
1 
  

 

 



2 
  

 

 

 

 

MAIN PROJECT 
 

TITLE OF THE MAIN PROJECT 

 

Tingtun PDF checker 

 

DATE 

 

21.05.2014 

NUMBER OF PAGES / APPENDIX 

74 

PROJECT PARTICIPANTS 

Thomas Martin Axelsson - s180352 

William Samuelsen - s177841 

Kim-Andre Kristiansen – s180362 

COUNSELOR 

 

Boning Feng 

  

EMPLOYER 

Tingtun 

CONTACT 

Mikael Snaprud 

  

SUMMARY 

 

Refactoring of a user interface for an application which checks PDF 

documents for barriers has been the main goal of this project. The 

implementation has been developed in Django to prepare a better user 

interface application which is easier to maintain. The project has also 

built a module to deal with user management. 

 

Product web site: 

http://tt5.s.tingtun.no:7842/pdfchecker/ 

 

3 STIKKORD 

Accessibility checker 

 

Django 

 

Webapplication 

 

Study: Information Technology 
Mailing adress: Postboks 4 St. Olavs plass, 0130 Oslo 

Visiting adress: Holbergs plass, Oslo 

 

PROJECT NR. 

2014 - 1 

AVAILABILITY 

Open 

Phone: 22 45 32 00 

Fax: 22 45 32 05 

http://tt5.s.tingtun.no:7842/pdfchecker/


3 
  

Table of content 
 

1.0 Introduction to main project .................................................................................................................. 4 

2.0 Process documentation .......................................................................................................................... 9 

3.0 Product documentation ........................................................................................................................ 34 

4.0 Test report ............................................................................................................................................ 65 

5.0 User manual .......................................................................................................................................... 69 

6.0 Sources .................................................................................................................................................. 73 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 
  

1.0 Introduction to main project 

1.0 Introduction to main project .................................................................................................................. 4 

1.1 Group and counselor .......................................................................................................................... 4 

1.2 Course and assignment ....................................................................................................................... 5 

1.2.1 Deadlines ...................................................................................................................................... 6 

1.3 Employer ............................................................................................................................................. 7 

1.3.1 System .......................................................................................................................................... 7 

1.4 Requirement specification .................................................................................................................. 8 

 

Before we start of presenting our project, let us quickly mention that this document is written in 

English as requested by our employer. The main reason for this is that the company we have 

been working with employ people from around the world, and to make this project as useful to 

them as possible, it was desired that we made some additional effort on the documentation 

process. 

 

Secondly the document is written in a manner that require a certain technical knowledge to 

properly understand when reading. Apart from the section “5.0 User manual”, the document is 

intended for sensors of the course, and for the developers of the application we have been 

working with.  

 

1.1 Group and counselor 

For this project we decided to proceed with the members from previous projects, as we know 

each other well and function rather efficient as a team. Other projects have yielded fair results or 

better, and considering we all have somewhat high ambitions for what we hope to achieve, it 

was a rather easy decision. Within the group it has always been room for everyone to express 

their opinion or come with ideas or suggestions. We also have a history of minimal conflict, and 

whenever we have disagreed on something we have always been able to discuss matters in a 

sophisticated and democratic way.  

 

(Subjects we have been working together on previously are Prototyping, Practical information 

technology, Human-machine interaction, Information technology services and Information 

architecture. In IT services, which was the most comprehensive of these, we were exploring a 



5 
  

system applied by libraries across the country, and made extensive charts mapping all of its 

functionality, collected user data through interviews and observations, and finally made 

suggestions on how the system could have been improved based on what we had learned. In 

Information architecture we had to browse through databases of scientific papers published by 

authors worldwide, in order to solve the given problem. ) 

 

The project started with a group consisting of four members total, but after approximately two 

months into the project one of our members temporarily resigned his studies for medical 

reasons, and we finished the project with only three members. 

 

Boning Feng has been our councilor for this project. He is one of the teachers at this course and 

hold a degree within electronics and computer security. He has been of assistance to us 

throughout the project, and has provided valuable input on different topics, and has given 

feedback in regard to the documentation standard set by the course leaders. He has also 

involved himself in giving feedback on the final report, and supervised the project in general. 

 

1.2 Course and assignment 

The course: “Applied computer technologies” is mainly focused on the principles behind 

universal design for computer systems and web services. Here we learn how to plan for, shape, 

develop and evaluate these kind of systems for people without and with certain disabilities and 

for older people, to ensure these services are accessible to as many as possible. Even if there 

is a lot of theory involved when learning about these concepts, the course is driven by project 

work, both individually and in groups. 

 

Furthermore the course includes both basic and optionally more advanced work with multiple 

relevant programming languages like Java, PHP, HTML, SQL and a few more. There is also 

quite a bit general teaching about different programming languages, even if we don’t learn each 

and every one of them. Sometimes only some sample code is shown to give the general idea of 

a language to understand how it differ from other, how it evolved into what it is and what it is 

used for.  

 



6 
  

This project gives us an opportunity to use everything we have learned the past five semesters, 

and extend our ability to expand our knowledge on our own. At the same time we would get 

great experience with how we might end up working after ended studies. 

 

The task given was simple enough: Contact different companies that work with some type of IT 

service or development, and ask if they have a project available for students. Optionally the 

course leaders provided some projects to choose from, but ideally each group would take 

matters into their own hands. There is a multitude of companies of different sizes who launch 

similar projects every semester, as it allows them to get in direct touch with students who are 

applying for jobs as soon as they are done with their studies. 

 

1.2.1 Deadlines 

The schedule for the project was as follows: 

 

1: Status report (25.10.2013) 

The first milestone was to form a group, and to begin the process of applying to projects.  

 

2: Project draft (06.12.2013) 

At this point it was required to specify any idea or problem that would define the project. The 

course leaders would then evaluate whether or not this was suited for a main project. If 

approved, the group would be assigned a counselor based on what kind of assistance the group 

would need.  

 

3: Pre-project report (24.01.2014) 

Here a more detailed description of the system and employer was to be handed in. Any relevant 

problem was to be listed as well as how we intended to solve this. The pre-project report also 

included a schedule for how far we expected to be with the project along the spring semester. 

 

4: Main project report (27.05.2014) 

Eventually the documentation describing the execution of the entire project from beginning to 

end was to be turned in. The course have set a documentation standard for this report, and this 

standard was the base for the structure of this document.  

 



7 
  

5: Presentation (10.06.2014) 

At the end of the project each group was to present their project for their fellow students and 

teachers.  

 

In addition to this, each group was to make a project web site where all the documents, meeting 

notes, models, project log and any other relevant written work is available online.  

 

1.3 Employer 

For our main project we have been working with Tingtun AS, a Norwegian company located in 

Lillesand. It was founded in 1996, and deliver technical consultancy services in the area of 

eGovernment1 and training. Currently they cooperate with a total of six people worldwide. The 

services are based on an open policy, to promote participation and to deploy Open Source 

Software, and open standards to develop universally designed and transparent eGovernment 

services. Since 2004 Tingtun has provided research based advisory services on to Norwegian 

government agencies as well as to the European Commission, and the United Nations. 

 

Our main contact person in Tingtun has been Mikael Snaprud, who have been monitoring our 

progress and provided direct or indirect feedback. We have had contact as frequent as almost 

every week during the project. We have also had regular contact with one of the developers 

named Anand Pillai, who work with Tingtun from India. He have provided more technical support 

when this has been needed. The project was initiated with a face to face meeting with the group 

and Mikael. 

 

 

1.3.1 System 

The system we have been working with in this project is the web-based accessibility checker 

Tingtun provides. The application is designed to check either a document found on a URL or an 

uploaded PDF file for barriers in regard to WCAG2. The purpose of this is to provide a tool to 

control whether or not PDF documents are accessible to as many as possible, and to see if they 

are within the boundaries of required universal design set by their nations laws. The application 

                                                 

1  Digital interaction between a government and citizens  

2 Guidlines for web content accessibility 



8 
  

will list all detected barriers and explain them, allowing the users to more easily improve their 

services in regard to universal design. 

 

1.4 Requirement specification 

This project have revolved around rebuilding the front-end of this system. Tingtun is generally 

confident about the user interface of their web service, but there are several underlying issues 

with the current solution. Firstly the process of implementing new functionality is currently rather 

complicated, and one of the more important focuses for us have been to solve this. Currently 

the front-end is written in PHP, and the employer have requested that the new solution should 

be written in Django3. Furthermore there has been a requirement to improve the way any 

information provided by the application is represented to the user. Currently the output is quite 

technical, and Tingtun want to improve readability for users with lower technical competence so 

they can more easily improve their services based on the feedback. 

 

The requirement specification is a summary of all the objectives we have developed in 

collaboration with our employer. These requirements was the foundation of the work we did, and 

testing the final result towards these requirements determined the success of the entire project.  

 

All the specific requirements are listed in the section 4.0 Test report, along with a breakdown of 

each as well as detailed information on how these were tested, but here are a short introduction 

to what we hoped to achieve in regard to our employers requests: 

 

First and foremost we were to rebuild the user interface with Django, to make the front-end 

easier to maintain and at the same time allow implementation of new functionality to require a 

lot less effort. Also the code was to be written as efficient and performance-optimized as 

possible, and should work equally fast or faster than the current solution. At the same time, the 

application should not have any dependencies for specific platforms or browsers, and should 

work regardless of client details. The system should also secure itself by controlling whether or 

not a file contain malicious code, and reject any that might be harmful. 

 

Another important requirement was the added functionality. Tingtun requested that we 

implemented support for the user to check multiple PDF files or URL links at the same time by 

                                                 
3 Python.based development framework 



9 
  

simply adding all the relevant inputs in a list before starting the check process. At the same time 

the system should verify that the same file or link is inserted multiple times, to prevent 

unnecessary traffic towards the server.  

 

It was also requested that the system support different user logins. Regular users should not be 

required to sign in to use the application, but you would need to sign on to a registered user in 

order to access statistics  

2.0 Process documentation 

 

2.0 Process documentation .......................................................................................................................... 9 

2.1 Preparation for the project ............................................................................................................... 10 

2.1.1 Working conditions .................................................................................................................... 10 

2.1.2 Communication .......................................................................................................................... 11 

2.1.3 Documentation .......................................................................................................................... 12 

2.1.4 Backup ........................................................................................................................................ 14 

2.1.5 Qualification building ................................................................................................................. 14 

2.1.6 Risk analysis ............................................................................................................................... 15 

2.2 Beginning of the project ................................................................................................................... 17 

2.2.1 Status report .............................................................................................................................. 17 

2.2.2 Project draft ............................................................................................................................... 17 

2.2.3 Pre-project report ...................................................................................................................... 18 

2.2.4 Requirement specification ......................................................................................................... 18 

2.3 Planning............................................................................................................................................. 20 

2.3.1 Activity and work plan ............................................................................................................... 20 

2.3.2 System description (current solution) ....................................................................................... 21 

2.3.2 System description (new solution) ............................................................................................ 24 

2.4 Development process ....................................................................................................................... 26 

2.4.1 Development tools ..................................................................................................................... 28 

2.5 Requirement specification and its role ............................................................................................. 29 

2.6 Conclusion ......................................................................................................................................... 32 

2.6.1 Product and future development .............................................................................................. 32 



10 
  

2.6.2 Time estimation ......................................................................................................................... 33 

2.6.3 Learning outcome ...................................................................................................................... 33 

 

The following section is a detailed description of how the project was executed from the 

beginning to end. It is expected that the reader have read the section: “1.0 Introduction to main 

project” before proceeding, as it contain important information about the group and the employer 

as well as background and goal for the project.  

