
The CORDET Framework

C2 Implementation

- USER MANUAL -

Alessandro Pasetti & Vaclav Cechticky

5 January 2015

Revision 0.6.0
PP-UM-COR-00002

P&P Software GmbH
High Tech Center 1

8274 Tägerwilen
Switzerland

Web site: www.pnp-software.com
E-mail: pnp-software@pnp-software.com

Abstract

This document is the User Manual for the C2 Implementation of the
CORDET Framework. The CORDET Framework is a software framework
for service-oriented applications. The CORDET Framework defines an
application in terms of the services it provides to other applications and
in terms of the services it uses from other applications.

A service is implemented by a set of commands through which an
application is asked to perform certain activities and by a set of reports
through which an application gives visibility over its internal state. The
CORDET Framework defines the components to receive, send, distribute,
and process commands and reports.

The CORDET Framework is implementation-independent. The C2
Implementation is a C-language implementation of the CORDET compo-
nents. It is provided with a Qualification Data Package which can be used
to support the certification of applications built using its components.

1

www.pnp-software.com
mailto:pnp-software@pnp-software.com

PP-UM-COR-00002 Revision 0.6.0

Contents

1 Introduction 6

2 Installation & Content Overview 7
2.1 Dependency on C1 Implementation 7
2.2 Dependency on External Libraries 7
2.3 Source Code . 8
2.4 Support Documentation . 9
2.5 Doxygen Documentation . 10
2.6 Test Suite . 10
2.7 Demo Application . 10
2.8 Acceptance Test Procedure and Test Reports 11
2.9 Support Shell Scripts . 12
2.10 Naming Conventions . 13

3 Framework and Service Concepts 15
3.1 Software Framework Concept . 15
3.2 Service Concept . 16
3.3 Objectives of CORDET Framework 17

3.3.1 Definition of Command and Report Concepts 18
3.3.2 Definition of CORDET Components 18
3.3.3 Definition of Standard Services 19

3.4 Objectives of C2 Implementation 20
3.5 Relationship To Packet Utilization Standard (PUS) 20
3.6 Middleware Layer . 22

4 State Machine and Procedure Model 23
4.1 State Machine Extension . 23

5 Component Model 25
5.1 Component Hierarchy . 27
5.2 Component Implementation . 29
5.3 Component Data . 30

6 Adaptation Model 32

7 Application Start-Up and Shut-Down 34
7.1 Component Instantiation . 34
7.2 Application Start-Up . 36

8 Command and Report Concepts 38
8.1 Command Concept . 38

8.1.1 The Command Attributes 39
8.1.2 The Command Conditional Checks 40
8.1.3 The Command Actions 41
8.1.4 Command Lifecycle . 42
8.1.5 Mapping to C-Level Constructs 44

8.2 Report Concept . 46
8.2.1 The Report Attributes . 47

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

2

PP-UM-COR-00002 Revision 0.6.0

8.2.2 The Report Conditional Checks 48
8.2.3 The Report Actions . 49
8.2.4 Report Lifecycle . 49
8.2.5 Mapping to C-Level Constructs 50

9 Packet Interface 53
9.1 Middleware Assumptions . 54

9.1.1 Out-Going Interface . 54
9.1.2 Incoming Interface . 55

9.2 Packet Implementation . 56
9.3 Packet Interface Management . 57

9.3.1 The OutStream Component 57
9.3.2 The OutStreamRegistry Component 60
9.3.3 The InStream Component 61

10 Command and Report Management 65
10.1 Management of Out-Going Commands and Reports 65
10.2 Management of Incoming Commands and Reports 67

11 The OutComponent Component 70

12 The OutLoader Component 73

13 The OutManager Component 74

14 The OutRegistry Component 76

15 The InLoader Component 79

16 The InCommand Component 82

17 The InReport Component 84

18 The InManager Component 85

19 The InRegistry Component 87

20 Memory Management 89
20.1 Components with Late Instantiation 91

21 Real Time Issues 94
21.1 Scheduling of Framework Components 94

21.1.1 Concurrency . 95
21.1.2 Recursion . 95

22 Error Handling 96

23 Framework Instantiation Process 98

24 Demo Application 106

A Adaptation Points 136

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

3

PP-UM-COR-00002 Revision 0.6.0

B State Machine Model of the FW Profile 144
B.1 Definition of State Machines . 144
B.2 State Machine Behaviour . 146
B.3 UML 2 Compliance . 151

C Procedure Model of the FW Profile 152
C.1 Definition of Procedures . 152
C.2 Procedure Behaviour . 153
C.3 UML 2 Compliance . 156

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

4

PP-UM-COR-00002 Revision 0.6.0

List of Figures
3.1 Software Framework Concept . 15
3.2 Applications as Providers and Users of Services 16
3.3 Services as Sets of Commands and Reports 17
3.4 Re-Routing of Service Requests 17
3.5 Hierarchical Definition of Services 20
3.6 Applications and Middleware . 22
5.1 Base State Machine . 25
5.2 Initialization and Reset Procedures 26
5.3 Component Hierarchy . 28
5.4 Component Data . 31
7.1 Application State Machine . 37
8.1 Command Lifecycle (Informal Notation) 44
8.2 Report Lifecycle (Informal Notation) 50
9.1 Physical And Logical Connections 54
9.2 Packet Interface Concept . 58
9.3 The OutStream State Machine 59
9.4 The InStream State Machine . 62
9.5 The Packet Collect Procedure . 62
10.1 Management of Out-Going Commands and Reports 66
10.2 The Management of Incoming Commands and Reports 68
11.1 The OutComponent State Machine 70
11.2 The Send Packet Procedure . 71
12.1 The OutLoader Load Procedure 73
13.1 The OutManager Load Procedure 74
13.2 The OutManager Execution Procedure 75
14.1 The Registry Start Tracking and Registry Update Procedures . . 77
14.2 The Enable State Determination Procedure 78
15.1 The InLoader Execution Procedure 80
15.2 The InLoader Load Command/Report Procedure 81
16.1 The InCommand State Machine 82
17.1 The InReport Execution Procedure 84
18.1 The InManager Load Procedure 85
18.2 The InManager Execution Procedure 86
20.1 Processing Chain for an Incoming Command or Report 93
20.2 Processing Chain for an Out-Going Command or Report 93
24.1 Logical Architecture of Demo Applications 106
24.2 Physical Connections of Demo Applications 107
B.1 Logic for the Start and Stop Commands to a State Machine . . . 148
B.2 Logic for Processing Transition Commands by a State Machine . 149
B.3 Logic for Executing Transitions in a State Machine 150
C.1 Procedure Start/Stop Commands 154
C.2 Procedure Execution Logic . 156

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

5

PP-UM-COR-00002 Revision 0.6.0

List of Tables
2.1 Structure of Host Directory . 7
2.2 Source Code in CORDET Delivery File 9
2.3 Execution Steps and Pass-Fail Criteria for ATP 11
3.1 Concerns of CORDET Framework and of PUS 21
5.1 List of Framework Components 28
5.2 List of Framework Component Operations 30
8.1 Mapping of Commands to C-Level Constructs 44
8.2 Mapping of Commands to C-Level Constructs 50
20.1 Code Memory Footprint for C2 Implementation Modules 91
21.1 Entry Points for Scheduler . 94
23.1 Framework Instantiation Specification and Implementation Steps 100
24.1 Framework Instantiation Specification and Implementation Steps

for Master Application . 108
24.2 Framework Instantiation Specification and Implementation Steps

for Slave 1 Application . 118
24.3 Framework Instantiation Specification and Implementation Steps

for Slave 2 Application . 127
A.1 C2 Implementation Adaptation Points 137

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

6

PP-UM-COR-00002 Revision 0.6.0

No part of this publication may be reproduced, transmitted, transcribed,
stored in any retrieval system, or translated into any language by any means

without express prior written permission of P&P Software GmbH.

Copyright c©2013 P&P Software GmbH. All Rights Reserved.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

7

PP-UM-COR-00002 Revision 0.6.0

1 Introduction

This document is the User Manual for the C2 Implementation. The C2 Imple-
mentation is a C-language implementation of the CORDET Framework. The
CORDET Framework is a software framework for service-oriented applications.

The CORDET Framework defines an application in terms of the services it
provides to other applications and in terms of the services it uses from other
applications. A service is implemented by a set of commands through which an
application is asked to perform certain activities and by a set of reports through
which an application gives visibility over its internal state.

A service is implemented by a set of commands through which an application
is asked to perform certain activities and by a set of reports through which an
application gives visibility over its internal state. The CORDET Framework
defines the components to receive, send, distribute, and process commands and
reports (the CORDET Components).

The CORDET service concepts supports the implementation of distributed sys-
tems of applications where individual applications residing on different distri-
bution nodes interact through the exchange of commands and reports.

The CORDET Framework is specified in [3]. This specification is implementation-
independent. The C2 Implementation is a C language implementation of the
CORDET Components.

The main features of the C2 Implementation are:

• Well-Defined Semantics: clearly and unambiguously defined behaviour.

• Minimal Memory and CPU Requirements: core module footprint
of less than 20 kBytes and efficient implementation in C.

• Scalability: code memory footprint independent of the number of com-
mands and reports.

• High Reliability: test suite with 100% code, branch, and condition
coverage.

• Formal Specification: user requirements to formally specify the imple-
mentation.

• Requirement Traceability: all requirements individually traced to their
implementation and to verification evidence.

• Documented Code: doxygen documentation for all the source code.

• Demo Applications: complete applications demonstrating capabilities
and mode of use.

The behaviour of the CORDET components is modelled by means of state
machines and procedures (activitiy diagrams). The semantics of the state ma-
chines and procedure is the one defined by the FW Profile of [1]. The C2
Implementation of the CORDET Framework implements these state machines
and procedures using a C-language implementation of the FW Profile 1.

1The implementation of the FW Profile state machines and procedure is also available as

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

8

PP-UM-COR-00002 Revision 0.6.0

2 Installation & Content Overview

The C2 Implementation is delivered as one single zip file (the delivery file). This
file should be expanded in a dedicated directory. This directory becomes the
host directory for the C2 Implementation. Table 2.1 gives an overview of the
structure of the host directory. More details are found in subsequent subsections.

The C2 Implementation software is delivered as source code and therefore no
further installation operations are needed. A Test Suite and a Demo Application
are provided as illustrations of how the framework can be instantiated by users.
Unix script files are also provided to compile and link the Test Suite and the
Demo Application.

Table 2.1: Structure of Host Directory

Sub-Directory Sub-Directory Description

/docs Holds the support documentation for the C2
Implementation. See section 2.4.

/scripts Holds the support shell scripts to build the ex-
ecutables for the Test Suite and for the Demo
Application. See section 2.9.

/reports Holds the test reports generated by the Ac-
ceptance Test Procedure. See section 2.8.

/src Holds the source code for the CORDET
Framework, for the Test Suite and for the
Demo Applications. See section 2.3.

2.1 Dependency on C1 Implementation

The behaviour of the CORDET Framework is specified by means of state ma-
chines and procedures (activity diagrams). The implementation of the frame-
work therefore requires an implementation of state machines and procedures.
The C2 Implementation does not include an own implementation of state ma-
chines and procedures. Instead, it uses the state machine and procedure modules
of the C1 Implementation of the FW Profile (see references [1] and [2]). These
modules can be downloaded from: http://pnp-software.com/fwprofile but,
for convenience, they are also included in the C2 Implementation Delivery File.

Note that the C1 Implementation consists of three modules covering the im-
plementation of, respectively, state machines, procedures and RT Containers
(encapsulations of threads). The third module is not used by the CORDET
Framework and is therefore not included in the Delivery File.

2.2 Dependency on External Libraries

The C2 Implementation (namely the CORDET Components in directory /src/crFramework)
only needs the stdlib and the string libraries of the C language and the State
Machine and Procedure Modules of the C1 Implementation of the FW Profile.

a separate and self-contained delivery under the name of C1 Implementation, see [2]

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

9

PP-UM-COR-00002 Revision 0.6.0

The C1 Implementation modules are delivered together with the C2 Implemen-
tation (see previous section).

The Test Suite and the Demo Application (namely the components in directories
/src/crTestSuite, /src/crDemoMaster, /src/crDemoSlave1 and /src/crDemoSlave2)
use additional libraries and POSIX services. In particular, the shell scripts
which are delivered with the C2 Implementation (see section 2.9) to generate
the executables for the Test Suite and the Demo Applications need an imple-
mentation of the POSIX library. The scripts link the POSIX library with option
-lpthread. Users with different implementations of the POSIX library will have
to modify the Shell scripts accordingly. Users without a POSIX library imple-
mentation will not be able to build the Test Suite and the Demo Application
(but will, of course, still be able to use the CORDET Components in their own
applications).

2.3 Source Code

The source code in the CORDET delivery file covers four distinct instantiations
of the CORDET Framework. The first instantation is the Test Suite (see sec-
tion 2.6). The other three instantiations constitute the Demo Application for
the CORDET Framework and are called the Master Application, the Slave 1
Application and the Slave 2 Application (see section 24).

At source code level, an instantiation of the CORDET Framework to implement
an application within the framework’s domain can be split into four parts:

• Invariant Framework Software consisting of the implementation of the
CORDET Components. This part is common to all instantiations of the
CORDET Framework.

• Configurable Framework Software consisting of the part of the framework
which must be modified to be adapted to the needs of each end-application
(the adaptation model for the framework is described in section 6). This
part is customized for each instantiations of the CORDET Framework.

• C1 Implementation Software providing an implementation of the state
machine and procedure (activity diagram) concepts (see section 2.1). This
part is common to all instantiations of the CORDET Framework.

• Application-Specific Software implementing the application-specific (i.e.
non-framework) part of the target application.

The souce code in the CORDET delivery file is accordingly split into several
directories as presented in table 2.2. Users who wish to build a new application
by instantiating the CORDET Framework would normally take the software in
directories /src/crFramework and /src/FwProfile without changes and would
customize the software in one of the Config directories to match their needs.
The instantiation process is described in greater detail in section 23.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

10

PP-UM-COR-00002 Revision 0.6.0

Table 2.2: Source Code in CORDET Delivery File

Sub-Directory Sub-Directory Description
/src/crFramework Invariant Framework Software implementin

the CORDET Components. For each
CORDET Component, a dedicated sub-
directory is present which holds the code im-
plementing the component. The name of the
sub-directory is the same as the name of the
component. The code in this directory is
used unchanged in all applications instanti-
ated from the CORDET Framework.

/src/FwProfile Source code for the State Machine and Pro-
cedure modules of the C1 Implementation of
the FW Profile. The code in this directory
is used unchanged in all applications instanti-
ated from the CORDET Framework.

/src/CrTestSuite Application-Specific Software for the Test
Suite application.

/src/CrConfigTestSuite Configurable Framework Software for the Test
Suite application.

/src/CrDemoMaster Application-Specific Software for the Master
Application of the Demo Application.

/src/CrConfigDemoMaster Configurable Framework Software for the
Master Application of the Demo Application.

/src/CrDemoSlave1 Application-Specific Software for the Slave 1
Application of the Demo Application.

/src/CrConfigDemoSlave1 Configurable Framework Software for the
Slave 1 Application of the Demo Application.

/src/CrDemoSlave2 Application-Specific Software for the Slave 2
Application of the Demo Application.

/src/CrConfigDemoSlave2 Configurable Framework Software for the
Slave 2 Application of the Demo Application.

2.4 Support Documentation

The C2 Implementation is delivered with the following support documents:

• The CORDET Framework Definition Document which specifies the
framework implemented by the C2 Implementation

• A User Manual (this document) which describes how the C2 Implemen-
tation is used

• A User Requirement Document which formally specifies the C2 Im-
plementation through a set of requirements and provides validation and
verification evidence for each requirement

These documents, together with the Test Suite and the detailed software docu-
mentation in the Doxygen web site, constitute the Qualification Data Pack-
age (QDP) for the C2 Implementation. The QDP is provided for users who need
to certify their application or, more generally, who need to provide evidence of

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

11

PP-UM-COR-00002 Revision 0.6.0

its correctness. The QDP contains the typical information which is required for
software certification purposes. It can therefore be included in the certification
data package of end-applications and it relieves the user of the need to produce
such information for the C2 Implementation part of their applications.

2.5 Doxygen Documentation

All the source code in the C2 Implementation (including the test suite and
the demo application code) is documented in accordance with doxygen rules.
The entry point to the Doxygen documentation is the index.html file in the
/docs/doxygen directory.

2.6 Test Suite

The Test Suite is a complete application which demonstrates all aspects of the
behaviour of the CORDET Components.

The main program of the Test Suite application is in file CrTestSuite.c. This
program consists of a set of test cases. For each CORDET Component, one
or more test cases are defined. Each test case exercises a specific aspect of the
behaviour of a CORDET Component. The Test Suite offers 100% code, branch,
and condition coverage of the CORDET Components.

On a Unix platform, the Test Suite application can be built by running one of
the support scripts delivered with the C2 Implementation (see section 2.9).

2.7 Demo Application

The Demo Application is a set of three complete applications which demonstrate
the use of the C2 Implementation. The three applications are called: Master
Application, Slave 1 Application and Slave 2 Application.

The three Demo Applications are connected to each other through TCP sock-
ets and they interact by exchanging commands and reports. One of the three
applications acts as master and the other two act as slaves. The master appli-
cation is responsible for monitoring the state of the two slave applications. The
three applications execute 100 cycles in each of which the Master Application
may send commands to the Slave Applications and the two Slave Application
perform a temperature monitoring action and raise an alarm if they detect a
temperature limit violation.

The Demo Application thus constitutes a simple example of a distributed mon-
itoring function of the kind often used in embedded control systems. The Demo
Applications are described in section 2.7.

On a Unix platform, the Demo Applications can be built by running one of the
support scripts delivered with the C2 Implementation (see section 2.9).

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

12

PP-UM-COR-00002 Revision 0.6.0

2.8 Acceptance Test Procedure and Test Reports

The C2 Implementation is passed through an Acceptance Test Procedure (ATP)
prior to its release. The ATP is executed as a sequence of steps which are defined
in table 2.3. For each step, a pass-fail criterium is defined. An execution of the
ATP is successful if all the ATP steps satisfy their pass-fail criteria.

Table 2.3: Execution Steps and Pass-Fail Criteria for ATP

N Step Pass-Fail Criterium

1 Run Doxygen using Doxygen Con-
figuration File on the entire source
code of the C2 Implementation de-
livery

Neither errors nor warnings are re-
ported by Doxygen

2 Compile the C2 Implementation
source code with ”all warnings”
enabled and with the options re-
quired to run GCov for both
branch and statement coverage

Neither errors nor warnings are re-
ported by the compiler

3 Compile the Test Suite source
code files with ”all warnings” en-
abled

Neither errors nor warnings are re-
ported by the compiler

4 Build the executable to run the
Test Suite for the C2 Implemen-
tation and to generate the *.gcno

and *.gcda files

Neither errors nor warnings are re-
ported by the linker

5 Run the Test Suite with Valgrind The Test Suite runs to completion;
all test cases are declared to have
completed successfully; no errors
are reported by Valgrind in addi-
tion to, possibly, the errors dis-
cussed below

6 Run GCov on all the C2 Imple-
mentation Files to which coverage
requirements apply

For each C2 Implementation File
to which coverage requirements
apply, a *.c.gcov file is created
and the file shows full statement
and branch coverage with excep-
tion of branches entered as a result
of a failure of malloc

7 Compile the Demo Application
Files with ”all warnings” enabled

Neither errors nor warnings are re-
ported by the compiler

8 Build the executable to run the
Demo Application for the C2 Im-
plementation

Neither errors nor warnings are re-
ported by The linker

With reference to point 5, it is noted that, on many platforms, Valgrind will
report 3 possible memory leaks originating in function pthread create. This
is a known issue in many POSIX libraries and is not related to the CORDET
Framework code.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

13

PP-UM-COR-00002 Revision 0.6.0

The RunAcceptanceTest.sh shell script (not included in the delivery for end
customers) automatically executes all the procedure steps described in the table
and it generates a test report which is included in directory
reports of the delivery file.

2.9 Support Shell Scripts

Several bash shell scripts are provided to build and run the executables of the C1
Implementation (Test Suite and Demo Applications). These support scripts are
located in the /scripts sub-directory. Their content and function is described
in their headers. One simple way of using them is as follows:

• Open a terminal and go the /scripts directory

• Compile and link the State Machine and Procedure implementation with
the CompileAndLinkFw.sh script by entering at the prompt:
./CompileAndLinkFw.sh ../src .

• Compile and link the Test Suite application with the CompileAndLinkTs.sh
script by entering at the prompt:
./CompileAndLinkTs.sh ../src ../src .

• Compile and link the Master Application with the CompileAndLinkMa.sh

script by entering at the prompt:
./CompileAndLinkMa.sh ../src ../src .

• Compile and link the Slave 1 Application with the CompileAndLinkS1.sh

script by entering at the prompt:
./CompileAndLinkS1.sh ../src ../src .

• Compile and link the Slave 2 Application with the CompileAndLinkS2.sh

script by entering at the prompt:
./CompileAndLinkS2.sh ../src ../src .

The above steps result in the compilation and linking of the following applica-
tions provided in the Delivery File:

• cr test for the Test Suite

• cr demo master for the Master Demo Application

• cr demo slave1 and scr demo slave2 for the two Slave Demo Applica-
tions

Both the object files and the executables are created in the /scripts directory
but this can be changed by changing the parameters with which the script is
called (see instructions in the header of the script).

The Test Suite can be run by executing the cr test file by entering at the
command prompt: ./cr test.

The three Demo Applications must be run together in three separate pro-
cesses and must be started in a specific order. For this purpose, the script
RunDemoApp.sh is provided which can be run by entering at the prompt in the
/scripts directory: ”./RunDemoApp.sh .”. Execution of this script takes about
2 minutes and results in the generation of three files (DemoAppOut Master.txt,

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

14

PP-UM-COR-00002 Revision 0.6.0

DemoAppOut Slave1.txt and DemoAppOut Slave2.txt) which hold the outputs
of the three Demo Applications. The Demo Application output consists of a
statement which is output at each cycle by ech application indicating what the
application has done in that cycle (send a command; send a report; start exe-
cution of a command; detected a temperature violation etc). Each application
executes 100 cycles. Socket errors in the last few cycles are nominal and are
due to the system shutdown.

2.10 Naming Conventions

The C2 Implementation exports the following items towards users:

• Header and body files

• Global functions

• Types defined through typedef

• Constants and macros defined through #define directives

The naming conventions for these items are as follows.

The names of the header and body files of the C2 Implementation and of the
global functions they export are written as a concatenation of strings (without
underscores). The first letter in each string is capitalized. The names have the
following form: Cr<Xx><Name>. The prefix ”Cr” identifies a name as belonging
to the CORDET Framework implementation. The string ”Xx” identifies the
domain within the CORDET world to which the name belongs. The following
values are possible for this string:

• ”Fw” identifies a name related to the implementation of the CORDET
Framework and of its Test Suite,

• ”Da” identifies a name related to the Demo Application for the CORDET
Framework.

The string ”Name” is the proper name of the function or file and it is made
up of a concatenation of other strings. The following abbreviations are used in
forming this name:

• ”A”: ”action” (as in ”action node”)

• ”Act”: ”action” (as in ”action attached to a procedure node”)

• ”App”: ”application” (as in ”the Demo Application”)

• ”Aux”: ”auxiliary” (as in ”auxiliary function”)

• ”Config”: ”configuration” (as in ”the configuration of a component”)

• ”Cmd”: ”command”

• ”Cmp”: ”component”

• ”Cnt”: ”counter”

• ”Cps”: ”choice pseudo-state”

• ”Cr”: ”CORDET”

• ”Cur”: ”current” (as in ”current state of a state machine”)

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

15

PP-UM-COR-00002 Revision 0.6.0

• ”D”: ”decision” (as in ”decision node”)

• ”Da”: ”demo application”

• ”Dec”: ”decision” (as in ”decision node in a procedure”)

• ”Demo”: ”demo” (as in ”demo application”)

• ”Der”: ”derived” (as in ”the derived state machine”)

• ”Desc”: ”descriptor” (as in ”the descriptor of a state machine”)

• ”Fin”: ”final” (as in ”final node”)

• ”Fw”: ”framework”

• ”Err”: ”error” (as in ”the application error code”)

• ”Emb”: ”embedded” (as in ”embedded state machine”)

• ”Fps”: ”final pseudo-state”

• ”Ini”: ”initial” (as in ”initial mode”)

• ”Init”: ”initialization” (as in ”initialization of a component”)

• ”Ips”: ”initial pseudo-state”

• ”Ma”: ”master” (as in ”master application”)

• ”Pckt”: ”packet” (as in ”the command is encapsulated in a packet”)

• ”Pr”: ”procedure”

• ”Rec”: ”recursive” (as in ”recursive function”)

• ”Rep”: ”report”

• ”S1”: ”slave 1” (as in ”slave 1 application”)

• ”S2”: ”slave 2” (as in ”slave 2 application”)

• ”Sm”: ”state machine”

• ”Sta”: ”state” (as in ”the state of a state machine”)

• ”Temp”: ”temperature”

• ”Trans”: ”transition” (as in ”the transition between two states”)

The names of the types defined through typedef start with the string ”CrFw”
and terminate with the string: ” t”.

The names of the #define constants are written in capitals and are made up of
strings concatenated with underscores.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

16

PP-UM-COR-00002 Revision 0.6.0

3 Framework and Service Concepts

The CORDET Framework is a software framework to support the instantiation
of service-oriented applications. This section gives an overview of the software
framework concept and of the service concept assumed in the CORDET project.
A fuller version of the material presented in this section can be found in [3].

3.1 Software Framework Concept

A software framework is a repository of reusable and adaptable software com-
ponents embedded within a pre-defined architecture that is optimized for appli-
cations in a certain domain (see figure 3.1).

Fig. 3.1: Software Framework Concept

The framework components are reusable in the sense that they encapsulate
behaviour which is common to all (or at least a large number of) applications
within the framework’s domain.

To reuse a software components means to use it in different operational contexts.
In practice, varying operational contexts always impose different requirements.
Hence, reuse requires that the reusable components be adaptable to different
requirements. In this sense, adaptability is the key to reusability. For this
reason, framework components offer adaptation points where their behaviour
can be modified to match the needs of specific applications.

Framework components are embedded within a pre-defined architecture in the
sense that the framework does not simply specify individual components but it
also specifies their mutual relationships. Thus, the unit of reuse of a software
framework is not a component but rather a group of cooperating components
which, taken together, support the implementation of some functionality that
is important within the framework domain.

Software frameworks encourage this higher granularity of reuse by being or-
ganized as a bundle of functionalities that users can choose to include in their
applications. Inclusion of a functionality implies that a whole set of cooperating
components and interfaces is imported into the application.

In the service-oriented concept underlying the CORDET Framework, the “func-

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

17

PP-UM-COR-00002 Revision 0.6.0

tionalities” supported by the framework are the “services” as defined in the next
section.

The domain of a framework is the set of applications whose instantiation is
supported by the framework. The domain of the CORDET Framework are the
applications which comply with the CORDET service Concept introduced in
section 3.2.

3.2 Service Concept

The target domain of the CORDET Framework are service-oriented applica-
tions. This section defines the service concept assumed in the CORDET Project
(the CORDET Service Concept).

A service is a set of logically and functionally related capabilities that an ap-
plication offers to other applications. The CORDET Service concept sees an
application as a provider of services to other applications and as a user of ser-
vices from other applications (see figure 3.2).

A service is identified by its type. The service type is a positive integer which
uniquely identifies the service within the CORDET world and thus acts as a
name for the service.

Fig. 3.2: Applications as Providers and Users of Services

The user of a service controls the service by sending commands to the service
provider. A command is a data exchange between a service user and a service
provider to start, advance, modify, terminate, or otherwise control the execution
of a particular activity within the service provider (see reference [4], section
3.1.13).

The provider of a service sends reports to the user of the service. A report is
a data exchange between a service provider (the report initiator) and a service
user to provide information relating to the execution of a service activity (see
reference [4], section 3.1.14).

Thus, a service consists of a set of commands which the user of the service
sends to the provider of the service and of a set of reports which the service
provider sends back to its user. A command defines actions to be executed by
the service provider. A report encapsulates information about the internal state
of the service provider (see figure 3.3).

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

18

PP-UM-COR-00002 Revision 0.6.0

Fig. 3.3: Services as Sets of Commands and Reports

The same application may act as as a service provider to several user applica-
tions and, vice-versa, it may use the services from several other providers. For
instance, in figure 3.2, the Target Application has one user (Application A) and
it acts as user for two service providers (Applications B and C).

Figures 3.2 and 3.3 show situations where the service provider and service users
have a direct connection but the CORDET Service Concept also supports situ-
ations where the connection between provider and user is indirect.

In figure 3.4, for instance, application A sends a command to application C
but the command is routed through application B. Thus, the CORDET Service
Concept can be used as a basis for the definition of distributed applications
which interact with each other by exchanging service requests over a network.

The network defines physical links between the applications in the system (e.g.
the links between applications A and B and between applications B and C in
figure 3.4) and the CORDET infrastructure defines logical links between the
applications (e.g. the link between applications A and C).

Fig. 3.4: Re-Routing of Service Requests

3.3 Objectives of CORDET Framework

In general terms, the goal of the CORDET Framework is to foster software
reusability in the development of service-oriented embedded control applica-
tions.

With a service-oriented concept, an application is specified in terms of the ser-
vices it offers to other applications and of the services it needs from other ap-
plications and the services are in turn specified by the commands and reports
which implement them.

In this perspective, the CORDET Framework supports reusability in the fol-
lowing ways:

1. It provides a formal definition of the abstract (implementation-independent)
concept of commands and reports,

2. It specifies the components (the CORDET Components) which implement

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

19

PP-UM-COR-00002 Revision 0.6.0

the abstract command and report concepts and the CORDET Standard
Services, and

3. It allows services of general applicability for a specific domain to be pre-
defined and to be available as building blocks for the development of ap-
plications in that domain.

Each of the above three points is discussed in greater detail in a dedicated
sub-section below.

3.3.1 Definition of Command and Report Concepts

The first objective of the CORDET Framework is to provide a formal definition
of the abstract command concept and of the abstract report concept.

This is done by building behavioural models of commands and of reports which:

1. capture the aspects of the behaviour of commands and reports which is
common to all commands and reports independently of the definition and
implementation of a concrete command or report, and

2. identify the adaptation points where service- and implementation-specific
behaviour can be added.

An example may clarify the definition given above. In section 8.1.2, the con-
cept of Acceptance Check for commands is introduced. An acceptance check
is a check that is performed upon incoming commands to determine whether
the command can be accepted or whether it should be rejected. The abstract
concept of command includes the following behavioural property: “an incoming
command shall be considered for execution by a service provider only if it has
passed its Acceptance Check”. This property is part of the abstract command
concept because it is common to all commands. The content of the Acceptance
Check (i.e. the type of check that is done on a specific incoming command) is,
however, not part of the abstract command concept because it depends on the
concrete service to which a command belongs.

Thus, the behavioural model for commands must guarantee that a successful
Acceptance Check is a pre-condition for the execution of a command and it
must identify the content of the Acceptance Check as an adaptation point for
the command.

Note that the definition of an abstract command and report concept allows the
specification of services to be standardized and it therefore is a precondition for
the second and third objectives of the CORDET Framework.

The abstract command concept and the abstract report concept are defined in,
respectively, sections 8.1 and 8.2.

3.3.2 Definition of CORDET Components

The second objective of the CORDET Framework is to specify the components
which implement the abstract command and report concepts (the CORDET
Components). These components are intended for deployment in service-oriented

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

20

PP-UM-COR-00002 Revision 0.6.0

applications. More specifically, the CORDET Components cover, on the ser-
vice user side, the sending of commands and the reception and distribution of
reports and, on the service provider side, the processing of incoming commands
and the generation of reports.

The CORDET Framework only specifies the CORDET Components but does
not implement them. The specification is, however, done using the FW Profile
and it therefore consists of a complete behavioural model. An implementation
could in principle be automatically generated from the model.

The CORDET Framework defines the behavioural models for the service com-
ponents. Multiple implementations can be derived from these models. All
implementations are functionally equivalent (because they implement the same
behavioural model) but they differ in the choice of implementation language, of
implementation technology, or of other implementation-level aspects.

Note that the CORDET components are framework-level components. Hence,
application developers may have to specialize them further before using them.
Two approaches are possible in this respect: (a) the application takes over an
existing implementation of the CORDET components and specializes them, or
(b) the application specializes the models of the CORDET Framework and then
implements the specialized models.

3.3.3 Definition of Standard Services

The third objective of the CORDET Framework is to allow sets of standard ser-
vices to be defined. These services are intended to cover functionalities which
are common to applications within a certain domain. The standard services
are therefore offered as building blocks for the applications in that domain: an
application in the domain is specified and built as a combination of standard ser-
vices (which are re-used) and application-specific services (which are developed
for each specific application).

The standard services are defined by defining their commands and reports and
the commands and reports are defined as specializations of the abstract com-
mand and report concepts (see section 3.3.1). Thus, a standard service is defined
by “closing” the adaptation points identified in the abstract command and re-
port concepts.

