
____________________________ 
 

           SIMSCRIPT III
                   3-D Graphics Manual 

____________________________ 
 
 
 

 

 

 

 
                CACI  
 
 
 
 
 
 
 
 
 
 
 
 



 ii

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Copyright © 2010 CACI Products Company. 
 
All rights reserved.  No part of this publication may be reproduced by any means without written 
permission from CACI. 
 
For product information or technical support contact: 
 
CACI Products Company 
1455 Frazee Road, Suite 700 
San Diego, CA 92108 
Phone: (619) 881-5806 
Email: simscript@caci.com 
 
The information in this publication is believed to be accurate in all respects.  However, CACI cannot 
assume the responsibility for any consequences resulting from the use thereof.  The information contained 
herein is subject to change.  Revisions to this publication or new editions of it may be issued to incorporate 
such change. 
 



Table of Contents 
Table of Contents................................................................................................................ 3 
Preface................................................................................................................................. 5 
1. Introduction................................................................................................................. 7 

1.1 A Typical 3d Graphics Program ............................................................................... 8 
1.2 Example code for a typical 3d graphics program ................................................... 10 
1.3 Class hierarchy........................................................................................................ 12 

2. The “scene-graph” ........................................................................................................ 14 
2.1 The “3dworld” ........................................................................................................ 14 
2.2 Setting the location of a node.................................................................................. 15 
2.3 Setting the orientation of a node ............................................................................. 16 
2.4 Shifting the position of a node ................................................................................ 17 
2.5 Rotating a node ....................................................................................................... 17 
2.4 Scaling a node ......................................................................................................... 18 
2.5 Complete Scene-graph example ............................................................................. 18 
3.1 Camera location and orientation ............................................................................. 22 
3.2 Setting up the viewing plane................................................................................... 24 
3.3 Adding a 3dcamera to the scene-graph................................................................... 25 
3.4 Viewports and multiple cameras............................................................................. 26 
3.5 Tracking a moving object with the 3dcamera......................................................... 27 

4. Lighting up a scene-graph............................................................................................. 31 
4.1 Determining the “variety” of lighting ..................................................................... 31 
4.2 Ambient, Diffuse and Specular light ...................................................................... 32 
4.3 Setting up the lighting using the 3dlight ................................................................. 34 

5. Loading graphics files via Models................................................................................ 37 
5.1 Reading in the 3dmodel from a file ........................................................................ 37 
5.2 Linking a 3dmodel instance to a 3dnode instance .................................................. 37 
5.4 Copying the scene-graph of a 3dmodel .................................................................. 38 
5.5 Locating named sub-components ........................................................................... 39 
5.6 Deriving from sub-components .............................................................................. 39 
5.7 Misc. 3dmodel options............................................................................................ 43 

6. Geometry....................................................................................................................... 45 
6.1 Using the 3dgraphic class. ...................................................................................... 45 
6.2 Surface geometry .................................................................................................... 46 
6.4 Surface appearance ................................................................................................. 53 
6.5 Surface texture mapping ......................................................................................... 54 
6.6 Drawing points and lines ........................................................................................ 57 
6.7: Drawing points....................................................................................................... 60 
6.8 Text ......................................................................................................................... 62 

Bitmapped fonts ........................................................................................................ 63 
6.9 Updating the graphic............................................................................................... 65 
6.8 Classes with retained geometry .............................................................................. 66 

7. Surfaces, Textures and Materials.................................................................................. 67 
7.1 Setting the color and shininess of a surface ............................................................ 67 
7.2 Texture mapping and raster images ........................................................................ 68 

 3



7.3 Front and back side visibility.................................................................................. 71 
7.4 Using instances of 3dmaterial................................................................................. 72 
8. User Input.................................................................................................................. 75 
8.1 Mouse, keyboard and window frame interaction.................................................... 75 
8.2 Mouse events .......................................................................................................... 76 

Value ......................................................................................................................... 76 
Value ......................................................................................................................... 76 
Value ......................................................................................................................... 77 
Value ......................................................................................................................... 77 
Value ......................................................................................................................... 77 

8.3 Keyboard input........................................................................................................ 79 
8.4 Selecting a node in the scene-graph........................................................................ 80 

9. Animation and Simulation ............................................................................................ 84 
9.1 Frame Based Animation ......................................................................................... 84 
9.2 Time scaling............................................................................................................ 84 
9.3 Automatic motion and the motion_set.................................................................... 85 
9.4 Moving Car Example.............................................................................................. 86 
9.5 Achieving customized motion ................................................................................ 87 

10. 3d Class reference ....................................................................................................... 93 
3dbox (lineage: 3dbox -> 3dshape -> 3dgraphic -> 3dnode)........................................ 93 
3dcamera (lineage: 3dcamera -> 3dnode)..................................................................... 93 
3dcone (lineage: 3dcone -> 3dshape -> 3dgraphic -> 3dnode) .................................... 95 
3dcylinder (lineage: 3dcylinder -> 3dshape -> 3dgraphic -> 3dnode) ......................... 95 
3dellipse (lineage: 3dellipse -> 3dshape -> 3dgraphic -> 3dnode)............................... 95 
3devent (lineage: 3devent -> gui.m:guievent) .............................................................. 96 
3dfaces (lineage: 3dfaces -> 3dgraphic -> 3dnode)...................................................... 97 
3dgraphic (lineage: 3dgraphic -> 3dnode).................................................................. 102 
3dlight (lineage: 3dlight -> 3dnode) ........................................................................... 105 
3dlines (lineage: 3dlines -> 3dgraphic -> 3dnode) ..................................................... 106 
3dmaterial ................................................................................................................... 108 
3dmodel....................................................................................................................... 110 
3dnode......................................................................................................................... 113 
3dpoints (lineage: 3dpoints -> 3dgraphic -> 3dnode)................................................. 118 
3drectangle (lineage: 3dshapes.m:drectangle -> 3dshape -> 3dgraphic -> 3dnode) .. 119 
3dshape (lineage: 3dshapes.m:3dshape -> 3dgraphic -> 3dnode) .............................. 120 
3dsphere (lineage: 3dsphere -> 3dshape -> 3dgraphic -> 3dnode)............................. 120 
3dtext (lineage: 3dtext -> 3dgraphic -> 3dnode) ........................................................ 120 

Bitmapped fonts ...................................................................................................... 121 
3dwindow (lineage: 3dwindow -> gui.m:guiitem) ..................................................... 122 
3dworld ....................................................................................................................... 124 

 4



Preface 

 
This document contains information on  CACI's new SIMSCRIPT III, Modular Object-
Oriented Simulation Language, designed as a superset of the widely used SIMSCRIPT II.5 
system for building high-fidelity simulation models.  It focuses on the description of the 
SIMSCRIPT III 3-D Graphics. 
 
CACI publishes a series of manuals that describe the SIMSCRIPT III Programming 
Language, SIMSCRIPT III Object - Oriented  2-D and 3-D Graphics  and SIMSCRIPT III 
development environment SimStudio. All documentation is available on SIMSCRIPT  WEB 
site http://www.simscript.com/products/simscript_manuals.html 
 
 

• SIMSCRIPT III  3-D Graphics Reference Manual  — this manual – is  a detailed 
description of the SIMSCRIPT III 3-D graphical objects available in 3d.m module.  
 
• SIMSCRIPT III User’s Manual  –  A detailed description of the  SIMSCRIPT III 
development environment: usage of  SIMSCRIPT III Compiler and the symbolic 
debugger from the SIMSCRIPT development studio,   Simstudio,  and from the  
Command-line interface.   

 
• SIMSCRIPT III Programming Manual –  A short description of the programming 
language and a set of programming examples. 

 
• SIMSCRIPT III Reference Manual - A complete description of the SIMSCRIPT III 
programming language constructs in alphabetic order. Graphics constructs are 
described in the SIMSCRIPT III Graphics Manual. 
 

Since SIMSCRIPT III is a superset of SIMSCRIPT II.5, a series of manuals and text books  
for SIMSCRIPT II.5 language, Simulation Graphics, Development environment, Data Base 
connectivity, Combined Discrete-Continuous Simulation, can be used for additional 
information: 
 

• SIMSCRIPT II.5 Simulation  Graphics  User’s Manual  — A detailed description of 
the  presentation graphics  and animation environment for SIMSCRIPT II.5   
 
• SIMSCRIPT II.5 Data Base Connectivity (SDBC) User’s Manual  — A description 
of the SIMSCRIPT II.5  API for Data Base connectivity using ODBC  
 
• SIMSCRIPT II.5 Operating System Interface   — A description  of  the SIMSCRIPT 
II.5  APIs for Operating System Services   
 
• Introduction to Combined Discrete-Continuous Simulation  using SIMSCRIPT II.5 
— A description  of SIMSCRIPT II.5 unique capability for modeling combined 
discrete-continuous  simulations.  

 
• SIMSCRIPT II.5 Programming Language — A description of the programming 

 5

http://www.simscript.com/products/simscript_manuals.html


techniques used in SIMSCRIPT II.5. 
 
• SIMSCRIPT II.5 Reference Handbook — A complete description of the 
SIMSCRIPT II.5 programming language, without graphics constructs. 

 
• Introduction to Simulation  using SIMSCRIPT II.5 — A book: An introduction to  
simulation  with  several  simple SIMSCRIPT II.5 examples.  
 
• Building Simulation Models with SIMSCRIPT II.5 —A book:  An introduction to 
building simulation models with SIMSCRIPT II.5 with examples. 

 
The SIMSCRIPT  language and its implementations are proprietary software products of the 
CACI Products Company. Distribution, maintenance, and documentation of the SIMSCRIPT  
language and compilers are available exclusively from CACI. 
 
 
Free Trial Offer 
 
SIMSCRIPT III is available on a free trial basis. We provide everything needed for a 
complete evaluation on your computer. There is no risk to you. 
 
Training Courses 
 
Training courses in SIMSCRIPT III are scheduled on a recurring basis in the following 
locations:  
 
San Diego, California 
Washington, D.C. 
 
 
On-site instruction is available. Contact CACI for details. 
 
For information on free trials or training, please contact the following: 
 
 

                                                                        
CACI Products Company                                                
1455 Frazee Road, suite 700                                               
San Diego, California 92108                                             
Telephone: (619) 881-5806                                               
 www.simscript.com                                                                                                        
                                                                                                                                                                                     

 

 

 6



1. Introduction 

 
The Simscript III 3d graphics package is an object-oriented wrapper around the OpenGL 
toolkit.   The public preamble 3d.m.sim contains the basic class descriptions that allow 
the programmer to create windows containing 3d graphical scenes.  “Camera” and “light” 
objects can be created to implement realistic scenes in an object-oriented fashion.  
 
Hierarchical scene-graphs allow the programmer to specify graphical objects (called 
“nodes”) as containing other objects (positioning and orientation of a “container” node 
will automatically affect the position and orientation of the sub-nodes it contains.  Each 
node in the scene graph represents a visible graphic in the window.   The node is 
implemented with the 3dnode class.    
 
In order to see the nodes in the scene-graph a “Camera” is necessary.  Each 3d program 
must create at least one camera and orient it properly in order to view the scene-graph.  
Multiple cameras are allowed, and there viewports can be overlapped or tiled on the 
canvas of a 3d window.  A camera can also be attached as part of a scene-graph allowing 
it to move or rotate with its parent node.  A 3dcamera class implements the camera. 
 
Multiple light sources are allowed in a Simscript 3d graphics program.  A “Light” can be 
created a positioned and oriented with respect to the scene.  Light objects are also part of 
the scene-graph and are implemented using the 3dlight class. 
 
A “Model” represents a specific shape that can be displayed multiple times in the same 
window at different locations and orientations.  Methods of this class allow geometry and 
properties for various surfaces and lines to be specified.  “Graphic” items are attached to 
the scene-graph that reference “model” objects.  Models are implemented with the 
3dmodel class. 
 
A “Material” provides a covering of 3d surfaces. The material can have a distinct color 
and shininess.  Texture mapping is supported via the material object.  The texture is 
stored in a 2d raster image file such as a Windows Bitmap or (“.BMP”) file or a Targa 
Graphics file (“.TGA”).  2d Coordinates specified with the 3d vertices identify the 
position in the raster image file that is to map to the surface.  Surface materials are 
implemented with the 3dmaterial class. 
 
A “Graphic” is a node in the scene-graph that provides the base class for all visible 3d 
objects whose geometry is defined at runtime.  Sub-classes of the graphic object are 
provided that support various types of lines and surfaces.  The graphic object can also be 
sub-classed and its “draw” method overridden.  This allows customized surface types to 
be created and rendered by the application. The graphic is implemented with the 
3dgraphic class. 
 
The “World” is used as the root of the scene-graph.  Several worlds can appear in the 
same window allowing such things as control panels, graphs, heads up displays, or any 

 7



other such visual aids that are separate from the 3d scene, but appear in the same window.  
Graphics in multiple worlds will not interleave but overlap regardless of the distance 
from viewer.  The 3dworld class is used to implement a world. 
 
Nodes contained in the scene can have animated motion that is linked to elapsing 
simulation time.   
 

1.1 A Typical 3d Graphics Program 
 

A typical 3d graphical simulation will display many graphical objects, which may or may 
not be moving with respect to simulation time.  Light sources and cameras must be 
created.  To create such a program, the following steps should be performed: 
 

1) Write customized drawing code (if necessary). 
a) Define sub-classes of 3dgraphic in the preamble and override the “draw” 

method. 
b) In the implementation of “draw” make calls to begin_drawing and 

end_drawing.   
c) Between begin_drawing and end_drawing, make calls to 3dgraphic class 

methods to define the vertices, normal vectors, texture coordinates and 
materials of the shape. 

 
2) Write event handling code (if necessary). 

a) If keyboard input, mouse input, or window resize handling is needed, 
define in the preamble a subclass of 3dwindow and override its “action” 
method. 

b) Implement the “action” method by writing code to inspect the attributes of 
the “3devent” instance passed as its argument and perform the necessary 
processing. 

  
3) Create windows and worlds. 

a) For each window that is needed, create an instance of a 3dwindow object.  
Call methods to set size, position and title. 

b) Create instances of the 3dworld object.    Usually only one world is 
needed, unless you are implementing a control panel, heads up display, or 
the application requires multi-layered graphics.   

c) File 3dworld instances into the “world_set” owned by the 3dwindow 
object. 

d) If a hierarchy (or groupings of objects) is needed, create instances of the 
3dnode object. File them into the node_set owned by the 3dworld in which 
they are to be used.  They can otherwise be filed into the node_set owned 
by another node. 

 
4) Create camera(s) 

a) For each view of the scene, create an instance of a 3dcamera object. 

 8



b) Set the location and orientation of the camera so that it is some distance 
from the scene, but is pointing at the scene.  If necessary, call other 
methods to customize the view. 

c) File instances into the “camera_set” owned by the 3dworld showing the 
view. 

d) A 3dcamera can also be attached to a 3dnode allowing its position and 
orientation to be determined by the parent node.  If necessary, the 
3dcamera object can ALSO be filed into a “node_set”.  

 
5) Create light(s) (if necessary). 

a) For each light illuminating the scene, create an instance of a 3dlight 
object. 

b) Set the location of the light appropriately.  For spot lights it may be 
necessary to set the orientation also. 

c) File instances into the “light_set” owned by the 3dworld showing the 
view. 

d) A 3dlight can also be attached to a 3dnode allowing its position and 
orientation to be determined by the parent node.  If necessary file the light 
into a “node_set”.  

 
6) Create models (if necessary). 

a) For each unique model that is used in the 3dworld, create a instance of a 
3dmodel object.   

b) If the model geometry is stored in a 3dStudio (.3ds) file, a AutoCAD 
(.dxf) file or a SIMGRAPHICS II (.sg2) file, call the “read” method to 
read the file.   

c) File each 3dmodel instance in the “model_set” owned by the 3dworld. 
 

7) Create materials. 
a) Create an instance of a 3dmaterial object for each unique color or texture 

used in the program.  (Materials defined offline (in a .3ds file) are created 
automatically when 3dmodel’read is called.)   

b) Set the color, shininess, and texture_name attributes. 
c) File each 3dmaterial instance into the “material_set” owned by 3dworld. 

 
8) Create other graphical objects for the simulation. 

a) Create instances of sub-classes of 3dgraphic such as 3dfaces, 3dlines, 
3dpoints, to represent objects in the simulation.  Create instances of the 
subclasses of 3dgraphic described in step 1. 

b) Create instances of 3dnode to represent a model on-screen.  Assign the 
“model” attribute so that the 3dnode will draw this model at its location. 

c) Some objects may have a “material” attribute that needs to be assigned.   
d) File these instances into the “node_set” owned by the 3dworld, or by 

another 3dnode. 
 

