENV103.TXT Type definition file
PICE103.MAC Macro command definition file
}<eyS PICE103.MES. Message file
PT103.HLP Help file for the C source code debugger 10300
These indicate the MON103.EX . .. In-circuit emulator monitor program file
SAMPLE.EX. .. Executable file of the sample program
keyS that are to be SAMPLE.C... .. Sample program source file
pressed_ Those that STARTUP.ASM Sample program startup routine source file

are not enclosed are To start up the C source code debugger, input the following as an MS-DOS

keys that are used for command: Reference
option commands or * PICE103 -NOTARGET 0 symbol
local commands. L
When this command is input, the C source code debugger startup screen ap- This indicates
pears. Specify “-“NOTARGET" when there is no target system connected. where related in-
Notes formation can be
q This example assumes that there is about 500KB of available space d
-Q in main memory. referenced.

Debugging Tutorial

< About This manual-1>

Command

On-the-fly function

Command
pattern

This shows the spe-
cific command pat-
tern.

Commentary

Explains the under-
lined portions.

Reference
information

-

7. Dialog Commands l/

—
On-the-fly =
NOINFLUENCES) _function_ [[[E
B I } \ Set AND break
[BPA |
This command sets an AND break.
B P A<list> The hardware break events specified in <list> become AND conditions.
Once all of the conditions are satisfied, a break occurs.

Specify up to eight break event numbers in <list>, delimited by commas.

If an AND break is set while a program is running, it becomes valid immedi-
ately. To cancel an AND break, execute the BD or BC/EC command on one of
the break events set as part of the AND break.

Example
>bp
No. Sadr - Eadr st. Data/Symbol Sz Cnt Command
E1 80000039 SF _Omain 1
E 2 00000100 RW @0xxxx100 -1
E 3 00000800 RW _i -1
E 4 80000058 EX _0cnt60 1
>bpa 2,3
Break event Nos. >bp
2and 3 form No. Sadr - Eadr st Data/Symbol Sz CntCommand
an AND break. E 1 80000039 SF _Omain 1
E 2 (&) 00000100 RW @0xxxx100 -1
E 3 (&) 00000800 RW _i -1
E 4 80000058 EX _0cnt60 1
>

m Finding Information

Reference: The base used in <list> is assumed to be decimal regardless of the N
command specification. If “Ox” is added, the base is hexadecimal.

This label G appears
if the command can be
used with the on-the-fly
function.

Command index

This is an index for
all of the commands.

Command
definition

Footer

s

Event-Related Commands

This manual allows you to find information quickly by one of four methods:

(1) To find the beginning of each chapter, refer to the index at the beginning.

(2) To find the titles, refer to the Table of Contents at the beginning.

(3) Chapter titles are indicated at the top of right-hand pages, while intermediate titles are indicated
at the bottom of each page. These can be used to get a quick idea of the content of each section
of the manual as you flip through the pages of the manual.

(4) To find a command, refer to the index at the end of the manual. A command index is also
indicated on the edge of each right-hand page; this index can be used to find the desired com-
mand as you flip through the pages of the manual.

This indicates the
type of each com-
mand.

< About This manual-2>

m Related Manuals
In addition to this manual, Panasonic also provides the following manuals for related products:

"MN103S00 Series Instruction Manual”
<Describes the instruction set>

"MN210300 Series Cross-assembler User's Manual
<Describes the assembler syntax and notation>

"MN210300 Series C Compiler User's Manual: Usage Guide"
<Describes the installation, the commands, and options of the C Compiler>

"MN210300 Series C Compiler User's Manual: Language Description”
<Describes the syntax of the C Compiler>

"MN210300 Series C Compiler User's Manual: Library Reference"
<Describes the the standard library of the C Compiler>

"MN210300 Series C Source Code Debugger for Windows(R) User's Manual"
<Describes the use of the C source code debugger for Windows>

"MNZ10300 Series Installation Manual"
<Describes the installation of the C compiler, cross-assembler and C source code debugger and the
procedure for bringing up the in-circuit emulator>

m Contact Information
If you have any comments or questions concerning this manual, contact the nearest Semiconductor Design Center.
Refer to the list at the back of this manual for addresses, etc.

< About This manual-3>

CONTENTS

Chapter 1 C Source Code Debugger Overview

Chapter 2 C Source Code Debugger Configuration

Chapter 3 Connections and Startup

Characteristic C Source Code Debugger
Chapter 4

Functions and Their Usage

Chapter 5 C Source Code Debugger Startup Method
and Options

Chapter 6 Window Commands

Chapter 7 Dialog Commands

Chapter 8 Macro Commands

Chapter 9 Appendix

Index

O

CONTENTS

< Contents - 2 >

Chapter 1 C Source Code Debugger Overview

Chapter 2 C Source Code Debugger Configuration

Chapter 3 Connections and Startup

1

C Source Code Debugger OVEIVIEWueeiveeeeeeeieiiiiiiiiiereeeeeeesesaninnns 2
NOTES ON USE .. e e eeaeeaeees 13
2-1 Hardware NOLESc..uviiiiiiiiiee e 13
2-2 SOfWAIrE NOES ... 14
2-3 ROM, RAM L. 14
2-4 Program EXECULIONccooiiiiiiiiiiiieeeiiiiieeeee e 14
2-5 2T 1 PP 15
2-6 TFACING ceeeiieeeieeeeeee e 15
2-7 On-the-fly ... 16
2-8 MiSCEIlaNEOUSuuuiiiiiiiiiiiiiiiiiiiiiiiiieeiieeeeee e eeeeeees 16

HArdware LIStooiiiiiieeei e 18
Descriptions of EACh DEVICEccccvvvviiiiiiieee et 19
2-1 IN-Circuit EMUIALONcooviiiiiiiiiiieee e 19
2-2 C Source Code Debugger 10300 Floppy Diskccccveeeeenne 20

Installing the Interface Boardcceveeiiiiiiiiiiiiiiic e 22
1-1 Installation in the PC-9800 SEresccccvveiiiiiieeeiiiieee e 22
1-2 Installation in the PC-98 NOTE Seriescccccvveeeiiieeeeennnn, 23
1-3 Installation in the PC/AT (DOS/V) SEeriescccovvveeiiiiieeeennne 23
CoNNECLION ProCeAUIEuiiiiiiiiieie e 24
2-1 Connection ProCeduUreoouuviieiiiiiiiee e 24
HOSt COMPULET SELHNGS .ovvvviieeeie i 26
3-1 Starting up the InStaller ... 27
3-2 Debugger Test Startupcvvveeriiieeeeie e 29
POWET ON/JOFT ..o 30

Chapter 4 Characteristic C Source Code Debugger Functions
and Their Usage

A W N B

Chapter 5 C Source Code Debugger Startup Method and Options

1

Chapter 6 Window Commands

Overview of Window DiSPlayccueeeeiiiiiiiiiiiieie e 32
Debugging WOTK FIOWcciiiiiieiiiicciee e 33
Creation of Executable FileS ... 34
Debugging TULOAlccoiiiiiiiiiieee e 36
4-1 Starting up the C source code debugger.........cccocvvvverniinnnenn. 36
4-2 HEID e ————— 38
4-3 Loading executable filescccevveeeeeiiiii e 40
4-4 Screen control/file handling ..., 42
4-5 Program execution and breakcccccvveiiiiiiiciniiiecee 44
4-6 Memory referenCingcccccivivieiieeeeee e 47
4-7 SUDPIOCESSES .. vttt 49
4-8 MacCro COMMANDSccoiiiiiiiieiiie et 51
4-9 Exiting the C source code debuggercccccviiiiiiiiiiiecnnns 52

4-10 Program completion (gaining familiarity with

C source code debugger operation)ccceeeevriieeeeriiiiieeeenas 53

C Source Code Debugger
Startup Method and OPLIONSeeviiiieeeie e 56

WiINAOW DISPIAYS ...vvvvvieiiiieeeeeiie ittt e e e e e 62
WINAOW COMMANGAS ..ottt 66
2-1 SCreeN CONIONuiiiiiiiiiieie e 66
2-2 EXeCUtiON/Breakscoociiiiiiiiiiieee et 70
2-3 Getting/selecting StriNgSooociviiiiiieeeeeee e 72
2-4 File diSPIAYvvvvieieeiee e 74
2-5 Process control/RAM MONITOFcooviiiiiiiiiiiiiiieee e 77
2-6 Shell FUNCHONS ... 78
2-7 MEMOS ... 82
2-8 Other window COMMANGASvvvvieiiiiiiiie s 83

< Contents - 3 >

< Contents - 4 >

Chapter 7 Dialog Commands

Data Reference FUNCHONSoouuiiiiiieeeee e e e 84

3-1
3-2
3-3
3-4
3-5

INSPECE FUNCLION ... 84
Struct and Union INSPECHIONvvvvviveeeeeeiii e 88
Local commands within the Inspect Windowccccc..... 89
Watch funCtioNSuviiiie e 92
VIEW FUNCHION L.uiiiiiiiiiiiic e 93

1 Rules for Using Dialog Commandscccccveeeieeeeeeieiiiiiiiiiieeeeeee e 96
1-1 Conventions used in command explanationsc.c...... 96

1-2 Command input format...........ccccciiiiiieeee e 96

1-3 Symbols in the C source code debuggercccooveeiiiiiennene 97

1-4 Numbers in the C source code debugger...........cccoecvvveeenne. 100

1-5 Operational eXPreSSIONScc.vvviviiiieeeeeeeieeciiierer e e e e e e 104

1-6 Data Expressions at the C Language Level 106

Command Index

2 Program Loading/EXECULIONcceeiiiiiiiiiiiiiiie e 112
L/LP (Load executable file)coccviviieiieeiee e, 114

RD (Read file int0 MEMOIY)cocoeeeiiiiiiiiiieieeeeeee e 115

WR (Wit t0 fil€) . 116

T (Single-step execution of user program)cccccceeeeernnne 117

P (Function step execution of user program) 119

G (EXECUte USEr Program)cccuuvrrrrereeeeeeeieesirinrneeereseaeaeaaanns 121

RESET (Reset user MiCroproCESSON)cceeirvvreeeriiiieeeenannn 123

3 Event-related Commandsccuueiiiiiiiiioiiiie e 124
EV (Set/display eVent)ueeeveeeeeiiiiiiiiiieieeeee e 127

BP (Set/display break event)cccccvvveeeieieee e 130

BPA (Set AND break)cveveeiiiiiiieeiieeceeieee e 133

BPS (Set sequential break)cocccviiviiieiiee 134

BC/EC (Cancel break event)cccoooiieeiiiiiiicniiecece 136

BD (Temporarily disable break event)ccccceeviiiineennnn 137

BE (Enable break event)cccovvieeiiiiiiiiieciieeee e 139

4 Other Hardware-related Commandsccccooeviiieeiiiiiinee i 141
TM (Set/display trace mode)cccvveeveeeeeeriiiiiiiiieeee e, 142
TG (SLArt traCe) ..covvveeeee it 146
TS (SLOP trACE) .veeiiiiiiee et 147
TD/TDU (Display trace)cccevvviieiuriiiiiiieeee et 148
TDW (Display trace WindOW)cccuvveeieiieeeeeeiicciiineeeeeeeeenn 151
TI (Measure/display execution time)c.ccceveeriiiineennnnn. 153
TRIG (Set/display trgger) 156
MAP/EX (ASSIGN MEMOIY) ..vvvvviieeeeeeiiiciiiiiiieeee e e e e e e e e 158
5 Performance MeasuremMeNntcccceeeviiiiieniiiiiiieesaiiee e e e 160
SM (Set/release sample area)cccceveeviveeeeeiiiiieee i, 161
PROF (Tabulate access Status)ccovvvreieeriiieeeeiiiiieeeens 164
6 Data Display/Change.........ccccvvviiiiiiiee et 166
D (Display dump of contents of memory)ccccceeeuvvneee. 167
E (Change specified memory contents)ccccccoeeeuvvnnneen. 169
C (Compare specified memory contents)cccccceeeeeeeeenne 171
F (Fill specified range of memory with data value) 172
M (Block transfer of specified range of memory)ccc........ 174
S (Memory pattern Search)cccovveeeeiiiiiieceee e 175
R (Display/change register value)ccccceviiiieeeeiiiineeenns 177
H (Display expression operation results)ccccccceeeveeiinnnns 179
PRINTF/PF (Display format)ccccccooeviiiiiiiiiiiieecee e, 180
X (Display currently registered symbolS)ccccoccviveennnnn 182
. (Register/change/delete symbol)cccccovviiiiiiiiiiineennnn 184
7 Code Display/Changecccuueiiiiieeee et 186
V (Display source lines from specified position in Code
WINGOW) ettt 187
U (Display disassembled code)ccoccuviieiiiiiieeeeiiniiins 188
A (Input assembly language line)cccccvvvveeveeeeeiiiiiciiinne, 190
QL (S 1= 1o [(= (o) I P EURRRR 191
8 WaALCH DISPIAY ...ceeiiiiiiiii it 192
INS (INSPECL) .ttt 193
W (Register watCh)ccuvvviiiieeee e 195

< Contents - 5 >

VAL/? (Evaluate C eXPreSSion)ccccueeeerniiieeeeniiiieeeeannns 197

Y (Delete WatCh)cooiiiiiiiiiiii e 199
9 System Control COMMANASceevieieeeiiiiiiiiiee e 200
Q/EXIT (Quit C source code debugger)cccovvveeereeeeeeeiiinnnns 201
HELP (Display help SCreen)ccccceeiviiiiiiiiiiiiic e 202
I (EXECULE SUDPIOCESS) ...ciiviiieeiiiiiie ettt 203
11/l (Display/search hiStory)ccccccovviiiiiiiieiiice e, 205
10 Other COMMANASoiiiiiiiiiiee et e e saaeee e 206
CLS (Clear Command Window SCreen)cccovuvveeernuennne 208
HOME (Move cursor to home position)cccceeevviveeeeennnns 208
LIST (Specify display output)cccccuviiieeieereeeeee e, 209
NLIST (Suppress display OULPUL)coovveeeeeiiiiiieeeiiiieeeeee 209
BEL (Sound BeEpP) ...t 210
TIME (Display current time)cccovveeeeiieeee e 210
WAIT (WL ettt 211
PRMPT (Change prompt)ccouueeeeeiiiieieeeiiiieee e sniieeeeenes 211
* (COMMENL) .o a e 212
> (OULPUL 1OQ) veeriiiieie et e e 213
S (BALCN) 1o 214
MEM (Display/register/delete memo)ccccvveeeiiiiereennnnn 215
N (Change input format base)cccccveeveeeeeciiiciiiee, 216
OPTION (S€et OptioN) .ovvvieeeeiii e 217

Chapter 8 Macro Commands

1 Macro Command OVEIVIEWcc.ooiveeuunieieeiieiiieieeeeeeeiieeeeeseevaeeeeeseens 220
1-1 [V F=Yod (o I8 (U Uo3 1o o S 220

Command Index

2 MacCro COMMANDSovieiiiiiiiee ittt et e et e e e e s e e e s aneeeeas 222
{3 O 223
T oo 225
DO{ }WHILE (Macro control executionccccvvvvenenn. 227
FOR{ } (Macro control executionccccceeveveeeeeeiiicinvnnnnn, 228

< Contents - 6 >

WHILE{ } (Macro control executionccccccceeeeiineeinnenne 229

REPEAT{} (REPEAT {..} Macro control execution 230
BREAK (EXIt MACIO ... e 231
LALL (Macro display output specificationccccocveeeeenne 232
SALL (Macro display suppression specification; 233
MLIST (Display MacCrOSueeevieeeeeiieiiiiiiiieireeeeee e e e e 234
KILL (Delete MAaCIOcccvviiiiieiieeee e 235
IF{} (Conditional eXeCULIONccceevriiiiieeiiiiiie e 236
KEYIN (Specify input from the keyboardccccoeuneeenne 237

Chapter 9 Appendix

1 In-circuit Emulator Specificationscccoocuviviiiiiiiiiiiiiice e 240

1-1. Functional SpecifiCationsccoovveeieiiiiiiieeiiee e 240

1-2. Electrical SpecificationS...........ccvveieieiiiiiiiiiiiiieeeeee e 241

1-3. Environment Specificationsccccoeeeeviiieieeeie e 241

1-4. External DIMENSIONSuuviiiiiiieeeeeeiieiieee e 241

1-5. Target INterfaceovvviiiiiiii e 242

2 Interface Board Switch Settingscccoveiiiiiiiiiiieeee e 243

2-1. When the Host Computer is the PC-9800 Series 243

2-2. When the Host Computer is the PC-98 NOTE Series........... 245
2-3. When the Host Computer Is a PC/AT (DOS/V Series)

MACKHINE ... 247

3 Special Notes onthe Probeccccceeeiiiiiiiiiiiiiieeeeee e 248

3-1. Electrical SpPecificationsS............ccoiiiiiiiiiiiiiicieee e 248

3-2. Environment Specificationscccceiiiiiiiieiiiiececiieeeee 248

C Source Code Debugger Error MeSSagescevveeeeeeveiiiivvvneenennnn 249

QUICK RETEIENCE .ovviieeeeee e 260

5-1. WiINdow COmMMANGAScuuveiiiiiiieaeee e 260

5-2. Dialog COMMANGSouviiiieiiiiiii et 264

6 Supplement for the PC/AT (DOS/V) VEISIONccocevvieiiieiieieeieereesievenae 273

6-1. Screen OPEratioNSccoiiiiiiiiiiiiii e e e se e e e e 273

6-2. Data Change/Reference Commandsccccceeveeeeeeeeeninnnnes 274

6-3. Process Control Commandsccceeeeeviiiiiiiiiiiiiiieeeeeee s 274

6-4. Shell CoMMANASooiiiiiiiiie e 275

6-5. Other Window Commandscoeovveiieeiiiiieeesiiieees s 275

< Contents - 7 >

< Contents - 8 >

Symbols ...

Alphabetic

Chapter 1

C Source Code Debugger
Overview

1. C Source Code Debugger
Overview

2. Usage Precautions

C Source Code Debugger Overview

C Source Code Debugger Operating Environment

Host computer

PC-9800 Series

PC/AT Series
(DOS/V-compatible machine)

expansion slot

Memory At least 500K At least 500K
(0N MS-DOS Ver. 3.x or later MS-DOS Ver. 6.2
Slot One standard personal computer One standard personal computer

expansion slot

Interface systems

I/O system

I/O system

C Source Code Debugger Overview

Overview

1. C Source Code Debugger Overview 3

Software Overview

The C Source Code Debugger and the In-circuit Emulator are integrated De
ment Tools for Panasonic’'s MN10300 Series 32-bit microcomputers. Th
circuit Emulator consists of the main unit and the emulator controller. Bec

the emulator’s control circuits are implemented on a single chip, it was possible to
greatly reduce the size, weight, and power consumption of the emulator.

The control software (the Debugger) permits efficient debugging of C and assem-
bly programs at the source level. The Debugger also offers sophisticated func-
tions and excellent operability with multi-window display, macro functions,
multi-job functions, various break functions, memory emulation functions, trace
functions, and EMS memory support.

Multi-window

Hatch Register
DO=00000002 AB=00BOAEAO
D1=00000000 A1=000000O0
D2=00000000 A2=00000000
D3=00000000 AJ=00000OO0
PC=80000076 SP=00001FE4
sec[f]++: HDR=80000073
iflsecl8] == 10){ LIR=8000007C PSH=0006
sec[B] = 0; LAR=0000PB00 F -[EY-
sec[1]++; TE=0 IH=0 S=0
if(secl1] == 6) Back trace
sec[l] = @; main+E()
display+7()
cnt60()

{int [2])sec = @AOBA260C {25}

—CN- IN=0 $=0 D@ =00000002 D1 =-00000000 D2 =00000000 D
PSi=0006 A0 =00000000 A1 =00000000 A2 =00000000 A
PC =80000076 MDR=80000073 LIR=-8000007C LAR=-00000000 S

I@cnt6@: nov {200C _sec),d0
|
il File #OptHing SrcSWMSearchl) Go @Tnspctl Come {Sg15tpkl BreakiliFncStplBly]

Five windows (Code, Register, Watch, Command and Option) can be displayed
simultaneously. Excellent operability is provided through a wide variety of op-
eration functions including pop-up menus, window commands and dialog com-
mands.

C Source Code Debugger Overview

Source level debugging
The software permits source level debugging of C and assembly programs. (Fea-
tures include specification of breaks by line numbers in the source code, referenc-
ing/changing variables specified in the source listing, and step execution at the
source level).

Macro function
The software provides a powerful macro function (language) that supports control
structures (if, for, while, do, break, etc.) similar to those found in C. The macro
function can be used to define new commands that are combinations of multiple
commands, and to perform debugging work efficiently when combined with the
break function.

Multi-job function
This function makes it possible to execute (and then return from) an MS-DOS
command with a single keystroke at any time during debugging work from within
the C Source Code Debugger.

Event function
This functions sets up triggers for hardware breaks, trace functions, and time mea-
surement functions. The In-circuit Emulator continually monitors for the occur-
rence of events without halting user program execution.

There are two types of events:

(1) Execution address event
In this case, an event is generated on the basis of the address of the instruction
that was executed. Conditions can be set, such as a specified address range or
a count of the number of passes through an address.

(2) Data event
In this case, an event is generated on the basis of the data that was accessed.
Conditions can be set, such as a specified address range, specified data, access
width, match/no match, or a count.

Events that are conditions for break functions are called “break events;” events
that are conditions for starting or stopping tracing are called “trace events;” and
events that are conditions for starting or stopping time measurement are called
“time measurement events.”

C Source Code Debugger Overview

1. C Source Code Debugger Overview 5

Break functions

These functions halt user program execution.

(1) Software break
Software breaks are implemented by the Debugger by inserting Pl codes
(Oxff) into the user program. Therefore, these breaks can only be set in writ-
able program areas; they cannot be set in data areas and the target ROM space.
In addition, because software breaks halt program execution before the in-
struction in the address where the break was set is executed, it is not possible
to set conditions such as a specified address range or a count of the number of
passes through an address.

(2) Hardware breaks
This type of break halts execution when an event occurs. Program execution
does not actually stop until several instruction cycles after the event.

(3) AND breaks
AND breaks halt program execution once all of the specified events occur,
regardless of the sequence in which they occur.

(4) Sequential breaks
Sequential breaks halt program execution once the specified events occur in
the specified sequence.

(5) Trace full break
This type of break halts program execution when the trace memory becomes
full.

(6) Forced break

This function forcibly halts execution of the user program when the ESC key
on the host computer is pressed.

C Source Code Debugger Overview

Memory Emulation Function

This function emulates a microprocessor’s internal instruction memory (ROM/

RAM) space and the target memory (extended RAM) space with the memory

(called “emulation memory”) in the In-circuit Emulator. There are two types of

emulation memory:

(1) Emulation ROM
This is readable/writable memory (RAM) that emulates the microprocessor’s
internal ROM (including internal instruction RAM). In the In-circuit Emula-
tor, 256K of RAM is installed (fixed addresses from 0x40000000 to
0x4003FFFF) for use as emulation ROM. Note that emulation ROM is valid
only in modes that can use internal ROM (internal instruction RAM), such as
when the microprocessor’'s memory mode is single chip mode or extended
mode; emulation ROM cannot be used in processor mode.

Microprocessor memory space Emulation memory in
(extended mode) In-ciruit emulator
0x00000000
Internal RAM space and
special registers use space
Internal RAM within the microprocessor
N =7
0x20000000 Emulation ROM (readable/writable)
ox40000000 | | - - - - 77— 0x40000000
256Kbyte | Fixed address
Internal ROM A AL
Emulation RAM
oxgoooooo0 | [T T T T 7
Extended RAM N R:\% ______ Total: no more than 1MB
I —
0xC0000000
ANAccess prohibited /R—

C Source Code Debugger Overview

1. C Source Code Debugger Overview 4

(2) Emulation RAM
This is memory (RAM) that emulates memory (extended RAM) in the target.
The In-circuit Emulator has two sets of 512K of emulation RAM (for a total of
1MB). One set is used for high-speed dedicated memory, and can operate
with no wait cycles with an external bus cycle of up to 20MHz (50nsec). The
other set can operate with no wait cycles with an external bus cycle of up to
12MHz (approximately 83nsec).
Emulation RAM permits allocation of ranges of addresses (blocks) in the
microprocessor’s extended RAM space (0x80000000 to OXBFFFFFFF in ex-
tended mode, and 0x40000000 to OxBFFFFFFF in processor mode). When an
address in the shaded portion of the extended RAM space in Fig. A is ac-
cessed, the emulation RAM in the emulator is accessed. This allocation of
emulation memory to a portion of the microprocessor’'s memory space is
called “mapping.” A continuous segment of mapped memory is called a
“block.” With this emulator, a maximum of eight blocks can be mapped.
The size of one block can be selected as either 4K, 8K, 16K, 32K, 64K, 128K,
256K, 512K, or 1024K. The address boundaries of blocks must coincide with
boundaries for that unit of memory space. For example, if one block is 64K,
that block must fall on a 64K boundary in memory.
The aspect of the mapping process that requires the most attention is matching
the block size with the boundaries. For example, consider Fig. B, where a
continuous 64K space is to be mapped, starting from address 0x80002000
(which is an 8K boundary). Because the block boundary and the block size
must match, an 8K block must be mapped from address 0x80002000. Be-
cause address 0x80004000 is a 16K boundary, a 16K block must then be
mapped from that address. In the end, as shown in the Fig. B, four blocks are
actually used in order to allocate this 64K block. Thus, depending on the
addresses to which memory is being allocated and the amount of memory
being allocated, two or more blocks are sometimes required even though the
memory space is continuous.

C Source Code Debugger Overview

Total: 64K
(logical block

Memory

Extended RAM space Emulation RAM

Memory on the target is
accessed for the space
that is not allocated to

Block 0

Block 1

Block2

Block 3

emulator RAM
0x80002000
8K
0x80004000
16K
0x80008000
32K
1
0x80010000 8K
Fig. B

N’

physical block

in the emulator

Blockl

Block2
Block3

Block4

Block5

in the emulation RAM
(no more than toal of 1M)

Fig A

0x80000000

0x8001FFFF

Allocates a part of thelGbyte space

128K Block0

Fig. C

If there are not enough mapping blocks, then in the above example, the shortage
can be relived by mapping the space from 0x80000000 to 0x8001FFFF (128K)
with a single block, as shown in Fig. C. Finally, note that with the In-circuit
Emulator, it is not possible to map internal RAM or special registers to emulation
RAM, since these use the microprocessor’s internal resouideMAP/EX

Command]

C Source Code Debugger Overview

1. C Source Code Debugger Overview 9

Trace Function

This function makes it possible to view the execution path of the user program.
The data that is traced includes execution addresses, data addresses, data values,
and the bus status. Data addresses and data values can be switched between the
microprocessor’s internal bus (the CPU core bus) and the external bus. The fol-
lowing modes can be selected to establish the trace storage conditions and the
trace halt conditions.

- Trace storage conditions

(1) Normal trace (default)
In this mode, all of the microprocessor’s execution cycles are traced. Up to
16K steps can be traced.

(2) Branch trace
In this mode, only branch instructions are stored in trace memory, and the
software compensates for the portions between branch instructions. As a re-
sult, this mode makes it possible to trace longer than in normal mode. How-
ever, no tracing information is displayed from the time when tracing starts
until the first branch instruction is encountered.

(3) Conditional trace
In conditional trace mode, tracing is performed only while a specified event is
true.

| 16 Ksiep

|(_)| Flow of User program ”
Evert tue
- Trace halt conditions
(1) Trace continue mode (default)
In this mode, tracing continues until the user program halts, even if trace
memory becomes full. When execution of the user program halts, the last 16K
steps remain as trace data.

X 16 Kstep)
Flow of
user program
A [y
execution starts User program stop

C Source Code Debugger Overview

@10

(2) Trace full halt mode

In this mode, tracing begins when user program execution begins (or re-
sumes), and continues until trace memory is full (16K steps). The user pro-
gram does not halt even if tracing is halted.

, 16 Ksep ,
Flow of
user program
A

(3) Delayed trigger trace

In this mode, once a specified event occurs, tracing halts after a specified
number of steps. This mode can be used to monitor the execution status of a
program before and after the occurrence of an event.

. 16 Kseep

delay count " Flow of
k7 userprogram
A
eventocours

trace stop

Time measurement function

This function measures the execution time of a user program. The following
modes are available.

(1) Continuous measurement mode

This mode measures the time from the point when user program execution
begins (or resumes) to the point when it halts.

(2) Partial measurement modes
These modes measure the time from the occurrence of one event until the
occurrence of another event. There are two partial measurement modes.
FIRST mode: This mode measures the time between two events only
for the first time.
MIN/MAX mode: This mode always measures the time between two

events, and then determines the minimum and maximum
times.

C Source Code Debugger Overview

1. C Source Code Debugger Overview 11

Profile function
This function measures how much time each function (subroutine) consumed dur-
ing user program execution.

RAM monitor function
This function monitors accesses to data RAM by the In-circuit Emulator and dis-
plays the contents of data RAM on the screen, all without halting user program
execution.

On-the-fly function
This function can be used to set break events, set and display tracing, and refer-
ence and change memory, all without halting user program execution. These ca-
pabilities make it possible to debug programs without halting the operation of the
target CPU.

[W] 2-7 On-the-fly]

Inspect function
This function makes it possible to reference or change variables, arrays and bit
values in a format that reflects the data structure of the variables, just by specify-
ing the source file variables, arrays and bit values displayed in the Code window.

C Source Code Debugger Overview

[i;] 12

EMS memory support
The C Source Code Debugger allocates work areas in EMS memory for the main
body of the debugger, debugging information areas, etc. This ability makes it
possible to debug even programs that have large amounts of debugging informa-

tion.

Overlap function

With this function, only the barest minimum of essential functions for executing
the debugging program reside in main memory; the main body of the C Source
Code Debugger and the work areas are saved to DOS files or EMS memory. This
overlap function is used in order to make it possible to debug very large programs.
In order to use this function, specify the -F or -FEMS options when starting up the
C Source Code Debugger.

EMS memory

Debug information
area

Real mode

TN

Debug area
about 100K

C source code
debugger main unit

about 500K

Work area

Other functions

640K - - -

Overlap mode

TN

Debug area

Resident area

%

/\/

Purgeable area

-FEMS

File

EMS memory

—

History function, Template function, Logging/Batch function, Help function

C Source Code Debugger Overview

1. C Source Code Debugger Overview 13

Notes on Use

2-1. Hardware Notes

Notes concerning the use of the In-circuit Emulator in debugging work are

indicated below.

The tip of the probe is manufactured with extreme precision. Handle it care-
fully so that it is not subjected to any impacts.

Do not touch any of the boards inside the In-circuit Emulator, the interface
board, etc.

Only separately excited oscillation can be supported when using oscillation
signals from the target (OSC, XI).

The In-circuit Emulator will not operate normally in the following cases:

When the clock is supplied from the target, and the level of the clock wave-
form is inadequate or there is noise in the clock signal.

When the target’s power is off.

When the current capacity of the target power supply is inadequate.

When the bus request signal from the target remains active for more than a
certain period of time (approximately 0.1 seconds).

When the target hardware is not operating normally.

Notes on Use

@14

2-2. Software Notes

Before using the software, make a backup of the C Source Code Debugger
floppy disk. Copying this floppy disk is permitted only for maintenance and
archival purposes. To copy the disk, use the DISKCOPY command or COPY
command in MS-DOS.

2-3. ROM, RAM

Only eight blocks out of the 4GB address space can be allocated to emulation
memory. The total size of the eight blocks of memory must not exceed the
size of the memory installed in the In-circuit Emulator (1MB standard). Each
block can be set so that it starts and ends in units of 4K of memory.

Operation is not guaranteed if data accesses to special register areas are not
performed with the correct access data size and address boundaries.

2-4. Program Execution

Programs cannot be executed (including single-step and function-step execu-
tion) while the microprocessor is in STOP, HALT, or SLEEP mode.

[f] G Command, T Command, P Command]

The stack pointer (SP register) value must always be set so that its value is a
multiple of four.

The correct value is not displayed when the In-circuit Emulator measures the
execution time (TI command) during single-step or function-step execution.

Notes on Use

1. C Source Code Debugger Overview 15

2-5. Breaks

If a software break is set in other than an op-code, the value of the operand is replaced
with the PI code (Oxff).

Because software breaks halt execution before the instruction where the break was
set is executed, the pass count specification cannot be made.

Hardware breaks halt execution after executing as many as nine instructions after
executing the instruction for which the break event was set. The actual number of
instructions that are executed after the break but before execution stops depends on
the specific combination of instructions involved.

2-6. Tracing

The contents of trace memory are cleared if single-step or function-step execution is
performed.

When fewer than 16K steps were traced, the first instruction that was executed when
tracing started might not be included in the trace information.

When the “trace full” break is used, the last several instructions immediately before
the user program was halted might not be included in the trace information.

A disassembled display of the trace information is not possible when the micropro-
cessor is in STOP, HALT, or SLEEP mode, or if the user target has initiated a reset.
If the contents of the microprocessor’s internal instruction RAM is overwritten while
trace information is being collected or after trace information has been collected, the
disassembled display of the trace information from the microprocessor’s internal in-
struction RAM space will not be correct.

If an event setting is changed while using the delayed trigger trace, the trace function
will operate incorrectly.

Notes on Use

@16

2-7. On-the-fly

If the contents of memory are referenced or changed (including a disassembled dis-
play) while a user program is being executed, program execution is halted momen-
tarily. (For a one-byte access to emulation memory, program execution is halted for
a maximum of 14 machine cycles; for a one-byte access to the microprocessor’s in-
ternal special registers, internal data RAM, internal instruction RAM, or external
memory in the target, program execution is halted for a maximum of 150 machine
cycles.)

While a user program is executing, the microprocessor is in STOP, HALT, or SLEEP
mode, or during a reset initiated by the user target, it is not possible to reference or
change the microprocessor’s internal special registers, internal data RAM, internal
instruction RAM, or external memory in the target, nor is it possible to display disas-
sembled trace information.

If an event setting is changed while a user program is executing, all “event true” flags
that were set up to that point are cleared.

If a break is set while a user program is executing, there may be a time differential
between the occurrence of the cause of the break and the point when program execu-
tion breaks.

Following three icons are used for quick reference of the on-the-fly function.

[NO INFLUENCES] :No limitation on command functions.

No influences on the program execution.

[INFLUENCES] :No limitation on command functions.

Some influences on the program execution.
:On-the-fly function cannot be used.

(cANNOT BE USED |

2-8. Miscellaneous
|

If the measured execution time is long, a slight amount of error may begin to creep in.
If using handshake mode, the In-circuit Emulator does not generate an acknowledge
signal when the microprocessor accesses an external memory space. Therefore, itis
necessary for the user to include a circuit (or other mechanism) that generates an
acknowledge signal in all external memory spaces that will be used.

Notes on Use

Chapter 2

C Source Code Debugger
Structure

1. Equipment List
2. Equipment Description

@18

Hardware List

The development environment is configured from the following devices. Confirm
that all of this hardware is provided before using this system. If any components are
missing or damaged, contact our sales office.

DIL Conversion Board
Emulator Controller

QFP Adapter Flat-DIL Conversion Board

Surface Mount Socket Socket Cover Interface Board

/ &

34-wire Flat Cable Option Probe Manual

(C Source Code Debugger Installation)

C Source Code 10300 Floppy disk Micro Driver

Hardware List

2. C Source Code Debugger Configuration 19

Descriptions of Each Device

2-1. In-circuit Emulator

m LED Display
There are three LEDs on the In-circuit Emulator main unit. Their functi

are described below.

Red (MEMV): This LED lights when power is being supplied to the In-
circuit Emulator main unit. Note that the power for the In-
circuit Emulator is supplied from the Emulator Controller.

Yellow (TVDD): This LED lights when the power is being supplied to the
target (microprocessor).

Green (RUN): This LED lights when the user program is executing.

[(————=7=) =)

- J

In-Circuit Emulator Main Unit - Bottom View

UN TGT ICl
PWR PWR
TRIGOUT

In-Circuit Emulator Main Unit - Side View 1

=
iy

In-Circuit Emulator Main Unit - Side View 2

Descriptions of Each Device

@20

m Option Probe Connector (TRIGOUT)

This is the connector for the external trigger output.

2-2. C Source Code Debugger 10300 Floppy Disk

Before using the software, make a backup of the C Source Code Debugger
floppy disk. Copying this floppy disk is permitted only for maintenance and ar-
chival purposes.

To copy the disk, use the DISKCOPY command or COPY command in MS-

DOS.

Files on the floppy disk

(1) PICE103.EXE.........c........ Source Code Debugger 10300 main pro-
gram

(2) PINS103.EXE.......cceeee... Environment setting utility (Installer)

(3) ENVIO3.TXTceeeennnnnn. Model definition file

(4) PICE103.MAC......ccccee..... Macro instruction definition file

(5) PICE103.MES Message file

(6) PT103.HLPcccvvvvvrrnnnnnns C Source Code Debugger 10300 help file

(7) MONI103.EX...coeevvvviinnnnn. In-circuit Emulator Monitor Program File

(8) SAMPLE.EX ... Executable sample program file

(9) SAMPLE.C.......ccvvvveeeenn, Sample program source file

(10) STARTUP.ASM Sample program startup routine source file

Descriptions of Each Device

Chapter 3

Connection and Booting

1. Interface Board Installation
2. Connection Procedure

3. Host Computer Settings

4. Power ON/OFF

@22

Installing the Interface Board

The interface board is installed in the host computer as described below.
Set the switches on the interface board before installing it in the host computer.

[f] Chapter 9, section 2, Interface Switch Settings]

1-1. Installation in the PC-9800 Series

(1) Before beginning, turn the computer off.

(2) Remove the cover from an expansion slot on the rear of the computer.

(3) Connect a 34-wire flat cable to the connector (CN2) on the top side of
the interface board.

(4) With the components on the board facing up, align the board with the
card guide grooves and then push the board firmly into the slot until it
clicks into place. Then pull gently on the board to make sure that it
does not come out.

Installing the Interface Board

3. Connections and Startup 23

1-2. Installation in the PC-98 NOTE Series

(1) Before beginning, turn the computer off.

(2) Tighten the two screws on the interface board and then pull gently on
the board to make sure that it does not come out.

(3) Connect a 34-wire flat cable to the connector (CN2) on the interface
board.

1-3. Installation in the PC/AT (DOS/V) Series

(1) Before beginning, turn the computer off.

(2) Remove the top cover.

(3) With the board’s connector facing down, push the connector into the
connector inside the computer until the connector is fully seated. Then
pull on the board gently to make sure that it does not come out.

(4) Connect the 34-wire flat cable to the connector on the interface board.

Connection Procedure

@24

Connection Procedure
]

The host computer is connected to the Emulator Controller via a 34-wire flat
cable. One of the connectors on the In-circuit Emulator main unit is for connec-
tion to the Emulator Controller. The In-circuit Emulator also has a connector
(TRIGOUT) for the trigger output.

2-1. Connection Procedure

After confirming that all devices are off, perform the following proce-
dure.

1. Connect the other end of the 34-wire flat cable (1.5m) that is connected
to the interface board to the HOST I/F connector on the Emulator Con-
troller.

2. Connect the ICE MODULE connector on the Emulator Controller to the
CONTROLLER connector on the In-circuit Emulator main unit.

[] “MN10300 Series PanaX Series Installation Manual”]

3. Attach the dummy adapter (PRB-EX-DMY103XXX) to the In-circuit
Emulator main unit. (Do this step only when installing the debugger so
that the In-circuit Emulator can run on a standalone basis without con-
necting a target.)

Connection Procedure

3. Connections and Startup 25

Host Computer Settings

After connecting the equipment, set up the environment for the control soft-
ware (debugger).

Environment variable settings
The C Source Code Debugger references the following environment vari-
ables. If any of these variables need to be set, use the MS-DOS SET command.

PATH :If COMMAND.COM, MON103.EX, PICE103.MES, or
PICE103.MAC is not found in the current directory, the C
Source Code Debugger searches for them in the directories in-
dicated by PATH.

HELP . If the help file (PT103.HLP) is not found in the current direc-
tory, the C Source Code Debugger searches for it in the direc-
tory indicated by HELP.

PANASRC : This specifies the directory where the source file for the ex-
ecutable file that is being debugged is stored. The L and V
commands, for example, display the source files in the direc-
tory indicated by PANASRC. If PANASRC is not set, the
source files in the current directory are displayed.