 

2.1 Preparation for the project 

In this section we will cover anything concerning how we prepared for this project, and how we 

worked as a group in terms of communication, capacity building, tools and technologies.  

 

2.1.1 Working conditions 

Once the question whether to keep our former group or not was settled, we started having 

regular meetings. We knew we had a big task ahead of us, and even if progress was a little slow 

in the early stages we figured it would be easier to keep up with the deadlines set by the course 

leaders the more we prepared.  

 

We tried to meet at school at least once a week in the months prior to the finale of the autumn 

semester. Essentially it was what we did in earlier projects, and it seemed like a good idea to 

proceed with what we were familiar to and had positive experiences with. At school we had 

anything we needed close at hand: A place for all members to sit together with power supply for 

our laptops as well as a reliable internet connection, group rooms with whiteboard where we 

could brainstorm, and the possibility to arrange meetings on rather short notice before, between 

and after classes. In this period, most of the work we did was whenever the whole group was 

gathered. That way everyone had all the information they needed to start the thought and work 

process, and could prepare any questions they had for our first meetings with our councilor.  

 

We have had some considerable setbacks in terms of illness within the group. The most 

significant was when one of our group members had to take a break from his studies 

because of medical reasons. This is further discussed in 2.1.6 Risk Analysis. 



11 
  

2.1.2 Communication 

Communication within the group have not been problematic at any point. Whenever we have 

started a new project, we have created a new Facebook group where we can easily arrange 

meetings or distribute the work to be done. Also we have been using this page to inform the rest 

of the group of anything unexpected like illness. This medium have proven to be very useful as 

all of us check their Facebook on a regular basis, and get a notification whenever there is an 

update on this particular project page.  

 

Furthermore we have from time to time used the program Skype for digital conversations and 

instant messages. This have been especially useful whenever we have days where no meeting 

have been planned, but something came up resulting in the need of a discussion, or if 

somebody have a question when working alone and are unable to progress without input from 

other members. At this point, the instant message function in Skype have been more useful than 

waiting for a reply on our group Facebook page.  

 

On those few occasions where a member have been unavailable on both Facebook and Skype, 

we have used regular cellular phones to reach each other. 

 

When it comes to communication with our group councilor it has mostly been by email, but on 

several occasions we have talked on the phone as well.  

 

Communication with our employer have been rather frequent. Mikael have desired to involve 

himself to quite some extent, and we have had meetings with him close to every week, or each 

second week when there have been busy times for either party, during holidays or if there have 

been little progress to report since last meeting. These meetings have been very useful to the 

group as well as the employer, as it have been easy to discuss progress and challenges. These 

meetings have mostly been by phone, but as it have required a speaker for everyone in the 

group to participate at once, we started using Skype on our end at some point during the 

project. Skype allows you to call cell phones for a small fee, which is still cheaper than a regular 

phone call. This have also improved the quality of the conversation. 

 

Anand have also been frequently involved, even if it have been mostly by mail. Throughout the 

project we have been using Tingtuns’ own web-based platform for internal communication, 

called Tingtun Box. Essentially it works as a file sharing medium similar to Dropbox, where 



12 
  

registered users gain access to certain folders and functionality. Example of this is the possibility 

of starting a discussion, similar to a regular online forum. When we have had questions to 

Anand in regard to coding or other technical matters, starting a discussion in the Box have been 

the favored way to do this as it allows access to the topic for all relevant people, and anyone 

can leave comments. Also it have been easy to come back later if a similar topic arise.  

 

Prior to each meeting the group have set up an agenda for topics to discuss, so each party can 

prepare answers or gather information. This method have been extremely useful, and have kept 

each meeting as short and relevant as possible. The agendas have consisted of anything that 

might have turned up since last meeting, as well as a paragraph called “closing of actions”. After 

each meeting, the group have made a note summarising any topic that was brought up. This 

note is divided into sections for better overview. The first section have always been “actions”, 

which will cover anything the group and employer agree to set as a goal to achieve until the next 

meeting.  

 

2.1.3 Documentation 

Our documentation is a result of a process that have been ongoing throughout the project. Even 

if the majority of the current content have been written within the last month of the project, we 

have made sure to take notes along the way so the process could be described as accurately 

as possible at the end of the project.  

 

The first thing the group did was to take a look at the documentation standard that was set by 

the course leaders. The idea was to get an impression of what was to be handed in, and start 

the thought process among the members on how to best reach this goal. A helpful tool here 

were the older projects published by former students on the HiOA main project web site. This 

gave a good impression of documentation length, structure, use of models and of the general 

content. At this point the group developed an initial draft of the report. This draft did not contain 

any written material at the early stages, but rather served as an overview of all the sections and 

topics mentioned in the older reports. Even if it at the time was unclear whether or not a certain 

topic would be relevant for the final report, it was very easy to determine at a later point when 

we had more information. 

 



13 
  

The most important tool we have applied for documentation is Google Documents. It is a web-

based document service that provide all the essential office functionality similar to that of 

Microsoft Word, Excel, Powerpoint etc, and lets you download a certain file in any format and 

file type you could want. What makes this service extremely useful for a project like this is the 

possibility for multiple users to edit the same document simultaneously, with all changes 

automatically saved and updated live for anyone who have the document open. Also it allows for 

“Read only” privileges to anyone who receive a direct link to the document by one of the users. 

This have been useful for sharing the document with our employer whenever we have 

requested feedback on certain topics, and generally providing access so they can monitor our 

progress.  

 

Throughout the project we have kept a project log where we make a short note of anything that 

have been done each time one or more group members have achieved anything that can be 

defined as progress for the project as a whole. When a project stretches over a longer period it 

is easy to forget details, or the order of which work is done. The purpose of this log was to have 

a way to keep track of our progress which we could fall back on when we eventually committed 

to the writing process, so less of the early work was forgotten.  

 

Another helpful routine we have established have been to write meeting summary notes after 

each meeting with our employer. Essentially what we did was to edit the agenda for the 

meeting, from what we planned to discuss to what we actually discussed. The meeting notes 

have been made in Markdown on the Tingtun Box. Markdown (.md) is a plain text formatting 

syntax designed so that it can optionally be converted to HTML with a simple tool, and lets the 

user create structured documents online with the use of a few symbols (# = heading, ## = sub-

heading with underline etc). This have made it exceptionally easy to create and share these 

notes with our employer, and when we have made agendas prior to a meeting, sharing it with 

our employer have been as easy as sending a link to the box. He have then been able to edit 

the file in any manner he have deemed necessary, whether it was to add further topics for 

discussion or simply urge us to elaborate further so he can better prepare for the meeting. This 

way the meeting notes have always been available to anyone at all times, and it have been 

another way for us to keep track of what happened when, and the order and manner of which 

things have been done.  



14 
  

2.1.4 Backup 

We have taken measures to ensure that none of the work done throughout the project would get 

lost. We created a Dropbox-folder at the beginning of the project, and all our work have been 

stored here. Dropbox is a cloud-service that allow registered users to open a folder in their local 

files, and all content of a particular Dropbox-folder will be synchronized with any other user who 

have access to the same folder. The content is also available on the web on the Dropbox 

website, once the user log in. This means that all members have access to all files as long as 

they have been on a computer with internet available. The group have also occasionally taken 

other backup independent of the Dropbox version.  

 

The documentation have also always been available online through Google Documents. This 

service automatically saves any changes made to a document, and store them on the cloud. 

Also here have the group consistently taken backup locally and with Dropbox for good measure. 

 

2.1.5 Qualification building 

 

As agreed with the employer, the new solution would be built in the Python framework Django. 

The group had no experience with either Python or Django before the project started, but as we 

accepted the task, we were determined that the whole group had to learn and study both these 

tools in depth. 

To give us a head start, the developer working for the employer recommended that we started 

off by reading and working with the official tutorial for both Python and Django. The whole group 

do have experience with other programming and scripting languages such as PHP, C and Bash, 

so diving into a new programming language seemed manageable at first. But as the project 

progressed, we soon discovered Python is a lot bigger than we imagined. Considering this, the 

group had to agree to only learn the basics of Python, to be able to use Django efficiently. We 

both used video tutorials and the official Python tutorial to learn the basic. 

The official Django tutorial provided us with a basic understanding of the complicated Django 

spiderweb, but as we progressed, this was not nearly enough to start designing the solution. 

This meant that we had to use unofficial tutorials to learn what was needed. One of the biggest 

sources of information that we throughout this project is Stack Overflow4, which is a question 

                                                 
4 Question and answer site for professional and enthusiast programmers 



15 
  

and ask site, containing loads of relevant information about both Django and Python. We used 

this actively to find relevant questions to our project, and their answers. And also asked 

questions ourselves. 

2.1.6 Risk analysis 

At an early stage in the project the group discussed the possibility that something might go 

wrong throughout the semester, how different events would affect the progress, how they could 

be avoided or how they would be dealt with if they arose.  

 

At this point of time we were not aware of how much we would actually use the risk analysis to 

solve problems which arise. After some time, one of the group members had to resign from the 

group due to health issues. We were aware that he had some problems related to his health, 

but never imagined that it would lead to him leaving the group. As the group got reduced from 

four to three members, the amount of the project still seemed manageable, and the remaining 

group were still motivated to continue. But after a short while another member unfortunately also 

experienced health issues which made it hard for him to contribute to the project in such a way 

that was expected on beforehand. The effect of this lasted for several months. While this were 

happening, the remaining two members experienced reduced motivation, and the project goals 

seemed hard to reach. All these problems were brought up with the employer, and the group 

reorganized the workload to provide more effective results. 

  

The risk related to “Electronic crash” turned out to be relevant, as one of our group members 

experienced his laptop charger gradually failing and eventually stopped working altogether. This 

was a problem since the laptop itself was an older model, and the plug for the charger was a 

non-standardised size and could not be replaced with a universal charger. As a result he 

needed a new computer, which took about a week to fix. In the meantime he used the 

computers available at school and his stationary computer at home. There was also need to 

download all the relevant tools on the new laptop. Despite this, thanks to good routines for 

backing up all files on Dropbox no work was lost as a result of these technical problems. 