9) Call the display method of the 3dwindow.  This will show the window. 

 9



 
10)  Before starting the simulation, activate the “3dwindow’animate” method.  This 

method will keep refreshing the window as often as possible as the simulation 
runs.  Don’t forget to set “timescale.v”. 

 

1.2 Example code for a typical 3d graphics program 
 
''Example of a initializing a 3d graphics application 
''Requires ford.3ds model file 
preamble including the 3d.m subsystems 
   begin class my_window 
      every my_window is a 3dwindow and  
         overrides the action 
   end 
 
   define the_car as a 3dnode reference variable 
end 
 
''2) Write event handling code overriding the 3dwindow'action method 
method my_window'action(event) 
   if id(event) = 3devent'_close 
      stop 
   always 
   if id(event) = 3devent'_key_down 
      select case key_code(event) 
         case 3devent'_right_key 
            call rotate_y(the_car)(2) 
         case 3devent'_left_key 
            call rotate_y(the_car)(-2) 
         case 3devent'_up_key 
            call rotate_x(the_car)(2) 
         case 3devent'_down_key 
            call rotate_x(the_car)(-2) 
         case 3devent'_home_key 
            call move(the_car)(0.0, 0.0, 5.0) 
         case 3devent'_end_key 
            call move(the_car)(0.0, 0.0, -5.0 ) 
         default 
      endselect 
   always 
 
   return with 0 
end 
 
main 
   define window as a my_window reference variable 
   define world as a 3dworld reference variable 
   define camera as a 3dcamera reference variable 
   define light as a 3dlight reference variable 
   define model as a 3dmodel reference variable 
 
   ''3) Create windows, worlds, and groups 

 10



   create window 
   let title(window) =  
        "Use the arrow, home, and end keys to move the model" 
   create world 
   file this world in world_set(window) 
 
   ''4) create camera(s) 
   create camera 
   call set_orientation(camera)(0.0, 0.0, -1.0, 0.0, 1.0, 0.0) 
   call set_location(camera)(0.0, 0.0, 100.0) 
   file this camera in camera_set(world) 
 
   ''5) create light(s) 
   create light 
   let ambient_color(light) = color'rgb(0.4, 0.4, 0.4) 
   let diffuse_color(light) = color'rgb(1.0, 1.0, 1.0) 
   call set_location(light)(0.0, 500.0, 500.0) 
   file this light in light_set(world) 
 
   ''6) create model(s) 
   create model 
   call read(model)("ford.3ds", "") 
   file this model in model_set(world) 
 
   ''7) create material(s) 
   ''(materials for this example are created automatically when 
   '' model is read) 
 
   ''8) create objects used in the simulation 
   ''   a) Create instances of 3dnode to represent the model on-screen.   
   ''   Assign the "model" attribute to link the model to the 3dnode. 
   create the_car 
   let model(the_car) = model 
   file this the_car in node_set(world) 
 
   ''9) Call the display method of the 3dwindow.   
   ''This will show the window. 
   call display(window) 
 
   ''10) Before starting the simulation, activate the 3dwindow’animate 
   ''method.  This method will keep refreshing the window as often as 
   ''possible as the simulation runs.  Don’t forget to set timescale.v. 
   activate a animate(window)(10000) now 
 
   let timescale.v = 100 
   start simulation 
end 
 
 

 11



 
 Figure 1.1: Example 3d graphics program showing a 3d model of a 1963 ford 
 

1.3 Class hierarchy 
 
There are many classes that can be used to implement 3d graphics the full hierarchy for 
the ones found in the 3d.m subsystem is shown in Figure 1.2.  Figure 1.3 shows classes 
found in 3dshapes.m. 
 

 

 12



Figure 1.2: 3d.m classes 
 
 

 
Figure 1.3: 3dshapes.m classes 
 

 13



 

2. The “scene-graph” 
 
To write a SIMSCRIPT 3d graphics program, you must make use of “windows”, 
“worlds” and “nodes”.   The nodes are used to compose the hierarchy of the “scene-
graph”.  Every 3d graphics program must construct at least one scene-graph to represent 
the 3d objects and background.  Each “node” in this graph is represented with an instance 
of a 3dnode object.  The 3dnode object is filed into a node_set, which is owned by 
another “parent” 3dnode.   
 

2.1 The “3dworld” 
 
The root of a scene-graph must always be an instance of a 3dworld object.  The 3dworld 
class also owns a node_set for child nodes to be filed into.  Every 3dworld instance is 
filed into a world_set owned by a 3dwindow object.  The 3dwindow object represents 
GUI window and can be moved and resized like other windows on the computer screen.  
It can contain multiple 3dworlds and acts as the root of all scene-graphs to be displayed 
on its canvas.  Basically, the rule is that every object that is to be made visible (with the 
exception of the 3dwindow) must be filed into an appropriate set or it will not be shown.  
The figure below shows a diagram of a scene-graph. 
  

 
Figure 2.1: A typical scene graph for a tank and a battlefield. 
 
The code for creating this scene-graph would look something like this: 
 

 14



Define window as a 3dwindow reference variable 
Define battlefield, control_panel as a 3dworld reference variable 
Define tank, body, turret, housing, cannon, terrain, ground, obstacles 
  As 3dnode reference variables 
… 
create window, battlefield, control_panel 
create tank, body, turret, housing, cannon, terrain, ground, obstacles 
 
file this housing in node_set(turret) 
file this cannon in node_set(turret) 
file this turret in node_set(tank) 
file this body in node_set(tank) 
file this tank in node_set(battlefield) 
file this ground in node_set(terrain) 
file this obstacles in node_set(terrain) 
file this terrain in node_set(battlefield) 
file this battlefield in world_set(window) 
file this control_panel in world_set(window) 
 
The 3dworld also acts as a container for other objects that are employed by nodes in the 
attached scene-graph.  The table below lists the various sets owned by a 3dworld object: 
 
Set name Member Description 
camera_set 3dcamera cameras used to show the scene-graph. 
light_set 3dlight light sources in the scene. 
material_set 3dmaterial materials used by 3dnodes in the scene-graph. 
model_set 3dmodel models used by nodes in the scene-graph. 
node_set 3dnode forms the scene-graph. 
 

2.2 Setting the location of a node 
 
Properties of the 3dnode are its location and orientation.   The location_x, location_y, and 
location_y attributes represent the x, y, and z coordinates of the node’s position with 
respect to its owner node in the scene-graph.  Right-handed use of these attributes is 
allowed, but the set_location method should be used to set these attributes.  Suppose the 
simulation was to show a ferry shuttling passengers.  Some of the code that might be used 
to build the scene-graph and position the objects is: 
 
''put all passengers 'on the ferry' by filing  
''into the node set owned by the_ferry instance 
For I = 1 to 100 
    File this passenger(i) in node_set(the_ferry) 
 
''set z location of the ferry. Passengers will move with the ferry! 
let location_z(the_ferry) = 1000.0 
 
''set a passengers position with respect to ferry 
call set_location(passenger(2))(2.5, 0.0, 34.9)   
 

 15



2.3 Setting the orientation of a node 
 
The orientation of a node can be defined by 2 vectors, “forward” and “up” (See Figure 2-
2).  The forward vector indicated the direction of the local z-axis relative to the owner 
node in the scene-graph.  By default, the forward vector is (0.0, 0.0, 1.0) which would 
point a node in the same direction as its owner node.  The “up” vector is the local y-axis 
relative to the node’s owner in the scene_graph.  By default, this is (0.0, 1.0, 0.0).  The 
local x-axis is computed automatically by taking the cross product of these vectors.   
 

 
Figure 2.2: Forward and Up vectors.  (In this case the positive X axis would point away 
from the viewer). 
 
The attributes forward_x, forward_y, forward_z, up_x, up_y and up_z can be used on the 
right, but should not be assigned individually.  Both forward and up vectors must always 
be normalized and orthogonal to each other.  The set_orientation method allows both the 
forward and up vectors to be assigned.  For example, set_orientation could be used to 
point a passenger in the opposite direction of the “ferry”. 
 
Call set_orientation(passenger(2))(0.0, 0.0, -1.0, 0.0, 1.0, 0.0) 
  ''forward_x, forward_y, forward_z, up_x, up_y, up_z 
 
Another method called set_forward allows the forward direction to be specified alone, 
while the “up” vector is computed automatically.  This vector is computed in such a way 
that its projection onto the positive y-axis is maximized.  (for 3dcameras, this will prevent 
the view from tilting assuming the “floor” of the scene lies in the x-z plane)   
 
define set_forward as a method given 
      3 double arguments      ''forward_x, forward_y, forward_z 
 
Another method that may be useful for setting the orientation of a 3dnode is the aim 
method.  Calling the aim method will set the forward direction of the node so that it 
“points at” a given location.  The location should be in global coordinates; non-local to 
the 3dnode.  (The 3dworld’get_location method can be used to convert a location from 
local to global coordinates).  When aim is used on a sub-component, the (local) 
orientation (forward and up vectors) of the sub-component will be modified so that the 
sub-component points (with its positive z-axis) at the given location.  The aim method 

 16



can only be called after the 3dnode has been filed into the node_set.  Since the aim 
method uses the orientation and location of parent nodes, it should be called after all the 
location of all parent (grand-parent, etc.) nodes have been initialized. 
 
''make a passenger turn to look at a spot on the shoreline 
Call aim(passenger(2))(45000, 20.0, -20000) 
           ''target_x, target_y, target_z 
 

2.4 Shifting the position of a node 
 
The set_orientation and set_forward methods expect vectors that are oriented with 
respect to the node’s owner in the scene-graph (or the 3dworld if the 3dnode is filed in 
3dworld’node_set).  Likewise, the set_location method provides coordinates with respect 
to the coordinate system defined by node’s owner in the scene-graph.  However, in some 
cases it may be easier to position the node with respect to its own coordinate system.  The 
move method will shift the position of a node by a movement right, up and forward with 
respect to its own axes.  The node’s location will be moved along its local x-axis, y-axis, 
and z-axis by the three given values. 
 
''move passenger(2) 10 units forward 
call move(passenger(2))(0.0, 0.0, 10.0) 
                      ''dx, dy, dz 
 

2.5 Rotating a node 
 
It is also possible to “spin” a 3dnode on one of its three local axes.  The rotate_x, 
rotate_y, and rotate_z methods will do just that.  Each method takes an angle (in degrees) 
as an argument and spins the 3dnode by that amount about the local (not owner) axis.  
These methods are similar to the move method in that they take “delta” values instead of 
absolute values.  For example, if an airplane is pointed forward along its positive z axis, 
call the rotate_x method will pitch up or down.  In this case the local Y and Z axes are 
rotated, but the X axis will remain unchanged.  Calling the rotate_y method will yaw 
about its y axis.  Calling the rotate_z method will “roll” the airplane. 
 
define rotate_x, rotate_y, rotate_z as method given 
   1 double argument       ''angle in degrees 
  
The local axes of a node are rotated with the node itself.  For example, in Figure 10, a 
box is first rotated about the z-axis the moved by 100.0 units in the “Y” direction (up). 
 

 17



 

 
Figure 2.3: Calling rotate_z followed by move. 
 

2.4 Scaling a node 
 
The scale method will modify size of the node.  A scaling factor is provided for each axis 
and, as with move and rotate scaling is performed along the local axes.  Each axis is 
scaled by the given scale factor (a value of  “1.0” will not change the axis).  Consider a 
process method to simulate an animated explosion.  The scale method is called in a loop 
to animate the size change of the explosion.  The wait statement allows a small amount of 
time to elapse. 
 
Process method explosion'explode 
   define I as a integer variable 
   for i = 1 to 100 
   do 
      call scale(1.1, 1.1, 1.1) ''sx, sy, sz (width, height, depth) 
      wait 0.1 units 
   loop 
end 
 

2.5 Complete Scene-graph example 
 
In the following example, a scene-graph will be created showing some traffic cones and a 
tank.  The tank will maneuver through the cones as the simulation runs. 
 
Preamble including the 3d.m, 3dshapes.m subsystem 
   begin class tank  
      every tank is a 3dnode and has 

 18



         a speed, 
         a spin_rate, 
         a movement process method, 
         overrides the motion 
      define speed, spin_rate as double variables 
   end 
   define window as a 3dwindow reference variable 
end 
 
process method tank'movement 
   define spin, forward as double variables 
   define _spin_speed = 20, _forward_speed=2 as constants 
 
   open unit 1 for input, name is "example2.dat" 
   use unit 1 for input 
 
   let eof.v = 1 
   while eof.v = 1 and visible(window) <> 0 
   do 
      read spin, forward  
 
      '' rotate the tank 
      let spin_rate = _spin_speed * sign.f(spin) 
      wait abs.f(spin) / _spin_speed units 
      let spin_rate = 0 
 
      ''move the tank forward 
      let speed = _forward_speed 
      wait abs.f(forward) / speed units 
      let speed = 0.0 
   loop 
 
   close unit 1 
end 
 
''our motion method will be called automatically as simulation time 
''advances 
method tank'motion(dt) 
   call 3dnode'motion(dt) 
   call rotate_y(dt * spin_rate) 
   call move(0.0, 0.0, dt * speed) 
end 
 
main 
   define world as a 3dworld reference variable 
   define camera as a 3dcamera reference variable 
   define light as a 3dlight reference variable 
   define tank_model, cone_model as a 3dmodel reference variable 
   define background as 3dnode reference variables 
   define the_tank as a tank reference variable 
   define cones as a 2-dim 3dnode reference variable 
   define _num_rows_cones=11, _num_cols_cones=11 as a constant 
   define i,j as an integer variable 
    
   ''create the window 
   create window 
   let title(window) = "Example 2: using a simple 3dnode scene-graph"  
 
   ''create the world 
   create world 
   file this world in world_set(window) 
 
   ''create camera, place it along positive z axis but 

 19



   ''point it down the negative z direction 
   create camera 
   call set_perspective(camera)(90.0, 1.0, 5.0, 115.0, 1) 
   call set_forward(camera)(0.0, 0.0, -1.0) 
   call set_location(camera)(0.0, 4.0, 60.0)   
   file this camera in camera_set(world) 
 
   ''create a light source and point it in the same direction as the camera 
   create light 
   call set_forward(light)(0.0, 0.0, -1.0) 
   file this light in light_set(world) 
 
   ''create a background node to hold the objects 
   create background 
   file this background in node_set(world) ''add to "root" of scene-graph 
 
   ''create the one model for the tank 
   create tank_model 
   call read(tank_model)("tank.3ds", "") 
   file tank_model in model_set(world) 
 
   ''create the tank node 
   create the_tank 
   let model(the_tank) = tank_model 
   file the_tank in node_set(world)  ''add to "root" of scene-graph 
   file the_tank in motion_set 
 
   ''create the model for the cone 
   create cone_model 
   call read(cone_model)("cone.3ds", "") 
   file this cone_model in model_set(world) 
 
   ''create many cones and space them out 
   reserve cones as _num_cols_cones by _num_rows_cones 
   for i = 1 to _num_rows_cones 
      for j = 1 to _num_cols_cones 
      do 
         create cones(i,j) 
         let model(cones(i,j)) = cone_model  ''cones share the same model 
         call set_location(cones(i,j))(i * 10 - 55.0, 0.0, j * 10 -55.0) 
         file this cones(i,j) in node_set(background) ''add node to scene-graph 
      loop 
 
   call display(window)  ''bring up the main window and show everything 
 
   activate a movement(the_tank) now       ''our process method 
   activate a animate(window)(10000) now   ''tell window to show animation 
   let timescale.v = 10     ''10/100 real seconds per unit of time 
 
   start simulation   
end 

 
 

 20



Figure 2.4: Example 2 – A tank maneuvering through traffic cones.

 21



3. Cameras and Lights 
 
Every 3d graphics program must have at least one camera to view the scene-graph.  A 
“light” is also needed to illuminate the scene-graph.  Cameras are implemented with the 
“3dcamera” class while lights are represented by the “3dlight” class.  Basically, setting 
up each camera involves: 
 

a. Creating an instance of a 3dcamera object. 
b. Set the location and direction of the camera so that the scene-graph will be in 

view by calling 3dcamera’set_location and 3dcamera’set_forward. 
c. Set the view angle, aspect ratio, and near and far clipping planes by calling 

3dcamera’set_perspective. 
d. Set the portion of the window canvas that the view from the camera should 

encompass by calling 3dcamera’set_viewport.  
e. File the camera in the camera_set owned by the 3dworld that the camera is to see. 
f. If the camera is to be part of the scene-graph, file it into the node_set owned by a 

parent 3dnode. 
 