TMP/TEMP :This specifies the directory where the C Source Code
Debugger work files are stored. In order to shorten the
debugger’s internal processing time, it is recommended that
this directory be set up in a RAM disk area.

If TMP/TEMP is not set, work files are created in the current
directory.

Host Computer Settings

@26

3-1. Starting up the Installer

1. Turn on the host computer.
2. Connect the AC cable for the emulator controller to a 100V AC power

source, and turn on the power switch.

3. When the computer is waiting for command input, input PINSlO3@ .

Set the following items.

PICE Installer VER 3.02 (ENV1O3.THT VER 1.07)
xxxxxxxxxx [urrent Parameter contents ssesssxsess

[I/F Board Selectl] 1/F PCHCIA
[I/F Port Address]

[CPU Select] 103000 1030016 183062 183603
183005

[Hemory Hodel STNGLE EXMODE PROCESSOR
[Bus $izel 8BIT 16BIT 32BIT
[SP setting Reset Startl 100H

[HOME] Menu Select [<-1[->1 I/F Type Change [ESCI End

(1) I/F Board Select
Select the interface method between the host computer and the in-
circuit emulator.

(2) I/F Port Address
Specify the 1/0 address that was set by a rotary switch on the inter-
face board. Use the arrow keys to specify the low-order address
and the SHIFT+arrow keys to specify the high-order address.
[Rotary switch i] Chapter 9, section 2]

(3) CPU Select
Use the arrow keys to select the CPU being used.
(4) Memory Mode
Use the arrow keys to select the memory mode.
(5) Bus Size
Use the arrow keys to select the microprocessor bus size.
(6) SP setting Reset Start
Input the initial value for the stack pointer. (It must be set to an
address for which physical memory is installed.)

After setting the above six items, press the ESC key to quit the
Installer.

Host Computer Settings

3. Connections and Startup 27

After the Installer has been run, the environment settings file
(PICE103.ENV) is created. This file is loaded when the C Source
Code Debugger is started up. Be careful to avoid deleting this file
accidentally or otherwise changing its contents.

Host Computer Settings

@28

3-2. Debugger Test Startup

4. With the system waiting for an MS-DOS command to be input
Input “PICE103 -NOTARGET@”. Once the screen is displayed and
Debugger startup has been confirmed, input “Q@ " to quit.

Code
40000000 L im 30000000

nov (d0,a0),a2

udff2 -191,d3

udf@9 -6B,d3

leqg

nov {a2),d1

nov d2,(a2)

nov d3, (a3)

mov (53,sp),a3

1ge

nov d2, (d1,a2)

nov d3,d2

movbu (8B196FC . a3}, d?
Command

PICE(10300) Yer 3.6b Release 1.1.1 Copyright (c)1996 Panasonic/KMC
Sub process segment g?gTH { 99 Kbyte)

Honitor Program Yersion .
103000

Evachip Number

M |
il File POptHing SrcSWfiSearchsl Go [dInspctlj Come [Sql1Stpkl BreakiliFncStpl§ly)

tor is being used on a stand-alone basis.
Never specify this option when a target system is connected to
the In-circuit Emulator.
In the worst case, the In-circuit Emulator main unit could be dam-
aged as a result.

¢ When the C Source Code Debugger is started up, the PICE103.ENV
file that was created in item 3 is loaded, as is the In-circuit Emulator
monitor file (MON103.EX), the message file (PICE103.MES), and
the macro instruction definition file (PICE103.MAC). If
MON103.EX, PICE103.MES, and PICE103.MAC are not found in
the current directory, they are searched in directories specified by the
environment variable PATH. Note that the PICE103.ENV file must
be placed in the current directory.

C * Specify the ““NOTARGET” option only when the In-circuit Emula-

[C Source Code Debugger Startup Method/Startup Options
1] Chapter 5, section 1]

Host Computer Settings

3. Connections and Startup 29

Power On/Off
]

Turn the power on in the following sequence: host computer, target system,
and Emulator Controller. This sequence will prevent overcurrent from flowing in
either direction. Note that the In-circuit Emulator is particularly vulnerable to
damage from overcurrent.

When using the In-circuit Emulator on a standalone basis (with no target sys-
tem connected), simply turn on the host computer first and then the Emulator
Controller.

When turning off the power, do so in the reverse sequence (Emulator Control-
ler, target system, and then host computer).

Power On/Off

@30

Chapter 4

Characteristic C Source Code
Debugger Functions and Their

Usage

1. Overview of Window Display
2. Debugging Work Flow

3. Creation of Executable Files
4. Debugging Tutorial

@32

Overview of Window Display

The C source code debugger provides five windows (Watch, Code, Com-
mand, Register, and Option) that display information that is required for debug-
ging work.

[O Chapter 6-1, "Window Displays"]

(1)(Watch Register (4)
20 D0=00000002 AB=0D0OOEOA
D1=00000000 A1=-00000000
D2=00000000 A2=00000000
) D3=00000000 AI=-00000000
PC=80000076 SP=00001FE4,
secl@]++; MDR=80000073
if(seclB] == 18){ LTR=8000007C PSY=0006
sec[0] = 0; LAR=PODAORGO F -Mi-
sec[1]++; TE=0 TN=0 $=0
if(secl1] == 6) Back trace]
sec[1] = 0; main+E() (5)

display+7()
cnt6Bl()

Command
l--CH- IN=0 S=0 DO =D0BOAE02 D1 =0ADAOER D2 =DAOEADED D
PSH=0006 A0 =D0GOARAG A1 =0AROOORR A2 =DOOEADAD A
(©IWPC =30000076 MDR=80000073 LIR-8000G07C LAR=00000000 S

Bcntod: mov (200C _sec),d@
>
il File KOptHing SrcSiiSearchl Go [dTnspctl Come §Sgl1Stp¥ BreakiliFncStplely)

(1) Watch window
Displays user-specified variables and the contents of memory.

(2) Code window
Displays source code or a combination of assembly and source code.

(3) Command window
Displays and allows input of dialog commands (key input, macros).

(4) Register window
Displays the contents of the registers and the status of the flags.

(5) Option window
Displays either the Memo, Back Trace, Stack, or Local window.

Overview of Window Display

4. Characteristic C Source Code Debugger Functions and Their Usage

Debugging Work Flow

33

This section uses a simple sample program to describe the work flow of pro-
gram creation, focusing on debugging work, and also describes the basic opera-
tions involved in running the C source code debugger.

1. Creation of program
specifications

A program is designed to serve a speci
purpose. Typical examples include a p
gram that is used to add a timer-based
cording function to a VCR or a progra
that controls the motor in a washing m
chine. Normally, these functional spe
fications determine the program speci
cations (algorithms).

ic

re-

!

2. Creation of executable
files (editor, compiler,
assembler, and linker)

Once the program specifications ha

e

been defined, an editor is used to cre

te

(code) the source listing. Once the source
listing has been created, compiling and

linking are performed. If any errors af
generated during compiling and linking
make the appropriate corrections in tf
source listing. In this example, we wi
assume that the source listing of th
sample program shown on the followin
pages has been created.
[O Chapter 4, section 3]

e

ne

«Q

Tl

3. Debugging (debugger)

If no errors occur during the compiling
and linking process, debugging work cg
begin. Steps 2 and 3 are repeated until
program is completed.

N
the

[O Chapter 4, section 4]

4. Program completion

Debugging Work Flow

@34

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027

Creation of Executable Files

The sample program (SAMPLE.C) is written in C language. This program is
a simple one that increments the contents of the sec[] variable. sec[0] is
incremented each time the cnt60() function is called. When the value of sec[0]
reaches 10, it is cleared to zero and the value of sec[1] is incremented by one.
sec[1] is also cleared to zero when its value reaches 6. This operation is repeated
continuously.

Refer to the source listing of SAMPLE.C below.

m Sample program (SAMPLE.C)

/* MN10300 SERIES C SAMPLE PROGRAM */
/* MN10300 COUNTER PROGRAM */

#define INIT_DISPDATA L 0x00
#define INIT_DISPDATA _H 0x00
int *i;

struct abc {
int tst1;

int tst2;

3

struct abc test;
int sec[2];

main(){
struct aaa {
intal;
int a2;
Hmp;

initialize();

for(;:){
display();

Creation of Executable Files

4. Characteristic C Source Code Debugger Functions and Their Usage 35

0028 }
0029 }

0030
0031
0032 initialize(){

0033 init_data();
0034 }

0035
0036
0037 display(¥{
0038 cnt60();
0039 }

0040
0041
0042 cnt60(){

0043 sec[0]++;

0044 if(sec[0] == 10){

0045 sec[0] =0;

0046 sec[1]++;

0047 if(sec[1] == 6)
0048 sec[1] =0;
0049 }

0050 }

0051
0052
0053 init_data(){

0054 test.tst1=0;
0055 test.tst2=0;
0056
0057 sec[0] = INIT_DISPDATA_L;
0058 sec[1] = INIT_DISPDATA H;
0059 }

The sample program is then compiled and linked, and an executable file is
created.

Creation of Executable Files

@36

Debugging Tutorial
|

This section provides an overview of the debugging process and the operating
methods of the C source code debugger, from start to finish, by actually using the
C source code debugger to debug the sample program (SAMPLE.C). Knowledge
of these operating methods combined with a knowledge of the window com-
mands and dialog commands will enable you to operate the C source code
debugger.

4-1 Starting up the C source code debugger

Confirm that the current directory contains the following files. If one of these
files is not contained in the current directory, copy the file from the master disk.

PICE103.EXE C source code debugger 10300

PINS103.EXE Environment setup utility

ENV103.TXT Type definition file

PICE103.MAC Macro command definition file

PICE103.MES Message file

PT103.HLP............... Help file for the C source code debugger 10300
MONI103.EX In-circuit emulator monitor program file
SAMPLE.EX............ Executable file of the sample program
SAMPLE.C............... Sample program source file

STARTUP.ASM Sample program startup routine source file

To start up the C source code debugger, input the following as an MS-DOS
command:

PICE103 -NOTARGET [

When this command is input, the C source code debugger startup screen ap-
pears. Specify “NOTARGET” when there is no target system connected.

‘ This example assumes that there is about 500KB of available space
H in main memory.

Debugging Tutorial

4. Characteristic C Source Code Debugger Functions and Their Usage 37

The upper portion of the screen, the Code window, displays either the C
source code or a disassembled listing of the program.

Code
80000000

{d0,ad),a2
udfB2 -191.d3
udf@9 -6B,d3
leqg
nov (a2),d1
nov d2,{a?)
nov d3, (a3)
nov {53,sp),ad
1ge
mov d2,(d1,a2)
moy d3,d?
movbu (8B196FC . a3) . d2

Command

PICE(10300) Yer 3.6b Release 1.1.1 Copyright (c)1996 Panasonic/KMC
Sub process segment 873AH { 99 Kbyte)
Monitor Program Version .91
Evachip Mumber 103000

>l
jl File EOptHing SrcSWiASearchs @Inspctlj Come [Sgl1StpEl BreakiliFncs tplely)]

The lower portion of the screen, the Command window, is used to execute
commands input through the keyboard and to display the results of the execution
of those commands. Characters that are input through the keyboard are displayed
on the screen at the cursor position in the lower left corner of the Command win-
dow.

The bottom line of the screen displays the functions of the ten function keys

(F1 to F10). These function keys can be used to easily execute a program, set a
breakpoint, etc.

Debugging Tutorial

@38

4-2 Help
__|]
Displaying the Help screen After starting the C source code debugger, the first step is to load the execut-
HELP or W able file (SAMPLE.EX in this case). However, you do not yet know how to load
[0 page 202] afile. In a case such as this, where you do not know how to perform a certain task,
either type:

HELP O
or else press the Help key:
The Help screen now appears.

KKEY INPUT CONTROL>

DISPLAY CONTROL SEARCHING SOURCE PROCESS CONTROL
EDITING LINES TEMPLATE FUNCTION KEY

CINITIAL OPTION SETTINGS>
LIST OF OPTIONS

KCOMMAND LIST>

BREAKPOINTS TRACE MEMORY TIMER

REGISTERS RAM MONITOR MEMORY DISPLAY

CHANGE/SEARCH MEMORY EVENT EXECUTION

RADIX EXPRESSION DISPLAY LOAD PROGRAN

READ/WRITE FILE SYMBOL END

SUBPROCESS HISTORY FILE VIEW/DISPLAY

FILE DISPLAY PROFILE WATCH

MACRO COMMAND CONDITIONAL PROCESSING AND/SEQUENTIAL BREAK

TRIGGER OPTION SETTINGS MEMORY SETTINGS

MEMO LOGGING BATCH

TNSPECT DISPLAY CONTROL ON-THE-FLY
["E,"K,”D,"S:move cursor RET:select submenu HOME:change menu ESC:help exitl

Find the item corresponding to the process that you wish to perform. The item
“LOAD PROGRAM” appears near the middle of the third column. Use the cur-
sor keys to move the cursor (the highlighted item) to the desired item. Select
LOAD PROGRAM by moving the highlighted cursor to LOAD PROGRAM and
then pressing the Return key.

Debugging Tutorial

4. Characteristic C Source Code Debugger Functions and Their Usage 39

KLOAD PROGRAM>

LP [<file name>] : load a program designated by <file name>]
L [<file name>] : load a program designated by <file name> ,with
line number and symbol information

KREAD/URTTE FILE>

RD <file name>,<address> : read a file from the designated address

: It is possible to read a file in the following
format:EF ,HEX,S

WR <file name>,<extent> : write the contents of memory to <file name>
<example> WR SAMPLE.EX, 0,100
<DISPLAY/REGISTER/CHANGE SYMBOL> [On-theflyl

¥ [<symbol name>] :display <symbol name>{ if the name isn’t designated,
all symbols are displayed)

[.1<name>=<value> :change the symbol <name> to value <val>

[CTRL+¥:next screen CTRL+E:last screen RET:go to main menu ESC:exit helpl

The Help screen changes so that the LOAD PROGRAM help screen is dis-
played. This screen indicates that the Load command is:

L [<file name>]

Closing the Help screen Press the ESC key to return to the original C source code debugger screen.
ESC

Debugging Tutorial

@40

Loading a program
L <file name>
[0 page 114]

Program counter——»- 0041,

4-3 Loading executable files

Now that we know that the L command is used to load executable files
(SAMPLE.EX in this example), type the following:

L SAMPLE [J

(If the file extension is omitted from the file specification after the L com-
mand, “.EX” is assumed.)

The Code window display now changes to a display of the STARTUP.ASM
source listing.

STARTUP . ASH Code

SECTION CODE, PUBLIC, 1

0040] reset

0042!
' START VFCTOR

moy stack+STACK_SIZE, af@

moy ad, sp
add -12, sp

_BSS, _GBSS CLR
BSSEND -

PICE(10300) Ver 3.6b Release 1.1.1 Copyright (c)1996 Panasonic/KMC
Sub process segment 873AH { 99 Kbyte)
Monitor Program Version B0.01
Evachip Mumber 103000

>1 sample

>

il File EOptHink SrcSWASearchs] Go [dInspctlj Come [SglStpsl BreakiliFncS tpl#ly)

The source line highlighted in yellow in the Code window indicates the line
that is currently pointed to by the program counter (PC register).

Debugging Tutorial

Opening the Register window
and Option window
F2

Switching the Option window
Ctrl + F2

Closing the Register window
and Option window
F2

4. Characteristic C Source Code Debugger Functions and Their Usage 41

Register
DO=000000E00 AP=00000BA0
D1=00000000 A1=00000000
SECTION CODE, PUBLIC, 1 D2=00000000 A2=00000000
03=-00000000 AZ=00000000
PC=40000000 SP=00000100
MDR=00000000
LIR=00000000 PSY=0000
START_VECTOR LAR=006G00000 F ——

1E=0 IM=0 $=0
nov stack+STACK_SIZE, a0l
nov ab, sp

add -12, sp
_BSS, _GBSS CLR
noy

Command
PICE(10300) Yer 3.6b Release 1.1.1 Copyright (c)1996 Pal
Sub process segment 873AH { 99 Kbyte)
Monitor Program Version 0.01
Evachip Humber 103000
>1 sample

|
il File EOptHing SrcSHASearchd] Go [@Tnspctll Come [SglStpEl BreakilFncStplely)

Next, press the F2 (OptWin) key. A new window appears on the right side of
the screen. The top portion of this new window is the Register window, which
always displays the current contents of the registers.

The bottom portion of this window is used to display one of four windows: the
Local window, the Memo window, the Back Trace window, or the Stack window.
To select one of these windows, hold down the CTRL key and then press the F2
(OptWin) key. (Note that the Local and Back Trace windows can only be dis-
played in C debugging mode.)

Press the F2 (OptWin) key again to close this window. The F2 (OptWin) key
is used to both open and close the window.

Debugging Tutorial

@42

Moving the cursor between
windows

Home

[0 page 66]

Moving the cursor down and
scrolling the screen up

!

[0 page 66]

Moving the cursor up and
scrolling the screen down
N

[0 page 66]

Displaying the File Select
window

F1

[0 page 74]

Selecting a file

<program name> [

4-4 Screen control/file handling

How do you view the portion of the source listing below the bottom of the
Code window?

First, press the HOME key. The cursor in the Command window disappears
and moves to the Code window. Pressing the HOME key again brings the cursor
back to the Command window.

Move the cursor to the Code window (if the cursor is in the Command win-
dow, press the HOME key) and then press the Cursor Downi keylbie cursor
moves down one line.

Keep pressing the Cursor Down key. The cursor moves down, line by line.
Once the cursor reaches the bottom of the Code window, the Code window dis-
play begins to scroll up. Now press the Cursor Up k&yThe cursor then moves
up the screen, and once it reaches the top of the Code window, the Code window
display scrolls down. In addition, the ROLL UP and ROLL DOWN keys can be
used to control the Code window display in a fashion similar to most screen edi-
tors.

Next, press the F1 (File) key. The File Select window appears on the screen.
In this example, the SAMPLE.C and STARTUP.ASM files are displayed. When
debugging a program that has more source files, the name of each source file is
displayed in this window. After selecting a file by using the cursor keys to high-
light the desired file name in yellow, press the Return key. The File Select win-
dow then closes and the selected file is displayed in the Code window.

Debugging Tutorial

Displaying the disassembled
code and C source code

F3

[O page 69]

4. Characteristic C Source Code Debugger Functions and Their Usage 43

Register
DO=00000000 AB=00000000)
D1=00000000 A1=-00000000)
D2=00000000 A2=00000000)
D3=-00000000 AI=00000000)
PC=40000000 SP=00000100
HDR=00000000
| IR=00000000 PSY=0000
Select reference file name. R=p0000000 F

SAMPLE.C STARTUP . ASH =0 IH=0 $=0

_BSS, _GBSS CLR
1Moy

Command
PICE(10300) Yer 3.6b Release 1.1.1 Copyright (c)1996 Pa
Sub process segment 873AH { 99 Kbyte)
Honitor Program Yersion 0.01
Evachip Number 103000
»1 sample

>
il File E0ptHing SrcSWASearchs MInspctl] Come [SglStpel BreakiliFncStplEly]

Once the Return key has been pressed and the File Select window has been
closed, press the F3 (SrcSW) key. The Code window display switches to a mixed
display of disassembled code and the C source code. This display is useful for
more detailed debugging than is possible with the source listing alone.

sec+{FFFDFF4 Code

Register
D0=00000R0G AP=00000000
01=00000000 A1=00000000

mov , [2=00000000 A2=00000000

al,sp D3=00000000 A3=00000000
STARTUP . ASH: 0048 add PC=80000000 SP=00000100
30000008 FSFEF4 -0C,sp MDR=00000008
STARTUP . ASH. 0051 ; mov _BSSEND - _BSSH LIR=40000000 PSY=0000
30000008 FCCD14200000 2014 ,d1 LAR=00000000 F
STARTUP . ASH: 0052 : cmp a, di TE=0 TH=0 $=0
30000011 ASO0 8,d1
STARTUP . ASH: 0053 : ble
30000013 C30F 80000022

moy _BSS,

bc_skip

0,ab
clr
d0

PTICE(10300) Ver 3.6b Release 1.1.1 Copyright (c)1996 Pal
Sub process segment 873AH { 99 Kbyte)
Monitor Program VYersion n.01
Evachip Humber 103008

>1 sample

>

il File MOptWing SrcSWASearchd] Go [@Inspctl] Come {SglStpdl BreakiliFncStpliky)

Press the F3 (SrcSW) key again. Now the display shows the source code only
again.

You have loaded the executable file (SAMPLE.EX), and now know about the
contents of the windows displayed on the screen. You are now ready to execute
the program.

Debugging Tutorial

@44

Program function step
execution

F10

[0 page 71]

Program single-step execution
F8
[0 page 71]

4-5 Program execution and break
__|]

This section explains how to execute a program, and how to set and cancel
breaks.

There are two methods for executing a program one line at a time (“step ex-
ecution”): function step execution and single step execution. First we will try
function step execution. Press the F10 (FncStp) key. The current line (the line
highlighted in yellow) in the Code window moves down one line. This means that
one step has been executed. Press the F10 (FncStp) key several more times. The
current line keeps changing one line at a time.

SAMPLE .C Code

Register
D0=00000R0S AR=00000000
D1=p0000000 A1=00000000
initialize(); D2=00000000 A2=00000000

D3=00000000 AJ=00000000
r{;:){ PC=80000053 SP=00001FEC
i : MDR=80000073
LIR=80060005A PSY=0006
LAR=p00G0BOB F -
TE=0 TH=0 $=0

i
linitialize(){
! init_data();

Command

PICE(10300) VYer 3.6b Release 1.1.1 Copyright (c)1996 Pal
Sub process segment 873AH { 99 Kbyte)
Monitor Program VYersion
Evachip Number

0.01
1030808

M |
il File EOptHing SrcSWASearchl] Go @Inspctl] Come {SglStpll BreakiliFncStplky)

Now look at the register display in the Register window. (If the Register win-
dow is not displayed on the screen, press the F2 (OptWin) key.) The most recent
register values are displayed each time the F10 (FncStp) key is pressed.

There is another method of step execution. Press the F8 (SglStp) key. The
current line moves in the same fashion as in function step execution. Press the F8
(Sglstp) key several more times. The current line then steps sequentially (one
step at a time) through the functions “display()” and “cnt60()".

(This method is referred to as “single-step execution.”)

Debugging Tutorial

Setting/deleting break
(software break)

F9

[0 page 71]

4. Characteristic C Source Code Debugger Functions and Their Usage 45

SAMPLE .C Code

Register
init_data(); D0=00069803 AB=00000000
D1-00000000 N1-00000000
D2-00000000 N2-00000000
D3-00000000 N3-00000000
) PC=80069876 SP=00001FE4
cnt60(); HDR=80000G73

LIR=8000006C PSH=0006
LAR=00090008 F -[H)-
TE=0 IH=0 $=8

if(secl@] == 18)(
secl@] = 8;

if{secll] == 6}
secll] = 0

PICE(10300) Yer 3.6b Release 1.1.1 Copyright (c)1996 Pa
Sub process segment 873AH { 99 Kbyte)
Monitor Program Yersion 0.61
Evachip Humber 103000

File HOptWing SrcSHASearchl Go [@Tnspctl] Come [SglStpkl BreakilFncStplely)

The difference between function step execution with the F10 (FncStp) key and
single-step execution with the F8 (SglStp) key is whether called functions as a
whole are regarded as one step, or are also executed internally one step at a time.

Next, we will set a break (software break). Move the cursor to the Code win-
dow (if the cursor is currently in the Command window, press the HOME key),
and move the cursor to the 45th line of the SAMPLE.C file. Once the cursor has
been positioned in the 45th line, press the F9 (Break) key. The 45th line is now
underlined. A break has now been set in the 45th line of the source listing.

To delete a break, move the cursor back to the line where breakpoint is set, and
press the F9 (Break) key. The underline disappears, indicating that the break has
been deleted.

SAMPLE .C Code Register
init_datal(); DO=00000AAS AP=000000A0,

D1=00000000 A1=00000000

D2=00000000 A2=00000000

D3=00000000 A3=00000000

) PC=30000076 SP=00BO1FE4)

cnt6B(); HDR=80000073
LIR=8000006C PSY=-0006
LAR=0000000G F -[I-
TE=0 IH=0 $=0

e
if(secl@] == 18){

sec[0] = @
sec[1]++;

if(secl1] == §)

secl1]

Command

PICE(10300) Yer 3.6b Release 1.1.1 Copyright (c)1996 Pa
Sub process segment 873AH { 99 Kbyte)
Honitor Program Yersion 0.01

1 Evachip Number 103000

>

il File KOptWing SrcSHfSearchsl Go [dInspctl] Come [Sgl1Stp¥l BreakiliFncStpl§ly!

Debugging Tutorial

@46

Executing the program
F5
[0 page 70]

Deleting all break events
B C*
[0 page 136]

Program forced stop
ESC
[0 page 71]

Now we will execute the program by pressing the F5 (Go) key. The program
then stops at the 45th line of the source listing, where we set our break (software
break).

Input the following from the keyboard:

BC* O

This command deletes all break events that were set with the dialog command.
Now press the F5 (Go) key again. Because there is no break event set, execu-

tion continues uninterrupted. To interrupt program execution while a program is
running, press the ESC key. This forcibly stops program execution.

Debugging Tutorial

4. Characteristic C Source Code Debugger Functions and Their Usage 47

4-6 Memory referencing
__|]

The values of the variables sec[0] and sec[1] are the most important elements
Referencing the contents of in the sample program. To reference the value of sec, input the following from the

memory in the Command keyboard:
window
D <address> D secO

[0 page 167]
The following values are displayed in the Command window:

0000000C OA 00 00 00 00ccooeeee..

The contents of sec[0] in address 0x0000000C and of sec[1] in 0x00000010
are displayed in hexadecimal. (sec was declared as type “int”".)

‘ The values indicated above are examples only, and will not neces-
= sarily match the actual values.

Referencing the contents of Input the following from the keyboard:

memory in the Watch window

W ? <symbol> W? sec

[0 page 195]
A new Watch window is opened above the Code window, displaying the de-
clared type, address, and value of sec.

Yatch

Register
1] (int [2])sec = @AOAG20GC [DO=0B0EARAA AB=0000AARN
D1-0A000AG0 N1-000000A0
) D2=0B00ARA0 A2-0000AARN
cnt6l(); D3=0B00AARAD A3-0000AARN
PC=30000092 SP=0AA01FE4
HDR=80000073
! LIR=80000076 PSY=0001
entéB() { LAR=00000000 F —--W
3! sec[B]++; TE=0 IH=0 $=0
if(secl@]

secl1]++;
if(secl1] == 6)
secll] = 0;

Command
Honitor Program Yersion 0.01
Evachip Number 103000

>d sec

0000200C OA 00 00 PO 03 00 00 A0 16 89 E2 OB 84 02 89

>H? sec

|

il File KiOptHing SrcSUfSearchll Go [@Tnspctlj Come {Sg1StpE BreakiliFncStpl§ly!

Debugging Tutorial

@48

The data registered for watching is continuously updated and displayed in the
window. As an example, set a break (software break) (using the F9 (Break) key)
in the 45th line of the source listing. Next, execute the program using the F5 (Go)
key. The Watch window is updated. Continue to press the F5 (Go) key; it should
be apparent that the values are updated continuously.

Canceling all Watch windows
Y *
[0 page 199] Y* [

To cancel all Watch windows, input the following from the keyboard:

All watch windows disappear from the screen.

Debugging Tutorial

Starting up a subprocess
|

[0 page 203]

4. Characteristic C Source Code Debugger Functions and Their Usage 49

4-7 Subprocesses

The C source code debugger is equipped with a function that allows another
MS-DOS command to be started up while debugging work is in progress, and
permits immediate switching between that command and the C source code
debugger. In short, it is possible to simultaneously start up the C source code
debugger and another MS-DOS command on one computer and switch between
the two processes with a simple key operation while debugging is in progress. In
the C source code debugger, this second process is called the “subprocess.”

We will now start up a subprocess. To do so, input the following from the
keyboard:

o
This causes the MS-DOS command input screen to appear. While in this

state, MS-DOS commands can be used normally. Use a text editor to open the
SAMPLE.C file that we have been using to practice debugging operations.

dit iew ptions elp
C:AUSRNHIRONPTICE1GINSRCASAMPLE . C
Z= MN10300 SERIES C SAMPLE PROGRAM =/

/= HN1030@ COUNTER PROGRAM =/

Hdefine INIT_DISPDATA_L 8x00
Hdefine INIT_DISPDATA_H 8x00

ile earch

struct abc test;

int sec[2];
main() {

struct aaa {
int al;

Line:1 Col:1

If the message “Insufficient Memory” is displayed when shifting to
‘_ the subprocess, refer to the C source code debugger startup option
(L_B)l.

[O Chapter 5, Startup Options]

Debugging Tutorial

@50

Returning from a subprocess To return to the C source code debugger screen, hold down the CTRL key and
Ctrl+0 then press the “0” key on the numeric keypad. Next, hold down the CTRL key
and then press the “1” key on the numeric keypad in order to return to the editor.
Returning to a subprocess Simple operations such as these can be used to switch between the C source code
Ctrl +1 debugger and an editor or other MS-DOS commands (applications). This func-
[0 page 77] tion makes it possible to reference source files and specification document files

while debugging, or to correct the portion of a source file where a bug was found.

switch data within the MS-DOS system (such as the current direc-

tory, etc.). Therefore, if the current directory, etc., was changed in

the subprocess, restore the original status before returning to the C
source code debugger. In addition, because there is no exclusive
control of files between the two processes, extra caution is required
when both processes access the same file.

G When switching processes, the C source code debugger does not

Debugging Tutorial

Executing a macro command
“Registered macro name”
[0 page 223]

4. Characteristic C Source Code Debugger Functions and Their Usage 51

4-8 Macro commands
.|

The C source code debugger has a macro function that makes it possible to
combine several commands in order to create new commands, or to judge condi-
tions. While the macro function may seem daunting to the novice user at first,
once it is mastered it makes debugging work easier.

We will create a macro that sets a breakpoint in the 45th line of SAMPLE.C
and then, when the value of sec[0] is “9”, displays a dump starting from the ad-
dress sec.

{testmacro
bp .sample.c:45
g
while{_ _run_ _
}
iffval(sec[0]==9)
d sec
}

The first line of the macro, the declaration, declares the name of the macro as
“TESTMACRO”. The second line sets a break (software break) in the 45th line
of the source listing. (The BP command can be used to set a break (software
break) in the same fashion as the F9 (Break) key.) The third line executes the user
program. The fourth and fifth lines form a “while” loop that waits until the user
program is stopped (i.e., the break is triggered). The sixth and seven lines consist
of the processing that is performed after the break is triggered.

In order to execute this macro, simply input the following from the keyboard:
TESTMACRO O

The macro previously defined is then executed.

After the user program is executed, the macro waits until the program is

stopped; once the program is stopped, if the value of sec[0] is “9”, a dump starting
from the address sec is displayed. The macro then terminated.

Debugging Tutorial

@52

4-9 Exiting the C source code debugger
__|]

The final step is to quit the C source code debugger and return to MS-DOS.

Input the following from the keyboard:

Exiting the C source code Qo

debugger

Q You should now be back at the MS-DOS screen.
[0 page 201]

If the message “Not terminated subprocess” was displayed, press CTRL + 1 to
return to the subprocess and then terminate that program. For example, if the MS-
DOS prompt is shown in the subprocess, input the following:

EXIT O

The following message is then displayed:

“Please hit the SPACE key to return to PICE.”

Pressing the space bar returns you to the debugger screen. Now that the sub-
process has been terminated, input the following again:

QO

Now the C source code debugger terminates and you are returned to the MS-
DOS prompt.

Debugging Tutorial

4. Characteristic C Source Code Debugger Functions and Their Usage 53

4-10 Program completion (gaining familiarity with
C source code debugger operation)

In actual program development, completing a program is not a simple matter.
The process of editing, compiling, assembling, linking, and debugging will be
repeated a number of times before the program is complete.

After operating the C source code debugger as we went through the basic pro-
cess in this tutorial, you should now have a general understanding of how to use
the C source code debugger. Now you are ready to use the C source code
debugger on an actual program and discover more advanced uses of the debugger.

Debugging Tutorial

@54

Chapter 5

C Source Code Debugger
Startup Method and Options

1. C Source Code Debugger Startup
Method and Options

@56

C Source Code Debugger

Startup Method and Options
]

To start up the C source code debugger, input the following at the MS-DOS
command level:

PICE103 [<option>] [<debug file> [<parameter>]] [
If the INIT.MCR file is located in the current directory when the C source
code debugger is started up, the C source code debugger automatically loads and

executes this file. This file is equivalent to an MS-DOS AUTOEXEC.BAT file.

The C source code debugger startup options are listed below. (A space is
required between options.)

Startup option Description of option

-B [<size D>][,<size M>] | Specifies the size of the debugging information area and
the macro area.

-BEMS [,<size M>] Reserves the debugging information area in EMS
memory.

-E<extension> Specifies the default extension.

-F Specifies overlap mode (save to file).

-FEMS Specifies overlap mode (save to EMS memory).

-N Disables indicators.

-TAB<tab size> Specifies tab size.

-X Specifies assembler debugging mode.

-XC Specifies CC103 compiler debugging mode.

-NOTARGET Specifies startup without target system.

C Source Code Debugger Startup Method and Options

5. C Source Code Debugger Startup Method and Options 57

Specifying the size of This option specifies the size of the debugging information area and the

the debugging information macro area.

area and the macro area A wide variety of information is stored in the debugging information area,
-B including symbol names and line number information. This information area

must be about 1/2 the size of the executable file (the EX file when compiled with
all debugging options), including the debugging information. As a result, if the
debugging information area is reserved in conventional memory (the memory
area up to 640KB), it will be impossible to debug a large program. In such a case,
reserve the debugging information area in EMS memory.

-B [<size D>][,<size M>]
Specify numeric values for the size of the debugging information area <size
D> and the macro area <size M>.

<size D> Size (in 16KB units) of the area where the debugging informa-
tion is to be stored.
Reserves an area of the specified size in a memory area o
than 640KB. If omitted, a 64KB area is reserved.
<size M> Size (in 1KB units, up to a maximum of 32KB) of the ma
command registration area.
If omitted, a 3KB area is reserved.

Reference: For example, in order to reserve 128KB for the debugging informa-
tion area and 5KB for the macro area, input the following:

PICE103 -B128,5[

-BEMS [,<size M>]
This option reserves the debugging information area in EMS memory.
Specify a numeric value for the size of the macro area <size M>.

Reference: For example, in order to reserve the debugging information area in
EMS memory and also reserve 10KB for the macro area, input the
following:

PICE103 -BEMS, 10O

C Source Code Debugger Startup Method and Options

@58

Specifying overlap mode
-F

Specifying the default
extension
-E <extension>

Disabling indicators
-N

Setting the tab size
-TAB

This option specifies overlap mode, in which only the bare minimum of
essential functions for executing the debugging program are loaded into
main memory, while the C source code debugger itself and the work area
are saved to EMS memory or to a file.

[O Chapter 1, section 1 for the Overlap function]

-F
This option uses a file as the save area for overlapping.

If the -F option is specified, the overlap file is created in the directory speci-
fied by the environment variable TMP or TEMP. Therefore, the overlap time can
be greatly reduced by specifying a RAM disk for an overlap disk. If this environ-
ment variable is not set, the file is created in the current directory.

[0 Chapter 3, section 3]

-FEMS
This option uses EMS memory as the save area for overlapping.
This option allows faster task swapping than when saving to a file.

This option specifies the default source file extension.
<extension> becomes the default source file extension. If this option is omit-
ted, .C becomes the default extension.

This option disables the display of the indicators that indicate the screen
type.
If the indicators are disabled, “S” and “U” (the subprocess screen and user
screen indicators) are not displayed in the lower left corner of the screen.
(This option can be specified for the PC-9800 Series only.)

This option specifies the tab size when displaying a source listing in the
Code window.

-TAB (tab size)

The tabs are adjusted to the number specified by the tab size. If this option is
omitted, the tab size is set to “8”.

This function is useful for displaying files in which the tab size was changed
with an editor.

C Source Code Debugger Startup Method and Options

Specifying assembler
debugging mode
-X

Starting up with no target
system
-NOTARGET

5. C Source Code Debugger Startup Method and Options 59

Reference: To set the tab size to four columns, input the following:

PICE103 -TAB4 U

This option specifies either the assembler or various C debugging modes.

-X

This option specifies the assembler debugging mode. If the C source code
debugger is started up in this mode, commands related to C (stack back tracing,
local variables) cannot be used.

-XC (default)
This option specifies the CC103 compiler debugging mode.

This option specifies that the in-circuit emulator is to be used by itself (with-
out being connected to a target system).
This option must be specified if there is no target system.

will cause the voltage of the target and that of the in-circuit emula-
tor to be different, causing the in-circuit emulator to operate incor-
rectly and damaging the system.

G Never specify this option if a target system is connected. Doing so
[]

C Source Code Debugger Startup Method and Options

@60

Chapter 6

Window Commands

1. Window Displays
2. Window Commands
3. Data Reference Functions

@62

Window Displays
- 1]

The C source code debugger supports two types of command specification,
Window commands and Dialog commands, using either the function keys or the
Control key. This chapter explains the Window commands and how to use them.
For details on Dialog commands, refer to Chapter 7, “Dialog Commands.”

@r Code
30000000

(d0,al),a2
udf@2 -191.d3
udf@9 -6B,d3
leq
mov {a2),d1
mov d?2,{a?)

d3, (a3)

(53,sp),ad

d2,(d1,a2)

d3,d?
FC4BFCI bu (8B190FC . a3) ,d2
(2) [PC=4BB8AR0A Command

PICE(10300) Ver 3.6b Release 1.1.1 Copyright (c}1996 Panasonic/KMC
Sub process segment 873AH (99 Kbyte)
Monitor Program Version 0.01
Evachip Mumber 103000

File HOptWink SrcSWASearchs Go [dTnspctlj Come [§Sg15tpk BreakiMiFncS tplly)

(1) Code window

This window displays either source code or a combination of source code and
disassembled code. If the cursor is located in this window, the Window com-
mands can be used to change the display by scrolling the source code up or down,
for example, or set/cancel software breaks where the cursor is located.

(2) Command window

This window is used to input Dialog commands and to display commands.
This window stores the display contents in the Command window display buffer
(reserved as an 8KB area) at the same time that the information is displayed on the
screen. If the cursor is located within this window, the cursor keys can be used to
scroll the display up and down over the range of the display buffer.

Window displays

6. Window Commands 63

Yatch

Register 3)
D0=00000002 AB=000DBDAO
D1=00000000 A1=0000DAO
D2=00000000 A2=00000DOO
D3=00000000 A3=00000DOO
PC=80000076 SP=00001FE4,
HMDR=80000073
if(seclB] == 108){ LIR=8000007C PSY=0006

secl@] = 0; LAR=00000000 F -
sec[1]++; 1E=0 IH=0 $=0
if(secl1] == 6) Back trace
sec[l] = 0; main+E(]
display+1{)
cnt6B()

(ol

mmand
—CN- IM=0 $=0 DO =000060002 D1 =000000660 D2 =000GOEGO D
PSW=0006 A0 =N0DGORAO A1 =ABOGDBE0 A2 =A0AEDA0O A
PC =80000076 MDR=80000073 LIR=8000007C LAR=00000000 $

I@cntG@: nov (200C _sec),d0
|
il File EOptHing SrcSHASearchd] Go [@Tnspctll Come [SglStpEl BreakilFncStplely)

(3) Register window
This window displays the contents of the registers and the statuses of the flags.
This window can be easily opened or closed as necessary.

Window displays

[ig;] 64

6)————
(5)(Hatch Register
3} DO=0600000A AB=00000006
D1=00000000 A1=00000000
7) Idisplay(){ D2=00000000 A2=-00000000
00381 cnt60(); D3=00000000 A3=-00000000O

PC=500008092 SP=00BQ1FE4
MDR-80080873

14 LIR=80000076 PSW=0001
cnt6(){ LAR=00000008 F -—--f
34 sec[B1+~; TE=0 TH=0 5=0 _
if(seclPi == 10){ @
(8) seclB] = B:

secl1]++;
if(secll] == 6)
secll] = B;

Monitor Program Yersion
Fuachip Number

.01
103000
>d sec
00AG200C 6A 0D 00 DO 63 00 00 B 16 89 E2 OB 84 02 85
)H? sec
>
jl File MOptHing SrcSWASearchl]l Go Come [iSglStpl BreaklliFncS tp{EY)

(4) Option window

One of four windows (Memo, Back Trace, Stack, and Local) can be selected
for display in this window. The Back Trace and Local windows can only be
displayed in C debugging mode.