16 
  

 

Figure -1  Risk Analysis 



17 
  

2.2 Beginning of the project 

The project have been driven by working towards the milestones set by the course leaders, so 

each group have a perspective of how far they are on their way to the final deadline. For this 

purpose this section is divided into paragraphs describing the first phase of the project and each 

of the initial stages in the same order we have handed in material throughout this period.  

 

2.2.1 Status report 

Our first hand-in was to be delivered October the 25th, 2013. Essentially it was a presentation of 

the group for the course leaders, which also was to include information about our effort and 

progress towards finding a project. At this point we had been in touch with multiple potential 

employers without any yield, and we were urged to define exactly what kind of project would 

interest us in case we would need assistance in our search.  

 

For this project we did not want to limit ourselves in regard to what kind of knowledge we 

already had. Even if we prefered to work within the boundaries of what we had most experience 

with like system analysis and user interaction, we were prepared to make the necessary effort to 

complete a project that would require knowledge of more heavy programming.  

 

We had already decided to continue with our former group, and all our focus was set to finding a 

suited project. Note that at this point in the project the group still consisted of four members. 

 

2.2.2 Project draft  

The next deadline to meet was December the 6th, 2013. At this point it was required to have 

settled on a project to work with, and this hand-in focused on describing the given problem as 

accurately as possible. Here we described our employer and the service they provide, as well 

as the current plan for what they hoped to get out of such a project. Prior to this deadline we 

had been in touch with Mikael in Tingtun AS, and he was very enthusiastic about the idea of a 

project like this. He had held a similar project some time back, which turned out to be rather 

useful.  

 

Once contact with Tingtun was established, it did not take long before we had taken a more 

detailed look at what the project would require, and the group mutually decided that we would 



18 
  

accept the given task. It was within the boundaries of what knowledge we had or what we 

expected to be able to learn ourselves, and the overall topic was very appealing to us.  

 

We were all eager to get a head start towards the approaching deadlines, so as soon as we had 

settled with the project, we sat down and started the thought processes on how to solve it. The 

main focus at this stage was to establish a proper requirement specification. Initially we had a 

somewhat superficial perspective of what the project would require, so a priority was to arrange 

a proper meeting with Mikael. He also was happy to start as soon as possible, and at 19th 

December, which was the first opportunity we had, we met with Mikael here in Oslo at HiOA. 

The objective of the meeting was to properly meet and introduce ourselves to each other, share 

more information about the project and the system, discuss different ideas for the project 

execution as well as starting the work on establishing a more precise requirement specification.  

 

2.2.3 Pre-project report 

Once the spring semester begun the project continued and we were already focused on our 

next hand-in, which was due the 24th of January, 2014. This time around we were required to 

hand in a more detailed description of the project, and present the requirement specification we 

had developed with our employer. The pre-project report ended up looking much like the “1.0 

Introduction to main project” in this report, although somewhat shorter. 

 

2.2.4 Requirement specification 

The three first hand-ins all resulted in a defined requirement specification, which would ensure 

that the group were on the the same page as the employer in regard to what would be the goal 

of the project, and what the final product would look like. Testing towards these requirements 

have determined the success of the project, as discussed in the section “2.5 Requirement 

specification and its role” and “4.4 Testing towards requirement specification”. 

 

The requirements we have been working towards are: 

User functionality 

R.1: The end user should be able to upload PDF-documents or link to documents online 

R.2: The application shall list the detected barriers found in the PDF documents 



19 
  

R.3: The application GUI5 Should follow WCAG guidelines 

R.4: The application shall refer to the WCAG guidelines when presenting the detected 

barriers 

R.5: The user should be given a structured list of the detected barriers 

R.6: The user interface of the PDF-checker should be easy to use for end users, and should 

not require any training prior to interaction with the application 

R.7: Administrators should be able to access statistics collected by the PDF-checker 

 

System functionality 

R.8: The system code should be written efficient and performance optimized, and the 

application should be as fast or faster than the existing solution 

R.9: The PDF-checker should be developed according to selected coding standards and 

easy to maintain for administrators 

R.10: The system should provide an authentication and access control mechanism to match 

logins to specific users roles. This should include a regular user, a reporter role who can 

access statistics, and an admin role, or superuser with all privileges 

 

System properties 

R.11: The system should not have any browser or platform specific dependencies, and 

should work the same way regardless of client details 

R.12: The system should be secure against malicious PDF files uploaded by the user, and 

should reject these if they contain exploits or any code that can harm the system 

 

New functionality 

R.13: The user should be able to upload multiple PDF files and  check these 

simultaneously, where a single test run will return test results for each selected file 

R.14: The system should prevent the user from uploading the same document multiple 

times during the same check to prevent unnecessary traffic to the server 

R.15: The user should be able to insert multiple URLs and check these simultaneously 

R.16: The user interface should support multiple languages 

R.17: The application should support accessibility tools such as screen readers 

                                                 
5 Interface where user interact with electronic devices through graphical icons and visual indicators 



20 
  

R.18: The application should provide suggestions on how to remove any detected barriers 

 

Additional 

R.19: Continuous use of the application should trigger a mechanism where the system 

informs the user about how they can contribute to further development through donations or 

payed services 

 

2.3 Planning 

Once the pre-project report was delivered, the next phase of the project commenced. This 

phase was crucial in regard to how efficient we were able to progress once development and 

documentation started.  

 

The main issue with our planning was, as mentioned in “2.1.1 Working conditions” (last 

paragraph), the loss of one group member. The whole planning phase revolved around the fact 

that we had the resources of four people, similar to all our former projects. We were well aware 

that our last member had some notable health issues, and even if we did take this into 

consideration, we made plans as if the group would continue as a whole. When he eventually 

announced that he would be unable to complete the project with us, we proceeded with the 

original plan. 

2.3.1 Activity and work plan 

 

To plan the process properly, the group made a activity and a work plan. The activity plan 

described all the different tasks the group planned to in detail, and also which members of the 

group who were in charge of these. This made it possible for us to set realistic goals and 

progress with work each week. We also visualized the activities in a work plan spreadsheet 

(Figure 2-1.) which contains all the different phases of the project, and their connected activities. 

By showing the deadlines of the activities and also how many weeks we had to finish each one 

of them, it made it easy for us to plan ahead and keep to the schedule. 

 

After two months into the project, we still kept our pace aligned with the work plan. But when 

one of the group members left, we had to reassign and reorganize all the tasks. At first it 

seemed manageable to keep going with the original work plan, but four months into the project 

we were two weeks behind schedule. We still kept going though, and did hope that we could 



21 
  

catch up with the plan, but after a couple of more weeks we understood that we fell quite a 

length behind the original plan. In collaboration with the employer we decided that measures 

had to be taken, and agreed to cut several requirements. As originally planned we would finish 

all documentation at the 20th of May, which would give us a couple of more days to reassure 

the report were complete. But in the start of May we were told the report had to be delivered the 

21th to be able to print it properly. This meant that we had to pick up the pace again. 

 
Figure -1. Spreadsheet based on the work activity plan. 

 

 

2.3.2 System description (current solution) 

Our first objective was to analyse and properly describe the system. The goal here was to 

develop a low-fidelity prototype to easier illustrate what we intended to change, and to get there 

we needed an overview of the design and the relevant functionality. As mentioned earlier 

Tingtun wanted the current design to remain more or less intact as they are happy with the way 

things appear now, so what we did was to break the user interface down to the individual 

components. Here is a screenshot of the PDF checker before any tests start: 



22 
  

 

Figure 2-2. A screenshot of the current PDF-checker solution. 

 

This is the first step of the process of checking a PDF file. It provides the option to either upload 

a PDF from your local files, or link to a file that exists online. The page checker appear just like 

this one, except there is only one input field for a URL. The menu on the left side of the screen 

is fixed, meaning it is displayed regardless of where in the checking process the user is. This 

means that it is very easy to switch between the different types of tests, as well as running 

consecutive tests after the first. The “Check” button will start the process of checking the PDF or 

URL, depending on selected test. 

 

Next is a screenshot showing the result of a PDF check in the old version: 

 



23 
  

 

Figure 2-3. Screenshot of the PDF-checker result page 

 

The top half of the result page consist the same menu as the previous step, and a summary of 

which tests were conducted, the ratio of which they failed or passed and a total number of 

detected barriers. Here are also three buttons that leave the user with options for either printing 

the result, export the result as CSV which will produce a file with comma separated values, or 

linking to this specific test result with a generated URL.  

 

To more accurately describe the actual process behind this, we made a sequence diagram to 

show exactly what happens where, without being too technical. This diagram show how the 

system handle a PDF file a user upload from their local files: 

 

 



24 
  

 

Figure 2-4. Sequence diagram of the PDF-checker 

 

2.3.2 System description (new solution) 

As soon as we considered our understanding of the existing solution to be adequate, we started 

discussing how we would improve it in regard to the current design and functionality as well as 

the requirement specification we developed in collaboration with our employer.  

 

First of all we started looking at the requirement where we were supposed to add the support of 

checking multiple  PDF files or URLs simultaneously. Since Tingtun desired to keep the existing 

design as much as possible, we needed to find a discrete solution to add this feature. After a 

session with brainstorming we settled on a solution we felt would meet the criterias. To illustrate 

how we intended to approach this we developed a series of wireframes. This type of model 

would act as the low-fidelity prototype we needed to progress. The model itself would not cover 

design features such as colors, fonts etc, but rather represent the functionality the user is 

presented with, and how buttons, input fields and other functions the user can use to interact 

with the application. The model would also give an impression of how they are positioned 

relative to each other. This wireframe is based on the PDF checker: 

 

 



25 
  

 

Figure 2-5. Wireframe based on the PDF-checker 

The basic idea was that the user is presented with an interface very similar to the current 

solution as shown in figure 2-2, with only a single input field each for upload or URI. Then when 

the user have inserted the first link or file, a button will appear with the functionality to add more 

input fields or add more files to the list. Originally we set the maximum input fields to be 5, as it 

would be most design friendly, and at the same time not make too much of an impact on the 

server traffic. To be clear: The boxes with stapled lines in the model as well as the gray buttons 

(“Upload more files” and “Add +”) are not displayed to the user by default. They only appear 

when certain requirements are met. The reason for this is first and foremost that this will keep 

the user interface as clean and user friendly as possible, while at the same time preserving the 

design of the current solution so users who are familiar with the application will encounter 

minimal changes.  

 



26 
  

 

Figure 2-6. Wireframe representing the result page of the PDF-checker 

The next wireframe represent how we intended to handle the result when the user check 

multiple PDF files or URIs at the same time. Essentially the model is based on figure 2-3, which 

describe the result of a single checked file. The main difference is that the user is presented with 

a list of all files checked, shown in the upper right corner of the screen. The user can then easily 

toggle between the different results by selecting files from this list. 

 

2.4 Development process 

Once the planning process came to an end we started looking at the code for the existing 

solution, to get a better understanding of what we could use and what we needed to develop.  