The CORDET Framework promotes a hierarchical definition of services as il-
lustrated in figure 3.5. At the top layer, there is the abstract definition of
commands and reports. This definition is entirely generic and applicable to
all services in all application. At the intermediate level, standard services are
defined which capture concrete behaviour which is common to a large num-
ber of applications. These standard services could be defined either by the
CORDET Framework itself or by organizations which identify commonalities
among the applications of interest to them. Finally, at the bottom level, end-
applications define their own services which are entirely specific to their needs.
The application-level services may be either taken over from the standard ser-
vices or they may be created as instantiations of the generic service concept (if
they are entirely application-specific).

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

21

PP-UM-COR-00002 Revision 0.6.0

Fig. 3.5: Hierarchical Definition of Services

3.4 Objectives of C2 Implementation

The CORDET Framework is specified in [3] as an implementation-independent
framework. The C2 Implementation is a C-language implementation of the
framework in the sense that it provides C implementations of the CORDET
Components.

The CORDET Framework supports the development of service-oriented applica-
tions at specification level by providing concepts which facilitate the specification
of such applications. The C2 Implementation supports the development of the
same applications at implementation level by providing pre-defined components
which facilitate the specification of the same applications.

3.5 Relationship To Packet Utilization Standard (PUS)

The Packet Utilization Standard or PUS is an application-level interface stan-
dard for space-based applications. It is specified in reference [4]. In spite of its
origin in the space industry, the PUS is suitable for a wide range of embedded
control applications. In view of its long heritage and its proven ability to cover
the interface needs of mission-critical systems of distributed applications, the
PUS has been used as a basis for the CORDET Framework in the sense that the
service concept on which the CORDET Framework is based (see section 3.2) is
the same as the service concept specified by the PUS.

In order to understand the degree of overlap between the PUS and the CORDET
Framework, it is helpful to identify and contrast their respective concerns (the
remainder of this section can be omitted by readers without a background in
the space industry).

The PUS has two concerns: (a) it standardizes the semantics of the commands
and reports which may be sent to or received from an application, and (b) it
standardizes the external representations of these commands and reports (i.e. it
specifies the layout of the packets which carry the commands and reports). The
CORDET Framework shares the first concern in the sense that it uses the same

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

22

PP-UM-COR-00002 Revision 0.6.0

service concept as the PUS but it does not share the second concern because it
does not specify the external representation of commands and reports. Instead,
the CORDET Framework specifies their internal representation (i.e. it prede-
fines components to encapsulate commands and reports within an application)
and it treats their serialization to, and de-serialization from, physical packets as
an adaptation point to be resolved at application level.

Thus, the CORDET Framework can be used to instantiate applications which
are PUS-compliant but it is not restricted to PUS-compliant applications be-
cause it could be used to instantiate an application which uses a different exter-
nal representation for its commands and reports than is specified by the PUS.

Table 3.1 summarizes the concerns of the CORDET Framework and of the PUS.

Table 3.1: Concerns of CORDET Framework and of PUS

Concern Coverage in CORDET Framework and PUS

Service Concept CORDET Framework uses the same service concept
as the PUS.

External
Representation of
Commands and
Reports

The PUS specifies the external representation of its
commands and reports (i.e. it specifies the layout
of the packets carrying the commands and reports).
The CORDET Framework does not specify the ex-
ternal representation of its commands and reports.

Internal
Representation and
Handling of
Commands and
Reports

The PUS does not specify how its commands and
reports should be represented and handled inside an
application. The CORDET Framework specifies the
components representing the commands and reports
in an application and the components required to
handle them within that application.

In addition to the service concept, the PUS also defines the concept of appli-
cation process which is matched in the CORDET Framework by the concept
of application. The two concepts, though overlapping, have slightly different
meanings. In the PUS, an application process is a source of reports and a sink
for commands (see section 4.2.1 of reference [4]). In the CORDET Framework,
an application is a node within a CORDET service-based distributed system.
A CORDET application may therefore be both a source and a destination for
both commands and reports.

Generally speaking, a CORDET application may contain several PUS appli-
cation processes. In order to allow multiple PUS application processes to be
mapped to a single CORDET application, the CORDET Framework has in-
troduced the concept of group. Commands and reports in an application must
belong to a group. A PUS application process may thus be represented within
a CORDET application by a group. This is done by defining a group for each
application process and by allocating all the commands and reports belonging
to an application process to the same group. CORDET systems which do not
aim at PUS compliance will normally not need the group concept and may just
define one single group to which all commands and reports in the system belong
by default.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

23

PP-UM-COR-00002 Revision 0.6.0

3.6 Middleware Layer

The CORDET Framework is an application-level framework and its domain is
the management of services. Service messages encapsulating commands and
reports are exchanged between applications. The mechanism through which
these messages are sent from one application to another is outside the scope
of the framework. The framework assumes that a middleware layer is present
which can be used to send and receive messages to and from other applications.

Commands and reports travel on the middleware as packets. A packet is an
ordered sequence of bytes that contains all the information required to recon-
struct a report or command. The layout of command and report packets is not
specified by the CORDET Framework. An example of command and packet
layout is specified in reference [4].

The process whereby a command or report is transformed into its packet is called
serialization. The inverse process whereby a command or report is interpreted
and the equivalent report or command is reconstructed is called deserialization.

The assumptions made by the framework about the middleware are specified
in section 9.1. The general concept is shown in figure 3.6. The CORDET
Framework only covers the yellow boxes shown in the figure which represent the
service-aware parts of a system.

Fig. 3.6: Applications and Middleware

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

24

PP-UM-COR-00002 Revision 0.6.0

4 State Machine and Procedure Model

The C2 Implementation implements the specification of the CORDET Frame-
work given in reference [3]. The behaviour of the CORDET Framework is
specified through state machines and procedures. The semantics of the state
machines and procedures in reference [3] is that of the FW Profile of reference
[1].

The FW Profile is a restriction of UML. It retains a simple but unambiguous
subset of the UML features. Its state machines match the functional part of
UML’s state machines and its procedures match the functional part of UML’s
activity diagrams. For convenience, appendices B and C describe the state
machine and procedure model of the FW Profile.

The C2 Implementation uses the C1 Implementation of [2]. This is a library of C-
language functions which implement the state machine and procedure concepts
of the FW Profile. The C2 Implementation wraps all calls to functions of the
C1 Implementation. Hence, in most cases, users will not need to interact with
C1 Implementation functions.

Syntactically, a state machine in the C2 Implementation is represented by a
variable of type FwSmDesc t. This type is a pointer to a structure (the state
machine descriptor) which holds all the information required to describe the
state machine (its states and pseudo-states, its actions, its guards, and its tran-
sitions) and its current state.

Similarly, a procedure in the C2 Implementation is represented by a variable of
type FwPrDesc t. This type is a pointer to a structure (the procedure descriptor)
which holds all the information required to describe the procedure (its nodes,
its actions, and its guards) and its current state.

Users do not need to understand the internal structure of either the state ma-
chine or procedure descriptor.

4.1 State Machine Extension

The C1 Implementation supports an extension mechanism for state machines
which is similar to the inheritance-based extension mechanism of object-oriented
languages. The C2 Implementation relies on this extension mechanism.

This section presents a brief overview of the state machine extension mechanism.
More details can be found in [2].

A state machine (the base state machine) can be extended to create a new state
machine (the derived state machine). Initially, after being created, a derived
state machine is a clone of its base (it has the same states with the same actions
linked by the same transitions with the same actions and guards as the base state
machines). The derived state machine can then be configured by performing one
or more of the following operations:

• Overriding one or more of its actions

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

25

PP-UM-COR-00002 Revision 0.6.0

• Overriding one or more of its guards

• Embedding new state machines in its states

The extension mechanism is useful where there is a need to define a large number
of state machines which share the same topology (same set of states, of choice
pseudo-states, and of transitions) but differ either in their actions, or in their
guards, or in the internal behaviour of their states.

As an example consider the CORDET Components. All these components share
the same initialization and reset logic which is described in section 5 but they
differ from each other in the specific actions and checks which they perform
when they are initialized or reset. The C2 Implementation accordingly defines
a base state machine to capture the generic behaviour of all components (see
figure 5.1) and then extends this base state machine to create the state machines
representing specific component types.

Using an object-oriented terminology, one could say that the C2 Implementation
offers a base class implementing the generic initialization and reset behaviour
of all components and it offers derived classes to represent the initialization and
reset behaviour of specific component types.

Note, finally, that the C1 Implementation also supports an extension mecha-
nism for procedures as well as for state machines. This procedure extension
mechanism is not used in the C2 Implementation and is therefore not discussed
further in this document.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

26

PP-UM-COR-00002 Revision 0.6.0

5 Component Model

The C2 Implementation is organized as a set of adaptable components. The com-
ponents provided by the C2 Implementation are called Framework Components.
A Framework Component consists of:

• A state machine derived2 from the Base State Machine of figure 5.1;

• The procedures which are started or executed by this state machine;

• Any other procedure which supports the operation of this state machine.

The Base State Machine defines the process through which a component is
initialized and configured. Thus, the definition of a Framework Component
implies that all Framework Component share the same initialization and reset
logic.

Fig. 5.1: Base State Machine

The logic of the Base State Machine is as follows. Initially, after being instanti-
ated, framework components are in state CREATED. The hosting application is
then expected to provide to each component the information it needs to perform
its initialization. The type of this information is component-specific. After the
necessary information has been provided, the application sends an Init com-
mand to the component. The component responds by running its Initialization
Procedure. This procedure is responsible for initializing the component and is
defined in figure 5.2.

The Initialization Procedure is based on an Initialization Check and an Initial-
ization Action. Both the check and the action are adaptation points which must
be defined for each individual component. The Initialization Check normally
checks that all parameters required for the component initialization have legal
values. The Initialization Action is only performed if the Initialization Check
was successful. This action normally creates all data structures required by
the component and it performs other initialization actions as required. The
Initialization Action can either fail or succeed.

The Initialization Procedure terminates in one single cycle with an outcome of
either “Success” of “Failure”. Only the “Success” outcome is nominal and leads
to the component making a transition to state INITIALIZED.

2The term ”derived” is used here in the sense of section 4.1

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

27

PP-UM-COR-00002 Revision 0.6.0

After successful initialization, the application provides to the component the
information required to configure it and then sends a Reset command to it.
The component responds by running its Reset Procedure. This procedure is
responsible for configuring the component and is defined in figure 5.2.

The Reset Procedure is based on a Configuration Check and a Configuration
Action. Both the check and the action are adaptation points which must be de-
fined for each individual componet. The Configuration Check normally checks
that all parameters required for the component configuration have legal values.
The Configuration Action is only performed if the Configuration Check was suc-
cessful. This action normally initializes the value of all data structures required
by the component and it performs other configuration actions as required. The
Configuration Action can either fail or succeed.

The Reset Procedure terminates in one single cycle with an outcome of either
“Success” of “Failure”. Only the “Success” outcome is nominal and leads to the
component making a transition to state CONFIGURED.

Fig. 5.2: Initialization and Reset Procedures

State CONFIGURED is the normal operational state of a component. In this
state, the component executes its Execution Procedure. This procedure must be
entirely defined at application level.

A component can be reset at any time by sending it command Reset. Nominally,
this results in the component executing again its configuration actions and re-
entering its CONFIGURED state. However, if any of the component parameters
are found to have non-nominal values or if any of the configuration actions fail,
then the component makes a transition to state INITIALIZED. This is a non-
nominal situation.

Thus, the distinction between initialization actions and configuration actions is
that the former are actions that, nominally, are performed only once during the
life of an application whereas the latter are actions which may be performed
more than once.

Note that there is no distinction between the actions that are performed when
a component is configured for the first time during application start-up and
the actions that are performed when a component is reset at run-time. This is

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

28

PP-UM-COR-00002 Revision 0.6.0

intentional because resetting a component should bring it to the same state in
which it was when the application had completed its start-up.

All framework components implement the behaviour defined by the Base State
Machine. In general, the “meaningful” behaviour of a framework component
is defined within the CONFIGURED state. This “meaningful” behaviour is
defined either by implementing an Execution Procedure or by embedding a state
machine within the CONFIGURED state.

Components are shut down by sending them command Shutdown. This com-
mand results in the shutdown action being executed on the component. This
action undoes the effects of the component initialization. Note that components
can only be shutdown from state CONFIGURED. This is because the Shutdown
operation models an orderly shutdown which should only be performed after an
application has successfully completed its start-up.

The C2 Implementation provides default implementations for the actions and
checks of the Initialization and Reset Procedures and for the Execution Proce-
dure:

• The default Initialization Check always returns ”success”.

• The default Initialization Action sets the action outcome to ”success” and
then returns.

• The default Configuration Check always returns ”success”.

• The default Configuration Action sets the action outcome to ”success”
and then returns.

• The default Execution Procedure executes the same empty action node at
every cycle.

These defaults may be overridden when the Base Component is extended to cre-
ate other Framework Components. Application developers will normally never
use a Base Component directly (they only use components derived from the
Base Component).

5.1 Component Hierarchy

Figure 5.3 show the components offered by the C2 Implementation in their
hierarchical relationship. The Base Component at the top of the hierarchy
encapsulates the Base State Machine. This component is not used directly. It
only serves as a base from which the other components are derived.

Table 5.1 lists the components offered by the C2 Implementation. Each compo-
nent is described in a dedicated section of this document. Each component is
implemented in a dedicated C-module. The rightmost column in the table gives
the name of the C module.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

29

PP-UM-COR-00002 Revision 0.6.0

Fig. 5.3: Component Hierarchy

Table 5.1: List of Framework Components

Name Function Within Framework C-Module

Base Base component from which all
framework components are derived.
See section 7.1.

CrFwBaseCmp

InStream Reception of incoming commands
and reports from communication
middleware. See section 9.3.3.

CrFwInStream

OutStream Serializazion of outgoing commands
and reports to the communication
middleware. See section 9.3.1.

CrFwOutStream

InReport Encapsulation of an incoming re-
port. See section 17.

CrFwInRep

InCommand Encapsulation of an incoming com-
mand. See section 16.

CrFwInCmd

OutComponent Encapsulation of an outgoing com-
mand or report. See section 11.

CrFwOutCmp

InFactory Dynamic creation of InCommands
and InReports. See section 5.2.

CrFwInFactory

OutFactory Dynamic creation of OutCompo-
nents. See section 5.2.

CrFwOutFactory

InLoader Loading and re-routing of incoming
commands and reports. See section
15.

CrFwInLoader

OutLoader Loading of out-going command and
reports into an OutStream. See sec-
tion 12.

CrFwOutLoader

InManager Execution and processing of incom-
ing commands and reports. See sec-
tion 18.

CrFwInManager

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

30

PP-UM-COR-00002 Revision 0.6.0

Name Function Within Framework C-Module

OutManager Processing of outgoing commands
and reports. See section 13.

CrFwOutManager

InRegistry Tracking of the state of incoming
commands and reports. See section
19.

CrFwInRegistry

OutRegistry Tracking of the state of outgoing
commands and reports. See section
14.

CrFwOutRegistry

5.2 Component Implementation

Each component is implemented in either one single C module or in a small
number of C modules. The modules implementing a component are gathered
in a dedicated sub-directory which carries the name of the component. Thus,
for instance, the modules implementing the Base Component are stored in a
sub-directory called: src/CrFramework/BaseCmp.

From a syntactical point of view, a Framework Component is represented by
the descriptor of its state machine (a variable of type FwSmDesc t, see section
4). Thus, syntactically, all framework components are of the same type (i.e.
they are all represented by variables of type FwSmDesc t).

Framework Components are instantiated by factory functions which are pro-
vided by the framework. A factory function is a function with a name either
like: CrFwXxxMakeYyy or like: CrFwXxxMake. The meaning of the strings ’Xxx’
and ’Yyy’ is discussed in section 7.1.

Components which are instantiated from the same factory function are said to
be of the same component type. Thus, each factory function defines a component
type. Each component instance carries a type identifier which uniquely identifies
its type. The type identifier can be accessed with function CrFwCmpGetTypeId.

When a component instance is created, it is assigned an instance identifier
which uniquely identifies a component instance within the set of components
of a certain type. The first instance to be created by a factory function is
assigned the instance identifier of 0. The second instance is assigned the instance
identifier 1. And so on. The instance identifier can be accessed with function
CrFwCmpGetInstanceId.

There is a limited number of standard operations which can be performed on a
framework component (executing it, querying it for its state, etc). An operation
is performed by calling a function on the component. Table 5.2 lists the most
commonly used functions available for this purpose.

Some of the functions listed in the table are only intended to operate upon a com-
ponent instance of a certain type. For instance, function CrFwInStreamGetPckt

should only be called with an argument representing an InStream component.
This constraint cannot be enforced statically because, as indicated above, all
components have the same syntactical type (they are all instances of type

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

31

PP-UM-COR-00002 Revision 0.6.0

FwSmDesc t). It is therefore the responsibility of the application to enforce
this constraint. The error arising when a function is called with a component
of the incorrect type is not handled by the C2 Implementation.

Although type checking is not possible statically owing to the limitations of
the implementation language, it could be performed at run-time using the type
information which every component carries with itself. Thus, functions could
be modified or extended through a wrapper to check that the argument which
they receive is of the expected type and to raise an error if this is not the case.

Table 5.2: List of Framework Component Operations

Operation Description

CrFwCmpExecute(〈Inst〉) Execute the state machine of the compo-
nent instance Inst.

CrFwCmpInit(〈Inst〉) Initialize the Base State Machine of the
component instance Inst.

CrFwCmpReset(〈Inst〉) Reset the Base State Machine of the
component instance Inst.

CrFwCmpShutdown(〈Inst〉) Shutdown the Base State Machine of the
component instance Inst.

CrFwCmpIsInCreated(〈Inst〉) Return true if the Base State Machine of
the component instance Inst is in state
CREATED.

CrFwCmpIsInInitialized(〈Inst〉)Return true if the Base State Machine of
the component instance Inst is in state
INITIALIZED.

CrFwCmpIsInConfigured(〈Inst〉) Return true if the Base State Machine of
the component instance Inst is in state
CONFIGURED.

CrFw〈Type〉〈Cmd〉(〈Inst〉) Send command Cmd to the state machine
embedded in state CONFIGURED of the
component instance Inst of type Type.

CrFw〈Type〉IsIn〈State〉(〈Inst〉) Return true if the state machine embed-
ded in state CONFIGURED of the com-
ponent instance Inst of type Type is in
state State.

CrFwCmpGetInstanceId(〈Inst〉) Return the instance identifier of the com-
ponent instance Inst.

CrFwCmpGetTypeId(〈Inst〉) Return the type identifier of the compo-
nent instance Inst.

5.3 Component Data

A component instance is a variable of type FwSmDesc t. This type is defined by
the C1 Implementation (see reference [2]). It represents a pointer to the state
machine descriptor.

The state machine descriptor consists of two parts (see figure 5.4). The first part
(in yellow in the figure) is defined by the C1 Implementation and is the same

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

32

PP-UM-COR-00002 Revision 0.6.0

for all state machines. This part holds the information about the state machine
topology (its states, pseudo-states and transitions), its actions and guards, and
its current state. The last field of this first part of the state machine descriptor
is a pointer to the component data (shown in light blue in the figure).

The component data is the second part of the state machine descriptor. It
consists of a data structure of type CrFwCmpData t. This data structure is
in turn divided into two parts. The upper segment holds the data which are
common to all framework components, namely:

• The component instance identifier

• The component type identifier

• The outcome of the last action executed by the component

• The pointers to the Initialization, Reset and Execution Procedures of the
component (see figure 5.1 – it is recalled that these procedures are common
to all framework components)

The lower segment of the component is a pointer to the component-specific data
(shown in green in the figure) namely data which are only used by components
of a certain type. Syntactically, this type-specific data is implemented as a
pointer to void which must be cast to a pointer to a structure. The type of the
structure depends on the component type. These structure types are defined in
CrFwConstants.h.

Fig. 5.4: Component Data

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

33

PP-UM-COR-00002 Revision 0.6.0

6 Adaptation Model

The C2 Implementation offers a set of generic components which application de-
velopers can use to build their applications. These components must be adapted
to fit the needs of the end applications. The points where the component be-
haviour can be adapted are called Adaptation Points.

The Adaptation Points are therefore the points where application developers
may modify the pre-defined behaviour of the framework components. In some
cases, the C2 Implementation pre-defines a default value for an Adaptation
Point which application developers may either take unchanged or may modify.
In other cases, no default behaviour is defined at framework level.

Four types of Adaptation Points (AP) are supported by the C2 Implementation:

• Define Constant: a framework component uses a #DEFINE constant whose
value may be overridden by application developers.

• Define Function: a framework component uses a function pointer and
application developers must provide an implementation for the missing
function (or, if available, may choose to use the default implementation
provided at framework level)

• Implement Interface: the framework defines an interface as a C header file
and application developers must provide an implementation for it.

• Define Type: a framework component uses a variables of a type defined
as a typedef and application developers may override the default type
definition.

The adaptable part of the framework is located in the /cr/src/CrConfigTestSuite
directory of the C2 Implementation delivery (see section 2. This directory holds:
(a) a number of header files which define all the #DEFINE constants and function
pointers of the framework; and (b) a number of C body files which implement the
interfaces which are left open at framework level. Thus, during the framework
instantiation process, application developers adapt the framework components
by updating the content of the files in the /cr/src/CrConfigTestSuite direc-
tory. The initial content of these files in the C2 Implementation delivery is that
used for the Test Suite of the C2 Implementation (see 2.6).

Appendix A lists the adaptation points of the framework component. Their
detailed description is in the Doxygen documentation of the header and interface
files which implement the adaptation points.

Where applicable, the doxygen comments attached to the #DEFINE constants
and function pointers also identify their default values. For the implementation
of the interface files, only test stubs are provided as default by the framework.

The default definitions of the typedef should be suitable for the vast majority
of applications. Hence, in most cases, application developers may ignore them.

Manipulations of function pointers is fraught with dangers in C. It is there-
fore important to stress that, in the C2 Implementation, function pointers are
exclusively used within the framework components (where their use has been

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

34

PP-UM-COR-00002 Revision 0.6.0

extensively checked and validated). Application developers will normally not
have to use the framework function pointers and are therefore protected from
the attendant risks.

Adaptation is done at compile-time only. During the framework instantiation
process, the application developer closes the framework’s adaptation points (or,
where appopriate, takes over the default values defined at framework level). The
choices made at this time cannot be modified at run-time: the C2 Implemen-
tation provides no mechanism to re-configure the framework dynamically. This
limitation is dictated both by reasons of CPU and memory efficiency and by
the desire to enhance static predictability of behaviour.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

35

PP-UM-COR-00002 Revision 0.6.0

7 Application Start-Up and Shut-Down

The application start-up process is divided into two stages: initialization and
configuration. The initialization stage covers actions which are performed only
at start-up time and which cannot be repeated until the application (or a part
of it) is shutdown. The configuration stage covers actions which are performed
at start-up time but which may also be performed at a later stage if there is a
need to reset either the entire application or a part of it.

In the CORDET Framework document, the term shutdown is used to designate
the orderly shutdown of an application or of a component. Obviously, appli-
cations and components may also undergo an emergency shutdown. This is
entirely uncontrolled and is not covered in any way by the CORDET Frame-
work.

The start-up and shutdown processes are specified at two levels: at the level
of individual components and at the level of the entire application which are
described in, respectively, sections 5 and 7.2.

Before they are initialized and configured, components must be instantiated.
Most components required by an application are instantiated as part of that
application start-up (early component instantiation). In some cases, compo-
nents may need to be instantiated during the application’s normal operation
(late component instantiation). The two forms of components instantation are
discussed in section 7.1.

7.1 Component Instantiation

Components may be instantiated either early or late. Early instantiation takes
place as part of the application start-up. This is required by the logic of the
Application State Machine of section 7.2.

Late instantiation can take place at any time during the application’s normal
operation (i.e. while the Application State Machine of section 7.2 is in state
NORMAL). Late instantiation is only foreseen for components which encap-
sulate commands or reports. These components must be created during the
normal operation phase of an application because commands and reports are
sent and received dynamically by an application. All other components are
instantiated during the application start-up phase (early instantiation).

Component instantiation (both early and late) is done through factory func-
tions which are provided by the framework. For components subject to early
instantiation, factory functions have names like CrFwXxxMake where ’Xxx’ is
the name of the component type. Thus, for instance, the factory function which
generates InStream components is called CrFwInStreamMake.

Only a fixed and statically pre-defined number of instances of components can
be instantiated statically. If only one instance may be instantiated (singleton
components), the factory function CrFwXxxMake takes no argument. The first
time it is called, it creates the singleton instance. Subsequent calls return the
same instance.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

36

PP-UM-COR-00002 Revision 0.6.0

If N instances may be instantiated (with N greater than 1), the factory function
CrFwXxxMake takes as argument an integer in the range 0 to N-1. The first
time the function is called with an argument i, the function creates the (i+1)-
th instance of the component. Subsequent calls with the same argument value
return the same instance. An out-of-range value of the argument results in the
function returning NULL. If this is an error situation, it must be handled by
the caller (i.e. the factory function itself does not perform any error handling
for an out-of-limit argument).

For non-singleton components, the maximum number of instances which can be
created is an adaptation point.

The memory resources for the components subject to early instantiation are
allocated through calls to malloc. This is acceptable because these calls are
only performed in the application start-up phase and for a fixed and statically
pre-defined number of times. Hence, it is possible to guarantee by static analysis
that all malloc calls will succeed and predictability of behaviour is thus ensured
(see also discussion in section 20).

The instantiation of a component subject to early instantiation is irreversible:
the resources which are allocated to the component will only be released if the
application is terminated. Note in particular that the Shutdown Procedure of
the Application Start-Up State Machine (see section 7.2) does not release the
resources claimed during the early component instantiation process.

For components subject to early instantiation, factory functions are provided
by factory components and have names like CrFwYyyMakeXxx where ’Xxx’ is the
name of the component type and ’Yyy’ is the name of the factory component.
Thus, for instance, components encapsulating incoming commands are gener-
ated by the factory function CrFwInCmdFactoryMakeInCmd which belongs to the
factory component InCmdFactory.

The CORDET Framework defines two factory components: the OutFactory
to instantiate components encapsulating out-going commands and reports and
the InFactory to instantiate component encapsulating incoming commands and
reports (see the overview in sections 10.1 and 10.2. The C2 Implementation
implements these factories in modules CrFwOutFactory and CrFwInFactory.

In addition to the Make function which creates a new component instance, fac-
tory components also offer Release functions with names like CrFwYyyReleaseXxx.
The Release functions take a component instance as argument and reclaim the
resources allocated to that component instance.

As part of their initialization, factory components pre-allocate a pool of memory.
When they receive a Make request, they allocate memory for the component-to-
be-instantiated from this pool. The memory is released when the user of the
component instance calls Release. The memory allocation algorithm is deter-
ministic. Each factory can only create a fixed number of component instances
(the factory’s capacity). A Make request at a time when all factory instances
are already in use will fail by returning NULL. The capacity of a factory is an
adaptation point.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

37

PP-UM-COR-00002 Revision 0.6.0

Note that, if a failure of the Make operation represents an error, this must be
handled by the user of the factory. The factory itself does not perform any error
handling.

7.2 Application Start-Up

The CORDET Framework defines the Application State Machine of figure 7.1
to model the start-up and shutdown logic of an application.

When the application is created, the Application State Machine is in state
START UP. In this state, the Application Start-Up Procedure is executed. This
procedure is entirely defined at application level but is subject to two con-
straints: (a) the procedure must include the instantiation, initialization and
configuration of all components subject to early instantiation, and (b) the pro-
cedure may only terminate if successful configuration of all components subject
to early instantiation is confirmed (i.e. if all these components are in state
CONFIGURED).

Normal operation takes place in state NORMAL. In particular, the services
provided by an application to its users are only guaranteed to be available when
the application is in state NORMAL and it is only from this state that the
application makes use of the services provided by other applications. Thus, in
state NORMAL, an application may assume that its service interfaces are all
operational.

An application can be reset by sending command Reset to its Application State
Machine. This causes a transition to state RESET where the Application Reset
Procedure is executed. This procedure is entirely defined at application level
but is subject to two constraints: (a) the procedure must include the sending
of the Reset command to all currently instatiated components, and (b) the
procedure may only terminate if all currently instantiated components are in
state CONFIGURED.

It follows from the logic outlined above that, when the application is in state
NORMAL, all its statically instantiated components are guaranteed to be cor-
rectly configured (i.e. they are guaranteed to be in state CONFIGURED).

The Application Start-Up Procedure and the Application Reset Procedure will
normally share much behaviour but they may not coincide because there may
be some actions which are only executed once when an application is started up
(such as, for instance, the initialization of all application components).

Finally, the orderly shutdown of an application is performed by sending com-
mand Shutdown to the Application State Machine. This triggers a transition
to state SHUTDOWN where the Application Shutdown Procedure is executed.
This procedure is entirely defined at application level but is subject to one con-
straint: the procedure must include the sending of the Shutdown command to
all currently instantiated components.

Applications may (and normally will) define embedded state machines in the
states shown in figure 7.1. In particular, applications normally have several

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

38

PP-UM-COR-00002 Revision 0.6.0

Fig. 7.1: Application State Machine

operational states which would appear as sub-states of NORMAL.

The C2 Implementation implements the Application State Machine in mod-
ule CrFwAppSm. The three procedures controlled by the Application State Ma-
chine are not provided by the C2 Implementation because they are application-
specific. The C2 Implementation provides three header files CrFwAppStartUpProc.h,
CrFwAppResetProc.h, and CrFwAppShutdownProc.h which defines the point of
access to the three procedures. Application developers should provide imple-
mentations for these three header files as part of the framework instantiation
process.

Also as part of the framework instantiation process, application developers may
want to add behaviour to the four states of the Application State Machine by
embedding state machines within these states. Embedding of state machines is
done using function FwSmEmbed defined by the C1 Implementation (see reference
[2]).

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

39

PP-UM-COR-00002 Revision 0.6.0

8 Command and Report Concepts

This section describes the command and report concepts assumed by the CORDET
Framework and implemented by the C2 Implementation.

This section considers commands and reports at the abstract level only. The
commanding and reporting concepts described here are therefore applicable to
any command or report, irrespective of the specific service to which they belong
or of the specific activities which the command triggers or of the specific infor-
mation which the report carries. Concrete commands and reports are defined by
applications according to their needs.These concrete commands and reports are
defined as specializations of the generic command and report concepts described
in the present section.

8.1 Command Concept

Each command belongs to a service. Within that service, the command is iden-
tified by the sub-type (a positive integer). Thus, a command is fully identified
by a pair [x,y] where ’x’ is the identifier of the service to which the command be-
longs (the service type, see section 3.2) and ’y’ is the identifier of the command
within the service (the command sub-type).

Commands are types which are instantiated at run-time. A command is gen-
erated by a service user in order to trigger the execution of certain actions by
the service providers. Thus, a command instance begins its life when the ap-
plication on the service user side (the user application) decides that it wishes
to issue a request to the application on the service provider side (the provider
application).

A command is sent by the user application to the provider application where
it triggers the execution of certain actions. Before being sent to the provider
application, the command is configured. Through the configuration process,
the command acquires the information it will need to execute its actions. The
command’s actions in the provider application may extend over time. Both
the sending of the command to its destination and the execution of its actions
in the provider application are conditional upon certain checks being passed.
The command encapsulates both the actions that must be executed and the
conditional checks that determine whether the command is sent and whether
its actions are executed.

The same command instance may be sent to its destination more than once.
This models the situation where a user is issuing periodic requests to a service
provider. In this case, the content of the command is updated every time the
command is sent to its destination. It is a logical error to re-send a command
instance to its destination before the actions triggered by the previous execution
of the same command have completed.

A command is defined by its attributes, its conditional checks, and its actions.

Attributes designate characteristics that are entirely defined by their value. Ac-
tions and conditional checks designate executable functionalities that are asso-

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

40

PP-UM-COR-00002 Revision 0.6.0

ciated to the command. Both actions and conditional checks are executed by
the command as a result of changes in its internal state. The conditional checks
are used to determine whether and when the command actions are executed.

The next three subsections further define the command attributes, the command
conditional checks, and the command actions. The last sub-section describes
the lifecycle of a command.

8.1.1 The Command Attributes

An attribute is a characteristics that is entirely defined by its value. A command
has the following attributes:

Service Type
Each command contributes to implementing a service. This attribute
identifies the service that the command implements.

Command Sub-Type
Each service is implemented by several commands. This attribute identi-
fies the type of the command within a certain service.

Command Identifier
A command may exist in two distinct applications (the user application
which sends the command and the provider application which receives
it). This attribute uniquely identifies the command instance within both
applications and throughout the life of both applications.

Destination
Commands are generated by a user application for a provider application.
This attribute identifies the provider application for which the command
is intended.

Source
Commands are generated by a user application for a provider application.
This attribute identifies the user application which issues the command.

Time Stamp
The time when the user application makes the request to send the com-
mand to its destination.