As an example, the initialization code for the camera in the above “example #2 is as 
follows: 
 
   ''create camera, place it along positive z axis but 
   ''point it down the negative z direction 
   create camera 
   call set_perspective(camera)(90.0, 1.0, 0.1, 1000.0, 1) 
   call set_forward(camera)(0.0, 0.0, -1.0) 
   call set_location(camera)(0.0, 4.0, 60.0)   
   file this camera in camera_set(world) 

 

3.1 Camera location and orientation 
 
Since the 3dcamera is derived from 3dnode, it inherits the methods that allow orientation 
and position to be specified.  These methods are: 
 
set_location(x,y,z)   
   ''sets the location_x, location_y and location_y attributes.  If 
   ''the camera is attached to a scene-graph, this location is with 
   ''respect to the parent node. 
set_orientation(fx, fy, fz, ux, uy, uz)   
   ''set the forward vector <fx,fy,fz> and the up vector <ux,uy,uz> 
set_forward(fx,fy,fz) 
   ''sets the forward vector <fx,fy,fz>.  The camera will “point” in  
   ''this direction 
aim(x,y,z) 
   ''causes the camera to point at the given target location.   
   ''The target location is specified in global “world” 
   ''coordinates 
rotate(ax,ay,az,degrees) 
      ''rotates the camera about the given axis by the given number  
   ''of degrees. 

 22



rotate_x(degrees), rotate_y(degrees), rotate_z(degrees) 
   ''spins the camera about its local x, y, or z axis by the  
      ''given number of degrees 
 
 
As and example we will analyze how the view was set up in Example 2.  In this case, the 
“world” was oriented with respect to the viewer as follows: 
 

a. Its positive X axis is pointing to the right. 
b. Its positive Y axis (up vector) is pointing straight up. 
c. Its and its positive Z axis is pointing at the viewer.   

 
The default “up” vector is to point straight up, so it is not necessary to set this—in other 
words calling the set_forward method is sufficient.  If the positive Z axis is to point 
toward the viewer, the camera should point in the opposite direction, or along the 
negative Z axis. 
 
   call set_forward(my_camera)(0.0, 0.0, -1.0) 

 

 
Figure 3.1: Camera orientation for Example 2. 
 
Now that we have defined how the coordinate axes are oriented with respect to the 
viewer, the position of the camera must be specified.  But there must first be some idea of 
how big the scene-graph is in terms of coordinate space—so that we know how far away 
from the scene to place the camera from the scene.  We must also know where the scene 
is in the coordinate space.   
 
In Example 2, the scene is geographically centered at the (0,0,0) point.   And since our 
camera is pointing along the negative Z axis, it must be placed along the positive Z axis 
with respect to the scene-graph.  The scene is specified in meters.  The tank moves about 
an area which is about 100 by 100 meters and is located in the x-z plane.  Placing the 
camera about 10 meters beyond the boundaries of the lot will allow most of the scene to 
be in view.  Since the lot is centered about (0,0,0) we place the camera at z=+60.  Also, in 
order to see the traffic cones that are far away, the camera should be placed a few meters 
up in the air.   
 

 23



   call set_location(camera)(0.0, 4.0, 60.0)   

 

3.2 Setting up the viewing plane 
 
The next consideration is for setting up the camera’s projection.  Two methods are 
available for doing this: set_perspective and set_orthographic.  Usually, you will want 
to use a perspective projection.  The set_perspective method sets the cameras near and 
far clipping planes, as well as the aspect ratio of its width to height and the angle of view.   
 
define set_perspective as a method given 
   1 double argument,     ''perspective_angle > 0.0, < 180.0 degrees 
   1 double argument,     ''perspective_ratio. 
   2 double arguments,    ''perspective_near, perspective_far 
   1 integer argument     ''perspective_autosize 

 

 
Figure 3.2: Using the set_perspective method. 
 
The perspective_angle parameter is specified in degrees and represents that angle of the 
field of view in the y direction (see figure 3.2).  The perspective_ratio is the ratio of the 
width of the viewing plane to its height.  Values below 1.0 will cause the image to appear 
compressed vertically.  perspective_ratio values greater than 1 will compress the view 
horizontally.  However, if the perspective_autosize parameter is “1”, the perspective ratio 
will be determined based on window canvas size.  In this case the perspective_ratio 
argument will be ignored.  Basically, turning on the perspective_autosize will avoid 
“compressing” the scene either vertically or horizontally regardless of how the user sizes 
the window. 
 
For setting up the camera in Example 2, a perspective angle of 90 degrees is a good start.  
The camera is located at z+60 with the nearest edge of the parking lot at z+50 meters.  A 
near clipping plane of +5 is adequate.  The farthest edge of the lot is at z-50 meters, a 
distance of 110 meters.  The far clipping plane of +115 will allow the entire lot and tank 
to be seen.  To avoid distorting the aspect ratio, we will pass “1” to the 
perspective_autosize argument. 
 
call set_perspective(camera)(90.0, 1.0, 5.0, 115.0, 1) 

 24



 
The use of the set_orthographic method is not common.  When viewing an orthographic 
projection, there is no depth information provided.  In other words, an object that is far 
away from the camera will be rendered to be the same size as when it is close to the 
camera.  The arguments to set_orthographic define the clipping volume—or the 
coordinate boundaries of the box that encloses everything that we want to view.   These 
units are relative to the location of the camera.  
 
define set_orthographic as a method given  
   2 double arguments,    ''left,   right 
   2 double arguments,    ''bottom, top 
   2 double arguments,    ''far,    near 
   1 integer argument     ''1=> adjust size automatically after window resize 
 
 

 
Figure 3.3: Using the set_orthographic method. 
 
 

It would be possible to modify Example 2 to use an orthographic transformation.  The 
call to “set_perspective” is replaced with a call to the “set_orthographic” method.  To 
simplify things we will place the camera in the center of the parking lot and allow it to 
“see” 50 meters to its left, its right, its front and its back.   
 
create camera 
call set_orthographic(camera)(-50, 50, 0, 100, -50, 50, 1) 
call set_location(camera)(0.0, 0.0, 0.0)   
call set_forward(camera)(0.0, 0.0, -1.0) 
file this camera in camera_set(world) 

 

3.3 Adding a 3dcamera to the scene-graph 
 
Since the 3dcamera object is derived from 3dnode it can optionally be part of the scene-
graph.  If a camera is filed into the node_set owned by a parent node, it will move and 
rotate with the parent automatically.   If for example you wanted to see the view out of 
the locomotive of a moving train, the 3dcamera object could be filed into the node_set of 
the locomotive’s 3dnode.  The camera would then be located and oriented with respect to 

 25



the locomotive and not the ground.  This would naturally show the view from the train as 
it moves and turns along its track. 
 
Suppose we wanted to modify Example 2 to show the view from the “tanks” perspective 
instead of a static view from the parking lot.  Adding the following code after the tank is 
created could do this: 
 
file camera in node_set(the_tank) 
call set_location(camera)(0.0, 4.0, 0.0) ''location relative to tank’s center 
call set_forward(camera)(0.0, 0.0, 1.0) ''point camera in same dir. as tank 
 

(Example 3 contains the code to do this). 
 

3.4 Viewports and multiple cameras 
 
By default, the view seen by each camera will encompass the entire canvas of the 
window to which it is attached.  However, the set_viewport method may be called to 
assign a rectangular box to which the view is mapped.   
 
 
define set_viewport as a method given 
   2 integer arguments,    ''x, y in pixels. 
   2 integer arguments,    ''width, height pixels.  
   1 integer argument      ''1=>size viewport to window canvas  

 
The dimensions of the view are given in pixels with (0,0) located at the lower left corner 
of the window canvas (see Figure 3.4).  Having viewports enables the use of multiple 
camera objects.  The view from each camera can be mapped into a separate area of the 
canvas. 
 
 

 
Figure 3.4: Using the set_viewport method. 
 
Since the viewport dimensions are specified in pixels, in order to know what the width 
and height parameter values to set_viewport should be we usually need to know the 

 26



dimensions of the window canvas.  This can be obtained by reading the canvas_width 
and canvas_height attributes of the 3dwindow class.  Unfortunately these values are not 
updated until the window becomes visible.  Therefore the window must be displayed 
before the viewports are initialized. 
 
The last parameter to the set_viewport method is a flag to indicate if the viewport 
dimensions should be automatically adjusted as the window is resized.  The viewports are 
modified so that they occupy the same percentage of window space after the resize 
operation.  As such, if zero is passed for this flag and the user resizes the window to make 
it very small, part of the viewport may disappear. 
 
Suppose that we want to modify Example 2 to show the view from multiple camera 
objects.  We will create a second camera and attach it to the tank itself.  The view from 
the tank is to appear on the left side of the canvas while the view from the parking lot 
appears on the right side.  Basically we will be setting up each camera as in Example 2, 
but will be adding the code  
 
call set_viewport(tank_camera)(0, 0, canvas_width(window)/2, 
   canvas_height(window), 1) 
 
call set_viewport(lot_camera)(canvas_width(window)/2, 0,  
   canvas_width(window)/2, canvas_height(window), 1) 
 

 

3.5 Tracking a moving object with the 3dcamera 
 
Another attribute of the 3dcamera called tracked_node can be assigned allowing the 
camera to automatically “track” or point at another node in the scene-graph.  In other 
words, the tracked node will always appear in the center of the camera’s viewport 
regardless of its position.  As the node is tracked, the camera will align its local “up” 
vector with the global Y axis  (in order to keep the view from “tilting”).  Example 2 can 
easily be modified to allow the camera to track the moving tank by adding one line of 
code: 
 
   Let tracked_node(lot_camera) = the_tank 

 
 
The fully “updated” version of  Example 2 (which we call call Example 3) is below: 
 
''Example 3, updated 'tank' program 
Preamble including the 3d.m, 3dshapes.m subsystem 
   begin class tank  
      every tank is a 3dnode and has 
         a speed, 
         a spin_rate, 
         a movement process method, 
         overrides the motion 
      define speed, spin_rate as double variables 
   end 
   define window as a 3dwindow reference variable 

 27



end 
 
process method tank'movement 
   define spin, forward as double variables 
   define _spin_speed = 20, _forward_speed=2 as constants 
 
   open unit 1 for input, name is "example2.dat" 
   use unit 1 for input 
 
   let eof.v = 1 
   while eof.v = 1 and visible(window) <> 0 
   do 
      read spin, forward  
 
      '' rotate the tank 
      let spin_rate = _spin_speed * sign.f(spin) 
      wait abs.f(spin) / _spin_speed units 
      let spin_rate = 0 
 
      ''move the tank forward 
      let speed = _forward_speed 
      wait abs.f(forward) / speed units 
      let speed = 0.0 
   loop 
 
   close unit 1 
end 
 
''our motion method will be called automatically as simulation time 
''advances 
method tank'motion(dt) 
   call 3dnode'motion(dt) 
   call rotate_y(dt * spin_rate) 
   call move(0.0, 0.0, dt * speed) 
end 
 
main 
   define world as a 3dworld reference variable 
   define tank_camera, lot_camera as 3dcamera reference variables 
   define light as a 3dlight reference variable 
   define tank_model, cone_model as a 3dmodel reference variable 
   define background as 3dnode reference variables 
   define the_tank as a tank reference variable 
   define cones as a 2-dim 3dnode reference variable 
   define _num_rows_cones=11, _num_cols_cones=11 as a constant 
   define i,j as an integer variable 
    
   ''create the window 
   create window 
   let title(window) =  
    "Example 3: Using cameras to show different views of the same scene"  
   call display(window)  ''display the window now so that we know the  
                         ''size of the canvas! 
   ''create the world 
   create world 
   file this world in world_set(window) 
 
   ''create a light source and point it in the same direction as the camera 
   create light 
   call set_forward(light)(0.0, 0.0, -1.0) 
   file this light in light_set(world) 
 
   ''create a background node to hold the objects 

 28



   create background 
   file this background in node_set(world) ''add to "root" of scene-graph 
 
   ''create the one model for the tank 
   create tank_model 
   call read(tank_model)("tank.3ds", "") 
   file tank_model in model_set(world) 
 
   ''create the tank node 
   create the_tank 
   let model(the_tank) = tank_model 
   file the_tank in node_set(world)  ''add to "root" of scene-graph 
   file the_tank in motion_set 
 
   ''create the "tank" camera.  It will be attached to the tank's 3dnode 
   ''so that it will show the view out of the tank 
   create tank_camera 
   call set_perspective(tank_camera)(60.0, 1.0, 0.1, 115.0, 1) 
   call set_forward(tank_camera)(0.0, 0.0, 1.0) 
   call set_location(tank_camera)(0.0, 4.0, 0.0)   
   call set_viewport(tank_camera)(0, 0, canvas_width(window)/2,  
       canvas_height(window), 1) 
   file tank_camera in camera_set(world) 
   file tank_camera in node_set(the_tank) 
 
   ''create the "lot" camera, place it along positive z axis but 
   ''point it down the negative z direction 
   create lot_camera 
   call set_perspective(lot_camera)(60.0, 1.0, 0.1, 115.0, 1) 
   call set_forward(lot_camera)(0.0, 0.0, -1.0) 
   call set_location(lot_camera)(0.0, 4.0, 60.0)   
   call set_viewport(lot_camera)(canvas_width(window)/2, 0, 
      canvas_width(window)/2, 
      canvas_height(window), 1) 
   file this lot_camera in camera_set(world) 
 
   ''make the lot_camera "track" the tank 
   let tracked_node(lot_camera) = the_tank 
 
   ''create the model for the cone 
   create cone_model 
   call read(cone_model)("cone.3ds", "") 
   file this cone_model in model_set(world) 
 
   ''create many cones and space them out 
   reserve cones as _num_cols_cones by _num_rows_cones 
   for i = 1 to _num_rows_cones 
      for j = 1 to _num_cols_cones 
      do 
         create cones(i,j) 
         let model(cones(i,j)) = cone_model  ''cones share the same model 
         call set_location(cones(i,j))(i * 10 - 55.0, 0.0, j * 10 -55.0) 
         file this cones(i,j) in node_set(background) ''add node to scene-graph 
      loop 
 
   activate a movement(the_tank) now       ''our process method 
   activate a animate(window)(10000) now   ''tell window to show animation 
   let timescale.v = 10     ''10/100 real seconds per unit of time 
 
   start simulation   
end 
 

 

 29



 
Figure 3.5: Example 3, Tank program updated to include two viewports and tracking. 
 

 30



4. Lighting up a scene-graph 
 
As all objects in the scene-graph as smooth-shaded, light source(s) are needed to apply 
the shading.  A light source can be added to the 3dworld by creating one or more 
instances of a 3dlight object.  The 3dlight class is derived from 3dnode and can reside in 
in a scene-graph much the same way that a 3dcamer can.  Lights are positioned and 
oriented using methods inherited from 3dnode.   
 

4.1 Determining the “variety” of lighting 
 
In addition, the 3dlight class adds a variety attribute which defines the characteristic 
nature of the light source.  The three varieties are _directional, _positional, and _spot: 
 
Value for variety  Description 
3dlight’_directional Light has no fixed position, but emanates uniformly from a 

single direction.  The set_forward method can be used to set 
the direction vector.  The set_location method has no effect.  
This light is useful for mimicking sunlight, or light from a far 
away source.  This is the default variety of 3dlight. 

3dlight’_positional Light emanates uniformly in all directions from a single 
source.  The set_location method can be used to set the 
location of the source. 

3dlight’_spot This variety has both direction and positional characteristics.  
It is shown as a cone of light emanating from a fixed point 
(set_location method) and traveling in a certain direction 
(set_forward method)   The spot_cutoff attribute is used to set 
the angle (in degrees).  See figure 4.1. 

 

 
Figure 4.1: The spot_cutoff attribute 
 
A good example of the use of “positional” lighting would be the SIMSCRIPT III 
“parking lot” demo.   This program sets up a parking lot simulation at night.  Lamp-posts 
are positioned at strategic locations around the parking lot.  A 3dlight object is located at 

 31



the top of each lamp-post.  The variety attributes are assigned the 3dlight’_positional 
value.  The cars are illuminated from different angles and from different light sources as 
they move through the lot, which creates a realistic effect (See Figure 4.2). 
 

 
Figure 4.2: Three positional lights used in the parking lot demo. 
 