 

The first objective was to get a basic structure similar to the existing solution. Since Tingtun was 

satisfied with the current design, we were able to extract most of the former HTML and CSS and 

reuse it in the new solution. The first step was to implement the static structure in a HTML file. 

Then we had to figure out how to display the fields which would take the input containing either 

a URL to a PDF-file or uploading it locally. 

 



27 
  

After some time, we were able to display both the required fields, and also found a solution to 

handling input from more than one field at a time. As this section of the development 

progressed, we decided to focus on how we should make it possible for the user to add more 

fields at will. When discussing this in the group and researching for a solution to the problem, 

we agreed that the easiest way to do this was by using Javascript code because there already 

existed solutions for this, that we could redefine to fit in with our forms. 

As the group have limited experience with Javascript, we did not want to use anymore time on 

this than needed. This solution were based on a Javascript jQuery function which clones the 

fields by clicking on a button. When presenting this to employer, he seemed happy with the 

solution and suggested making some minor changes to the HTML and CSS code in such a way 

that the cloned fields had a structure which is satisfactory to universal design. This part of the 

project were one of the most time consuming problems we faced, and in the end we ended up 

not using this at all because we would rather prioritize the main functionality. But even though, it 

is still possible to use this in the future to make the current solution even better. 

 

When we decided that the process of displaying the fields were adequately, we continued on to 

figure out how to handle the files that were uploaded through the file upload field. The first issue 

to this problem, were where the files should be stored. We did not care for the problem 

regarding sending the files to the backend to retrieve the results just yet, but rather saving it to a 

predefined folder. We discovered that the best option for this was the built-in function Django 

provides. When this was accomplished, we continued on with handling the file and URL input 

extracted from the fields. To ensure that both of these fields only contain valid data, we used a 

Django function which covers this. At this point we did not know how we should proceed by 

connecting to the backend and sending the input from the fields, so as agreed we asked the 

developer working for the employer about this, and he promised to be back with us shortly. 

As we waited for the guide to this, we started working with the user registration and login site. 

Now that we were already comfortable working with fields, it was quite easy for us to set up a 

registration site containing predefined fields, such as username and password. These were also 

added as models to ensure that all the data would be saved to the database properly. When 

handling this data, we first assured that the code checked in the data input in the fields were 

valid and then saved it. At the same time the password gets hashed properly to ensure that the 

security is satisfying.  

 



28 
  

The login function was straightforward, and was easy to produce. Basically it justs checks the 

input password and username, and if the login is successful, saves the user information in a 

session so this can be used later on in any applications inside the project. 

Simultaneously as we got an introduction on how to connect to the server backend and send a 

URL to the uploaded file, and retrieve the tests made to the document, we started working on a 

cookie function which would provide regular users with information regarding a donation request 

to the company. By using the included Django cookie functions, we were able to create a 

function with a cookie which counts each visits to the site.. And then, after a defined number of 

visits, shows donate information or some other message. 

 

When receiving the guide containing information about how to connect to the server and retrieve 

results from singular tests, we started the work with sorting all the tests out. 

 

 

 

 

 

2.4.1 Development tools 

 

Several tools have been used to develop the application and interact with the servers. In this 

chapter we describe them briefly . 

 

To interact with the server set up by the employer, we have both used Putty and WinSCP. As 

Putty is a command tool with a way to easy connect to servers, we used this to issue a various 

set of commands related to Python and Django. While WinSCP were used to visualize the file-

tree and also give us an easy way to edit files. 

 

When programming, the members of the group have used different text editors after own 

preferences. Everyone made sure the different text editors provided proper spacing and soft 

tabbing, and also gave response to certain syntax error. Considering how sensitive Python is, 

this was important to prevent errors in the code. 

 

VirtualEnv is a virtual environment package, designed for Django. This makes it possible to work 

on several Django projects without worrying about affecting other projects. Even though there 



29 
  

was only one project throughout this project, for future work around this application, VirtualEnv 

can be an important tool. 

 

In addition to the implemented debug tool Django provides, which is described in the 4.1.2 

section in the test report, we have also used a Python debugging tool called ‘pdb’. This tool was 

used in the cmd windows to test seperate files, and proved very helpful when creating the 

server.py file which is described in detail in the 3.7 section of the product report . 

 

2.5 Requirement specification and its role 

The success of the project have been determined by looking at the requirement specification to 

see which objectives are completed and which remains after the final deadline. As described 

earlier the project encountered several setbacks along the way, and the consequences of this is 

clearly indicated here. Note that even if a requirement was not met, there was put a lot of effort 

into trying to meet it, and much of this work is done in a way to enable future development. 

 

 

# Description Completed Comment 

R.1 The end user should be able to 
upload PDF-documents or link to 
documents online 

Yes The application is able to receive, 
temporarily store and then send a 
PDF file to the server 
 

R.2 The application shall list the 
detected barriers found in the 
PDF documents 

Partially  We were able to list some of the 
detected barriers found in the PDF 
documents. The problem was to 
collect the test results of all the 
applied tests. The application did 
receive some information so there 
were some level of success here, but 
eventually we ran out of time and 
were unable to complete this section 
in time before the report were sent in 
for printing. To be able to complete 
this requirement later on, it is mostly 
copy pasting code we have already 
made to display all detected barriers, 
and at the point that this report is 
read the application may be 
completed 

R.3 The user interface of the Yes The user interface of the application 



30 
  

application should follow WCAG 
guidelines 

meets the WCAG guidlines 

R.4 The application shall refer to the 
WCAG guidelines when 
presenting the detected barriers 

Partially  There was some difficulties in listing 
the server output from a test, even if 
the application received the 
information from some of the tests. 
But in the end we were able to refer 
to one of the WCAG guidelines. As 
stated in R.2, this may be finished by 
the time this report is read as the 
code surrounding this problem is 
mostly done 

R.5 The user should be given a 
structured list of the detected 
barriers 

Partially This requirement is also related to 
R.2, and at this point there is only 
one barrier listed. But as stated 
earlier this may also be finished 
when this report is read 

R.6 The user interface of the PDF-
checker should be easy to use 
for end users, and should not 
require any training prior to 
interaction with the application 

Yes As we have followed mostly the 
same design found in the current 
solution, the user interface should be 
easy to use 

R.7 Administrators should be able to 
access statistics collected by the 
PDF-checker 

No Discussed in further development 

R.8 The system code should be 
written efficient and performance 
optimized, and the application 
should be as fast or faster than 
the existing solution. 

Yes See test documentation for more 
information 

R.9 The PDF-checker should be 
developed according to selected 
coding standards and easy to 
maintain for administrators 

Yes The code contains comments and 
follow both Python and Django 
guidelines 
 

R.10 The system should provide an 
authentication and access 
control mechanism to match 
logins to specific users roles. 
This should include a regular 
user, a reporter role who can 
access statistics, and an admin 
role, or superuser with all 
privileges 

Yes Except for statistics discussed in R.7 

R.11 The system should not have any 
browser or platform specific 
dependencies, and should work 
the same way regardless of 

Yes See test documentation for more 
information 



31 
  

client details 

R.12 The system should be secure 
against malicious PDF files 
uploaded by the user, and should 
reject these if they contain 
exploits or any code that can 
harm the system 

No Requirement have been left out in 
collaboration with the employer, as 
we did not have time to focus on this 

R.13 The user should be able to 
upload multiple PDF files and 
 check these simultaneously, 
where a single test run will return 
test results for each selected file 

No As time became an issue this was 
one of the requirements we had to 
leave out. Even if we had planned a 
solution for design, how to handle 
the information and started coding it, 
we realized how much it would 
require to complete this, and decided 
along with our employer that our time 
was better spent elsewhere. We still 
used a lot of time on this 
requirement, and the outcome of this 
have been discussed in further 
development in the product 
documentation 

R.14 The system should prevent the 
user from uploading the same 
document multiple times during 
the same check to prevent 
unnecessary traffic to the server. 

No As R.13 was left out, this 
automatically followed as it was no 
longer relevant 

R.15 The user should be able to insert 
multiple URLs and check these 
simultaneously 

No This requirement was also left out for 
the same reason as R.13. 

R.16 The user interface should 
support multiple languages 

No One of the requirements we only 
were to focus on if we had any 
leftover time 

R.17 The application should support 
accessibility tools such as screen 
readers 

Yes Reached as far as we came with the 
applications 

R.18 The application should provide 
suggestions on how to remove 
any detected barriers 

No Another one of the requirements we 
only were to focus on if we had any 
leftover time 

R.19 Continuous use of the 
application should trigger a 
mechanism where the system 
informs the user about how they 
can contribute to further 
development through donations 
or payed services 

Yes Function explained properly in 
product documentation 

 



32 
  

In retrospect it is clear that the group and the employer had too high ambitions for what they 

hoped to achieve with this project, and in result there are multiple requirements that could 

not be met as there was not enough time to complete them all. Even if some of the 

requirements only are considered “nice-to-have”-features, the group did spend a lot of time 

and effort in trying to complete them. What could have been done differently would have 

been settle with fewer requirements, but also to dismiss unrealistic requirements at an even 

earlier stage of the project. The group also underestimated the time required to fulfill some 

of these, which led to some notable delay in regard to the original work plan. 

2.6 Conclusion 

As the project came to an end and most of the work was done, it was time to look back at 

the semester and evaluate the execution of the project. There were a multitude of things 

that went wrong or could have been done differently, but overall we were happy with our 

own performance all things in consideration. The loss of a group member and health issues 

in the group were the greatest challenge to overcome, as our overall work capacity got 

reduced. The project we had accepted was already of considerable size, even for four 

members.  

 

Tingtun was also satisfied with the project outcome. Even if there were several unmet 

requirements, much of the foundational work have been done to complete these. It was a 

matter of making the best out of a situation that made the project considerably harder to 

complete. 

Throughout the project the group and the employer have been in close contact, and Tingtun 

have provided valuable input along the way and have gladly shared their knowledge and 

experience, to help the group in the right direction when they have struggled. 

 

2.6.1 Product and future development 

We have managed to develop a user interface to present checks of PDF-files, but do not 

display all the results in regard to passed and failed tests found in the PDF-files. Even 

though, we have come so far that it is quite easy to finish this, and the group will try to have 

it done at the end of the project so the employer may benefit from this. We do wish we have 

finished this in time for the deadline, so we could have displayed a fully working application. 



33 
  

 

We have also managed to make a user interface with registers users based on input 

information, and provide a login function which can be used in further development. Users 

can also be managed in the Django admin interface. 

 

The application we developed met many of the requirements we set for it, even if time got a 

little short at the end of the project. At the same most of the requirements that remain have 

been met in some degree, and in regard to future development it will require a lot less effort 

to complete these. We have also made sure that the code is commented and easy to 

maintain for administrators. 