Memo window: Displays the contents of threemos registered by the
MEM command.

Back Trace window: Displays the back trace for the C functions.

Stack window: Displays the contents of stack memory.

Local window: Displays the list of local variables for the function where
the program counter (PC register) is.

(5) Watch window

This window always displays the most recent values for symbols and memory
specified by the W command (the watch registration dialog command).

This window is not displayed if nothing is registered for watching.

(6) Status display area
The causes of breaks are listed below.
(The display messages are shown in parentheses.)

Software break (Break-point No. = xx)

Program execution stops before executing an address where a software break
was set by the BP command.

Window displays

6. Window Commands 65

Hardware break (Break-point No. = xx)
Program execution stops when an event that was set by the BP command oc-
curs.

And break (And Break)
Program execution stops when all of the events set by the BPA command
occur.

Sequential break (Sequential Break)
Program execution stops when all of the events set by the BPS command oc-
cur in sequence.

Trace-full break (Trace-full Break)
Program execution stops when the trace memory is full of data.

Forced break (ESC Break)
User program execution is forcibly stopped when the ESC key on the host
computer is pressed.

Undefined instruction break (lllegal Instruction Break)
This type of break occurs when an attempt is made to execute an undefined
instruction.

Illegal memory access break (lllegal Memory-access Break)
This type of break occurs when an illegal memory access is made.

RAM error break (RAM Error Break)
This type of break occurs when an attempt is made to access an area for which
memory accesses are not allowed.

Data misalignment break (Data Miss-alignment Break)
This type of break occurs when an attempt is made to read or write long-word
(32-bit) data in an address that is not a multiple of four, or word (16-bit) data
in an odd address.

In addition to messages that indicate the causes of breaks, the following mes-
sages are also displayed:

Trace stop
This message is displayed when tracing has stopped (but the user program is
still running).

Trace full stop
This message is displayed when tracing has stopped because trace memory is
full of data (but the user program is still running).

(7) Title display
In source mode, this displays the name of the source file displayed in the Code
window; in assembler mode, this displays the name of the function in the ad-
dress where the cursor is located and the offset from the start address of the
function.

(8) Program counter
The current position pointed to by the program counter is highlighted in yel-
low.

Window displays

@66

[HOME]

[« /Ctrl + 8]
[- /Ctrl+D]

[t /Ctrl+E]

[L/Ctrl+X]

Window Commands
]

2-1 Screen control

This section explains screen control (cursor movement, scrolling, etc.) in the
Command window and the Code window.

Note that the operation of each key differs according to whether the cursor is
located in the Command window or the Code window.

Moves the cursor between the Command window and the Code window.

When the cursor is in the Command window, pressing this key moves the cursor
to the Code window, and when the cursor is in the Code window, pressing this key
moves the cursor to the Command window.

Moves the cursor one character to the left.
Moves the cursor one character to the right.

When the cursor is in the Code window, pressing these keys moves the

cursor up one line.

When the cursor is in the Command window, pressing these key scrolls the win-
dow down one line. The contents displayed in the command window are logged
in the display buffer (reserved as an 8KB area); any contents remaining in the
buffer can be referenced by scrolling the window up or down.

When the cursor is in the Code window, pressing these keys moves the
cursor down one line.
When the cursor is in the Command window, pressing these key scrolls the win-
dow up one line. However, immediately after a D or TD command, pressing these
keys displays the next line that follows the displayed results of the D or TD com-
mand.

[0 D command and TD command]

Window commands

[Ctrl + A]

[Ctrl + F]

[Ctrl+ QS]]
(press [Ctrl +Q]
then [Ctrl +S]

[Ctrl + QD]

[RollUp / Ctrl +C]

[RollDown / Ctrl +R]

6. Window Commands 67

When the cursor is in the Code window (with a source listing displayed),
pressing these keys moves the cursor one word to the left.

When the cursor is in the Command window, pressing these keys moves the cur-
sor to the beginning of the line.

When the cursor is in the Code window (with a source listing displayed),
pressing these keys moves the cursor one word to the right.

However, when disassembled code is displayed, pressing these keys moves the
cursor in the sequence address to code to mnemonic.

When the cursor is in the Command window, pressing these keys moves the cur-
sor to the end of the line.

Pressing these keys moves the cursor to the beginning of the line.
This command is valid only when a source listing is displayed in the Code win-
dow, and the cursor is located in the Code window.

Pressing these keys moves the cursor to the end of the line.
This command is valid only when a source listing is displayed in the Code win-
dow, and the cursor is located in the Code window.

When the cursor is located in the Code window, pressing these keys

scrolls the contents of the Code window (whether a source listing is dis-

played or disassembled code is displayed) up one screen.

When the cursor is located in the Command window, pressing these keys scrolls
the contents of the Command window up one screen.

CTRL + C can also be used to interrupt long display operations caused by the D
command, and repeated step execution by the T command or the P command.

When the cursor is located in the Code window, pressing these keys

scrolls the contents of the Code window (whether a source listing is dis-

played or disassembled code is displayed) down one screen.

When the cursor is located in the Command window, pressing these keys scrolls
the contents of the Command window down one screen.

Window commands

@68

[Ctrl+ Q* R]

[Ctrl+ Q+C]

[Ctrl+ <]

[Ctrl + =]

[Ctrl + 1]

[Ctrl + 1]

[Ctrl+J]

[Ctrl + Q *W]
[Ctrl+ Q-Z]

[Ctrl + Q « J]

Pressing these keys moves the cursor to the beginning of the source file

that is currently displayed.

This command is valid only when a source listing is displayed in the Code win-
dow, and the cursor is located in the Code window.

Pressing these keys moves the cursor to the end of the source file that is
currently displayed.

This command is valid only when a source listing is displayed in the Code win-
dow, and the cursor is located in the Code window.

Pressing these keys enlarges the Option window.
In other words, this command moves the vertical boundary between the Option
window and the Command and Code windows to the left.

Pressing these keys reduces the Option window.
In other words, this command moves the vertical boundary between the Option
window and the Command and Code windows to the right.

Pressing these keys enlarges the Command window (and reduces the

Code window).

In other words, this command moves the boundary between the Command win-
dow and the Code window up one line.

Pressing these keys reduces the Command window (and enlarges the

Code window).

In other words, this command moves the boundary between the Command win-
dow and the Code window down one line.

Pressing these keys redisplays the screen.

Pressing these keys enlarges the Command window to its maximum size
(and reduces the Code window to its minimum size).

Pressing these keys reduces the Command window to its minimum size
(and enlarges the Code window to its maximum size).

Pressing these keys restores all windows to their initial window sizes.

Window commands

[F2(OptWin) / Ctrl + 4]
(Press the "4" on the numeric
keypad.)

[Ctrl + F2(Optsw)]
[Ctrl+ O]

F3(SrcSWwW)

[Ctrl + F3(SrcSW1)]

6. Window Commands 69

Pressing these keys turns the Register window and Option window display

on and off.

If the Register window is not displayed, pressing these keys causes the Register
window to appear. If the Register window is displayed, pressing these keys
causes the Register window to disappear.

These keys switch the contents of the Option window display.

This command changes the Option window from the Memo window to the Stack
window. (When there is debugging information in the user program, this com-
mand changes the Option window in the following cycle: Memo to Back Trace to
Stack to Local.)

This command is valid only when the Register window and the Option window
are displayed.

When the Code window is displayed, pressing this key changes the
source listing display to the disassembled code display, or changes the
disassembled code display to the source listing display.

[0 page 43]
The code listing is displayed so that the line that the program counter (PC register)
is currently pointing at is displayed. However, when displaying a source listing, if
there is no source line that corresponds to the current value of the program
counter, the last source line that was displayed, is displayed.

When the Code window is displayed, pressing this key changes the
source listing display to the disassembled code display, or changes the
disassembled code display to the source listing display.

The screen switches, starting the new display from the line in the Code window
where the cursor is currently located. However, when displaying a source listing,
if there is no source line that corresponds to the line where the cursor is currently
located, the last source line that was displayed, is displayed.

Window commands

@70

F5 (Go)

[F7(Come)]

2-2 Execution/Breaks
.|

The C source code debugger can be used to perform debugging work while a
program is in progress by using the execution/break commands. The execution/
break commands include not only the Window commands described below, but
also Dialog commands such as the G and BP commands.

[0 Chapter 7, sections 2 and 3]

The line pointed to by the program counter (PC register) is highlighted in

yellow. Lines where breaks (software breaks) are set are underlined.

debugged before using an execution/break command. The execut-
able file can be loaded by the L dialog command, or can be speci-
fied when the C source code debugger is started up.

[0 Chapter 7, section 2 for the L command]

G In normal debugging work, load the executable file that is to be

Pressing this key executes the user program from the current location indi-
cated by the program counter (PC register).
All enabled break events are valid, and when the user program reaches a break
event or is forced to break because the ESC key was pressed, the user program
stops executing.

[0 G command]

‘ Command set with the BP~ and /C <command> cannot be ex-
H ecuted.

Pressing this key executes the user program from the current location indi-
cated by the program counter (PC register) to the current cursor location.
All enabled break events are valid, and when the user program reaches a break
event or is forced to break because the ESC key was pressed, the user program
stops executing.

[0 G command]

Window commands

[F8 (Sg1Stp)]

[F9 (Break)]

[F10 (FncSp)]

[Esc]

[Ctrl + Shift + Graph]

6. Window Commands 71

Pressing this key executes single-step execution (in which the program is
executed one step at a time, even within called functions (subroutines)).
[0 T command]

Pressing this key sets/cancels breaks (software breaks).
When the F9 key is pressed, a break is set at the line where the cursor is located
within the Code window; the line is displayed with an underline to indicate the
break. If a break is already set at the line where the cursor is located, that
breakpoint is cancelled.

[0 BP command]

Pressing this key executes function step execution (in which called func-
tions (subroutines) are regarded and executed as one step).

[0 P command]

This key stops (forced break) user program execution.

Reference: The actual operation during function step execution of a subroutine
consists of setting a breakpoint after the subroutine call instruction
and then executing the user program. Therefore, if there is a
breakpoint set within the subroutine, the user program will stop ex-
ecuting there. However, if there is an infinite loop within the sub-
routine, the user program will not stop since control will not return
from the subroutine. (To stop the user program, press the ESC key
(forced break).)

If the microcontroller hangs for some reason and the command that was
input does not terminate, press these keys in order to forcibly exit that
command.

One possible cause is that the target system is not operating properly.

Window commands

@72

[Ctrl + F9(Get) / Ctrl + G]

2-3 Getting/selecting strings
. __|]

This command uses the cursor to specify character strings (variable
names, function names, etc.) displayed in the Code window and then input

them in the Command window.

With this command it is possible to get a long variable name simply by specifying
it with the cursor, making Dialog command input easier. The Select String (Sel)
command makes it possible to use the Inspect, Watch, View, and Memo functions
with the selected symbol.

Pressing these keys gets a character string in the Code window and inputs
it into the Command window.

Move the cursor to the Code window (source code display), and position it at
the character string to be gotten. Pressing CTRL + G or CTRL + F9 then copies
the character string to the Command window, where the command string has the
same validity as if it had been input through the keyboard.

Character strings gotten by this function must consist only of letters
‘_ [from “a” (“A”) to “z” (“Z")], the underscore symbol (“_"), and
numerals (from “0” to “9”).

Window commands

6. Window Commands 73

[Ctrl + F10(Sel)] These keys are used to select a character string.
First, move the cursor to the beginning of the character string to be selected, and
then press CTRL + F10. The character where the cursor is located is then high-
lighted in yellow, and the function key display changes to the Select String local
command display. Next, move the cursor to the end of the desired character
string.

The local commands that are available when selecting a character string
are described below.

[F1--F5,F10] Pressing one of these keys (F1 to F5, and F10) registers the selected
character string in a memo number area with the same number as the
function key that was pressed.

[O MEM command]

[F6(Inspct)/ Ctrl + 1/1] These keys are used to inspect the selected character string as a C ex-
pression.
[O Chapter 6, section 3-1 “Inspect function”]

Register
DO=0000000A AR=00000000
D1=00000000 A1=00000000
02=00000000 A2=00000000
03=00000000 AZ=00000000
PC=80000092 SP=00001FE4)
MDR=80000073
L IR=80000076 PSH=@Bﬂé

=0000800A D1 =A00AOB0E D2 =000600B0 D
! A0 =pBOPORA0 A1 =00BOABRE A2 =PAPEBA0R A
PC =80000092 MDR=80000073 LIR=80000076 LAR=00008060 S

A Zoom W16 10@Inspctlj Watchll View ¥ RangelliChange[§ly]

[F7(Watch)/ These keys are used to register the selected character string as a C ex-
Ctrl +W/ W] pression in the Watch window.
[0 Chapter 6, section 3-4 “Watch function”]

[F8(View) / Ctrl +V/ V] These keys are used to view the selected character string as a C expres-
sion.

[0 Chapter 6, section 3-5 “View function”]

[F9(Get)/ Ctrl+ G/ G/ O] These keys are used to get the selected character string for input to the
Command window.

Window commands

@ 74

[Shift + Home]

[F1(File)]

File selection window

2-4 File display

This section explains commands for listing/modifying those files that can be
referenced and for searching for character strings.

The file display function is valid only when source code is dis-
‘ played in the Code window and the cursor is located in the Code

window.

Pressing these keys switches the Code window display to the next source
file display.
This command is valid when source code is displayed in the Code window.

Pressing this key opens the file selection window and displays the files

that can currently be selected.

The file that is highlighted in the file selection window is the currently selected
source file. Usethe cursor keys to move the highlighted bar to the name of the
desired source file and press the Return key; the contents of the selected source
file are then displayed in the Code window.

Register
DO=00000000 AO-000B0A00,
D1=00000000 A1=-00000000)
D2=00000000 A2=00000000|
D3=00000000 A3=00000000)

STORTUP . ASH

_BSS, _GBSS CLR

Command
PICE(10300) Ver 3.6b Release 1.1.1 Copyright (c)1996 P4
Sub process segment 873AH (99 Kbyte)
Monitor Program Version 0.081
Evachip Mumber 1036000
>1 sample
>

dlnspctll Come [§SglStply BreakiliFnc$tpl@ly

In addition, the V command is used to reference the contents of files other than
those displayed in the file selection window.
[O V command]

Window commands

[F4(Search)]

[Ctrl+ Q- F]

[Ctrl+L]

6. Window Commands 75

When no search string has been specified, this key opens the window that

is used to request input of the search string. Once a search string has

been input in this window, the function searches for the search string in the

forward direction, starting from the current cursor position and proceeding
towards the end of the file.

When a search string has already been specified, the function searches for the
search string in the forward direction, starting from the current cursor position
and proceeding towards the end of the file. Use CTRL + Q or CTRL + F to input
a new search string.

If the search string is found, the corresponding string is highlighted and the search
is terminated. To continue the search, press the F4 key again. If no search string
is found, the message “No Search String Found.” is displayed and the search is
interrupted.

SAMPLE . C Code

Register
DO=0000000A AB=-00000000,
1} D1-00000000 A1-AEAODAGH

cntéB () { D2=00000000 A2-AOAODAGH

31 seclBl++; N3=000000AA A3=ARAADAGN

if(seclf] == 10){ PC=80000092 SP=00001FF4)
secl0] = 0; MDR=80000073

Input searched character strings.
@B

test.tstl=0;
test.tst2=0;

mmand
-———7 IM=0 $=0 DO =0000000A D1 -000OAEAG D2 -0OOOOAOO D
PSH=0001 A0 =DBO0GORG A1 -0DAOEEOG A2 -000BDE00 A
PC =80000092 HDR=80000073 LIR=80000076 LAR=00000000 S

Col

clr do
>
jl C1 #Histrys] CA MAln Topsln BotFx=tSymfiln CanfAllCank 10

Pressing these keys opens the window that is used to request input of the

search string.

If a search string was previously input, that string is highlighted. If any key is
pressed, the highlighted string is no longer highlighted and the debugger awaits
normal input. When inputting a new string, the shell function history and line
editing functions can be used. Once the search string has been input, the function
searches for the search string in the forward direction, starting from the current
cursor position and proceeding towards the end of the file.

Pressing these keys causes the function to search for the search string
(specified previously by using CTRL + Q, CTRL + F, or F4) in the forward
direction, starting from the current cursor position and proceeding towards
the end of the file.

Window commands

@76

[Ctrl + F4(Srcht) /
Ctrl+ B]

[Esc]

Pressing these keys causes the function to search for the search string
(specified previously by using CTRL + Q, CTRL + F, or F4) in the reverse
direction, starting from the current cursor position and proceeding towards
the beginning of the file.

The message “Searching [Interrupt with ESC key]" is displayed at the top
of the screen when a string search is in progress. To interrupt the search,
press the ESC key. The message “Cancelling String Search” is displayed
and the search is cancelled.

Window commands

[Ctrl+ 0]

[Ctrl+1]

[Ctrl +4]

[Ctrl+5]

6. Window Commands 77

2-5 Process control/RAM monitor

Process control and RAM monitor screen switching are performed using the
CTRL key in conjunction with the keys on the numeric keypad.

Pressing these keys while a subprocess is being executed pauses the
subprocess and returns control to the C source code debugger.
These keys are valid only while a subprocess is being executed.

Pressing these keys while the subprocess is paused pauses the C source

code debugger and passes control to the subprocess.

These keys are ignored if the subprocess was not started up by the “!” command.
[0 Chapter 4, section 4-7 for the “I” command]

These keys turn the display of the Register window and Option window on
and off.
If the Register window is not displayed, pressing these keys displays the Register
window. If the Register window is displayed, pressing these keys closes the Reg-
ister window. (These keys have the same function as the F2 key.)

[0 Chapter 6, section 2-1 “Screen control”]

Pressing these keys changes the display to the RAM monitor.
To return to the debugger screen, press CTRL + 5 again.

Window commands

@78

[BS/Ctrl+H]

[« /Shift+ ~/
Ctrl+S]
[-/Shift+ - /Ctrl + D]

[Shift + F4(LnTop) /
Ctrl +A]

2-6 Shell functions
.|

The C source code debugger registers in sequence all key input other than
Window commands in the history buffer (an area of about 1500 characters). The
contents of this history buffer can be searched and line edited. Unlike the MS-
DOS template functions, the cursor can be moved freely in the line being edited,
and characters can be inserted, deleted or changed in a fashion similar to a screen
editor. Making full use of the shell functions makes it possible to reduce the
volume of keyboard operations during debugging.

Each operation described here is valid for Command window input, search
string input (refer to the search function), and inputting the array elements
(Range)/changing values (Change) for the Inspect function.

‘ History search and line editing using the shell commands is pos-
= sible only when the cursor is located in the Command window.

Reference: In the C source code debugger, when the cursor is in the Code win-
dow, pressing the Shift key causes the cursor to shift temporarily to
the Command window. Releasing the Shift key causes the cursor to
return to the Code window. Therefore, the standard for many shell
functions is SHIFT + [key].

Pressing these keys deletes the last character that was input.

Pressing these keys moves the cursor to the left.

Pressing these keys moves the cursor to the right.

If the cursor is already located at the end of the line, the operation is identical to

that of SHIFT + F1 (C1).

Pressing these keys moves the cursor to the beginning of the line.

Window commands

[SHIFT +F5)LNBOT) /
CTRL+F]

[Del/Ctrl+ G]

[Shift + F7(In Can) /
Ctrl+ U]

[Ins/ Ctrl + V]

[Shift+ 1/ Ctrl + W]

[Shif+ 1 /Ctrl +Z]

6. Window Commands 79

Pressing these keys moves the cursor to the end of the line.
If the cursor is already located at the end of the line, the operation is identical to
that of SHIFT + F3 (CA).

Pressing these keys deletes the character located at the cursor position.

Pressing these keys deletes all of the characters in the line currently being
edited.

Pressing these keys switches between Insert mode and Replace mode.

Pressing these keys displays the preceding portion of the history buffer.
In addition, if a character string has been input on the command input line, a
search is conducted for a character string beginning with that character string
within the history buffer, going from newest to oldest. If a character string that
satisfies the conditions is found, it is displayed. If these keys are then pressed
again, the search continues in the older part of the history buffer.

[O "I" command and "!'" command]

Example

>bp tcirq
>U main
>bp count
>hp =

If SHIFT + 1 is then pressed, the previously input commands are searched for
a character string that begins with “bp”; the character string that is found, “bp
count” is then displayed. If SHIFT #is then pressed again, “bp tcirq” is dis-
played.

Pressing these keys displays the subsequent portion of the history buffer.

In addition, if a character string has been input on the command input line, a
search is conducted for a character string beginning with that character string
within the history buffer, going from oldest to newest. If a character string that
satisfies the conditions is found, it is displayed. If these keys are then pressed
again, the search continues in the newer part of the history buffer.

Window commands

@80

[Shift + F1(C1) / Pressing these keys copies the character at the current cursor position
Shift+ ./ Ctrl + D] from the preceding portion of the history buffer and displays it.
This function is equivalent to the F1 key of the MS-DOS template functions.

[Shift + F2(Histry)] Pressing these keys opens the History window and displays the contents
of the history buffer.
If a character string has been input in the command input line, a character string
that begins with that character string is displayed in the History window. The
highlighted line in the window is the currently selected line.

Register
D0=00000000 AR=00002010
D1=00000004 A1=00000000
D2=00000000 A2=00000000
D3=00000000 AJ=00000000
PC=80000020 SP=00001FF4

[} MDR=00000008
bec_skip LIR=40000008 PSY=0004
3 LAR=000O0BOD F -

_ROMDATA, _GROMDATA -> _DATA, _GDATA copy @ IE=0 TH=0 5=0

mov GC[lDiEEND - _ROMDATA, d1
. d

1- 101
‘ev main,ex

‘bp sec,rw
tm F1256,2

>
il C1 PHistry® CA Min TopRln Bot@FxtSymfln CanfAllCanfReset E0ption[§ly]

m Key operations in the History window/Symbol extension window

ESC Closes the window.

1/CTRL+E Moves the selected line up one line.

LICTRL + X Moves the selected line down one line.

ROLL DOWN/CTRL + R | Moves the displayed item up one item.

ROLL UP/CTRL + C Moves the displayed item down one item.

0 (Return) Copies the currently selected line to the command line and

then closes the window.

0, 1...9 (Numeric keys) Selects a line according to the numbers at the left end,
copies the line to the command line, and then closes the
History window.

Window commands

6. Window Commands 81

[Shift + F3(CA)] Pressing these keys copies the character string following the current cur-
sor position from the preceding portion of the history buffer and displays it.
This function is equivalent to the F3 key of the MS-DOS template functions.

[Shift + F6(ExtSym)] Pressing these keys opens the Symbol Extension window and displays
the symbol extensions.
The function searches for a symbol that begins with the last character string in the
command input line and displays it in the window. For example, after inputting
the following command:

>d cnt

pressing SHIFT + F6 starts a search for a symbol name that begins with “cnt” (for
example, cntd, cntl23, cnt_time, etc.), which is then displayed.

Register
! D0=00000090 AY=00002019)
0057 ! bc_loop D1=00000004 A1=00000000)
581 D2=0A00AAR0 A2=0000AAA0
D3=00000000 AI=00008000
PC=800000820 SP=00001FF
MDR=00000000
bc_skip LIR=40000008 PSH=0004
! LAR=00000808 F B
_ROMDATA, _GROMDATA -> DATA, _GDATA copy M IE=0 IH=0 S=0
mow _CODEEND - _ROMDATA, dl
cmp 0, di

ble dc_skip

mov _ROMDATA, af
_DATA, al

Command

4) [

The line that is highlighted in the window is the currently selected line. Key
operations within the Symbol Extension window are the same as for the History
window.

[Shift + F8(AllCan)] Pressing these keys deletes all of the characters in the line that is currently
being edited and deletes all of the contents of the history buffer as well.

Window commands

@82

[Ctrl + Shift + F1
to
[Ctrl + Shift + F10]

2-7 Memos
|

The contents of memos (character strings) can be used in line input in the
Command window, etc. Frequently used function names and variable names can
be easily called up by registering them in memos.

The String Select (Sel) local command and Dialog command MEM is used to
register character strings in memos.

[O Chapter 6, section 2-3 for the MEM command]

The currently registered memo character strings can be displayed in the func-

tion key display by pressing the SHIFT key and the CTRL key simultaneously.

SAMPLE .C Code

Register
init_datal(); D0=000606067 AB=00000000)
D1=00000000 A1=00000000
D2=00000000 A2=00000000
D3=00000000 AI=00000000
" PC=80000076 SP=00001FE4)
cnt6li); HDR=80000673

LIR=8000006C PSY=0006
LAR=p00O0BOD F -~
TE=0 TH=0 $=0

seclB]++; 1:test
) 2:seclB]=3
sec[0] = 0; 3:secl1]=5

sec[1]++;
if(secll1] == 6)
sec[1] = 0;

>mem 2 secl[B]1=3

>Hem 3 secl1]=5

>

il File POptWing SrcSifiSearchsl Go [dInspctlj Come [Sgl1Stpl BreakiliFncStpl§ly)

Pressing the function key corresponding to the desired character string causes
that character string to be displayed/input in the input portion of the Command
window.

Pressing these keys specifies a memo character string.
The character strings (1 through 10) that were set by the MEM command can be
called up by pressing CTRL + SHIFT + function key.
CTRL + SHIFT + F1 calls up memo character string 1, CTRL + SHIFT + F2 calls
up memo character string 2, and so on, up to CTRL + SHIFT + F10, which calls
up memo character string 10.

[O MEM command]

Window commands

6. Window Commands 83

2-8 Other window commands

[Shift + F10(Option)] Pressing these keys displays and changes the various options.
If these keys are pressed, the Option display window opens and the statuses of the
various options are displayed. Thand! keys can be used to select an option
item (the selected item is highlighted), and theand — keys can be used to
change the contents of the option. Press the ESC key or the Return key to close
this window.
[0 OPTION command]

[Esc] This key is used to forcibly break the program this is running; to stop a
macro command or batch function that is currently executing; to stop a
search; to exit the Inspect, Help, or Option menus, etc.

The ESC key can be used to interrupt or terminate the majority of Window com-
mands.

[Stop/Cti+C] These keys halt execution of a long display operation initiated by the D

command, etc., or interrupt the repeated step execution of a program initi-

ated by the T or P command.

[Ctrl+S] These keys are used in order to pause the Command window display.
The display resumes when any other key is pressed.

[Ctrl +P] These keys direct the Command window display output to the printer as
well.
These keys are used to toggle printer output on and off.

[Help] This key saves the debugging screen and displays a help screen.

When this key is pressed, the help screen for the previous Dialog command is
displayed. For example, if an input error was made in a Dialog command, press-
ing this key displays the help screen for that command. If this key is pressed
while using the Inspect function or String Select, the help screen for the respective
local command is displayed. Press the ESC key to exit the help screen and return
to the debugger screen.

[0 HELP command]

Window commands

@84

Opening/closing the Inspect
window

F6(Inspct) / Ctrl + |

[0 page 89]

Data Reference Functions

The data reference and modification functions are frequently used in conjunc-
tion with the execution/break functions. The data reference functions include the
Inspect, Watch, and View functions are the most powerful feature of the C source
code debugger. The Inspect function in particular can be used to reference and
modify data structures simply by using the cursor to specify variables, arrays,
structs and unions in the source file displayed in the Code window.

During debugging, first use the execution/break commands to execute the ex-
ecutable file up to the desired position. Next, use the data reference/modification
commands to reference the states of variables at that point in order to determine
the locations of bugs or confirm that the program is running properly. Then ex-
ecute the program and reference the data again. The vast majority of debugging
work consists of repeating this process. If a bug is found, the file is debugged by
repeating the process of correcting the source file, recompiling and reloading the
file, executing the file, and referencing the data. It is clear, therefore, that the
degree to which the data referencing functions are simple and easy to understand
can determine how useful a debugger is. Once the user has a solid understanding
of the data referencing functions, this C source code debugger provides an excel-
lent debugging environment.

3-1 Inspect function

The Inspect function makes it possible to reference or change a variable,
array, struct, or union in the source file displayed in the Code window, in a
format suited to the data structure of that variable, simply by specifying the
variable, array, struct, or union with the cursor.

To do so, move the cursor to the Code window and then position the cursor on
the variable to be referenced/changed in the source file. It does not matter which
portion of the variable name on which the cursor is positioned. Next, press F6 or
CTRL + I. This opens the Inspect window, in which the data structure of the
variable in question is displayed. To close the Inspect window, either press the
ESC key, or else press the F6 or CTRL + | key. There are four types of Inspect
windows: scalar, pointer, array, and struct. The display format and the local com-
mands that can be used differ for each type of Inspect window.

[0 Chapter 6, section 3-3 for the local commands]

The only variables (symbols) that can be inspected are those that are currently
valid. Therefore, local variables that are currently not in use and static variables
described in a source file other than the source file currently pointed to by the
program counter cannot be inspected.

Data Reference Functions

6. Window Commands 85

SAMPLE . C Code

Register
DO=00000007 AB-0000B060
D1=-00000000 A1=00000060
D2=00000000 A2=00000060
D3=00000000 AI=000DBDAO
if(secl@] == 10}{ PC=80000076 SP=00001FF4,
seclB] = 0; MDR=80000073
sec[1]++: LIR=8000006C PSY=0006
LAR=00000000 F (M-
IE=0 TH=0 S=0

Back trace
main+E()
display+7()
cnt6al)

1
init_data(}{
1A test.
test.

Command
=00000000 A1 =00DODOOD A2 =00000000 A;
AD =000A0AEE A1 =A00BOBOG A2 =0N0PODABO A
PC =80000076 MDR=80000073 LIR=-8000006C LAR=000G0G00 S

nov {200C sec),d0
[7oom §16<>10@Tnspctlj Hatchid ¥l RangelliChange[§KY)]

m Pointer inspection

Pointer values only hold information on address values within memory.
However, the information stored in that address is meaningful.

For example, if:

char *p="MEC";

is coded, the variable “p” stores not string “MEC” itself but the address infor-
mation where the string “MEC” is stored.

If a variable with the pointer attribute is inspected, the content of that variable
(an address value) is displayed in hexadecimal with an asterisk (“*”). The Oth
element (the information stored in memory indicated by the variable address) of
the pointer is displayed. If the pointer has the character attribute, that element is
recognized as a character string, and the characters are displayed as the element
until the null character (¥0) is reached. If the pointer has multiple elements, such
as a struct array, those elements are enclosed in brackets (“{}") and as much in-
formation as possible that fits on one line is displayed.

Example
(int)ip=*1500 [*integer pointer*/
[0]=10 (OxA) [*pointer element*/

Data Reference Functions

@86

(Char)p=*1550 "MEC\0" [*character pointer*/

[0]=M' 77(0x4D) [*subsequent character elements*/
[1]='E' 69(0x45)

[2]="C' 67(0x43)

[3]="0' 0(0x0)

m Array inspection

An array has multiple elements, as the name indicates. There are also a hum-
ber of variations, such as multidimensional arrays with two or more dimensions,
and struct arrays. These arrays can be inspected in an easy and efficient manner.

In array inspection, the array attributes are displayed in cast format, the array
elements are enclosed in brackets (“{}"), and as many elements as possible are
displayed. In the second and subsequent lines, all of the array elements are dis-
played in order: Oth, 1st, 2nd, ... nth. If the array has multiple elements, such as a
struct array, those elements are enclosed in brackets (“{}") and as much informa-
tion as possible that fits on one line is displayed.

For example, when inspecting the two-dimensional array int x[3][2], the dis-
play appears as shown below.

Example
(int [3][2])x={{1,2},{3,4},{5,6}} [*array inspection*/
[0]={1,2} /*x[0] element display*/
[1]={3,4} /*x[1] element display*/
[2]={5,6} /*x[2] element display*/

When referencing an array with a large number of elements, it can be enlarged

with the Zoom function to fill the screen.
[O Chapter 6, section 3-3]

Data Reference Functions

6. Window Commands 87

m Inspection display for a variable with an array attribute

Register
DO=00000007 AB=000DBDA0
D1=-00000000 A1-00000060
D2=00000000 A2=00000B060
D3=00000000 A3I=0000BDAO
PC=80000076 SP=00001FE4,
HDR=80000073

D p200C)
{int [2]1)sec = @0000200C {7,0}
[01 = 7 (0x7)
[1]1 = B (8x0)

display+()
cnt6li)

iinitfdata(){
1

and
=0006OEOT D1 =00000000 D2 =0OPBOBO6 D
i A0 =00000EOD A1 =PODEOPOE A2 =00OODOOO A
PC =30000076 MDR=80000073 LIR=8000006C LAR=00000000 S
_Bentén: mov {208C _sec),d0
>

M Zoon f16<108Tnspctl] Hatchi ¥ RangelliiChange[§K)]

Data Reference Functions

@88

3-2 Struct and Union Inspection
. __|]

Structs (including the bit field) and unions allow different types of data
structures (scalar, pointer, array, struct, union, etc.) to be combined into
one unit which can then be handled as a new data structure.

Using structs and unions makes it extremely easy to handle even complex data
structures, which makes it hard for bugs to crop up and also makes the program
easier to read.

In struct/union inspection, the attributes are displayed in cast format, the ele-
ments (members) are enclosed in brackets (“{}"), and as many elements as pos-
sible are displayed. In the second and subsequent lines, all of the element names
(member names) and their contents are displayed. If the struct array has multiple
elements, those elements are enclosed in brackets (“{}") and as much information
as possible that fits on one line is displayed. For example, consider a struct con-
taining members x, y, and z, representing a point in three-dimensional space.

struct point {

int x; [*X coordinate*/
inty; [*Y coordinate*/
int z; [*Z coordinate*/

o

If the variable p is inspected, the following is displayed:

(structpoint)p={x=10,y=20,z=30} [*struct inspection*/
(int)x=10(0xA) /*subsequent struct element display*/
(int)y =20 (0x14)

(int)z=30(0X1E)

The only difference in the display format between structs and unions is that
the attribute display is either “struct struct-name” or “union union-name”.

Data Reference Functions

Inspection display for a
variable with the struct
attribute

6. Window Commands

{int)tstl

{int Jtst? = 0 (0x0)

Register
DO=060000007 AB=00006000
D1=00060000 A1=00000000
D2=00000000 A2=00000000
D3=00000000 A3=000DADAO
PC=80000076 SP=0PBD1FE4,
HMDR=80000073
LIR=8000006C PSY=0006
LAR-00000000 F -[HI-
TE=0 TH=0 S=0

Back trace
main+E()
display+7()
cnt6()

Command
=00000007 D1 =00DEDEO0 D2 -0OAOOOOO D
A0 =000AOAEG A1 =000B0BOO A2 =00DBDE0O A
PC =80000076 MDR=80000073 LIR=8000006C L AR=0D0DB0A00 S

_Bentoel: mov (200C sec),d0
>ins test
A Zoom §16< 10MInspctl

View ¥ RangelliChangel#E)]

3-3 Local commands within the Inspect window

If the Inspect window is opened, the contents of the variables are displayed in
window; at the same time, the function key display changes, showing the local
commands that can be used in the Inspect window. These local commands can be
used to find more detailed information on the contents of data structures that have
multiple elements, such as arrays and structs. Elements can be selected in the
array and struct display with the key operations described below. The currently

selected element is highlighted.

1, CTRL+E
1, CTRL+ X

Moves the selected element line up one line.
Moves the selected element line down one line.

ROLL DOWN, CTRL + R| Moves the displayed item up one item.

ROLL UP, CTRL+C

Moves the displayed item down one item.
ESC Closes the Inspect window.

Data Reference Functions

@90

F4 (Zoom)

F5 (16 <> 10)

F6 (Inspct) / Ctrl +1/1

F7 (Watch) / Ctrl + W/ W

There are seven local commands for the Inspect window.

Zoom: Zooms the window in and out.

Hex/decimal Changes the base of the values displayed in the
conversion: window.

Inspect: Inspects the contents of the window.

Watch: Registers items for watching.

Range: Changes the array/pointer display range.

Change: Changes the value of an inspected variable.

When inspecting a pointer, array, or struct, pressing this key enlarges the
window to fill the screen.

This function is useful when referencing an array with a large number of ele-
ments. Pressing this key again while the window is in the enlarged state returns
the window to its original size.

In a scalar display, values are displayed in both hexadecimal and decimal

form.

However, when displaying an array or struct with multiple elements, values are
displayed only in decimal (default) form or hexadecimal form, in order to display

as many elements as possible on one line. The F5 key is used to switch the base
for display.

(unit [3])abc={4096, 32768, 65535} /*decimal display*/
(unit [3])abc={1000, 8000, FFFF} /*hexadecimal display*/

Pressing these keys displays the array or struct element that was selected
by using the cursor keys in a newly opened Inspect window.
The ESC key is used to close one Inspect window at a time.

Pressing these keys registers either the variable that is being inspected or

the selected element for watching in the Watch window.
[0 Chapter 6, section 3-4 “Watch function”]

Data Reference Functions

F8 (View)/Ctrl+V | V

F9 (Range)/R

F10 (Change) / C

6. Window Commands 91

Pressing these keys displays either the variable that is being inspected or
the selected element for viewing in the Command window.
[0 Chapter 6, section 3-5 “View function”]

These keys are used to change the number of the displayed array or
pointer element, and to change the maximum number.
When one of these keys is pressed, the window that is used to input the number of
the element to be referenced opens, with the element that is currently being dis-
played and the maximum element number highlighted. Input the display element
number and the maximum display element number (may be omitted). During this
line input, the History and Line Edit shell functions can be used.

This command is an extremely useful function for referencing large arrays and
for referencing areas around pointers.

Pressing these keys changes the value of either the variable that is being
inspected or the selected element.

The only variables that can be changed with this command are those that have a
scalar attribute (char, int, etc.) or the pointer attribute.

If these keys are pressed, the window that is used for inputting the numeric
value (expression) to be changed opens. Input a C expression or a numeric value
in this window; the expression or value is then evaluated, and if no error is found,
the value of the variable is changed to that value. (In certain cases, the type of the
value is converted.) During line input, the History and Line Edit shell functions
can be used.

Data Reference Functions

@92

3-4 Watch functions

The Watch function is used in order to constantly display the most recent
values for important variables, arrays and expressions in the Watch win-
dow while debugging is in progress.
The C source code debugger provides two methods for registering items to be
watched. One is registration using a Window command (registration is also pos-
sible via local commands for Inspect or String Select), and the other is registration
using the W command of the Dialog commands. Registration using a Window
command is explained in this section.
Watch registration Watch registration is accomplished by moving the cursor to the Code window,
Ctrl + F7(Watch) / Ctrl+ W positioning it on the variable that is to be registered for watching, and then press-
ing CTRL + F7 or CTRL + W. Once an item is registered for watching, the
variable name and its contents (value) are displayed in the Watch window. When
the item registered for watching has multiple elements, such as a struct or an
array, each element is enclosed in brackets (“{}") and as many items as can be
displayed on one line are displayed.
Use the Y command of the Dialog commands to cancel a watch registration.

D3=00000000 A3I=0000ODOO
) { PC=80000076 SP=DB001FEA
secl[B]++; MDR 80000073
if(secl@] == 1@){ 8000007C PSW=0006
Sec[@] ; =00000000 F -
SBC[l]**. 1E=0 IM=0 $=0
if(secll] == 6) Back trace
sec[l] = 0; main+E()
display+7()
cnt6a()

——CN- TH=0 $=0 DO =P0000002 D1 =00000000 D2 =00000000 D

PSH=0006 A0 =0O0O0OOD A1 =PODEOPOE A2 =000PDBOO A

PC =80000076 MDR=80000073 LIR=8000007C LAR=00000000 S
fAcnt6l: mow {208C _sec),d0

>

il File BOptWing SrcSWiSearchl Go @Inspctlj Come (SglStpl] BreakiliFncStplfly)

A local variable can be registered for watching only while the pro-
‘ gram counter is pointing within the function in which the local vari-
able was declared. The scope (specification of the range over
which the variable can be used) of the local variable registered for
watching is naturally limited to the function in which it was de-
clared. Therefore, once the program counter points outside of that
function, the display for the variable registered for watching
changes to “???7?".
Static variables also have scope, and so, in the same fashion as local
variables, once the program counter points outside of that scope,

the display for the variable registered for watching changes to
“PPPP",

Data Reference Functions

6. Window Commands 93

3-5 View function
.|

The View function is used to display in the Command window the value of
the variable or expression where the cursor is located.
Viewing View function is accomplished by moving the cursor to the Code window, posi-
Ctrl + F8(View) / Ctrl +V tioning it on the symbol that is to be viewed, and then pressing CTRL + F8 or
CTRL + V. When a variable is viewed, the variable and its contents are displayed
on the last line of the Command window. When the item being viewed has mul-
tiple elements, such as a struct or an array, each element is enclosed in brackets
(“{}) and as many items as can be displayed on one line are displayed.