4.2 Ambient, Diffuse and Specular light 
 
When light strikes the surface of an object, it is reflected based upon the properties of the 
surface material, and on the normal vector of the surface in relation to the light’s 
direction.  Surface normals can be specified along with the geometry of a shape and this 
is described later.  For now we will assume that the program will be using a 3dmodel that 
specifies the correct normal vectors for each surface.  For each 3dlight we can define how 
it interacts with the surface that is reflecting it.  Relative amounts of ambient, diffuse and 
specular light can be specified by assigning the ambient_color, diffuse_color and 
specular_color attributes.  These types of light are described below: 
 

 32



Ambient 
This type of light is non-directional and non-positional (location and orientation is 
ignored).  Ambient light will illuminate all surfaces ignoring normal vectors.  The 
ambient term is used simply to keep shadows from turning pitch black. The 
relative intensity of ambient light can be set by assigning the ambient_color 
attribute to an rgb value returned from the gui.m:color’rgb class method.  If less 
ambient light is required, darker colors should be used.  For example, setting 
ambient_color to color’rgb(0.25, 0.25, 0.25) will provide a 1/4th intensity of 
ambient light. 
 

Diffuse 
Diffuse light is reflected from a surface in all directions.  The amount of reflected 
light is determined by the “diffuse” color of surface material (see 3dmaterial).  
Rough surfaces should have a relatively bright diffuse_color  attribute.  Both 
diffuse and specular light allows objects to be shaded based on surface normal 
vectors.   Surface elements with normals pointing at the light source will be 
illuminated while surfaces with normals orthogonal to the light source’s direction 
will not.  The diffuse_color attribute determines the color and intensity of diffuse 
light. 

 
Specular 

Specular light is reflected from a surface in mostly one direction.  Shiny surfaces 
reflect more of the specular light than rough surfaces.  The amount of reflected 
light is determined by the “specular” color of surface material (see 3dmaterial).  
Surface elements with normals pointing at the light source will be illuminated 
while surfaces with normals orthogonal to the light source’s direction will not.  
The specular_color attribute determines the color and intensity of this light. 

 
 
All color related attributes defined in the 3d.m subsystem are specified in terms of an rgb 
triple.  This is an integer returned from the “color’rgb” class method which is found in 
the gui.m subsystem.  The color’rgb class function takes three double parameters as the 
percentage of RED, GREEN, and BLUE in the color (all in the range [0,1]).   Predefined 
colors are defined in the color class also.  For example, to set specular color to a 
particular shade of yellow: 
 
Let specular_color(my_light) = color'rgb(0.9, 0.9, 0.0) 

 
Or to set specular color to red: 
 
Let specular_color(my_light) = color'_red 

 
The witnesses effect of the light striking a 3d object and reflecting into the camera 
depends on the ambient, diffuse and specular colors attributes of not only the 3dlight but 
also of the 3dmaterial (which represents the surface properties of the object, and is 
described later).  If specular (shiny) effects are to be seen, usually both the material and 
light must have a high degree of specular color.  Figure 4.3 shows how specular light can 

 33



affect the appearance of a surface.  The scene is illuminated with a directional light from 
above (I.e. set_forward(0.0, -1.0, 0.0) and with the specular_color attribute of the 3dlight 
set to color’_white.  As far as the toruses go,  the ambient and diffuse color for all is set 
to a shade of purple or color'rgb(0.8, 0.4, 0.7).  However, the specular_color attribute for 
toruses on the right is greater that those on the left.   
 
 

 
Figure 4.3: Objects on the left have more specular color and appear shiny. 
 

4.3 Setting up the lighting using the 3dlight 
 
To summarize, setting up lighting involved the following set of steps: 
 

a. Create instance(s) of a 3dlight object. 
b. Optionally set the location the direction of the light using the set_location  and 

set_forward methods inherited from 3dnode. 

 34



c. Set the type of light by assigning the variety attribute.  (_positional, _directional, 
_spot). 

d. Assign the ambient_color, diffuse_color,  and specular_color  attributes in 
accordance with the desired properties. 

e. File the 3dlight object instance into the light_set owned by the 3dworld that will 
contain the light. 

f. Optionally file the light into a node_set if it is to be attached to an object in the 
scene-graph.  

 
In examples 2 and 3 above, a single directional light source is used.  The light is pointed 
away from the viewer—along the negative Z axis by calling the set_forward method.  (If 
the light were to be directed along the positive Z axis, the objects in the foreground 
would be “back-lit” and difficult to see).  The default ambient, diffuse and specular color 
attributes are used. 
  
   ''create a light source and point it in the same direction as the camera 
   create light 
   call set_forward(light)(0.0, 0.0, -1.0) 
   file this light in light_set(world) 
 

We can make the lighting more interesting in this example by creating a “spot” variety 
light and automatically pointing it at the tank as it moves around.   For the spot light, a 
new class called tank_spotter is derived from 3dlight.  To achieve the automated 
tracking, the motion method is overridden.  (This method is described later – it is called 
automatically as simulation time is updated).  The code to declare the subclass of 3dlight 
is: 
 
begin class tank_spotter 
   every tank_spotter is a 3dlight 
      and overrides the motion 
end 

 
The implementation code for motion is: 
 
method tank_spotter'motion(dt) 
   ''point the light at the tank 
   call aim(location_x(the_tank), location_y(the_tank), location_z(the_tank)) 
end 

 
To initialize the light its variety attribute is assigned to spot and we must provide its 
location.  Also, since a spot light is being used, we should define the spot_cutoff 
attribute—it will be set to 15 degrees.  Lastly, in order for the light’s motion method to be 
called automatically, it must be filed into the motion_set (described later). 
 
''create the tank_spotter light and position it near the camera 
create light 
let variety(light) = 3dlight'_spot 
let spot_cutoff(light) = 15  ''degrees-defines the light cone 
call set_location(light)(0.0, 6.0, 60.0) 
file this light in light_set(world) 
file this light in motion_set 

 

 35



 
Figure 4.4: Using a spot light to track the tank. 

 36



5. Loading graphics files via Models 
 
3d dimensional objects are easily maneuvered using the SIMSCRIPT 3d graphics 
functionality, but creating three dimentional cars, tanks, and airplanes by program code 
can be a long process.  For this reason, it is much easier to load predefined objects from a 
graphics file format such as Autodesk’s “3ds”.  These 3d graphics can be created using a 
3d “point and click” editor, or can be purchased online.  In any case, SIMSCRIPT 3d 
graphics supports the loading of two well known 3d graphics file formats – 3ds and dxf. 
  

5.1 Reading in the 3dmodel from a file 
 
The 3d surfaces and geometry shown in the 3dworld can be defined in one of two ways.  
The 3dgraphic and its subclasses allow the application to specify the geometry and 
materials and runtime.  The 3dmodel class allows the surfaces and materials to be loaded 
from a file.  Basically, a single instance of a 3dmodel is created for each separate 3d file.  
The read method loads the contents of the file creating surfaces and materials, which are 
saved in memory.   
 
define read as a method given 
   1 text argument,    ''file name including .3ds, .dxf, .sg2 extension 
   1 text argument     ''name of model in the file (.sg2 files only) 
 
The first argument specifies the name of the file.  Currently, the file must be in either 
autodesk 3dStudio or  “.3ds” format (the extension is required), AutoCAD dxf format, or 
SIMGRAPHICS II “.sg2” format.  For .sg2 files, the name of the model within the file is 
provided in the second argument.   Also, each 3dmodel instance must be filed into a 
model_set owned by the 3dworld, which will show the model.   
 
From Example 1, we load the model of the 3d car from the file named “ford.3ds” as 
follows: 
 
define model as a 3dmodel reference variable 
. . . 
create model 
call read(model)("ford.3ds", "") 
file this model in model_set(world) 
 

5.2 Linking a 3dmodel instance to a 3dnode instance 
 

 37



The 3dmodel class is not derived from 3dnode and therefore cannot be shown in a 
window directly.  The 3dmodel instance can be assigned to the model attribute of a 
3dnode.  This will provide a link from the image of the 3dmodel to the 3dnode.   Many 
instances of 3dnode can reference the same 3dmodel instance.  This scheme allows a 
single model to be drawn in different locations and orientations in the world.  (See Figure 
5-1). 
 
 

 
Figure 5.1: Three 3dnode instances using the same model of a jet. 
 

5.4 Copying the scene-graph of a 3dmodel 
 
In some cases, the application may require individual images of a 3dmodel to appear 
differently.  In this case the same model cannot be shared—each image is different and 
requires its own separate scene-graph.  For example, if many “tanks” were to be 
displayed, each turret will have a different orientation.  In this case, instead of assigning 
the model attribute, the 3dnode’load method would be called.  This method will make 
copies of each sub-component and place the nodes into the appropriate node_set.   
 
Define tank1, tank2, as tank reference variables 
Define the_model as a 3dmodel reference variable 
 
Create tank1, tank2, the_model 
File the_model in model_set(the_world) 
File tank1 in node_set(the_world) 
File tank2 in node_set(the_world) 
Call read(the_model)("tank.3ds", "")  
Call load(tank1)(the_model)    
Call load(tank2)(the_model) 
 
 

 38



 
Figure 5.2: Calling the load method instead of assigning the model attribute. 
 

5.5 Locating named sub-components 
 
Models may be designed in the 3d editor to have well defined components.  In the 
previous example, the ‘tank’ model has a component that was named “turret1” in the 
editor for the purpose of being rotated indepedantly with respect to the tank.  The turret 
sub-component may in turn have a ‘gun’ sub-component.  The application may need 
access to these sub-components at runtime (i.e. rotate the turret, move the gun in and out 
when it fires, etc).  If sub-components like this are defined in the graphics editor, they 
will be preserved when model is loaded in the application.  The node_set owned by the 
3dmodel will contain these components.  Both the 3dnode and 3dmodel classes define a 
find method that can be called to perform a depth-first search for a sub-component, 
provided that the component has been given a name in the graphics editor.   
 
Let turret(tank1) = find(tank1)("turret1")  
Let turret(tank2) = find(tank2)("turret1") 
 

5.6 Deriving from sub-components 
 
Suppose the application wanted to represent the turret sub-component of a tank using an 
object derived from 3dnode (instead of the 3dnode base class).  In this case the 3dmodel 
would be sub-classed and its create_component method overridden.   
 
define create_component as a ''virtual'' 3dnode reference method given 
      1 text argument,         ''name of the component 
      1 text argument          ''name of required class 
''This method is called by the system during the execution of the  
''"read" method to create a new sub-node component.  
''The name given to the component in the model file 
''is provided in argument 1.  By default this method will create a  
''instance of the class named by argument 2, but can be overridden to 
''create a sub-class of arg 2. 
 

 39



Create_component is called automatically for each separate component that is created at 
the time a 3dmodel is read.  Overriding this method allows you to create and return the 
correct sub-class that should represent the component.  In the above example, 
create_component would be implemented to create and return a “turret” object if the first 
argument specified the name assigned to the turret component in the graphics editor.  See 
below. 
 
method tank_model'create_component(component_name, class_name) 
   define my_turret as a turret reference variable 
   if component_name = "turret1" and class_name = "3dnode"  
      create a turret called my_turret 
      return with my_turret 
   otherwise 
   return with 3dmodel'create_component(component_name, class_name) 
end 
       
When the 3dnode’load() method is used, it will make copies of all components in the 
model.  Individual attributes are copied by an internal call to the copy_attributes method.  
Therefore, if a component is subclassed as above, and the load method is to be used, the 
sub-class must override this method if it defines attributes that need to be copied with the 
rest of the components.  In our tank example, suppose the “turret” class defines attributes 
“azimuth” and “attitude” that are initializes in the model.  We want these values to be 
propagated when turret is copied (via the load method). 
  
Begin class turret 
   Every turret is a 3dnode and has 
     A azimuth, 
     An attitude, and  
     Overrides the copy_attributes 
   Define azimuth, attitude as double variables 
End 
 
The copy_attributes  method’s implementation would look like this: 
 
method turret'copy_attributes(node) 
   define p as a pointer variable 
   define original_turret as a turret reference variable 
 
   let p = node     ''necessary due to original prototyping 
   let original_turret = p 
 
   let azimuth = azimuth(original_turret) 
   let attitude = attitude(original_turret) 
 
   call 3dnode'copy_attributes(node) 
end 
 
 

 40



In the next example, a tank model is used that has its turret represented by a 
subcomponent called “turret1”.   Three sub-classes are defined in the preamble: 
tank_model, a subclass of 3dmodel, tank a subclass of 3dnode, and turret another 
subclass of 3dnode.  The tank_model class will override create_components to create 
and instance of a turret object when “turret1” is passed as the component name.   
 
Both the tank and turret subclasses will define a process method called movement.  Each 
process method will be implemented in a unique fashion to allow simultaneous but 
different motion. 
 
Preamble including the 3d.m, 3dshapes.m subsystem 
   begin class tank_model 
      every tank_model is a 3dmodel 
         and overrides the create_component 
   end 
 
   begin class tank  
      every tank is a 3dnode and has 
         a speed, 
         a spin_rate, 
         a forward process method, 
         a spin process method, 
         a movement process method, 
         overrides the motion 
      define speed, spin_rate as double variables 
      define spin, forward as process methods  
          given 1 double argument 
   end 
 
   begin class turret 
      every turret is a 3dnode and has 
         a spin_rate, 
         a spin process method, 
         a movement process method, 
         overrides the motion 
      define spin_rate as a double variable 
      define spin as a process method given 1 double argument 
   end 
 
   define window as a 3dwindow reference variable 
end 
 
method tank_model'create_component(component_name, class_name) 
   define my_turret as a turret reference variable 
   if component_name = "turret1" and class_name = "3dnode" 
      create a turret called my_turret 
      return with my_turret 
   otherwise 
   return with 3dmodel'create_component(component_name, class_name) 
end 
 
process method tank'forward(distance) 
   define _forward_speed=2 as a constants 
 
   let speed = _forward_speed 
   wait abs.f(distance) / speed units 
   let speed = 0.0 
end 
 
process method tank'spin(angle) 

 41



   define _spin_speed = 20 as a constants 
 
   let spin_rate = _spin_speed * sign.f(angle) 
   wait abs.f(angle) / _spin_speed units 
   let spin_rate = 0 
end 
 
process method tank'movement 
   call forward(40) 
   call spin(180) 
   call forward(40) 
   call spin(90) 
   call forward(40) 
   call spin(90) 
end 
 
process method turret'spin(angle) 
   define _spin_speed = 10 as a constant 
 
   let spin_rate = _spin_speed * sign.f(angle) 
   wait abs.f(angle) / _spin_speed units 
   let spin_rate = 0 
end 
 
process method turret'movement 
   call spin(45) 
   wait 2.0 units 
   call spin(-90) 
   wait 1.0 units 
   call spin(180) 
   call spin(-30) 
   wait 1.0 units 
   call spin(-40) 
end 
 
''our motion method will be called as simulation time advances 
method tank'motion(dt) 
   call 3dnode'motion(dt) 
   call rotate_y(dt * spin_rate) 
   call move(0.0, 0.0, dt * speed) 
end 
 
method turret'motion(dt) 
   call rotate_y(dt * spin_rate)  
end 
 
main 
   define world as a 3dworld reference variable 
   define camera as a 3dcamera reference variable 
   define light as a 3dlight reference variable 
   define tank_model as a tank_model reference variable 
   define the_tank as a tank reference variable 
   define the_turret as a turret reference variable 
   define p as a pointer variable 
    
   ''create the window 
   create window 
   let title(window) = "Example 5: Accessing sub-components of a 3dmodel"  
 
   ''create the world 
   create world 
   file this world in world_set(window) 
 

 42



   ''create camera, place it along positive z axis but 
   ''point it down the negative z direction 
   create camera 
   call set_perspective(camera)(90.0, 1.0, 5.0, 115.0, 1) 
   call set_forward(camera)(0.0, 0.0, -1.0) 
   call set_location(camera)(0.0, 4.0, 60.0)   
   file this camera in camera_set(world) 
 
   ''create a light source and point it in the same direction as the camera 
   create light 
   call set_forward(light)(0.0, 0.0, -1.0) 
   file this light in light_set(world) 
 
   ''create the one model for the tank 
   create tank_model 
   call read(tank_model)("tank.3ds", "") 
   file tank_model in model_set(world) 
 
   ''create the tank node 
   create the_tank 
   call load(the_tank)(tank_model)   ''copy components of tank to node 
   let p = find(the_tank)("turret1")  ''locate the "turret1" node 
   let the_turret = p  
   file the_tank in node_set(world)  ''add to "root" of scene-graph 
   file the_tank in motion_set 
   file the_turret in motion_set 
 
   call display(window)  ''bring up the main window and show everything 
 
   activate a movement(the_tank) now 
   activate a movement(the_turret) now       ''our process method 
   activate a animate(window)(10000) now   ''tell window to show animation 
   let timescale.v = 50     ''50/100 real seconds per unit of time 
 
   start simulation   
end 

 

5.7 Misc. 3dmodel options 
 
There are a couple more options regarding the 3dmodel that can be set before the model 
is read from the file.  They are _smoothing, and _cache_model.  The options are set via a 
left handed use of the enabled method.  For example: 
 
define the_model as a 3dmodel reference variable 
… 
let enabled(the_model)(3dmodel'_smoothing) = 1   ''turn on smoothing 
let enabled(the_model)(3dmodel'_smoothing) = 0   ''turn off smoothing 
 
The _smoothing  option will cause normal vectors to be recomputed at the time the model 
is read from the file.  This will give the surfaces in the model a smooth appearance.  It is 
off (0) by default. 
 