Group
Commands sent by a user application to the same destination are allocated
to a group. This attribute identifies the group to which the command
belongs. The concept of group is primarily relevant to applications which
aim at PUS-compliance (see section 3.5).

Sequence Counter
Every time a user application issues a command belonging to a certain
destination group, it increments a counter. The sequence counter attribute
holds the value of this counter. The sequence counter can be used by the
recipient application to check whether any commands addressed to it have
been lost.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

41

PP-UM-COR-00002 Revision 0.6.0

Acknowledge Level
Command execution goes through four stages: acceptance, start, progress,
and termination (see section 5.1.4). This attribute determines whether
successful completion of each of these stages should be reported to the
sender of the command. Note that failure to complete a stage is reported
unconditionally.

Command Parameters
Some commands may require parameters to fully specify the actions and
checks that they encapsulate. The “Command Parameters” attribute
holds the value of these parameters. This attribute consists of an ordered
sequence of items of primitive type.

Discriminant
The number and type of command parameters in a command instance is
not necessarily determined by the command type (i.e. different instances
of the same command type may have different sets of command param-
eters). The discriminant is a command parameter which determines the
number and type of the other command parameters.

Thus, the layout of a command instance is fully determined by the triplet:
[x,y,z] where ’x’ is the identifier of the service to which the command
belongs (the service type), ’y’ is the identifier of the command within the
service (the command sub-type), and ’z’ is the discriminant.

The discriminant is an optional attribute. Command types which have no
parameters, or which have a fixed set of parameters, have no discriminant.

8.1.2 The Command Conditional Checks

A conditional check is an executable functionality which returns an enumerated
value. The enumerated value reports the outcome of the check. Conditional
checks are performed as part of the processing of a command. Their outcome
determines whether and when the command actions are preformed. Conditional
checks must have zero logical execution time. This restriction allows them to
be mapped to guards in state machines.

Some checks are performed on the user’s side (i.e. prior to the command being
issued by the user application); others are performed on the provider’s side (i.e.
after the command has been received by the provider application).

The following conditional checks are defined for a command on the service user
side:

Enable Check
This check is performed when the user application makes a request to send
a command to the service provider. The enable check determines whether
the command instance is enabled or disabled. If the command instance is
disabled, then the command is aborted. If instead the command instance
is enabled, it remains in a pending state until the ready check authorizes
it being sent to its destination.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

42

PP-UM-COR-00002 Revision 0.6.0

Ready Check
This check is performed on a pending command instance that has passed
its enable check. The ready check determines when the command instance
is sent to its destination. The command instance remains pending until
the ready check is passed. When the ready check is passed, the command
instance may be sent to its destination.

Repeat Check
This check is performed on a command instance after it has been sent
to its destination. The check returns either ”repeat” or ”no repeat”. In
the former case, the command instance is updated and sent again to its
destination. In the latter case, it is terminated.

On the service provider side, the following conditional checks are defined for a
command:

Acceptance Check
The acceptance check is performed when the command instance is received
by its destination. If the acceptance check is passed, then the command
remains pending and can be further processed by its recipient. If the
acceptance check is not passed, then the command instance is aborted.

Ready Check
This check is performed on a pending command instance that has passed
its acceptance check. The ready check determines when the execution
of the command starts. As long as the ready check is not passed, the
command remains pending. When the ready check is passed, the command
instance attempts to start execution.

8.1.3 The Command Actions

Command actions are executable functionalities which encapsulate the actions
to be performed by the command. Command actions are executed depending
on the outcome of the command conditional checks. Command actions must
have zero logical execution time. This restriction allows them to be mapped to
actions in state machines.

The following action is defined for a command on the service user side:

Update Action
Through this action, the command acquires the information which it re-
quires to execute its action on the service provider application. This action
is executed before the command is sent to its destination. If the command
is sent more than once (i.e. if its repeat check returns ”repeat” one or
more times), then the Update Action is performed repeatedly every time
the command must be sent to its destination.

The following actions are defined for a command on the service provider side:

Start Action
The start action is executed after the start check has been passed. The
start action encapsulates one-off initialization actions that must be per-

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

43

PP-UM-COR-00002 Revision 0.6.0

formed at the beginning of a command’s execution. The start action has
an outcome which is either “success” or “failed”. If the outcome of the
start action is “failed”, the command is aborted.

Progress Action
Commands execute in one or more steps. The progress action encapsu-
lates the actions performed in one execution step. The progress action is
executed the first time after the start action has terminated and it is then
executed again every time that the progress check is passed and until the
termination check is passed (i.e. until the termination check indicates that
command execution has terminated). The progress action has an outcome
which is either “continue”, or “completed”, or “failed”. If the outcome
of the progress action is “continue”, another progress step will be exe-
cuted. If the outcome of the progress action is “completed”, all progress
steps have been completed and the termination action is executed. If the
outcome of the progress action is “failed”, the command is aborted.

Termination Action
The termination action is executed after all the progress steps have been
successfully executed. The termination action encapsulates one-off final-
ization actions that must be performed before the command is terminated.
The progress action has an outcome which is either “success” or “failed”.
If the outcome of the progress action is “failed”, the command is aborted.

Abort Action
If a command is aborted (i.e. if it fails its acceptance check, or its start
action faisl, or its progress action fails, or its termination action fails)
then it executes its abort action. The abort action thus encapsulates the
finalization actions to be performed in case of a command failure.

8.1.4 Command Lifecycle

A command instance begins its life on the user side when the user application
makes a request for the command instance to be sent to the provider application.
Nominally, on the user side, the command can be in one single state PENDING.
This corresponds to the state of a command that has passed its enable check
and is waiting for its ready check to authorize the transfer of the command to
the provider application.

On the provider side, the command instance passes through four states: AC-
CEPTED, STARTED, PROGRESS, and TERMINATED. The command states
are entered in sequence as the command is executed. The PROGRESS state
can be entered more than once to represent the fact that some commands exe-
cute actions which extend over time and which are therefore broken into several
steps.

To each command state one check and one action may be associated. The
checks determine whether a state can be entered or exited. For instance, if
the acceptance check fails, then the command cannot be executed. The actions
encapsulate the activities to be performed when the command enters a certain
state. For instance, the start action defines the actions to be executed when the

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

44

PP-UM-COR-00002 Revision 0.6.0

command is started. Actions have an outcome which determines the next step
in the execution of the command.

On the provider side, a change in the state of a command is marked by the
generation of an Acknowledge Report. Acknowledge Reports are used to notify
the sender of a command of a change in the state of the command. Four kinds
of Acknowledge Reports are defined corresponding to the four states that a
command may have in a provider application:

• Acceptance Acknowledge Report to notify the command sender of the out-
come of the acceptance check.

• Start Acknowledge Report to notify the command sender of the outcome
of the start action.

• Progress Acknowledge Report to notify the command sender of the out-
come of the progress action.

• Termination Acknowledge Report to notify the command sender of the
outcome of the termination action.

The sending of an acknowledge report to a command sender is done uncondi-
tionally in the following cases: (a) the acceptance check has not been passed,
(b) the start action has failed, (c) the progress action has failed, or (d) the ter-
mination action has failed. Note that all of these cases result in the command
being aborted. Thus, the sending of an acknowledge report is done uncondi-
tionally whenever a check results in a command being aborted. For instance, if
the start check of a command fails, a Start Acknowledge Report is sent to the
command sender to notify it that the command has failed to start execution
and has consequently been aborted.

In all other cases (namely when the acceptance check is passed, or the start
action, or the progress action, or the termination action are successful), the
sending of the acknowledge report to the command sender is conditional upon
the value of the Acknowledge Level attribute of the command (see section 8.1.1).
Thus, for instance, the command sender can set the Acknowledge Level attribute
of a certain command such that only successful acceptance and successful ter-
mination of the command are reported.

Figure 8.1 shows the nominal lifecycle of a command in an informal notation. In
summary, the CORDET Framework pre-defines the logic to handle the transi-
tions between the command states. It does this by defining the logic to manage
the execution of the command checks and of the command actions but it leaves
the definition of the content of the actions and checks open.

The lifecycle outlined above may be repeated more than once for the same
command instance. Repetition is determed by the outcome of the Repeat Check.
The Repeat Check is performed at the end of the lifecycle depicted in figure 8.1.
If it returns ”no repeat”, then the command instance is destroyed. If instead,
the check returns ”repeat”, then the content of the command is updated and
thze command is re-sent to its destination where it repeats the lifecycle of figure
8.1.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

45

PP-UM-COR-00002 Revision 0.6.0

Fig. 8.1: Command Lifecycle (Informal Notation)

8.1.5 Mapping to C-Level Constructs

The C2 Implementation maps commands to software-level components as fol-
lows: out-going commands are mapped to OutComponent components which
are implemented in the C module CrFwOutCmp (see section 11); incoming com-
mands are mapped to InCommand components which are implemented in the
C module CrFwInCmd (see section 16). Table 8.1.5 shows how the attributes,
conditional checks, and actions of commands are mapped to C-level constructs
in the C2 Implementation. Note that, in most cases, the mapping depends on
whether the command is out-going (i.e. the host application is a user applica-
tion) or incoming (i.e. the host application is a provider application).

Table 8.1: Mapping of Commands to C-Level Constructs

Name Mapping to C-Level Construct

Service Type
Attribute

ServType attribute in CrFwOutCmp and CrFwInCmd modules.
Value set when component is created by its factory and ac-
cessible through getter function.

Command
Sub-Type
Attribute

ServSubType attribute in CrFwOutCmp and CrFwInCmd mod-
ules. Value set when component is created by its factory and
accessible through getter function.

Command
Identifier
Attribute

InstanceId attribute inherited from base component
CrFwbaseCmp. Value set when component is created by its
factory and accessible through getter function.

Destination
Attribute

Dest attribute in CrFwOutCmp, accessible through getter
and setter functions. Attribute not explicitly present in
CrFwInCmd since the destination of an InCommand is, by def-
inition, the host application.

Source
Attribute

Src attribute in CrFwOutCmp and CrFwInCmd modules. Value
set when component is created by its factory and accessible
through getter function.

Time Stamp
Attribute

TimeStamp attribute in CrFwOutCmp module. Value acces-
sible and controllable through getter and setter functions.
Attribute is not present in CrFwInCmd module.

Group
Attribute

Group attribute in CrFwOutCmp and CrFwInCmd modules.
Value accessible and controllable through getter and setter
functions in the CrFwOutCmp module and in read-only mode
through a getter function in the CrFwInCmd module.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

46

PP-UM-COR-00002 Revision 0.6.0

Name Mapping to C-Level Construct

Sequence
Counter
Attribute

SeqCnt attribute in CrFwInCmd module. Value set when the
component is created by its factory and accessible through
getter function. Attribute is not present in CrFwOutCmp mod-
ule since the sequence counter of out-going commands is set
at the time the command is sent out.

Acknowledge
Level
Attribute

AckLevel attribute in CrFwOutCmp and CrFwInCmd modules.
Value controllable and accessible through setter and getter
functions in CrFwOutCmp module but only accessible in read
mode in CrFwInCmd module.

Discriminant
Attribute

Discriminant attribute in CrFwOutCmp and CrFwInCmd mod-
ules. Value set when component is created by its factory and
accessible through getter function.

Command
Parameter
Attributes

These attributes are application-specific.

Enable
Check

Function implementing the Enable Check Operation for an
out-going command specified through a function pointer in
the CR FW OUTCMP INIT KIND DESC initializer.

Ready
Check

Function implementing the Ready Check Operation for an
out-going command specified through a function pointer in
the CR FW OUTCMP INIT KIND DESC initializer. Func-
tion implementing the Ready Check Operation for an in-
coming command specified through a function pointer in the
CR FW INCMD INIT KIND DESC initializer.

Repeat
Check

Function implementing the Repeat Check Operation for an
out-going command specified through a function pointer in
the CR FW OUTCMP INIT KIND DESC initializer.

Acceptance
Check

The part of the acceptance check which verifies validity of
the command type and availability of resources is imple-
mented in the Load Command/Report Procedure of the
InLoader (see section 15). The command-specific part
of the acceptance check is implemented in the Validity
Check Operation specified through a function pointer in the
CR FW INCMD INIT KIND DESC initializer.

Update
Action

Function implementing the Update Action Operation for an
out-going command specified through a function pointer in
the CR FW OUTCMP INIT KIND DESC initializer.

Start Action Function implementing the Start Action Operation for an
incoming command specified through a function pointer in
the CR FW INCMD INIT KIND DESC initializer.

Progress
Action

Function implementing the Progress Action Operation for an
incoming command specified through a function pointer in
the CR FW INCMD INIT KIND DESC initializer.

Termination
Action

Function implementing the Termination Action Operation for
an incoming command specified through a function pointer
in the CR FW INCMD INIT KIND DESC initializer.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

47

PP-UM-COR-00002 Revision 0.6.0

Name Mapping to C-Level Construct

Abort
Action

Function implementing the Abort Action Operation for an
incoming command specified through a function pointer in
the CR FW INCMD INIT KIND DESC initializer.

8.2 Report Concept

Each report belongs to a service. Within that service, the report is identified
by the sub-type (a positive integer). Thus, a report is fully identified by a pair
[x,y] where ’x’ is the identifier of the service to which the report belongs (the
service type, see section 3.2) and ’y’ is the identifier of the report within the
service (the command sub-type).

Commands and reports within the same service have different sub-types. Thus,
it is not possible for a command and a report to be identified by the same [type,
sub-type] pair.

Reports are types which are instantiated at run-time. A report is generated by
a service provider which sends it to a service user in order to provide it with
information about its internal state. Thus, a report instance begins its life when
the application on the service provider side (the provider application) decides
that it wishes to send some information to the application on the service user
side (the user application).

On the service provider side, a report is configured with the information that
it must carry and then it is sent to its destination (a user application). The
sending of the report to the user application may be conditional on certain checks
being passed. On the user side, the report performs an update action. The
report encapsulates the data to be sent, the conditional checks which determine
whether the report is sent, and the update action.

The same report instance may be sent to its destination more than once. This
models the situation where a service provider is issuing periodic reports to a
service user. In this case, the content of the report is updated every time it is
sent to its destination.

Thus, a report is defined by its attributes, its conditional checks and an update
action.

Attributes designate characteristics that are entirely defined by their value. The
update actions and conditional checks designate executable functionalities that
are associated to the report. The conditional checks determine whether a report
is sent to its destination and the update action determines what the report does
with the data it carries in its destination.

The next three subsections further define the report attributes, the report con-
ditional checks and the report update action. The last sub-section describes the
lifecycle of a report.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

48

PP-UM-COR-00002 Revision 0.6.0

8.2.1 The Report Attributes

An attribute is a characteristics that is entirely defined by its value. A report
has the following attributes:

Service Type
Each report contributes to implementing a service. This attribute identi-
fies the service that the report implements.

Report Sub-Type
Each service is implemented by several reports. This attribute identifies
the type of the report within a certain service.

Report Identifier
A report may exist in two distinct applications (the provider application
which sends the report and the user application which receives it). This
attribute uniquely identifies the report instance within both applications
and throughout the life of both applications.

Destination
Reports are generated by a provider application for a user application.
This attribute identifies the user application for which the report is in-
tended.

Source
Reports are generated by a provider application for a user application.
This attribute identifies the provider application which issues the report.

Time Stamp
The time when the provider application makes the request to send the
report to its destination.

Group
Reports sent by a provider application to the same destination are allo-
cated to a group. This attribute identifies the group to which the report
belongs. The concept of group is primarily relevant to applications which
aim at PUS-compliance (see section 3.5).

Sequence Counter
Every time a provider application generates a report belonging to a certain
source group, it increments a counter. The sequence counter attribute
holds the value of this counter. The sequence counter can be used by the
recipient application to check whether any reports addressed to it have
been lost.

Report Parameters
Some reports may require parameters to fully specify the actions and
checks that they encapsulate. The “Report Parameters” attribute holds
the value of these parameters. This attribute consists of an ordered se-
quence of items of primitive type.

Discriminant
The number and type of report parameters in a report instance is not

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

49

PP-UM-COR-00002 Revision 0.6.0

necessarily determined by the report type (i.e. different instances of the
same report type may have different sets of report parameters). The
discriminant is a report parameter which determines the number and type
of the other report parameters.

Thus, the layout of a report instance is fully determined by the triplet:
[x,y,z] where ’x’ is the identifier of the service to which the report belongs
(the service type), ’y’ is the identifier of the report within the service (the
report sub-type), and ’z’ is the discriminant.

The discriminant is an optional attribute. Report types which have no
parameters, or which have a fixed set of parameters, have no discriminant.

8.2.2 The Report Conditional Checks

A conditional check is an executable functionality which returns an enumerated
value. The enumerated value reports the outcome of the check. Conditional
checks are performed as part of the processing of a report in a provider appli-
cation. Their outcome determines whether and when the report is sent to its
destination.

Conditional checks must have zero logical execution time. This restriction allows
them to be mapped to guards in state machines.

The following conditional checks are defined for a report on the service provider
side:

Enable Check
This check is performed when the provider application makes a request to
send a report to the service user. The enable check determines whether the
report instance is enabled or disabled. If the report instance is disabled,
then the report is aborted. If instead the report instance is enabled, it
remains in a pending state until the ready check authorizes it being sent
to its destination.

Ready Check
This check is performed on a pending report instance that has passed its
enable check. The ready check determines when the report instance is sent
to its destination. The report instance remains pending until the ready
check is passed. When the ready check is passed, the report instance may
be sent to its destination.

Repeat Check
This check is performed on a report instance after it has been sent to its
destination. The check returns either ”repeat” or ”no repeat”. In the for-
mer case, the report instance is updated and sent again to its destination.
In the latter case, it is destroyed.

On the service user side, the following conditional checks are defined for a report:

Acceptance Check
The acceptance check is performed when the report instance is received
by its destination. If the acceptance check is passed, then the report’s

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

50

PP-UM-COR-00002 Revision 0.6.0

update action is executed. If the acceptance check is not passed, then the
report instance is aborted.

It should be noted that the conditional checks defined for a report on the
provider side have a similar semantics as the conditional checks defined for
a command on the service user side (see section 8.1.2). This similarity reflects
the fact that out-going commands are handled in the same way as out-going
reports.

8.2.3 The Report Actions

Report actions are executable functionalities which encapsulate the actions to
be performed by the command. Report actions are executed depending on the
outcome of the report conditional checks. Report actions must have zero logical
execution time. This restriction allows them to be mapped to actions in state
machines.

The following action is defined for a report on the service provider side:

Update Action
Through this action, the report acquires the information which it must
carry to its destination. This action is executed before the report is sent to
its destination. If the report is sent more than once (i.e. if its repeat check
returns ”repeat” one or more times), then the Update Action is performed
repeatedly every time the report must be sent to its destination.

The following action is defined for a report on the service user side:

Update Action
This action is executed on the user side after a report has been received by
a user application and has passed its acceptance check. A report carries
data to a user application. The Update Action determines what the report
does with these data on the user application.

As in the case of the report conditional checks, it should be noted that the
action defined for a report on the provider side have a similar semantics as the
action defined for a command on the service user side (see section 8.1.3). This
similarity reflects the fact that out-going commands are handled in the same
way as out-going reports.

8.2.4 Report Lifecycle

A report instance begins its life on the service provider side when the provider
application creates and configures the report instance and requests it to be sent
to the user application. Through the report configuration process, the provider
application defines the data that the report must carry to its destination.

Nominally, on the provider side, the report can be in one single state PENDING.
This corresponds to the state of a report that has passed its enable check and
is waiting for its ready check to authorize the transfer of the report to the user
application.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

51

PP-UM-COR-00002 Revision 0.6.0

On the user side, the report executes its acceptance check. Tyically, this check
encapsulates syntactical checks which verify the integrity of the data carried by
the report. If the check is passed, then the report’s update action is executed.
Typically, the update action might consist in updating the value of selected
variables in the user application to reflect the arrival of the report, or it might
consist in storing a copy of the data carried by the report into a repository. If
the acceptance check is not passed, the report is simply dicarded.

The CORDET Framework defines the logic to manage the report lifecycle but
it leaves the definition of the content of the report and of its conditional checks
open.

Figure 8.2 shows the nominal lifecycle of a report in an informal notation. In
summary, the CORDET Framework pre-defines the logic to handle the transi-
tions between the report states. It does this by defining the logic to manage
the execution of the report checks and of the report actions but it leaves the
definition of the content of the actions and checks open.

The lifecycle outlined above may be repeated more than once for the same
report instance. Repetition is determed by the outcome of the repeat check.
The repeat check is performed at the end of the lifecycle depicted in figure
8.1. If the check returns ”no repeat”, then the report instance is destroyed. If
instead, it returns ”repeat”, then the content of the report instance is updated
and re-sent to its destination where it repeats the lifecycle of figure 8.2.

Fig. 8.2: Report Lifecycle (Informal Notation)

8.2.5 Mapping to C-Level Constructs

The C2 Implementation maps reports to software-level components as follows:
out-going reports are mapped to OutComponent components which are im-
plemented in the C module CrFwOutCmp (see section 11); incoming reports
are mapped to InReport components which are implemented in the C mod-
ule CrFwInRep (see section 16). Table 8.2.5 shows how the attributes, condi-
tional checks, and actions of reports are mapped to C-level constructs in the C2
Implementation. Note that, in most cases, the mapping depends on whether
the report is out-going (i.e. the host application is a provider application) or
incoming (i.e. the host application is a user application).

Table 8.2: Mapping of Commands to C-Level Constructs

Name Mapping to C-Level Construct

Service Type
Attribute

ServType attribute in CrFwOutCmp and CrFwInRep modules.
Value set when component is created by its factory and ac-
cessible through getter function.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

52

PP-UM-COR-00002 Revision 0.6.0

Name Mapping to C-Level Construct

Command
Sub-Type
Attribute

ServSubType attribute in CrFwOutCmp and CrFwInRep mod-
ules. Value set when component is created by its factory and
accessible through getter function.

Command
Identifier
Attribute

InstanceId attribute inherited from base component
CrFwbaseCmp. Value set when component is created by its
factory and accessible through getter function.

Destination
Attribute

Dest attribute in CrFwOutCmp, accessible through getter
and setter functions. Attribute not explicitly present in
CrFwInRep since the destination of an InReport is, by def-
inition, the host application.

Source
Attribute

Src attribute in CrFwOutCmp and CrFwInRep modules. Value
set when component is created by its factory and accessible
through getter function.

Time Stamp
Attribute

TimeStamp attribute in CrFwOutCmp module. Value acces-
sible and controllable through getter and setter functions.
Attribute is not present in CrFwInRep module.

Group
Attribute

Group attribute in CrFwOutCmp and CrFwInRep modules.
Value accessible and controllable through getter and setter
functions in the CrFwOutCmp module and in read-only mode
through a getter function in the CrFwInRep module.

Sequence
Counter
Attribute

SeqCnt attribute in CrFwInRep module. Value set when the
component is created by its factory and accessible through
getter function. Attribute is not present in CrFwOutCmp mod-
ule since the sequence counter of out-going commands is set
at the time the command is sent out.

Discriminant
Attribute

Discriminant attribute in CrFwOutCmp and CrFwInRep mod-
ules. Value set when component is created by its factory and
accessible through getter function.

Command
Parameter
Attributes

These attributes are application-specific.

Enable
Check

Function implementing the Enable Check Operation for an
out-going report specified through a function pointer in the
CR FW OUTCMP INIT KIND DESC initializer.

Ready
Check

Function implementing the Ready Check Operation for an
out-going report specified through a function pointer in the
CR FW OUTCMP INIT KIND DESC initializer.

Repeat
Check

Function implementing the Repeat Check Operation for an
out-going report specified through a function pointer in the
CR FW OUTCMP INIT KIND DESC initializer.

Acceptance
Check

The part of the acceptance check which verifies validity of
the command type and availability of resources is imple-
mented in the Load Command/Report Procedure of the
InLoader (see section 15). The command-specific part
of the acceptance check is implemented in the Validity
Check Operation specified through a function pointer in the
CR FW INREP INIT KIND DESC initializer.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

53

PP-UM-COR-00002 Revision 0.6.0

Name Mapping to C-Level Construct

Update
Action

Function implementing the Update Action Operation for
an out-going report specified through a function pointer in
the CR FW OUTCMP INIT KIND DESC initializer. Func-
tion implementing the Update Action Operation for an in-
coming report specified through a function pointer in the
CR FW INREP INIT KIND DESC initializer.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

54

PP-UM-COR-00002 Revision 0.6.0

9 Packet Interface

CORDET applications interact with each other by exchanging commands and
reports. Within an application, commands and reports are encapsulated in
components but, when they travel from one application to another (over some
communication channel which is provided by some middleware external to the
applications themselves), they take the form of packets (see section 3.6). A
report or command packet is an ordered sequence of bytes that contains all the
information required to reconstruct a report or command.

Thus, the interface between two CORDET applications is packet-based. More
precisely, an application needs an out-going interface through which it can send
to another application a packet representing a command or a report and it
needs an incoming interface through which it can receive from other applications
packets representing commands or reports.

The CORDET Framework assumes that a middleware is present which offers
physical connections through which two applications can send packets to each
other. A physical connection then is a data channel provided by a middleware
and capable of transporting packets from one application to another application.

A CORDET system (namely a set of CORDET applications connected to each
other by a middleware) builds a set of logical connections on top of the phys-
ical connections offered by the middleware. A logical connection allows two
applications A1 and A2 to exchange packets either directly through a physical
connection linking A1 to A2 (in which case the logical connection coincides with
a physical connection) or through a chain of other applications which are linked
to each other and to A1 and A2 by physical connections. This is illustrated in
figure 9.1. The figure shows a CORDET system consisting of four applications
(yellow boxes in the figure). The applications are linked to each other by three
physical connections (black lines in the figure). In this system, the following
kinds of logical connections might, for instance, be defined:

1. A logical connection between applications A and B which is built upon
physical connection C1;

2. A logical connection between applications B and D which is built upon
physical connection C3;

3. A logical connection between applications A and C which is built upon
physical connections C1 and C2 and application B acting as re-routing
node.

When a packet travels through an application en route to another application,
it is said to be re-routed. Packet re-routing is a function which is defined by
the CORDET Framework and is therefore supported by default by CORDET
Systems. In figure 9.1 a packet travelling along a logical connection from appli-
cation A to application C is re-routed by application B.

This section specifies the interfaces through which applications send packets to
and receive them from the middleware and it specifies the re-routing logic which
allows applications to exchange packets even in the absence of a direct physical

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

55

PP-UM-COR-00002 Revision 0.6.0

connection linking them.

Fig. 9.1: Physical And Logical Connections

9.1 Middleware Assumptions

Although, the CORDET Framework does not specify the middleware through
which applications may exchange packets with each other, it assumes this mid-
dleware to satisfy certain, very generic, assumptions. The next two sub-sections
define the assumptions made by the CORDET Framework on, respectively,
out-going interfaces (interfaces through which packets are sent to another ap-
plication over a physical connection) and incoming interfaces (interfaces through
which packets are received from other applications over a physical connection).

9.1.1 Out-Going Interface

An out-going interface is an interface through which an application sends packets
to another application over a physical connection provided by a middleware. The
following assumptions are made by the CORDET Framework about out-going
connections:

A1 A connection may be in one of two states: AVAIL or NOT AVAIL.

A2 If a connection is in state AVAIL, then it is capable of accepting at least
one entire packet for eventual transfer to its destination.

A3 A connection offers a non-blocking Send operation through which an ap-
plication can make a request for a packet to be sent to its destination.

A4 The Send operation either forwards a packet to its destination (if the
middleware is in state AVAIL when the Send request is made) or else it
does nothing but notify the caller that the packet cannot be forwarded (if
the middleware is in state NOT AVAIL when the Send request is made).

A5 A connection may make a transition between the AVAIL and NOT AVAIL
states at any time.

A6 A connection may be queried for its current state.

These assumptions correspond to a middleware which accepts packets one at
a time and which implements a potentially complex protocol to deliver them
to their destination. This protocol may include buffering of packets (to bridge
periods of non-availability of the physical link), splitting of packets into smaller

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

56

PP-UM-COR-00002 Revision 0.6.0

messages (to accommodate restrictions on the maximum length of a transmission
message), and re-sending of packets which have not been successfully delivered
(to ensure continuity of service).

These protocol complexities manifest themselves at the application level exclu-
sively as transitions between states AVAIL and NOT AVAIL (e.g. the mid-
dleware connection becomes unavailable when the middleware buffer is full, or
when a packet has to be broken up into messages which have to be sent sepa-
rately, or when a packet has to be re-sent). Thus, the application is shielded
from protocol-level complexity and is only required to be able to handle periods
of non-availability of the middleware connection.

Note also that there is no assumption that the middleware be able to signal a
change of state of a connection from NOT AVAIL to AVAIL. Such a capability
could be exploited by an application but is not mandated by the CORDET
Framework. Thus, applications are compatible both with a “polling architec-
ture” where the middleware connection is periodically queried for its availability
status and with a “call-back architecture” where the application waits to be no-
tified of the middleware’s availability.

9.1.2 Incoming Interface

An incoming interface is an interface through which an application receives
packets from another application over a physical connection provided by a mid-
dleware. The following assumptions are made by the CORDET Framework
about incoming connections:

B1 A connection may be in one of two states: WAITING or PCKT AVAIL.

B2 If a connection is in state PCKT AVAIL, then there is at least one packet
that is ready to be collected by the application.

B3 A connection offers an operation through which a packet that is waiting
to be collected can be collected.

B4 A connection may make a transition from state PCKT AVAIL to WAIT-
ING exclusively as a result of the call to the operation to collect a packet.

B5 A connection may make a transition from state WAITING to PCKT AVAIL
at any time.

B6 A connection may be queried for its current state.

These assumptions correspond to a middleware which implements a potentially
complex protocol for processing incoming packets. This protocol may include:
the defragmentation of packets which are transferred in several messages; the
multiplexing of channels from several packet sources; the generation of low-level
acknowledgements for incoming packets; the buffering of incoming packets.

These protocol complexities manifest themselves at the application level ex-
clusively as transitions between state PCKT AVAIL and WAITING (e.g. the
middleware connection enters state WAITING when no packet has arrived, or
when messages are being spliced together to compose a complete packet, or when
an acknowledgement is being generated). Thus, the application is shielded from
protocol-level complexity and is only required to be able to handle periods when

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

57

PP-UM-COR-00002 Revision 0.6.0

no incoming packet is present.

Note also that there is no assumption that the middleware be able to signal
a change of state of a connection from WAITING to PCKT AVAIL. Such a
capability, if it exists, can be exploited by an application but is not mandated
by the CORDET Framework. Thus, an application is compatible both with a
“polling architecture” where the middleware connection is periodically queried
for the presence of incoming packets and with a “call-back architecture” where
the application waits to be notified of the arrival of a packet.

9.2 Packet Implementation

At implementation level, a packet is an array of bytes. The C2 Implementation
pre-defines type CrFwPckt t to represent packets.

The layout of packets is entirely defined at application level. The C2 Implemen-
tation specifies an interface (in header file CrFwPckt.h) through which a new
packet can be created and its various fields can be accessed.

Packet creation is managed through two functions (CrFwPcktMake and CrFwPcktRelease)
which can be used to, respectively, create and release a packet. The creation
function takes as an argument the length of the packet. The implementation
of these functions is left open. In the simple case of an application developer
who is not concerned about dynamic memory allocation, these functions can be
implemented simply as wrappers for malloc and free. Other users who wish to
avoid dynamic memory allocation operations at run-time must implement their
own memory management scheme.

For each command or report attribute, the packet interface CrFwPckt.h specifies
a function to read and write the value of the attribute. The implementation
of these functions depends on the way the attributes of commands and reports
are encoded in a packet. The implementation of these functions (i.e. the body
file CrFwPckt.c) must therefore be provided by application developers. A stub
implementation, which is used in the Test Suite of the C2 Implementation, is
provided in the configuration directory /cr/src/CrConfigTestSuite.

Since the framework provides one single interface for decoding and encoding
packets, the simplest option for application developers is to use the same lay-
out for all packets used by the application, irrespective of their type or of their
destination or source. If this is not possible, then the getter and setter func-
tions of interface CrFwPckt.h must implement logic which makes their outcome
dependent on the content of the packet itself. Thus, for instance, if different
packet sources use different layouts, the getter functions will have to inspect
the source of a packet before deciding how to decode the value of a packet’s
attribute. In the case of the setter functions, this approach requires that the
order in which the packet attributes are set be specified. The only place in the
CORDET Framework where packets are configured is the function to create a
new OutComponent (CrFwOutFactoryMakeOutCmp). This function accordingly
guarantees the order in which the packet attribute are set (the order is: packet
report/command flag (which determines whether the packet holds a report or a
command), packet source (i.e. the host application), packet group, packet type,

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

58

PP-UM-COR-00002 Revision 0.6.0

packet sub-type, and packet discriminant).

9.3 Packet Interface Management

The packet interface concept for CORDET applications is illustrated in figure
9.2 using an information notation.

The management of the out-going packet interface is performed by one or more
OutStream components. An OutStream component encapsulates an out-going
interface through which packets are sent to a certain destination. An applica-
tion has one OutStream component for each destination to which it may send
packets.