 

2.6.2 Time estimation 

When estimating the time for the different activities, the group did not leave a lot of room for 

mistakes. The result of this, was that the group fell behind on all of the activities when 

certain mishappens occurred. To try to catch up, the tasks were reorganized and the work 

plan was revised. Looking back on how the project phases were planned, the work 

regarding learning Python and Django should have been started earlier. Both the framework 

and programming language did require a lot more work than we estimated early on, 

considering we had no experience with either before the project started. The requirements 

should also have been revised earlier, when our group capacity fell considerably. 

 

2.6.3 Learning outcome 

The learning outcome of the project were considerable for all members of the group. 

Learning new technologies like Python and Django will surely be useful in the future, and 

gave us more experience towards solving difficult problems by using a series of different 

tools.  

By encountering challenges which had an impact on the process, trying to solve this by 

reorganizing tasks, gave us more experience towards analysing situations and discussing 

solutions which would have a positive impact on the project. 

 



34 
  

The group has, as mentioned, worked on several projects earlier, but not on a scale like this 

one. By introducing more elements, the teamwork improved regarding analysing and 

problem solving. 

 

The fact that it was requested to write the project report in English was not a problem for the 

group, as we consider our knowledge of the language to be average or better. It have taken 

some extra time to write the report, but overall we are confident in the general language. 

We have also learned a lot along the way in regard to vocabulary, both general and more 

technical terminology.  

 

The group have also discovered the value of our frequent creation of meeting notes as well 

as the project diary, which have helped us a lot to keep track of everything that have been 

done, when and in what order. Without these the main report would most likely contain less 

details of the early stages of the project. 

 

3.0 Product documentation 

 

3.0 Product documentation ........................................................................................................................ 34 

3.1 Preface .............................................................................................................................................. 35 

3.2 Tools, technologies and framework .................................................................................................. 35 

3.2.1 Python ............................................................................................................................................ 36 

3.2.2 Django ............................................................................................................................................ 36 

3.3 Architecture ...................................................................................................................................... 38 

3.4 Database ........................................................................................................................................... 38 

3.5 Front-end/Back-end .......................................................................................................................... 41 

3.5.1 The SOAPpy call (server.py) ........................................................................................................... 41 

3.6 Graphical user interface (GUI) .......................................................................................................... 45 

3.6.1 Templates ....................................................................................................................................... 45 

3.6.2 Static files ....................................................................................................................................... 48 

3.6.3 Urls ................................................................................................................................................. 49 



35 
  

3.6.4 Views .............................................................................................................................................. 50 

3.6.5 The PDF Checker ............................................................................................................................ 50 

3.6.5.1 Forms ...................................................................................................................................... 50 

3.6.5.2 View and template .................................................................................................................. 51 

3.6.6 Authentication ............................................................................................................................... 56 

3.6.6.1 Forms ...................................................................................................................................... 56 

3.6.6.2 View and template .................................................................................................................. 57 

3.7 Users ................................................................................................................................................. 61 

3.7.1 Handle users through the admin interface ................................................................................ 61 

3.7.2 Further development with users ................................................................................................... 63 

3.7.3 Further Development with the PDF-checker ................................................................................. 64 

 

 

3.1 Preface 

 

This part of the report describes the product in detail. What it does, how it works and how it can 

be maintained by future developers. 

 

To be able to understand this document, a basic understanding of IT is required. As Python and 

Django are both advanced programming tools, the reader should also have experience with 

coding, so that it is possible to understand each section of this document in depth. The second 

section describes Django in detail, and is aimed at readers who have little or no experience with 

this framework at all. Even though some technical knowledge is required, we have still aimed to 

make this document as easy to understand as possible. 

3.2 Tools, technologies and framework 

Several languages and tools have been used to develop this application. In the next sections all 

tools used will be described, to give the reader an idea of how they work and interact with each 

other. 

 



36 
  

3.2.1 Python 

The high-level programming language Python have been used, in collaboration with Django, to 

handle the database, presenting different templates, presenting fields in templates and 

connecting to the server to retrieve results. This language let us express concepts in fewer lines 

than most other programming languages, which makes for an easy to understand application 

and also one which is easy to maintain. At this point both Python 2.7.6 and Python 3.4 are both 

eligible versions, but we have chosen to work with Python 2.7.6, considering Python 3.4 still lack 

some functionality and is not as stable as Python 2.7.6. 

 

3.2.2 Django 

Django is a high level Python web framework. This framework offers several built-in functions 

which makes for rapid web development and a nice and clean set up. When the developers 

interact with Python and Django, commands are called in cmd, powershell (Windows) or 

terminal (Linux). These commands create Django projects, and applications inside the projects. 

Commands are also used for instructing Django to initiate its lightweight development server. 

Doing this makes it possible to visualize the application and debug it with Djangos built-in debug 

function (figur1). 

 

Figure -1. Command line example of running the Django server 



37 
  

 When creating a Django project and an application, several python files are generated. Some 

of these have a preset range of functionality (figur2).  

 

Figure 3-2. An example of the files generated in a Django project. 

 

The settings.py file is one of the most important files in a Django project. It is global for the 

project and all added applications. This file contains information about host/domain names, path 

to storage of files, included applications, and middleware. The administrator can edit this file in 

accordance to the Django documentation. The documentation describes the usage of each 

section in detail. The ORM (Object-relational mapping) and the Admin interface are popular and 

effective tools provided by Django. The ORM offers powerful database management, and also 

supports several databases as MySQL, PostgreSQL, Oracle and SQLite. The Admin interface 

provides the user with database management.  

 

At this point of time, Django version 1.7 is in a development phase, and the group have 

therefore chosen to work with Django version 1.6.1. If the administrator at a later point wishes to 



38 
  

transfer over to Django version 1.7 when this is deployed, keep in mind to read the changelog 

thoroughly to avoid errors in the application. 

 

A simplified example of a Django request made by a user is shown in figure 3-3. 

 

Figure 3-3. An example of a Django request 

The most central files of an application is shown, and also their relations to each other. 

 

Throughout this documentation, we will explain all files and their content in detail. If the structure 

of files is confusing, please feel free to backtrack to the figures showing the mapping of the files. 

 

 

 

 

3.3 Architecture 

In the Django project consists of two applications, “pdfchecker” and “authentication”. The 

“pdfchecker” naturally consists of the interface handling the registration of the PDF-files through 

a URL and a fileupload field, and “authentication” consists of registering personal information to 

the database and login interfaces for the users. 

 

3.4 Database 

The group has in accordance with the employer chosen SQLite as the database in this 

development process. As SQLite already is the default choice in Django, there was no point 



39 
  

choosing a different type. SQLite is also already included in Python, so there was no need to 

install this manually. If there is a need for changing the current database to something else, this 

is possible through changing the “Database” section in the settings.py file. It is also possible to 

include multiple databases if needed. If these databases are external, the username and 

password for these must be included, and also migrate them through the command line using 

cmd or terminal. More info about this can be found in the “Multiple Databases”-section in the 

Django documentation6. The models.py file is used for creating database tables and fields in 

Django through user requests. Each class represents a table, and the content inside these 

represents the fields. It is also possible to add tables manually and fields manually, either 

through the CMD/Terminal windows, or through the admin interface. After making changes to 

the database by deleting or adding new tables, the ‘python  manage.py syncdb’ command 

needs to be run to update the database properly. There is one major drawback regarding 

databases in Django. After creating a table with fields, it is not possible to add more fields to the 

table without deleting the table and then adding it again. To solve this issue, it is possible to use 

several tools not included in Django, such as south but we have not explored this any further in 

this project. 

 

Regarding requirement R.14, which asks for a function that supports multiple file upload, and 

also a list displaying the field names, storing the field names in a database was required. To 

solve this problem, a class was made in the models.py file containing a field which stores the 

path of the file. When either saving images or files through Django, the ‘MEDIA_ROOT’ and 

‘MEDIA_URL’ in the settings file determines where to store them. And this is also defined in this 

Django project, as shown in figure 3-4. 

 

 

Figure 3-4. ‘MEDIA_ROOT’ and ‘MEDIA_URL’ which defines the location of stored files 

 

But to be able to use the path of the file names in other sections of the application, these need 

to be stored in the database, and therefore a table with this field had to be created. 

                                                 
6 https://docs.djangoproject.com/en/dev/topics/db/multi-db/ 



40 
  

 

Figure 3-5.  The models.py file in the application ‘pdfchecker’ 

The table that is created by the class, is called ‘handle_UploadPdf’ and only contain one field to 

store the path of the saved PDF file. In line 4, an attribute which determines an additional path 

to where the file should be stored. The path defined will not overwrite the path in the 

‘MEDIA_ROOT’ but be an addition to this. As of now, the additional path is not defined, but the 

thought behind it, is that the administrator can use this to define unique paths based on the time 

and date they were uploaded. This way it could be easier to maintain an archive of the stored 

files. Unfortunately, as we were never able to complete R.14, this file is not included in our 

current function which handles the uploaded files. But we still decided to keep the content, for 

further development. 

 

To be able to satisfy requirement number R.10, which asks for a set of user roles, we decided to 

create a separate application to deal with these. This application, called “authentication” is split 

into two views, “registration” and “login”. Both of these interact with the database in different 

ways. 

 

First of all, the user must be able to register to the application with sufficient personal info. The 

administrator of the application will then have an overview over who is currently using the 

interface. Django provides a User object which consists of several attributes. The default 

attributes are the following: 

 username 

 password 

 email 

 first_name 

 last_name 

These attributes will be accurate considering user information, and have therefore been 

implemented in both the models.py and forms.py file. 



41 
  

 
Figure 3-6. The models.py file in the application ‘authentication- 

 

The figure above displays the main content of the models.py file. First, the User object is 

imported from the implemented Django authentication models. Then, a class is made containing 

a user model which is linked in a one to one relationship to the User object. A one to one 

relationship will ensure that minor problems will occur when various applications are used in the 

future.  

 

3.5 Front-end/Back-end 

The back-end in the Tingtun PDF Checker is running a SOAP service on a Tingtun server. The 

communication between the back-end and the front-end is done with “SOAPpy”, a Python 

package that provides tools for building SOAP servers and clients. In the front-end a SOAPpy 

call with the url of the pdf file is sent to the server. If the url is valid, the server returns results in 

a string which is a representation of a Python dictionary. The task for the front-end will then be 

to parse and present the results. The current solution is using PHP/Apache, and the new 

solution is using Django/Python to perform this task.  

    

3.5.1 The SOAPpy call (server.py) 

A typical interaction of a SOAPpy call is displayed in figure 3-7. 

 

 

 

Figure 3-7. A typical interaction of a SOAPpy call 

 

The SOAPpy call begins with SOAPpy being imported, and the server defined with the Tingtun 

server as first parameter. The result variable includes the url of the pdf document, the url of 

tingtun and the client ip. 



42 
  

 

 

Figure 3-8. Converting the SOAP result into a Python dictionary 

 

The next step is to convert the SOAP result into a Python dictionary. This is done with 

“result._asdict()”. ‘header’, ‘validok’, ‘downloadok’, ‘result’ are the main keys in the dictionary.  