 43



The _cache_model option, if on, will cause the runtime library to create an internal “call 
list” for the model at the time a 3dnode which references it (via the model attribute) is 
first drawn.  For the case of multiple 3dnode objects referencing the same static model, 
this will improve performance.  This option is not relevant if the load method is used to 
link the 3dnode to the model. 
 
After a model is read, its size can be determined if necessary.  The get_bounding_box 
method can be called to get the dimensions of a model in the x, y and z directions.   
 
define get_bounding_box as a method yielding 
      3 double arguments,     ''(xlo,ylo,zlo)   
      3 double arguments      ''(xhi,yhi,zhi)   
''Computes the smallest 3d box that will enclose the model 
''Must be called after "read" to be effective. 
    
Instances of 3dmodel must be filed into the model_set owned by the 3dworld in which 
the model is to appear.  This must be done before the window is displayed.  Materials 
used in the model are automatically filed into the material_set owned by 3dmodel when 
the 3dmodel’read method is called.   

 44



 

6. Geometry 
 
Often times parts of a 3d scene cannot be stored in a .3ds or .dxf “3dmodel” file.  If it is 
the case that the geometry is not known exactly until runtime, the programmer must write 
code required to construct this geometry.  SIMSCRIPT III provides several classes that 
allow this.   
 
The 3dgraphic is the base class for all objects whose geometry is defined by program 
code, and not by offline models stored in a file.  This class is derived from 3dnode and is 
part of the scene-graph.  Since 3dgraphic is derived from 3dnode, instances must be filed 
into a node_set (owned by either the 3dworld or by another 3dnode attached to a 
3dworld).  The 3d.m and 3dshapes.m subsystems provide several classes derived from 
3dgraphic that can be useful for constructing various 3d objects (see below). 
 
Class name Description Geometry attributes 
3dgraphic Can be used to draw any type of shape. Override draw method 

draw_normal 
draw_texture_coordinate 
draw_vertex 

3dfaces Tessellated surface, (triangles, quads) points, normals attributes 
3dlines Line segments in 3d space points, width attributes 
3dpoints Single points in 3d space points, size attributes 
3dtext 2d text in 3d space string, width, height, font 
3dbox Found in 3dshapes.m.  Cubes,  width, height, depth 
3dcone Simple cone shape. length, radius attributes 
3dcylinder Simple cylinder shape. length, radius attributes 
3dellipse 2d circle, arc, pie or ellipse in 3d space radius_x, radius_y, 

start_angle, stop_angle 
3drectangle 2d rectangle in 3d space height, width 
3dsphere Simple sphere shape radius 
 

6.1 Using the 3dgraphic class. 
 
Occasionally, there are cases where the exact shape is not known until runtime.  For 
example, a simulation shown a 3d terrain landscape may not know the geographical area 
to display until runtime.  Even then, the coordinates of the “hills and valleys” may reside 
in a data file which must be decoded and the vertex information extracted or computed.  
We can handle this case using the 3dgraphic class. 
 
Geometry and surface materials are specified by sub-classing 3dgraphic and overriding 
the draw method.  The draw method is called automatically when the system needs to 
have the 3dgraphic object rendered.  (Calling the 3dwindow’display method will invoke 

 45



this method.  Draw may also be called as a result of event handling). The draw method 
should be programmed to make calls to begin_drawing and end_drawing class methods 
to define each surface.   After the call to begin_drawing, calls to class methods such as 
draw_normal, draw_texture_coordinate, and draw_vertex allow geometry to be specified 
for the surface.  A call to end_drawing will mark the end of the geometry description 
started by begin_drawing.  We will refer to this as a “drawing block”.   
 
There can be multiple drawing blocks defined in a single draw method.  It is also possible 
to sub-class the 3dgraphic and override the draw method to “add” geometry.  Nested 
drawing blocks are not allowed and will be flagged as a runtime error. 
 
There are several formats of geometry that can be specified in a drawing block.  A 
“format” argument is passed to the begin_drawing method.  The 3dgraphic class provides 
to following predefined constants that can be passed to begin_drawing.  (The formats are 
described in detail later). 
 
Constant Format of Geometry 
_points Draw dots in 3d space.  Each call to draw_vertex adds a dot. 
_lines Each 2 successive vertices defines a line segment. 
_line_loop Each vertex is connected to the next with the first connected to last. 
_line_strip Each vertex is connected to the next. 
_triangles Each successive group of 3 vertices defines a triangle 
_triangle_strip For each index n > 2 a triangle is defined by vertex at n-2, n-1 and n 

in counter-clockwise order.  Sometimes this is called the “triangular 
mesh” or just “mesh”. 

_triangle_fan For each index n > 2 a triangle is defined by vertex at n, n-1 and 1. 
_quads Each successive group of 4 vertices defines a quadrilateral face. 
_quad_strip For each 2 indices n, n-1, a new quadrilateral is composed of 

vertices at n-3, n-1, n, n-2 in counter-clockwise order 
_polygon The outline of the polygon is defined by vertices.  Again, the 

vertices for front facing polygons should be arranged in a counter-
clockwise order. 

 
 

6.2 Surface geometry 
 
The surface of a shape in 3d is composed of small by planar faces that are interconnected.  
Round shapes that have smaller but more numerous faces will appear more detailed, but 
could take longer to render.  Calls to the draw_vertex are placed inside a drawing block 
with the (x,y,z) values passed as arguments.  Each call adds a new coordinate to the 
shape.  
 
A “normal vector” is perpendicular to the surface that is being drawn.  If a normal vector 
is known, it can be specified by calling draw_normal.  The normal vector specified will 
apply to subsequent vertices defined by draw_vertex.   

 46



 

 
Figure 6.1: Normal vectors 
 
To construct a 2d surface, one of the following predefined constants must be passed to 
begin_drawing: _triangles, _triangle_strip, _triangle_fan, _quads, or _polygon.  Using 
the _triangles format will draw a separate triangle for each successive group of three 
vertices.  As a rule of thumb, the vertices should be given in a counter-clockwise ordering 
if the normal vector points outward.   
 

 
Figure 6.2: _triangles format. 
 
The __triangle_strip format is sometime referred to as a “triangular mesh” or just 
“mesh”.  It can be used to construct surfaces composed of interconnected triangles.  Each 
call to draw_vertex will add a new triangle to the shape using the two previous 
coordinates given by draw_vertex.  
 

 47



Figure 6.3: _triangle_strip format. 
 
When using the _triangle_fan format, draw_vertex will add a new triangle using the first 
vertex and the previous vertex.  This format can be useful for drawing circular shapes. 

 
Figure 6.4: Triangle fan. 
 
Surfaces composed of quads or 4-point planar regions can be defined.  When using the -
_quads format, each group of 4 vertices defines a new quadrilateral face. 
 

 48



 
Figure 6.5: _quads format. 
 
Much like the “triangle strip” a quad strip can also be constructed.  Each two successive 
vertices will add a new quad using the two previous vertices for the face. 
 

 
Figure 6.6: _quad_strip format.  
 
A simple polygon can also be created.  The polygon must not have any concave portions 
or it may not be rendered correctly.  The outline of the polygon is defined by successive 
calls to draw_vertex.  Again, the points for front facing polygons should be arranged in a 
counter-clockwise ordering. 
 

 49



 
Figure 6.7: _polygon format. 
 
In the following example we will develop a new shape to represent a torus.  The code to 
construct this doughnut shaped object will be entered into the overridden draw method 
that is inherited from the 3dgraphic class.  The actual code to draw the torus will, in a 
loop, construct successive cylindrical rings that run in a circle along the shape of the 
torus.  A “begin_drawing / end_drawing block will construct each ring as a _quad_strip.  
A normal vector is defined for each vertex.  This is computed as the vector originating 
from the center of the current ring to the current vertex. 
 

 
Figure 6.8: A torus composed of rings made of quad strips. 
 

 50



Sub-classing the 3dgraphic class will allow us to add additional attributes that 
parameterize the torus, such as the major and minor radii, and the number of facets.  The 
complete code is shown below: 
 
'' Example 7 a 3d torus 
preamble for the toruses system including the 3d.m subsystems 
   begin class torus 
      every torus is a 3dgraphic and has 
         a material, 
         a numMajor, 
         a numMinor,  
         a minorRadius, 
         a majorRadius, and 
         overrides the draw 
 
      define material as a 3dmaterial reference variable 
      define numMajor, numMinor as integer variables 
      define minorRadius, majorRadius as double variables 
   end 
end 
 
''this method  is called automatically.  We will provide the code needed 
''to draw a torus 
method torus'draw 
   define nx, ny, nz as double variables 
   define a0, a1, x0, y0, x1, y1 as double variables 
   define b, c, r, z, majorStep, minorStep as double variables 
   define i, j as integer variables 
 
   let majorStep = 2.0*pi.c / numMajor 
   let minorStep = 2.0*pi.c / numMinor 
 
   call set_material(material) 
 
   for i=0 to numMajor-1  
   do 
      a0 = i * majorStep 
      a1 = a0 + majorStep 
      x0 = cos.f(a0) 
      y0 = sin.f(a0) 
      x1 = cos.f(a1) 
      y1 = sin.f(a1) 
   
      call begin_drawing(_quad_strip) 
 
      for j=0 to numMinor 
      do 
         b = j * minorStep 
         c = cos.f(b) 
         r = minorRadius * c + majorRadius 
         z = minorRadius * sin.f(b) 
    
         ''First point 
         call 3d.m:vector_normalize(x0*c,y0*c,z/minorRadius) yielding nx,ny,nz 
         call draw_normal(nx, ny, nz) 
         call draw_vertex(x0*r, y0*r, z) 
          
         call 3d.m:vector_normalize(x1*c,y1*c,z/minorRadius) yielding nx,ny,nz 
         call draw_normal(nx, ny, nz) 
         call draw_vertex(x1*r, y1*r, z) 
      loop 
 

 51



      call end_drawing 
   loop 
end 
 
main 
   define window as a 3dwindow reference variable 
   define world as a 3dworld reference variable 
   define camera as a 3dcamera reference variable 
   define light as a 3dlight reference variable 
   define torus as a torus reference variable 
    
   ''create the window 
   create window 
   let title(window) = "Example 7: A torus" 
 
   ''create the world 
   create world 
   file this world in world_set(window) 
 
   ''create a camera 3 units out, pointed at the origin 
   create camera 
   call set_perspective(camera)(60.0, 1.0, 0.1, 100.0, 1) 
   call set_forward(camera)(0.0, 0.0, -1.0) 
   call set_location(camera)(0.0, 0.0, 3.0) 
   file this camera in camera_set(world) 
 
   ''create our torus and set its size and detail parameters 
   create a torus 
   let minorRadius(torus) = .3 
   let majorRadius(torus) = .7 
   let numMinor(torus) = 37 
   let numMajor(torus) = 61 
 
   ''create a "red" material for torus's surface 
   create a material(torus) 
   let ambient_color(material(torus)) = color'rgb(0.2, 0.0, 0.0) 
   let diffuse_color(material(torus)) = color'_red 
   let specular_color(material(torus)) = color'_white 
   let shininess(material(torus)) = 1.0 
   file this material(torus) in material_set(world) 
 
   ''save the torus in the "world" 
   file this torus in node_set(world) 
 
   ''create a light from above, set its color 
   create light 
   let diffuse_color(light) = color'rgb(0.8, 0.8, 0.8) 
   call set_orientation(light)(0.0, -1.0, 0.0, 1.0, 0.0, 0.0) 
   file this light in light_set(world) 
 
   call display(window)  ''show every thing 
 
   let timescale.v = 100   ''1 second per 1 unit simulated time 
   activate a animate(window)(10000) now 
   start simulation 
end 

 

 52



 
Figure 6.9: Torus drawn using the _quad_strip format. 
 

6.4 Surface appearance 
 
3dgraphic has class methods that can be called to define the properties of the surface. The 
set_color method can be used to set the color or, if called before draw_vertex, can set the 
color applied to individual vertices.   
 
define set_color as a method given  
   1 integer argument,  ''_front, _back, or _front_and_back 
   1 integer argument,  ''_ambient, _diffuse, _specular 
   1 integer ''color'' argument     ''color (color'rgb(r,g,b)) 
 
The first argument indicates which side the color should be applied to, and must be one 
of the constants _front, _back or _front_and_back.  The second argument gives the type 
of lighting, _ambient, _diffuse, or _specular that should reflect the given color (see 
3dlight).  The third argument is the color value obtained from the gui.m:color’rgb class.  
 
Attributes of the 3dmaterial object (colors and texture) can be applied to the 3dgraphic as 
well.  The set_material method should be called before begin_drawing and takes a 
3dmaterial instance as an argument.   This instance must be filed in the 
3dworld'material_set at initialization. 
 
define set_material as a method given 

 53



      1 3dmaterial reference argument    ''pointer to material 
 
The shininess of the surface (used for specular lighting) is set by calling the set_shininess 
class method.   
 
define set_shininess as a method given  
      1 integer argument,      ''_front, _back, or _front_and_back 
      1 double argument        ''shininess (0.0 to 1.0) 
 
The first argument must be one of the constants _front, _back, or _front_and_back. The 
second “shininess” argument must be a value between 0.0 and 1.0 (see 3dlight). 
 
By default, both the front and back sides of a surface are visible.  In some cases, back or 
front side of an object is never seen.  Faster rendering can be achieved for single sided 
drawings by defining which side is to be made visible.  The set_visibility method can be 
called to accomplish this.  The method call must be made before the call to 
begin_drawing.   
 
define set_visibility as a method given 
   1 integer argument  ''_front, _back or _front_and_back 
 
Individual edges for surfaces specified by calls to draw_vertex are normally visible.  For 
some edges such as those on the interior of a complicated shape, this visibility can lead to 
unwanted artifacts when the 3dgraphic is displayed.  The set_edge_visibility method can 
be used to hide or show future edges added to the shape by draw_vertex. 
 
define set_edge_visibility as a method given 
   1 integer ''boolean'' argument       ''0=>invisible, 1=>visible 
''specifies visibility of future edges of a face 
 

6.5 Surface texture mapping 
 
Texture mapping can be applied to surfaces created in a drawing block.  The 
draw_texture_coordinate method can be called to map the vertex (specified by 
draw_vertex) to a 2d texture coordinate (texture mapping is explained in more detail 
later).  

The previous example could be modified to wrap a texture over the surface of the torus.  
The image that will be mapped is that of a soda can label (saved in the file 
“cocacola.bmp”).   The surface will be parameterized to the (s,t) coordinate space of used 
for texture mapping whose domain is s => [0,1] and t => [0,1].   (0,0 is the lower left 
corner of the 2d image and (1,1) is the upper right corner. )  For each call to draw_vertex  
a corresponding call to draw_texture_coordinate is added.  Also the texture_name 
attribute of the 3dmaterial used to set the surface color will be assigned to 
“cocacola.bmp”. 

 54



We will also modify the color of the material used for the torus.  The 2d image file will 
provide the color information, and since we don’t want that color to be modified, _white 
will be used for the diffuse color and a dark gray for the ambient color.  The new 
example code is shown below with the modified and new color colored red. 