The management of the incoming packet interface is performed by an InStream
component. An InStream component encapsulates the incoming interface through
which an application receives packets from a certain packet source. An appli-
cation has one InStream component for each source from which it may receive
packets.

Packets which are received by an InStream in application A and which have
application A as their destination are made available to the internal components
of application A. Packets which are received by an InStream in application A
and which have an application other than A as their destination are instead re-
routed. This means that they are handed over to an OutStream for forwarding
to another application (either their final destination or another intermediate
application on the way to their final destination).

As an example, consider again the CORDET System of figure 9.1 and consider
first the case of a packet which is sent by application A to application B over
connection C1. This packet is placed on connection C1 by an OutStream in
application A and is received by an InStream in application B. Since the des-
tination of the packet is application B itself, the InStream makes the packet
available to the internal components of application B.

Consider next the case of a packet which is sent by application A to application C
and which must therefore be re-routed by application B. This packet is initially
placed on connection C1 by an OutStream in application A and is received by an
InStream in application B. This InStream recognizes that the packet destination
is not B and therefore re-routes it by directly handing it over to an OutStream
which places it on connection C2. At the other end of this connection, the
packet is received by an InStream in application C which recognizes that the
packet has arrived at its final destination and therefore makes it available to the
internal components of application C.

9.3.1 The OutStream Component

This component models the out-going interface through which packets repre-
senting either commands (in a service user application) or reports (in a service
provider application) are sent to their destination. The OutStream is therefore
located at the interface between an application and the middleware layer.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

59

PP-UM-COR-00002 Revision 0.6.0

Fig. 9.2: Packet Interface Concept

An application A may send packets to several destinations. The packets may
either originate within application A itself or they may have originated in some
other application (the latter is the case if application A is re-routing the pack-
ets). Depending on the characteristics of the middleware, only one InStream
component may be present in application A with the multiplexing of the out-
going connections to the packet destinations being done in the middleware, or
several OutStream components may be present each handling packets to a sub-
set of destinations. If an application is sending internally generated packets to
a certain destination D and is also re-routing packets to the same destination
D, then it must use the same OutStream for both kinds of packets.

The OutStreams are responsible for assigning the sequence counter attributes
of out-going packets generated by an application. Since sequence counters are
incremented according to a packet’s group, all packets belonging to the same
group must go through the same OutStream.

The OutStream component extends the Base Component of section 5 and it
therefore inherits the initialization and configuration logic defined by the Base
Component. In the initialization and configuration process, the OutStream is
linked to the middleware. This process is necessarily application-specific (be-
cause the middleware is not specified by the CORDET Framework). However,
the CORDET Framework specifies that an OutStream component may only be-
come configured (i.e. it may enter state CONFIGURED) after the middleware
connection has become available (it has entered state AVAIL). This ensures
that an OutStream only becomes configured after its middleware connection
has terminated its own initialization and configuration process.

In state CONFIGURED, the behaviour of an OutStream is described by the
state machine of figure 9.3 (the OutStream State Machine). The state machine
has two states: READY and BUFFERING. State READY represents a situation
where the connection is expected to be available and the OutStream hands over
packets to the middleware. State BUFFERING represents a situation where the
connection may be unavailable and where packets are buffered without being
handed over to the middleware.

The OutStream State Machine reacts to two commands: Send and ConnectionAvailable.
Command Send is issued by the host application when it wishes to send a packet

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

60

PP-UM-COR-00002 Revision 0.6.0

Fig. 9.3: The OutStream State Machine

to its destination. If, at the time a Send request is made, the state machine is
in state BUFFERING, then the packet is enqueued in the Packet Queue.

The Packet Queue is an internal data structure where packets which are waiting
to be sent are stored. The size of the packet queue is fixed and is defined as
part of the OutStream configuration. Attempts to enqueue a packet in a full
queue are reported as errors.

The Packet Queue is a FIFO queue. This guarantees that the OutStream com-
ponent delivers packets to the middleware in the same order in which it receives
them from its host application.

If, instead, a Send request is made at a time when the OutStream is in state
READY, then an attempt is made to hand over the packet to the middleware.
If this succeeds, the OutStream remains in state READY. If instead the hand-
over to the middleware fails, the packet is enqueued and the OutStream makes
a transition to state BUFFERING. Note that the logic of the OutStream State
Machine guarantees that, at entry into state READY, the packet queue is empty.

The Send command may either fail or succeed. If it results in its packet being
enqueued on the Packet Queue, then the Send command succeeds (note that
property P3 below ensures that a packet which has been enqueued will eventu-
ally be handed over to the middleware). If instead it results in its packet being
lost because, at the time the Send command was called, the Packet Queue was
full, then the Send command fails.

Command ConnectionAvailable would typically be generated by the middle-
ware when the connection (or one of the connections) associated to the Out-
Stream changes from NOT AVAIL to AVAIL. This command is used to trigger
the flushing of the Packet Queue. When the OutStream receives command
ConnectionAvailable it empties the Packet Queue one packet at a time until

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

61

PP-UM-COR-00002 Revision 0.6.0

the queue is empty or the connection becomes unavailable.

The out-going packets which are handled by an OutStream may have two origins:
(a) they may have originated in the same application to which the OutStream
belongs, or (b) they may be re-routed packets which originate from some other
application and which are using the OutStream’s application as a gateway on
the way to their destination (see figure 9.2). In case (a), the OutStream is
responsible for setting the sequence counter attribute of the out-going packet.
In case (b), by contrast, the packet’s sequence counter attribute is already set
(it has been set by the application where the packet originated).

In case (a), the sequence counter is incremented according to the group to which
an out-going command or report belongs. Thus, an OutStream maintains an
array of sequence counters, one for each group to which its out-going commands
or reports may belong. The i-th element of this array holds the value of sequence
counter which will be assigned by the OutStream to the next out-going com-
mand or report belonging to the i-th group managed by the OutStream. The
sequence counters are initialized to 1 when the OutStream is reset (i.e. the first
value of sequence counter assigned to an out-going command or report after the
OutStream is reset is 1). If a command or report has an illegal group attribute,
this is reported as an error.

The C2 Implementation implements the OutStream component in module CrFwOutStream.

9.3.2 The OutStreamRegistry Component

As discussed in section 9.3.1, for each command or report destination, one Out-
Stream component must be instantiated by an application. The CORDET
Framework accordingly defines an OutStreamRegistry component which encap-
sulates the link between the command and report destinations and the associ-
ated OutStream.

Only one operation is defined at framework level for the OutStreamRegistry.
The OutStreamGet operation lets a user retrieve the OutStream corresponding
to a certain command or report destination. The command or report destination
is identified by the value of the destination attribute of the command or report
(see sections 8.1.1 and 8.2.1).

If an invalid destination is provided to the OutStreamGet operation, nothing
is returned by the operation itself but this is not treated as an error by the
OutStreamRegistry component. If the use of an invalid destination represents
an error, this must be handled by the user of the OutStreamRegistry.

Since the range of potential command and report destinations is unknown at
framework level, the OutStreamGet operation is an adaptation point for the
OutStreamRegistry. The link between the command and report destinations
and their OutStreams is a configuration parameter for the OutStreamRegistry.

Only one instance of the OutStreamRegistry should exist in an application.

The OutStreamRegistry is defined as an extension of the Base Component.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

62

PP-UM-COR-00002 Revision 0.6.0

In the C2 Implementation, the OutStreamRegistry component is merged with
the OutStream component and is therefore implemented in module ../cordetfw/CrFwOutStream
(i.e. it is implemented in the same module which implements the OutStream
component). This module, in addition to defining the functions implementing
the OutStream operations, also defines function CrFwOutStreamGet to imple-
ment the OutStreamGet operation.

9.3.3 The InStream Component

The InStream component models the interface through which packets represent-
ing incoming commands or reports are received by an application. The InStream
component is therefore located at the interface between an application and the
middleware layer (see section 3.6).

An application A may receive packets from several sources. The packets may
either have application A as their destination or they may be intended for some
other application. In the latter case, application A is responsible for re-routing
the packets. Depending on the characteristics of the middleware, only one
InStream component may be present in application A with the multiplexing of
the incoming connections from the packet sources being done in the middleware,
or several InStream components may be present each handling packets from a
subset of incoming connections.

Although several connections may be managed by the same InStream, a con-
nection can only send its packet to one InStream (i.e. a situation where the
same connection is controlled by several InStreams and several InStreams are
therefore handling packets from the same source is not allowed).

The InStreams are responsible for checking the sequence counter attributes of
incoming packets received by an application. Since sequence counters are incre-
mented according to a packet’s group, all packets belonging to the same group
must arrive through the same InStream.

The InStream component is defined as an extension of the Base Component
of section 5 and it therefore inherits the initialization and configuration logic
defined by the Base Component. In the initialization and configuration process,
the InStream is linked to the middleware. This process is therefore necessarily
application-specific (because the middleware is not specified by the CORDET
Framework). However, the CORDET Framework specifies that an InStream
component may only become configured (i.e. it may enter state CONFIG-
URED) after the middleware connection has terminated its own initialization
and configuration. This ensures that an InStream only becomes configured after
its middleware connection has terminated its own initialization and configura-
tion process.

In state CONFIGURED, the behaviour of an InStream is described by the state
machine of figure 9.4 (the InStream State Machine). The state machine has two
states: WAITING and PCKT AVAIL. State WAITING represents a situation
where no incoming packets are waiting to be collected by the host application.
State PCKT AVAIL represents a situation where at least one incoming packet
has been collected from the middleware and is now waiting to be collected by

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

63

PP-UM-COR-00002 Revision 0.6.0

Fig. 9.4: The InStream State Machine

Fig. 9.5: The Packet Collect Procedure

the host application.

The InStream component stores packets it has collected from the middleware
in the Packet Queue. The Packet Queue is an internal InStream data structure
where packets which have been collected from the middleware are stored and
where they remain available until the application retrieves them. The size of
the packet queue is fixed and is defined as part of the InStream configuration.
Attempts to enqueue a packet in a full queue are reported as errors.

The Packet Queue is a FIFO queue. This guarantees that the InStream com-
ponent delivers packets to its host application in the same order in which it has
collected them from the middleware. The InStream State Machine reacts to two
commands: GetPacket and PacketAvailable. Command GetPacket is issued
by the host application when it wishes to collect an incoming packet. If the
command is received when the state machine is in state PCKT AVAIL (namely
when at least one packet is available in the Packet Queue), then the command
results in the oldest packet in the Packet Queue being returned to the caller.
If the packet thus returned is the last on the queue, the command triggers a

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

64

PP-UM-COR-00002 Revision 0.6.0

transition to state WAITING.

If the GetPacket command is received when the state machine is in state WAIT-
ING, the command has no effect and returns nothing.

Command PacketAvailable would typically be generated by a Real Time Con-
tainer (see reference [1]) in response to the middleware connection changing
from NOT AVAIL to AVAIL. In response to this command, all packets cur-
rently available at the middleware interface are collected and put on the Packet
Queue. This is done by the Packet Collect Procedure (see figure 9.5).

Also as part of the processing of the PacketAvailable command, the Packet
Collect Procedure checks the sequence counter attribute of incoming packets
which have the host application as their destination. To each InStream, a set
of groups are associated. For each group, the InStream maintains a sequence
counter. When a packet is received which belongs to that group, the InStream
checks that its sequence counter has incremented by one with respect to the
previous packet in the same group. If the procedure finds that the sequence
counter has not incremented by one, it reports the sequence counter error. An
error is also reported if the group attribute of an incoming packet does not
correspond to one of the groups managed by the InStream.

The sequence counter check is only done for packets which have the host ap-
plication as their destinations. Packets which are in transit (i.e. packets which
must be re-routed to some other application) do not undergo any check on
their sequence counter. This logic ensures that the sequence counter check is
only performed once by the InStream that receives a packet in the destination
application of that packet.

The C2 Implementation implements the InStream component in module CrFwInStream.
This implementation follows the specification of the CORDET Framework with
one restriction: an InStream component can only handle packets from one sin-
gle packet source. Thus, an application must instantiate one InStream for each
source from whic it may receive packets. More precisely, the rules for deciding
the number of InStreams in an application are as follows:

R1 If an application receives packets from source S1, then it must have an
InStream for source S1.

R2 If an application re-routes packets from source S2 to other destinations,
then it must have an InStream for source S1.

R3 If an application receives packets from a source S and re-routes packets
from the same source S, then it must use the same InStream for both kinds
of packets.

Thus, for each command or report source, one (and only one) InStream compo-
nent must be instantiated by an application. Function CrFwInStreamGet lets a
user retrieve the InStream corresponding to a certain command or report source.

If an invalid source is provided to the CrFwInStreamGet operation, nothing
is returned by the operation itself but this is not treated as an error by the
CrFwInStreamGet operation. If the use of an invalid packet source represents

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

65

PP-UM-COR-00002 Revision 0.6.0

an error, this must be handled by the caller of CrFwInStreamGet.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

66

PP-UM-COR-00002 Revision 0.6.0

10 Command and Report Management

This section describes the mechanisms which the CORDET framework makes
available for the management of commands and reports in a CORDET appli-
cation. These mechanisms are entirely independent of the concrete actions and
checks attached to a specific command or report. It is precisely this indepen-
dent that makes it possible for the framework to provide generic report and
command handling components which can be reused by applications.

This section introduces the components which are responsible for the man-
agement of commands and reports and describes their interrelationships. The
following sections describe each kind of component in greater detail with the
exception of the InStream and OutStream components which are already cov-
ered in sections 9.3.3 and 9.3.1 and of the factory components which are already
covered in section 5.2.

10.1 Management of Out-Going Commands and Reports

Out-going commands are commands in a user application (namely in an appli-
cation which sends commands to a service provider) and out-going reports are
reports in a provider application (namely in an application which sends reports
to a service user).

Out-going commands and out-going reports are treated together because their
management is performed in the same way and is based on the following com-
ponents:

OutComponent
This component models the generic behaviour of an out-going command
or report. Concrete commands or report generated by an application are
defined as extensions of the base OutComponent component.

OutFactory
This is a component factory (in the sense of section 7.1) which provides
unconfigured instances of OutComponents to encapsulate out-going com-
mands or reports.

OutLoader
After an application has configured an OutComponent representing an
out-going command or report, it loads it into the OutLoader. This com-
ponent is responsible for selecting the appropriate OutManager to process
the out-going command or report.

OutManager
This component is responsible for controlling an out-going command or
report until the OutComponent which encapsulates it is serialized to the
OutStream and sent to its destination as a packet.

OutStream
This component models the interface through which out-going commands
and reports are sent to their destination.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

67

PP-UM-COR-00002 Revision 0.6.0

OutRegistry
This component acts as a registry for pending OutComponents. It pro-
vides information about the state of the OutComponent to other parts of
the host applications.

Note that the OutFactory, OutLoader, and OutRegistry components are sin-
gletons and it is therefore assumed that only one instance of each exists in an
application. It is also assumed that there is one (and only one) OutStream for
each destination to which commands may be sent (see usage constraints at the
end of section 9.3.1).

Fig. 10.1: Management of Out-Going Commands and Reports

The lifecycle of an out-going report or command is shown in figure 10.1 using
and informal notation and can be summarized as follows:

1. When the host application decides that it must issue a command or a re-
port, it asks the OutFactory for an unconfigured OutComponent instance
to encapsulate the out-going command or report.

2. The application configures the OutComponent and then loads it in the
OutLoader.

3. The OutLoader selects an OutManager and loads the OutComponent into
it. The selection of the OutManager will often be based on the urgency
with which the command or report must be issued (e.g. each OutManager
component is characterized by a certain priority level).

4. The OutManager component processes the out-going command or report.
If the command or report is disabled, it is aborted and the component
which encapsulated it is returned to its factory (where it is either de-
stroyed or is reused). If instead the command or report is enabled, it
remains pending in the OutManager until its ready check indicates that
the conditions are in place for it to be issued.

5. The report or command is issued by serializing its OutComponent to a

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

68

PP-UM-COR-00002 Revision 0.6.0

packet which is then handed over to the OutStream. The OutStream is
responsible for sending the packet to its destination.

6. After the OutComponent has been serialized and sent to its destination,
the OutManager evaluares the outcome of its Repeat Check. If this is
equal to ”repeat”, the content of the OutComponent is updated and the
OutComponent is then processed again as per point 4 above. If instead the
repeat check had returned ”no repeat”, processing of the OutComponent
terminates and the OutComponent is returned to its factory.

The C2 Implementation provides implementations for each of the CORDET
components discussed above. Table 5.1 shows the mapping to the C-modules
which implement them.

10.2 Management of Incoming Commands and Reports

Incoming commands are commands in a provider application (namely in an
application which receives commands from a service user) and incoming reports
are reports in a user application (namely in an application which receives reports
from a service provider).

Incoming commands and incoming reports are treated together because their
management is performed in a similar way.

The management model specified by the framework for incoming commands and
reports is based on the definition of the following components:

InCommand
This component models the generic behaviour of a command on a provider
application (namely of an incoming command). Concrete incoming com-
mands are defined as extensions of the base InCommand component.

InReport
This component models the generic behaviour of a report on a user ap-
plication (namely of an incoming report). Concrete incoming reports are
defined as extensions of the base InReport component.

InStream
This component models the interface through which incoming commands
and reports are received by an application.

InFactory
The InStream delivers an incoming command or incoming report as a
packet consisting of a stream of bytes which must be deserialized to cre-
ate an InCommand or InReport instance to represent it. The InFactory
component encapsulates the component instance creation process.

InLoader
This component is responsible for retrieving packets which become avail-
able at the InStreams. The InLoader may either forward an incoming
packet (if its destination is not the host application), or it may process it
as an incoming report (if the packet holds a report), or it may process it as
an incoming command (if the packet holds a command). The processing

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

69

PP-UM-COR-00002 Revision 0.6.0

of incoming commands or reports is as follows. The InLoader deserializes
the packet and creates an InCommand or InReport instance to represent
it and then loads it into an InManager. The InManager will be responsible
for executing the InCommand or InReport.

InManager
This component controls the execution of an incoming command or in-
coming report until all its actions have been completed.

InRegistry
This component acts as a registry for pending InCommand and InRe-
port. It can provide information about their state to other parts of the
applications.

Note that InFactory, InLoader, InRegistry and InStream are singletons and it
is therefore assumed that only one instance of each exists in an application.

Fig. 10.2: The Management of Incoming Commands and Reports

The process through which an application processes an incoming command or
incoming report is shown using an information notation in figure 10.2 and can
be summarized as follows:

1. The InStreams receive packets from other applications. The packets are
collected from the InStreams by the InLoader.

2. The InLoader checks the destination of the packet. If it is the host applica-
tion itself (namely the application within which the InLoader is running),
it processes the packet as described below. If it is another application, the
InLoader forwards the packet to another application (either its eventual
destination or a routing application on the way to its eventual application).

3. An incoming packet may represent either a command or a report. The
InLoader identifies the type of the command or report and asks the In-
Factory to provide an instance of an InCommand (if the packet represents
a command) or of an InReport (if the packet represents a report) of that
type.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

70

PP-UM-COR-00002 Revision 0.6.0

4. The InCommand or InReport are initially unconfigured. They are config-
ured by deserializing the packet representing the incoming command or
incoming report. Henceforth the incoming command or report is repre-
sented by the configured InCommand or InReport instance.

5. The InLoader loads the command or report into an InManager. The
InManager is responsible for executing the command or report. In the
case of incoming commands, this may require several execution cycles.
In the case of incoming reports, at most one execution cycle is sufficient.
Depending on the outcome of the conditional checks associated to the
incoming command or report, execution may result either in a normal
termination or in the command or report being aborted.

6. When the command or report has terminated execution or has been aborted,
the InManager returns the InCommand or InReport component instance
that held it to the InFactory.

7. The InRegistry is notified of the arrival of incoming commands and re-
ports and of changes of their state. The Inregistry makes this information
available to other parts of the host application.

The C2 Implementation provides implementations for each of the CORDET
components discussed above. Table 5.1 shows the mapping to the C-modules
which implement them.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

71

PP-UM-COR-00002 Revision 0.6.0

11 The OutComponent Component

The OutComponent component encapsulates an out-going command or an out-
going report. This component enforces the generic behaviour that is common
to all out-going commands and reports irrespective of their type and it provides
access to their attributes.

The OutComponent component – like all other CORDET Framework compo-
nents – is an extension of the Base Component of section 5. Behaviour which
is specific to the OutComponent component is defined by the state machine
shown in figure 11.1 (the OutComponent State Machine). This state machine
is embedded within the CONFIGURED state of the Base State Machine.

Fig. 11.1: The OutComponent State Machine

When the OutComponent is retrieved from its factory, it is initialized and reset
(depending on the implementation, the Reset command may be issued either
by the factory itself or by the user application). After the OutComponent has
been successfully reset, the OutComponent State Machine is in state LOADED.
The component then waits for the Execute and Terminate commands which
are sent to it by its OutManager (see section 13).

The OutComponent behaviour depends on the outcome of three checks. The
Enable Check verifies whether the command or report it encapsulates is enabled
or not. If it is enabled, the check sets flag isEnabled to true; if it is disabled, it
sets flag isEnabled to false. The Ready Check verifies whether the command or
report is ready to be sent to its destination. If it is ready to be sent, the check
sets flag isReady to true; otherwise it sets the flag to false. The Repeat Check
verifies whether the command or report should remain pending after being sent
to its destination. If the outcome of the Repeat Check is ’Repeat’ (i.e. if the
OutComponent should be sent to its destination again), flag isRepeat is set to
true; if the outcome is ’No Repeat’ (i.e. if the OutComponent should not bet
sent again to its destination), flag isRepeat is set to false. The three check
operations are adaptation points.

At each execution, the OutComponent performs the Enable Check and if this de-
clares the OutComponent to be disabled, it makes a transition to state ABORTED.
This marks the end of the OutComponent’s lifecycle.

At each execution, the OutComponent has a chance to be sent to its destination.
This is done when the OutComponent is declared to be both ready and enabled
by its Ready Check and Enable Check.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

72

PP-UM-COR-00002 Revision 0.6.0

The sending operation is performed by the Send Packet Procedure of figure 11.2.
The Send Packet Procedure starts by performing the Update Action. Through
this action, the OutComponent acquires the information it must transfer to
its destination. By default, this action sets the time stamp attribute of the
OutComponent. Applications may want to extend this action to load the values
of the OutComponent parameters. For this reason, the Update Action is an
adaptation point of the OutComponent.

The Send Packet Procedure then retrieves the destination of the OutCompo-
nent and then interrogates the OutStreamRegistry to obtain the corresponding
OutStream (recall that, in an application, there is one instance of OutStream
for each command or report destination). If an OutStream can be found (i.e. if
the OutComponent’s destination is valid), the procedure serializes the OutCom-
ponent to generate a packet which is then handed over to the OutStream. This
ensures that the command or report will eventually be sent to its destination.
The serialization process is an adaptation point.

After serializing and handing over the OutComponent to its OutStream, the
Send Packet Procedure performs the Repeat Check. This determines whether
the OutComponent should be sent to its destination once more (the Repeat
Check sets flag isRepeat to true) or whether its life is terminated (the Repeat
Check sets flag isRepeat to true). In the latter case, the OutComponent will
make a transition to TERMINATED.

If the OutStreamRegistry does not return any OutStream, then the procedure
concludes that the OutComponent’s destination is invalid and it reports the fact.
In this case, the outcome of the Repeat Check is also forced to ’No Repeat’ (i.e.
flag isRepeat is set to false).

Fig. 11.2: The Send Packet Procedure

The OutComponent provides visibility over its internal state but it does not
provide automatic notifications in case of changes in its internal state. The
OutComponent provides access to the attributes of the command or report
it encapsulates but it only predefines dummy values for them. The set and

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

73

PP-UM-COR-00002 Revision 0.6.0

value of command or report attributes is therefore an adaptation point for the
OutComponent.

The default implementation of the Enable Check uses one of the services pro-
vided by the OutRegistry to determine the enable status of a command or report
(see section 14).

The C2 Implementation implements the OutComponent component in module
CrFwOutComponent. Its adaptation points are defined in CrFwOutFactoryUserPar.h.
This header file allows the application developer to define the kinds of OutCom-
ponents which must be supported by the application and to define, for each kind
of OutComponent, the functions which implement their Ready Check, their En-
able Check, and their Serialization operation. The ”kind” of OutComponent is
identified by the triplet: [service type, command/report sub-type, discriminant
value].

OutComponents are instantiated dynamically by an application when it needs
to generate an out-going command or report. The instantiation is done by
means of a make function provided by the OutFactory. The argument to the
make function is the OutComponent kind. The release of the OutComponent is
done by the framework at the time the OutComponent is handed over to the
OutStream.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

74

PP-UM-COR-00002 Revision 0.6.0

12 The OutLoader Component

After a user application has obtained an OutComponent component from an
OutFactory, it loads it into the OutLoader. This component is responsible for
selecting the appropriate OutManager to process the out-going command or
report.

For this purpose, the OutLoader maintains a list of OutManagers (the List of
OutManagers or LOM). The LOM holds all the OutManagers which have been
instantiated in an application.

The OutLoader component offers one operation – the Load operation – to load
an OutComponent into an OutManager. When this operation is called, the
OutLoader decides to which OutManager in the LOM to load an OutCompo-
nent. The policy for selecting the OutManager in the LOM is an adaptation
point. After the OutComponent is loaded into the selected OutManager, the
procedure may activate the selected OutManager (i.e. it may release the thread
which is controlling the execution of the selected OutManager). This is useful
where there is a need to process the out-going command or report as soon as it
is loaded into the OutLoader (normally, the command or report would only be
processed when the OutManager is executed).

The Load operation is modelled by the procedure shown in figure 12.1. A
call to operation Load causes this procedure to be started and executed. The
procedure executes in one single cycle and therefore terminates as part of the
call to operation Load.

No facilities are defined for dynamically changing the set of OutManagers in the
LOM. Changes in the list of OutManagers can only be done by reconfiguring
and then resetting the OutLoader component.

Fig. 12.1: The OutLoader Load Procedure

The C2 Implementation implements the OutLoader component in module CrFwOutLoader.
Its adaptation points are defined in CrFwOutLoaderUserPar.h. In most cases,
the only adaptation point for which a non-default implementation is required
is the one covering the definition of the function which selects the OutManager
where an out-going command or report should be loaded.

By default, the initialization, reset and shutdown operations of the OutLoader
are the same as on the Base Component but these operations are implemented as
adaptation points so that the user has a chance to use them to initialize or reset
the data structures which are used to control the selection of the OutManager
where an out-going command or report is loaded.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

75

PP-UM-COR-00002 Revision 0.6.0

13 The OutManager Component

This component is responsible for maintaining a list of pending OutComponents
and for repeatedly executing them until they are serialized and sent to their
destination. The list of pending commands is called the Pending OutComponent
List or POCL. The POCL has a fixed size which is defined when the OutManager
is initialized.

The OutManager component offers a Load operation through which an Out-
Component can be added to the POCL (see activity diagram in figure 13.1).
This operation is called by the OutLoader of the previous section. The Load

operation may fail if the list is full. In this case, the OutComponent is released.
This protects the application against resource leaks in case of repeated Load

failures.

The Load operation registers the newly loaded OutComponent with the Out-
Registry using its StartTracking operation (see figure 14.1). Henceforth, and
as long as the OutComponent remains loaded in the OutManager, its state is
tracked by the OutRegistry.

Fig. 13.1: The OutManager Load Procedure

The OutComponents loaded into the POCL must be fully configured (i.e. they
must be in state CONFIGURED). It is the responsibility of the user of the
OutManager to ensure that this constraint is complied with. Note that, since
OutComponents are loaded into the OutManager by the OutLoader (see pre-
vious section), this constraint must be enforced by the host application when
it loads an out-going command or report into the OutLoader. Violation of this
constraint will result in an OutComponent permanently remaining in the POCL
of the OutManager.

The OutManager maintains a counter of successfully loaded OutComponents.
The counter is initialized to zero when the OutManager is reset.

The order in which the items in the POCL are processed by the OutManager is
unspecified.

There is no mechanism to “unload” a pending OutComponent. The OutMan-
ager autonomously returns an OutComponent to the OutFactory when the Out-

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

76

PP-UM-COR-00002 Revision 0.6.0

Component has been sent to its destination (i.e. when the OutComponent is in
state TERMINATED) or when it has been aborted (i.e. when the OutCompo-
nent is in state ABORTED).

Fig. 13.2: The OutManager Execution Procedure

The OutManager component is defined as an extension of the Base Component
of section 5. It uses the Execution Procedure of the Base Component to process
the pending commands. The OutManager component processes the pending
commands by sending them an Execute command. After each Execute com-
mand, the state of the OutComponent is reported to the OutRegistry using the
latter Update function (see figure 14.1). Commands which have been aborted
or have been sent to their destination are removed from the POCL and are
returned to the OutFactory. The Execution Procedure of the OutManager is
shown in figure 13.2.

Normally, the OutManager is embedded within a Real Time Container (see [1])
which is responsible for executing it. Thus, an application that is required to
process out-going commands or reports at different levels of priority should use
several OutManagers (one for each level of priority) and should allocate them
to Real Time Containers with a matching priority.

The C2 Implementation implements the OutManager component in module
CrFwOutManager. Its adaptation points are defined in CrFwOutManagerUserPar.h

and only consist of the definition of the number of OutManagers in the appli-
cation and of the size of their queue of pending OutComponents.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

77

PP-UM-COR-00002 Revision 0.6.0

14 The OutRegistry Component

This component acts as a registry for out-going commands and reports (namely
for commands or report which have been loaded into an OutManager).

The OutRegistry is defined as an extension of the Base Component of section 5.
It has two functions: (a) it keeps track of an out-going command’s or report’s
state; and (b) it stores the out-going command’s or report’s enable state.

The OutRegistry maintains a list of the last N commands or reports to have
been loaded in all OutManagers in an application. The OutRegistry maintains
the state of each such command or report. The command’s or report’s state in
the OutRegistry can have one of the following values:

• PENDING: the command or report is waiting to be sent

• ABORTED: the command or report was aborted because it was disabled
when it was loaded

• TERMINATED: the command or report has been passed to the Out-
Stream

The value of N (the maximum number of items which can be tracked by the
OutRegistry) is fixed and is an initialization parameter.

An OutComponent is first registered with the OutRegistry when it is loaded
into the OutManager through the latter Load operation. Subsequently, the
information in the OutRegistry is updated by the OutManagers every time
a command or report is executed. Normally, a command’s or report’s state in
the OutRegistry eventually becomes either ABORTED or TERMINATED. The
only situation where this is not the case is3: if an OutManager is reset, then
the state of a command or report that was in state PENDING at the time the
OutManager was reset will remain equal to PENDING.

The OutRegistry uses the identifier attribute (see sections 8.1.1 and 8.2.1) as
the key through which the command or report state is stored.

In order to perform the tasks described above, the OutRegistry offers two op-
erations: StartTracking and Update. These operations run the procedures
Registry Start Tracking and Registry Update shown in figure 14.1. Operation
StartTracking is performed by the Load operation of an OutManager to regis-
ter an OutComponent with the OutRegistry. Operation Update is performed by
the Execution Procedure of an OutManager to ask the OutRegistry to update
its information about an OutComponent’s state.

The OutRegistry stores the enable state of out-going commands and reports.
The enable state of out-going command and reports can be controlled at three
levels:

(a) At the level of the service type (all commands or reports of a certain type

3This exception could be avoided if the OutRegistry were notified of the reset of the
OutManager. This is not done for reasons of simplicity and because it is expected that
applications which reset an OutManager will normally also reset the OutRegistry.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

78

PP-UM-COR-00002 Revision 0.6.0

Fig. 14.1: The Registry Start Tracking and Registry Update Procedures

are disabled)

(b) At the level of the service sub-type (all commands or reports matching a
certain [type, sub-type] pair are disabled)

(c) At the level of the discriminant (all commands or reports matching a
certain [type, sub-type, discriminant] triplet are enabled or disabled)

The enable state of a particular command or report is derived from these three
enable levels by running the Enable State Determination Procedure of figure
14.2.

The OutRegistry offers an API through which all three levels of enable state
can be set and read. By default, all enable states are set to: “enabled”. The
enable states are configuration parameters for the OutRegistry which are reset
to: “enabled” every time the component is reset.

As discussed in section 11, by default, the Enable Check of an out-going com-
mand or report determines whether the command or report is enabled or not
by reading its enable status from the OutRegistry.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

79

PP-UM-COR-00002 Revision 0.6.0

Fig. 14.2: The Enable State Determination Procedure

The C2 Implementation implements the OutRegistry component in module
CrFwOutRegistry. Its adaptation points are defined in CrFwOutRegistryUserPar.h

and include a list of all service types and sub-types supported by the application.
The information in this header file must be consistent with the information in
CrFwOutFactoryUserPar.h.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

80

PP-UM-COR-00002 Revision 0.6.0

15 The InLoader Component

The InLoader is responsible for retrieving incoming packets which become avail-
able at an InStream.