The keys ‘validok’ and ‘downloadok’ indicates if the pdf document is validated and downloaded 

successfully. No error will be returned if the value of these keys are 1 (True). The value 0 

(False), on the other hand will return an error. The actual result is located in the key ‘result’, and 

will be the key used to present the result. 

 

 

Figure 3-9. Creating another dictionary containing applied tests. 

  

The line on 11 in figure 3-9, creates another dictionary with the main key ‘result’. The keys of the 

“res” dictionary are tests applieded by the PDF checker.It contains the actual test results as well 

as a mix of meta data. The keys that start with EGOVMON.PDF and WCAG.PDF are the test ids 

that are important, they containt the result. The “filterkeys” loops through the dictionary and 

filters out the keys that start with these strings.  

 

 

Figure 3-10. The structure of each test is displayed in this figure. 

 



43 
  

The structure of each test is displayed in figure 3-10. It returns a SOAPpy array that contains a 

dictionary with the result. The key to notice is the ‘result’ on line 21. If the value is 0 the test is a 

PASS. If the value is 1 the test represents a FAIL.  

 

 

Figure 3-11. A loop that adds variables failed and passed to the values of res[k][i][‘result]. 

 

To receive all the tests that have failed and passed, a loop is defined. The variables failed and 

passed will then be added accordingly to the values of res[k][i][‘result]’. Because the tests can 

have more than one position (for instance, a test can have res[k][0][‘result], and 

res[k][1][‘result’]), a while loop needs to be implemented. The while loop loops through all of the 

positions existing in a test.  

 

 

Figure 3-12. Total applied tests. 

The total applied tests. Just a simple addition of passed and failed.  

 



44 
  

 

 

Figure 3-13. An if statement which is created for each test. 

 

In order to represent each test with the current result, an if statement is created for each test. 

Because a test can have both failed and passed tests, two dictionary containers are defined on 

line 39 and 40 (these will be used later). On line 45 a dictionary for the test WCAG.PDF.01 is 

created. On line 55 the dictionary is updated with values such as description, id, and number of 

failed and passed tests. These values will be used in order to display the details of the result. 

The last segment of the code is to see if there were any failed tests. If there were 

(failed_WCAG01 is greater than 0), copy the dictionary for the test WCAG.PDF.01 to the list 

dictionary_failed. If not, copy it to the dictionary_passed.  

 



45 
  

 

Figure 3-14. All the data contained are returned in a list to the view in Django. 

 

Last but not least, if the key ‘result’ exists, and there were tests conducted. All of the variables, 

dictionaries and dictionary containers are returned in a list to the view in Django. If not, the 

returned value is a string named ‘passed’. 

 

3.6 Graphical user interface (GUI) 

As the employer is already satisfied with the current design on their solution, changes were 

limited and only implemented in collaboration with the employer. 

 

3.6.1 Templates 

In the Django settings.py file, it is required to add the path to the folder containing the templates 

for each application. In figure 3-15 on line 14, the path used for the template folder is displayed. 

 

 

Figure 3-15. Path to the folder containing the templates. 

 

 The “pdfchecker” application have three templates: base, index and results. The base template 

consists of the static structure obtained from the current application. The static structure would 

include the menu, header, footer, and the sub menu (figure 3-16). 

 



46 
  

 

Figure 3-16. Base template HTML output. 

 

The base template is created with a content block. Django provides this with “{% block content 

%} and “{% endblock %}”.  

 

 

Figure 3-17. Base template is created with the content block.  

 

Child templates can then easily extend the base template, and input the content in the block.  

 



47 
  

  

Figure 3-18. Extending child templates. 

 

This django function gives administrators an easy method to implement other child templates 

without having to duplicate code. The “pdfchecker” application features this method by 

extending the base template, and in a child template presenting the URL and fileupload fields in 

the content block. To use the base template, the method in Django is created in the child 

template (figure 3-18). In the “pdfchecker” application the method would be called as such: 

{%extends 'pdfchecker/base.html' %}, and then again add the “{% block content %} and “{% 

endblock %}” with the desired code between these commands.  

 

This method is also used in the authentication templates, however the base template is edited, 

and the submenu removed. This basically means that the only thing displayed in the base 

template is the header, footer, menu and the content block.  

 



48 
  

 

Figure 3-19. Base template of the application ‘authentication’ 

 

3.6.2 Static files 

To handle the static files, such as media and CSS files, django offers a path to these, which is 

configured in the settings.py file. All according images and CSS files in the Django project is 

located in the “static” folder. 

 

 

Figure 3-20. Path to the folder of the static files. 

 

To be able to call these files in a HTML template, python is needed. First of all, the static files 

need to be loaded at the top of the base HTML template, as shown in figure 3-20. After this, all 

the different static files need to be properly called from the right location, this includes all 

pictures and files. An example is shown in figure 3-21. 



49 
  

 

 

Figure 3-21. Loading the static files in a template. 

 

3.6.3 Urls 

There are several urls.py files, one for each Django project, and one for each application. The 

urls.py file in the Django project (figure 3-22) displays all URL paths, and their respective 

connections. 

 

 

Figure 3-22. Urls.py file of the project. 

 

To get an understanding of how the views are connected to the urls, the ‘pdfchecker’ urls.py file 

will be used as an example (figure 3-22) 

 

 

Figure 3-23. Urls.py file of the application ‘pdfchecker’ 

 

The url lines are built up by several attributes. At line 8, the first thing to notice is the “r’^$’”. This 



50 
  

determines the path. If it only contains a ‘$’, it will be the index template for the ‘pdfchecker’. The 

next attribute in the line, is the view function the path is connected to. In this case, it is the 

function ‘upload’, which is described later in this section. All paths also have a name attribute. 

This is used for keeping each defined url unique, to prevent any problems if the same view is 

used in different urls. 

So the path of the shown url is as following: 

pdfchecker = /pdfchecker/ 

 

3.6.4 Views 

A view in Django is a Python function that take a web request and return a web respons. The 

view is basically the core of the application, and everything connected to handling and 

displaying forms, templates and messages are handled here. The web respons can be html, 

image, lists, dictionaries or almost anything. 

 

3.6.5 The PDF Checker 

 

3.6.5.1 Forms  

Both requirement R.1 and R.14 which states that there should be possible to upload PDF files 

through URL’s and local file locations, naturally requires two fields which makes these 

operations possible. To be able to display these fields in the ‘pdfchecker’ template, they need to 

be determined in the forms.py file located in the ‘pdfchecker’ application (figure 3-24). 

 

 

Figure 3-24. Forms.py file of the application ‘pdfchecker’. 

 

As both of these fields need to be handled separately, two form objects are created. The 

‘UploadPdf’ object, contains a file field set in a variable called ‘docfile’. This field has one defined 

attribute, called label. Which naturally displays the label name to the field in the template. The 

other object, ‘UploadPdfUrl’, contains an URL field set in a variable called ‘docurl’. 



51 
  

 

3.6.5.2 View and template 

 
Figure 3-25. The first part of the views.py file in the application ‘pdfchecker’. The modules and forms are imported 
here. 

 

The first thing to do, is to import all corresponding modules, models and forms from their 

location. A function called ‘connect’ is imported from a file called server.py. 

 

 

Figure 3-26. Continuing on the views.py file, the first part of the function is displayed. The forms are factored into 
‘formsets’ and data and files are requested. 

 

Inside the function upload(), the first thing that is done, is the creation of FormSet, which makes 

it possible to handle several forms at once. Both the form ‘UploadPdf’ and the database model 



52 
  

‘handle_UploadPdf’ are stored in formsets in line 25 and 26. This is done early on so they can 

be displayed in the template properly. On line 29, the if-statement activates if a ‘POST’ is 

requested, and both data and files are requested from the from the file and URL fields.  

 

 

Figure 3-27. Checks if the URL is valid and creates a timestamp. Data is sent to the server.py file. 

 

If the URL is valid (data was inputted in the URL field by user). The data is then extracted and 

saved in a variable called ‘url_input’. On line 48 the ‘url_input’ is sent to a function called 

connect in the server.py file. The function will either return a string with ‘passed’ or a list with 

dictionaries that contain the result.  

 

 

Figure 3-28. If the data returned is passed, the rendered template will be ‘result_success.html. 

 

If the returned value is ‘passed’ the context will not contain result, and the rendered template will 

be ‘result_success.html’.  

 



53 
  

 

Figure 3-29. If result is returned, the rendered template will be result_failed.html.  

 

If the list with dictionaries is returned the context will be timestamp, result from connect(), and 

formURL, and the rendered template will be result_failed.html.  

 

 

Figure 3-30. ‘result_failed.html’ template is displayed. 

 

The result_failed.html template interface is displayed in figure 3-30. 



54 
  

 

 

Figure 3-31. HTML extracted from the current solution with applied, failed and passed tests. 

 

The html is extracted from the current solution. This corresponds to the Applied Tests in the 

result_failed.html template. In order to display the total number of applied, failed and passed 

tests, a for loop goes through result, and extracts the correct value in the list. In position [0] in 

the list from the function connect(), a dictionary with these values are defined.    

 

 

Figure 3-32. A for loop goes through the URLs in the handles. 

 

 

The same principle occurs for the formset file, however, in order to receive the url of the 

uploaded pdf file a loop must be created and go through the urls of the handle, 

‘handle.docfile.url for handle in handles’. The context and response is similar to the formURL, 

and will therefore not be explained.  



55 
  

 

To satisfy requirement R19, which asks for information regarding donations to the firm, based on 

a set amount of visits to the site, we have designed a cookie function. This function is 

implemented in the upload view, and is shown in figure 3-33. 

 

 
Figure 3-33. Cookie function which is in affect after the ‘upload’ function displays the index template. 

 

As shown, the function is activated when the user is redirected to the /pdfchecker/ containing 

the upload forms. First of all, a ‘page_visits’ cookie is created, which contains an INT, this is set 

to 0 as default. On to line 79, if the ‘last_visit’ cookie exists, the data from this cookie is 

requested, and the value is sent to a python datetime object. On line 85 the ‘last_visit_item’ 

variable which contains the datatime object, is compared to the datetime.now. If there has been 

more than a day since the last visit, we add one to the ‘page_visits’ cookie, and then update the 

‘last_visit’ cookie. 

 



56 
  

If the ‘page_visits’ cookie is less than 100, the donate information is displayed through the 

Django framework messages. Now less than a 100 visits does not really makes sense, but this 

is just for showing how the function works. The administrator is free to change this to a number 

which makes more sense, and also add donate information which is suitable. 

On to line 93, if there never were a ‘last_visit’ cookie to begin with, this is created. Then the data 

is returned to the user, updating the cookies properly. 