The View function is useful for making a temporary record of the current state
of a variable and for checking its subsequent changes over time. The View func-
tion is also included in the local commands for Inspect or String Select (Sel).

possible to view local variables for a function that is not currently
being used, nor is it possible to view static variables defined in a
source file other than the one that the program counter is currently
pointing to. These restrictions are the same as the restrictions on
which variables can be inspected.

G Only currently valid variables can be viewed. Accordingly, it is not
[]

Data Reference Functions

@ 94

Chapter 7

Dialog Commands

Rules for Using Dialog Commands
Program Loading/Execution
Event-related Commands

Other Hardware-related Commands
Performance Measurement
Data Display/Change

Code Display/Change

Watch Display

System Control Commands
Other Commands

BOONoO~WNE

0.

@96

Rules for Using Dialog Commands

1-1 Conventions used in command explanations

The C source code debugger commands consist of the command name and
parameters. (Sometimes, parameters can be omitted. Parameters that can be
omitted are enclosed in square brackets (“[...]"). If there are two or more options
that may be chosen for a parameter, they are enclosed in rounded brackets (“{}")
and are separated by vertical lines, as follows: {...|...}

If a parameter is omitted, the C source code debugger’s initial value may be
used, or the value used by the last command may be used.

, Parameter delimiter

[...] May be omitted

{A|B} Select either A or B

ABCD Underlining indicates keyboard input

1-2 Command input format

Dialog commands can be input when the prompt is displayed in the Command
window. However, when inputting a macro, the macro input request prompt (“?”)
is displayed; when the trace display command TD (U) has been input, the
subprompt (“*”) is displayed.

The C source code debugger command input format is as follows:

<command name>[<parameters>] [J

“<command name>" consists of a character string of one or more characters.
“<parameter>" can be a numeric value, operational expression, symbol, line num-
ber, register name or other item that represents an address or data that the com-
mand uses. Uppercase and lowercase characters may be used as desired in the
commands and parameters. The number of parameters differs for each command.
If there are multiple parameters, they should be delimited by commas (“,”). In
addition, as a general rule, a space should be used to separate the command from
the parameters.

Rules for Using Dialog Commands

7. Dialog Commands 97

1-3 Symbols in the C source code debugger

The C source code debugger can handle two types of symbols: global symbols
(which are valid through the entire program) and local symbols (which are valid
only within a function). (Local symbols can be either local variables or static
variables.)

m Global symbols

Global symbols are used in place of address values when inputting disas-
sembled labels and addresses. External variables and function names are regis-
tered in the global symbols.

If a symbol has the same name as a CPU register, the register name takes
precedence. Therefore, it is not possible to reference a symbol that has the same
name as a register.

after the variable name or function name. However, because it is
inconvenient to input an underscore each time a global symbol is
input, the C source code debugger is designed to allow the under-
score before or after a global symbol to be omitted.
It is also possible to specify whether or not to distinguish between
uppercase and lowercase characters.

[0 OPTION command and SHIFT + F10 (Option)]

G In C, symbol names generally have an underscore (“_") before or
| |

For example, assuming a global symbol with the name “_main”:

Example

>u_main /*display disassembled label from _main symbol value*/

>uU main /*same as above*/

Rules for Using Dialog Commands

@98

In addition, global symbols also function as C source code debugger internal
variables (most commonly used together with the IF command and macro com-

mands).
Example
>i=0x10 [*1st line*/
symbol is loaded.
>while{ i'=0 /*2nd line*/
?2T /*3rd line*/
?i=i-1 [*4th line*/
?} /*5th line*/
1. This line places the value 0x10 in symbol “i”. (If “i” is an undefined symbol

name, “i" is also registered as a symbol.)

2. This line compares the value of the symbol “i” with zero (“0").

3. Inthis line, if “i" is not “0”, single-step execution is initiated by the T com-
mand.

4. This line decrements the value of “i” by one (“1).

5. This line ends the “while” command. If this line is executed, the conditional
evaluation is made again by the “while” command.

If this command is actually executed, the T command will execute 16 times
before exiting the loop of “while” command.

In the above example, the symbol “i” is handled in the same manner as a C

variable. When using symbol names, make sure to not duplicate previously regis-
tered global symbol names and local symbol nhames.

Rules for Using Dialog Commands

7. Dialog Commands 99

m Local symbols

Local symbols are symbols (names) both for variables that are valid only
within a certain function (such as an automatic variable of C or a function argu-
ment) and for variables that are statically declared. Local symbols are automati-
cally registered when normal debugging information is loaded.

In addition to address values, local symbols include information on the scope
(valid range) and attributes (char, int, long, double, etc.) of the local symbols.

[0 Inspect function, “?” command, and VAL command]

m Special symbols

__ERR_ _

The value of the special symbol “_ _ERR_ _"is “1” when the command that was
just executed generated an error, and is “0” when the last command was executed
normally.

" _ERR__"can be used in error processing within macro commands.

_ _RUN_ _
The value of the special symbol “_ _RUN_ _"is “1” while the user program is
executing, and “0” when the program is stopped. This symbol can be used for

purposes such as waiting for a user program break in processing within a macro.

Rules for Using Dialog Commands

@ 100

1-4 Numbers in the C source code debugger
. __|]

The C source code debugger can handle binary, octal, decimal, and hexadeci-
mal numbers. The base of a number is identified by a symbol in front of the value.
Numeric values for which the symbol indicating the base was omitted are handled
according to the base specified by the N command.

[0 N command]

Symbol Base

@<numeric value> Binary

¥<numeric value> | Octal

_<numeric value>| Decimal

$<numeric value>| Hexadecimal

Ox<numeric value Hexadecimal

numeric value Accords with the base specification
(either hexadecimal or decimal)

For example, @11001010, ¥312, _202, $CA, and OxCA all represent the same
numeric value.

In addition, there are also commands (DS, DL, etc.) that handle 4-and 8-byte
real numbers (in IEEE format).

m Addresses
The address format used by the C source code debugger is shown below:

XXXXXXXX
N |
Address (32 hits)

Example: >D 80001234

Symbol names and line numbers (explained below) can be input as command
parameters wherever an address needs to be specified.

Rules for Using Dialog Commands

7. Dialog Commands 101

® Line numbers

The C source code debugger supports debugging at the source code
level using the line numbers in the source file.

The line numbers are used to specify specific lines within the source file. Line
numbers are valid only when the source line information is included within the
executable file that was loaded.

There are three line number input formats:

Format 1: [<file name>:]<line number>
Format 2: *<line number>
Format 3: <symbol>z<line number>

Line numbers specify a specific source line in the user program as a combina-
tion of a decimal number (<line number>) and the file name or symbol name.

Format 1 indicates the absolute line number. If <file name> was input, this
format specifies the nth line (where “n” is <line number>) of the specified file. If
<file name> is omitted, this format specifies the nth line (where “n” is <line num-
ber>) of the current file (the file currently displayed in the Code window).

>v .100 /*specifies the 100th line of the currently selected
source file*/
>y .test:120 [*specifies the 120th line of test.c*/

Format 2 specifies a line in terms of its relative position to the source line
currently pointed at by the program counter.

The +<line number> specification points at the line that is <line number> lines
beyond the current source line, while the —<line number> specification points at
the line that is <line number> lines in front of the current source line.

However, if there is no corresponding source line for the program counter
when a format 2 line number specification is made, an input error results.

>v .+10 [*specifies the 10th line from the source line currently
pointed at by the program counter*/

Rules for Using Dialog Commands

@ 102

Format 3 specifies a line in terms of its relative position to the source line
corresponding to the address value of the specified <symbol>.

The +<line number> specification points at the line that is <line number> lines
beyond the corresponding source line, while the —<line number> specification
points at the line that is <line number> lines in front of the corresponding source
line.

However, if there is no corresponding source line for the specified <symbol>
when a format 3 line number specification is made, an input error results.

>bp .main+10 /*specifies the 10th line from the symbol “main™*/

m Character strings

The C source code debugger can handle character strings (as ASCII codes) in
place of numeric values. A character string is enclosed in single quotes ().

Example: ‘A’ =0x41
‘AB’ =0x4142
‘ABCD’ = 0 x 41424344

In the E/EB command data input mode (when the data specification in the
command line was omitted and the Return key was pressed), up to 16 characters
can be set at one time in a character string.

>E 1000

address asc oct dec hex data

00001000 . 000 000 _‘1234567890abcd’
00001010.................

Rules for Using Dialog Commands

7. Dialog Commands 103

m Register names

In the C source code debugger, the contents of registers can be handled as
variables. The register names that can be used are listed below.

Register names Flag names
DO, D1, D2, D3 (data registers) CF (carry flag)
A0, A1, A2, A3 (address registers) ZF (zero flag)
MDR (multiply and divide register) NF (negative flag)
PC (program counter) VF (overflow flag)
SP (stack pointer) IE (interrupt enable flag)
LIR IMO, IM1, IM2 (interrupt mask level)
(branch destination instruction register)
LAR (instruction fetch address register)
PSW (processor status word)

Example

>while{ _D0!=_D1 /*compare the contents of the DO register and
the D1 register*/

[*execute trace command*/

[*end of macro*/

V D N
~ |

In the above example, the T (single-step execution command) is executed un-
til DO and D1 are the same. If a register and a symbol have the same name, the
register takes precedence.

Rules for Using Dialog Commands

@ 104

1-5 Operational expressions

An operational expression has one value derived from a combination of nu-
meric values, symbols, registers and function arguments linked together by opera-
tors. The C source code debugger uses numeric and logical operators that are
similar to those in C.

Operational expressions can be used in any command where a value needs to
be specified (data or addresses).

The monadic and binary operators that can be used in operational expressions
are listed below.

(1) Monadic operators

* 32-bit data at a specified address (pointer or long word)
+ Monadic plus

— Monadic minus

~ NOT (one’s complement)

I Logical NOT

(2) Binary operators

Priority Operator Description
Q) * Multiplication
/ Division
% Modulo operation (remainder)
2) + Addition
- Subtraction
?3) >> Right shift
<< Left shift
4) <= Compare operation
(1 if right side is greater than or equal to left side, O otherwise)
>= Compare operation
(1 if right side is less than or equal to left side, O otherwise)
< Compare operation
(1 if right side is greater than left side, O otherwise)
> Compare operation

(1 if right side is less than left side, O otherwise)

(5) == Compare operation

(1 if right side is equal to left side, O otherwise)

1= Compare operation

(1 if right side is not equal to left side, O otherwise)

(6) & AND

7 A XOR

(8) | OR

9) && Logical AND
(20) Il Logical OR

Rules for Using Dialog Commands

7. Dialog Commands 105

The numerals in the left-hand column indicate operational priority. If adja-
cent operators have the same priority, the expression is evaluated from left to
right. The priority within an expression can be changed by the use of parentheses,
however.

In addition, compare operators and logical AND and logical OR operators are
provided for conditional decision processing in macros (FOR and WHILE com-
mands, etc.) and conditional decision processing commands (IF command, etc.)
In addition, the compare operators and logical AND and logical OR instructions
only use the lower 16 bits in processing their operations.

Example
>h -(1+2*3)
oct dec hex asc float
37777777771 -7 FFFFFFF9 '.... -6.805644e+38

(3) System function

VAL (C expression)
The contents of the parentheses are evaluated as a C expression.

Rules for Using Dialog Commands

@ 106

1-6 Data Expressions at the C Language Level
. __|]

Up to this point, we have explained expressions that simply compute global
symbols and local symbols or line number information as address values. These
expressions can be used with most of the Dialog commands. However, because
expressions within the user program being debugged are naturally coded accord-
ing to C conventions, that treatment is inadequate for handling C expressions.
Therefore, the C source code debugger has been provided with Window and Dia-
log commands that can handle C expressions as is. Specifically, inspection-re-
lated commands, the watch registration command, the VAL command, and the
“?” command can handle C expressions with C syntax.

m C expressions

Descriptions at the C language level and expressions coded in the manner
explained up to this point, even if they appear to be the same expression, are
evaluated differently. These differences are explained below, using the C global
variable “abc”.

Example
>d abc /*memory display from address of variable abc*/
0000100000010203.... ODOEOF

>d abc+10 /*memory display from address +10 of variable abc*/
0000101010203040.... DOEOFO . O@P.........

>? abc [*display value of variable abc

(int) 1 (0x1) (evaluates as C expression)*/

>? abc+10 [*display value of variable abc +10
(int) 11 (0xB) (evaluated as a C expression) */

As this example illustrates, the meaning of the description of “abc” or “abc +
10" is different as a normal expression (as in the case of the D command in the
above example) versus a C expression (as in the case of the “?” command above).
In the Inspect, Watch, VAL, and “?” commands, “abc” would be evaluated as a
C variable; in other commands, the variable “abc” would be evaluated as an ad-
dress.

Rules for Using Dialog Commands

7. Dialog Commands 107

m C variables

The variables and functions that can be used in C expressions are limited to
those that were declared in a source file compiled with the option that attaches
detailed debugging information. Registers and flags can be used as pseudo-vari-
ables. All register pseudo-variables and flag pseudo-variables are of the “un-
signed int” type.

Register pseudo-variables Flag pseudo-variables
DO ,, D3 z
AO,, A3 N
MDR C
PC \%
_SP _IM
_LIR _IE
_LAR
_PSW

m C variable scope

When writing or debugging a C program, it is necessary to be aware of the
scope (available range) of variables. For example, variables declared with
“extern” are valid in all program areas. In other words, their scope is the entire
program. On the other hand, automatic variables declared within a function are
valid only within that function. Therefore, the scope of such a variable is limited
to that function.

When a variable declared with “extern” and an automatic variable declared
within a function have the same name, within the function only the automatic
variable is valid, and the “extern” variable cannot be accessed. In addition, auto-
matic variables of functions not currently being used cannot be viewed.

In the C source code debugger, this type of processing is performed automati-
cally on the basis of the scope information derived from the debugging informa-
tion.

Rules for Using Dialog Commands

@ 108

m Constants

The use of constants is exactly the same as in C syntax. (The default base is
always base ten, regardless of the setting of the N command (base change com-

mand).)
Notation Base
number Decimal constant
Oxnumber Hexadecimal constant
OXnumber Hexadecimal constant
Onumber Octal constant

For example, 4096 (decimal), 0x1000 (hexadecimal), and 010000 (octal) all
represent the same value.

The C escape sequence listed below is supported for character constants.

C character Value Meaning
'¥a' Ox7 Bell
"¥b' 0x8 Backspace
"¥f' 0xC Form feed
¥n' OxA Line feed
¥r' 0xD Return
¥t 0x9 Horizontal tab
k% 0xB Vertical tab
Yy 0x5C ¥ (Yen) symbol
¥nnn' nnn Octal (8 bits)
¥xnn' nn Hexadecimal (8 bits)

Rules for Using Dialog Commands

7. Dialog Commands 109

m Operators

The same operators as those used in C are supported. However, operators
other than the “=" operator (substitution operation) cannot be used with floating
point decimals.

The priority ranking of the operators is indicated below.

Priority ranking Operator

(1) Function (n) Array [n] n.n n->n n++ n—-—

2) &n *n -n ~n In ++n —-n sizeof n

3) (cast)n

(4) n%n n/n n*n

(5) n+n n-n

6) n<<n n>>n

@) n>n n<n n>=n n<=n

(8) n==n n!=n

9 n&n

(10) n“n

(12) nin

(12) n&&n

13) iy

(14) nn?nn:nn

(15) n=n n*=n n/=n n%=n n+=n n-=n n<<=n nN>>=n n&=n
n"=n n|=n

(16) n, n

The number indicated in the left-hand column indicates the priority ranking of
the operators listed on the right. (The smaller the number, the higher the priority
ranking.) If adjacent operators have the same priority, the expression is evaluated
from left to right. An exception is the substitution operators (priority ranking
(15)), which are evaluated from right to left. The priority within an expression
can be altered through the use of parentheses.

Rules for Using Dialog Commands

@ 110

m Expressions with secondary effects

Substitution operators, such as ++, — —, and =, and function calls have second-
ary effects that change data, such as the contents of variables, in the user program
being debugged while processing for that particular operation is performed.
While there may be occasions where a substitution operator is used to intention-
ally change data, the majority of the time during debugging work it is more com-
mon to want to simply reference data rather than change it. Therefore, in order to
prevent data from being accidentally changed during the evaluation of an expres-
sion in an Inspect, Watch, or “?” command, the use of operators with secondary
effects is prohibited in the C source code debugger. Operators with secondary
effects can only be used in the VAL command.

¢

* When referencing data, use the “?” command or the Inspect com-
mand instead of the VAL command. The VAL command should
only be used when using an operator that has a secondary effect,
such as changing the value of data.

Function calls using the VAL command are even more dangerous.
It is possible that a global variable or static variable could be
changed or data in another data area could be changed by a pointer
during function processing. It is also possible that an infinite loop
could be created within such a function. If the user is unaware of
this, it might be impossible to resume execution.

Use caution when you use a function call with the VAL command.

Example

>? abc=1234

Cannot use operators with secondary effects.

>val abc=1234 [*substitutes 1234 in abc*/
(int) 1234 (0x4D2)

>val fnc=(1, 2, 3) [*fnc function call*/

(int) 10 (OxA)

Rules for Using Dialog Commands

7. Dialog Commands 111

Command Index

This is an alphabetized index
of the commands.

@ 112

Program Loading/Execution

The commands that are used to load user programs are the L and LP Dialog
commands; the commands that are used to execute user programs are the T, P, and
G Dialog commands.

L command, LP command
These commands load the program (EX format file) that is to be debugged into
memory.

RD command
This command loads either a Motorola S format file, an Intel HEX format file
or a binary format files into memory.

WR command
This command writes the contents of memory to a file in either Motorola S
format, Intel HEX format or binary format.

T command

When a source file is displayed in the Code window, this command step ex-
ecutes the file one line at a time. When disassembled code is displayed in the
Code window, this command step executes the code one instruction at a time.
Step execution continues within subroutines (functions). (Single-step execution)

P command

When a source file is displayed in the Code window, this command step ex-
ecutes the file one line at a time. When disassembled code is displayed in the
Code window, this command step executes the code one instruction at a time.
Subroutines (functions) are also executed as one step. (Function step execution)

G command
This command executes the user program.

RESET command
This command resets the microprocessor.

Program Loading/Execution

7. Dialog Commands 113

The screen is updated to reflect the changes in status caused by the execution
of each command. The position currently pointed to by the program counter is
highlighted in yellow on the Code window. The current register contents are
displayed in the Register window. The contents of the Watch window and the
Option window are also updated to reflect any changes in status.

Program Loading/Execution

@ 114
L/LP

Load executable file

L [<file name>]

LP [<file name>]

L [<file>]

L P [<file>]

These commands load an executable file (an EX format file) into memory
(either emulation memory, target memory, or internal instruction RAM). A pe-
riod (“.”) is displayed in the Command window while the file is being loaded; the
number symbol (“#”) is displayed while the debugging information is being pro-
cessed. Press the ESC key in order to interrupt a file load operation while it is in
progress. A message asking whether to abort or continue then appears. If “con-
tinue” is selected, the loading operation continues from where it was interrupted.

1. Loads an executable file.

If the file includes debugging information (symbol information, source line
information), the debugging information is automatically loaded into the debug-
ging information area. If the file does not include debugging information, a mes-
sage is displayed and only the executable file is loaded. If the debugging informa-
tion is loaded by the L command, all registered debugging information is erased
and the new debugging information is registered in its place.

2. The L command deletes all existing break event settings and watch
registrations, initializes the trace function, the time measurement func-
tion, and the profile function, and resets the user CPU (microproces-
sor).
If source line information is included in the file loaded by the L command, the
Code window changes to source code display.

The LP command loads only the specified executable code and data, and
resets the microprocessor.

file name that was specified for the last L or LP command is
loaded.

* Use the RD command when loading a Motorola S format file, an
Intel HEX format file or a binary format file.

* When the environment variable PANASRC is set after an execut-
able file has been loaded, the source files in the directory specified
by the environment variable are displayed. If PANASRC is not
set, the source files in the current directory are displayed.

G « If the <file name> specification is omitted, the file with the same
[|

[0 RD command and WR command]
Program Loading/Execution

7. Dialog Commands 115

I a D Read file into memory

RD <file name{.s|.HEX}>

RD <file name>,<address>

R D <file{.S|.HEX}> This command loads the specified data or program in either Motorola S
format or Intel HEX format.
If the file extension is “.S”, the file is treated as a Motorola S format file; if the
file extension is “.HEX”, the file is treated as an Intel HEX format file.

R D <file>,<address> This command loads the specified data or program at the specified ad-
dress in binary format.
Specify a file extension other than “S.” or “HEX.”.

G EX format file cannot be specified.
| |

Example

>rd sample.s

Read SAMPLE.S
80000000 - 80000FFF
Complete

>

[0 WR command and L command]

Program Loading/Execution

@ 116
W R Write to file

WR <file name>,<address S>,<address E>

This command writes the contents of memory from <address S> to <ad-
dress E> to a file.

The file name extension can be used to select either Motorola S format, Intel
HEX format, or binary format.

Extension File format
“.S” Motorola S format
“HEX" Intel HEX format
Other than “.S” or “.HEX" Binary format
G EX format file cannot be specified.
[|

Example

>wr sample.s,80000000,80000fff
Write SAMPLE.S at 80000000-80000FFF
>

[0 L command and RD command]

Program Loading/Execution

T

7. Dialog Commands 117

Single-step execution of user program

T [<count>]

The T command executes one step at a time the number of steps specified
by <count> from the address currently pointed to by the program counter.
The <count> specification can be made either in decimal or hexadecimal
depending on the base. The difference between the P command and the T
command is that with the T command called functions (subroutines) are
also executed internally one step at a time.

[O N command]

The maximum <count> specification is 65,535. (If <count> is omitted, “1” is
assumed.)

When C source code is displayed in the Code window, one line of source code
is executed as one step; when disassembled code is displayed in the Code win-
dow, one instruction is executed as one step.

If another function is called from the current function when executing lines
of source code one at a time, single-step execution continues within that
function.

Although nothing is displayed in the Command window during single-step
execution of source code, the contents of the registers are displayed in the Com-
mand window each time a single step is executed during single-step execution of
individual instructions.

G * Single-step execution is not possible when the microprocessor is

= in STOP, HALT, or SLEEP mode. To perform single-step execu-
tion, it is necessary to first overwrite the microprocessor’'s CPUM
register.

» The contents of trace memory are erased by single-step execu

Program Loading/Execution

@ 118

Example

>T

— IM=0 S=0 D0 =0X00000000 D1 =0X00000000 D2 =0X00000000 D3 =0X00000000
PSW=0X0000 AO =0X00000000 A1 =0X00000000 A2 =0X00000000 A3 =0X00000000

PC =0X80000000 MDR=0X00000000 LIR=0X40000000 LAR=0X00000000 SP =0X00000100

_RESET: JMP 0X80000006

>T

— IM=0 S=0 D0 =0X00000000 D1 =0X00000000 D2 =0X00000000 D3 =0X00000000
PSW=0X0000 AO =0X00000000 A1 =0X00000000 A2 =0X00000000 A3 =0X00000000

PC =0X80000006 MDR=0X00000000 LIR=0X80000000 LAR=0X00000000 SP =0X00000100

MOV 0X100,A0
>T
— IM=0 S=0 D0 =0X00000000 D1 =0X00000000 D2 =0X00000000 D3 =0X00000000
PSW=0X0000 AO =0X00000100 A1 =0X00000000 A2 =0X00000000 A3 =0X00000000
PC =0X80000009 MDR=0X00000000 LIR=0X80000006 LAR=0X00000000 SP =0X00000100

MOV AO,SP
>T5
—— IM=0 S=0 D0 =0X00000000 D1 =0X00000000 D2 =0X00000000 D3 =0X00000000
PSW=0X0000 A0 =0X00000100 A1 =0X00000000 A2 =0X00000000 A3 =0X00000000
PC =0X8000000B MDR=0X00000000 LIR=0X80000009 LAR=0X00000000 SP =0X00000100

MOV 0XO0 _I ,A0
— IM=0 S=0 D0 =0X00000000 D1 =0X00000000 D2 =0X00000000 D3 =0X00000000
PSW=0X0000 A0 =0X00000000 A1 =0X00000000 A2 =0X00000000 A3 =0X00000000
PC =0X8000000D MDR=0X00000000 LIR=0X8000000B LAR=0X00000000 SP =0X00000100

MOV 0X2000,D1
— IM=0 S=0 D0 =0X00000000 D1 =0X00002000 D2 =0X00000000 D3 =0X00000000
PSW=0X0000 A0 =0X00000000 A1 =0X00000000 A2 =0X00000000 A3 =0X00000000
PC =0X80000010 MDR=0X00000000 LIR=0X8000000D LAR=0X00000000 SP =0X00000100

SuB DO,DO
—Z IM=0 S=0 DO =0X00000000 D1 =0X00002000 D2 =0X00000000 D3 =0X00000000
PSW=0X0001 A0 =0X00000000 A1 =0X00000000 A2 =0X00000000 A3 =0X00000000
PC =0X80000012 MDR=0X00000000 LIR=0X80000010 LAR=0X00000000 SP =0X00000100

MOV DO,(A0)
——ZIM=0S=0 DO =0X00000000 D1 =0X00002000 D2 =0X00000000 D3 =0X00000000
PSW=0X0001 A0 =0X00000000 A1 =0X00000000 A2 =0X00000000 A3 =0X00000000
PC =0X80000013 MDR=0X00000000 LIR=0X80000012 LAR=0X00000000 SP =0X00000100

ADD 0X4 _TEST ,A0

Program Loading/Execution

P

7. Dialog Commands 119

Function step execution of user program

P [<count>]

The P command executes one step at a time the number of steps speci-
fied by <count> from the address currently pointed to by the program
counter. The <count> specification can be made either in decimal or
hexadecimal depending on the base. The difference between the P com-
mand and the T command is that with the P command called functions are
executed as one step.

[O N command]

The maximum <count> specification is 65,535. (If <count> is omitted, “1” is

assumed.)

When C source code is displayed in the Code window, one line of source code
is executed as one step; when disassembled code is displayed in the Code win-

dow, one instruction is executed as one step.

When executing lines of source code one at a time, function steps within
the current function are executed. (When a function is called from the
current function, that entire function is executed normally until control re-
turns from that function.) Therefore, a function called from the current
function is executed as if it were a single instruction line. When executing
instructions one at a time, subroutine calls are executed as if they were a
single instruction.

Although nothing is displayed in the Command window during function step
execution at the source level, the contents of the registers are displayed in the
Command window each time a single step is executed during function step execu-

tion of individual instructions.

« Single-step execution is not possible when the microprocesso
‘_ in STOP, HALT, or SLEEP mode. To perform single-step exec

tion, it is necessary to first overwrite the microprocessor's CPUM

register.

» The contents of trace memory are erased by single-step execution.

Program Loading/Execution

@ 120

Example

>p
—— IM=0 S=0 DO =0X00000000 D1 =0X00000000 D2 =0X00000000 D3 =0X00000000
PSW=0X0000 A0 =0X00000000 A1 =0X00000000 A2 =0X00000000 A3 =0X00000000

PC =0X80000000 MDR=0X00000000 LIR=0X40000000 LAR=0X00000000 SP =0X00000100

_RESET: JMP 0X80000006

>p

—— IM=0 S=0 D0 =0X00000000 D1 =0X00000000 D2 =0X00000000 D3 =0X00000000
PSW=0X0000 A0 =0X00000000 A1 =0X00000000 A2 =0X00000000 A3 =0X00000000

PC =0X80000006 MDR=0X00000000 LIR=0X80000000 LAR=0X00000000 SP =0X00000100

MOV 0X100,A0
>p
—— IM=0 S=0 D0 =0X00000000 D1 =0X00000000 D2 =0X00000000 D3 =0X00000000
PSW=0X0000 A0 =0X00000100 A1 =0X00000000 A2 =0X00000000 A3 =0X00000000
PC =0X80000009 MDR=0X00000000 LIR=0X80000006 LAR=0X00000000 SP =0X00000100

MOV AO,SP
>P 5
—— IM=0 S=0 D0 =0X00000000 D1 =0X00000000 D2 =0X00000000 D3 =0X00000000
PSW=0X0000 A0 =0X00000100 A1 =0X00000000 A2 =0X00000000 A3 =0X00000000
PC =0X8000000B MDR=0X00000000 LIR=0X80000009 LAR=0X00000000 SP =0X00000100

MOV ~ 0X0 | ,A0
—— IM=0 S=0 DO =0X00000000 D1 =0X00000000 D2 =0X00000000 D3 =0X00000000
PSW=0X0000 A0 =0X00000000 A1l =0X00000000 A2 =0X00000000 A3 =0X00000000
PC =0X8000000D MDR=0X00000000 LIR=0X8000000B LAR=0X00000000 SP =0X00000100

MOV 0X2000,D1
—— IM=0 S=0 D0 =0X00000000 D1 =0X00002000 D2 =0X00000000 D3 =0X00000000
PSW=0X0000 AO =0X00000000 A1 =0X00000000 A2 =0X00000000 A3 =0X00000000
PC =0X80000010 MDR=0X00000000 LIR=0X8000000D LAR=0X00000000 SP =0X00000100

SUB DO,DO
——Z IM=0 S=0 DO =0X00000000 D1 =0X00002000 D2 =0X00000000 D3 =0X00000000
PSW=0X0001 AO0 =0X00000000 A1 =0X00000000 A2 =0X00000000 A3 =0X00000000
PC =0X80000012 MDR=0X00000000 LIR=0X80000010 LAR=0X00000000 SP =0X00000100

MOV DO,(A0)
——Z IM=0 S=0 DO =0X00000000 D1 =0X00002000 D2 =0X00000000 D3 =0X00000000
PSW=0X0001 A0 =0X00000000 A1 =0X00000000 A2 =0X00000000 A3 =0X00000000
PC =0X80000013 MDR=0X00000000 LIR=0X80000012 LAR=0X00000000 SP =0X00000100

ADD 0X4 _TEST ,A0

Program Loading/Execution

G

7. Dialog Commands 121

Execute user program

G@w

G [=<address S>][,<address B>][,/W]

G [=<address S>]
[,<address B>][,/W]

G [<address B>][,/W]

G @[/W]

The G command is used to execute user programs. With the G command, one
temporary software break (<address B>) can be specified. Any break points
specified by the BP command are also valid. The ESC key can also be used to

interrupt (forcibly break) execution of the user program at any time.

The G command initiates execution of the user program from the address
specified by <address S> (execution start address), and stops at the ad-
dress specified by <address B>. <Address B> is a temporary software
break.

This command initiates execution of the user program from the address
specified by the current program counter value and stops at the address
specified by <address B>.

This format is valid only when the C source code debugger was started up
in C debugging mode. When the program to be debugged is executed by
the G@ command, execution stops once control returns from the function
that is currently being executed. This command has the same function as
the CTRL + F5 (Return) Window command.

W Executes the program, with on-the-fly functions prohib-
ited. In other words, once the user program has begun
executing, no other commands will be accepted until ex-
ecution stops. The screen is also not updated. This op-
tion is useful when starting the next command after user

program execution stopped within a macro.

Reference: «While a program is executing, the message “Target executing” is
displayed at the division between the Command window and the

Code window.

* The C source code debugger has a built-in time measurement
function that measures the amount of time that was needed for

user program execution.

[O TI command]

Program Loading/Execution

@ 122

User program execution is not possible when the microprocessor is
‘ in STOP, HALT, or SLEEP mode. In this case, either execute the
RESET command or else use the E command to overwrite the
microprocessor’'s CPUM register and then execute the user pro-
gram.

Example

>RESET

>G CNT60

>

——Z IM=0 S=0 D0 =0X00000000 D1 =0X00000000 D2 =0X00000000 D3 =0X00000000
PSW=0X0001 A0 =0X00002000 A1 =0X00000000 A2 =0X00000000 A3 =0X00000000

PC =0X80000056 MDR=0X80000053 LIR=0X40000000 LAR=0X00000000 SP =0X000000EC

_CNT60: MOV (0XOC _SEC),D0

>

>G@

>

>RESET

>G =MAIN,CNT60

>

——Z IM=0 S=0 DO =0X00000000 D1 =0X00000000 D2 =0X00000000 D3 =0X00000000
PSW=0X0001 A0 =0X00000000 A1 =0X00000000 A2 =0X00000000 A3 =0X00000000

PC =0X80000056 MDR=0X80000053 LIR=0X40000000 LAR=0X00000000 SP =0X000000F0

_CNT60: MOV (0XOC _SEC),DO0
>

[O BP command, BC command, BD command, BE command, F5 (Go),
F7 (Come) key (Window command), and SM command]

Program Loading/Execution

RESET

7. Dialog Commands 123

On-the-fly
[INFLUENCES] function

Reset user microprocessor

RESET

This command makes the microprocessor’s reset input active.
The program counter (PC register) is set to address 0x40000000.
The value of all of the CPU registers is undefined when a reset is executed.

However, with this debugger, the value set by the Installer is set in the stack

pointer (SP register).

[0 “MN10300 Series PanaX Series Installation Manual,”
Hardware volume, section 5, “Installer Startup and Settings.”]
This command is used to execute a program from the start, or if the program
has hung and the debugger is not able to accept commands.

Program Loading/Execution

@ 124

Event-related Commands

Event functions set triggers that initiate hardware breaks, tracing, time mea-
surement functions, etc. The in-circuit emulator monitors the occurrence of
events without stopping execution of the user program.

There are two types of events:

(1) Execution address events

An event is generated by the address of the instruction that was executed.
Conditions including a range of addresses and a number of passes through an
address can be specified. Up to four events can be set.

(2) Data events

An event is generated by a data access. Conditions including read, write, ad-
dress range, data, access width, match/no match, and number of accesses can be
specified. Up to four events can be set in the microprocessor’s internal data RAM
space and in the external memory space, respectively.

No more than a combined total of eight execution address event and data event
points can be set, however.

An event that is a condition for the break function is called a “break event,” an
event that is a condition for starting or stopping tracing is called a “trace event,”
and an event that is a condition for starting or stopping time measurement is called
a “time measurement event.” The respective commands used for setting these
events are as follows:

Break events: BP command
Trace events: EV command

Time measurement events: EV command

The BC or EC command is used to delete events.

struction ROM/RAM space or special register space and areas re-
served for the system. However, there is still a limit of four events
on the combined total number of events that can be set in these
areas and internal data RAM.

‘ Data events can even be set for the microprocessor’s internal in-
[]

Event-Related Commands

7. Dialog Commands 125

The table below indicates which types of events can be used with memory ac-
cesses by the microprocessor, internal DMA accesses and external DMA accesses.
Accesses marked with an “X” cannot be used to generate an event.

Microprocessor |Internal DMA | External DMA
memory access
Execution address event O O O
Microprocessor’s internal
data RAM space o O O
«= | Microprocessor’s internal
S . . O 0 O
z special register space
8| Microprocessor’s internal
8l) O O g
instruction ROM/RAM space
External memory space O O O
System reserved space O O O

The break function halts user program execution.
The different types of breaks are described below.

(1) Software breaks

These are implemented by inserting Pl codes (0xff) into user programs.
Therefore, these types of breaks can only be set in a program area, and cannot be
set in a data area. When this type of break is set in an external memory space, the
address that is set must either be in memory within the emulator or in RAM in the
user target; this type of break cannot be set in ROM.

Software breaks stop execution before the instruction in the address that was
set is executed. A combined total of 32 software breaks and events can be set. (BP
command)

(2) Hardware breaks

The execution address and data accesses are monitored by the hardware, and
when the conditions are met, a break is generated externally for the microproces-
sor. The features of software breaks and hardware breaks are shown below.

Software break Hardware break

Settable conditions | Emulation memory or Instruction address break
external RAM program area ¢ Possible for both ROM and RAM
» Count specification
Data break

« Address, data, bit mask
* Read, write, access
 Count specification
Others

* AND break
 Sequential break

* Trace full break

Stopping position Before instruction execution After execution of several instruc
tions after event conditions are net

Number that can Up to 32, including hardware Up to four execution addres

be set breaks breaks and four data breaks

Implementation Inserting Pl codes in the Monitoring of status by external
program hardware

Event-Related Commands

@ 126

(3) AND break

This is a type of hardware break.

A break occurs when all of the specified event conditions are satisfied simul-
taneously. Only one set of AND break conditions can be specified. (BPA com-
mand)

(4) Sequential break

This is a type of hardware break.

A break occurs when all of the specified event conditions are satisfied in the
sequence in which they were specified. Only one set of sequential break condi-
tions can be specified. (BPS command)

(5) Trace full break
This is a type of hardware break.
A break occurs when the trace memory is filled with data. (TM command)

In addition, a forced break can be executed, forcibly stopping user program
execution, by pressing the ESC key on the host computer.

EV command
Sets/displays events.

BP command
Sets/displays hardware breaks and software breaks.

BPA command
Sets AND break.

BPS command
Sets sequential break.

BC/EC command
Cancels events, hardware breaks, and software breaks.

BD command
Temporarily disables events, hardware breaks and software breaks.

BE command
Enables events, hardware breaks and software breaks.

Event-Related Commands

7. Dialog Commands 127

On-the-fly
(NO INFLUENCES] function

EV Set/display event

EV <address S>["<address E>][,<status>][,<data>[,{/B|/W|/D}] [/N]][,/<count>]
EV/Cistp
EV

EV <address S>[,<~ This command sets an event.
The following table lists the options that can be specified for each event type.

Event type Execution address event Data event
<address S> ° °
<address E> O 0
<status> EX RW/R/W
<data> O
/B,/W,/D 0

/N U

(e : Required[d: may be omitted, blank: may not be specified)

<address S> Specify a memory address or symbol. When specifying a
memory range, specify the start address versus the end address in
<address E>.

<address E> Specify a memory address or symbol. Specify the end address
versus the start address in <address S>.

<status> EX: Execution address event
RW: Data event in read or write operation
R: Data event in read operation
W: Data event in write operation

Omitted: “RW” (data event in read or write operation) is assumed
if <data> is specified, and “EX” (execution address
event) is assumed if <data> is not specified.

Event-Related Commands

@ 128

E V /C {<list>]*}

<data>

Specify the data for a data event. If omitted, the data is ignored
and only the address becomes the event target. The <data> can
be specified in binary format if the “@” symbol is added at the
start of the data. If the “@” symbol is omitted, hexadecimal
specification is assumed. In addition, as the examples show be-
low, it is also possible to include masked bit specifications.
Specify “X” to indicate “don’t care” for a bit. The high-order
bits are also “don’t care.”

@10xX The following values satisfy the condition:
@1000, @1001, @1010, and @1011.

C5XX Any value from C500 to C5FF satisfies the condi-
tion.

(1

Symbols can not be used in the <data> specification.

/B, IW, /D

/N

/<count>

Specify the data access width for a data event: 8-bit data (/B), 16-
bit data (/W), or 32-bit data (/D). If omitted, the access width
mode is “no specific size/don’t care.”

Specifies that the event condition is met when the data accessed
in the data event did not match the value specified by <data>. If
this specification is omitted, the event condition is met when the
data does match.

In the case of an execution address event, specify the pass count.
In the case of a data event, specify the access count. The event
occurs after the event condition is met the specified number of
times. The maximum setting is 256; if <count> is omitted, 1 is
assumed. Regardless of the setting of the N command, the base
of the count specification is decimal, unless 0x is added to the
value, which makes the base of the count specification hexadeci-
mal.

When an event specified in the <list> occurs, program execution is not
halted; instead, all event flags are cleared, the pass count and access
count counters are initialized to “0”, and the counts are restarted.

This setting is not allowed for AND breaks, sequential breaks, and software
breaks. When an event whose number is specified in the <list> occurs, all events

are initialized.

Event-Related Commands

7. Dialog Commands 129

EV/IC 1,2,70

In the above example, if any one of events 1, 2, or 7 occur, all event
initialized.

Reference: The base used in <list> is assumed to be decimal regardless of the N
command specification. If “Ox” is added, the base is hexadecimal.