The InLoader component is defined as an extension of the Base Component
of section 5. It overrides its Execution Procedure with the procedure shown in
figure 15.1 (the InLoader Execution Procedure).

The InLoader should be executed when one or more packets have become avail-
able at the InStream. The logic of its execution procedure can be summarized
as follows. The procedure processes incoming packets one by one. A packet is
collected from the InStream through its GetPacket operation. If the operation
does not return any packet, then the procedure stops and waits for the next
execution. If instead the GetPacket operation returns a fresh packet, the pro-
cedure extracts its destination. This is an adaptation point because it requires
knowledge of the packet’s layout. If the packet’s destination is invalid (the va-
lidity check is another adaptation point), the procedure reports the fact and
then attempts to retrieve the next packet from the InStream (or it holds until
the next execution cycle if no more packets are available in the InStream).

If the packet destination is valid but is not the host application, then the packet
is re-routed. This means that a re-routing destination is determined for the
packet and the packet is forwarded to this re-routing destination. The re-routing
destination can be either the eventual packet destination (if the host applica-
tion has a direct link to the packet’s destination) or it can be an intermediate
destination. The packet is forwarded by directly loading it into the OutStream
associated to the re-routing destination. The OutStream is retrieved through
the OutStreamRegistry component of section 9.3.1.

The determination of the re-routing destination depends on the connection
topology of the system within which the application is embedded and is there-
fore an adaptation point. The re-routing information is a configuration-level
information which can only be modified by resetting the InLoader.

If the packet destination is the host application, then the incoming packet is
processed by the Load Command/Report Procedure. This procedures is shown
as activity diagrams in figure 15.2. Its logic can be summarized as follows.

The procedures begin by retrieving the command or report type from the packet.
The type is given by the triplet: [service type, service sub-type, discriminant].
This is an adaptation point because it requires knowledge of the packet layout.
If the packet type is not valid (i.e. if it is not supported by the host application),
then the packet is rejected and the incoming command or report is deemed to
have failed its Acceptance Check.

If the packet type is valid, it is used to retrieve an InCommand or InReport
instance from the InFactory (it is recalled that the type determines whether the
packet holds a command or a report). The InCommand or InReport instance
is retrieved from the InFactory using its Make operation. If the creation of the
InCommand or InReport instance fails, the packet is rejected and the incoming

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

81

PP-UM-COR-00002 Revision 0.6.0

Fig. 15.1: The InLoader Execution Procedure

command or report is deemed to have failed its Acceptance Check.

If the creation of the InCommand or InReport instance succeeds, the packet
is deserialized to configure the InCommand or InReport instance. After the
deserialization has been completed, the InCommand or InReport is initialized
and reset. The reset process is used as part of the acceptance check for the
incoming command or report. If the information in the packet was syntactically
correct and complete, then the initialization and reset operations succeed and
the InCommand or InReport enters state CONFIGURED.

If the InCommand or InReport fails to enter its state CONFIGURED, it is re-
jected and the InCommand or InReport is deemed to have failed its Acceptance
Check and is returned to the InFactory.

If the command is successfully configured, then it must be loaded into an In-
Manager. For this purpose, the InLoader maintains a list of InManagers (the
LIM or List of InManagers). The size and content of this list are fixed and
are defined when the InLoader is configured. The selection algorithm for the
InManagers is an adaptation point. By default, the LIM has two entries and
the InLoader selects the first item in the LIM for incoming InCommands and
second item for incoming InReports. No facilities are provided for dynamically
changing the set of InManagers. Changes in the set of InManagers can only be
done by reconfiguring and then resetting the component.

The Load operation in the InManager may either succeed or fail (see section
18). If it succeeds, the InCommand or InReport is deemed to have passed its
Acceptance Check.

If the Load operation in the InManager fails, the InCommand or InReport is
deemed to have failed its Acceptance Check. This results in the InCommand or

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

82

PP-UM-COR-00002 Revision 0.6.0

InReport component being returned to the InFactory.

Thus, in summary, an InCommand or InReport is deemed to have failed its
Acceptance Check if any of the following conditions is satisfied:

• The incoming packet holding the InCommand or InReport has an invalid
type;

• The InFactory fails to return a component to hold the InCommand or
InReport encapsulated in the incoming packet;

• The InCommand or InReport fails to enter state CONFIGURED;

• The InCommand or InReport fails to be loaded into the InManager.

In all other cases, the InCommand or InReport is regarded as having passed its
Acceptance Check.

Failure of the Acceptance Check is reported. The reporting of the failure is an
adaptation point. The passing of the Acceptance Check has no consequences
for an InReport whereas in the case of InCommands it may result in an Ac-
ceptance Successful Report being generated to the command’s sender if this is
required by the setting of the Acknowledge Level attribute of the InCommand
(i.e. each InCommand carries information that determines whether its passing
its Acceptance Check ought to be reported to the command sender, see section
8.1.1).

Fig. 15.2: The InLoader Load Command/Report Procedure

The C2 Implementation implements the InLoader component in module CrFwInLoader.
Its adaptation points are defined in CrFwInLoaderUserPar.h.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

83

PP-UM-COR-00002 Revision 0.6.0

16 The InCommand Component

The InCommand component encapsulates an incoming command in a provider
application. This component enforces the generic behaviour that is common
to all incoming commands irrespective of their type and it provides read-only
access to a command’s attributes. The InCommand component is an extension
of the Base Component of section 5.

Incoming commands must be accepted before they can be executed (see section
8.1.4). The acceptance check is implemented partly by the InLoader (see section
15) and partly by the initialization and configuration checks of the InCommand
itself.

The behaviour of a command that has been accepted is modelled by the state
machine shown in figure 16.1 (the InCommand State Machine). This state ma-
chine is embedded within the CONFIGURED state of the Base State Machine.

Fig. 16.1: The InCommand State Machine

When the state machine is started (i.e. when the command is accepted and the
InCommand enters state CONFIGURED), it enters state ACCEPTED. In this
state, the InCommand component waits for sequences of Execute and Terminate
commands. The constraint that an InCommand component should be sent
Execute and Terminate requests in sequence is enforced by the InManager
which is responsible for controlling the execution of InCommands (see section
18).

Execution of the InCommand state machine in state ACCEPTED causes it to
perform the Ready Check. The Ready Check – like all other command checks
and command actions – is an adaptation point.

If the Ready Check is failed (i.e. if the Ready Check indicates that the command
is not yet ready to start execution), the command remains in state ACCEPTED.

If the Ready Check is passed (i.e. if the Ready Check indicates that the com-

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

84

PP-UM-COR-00002 Revision 0.6.0

mand is ready to start execution), the command executes the Start Action and,
depending on its outcome, it makes a transition either to state ABORTED or
to state PROGRESS.

In state PROGRESS, the command executes its Progress Action. If the out-
come of the Progress Action is “continue” (indicating that the command has
not yet completed execution), the InCommand remains in state PROGRESS.
If, instead, the outcome of the Progress Action is “completed” (indicating that
the command has completed execution), then the InCommand moves to state
TERMINATED. If, finally, the outcome of the Progress Action is “failed” (in-
dicating that the command has encountered a failure), then the InCommand
moves to state ABORTED.

If the command is neither terminated nor aborted in the first Execute-Terminate
cycle, it will be sent further pairs of Execute-Terminate commands by its In-
Manager and will repeat the behaviour described in the previous paragraph.

The InCommand component is responsible for generating acknowledge reports
when: the command starts execution; its execution advances by one step; or its
execution terminates. The generation of the acknowledge reports is an adap-
tation point for the InCommand. Note that the acknowledge report for the
command acceptance is generated by the InLoader component, see section 15.

The InCommand component provides visibility over all attributes of the com-
mand it encapsulates but only predefines dummy values for them. The set
and value of the command attributes is therefore an adaptation point for the
InCommand.

The C2 Implementation implements the InCommand component in module
CrFwInCmd. Applications will normally have to extend this component to cre-
ate their own InCommand components. Typically, for each application-specific
command, application developers should provide one C module which defines
the functions implementing the actions and checks for that command. An ex-
ample of how this can be done is provided in module CrFwInCmdSample1 which
implements a sample command used in the Test Suite.

The adaption points for InCommands are defined in CrFwInFactoryUserPar.h.
This header file in particular defines the kinds of InCommands to be supported
by an application. Each kind of supported InCommand is defined in terms
of its service type, command sub-type and discriminant value (if applicable).
For each supported InCommand kind, the application developers must specify
the pointers to the functions which implement the actions and checks for that
command kind.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

85

PP-UM-COR-00002 Revision 0.6.0

17 The InReport Component

The InReport component encapsulates an incoming report in a user application.
This component enforces the generic behaviour that is common to all incoming
reports irrespective of their type and it provides read-only access to a report’s
attributes.

The InReport component is an extension of the Base Component of section
5. Incoming reports must be accepted before they can be executed (see section
8.2.4). The acceptance check is implemented partly by the InLoader (see section
15) and partly by the initialization and configuration checks of the InReport
itself.

Fig. 17.1: The InReport Execution Procedure

The behaviour of a report that has been accepted is modelled by the procedure
shown in figure 17.1 (the InReport Execution Procedure). This procedure is
used as execution procedure for the InReport. The procedure simply executes
the InReport’s Update Action and then terminates. The Update Action is an
adaptation point.

The InReport component provides visibility over all attributes of the reports it
encapsulates but only predefines dummy values for them. The set and value of
the report attributes is therefore an adaptation point for the InCommand.

The C2 Implementation implements the InReport component in module CrFwInRep.
Applications will normally have to extend this component to create their own
InReport components. Typically, for each application-specific command, ap-
plication developers should provide one C module which defines the functions
implementing the actions and checks for that report. An example of how this can
be done is provided in module CrFwInRepSample1 which implements a sample
report used in the Test Suite.

The adaption points for InReports are defined in CrFwInFactoryUserPar.h.
This header file in particular defines the kinds of InReports to be supported
by an application. Each kind of supported InReport is defined in terms of its
service type, command sub-type and discriminant value (if applicable). For each
supported InReport kind, the application developers must specify the pointers
to the functions which implement the actions and checks for that report kind.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

86

PP-UM-COR-00002 Revision 0.6.0

18 The InManager Component

This component is responsible for maintaining a list of pending incoming com-
mands and reports and for repeatedly executing them until they are either
aborted or terminated. The list of pending commands and reports is called the
Pending Command/Report List or PCRL. The PCRL has a fixed size which is
defined when the InManager is initialized.

The InManager component offers a Load operation through which an InCom-
mand or InReport can be added to the PCLR (see activity diagram in figure
18.1). This operation is called by the InLoader of section 15. The Load opera-
tion may fail if the list is full. The order in which the items in the PCRL are
processed is unspecified.

The Load operation registers the newly loaded InCommand or InReport with the
InRegistry using the latter StartTracking operation (see section 19). Hence-
forth, and as long as the InCommand or InReport remains loaded in the In-
Manager, its state is tracked by the InRegistry.

The InCommand and InReport components loaded into the PCRL must be fully
configured (i.e. they must be in state CONFIGURED). Compliance with this
constraint is guaranteed by the logic of the InLoader of section 15.

The InManager maintains a counter of successfully loaded InCommands or In-
Reports. The counter is initialized to zero when the InManager is reset.

There is no mechanism to “unload” a pending command or report. The InMan-
ager autonomously returns a command or report component to the InFactory
when the component has terminated execution. In the case of InCommands,
execution can be terminated successfully (in which case the InCommand com-
ponent is in state TERMINATED) or unsuccessfully (in which case the InCom-
mand component is in state ABORTED). In the case of InReports, execution
terminates after they are executed once.

Fig. 18.1: The InManager Load Procedure

The InManager component is defined as an extension of the Base Component
of section 5. It uses the Execution Procedure of the Base Component to process
the pending commands and reports. The InManager component processes the
pending commands and reports by sending them an Execute command and a
Terminate command (note that the Terminate command has no effect on an

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

87

PP-UM-COR-00002 Revision 0.6.0

InReport).

After the Terminate command, the state of the InCommand or InReport is
reported to the InRegistry using the latter Update operation (see section 19).
InCommands which have terminated execution are removed from the PCRL and
are returned to the InFactory. InReports are returned to the InFactory after
their first execution. The Execution Procedure of the InManager is shown in
figure 18.2.

Normally, the InManager is embedded within a Real Time Container (see [1])
which is responsible for executing it. Thus, an application that is required to
process commands and reports at different levels of priority should use several
InManagers (one for each level of priority) and should allocate them to Real
Time Containers with a matching priority.

Fig. 18.2: The InManager Execution Procedure

The C2 Implementation implements the InManager component in module CrFwInManager.
Its adaptation points are defined in CrFwInManagerUserPar.h.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

88

PP-UM-COR-00002 Revision 0.6.0

19 The InRegistry Component

This component acts as a registry for incoming commands and reports (namely
for commands and reports which have been loaded into an InManager).

The function of the InRegistry is to keep track of an incoming command state
or of an incoming report state.

The InRegistry maintains a list of the last N commands or report to have been
loaded in one of the InManagers in an application. For each such command or
report, the InRegistry maintains a record of its state. The command or report
state in the InRegistry can have one of the following values:

• PENDING: the command or report is executing

• ABORTED: the command was aborted during its execution by the In-
Manager

• TERMINATED: the command or report has successfully completed its
execution

Note that state ABORTED only applies to incoming commands.

The value of N (the maximum number of commands or reports which are tracked
by the InRegistry) is fixed and is an initialization parameter.

An InCommand or InReport is first registered with the InRegistry when it is
loaded into the InManager through the latter Load operation. Subsequently,the
information in the InRegistry is updated by an InManager every time a com-
mand or report is executed. Normally, a command or report state in the In-
Registry eventually becomes either ABORTED or TERMINATED. The only
situation where this is not the case is when an InManager is reset. In that case,
commands and reports which were pending in the InManager at the time it was
reset may never terminate 4.

The InRegistry uses the command identifier attribute (see section 8.1.1) as the
key through which the command state is classified.

In order to perform the tasks described above, the InRegistry offers two op-
erations: StartTracking and Update. These operations implement the same
behaviour as the operations of the same name in the OutRegistry, namely they
run, respectively, the Registry Start Tracking Procedure and the Registry Up-
date Procedure (see figure 14.1). Operation StartTracking is called by the
Load operation of an InManager to register an InCommand or InReport with
the InRegistry. Operation Update is called by the Execution Procedure of an In-
Manager to ask the InRegistry to update its information about an InCommand
or InReport state.

The C2 Implementation implements the InRegistry component in module CrFwInRegistry.

4This is due to the fact that, when the InManager is reset, its list of pending commands
and reports is cleared. It might be argued that the InRegistry should be notified of this fact so
as to give it a chance to update the information it holds about commands which are currently
in state PENDING. This is not done for reasons of simplicity and because it is expected that
applications which reset an InManager will also reset the InRegistry.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

89

PP-UM-COR-00002 Revision 0.6.0

Its adaptation points are defined in CrFwInRegistryUserPar.h.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

90

PP-UM-COR-00002 Revision 0.6.0

20 Memory Management

The C2 Implementation uses memory for its data and its code. Memory for
data is allocated either globally, or on the stack, or on the heap.

Globally allocated variables are defined in the header files of the framework
modules as static variables. They are therefore not visible outside the module
where they are defined and used.

Local function variables are allocated on the stack. The amount of stack memory
used for this purpose is limited as in most cases only a handful of pointers and
variables of primite type are used.

Allocation on the heap is done through the malloc function and is limited to
the following cases:

• Allocation of memory for components subject to early instantiation (see
section 7.1). This allocation is done in factory functions which are called
during the application start-up phase. The memory thus allocated is never
released.

• Allocation of memory for packet queues in module CrFwPcktQueue. This
operation is performed as part of the initialization action of the InStream
and OutStream components. The memory thus allocated is released when
the InStream or OutStream are shutdown.

• Allocation of memory for the data structure holding the enable status of
commands and reports in the CrFwOutRegistry module. This operation
is performed as part of the initialization action of the OutRegistry com-
ponent. The memory thus allocated is released when the OutRegistry is
shutdown.

• Allocation of memory for the Pending OutComponent List (POCL) in
the CrFwOutManager module. This operation is performed as part of the
initialization action of the OutManager component. The memory thus
allocated is released when the OutManager is shutdown.

• Allocation of memory for the Pending Command/Report List (PCRL)
in the CrFwInManager module. This operation is performed as part of
the initialization action of the InManager component. The memory thus
allocated is released when the InManager is shutdown.

• Allocation of memory for the arrays holding the sequence counters for the
destination/source groups associated to an InStream in the CrFwInStream
module. This operation is performed as part of the initialization action
of the InStream component. The memory thus allocated is released when
the InStream is shutdown.

• Allocation of memory for the arrays holding the sequence counters for the
destination/source groups associated to an OutStream in the CrFwOutStream
module. This operation is performed as part of the initialization action of
the OutStream component. The memory thus allocated is released when
the OutStream is shutdown.

Thus, in all cases, memory allocation is done as part of the initialization of the

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

91

PP-UM-COR-00002 Revision 0.6.0

application of a component. During normal operation (i.e. when the application
is in state NORMAL, see section 7.2), no allocation of memory on the heap is
ever performed.

The C2 Implementation does not handle the case where the call to malloc fails.
This is acceptable because the malloc calls are only performed during applica-
tion or component initialization and hence the number of calls and the amount
of memory they claim can be determined statically. It is therefore possible for
the application developer to ensure that sufficient memory is available and to
guarantee by design that no malloc failures can occur.

Release of heap memory is done through calls to the free function. This is
exclusively done in the shutdown operations of the components which had allo-
cated memory as part of their initialization.

Thus, in summary, dynamic memory allocation on the heap is only done as
part of the instantiation of the framework component and, in some cases, of
their initialization. The memory which is allocated on the heap during early
instantiation of components is never released (because components instantiated
early are not intended to be ever destroyed). The memory which is allocated as
part of component initialization is released when the components are shutdown.

For components which allocate memory from the heap as part of their initial-
ization (OutRegistry, InManager, OutManager, InStream and OutStream) two
paths to a memory leak are possible:

• A component is stopped after it has been initialized and then it is initial-
ized again

• A component is initialized more than once without being shut down

Responsibility for avoiding the first kind of memory leak rests with the user
who should avoid stopping a component (a shutdown should be performed in-
stead). The second kind of memory leak is not possible in the case of the
OutRegistry, InManager and OutManager components because their initial-
ization action always returns an outcome of ”success”. This implies that the
initialization action can only be executed once before the component is shut
down (see figure 5.1). The InStream and OutStream, too, have default ini-
tialization action which always returns an outcome of ”success” (see functions
CrFwInStreamDefInitAction and CrFwOutStreamDefInitAction) but these
functions can be extended or overridden by a user. In this case, it is up to the
user to ensure the proper management of memory allocation.

Late instantiation of components does not require any allocation of memory
from the heap because the factory components which are responsible for the
instantiation manage pools of pre-allocated memory which is allocated globally
during application initialization. This is discussed at greater length in the next
section.

Applications which do not wish to link to the standard malloc and free func-
tions can: (a) define their own malloc function to, for instance, allocate memory
sequentially from a pre-allocated array of fixed size, and (b) avoid ever shutting
down a component thus avoiding calls to free.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

92

PP-UM-COR-00002 Revision 0.6.0

The C2 Implementation is designed to minimize code memory footprint. The
exact memory requirements for its code depend on the choice of compiler and
linker but will typically be of the order of several kBytes. As an example,
table 20.1 reports the memory requirements for the files which implement the
framework components.

The figures in the table have been obtained with the gcc compiler configured
to minimize memory occupation. The data in the table were derived from the
linker map. They correspond to the memory of type .text (i.e. the code
segment containing executable instructions) allocated to each module. The
measurements were made on the beta release 0.1.0 of the C2 Implementation in
the following environment:

• compiler: gcc version 4.6.3 (Ubuntu/Linaro 4.6.3-1ubuntu5)

• target: i686-linux-gnu

• OS: Linux ubuntu 12.04 (32 bits)

• compiler options: -Os -Wall -c -fmessage-length=0

• linker options: -Wl,-Map=memory.map

Table 20.1: Code Memory Footprint for C2 Implementation Modules

Module Memory Size Header File

Base Component 1411 bytes CrFwBaseCmp.h,
CrFwDummyExecProc,
CrFwInitProc,
CrFwResetProc

InCommand 1680 bytes CrFwInCmd.h

InRegistry 545 bytes CrFwInRegistry.h

InManager 1208 bytes CrFwInManager.h

InReport 292 bytes CrFwInRep.h,
CrFwInRepExecProc.h

InLoader 919 bytes CrFwInLoader.h

InFactory 2188 bytes CrFwInFactory.h

InStream 1416 bytes CrFwInStream.h

OutComponent 1089 bytes CrFwOutCmp.h

OutFactory 1397 bytes CrFwOutFactory.h

OutLoader 357 bytes CrFwOutLoader.h

OutManager 1066 bytes CrFwOutManager.h

OutRegistry 1415 bytes CrFwOutRegistry.h

OutStream 1373 bytes CrFwOutStream.h

Packet Queue 499 bytes CrFwPcktQueue.h

Total 16855 bytes

20.1 Components with Late Instantiation

The late instantiation mechanism (see section 7.1) is used for the components
which encapsulate commands and reports (namely the InReport, InCommand
and OutComponent components). As commands and reports are sent and re-
ceived by an application during its normal operation, the components which

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

93

PP-UM-COR-00002 Revision 0.6.0

encapsulate them must also be created and destroyed during normal opera-
tion (”late component instantiation”). The creation and destruction of these
components is done through the Make and Release functions provided by the
InFactory and OutFactory components.

Each command or report component encapsulates a packet which holds the
sequence of bytes which represents the packet at middleware level (see 3.6).
Packets, too, must be created and destroyed during normal operation through
calls to the Make and Release functions of CrFwPckt.h.

There are two functional chains through which a command or report component
is created, used and then destroyed. The first chain arises when a command
or report is received by an application. Figure 20.1 shows this chain as an
activity diagram. Note that all activities in the diagrams are performed by
framework components. Application components are therefore not involved in
the processing of incoming commands and reports.

Similarly, figure 20.2 shows the functional chain through which an out-going
command or report is processed. Activities in the yellow bubbles are executed
by the application; the other activities are instead executed by the framework
components.

The point of figures 20.1 and 20.2 is to show that, under nominal conditions,
command and report components which are created during normal operation
through a call to a Make function are always eventually released through a call
to a Release function. The only situations where this is not the case are:

• The processing of an out-going command or report component by the Out-
Manager never completes (i.e. the out-going command or report neither
terminates nor is aborted). The out-going command or report remains
permanently loaded in the OutManager and its memory is consequently
never released.

• The processing of an incoming command or report component by the
InManager never completes (i.e. the incoming command or report neither
terminates nor is aborted). The incoming command or report remains
permanently loaded in the InManager and its memory is consequently
nver released.

• The application requests and obtains an OutComponent from the Out-
Factory but never completes its configuration and therefore never loads
the OutComponent in the OutLoader. The OutComponent remains per-
manently with the application and is therefore never released.

• A component involved in the processing of commands or reports is reset
or shutdown at a time when command or report components are pending.

The first two cases arise as a result of erroneous definitions of a command or
report (for instance, by having a command whose Start Check never allows
command execution to be started). The last two cases arise because of an error
in the application. In all other cases, absence of memory leaks is guaranteed by
the framework design.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

94

PP-UM-COR-00002 Revision 0.6.0

Fig. 20.1: Processing Chain for an Incoming Command or Report

Fig. 20.2: Processing Chain for an Out-Going Command or Report

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

95

PP-UM-COR-00002 Revision 0.6.0

21 Real Time Issues

The domain of the CORDET Framework are embedded control applications.
These applications are often subject to real-time constraints. This section con-
siders some issues which related to the usage of the C2 Implementation in a
real-time environment.

21.1 Scheduling of Framework Components

The C2 Implementation does not define any ”active components”: none of its
components create or manage threads of execution. All of its components expect
to be called from outside. The entry points for an external scheduler are listed
in table 21.1. The order in which they are listed is approximately the order in
which they will typically be called but no specific ordering sequence is mandated
by the C2 Implementation.

Often a cyclical scheduling approach will be used for the entry points listed in
the table (with the possible exceptions of the first and the last entries which
might be attached to signals or interrupts from the middleware). Multiple cycles
with different periods might also be used where the high frequency cycles are
used to process high-priority commands/reports and the low frequency cycles
are used to process low-priority commands/reports.

One option for implementing the link between the components listed in the
table and a scheduler is to use the ”Real-Time Containers” of reference [1] (a
C-language implementation is available from reference [2]).

Table 21.1: Entry Points for Scheduler

N Entry Point Description

1 Send Command
CrFwInStreamPcktAvail

to the InStreams

Command must be sent when a packet
becomes available at the Middleware In-
terface or else it can be sent periodically
(polling).

2 Execute InLoader Causes incoming packets collected by the
InStreams to be de-serialized and trans-
formed into components which are then
loaded into the InManagers.

3 Execute InManagers Causes incoming reports and commands
which are pending in the InManagers to
be processed.

4 Deleted Deleted.
5 Execute OutManagers Causes out-going reports and commands

which are pending in the OutManagers to
be processed.

6 Send Command
CrFwOutStream-

ConnectionAvail to the
OutStreams

Command must be sent when the out-
going Middleware connection for an Out-
Stream has become available or else it can
be sent periodically (polling).

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

96

PP-UM-COR-00002 Revision 0.6.0

21.1.1 Concurrency

The C2 Implementation uses global variables (see section 20) but does not im-
plement any mechanisms to ensure access in mutual exclusion to these variables.
It is therefore not suited for use in a concurrent environment. It is the respon-
sibility of the user to ensure that its components are accessed mutual exclusion.

21.1.2 Recursion

None of the functions defined by the C2 Implementation are recursive. Recursion
is used to a limited extent in the libraries which implement the state machine and
procedure model used by the C2 Implementation (see section 4). However, the
depth of recursion is limited to 2 (because the depth of recursion is equal to the
number of levels of embedding of state machines and, in the C2 Implementation,
only one level of state machine embedding is used).

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

97

PP-UM-COR-00002 Revision 0.6.0

22 Error Handling

In general, the C2 Implementation is intended for applications whose design
is validated and whose implementation is verified. They therefore only handle
errors which arise as a result of the application receiving at run-time inputs from
outside which are illegal (i.e. inputs which are outside the boundaries specified
for the application).

The inputs for the C2 Implementation are the incoming commands and re-
ports. These may be ”illegal” either because their content is illegal or because
the time pattern with which they are sent is illegal. The resulting error situa-
tions are specified by the CORDET Framework in reference [3]. The CORDET
Components handle these errors by reporting them through the CrFwRepErr.h
interface. This interface is one of the adaptation points of the framework and
must be implemented by applications according to their needs.

A typical implementation of the error reporting interface could be as follows.
The user defines a service to report errors and implements the CrFwRepErr.h
interface to generate reports belonging to that service and carrying a description
of the error. Different report sub-types can be defined to represent different
levels of severity. An example of this approach is the so-called ”Event Reporting
Service” of the PUS (see reference [4]). The range of errors handled through
this mechanism is defined by the enumerated type CrFwRepErrCode t.

In addition to handling these exogenous error situations, the C2 Implementation
also handles a limited number of ”Applicaton Errors”. Application errors arise
as a result of a design or implementation error in the application itself. The
situations which are handled by the C2 Implementation are those which satisfy
the following constraints:

• The error situation arises when a framework function has been called
by the application code with an illegal parameter value or in an illegal
context and execution of the function with that value or in that context
would cause an internal framework data structure to be corrupted.

• The check for the error can be implemented with a minimal impact on
memory and CPU consumption.

Thus, the objective of the handling of application errors is to shield a compo-
nent’s internal data structures. Note that no handling of errors is implemented
when the incorrect calling parameters or calling context of a function would be
harmful for the caller.

Application errors are handled as follows. The function where the error is de-
tected sets an application error code and then returns. Nominally, the applica-
tion error code should be equal to: crNoAppErr. If the application error code
has a different value, then an application error has been encountered. If mul-
tiple errors have been encountered, the application error code reflects the most
recent error.

If the application error code has a non-nominal value, the behaviour of the
framework component is undefined and will normally be erroneous. The appli-

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

98

PP-UM-COR-00002 Revision 0.6.0

cation error code can be accessed through function CrFwGetAppErrCode.

The range of application error codes is defined by the enumerated type CrFwAppErrCode t.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

99

PP-UM-COR-00002 Revision 0.6.0

23 Framework Instantiation Process

The Framework Instantiation Process is the process through which the compo-
nents provided by the framework are used to build an application within the
framework domain. This section describes the steps required to instantiate the
C2 Implementation of the CORDET Framework.

Two major steps are recognized in the instantiation process:

S1 Application Specification

S2 Application Implementation

Step S1 consists in casting (part of) the requirements of the target applications
in terms of the services it provides to and requires from other entities in the sys-
tem wihin which it is embedded. Step S2 consists in customizing the framework
components to support the services defined in step S1.

The table in the next page breaks up steps S1 and S2 into sub-steps. To each S1
sub-step, an S2 sub-step is associated (because each specification activity has
an implementation-level counterpart).

After all activities listed in the table have been performed, the application de-
veloper should have: (a) a complete specification of the framework-dependent
part of his application and (b) a close-out for all adaptation points offered by
the framework. The latter means that the framework components are ready for
deployment in the target application.

If the guidelines of section 2.3 are followed, the software of the instantiated
framework will be organized as follows:

1. One directory (normally called CrFramework) holding the invariant part of
the framework software. This directory can be a copy of the CrFramework

in the Delivery File (see section 2.3).

2. One directory (normally called FwProfile) holding the code implementing
the state machine and procedure behaviour. This directory can be a copy
of the FwProfile in the Delivery File (see section 2.3).

3. One directory (normally called CrConfig〈Name〉 where ”Name” is the
name of the target application) holding the adaptable part of the frame-
work software customized for the target application. This directory may
be obtained by taking one of the Config directories in the Delivery File
(CrConfigTestSuite, CrConfigDemoMaster, CrConfigDemoSlave1 or CrConfigDemoSlave2)
and then modifying its content as specified in the implementation steps.

4. One directory holding the application-specific software.

In general, it is the responsibility of the user to ensure that the configuration in-
formation provided during the instantiation process is complete and consistent.
A full check of completeness and consistency is not possible. However, the C2
Implementation offers module CrFwAux which implements a partial consistency
check for the information in the *UserPar header files. Application developers
should use this configuration check in the initial phase and can then remove it

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

100

PP-UM-COR-00002 Revision 0.6.0

from their executable once confidence has been achieved that the configuration
data are correct and complete.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

101

P
P

-U
M

-C
O

R
-00

00
2

R
ev

ision
0.6.0

Table 23.1: Framework Instantiation Specification and Implementation Steps

N Step Name Specification Sub-Step Implementation Sub-Step

1 Identify
Target
Application

Identify the application for which the framework is
being instantiated.

The Application Identifier is specified in
CrFwUserConstants.h.

2 Identify
Service
Users

Identify the users of the services provided by the
target application. Each service user is identified
through its Application Identifier.

The service user identifiers are used to define the sources of
incoming commands (InCommands) for the application in
CrFwInStreamUserPar.h and the destination of out-going
reports (OutCompnents) in CrFwOutStreamUserPar.h.

3 Identify
Service
Providers

Identify the providers of the services used by the tar-
get application. Each service provider is identified
through its Application Identifier.

The service provider identifiers are used to define
the sources of incoming reports (InReports) for the
application in CrFwInStreamUserPar.h and the des-
tination of out-going commands (OutCompnents) in
CrFwOutStreamUserPar.h.

4 Define Used
Services

Define the services which are used by the target ap-
plication. Each service is defined through: its identi-
fier (the ”service type”); a description of the purpose
of the service; the external entity which provides the
service; the commands and reports which implement
the service.

The range of services used by the applica-
tion is defined in CrFwInFactoryUserPar.h and
CrFwOutFactoryUserPar.h. Also, a list of ser-
vices supported by the application is defined in
CrFwOutRegistryUserPar.h.

5 Define
Provided
Services

Define the services which are provided by the tar-
get application. Each service is defined through: its
identifier (the ”service type”); a description of the
purpose of the service; the external entity which uses
the service; the commands and reports which imple-
ment the service.

The range of services provided by the applica-
tion is defined in CrFwInFactoryUserPar.h and
CrFwOutFactoryUserPar.h. Also, a list of ser-
vices supported by the application is defined in
CrFwOutRegistryUserPar.h.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
G
P
L
v
e
r
s
i
o
n
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

102

P
P

-U
M

-C
O

R
-00

00
2

R
ev

ision
0.6.0

N Step Name Specification Sub-Step Implementation Sub-Step

6 Identify
Re-Routing
Capabilities

Define the applications to which incoming packets
received must be re-routed.

The re-routing information is defined in the re-routing func-
tion which is provided to the framework as a function
pointer in CrFwInLoaderUserPar.h and for which two de-
faults are provided by the InLoader component. Also, re-
routing contributes to the definition of InStreams and Out-
Streams (InStreams are required to receive re-routed pack-
ets and OutStreams are required to forward them).