3.6.6 Authentication 

 

3.6.6.1 Forms 

To be able to both handle the register and login forms displayed in the Database section of this 

document, and meet requirement R.10, we need a view and forms with according functions. The 

register fields which is the same as in models.py showed in the database section are defined in 

the forms.py file, as shown in figure 3-34. 

 

Figure 3-34. Forms.py file from the ‘authentication’ application. 

At the top of this file we import django standard forms to be able to define what we want. Then 

we also import the object User from the already defined models in django.contrib.auth and the 

‘UserCreationForm’ form from django.contrib.auth.forms. The User_Information class from 

models.py is also imported. 

 

At line 5 we define the class which will contain the forms we wish to represent in the registration 

template. The ‘UserCreationForm’ is given as an argument here to ensure that the passwords 

fields is displayed as they should, and that the hashing of the passwords, which is done in the 

view, works properly. 

 



57 
  

On to line 8, a Meta class is defined. In this class, the model is defined as the User object, and 

we have included all the usual attributes in the fields. The password fields does not need to be 

defined as they are part of the ‘UserCreationForm’. It is possible to extend the fields with other 

attributes if needed. 

 

3.6.6.2 View and template 

 

Figure 3-35. Views.py file from the ‘authentication application. This file handles the register forms, and saves the 
input user data to the databse. 

Over to the view.py file shown in figure 3-35, first of all, we need to import the User_Form class 

from forms, so we can use this in the view. This is done at line 8. 

Then, a function called register is created. In line 12, we request the context and save it in the 

variable “context”.. If the request method is ‘POST’, the data entered in the fields in the template 

will be requested and saved in the variable “user_form”, as shown on line 15. On line 17 the 

django function ‘is.valid()’ checks if the form contains valid data, if it does it uses the .save() 

function to successfully save the data to the database. Then, on line 21, the password entered 

by the user is hashed for security reasons. And the object gets updated. Now, after all this is 



58 
  

finished the user receives a success message which outputs that the process is finished and the 

user registered successfully.  

 

When this function is called all the data are as mentioned save in the database. It is now 

possible to use this data in other functions. All data are also displayed in the admin interface, 

which is covered later in this section. 

Now if the request method never was ‘POST’ from the start, the user is redirected to the register 

template which contains the user form. To be able to display this, a variable called “user_form” is 

created, this contains all the fields specified in the forms.py file. This variable also has to be 

represented in the template itself. 

 

 

Figure 3-36. Register template which displays the register attributes. 

On line 37, the user_form is displayed. The “.as_p” connected to the variable, determines how 

the form is displayed. In this case the form is displayed as paragraphs in HTML. Another thing 

that is important to notice in this figure, is the “csrf_token”. This is a middleware provided by 

django to ensure that cross site forgery does not happen. It is implemented in all the forms we 

have made so far, and it’s important to ensure that this is also used in any future forms. 

 



59 
  

As an example to how this data can be used, we have also made a login function which 

compares the data input and redirects the user to the pdfchecker, as shown in figure 3-37. 

 

Figure 3-37. A function also in the views.py file from the application ‘authentication’. Input data is compared to 
database data. 

.On line 40, we request the context into a variable as usual. Then the function checks if the 

request method is ‘POST’, if it is, the username and password data are both obtained from the 

login form. Then a variable is made containing ‘TRUE’ or ‘FALSE’ depending on the obtained 

data is correct. This variable uses the Django middleware ‘authenticate’ 7to perform this 

operation. Then the function checks if we have a user object, and then if this object is active. 

This is also an implemented Django function. How to activate and deactivate accounts are 

covered in the admin interface section of this document. Now, if the user is active, the user logs 

in and is redirected back to the ‘pdfchecker’ template. If the user is disabled, they will be 

redirected and a response explaining the problem will be shown. The user will also be made 

aware of any invalid login details, which then also formats the fields, making them blank. If the 

                                                 
7 https://docs.djangoproject.com/en/dev/topics/auth/ 



60 
  

request was never a ‘HTTP POST’ in the first place the user is redirected to the login.html 

template, displaying the login fields (figure 3-38). 

By logging in, the user’s ID gets saved in the session, and from here it is possible to make 

further use of this session. This is described in the 3.6.2 section. 

 

Figure 3-38. The login template from the ‘authentication’ application. 



61 
  

The major thing to notice here compared to the other templates, is that the fields are just regular 

HTML fields. This is because we really only want to compare the data put in these fields to the 

data in the database. Other than that, this is just a regular template with a ‘POST’ form. 

 

3.7 Users 

 

To meet requirement R.10, which require several different roles of users. Each with defined set 

of permissions, Django provides an admin interface which covers all of these. As stated in the 

requirement, there were also the question about shown statistics. The group has unfortunately 

not been able to focus on this, but there are plenty of room for developing this further, by using 

the various options described in this section in combination with Django packages who focus on 

retrieving statistics. 

 

3.7.1 Handle users through the admin interface 

 

To be able to understand the easiest way to manage users, an introduction to the admin 

interface is required. First of all, we have activated the admin interface through the several steps 

described in the django documentation. This includes, marking it as active in the 

‘INSTALLED_APPS’ section in the settings.py file, and also including it in the urls.py file for the 

Django project. The interface is accessible through the path /admin/. 

After users have registered through the register portal, the interface provides a wide range of 

options regarding user management.. First of all, to be able to log in to the admin interface, an 

active user with a superuser status is required. To create one manually without interacting with 

the admin interface, it is possible to do so through the CMD/Terminal windows. The following 

command will start the superuser prompt: ‘python manage.py createsuperuser’. 

Logging in with a active superuser account will display the two sections, ‘user’ and groups’. The 

‘groups’ sections does not contain any data at this point, but it is possible to create groups 

manually in the interface and connect different users to these.  



62 
  

 

Figure 3-39. The user section in the Django admin interface. 

An example of the user section is displayed in figure 3-39. There are several functions included 

here. The admin can do searches, defining part of or the whole of user attributes. It is also 

possible to filter by user status. If the admin want to add users manually, it is possible to do so 

by pressing the ‘Add user’ button, here a username and password has to be defined to create 

the user successfully. The action bar at the top over the ‘Username’ provides a delete function 

which will delete all the users marked in the checkbox. If any of the usernames are clicked on, a 

new window appears, with more options, as shown in figure 3-40. 

 

 

Figure 3-40. Changing user information in the Django admin interface. 



63 
  

Here, all personal info about the account is stored. And it is also possible to do various changes 

to these. The most important section to notice here are ‘Permissions’. By checking or 

unchecking these boxes, the administrator decides if the user is active or not, or if it has a staff 

or superuser status. There are also several options not included in figure 3-40, where the 

administrator can pinpoint the user permissions, such as adding timestamps, sessions and so 

on. 

 

3.7.2 Further development with users 

 

Backtracking to the login section, there are several uses of the saved session. One example of 

its uses is shown in figure 3-41.  

 
Figure 3-41. An example on of a function which checks if a user is logged in. 

Here, a logged_in function is made. Let us assume that this example is connected to the 

/pdfchecker/ path in urls.py. Now, the Django authenticate framework will check if the user 

session is ‘TRUE’, if it is not a ‘HttpResponse’ message will be shown to the user informing 

about the required authentication. If the user is already logged in, a redirect to the /pdfchecker/ 

path will automatically happen. These views can be connected to the urls patterns in the urls.py 

file as a addition to the already defined views. 

 

Now, this doesn’t mean that it is required to make whole functions to restrict access. It is also 

possible to restrict access to content in templates, by doing the following showed in figure 3-42. 

 
Figure 3-42. An example of how to hide content from users who are not logged in. 

 

The Django authentication middleware is used as the statement on line 1 in the example. 

 



64 
  

 

3.7.3 Further Development with the PDF-checker 

To increase the user experience, and the effectiveness of the application, it is possible to allow 

the users to upload several PDF files in one instance. This can be done by using a javascript 

jQuery function, which clones the fields by interacting with an OnClick-button. The javascript 

function itself, would look like something displayed in figure 3-43. 

 

Figure 3-43. Javascript function which can be used to duplicate forms. 

When implementing this in the ‘pdfchecker’ index template, the javascript code should look like 

something presented in figure 3-44. 

 

Figure 3-44. Adding the javascript function in a template. 

The ‘add_more’ should be replaced with the button that activates this function. At the 

‘cloneMore’ the ‘div’ name is set for ‘table’, this should be replaced with the div name were the 

forms are duplicated. An example of how the forms should be displayed in a template is shown 

in figure 3-45. 



65 
  

 

Figure 3-45.An example on how the forms should be displayed when using the javascript function. 

 

The ‘management_form’ at line 1, is used to keep track of all the additional forms that are 

created. If this is not included, a validation flag will be raised. By making a for-loop, the forms 

are displayed properly when cloned. This is also needed to be able to extract the data from the 

forms properly. 

 

4.0 Test report 
 

4.0 Test report ............................................................................................................................................ 65 

4.1 Preface .............................................................................................................................................. 65 

4.1.2 Requirements and connected tests ............................................................................................... 66 

4.1.3 Testing under development ....................................................................................................... 67 

4.2 Test phases ........................................................................................................................................ 67 

4.2.1 Test phase one (T1) .................................................................................................................... 68 

4.2.2 Test phase two (T2) .................................................................................................................... 68 

4.2.3 Test phase three (T3) ................................................................................................................. 69 

4.3 Conclusion ......................................................................................................................................... 69 

 

4.1 Preface 
Quality assurance, goals of testing 
 
To ensure that every requirement is met, the group will conduct several tests. Each test will 

consist of checking a predetermined set of requirements. Considering this, the group will mark 

each requirement with test numbers which are connected to each test. 

 

The test are divided into these phases: 



66 
  

T1 = Regular testing of functionality. 

T2 = Comparison testing to the current application.  

T3 = Testing the requirements to see if they meet the WCAG requirements. 