 
'' Example 8: a texture mapped 3d torus 
preamble for the toruses system including the 3d.m subsystems 
   begin class torus 
      every torus is a 3dgraphic and has 
         a material, 
         a numMajor, 
         a numMinor,  
         a minorRadius, 
         a majorRadius, and 
         overrides the draw 
 
      define material as a 3dmaterial reference variable 
      define numMajor, numMinor as integer variables 
      define minorRadius, majorRadius as double variables 
   end 
end 
 
''this method  is called automatically.  We will provide the code needed 
''to draw a torus 
method torus'draw 
   define nx, ny, nz as double variables 
   define a0, a1, x0, y0, x1, y1 as double variables 
   define b, c, r, z, majorStep, minorStep as double variables 
   define i, j as integer variables 
 
   let majorStep = 2.0*pi.c / numMajor 
   let minorStep = 2.0*pi.c / numMinor 
 
   call set_material(material) 
 
   for i=0 to numMajor-1  
   do 
      a0 = i * majorStep 
      a1 = a0 + majorStep 
      x0 = cos.f(a0) 
      y0 = sin.f(a0) 
      x1 = cos.f(a1) 
      y1 = sin.f(a1) 
   
      call begin_drawing(_quad_strip) 
 
      for j=0 to numMinor 
      do 
         b = j * minorStep 
         c = cos.f(b) 
         r = minorRadius * c + majorRadius 
         z = minorRadius * sin.f(b) 
    
         ''for texture coordinates, map entire surface of torus to [0,1] 
         call 3d.m:vector_normalize(x0*c,y0*c,z/minorRadius) yielding nx,ny,nz 
         call draw_texture_coordinate(j / numMinor, i / numMajor) 
         call draw_normal(nx, ny, nz) 
         call draw_vertex(x0*r, y0*r, z) 
          
         call 3d.m:vector_normalize(x1*c,y1*c,z/minorRadius) yielding nx,ny,nz 

 55



         call draw_texture_coordinate(j / numMinor, (i+1) / numMajor) 
         call draw_normal(nx, ny, nz) 
         call draw_vertex(x1*r, y1*r, z) 
      loop 
 
      call end_drawing 
   loop 
end 
 
main 
   define window as a 3dwindow reference variable 
   define world as a 3dworld reference variable 
   define camera as a 3dcamera reference variable 
   define light as a 3dlight reference variable 
   define torus as a torus reference variable 
    
   ''create the window 
   create window 
   let title(window) = "Example 8: A soda can torus" 
 
   ''create the world 
   create world 
   file this world in world_set(window) 
 
   ''create a camera 3 units out, pointed at the origin 
   create camera 
   call set_perspective(camera)(60.0, 1.0, 0.1, 100.0, 1) 
   call set_forward(camera)(0.0, 0.0, -1.0) 
   call set_location(camera)(0.0, 0.0, 3.0) 
   file this camera in camera_set(world) 
 
   ''create our torus and set its size and detail parameters 
   create a torus 
   let minorRadius(torus) = .3 
   let majorRadius(torus) = .7 
   let numMinor(torus) = 37 
   let numMajor(torus) = 61 
 
   ''create a "red" material for torus's surface 
   create a material(torus) 
   let ambient_color(material(torus)) = color'rgb(0.2, 0.2, 0.2) 
   let diffuse_color(material(torus)) = color'_white 
   let specular_color(material(torus)) = color'_white 
   let shininess(material(torus)) = 1.0 
   let texture_name(material(torus)) = "cocacola.bmp" 
   file this material(torus) in material_set(world) 
 
   ''save the torus in the "world" 
   file this torus in node_set(world) 
 
   ''create a light from above, set its color 
   create light 
   let diffuse_color(light) = color'rgb(0.8, 0.8, 0.8) 
   call set_orientation(light)(0.0, -1.0, 0.0, 1.0, 0.0, 0.0) 
   file this light in light_set(world) 
 
   call display(window)  ''show every thing 
 
   let timescale.v = 100   ''1 second per 1 unit simulated time 
   activate a animate(window)(10000) now 
   start simulation 
end 

 56



Figure 6.10: Texture mapped torus. 
 

6.6 Drawing points and lines 
 
The begin_drawing method will accept line and point formats as well as surface formats.  
Lines are 1-dimensional but are constructed with 3d coordinates. These objects are useful 
as annotations.  In Figure 6.11, a line loop is used to delineate the orbits of the planets. 
 

 57



 
Figure 6.11: Using the _line_loop format to mark planetary orbits. 
 
Line related formats constants that can be passed to the begin_drawing method include 
_lines,_line_strip, and _line_loop.  The _lines format is used for drawing multiple line 
segments.  Successive calls to the draw_vertex method mark the endpoints of the 
segments. 
 

 
Figure 6.12: The _lines format. 
 

 58



The _line_strip format is used to draw a polyline.  In this format, a new segment is added 
each time draw_vertex is called. 
 

 
Figure 6.13: The _line_strip format. 
 
The _line_loop format is line the _line_strip format, except that the last point is 
automatically connected to the first. 
 

 
Figure 6.14: The _line_loop format. 
 
Multiple widths and dash styles are supported.  When lines are being drawn, the 
set_pen_size and set_pen_pattern class methods can be called to set the line width and 
pattern.  These methods must be called before begin_drawing.  The current pen size is 
always in pixels.  The pattern is one of the following constants: _solid, _long_dash, 
_dotted, _dash_dotted, _medium_dash, _dash_dot_dotted, _short_dash, _alternate.   
 

 59



 
Figure 6.15: Line widths and constants passed to the set_pen_pattern method. 
 

6.7: Drawing points 
 
“points” are essentially 0-dimentional objects but are also located in 3 dimensions.  A 
point is represented by a visible dot.  If the _points format is passed to begin_drawing, 
each call to draw_vertex will add a “dot” to the scene.  The size of these dots in pixels 
can be set by calling the set_pen_size class method. 
 
For example, suppose we want to draw a “spiral” shape.  The preamble would define a 
subclass of 3dgraphic called “spiral” and override the draw method.  The spiral shape 
will be drawn by moving in a circle with a changing radius.  In the code to draw the spiral 
we place calls to the 3dgraphic class method draw_vertex in between calls to 
begin_drawing and end_drawing. 
 
''Example 9 a spiral 
preamble including the gui.m, 3d.m subsystems 
   begin class spiral 
      every spiral is a 3dgraphic and  
         overrides the draw  
   end 
end 
 

 60



method spiral'draw 
   call set_pen_size(6) 
 
   call begin_drawing(3dgraphic'_points) 
    
   define i, num_points as integer variable 
 
   ''create geometry for spiral 
   let num_points = (2.0 * pi.c * 3.0) / 0.1 
 
   ''create spiral points 
   for i = 1 to num_points 
   do 
      call set_color(_front_and_back, _ambient,  
          color'rgb(1.0, abs.f(sin.f(0.1 * i)), abs.f(cos.f(0.1 * i)))) 
      call draw_vertex(0.5 * sin.f(0.1 * i), 0.005 * i, 0.5 * cos.f(0.1 * i)) 
   loop 
 
   call end_drawing 
end 
 
main 
   define window as a 3dwindow reference variable 
   define world as a 3dworld reference variable 
   define spiral_graphic as a spiral reference variable 
   define camera as a 3dcamera reference variable 
 
   ''create the window 
   create window 
   let title(window) = "Example 9: A spiral of points" 
 
   ''create the world 
   create world 
   let ambient_color(world) = Color'_white   ''needed: no light sources 
   file this world in world_set(window) 
 
   ''create the spiral and save it in the scene 
   create spiral_graphic 
   file this spiral_graphic in node_set(world) 
 
   ''move the spiral 
   call set_location(spiral_graphic)(0.0, -0.5, 0.0) 
 
   ''create a camera to show the scene (use default attributes) 
   create camera 
   call set_location(camera)(0.0, 0.75, 1.5) 
   file this camera in camera_set(world) 
   call aim(camera)(0.0,0.0,0.0) 
 
   ''show the window 
   call display(window) 
 
   while visible(window) <> 0 
      call handle.3devents.r 
end 

 

 61



 
Figure 6.16: Example 9 output. 
 

6.8 Text 
 
There are many uses for graphic text in a simulation.  For example, state information may 
need to be displayed for an object being simulated.  Or maybe the object needs to be 
“tagged” with a unique text string so that it can be identified.  Of course its possible that 
text is “part of” the and object being simulated (like a traffic sign).  SIMSCRIPT III 3d 
graphics allows both scalable and non-scalable text to be display in a 3dworld.  The class 
used for text display is called 3detext and is derived from the 3dgraphic class. 
 
The 3dtext class can be used to show a simple 1-line or multi-line text string within the 
scene-graph.  Currently, only predefined fonts are available as class attribute pointers that 
can be assigned to the font attribute.  These fonts are automatically initialized before the 
SIMSCRIPT program is run.  The choice of font affects not only the appearance of the 
text but also its behavior.  The application may require the text to act like part of the 
scene,  in other words to obey the same rules as any other geometric shape with regard to 

 62



its transformation from world to canvas (like the text on a stop sign).  In this case a vector 
font should be chosen.  However, if text is used for “tagging” or as a simple message, we 
may not want it to appear larger or smaller as is moves closer or farther from the camera.  
In this case a raster font is used.  To add some detail: 
 
Vector fonts: 
A vector font is rendered by drawing a series of line segments in 3 dimensions.  Vector 
text follows the same rules as do other 3dgraphic shapes with regard to location and 
orientation.  The advantage of using this type of text is that it is “part of” the object, for 
example the text on a road sign, or the monogram on the side of an airplane.  The text 
will increase in size as the camera moves closer to it.  The disadvantage is that the text is 
usually composed of thin lines and may not look good when it is sized big.  
 
The following vector fonts are available: 
 
3dtext’stroke_font  - Variable width vector font 
3dtext’stroke_mono_font  - Fixed width vector font 
 
The size of vector text is controlled by its width and height attributes.  These attributes 
function the same as the width and height for the 3drectangle class do.  The height 
defines the maximum height including descenders and the width applies to the whole text 
string.   
 
Bitmapped fonts 
Characters in a bitmapped or “raster” based font are basically small 2d bitmap images 
that are copied to the screen when the text is rendered.  Text drawn using these types of 
fonts will always appear right side up regardless of how the 3dtext object (or its owner 
node) is oriented.  However, the 3dnode’location properties is still utilized.  In other 
words, the text can be positioned by calling the set_location method.  Bitmapped text will 
appear the same size regardless of its distance from the camera.  If a larger or smaller text 
size is needed, a different font must be assigned to the font attribute.   
 
3dtext'9_by_15_font         ''fixed width bitmap font 
3dtext'8_by_13_font         ''fixed width bitmap font 
3dtext'times_roman_10_font  ''variable width bitmap font 
3dtext'times_roman_24_font  ''variable width bitmap font 
3dtext'helvetica_10_font    ''variable width bitmap font 
3dtext'helvetica_12_font    ''variable width bitmap font 
3dtext'helvetica_18_font    ''variable width bitmap font 
 
 

 63



 
Figure 6.17: The text fonts. 
 
For bitmapped fonts, the align_horiz, align_vert attribute allows the text to be centered, 
or left/right, top/bottom justified.   The following constants can be assigned to the 
alignment attribute: 
 
define _left_justified=0, _centered, _right_justified as constants 
''for the "aligh_horiz" attribute 
 
define _bottom=0, _middle, _top, _bottom_cell, _top_cell as constants 
''for the "align_vert" attribute 
 

 64



 
 

 
 
Figure 6.18: 3dtext alignment. 

 

6.9 Updating the graphic 
 
By default the draw method is only called once by the system when the 3dgraphic first 
appears.  If the geometry or surface has changed, the update_drawing method must be 
called to indicate that the 3dgraphic is “old” and that the draw method should be invoked 
(the draw method should never be called directly).   
 
define update_drawing as a method given 
      1 integer argument   ''_always, _once, _never 

 65



 
_never 

Draw will not be called.  Graphic will effectively be hidden from view. 
_once 

Draw called the next time the window is refreshed.  The image of the 3dgraphic 
will be “cached” for future refreshes of the screen.  The update_drawing method 
must be called for draw to be invoked again.  (This use is most common). 

_always 
Draw will be called each time the canvas is refreshed.  This is useful for objects 
with constantly changing geometry. 

 

6.8 Classes with retained geometry 
 
There are several classes derived from 3dgraphic that are provided in the 3d.m and 
3dshapes.m subsystems.  When implementing objects derived from these classes, the 
draw method is NOT overridden.  Instead, these classes provide attributes and methods 
for specifying the shape of the graphic.  These classes are useful when the graphic object 
is static.  In other words, the geometry and the number of points/normals does not change 
during the simulation.  In addition, the 3dfaces, 3dlines, and 3dpoints classes support 
indexed geometry, which may improve performance.  These classes are shown below and 
documented more thoroughly in the subsequent reference section. 
 
Class name Subsystem Description Geometry 

attributes 
3dfaces 3d.m Tessellated surface, (triangles, quads) points, normals 

attributes 
3dlines 3d.m Line segments in 3d space points, width 

attributes 
3dpoints 3d.m Single points in 3d space points, size 

attributes 
3dtext 3d.m 2d text in 3d space string, width, 

height, font 
3dbox 3dshapes.m Cubes, rectangular boxes. width, height, 

depth 
3dcone 3dshapes.m Simple cone shape. length, radius 

attributes 
3dcylinder 3dshapes.m Simple cylinder shape. length, radius 

attributes 
3dellipse 3dshapes.m 2d circle, arc, pie or ellipse in 3d 

space 
radius_x, radius_y, 
start_angle, 
stop_angle 

3drectangle 3dshapes.m 2d rectangle in 3d space height, width 
3dsphere 3dshapes.m Simple sphere shape radius 
 

 66



7. Surfaces, Textures and Materials 
 
Surface attributes are important for displaying 3d objects.  Accurate specification of the 
shininess, color and texture of a surface are important for realistic images.  In the 
SIMSCRIPT 3d graphics the 3dmaterial object defines the "skin" of the object being 
drawn.  It is not derived from 3dnode and therefore does not belong in a scene-graph. 
Instead,  various object classes reference the 3dmaterial.  For example, objects derived 
from 3dshape also have a material attribute that an instance of a 3dmaterial object can 
be assigned to. 
 

7.1 Setting the color and shininess of a surface 
 
Colors in SIMSCRIPT 3d graphics are specified in an RGB (red-green-blue) triple with 
element values ranging from 0 to 1.   The “rgb” method of the color  class in gui.m is 
used to encode color from RGB values into an integer.   For example to obtain a dark 
green color: 
 
Define dark_green as an integer variable 
Let dark_green = color'rgb(0.0, 0.5, 0.0) 
 
A 3dmaterial can be used to define the reflectivity of a surface with respect to diffuse, 
ambient, and specular colored light.  The diffuse_color, ambient_color, and 
specular_color attributes are used for this purpose.   
 
For specular light the shininess attribute relates to the “specular exponent” of the surface.  
This value must range from 0 to 1. Higher values lead to smaller, sharper highlights, 
whereas lower values result in large and soft highlights.   If the surface is to be shiny (i.e. 
metallic in nature) both the specular_color and shininess attributes should be large. 
 
In Figure 7.1, the ambient, diffuse and specular color for the red paint on the car shown in 
Example 1 is displayed.  The “diffuse” color is a dark red with the RGB triple set to  
(0.56, 0.02, 0.02).  The surface will reflect this color in all directions. The ambient color 
is set to (0.02, 0.0, 0.0).  The unlit portions of the car will reflect this (very dark red) 
color.  The specular color is set to (1.0, 1.0, 1.0).  This means that the shiny portions of 
the car will be white.   
 

 67



 
Figure 7.1: Color and shininess of car shown in Example 1. 

7.2 Texture mapping and raster images 
 
Texture mapping is also supported through the 3dmaterial class.  Texture mapping 
allows a 2d pixel image (such as a windows .BMP file) to be plastered onto a 3d surface.  
For larger surfaces, the texture is repeated along the surface much like tiles on a floor.  A 
large brick wall could be simulated using the 2d image of only a few bricks.  Of course if 
a texture is to replicated over a surface the edges of the image must be drawn so that the 
left edge will mate properly with the right edge.  
 

 68



 
Figure 7.2: Top-original texture, Bottom seamless replication of 6 “tiles”. 
 
The surface does not need to be flat.  In Figure 7.3, the surface of a sphere is texture 
mapped to look like the planet Jupiter.  
 

 69



 
Figure 7.3: Bottom—bmp file “Jupiter.bmp”, Top—file applied to sphere. 
 
The mapping of 3d geometry to 2d points in the image file is done using texture 
coordinates.  Basically, when draw_texture_coordinate is called before draw_vertex, the 
2d texture coordinate is mapped or “attached” to the 3d vertex.  The result is a smooth 
texturing of the 2d image over the surface.  The texture_name attribute of 3dmaterial can 
be assigned the name of the file containing the image.  Currently, only TARGA graphic 
(.tga) files and Window Bitmap (.bmp) files are supported.  (JPEG files can be converted 
to BMP by a variety of windows programs).  The width and height of images should be a 
power of 2, for example 128 by 256, 16 by 64, 512 by 32, etc. 
 
The 2d coordinates for a texture image range from 0.0 to 1.0.  Coordinate are defined by 
an s axis and a t axis.  The s-axis is horizontal and the t-axis is vertical with (s=0.0, t=0.0) 
located at the lower left corner of the image and (s=1.0, t=1.0) located at the upper right 
corner.  (See Figure 7.4). 
 

 70



 
Figure 7.4: Texture coordinates 
 
For texture coordinate values greater than 1.0 or less than 0.0 the mapping will be 
handled based on the values of the texture_wrap_s and the texture_wrap_t attributes.  
When an attribute is set to _repeat (which is the default), the pixel image is repeated as 
(s,t) values increase past 1.0 (or decrease past 0.0).  If the texture wrapping attributes are 
set to _clamp_to_edge, the same pixel values found at [s,t] = 1.0 will be copied for all 
values of [s,t] > 1.0.  Pixel values found at [s,t] = 0.0 will be repeated for [s,t] < 0.0. 
 