EV This command displays the events that have been set.
Example

>EV MAIN

>EV CNT60,/3

>EV SEC,5

>EV

NO. SADR - EADR ST.DATA/SYMBOL SZ CNT BRK TRC DLY TS TE CLR

E 1 80000039 EX _Omain 1

E 2 80000058 EX _cnt60 3

E 3 0000080C RW 05 -1

>tm 3

>ti max, /s1, /e2

>ev

NO. Sadr - Eadr st. Data/Symbol SZ CNT BRK TRC DLY TS TE CLR

E 1 80000039 EX _main 1 *

E 2 80000058 EX _cnt60 3 *

E 3 0000080C RW 05 -1 *

>

Reference: «“No.” is the number assigned to the event that was set. This number is
used by the BC/EC, BD, BE, BPA, BPS, TM, and TI commands for vari-
ous settings.

* The “E” or “D” indicates whether that event is currently enabled (E) or
disabled (D).
» The meanings of the codes in the “st.” column are explained below:
EX: Execution address event
RW: Data event in read or write operation
RD: Data event in read operation
WR: Data event in write operation
» The "sz" column means the accessive range for data event:
B: 8-bit data
W: 16-bit data
D: 32-bit data
- size don't care
« * (asterisk): Indicates that the event in question was assigned to one of the
following functions:
BRK: Break[(J BP command]
TRC: Trace with event conditiorf§l TM command]
DLY: Delayed trigger trace evefil TM command]
TS: Time measurement start ev@iit TI command]
TE: Time measurement end evént TI command]
CLR: Event cleafd EV/C command]

EVent-Related Commanas

@ 130

BP

Set/di
Set/di

splay sofware break : [NO INFLUENCES] On-the-fly
splay sotware break : [INFLUENCES] function

Set/display break event

B P<address ss[<address E][,<status>][,<data>[,{/B/W}/D}] [/N]I[./<count>][/C<command>]

BP

B P <address S>[,<~

This command sets an internal event, and that event is set in a hardware

break.

The following table lists the options that can be specified for each break type.

Break type Execution address break Data break $oftware break
<address S>) ° °
<address E> O O

<status> EX RW/R/W

<data> o

/B,/W,/D 0

/N O

/<count> ad O

/C<command> O O O

<address S>

<address E>

<status>

(‘e :required,d: may be omitted, blank: may not be specified)

Specify a memory address or symbol. When specifying a
memory range, specify the start address versus the end address in
<address E>.

Specify a memory address or symbol. Specify the end address
versus the start address in <address S>.

EX: Execution address break

RW: Data break in read or write operation
R: Data break in read operation

W: Data break in write operation

Omitted: “RW” is assumed if <data> is specified, “EX” is as-
sumed if <data> is not specified and <address E> or
<count> is specified, and a software break is assumed
in all other cases.

Event-Related Commands

7. Dialog Commands 131

<data> Specify the data for a data break. If omitted, the data is ignored
and only the address becomes the break target. The <data> can
be specified in binary format if the “@” symbol is added at the
start of the data. If the “@” symbol is omitted, hexadecimal
specification is assumed. In addition, as the examples show be-
low, it is also possible to include masked bit specifications.
Specify “X” to indicate “don’t care” for a bit. The high-order bits
are also “don’t care.”

@10xX The following values satisfy the condition:
@1000, @1001, @1010, and @1011.

C5XX Any value from C500 to C5FF satisfies the condi-
tion.

G Symbols can not be used in the <data> specification.
| |

/B, /W, /D Specify the data access width for a data break: 8-bit data (/B),
16-bit data (/W), or 32-bit data (/D). If omitted, the access width
mode is “no specific size/don’t care.”

/N Specifies that the break condition is met when the data accessed
in the data break did not match the value specified by <data>. If
this specification is omitted, the break condition is met when the
data does match.

/<count> In the case of an execution address break, specify the pass count.
In the case of a data break, specify the access count. The break
occurs after the break condition is met the specified number of
times. The maximum setting is 256; if <count> is omitted, 1 is
assumed. Regardless of the setting of the N command, the base
of the count specification is decimal, unless Ox is added to the
value, which makes the base of the count specification hexadeci-
mal.

/C<command> A C source code debugger command or macro of up to 40 char-
acters can be specified for <command>. If this specification is
made, the specified <command> is automatically executed after
the break. If execution was initiated by using the F5 key, how-
ever, the <command> is not executed after the break.

Event-Related Commands

@ 132

B P This command displays the breaks that have been set.
Example

>bp main

>bp sec,w,5

>bp 100,rw

>bp

No. Sadr - Eadr st. Data/Symbol Sz Cnt Command
E 1 80000039 SF _Omain 1

E 2 0000080C WR 05 -1

E 3 00000100 RW -1

>bp cnt60,ex

>bp

No. Sadr - Eadr st. Data/Symbol Sz Cnt Command
E 1 80000039 SF _Omain 1

E 2 0000080C WR 05 -1

E 3 00000100 RW -1

E 4 80000058 EX _cnt60 1

>ev

No. Sadr - Eadr st. Data/Symbol Sz CntBRK TRCDLY TS TE CLR
E 2 0000080C WR 05 -1

E 3 00000100 RW -1
E 4 80000058 EX _Ocnt60 1+
>

Reference: ¢ The “No.” column indicates the number applied to the break event. This
number is used in the BC/EC, BD, and BE commands to specify the
break even to be cancelled, disabled, or enabled.

» The “E” or “D” indication indicates whether the break event is currently
enabled (E) or disabled (D).
» The meanings of the codes in the “st.” column are explained below:
SF: Software break
EX: Execution address break
RW:Data break in read or write operation
RD: Data break in read operation
WR:Data break in write operation
» The "sz" column means the accessive range for data event:

8-bit data

16-bit data

32-bit data

size don't care

osw

[0 BC/EC command, BD command, BE command, G command,
L command, or LP command]

Event-Related Commands

BPA

7. Dialog Commands 133

On-the-fly
function

[NO INFLUENCES

Set AND break

BPA <list>

This command sets an AND break.

B P A <list> The hardware break events specified in <list> become AND conditions.
Once all of the conditions are satisfied, a break occurs.

Specify up to eight break event numbers in <list>, delimited by commas.

If an AND break is set while a program is running, it becomes valid immedi-
ately. To cancel an AND break, execute the BD or BC/EC command on one of
the break events set as part of the AND break.

Example
>bp
No. Sadr - Eadr st. Data/Symbol Sz Cnt Command
E 1 80000039 SF _Omain 1
E 2 00000100 RW @0xxxx100 -1
E 3 00000800 RW _i -1
E 4 80000058 EX _Ocnt60 1
>bpa 2,3
Break event Nos. >bp
2 and 3 form No. Sadr - Eadr st Data/Symbol Sz Cnt Command
an AND break. E 1 80000039 SF _Omain 1
- »| E 2(&) 00000100 RW @0xxxx100 1
.| E 3(&) 00000800 RW _i -1
E 4 80000058 EX _0Ocnt60 1
>
Reference: The base used in <list> is assumed to be decimal regardless of the N

command specification. If “Ox” is added, the base is hexadecimal.

Event-Related Commands

@ 134
BPS

On-the-fly
(NO INFLUENCES] function

Set sequential break

BPS <list>

B P S<list>

This command sets a sequential break.

The hardware break events specified in <list> are set as a sequential
break.

Multiple break events can be specified in <list>, up to a maximum of eight.
A sequential break is generated if the break events occur in the specified se-
qguence. A break event that is used in an AND break can also be used in a sequen-
tial break. To cancel a sequential break, execute the BD or BC/EC command on
one of the break events set as part of the sequential break.

If a sequential break is set while the user program is being executed

G (on-the-fly) , all events are temporarily disabled and then are en-
abled. (There is an interval during which the events are temporarily
ignored.)

Event-Related Commands

Example

Break event Nos.
3,and 4 form a
sequential break.

E—

I

L

7. Dialog Commands 135

>bp

No. Sadr -
E 1 80000039
E 2 00000100
E 3 00000800
E 4 80000058
>bps 2,3,4

>bp

No. Sadr -
E 1 80000039

E 2 (1) 00000100
E_3 (2) 00000800

E 4 (3) 80000058
>pd*

>be*
>bp

No. Sadr -
E 1 80000039
E 2 00000100
E 3 00000800
E 4 80000058

>

Eadr st. Data/Symbol

Sz Cnt Command

SF _Omain 1
RW @0xxxx100 -1
RW _i -1

EX _0cnt60 1

Eadr st. Data/Symbol
SF _Omain

Sz Cnt Command
1

RW @0xxxx100 -1

RW _i
EX _Ocnt60

Eadr st. Data/Symbol
SF _Omain
RW @0xxxx100
RW _i
EX _0Ocnt60

-1

Sz Cnt Command
1
-1
-1

Reference: The base used in <list> is assumed to be decimal regardless of the N
command specification. If “Ox” is added, the base is hexadecimal.

Event-Related Commands

@ 136
BC/EC

Hardware break: [NO INFLUENCES] On-the-fly
Software break: { INFLUENCES) function

Cancel break event

BC st
EC «istp

Example

These commands cancel software break/hardware break events that were
set by the EV command and BP command.

The BC command can be used to cancel software breaks, and hardware
events/breaks. The EC command can only be used to cancel hardware events/
breaks. If <list> is specified, the break events with the specified numbers are
cancelled. If “*"is specified, all break events that were set are cancelled.

BC 1,2,70

In the above example, break events 1, 2, and 7 are cancelled.

BC * [

In the above example, all break events are cancelled.

If a cancelled event is used in an AND break, a sequential break, as a trace
event, or as a time measurement event, these functions are also cancelled.

>BP

NO. SADR
E 1 80000029
E 2 00000100
E 3 00000000
E 4 80000056
>BC 1,4
>BP

NO. SADR
E 2 00000100
E 3 00000000
>BC 2
>BP

NO. SADR
E 3 00000000
>

EADR ST. DATA/SYMBOL CNT COMMAND
SF _MAIN 1
RW @O0XXXX100 1
RW | 1
EX _CNT60 1

EADR ST. DATA/SYMBOL CNT COMMAND
RW @O0XXXX100 1
RW | 1

EADR ST. DATA/SYMBOL CNT COMMAND
RwW _| 1

Reference: The base used in <list> is assumed to be decimal regardless of the N
command specification. If “Ox” is added, the base is hexadecimal.

[0 EV command, BP command, BD command, and BE command]

Event-Related Commands

7. Dialog Commands 137

Hardware break{NO INFLUENCES | On-the-fly
Software break:[INFLUENCES] function E

B D Temporarily disable break event

BD st

This command temporarily disables software break/hardware break
events that were set by the EV command and BP command.

If <list> is specified, the break events with the specified numbers are disabled.
If “*” is specified, all break events that were set are disabled.

BD 1,2,70

In the above example, break events 1, 2, and 7 are temporarily disabled.

BD * O

In the above example, all break events are temporarily disabled.

If a disabled event is used in an AND break, a sequential break, as a trace
event, or as a time measurement event, these functions are also cancelled.

Even if a break event disabled by the BE command is subsequently enabled, these
break events remain cancelled.

Event-Related Commands

@ 138

Example
>bp
No. Sadr - Eadr st. Data/Symbol Sz Cnt Command
E 1 80000039 SF _Omain 1
E 2 00000100 RW @0xxxx100 -1
E 3 00000000 RW 05 -1
E 4 80000058 EX _0cnt60 1
>pd 2,3
>bp
No. Sadr - Eadr st. Data/Symbol Sz Cnt Command
E 1 80000039 SF _Omain 1
D 2 00000100 RW @0xxxx100 -1
D 3 00000000 RW 05 -1
E 4 80000058 EX _0cnt60 1
>bd *
>bp
No. Sadr - Eadr st. Data/Symbol Sz Cnt Command
D 1 80000039 SF _Omain 1
D 2 00000100 RW @0xxxx100 -1
D 3 00000000 RW 05 -1
D 4 80000058 EX _0cnt60 1
>

Reference: The base used in <list> is assumed to be decimal regardless of the N
command specification. If “Ox” is added, the base is hexadecimal.

[0 EV command, BP command, BC/EC command, and BE command]

Event-Related Commands

7. Dialog Commands 139

Hardware break: [NO |NFLUENCES] On-the-fly
Software break: (_INFLUENCES) function E

B E Enable break event

BE «istp

This command enables software break/hardware break events that were
temporarily disabled by the BD command.

If <list> is specified, the break events with the specified numbers are enabled.
If “*” is specified, all break events that were set are enabled.

BE 1,2,70

In the above example, break events 1, 2, and 7 are enabled.

BE * [

In the above example, all break events are enabled.

Event-Related Commands

@ 140

Example
>bp
No. Sadr - Eadr st. Data/Symbol Sz Cnt Command
D 1 80000039 SF _Omain 1
D 2 00000100 RW @0xxxx100 -1
D 3 00000000 RW 05 -1
D 4 80000058 EX _Ocnt60 1
>be 1,3
>bp
No. Sadr - Eadr st. Data/Symbol Sz Cnt Command
E 1 80000039 SF _Omain 1
D 2 00000100 RW @0xxxx100 -1
E 3 00000000 RW 05 -1
D 4 80000058 EX _Ocnt60 1
>pe *
>bp
No. Sadr - Eadr st. Data/Symbol Sz Cnt Command
E 1 80000039 SF _Omain 1
E 2 00000100 RW @0xxxx100 -1
E 3 00000000 RW 05 -1
E 4 80000058 EX _Ocnt60 1
>

Reference: The base used in <list> is assumed to be decimal regardless of the N
command specification. If “0Ox” is added, the base is hexadecimal.

[0 EV command, BP command, BC/EC command, and BD command]

Event-Related Commands

7. Dialog Commands 141

Other Hardware-related Commands

TM Command
Sets and displays trace mode.

TG command
Starts tracing.

TS command
Stops tracing.

TD command, TDU command
Displays trace information.

TDW command
Displays trace information in a window format.

Tl command
Sets and displays the timer.

TRIG command
Sets and displays the trigger.

MAP command (EX command)
Assigns memory.

Other Hardware-related Commands

@ 142
™

On-the-fly
(NOINFLUENCES] function

Set/display trace mode

TM/F
™

TM [<mode>]{/BI/C)/S|/T[<count>],<event numbers}]

The trace function stores a record of the user program execution status in trace

memory, allowing the program execution status to be analyzed later. Execution

addresses, data addresses, data values, and information on the bus status can be

stored for up to 16K steps.

TM [<mode>][{/B|/C~ This command specifies the trace mode. The mode specification items in-

clude the bus specification, the trace storage conditions, and the trace stopping

conditions; these items can all be specified simultaneously, delimited by commas.
If a specification is omitted, the default value for that item is assumed.

Bus specification

INT

EXT

Select one of the following:

Internal RAM bus (default)

In internal RAM bus tracing, accesses to the
microprocessor’s internal RAM and special registers
and to external memory (excluding internal DMA ac-
cesses) can be traced in conjunction with the actual in-
struction operation timing.

Extended RAM bus

In extended RAM bus tracing, only accesses to the
microprocessor’s external memory (including internal
DMA accesses) can be traced in conjunction with the
external bus operation timing. In the MN10300 Se-
ries, because the external bus is accessed via the
microprocessor’s store buffer, operations are per-
formed more slowly than the instruction operation
timing.

Trace storage condition Select one of the following:

ALL

Normal trace mode (default)
All cycles executed by the microprocessor are stored in
trace memory. Tracing of up to 16K steps is possible.

Other Hardware-related Commands

7. Dialog Commands 143

JMP Branch trace mode
Only branch instructions are stored in trace memory;
compensation for the intervals between branch instruc-
tions is made by the software, making it possible to ap-
pear to trace for a longer time than normal tracing. How-
ever, after starting the trace, the trace display does not
appear until the first branch instruction appears.

<event number> Trace mode with event condition
In tracing with an event condition, tracing is performed
only while the event condition specified by <event num-
ber> is satisfied.

Trace stop condition Select one of the following.

/B Trace full break mode
Tracing stops and user program execution also stops
(breaks) when trace memory becomes full.

/IC Trace continue mode (default)
Even if the trace memory becomes full, tracing contin-
ues until the user program stops. The last 16K of steps
executed before the user program stopped then remain as
the trace data.

IS Trace full stop mode
Tracing is performed from the start (or resumption) of
user program execution until the trace memory becomes
full (16K steps). When the trace memory becomes full,
tracing stops, but the user program continues.

/T[<count>],<event number>

Delayed trigger trace mode

Once the event specified by <event number> occurs,

tracing continues for the number of cycles specified by

<count>, after which tracing stops. This mode makes it

possible to monitor the execution status of a program

before and after the occurrence of an event. <count> can
be specified over a range from 257 to 16,384. If omitted,

“257" is assumed for <count>. <event number> cannot

be omitted.

Other Hardware-related Commands

@ 144

TM/F

This command sets the trace mode to default mode:

Bus selection:

Internal RAM bus

Trace storage condition: Normal trace mode
Trace stop condition: Trace continue mode

This command displays the trace mode that have been set.

(1

If a trace event is cancelled or disabled, the emulator stops tracing
and trace mode is set to the default mode.

The table below indicates which modes can be used with memory accesses by

the microprocessor, internal DMA accesses, and external DMA accesses.

A “X” indicates that the space in question cannot be accessed through that

type of access in that mode.

Microprocessor
memory access

Internal DMA

External DMA

Microprocessor’s internal

data RAM space O . -
B |Microprocessor’s internal
) . . O g ad
£ |special register space
|_
Z [Microprocessor’s internal
instruction ROM/RAM space O a O
External memory space O g g
Microprocessor’s internal A
data RAM space - -
S Microprocessor’s internal
9 . .] A]
£ |special register space
|_
7S | Microprocessor's internal
instruction ROM/RAM space o A o
External memory space O O O

(A: Possible only with a DMA access with an external memory space)

Other Hardware-related Commands

Example

7. Dialog Commands 145

>tm

Trigger = OFF

Trace Full = Continue
Trace Cycle = ALL & INT
Sample Event = NONE
>ev main~cnt60,ex

>tm 1
>ev
No. Sadr - Eadr st.Data/Symbol Sz CntBRKTRCDLY TS TE CLR
E 1 80000039 ~ 80000058 EX _Omain 1 =
>tm
Trigger = OFF
Trace Full = Continue

Sample Event =1
Trace Cycle = INT
>ev sec,w,5

>tm /t1000,2

>ev

No. Sadr - Eadr st. Data/Symbol
E 1 80000039 ~ 80000058 EX _Omain 1
WR 05 -1 *

E 2 0000080C
>tm
Trigger
Trace End = Stop
Trace Cycle = ALL & INT
Sample Event = NONE
>tm /f

>tm
Trigger = OFF
Trace Full = Continue

Trace Cycle = ALL & INT
Sample Event = NONE
>

= ON (Delay=1000/Sample Event=2)

Sz CntBRK TRC DLY TS TE CLR

Reference:

The base used in <event number> (trace with event conditions
directory triggered trace) and <count> is assumed to be deci

regardless of the N command specification. If “0x” is added, the

base is hexadecimal.

[0 EV command]

Other Hardware-related Commands

@ 146

On-the-fly
(INFLUENCES] function

I G Start trace

TG

If tracing was stopped due to the TS command or a “trace full” stop while
the user program was running, the TG command can be used to restart

tracing.
If tracing was stopped by a trigger being tripped in delayed trigger
‘_ trace mode, the TG command cannot be used to resume tracing.
The TG command can only be executed while the user program is
running.
Example
>tm

Trigger = OFF

Trace Full = Continue
Trace Cycle = ALL & INT
>g

>ts

Trace stop

>tg

>

Other Hardware-related Commands

TS

7. Dialog Commands 147

On-the-fly
(NO INFLUENCES] _function

Stop trace

TS

This command stops tracing while the user program is running.
To restart tracing, use the TG command.
When TS is valid, the message “Trace stop” is output.

‘ The TS command can only be executed while the user program is
. running.

Other Hardware-related Commands

@ 148

TD/TDU

Dump : (L INFLUENCES] on-the-fly
Disassemble :(NO INFLUENCES) misaoion

Display trace

TD
TDU

TD

This command displays a hexadecimal dump (TD) or a disassembled
code dump (TDU) of the contents of trace memory every machine cycle.

If the contents of the frame to be displayed are identical to those of the previ-
ous frame, a semicolon (*:") is displayed.

If this command is executed, the number of frames sampled is displayed and
trace display mode is initiated. In this mode, the prompt changes to “*” and the
system waits for a key to be pressed. The sub-commands that can be used are
shown on the following page.

If the TD command is executed while tracing, the message “Stop Trace? (Y/
N)" is displayed on the screen. Pressing “Y” stops tracing and displays the con-
tents of trace memory. Pressing “N” does not stop tracing and returns control to
the command input state.

If trace display mode is exited while a program is running, the message “Go
Trace? (Y/N)” is displayed on the screen. To resume tracing, press “Y”.

In delayed trigger trace mode, this message is not displayed because tracing can-
not be resumed.

‘ If the Return key is pressed without pressing any other key, “N” is
. assumed.

Trace memory hexadecimal dump display

Trace memory disassembled code display

Other Hardware-related Commands

7. Dialog Commands 149

The available subcommands when the TD command is input are shown be-

low.
B

Pn

P1

Nn

D
[<frame address S>]
[,<frame address E>]

L
[<frame address S>]
[,<frame address E>]

This command displays the start of trace
memory.

This command displays the end of trace
memory.

This command moves the display start frame “n”
pages, and then displays one page.

If a “-” is added in front, this command moves the
display back “n” pages. If the number of pages is
omitted, “1” is assumed. If only the Return key is
pressed, the frame moves to the next page, which is

then displayed.

This command sets the display start frame at
“n".
The first frame is frame 0, which contains the oldest

data.

This command changes the display mode to
hexadecimal display every machine cycle.

If “s” and “e” are specified, the data from frame ad-
dress S to frame address E is displayed.

This command changes the display mode to dis-
assembled code display.

If “s” and “e” are specified, the data from frame ad-
dress S to frame address E is displayed.

C This command erases frames indicated by “:”
from the screen.
If this command is executed again, “:” is displayed.
Q. This command quits the trace display mode.
« If less than 16K steps were traced, the first instruction after trace
‘_ start might not be traced.

« If a “trace full” break was used, several instructions prior to the
stopping of the user program might not be traced.

Other Hardware-related Commands

@ 150

Example
>bp sec,rw,5,/d

>9

------ IM=0 S=0 DO =00000005 D1 =00000000 D2 =0000001C D3 =00000014
PSW=0000 A0 =00000000 A1 =80000098 A2 =FFFFF870 A3 =20000000
PC =8000005F MDR=80000055 LIR=02A544F0 LAR=FFFFFOEO SP =00000FF8
MDRQ=00800000
mov (80C _sec),d0
>td
Sampled Frame Number = 16384
*d 0
Frame ROM_A RAM_A Data R/W

00000 80000015 OOOOOEE4

00001

00002

*c 1000

Frame ROM_A RAM_A Data R/W

01008 E 80000017 OOOOOEFC
01009 80000017 OOOOOEFC
01088 JE 80000013 OOOOOEFC

*u 2000

Frame Addr. Mnemo. Opr. RAM_A Data R/W
STARTUP.ASM:0058 mov do, (a0)

02048 JE 80000013 mov dO0,(a0) 00000F14
STARTUP.ASM:0059 inc4 a0

02049 E 80000014 inc4 a0 00000F18 00000000 (wr)
Frame Addr. Mnemo. Opr. RAM_A Data R/W
STARTUP.ASM:0060 add -4,d1

02050 E 80000015 add-4,d1 00000F18

02051 80000015 00000F18
*C

*q

>

Other Hardware-related Commands

7. Dialog Commands 151

Dump: (NOINFLUENCES) "On-the-fly
Disassemble{ INFLUENCES] _function

I DW Display trace window

TDW

This command displays the contents of the trace memory in a window.

When this command is specified, it is possible to switch between the dump
display and the disassembled code display just as with the TD command. The F1
through F10 keys are used for this purpose. If the TDW command is executed
during tracing, the message “Stop Trace? (Y/N)” is displayed on the screen.
Pressing “Y” stops tracing and displays the contents of trace memory. Pressing
“N” does not stop tracing and returns control to the command input state.

If the trace display is exited while a program is running, the message “Go
Trace? (Y/N)” is displayed on the screen. To resume tracing, press “Y”. Note
that in delayed trigger trace mode, this message is not displayed because tracing
cannot be resumed.

F1 (Jump) This function key jumps from the frame that is currently being displayed to
the next frame to be viewed.

F2 (Search) This function key searches for a character string in the trace information.
To interrupt the search, press the ESC key.

F3 (Next) In search mode, this function key searches the trace information for the
character string that was specified by the F2 key, searching in the direc-
tion of the end of the trace information (the most recent trace information).

F4 (Back) In search mode, this function key searches the trace information for the
specified character string, searching in the direction of the beginning of the
trace information.

F5 (D/AS) This function key switches the display between dump and disassembled
code.

F6 (First) This function key displays the beginning of the trace memory.

F7 (Last) This function key displays the end of the trace memory.

F10 (Compres) This function key displays/erases the frames indicated by “:".

ESC This key quits this mode and returns to the debugging screen of the C

source code debugger.

Other Hardware-related Commands

@ 152

« If less than 16K steps were traced, the first instruction after trace

‘ start might not be traced.

« If a “trace full” break was used, several instructions prior to the
stopping of the user program might not be traced.

« If the microprocessor’s internal instruction RAM is overwritten
while collecting trace information, the trace disassembled code
display will be incorrect.

Sampled Frame Number = 16384 Trace
Frame Stat Addr. Hnemo. Opr. RAM_A Data R/
SAMPLE.C:0027: displav(]);
80000053 call 8000006C bdisplay , [0B0OLFEC 80000050 (wr)
E 80000053 00001FEC
80000053 00001FEC
SAMPLE.C:0038: cnt6l();
00578 J 8000006C call 80000076 _Ocnt60 ,[1,00001FEC
00579 3000006C O001FEC
00581 8000006C O001FEL 30000073 (wr)
00582 E 8000006C 00001FEL
00583 8000006C 00001FEL
SAMPLE.C: 0043 secl@]++;
00698 80000076 mov (200C _sec),d0 00001FEL
00699 80000076 00001FEL
6700 8000007C inc d@ 0000200C 00006004 (rd)
0701 8000007C 0000200C
0702 8000007C 0000200C
0776 8000007D mov d@, (200C _sec) 0000200C
00779 8006007D 0060200C
00780 8006007D 0060200C 00000005 (wr)
00781 8000007D 0060200C
SAMPLE .C : 0044 : if(seclB] == 10){
80000083 moy (200C sec).dO 00002000
8 4 B D/AS @ Firstl] Last {§ 9)

Sample screen

Other Hardware-related Commands

Tl

7. Dialog Commands 153

On-the-fly
(NOINFLUENCES] _function

* Except TI RUN
Measure/display execution time

Tl [<mode>][,/S<event number>][,/E<event number>]
T| <clock>

TI STOP
Tl

These commands measure the user program execution time in units of the
timer clock. The maximum error is + (timer clock). The timer clock can be
selected from among 25ns, 50ns, and 100ns. The available modes are

described below.

Continuous measurement mode

In this mode, the execution time of the user program is measured from begin-

ning (or resumption) to end.

Partial mode

In this mode, the execution time of the user program is measured from the

occurrence of one event until the occurrence of another event.

partial measurement modes:

FIRST mode

There are two

The execution time is only measured the first time between the two events.

MIN/MAX mode

The execution time is measured continuously between the two events, and
then the minimum and maximum execution times are determined.

T | [<mode>~

This command specifies the timer operation mode.

<mode> RUN: Continuous measurement mode

In this mode, the execution time of the program is measur

from beginning to end. However, the execution time of the
first instruction is not included in the measured time.

G This mode cannot be set while the program is running.
[|

Other Hardware-related Commands

@ 154

T | <clock>

TI STOP

FIRST: Partial one-shot mode
This mode measures the execution time between two events
one time.

(MIN: Partial minimum/maximum mode

MAX: This mode measures the execution time continuously be-
tween two events, and then determines the minimum and
maximum execution times. If the timer clock is 25ns, a
maximum time of up to approximately 107 seconds can be
measured. The operation is the same, regardless of whether
“MAX” or “MIN” is displayed.

/S<event number>

This specifies the time measurement starting event.
/E<event number>

This specifies the time measurement ending event.

* The /S, /[E<event number> specification cannot be made in con-
G tinuous measurement mode.

« If an event being used by the timer is deleted (or disabled), the

measurement mode automatically switches to continuous mea-

surement mode.

Reference: The base used in <event number> is assumed to be decimal regard-
less of the N command specification. If “Ox” is added, the base is
hexadecimal.

Clock setting
This command sets the timer clock.

<clock> /T1: 25ns resolution
/T2: 50ns resolution
/T4: 100ns resolution
IM: Microprocessor clock

‘ If “/M” is specified, the measured value is the number of machine
: cycles, not the actual time.

Timer mode cancellation
This command halts time measurement.

Other Hardware-related Commands

Exapmle

7. Dialog Commands 155

This command displays the timer mode that is currently set and the timer
value.

‘ If the interval between a time measurement ending event and a time
measurement starting event is four clocks or less, the execution time
will not be measured correctly.

>ti

Timer : Stop

>

>ev init_data,ex
>ev sec,rw

>ti max,/sl,/e2

>ev

No. Sadr - Eadr st Data/Symbol Sz CntBRK TRCDLY TS TE CLR
E 1 80000083 EX _init_data 1 *

E 2 0000000C RW _sec 1 *

>g

>ti

Timer Clock =11

Timer Start Event = 1

Timer End Event =2

MAX TIME = 2,025 (nS)

MIN TIME = 0 (nS)

>

---- IM=0 S=0 DO =00000005 D1 =00000000 D2 =0000001C D3 =00000014
PSW=0000 AQ0 =00000000 A1 =80000098 A2 =FFFFF870 A3 =20000000

PC =8000005F MDR=80000055 LIR=02A544F0 LAR=FFFFFOEO SP =00000FF8
MDRQ=00800000

Timer Clock =11
Timer Start Event = 1
Timer End Event =2
MAX TIME = 2,025 (nS)
MIN TIME = 0 (nS)

>

>tj stop
>

[0 EV command]

Other Hardware-related Commands

@ 156

On-the-fly
(NO INFLUENCES) _function

I I RIG Set/display trigger

TRIG OUT <data>
TRIG RAM «<address>
TRIG EVENT
TRIG

These commands set and display trigger output.

TRIG OUT This command outputs the 8-bit port data <data>.
<data>
TRIG RAM When the microprocessor accesses <address>, this command outputs
<address> the contents of <address>.
TRIG EVENT This command outputs the event occurrence status.
If a sequential break was set with the BPS command, the correspon-
‘_ dence between an event output that is output due to a trigger and its

event number may change, so use the TRIG command to check the
correspondence of the numbers.

TRIG This command displays the trigger output that is currently set.

Other Hardware-related Commands

Example

7. Dialog Commands 157

>trig

Trigger mode = Port Data (00/00000000)
>

>ev cnt60,ex

>ev sec,rw

>ev 80000100,ex

>trig event

>trig

Trigger mode = Event

Trig. No. #7 #6 #5 #4 #3 #2 #1 #0
EventNO. —m — — — — — — 321

>

>trig ram sec

>trig

Trigger mode = RAM Monitor

Address = 0000000C (Data is invalid.)
>

Other Hardware-related Commands

@ 158

MAP/EX

Display: (NOINFLUENCES] On-the-fly
Set: (CANNOTBEUSED] Junction

Assign memory

MAP

EX

MAPI <address s> <address E>[{/F|/S}]

MAPE <address S>,<address E>

EXI <address s> <address E>[{/F|/S}]

EXE <address S>,<address E>

MAPI/ E XI
<address S>,<address E>
[{/FI/S}]

These commands specify which memory space will be assigned to in
memory within the in-circuit emulator (emulation memory).

The total memory (emulation RAM) assigned to the in-circuit emulator must
be less than the installed memory (512KB of standard/fast emulation RAM and
512KB of slow emulation RAM). The start and end of each block can be set in
4KB units. If an attempt is made to set a block in other than a 4KB unit, the
debugger will make adjustments automatically.

The MAP command and the EX command have the same function.

This command assigns the memory within the specified range so that
when it is accessed, the memory inside the in-circuit emulator (emulation
memory) is used instead. A maximum of 8 blocks in 4KB units can be
specified.

“/F" assigns the memory to fast emulation RAM, and “/S” assigns the memory
to slow emulation RAM. If omitted, “/F” (fast emulation RAM) is assumed.

MAPI 80000000, 80000FFF, /F

In the above example, the 4KB space from address 0x80000000 to
0x80000FFF is assigned to fast emulation RAM inside the in-circuit emulator.

a size that is smaller than the total size of the memory installed in

‘ Depending on the assigned addresses, it may only be possible to set
| |
the in-circuit emulator.

[0 Memory emulation function]

Other Hardware-related Commands

MAPE/EXE
<address S>,
<address E>

MAP/EX

Example

7. Dialog Commands 159

This command assigns the memory within the specified range so that

when it is accessed, user target system resources are used instead.
When the MAPE (EXE) command is used on the user target system side to

assign a space to be used as a stack, RAM must be installed in the user target

system for that space.

MAPE 80000000, BFFFFFFF

In the above example, the 1GB space from address 0x80000000 to
OxBFFFFFFF is assigned to a user target system resource (external memory).

This command displays the current settings.

Reference: The meanings of the codes in the “Memory” column are explained

below:

Int RAM: Internal RAM

Int REG: Special register |\/|
Int ROM: Internal ROM (or internal instruction RAM)

ICE ROM: Emulation ROM

ICE RAM (fast): Fast emulation RAM
ICE RAM (slow): Slow emulation RAM

TARGET: User target system memory (external memory)
ERROR: Access prohibited
MONITOR: Area used by monitor (reserved for system)

>mape 80020000 - 8003ffff
CPU MEMORY MODE : EXMODE
Sadr - Eadr Memory
00000000 - 00003FFF :Int RAM
00004000 - 1FFFFFFF :---
20000000 - 3FFFFFFF :Int REG
40000000 - 40003FFF :Int ROM
40004000 - 7FFFFFFF :---
80000000 - 8001FFFF :ICE RAM (fast)
80020000 - BFFFFFFF :TARGET
C0000000 - FFFFFFFF :MONITOR
>mapi 90000000~9001ffff
CPU MEMORY MODE : EXMODE
Sadr - Eadr Memory
00000000 - 00003FFF :Int RAM
00004000 - 1FFFFFFF :---
20000000 - 3FFFFFFF :Int REG
40000000 - 40003FFF :Int ROM
40004000 - 7FFFFFFF :---
80000000 - 8001FFFF :ICE RAM (fast)
90000000 - BFFFFFFF :TARGET
C0000000 - FFFFFFFF :MONITOR
>

Other Hardware-related Commands

@ 160

Performance Measurement

SM command
This command sets/releases the RAM monitor sample area.

PROF command
This command tabulates the access status.

Performance Measurement

SM

7. Dialog Commands 161

On-the-fly
(NO INFLUENCES] function

Set/release sample area

SM <address>
SMB <address>
SMC <number>
SMW

SM

S M <address>

S M B <address>

S M C <number>

The commands select the RAM monitor function sample area.

The sample area consists of 32 blocks consisting of 64 bits (8 bytes each, for a
total of 256 bytes), starting from <address>.

CTRL + 5 can be used to switch between the RAM monitor screen and the C
source code debugger screen. To change the sample area while the RAM monitor
is displayed, press the SHIFT + arrow keys. (The sample area can be changed
only while the user program is running.)

Press CTRL + 5 again to return to the debugger screen.

While the user program is running, the memory data area (particularly the
RAM area) is sampled at a constant interval, allowing the user to see changes to
the data. (This is the RAM monitor function.) This function naturally does not
affect the execution of the user program. Only data accessed in memory is moni-
tored and displayed.

The RAM monitor can display changes in data either in hexadecimal or in bit
units.
An underscore () indicates an address that has not been accessed.
This command specifies the starting address of the sample area.
This command specifies an address to be displayed in bit units.
This command clears an address displayed in bit units.

This command displays the RAM monitor screen.

This command displays the current sample area.

Performance Measurement

@ 162

RAM monitor screen RAH Monitor

Hexadecimal display example Address: v3 ol +5 46 +7 +B +9 +f +B +C +D +E F
00002000 05 00 00 00
00002010
00002020
00002030
00002040
00002050
00002060
00002070
00002080
00002090
000B20AD:
000B20BD -

00002000
00002000
000020ED:
000020FD

il Slow W Fast B

RAM monitor screen RAM Monitor
Bit unit display example Address:

3636 56 3636 3¢
2336333
03¢ 3233
XA HRN
Prrrees

R

o - Oy W NN @

33 333K 1

The following sub-commands can be used when being displayed RAM

monitor.

F1 (Slow) prolongs sampling cycle
F2 (Fast) shortens sampling cycle
F3 (Bit) displays in bits

F4 (Hex) displays in hex

F5 (Rev) displays in reverse order

Performance Measurement

7. Dialog Commands 163

>sm
RAM MONITOR MODE

Monitor Area = 00000000 - 000000FF
>sm 0x800

>smb sec

>smb 0x8f0

>sm

RAM MONITOR MODE

Monitor Area = 00000800 - 000008FF
NO Address

0 0000080C

1 000008FO

>smc 1

>sm

RAM MONITOR MODE

Monitor Area = 00000800 - 000008FF
NO Address

0 0000080C

>sm 1000

>sm

RAM MONITOR MODE

Monitor Area = 00001000 - 000010FF
>

Performance Measurement

@ 164

On-the-fly
function

(NO INFLUENCES

I I z O F Tabulate access status

PROF [onjoFF(cLR]
PROF

These commands tabulate which functions (subroutines) are accessed
what percentage of the time while the user program is running.

PROF ON This command specifies the start of tabulation for the profile.

PROF OFF This command stops tabulation for the profile.
This is the state in effect when the C source code debugger is started up.

PROF CLR This command clears the profile information.

PROF This command displays, based on the tabulated profile information, the
time that each function (subroutine) was executing and the percentage of
the total time that each function accounted for. The functions are dis-
played in order of time consumed, starting from the function that con-
sumed the most time.

Because PROF ON/OFF can be specified whenever desired, it is possible to
create profile information concerning only a particular portion of a program.

ging information to be loaded beforehand.

* If an overlay load is made to the microprocessor’s internal instruc-
tion RAM during profile tabulation, the profile information will
not be tabulated correctly.

* In order to use the profile function, it is necessary for the debug-
G

Performance Measurement

7. Dialog Commands 165

Example

Total number o
samples

Number of
samples withi

user program
(number used by
the debugging
program)

Number of samples
within in-circuit

emulator (time
used by the system

>reset

>prof on

>g

>

—— IM=0 S=0 D0 =0001B072 D1 =00000000 D2 =00000000 D3 =00000000
PSW=0000 A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000
PC=8000007D MDR=8000007A LIR=40000000 LAR=00000000 SP =00001FEOQ

_0cnt60: mov (200C _sec), dO
>

>prof

*kkk Proflle *kkk

Total sampling count = 36784

User sampling count = 36784 100.%

System sampling count= 0 0.0%

No. Addr Name Percent (Sum) Samples
1. 8000007D _0cnt60 44.9% (44.9%) 16541
2. 8000004B _Omain 31.0% (75.9%) 11407
3. 80000073 _Odisplay 24.0% (100.%) 8836

>

>prof clr

>prof

Sampling was not performed.

>prof off

>

Performance Measurement

@ 166

Data Display/Change

The C source code debugger can easily display and change memory, register,
and symbol data.

D command
This command displays a dump of the contents of memory. The display can
be modified by changing the display base number, etc.

E command
This command changes a value stored in memory to the specified value.

C command
This command compares the specified areas in memory.

F command
This command fills the specified area in memory with one repeated value.

M command
This command performs a block transfer of the specified area in memory.

S command
This command searches for data within the specified area memory.

R command
This command displays/changes the contents of registers.

H command
This command indicates the value of an expression in octal, decimal, hexa-
decimal and ASCII.

PRINTF/PF command
This command displays data in the specified format. (The format is similar to

that of the “printf” function in C.)

X command
This command displays symbols.

. command
This command registers/changes symbols.

Data Display/Change

7. Dialog Commands 167

On-the-fly
(INFLUENCES] function

D Display dump of contents of memory

D [<address S>],<address E>][,<count>][.{/H|/D|/O}]
DB [<address s>][,<address E>][,<count>][,{/H|/DJ/O}]
DW [<address s>][,<address E>][,<count>][{/H|/D|/O}]
DD [<address s>][,<address E>][,<count>][{/H|/D|/O}]
DS [<address S]] <address E>]

DL [<address S>][,<address E>]

DA [<address S>][,<address E>][,<count>]

These commands display the contents of memory in the specified base
(octal, decimal, hexadecimal, or ASCII).