 

4.1.2 Requirements and connected tests 

 

User functionality 

R.1: The end user should be able to upload PDF-documents or link to documents online T.1, T.2 

R.2: The application shall list the detected barriers found in the PDF documents T.1, T.2 

R.3: The application GUI should follow WCAG guidelines T.3 

R.4: The application shall refer to the WCAG guidelines when presenting the detected barriers 

T.1, T.2, T.3 

R.5: The user should be given a structured list of the detected barriers T.1, T.3, T.4 

R.6: The user interface of the PDF-checker should be easy to use for end users, and should not 

require any training prior to interaction with the application T.3 

R.7: Administrators should be able to access statistics collected by the PDF-checker T.2 

 

System functionality 

R.8: The system code should be written efficient and performance optimized, and the 

application should be as fast or faster than the existing solution T.1, T.2 

R.9: The PDF-checker should be developed according to selected coding standards and easy to 

maintain for administrators T.1, T.2 

R.10: The system should provide an authentication and access control mechanism to match 

logins to specific users roles. This should include a regular user, a reporter role who can access 

statistics, and an admin role, or superuser with all privileges T.1, T.2 

 

System properties 

R.11: The system should not have any browser or platform specific dependencies, and should 

work the same way regardless of client details T.1 

R.12: The system should be secure against malicious PDF files uploaded by the user, and 

should reject these if they contain exploits or any code that can harm the system T.1 

 

New functionality 



67 
  

R.13: The user should be able to upload multiple PDF files and  check these simultaneously, 

where a single test run will return test results for each selected file T.1, T.2 (Requirement left 

out) 

R.14: The system should prevent the user from uploading the same document multiple times 

during the same check to prevent unnecessary traffic to the server T.1 (Requirement left out) 

R.15: The user should be able to insert multiple URLs and check these simultaneously T.1, T.3 

(Requirement left out) 

R.16: The user interface should support multiple languages T.1, T.3 (Requirement left out) 

R.17: The application should support accessibility tools such as screen readers T.1, T.2, T.3 

R.18: The application should provide suggestions on how to remove any detected barriers T.1, 

T.3 

 

Additional 

R.19: Continuous use of the application should trigger a mechanism where the system informs 

the user about how they can contribute to further development through donations or payed 

services T.1 

 

4.1.3 Testing under development 
 

While developing the new solution, we tested the application regularly to ensure that 

everything worked properly. To discover errors and get feedback on these, the implemented 

debug function in django were set to ‘TRUE’. Django returns information about the found 

errors, and refers to the file and line where the errors were found. This is an effective way to 

fix discovered errors. However, the information regarding some of these errors were not as 

self-explanatory as we hoped. Even though we looked in the Django documentation for an 

in depth explanation, it did not seem like the problem had any connection to the provided 

information. When encountering these, we quickly solved the problems by researching for 

questions asked related to the errors on sites such as stack overflow. 

4.2 Test phases 

Test one (T1), will cover all the regular functions of both the ‘pdfchecker’ and ‘authentication’ 

application. When checking the PDF-checker, we will ensure that the forms are shown properly, 

and that the links to the PDF documents are sent properly to the backend. The results retrieved 

from the backend shall be shown accordingly in the GUI. 



68 
  

 

Test two (T2) covers comparing the groups solution to the already existing solution. This to 

ensure that the new solution is as good or better as the existing one, in forms of interacting with 

the GUI and also the speed of checking the PDF. 

 

Basically, test three (T3), is done just to ensure that all the regular WCAG 2.0  guidelines are 

met.  

 

4.2.1 Test phase one (T1) 

When doing the regular testing of the ‘pdfchecker’ application, we used a set of different PDF-

files to ensure that all the results were presented in the way we wanted them to. One of the 

PDF-files were set up in such a way that all of the available tests in the backend were done.  

 

To check that everything regarding the ‘authentication’ application worked properly, we 

registered several different users and then proceeded to try logging in with them. When 

performing this testing, we encountered a problem. After registering users, it was not possible to 

log in with them. When checking the admin interface for clues, it seemed like the users were 

registered properly.. But when investigating further, the password did not get hashed as it 

should when registering. After researching the problem in the Django documentation and on the 

web, a solution to it was found. By not using the password fields implemented in the ‘User’ 

object and rather use the built in authentication form ‘UserCreationForm’, which contains 

password fields as default, the problem was solved. 

 

Both of the applications have been tested in all the major browsers; Chrome, Firefox, Internet 

Explorer, Opera and Safari. 

 

To ensure that all related Django and Python code is easy to understand and maintain, 

comments have been used as a tool to explain how code works. 

 

4.2.2 Test phase two (T2) 

In general the current solution compared to the groups, is very similar in ways of design. So 

when interacting with the GUI the results provided was satisfactory. But as the GUI is not yet 

entirely finished, the testing of this is limited. 



69 
  

 

To ensure that the application is as fast or faster than the current application, we tested both 

application with different PDF-files, and timed the response time. The result showed that the 

response on the new application were very similar to the current application. 

 

4.2.3 Test phase three (T3) 

To be able to determine if the current application meet the WCAG 2.0 guidelines, a series of 

websites offers a tool where the user input a URL to the site which will be checked. And then 

outputs the errors found and refer to related WCAG 2.0 guidelines. 

In good spirit, we chose the Page Checker provided by the employer. At first we had several 

errors in both the ‘authentication’ and the ‘pdfchecker’ applications, but these were quickly 

resolved. In the end, the only error we were left with, were a label error which we believe is an 

error we cannot do anything with considering it has something to with the Django middleware 

used to display the fields. 

4.3 Conclusion 

All of the test phases have provided us with results which we have used to improve both of the 

application. And have also ensured that requirements like R.3, R.8 and R.11 have been 

successfully met. A test phase where users would be involved, is something that was planned in 

minor detail early in the project, but as the project came to an end, there was no time for this. It 

would surely have been useful in regard to user feedback, leaving information which could have 

been used to improve the application. 

 

5.0 User manual 
 

5.0 User manual .......................................................................................................................................... 69 

6.0 Sources .................................................................................................................................................. 73 

 

 

This manual will help users get started with Tingtun Accessibility Checker, and how it can be 

used to check the accessibility of PDF-documents. We have tried to make it as short and 

concise as possible. 

 



70 
  

The first thing seen when opening the PDF checker is a screen that look like this: 

 

Figur 5-1. The index of the PDF-checker. 

When this screen is displayed, the options of inserting either a URI or uploading a PDF are 

available. 

This field allows you to insert a web address. If the PDF document you wish to 

check exist somewhere on the internet, you can choose this option to type in or copy the 

address to that document.  



71 
  

If the user rather want to check a PDF file that is stored on a personal 

computer, the secondary option here allows the user to choose among the files stored locally on 

a hard drive. When clicking “Browse” a window will open. From here navigate to the folder 

where the PDF-file is stored, select it and click “Open” to complete this step. 

Finally, when either step or is completed the 

test can be run by clicking the “Check” button next to the chosen option. 

This will take you to a new page that shows you the result of the tests 

 



72 
  

 

Figur 5-2. Result page of the PDF-checker. 

The result will include information about the number of tests applied to the 

document selected, and show the ratio between the number of tests that passed and failed. 



73 
  

Here you can find a list of each test that was applied to the document. Each of 

these can be selected to display information about why this test was passed or failed, and if it 

was the latter, it is possible to get more information on how to improve the content to solve this. 

 

 

6.0 Sources 

Django tutorial 
 

http://www.tangowithdjango.com/ 
https://docs.djangoproject.com/en/1.6/ref/contrib/csrf/ 
 

Python 
 

https://wiki.python.org/moin/ForLoop 
https://docs.python.org/2/tutorial/controlflow.html#the-range-function 
http://www.tutorialspoint.com/python/python_while_loop.htm 
 

StackOverflow: 
 

http://stackoverflow.com/questions/10902340/multiple-file-upload-django 
http://stackoverflow.com/questions/501719/dynamically-adding-a-form-to-a 

djangoformsetwith-ajax 
http://stackoverflow.com/questions/23722209/djang-admin-interface-invalid-password 

format-or-unknown-hashing-algorithm 
http://stackoverflow.com/questions/22958250/upload-file-through-url-in-django 

http://stackoverflow.com/questions/23564252/need-the-uploaded-file-in 
django?noredirect=1#comment36173977_23564252 
 

Timestamp: 
 
http://www.cyberciti.biz/faq/howto-get-current-date-time-in-python/ 
https://docs.djangoproject.com/en/dev/topics/i18n/timezones/ 
 

Javascript 
 

http://jsfiddle.net/hQ7y5/ 
http://api.jquery.com/hide/ 
 

http://www.tangowithdjango.com/
https://docs.djangoproject.com/en/1.6/ref/contrib/csrf/
https://wiki.python.org/moin/ForLoop
https://docs.python.org/2/tutorial/controlflow.html#the-range-function
http://www.tutorialspoint.com/python/python_while_loop.htm
http://stackoverflow.com/questions/10902340/multiple-file-upload-django
http://stackoverflow.com/questions/501719/dynamically-adding-a-form-to-adjangoformsetwith-ajax
http://stackoverflow.com/questions/501719/dynamically-adding-a-form-to-adjangoformsetwith-ajax
http://stackoverflow.com/questions/23722209/djang-admin-interface-invalid-passwordformat-or-unknown-hashing-algorithm
http://stackoverflow.com/questions/23722209/djang-admin-interface-invalid-passwordformat-or-unknown-hashing-algorithm
http://stackoverflow.com/questions/22958250/upload-file-through-url-in-django
http://stackoverflow.com/questions/23564252/need-the-uploaded-file-indjango?noredirect=1#comment36173977_23564252
http://stackoverflow.com/questions/23564252/need-the-uploaded-file-indjango?noredirect=1#comment36173977_23564252
http://www.cyberciti.biz/faq/howto-get-current-date-time-in-python/
https://docs.djangoproject.com/en/dev/topics/i18n/timezones/
http://jsfiddle.net/hQ7y5/
http://api.jquery.com/hide/


74 
  

Tools: 
 

http://www.putty.org/ 
http://www.tylerbutler.com/2012/05/how-to-install-python-pip-and-virtualenv-on-windows-

with-powershell/ 
https://pypi.python.org/pypi/pip 
http://winscp.net/eng/index.php 
http://notepad-plus-plus.org/ 
http://komodoide.com/komodo-edit/ 
 

From Wikipedia: 
 

http://en.wikipedia.org/wiki/E-Government 
http://en.wikipedia.org/wiki/Markdown 
http://en.wikipedia.org/wiki/Graphical_user_interface 
 

Youtube: 
 

https://www.youtube.com/watch?v=3DccH9AMwFQ (part 1-10) 
https://www.youtube.com/watch?v=4Mf0h3HphEA&list=PLEA1FEF17E1E5C0DA 
 

Other: 
 

http://www.techrepublic.com/blog/web-designer/effective-design-principles-for-web-
designers-repetition/ 

http://www.w3.org/Provider/Style/URI 
 

http://www.putty.org/
http://www.tylerbutler.com/2012/05/how-to-install-python-pip-and-virtualenv-on-windows-with-powershell/
http://www.tylerbutler.com/2012/05/how-to-install-python-pip-and-virtualenv-on-windows-with-powershell/
https://pypi.python.org/pypi/pip
http://winscp.net/eng/index.php
http://notepad-plus-plus.org/
http://komodoide.com/komodo-edit/
http://en.wikipedia.org/wiki/E-Government
http://en.wikipedia.org/wiki/Markdown
http://en.wikipedia.org/wiki/Graphical_user_interface
https://www.youtube.com/watch?v=3DccH9AMwFQ
https://www.youtube.com/watch?v=4Mf0h3HphEA&list=PLEA1FEF17E1E5C0DA
http://www.techrepublic.com/blog/web-designer/effective-design-principles-for-web-designers-repetition/
http://www.techrepublic.com/blog/web-designer/effective-design-principles-for-web-designers-repetition/
http://www.w3.org/Provider/Style/URI