7 Define
Incoming
Commands

For each provided service, define the commands
which implement it (i.e the commands which the
application must be able to receive and process) in
terms of: their attributes, their acceptance and ready
checks, their start action, progress action, termina-
tion action, and abort action.

The detailed definition of the incoming commands is done
in CrFwInFactoryUserPar.h. Also, for each command, a
C-module must be provided which implements the func-
tions encapsulating the command actions and checks. See
module CrFwInCmdSample1 for an example.

8 Define
Incoming
Reports

For each used service, define the reports which imple-
ment it (i.e. the reports which the application must
be able to receive and process) in terms of: their
attributes, their acceptance check, and their update
action.

The detailed definition of the incoming reports is done
in CrFwInFactoryUserPar.h. Also, for each report, a C-
module must be provided which implements the functions
encapsulating the report actions and checks. See module
CrFwInRepSample1 for an example.

9 Define
Outgoing
Commands
and Reports

For each provided service, define the reports which
implement it and for each used service, define the
commands which implement it in terms of: their at-
tributes, their enable check, and their ready, and re-
peat check and their update action.

The detailed definition of the out-going commands and re-
ports is done in CrFwOutFactoryUserPar.h. Also, for out-
going reports or commands which do not use the default
implementations of the OutComponent adaptation points,
a C-module must be provided which implements the func-
tions encapsulating the report or command actions and
checks. See module CrFwOutCmpSample1 for an example.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
G
P
L
v
e
r
s
i
o
n
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

103

P
P

-U
M

-C
O

R
-00

00
2

R
ev

ision
0.6.0

N Step Name Specification Sub-Step Implementation Sub-Step

10 Assign
Commands
and Reports
to Groups

Define command and report groups and define rules
for assigning commands and reports to groups.

The definition of the assignment rules is done in the imple-
mentation of the getter and setter functions for the group
attribute in module CrFwPckt.

11 Define
Command
and Report
Layout

For each command and report which can be either
generated or received by the target application, de-
fine the layout of the packet which carries it.

The packet layout is implicitly implemented in the setter
and getter functions of the CrFwPckt.h interface. The ap-
plication developer must provide a complete implementa-
tion for this interface. A stub implementation is provided in
the configuration directory /cr/src/crConfigTestSuite.

12 Define
Packet
Allocation
Policy

Define the allocation policy for the packets which
the application creates when it receives a command
or report.

The packet allocation policy is implemented in the make

function of the CrFwPckt.h interface. The application de-
veloper must provide a complete implementation for this
interface. A stub implementation is provided in the config-
uration directory /cr/src/crConfigTestSuite.

13 Define
Command
and Report
Capacity

Define: the maximum number of incoming com-
mands which the target application can hold at any
given time; the maximum number of incoming re-
ports which the target application can hold at any
given time; and the maximum number of outgoing
commands or reports which the application can hold
at any given time.

The capacities for incoming commands and reports are de-
fined as #DEFINE constants in CrFwInFactoryUserPar.h.
The capacity for out-going commands and reports is defined
as a #DEFINE constant in CrFwOutFactoryUserPar.h.

14 Define
Application
Modes

Define the sub-states in the states of the Application
State Machine.

For each set of sub-states, a state machine implementing
them is defined which is then embedded in one of the states
of the Application State Machine. The embedded state
machines are defined in CrFwAppSmUserApp.h.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
G
P
L
v
e
r
s
i
o
n
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

104

P
P

-U
M

-C
O

R
-00

00
2

R
ev

ision
0.6.0

N Step Name Specification Sub-Step Implementation Sub-Step

15 Define
Incoming
Middleware
Interface

Define the interface to the middleware which is re-
sponsible for receiving the commands and reports for
the target application.

For each source of commands or reports, one InStream is
defined. The size of the InStream packet queues and the
pointers to the functions which implement the InStream
operations are defined in CrFwInStreamUserPar.h. Also,
for each InStream a C module must be defined which im-
plements the InStream functions. A test stub is provided
in CrFwInStreamStub.

16 Define
Out-Going
Middleware
Interface

Define the interface to the middleware which is re-
sponsible for sending the commands and reports orig-
inating in the target application.

For each command or report destination, one OutStream is
defined. The size of the OutStream packet queues and the
pointers to the functions which implement the OutStream
operations are defined in CrFwOutStreamUserPar.h. Also,
for each OutStream a C module must be defined which im-
plements the OutStream functions. A test stub is provided
in CrFwOutStreamStub.

17 Define
InManagers

Define the number of InManagers and the size of
their Pending Command/Report Lists (PCRLs).

These items are defined as #DEFINE constants in
CrFwInManagerUserPar.h

18 Define
InManager
Selection
Function

Define the logic to select the InManager where an
incoming command or report is loaded.

A pointer to this function is defined in
CrFwInLoaderUserPar.h. A default implementation
is provided by the InLoader (see CrFwInLoader.h).

19 Define
InRegistry

Define the maximum number of commands and re-
ports which can be tracked by the InRegistry.

This item is defined as a #DEFINE constant in
CrFwInRegsitryUserPar.h.

20 Define Out-
Managers

Define the number of OutManagers and the size of
their Pending OutComponent Lists (POCLs).

These items are defined as #DEFINE constants in
CrFwOutManagerUserPar.h.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
G
P
L
v
e
r
s
i
o
n
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

105

P
P

-U
M

-C
O

R
-00

00
2

R
ev

ision
0.6.0

N Step Name Specification Sub-Step Implementation Sub-Step

21 Define
OutManager
Selection
Function

Define the logic to select the OutManager where an
out-going command or report is loaded.

A pointer to this function is defined in
CrFwOutLoaderUserPar.h. A default implementation
is provided by the OutLoader (see CrFwOutLoader.h).

22 Define
OutRegistry

Define the maximum number of commands and re-
ports which can be tracked by the OutRegistry.

This item is defined as a #DEFINE constant in
CrFwOutRegistryUserPar.h.

23 Define
Start-Up
Procedure

Define the start-up procedure for the application.
This in particular includes the sequence in which
framework components are instantiated, initialized
and configured.

Implement the Application Start-Up Procedure by provid-
ing an implementation for CrFwAppStartUpProc.h. A test
stub is provided in CrFwAppStartUpProc.c.

24 Define Reset
Procedure

Define the reset procedure for the application. This
in particular includes the sequence in which frame-
work components are reset.

Implement the Application Reset Procedure by providing
an implementation for CrFwAppResetProc.h. A test stub
is provided in CrFwAppResetProc.c.

25 Define
Shutdown
Procedure

Define the shutdown procedure for the application.
This in particular includes the sequence in which
framework components are shutdown.

Implement the Application Shutdown Procedure by pro-
viding an implementation for CrFwAppShutdownProc.h. A
test stub is provided in CrFwAppShutdownProc.c.

26 Define Time
Interface

Define the means through which the current time is
acquired. This is needed for time-stamping out-going
commands and reports in the OutStream.

The time acquisition interface is defined in CrFwTime.h.
The application developer must provide a complete
implementation for this interface. A stub imple-
mentation is provided in the configuration directory
/cr/src/crConfigTestSuite.

27 Define Error
Reporting
Interface

Define the response to the generation of error re-
ports.

The respone to error reports is defined in CrFwRepErr.h.
The application developer must provide a complete
implementation for this interface. A test imple-
mentation is provided in the configuration directory
/cr/src/crConfigTestSuite.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
G
P
L
v
e
r
s
i
o
n
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

106

P
P

-U
M

-C
O

R
-00

00
2

R
ev

ision
0.6.0

N Step Name Specification Sub-Step Implementation Sub-Step

28 Define
InCommand
Outcome
Reporting

Define the means through which the outcome of the
processing of incoming commands is reported.

The respone to the reports of InCommand outcomes is de-
fined in CrFwRepInCmdOutcome.h. The application devel-
oper must provide a complete implementation for this inter-
face. A test implementation is provided in the configuration
directory /cr/src/crConfigTestSuite.

29 Define
Primitive
Types

Define the range of the primitive types used by the
framework components. The driver for this defini-
tion is the need to optimize the memory footprint of
the application.

The primitive types are defined through typedef’s in
CrFwUserConstants.h. Application developers can over-
ride the default definitions in this file (but note that, in
most cases, the default definitions should be adequate).

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
G
P
L
v
e
r
s
i
o
n
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

107

PP-UM-COR-00002 Revision 0.6.0

24 Demo Application

The Demo Application is intended to demonstrate the capability of the CORDET
Framework to support the development of a distributed system of control ap-
plications. It consists of a system of three inter-connected applications of which
one acts as master (the Master Application) and the other two act as slaves
(Slave 1 Application and Slave 2 Application). Each slave applications is re-
sponsible for monitoring a temperature measurement and for raising an alarm
if the temperature exceeds a pre-defined threshod. The Master Application
can enable and disable temperature monitoring and can set the temperature
thresholds.

Fig. 24.1: Logical Architecture of Demo Applications

The logical architecture of the Demo Applications is shown in figure 24.1. The
Slave Applications are implemented as service providers (in the sense of section
3.2) and the Master Application is implemented as a service user. The service
which is used by the Master Application and provided by the Slave Applications
is called Temperature Monitoring Service. It is implemented by three commands
and one report as follows:

1. Enable Monitoring: this command is sent by the Master Application to a
Slave Application to enable temperature monitoring in the slave applica-
tion.

2. Disable Monitoring: this command is sent by the Master Application to
a Slave Application to disable temperature monitoring in the slave appli-
cation.

3. Set Temperature Limit: this command is sent by the Master Application
to a Slave Application to set the temperature monitoring threshold in the
slave application.

4. Report Temperature Violation: this report is sent by a Slave Application
to the Master Application to report a temperature measurement which
exceeds the temperature limit at a time when temperature monitoring is
enabled.

The connections linking together the Demo Applications are implemented as
local TCL sockets. The physical connections among the three applications are
shown in figure 24.2. The Slave 1 Application implements a server socket and the
Master and Slave 2 Applications connect to it as client sockets. Note that this
physical architecture implies that the Slave 1 Application acts as a re-routing

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

108

PP-UM-COR-00002 Revision 0.6.0

application (in the sense of section 9) for packets exchanged between the Master
Application and the Slave 2 Application.

Fig. 24.2: Physical Connections of Demo Applications

In their default configuration, the three Demo Applications execute 100 mon-
itoring cycles. In each cycle, the Master application may send a command to
either of the two Slave Applications and the Slave Applications perform a moni-
toring action and send an alarm report to the Master Application if they detect
a temperature limit violation. At each cycle, the The Demo Applications write
a message to stdout where they state which actions they have performed in that
cycle (send a command; send a report; start execution of a command; detected
a temperature violation; etc).

The code implementing the three Demo Applications is included in the Delivery
File of the C2 Implementation (see section 2). The delivery file also include
three Unix shell scripts which compile and link the three Demo Applications
(see section 2.9) and one shell script which spawns three processes to run the
three Demo Applications. The output generated by the Demo Application is
sent to three log files.

Tables 24.1 to 24.3 show how the instantiation process of section 23 was applied
to the three Demo Applications. These tables serve as specifications for the
Demo Applications as instantiations of the CORDET Framework.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

109

P
P

-U
M

-C
O

R
-00

00
2

R
ev

ision
0.6.0

Table 24.1: Framework Instantiation Specification and Implementation Steps for Master Application

N Step Name Specification Sub-Step Implementation Sub-Step Master Application

1 Identify
Target
Application

Identify the application for which
the framework is being instanti-
ated.

The Application Identifier is specified
in CrFwUserConstants.h.

The identifier of the Master Application
is 1.

2 Identify
Service
Users

Identify the users of the ser-
vices provided by the target ap-
plication. Each service user is
identified through its Applica-
tion Identifier.

The service user identifiers are used
to define the sources of incoming
commands (InCommands) for the ap-
plication in CrFwInStreamUserPar.h

and the destination of out-
going reports (OutCompnents) in
CrFwOutStreamUserPar.h.

The Master Application does not pro-
vide any services.

3 Identify
Service
Providers

Identify the providers of the ser-
vices used by the target appli-
cation. Each service provider
is identified through its Applica-
tion Identifier.

The service provider identifiers are
used to define the sources of incoming
reports (InReports) for the appli-
cation in CrFwInStreamUserPar.h

and the destination of out-going
commands (OutCompnents) in
CrFwOutStreamUserPar.h.

The Master Application uses one ser-
vice (Temperature Monitoring Service)
provided by the two Slave Applications.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
G
P
L
v
e
r
s
i
o
n
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

110

P
P

-U
M

-C
O

R
-00

00
2

R
ev

ision
0.6.0

N Step Name Specification Sub-Step Implementation Sub-Step Master Application

4 Define Used
Services

Define the services which are
used by the target application.
Each service is defined through:
its identifier (the ”service type”);
a description of the purpose of
the service; the external entity
which provides the service; the
commands and reports which im-
plement the service.

The range of services used by
the application is defined in
CrFwInFactoryUserPar.h and
CrFwOutFactoryUserPar.h. Also,
a list of services supported by
the application is defined in
CrFwOutRegistryUserPar.h.

The Master Application uses the Tem-
perature Monitoring Service (type iden-
tifier: 64) with three commands (sub-
type identifiers: 1, 2 and 3) to enable
monitoring, disable monitoring and to
set the monitoring limit; and one re-
port (sub-type identifier: 4) to report
temperature limit violations. The ser-
vice is provided by each of the two slave
applications.

5 Define
Provided
Services

Define the services which are
provided by the target applica-
tion. Each service is defined
through: its identifier (the ”ser-
vice type”); a description of the
purpose of the service; the exter-
nal entity which uses the service;
the commands and reports which
implement the service.

The range of services provided
by the application is defined in
CrFwInFactoryUserPar.h and
CrFwOutFactoryUserPar.h. Also,
a list of services supported by
the application is defined in
CrFwOutRegistryUserPar.h.

The Master Application does not pro-
vide any services.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
G
P
L
v
e
r
s
i
o
n
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

111

P
P

-U
M

-C
O

R
-00

00
2

R
ev

ision
0.6.0

N Step Name Specification Sub-Step Implementation Sub-Step Master Application

6 Identify
Re-Routing
Capabilities

Define the applications to which
incoming packets received must
be re-routed.

The re-routing information is defined
in the re-routing function which is pro-
vided to the framework as a function
pointer in CrFwInLoaderUserPar.h

and for which two defaults are provided
by the InLoader component. Also, re-
routing contributes to the definition of
InStreams and OutStreams (InStreams
are required to receive re-routed pack-
ets and OutStreams are required to for-
ward them).

The Master Application does not
have any re-routing capabilities.
It uses the default implementa-
tions of the re-routing function
CrFwInLoaderDefNoRerouting.

7 Define
Incoming
Commands

For each provided service, define
the commands which implement
it (i.e the commands which the
application must be able to re-
ceive and process) in terms of:
their attributes, their acceptance
and ready checks, their start ac-
tion, progress action, termina-
tion action, and abort action.

The detailed definition of the in-
coming commands is done in
CrFwInFactoryUserPar.h. Also,
for each command, a C-module must
be provided which implements the
functions encapsulating the command
actions and checks. See module
CrFwInCmdSample1 for an example.

The Master Application does not han-
dle any incoming commands.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
G
P
L
v
e
r
s
i
o
n
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

112

P
P

-U
M

-C
O

R
-00

00
2

R
ev

ision
0.6.0

N Step Name Specification Sub-Step Implementation Sub-Step Master Application

8 Define
Incoming
Reports

For each used service, define the
reports which implement it (i.e.
the reports which the applica-
tion must be able to receive and
process) in terms of: their at-
tributes, their acceptance check,
and their update action.

The detailed definition of the
incoming reports is done in
CrFwInFactoryUserPar.h. Also,
for each report, a C-module must
be provided which implements the
functions encapsulating the report
actions and checks. See module
CrFwInRepSample1 for an example.

The Master Application handles one
incoming report for the Temperature
Monitoring Service (Report Temper-
ature Limit Violation) with the fol-
lowing charateristics: (a) one at-
tribute representing the temperature
measurement; (b) acceptance check
which always returns true; (c) ud-
pate action which prints a message
to stdout. The report is defined in
CrMaInRepTempViolation.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
G
P
L
v
e
r
s
i
o
n
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

113

P
P

-U
M

-C
O

R
-00

00
2

R
ev

ision
0.6.0

N Step Name Specification Sub-Step Implementation Sub-Step Master Application

9 Define
Outgoing
Commands
and Reports

For each provided service, define
the reports which implement it
and for each used service, de-
fine the commands which imple-
ment it in terms of: their at-
tributes, their enable check, and
their ready, and repeat check and
their update action.

The detailed definition of the out-
going commands and reports is done
in CrFwOutFactoryUserPar.h. Also,
for out-going reports or commands
which do not use the default implemen-
tations of the OutComponent adap-
tation points, a C-module must be
provided which implements the func-
tions encapsulating the report or com-
mand actions and checks. See module
CrFwOutCmpSample1 for an example.

The Master Application handles three
out-going commands for the Temper-
ature Monitoring Service for the slave
applications: (a) Enable Tempera-
ture Monitoring (no attributes; de-
fault enable and ready checks); (b)
Disable Temperature Monitoring (no
attributes; default enable, ready and
repeat checks); (c) Set Temperature
Limit (one attribute representing the
temperature limit; default enable and
ready checks). The commands are de-
fined in: CrMaOutCmpEnableDisable

and CrMaOutCmpSetTempLimit. The
Update Action is not used (the com-
mands are configured through dedi-
cated functions) and therefore its de-
fault implementation is used. The re-
peat check always returns ’no repeat’.

10 Assign
Commands
and Reports
to Groups

Define command and report
groups and define rules for as-
signing commands and reports to
groups.

The definition of the assignment rules is
done in the implementation of the get-
ter and setter functions for the group
attribute in module CrFwPckt.

The default assignment is used which
allocates all commands and reports to
the same group.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
G
P
L
v
e
r
s
i
o
n
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

114

P
P

-U
M

-C
O

R
-00

00
2

R
ev

ision
0.6.0

N Step Name Specification Sub-Step Implementation Sub-Step Master Application

11 Define
Command
and Report
Layout

For each command and report
which can be either generated
or received by the target appli-
cation, define the layout of the
packet which carries it.

The packet layout is implicitly imple-
mented in the setter and getter func-
tions of the CrFwPckt.h interface. The
application developer must provide a
complete implementation for this inter-
face. A stub implementation is pro-
vided in the configuration directory
/cr/src/crConfigTestSuite.

For the header part of a packet,
the same layout as in the stub
implementation of CrFwPckt.h in
/cr/src/crConfigTestSuite is used.
The temperature attribute is stored
as an unsigned integer in the first
parameter byte. All packets have a
fixed length of 100 bytes.

12 Define
Packet
Allocation
Policy

Define the allocation policy for
the packets which the applica-
tion creates when it receives a
command or report.

The packet allocation policy is imple-
mented in the make function of the
CrFwPckt.h interface. The applica-
tion developer must provide a com-
plete implementation for this inter-
face. A stub implementation is pro-
vided in the configuration directory
/cr/src/crConfigTestSuite.

The Master Application uses the de-
fault packet allocation policy of the
stub implementation of CrFwPckt.h in
/cr/src/crConfigTestSuite.

13 Define
Command
and Report
Capacity

Define: the maximum number
of incoming commands which
the target application can hold
at any given time; the max-
imum number of incoming re-
ports which the target applica-
tion can hold at any given time;
and the maximum number of
outgoing commands or reports
which the application can hold at
any given time.

The capacities for incoming commands
and reports are defined as #DEFINE con-
stants in CrFwInFactoryUserPar.h.
The capacity for out-going commands
and reports is defined as a #DEFINE con-
stant in CrFwOutFactoryUserPar.h.

All capacities are equal to 10.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
G
P
L
v
e
r
s
i
o
n
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

115

P
P

-U
M

-C
O

R
-00

00
2

R
ev

ision
0.6.0

N Step Name Specification Sub-Step Implementation Sub-Step Master Application

14 Define
Application
Modes

Define the sub-states in the
states of the Application State
Machine.

For each set of sub-states, a state
machine implementing them is defined
which is then embedded in one of the
states of the Application State Ma-
chine. The embedded state machines
are defined in CrFwAppSmUserApp.h.

No sub-states are defined.

15 Define
Incoming
Middleware
Interface

Define the interface to the mid-
dleware which is responsible for
receiving the commands and re-
ports for the target application.

For each source of commands or re-
ports, one InStream is defined. The
size of the InStream packet queues and
the pointers to the functions which im-
plement the InStream operations are
defined in CrFwInStreamUserPar.h.
Also, for each InStream a C module
must be defined which implements the
InStream functions. A test stub is pro-
vided in CrFwInStreamStub.

The Master Application has a physi-
cal connection to the Slave 1 Applica-
tion. On the Master Application side,
this connection is implemented as a
TCL client socket. The interface to the
socket is defined in CrDaClientSocket.
The Master Application instantiates
two InStreams to receive packets from
the two slave applications.

16 Define
Out-Going
Middleware
Interface

Define the interface to the mid-
dleware which is responsible for
sending the commands and re-
ports originating in the target
application.

For each command or report desti-
nation, one OutStream is defined.
The size of the OutStream packet
queues and the pointers to the
functions which implement the Out-
Stream operations are defined in
CrFwOutStreamUserPar.h. Also, for
each OutStream a C module must
be defined which implements the
OutStream functions. A test stub is
provided in CrFwOutStreamStub.

The Master Application has a physi-
cal connection to the Slave 1 Applica-
tion. On the Master Application side,
this connection is implemented as a
TCL client socket. The interface to the
socket is defined in CrDaClientSocket.
The Master Application instantiates
two OutStreams to send packets to the
two slave applications.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
G
P
L
v
e
r
s
i
o
n
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

116

P
P

-U
M

-C
O

R
-00

00
2

R
ev

ision
0.6.0

N Step Name Specification Sub-Step Implementation Sub-Step Master Application

17 Define
InManagers

Define the number of InMan-
agers and the size of their
Pending Command/Report Lists
(PCRLs).

These items are defined as #DEFINE

constants in CrFwInManagerUserPar.h

The Master Application only needs one
InManager for incoming reports. How-
ever, in order to re-use the default im-
plementation of the InLoader (which
sends incoming reports to InManager
2), two InManagers are defined and the
first one remains unused. The size of
their PCRLs are, respectively, 1 and 20.
The value of 20 is equal to the sum of
the sizes of the packet queues of the two
InStreams of the Master Application..

18 Define
InManager
Selection
Function

Define the logic to select the
InManager where an incoming
command or report is loaded.

A pointer to this function is defined
in CrFwInLoaderUserPar.h. A default
implementation is provided by the In-
Loader (see CrFwInLoader.h).

The Master Application uses the de-
fault implementation of the InManager
selection function.

19 Define
InRegistry

Define the maximum number of
commands and reports which
can be tracked by the InRegistry.

This item is defined as a #DEFINE con-
stant in CrFwInRegsitryUserPar.h.

The Master Application sets the maxi-
mum number of tracked commands/re-
ports to 64.

20 Define Out-
Managers

Define the number of OutMan-
agers and the size of their
Pending OutComponent Lists
(POCLs).

These items are defined
as #DEFINE constants in
CrFwOutManagerUserPar.h.

The Master Application defines one
OutManager to handle out-going com-
mands. The size of its POCL is 10,
namely the same as the size of the
packet queue of its OutStreams.

21 Define
OutManager
Selection
Function

Define the logic to select the
OutManager where an out-going
command or report is loaded.

A pointer to this function is defined in
CrFwOutLoaderUserPar.h. A default
implementation is provided by the Out-
Loader (see CrFwOutLoader.h).

The Master Application has only one
OutManager and therefore uses the de-
fault implementation of the OutMan-
ager Selection Function.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
G
P
L
v
e
r
s
i
o
n
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

117

P
P

-U
M

-C
O

R
-00

00
2

R
ev

ision
0.6.0

N Step Name Specification Sub-Step Implementation Sub-Step Master Application

22 Define
OutRegistry

Define the maximum number of
commands and reports which
can be tracked by the OutReg-
istry.

This item is defined as a #DEFINE con-
stant in CrFwOutRegistryUserPar.h.

The Master Application sets the maxi-
mum number of tracked commands/re-
ports to 64.

23 Define
Start-Up
Procedure

Define the start-up procedure
for the application. This in
particular includes the sequence
in which framework components
are instantiated, initialized and
configured.

Implement the Application Start-Up
Procedure by providing an implemen-
tation for CrFwAppStartUpProc.h.
A test stub is provided in
CrFwAppStartUpProc.c.

The Master Application uses the de-
fault Start-Up Procedure which does
not take any action. Start-up actions
are coded in the main program.

24 Define Reset
Procedure

Define the reset procedure for the
application. This in particular
includes the sequence in which
framework components are reset.

Implement the Application Reset Pro-
cedure by providing an implementation
for CrFwAppResetProc.h. A test stub
is provided in CrFwAppResetProc.c.

The Master Application uses the de-
fault Reset Procedure which does not
take any action. No reset functionality
is provided by the Master Application.

25 Define
Shutdown
Procedure

Define the shutdown procedure
for the application. This in
particular includes the sequence
in which framework components
are shutdown.

Implement the Application Shutdown
Procedure by providing an implemen-
tation for CrFwAppShutdownProc.h.
A test stub is provided in
CrFwAppShutdownProc.c.

The Master Application uses the de-
fault Shutdown Procedure which does
not take any action. No shutdown func-
tionality is provided by the Master Ap-
plication.

26 Define Time
Interface

Define the means through which
the current time is acquired.
This is needed for time-stamping
out-going commands and reports
in the OutStream.

The time acquisition interface is de-
fined in CrFwTime.h. The applica-
tion developer must provide a com-
plete implementation for this inter-
face. A stub implementation is pro-
vided in the configuration directory
/cr/src/crConfigTestSuite.

The Master Application does not pro-
vide any realistic time function and uses
the same stub implementation as in
/cr/src/crConfigTestSuite.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
G
P
L
v
e
r
s
i
o
n
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

118

P
P

-U
M

-C
O

R
-00

00
2

R
ev

ision
0.6.0

N Step Name Specification Sub-Step Implementation Sub-Step Master Application

27 Define Error
Reporting
Interface

Define the response to the gener-
ation of error reports.

The respone to error reports is de-
fined in CrFwRepErr.h. The applica-
tion developer must provide a com-
plete implementation for this inter-
face. A test implementation is pro-
vided in the configuration directory
/cr/src/crConfigTestSuite.

The Master Application implements
CrFwRepErr.h to write an error mes-
sage to stdout.

28 Define
InCommand
Outcome
Reporting

Define the means through which
the outcome of the processing of
incoming commands is reported.

The respone to the reports of In-
Command outcomes is defined in
CrFwRepInCmdOutcome.h. The appli-
cation developer must provide a com-
plete implementation for this inter-
face. A test implementation is pro-
vided in the configuration directory
/cr/src/crConfigTestSuite.

The Master Application implements
CrFwRepInCmdOutcome.h to write a
command start acknowledge message to
stdout. The implementation assumes
that command progress, termination
and abort do not need to be acknowl-
edged.

29 Define
Primitive
Types

Define the range of the primi-
tive types used by the framework
components. The driver for this
definition is the need to optimize
the memory footprint of the ap-
plication.

The primitive types are defined through
typedef’s in CrFwUserConstants.h.
Application developers can override the
default definitions in this file (but note
that, in most cases, the default defini-
tions should be adequate).

The Master Application uses the de-
fault definition of the primitive types.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
G
P
L
v
e
r
s
i
o
n
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

119

P
P

-U
M

-C
O

R
-00

00
2

R
ev

ision
0.6.0

Table 24.2: Framework Instantiation Specification and Implementation Steps for Slave 1 Application

N Step Name Specification Sub-Step Implementation Sub-Step Slave 1 Application

1 Identify
Target
Application

Identify the application for which
the framework is being instanti-
ated.

The Application Identifier is specified
in CrFwUserConstants.h.

The identifier of the Slave 1 Application
is 2.

2 Identify
Service
Users

Identify the users of the ser-
vices provided by the target ap-
plication. Each service user is
identified through its Applica-
tion Identifier.

The service user identifiers are used
to define the sources of incoming
commands (InCommands) for the ap-
plication in CrFwInStreamUserPar.h

and the destination of out-
going reports (OutCompnents) in
CrFwOutStreamUserPar.h.

The Slave 1 Application provides one
service (Temperature Monitoring Ser-
vice) to the Master Application.

3 Identify
Service
Providers

Identify the providers of the ser-
vices used by the target appli-
cation. Each service provider
is identified through its Applica-
tion Identifier.

The service provider identifiers are
used to define the sources of incoming
reports (InReports) for the appli-
cation in CrFwInStreamUserPar.h

and the destination of out-going
commands (OutCompnents) in
CrFwOutStreamUserPar.h.

The Slave 1 Application does not use
any services provided by other applica-
tions.

4 Define Used
Services

Define the services which are
used by the target application.
Each service is defined through:
its identifier (the ”service type”);
a description of the purpose of
the service; the external entity
which provides the service; the
commands and reports which im-
plement the service.

The range of services used by
the application is defined in
CrFwInFactoryUserPar.h and
CrFwOutFactoryUserPar.h. Also,
a list of services supported by
the application is defined in
CrFwOutRegistryUserPar.h.

The Slave 1 Application does not use
any services provided by other applica-
tions.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
G
P
L
v
e
r
s
i
o
n
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

120

P
P

-U
M

-C
O

R
-00

00
2

R
ev

ision
0.6.0

N Step Name Specification Sub-Step Implementation Sub-Step Master Application

5 Define
Provided
Services

Define the services which are
provided by the target applica-
tion. Each service is defined
through: its identifier (the ”ser-
vice type”); a description of the
purpose of the service; the exter-
nal entity which uses the service;
the commands and reports which
implement the service.

The range of services provided
by the application is defined in
CrFwInFactoryUserPar.h and
CrFwOutFactoryUserPar.h. Also,
a list of services supported by
the application is defined in
CrFwOutRegistryUserPar.h.

The Slave 1 Application provides the
Temperature Monitoring Service (type
identifier: 64) with three commands
(sub-type identifiers: 1, 2 and 3) to
enable monitoring, disable monitoring
and to set the monitoring limit; and one
report (sub-type identifier: 4) to report
temperature limit violations. The ser-
vice is provided by each of the two slave
applications.

6 Identify
Re-Routing
Capabilities

Define the applications to which
incoming packets received must
be re-routed.

The re-routing information is defined
in the re-routing function which is pro-
vided to the framework as a function
pointer in CrFwInLoaderUserPar.h

and for which two defaults are provided
by the InLoader component. Also, re-
routing contributes to the definition of
InStreams and OutStreams (InStreams
are required to receive re-routed pack-
ets and OutStreams are required to for-
ward them).

The Slave 1 Application re-routes
packets exchanges betweeb the Mas-
ter Application and the Slave 2
Application. It uses the default imple-
mentation of the re-routing function
CrFwInLoaderDefGetReroutingDestination

and has an InStream and an OutStream
to handle re-routed packet to and from
the Slave 2 Application.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
G
P
L
v
e
r
s
i
o
n
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

121

P
P

-U
M

-C
O

R
-00

00
2

R
ev

ision
0.6.0

N Step Name Specification Sub-Step Implementation Sub-Step Master Application

7 Define
Incoming
Commands

For each provided service, define
the commands which implement
it (i.e the commands which the
application must be able to re-
ceive and process) in terms of:
their attributes, their acceptance
and ready checks, their start ac-
tion, progress action, termina-
tion action, and abort action.

The detailed definition of the in-
coming commands is done in
CrFwInFactoryUserPar.h. Also,
for each command, a C-module must
be provided which implements the
functions encapsulating the command
actions and checks. See module
CrFwInCmdSample1 for an example.

The Slave 1 Application handles the
following incoming commands for the
Temperature Monitoring Service: (a)
Enable Temperature Monitoring (no at-
tributes; default checks; and all actions
default except the Progress Action); (b)
Disable Temperature Monitoring (no
attributes; default checks; and all ac-
tions default except the Progress Ac-
tion); (c) Set Temperature Limit (one
attribute representing the temperature
limit; default checks; and all actions
default except the Progress Action).
The three commands are defined in
CrDaTempMonitor.

8 Define
Incoming
Reports

For each used service, define the
reports which implement it (i.e.
the reports which the applica-
tion must be able to receive and
process) in terms of: their at-
tributes, their acceptance check,
and their update action.

The detailed definition of the
incoming reports is done in
CrFwInFactoryUserPar.h. Also,
for each report, a C-module must
be provided which implements the
functions encapsulating the report
actions and checks. See module
CrFwInRepSample1 for an example.

The Slave 1 Application does not han-
dle any incoming commands.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
G
P
L
v
e
r
s
i
o
n
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

122

P
P

-U
M

-C
O

R
-00

00
2

R
ev

ision
0.6.0

N Step Name Specification Sub-Step Implementation Sub-Step Master Application

9 Define
Outgoing
Commands
and Reports

For each provided service, define
the reports which implement it
and for each used service, de-
fine the commands which imple-
ment it in terms of: their at-
tributes, their enable check, and
their ready, and repeat check and
their update action.