When the C source code debugger is started up, the display base for the D
command is hexadecimal. After the D command has been executed, input either
the !l key or CTRL + X to display the next line of the D command display.

<count> specifies the number of data items to be displayed on one line; the
maximum is 29 (0 x 1D).

Option Use When omitted
<address S> Display start address Starts display from the next address that follows the last displayed address.
<address E> Display end address Displays one line.
<count> Number of data items Displays either 16, 8, or 4 (however many can fit on one line).
displayed on one line
H Hexadecimal display Uses the base in effect for the last display.
specification
/D Decimal display specification Uses the base in effect for the last display.
/0 Octal display specification Uses the base in effect for the last display.

Data Display/Change

@ 168

D/DB Byte (8 bits) display
DW Word (16 bits) display
DD Double word (32 bits) display
DS 4-byte real number (short floating-point) display
DL 8-byte real number (long floating-point) display
DA ASCII display
Example
>d 100
00000100 86 74 CD 70 E8 95 98 BA B1 B6 EB D2 7F 2A 99 4E
>d main
80000029 F8 FE F8 DD 16 00 00 00 00 08 DD 19 00 00 00 00
>dw main
80000029 FEF8 DDF8 0016 0000 0800 19DD 0000 0000
>dd main,/o
80000029 33576177370 00000000026 03167204000 00000000000

Data Display/Change

7. Dialog Commands 169

On-the-fly
(INFLUENCES] _function

E Change specified memory contents

E [<address S>][,<data>]

E B [<address S>][,<data>]
EW [<address S>][,<data>]

E D [<address S>][,<data>]

ES [<address S>][,<data>]

These commands change the contents of memory at the specified ad-
dresses in units of 8 bits, 16 bits, or 32 bits.

When changing the data with a real number, the contents of memory at the
specified addresses are replaced with a 4-byte real number.

Option Use When omitted
<address> Start address for change Starts from the next address that follows the address used for the last E
command.
<data> Data values to be written Enters data input mode, displays the specified address and the current
(up to 16 values) memory contents in ASCII, octal, decimal, or hexadecimal, and waits for

the new data to be input.

E /EB Byte (8 bits) change

EW Word (16 bits) change

ED Double word (32 bits) change

ES 4-byte real number (short float) change

Data Display/Change

@ 170

Reference: Data input mode rules

(1) After the contents of memory at the specified address are dis-
played, the function enters data input mode. Up to 16 data val-
ues, delimited by commas, can then be input. With the E com-
mand it is also possible to input a character string of up to 16
characters enclosed by single quotation marks (').

(2) To proceed to the next address without making any changes,
simply press the Return key. The next address and the contents
of that address are then displayed, and the function enters data
input mode.

(3) To return to the previous address, input a minus sign (“-").

The previous address and the contents of that addrss are then
displayed, and the function enters data input mode.

(4) In data input mode, the address can be changed to a specified
address by inputting “org<addreds or simply “/<address®T".

(5) Input “.[I" to terminate the E command.

Example

>e sec

address asc oct dec hex data
0000000C ‘£' 243 -93 A3 0
0000000D ‘.’ 373 -5FB 0
0000000E ‘"' 041 3321 5
0000000F ‘I' 111 7349 -
0000000E ‘.’ 005 505 -
0000000D ‘. 000 000 /100
00000100 ‘.’ 206 -122 86 0
00000101 ‘t' 164 11674 0
00000102 ‘©’ 315 -51 CD .

>

unmounted bits (such as a special register area), write-only data

‘ A verify error will occur if a value is changed in data RAM with
[]
RAM, or read-only data ROM.

Data Display/Change

7. Dialog Commands 171

On-the-fly
(INFLUENCES] function

C Compare specified memory contents

C <address S>,<address E>,<address D>

This command compares the contents of memory from <address S> to
<address E> with the contents of memory starting from <address D>; if a
difference is found, the addresses and data are displayed in the Com-
mand window.

If the differences do not fit in the window, a message asking whether or not
to continue the comparison appears. To stop, press CTRL + C; to con-
tinue, press any other key.

Example

>d 0,2f

00000000 DC 06 00 00 00 FF 24 00 01 F2 FO D7 00 2D 00 20
00000010 F1 0060 2004 29 FC 08 FB F8 FE FC FC FF 0D 00
00000020 00 00 F8 FE 04 CAF4 CB CB F8 FE F8 DD 16 00 00
>d 80000000,8000002f

80000000 DC 06 00 00 00 CB 24 00 01 F2 FO 90 00 2D 00 20
80000010 F1 00 602004 29 FC C1 FB F8 FE FC FC FF 0D 00
80000020 00 00 F8 FE 04 CAF4 CB CB F8 FE F8 DD 16 00 00
>

>c 0,2f,80000000

Start to compare.

00000005 FF CB 80000005

0000000B D7 90 8000000B

00000017 08 C1 80000017

End to compare.

>

Data Display/Change

@ 172

On-the-fly
([INFLUENCES] function

F Fill specified range of memory with data value

F <address S>,<address E>,<data>
FB <address S>,<address E>,<data>
FW <address S>,<address E>,<data>

FD <address S>,<address E>,<data>

These commands fill memory from <address S> to <address E> with the
value <data>.

When the length of <data> is shorter than the address range, <data> will be
repeated until the specified range of memory is filled. From 1 to 16 data items can
be specified for <data>.

F/FB Byte (8 bits) fill
FW Word (16 bits) fill
FD Double word (32 bits) fill
G The fill function cannot be used in the special register areas.

Data Display/Change

7. Dialog Commands 173

Example

>d 80000000,8000003f

80000000 DC 06 00 00 00 CB 24 00 01 F2 FO 90 00 2D 00 20
80000010 F1 0060200429 FCC1 FBF8 FE FC FC FF 0D 00
80000020 00 00 F8 FE04 CAF4 CB CB F8 FE F8 DD 16 00 00
80000030 00 00 08 DD 19 00 00 00 00 08 DC F9 FF FF FF DF
>f 80000000,8000002f,55

>d 80000000,8000003f

80000000 55 55 55 55 55 55 5555 55 55 55 55 55 55 55 55
80000010 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55
80000020 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55
80000030 00 00 08 DD 19 00 00 00 00 08 DC F9 FF FF FF DF
>

Data Display/Change

@ 174

On-the-fly
(INFLUENCES] _function

I\/I Block transfer of specified range of memory

M <address S>,<address E>,<address D>

This command performs a memory block transfer of the contents of
memory from <address S> to <address E> to a position in memory starting
at <address D>.

Example

>d 0,2f

00000000 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00000010 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00000020 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
>d 80000000,8000002f

80000000 DC 06 00 00 00 CB 24 00 01 F2 FO 90 00 2D 00 20
80000010 F1 0060200429 FC C1 FB F8 FE FC FC FF 0D 00
80000020 00 00 F8 FE 04 CAF4 CB CB F8 FE F8 DD 16 00 00
>m 80000000,8000002f,0

>d 0,2f

00000000 DC 06 00 00 00 CB 24 00 01 F2 FO 90 00 2D 00 20
00000010 F1 0060200429 FCC1 FBF8FE FC FC FF 0D 00
00000020 00 00 F8 FE 04 CAF4 CB CB F8 FE F8 DD 16 00 00
>

G A block transfer cannot be made to special regiter areas.
| |

Data Display/Change

7. Dialog Commands 175

On-the-fly
(INFLUENCES] function

S Memory pattern search

S <address S>,<address E>,<search pattern>

SB <address S>,<address E>,<search pattern>
SW <address S>,<address E>,<search pattern>

SD <address S>,<address E>,<search pattern>

These commands display the addresses in memory, from <address S> to
<address E>, where the data matches <search pattern>.

Option Use
<address S> Search starting address
<address E> Search ending address
<search pattern> Up to 16 items of data can be specified; up to 16 characters enclosed in single quotation m

can be specified for <search pattern> in the S and SB commands.

S/SB Byte (8 bits) search
SW Word (16 bits) search
SD Double word (32 bits) search

Data Display/Change

@ 176

Example

>d 80000000,8000002f

80000000 DC 06 00 00 00 FF 24 00 01 F2 FO 90 00 2D 00 20
80000010 F1 0060200429 FC C1 FB F8 FE FC FC FF 0D 00
80000020 00 00 F8 FE 04 CAF4 CB CB F8 FE F8 DD 16 00 00
>s 80000000,8000002f,ff

80000005

8000001D

>

Data Display/Change

7. Dialog Commands 177

I a Display/change register value

R

R {<register name>|<flag name>}

<register name>+REG=<value>

<flag name>+FLG=<value>

These commands display and change the contents of registers.

The register and flag names that can be used with the R command are listed
below:

<register name> A0, Al, A2, A3, DO, D1, D2, D3, MDR, LIR, LAR, SP,
PC, PSW

<flag name> C (carry flag)

Z (zero flag)
(negative flag)
V (overflow flag)
IE (interrupt enable flag)
IM (interrupt mask level)

pd

R This command displays the contents of all registers and flags in hexadeci- m
mal.
R {<register name>~ This command displays the contents of <register name>/<flag name> and

then waits for input.

If a value is input at this point, the value in the register is replaced with the new
value. Pressing just the Return key returns control to the C source code debugger
without changing the value in the register.

<register name>+REG=<value> These commands change the value of the specified register/flag.
<flag name>+FLG=<value> To change the status of a flag, code “flag name + FLG”. (For example, to
change the C flag, use “CFLG".)

Reference: If the Register window is left open (F2 or CTRL + 4), the most
recent register contents can always be seen.

Data Display/Change

@ 178

Example

>r

--- IM=0 S=0 DO =00000000 D1 =00000000 D2 =00000000 D3 =00000000
PSW=0000 A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000

PC =40000000 MDR=00000000 LIR=00000000 LAR=00000000 SP =00000100

jmp 0x80000000
>d0reg=12345678
>r
--- IM=0 S=0 DO =12345678 D1 =00000000 D2 =00000000 D3 =00000000
PSW=0000 AO =00000000 A1 =00000000 A2 =00000000 A3 =00000000
PC =40000000 MDR=00000000 LIR=00000000 LAR=00000000 SP =00000100

jmp 0x80000000
>cflg=1
>r
—C— IM=0 S=0 D0 =12345678 D1 =00000000 D2 =00000000 D3 =00000000
PSW=0004 A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000
PC =40000000 MDR=00000000 LIR=00000000 LAR=00000000 SP =00000100

jmp 0x80000000
>_d2=abcdef
>r
—C— IM=0 S=0 D0 =12345678 D1 =00000000 D2 =00ABCDEF D3 =00000000
PSW=0004 A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000
PC =40000000 MDR=00000000 LIR=00000000 LAR=00000000 SP =00000100

jmp 80000000

Data Display/Change

H

7. Dialog Commands 179

On-the-fly
(NO INFLUENCES function

Display expression operation results

H <expression>

H <expression 1>,<expression 2>

H <expression>

H <expression 1>,
<expression 2>

Example

These commands display the expression operations.
This command displays the specified expression in octal, decimal, hexa-
decimal, and ASCII.

This command displays the results of addition and subtraction of the val-
ues of the two expressions <expression 1> and <expression 2>.

In addition, this command also displays the 8-byte real number (long float)
value of the two expressions when combined into 64 bits (with <expression 1> as
the upper 32 bits and <expression 2> as the lower 32 bits).

ample, when the decimal number “~1" is displayed as a hexadeci-

G The H command handles all expressions as 32-bit values. For ex-
| |
mal number, it is displayed not as “Oxffff” but as “Oxffffffff".

>h 1234>>8
oct dec hex asc
00000000022 18 00000012 ... m
>h la+b
oct dec hex asc
00000000045 37 00000025 '...%'
>h 20*5
oct dec hex asc
00000000240 160 000000A0 .1
>

Data Display/Change

@ 180

On-the-fly
(NO INFLUENCES] function

PRINTF/PF

P R | N T F <format>[,<parameter>]

PF <format>[,<parameter>]

This command displays data in a format similar to that of the “printf” func-
tion in C.
The PRINTF command and the PF command perform the same function.

<parameter>
Up to 10 data items with a 16-bit data width can be specified.
Two parameters are required for the long (32-bit) format specification.

Minus sign (“=")
This sign is used to left-justify the converted parameter in its field.

Value (decimal indicating the field width)

The converted value or character string is displayed in a field specified by the
numeric value. If a numeric value or character string field is shorter than the field
width specified by the value, the left end of the field (or the right end if the left-
justification specification was made with the minus sign) is filled out with blanks.

Conversion characters
&d Converts the parameter to a decimal number.
&u Converts the parameter to an unsigned decimal number.
&x Converts the parameter to a hexadecimal number.
&0 Converts the parameter to an octal number.
&c Handles the parameter as a character.
&s Handles the parameter as a character string.

Data Display/Change

7. Dialog Commands 181

Reference: ¢ The symbol “&” is used as the equivalent of the conversion start
character “%" in the “printf” function in C.

* The field format can be specified between “&” and the conversion

character (“d”, “c”, “s”, etc.).

e Just as in C, the “/” symbol is used as an escape character.

Example

>?sec

(int [2]) @0000200C {7, 3}

>pf ‘&x’,sec

200C

>pf ‘&x’,*sec

7

>pf ‘&x’,*sec|10

17

>pf ‘&x’,*sec&4

4

>pf ‘&x’,*sec&8

0

>r

—CN- IM=0 S=0 D0 =00000007 D1 =00000000 D2 =00ABCDEF D3 =00000000
PSW=0006 A0 =00002000 A1 =00000000 A2 =00000000 A3 =00000000
PC=0x80000094 MDR=8000007A LIR=40000000 LAR=00000000 SP =00001FEQ

jmp 800000C3
>pf ‘&x’,mdrreg
8000007A
>

Data Display/Change

@ 182
X

On-the-fly
[NO INFLUENCES] function

Display currently registered symbols

X

X <symbol name>

X

X <symbol name>

This command displays the names and contents of the currently registered
global symbols.

This command displays all symbols.

This command displays the symbols specified by <symbol name>.

The wildcard characters “*” and “?” (which function in the same manner as
the MS-DOS wildcard characters) can be used in the <symbol name> specifica-
tion.

* Matches all patterns
? Matches all individual characters

that the C compiler adds to the front of all symbol names cannot be

G Unlike normal symbol description, the underscore character (“_")
omitted in the <symbol name> specification.

Data Display/Change

Example

7. Dialog Commands 183

>X

00000000 _i
00000004 _test
0000000C _sec
80000000 _Reset
80000029 _main
8000002C _Omain
80000042 _initialize
80000042 _Oinitialize
8000004C _display
8000004C _O0display
80000056 _0cnt60
80000056 _cnt60
8000009F _init_data
8000009F _O0init_data
>

>tmp1=80001234
Registered symbol name.
>X

00000000 _i
00000004 _test
0000000C _sec
80000000 _Reset
80000029 _main
8000002C _Omain
80000042 _initialize
80000042 _Oinitialize
8000004C _display
8000004C _O0display
80000056 _0cnt60
80000056 _cnt60
8000009F _init_data
8000009F _O0init_data
80001234 tmpl

>

>tmpl=*

>X

00000000 _i
00000004 _test
0000000C _sec
80000000 _Reset
80000029 _main
8000002C _Omain
80000042 _initialize
80000042 _Oinitialize
8000004C _display
8000004C _0display
80000056 _0cnt60
80000056 _cnt60
8000009F _init_data
8000009F _Qinit_data
> debinf__=*

>X

No debugging information found.

>d 100

00000100 86 74 CD 76 E8 95 98 BA B1 B6 EB D2 7F 2A 99 4E

>j=*100

Registered symbol name.
>X

76CD7486 |

>

Data Display/Change

@ 184

On-the-fly
(NOINFLUENCES] _function

Register/change/delete symbol

[] <symbol name>= *

[] <symbol name>=<address>

<symbol name> []<address>

[.] <symbol name>
=<address>

. <symbol name> [
<address>

[.]J<symbol name>=*

Example

These commands are used to register, change, or delete symbols.
The period [“. "] at the start of the line may be omitted.

This command sets (registers) the immediate <address> for <symbol
name>.

This command inputs the symbol name and then its setting value.

If “.<symbol name>" is input in the C source code debugger's command
mode, the mode changes to one-line keyboard input mode, even from within a
macro command, and then the program waits for the setting value to be input.
This input method is useful when setting data within a macro. In the case of this
specification, the period [*.”] may not be omitted.

This command deletes the specified symbol from the symbol table.
The C source code debugger has a special reserved symbol “_ _DEBINF_ _
If the following line is input:

__DEBINF__=*[

all registered symbols will be deleted. In this case, the source line information
is also deleted.

Symbols are used as variables in macro commands. An example is shown
below.

i=0

do {

T ; Single-step execution command
i=i+1

} while i<3

In this example, the symbol “i” is used as a loop variable in the DO{..}WHILE
command. This sample macro code causes three steps to be executed.

Data Display/Change

Example

7. Dialog Commands 185

When registering a symbol with the same name as a CPU register
name [J R command], the period (“.”) cannot be omitted. If the
period is omitted, the command will be interpreted as a “change
register” command.

>X

00000000 _i
00000004 _test
0000000C _sec
80000000 _Reset
80000029 _main
8000002C _Omain
80000042 _initialize

80000042 _Oinitialize

8000004C _display
8000004C _Odisplay
80000056 _0cnt60
80000056 _cnt60
8000009F _init_data

8000009F _0init_data

>tmp1=80001234

Registered symbol name.

>tmp1=80000020

Registered symbol name.

>X

00000000 _i
00000004 _test
0000000C _sec
80000000 _Reset
80000020 tmpl
80000029 _main
8000002C _Omain
80000042 _initialize

80000042 _Oinitialize

8000004C _display
8000004C _Odisplay
80000056 _0cnt60
80000056 _cnt60
8000009F _init_data

8000009F _0init_data

80001234 tmp2
> debinf__=*
>X

No debugging information found.
>

>d 100
00000100 86 74 CD
>j=*100

Registered symbol name.

>X
76CD7486 |
>k=*1008&ffff

Registered symbol name.

>X
00007486 k
76CD7486 |
>

76 E8 95 98 BA B1 B6 EB D2 7F 2A 99 4E

[0 R command and X command]

Data Display/Change

@ 186

Code Display/Change

The C source code debugger displays the source code or the results of disas-
sembly in the Code window. Changes in the displayed contents can easily be
referenced by using Window commands to switch between the source code and
the disassembled code. The V and U Dialog commands can also be used to ex-
ecute similar processing.

[0 Chapter 6, “Window Commands”]

V command
This command displays the source code in the Code window.

U command
This command displays the disassembled results in the Code window.

A command
This command performs line assembly.

K command
This command back traces the C stack frame.

Code Display/Change

7. Dialog Commands 187

On-the-fly
[NO INFLUENCES] function

V Display source lines from specified position in Code window

V [l<file name>][<line>]

V <symbol>

These commands display the specified source lines in the Code window.

V [][<file name>:][<line>] This command displays the contents of the file specified by <file name>,
starting from the specified line.

If the <line> specification is omitted, the first line of the file is assumed. If
<file name> is omitted, the source file currently displayed in the Code window is
assumed. The V command also permits the specification of a file without source
information. In other words, it is possible to load any ASCII file into the Code
window, in a similar manner to a text editor.

V <symbol name> This command displays a source file containing the function specified by
<symbol name>.

The F1 Window command can be used to open the file selection window and
change the displayed file.

« If a file that has no source line information is opened with the V
G command, source level execution within the file and command

input with source line specifications are not possible.
If the environment variable PANASRC has been set, the V com-
mand displays the files in the directory specified by PANASRC.
If PANASRC is not set, the V command displays the files in the
current directory.

* Even if the line number is omitted, the “:” after the file name is

required.

Example

Display the source code
in the Code window, o
starting from the loca=—*| >vinit data

tion where the symbol >V startup.asm:
“init_data” is defined.

Displays the file “startup.
asm” in the Code window.

[0 Chapter 6, Window Commands for the U command]

Code Display/Change

@ 188

On-the-fly
(INFLUENCES] function

U Display disassembled code

U [<address>]
UPUSH [<address>]
UPOP

UEND

UX [<address S>][,<address E>]

These commands display one screen of disassembled code in memory,
starting from <address>, in the Code window or the Command window.

The display of disassembled code in the Code window can be easily scrolled
up and down by using theand! keys, or the ROLL UP and ROLL DOWN keys.

U [<address>] This command displays the disassembled code, starting from the speci-
fied address, in the Code window.
Valid symbols can be used in the <address> specification.

UPUSH This command PUSHes the current displayed address onto the address
[<address>] stack (an 8-level internal stack) and then displays the disassembled code,
starting from the specified address.

UPOP This command POPs the last address that was UPUSHed onto the stack
and displays the disassembled code, starting from that address.

UEND This command displays the disassembled code, starting from the last ad-
dress that was UPUSHed onto the stack.

U X [<address S>] This command displays the disassembled code, starting from the speci-
[<address E>] fied address, in the Command window.

If <address E> is specified, the code is displayed in the Command window up
to that address. If <address E> is omitted, as many lines of code as are needed to
fill the Command window are displayed. This command is useful for saving the
results of disassembly in a file.

[O “>" command]

Code Display/Change

Example

Display the disassembled—r>

code in the Command
window, starting from the
symbol “main”.

Save the disassembled———
code output in ad-
dresses 80000000 to
8000005F in the file
“test.log”.

7. Dialog Commands 189

>u main

>ux cnt60

_cnt60:

SAMPLE.C:0043: sec[0]++;
80000056 FCA40C000000 mov
8000005C 40 inc do
8000005D FC810C000000 mov
>

>>test.log

>ux 80000000,8000005f

>>

>

(Ox0C _sec),d0

do,(0x0C _sec)

[0 V command and A command]

Reference: Disassembled code display rules

(1) Differentiating register names and immediate values
In order to differentiate register names from immediate values,
immediate values are displayed in upper-case letters.

<Example>

MOV do, a0
MOV DO, a0

DO register- AO register
Immediate value 0xdQ AO register

(2) The display of disassembled code in the Code window can
be scrolled up and down by using thand! keys, or the

ROLL UP and ROLL DOWN keys.

However, when the or ROLL UP key is pressed, if the first
address that is displayed happens to be an operand, the display
is shifted so that the subsequent instruction is displayed.

Code Display/Change

@ 190
A

On-the-fly
([INFLUENCES | function

Input assembly language line

A [<address>]

Example

Change the address to——»
80000062.

“???” indicates an input——»
error.

If the A command is input, the system enters mnemonic input mode, dis-
plays the specified address, and waits for a mnemonic to be input.

If the <address> specification is omitted, input starts at the next address fol-
lowing the last address used by the A command.

The mnemonic that is input is then assembled, and the resulting instruction
code is stored in memory at the specified address. If the mnemonic that was input
is correct, the machine language code that was stored in the address is displayed
to the right of the address, and then the system begins waiting for the next input.

Press the [Return] key to return to the C source code debugger’'s command
mode from assembly language input mode.

Reference:

Subcommands in assembly language input mode

/<address> Changes the address.
ORG<address> Changes the address.

O (Return) Proceeds to the next address.
- Returns to the previous address
<symbol>: Registers a symbol.

DB<data> Stores 8-bit data.

DW<data> Stores 16-bit data.

DD<data> Stores 32-bit data.

¢

In order to differentiate hexadecimal immediate values that begin
with the letters “A” through “F” from register names, add a zero in
front of the immediate value.

>a 80000000

80000000 add 16,sp
80000003 jmp 80000062
80000006 /80000062
80000062 add &ffee,sp
80000062 add ffee,sp
80000068

>

[0 V command and U command]

Code Display/Change

7. Dialog Commands 191

Back trace

This command back traces the C stack frame and displays the process
(addresses) by which the current function was called from the “main” func-
tion.

If back tracing is selected for the Option window, the most recent back trace
information is always displayed in the Option window.

G The K command is valid only in C debugging mode.
| |

Code Display/Change

@ 192

Watch Display
- 1]

The C source code debugger is equipped with a function that displays the con-
tents of memory, variables, and other information important for debugging work
in the Watch window in the specified format. This function can be used to con-
tinuously display the most recent contents of data at those checkpoints that must
be monitored most carefully during debugging. As a result, it is possible carry out
debugging work smoothly, without interruption and without the need to input data
display commands each time a break or trace is executed, as is required in conven-
tional debuggers.

INS command
This command displays the contents of the specified C expression or symbol.

W command
This command registers the specified memory contents or variables for watch-
ing.

VAL/? command
This command displays the contents of a C expression or variable.

Y command
This command deletes the specified watch point.

Watch Display

7. Dialog Commands 193

Global variable: (_INFLUENCES] Sireqy
Local variable: ~ (CANNOTBEUSED] ~_function

I N S Inspect

|NS <variable name>[,<function name>]

This command displays the specified variable, array, or bit value in the
Inspect window according to the variable data.

Local variables can be displayed by specifying <function name> for the func-
tion in which that local variable is used. If <function name> is omitted, the cur-

rent function is assumed. _
The following local commands can be used.

F4 (Zoom) When inspecting pointers, arrays, or structs, this command enlarges the
window to fill the screen.
This function is extremely useful when referencing an array with a large num-
ber of elements, etc. If this key is pressed again while the window is enlarged to
fill the screen, the window is reduced to its original size.

F5 (16 <>10) In the scalar display, values are displayed in both decimal and hexadecimal
format. However, if the number of elements in an array or struct is such that they
cannot all be displayed on one line, they are displayed in either decimal format
(default) or hexadecimal format, not both.

The F5 key is used to switch the base.

F6 / Ctrl+l /| This command displays an array or struct element that is selected (high-
(Inspct) lighted) through the use of the cursor keys in a newly opened Inspect win-
dow.

The ESC key is used to close the current Inspect window.

F7 | Ctrl+W/ W This command registers the variable that is inspected, or the element that
(Watch) is selected, for watching in the Watch window.

Watch Display

@ 194

F8 /Ctrl+V/ V
(View)

F9 / Ctrl+R/ R
(Range)

F10 (Change)

This command displays the variable that is inspected, or the element that
is selected, for viewing in the Command window.

This command changes the array or pointer display element number or
the maximum element number.

If these keys are pressed, the window that is used to input the number of the
element to be referenced opens. At this point, the current display element and the
maximum element number are displayed, highlighted. Input the new display ele-
ment number and maximum display element number (may be omitted). During
line input, the history and line edit shell functions can be used.

This command is extremely useful when referencing a large array or when
referencing the area around a pointer.

This command changes the value of the variable that is inspected, or the
element that is selected. The variables that can be changed by this com-
mand must have either the scalar attribute (char, int, etc.) or the pointer
attribute.

Pressing this key opens a window that is used to input the new value (expres-
sion). Once the expression has been input, it is evaluated; if no errors are found,
the value of the variable is changed to the new value. During line input, the
history and line edit shell functions can be used.

[0 Chapter 6, section 2-1 for the Inspect function]

Watch Display

W

7. Dialog Commands 195

Global variable: [NO INFLUENCES] On-the-fly
Local variable: [CANNOT BE USED] function

Register watch

WS <address>
W’> C expression

W <address>[,<counts]{/H|/D}/O}]

WB <address>[,<count>][.{/H|/DJ/O}]
WW <address>],<count>][.{H/D|/O}]
WD <address>[,<count>][{/H|/D/O}]

WA <address>[,<counts][,{/H|/DJ/O}] I-

These commands register the specified memory contents or symbol for
watching.

Just as with the D command, the watch specification has a number of display
patterns (formats). When an address or symbol is registered for watching, its
content is displayed in the Watch window in the specified format.

<count> specifies the number of data items to be displayed in one line, up to a
maximum of 29 (0x1D). WA (only) supports a maximum of 99 (0x63).

Option Use When omitted
<address> Watch address Error
<count> Number of data items 1 data item is displayed; in the case
displayed on one line of WA, 32 characters are displayed
H Hexadecimal display specification Hexadecimal display
/D Decimal display specification Hexadecimal display
/0 Octal display specification Hexadecimal display

Watch Display

@ 196

Example

Byte (8 bits) display

Word (16 bits) display

Double word (32 bits) display

ASCII display (8-bit units)

4-byte real number (short floating point) display

C expression display

>W SEC
>W? SEC[1]
>W 100,5

>

[O Y command]

Reference: Some C variables, such as local variables, have a limited scope
(range of use). As a result, some variables cannot be evaluated, de-
pending on the position of the program counter. In case such as
when local variables are assigned to registers automatically by the
C compiler, the value of the C expression in the Watch window
changes to “????".

Watch Display

VAL/?

7. Dialog Commands 197

Global variable: [NO INFLUENCES On-the-fly
Local variable: [CANNOT BE USED | function

Evaluate C expression

VAL <C expression>[,<function name>]
VAL <variable name>[,<function name>]
? <C expression>[,<function name>]

? <variable name>[,<function name>]

V A L <C expression>~
? <C expression>~

V A L <variable name>~
? <variable name>~

This command displays the contents of a C expression or a variable.

Local variables can be displayed by specifying <function name> for the func-
tion in which that local variable is used.

If <function name> is omitted, the current function is assumed.

These commands display the expression type and its value.

These commands display the variable type, variable name, and variable
value.
The “*” and “?” wild cards can be used in <variable name>.

* Matches all patterns
? Matches all single characters

For example, if the command “? dli*is input, all variables that begin with
“ab” are displayed.

When displaying a C expression or variable that has multiple elements, such
as an array, the elements are enclosed in rounded brackets (“{}") and as many
elements as will fit on one line are displayed.

Watch Display

@ 198

erators with secondary effects, such as “++” or “—-". If an
operator with a secondary effect is used with the “?” com-
mand, the message “Operator with possible harmful side
effect cannot be used” is displayed and an error is gener-
ated.

‘ The VAL command can use substitution operators and op-
| |

* When only referencing data, do not use the VAL command; use
the “?” command.

«When using an operator that has a secondary effect, such as
changing data, use the VAL command. Doing so will eliminate
inadvertent changes to variables in a program resulting from mis-
takes in the evaluation of C expressions (for example, mixing up
“=="and “=").

*In the VAL command and the “?” command, all variables con-
tained in a C expression must be in a usable state.

The following example uses a cast operator as an example of how to use the
“?” command. Proper use of the cast operator makes it possible to display the
contents of memory in an easy-to-understand format.

Example

>d sec

0000000C 08 00 00 00 03000000 0000000000000000cvvvvnnn.
>? sec

(int [2]) @0000000C {8,3}

>d

0000001C 00 00 00 00 00 000000 0000 000000000000 ...ccvvvvnnn.

>

[0 Chapter 6, section 3-1 “Inspect function”]

Watch Display

7. Dialog Commands 199

On-the-fly
(NOINFLUENCES] ~_function

Y Delete watch

Y st

This command deletes the watch registrations set with the W command.
If <list> is specified, the watch registrations with the specified numbers are
deleted. If “*” was specified, all watch registrations that were set are deleted and

the Watch window is closed.
Y 1,2, 70
In the above example, watch registrations 1, 2 and 7 are deleted.
Y *0

In this example, all watch registrations are deleted and the Watch window is

closed.

[0 W command]

Watch Display

@ 200

System Control Commands

The Dialog commands listed below are provided for system control, such as
quitting the C source code debugger, and for help, subprocesses, and history.

Q/EXIT command
This command quits the C source code debugger.

HELP command
This command displays a help message.

I command
This command executes a subprocess.

I/l command
This command displays/searches the command history.

System Control Commands

7. Dialog Commands 201

On-tht_a-ﬂy
([INFLUENCES] _function

Q/ EX I I Quit C source code debugger

Q
EXIT

These commands quit the C source code debugger and return control to
MS-DOS.

However, if a subprocess is running when this command is issued, the C
source code debugger cannot be terminated. In such a case, the following error

message is displayed and control returns to the C source code debugger prompt:

“Not terminated subprocess.”

In this case, terminate the subprocess first and then execute the Q/EXIT com-
mand.

System Control Commands

@ 202

On-the-fly
(NO INFLUENCES] _ function

I I E L I Display help screen

HELP

This command switches to the help display screen and displays the help menu.
The highlighting on the screen can be moved to the desired menu item by using
the -, «, 1,0r ! key.

When the [Return] key is pressed, the content of the item selected on the help
menu is displayed. To return to the debugging menu, press the ESC key.

In order to use the C source code debugger’s help function, the help file
PT103. HLP must be located either in the current directory or in the directory
specified by the environment variable HELP.

After the command is input, the screen switches to the help screen.

Sample screen KLOAD PROGRAMS)

LP [<file name>1 : load a program designated by <file name>
L [<file name>1 : load a program designated by <file name> ,with
line number and sumbol information

KREAD/HRITE FILE>

RD <file name>,<address> : read a file from the designated address
: Tt is possible to read a file in the following
format :EF,HEX, S

HR <file name>, <extent> : write the contents of memory to <file name>
<example> WR SAMPLE.EX,0,100
KDISPLAY/REGISTER/CHANGE SYMBOL > [On—the-f1yl

X [<symbol name>] :display <symbol name>(if the name isn’t designated,
all symbols are displayved)

[.1<name>=<value> :change the symbol <name> to value <wal>

[CTRL+¥:next screen CTRL+E:last screen RET:go to main menu ESC:exit helpl

System Control Commands

7. Dialog Commands 203

On-the-fly
[NO |NFLUENCES] function
! Execute subprocess

! . <MS-DOS external command name>

It is possible to execute MS-DOS commands in parallel with debugging. -

An MS-DOS command initiated by the “I” command is called a “subprocess.”
Once a subprocess is initiated by the “!” command, it is possible to switch back
and forth between the subprocess and the C source code debugger by means of
certain key sequences (multi-job function).

CTRL + 1 (numeric keypad$hifts from C source code debugger to subpro-
cess

CTRL + 0 (numeric keypadReturns from subprocess to C source code
debugger

This function makes it possible to startup an editor as a subprocess and per-
form debugging work while referencing the source listing. In addition, by using
the overlap function and correcting and assembling the program in the subpro-
cess, it is possible to load the executable file again.

! This command executes COMMAND.COM.

I L <MS-DOS external This command executes the specified MS-DOS external command
command name> (.COM, .EXE).

Symbol

System Control Commands

@ 204

ing). The subprocess does not run until control is switched to it.
In addition, the different processes do not handle files in an exclu-
sive fashion from each other. Therefore, the subprocess must not
modify or delete files that the C source code debugger is using
(such as the environment variable TEMP or the TMP work file,
etc.). In addition, some applications cannot be used as subpro-
cesses.

G * This function does not run processes simultaneously (multi-task-

« In order to differentiate this command from the history display
and search command, always insert at least one space or tab be-
tween the “I” and <character string>.

I <MS-DOS external command name> Subprocess initiation
I <character string> History display/search

» The message “Insufficient memory” may be output after inputting
the “l'w” command or an MS-DOS external command.
In this case, if EMS memory is available for use, the problem can
be resolved by specifying the -F or -B option when starting up the
debugger so that EMS memory is used.
[0 Chapter 5 for the startup options]

[0 Chapter 6, section 2-6 “Shell functions”]

System Control Commands

7. Dialog Commands 205

On-the-fly
(NOINFLUENCES] ~ _function

Display/search history

! <character string>

| <character string>

The C source code debugger has an internal 16-level command line input
buffer that can be used to display up to the last 16 command lines that were input.
Itis also possible to search for character strings in the buffer, from most recent to
oldest. The information displayed by this command can be freely edited within
the Command window.

This command displays the previous command that was input (history dis-
play).

This command searches for a character string in the history buffer that
begins with <character string>, starting from the most recent command.
If a character string that meets the condition is found, it is displayed.

tion command, do not insert a space or tab between the “!I” and
<character string>.

I 1<MS-DOS external command name> Subprocess initiation

I <character string> History display/search

G In order to differentiate this command from the subprocess initia-
| |

[0 Chapter 6, section 2-6 “Shell functions”]

Symbol

System Control Commands

@ 206

Other Commands

The C source code debugger is provided with other commands for Command
window display control (cursor control, clear screen, etc.), memos, option set-
tings, log output, and batch execution.

CLS command
This command clears the Command window.

HOME command
This command moves the Command window cursor to the home position.

LIST command
This command enables Command window display output.

NLIST command
This command disables Command window display output.

BEL command
This command sounds a beep.

TIME command
This command displays the current time.

WAIT command
This command causes the system to wait.

PRMPT command
This command changes the prompt.

* command
This command specifies comments.

Other Commands

7. Dialog Commands 207

> command
This command outputs a log of the Command window display contents.

< command
This command performs batch processing.

MEM (memo) command
This command displays, registers, and deletes memos.

N command
This command selects the base used for parameters as either decimal or hexa-

decimal.

OPTION command
This command sets options.

Other Commands

@ 208

On-the-fly
(NO INFLUENCES] function

C L S Clear Command window screen

CLS

This command clears the Command window.
This command is used in combination with the HOME, PRINTF/PF, LALL,
and SALL commands for display control within macro commands.

[0 HOME command]

On-the-fly
(NOINFLUENCES] function

I I O I\/I E Move cursor to home position

HOME

This command moves the Command window cursor to the home position
(the left end of the command input line).

This command is used in combination with the CLS, PRINTF/PF, LALL, and
SALL commands for display control within macro commands.

[0 CLS command]

Other Commands

7. Dialog Commands 209

On-the-fly
function

[NO INFLUENCES

L I S I Specify display output

LIST

This command resumes Command window display output after it has
been suppressed by the NLIST command.

The LIST state is the default state when the C source code debugger is sm
up. The LIST command and the NLIST command have opposing functions.

[0 NLIST command, SALL command, and LALL command]

On-the-fly

(NO INFLUENCES] function

N L I S I Suppress display output

NLIST

This command suppresses Command window display output.
This command can be used to suppress the display of unnecessary data.
The NLIST command and the LIST command have opposing functions.

[0 LIST command, SALL command, and LALL command]

Other Commands

@ 210

On-the-fly
(NO INFLUENCES] function

B E L Sound beep

BEL

This command causes the host computer to beep.
This command can be used in macro commands, etc., to sound a beep.

On-the-fly
(NO INFLUENCES] function

I I I\/I E Display current time

TIME

This command displays the current time in the Command window.

Example
>time
11:45:17
>

Other Commands

7. Dialog Commands 211

On-the-fly
(NO INFLUENCES] function

WAIT -

WAl T [<count>]

This command causes the system to wait either until a key is pressed or
until the specified time (<count> x 0.1) elapses.

If <count> is omitted, the system waits until a key is pressed.

This command can be used in macros to cause the system to wait.

Example
>wait ; Stops for one second
>wait ; Waits until a key is pressed
>
On-the-fly
(NO INFLUENCES function

PRMPT charge o

P R M PT <prompt character>

This command changes the prompt used by the C source code debugger.
When the C source code debugger is first started up, the prompt character i
Only one character can be specified for <prompt character>.

Example
>prmpt %

Iprmpt >

>

Other Commands

@ 212

On-the-fly
(NO INFLUENCES] function

Comment

* .
[<character string>]

This command allows the use of comments (specified in <character
string>).

Therefore, anything may be written in <character string>; it will not affect the
operation of the C source code debugger in any way.

Use this command in macros, etc., to include comments in the code.

Example

>* This is a comment.
>

Other Commands

7. Dialog Commands 213

On-the-fly
(NO INFLUENCES] function

> Output log

> <file name>

>> <file name>

>

The C source code debugger is provided with a log output function that out-
puts the information that is output to the command window during debugging to a
file simultaneously with the screen display.

> <file name> This command creates a new file with the specified <file name> and be-
gins log output to that file.
If the specified file already exists, that file is deleted and a new one is created.
The <file name> specification can include a drive name and path name.

> > <file name> This command adds (appends) the screen output information to an exist-
ing file.
If the specified file does not already exist, a new file is created.
The <file name> specification can include a drive name and path name.

> This command stops the log output operation.

Example
>>test.log

>UX 0,1FF

>>

Appends log information———| >>>testl.log

to the file “testl.log” >t 10

Stops the log outpyt—————| >>
operation >

Symbol

Other Commands

@ 214

<

On-the-fly
(NO INFLUENCES] function

Batch

< <file name>

Example

Execute commands——»
from the file “m1.mcr”

This batch function inputs and executes a series of commands from a file
instead of from the keyboard.