Texture coordinates can only be specified when using objects derived from the 
3dgraphic class.  The 3dgraphic’draw_texture_coordinate method assigns a texture 
coordinate to the last vertex drawn with a draw_vertex method call.  The 3dfaces class 
allows texture coordinates to be specified in an array.  These are described in the next 
chapter. 
 

7.3 Front and back side visibility 
 
In some cases it is necessary to specify which sides of a surface can be made visible.  If 
the front or back side is always hidden, some performance improvement can be made by 
marking that side as such.  The visibility attribute of 3dMaterial controls which sides are 
visible (an invisible side will appear translucent when facing the 3dcamera).  One of the 
constants 3dmaterial’_front, 3dmaterial’_back, or _3dmaterial’_front_and_back can be 
assigned to the visibility attribute (_front_and_back is the default value). 
 
Let visibility(car_door_material) = 3dmaterial’_front 
 

 71



The _front side is defined by a counterclockwise winding of the vertices.  The “right-
hand thumb” rule can be used as mnemonic reminder.  If a fist is made with the right 
hand and the vertices of a polygon are ordered in the direction the fingers point, then the 
thumb points out from the “front” of the surface. 
 

7.4 Using instances of 3dmaterial  
 
A caveat to using the 3dmaterial object is that each instance must be filed in a 
material_set before the object using it is rendered.  3dmaterials should be filed into the 
set owned by the 3dworld in which it will be visible.  The 3dmodel also owns a 
material_set containing materials to be used within the model.  When a 3dmodel is read 
in from a file, the material_set will be populated with all necessary 3dmaterial instances. 
 
In the following example, a spinning cube is shown.  The front and back surfaces 
reference a 3dmaterial showing a texture named “cacilogo.bmp”.  Left and right side 
surfaces of the cube are displayed with the texture “eagle.bmp”.  Top and bottom surfaces 
are colored with a light purple (diffuse_color = [1.0, 0.6, 1.0]).  The cube itself is 
derived from the 3dbox class found in the 3dshapes.m subsystem.  Its motion method is 
overridden to call the rotate_x, rotate_y, and rotate_z methods allowing the cube to spin 
about its x, y and z axes. 
 
''Example 6: spinning cube with texture mapped surfaces. 
preamble including the 3d.m, 3dshapes.m subsystems 
   begin class spinning_box 
      every spinning_box is a 3dbox and has 
         a x_spin_rate, a y_spin_rate, a z_spin_rate and 
         has a spin process method, 
         overrides the motion 
 
      define x_spin_rate, y_spin_rate, z_spin_rate as double variable 
   end 
 
   define camera as a 3dcamera reference variable 
   define world as a 3dworld reference variable 
end 
 
method spinning_box'motion(dt) 
   call rotate_x(x_spin_rate * dt) 
   call rotate_y(y_spin_rate * dt) 
   call rotate_z(z_spin_rate * dt) 
end 
 
process method spinning_box'spin 
   let x_spin_rate = 90 
   wait 4.0 units 
   let x_spin_rate = 0 
   let y_spin_rate = 180 
   wait 10.0 units 
   let y_spin_rate = 0 
   let z_spin_rate = 360 
   wait 4.0 units 
end 
    
main 

 72



   define window as a 3dwindow reference variable 
   define light as a 3dlight reference variable 
   define box as a spinning_box reference variable 
   define lr_material, tb_material, fb_material as 3dmaterial reference 
variables 
    
   ''create the window 
   create window 
   let title(window) = "Example 6: Showing a 2d image using texture mapping" 
 
   ''create the world 
   create world 
   let ambient_color(world) = color'rgb(0.2, 0.2, 0.2) 
   file this world in world_set(window) 
 
   ''create the camera 
   create camera 
   call set_perspective(camera)(60.0, 1.0, 0.1, 100.0, 1) 
   call set_location(camera)(0.0, 0.0, 2.0) 
   call set_orientation(camera)(0.0, 0.0, -1.0, 0.0, 1.0, 0.0) 
   file this camera in camera_set(world) 
 
   ''create materials  
   create fb_material, lr_material, tb_material 
   let texture_name(fb_material) = "cacilogo.bmp" 
   let texture_name(lr_material) = "eagle.bmp" 
   let ambient_color(tb_material) = color'rgb(0.2, 0.4, 1.0) 
   let diffuse_color(tb_material) = color'rgb(1.0, 0.6, 1.0) 
   let ambient_color(lr_material) = color'rgb(1.0, 1.0, 1.0) 
   let diffuse_color(lr_material) = color'rgb(1.0, 1.0, 1.0) 
   let visibility(fb_material) = 3dmaterial'_front 
   let visibility(lr_material) = 3dmaterial'_front 
   let visibility(tb_material) = 3dmaterial'_front 
   file this fb_material in material_set(world) 
   file this lr_material in material_set(world) 
   file this tb_material in material_set(world) 
 
   ''create box 
   create box 
   let materials(box)(3dbox'_front) = fb_material 
   let materials(box)(3dbox'_back) = fb_material 
   let materials(box)(3dbox'_right) = lr_material 
   let materials(box)(3dbox'_left) = lr_material 
   let materials(box)(3dbox'_top) = tb_material 
   let materials(box)(3dbox'_bottom) = tb_material 
   let width(box) = 1.0 
   let height(box) = 1.0 
   let depth(box) = 1.0 
   file this box in motion_set 
   file this box in node_set(world) 
 
   ''create the light 
   create light 
   let location_z(light) = 5.0 
   let location_y(light) = 2.5 
   file this light in light_set(world) 
 
   call display(window) 
   
   activate a spin(box) now 
   activate a animate(window)(30) now 
   let timescale.v = 100 
   start simulation 

 73



end 

 

  
Figure 7.5: Example 6—A texture mapped cube. 
 

 74



8. User Input 
 
One of the advantages of a graphical simulation is the ability to interact with elements as 
the simulation runs.  SIMSCRIPT 3d graphics provides allows the user to interact with 
the mouse, keyboard, graphics window frame and objects inside the window.   
 

8.1 Mouse, keyboard and window frame interaction 
 
In a SIMSCRIPT 3d program, the active or “top” 3d window can be thought to “receive” 
events from the mouse, keyboard, as well as the moving or resizing of the window frame.  
In order to receive mouse, keyboard or window events, the program must subclass the 
3dwindow can override its action method.  This method is called automatically in 
response to a user-driven event.   
 
Another object found in 3d.m called 3devent is used by the action method.  This object 
contains all data relevant event data.  An instance is created by the runtime library and 
passed as the argument to the action method.  The id attribute of 3devent is set to one of 
several predefined constants and describes the event that occurred.  The list of possible 
events id constants is shown below: 

 

Id(event) Cause 3devent attributes 
_activate User clicked on window.  Window 

brought to front. 
 

_close User clicked on the “X” to close 
the window. 

 

_key_down Pushing down a key on the 
keyboard 

key_code 

_key_up Releasing a key on the keyboard  
_mouse_down Clicking in the canvas with the 

mouse. 
 

_mouse_up Releasing the mouse button in the 
canvas. 

 

_mouse_move Moving the mouse in the canvas.  
_mouse_wheel_forward Spin mouse wheel away from user 

(forward). 
 

_mouse_wheel_backward Spin mouse wheel toward used 
(backward). 

 

_reposition Dragging the window with the 
mouse. 

 

_resize Resizing the window with the 
mouse. 

 

 
 

  

 75



 
 

 
Figure 8.1: Event ids of a 3dwindow object handled by the action method. 
 
The action method should return one of the following two predefined contants: _continue 
or _block.  If _continue is returned, the runtime library will handle the event.  Returning 
with _block means that the runtime library will take no action in response to the event.  
For example, to keep the window from disappearing when closed by the user, the 
overridden action method should return with _block instead of _continue.   
 

8.2 Mouse events 
 
The action method can be used to receive mouse related events.  The action method is 
called whenever the mouse is used within that window.  Attributes of the 3devent 
instance passed to the action method are described in the tables below. 
 
Left, right or middle mouse button down click in canvas 
3devent attribute Value 
id 3devent’_mouse_down 
x,y Location in pixels of click from top left corner of canvas 
button_number 1=left button, 2=middle button, 3=right button 
click_count 1=single click, 2=double-click 
modifiers _shift_mod, _alt_mod, and/or _ctrl_moddepending on which key is 

held down during the click. 
 
Mouse movement in canvas 
3devent attribute Value 

 76



id 3devent’_mouse_move 
x,y Location in pixels of current pointer location from top left corner of 

canvas. 
 
Left, right or middle mouse button release in canvas 
3devent attribute Value 
id 3devent’_mouse_up 
x,y Location in pixels of mouse from top left corner of canvas 
button_number 1=left button, 2=middle button, 3=right button 
modifiers _shift_mod, _alt_mod, and/or _ctrl_moddepending on which key is 

held down during the click. 
 
Mouse wheel rolled forward 
3devent attribute Value 
id 3devent’_mouse_wheel_forward 
x,y Location in pixels of mouse from top left corner of canvas 
button_number Usually “2” to indicate the middle button 
modifiers _shift_mod, _alt_mod, and/or _ctrl_mod depending on which key is 

held down during the wheel movement. 
 
Mouse wheel rolled backward 
3devent attribute Value 
id 3devent’_mouse_wheel_back 
x,y Location in pixels of mouse from top left corner of canvas 
button_number Usually “2” to indicate the middle button 
modifiers _shift_mod, _alt_mod, and/or _ctrl_mod depending on which key is 

held down during the wheel movement. 
 
 
In the following example, we will modify the Example1 program to receive mouse 
movement.  The program will show the model of a car but allow the user to change the 
orientation of the camera by clicking and dragging the mouse.  Dragging the mouse left 
will rotate the camera counter-clockwise, and dragging right will rotate clockwise.  
Dragging up will rotate up and dragging down will rotate the camera down. 
 
A “zoom” function is easily implemented by changing the perspective on the camera.  
Zooming in is accomplished by narrowing the depth of field view via the set_perspective 
method of the 3dcamera object.  Zooming out can be done by widening depth of field.  
The mouse wheel is a natural tool for performing a zoom.  Rolling the wheel forward 
should zoom in while rolling it backwards zooms out.   
 
The program will define a sub-class of 3dwindow called my_window and override the 
action method.  Inside action, the id attribute of the given 3devent instance is compared 
with one of the following constants: _mouse_up, _mouse_down, _mouse_move, 
_mouse_wheel_forward, or _mouse_wheel_back.  When the mouse is clicked down, the 
location is saved  and a flag is set to indicate that “dragging” is on.  When the mouse is 

 77



moved and the “drag_on” flag is set, its current location (given in the 3devent’s x and y 
attributes) is compared against the last location and camera is rotated accordingly.  When 
the mouse is clicked up, we clear the “drag_on” flag.  The code handling the 
_mouse_wheel_forward and _mouse_wheel_back events will call the 3dcamera’s depth 
of field via the set_perspective method to implement ‘zoom in’ and ‘zoom out’. 
 
''example 10: Getting mouse input 
preamble including the 3d.m subsystems 
   begin class my_window 
      every my_window is a 3dwindow and has 
         a drag_on, 
         a mouse_x,  ''last mouse position 
         a mouse_y, 
         a phi,  ''camera angle about Y 
         a omega, 
         a dof_angle, 
         overrides the action 
 
      define drag_on, mouse_x, mouse_y, dof_angle as integer variables 
      define phi, omega as double variables 
   end 
 
   define the_camera as a 3dcamera reference variable 
 
   define _nearp=1.0, _farp=10.0 as constants ''near,far clipping planes 
end 
 
method my_window'action(event) 
   ''check the event id against events to handle 
   select case id(event)  
   case 3devent'_mouse_down 
      let drag_on = 1 
      let mouse_x = x(event) 
      let mouse_y = y(event) 
   case 3devent'_mouse_move 
      if drag_on <> 0 
         add (x(event) - mouse_x) * 0.1 to phi    ''update camera angles 
         add (mouse_y - y(event)) * 0.1 to omega 
         call set_forward(the_camera)(0.0, 0.0, -1.0)   ''reset 
         call rotate_y(the_camera)(phi)   ''rotate camera about its Y axis 
         call rotate_x(the_camera)(omega) ''now rotate camera about its X axis 
         let mouse_x = x(event)  ''save last mouse position 
         let mouse_y = y(event) 
      always 
   case 3devent'_mouse_up 
      let drag_on = 0 
   case 3devent'_mouse_wheel_forward 
      ''zoom in by changing depth of field 
      let dof_angle = max.f(dof_angle-2, 5)  
      call set_perspective(the_camera)(dof_angle, 1.0, _nearp, _farp, 1) 
   case 3devent'_mouse_wheel_back 
      ''zoom out by changing depth of field 
      let dof_angle = min.f(dof_angle+2, 175)  
      call set_perspective(the_camera)(dof_angle, 1.0, _nearp, _farp, 1) 
   default 
   endselect 
 
   return with _continue ''tell SIMSCRIPT to do default handling 
end 
 
main 

 78



   define window as a my_window reference variable 
   define world as a 3dworld reference variable 
   define light as a 3dlight reference variable 
   define model as a 3dmodel reference variable 
   define the_car as a 3dnode reference variable 
 
   ''Create windows, worlds, and groups 
   create window 
   let title(window) = "Drag the mouse and use wheel to change the view" 
   let dof_angle(window) = 60 
 
   create world 
   file this world in world_set(window) 
 
   ''create camera(s) 
   create the_camera 
   call set_forward(the_camera)(0.0, 0.0, -1.0) 
   call set_location(the_camera)(0.0, 0.0, 2.5) 
   call set_perspective(the_camera)(dof_angle(window), 1.0, _nearp, _farp, 1) 
   file the_camera in camera_set(world) 
 
   ''create light(s) 
   create light 
   call set_location(light)(0.0, 500.0, 500.0) 
   file this light in light_set(world) 
 
   ''create model(s) of some people 
   create model 
   let enabled(model)(3dmodel'_smoothing) = 1 
   call read(model)("people.3ds", "") 
   file this model in model_set(world) 
 
   ''create objects used in the simulation 
   create the_car 
   let model(the_car) = model 
   file this the_car in node_set(world) 
 
   ''Call the display method of the 3dwindow.   
   ''This will show the window. 
   call display(window) 
 
   activate a animate(window)(10000) now 
 
   let timescale.v = 100 
   start simulation 
end 

 
 

8.3 Keyboard input 
 
Keyboard input can also be obtained by overriding the action method.  The event id’s of 
interest are _key_up and _key_down.  When these ids are given the key_code attribute of 
3devent will contain the predefined constant representing the key.  When key_code is set 
to the constant _literal_key, the key_literal integer attribute must be used to get the code.  
The key_literal attribute will contain the character code of the key that was pressed. 
Essentially, the key_code attribute is used to handle function, arrow and other special 
keys while the key_literal attribute is used for the remaining alpha-numeric keys. 

 79



 
For example, suppose the previous example was to be modified to use the keyboard 
instead of the mouse to move the camera.  In this case the action method would be 
changed to intercept keystrokes by comparing the 3devent’s id attribute with _key_down.  
The left, right, up, and down keys could be used to control the camera, so the key_code 
attribute should be compared with the _left_key, _right_key, _up_key and _down_key 
constants.  We can also use the “i” and “o” keys to zoom in and out respectfully.  When 
the key_code attribute is equal to __literal_key, the key_literal attribute will contain the 
alpha-numeric code.  In our case, the attribute can be compared with text constants “o” 
and “i”.  The action method implementation now looks like this: 
 
method my_window'action(event) 
   ''check the event id against events to handle 
   select case id(event)  
   case 3devent'_key_down 
      select case key_code(event) 
      case 3devent'_left_key   call move_camera(1.0, 0.0) 
      case 3devent'_right_key  call move_camera(-1.0, 0.0) 
      case 3devent'_up_key     call move_camera(0.0, -1.0) 
      case 3devent'_down_key   call move_camera(0.0, 1.0) 
      case 3devent'_literal_key 
            select case key_literal(event) 
            case "i"  call zoom_camera(-1.0) 
            case "o"  call zoom_camera(1.0) 
            default 
            endselect 
      endselect 
   default 
   endselect 
 
   return with _continue ''tell SIMSCRIPT to do default handling 
end 
 

8.4 Selecting a node in the scene-graph 
 
It can be helpful to an application user to have the ability to interact with a graphical 
simulation.  One of the nice things about adding mouse support to a simulation is the 
additional ability to click on visible objects in the 3dworld.  SIMSCRIPT 3 graphics 
allows actions to be taken whenever any 3dnode in a scene-graph is clicked-on.    
 