The detailed definition of the out-
going commands and reports is done
in CrFwOutFactoryUserPar.h. Also,
for out-going reports or commands
which do not use the default implemen-
tations of the OutComponent adap-
tation points, a C-module must be
provided which implements the func-
tions encapsulating the report or com-
mand actions and checks. See module
CrFwOutCmpSample1 for an example.

The Slave 1 Application handles one
out-going report (Report Temperature
Limit Violation) with one attribute
representing the temperature measure-
ment and default enable, ready and re-
peat checks. The report is defined in:
CrDaOutCmpTempViolation. The Up-
date Action is not used (the report is
configured through a dedicated func-
tions) and therefore its default imple-
mentation is used. The repeat check
always returns ’no repeat’.

10 Assign
Commands
and Reports
to Groups

Define command and report
groups and define rules for as-
signing commands and reports to
groups.

The definition of the assignment rules is
done in the implementation of the get-
ter and setter functions for the group
attribute in module CrFwPckt.

The default assignment is used which
allocates all commands and reports to
the same group.

11 Define
Command
and Report
Layout

For each command and report
which can be either generated
or received by the target appli-
cation, define the layout of the
packet which carries it.

The packet layout is implicitly imple-
mented in the setter and getter func-
tions of the CrFwPckt.h interface. The
application developer must provide a
complete implementation for this inter-
face. A stub implementation is pro-
vided in the configuration directory
/cr/src/crConfigTestSuite.

For the header part of a packet,
the same layout as in the stub
implementation of CrFwPckt.h in
/cr/src/crConfigTestSuite is used.
The temperature attribute is stored
as an unsigned integer in the first
parameter byte. All packets have a
fixed length of 100 bytes.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
G
P
L
v
e
r
s
i
o
n
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

123

P
P

-U
M

-C
O

R
-00

00
2

R
ev

ision
0.6.0

N Step Name Specification Sub-Step Implementation Sub-Step Master Application

12 Define
Packet
Allocation
Policy

Define the allocation policy for
the packets which the applica-
tion creates when it receives a
command or report.

The packet allocation policy is imple-
mented in the make function of the
CrFwPckt.h interface. The applica-
tion developer must provide a com-
plete implementation for this inter-
face. A stub implementation is pro-
vided in the configuration directory
/cr/src/crConfigTestSuite.

The Slave 1 Application uses the de-
fault packet allocation policy of the
stub implementation of CrFwPckt.h in
/cr/src/crConfigTestSuite.

13 Define
Command
and Report
Capacity

Define: the maximum number
of incoming commands which
the target application can hold
at any given time; the max-
imum number of incoming re-
ports which the target applica-
tion can hold at any given time;
and the maximum number of
outgoing commands or reports
which the application can hold at
any given time.

The capacities for incoming commands
and reports are defined as #DEFINE con-
stants in CrFwInFactoryUserPar.h.
The capacity for out-going commands
and reports is defined as a #DEFINE con-
stant in CrFwOutFactoryUserPar.h.

All capacities are equal to 10.

14 Define
Application
Modes

Define the sub-states in the
states of the Application State
Machine.

For each set of sub-states, a state
machine implementing them is defined
which is then embedded in one of the
states of the Application State Ma-
chine. The embedded state machines
are defined in CrFwAppSmUserApp.h.

No sub-states are defined.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
G
P
L
v
e
r
s
i
o
n
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

124

P
P

-U
M

-C
O

R
-00

00
2

R
ev

ision
0.6.0

N Step Name Specification Sub-Step Implementation Sub-Step Master Application

15 Define
Incoming
Middleware
Interface

Define the interface to the mid-
dleware which is responsible for
receiving the commands and re-
ports for the target application.

For each source of commands or re-
ports, one InStream is defined. The
size of the InStream packet queues and
the pointers to the functions which im-
plement the InStream operations are
defined in CrFwInStreamUserPar.h.
Also, for each InStream a C module
must be defined which implements the
InStream functions. A test stub is pro-
vided in CrFwInStreamStub.

The Slave 1 Application has a physical
connection to the Slave 2 Application
and to the Master Application. On the
Slave 1 Application side, these connec-
tions are implemented as a TCL server
socket. The interface to the socket
is defined in CrDaServerSocket. The
Slave 1 Application instantiates two In-
Streams to receive packets from the
Master Application and from the Slave
2 Application (for which it acts as a re-
routing application).

16 Define
Out-Going
Middleware
Interface

Define the interface to the mid-
dleware which is responsible for
sending the commands and re-
ports originating in the target
application.

For each command or report desti-
nation, one OutStream is defined.
The size of the OutStream packet
queues and the pointers to the
functions which implement the Out-
Stream operations are defined in
CrFwOutStreamUserPar.h. Also, for
each OutStream a C module must
be defined which implements the
OutStream functions. A test stub is
provided in CrFwOutStreamStub.

The Slave 1 Application has a phys-
ical connection to the Slave 2 Appli-
cation and to the Master Application.
On the Slave 1 Application side, these
connections are implemented as a TCL
server socket. The interface to the
socket is defined in CrDaServerSocket.
The Slave 1 Application instantiates
two OutStreams to send packets to the
Master Application and to the Slave 2
Application (for which it acts as a re-
routing application).

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
G
P
L
v
e
r
s
i
o
n
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

125

P
P

-U
M

-C
O

R
-00

00
2

R
ev

ision
0.6.0

N Step Name Specification Sub-Step Implementation Sub-Step Master Application

17 Define
InManagers

Define the number of InMan-
agers and the size of their
Pending Command/Report Lists
(PCRLs).

These items are defined as #DEFINE

constants in CrFwInManagerUserPar.h

The Slave 1 Application defines one In-
Manager to handle its incoming com-
mands. The size of its PCRL is 10.
This matches the size of the packet
queues in the InStreams of the Slave 1
Application.

18 Define
InManager
Selection
Function

Define the logic to select the
InManager where an incoming
command or report is loaded.

A pointer to this function is defined
in CrFwInLoaderUserPar.h. A default
implementation is provided by the In-
Loader (see CrFwInLoader.h).

The Slave 1 Application uses the de-
fault implementation of the InManager
selection function.

19 Define
InRegistry

Define the maximum number of
commands and reports which
can be tracked by the InRegistry.

This item is defined as a #DEFINE con-
stant in CrFwInRegsitryUserPar.h.

The Slave 1 Application sets the maxi-
mum number of tracked commands/re-
ports to 64.

20 Define Out-
Managers

Define the number of OutMan-
agers and the size of their
Pending OutComponent Lists
(POCLs).

These items are defined
as #DEFINE constants in
CrFwOutManagerUserPar.h.

The Slave 1 Application defines one
OutManager to handle out-going com-
mands. The size of its POCL is 10,
namely the same as the size of the
packet queue of its OutStreams.

21 Define
OutManager
Selection
Function

Define the logic to select the
OutManager where an out-going
command or report is loaded.

A pointer to this function is defined in
CrFwOutLoaderUserPar.h. A default
implementation is provided by the Out-
Loader (see CrFwOutLoader.h).

The Slave 1 Application has only one
OutManager and therefore uses the de-
fault implementation of the OutMan-
ager Selection Function.

22 Define
OutRegistry

Define the maximum number of
commands and reports which
can be tracked by the OutReg-
istry.

This item is defined as a #DEFINE con-
stant in CrFwOutRegistryUserPar.h.

The Slave 1 Application sets the maxi-
mum number of tracked commands/re-
ports to 64.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
G
P
L
v
e
r
s
i
o
n
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

126

P
P

-U
M

-C
O

R
-00

00
2

R
ev

ision
0.6.0

N Step Name Specification Sub-Step Implementation Sub-Step Master Application

23 Define
Start-Up
Procedure

Define the start-up procedure
for the application. This in
particular includes the sequence
in which framework components
are instantiated, initialized and
configured.

Implement the Application Start-Up
Procedure by providing an implemen-
tation for CrFwAppStartUpProc.h.
A test stub is provided in
CrFwAppStartUpProc.c.

The Slave 1 Application uses the de-
fault Start-Up Procedure. Start-up ac-
tions are coded in the main program.

24 Define Reset
Procedure

Define the reset procedure for the
application. This in particular
includes the sequence in which
framework components are reset.

Implement the Application Reset Pro-
cedure by providing an implementation
for CrFwAppResetProc.h. A test stub
is provided in CrFwAppResetProc.c.

The Slave 1 Application uses the de-
fault Reset Procedure which does not
take any action. No reset functionality
is provided by the Slave 1 Application.

25 Define
Shutdown
Procedure

Define the shutdown procedure
for the application. This in
particular includes the sequence
in which framework components
are shutdown.

Implement the Application Shutdown
Procedure by providing an implemen-
tation for CrFwAppShutdownProc.h.
A test stub is provided in
CrFwAppShutdownProc.c.

The Slave 1 Application uses the de-
fault Shutdown Procedure which does
not take any action. No shutdown func-
tionality is provided by the Master Ap-
plication.

26 Define Time
Interface

Define the means through which
the current time is acquired.
This is needed for time-stamping
out-going commands and reports
in the OutStream.

The time acquisition interface is de-
fined in CrFwTime.h. The applica-
tion developer must provide a com-
plete implementation for this inter-
face. A stub implementation is pro-
vided in the configuration directory
/cr/src/crConfigTestSuite.

The Slave 1 Application does not pro-
vide any realistic time function and uses
the same stub implementation as in
/cr/src/crConfigTestSuite.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
G
P
L
v
e
r
s
i
o
n
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

127

P
P

-U
M

-C
O

R
-00

00
2

R
ev

ision
0.6.0

N Step Name Specification Sub-Step Implementation Sub-Step Master Application

27 Define Error
Reporting
Interface

Define the response to the gener-
ation of error reports.

The respone to error reports is de-
fined in CrFwRepErr.h. The applica-
tion developer must provide a com-
plete implementation for this inter-
face. A test implementation is pro-
vided in the configuration directory
/cr/src/crConfigTestSuite.

The Slave 1 Application implements
CrFwRepErr.h to write an error mes-
sage to stdout.

28 Define
InCommand
Outcome
Reporting

Define the means through which
the outcome of the processing of
incoming commands is reported.

The respone to the reports of In-
Command outcomes is defined in
CrFwRepInCmdOutcome.h. The appli-
cation developer must provide a com-
plete implementation for this inter-
face. A test implementation is pro-
vided in the configuration directory
/cr/src/crConfigTestSuite.

The Slave 1 Application implements
CrFwRepInCmdOutcome.h to write a
command start acknowledge message to
stdout. The implementation assumes
that command progress, termination
and abort do not need to be acknowl-
edged.

29 Define
Primitive
Types

Define the range of the primi-
tive types used by the framework
components. The driver for this
definition is the need to optimize
the memory footprint of the ap-
plication.

The primitive types are defined through
typedef’s in CrFwUserConstants.h.
Application developers can override the
default definitions in this file (but note
that, in most cases, the default defini-
tions should be adequate).

The Slave 1 Application uses the de-
fault definition of the primitive types.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
G
P
L
v
e
r
s
i
o
n
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

128

P
P

-U
M

-C
O

R
-00

00
2

R
ev

ision
0.6.0

Table 24.3: Framework Instantiation Specification and Implementation Steps for Slave 2 Application

N Step Name Specification Sub-Step Implementation Sub-Step Slave 2 Application

1 Identify
Target
Application

Identify the application for which
the framework is being instanti-
ated.

The Application Identifier is specified
in CrFwUserConstants.h.

The identifier of the Slave 2 Application
is 3.

2 Identify
Service
Users

Identify the users of the ser-
vices provided by the target ap-
plication. Each service user is
identified through its Applica-
tion Identifier.

The service user identifiers are used
to define the sources of incoming
commands (InCommands) for the ap-
plication in CrFwInStreamUserPar.h

and the destination of out-
going reports (OutCompnents) in
CrFwOutStreamUserPar.h.

The Slave 2 Application provides one
service (Temperature Monitoring Ser-
vice) to the Master Application.

3 Identify
Service
Providers

Identify the providers of the ser-
vices used by the target appli-
cation. Each service provider
is identified through its Applica-
tion Identifier.

The service provider identifiers are
used to define the sources of incoming
reports (InReports) for the appli-
cation in CrFwInStreamUserPar.h

and the destination of out-going
commands (OutCompnents) in
CrFwOutStreamUserPar.h.

The Slave 2 Application does not use
any services provided by other applica-
tions.

4 Define Used
Services

Define the services which are
used by the target application.
Each service is defined through:
its identifier (the ”service type”);
a description of the purpose of
the service; the external entity
which provides the service; the
commands and reports which im-
plement the service.

The range of services used by
the application is defined in
CrFwInFactoryUserPar.h and
CrFwOutFactoryUserPar.h. Also,
a list of services supported by
the application is defined in
CrFwOutRegistryUserPar.h.

The Slave 2 Application does not use
any services provided by other applica-
tions.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
G
P
L
v
e
r
s
i
o
n
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

129

P
P

-U
M

-C
O

R
-00

00
2

R
ev

ision
0.6.0

N Step Name Specification Sub-Step Implementation Sub-Step Master Application

5 Define
Provided
Services

Define the services which are
provided by the target applica-
tion. Each service is defined
through: its identifier (the ”ser-
vice type”); a description of the
purpose of the service; the exter-
nal entity which uses the service;
the commands and reports which
implement the service.

The range of services provided
by the application is defined in
CrFwInFactoryUserPar.h and
CrFwOutFactoryUserPar.h. Also,
a list of services supported by
the application is defined in
CrFwOutRegistryUserPar.h.

The Slave 2 Application provides the
Temperature Monitoring Service (type
identifier: 64) with three commands
(sub-type identifiers: 1, 2 and 3) to
enable monitoring, disable monitoring
and to set the monitoring limit; and one
report (sub-type identifier: 4) to report
temperature limit violations. The ser-
vice is provided by each of the two slave
applications.

6 Identify
Re-Routing
Capabilities

Define the applications to which
incoming packets received must
be re-routed.

The re-routing information is defined
in the re-routing function which is pro-
vided to the framework as a function
pointer in CrFwInLoaderUserPar.h

and for which two defaults are provided
by the InLoader component. Also, re-
routing contributes to the definition of
InStreams and OutStreams (InStreams
are required to receive re-routed pack-
ets and OutStreams are required to for-
ward them).

The Slave 2 Application does not
have any re-routing capabilities.
It uses the default implementa-
tions of the re-routing function
CrFwInLoaderDefNoRerouting.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
G
P
L
v
e
r
s
i
o
n
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

130

P
P

-U
M

-C
O

R
-00

00
2

R
ev

ision
0.6.0

N Step Name Specification Sub-Step Implementation Sub-Step Master Application

7 Define
Incoming
Commands

For each provided service, define
the commands which implement
it (i.e the commands which the
application must be able to re-
ceive and process) in terms of:
their attributes, their acceptance
and ready checks, their start ac-
tion, progress action, termina-
tion action, and abort action.

The detailed definition of the in-
coming commands is done in
CrFwInFactoryUserPar.h. Also,
for each command, a C-module must
be provided which implements the
functions encapsulating the command
actions and checks. See module
CrFwInCmdSample1 for an example.

The Slave 2 Application handles the
following incoming commands for the
Temperature Monitoring Service: (a)
Enable Temperature Monitoring (no at-
tributes; default checks; and all actions
default except the Progress Action); (b)
Disable Temperature Monitoring (no
attributes; default checks; and all ac-
tions default except the Progress Ac-
tion); (c) Set Temperature Limit (one
attribute representing the temperature
limit; default checks; and all actions
default except the Progress Action).
The three commands are defined in
CrDaTempMonitor.

8 Define
Incoming
Reports

For each used service, define the
reports which implement it (i.e.
the reports which the applica-
tion must be able to receive and
process) in terms of: their at-
tributes, their acceptance check,
and their update action.

The detailed definition of the
incoming reports is done in
CrFwInFactoryUserPar.h. Also,
for each report, a C-module must
be provided which implements the
functions encapsulating the report
actions and checks. See module
CrFwInRepSample1 for an example.

The Slave 2 Application does not han-
dle any incoming commands.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
G
P
L
v
e
r
s
i
o
n
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

131

P
P

-U
M

-C
O

R
-00

00
2

R
ev

ision
0.6.0

N Step Name Specification Sub-Step Implementation Sub-Step Master Application

9 Define
Outgoing
Commands
and Reports

For each provided service, define
the reports which implement it
and for each used service, de-
fine the commands which imple-
ment it in terms of: their at-
tributes, their enable check, and
their ready, and repeat check and
their update action.

The detailed definition of the out-
going commands and reports is done
in CrFwOutFactoryUserPar.h. Also,
for out-going reports or commands
which do not use the default implemen-
tations of the OutComponent adap-
tation points, a C-module must be
provided which implements the func-
tions encapsulating the report or com-
mand actions and checks. See module
CrFwOutCmpSample1 for an example.

The Slave 2 Application handles one
out-going report (Report Temperature
Limit Violation) with one attribute
representing the temperature measure-
ment and default enable, ready and re-
peat checks. The report is defined in:
CrDaOutCmpTempViolation. The Up-
date Action is not used (the report is
configured through a dedicated func-
tions) and therefore its default imple-
mentation is used. The repeat check
always returns ’no repeat’.

10 Assign
Commands
and Reports
to Groups

Define command and report
groups and define rules for as-
signing commands and reports to
groups.

The definition of the assignment rules is
done in the implementation of the get-
ter and setter functions for the group
attribute in module CrFwPckt.

The default assignment is used which
allocates all commands and reports to
the same group.

11 Define
Command
and Report
Layout

For each command and report
which can be either generated
or received by the target appli-
cation, define the layout of the
packet which carries it.

The packet layout is implicitly imple-
mented in the setter and getter func-
tions of the CrFwPckt.h interface. The
application developer must provide a
complete implementation for this inter-
face. A stub implementation is pro-
vided in the configuration directory
/cr/src/crConfigTestSuite.

For the header part of a packet,
the same layout as in the stub
implementation of CrFwPckt.h in
/cr/src/crConfigTestSuite is used.
The temperature attribute is stored
as an unsigned integer in the first
parameter byte. All packets have a
fixed length of 100 bytes.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
G
P
L
v
e
r
s
i
o
n
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

132

P
P

-U
M

-C
O

R
-00

00
2

R
ev

ision
0.6.0

N Step Name Specification Sub-Step Implementation Sub-Step Master Application

12 Define
Packet
Allocation
Policy

Define the allocation policy for
the packets which the applica-
tion creates when it receives a
command or report.

The packet allocation policy is imple-
mented in the make function of the
CrFwPckt.h interface. The applica-
tion developer must provide a com-
plete implementation for this inter-
face. A stub implementation is pro-
vided in the configuration directory
/cr/src/crConfigTestSuite.

The Slave 2 Application uses the de-
fault packet allocation policy of the
stub implementation of CrFwPckt.h in
/cr/src/crConfigTestSuite.

13 Define
Command
and Report
Capacity

Define: the maximum number
of incoming commands which
the target application can hold
at any given time; the max-
imum number of incoming re-
ports which the target applica-
tion can hold at any given time;
and the maximum number of
outgoing commands or reports
which the application can hold at
any given time.

The capacities for incoming commands
and reports are defined as #DEFINE con-
stants in CrFwInFactoryUserPar.h.
The capacity for out-going commands
and reports is defined as a #DEFINE con-
stant in CrFwOutFactoryUserPar.h.

All capacities are equal to 10.

14 Define
Application
Modes

Define the sub-states in the
states of the Application State
Machine.

For each set of sub-states, a state
machine implementing them is defined
which is then embedded in one of the
states of the Application State Ma-
chine. The embedded state machines
are defined in CrFwAppSmUserApp.h.

No sub-states are defined.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
G
P
L
v
e
r
s
i
o
n
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

133

P
P

-U
M

-C
O

R
-00

00
2

R
ev

ision
0.6.0

N Step Name Specification Sub-Step Implementation Sub-Step Master Application

15 Define
Incoming
Middleware
Interface

Define the interface to the mid-
dleware which is responsible for
receiving the commands and re-
ports for the target application.

For each source of commands or re-
ports, one InStream is defined. The
size of the InStream packet queues and
the pointers to the functions which im-
plement the InStream operations are
defined in CrFwInStreamUserPar.h.
Also, for each InStream a C module
must be defined which implements the
InStream functions. A test stub is pro-
vided in CrFwInStreamStub.

The Slave 2 Application has a physi-
cal connection to the Slave 1 Applica-
tion. On the Slave 2 Application side,
this connection is implemented as a
TCL client socket. The interface to the
socket is defined in CrDaClientSocket.
The Slave 2 Application instantiates
one InStream to receive packets from
the Master Application.

16 Define
Out-Going
Middleware
Interface

Define the interface to the mid-
dleware which is responsible for
sending the commands and re-
ports originating in the target
application.

For each command or report desti-
nation, one OutStream is defined.
The size of the OutStream packet
queues and the pointers to the
functions which implement the Out-
Stream operations are defined in
CrFwOutStreamUserPar.h. Also, for
each OutStream a C module must
be defined which implements the
OutStream functions. A test stub is
provided in CrFwOutStreamStub.

The Slave 2 Application has a physi-
cal connection to the Slave 1 Applica-
tion. On the Slave 2 Application side,
this connection is implemented as a
TCL client socket. The interface to the
socket is defined in CrDaClientSocket.
The Slave 2 Application instantiates
one OutStream to send packets to the
Master Application.

17 Define
InManagers

Define the number of InMan-
agers and the size of their
Pending Command/Report Lists
(PCRLs).

These items are defined as #DEFINE

constants in CrFwInManagerUserPar.h

The Slave 2 Application defines one In-
Manager to handle its incoming com-
mands. The size of its PCRL is 10.
This matches the size of the packet
queues in the InStreams of the Slave 2
Application.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
G
P
L
v
e
r
s
i
o
n
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

134

P
P

-U
M

-C
O

R
-00

00
2

R
ev

ision
0.6.0

N Step Name Specification Sub-Step Implementation Sub-Step Master Application

18 Define
InManager
Selection
Function

Define the logic to select the
InManager where an incoming
command or report is loaded.

A pointer to this function is defined
in CrFwInLoaderUserPar.h. A default
implementation is provided by the In-
Loader (see CrFwInLoader.h).

The Slave 2 Application uses the de-
fault implementation of the InManager
selection function.

19 Define
InRegistry

Define the maximum number of
commands and reports which
can be tracked by the InRegistry.

This item is defined as a #DEFINE con-
stant in CrFwInRegsitryUserPar.h.

The Slave 2 Application sets the maxi-
mum number of tracked commands/re-
ports to 64.

20 Define Out-
Managers

Define the number of OutMan-
agers and the size of their
Pending OutComponent Lists
(POCLs).

These items are defined
as #DEFINE constants in
CrFwOutManagerUserPar.h.

The Slave 2 Application defines one
OutManager to handle out-going com-
mands. The size of its POCL is 10,
namely the same as the size of the
packet queue of its OutStream.

21 Define
OutManager
Selection
Function

Define the logic to select the
OutManager where an out-going
command or report is loaded.

A pointer to this function is defined in
CrFwOutLoaderUserPar.h. A default
implementation is provided by the Out-
Loader (see CrFwOutLoader.h).

The Slave 2 Application has only one
OutManager and therefore uses the de-
fault implementation of the OutMan-
ager Selection Function.

22 Define
OutRegistry

Define the maximum number of
commands and reports which
can be tracked by the OutReg-
istry.

This item is defined as a #DEFINE con-
stant in CrFwOutRegistryUserPar.h.

The Slave 2 Application sets the maxi-
mum number of tracked commands/re-
ports to 64.

23 Define
Start-Up
Procedure

Define the start-up procedure
for the application. This in
particular includes the sequence
in which framework components
are instantiated, initialized and
configured.

Implement the Application Start-Up
Procedure by providing an implemen-
tation for CrFwAppStartUpProc.h.
A test stub is provided in
CrFwAppStartUpProc.c.

The Slave 2 Application uses the de-
fault Start-Up Procedure. Start-up ac-
tions are coded in the main program.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
G
P
L
v
e
r
s
i
o
n
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

135

P
P

-U
M

-C
O

R
-00

00
2

R
ev

ision
0.6.0

N Step Name Specification Sub-Step Implementation Sub-Step Master Application

24 Define Reset
Procedure

Define the reset procedure for the
application. This in particular
includes the sequence in which
framework components are reset.

Implement the Application Reset Pro-
cedure by providing an implementation
for CrFwAppResetProc.h. A test stub
is provided in CrFwAppResetProc.c.

The Slave 2 Application uses the de-
fault Reset Procedure which does not
take any action. No reset functionality
is provided by the Slave 2 Application.

25 Define
Shutdown
Procedure

Define the shutdown procedure
for the application. This in
particular includes the sequence
in which framework components
are shutdown.

Implement the Application Shutdown
Procedure by providing an implemen-
tation for CrFwAppShutdownProc.h.
A test stub is provided in
CrFwAppShutdownProc.c.

The Slave 2 Application uses the de-
fault Shutdown Procedure which does
not take any action. No shutdown func-
tionality is provided by the Master Ap-
plication.

26 Define Time
Interface

Define the means through which
the current time is acquired.
This is needed for time-stamping
out-going commands and reports
in the OutStream.

The time acquisition interface is de-
fined in CrFwTime.h. The applica-
tion developer must provide a com-
plete implementation for this inter-
face. A stub implementation is pro-
vided in the configuration directory
/cr/src/crConfigTestSuite.

The Slave 2 Application does not pro-
vide any realistic time function and uses
the same stub implementation as in
/cr/src/crConfigTestSuite.

27 Define Error
Reporting
Interface

Define the response to the gener-
ation of error reports.

The respone to error reports is de-
fined in CrFwRepErr.h. The applica-
tion developer must provide a com-
plete implementation for this inter-
face. A test implementation is pro-
vided in the configuration directory
/cr/src/crConfigTestSuite.

The Slave 2 Application implements
CrFwRepErr.h to write an error mes-
sage to stdout.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
G
P
L
v
e
r
s
i
o
n
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

136

P
P

-U
M

-C
O

R
-00

00
2

R
ev

ision
0.6.0

N Step Name Specification Sub-Step Implementation Sub-Step Master Application

28 Define
InCommand
Outcome
Reporting

Define the means through which
the outcome of the processing of
incoming commands is reported.

The respone to the reports of In-
Command outcomes is defined in
CrFwRepInCmdOutcome.h. The appli-
cation developer must provide a com-
plete implementation for this inter-
face. A test implementation is pro-
vided in the configuration directory
/cr/src/crConfigTestSuite.

The Slave 2 Application implements
CrFwRepInCmdOutcome.h to write a
command start acknowledge message to
stdout. The implementation assumes
that command progress, termination
and abort do not need to be acknowl-
edged.

29 Define
Primitive
Types

Define the range of the primi-
tive types used by the framework
components. The driver for this
definition is the need to optimize
the memory footprint of the ap-
plication.

The primitive types are defined through
typedef’s in CrFwUserConstants.h.
Application developers can override the
default definitions in this file (but note
that, in most cases, the default defini-
tions should be adequate).

The Slave 2 Application uses the de-
fault definition of the primitive types.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
G
P
L
v
e
r
s
i
o
n
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

137

PP-UM-COR-00002 Revision 0.6.0

A Adaptation Points

The adaptation model of the C2 Implementation is described in section 6. This
appendix lists the adaptation points offered by the framework in table A.1. The
table is organized as follows:

• The left-most column in the table gives the identifier of the adaptation
point.

• The middle column briefly describes the adaptation point.

• The right-most column describes the location in the delivery file directory
/cr/src/CrConfigTestSuite where the adaptation point is implemented.

With reference to the last point, it is recalled that all adaptation points are
implemented as either #define constants or typedef definitions in C header
files in directory /cr/src/CrConfigTestSuite or as C body files in this same
directory implementing framework interfaces.

Table A.1 only provides a summary view of the adaptation points. Their de-
tailed definition is contained in the doxygen documentation of the files in the
configuration directory /cr/src/CrConfigTestSuite.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

138

P
P

-U
M

-C
O

R
-00

00
2

R
ev

ision
0.6.0

Table A.1: C2 Implementation Adaptation Points

AP ID Adaptation Point Implementation

C2-CST-1 Identifier of Host Application #DEFINE constant in CrFwUserConstants.h

C2-CST-2 Range of Service Type, Sub-Type and Discrim-
inants for InCommands and InReports

#DEFINE constants in CrFwUserConstants.h

C2-AST-1 Application Start-Up Procedure Implementation of CrFwAppStartUpProc.h. Only a test stub is pro-
vided as default at framework level.

C2-AST-2 Application Reset Procedure Implementation of CrFwAppResetProc.h. Only a test stub is pro-
vided as default at framework level.

C2-AST-3 Application Shutdown Procedure Implementation of CrFwAppShutdownProc.h. Only a test stub is
provided as default at framework level.

C2-AST-4 State Machine Embedded in state START UP
of Application State Machine

#DEFINE constant in CrFwAppSmUserPar.h

C2-AST-5 State Machine Embedded in state NORMAL of
Application State Machine

#DEFINE constant in CrFwAppSmUserPar.h

C2-AST-6 State Machine Embedded in state RESET of
Application State Machine

#DEFINE constant in CrFwAppSmUserPar.h

C2-AST-7 State Machine Embedded in state SHUT-
DOWN of Application State Machine

#DEFINE constant in CrFwAppSmUserPar.h

C2-PCK-1 Operations to Set and Get the Values of Com-
mand and Report Attributes in a Packet

Implementation of CrFwPckt.h. Only a test stub is provided as
default at framework level.

C2-ERR-1 Operations to Report Errors Values of Com-
mand and Report Attributes in a Packet

Implementation of CrFwRepErr.h. Only a test stub is provided as
default at framework level.

C2-OFA-1 OutFactory Capacity #DEFINE constant in CrFwOutFactoryUserPar.h defines maximum
number of OutComponents which can be allocated by the factory.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
G
P
L
v
e
r
s
i
o
n
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

139

P
P

-U
M

-C
O

R
-00

00
2

R
ev

ision
0.6.0

AP ID Adaptation Point Implementation

C2-OFA-2 OutComponent Kinds #DEFINE constants in CrFwOutFactoryUserPar.h define the kinds of
OutComponents supported by the application. An OutComponent
kind is defined through its service type, command or report sub-
type, and discriminant value. For each supported OutComponent
kind, function pointers are defined implementing the OutComponent
checks and actions.

C2-IFA-1 InFactory Capacity for InReports #DEFINE constant in CrFwInFactoryUserPar.h defines maximum
number of InReports which can be allocated by the factory.

C2-IFA-2 InFactory Capacity for InCommands #DEFINE constant in CrFwInFactoryUserPar.h defines maximum
number of InCommands which can be allocated by the factory.

C2-IFA-3 InReport Kinds #DEFINE constants in CrFwInFactoryUserPar.h define the kinds of
InReports supported by the application. An InReport kind is defined
through its service type, command or report sub-type, and discrimi-
nant value. For each supported InReport kind, function pointers are
defined implementing the InReport checks and actions.

C2-IFA-4 InCommand Kinds #DEFINE constants in CrFwInFactoryUserPar.h define the kinds of
InCommands supported by the application. An InCommand kind is
defined through its service type, command or report sub-type, and
discriminant value. For each supported InCommand kind, function
pointers are defined implementing the InCommand checks and ac-
tions.

C2-OST-1 Number of OutStreams in the Application #DEFINE constant in CrFwOutStreamUserPar.h

C2-OST-2 Packet Queue Size for OutStream #DEFINE constant (one for each OutStream in the application) in
CrFwOutStreamUserPar.h

C2-OST-3 Destination associated to OutStream #DEFINE constant (one for each OutStream in the application) in
CrFwOutStreamUserPar.h

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
G
P
L
v
e
r
s
i
o
n
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

140

P
P

-U
M

-C
O

R
-00

00
2

R
ev

ision
0.6.0

AP ID Adaptation Point Implementation

C2-OST-4 Initialization Check in Initialization Procedure
of OutStream

Function pointers (one for each OutStream in the application) in
CrFwOutStreamUserPar.h. Default implementation is provided in
CrFwOutStream.h..

C2-OST-5 Initialization Action in Initialization Procedure
of OutStream

Function pointers (one for each OutStream in the application) in
CrFwOutStreamUserPar.h. Default implementation is provided in
CrFwOutStream.h..

C2-OST-4 Configuration Check in Initialization Procedure
of OutStream

Function pointers (one for each OutStream in the application) in
CrFwOutStreamUserPar.h. Default implementation is provided in
CrFwOutStream.h..

C2-OST-6 Configuration Action in Reset Procedure of
OutStream

Function pointers (one for each OutStream in the application) in
CrFwOutStreamUserPar.h. Default implementation is provided in
CrFwOutStream.h..

C2-OST-7 Shutdown Action of OutStream Function pointers (one for each OutStream in the application) in
CrFwOutStreamUserPar.h. Default implementation is provided in
CrFwOutStream.h..

C2-OST-8 Packet Hand-Over Operation of OutStream Function pointers (one for each OutStream in the application) in
CrFwOutStreamUserPar.h. Only a test stub is provided as default
at framework level.