The C source code debugger sequentially executes the commands that it reads
from the file that was specified by this command. The file name can include a
drive name and path name. This function is similar to batch processing in DOS,
and is useful for repeated execution of a predetermined sequence of operations.
However, unlike DOS batch processing, it is not possible to pass parameters to
this function. If the ability to pass parameters is needed, use a macro function.

In addition, if the INIT.MCR file is located in the current directory when the C
source code debugger is started up, the C source code debugger loads and ex-
ecutes automatically. This file is equivalent to the AUTOEXEC.BAT file in
DOS.

In other words, by writing any preprocessing (such as loading the user pro-
gram) essential for program debugging in this file, it is possible to automatically
execute that processing when the C source code debugger starts up.

The batch function is useful if used for macro definition (registration). Al-
though macros can be defined from within the C source code debugger, it is also
possible to use a text editor to write large macros outside of the C source code
debugger, and then use the batch function to register those macros in the C source
code debugger.

Itis also possible to use the MLIST command to load macros written in a file.
Batch execution can be interrupted by pressing the ESC key.

><ml.mcr

[0 MLIST command and macro definition]

Other Commands

MEM

7. Dialog Commands 215

On-the-fly
(NO INFLUENCES] function

Display/register/delete memo

MEM*
MEM

M E M <number>[,<character string>]

M E M <number>
[,<character string>]

MEM *

Example

These commands are used to display, register, and delete memos.

The contents of the memos are displayed in the Memo window, one of the
Option windows. A character string set by the MEM command can also be called
up by the CTRL + SHIFT + function key sequence.

This command registers the specified character string in the memo indi-
cated by <number>.
If <character string> is omitted, any memo registered in the specified memo

number is deleted.

This command deletes all of the memos that are currently registered.

This command displays the contents of the memos that are currently reg-
istered.

>mem1,Panasonic
>mem?2,PanaX
>mem3,MN10300
>mem

MEMO 1 : Panasonic
MEMO 2 : PanaX
MEMO 3 : MN10300
>mem?2

>mem

MEMO 1 : Panasonic
MEMO 3 : MN10300
>mem *

>mem

>

[O Chapter 6, section 2-7 for the Memo command]

Symbol

Other Commands

@ 216

On-the-fly
(NO INFLUENCES] function

N Change input format base

N {10116}

This command changes the base for parameters input in Dialog com-
mands to either decimal or hexadecimal.
When the C source code debugger starts up, the base is 16.

N 10 Changes the input base to 10.
N 16 Changes the input base to 16.

Example
>N 10

Other Commands

7. Dialog Commands 217

On-the-fly
function

(NO INFLUENCES

OPTION

O PT | O N <reg>[,<code>[,<case>]]

This command can be used to set various C source code debugger options.
The items that can be set by this command can also be displayed/changed by
using the Window command SHIFT + F10. The options that can be set by this
command are listed below.

Option Parameters Description

<reg> (ON|OFF) Register window display control

<code> (SRCJASM) Code window source/disassembled code display switching

<case> (ON|OFF) Symbol name uppercase/lowercase discrimination on/off
Example

>option ON,SRC,OFF
>option OFF -
g N

- O

Other Commands

@ 218

Chapter 8

Macro Commands

1. Macro Command Overview
2. Macro Commands

@ 220

Example

Macro Command Overview

1-1 Macro function

The macro function makes it possible to construct new commands by combin-
ing existing commands. In the C source code debugger, it is possible to create
sophisticated macro commands by using a wide variety of commands and power-
ful macro control structures.

The features of the C source code debugger’s macro function are listed below.

(1) The macro function supports control structures similar to those used in C,
making it possible to describe easy-to-understand macros in a block format
without using GOTOs.

(2) It is possible to nest up to 255 IF statements, making it possible to handle
different possibilities with tremendous detail.

(3) It is possible to nest up to 15 macros, so that separate macros can be used as
subroutines and expanded within other macros.

(4) Up to 10 parameters can be passed to a macro command.

(5) It is possible to define macro commands that use combinations of cursor con-
trol commands, the PRINTF/PF command, etc., to create formatted screen
output, and that use combinations of symbol definition functions to perform
interactive processing.

Macro commands can be used in the same manner as the C source code
debugger’s internal commands. In other words, there is no special command that
is needed in order to execute a macro command. A macro command can be inter-
rupted by using the ESC key.

By using special symbols, execution control commands can be used to make
even more efficient debugging possible. Some specific examples are shown be-
low.

{testl
bp sec,w
dof
g
while{_ _run
}
}while val(sec[0]'=9)
}

Macro Command Overview

8. Macro Commands 221

This macro sets a hardware break at the address assigned to the variable “sec”.
The 3rd through 7th lines form a “do{}while” loop, and as long as the condition
sec!=9 that follows the “do{}while” loop is not met, the G command is executed.

Example
{TEST2

bp .45

ti run

g

while{_ _run_

}

iffval(sec[1]==1)
g

}
if{ _run_ =1
ti
telse{
esc
pf 'Forced break was executed'

In this example, a break point is set in the 45th line first. The third line mea-
sures the execution speed of the timer command. The fourth line initiates execu-
tion. Then, in the 9th line, if the user program is stopped, the time required to
execute from the 45th line to the 45th line is displayed and the macro is exited.
On the other hand, if the user program is running in the 9th line, the macro i
“ESC”, displays a message indicating that fact, and exits the macro. (Use
gram execution can be interrupted by inputting ESC from within a macro.)

These are just two examples of how macros can be used to make more effi-
cient debugging possible. This function can also be used in durability testing by
collecting the results of macro command execution in a file and determining
whether the same commands yield the same results.

Macro Command Overview

@ 222

Macro Commands

The following Dialog commands are provided as macro definition/execution
commands and as control commands supported by the C source code debugger to
provide control structures similar to those in C.

DO{ }WHILE command
This command executes do{..}while macro control.

FOR{ }command
This command executes for{..} macro control.

WHILE{ }command
This command executes while{..} macro control.

REPEAT{ }command
This command executes repeat macro control.

BREAK command
This command exits a macro.

LALL command
This command specifies display output by a macro.

SALL command
This command suppresses display output by a macro.

MLIST command
This command displays the registered macros.

KILL command
This command deletes registered macros.

IF{} command
This command executes a command under conditional control.

KEYIN command
This command specifies input from the keyboard.

Macro Commands

8. Macro Commands 223

{< > < >} Execute macro command

{<macro name><macro body>}

This command defines a macro command.

<macro name> is the name of the macro being defined.

If {<macro name>] is input, the macro input prompt “?” appears and the
system waits for the input of the body of the macro being defined.

Multiple internal commands and macro commands can be freely written in the
<macro body> portion; there is no limit on the number of commands that can be
included, except for the capacity of the macro buffer.

No error checking of the commands is performed while <macro body> is be-
ing input. Error checking is performed only when the macro is executed. The
input of <macro body> is terminated by inputting(}. If a macro is defined
with the same name as an internal command of the C source code debugger, the
following error message appears:

“Conflicting Dialog command.”

In addition, if a macro is defined with a name that is the same as that of a
previously defined macro, the old macro definition is deleted.

A macro command cannot be defined from within a macro command.

In other words, macro commands can only be defined in the C source code
debugger command input mode (when the “>” prompt is displayed).

Reference: The user can change the “>” prompt to a different character by us-
ing the PRMPT command.

While this command can be used to define simple macro commands after the
C source code debugger has been started up, large macro commands can be more
easily described by using an editor beforehand and then using the batch function
for macro registration.

In addition, in order to save macro commands that were defined within the C
source code debugger, it is possible to use the MLIST command to write the mac-
ros to a file.

Symbol

Macro Commands

@ 224

Example

>{TEST1
? bp sec, ex
? do{
? 9
? while{_ _run_ _
? 0}
? }while val(sec[0]!=9)
?}
>
[0 <command and MLIST command]
Notes on macro description
G (1) An error will result if the description “%0” is made within a
macro.
Example of a description that generates an error:
{test
while{_ _run _
}
repeat {wi0, wil, wi2
d %0
}
}

In order to implement “%0” in a macro, use “%%".
Example of a description that does not generate an error:
repeat {wi0, wil, wi2,
d %%0
}

(2) In the case of <macro command>{<parameter list, etc.>}, a
space between the macro command and the “{” will prevent the
macro from being properly recognized. The “{" should follow
immediately after the macro command.

Examples where macro is recognized normally:
for{<command 1>,<expression>,<command 2>
<macro body>
if{<parameter list>

Examples where macro is not recognized normally:
for i {<command 1>,<expression>,<command 2>
<macro body>
if . {<parameter list>

Macro Commands

8. Macro Commands 225

[] Execute macro command

<macro name>[<parameter list>]

A defined macro can be executed with the same input format as an internal
command of the C source code debugger. In other words, there is no special
command that is needed in order to execute a macro command. (As long as the C
source code debugger prompt is displayed, a macro command can be executed
simply by inputting the macro name.)

In addition, up to 10 parameters can be specified for a macro command. The
parameters are delimited by commas. The parameters specified in the macro
command replace the pseudo-parameters %0, %1, ..., %9 within <macro body>
when the command is executed.

%0 Corresponds to the first parameter in the macro command
%21 Corresponds to the second parameter in the macro command

%9 Corresponds to the tenth parameter in the macro command

A macro command that is executing can be interrupted by pressing the ESC
key. When specifying parameters, commas (“,”) and single quotation marks (')
can be enclosed in square brackets ([..]) when they are included within a character
string so that the string is treated as a single parameter. In this case, the square
brackets are deleted from the character string when it is passed to the macro as a

parameter.

Symbol

Macro Commands

@ 226

Example

>{calc
?h %0
?}

>calc 1,2
>h 1

oct dec
00000000001

>calc [1,2]
>h 1,2
oct

hex asc float
1 00000001 '...." 0.000000e+00

dec hex asc

+: 00000000003 3 00000003 "...." 0.000000e+00
- 37777777777 -1 FFFFFFFF '...." -6.805647e+38
double: 0.000000000000000e+00

>

float

Macro Commands

8. Macro Commands 227

DO{ YWHILE

DO {<macro body>} WH”_E <expression>

In the same manner as a macro command definition, if TQ{ input, the
macro input prompt “?” is displayed and the system enters macro input mode.
Multiple commands and macros can be freely written in the <macro body> por-
tion; there is no limit on the number of commands that can be included, except for
the capacity of the macro buffer.

The input of <macro body> is terminated by inputting
“{WHILE<expression>1".

After the entire <macro body> is executed, the value of <expression> is evalu-
ated. If the value is 0, the macro terminates; if the value is not 0, <macro body> is
executed again, starting from the beginning. The commands in <macro body> are
always executed at least once in a DO{..}WHILE macro.

Example
{test3

reset
do{
t
}while val(sec[0]!=9)
}

[0 Macro command definition]

Symbol

Macro Commands

@ 228
FOR{ }

Macro control execution

FOR {<command 1>,<expression>,<command 2><macro body>}

Example

In the same manner as a macro command definition, if “FOR{<command
1> <expression>,<command 2Z¥}is input, the macro input prompt “?” is dis-
played and the system enters macro input mode. Multiple commands and macros
can be freely written in the <macro body> portion; there is no limit on the number
of commands that can be included, except for the capacity of the macro buffer.

The input of <macro body> is terminated by inputtingI"}

In the FOR{..} macro, <command 1 > is executed and then the value of <ex-
pression> is evaluated. If the value is 0, the macro terminates; if the value is not
0, <macro body> is executed from the beginning. After <macro body> is ex-
ecuted, <command 2> is executed and then <expression> is evaluated again.
<macro body> and <command 2> are then executed in turn until the value of the
expression is 0. In the FOR{..} macro, if the value of <expression> is 0 the first
time it is evaluated, the commands in <macro body> are not executed even once.

{fort

for{j=0x100,j<0x200,j=j+1
e jff

}

}

This macro command writes the data specified by parameter 3 in every other
byte in memory, starting from the address indicated by parameter 1 and continu-
ing to the address indicated by parameter 2.

[O Macro command definition]

Macro Commands

8. Macro Commands 229

WI I I L E{ } Macro control execution

WH | LE {<expression><macro body>}

Example

In the same manner as a macro command definition, if “WHILE{<expression>
is input, themacro input prompt “?” is displayed and the system enters macro
input mode. Multiple commands and macros can be freely written in the <macro
body> portion; there is no limit on the number of commands that can be included,
except for the capacity of the macro buffer.

The input of <macro body> is terminated by inputtingI"}

In the WHILE{..} macro, the value of <expression> is evaluated first. If the
value is 0, the macro terminates; if the value is not 0, <macro body> is executed
from the beginning. After <macro body> is executed, <expression> is evaluated
again. <macro body> is executed continually until the value of the expression is
0. In the WHILE{..} macro, if the value of <expression> is 0 the first time it is
evaluated, the commands in <macro body> are not executed even once.

>whi | e{ _PC! =4000009f
2%t

g
>

This macro command step executes the program until the PC register reaches
0x4000009f.

[0 Macro command definition]

Macro Commands

@ 230
RtPtA I { } REPEAT {..} Macro control execution

R E P EAT {<parameter list><macro body>}

In the same manner as a macro command definition, if “REPEAT{<parameter
list>} " is input, the macro input prompt “?” is displayed and the system enters
macro input mode. Multiple commands and macros can be freely written in the
<macro body> portion; there is no limit on the number of commands that can be
included, except for the capacity of the macro buffer.

The input of <macro body> is terminated by inputtingI"}

In the REPEAT/{..} macro, the pseudo-parameter “%0” in <macro body> is
replaced by each element in <parameter list>, one by one, as <macro body> is
executed. Therefore, <macro body> is repeatedly executed a number of times
equal to the number of elements in <parameter list>. The maximum number of
parameters that can be specified is 10.

Example

>d 80000000

80000000 A3 06 86 00 ED CB 31 00 01 F2 FO 90 00 2D 00 20
>repeat{80000000,80000002,80000004,80000006

?e %0,ff

?}

>e 80000000, ff

>e 80000002, ff

>e 80000004, ff

>e 80000006, ff

>d 80000000

80000000 FF 06 FF 00 FF CB FF 00 01 F2 FO 90 00 2D 00 20

>

[O Macro command definition]

Macro Commands

8. Macro Commands 231

BREAK

BREAK

This command can only be used within the <macro body> portion of a
macro command. If a BREAK command is executed in a macro, that
macro is forcibly exited one level.

Example

>{chkgo

?bp .45
?while{l

?9

while{_ _run_
}

? if{val(sec[0]==9)
? break

?}

?}

?}

>

In this example, when the IF condition in the CHKGO macro is satisfied, the

BREAK command is used to exit the WHILE loop.

Macro Commands

@ 232
L/ \ L L Macro display output specification

This command resumes display of the commands within the macro com-
mand and of the prompt in the Command window after such display was
suppressed by the SALL command.
The C source code debugger is in the LALL state when it is started up. The
LALL command and the SALL command have opposite functions.
Example
>{test
?sall

2t

?d 80000000

?lall

2t

2d

?}

>test

>sall

—— IM=0 S=0 D0 =00000000 D1 =00000000 D2 =00000000 D3 =00000000
PSW=0000 A0 =00002000 A1 =00000000 A2 =00000000 A3 =00000000
PC=80000008 MDR=00000000 LIR=80000006 LAR=00000000 SP =00002000

add -0C,sp
80000000 FC DC 00 20 00 00 F2 FO F8 FE F4 FC CD 14 20 00
>t
—— IM=0 S=0 DO =00000000 D1 =00000000 D2 =00000000 D3 =00000000
PSW=0000 A0 =00002000 A1 =00000000 A2 =00000000 A3 =00000000
PC=8000000B MDR=00000000 LIR=80000008 LAR=00000000 SP =00001FF4

mov 2014,d1
>d
80000010 00 A5 00 C3 OF FC DC 00 00 00 00 00 60 50 29 FC
>

[0 SALL command, LIST command, and NLIST command]

Macro Commands

8. Macro Commands 233

S/ \L L Macro display suppression specification

SALL

This command suppresses display of the commands within the macro
command and of the prompt in the Command window.
The SALL command and the LALL command have opposite functions.

Example

>{test
?sall
2t

?d 100
?}

>

>test

>sall

—— IM=0 S=0 DO =00000000 D1 =00000000 D2 =00000000 D3 =00000000
PSW=0000 A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000
PC=80000000 MDR=00000000 LIR=40000000 LAR=00000000 SP =00000100

mov 2000 _i ,a0
00000100 D7 16 BLFOE7 79 FD 7B DE 1D D2 86 B7 8F 33 D3
>
>

[0 LALL command, LIST command, and NLIST command]

Macro Commands

@ 234
MLIST

MLIST
M L|ST <macro name>
M LlST> <macro file name>

These commands display the macros.

MLIST This command displays all of the macro names currently defined.
MLIST This command displays the macro body (the contents of the macro defini-
<macro name> tion) of the macro command specified by <macro name>.

MLIST> This command writes the contents of all of the currently defined macros
<macro file name> into the file specified by <macoro file name>.

This file can be loaded by means of the C source code debugger batch function
(“<” command).

Example
>mlist

Q

TLALL

TSALL

>mlist tlall

sall

t

d10

lall

t

d
>mlist>macro.log
>

[0 “<” command]

Macro Commands

8. Macro Commands 235

K I L L Delete macro

KI LL <macro name>
KILL*

These commands delete currently registered macro commands.

K I L L <macro name> This command deletes the macro command specified by <macro name>.

KIlLL* This command deletes all of the macro commands that were defined by
the user.

Example

>mlist

BKSET

DISP
INIT

Q

RUN
>kill run
>mlist
BKSET
DISP
INIT

Q

>kill *
>mlist

Q

>

[0 Macro command definition]

Macro Commands

@ 236
IF{ } Conditional execution

”: {<expression><command>[} ELSEIF{<expression>]<command>[} ELSE{]J<command>}

This macro command is valid only within a <macro body>. First, <expres-
sion> is evaluated, and if the value is not 0, the next <command> is executed.
If the evaluated value is 0, the <command> that follows the ELSE that corre-
sponds to the IF is executed.

Example
— {chkgo
g

esc
If the value of the pro- .
gram counter is while{_ _run_
“0x4000009f", dump }

the contents of memory;— if{_PC==0x4000009f
starting from the “sec”

symbol address; other- d sec
wise execute five steps. telse{
t5
}
L}
| {chkram
t5
If the data in address 70 if{(*70&0xff)==8
is “8”, output the mes- pftest OK'
sage; otherwise, output |
the data in address 70. Jelse{
pf'&x',*70&0xff
}
|

Macro Commands

8. Macro Commands 237

K EY I N Specify input from the keyboard

KEYIN

This command is used within a user-defined macro command to ask for the
next line to be input from the keyboard.

Example
>{setd

?e 80000100 _
211

222

?33

?keyin

?66

?.

?}

>setd

>e 80000100

address asc oct dec hex data
80000100 ‘" 370 -8 F8 11
80000101 “." 347 -25 E7 22
80000102 ‘" 003 303 33
80000103 ‘$’ 044 36 24 44
80000104 ‘i’ 301 -63 C1 55
80000105 ‘&’ 046 38 26 66
80000106 {* 173 123 7B .

>

In this example, the “55” in address 80000104 was input from the keyboard,;
all of the other data was input through macro expansion.

Macro Commands

@ 238

Chapter 9
Appendix

. In-circuit Emulator Specifications
. Switch Settings for Interface Board
. Notes for Probe Section

. C Source Code Debugger
Error Messages

. Quick Reference

6. Supplement for the PC/AT (DOS/V)
Version

AW NP

o1

@ 240

In-circuit Emulator Specifications

1-1. Functional Specifications

Iltem

Specifications

Target device

MN210300 Series

Memory capacity

Emulation memory

1024K (standard)
(high-speed memory:512K,
low-speed memor:512K)
2560K (maximum)
(high-speed memory:512K,
low-speed memory:2048K)

Break functions

Execution address
breaks

Data breaks

4 events maximum

Conditions: area specification,
pass count specification

4 events maximum

Conditions: area specification,
pass count specification, bit
mask, read/write/access specifi-
cation, data width specification,
match/no match specification

AND breaks Available
Sequential breaks 8 levels
“Trace full” breaks Available
External breaks None
Trace functions Trace memory 16K steps

capacity

Data acquired
through tracing
Trace mode

Execution address, data address,
data, bus status information
Normal mode, branch trace
mode, event condition trace
mode

Timer functions

Measurement mode

Time measurement
resolution

Continuous measurement mode,
maximum/minimum execution
time measurement mode
Switchable among 25ns/50ns/
100ns

Trigger output Trigger outputs 8 signals
function
RAM monitor Sample memory 256 bytes
function
Display mode Dump list mode
Bitmap mode
Performance Profile Execution ratio (%) display
measurement measurement
function
Clock 0OsC1 Target side
(separate excitation only)
Xl Target side

(separate excitation only)

In-circuit Emulator Specifications

9. Appendix 241

1-2. Electrical Specifications
. ___|]

Item Rating

Emulator and probe supply voltage 0.5t0 3.6V

Trigger output voltage -0.3t0 3.6V

Trigger output current *4mA

1-3. Environment Specifications
. ___|]

Item Rating

Temperature During operation 10°C to 30C
During storage 0°Cto 45C

Humidity During operation 20% to 80%
During storage No more than 90%

1-4. External Dimensions
.|

Length x Width x Height 130mm x 100mm x 40mm

In-circuit Emulator Specifications

@ 242

1-5. Target Interface

Trigger output section (PROBE CN2)

ICE Control chip

PROBE CN2 2

A
L

—]
\,
CMOS driver

In-circuit Emulator Specifications

9. Appendix 243

Interface Board Switch Settings

The interface between the host computer and the In-circuit Emulator uses one
byte of I/0 space in the host computer. Only the lower eight bits of the I/O ad-
dress are decoded. The upper eight bits are used within the board. Set the inter-
face board switches in accordance with the computer system being used. Al-
though any address may be used as an I/O address, as long as it is an unused
address, the addresses shown in the table that follows should normally be set.

2-1. When the Host Computer is the PC-9800 Series

t |
Fuseless circuit breaker ﬂi

DSW3

I:] — DIP switches

D /
CN2 DSW6

DSW1 DSW2 DSW4 DSW5 DSW7 DSw8 @

Rotary switches

ply from damage due to overcurrent. If overcurrent flows through the
breaker for any reason, the white button pops out and the current is inter-
rupted. If the fuseless circuit breaker is tripped, determine what the cause
was before pushing the white button back in. When pushing the white
button, do not use too much force.

The white button is deemed to have popped out when it extends 1 or 2 mm
out from the fuseless circuit breaker when viewed from above.

G The function of the fuseless circuit breaker is to protect the 5V power sup-
[|

Interface Board Switch Settings

@ 244

* Rotary switch settings (DSW1,2,4,5,7,8)

I/O address| DSW1 |DSW2 | DSW4 |DSW5 | DSW7 |DSW8
xxDOH -- -~ 0 -- D 0
xxD1H -- -- 0 -- D 1
xXDFH -- -- 0 -- D F
XXEOH -~ -- 0 -- D F
xXE1H -- -- 0 -- E 1
XXEFH -- -- 0 -- E F

Note: “The “-” indicates any position is fine.
Set an unused address from xxDOH to xxEFH as the 1/O address.

« DIP switch (DSW3, 6) settings

1 2 3 4
DSW3 OFF OFF ON ON
DSW6 OFF OFF OFF ON

Interface Board Switch Settings

9. Appendix 245

2-2. When the Host Computer is the PC-98 NOTE Series

Open this panel to set the switches.

<
p
0 L PanaXSeries @J o
ICE POWER The DQ jack is used to supply th.e power for
Panasonic EPROM programmers used independently.
(The AC adapter, sold separately, is required.)
Connector to It is not required when the power for PanaX is
Il PC-98 NOTE used.
| |/ The ICE POWER indicator lights when the
L < D power is supplied from the DC jack.
DC jack
DIP switch
Rotary switch 1 [A19-A16]
Rotary switch 2 [A15-A12]
Rotary switch 3 [A7-A4]
Rotary switch 4 [A3-A0]
(Yy ¥ ¥ ¥
0 |é§§é§2§§|@|@|@|@|
ICE POWER
I
LG D |

Interface Board Switch Settings

@ 246

Rotary Switch (DSWL1 to 4) settings

I/O address DSwW1 DSW2 DSW3 DSW4
xxDOH - - D 0
xxD1H - - D 1
XXDFH - - D F
XXEOH - - E 0
xXE1H - — E 1
xXXEFH - - E F

Note: The “-” indicates any position is fine.
Set an unused address from xxDOH to xxEFH as the 1/O address.

DIP switch settings

1 2

ON ON

OFF

OFF

ON

ON

ON

OFF

Interface Board Switch Settings

9. Appendix 247

2-3. When the Host Computer Is a PC/AT (DOS/V Series)
Machine

Rotary DIP switches

IBM PC/AT (XT) I/F BOARD

D) @)
- ST | DSw7
3% “" @
%O%% bews :@% DIP switches
g ! 5| =
635 | pswa =Y psws
33456;
%%f DSW3
m345g =
%00‘5‘% DSW2 =
&3456—;0
D%@ DSW1
ﬁa)—l
@
ULy

¢ Rotary switch (DSW1, 2, 3, 4, 6) settings

I/O address | DSW3 DSW2 DSW1 DSwW4 DSW6
0300H 3 0 0 - -
0301H 3 0 1 - -
030FH 3 0 F - -
0310H 3 1 0 - -
0311H 3 1 1 - -
03FFH 3 F F - -

Note: “-” indicates any position is fine.

Set an unused address from 0300 to 03FFH as the 1/O address.
¢ DIP switch (DSWS5, 7) settings

1 2 3 4
DSW5 OFF OFF OFF ON
DSW7 OFF ON ON ON

Interface Board Switch Settings

@ 248

Special Notes on the Probe

3-1. Electrical Specifications

The absolute maximum ratings and electrical characteristics are the same as
those of the microcomputer inside the probe. When power is supplied from the
target, the supply voltage must be between -0.5V and 3.6V, and while the unit is
in operation, stable voltage between 2.5V and 3.6V must be supplied. Operation
is not guaranteed if the supply voltage is not stable.

3-2. Environment Specifications
. ___|]

Item Ratings

Temperature During operation 10°C to 30C
During storage 0°Cto 45C

Humidity During operation 20% to 80%
During storage No more than 90%

Special Notes on the Probe

9. Appendix 249

C Source Code Debugger Error
Messages

The C source code debugger displays an error message when an error is found in
a command that was input by the user.
The C source code debugger error messages are explained below.

Not enough memory.

The C source code debugger could not be started up because there is not enough
available memory. Restart the C source code debugger with the -B or -F option.

EMS driver not found./Not enough free space in EMS.

This error message appears when an attempt was made to use EMS memory as a
work area with the -FEMS or -BEMS option, but either the EMS driver could not

be found or there was not enough free space in the EMS memory. Check the
EMS-related settings in the CONFIG.SYS file.

Help file not found.

The PT103.HLP file was not found. Place the PT103.HLP file either in the cur-
rent directory or in the directory specified by the environment variable HELP.

The Emulator is operating abnormally (free-run timer error).

The timer in the in-circuit emulator is not operating properly. If this error occurs,
contact us at the address indicated at the end of this manual.

The Emulator is operating abnormally (profile address latch error).

The profile address latch function (get execution address function) in the in-cir-
cuit emulator is not operating properly. If this error occurs, regardless of whether
or not the target system is operating correctly, contact us at the address indicated
at the end of this manual.

The emulator controller power is off.

The in-circuit emulator could not be started up because the emulator controller
power is off. Turn the power adapter on and restart the C source code debugger.

C Source Code Debugger Error Messages

@ 250

The target system power is off.

The target system power is off. Turn the target system on and restart the C source
code debugger. When starting up the C source code debugger without a target
system, use the -NOTARGET option.

The ““NOTARGET” option cannot be specified while a target system is connected.

Only specify the ““NOTARGET” option when using the in-circuit emulator by
itself without connecting a target system. The ““NOTARGET” option cannot be
specified while a target system is connected.

The emulator controller is not outputting any voltage.

The C source code debugger could not be started up because the emulator control-
ler is not outputting any voltage. If this error occurs, contact us at the address
indicated at the end of this manual.

Check for an address conflict, etc., with the interface board.

Check to see whether the interface board address and the address set by the In-
staller (PINS103.EXE) are the same.

Monitor program loading failed.

The loading of the Monitor program (MON103.EX) failed. There is most likely a
problem either in the hardware or in the Monitor program file.

Monitor program (MON103.EX) not found.

The Monitor program file (MON103.EX), which is needed in order to start up the
C source code debugger, was not found. Copy the MON103.EX file either into
the current directory or into the directory specified by the environment variable
PATH.

Monitor program initialization failed.

The Monitor program was not started up. There is most likely a problem either in
the hardware or in the Monitor program file.

Wrong Monitor program version.

The C source code debugger could not be started up because the Monitor program
is the wrong version. Copy the Monitor program file that is suited to this
Debugger either into the current directory or into the directory specified by the
environment variable PATH.

C Source Code Debugger Error Messages

9. Appendix 251

Overvoltage from the target system was detected.
Turn off all power, eliminate the cause of the problem, and then restart.

Overvoltage from the target system was detected. Turn off all power, and then
check the target system for any problems.

An error occurred in communications between the Emulator and the microcontroller.

Quit the Debugger.

Execute the INIT command.

Execute the RESET command.

Insufficient overlap area.

An error occurred in communications between the in-circuit emulator and the
microcontroller. Check whether the microcontroller is hung up or if there is a
problem in the target system.

A problem occurred in the in-circuit emulator, microcontroller, or emulator con-
troller (including cases where the power is off). Quit the Debugger immediately.

Execute the INIT command to initialize the in-circuit emulator because a problem
occurred in the in-circuit emulator.

Execute the RESET command to initialize the microcontroller because a problem
occurred in the microcontroller.

There is insufficient overlap area (free disk space). Either use the -B option to
reduce the size of the debugging information area or the macro registration area,
or else allocate free space on the disk.

Cannot be used in overlap mode.

lllegal command name.

Illegal command format.

An attempt was made to execute a command that cannot be used in overlap mode.

The specified command name could not be recognized as a C source code
debugger internal command or as a macro command.

The command input format, parameter specification method or number of param-
eters is incorrect.

C Source Code Debugger Error Messages

@ 252

Illegal parameter.

Illegal address specification.

Illegal data specification.

Illegal alignment.

C equation calculation error.

C variable not found.

The parameter specification method or number of parameters is incorrect.

This error occurs when either an address that is not appropriate for the address
input field was input, or the start address and end address are reversed. This error
also occurs when an unregistered symbol name was used.

This error occurs when a value that is not appropriate for the data specification
field (because it is outside of the allowable range, etc.) was specified. This error
also occurs when an unregistered symbol name was used.

This error occurs when the address alignment for the F or S command is not cor-
rect (i.e., an odd address was specified for 16-bit data or an address that is not a
multiple of four was specified for 32-bit data).

An error occurred in a C equation calculation in the “?” command or the VAL
command.

The C variable specified by the “?” command or the VAL command was not
found.

Operators with secondary effects cannot be used.

Operators with secondary effects (=, +=, —=, etc.) cannot be used in the “?” com-
mand. Use the VAL command with operators with secondary effects.

A macro cannot be defined within a macro.

Define macro commands at the C source code debugger command level. Macro
commands cannot be defined within a macro command.

A macro cannot be deleted within a macro.

Delete macro commands at the C source code debugger command level. Macro
commands cannot be deleted within a macro command.

C Source Code Debugger Error Messages

9. Appendix 253

Macro name duplicates an internal command.

The macro name that was being defined matches the name of an internal com-
mand of the C source code debugger. Use a different macro name.

Insufficient macro registration area.

Either the macro command registration area is full, or else too many macro com-
mands are being defined. Use the -B option to expand the macro command regis-
tration area and then start up the C source code debugger.

Macro command definition was not terminated properly. { }

There is an error in the correspondence of the brackets (“{}") within the macro
command definition.

Macro nesting has exceeded 15 levels.

Macro commands can be nested (i.e., a macro command can be executed from
within a macro command) up to a maximum of 15 levels.

Specified file not found.

The specified file was not found.

Specified file cannot be opened.

The specified file could not be opened. Confirm that the file exists. This error
also occurs if there are too many files open at one time.

File cannot be created.

The file could not be created, either because there is not enough free disk space, or
because there are too many files open at one time. First, confirm the amount of
free disk space; if there is adequate disk space, close any unnecessary files.

Insufficient free disk space.

There is not enough free disk space.

Checksum error.

A loading operation failed because there is a problem in a Motorola S format or
Intel HEX format file.

C Source Code Debugger Error Messages

@ 254

Illegal file format.

Subprocess execution failed because of a problem in the contents of the MS-DOS
command file (execution format: .COM/.EXE).

No debugging information found.

The debugging information was not found when an execution format file
(Matsushita EX format) was loaded with the L command. Compile/assemble the
file with the option that outputs debugging information.

Bad debugging information.

There is a problem in the format of the debugging information. This error should
normally not occur; if it does occur and it is reproducible, contact us at the address
indicated at the end of this manual.

Insufficient debugging information area.

There is no free space in the debugging information area. Use the -B option to
enlarge the debugging information area and then start up the C source code
debugger.

Subprocess not terminated.

When a subprocess has been started up, the C source code debugger cannot be
quit before the subprocess is terminated. Terminate the subprocess first, before
quitting the C source code debugger.

Cannot return to PICE without terminating the subprocess.
(Press the space bar to return to the subprocess.)

It was not possible to return to the C source code debugger because the subprocess
is using too much memory. Terminate the subprocess first, before returning to the
C source code debugger.

Corresponding command does not exist.

The help screen could not be displayed because the specified command does not
exist.

User program cannot be executed because the reset pin is low.

A user program could not be executed because the user reset pin is low. Set the
user reset pin high before executing the user program.

C Source Code Debugger Error Messages

9. Appendix 255

User program cannot be executed.

The user program cannot be executed. Check the target system for any problems.

The stack pointer cannot be set to an address that is not a multiple of four.

The stack pointer must be set to an address that is a multiple of four. This error
occurs if the stack pointer is set to an address that is not a multiple of four and an
attempt is made to execute a user program.

Stack pointer cannot be set to internal ROM area./
Stack pointer cannot be set to special register area./
Stack pointer cannot be set to an unmounted area.

The stack pointer can only be set to internal RAM, external memory, and emula-
tion RAM areas. These errors occur if the stack pointer is set to any other area and
then an attempt is made to execute a user program.

User reset was generated.

This warning message is displayed when a user reset was generated in the target
system.

Data strobe error.

This error is generated when an external bus access in a user program does not
terminate within a certain period of time.

Forced break failed.

Although a forced break was issued, the user program did not terminate. Check
the target system for problems.

User program is running.
This error occurs when an attempt was made to execute a command that does not

have an on-the-fly function while a user program was running.

User program is halted.

The TG and TS commands cannot be executed while the user program is halted.

Tracing is in progress.

The trace results cannot be displayed without halting the tracing operation.

C Source Code Debugger Error Messages

@ 256

Tracing has already been halted.

Because tracing has already been halted, the TS command cannot be used to halt
tracing.

Tracing has not been halted.

Because tracing did not halt even though the trace halt processing was executed,
the trace results cannot be displayed. Because it is likely that there is a problem
with the in-circuit emulator, contact us at the address indicated at the end of this

manual.

Trace contents have been cleared.

If the trace contents have been cleared or if tracing has not been performed even
once since the C source code debugger was started up, the commands that display
the trace results (TD and TDW) cannot be executed.

The delay counter specification is not correct.

An attempt was made to specify a value for the delay counter that was outside of
the permitted range from 257 to 16,384.

Cannot be used after delay trigger has been tripped.

In delay trigger trace mode, tracing cannot be resumed (with the TG command)
once tracing was halted because the conditions were met.

Canceling a trace event.

This warning message indicates that a trace event is being cancelled or disabled.

Event/break cannot be set. (32 maximum)

No more than 32 software breaks and hardware breaks in total can be set.

Software break has already been set at the same address.

A software break has already been set at the specified address. Multiple software
breaks cannot be set at the same address.

Command cannot be registered.

A command could not be registered because there was insufficient area to register
<command> with the BP ~ or /C<command> command.

C Source Code Debugger Error Messages

9. Appendix 257

No further events/breaks can be set.

Up to four execution address events can be set, up to four data events each can be
set in internal data RAM and the external memory space, respectively, and a fur-
ther 8 events total can be set. These numbers cannot be exceeded. (The same
applies to hardware breaks.)

Event/break was not set.

This error occurs if a nonexistent break number was specified, or if a software
break was specified in a location that calls for a hardware event/break.

Event status does not change.

Hardware events/breaks cannot be set or changed while the microcontroller is in a
state where it does not operate, such as STOP, HALT, or SLEEP.

Could not map to the specified area.

An attempt was made to map emulation memory/extend memory to an area (inter-
nal RAM, special register area, etc.) that can not be mapped.

Could not map due to insufficient mapping blocks./
Could not map due to insufficient emulation blocks.

An attempt was made to map in excess of 8 emulation blocks.

Could not map due to insufficient emulation memory.

An attempt was made to map emulation memory in excess of the memory capac-
ity installed in the in-circuit emulator.

Changing mapping addresses to 4KB units.

Although mapping is performed in 4KB units, if the addresses were specified in
other than 4KB units, the C source code debugger adjusts the addresses so that
they are in 4KB units before mapping. This warning message is displayed in such
a case.

Changing time measurement to continuous mode.

This warning message indicates that time measurement was changed to continu-
ous mode because a timer event was cancelled or disabled.

C Source Code Debugger Error Messages

@ 258

Paused time measurement.

Time measurement is paused if a timer event was changed while the user program
was running with time measurement in partial mode. Furthermore, the measured
results up to that point are cleared. This warning message is displayed in such a
case.

Time measurement error occurred.

While the time measurement mode was partial mode, the length of time that the
in-circuit emulator can measure was exceeded.

Time measurement not completed.

While the time measurement mode was partial mode, time measurement was not
completed because a timer event (time measurement start/stop events) did not
occur.

Time measurement events not set.

The time measurement start and stop events were not set when the time measure-
ment mode was set as partial mode (measurement of time from the occurrence of
one event until the occurrence of a different event).

Memory access failed. (timeout)

An emulation memory read or write operation failed. If this error occurs fre-
quently, it is likely that there is a problem with the in-circuit emulator, so contact
us at the address indicated at the end of this manual.

Verify error.

Data was not written to memory properly. This error occurs when data was writ-
ten to an address in memory that has not been installed, or if a write was made to
write-only 1/O, etc.

Cannot write special registers.
A fill and block transfer (F or M command) cannot be made to the special register

area.

Duplicate watch point specification.

A watch point specification with the same contents has already been made.

C Source Code Debugger Error Messages

9. Appendix 259

Watch point cannot be set.

This error occurs when an attempt was made to set more than 16 watch points.

Specified setting does not exist.

The watch point registration that was to be deleted by the Y command does not
exist.

Sampling was not performed.

An attempt was made to display profile results before sampling the execution
status of each function with the profile function.

PICE internal error.

This error message is displayed when an error occurs in the C source code
debugger’s internal processing. This error should normally not occur; if it does
occur and it is reproducible, contact us at the address indicated at the end of this
manual.