C2-IST-1 Number of InStreams in the Application #DEFINE constant in CrFwInStreamUserPar.h

C2-IST-2 Size of the Packet Queue in InStream #DEFINE constant (one for each InStream in the application) in
CrFwInStreamUserPar.h

C2-IST-3 Source associated to InStream #DEFINE constant (one for each InStream in the application) in
CrFwInStreamUserPar.h

C2-IST-4 Initialization Check in Initialization Procedure
of InStream

Function pointers (one for each InStream in the application) in
CrFwInStreamUserPar.h. Default implementation is provided in
CrFwInStream.h.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
G
P
L
v
e
r
s
i
o
n
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

141

P
P

-U
M

-C
O

R
-00

00
2

R
ev

ision
0.6.0

AP ID Adaptation Point Implementation

C2-IST-5 Initialization Action in Initialization Procedure
of InStream

Function pointers (one for each InStream in the application) in
CrFwInStreamUserPar.h. Default implementation is provided in
CrFwInStream.h.

C2-IST-6 Configuration Action in Reset Procedure of In-
Stream

Function pointers (one for each InStream in the application) in
CrFwInStreamUserPar.h. Default implementation is provided in
CrFwInStream.h.

C2-IST-7 Shutdown Action of InStream Function pointers (one for each InStream in the application) in
CrFwInStreamUserPar.h. Default implementation is provided in
CrFwInStream.h.

C2-IST-8 Packet Collect Operation for InStream Function pointers (one for each InStream in the application) in
CrFwInStreamUserPar.h. Only a test stub is provided as default
at framework level.

C2-IST-9 Packet Available Check Operation for InStream Function pointers (one for each InStream in the application) in
CrFwInStreamUserPar.h. Only a test stub is provided as default
at framework level.

C2-OST-10 Get OutStream Operation of OutStreamReg-
istry

#DEFINE constants (one for each OutStream in the application) in
CrFwOutStreamUserPar.h define the destination associated to each
OutStream.

C2-OCM-1 Enable Check Operation of OutComponent #DEFINE constants (one for each kind of OutComponent in the ap-
plication) in CrFwOutFactoryUserPar.h define the pointer to the
function implementing the operation. A default is provided a frame-
work level.

C2-OCM-2 Ready Check Operation of OutComponent #DEFINE constants (one for each kind of OutComponent in the ap-
plication) in CrFwOutFactoryUserPar.h define the pointer to the
function implementing the operation. A default is provided a frame-
work level.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
G
P
L
v
e
r
s
i
o
n
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

142

P
P

-U
M

-C
O

R
-00

00
2

R
ev

ision
0.6.0

AP ID Adaptation Point Implementation

C2-OCM-3 Repeat Check Operation of OutComponent #DEFINE constants (one for each kind of OutComponent in the ap-
plication) in CrFwOutFactoryUserPar.h define the pointer to the
function implementing the operation. A default is provided a frame-
work level.

C2-OCM-4 Update Action of OutComponent #DEFINE constants (one for each kind of OutComponent in the ap-
plication) in CrFwOutFactoryUserPar.h define the pointer to the
function implementing the operation. A default is provided a frame-
work level.

C2-OCM-5 Serialize Operation of OutComponent #DEFINE constants (one for each kind of OutComponent in the ap-
plication) in CrFwOutFactoryUserPar.h define the pointer to the
function implementing the operation. A default is provided a frame-
work level.

C2-OLD-1 Initialization Check in Initialization Procedure
of OutLoader

Function pointer in CrFwOutLoaderUserPar.h. Default imple-
mentation which always returns ’check successful’ is provided in
CrFwOutLoader.h.

C2-OLD-2 Initialization Action in Initialization Procedure
of OutLoader

Function pointer in CrFwOutLoaderUserPar.h. Default implemen-
tation which takes no action is provided in CrFwOutLoader.h.

C2-OLD-3 Configuration Check in Reset Procedure of
OutLoader

Function pointer in CrFwOutLoaderUserPar.h. Default imple-
mentation which always returns ’check successful’ is provided in
CrFwOutLoader.h.

C2-OLD-4 Configuration Action in Reset Procedure of
OutLoader

Function pointer in CrFwOutLoaderUserPar.h. Default implemen-
tation which takes no action is provided in CrFwOutLoader.h.

C2-OLD-5 Shutdown Action of OutLoader Function pointer in CrFwOutLoaderUserPar.h. Default implemen-
tation which takes no action is provided in CrFwOutLoader.h.

C2-OLD-6 OutManager Selection Operation Function pointer in CrFwOutLoaderUserPar.h. Default implemen-
tation which always returns the first OutManager in the LOM is
provided in CrFwOutLoader.h.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
G
P
L
v
e
r
s
i
o
n
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

143

P
P

-U
M

-C
O

R
-00

00
2

R
ev

ision
0.6.0

AP ID Adaptation Point Implementation

C2-OLD-7 OutManager Activation Operation Function pointer in CrFwOutLoaderUserPar.h. Default implemen-
tation which takes no action is provided in CrFwOutLoader.h.

C2-OMG-1 Number of OutManagers in Application #DEFINE constants in CrFwOutManagerUserPar.h

C2-OMG-2 Size of POCL of OutManager #DEFINE constants (one for each OutManager) in
CrFwOutManagerUserPar.h

C2-ORG-1 Maximum Number of Trackable Command-
s/Reports for OutRegistry

#DEFINE constant in CrFwOutRegistryUserPar.h defines types, sub-
types and range of discriminant values supported by application.

C2-ORG-2 Number of Service Types/Sub-Types supported
by Application

#DEFINE constant in CrFwOutRegistryUserPar.h defines types, sub-
types and range of discriminant values supported by application.

C2-ORG-3 Range of Services supported by Application #DEFINE constant in CrFwOutRegistryUserPar.h defines types, sub-
types and range of discriminant values supported by application.

C2-PCK-1 Operations to Report the Outcome of the Pro-
cessing and Execution of an Incoming Com-
mand

Implementation of CrFwRepInCmdOutcome.h. Only a test stub is
provided as default at framework level.

C2-ILD-1 Operation to Determine Re-Routing Destina-
tion of Packets

Function pointer in CrFwInLoaderUserPar.h. Default implementa-
tion is provided CrFwInLoader.h.

C2-ILD-1 Operation to Select InManager where Incoming
Report or Command is Loaded

Function pointer in CrFwInLoaderUserPar.h. Default implementa-
tion is provided CrFwInLoader.h.

C2-ICM-1 Validity Check for InCommand Function pointer in CrFwInFactoryUserPar.h. Default implemen-
tation is provided by function CrFwPrCheckAlwaysTrue.

C2-ICM-2 Ready Check of InCommand Function pointer in CrFwInFactoryUserPar.h. Default implemen-
tation is provided by function CrFwSmCheckAlwaysTrue.

C2-ICM-3 Start Action of InCommand Function pointer in CrFwInFactoryUserPar.h. Default implemen-
tation is provided by function CrFwSmEmptyAction.

C2-ICM-4 Progress Action of InCommand Function pointer in CrFwInFactoryUserPar.h. Default implemen-
tation is provided by function CrFwSmEmptyAction.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
G
P
L
v
e
r
s
i
o
n
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

144

P
P

-U
M

-C
O

R
-00

00
2

R
ev

ision
0.6.0

AP ID Adaptation Point Implementation

C2-ICM-5 Termination Action of InCommand Function pointer in CrFwInFactoryUserPar.h. Default implemen-
tation is provided by function CrFwSmEmptyAction.

C2-ICM-6 Abort Action of InCommand Function pointer in CrFwInFactoryUserPar.h. Default implemen-
tation is provided by function CrFwSmEmptyAction.

C2-IRP-1 Validity Check for InReport Function pointer in CrFwInFactoryUserPar.h. Default implemen-
tation is provided at framework level.

C2-IRP-2 Update Action of InReport Function pointer in CrFwInFactoryUserPar.h. Default implemen-
tation is provided at framework level.

C2-IMG-1 Number of InManagers in Application #DEFINE constants in CrFwInManagerUserPar.h

C2-IMG-2 Size of PCRL of InManager #DEFINE constants (one for each InManager) in
CrFwInManagerUserPar.h

C2-IRG-1 Maximum Number of Trackable InCommand-
s/InReports in InRegistry

#DEFINE constant in CrFwInRegistryUserPar.h

C2-TIM-1 Operations to Get the Current Time Implementation of CrFwTime.h. Only a test stub is provided as
default at framework level.

C2-TYP-1 Definition of Primitive Types Definition of typedef.values in CrFwUserConstants.h. Default val-
ues are pre-defined in this header file.

C2-CST-1 Identifier of Host Application #DEFINE constant in CrFwUserConstants.h.

c©
20

13
P

&
P

S
oftw

are
G

m
b

H
.

A
ll

R
igh

ts
R

eserved
.

T
h
i
s
d
o
c
u
m
e
n
t
i
s
p
r
o
v
i
d
e
d
w
i
t
h
t
h
e
G
P
L
v
e
r
s
i
o
n
o
f
t
h
e

C
2
I
m
p
l
e
m
e
n
t
a
t
i
o
n
o
f
t
h
e
C
O
R
D
E
T
F
r
a
m
e
w
o
r
k
.

145

PP-UM-COR-00002 Revision 0.6.0

B State Machine Model of the FW Profile

The CORDET Framework and the C2 Implementation use the state machine
model of the FW Profile. The FW Profile is defined in [1]. For convenience,
this section reports an excerpt of [1] defining the semantics of state machines.

B.1 Definition of State Machines

A state machine in the FW Profile consists of the following elements:

• One initial pseudo-state

• One or more states

• One or more state transitions

• Zero or more choice pseudo-states

• Zero or more final pseudo-states

• Two execution counters

The initial pseudo-state is characterized by one transition which has the initial
pseudo-state as its source and has either a state or a choice pseudo-state as its
target.

A state is characterized by the following elements:

• Zero or more entry actions

• Zero or more do actions

• Zero or more exit actions

• Zero or one embedded state machine

• One or more incoming transitions

• Zero or more outgoing transitions

The state actions represent behaviour which is not decomposed further within
the state machine. Actions’ behaviour can be defined using natural language
or some formalism (e.g. an action language). An embedded state machine is
a state machine that is embedded within the state. Embedded state machines
are defined in the same way and have the same behaviour as other FW Profile
state machines. An incoming transition is a state transition that has the state
as its target. An outgoing transition is a state transition that has the state as
its source.

A state transition is characterized by the following elements:

• One transition source

• One transition target (or transition destination)

• Zero or one transition trigger (or transition command)

• Zero or one transition guard

• Zero or more transition actions

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

146

PP-UM-COR-00002 Revision 0.6.0

The transition source and the transition target are either a state or a pseudo-
state. The transition trigger is the command that triggers the execution of the
transition. A transition guard is a specification that evaluates either to TRUE
or to FALSE and has no side effects. Absence of a guard is equivalent to a
guard which always evaluates to TRUE. A transition action represents behaviour
which is not decomposed further within the state machine. A transition action
behaviour can be defined using natural language or some formalism (e.g. an
action language). Transition commands may carry parameters and may return
values. The parameters and return values are not defined further by the FW
Profile. They represent parameters that are passed to the actions and values
which are returned by them.

A choice pseudo-state is characterized by the following elements:

• One or more incoming transitions

• One or more outgoing transitions

An incoming transition is a state transition that has the choice pseudo-state
as its target. An outgoing transition is a state transition that has the choice
pseudo-state as its source.

The final pseudo-state is characterized by one or more incoming transitions
(namely state transitions that have the final pseudo-state as their target). Note
that all final pseudo-states are equivalent and therefore it would be legitimate
to allow only one single final pseudo-state. The option to have more than one
is introduced as a matter of convenience.

The execution counters are unsigned integers which are characterized by their
value. The first execution counter is called the State Machine Execution Counter
and the second one is called the State Execution Counter.

The following syntactical constraints apply to the definition of the state machine
elements:

• C1: The same pseudo-state cannot be both source and target for a tran-
sition;

• C2: The source and target of a transition cannot both be choice pseudo-
states;

• C3: The transition that has the initial pseudo-state as source can have
neither a guard nor a trigger;

• C4: This constraint has been deleted;

• C5: Transitions that have a choice pseudo-state as source cannot have a
transition trigger;

• C6: This constraint has been deleted;

• C7: Transitions that have a state as a source must have a transition
command;

• C8: Transitions can only link states and/or pseudo-states that belong to
the same state machine.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

147

PP-UM-COR-00002 Revision 0.6.0

The last constraint implies that transitions from an outer state machines to an
embedded state machines or vice-versa are not allowed. Note, however, that
the same transition command may trigger a transition both in an outer state
machine and in one of its embedded state machine.

The following dynamical constraints must be satisfied when a state transition
is executed:

• D1: Among the outgoing transitions from a choice pseudo-state, at least
one must have a guard that evaluates to true.

• D2: Transition guards must be free of side effects: their evaluation cannot
change the state of the host application.

• D3. The state actions (entry, do, and exit actions) and the transition
actions and guards must execute in zero logical execution time (i.e. on
an infinitely fast processor and in the absence of pre-emption or blocking,
they must execute in zero time).

The last constraint implies that the behaviour encapsulated by actions and
guards is constrained to be purely functional. In practice, this means that
actions and guards cannot include time-dependent behaviour or behaviour that
depends on synchronization with other flows of executions.

One type of transition command the Execute command has a special status in
that it triggers the execution of the current state’s do-action. The Execute com-
mand models the situation (common in embedded control systems) of a cyclical
scheduler periodically triggering an application and advancing its execution.

As a matter of terminology, when a state machine is sent the Execute command,
the state machine is said to be executed.

The execution counters of a state machine count the number of times the state
machine has been executed (one counts the number of times the state machine
has been executed since it was started and the other counts the number of times
the state machine has been executed since its current state was entered). Since
state machines will often be executed periodically, the execution counters can
serve as proxies for measuring the elapsing of time.

B.2 State Machine Behaviour

Three operations may be performed on a state machine: (a) the state machine
may be started ; (b) the state machine may be sent a transition command ; or
(c) the state machine may be stopped. State machines are purely reactive: they
wait for one of these three operations to be performed upon them and they only
execute some behaviour in response to one of these operations.

A state machine can be either in a defined state or in an undefined state. A
state machine is in a defined state from the time it has completed the transition
out of its initial pseudo-state to the time it has either completed the transition
into one of its final pseudo-states or has been stopped.

When a state machine is in a defined state, it has a current state. The current

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

148

PP-UM-COR-00002 Revision 0.6.0

state is one of the states of the state machine.

When a state machine is started, the following behaviour is executed:

1. If the state machine is in a defined state, then no further action is taken.

2. If the state machine is in an undefined state, then its execution coun-
ters are reset and the action associated to the transition out of its initial
pseudo-state is executed. If several transition actions are present, they are
executed in the order in which they are listed.

3. If the destination of the transition out of the initial pseudo-state is a choice
pseudo- state, then the guards of the outgoing transitions from the choice
pseudo-state are evaluated and the actions associated to the transition
with a guard evaluating to true is executed. If several transition actions
are present, they are executed in the order in which they are listed.

4. If the destination of the transition out of the initial pseudo-state is a state,
then the current state of the state machine is set equal to that state.

5. If the destination of the transition out of the initial pseudo-state is a choice
pseudo- state and if the selected transition out of the choice pseudo-state
has a state as a target, then the current state of the state machine is set
equal to that target state.

6. The entry action of the current state is executed. If several entry actions
are present, they are executed in the order in which they are listed.

7. If the current state has an embedded state machine, then the embedded
state machine is started.

8. If the destination of the transition out of the initial pseudo-state is a choice
pseudo- state and if the selected transition out of the choice pseudo-state
has the final pseudo- state as a target, then the state machine remains in
an undefined state.

With reference to point 3, it is noted that at least one of the guards on the
outgoing transitions from a choice pseudo-state is guaranteed to be true because
of constraint D1 in the previous section.

When a state machine is stopped, the following behaviour is executed:

1. If the state machine is in an undefined state, no further action is taken.

2. If the state machine is in a defined state and its current state has an
embedded state machine, the embedded state machine is stopped.

3. The exit action of the current state is executed. If several exit actions are
present, they are executed in the order in which they are listed.

4. The state machine is set to an undefined state.

The logic of the start and stop commands for state machines is shown in Figure
B.1 as two activity diagrams.

When a transition command T is sent to a state machine S, then the following
behaviour is executed:

1. If S is in an undefined state, then no further action is taken.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

149

PP-UM-COR-00002 Revision 0.6.0

Fig. B.1: Logic for the Start and Stop Commands to a State Machine

2. If T is the Execute command, then the execution counters of the state
machine are incremented and the do-action associated to the current state
of S is executed. If several do-actions are present, they are executed in
the order in which they are listed.

3. If S is in a defined state and the current state of S has an embedded state
machine SE, then the transition command T is propagated to SE.

4. If there are no transitions from the current state of S that have T as their
trigger, then no further action is taken.

5. If there are one or more transitions from the current state of S that have
T as their trigger, then their guards are evaluated in sequence. The order
of the evaluation is undefined. The absence of a guard is equivalent to a
guard that returns TRUE.

6. When the first transition is found whose guard evaluates to TRUE, then
that transition is executed.

The logic that governs the processing of a transition command by a state ma-
chine is shown in Figure B.2 as an activity diagram. Note that this logic merely
describes the circumstances under which a transition within a state machine is
executed but it does not define the logic according to which the transition is
executed. This is done below (see also Figure B.3).

When a transition is executed, then the following behaviour is executed:

1. If the source state of the transition is a state and that state has an em-
bedded state machine, then the embedded state machine is stopped.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

150

PP-UM-COR-00002 Revision 0.6.0

Fig. B.2: Logic for Processing Transition Commands by a State Machine

2. If the source state of the transition is a state, then the exit action asso-
ciated to the source state is executed. If several exit actions are present,
they are executed in the order in which they are listed.

3. The transition action associated to the transition is executed. If several
transition actions are present, they are executed in the order in which they
are listed.

4. If the target of the transition is a choice pseudo-state, then the guards
of the out-going transitions from the choice pseudo-state are evaluated in
sequence until one is found that evaluates to true and that transition is
executed.

5. If the target of the transition is a final pseudo-state, then the state machine
is set to an undefined state and no further action is taken.

6. If the target state of the transition is a state, then the current state of the
state machine is updated to be equal to the target state of the transition
and the state execution counter is reset.

7. If the target state of the transition is a state, then the entry action of
the target state is executed. If several entry actions are present, they are

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

151

PP-UM-COR-00002 Revision 0.6.0

executed in the order in which they are listed.

8. If the target state of the transition is a state and that state has an em-
bedded state machine, then the embedded state machine is started.

With reference to point 4, it is noted that at least one of the guards on the out-
going transitions from a choice pseudo-state is guaranteed to be true because of
constraint D1 in the previous section. The logic according to which a transition
is executed is shown as an activity diagram in Figure B.3. Note that this logic
is called up by the logic shown in the activity diagram of Figure B.2.

Fig. B.3: Logic for Executing Transitions in a State Machine

Transition commands may carry parameters. These parameters may be passed
to any of the state or transition actions that are executed as part of the pro-
cessing of the transition command.

The execution of the various actions associated to the three state machine op-
erations is performed in sequence: an action is executed only when the previous
one has completed. Note that, since state and transition actions are constrained
to execute in zero logical execution time, the execution of a state machine op-
eration will also execute in zero logical execution time.

Transition commands arrive and are processed in sequence. A new command
can only arrive and be processed by a state machine when the previous one
has been fully processed. State machines have no queues to buffer incoming
transition commands.

The above rule in particular implies that transition commands cannot be nested,
namely the processing of a transition command by a state machine cannot result

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

152

PP-UM-COR-00002 Revision 0.6.0

in a new command being sent to the same state machine (nesting rule).

As an example where the nesting rule would be violated, consider the following
situation. A first transition command is sent to state machine A that triggers
a transition from state A1 to state A2. The entry action of state A2 sends a
second transition command to state machine A.

As a second example of violation of the nesting rule, consider a transition com-
mand that is sent to state machine A that triggers a transition from state A1
to state A2. The entry action of state A2 sends a new transition command to
state machine B. State machine B, as part of its processing of this command,
sends a new transition command to state machine A.

Forwarding of transition commands from one state machine A to another state
machine B is instead allowed provided that neither of the two state machines is
embedded in the other one.

Forwarding of transition commands from an embedded state machine to its
embedding state machine or vice-versa is forbidden. This restriction helps to
avoid the ambiguities that would arise when, for instance, the entry action of
a state in an embedded state machine triggers a transition in the embedding
state machine.

B.3 UML 2 Compliance

The state machine model offered by the FW Profile complies with the UML 2
state machine model in the sense that the elements of the state machine concept
of the FW Profile and their semantics can be mapped in an obvious way to a
subset of the elements of the state machine concept of UML 2 with the following
provisos:

• The semantics of choice pseudo-states in the FW Profiles subsumes that of
junction pseudo-states in UML2. Thus, in the FW Profile, choice pseudo-
states can also be used to join together incoming transition flows.

• The execution counters are specific to the FW Profile. They have been
introduced as a substitute for the concept of time (which does not exist
in the FW Profile State Machines) in the sense that, if state machines
are executed periodically, then the value of their execution counters is
proportional to the time elapsed since the state machine was started (State
Machine Execution Counter) or since the current state was entered (State
Execution Counter).

It should be emphasized that the state machine model proposed by the FW
Profile is far more restrictive than that supported by UML 2. This is because the
FW Profile uses state machines to model purely functional (non-time-related)
behaviour.

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

153

PP-UM-COR-00002 Revision 0.6.0

C Procedure Model of the FW Profile

The CORDET Framework and the C2 Implementation use the procedure model
of the FW Profile. The FW Profile is defined in [1]. For convenience, this section
reports an excerpt of [1] defining the semantics of procedures.

C.1 Definition of Procedures

A procedure in the FW Profile consists of the following elements:

• One initial node

• One or more actions nodes (or actions)

• One or more control flows

• Zero or more decision nodes

• Zero or more final nodes

• Two execution counters

The initial node is characterized by one control flow which has the initial node
as its source and has either an action node or a decision node as its target.

An action node (or action) is characterized by the following elements:

• One or more incoming control flows

• One outgoing control flow

• The behaviour associated to the action

The incoming control flows are control flows which have the action as its target.
The outgoing control flow is a control flow which has the action as its source.

An action represents a single step within a procedure. It encapsulates behaviour
that is not decomposed further within the procedure. The action’s behaviour can
be defined using natural language or some formalism (e.g. an äction language)̈.

A control flow is characterized by the following elements:

• One source

• One target (or destination)

• Zero or one guards

The source and the target are either action nodes or decision nodes. Addition-
ally, the initial node can be the source of a control flow and the final node can
be the destination of one or more control flows.

The guard is a specification which evaluates either to TRUE or FALSE and
which has no side effects. Absence of a guard is equivalent to a guard which
always evaluates to TRUE.

A decision node is characterized by the following elements:

• One or more incoming control flows

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

154

PP-UM-COR-00002 Revision 0.6.0

• Two or more outgoing control flows

The incoming control flows are control flows that have the decision node as its
target. The outgoing control flow are control flows that have the decision node
as their source.

For control flows issuing from a decision node, the pre-defined Else guard is
available. This guard returns TRUE if and only if all the other guards attached
to control flows issuing from the same decision node return FALSE.

The final node is characterized by one or more incoming control flows (namely
control flows that have the final node as their target). Note that all final nodes
are equivalent and therefore it would be legitimate to allow only one single
final node. The option to have more than one is introduced as a matter of
convenience.

The execution counters are unsigned integers which are exclusively characterized
by their value. The first execution counter is called the Procedure Execution
Counter and the second one is called the Node Execution Counter.

The following syntactical constraints apply to the definition of the procedure
elements:

• C1. The control flows out of a decision node must have a guard.

The following dynamical constraints must be satisfied when a procedure is exe-
cuted:

• D1. Among the outgoing control flows from a decision node, at least one
must have a guard which evaluates to true;

• D2. The evaluation of the guards of a control flow must be free of side-
effects;

• D3. The procedure actions and guards must execute in zero logical ex-
ecution time (i.e. on an infinitely fast processor and in the absence of
pre-emption or blocking, they must execute in zero time).

The last constraint implies that the behaviour encapsulated by the actions and
by the guards must be purely functional. In practice, this means that actions
and guards cannot include time- dependent behaviour or behaviour that depends
on synchronization with other flows of executions.

The execution counters of a procedure count the number of times the procedure
has been executed (one counts the number of times the procedure has been
executed since it was started and the other counts the number of times the pro-
cedure has been executed since its current node was entered). Since procedures
will often be executed periodically, the execution counters can serve as proxies
for measuring the elapsing of time.

C.2 Procedure Behaviour

Four operations may be performed on a procedure: (a) the procedure may be
started ; (b) the procedure may be executed ; (c) the procedure may be stopped ;

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

155

PP-UM-COR-00002 Revision 0.6.0

or (d) the procedure may be run.

Procedures are purely reactive: they wait for one of these four operations to be
performed upon them and they only execute a behaviour in response to one of
these operations.

Operations are performed in response to commands: the command Start triggers
the start operation; the command Execute triggers the execute operation; the
command Stop triggers the stop operation; and the command Run triggers the
run operation.

A procedure may be in two states: STOPPED or STARTED. Initially, by de-
fault, the procedure is in state STOPPED. When the procedure is in state
STARTED, it has a current node. The current node is either the procedure’s
initial node or one of its action nodes.

When a procedure is started, the following behaviour is executed:

1. If the procedure is in state STARTED, then no further action is performed;

2. If the procedure is in state STOPPED, then it is put in state STARTED,
its current node is set equal to its initial node and its execution counters
are reset.

When a procedure is stopped, the following behaviour is executed:

1. If the procedure is in state STOPPED, then no further action is performed;

2. If the procedure is in state STARTED, then it is put in state STOPPED
and its current node is set to an invalid value.

Thus, the Stop and Start commands toggle the state of a procedure and update
its current node. This is shown in the state diagram of figure C.1.

Fig. C.1: Procedure Start/Stop Commands

When a procedure is executed, the following behaviour is executed:

1. If the procedure is in state STOPPED, then no further action is performed;

2. If the procedure is in state STARTED, then its execution counters are
incremented by 1 and the guard attached to the outgoing control flow of
the current node is evaluated;

3. If the guard evaluates to FALSE, then no further action is performed;

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

156

PP-UM-COR-00002 Revision 0.6.0

4. If the guard evaluates to TRUE and the target of the outgoing control flow
attached to the current node is an action node T, then: (a) the current
node is set equal to T, (b) the node execution counter is reset, (c) the
behaviour associated to T is executed, (d) the guard on the out-going
control flow of T is evaluated and steps 3 and 4 are (recusively) repeated;

5. If the guard evaluates to TRUE and the target of the outgoing control
flow attached to the current node is a decision node, then: (a) the guards
of the outgoing control flows attached to the decision node are evaluated;
(b) if the target of the outgoing control flow whose guard evaluates to
TRUE is another decision node, then steps (a) to (d) are performed upon
it; (c) if the target of the outgoing control flow whose guard evaluates to
TRUE is an action node T, then the current node is set equal to T, the
behaviour associated to T is executed, the guard on the out-going control
flow of T is evaluated and steps 3 and 4 are (recusively) repeated; (d) if
the target of the outgoing control flow whose guard evaluates to TRUE
is a final node, the state of the procedure is set to STOPPED and the
current node is set equal to an invalid value.

6. If the guard evaluates to TRUE and the target of the outgoing control
flow attached to the current node is a final node, then the state of the
procedure is set to STOPPED, and the current node is set equal to an
invalid value.

Thus, in summary, when a procedure is executed, it tries to traverse the control
flow issuing form the current node. If this can be done (i.e. if the guard
associated to the control flow evaluates to true), then it advances the execution
of the procedure until it finds a guard that evaluates to false or until it finds
a final node. Whenever an action node is traversed, its associated behaviour is
executed.

The Execute command may carry parameters. These parameters may be passed
to any of the actions that are executed as part of the processing of the Execute
command.

Note that, at any given time, only one flow of control may be traversing a
procedure. This flow of control is advanced every time that the procedure is
executed.

The behaviour associated to the execution of a procedure is shown as an activity
diagram in figure C.2.

Finally, when a procedure is run, the following behaviour is executed:

1. The procedure is started;

2. The procedure is executed;

3. The procedure is stopped.

Thus, the Run operation is defined in terms of the previous three operations.
The Run operation may take parameters which are passed to the Execute op-
eration which is performed as part of the Run operation (step 2 above).

The Run operation is only useful for procedures which execute in one single

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

157

PP-UM-COR-00002 Revision 0.6.0

cycle. It is typically used to perform the actions associated to a state in a state
machine.

The execution of the various actions associated to the four procedure operations
(Start, Execute, Stop, and Run) is performed in sequence: an action is executed
only when the previous one has completed. Note that, since actions are con-
strained to execute in zero logical time, the execution of a procedure operation
will also execute in zero logical time.

Requests to perform an operation upon a procedure are executed in sequence.
A new request can only be processed by a procedure when the previous one has
been fully processed. Procedures have no queues to buffer incoming operation
requests.

Note that the procedure operations do not return any values.

Fig. C.2: Procedure Execution Logic

C.3 UML 2 Compliance

The procedure model offered by the FW Profile complies with the UML 2 ac-
tivity model in the sense that the elements of the procedure concept of the FW
Profile and their semantics can be mapped in an obvious way to a subset of the
elements of the activity concept of UML 2.

The execution counters are specific to the FW Profile. They have been intro-
duced as a substitute for the concept of time (which does not exist in the FW
Profile Procedures) in the sense that, if procedures are executed periodically,
then the value of their execution counters is proportional to the time elapsed
since the procedure was started (Procedure Execution Counter) or since the
current node was entered (Node Execution Counter).

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

158

PP-UM-COR-00002 Revision 0.6.0

References

[1] Alessandro Pasetti, Vaclav Cechticky: The FW Profile. PP-DF-COR-00001,
Revision 1.3, P&P Software GmbH, Switzerland, 2013

[2] Alessandro Pasetti, Vaclav Cechticky: The Framework Profile - C1 Imple-
mentation User Manual. PP-UM-COR-00001, Revision 1.2.0, P&P Soft-
ware GmbH, Switzerland, 2013 Available from: www.pnp-software.com/

fwprofile

[3] Alessandro Pasetti, Vaclav Cechticky: The CORDET Framework. PP-DF-
COR-00002, Revision 1.3, P&P Software GmbH, Switzerland, 2014

[4] European Cooperation for Space Standardization (ECSS): ECSS, Ground
Systems and Operations – Telemetry and Telecommand Packet Utilization
Standard. ECSS-E-70-41A, 30 January 2003, ECSS Secretaria, ESA-Estec

c©2013 P&P Software GmbH. All Rights Reserved.

This document is provided with the GPL version of the

C2 Implementation of the CORDET Framework.

159

www.pnp-software.com/fwprofile
www.pnp-software.com/fwprofile

	Introduction
	Installation & Content Overview
	Dependency on C1 Implementation
	Dependency on External Libraries
	Source Code
	Support Documentation
	Doxygen Documentation
	Test Suite
	Demo Application
	Acceptance Test Procedure and Test Reports
	Support Shell Scripts
	Naming Conventions

	Framework and Service Concepts
	Software Framework Concept
	Service Concept
	Objectives of CORDET Framework
	Definition of Command and Report Concepts
	Definition of CORDET Components
	Definition of Standard Services

	Objectives of C2 Implementation
	Relationship To Packet Utilization Standard (PUS)
	Middleware Layer

	State Machine and Procedure Model
	State Machine Extension

	Component Model
	Component Hierarchy
	Component Implementation
	Component Data

	Adaptation Model
	Application Start-Up and Shut-Down
	Component Instantiation
	Application Start-Up

	Command and Report Concepts
	Command Concept
	The Command Attributes
	The Command Conditional Checks
	The Command Actions
	Command Lifecycle
	Mapping to C-Level Constructs

	Report Concept
	The Report Attributes
	The Report Conditional Checks
	The Report Actions
	Report Lifecycle
	Mapping to C-Level Constructs

	Packet Interface
	Middleware Assumptions
	Out-Going Interface
	Incoming Interface

	Packet Implementation
	Packet Interface Management
	The OutStream Component
	The OutStreamRegistry Component
	The InStream Component

	Command and Report Management
	Management of Out-Going Commands and Reports
	Management of Incoming Commands and Reports

	The OutComponent Component
	The OutLoader Component
	The OutManager Component
	The OutRegistry Component
	The InLoader Component
	The InCommand Component
	The InReport Component
	The InManager Component
	The InRegistry Component
	Memory Management
	Components with Late Instantiation

	Real Time Issues
	Scheduling of Framework Components
	Concurrency
	Recursion

	Error Handling
	Framework Instantiation Process
	Demo Application
	Adaptation Points
	State Machine Model of the FW Profile
	Definition of State Machines
	State Machine Behaviour
	UML 2 Compliance

	Procedure Model of the FW Profile
	Definition of Procedures
	Procedure Behaviour
	UML 2 Compliance