C Source Code Debugger Error Messages

@ 260

Quick Reference

5-1. Window Commands

m Screen Control

Switch cursor (command/code)
Move cursor one character to left
Move cursor one character to right
Move cursor up one line

Move cursor down one line

Move cursor one word to left
Move cursor one word to right
Move cursor to beginning of line
Move cursor to end of line

Scroll up one screen

Scroll down one screen

Move cursor to beginning of text
Move cursor to end of text
Enlarge Option window

Reduce Option window

Enlarge Command window
Reduce Command window
Redisplay screen

Maximize Command window
Minimize Command window
Redisplay screen (and restore window to initial
Display/hide Option window

Switch option window

Switch between source and disassembled displ

Switch between source and disassembled displ

Size)

y
y

(cursor specification)

HOME

CTRL+A
CTRL+F
CTRL+Q*S
CTRL+QD
ROLL UP
ROLL DOWN
CTRL+QR
CTRL+Q<C
CTRL#
CTRL%
CTRI+
CTRL+
CTRL+J
CTRL+QW
CTRL+Q-Z
CTRL+QeJ
F2
CTRL+F2
F3
CTRL+F3

(CTRL+S)
(CTRL+D)
(CTRL+E)
(CTRL+X)

(CTRL+C)
(CTRL+R)

(CTRL+4)
(CTRL+O)

Quick Reference

m Execution/Breaks

9. Appendix 261

Execute (Go)

Execute up to cursor position (Come)
Single-step execution (SgIStp)

Set/cancel break (software break) (Break)
Function-step execution (FncStp)

Forced break

Forcibly terminate command

F5
F7
F8
F9
F10
ESC
CTRL+SHIFT+GRPH

Get/Select Text String

Get text string at cursor position (Get) CTRL+F9 (CTRL+G)

Select text string according to cursor position (Sel) CTRL+F10

Local commands for text string selection
Register memo (Memo) F1~F5,F10
Inspect (Inspct) F6 (CTRL+I) 0)
Register watch (Watch) F7 (CTRL+W) (W)
Display view (View) F8 (CTRL+V) V)
Get text string (Get) F9 (CTRL+G) (G)

File-related Commands

Switch source file SHIFT+HOME

Select file (File) F1

Search for text string (down (Search) F4 (CTRL+L)

Input/search for text string (dowh CTRL+Q<F

Search for text string (up (Srcht) CTRL+F4 (CTRL+B)

Stop search ESC

Quick Reference

@ 262

m Process Control

Return to Debugger CTRL+0
Go to subprocess CTRL+1
Display/hide Option window CTRL+4
Display/hide RAM monitor CTRL+5

m Shell
Backspace (delete one character) BS (CTRL+H)
Move cursor one character to left - SHIFT+~ (CTRL+S)
Move cursor one character to right - SHIFT+- (CTRL+D)
Move cursor to beginning of line (Ln Top) SHIFT+F4 (CTRL+A)
Move cursor to end of line (Ln Bot) SHIFT+F5 (CTRL+F)
Delete one character at cursor position DEL (CTRL+G)
Delete all characters (Ln Can) SHIFT+F7 (CTRL+U)
Switch between insert mode and replace mode INS (CTRL+V)
Display/find last history buffer SHIFT+ (CTRL+W)
Display/find next history buffer SHIFTH#+ (CTRL+Z)
Copy one character from history buffer (C1) SHIFT+F1 SHIET+ (CTRL+D)
Display History window (Histry) SHIFT+F2
Copy from history buffer (CA) SHIFT+F3
Display Extended Symbol window (ExtSym) SHIFT+F6
Clear history buffer (All Can) SHIFT+F8

Quick Reference

9. Appendix 263

m Others
Specify memo text string CTRL+SHIFT+F1~F10
Display/change option menu (Option) SHIFT+F10
Interrupt/quit Window command ESC
Interrupt display, interrupt step execution, etc. STOP (CTRL+C)
Pause/resume Command window display CTRL+S
Echo output to printer CTRL+P
Display help HELP

m Referencing/changing data

Inspect variables (Inspct) F6 (CTRL+I)

Local commands for Inspection
Zoom in/out (Zoom) F4
Change base (16<>10) F5
Inspect (Inspct) F6 (CTRL+I))
Register watch (Watch) F7 (CTRL+W) (W)
Display view (View) F8 (CTRL+V) V)
Specify array range (Range) F9 (R)
Change value (Change) F10 (©

Register variable watch (Watch) CTRL+F7 (CTRL+W)

Display variable view (View) CTRL+F8 (CTRL+V)

Quick Reference

@ 264

m Loading Programs

m Reading/Writing Files

® Running Programs

m Breaks/Events

5-2. Dialog Commands

L [<file name>] Loads both the program that is to be debugged and the de-
bugging information for that program.
LP [<file name>] Loads just the program that is to be debugged.

RD<file name>[,<address>]
Loads the specified file at the specified address.

WRc<file name>,<address S>,<address E>
Writes the contents of memory in the specified range of ad-
dresses to the specified file.

T [<count>] Runs a program under single-step execution. (F8)
P [<count>] Runs a program under function-step execution. (F10)
G [=<address S>][,<address B>][,/W]
Runs a user program. (F5, F7)
/W : Runs a user program, with the on-the-fly functions
disabled.
RESET Resets the microprocessor.

EV<address S>[~<addressE>][,<status>][,<data>[,{/B|/W|/D}][./N]][./<count>]
Sets an event.

<status> EX : Execution address event
RwW . A data event is generated upon a read or write
operation
R . A data event is generated upon a read operation
w : A data event is generated upon a write
operation

Omitted : If <data> is specified, RW (a data event is
generated upon a read or write operation) is
assumed. If <data> is not specified, EX
(execution address event) is assumed.

<access width> Specifies the data access width for a data event.
/B : An event is generated upon a 8-bit data access
W . An event is generated upon a 16-bit data access
/D . An event is generated upon a 32-bit data access

Omitted : Access width does not matter

Quick Reference

9. Appendix 265

/N An event is generated when the data does not match <data>.
EV /C {<list}*>} When the specified event is generated, all event generation flags
and counters are cleared.
EV Displays the events that have been set.
BP <address S>[~<address E>][,<status>][,<data>[,{/B|/W|/D}] [./N]][./<count>]
[,/C<command>]
Sets a break event. (F9)

<status> EX : Execution address break
RW . A data break is generated upon a read or write
operation
R . A data break is generated upon a read operation
w : A data break is generated upon a write operation

Omitted : If <data> is specified, RW is assumed. If <data> is not
specified, and <address E> or <count> is specified,
EX is assumed. Otherwise, a software break is

assumed.
<access width> Specifies the data access width for a data break.
/B : A break is generated upon an 8-bit data access
W . A break is generated upon a 16-bit data access
/D . A break is generated upon a 32-bit data access
Omitted : Access width does not matter
/N A break is generated when the data does not match <data>.
/C <command> Executes <command> automatically after the break.
BP Displays the breaks that have been set.
BPA <list> Sets the break events specified in the list as AND breaks.
BPS <list> Sets the break events specified in the list as sequential breaks.
BC/EC {<list>|*} Cancels the break events specified in the list.
BD {<list>|*} Temporarily disables the break events specified in the list.
BE {<list>|*} Enables the break events specified in the list.

m Hardware-related

TM [<mode>][{/B|/C|/S|/T[<count>],<event number>}]
Sets the trace mode.

<mode> INT . Internal RAM bus (default)
EXT : Extended RAM bus
ALL : Normal trace mode (default)
JMP : Branch trace mode

<event number> : Event conditional trace mode

Quick Reference

@ 266

/B Breaks when the trace memory becomes full.
/IC Tracing continues until program execution is halted.
/S Only tracing halts when the trace memory becomes full.

(User program execution does not halt.)

/T [<count>],<event number>
After the event condition specified by <event number> has
been met the number of times specified by <count>, tracing

halts.
™ /F Sets the default trace mode (INT,ALL,/C)
™ Displays the current trace mode settings.
TG Resumes tracing.
TS Halts tracing.
TD Displays the contents of trace memory (as a hex dump).
TDU Displays the disassembled contents of trace memory.
Subcommands for trace display mode:
[-]B Displays the top (bottom) of trace memory.
P <pages> Moves the display start frame the number of pages specified
by <pages>, and then displays one page.
N <frame address> Sets the display start frame to <frame address>.

D [<frame address S>][<frame address E>]

Displays the contents of the range of frames in hexadecimal.
L [<frame address S>][<frame address E>]

Displays the disassembled contents of the range of frames.

C Hides frames labelled with “:”. Executing this command
displays frames labelled with “;” again.
Q. Terminates trace display mode.
TDW Displays the contents of trace memory in window mode.
Tl [<mode>] Sets the timer mode.
<mode> RUN : Measures the time from the start of program
execution until it halts.
FIRST : Measures the time between events once.

MIN/MAX : Continuously measures the time between
events, and determines the maximum and
minimum times.

/S<event number> Specifies the event at which time measurement is to start.
/E<event number> Specifies the event at which time measurement is to end.
TI <clock> Sets the timer clock.

<clock> /T1 : 25ns resolution

/T2 : 50ns resolution
/T4 : 100ns resolution
/M : Microprocessor clock

Quick Reference

9. Appendix 267

TI STOP Cancels timer mode.

TI Displays the current timer mode and the timer value.

TRIG OUT <data> Outputs the 8-bit port data <data>.

TRIG RAM <address> Outputs the contents of <address> when the microprocessor
accesses <address>.

TRIG EVENT Outputs the event status.

TRIG Displays the trigger outputs that are currently set.

MAPI/EXI <address S>,<address E>[,{/F|/S}]
Allocates memory to emulation RAM.
/F Fast emulation RAM
IS Slow emulation RAM
MAPE/EXE <address S>,<address E>
Allocates memory to a resource in the user target.
MAP/EX Displays the memory allocation settings.

m Measuring Performance

SM [<address>] Specifies the starting address of the sample area.

SMB [<address>] Specifies the address to be displayed at the bit level.

SMC <number> Clears the address to be displayed at the bit level.

SMW Displays the RAM monitor screen.

SM Displays the current sample area.

PROF [<mode>] Tabulates the subroutine access status. (Profile function)
<mode> ON : Profile ON

OFF : Profile OFF
CLR : Clears the profile results.
PROF Displays the profile results.

Quick Reference

@ 268

m Memory

D [<type>][<address S>,<address E>][,<count>][,<base>]
Displays the contents of memory from <address S> to
<address E> in the specified base.
<type> B : Byte (8 hits) display
W : Word (16 bits) display
D : Double-word (32 hits) display
S : 4-byte real number (short floating point) display
L : 8-byte real number (long floating point) display
A : ASCII display
<base> /H : Hexadecimal display specification
/D : Decimal display specification
/O : Octal display specification
E [<type>][<address>][<data>]
Changes the contents of memory, starting from the specified
address, to the format specified by <type>.
<type> B : Changes format to byte (8 bits) format.
: Changes format to word (16 bits) format.
: Changes format to double-word (32 bits) format.
: Changes format to 4-byte real number (short
floating point) format.
C <address S>,<address E>,<address D>
Compares the contents of memory extending from <address
S> to <address E> with the contents of memory starting at
<address D>.
F [<type>]<address S>,<address E>,<data>
Fills the specified range of addresses with the value <data>
in the format specified by <type>.
<type> B : Byte (8 hits) fill
W : Word (16 bits) fill
D : Double-word (32 bits) fill
M <address S>,<address E>,<address D>
Transfers the memory block extending from <address S> to
<address E> to the position in memory starting at <address
D>.
S [<type>]<address S>,<address E>,<target pattern>
Displays the memory addresses within the range of ad-
dresses whose contents match <target pattern>.
<type> B : Byte (8 hits) search
W : Word (16 bits) search
D : Double-word (32 bits) search

nw o s

Quick Reference

m Registers
R

R <register name>
<register>+REG=<value>
<flag>+FLG=<value>

m Displaying Expressions
H <expression>

9. Appendix 269

Displays the contents of all flags and registers in
hexadecimal.
Changes the contents of <register name>/<flag name>.
Changes the value of the specified register.
Changes the value of the specified flag.

Displays the value of <expression> in octal, decimal, hexa-
decimal and ASCII.

H <expression 1>,<expression 2>

Displays the sum and difference of <expression 1> and
<expression 2>.

PRINTF/PF <format>[,<parameter>]

m Symbols
X <symbol name>

[.]J<symbol name>=<address>

[.J<symbol name>=*

m Displaying Code
V[.][<file name>:][<line>]

V <symbol name>

U [<address>]

UPUSH [<address>]

UPOP

UEND

UX [<address S>]
[[<address E>]
K

Displays in the same format as the “printf” function in C.

Displays <symbol name>. (All symbols are displayed if
none is specified.)
Sets (registers) the immediate value <address> in <symbol
name>.
Deletes <symbol name> from the symbol table.

Displays the specified line of the specified file in the Code
window.

Displays the source file for the specified symbol in the Code
window.

Displays disassembled code starting from the specified ad-
dress in the Code window.

Pushes the currently displayed address onto the address
stack and then displays disassembled code starting from the
specified address in the Code window.

Displays disassembled code starting from the last address
that was UPUSHed, and pops the address from the address
stack.

Displays disassembled code starting from the last address
that was UPUSHed.

Displays disassembled code starting from the specified ad-

dress in the Command window.
Function backtrace

Quick Reference

@ 270

m Assembly
A [<address>] Assembles code starting from the specified address and
expands it directly in memory.

m Referencing/Changing C Data
INS <variable name>[,<function name>]
Displays (inspects) the variable, array, etc., specified by
variable name.
W [<type>]<address>[,<count>][,<base>]
Registers an address for watching.
<type> B : Byte (8 hits) display
W : Word (16 bits) display
D : Double-word (32 hits) display
A : ASCII display (units of 8 hits)
S : 4-byte real number (short floating point) display
<base> /H : Hexadecimal display specification
/D : Decimal display specification
/O : Octal display specification
W? <C expression> Registers the C expression display for watching.
VAL/? <C expression>[,<function hame>]
Evaluates and displays the C expression.

Y {<list>|*} Deletes the watch registrations specified by the list.
B System
Q/EXIT Quits the C source code debugger.
HELP Displays the Help screen.
I<command> Executes <command>.
I Displays history.
I<character string> Searches for the history indicated by <character string>

m Screen Control/Miscellaneous

CLS Clears the Command window.

HOME Moves the Command window cursor to the Home position.
LIST Command window display output specification

NLIST Command window display output suppression specification
BEL Rings the bell.

TIME Displays the current time (HH:MM:SS).

WAIT Pauses the system.

PRMPT <prompt character> Changes the system prompt to the specified character.
* Comment line specification

Quick Reference

m Log Output/Batch Processing

® Memo

m Changing Base

m Setting Options

> <file name>

>> <file name>
>

<<file name>

9. Appendix 271

Outputs the Command window display/input log to the
specified file. (Log Output function)

Appends log output to the specified file.

Halts log output (closes the log file).

Reads Command window input from a file (batch function).
Batch processing can be interrupted by the ESC key.

MEM <number>[,<character string>]

MEM *
MEM

N {1016}

<reg>
<code>

<case>

Registers the character string in the memo indicated by
<number>.

Deletes all memos that are currently registered.
Displays the contents of all memos that are currently
registered.

Changes the input base to either decimal or hexadecimal.

OPTION <reg>[,<code>[,<case>]]

Sets various options. (SHIFT+F10)
{ON|OFF} : Suppresses Register window display.
{SRC|ASM} : Switches the Code window between
source and disassembled code.
{ON|OFF} : Controls discrimination between upper-
and lower-case characters in symbol
names.

Quick Reference

@ 272

m Macro Commands
{<macro name><macro body>} Defines the macro body for a macro name.
DO {<macro body>} WHILE <expression>
A macro command similar to the “do...while” statement in
C.
FOR {<command 1>,<expression>,<command 2><macro body>}
A macro command similar to the “for” statement in C.
WHILE {<expression><macro body>}
A macro command similar to the “while” statement in C.
REPEAT {<parameter list><macro body>}
Repeat macro command.

BREAK Exits the macro.

LALL Display output specification in a macro.

SALL Display output suppression specification in a macro.

MLIST<macro name> Displays <macro name>.

MLIST ><file name> Writes all macros that are currently defined to the specified
file.

KILL <macro name> Deletes <macro name>.

IF {<expression><command>[} ELSEIF {<expression>]<command>[} ELSE {J<command>}
Conditional control command similar to the “if, elseif, else”
statement in C.

KEYIN Instructs that the next line is to be input from the keyboard.

<{file name} Loads a macro from the specified macro file.

m Special Symbols

__ERR__ “1” when the previously executed command generated an
error, “0” when the command was executed normally.

_ RUN__ “1” while a user program is running, “0” otherwise.

__ DEBINF__ Special debugger symbol that is used delete all symbols.

Quick Reference

PageUp /Ctrl + C
(Rollup / Ctrl + C)
[0 p67]

PageDown / Ctrl + R
(RollDown / Ctrl + R)
[0 p67]

Alt+F1
(Ctrl+ <)
[p68]

Alt + F2
(Ctrl+ -)
[0 P68)

Alt + F3
(Ctrl+1)
[0 P68]

Alt + F4
(Ctrl+ 1)
[p68]

9. Appendix 273

Supplement for the PC/AT (DOS/V) Version
- 000000__]

This section explains the differences in keyboard functions when using the PC/
AT (DOS/V) version of the C Source Code Debugger, as compared to those of the
PC-9800 Series version.

* The key combinations shown in parentheses are those used in the PC-9800 Se-

ries.

6-1. Screen Operations
. __|]

When the cursor is located in the Code window, pressing these keys scrolls the
contents of the Code window up one screen. (Applies to both C source code

display and disassembled code display.)

When the cursor is located in the Code window, pressing these keys scrolls the
contents of the Code window down one screen. (Applies to both C source code

display and disassembled code display.)

Pressing these keys enlarges the Option window. In other words, the vertical
division between the Option window and the Command/Code window moves to
the left.

Pressing these keys reduces the Option window. In other words, the vertical divi-
sion between the Option window and the Command/Code window moves to the

right.

Pressing these keys enlarges the Command window (and reduces the Code win-
dow). In other words, the division between the Command window and the Code

window moves up one line.

Pressing these keys reduces the Command window (and enlarges the Code win-
dow). In other words, the division between the Command window and the Code

window moves down one line.

Supplement for the PC/AT (DOS/V) Version

@ 274

PageUp/Ctrl + R
(RollUp / Ctrl + R)
[0 p89

PageDown / Ctrl + C
(RollDown / Ctrl + C)
[0 p89]

Ctrl + Pause /
Ctrl + Break
(Ctrl +0)

[p77]

Ctrl + 1(ten-key pad)
Alt+1

(Ctrl+1)

[dP77)

Ctrl+ 4(ten-key pad)
Alt+4

(Ctrl+4)

[0 P77]

Alt+5
(Ctrl +5)
[0 p77]

6-2. Data Change/Reference Commands

Local commands within the Inspect window

Pressing these keys moves the displayed item up one item.

Pressing these keys moves the displayed item down one item.

6-3. Process Control Commands

. __|]
Pressing these keys while a subprocess is being executed pauses (halts) the sub-
process and returns control to the C Source Code Debugger.

Pressing these keys while a subprocess is paused pauses (halts) the C Source
Code Debugger and passes control to the subprocess.

These keys are used to hide and display the Register window and the Option win-
dow. If the Register window and Option window are not currently displayed,
pressing these keys displays the windows. If the windows are currently dis-
played, pressing these keys hides the windows. (These keys function in the same
manner as the F2 key.)

Pressing these keys switches to the RAM monitor display. To return to the
Debugger screen display, press “Alt+5” again.

Supplement for the PC/AT (DOS/V) Version

PageUp/Ctrl + R
(RollDown / Ctrl + R)
[p80]

PageDown / Ctrl + C
(Rollup / Ctrl + C)
(L p80]

End

(Help)
[0 p83]

Ctrl + Shift + Alt
(Ctrl + Shift + Grph)
[PT71)

9. Appendix 275

6-4. Shell Commands

Key operations for the History window and the Extended Symbol window

Pressing these keys scrolls the displayed items up one page.

Pressing these keys scrolls the displayed items down one page.

6-5. Other Window Commands

Pressing this key saves the debugging screen and displays help. When this key is
pressed, help for the last dialog command is displayed. For example, if this key is
pressed after there was an input error in a dialog command, the help screen for the
dialog command in question is displayed. In addition, if this key is pressed during
an Inspect operation or during character string selection (Sel), help is displayed
for the various local commands. To close the help screen, press the ESC key.

[o] HELP command]

If the microprocessor is hung up for some reason and the command that was input
will not terminate, press these keys in order to forcibly terminate the command.

Supplement for the PC/AT (DOS/V) Version

@ 276

Index

Symbols
Alphabetic

@ 278

Index

Symbols
I command
History function command 20"
Subprocess startup command -------------------- 2
Il command (History function) 20"
* command (comment) 211

command (register/change/delete symbol)

< command (batch processing) 2
> command (log output) 21
? command (evaluate C expression) ----------------- 1
__DEBINF__ 184
__ERR__ 99
__ RUN__ 99
Alphabetic

A

A (Assemble) command
Access status tabulation command (PROF)
Assemble command (A)

B

13
13
13

BC (Cancel Break) command
BD (Disable Break) command
BE (Enable Break) command
BEL (Bell) command
BP (Set/Display Break) command
BPA (Set AND Break) command
BPS (Set Sequential Break) command
BREAK (Exit Macro) command
Backtrace command (K)
Batch command (<)
Bell command (BEL)
Binary operator

5

Break Point Control commands

BC/EC command 133
BD command 137
BE command 139
BP command 130
03 BPA command 133
BPS command 134
? Break Program 45
183reak source 64
Ll Breaks
3 Cancel command (BC/EC) 136
97 Disable command (BD) 137
Enable command (BE) 139
Set AND Break command (BPA) --------------- 133
Set Sequential Break command (BPS) ---------- 134
Set/Display command (BP) 130
C
C (Compare Memory) command --------=----=------ 171
C Source Code Debugger 36,53
D ¢ Source Code Debugger Floppy Disk --------------- 20
164 source code display 43
DcLs (Clear Screen) command 208
Cancel all break events 46
Cancel break 45
Cancel event command (EC) 136
6Change Base command (N) 216
7Change Memory command (E) 169
9Change Prompt command (PRMPT) ---------------- 211

Character Strings
0 Values that can be handled by the C Source

Symbols/Alphabetic

3 Code Debugger 100

3@lear Screen command (CLS) 208

| Code window 62

1 Command input format 96

1 Command window 62
Comment command (*) 212
Compare Memory command (C) -------------=------ 171
Cursor Home command (HOME) ------------=------ 208

9. Appendix 279

D Display/Change Registers command (R) ----------- 177
D (Display Memory) command 167
DIP switches 243-247 E
DOGWHILE E (Change Memory) command 169
(Execute “do...while” Macro) command ----------- 227
Data Reference function 84-94EC (Cancel Break Event) command----------------- 136
Default extension specification, startup option (-E) 55\/ (Set event) command 127
Delete Watch command (Y) 195 EX (A||0§ate Memory) command ------------------- 158
Delete all in watch window 48 EXIT $EX'° con.1rlnan'd 201
Device Connection Procedure 25Electrlcal Specifications 241,248
Dialog command 95.21¢ Environment Spgcifications --------------------- 241,248
Disassembled code display 4 Env:;ar:ent Variables 25,902
Display Disassembled Code command (U) -------- 188 PANASRC 24,114,187
Display Expression command (H) ------------------- 179 PATH o5
Display Format commands
PE 180 TMP/TEMP 25
PRINTE 180 Error Messages 249
Display Help command Execute Program commands
HELP 202 G command 121
Display Memory command (D) 167 izznr?rr::::j 11113
Display Output Specification command (LIST) --- 209 ,
Display Output Suppression Specification Execut|on.) 0
External dimensions 241
command (NLIST) 209
Display Source Line command (V)------------------ 187
Display Time command (TIME) ---------=----=------ 210 F
Display Trace Dump Window command (TDW) - 151
Display Watch command F (Fill Memory) command 172
W command 195/ FOR {} (Execute “for...” Macro) command ------- 228
Display/Change Data commands File selection
command 184 File selection window display
A command 190| Fill Memory command (F)
C command 171| Flat cable
D command 167/ Flow of debugging operations
E command 169 Forced termination
F command 172 Function key
H command 179 Function-step execution
M command 174| Function-step execution command (P)
PF command 180
PRINTF command 180 G
R command 177
S command 175 G (Go) command 121
U command 188 Go command (G) 121
V command 187| Go to Editor Screen 50
X command 182

Alphabetic

@ 280

H
H (Display Expression) command ------------------- 17
HELP (Display Help) command -----------=-=------- 20
HELP (environment variable) 201
HOME (Cursor Home) command ------------------- 20
Hardware List 18
Hardware break 125
Hardware-related commands
MAP/EX command 158
TD/TDU command 148
TDW command 151
TG command 146
Tl command 153
TM command 142
TRIG command 156
TS command 147
Help
Display Help window 38
Hide Help window 39
History function commands
! 205
I 205
Host computer settings 2

IF {3

(Conditional Execution of Macro) command

L
9L/LP (Load Program) command ------------=-=------ 114
D L ALL (Output Macro Display) command ---------- 232
» LIST (Display Output Specification) command --- 209
8Load Program 40
Load Program command 112
L/LP command 114
RD command 115
WR command 116
M
M (Transfer Memory) command --------=----=------- 174
MAP/EX (Allocate Memory) command ------------ 158
MEM (Memo) command 215
MLIST (Display Registered Macros) command--- 234
Macro 51
Macro command execution 51
Delete Registered Macros command (KILL) -- 235
Display Registered Macros
command (MLIST) 234
Keyboard Input command (KEYIN) ------------ 237
b Macro Break command (BREAK) -----=-=------ 231
Macro Conditional Execution
command (IF{}) 236
Macro Display Output Suppression
command (SALL) 233

—————— 236 Macro Display Output command (LALL) ----- 232

INS (Inspect) command 198 Repeat Macro Execution

In-circuit Emulator 16,18,19 command (REPEAT{}) 230

Indicator disabled specification (-N), “do...while” Macro Execution

startup options 56 command (DO{JWHILE) 227

Inspect command (INS) 198 “for...” Macro Execution command (FOR{}) - 228

Inspect function 84 “while...” Macro Execution

Interface board 18,243 command (WHILE{}) 229

Installation 22 | Measure Execution Time command (TI) ----------- 153

Memo 82
Memo command (MEM) 215

K Memo window 64

K (Backtrace) command 191 Display 41

KEYIN (Keyboard Input) command ---------------- o3y Hide 41

KILL (Delete Registered Macro) command ------- 23gvlemory allocation (MAP/EX) 158
Monadic operator 104

Alphabetic

Move cursor between windows

N

9. Appendix 281

?2REPEAT {}
(Repeat Macro Execution) command --------------- 230
RESET (Reset User CPU) command --------------- 123
Read File/Program command (RD) ----------------- 115

N (Change Base) command 21dReal-time Trace Display command (TD/TDU) ---- 148
NLIST (Display Output Specification) command - 2gd3eference memory 47
Register Watch command (W) 195
Register window 63
O Display 41
, Hide 41
OPTION (Set Options) command ------------------- 21
i Reset command (RESET) 123
On-the-fly functions 11,16
Operating environment 2
Operations 104| S
Option window 64
Output Log command (>) 213 S (Search Memory) command 175
Overcurrent prevention 243 SALL

(Macro Display Output Suppression) command--- 233

SM (Set/Cancel Sample Area) command ----------- 161
P Screen control 66
P (Functi tep E tion) d 119ScrOIIing 42
unction-step Execution) command -------------
PANASRC (E p t Variable) 25 114 1E7Search Memory command (S) 175
nvironment Variable) ------- ,114, .
, , Set Option command (OPTION) ---------=--=-=------ 217
PATH (Environment Variable) 25
. Set break 45
PF (Format Display) command 18
i Set event command (EV) 127
PRINTF (Format Display) command --------------- 18
Set/Cancel Sample Area command (SM) ----------- 161
PRMPT (Change Prompt) command ---------------- 1))
. Set/Display Trigger command (TRIG) -------------- 156
PROF (Access Status Tabulation) command ------] .
Shell function 78
Pause command (WAIT) 211 . .
Single-step execution 44
Power ON/OFF 29 _. .
| Single-step execution command (T) ----------------- 117
Process control . I :
Profile func 11164 Size specification (-B), startup options --------------- 56
rofile function ,
b i 44 Software break 125
rogram execution
g Special symbols 99
Stack window 64
Q Display 41
Hide 41
Q/EXIT (Exit) command 201 start Trace command (TG) 146
Quit command (Q/EXIT) 201 Startup 56
Quitting the C Source Code Debugger ---------------- b&tatus display area 64
Stop Trace command (TS) 147
R Structure and union inspection 88
Subprocess 49
R (Display/Change Register Value) command ---- 177 Return from subprocess 50
RAM Monitor 77 Startup 49
RD (Fail/Program Read) command ----------------- 115 Startup command (!) 203

Alphabetic

@ 282

Supplied power 241 Values that can be handled by the C Source Code
Symbols Debugger in register names 100
Display command (X) 182 View function 93

Register/Change/Delete command (.) ----------- 184

Symbols handled W

by the C Source Code Debugger ------------------- D7
System Control commands W (Watch Registration) command ------------------ 195
I command 203-205 WAIT (Pause) command 211
Il command 205| WHILE {}
? command 197 (Execute “while...” Macro) command -------------- 229
HELP command 202 WR (Write File/Program) command ---------------- 116
Q command 201 watch Window 64

Watch function 92
Window 32

T Window command 66-83,256
T (Single-step Execution) command ---------------- 11Window display 62-65
TD/TDU (Real-time Trace Execution) command - 148Vrite File/Program command (WR) ---------------- 116
TDW (Trace Dump Window Display) command - 151
TG (Trace Start) commandl 14!6X
TI (Timer) command 153
TIME (Time Measurement) command -------------- 210X (Display Symbol) command 182
TM (Set/Display Trace) command ------------------ 142
TMP/TEMP (environment variable) ------------------ 25
TRIG (trigger setting/display) command ----------- 15 6Y
TS (Halt Trace) command 147Y (Delete Watch) command 199
Target interface 242
Timer command (TI) 153
Title display 65
Trace Memory command (TM) 142
Transfer Memory command (M) -------=----=-=------ 174
U
U (Disassembled Code Display) command -------- 188
\
V (Display Source Line) command ------------------ 187
VAL/? (Evaluate C expression) command --------- 197
Values that can be handled as addresses
by the C Source Code Debugger -------------=------- 100
Values that can be handled as line numbers
by the C Source Code Debugger -----------=--------- 101

Alphabetic

MNZ10300 Series
C Source Code Debugger User's Manual

March, 2000 2nd Edition 2nd Printing

Issued by Matsushita Electric Industrial Co., Ltd.

© Matsushita Electric Industrial Co., Ltd.

Semiconductor Company, Matsushita Electronics Corporation

Nagaokakyo, Kyoto, 617-8520 Japan
Tel: (075) 951-8151
http://www.mec.panasonic.co.jp

SALES OFFICES

m U.S.A. SALES OFFICE

Panasonic Industrial Company [PIC]
e New Jersey Office:
2 Panasonic Way, Secaucus, New Jersey 07094
Tel: 201-392-6173
Fax: 201-392-4652
e Milpitas Office:
1600 McCandless Drive, Milpitas, California 95035
Tel: 408-945-5630
Fax: 408-946-9063
e Chicago Office:
1707 N. Randall Road, Elgin, lllinois 60123-7847
Tel: 847-468-5829
Fax: 847-468-5725
e Atlanta Office:
1225 Northbrook Parkway, Suite 1-151,
Suwanee, Georgia 30174
Tel: 770-338-6940
Fax: 770-338-6849
e San Diego Office:
9444 Balboa Avenue, Suite 185
San Diego, California 92123
Tel: 619-503-2940
Fax: 619-715-5545

CANADA SALES OFFICE

Panasonic Canada Inc. [PCI]
5700 Ambler Drive Mississauga, Ontario, L4W 2T3
Tel: 905-624-5010
Fax: 905-624-9880

GERMANY SALES OFFICE

Panasonic Industrial Europe G.m.b.H.
e Munich Office:
Hans-Pinsel-Strasse 2 85540 Haar
Tel: 89-46159-156
Fax: 89-46159-195

[PIEG]

U.K. SALES OFFICE

Panasonic Industrial Europe Ltd. [PIEL]
e Electric component Group:
Willoughby Road, Bracknell, Berkshire RG12 8FP
Tel: 1344-85-3773
Fax: 1344-85-3853

FRANCE SALES OFFICE

Panasonic Industrial Europe G.m.b.H.
e Paris Office:
270, Avenue de President Wilson
93218 La Plaine Saint-Denis Cedex
Tel: 14946-4413
Fax: 14946-0007

[PIEG]

ITALY SALES OFFICE

Panasonic Industrial Europe G.m.b.H.
e Milano Office:

Via Lucini N19, 20125 Milano

Tel: 2678-8266

Fax: 2668-8207

[PIEG]

HONG KONG SALES OFFICE

Panasonic Shun Hing Industrial Sales (Hong Kong)
Co., Ltd. [PSI(HK)]
11/F, Great Eagle Centre, 23 Harbour Road,
Wanchai, Hong Kong.
Tel: 2529-7322
Fax: 2865-3697

Matsushita Electronics Corporation 2000

m TAIWAN SALES OFFICE
Panasonic Industrial Sales Taiwan Co.,Ltd. [PIST]

Head Office:

6th Floor, Tai Ping & First Building No.550. Sec.4,
Chung Hsiao E. Rd. Taipei 10516

Tel: 2-2757-1900

Fax: 2-2757-1906

Kaohsiung Office:

6th Floor, Hsien 1st Road Kaohsiung

Tel: 7-223-5815

Fax: 7-224-8362

m SINGAPORE SALES OFFICE

Panasonic Semiconductor of South Asia

[PSSA]
300 Beach Road # 16-01

The Concourse Singapore 199555

Tel: 390-3688

Fax: 390-3689

m MALAYSIA SALES OFFICE
Panasonic Industrial Company (Malaysia) Sdn. Bhd.

Head Office: [PICM]
Tingkat 16B Menara PKNS PJ No.17,Jalan Yong
Shook Lin 46050 Petaling Jaya Selangor Darul Ehsan
Malaysia

Tel: 03-7516606

Fax: 03-7516666

Penang Office:

Suite 20-17,MWE PLAZA No.8,Lebuh Farquhar,10200
Penang Malaysia

Tel: 04-2625550

Fax: 04-2619989

Johore Sales Office:

39-01 Jaran Sri Perkasa 2/1,Taman Tampoi
Utama,Tampoi 81200 Johor Bahru,Johor Malaysia
Tel: 07-241-3822

Fax: 07-241-3996

m CHINA SALES OFFICE
Panasonic SH Industrial Sales (Shenzhen)

Co., Ltd.

Panasonic Industrial (Shanghai) Co., Ltd.

[PSI(SZ)]
7A-107, International Business & Exhibition Centre,
Futian Free Trade Zone, Shenzhen 518048

Tel: 755-359-8500

Fax: 755-359-8516

[PICS]
1F, Block A, Development Mansion, 51 Ri Jing Street,
Wai Gao Qiao Free Trade Zone, Shanghai 200137
Tel: 21-5866-6114

Fax: 21-5866-8000

m THAILAND SALES OFFICE

Panasonic Industrial (Thailand) Ltd.

[PICT]
252/133 Muang Thai-Phatra Complex Building,31st
Fl.Rachadaphisek Rd.,Huaykwang,Bangkok 10320
Tel: 02-6933407

Fax: 02-6933423

m PHILIPPINES SALES OFFICE
National Panasonic Sales Philippines [NPP]

102 Laguna Boulevard Laguna Technopark Sta.
Rosa. Laguna 4026 Philippines

Tel: 02-520-3150

Fax: 02-843-2778

181199
Printed in JAPAN

	Cover
	Special Attention and Precatuions
	About This Manual
	Chapter Table
	Contentes
	1 C Source Code Debugger Overview
	1 C Source Code Debugger Overview
	2 Notes on Use
	2.1 Hardware Notes
	2.2 Software Notes
	2.3 ROM, RAM
	2.4 Program Execution
	2.5 Breaks
	2.6 Tracing
	2.7 On-the-fly
	2.8 Miscellaneous

	2 C Source Code Debugger Structure
	1 Hardware List
	2 Descriptions of Each Device
	2.1 In-circuit Emulator
	2.2 C Source Code Debugger 10300 Floppy Disk

	3 Connection and Booting
	1 Installing the Interface Board
	1.1 Installation in the PC-9800 Series
	1.2 Installation in the PC-98 NOTE Series
	1.3 Installation in the PC/AT (DOS/V) Series

	2 Connection Procedure
	2.1 Connection Procedure

	3 Host Computer Settings
	3.1 Starting up the installer
	3.2 Debugger Test Startup

	4 Power On/Off

	4 Characteristic C Source Code Dubugger Functions and Their Usage
	1 Overview of Window Display
	2 Debugging Work Flow
	3 Creation of Executable Files
	4 Debugging Tutorial
	4.1 Starting up the C Source Code Debugger
	4.2 Help
	4.3 Loading executable files
	4.4 Screen control/ file handling
	4.5 Program execution and break
	4.6 Memory referencing
	4.7 Subprocesses
	4.8 Macro commands
	4.9 Exiting the C source code debugger
	4.10 Program completion (gaining familiarity with C source code debugger operation)

	5 C Source Code Debugger Startup Method and Options
	1 C Source Code Debugger Startup Method and Options

	6 Window Commands
	1 Window Displays
	2 Window Commands
	2.1 Screen control
	2.2 Executon/ Breaks
	2.3 Getting/ selecting strings
	2.4 File display
	2.5 Process control/ RAM monitor
	2.6 Shell functions
	2.7 Memos
	2.8 Other window commands

	3 Data Reference Functions
	3.1 Inspect function
	3.2 Struct and Union Inspection
	3.3 Local commands within the Inspect window
	3.4 Watch functions
	3.5 View function

	7 Dialog Commands
	1 Rules for Using Dialog Commands
	1.1 Converntions used in command explanations
	1.2 Command input format
	1.3 Symbols in the C source code debugger
	1.4 Numbers in the C source code debugger
	1.5 Operational expressions
	1.6 Data Expressions at the C Language Level

	Command index
	2 Program Loading/ Execution
	L/LP(Load executable file)
	RD(Read file into memory)
	WR(Write to file)
	T(Single-step execution of user program)
	P(Function ste execution of user program)
	G(Execute user program)
	RESET(Reset user program)

	3 Event-related Commands
	EV(Set/display event)
	BP(Set/disply break event)
	BPA(Set AND break)
	BPS(Set sequential break)
	BC/EC(Cancel break event)
	BD(Temporarily disable break event)
	BE(Enable break event)

	4 Other Hardware-related Commands
	TM(Set/display trace mode)
	TG(start trace)
	TS(Stop trace)
	TD/TDU(Display trace)
	TDW(Display trace window)
	TI(Measure/display execution time)
	TRIG(Set/display trigger)
	MAP/EX(Assign memory)

	5 Performance Measurement
	SM(Set/release sample area)
	PROF(Tabulate access status)

	6 Data Display/Change
	D(Display dump of contents of memory)
	E(Change specified memory contents)
	C(Compare specified memory contents)
	F(Fill specified range of memory with data value)
	M(Block transfer of specified range of memory)
	S(Memory pattern search)
	R(Display/change register value)
	H(Display expression operation results)
	PRINTF/PF(Display format)
	X(Display currently registered symbol)

	7 Code Display/Change
	V(Display source lines from specified position in Code window)
	U(Display disassembled code)
	A(Input assembly language line)
	K(Back trace)

	8 Watch Display
	INS(Inspect)
	W(Register watch)
	VAL/?(Evaluate C expression)
	Y(Delete watch)

	9 System Control Commands
	Q(Quit C Souce code debugger)
	HELP(Display help screen)
	!(Execute subprocess)
	!!/!(Display/ search history)

	10 Other Commands
	CLS(Clear Commands window screen)
	HOME(Move cursor to home position)
	LIST(Specify display output)
	NLIST(Suppress display output)
	BEL(Sound beep)
	TIME(Diplay current time)
	WAIT(Wait)
	PRMPT(Change prompt)
	*(Comment)
	>(Output log)
	<(Batch)
	MEM(Display/ register/ delete memo)
	N(Change input format base)
	OPTION(Set option)

	8 Macro Commands
	1 Macro Command Overview
	1.1 Macro function

	2 Macro Commands
	{< > < >}
	[]
	DO{ } WHILE
	FOR{ }
	WHILE { }
	REPEAT{ }
	BREAK
	LALL
	SALL
	MLIST
	KILL
	IF { }
	KEYIN

	9 Appendix
	1 In-circuit Emulator Specifications
	1.1 Functional Specifications
	1.2 Electrical Specifications
	1.3 Environment Specifications
	1.4 External Dimensions
	1.5 Target Interface

	2 Interface Board Switch Settings
	2.1 When the Host Computer is the PC-9800 Series
	2.2 When the Host Computer is the PC-98 NOTE Series
	2.3 When the Host Computer is a PC/AT (DOS/V Series) Machine

	3 Special Notes on the Probe
	3.1 Electrical Specifications
	3.2 Environment Specifications

	4 C Source Code Debugger Error Messages
	5 Quick Reference
	5.1 Window Commands
	5.2 Dialog Commands

	6 Supplement for the PC/AT(DOS/V) Version
	6.1 Screen Operations
	6.2 Data Change/ Reference Commands
	6.3 Process Control Commands
	6.4 Shell Commands
	6.5 Other Window Commands

	Index
	Colophon
	Sales Offices