To support this, the 3dwindow is sub-classed and its action method overridden.  The 
_mouse_down event is handled as shown above.  The select_node method owned by the 
3dworld class can then be called to determine which node was clicked on.  Select_node 
takes the location in pixels of the mouse click and returns with the selected “leaf” node in 
the scene-graph.  The location in pixels can be obtained from the x and y attributes of the 
3devent instance (argument to action).   
 
The select_node method will always return the leaf node in the scene graph that was 
selected.  Many times the leaf node will compose low-level geometry that is not 
interesting to the application.  The get_owner_node method of this leaf can be called to 
get the node that contains it in its node_set.   

 80



 
In the following, example10 will be modified to allow the user to click on the “people” 
model that is displayed.  In the particular model, the people are represented by a scene-
graph of body parts like “chest”, “head” and “abdomen”, etc.   Our example will print the 
name of the body part that was clicked.  Since the select_node method returns with a 
node in the visible scene-graph, it is important to note that the 3dmodel in this example 
must be “loaded” by calling the 3dnode’load() method instead of begin simply referenced 
(by assigning the model attribute).  Otherwise there would only be one node in the visible 
scene-graph and that same node would be returned regardless of where the user clicks. 
 
''example 11: Selecting a 3d object 
preamble including the 3d.m subsystems 
   begin class my_window 
      every my_window is a 3dwindow and  
         overrides the action 
   end 
   define the_message as a 3dtext reference variable 
   define the_world as a 3dworld reference variable 
end 
 
method my_window'action(event) 
   define node as a 3dnode reference variable 
 
   ''look for a mouse down event 
   if id(event) = 3devent'_mouse_down 
      ''get which node in the scene-graph was selected.  If it is an 
      ''unnamed leaf, check its owner node for a name 
      let node = select_node(the_world)(x(event), y(event)) 
      while node <> 0 and name(node) = "" 
         let node = get_owner_node(node) 
 
      ''found a named node! set the 3dtext string to its name 
      if node <> 0 
         let string(the_message) = "Selected node named: " + name(node) 
         call update_drawing(the_message)(3dgraphic'_once) 
      always 
   always 
 
   return with _continue ''tell SIMSCRIPT to do default handling for the 
                         ''rest of the events 
end 
 
main 
   define window as a my_window reference variable 
   define light as a 3dlight reference variable 
   define model as a 3dmodel reference variable 
   define the_people as a 3dnode reference variable 
   define the_camera as a 3dcamera reference variable 
 
   ''Create windows, worlds, and groups 
   create window 
   let title(window) = "Test of 3d component selection" 
 
   create the_world 
   file this the_world in world_set(window) 
 
   ''create camera(s) 
   create the_camera 
   call set_forward(the_camera)(0.0, 0.0, -1.0) 
   call set_location(the_camera)(0.0, 0.5, 1.5) 

 81



   call set_perspective(the_camera)(60.0, 1.0, 1.0, 10.0, 1) 
   file the_camera in camera_set(the_world) 
 
   ''create light(s) 
   create light 
   call set_location(light)(0.0, 500.0, 500.0) 
   file this light in light_set(the_world) 
 
   ''create model(s) of some people 
   create model 
   let enabled(model)(3dmodel'_smoothing) = 1 
   call read(model)("people.3ds", "") 
   file this model in model_set(the_world) 
 
   ''create objects used in the simulation 
   ''the load method must be used for hierarchical selection to work 
   create the_people 
   call load(the_people)(model) 
   file this the_people in node_set(the_world) 
 
   ''create a text message 
   create the_message 
   let font(the_message) = 3dtext'9_by_15_font 
   let string(the_message) = "Click on the people!" 
   call set_location(the_message)(-0.25, -0.25, 0.0) 
   file the_message in node_set(the_world) 
 
   ''Call the display method of the 3dwindow.   
   ''This will show the window. 
   call display(window) 
 
   activate a animate(window)(10000) now 
 
   let timescale.v = 100 
   start simulation 
end 

 

 82



 
Figure 8.2: Clicking on the lady’s handbag. 

 83



 

9. Animation and Simulation 
 
Animating a 3d scene-graph comes naturally when running a simulation.  Objects being 
simulated are usually moving or somehow changing shape over time.  The application 
will define this dynamic behavior by implementing time-elapsing process methods that 
will update the location, rotation, geometry, etc of the visible scene-graph. The 
SIMSCRIPT III 3d graphics runtime library will automatically update the canvas of the 
3dwindow that is showing the scene to concur with the attributes of the 3dnode objects in 
the scene-graph. 
 

9.1 Frame Based Animation 
 
This updating is done differently than in the gui.m 2d graphics.  In a 2d graphics 
application, an attribute of a graphic object is assigned and the display method is then 
called to immediately update the appearance of that particular instance.  The SIMSCRIPT 
3d graphics instead uses a frame based system for updating the canvas.  The image of 
each entire 3dworld scene-graph is updated as often as possible without causing a 
noticeable lag in the expected runtime of the simulation.  The refresh rate depends on 
many factors including the complexity of the scene-graph, the time scaling factor, and the 
size and scope of the simulation.   
 
To start this automated updating of the window, the 3dwindow’animate process method 
must be activated after the 3dwindow is created.  This process method takes the duration 
in time units as its only argument.  If the duration is less than or equal to zero, animate 
will run forever.  This process method must be running in order for mouse and keyboard 
events to work. 
 
   ''Update the window automatically for 10000 units 
   activate a animate(window)(10000) now 
   start simulation 

 

9.2 Time scaling 
 
When a typical non-graphical SIMSCRIPT III simulation runs, TIME.V is automatically 
set to the time of the next pending process notice on the event set.  If that process notices 
is scheduled to run 1000 units in the future, TIME.V will “jump ahead” to that time 
value.  The behavior is not good for a graphical simulation because if time is not 
advancing smoothly, dynamic objects will “jump around” without regard to the speed at 
which they are supposed to move.  For this reason, SIMSCRIPT provides a global 
variable called TIMESCALE.V.  TIMESCALE.V is the number of 1/100ths of a second 
of real time per unit of simulation time.   Setting TIMESCALE.V to 100 means that every 
unit of simulation time will elapse 1 second of real time.   Therefore assigning a low 

 84



value to TIMESCALE.V will speed up the motion of all moving objects.   (Its use in 3d 
graphics is identical the usage in 2d graphics).  By default TIMESCALE.V is zero 
meaning that no time scaling is performed and TIME.V will advance without delay to the 
time of the next event.  Every graphical simulation should assign this variable. 
 
   ''I want to burn 2 real seconds for every 'UNIT' of simtime 
   let timescale.v = 200 

 

9.3 Automatic motion and the motion_set 
 
In a 3d graphics program attributes of a 3dnode object are assigned, but the update of its 
image is automatic as long as the 3dnode instance is filed into a node_set.  For example, 
suppose we wanted to show a 3d object move in a straight line from (-2.0, 0.0, 0.0) to 
(2.0, 0.0, 0.0).  A process method is written that, in a loop, calls the set_location method 
to update the position of the object, then waits a small amount of time called _delta_x. 
 
process method car'move_it 
   define x as a double variable 
   define _delta_x=1.0, _speed=10.0 as constants 
 
   for x = -20.0 to 20.0 by _delta_x 
   do 
       call set_location(x, 0.0, 0.0) 
       wait _delta_x/_speed units 
   loop 
end 

 
In the preceding example, the smoothness of the motion depends on the _delta_x 
constant.  If this constant is made smaller, the motion will smooth out.  However a 
problem with reducing this value is that it will increase the number of “wait” statement 
executions.  For example, changing _delta_x from 1.0 to 0.01 will increase the number of 
iterations of the loop from 40 to 4000.  If hundreds of objects were moving around, that 
could lead to millions of process switches just to support movement!   
 
Fortunately, SIMSCRIPT 3d graphics provides a better way to support animated motion.  
The 3d.m subsystem owns a set called motion_set.  3dnode instances can be filed into this 
set to have their movement updated automatically.  The runtime library will call the 
motion method for every 3dnode filed into the motion_set before refreshing the window 
canvases.  The default behavior of motion is to update the location of the 3dnode based 
on its velocity (which can be assigned by calling the set_velocity, or move_to methods).  
An application can override this method to provide customized motion such as rotation, 
or non-linear movement. 
 
For example, suppose we want to use this technique instead of the process method to 
move the car from (-20,0.0,0.0) to (20,0.0,0.0).  The move_it process method would be 
rewritten as below.  Notice that using this technique only one “wait” statement is 
performed. 
 
process method car'move_it 

 85



   define _speed=10.0 as constants 
   file this car in motion_set 
   call set_location(-20.0, 0.0, 0.0) 
   call set_velocity(_speed, 0.0, 0.0) 
   wait (20.0 - (-20.0)) / _speed units 
   remove this car from motion_set 
end 

 
For simple linear motion there is yet another way to move an object.  The 3dnode class 
defines a process method called move_to.  This process method will automatically 
compute the velocity and time to wait for the move.  Using the move_to process method 
we no longer need the move_it method.  The following code is added to the initialization: 
 
   file the_car in motion_set 
   call set_location(the_car)(-20.0, 0.0, 0.0) 
   activate a move_to(the_car)(20.0, 0.0, 0.0, 10.0) now 

 
 

9.4 Moving Car Example 
 
The following represents the simplest way to achieve linear motion that is driven by a 
simulation.  A model of a car is initialized and its 3dnode’move_to method is activated at 
time 0.0.  This method will move the car from (-20.0, 0.0,0.0) to (20.0, 0.0,0.0) 
automatically during the simulation. 
 
''Example of moving a graphical object around in a simulation 
''Requires ford.3ds model file 
preamble including the 3d.m subsystems 
end 
 
main 
   define window as a 3dwindow reference variable 
   define world as a 3dworld reference variable 
   define camera as a 3dcamera reference variable 
   define light as a 3dlight reference variable 
   define model as a 3dmodel reference variable 
   define the_car as a car reference variable 
 
   create window 
   let title(window) = "Move a car across the screen" 
   create world 
   file this world in world_set(window) 
 
   create camera 
   call set_orientation(camera)(0.0, 0.0, -1.0, 0.0, 1.0, 0.0) 
   call set_location(camera)(0.0, 0.0, 25.0) 
   file this camera in camera_set(world) 
 
   create light 
   call set_location(light)(0.0, 500.0, 500.0) 
   file this light in light_set(world) 
 
   create model 
   call read(model)("ford.3ds", "") 
   file this model in model_set(world) 
 

 86



   create the_car 
   let model(the_car) = model 
   call set_forward(the_car)(-1.0, 0.0, 0.0) 
   file this the_car in node_set(world) 
 
   call display(window) 
 
   '' activate the move_to method 
   file the_car in motion_set 
   call set_location(the_car)(-20.0, 0.0, 0.0) 
   activate a move_to(the_car)(20.0, 0.0, 0.0, 10.0) now ''destination, speed 
 
   activate a animate(window)(0) now 
 
   let timescale.v = 100 ''real seconds/ simulated seconds 
   start simulation 
end 

 

9.5 Achieving customized motion 
 
Linear motion is not always adequate.  The specific needs of the program to rotate, scale 
or move objects in a non-linear fashion over time may by complex and even depend on 
conditions in the simulation.  To support this sub-classes of the 3dnode class can 
override the motion method.  The motion method is called for all objects filed into the 
motion_set.  Here the programmer can add code to rotate, scale or set the location of the 
object based on the time differential “dt” passed as the argument to motion.  Remember 
that the object must be filed into the motion_set and the simulation must be running 
before the motion method will be called.  To stop the object from moving it should be 
removed from the motion_set.   
 
The code below was taken from example13.sim and shows the implementation of the 
motion method.  The "dt" argument is used in conjunction with application defined 
attributes such as airspeed and radius to determine the next location and orientation. 
 
method moving_jet'motion(dt) 
   add arcsin.f(min.f(pi.c / 2.0, airspeed * dt / flight_radius)) to 
flight_angle 
   add vertical_airspeed * dt to elevation 
 
   if elevation > _max_elevation or elevation < 0.0 
      let vertical_airspeed = -vertical_airspeed 
   always 
 
   call set_location(flight_radius * cos.f(flight_angle), elevation,  
                     flight_radius * sin.f(flight_angle)) 
   call set_forward(cos.f(flight_angle+pi.c/2.0), 0.0, 
sin.f(flight_angle+pi.c/2.0)) 
end 

 
The complete example shown below will display 10 circling planes.  Each plane moves 
in a slightly different manner at a different speed  The planes can be selected while the 
simulation is running.  In this example, many of the concepts described in previous 
chapters are utilized including: 

 87



 
 Overriding the 3dwindow’s action method to get mouse input, then calling 

select_node to determine which plane was clicked on. 
 Overriding the 3dgraphic’s draw method to construct the planes with program 

code. 
 Overriding the motion method to allow customized motion.  Filing objects in the 

motion_set. 
 Creating and utilizing a 3dtext object to display a message in the window. 
 
''basic test of 3d graphics 
''This program tests a simple simulation with many moving objects 
 
preamble including the gui.m, 3d.m subsystems 
   begin class sky_window 
      every sky_window is a 3dwindow and  
         overrides the action 
   end 
 
   begin class moving_jet 
      every moving_jet is a 3dgraphic and has 
         a color, 
         a flight_angle, 
         a flight_radius, 
         a airspeed, 
         a vertical_airspeed, 
         an elevation,  
         a draw_triangle method, 
         an init method and 
         overrides the draw, 
         overrides the motion, 
         overrides the action 
 
      define color as an integer variable 
      define flight_angle, flight_radius, airspeed, vertical_airspeed, 
elevation 
             as double variables 
      define draw_triangle as a method given 
         9 double arguments    ''verticies 
 
      after creating a moving_jet call init 
   end 
 
   define the_window as a sky_window reference variable 
   define the_world as a 3dworld reference variable 
   define the_light as a 3dlight reference variable 
   define the_camera as a 3dcamera reference variable 
   define the_message as a 3dtext reference variable 
 
   define _max_elevation=2000.0 as a constant 
end 
 
''helper method to draw a single triangle 
method moving_jet'draw_triangle(p1x, p1y, p1z, p2x, p2y, p2z, p3x, p3y, p3z) 
   define nx, ny, nz as double variables 
 
   call 3d.m:compute_normal_vector(p1x, p1y, p1z, p2x, p2y, p2z, p3x, p3y, 
p3z) 
      yielding nx, ny, nz 
 
   call draw_normal(nx, ny, nz) 

 88



   call draw_vertex(p1x, p1y, p1z) 
   call draw_vertex(p2x, p2y, p2z) 
   call draw_vertex(p3x, p3y, p3z) 
end 
 
''The method is called by the system whenever it needs to know how to  
''"draw" the jet.  code is provided to construct the geometry 
method moving_jet'draw 
   call set_color(_front, _ambient, color) 
   call set_color(_front, _diffuse, color) 
 
   call begin_drawing(_triangles) 
   call draw_triangle(0.0, 0.0, 60.0, -15.0, 0.0, 30.0, 15.0,0.0,30.0) 
   call draw_triangle(15.0,0.0, 30.0, 0.0, 15.0, 30.0, 0.0, 0.0, 60.0) 
   call draw_triangle(0.0, 0.0, 60.0, 0.0, 15.0, 30.0, -15.0,0.0, 30.0) 
   call draw_triangle(-15.0,0.0, 30.0, 0.0, 15.0, 30.0, 0.0, 0.0, -56.0) 
   call draw_triangle(0.0, 0.0, -56.0, 0.0, 15.0, 30.0, 15.0,0.0,30.0) 
   call draw_triangle(15.0,0.0,30.0, -15.0, 0.0, 30.0, 0.0, 0.0, -56.0) 
   call draw_triangle(0.0,2.0,27.0, -60.0, 2.0, -8.0, 60.0, 2.0, -8.0) 
   call draw_triangle(60.0, 2.0, -8.0, 0.0, 7.0, -8.0, 0.0,2.0,27.0) 
   call draw_triangle(60.0, 2.0, -8.0, -60.0, 2.0, -8.0, 0.0,7.0,-8.0) 
   call draw_triangle(0.0,2.0,27.0, 0.0, 7.0, -8.0, -60.0, 2.0, -8.0) 
   call draw_triangle(-30.0, -0.50, -57.0, 30.0, -0.50, -57.0, 0.0,-0.50,-
40.0) 
   call draw_triangle(0.0,-0.5,-40.0, 30.0, -0.5, -57.0, 0.0, 4.0, -57.0) 
   call draw_triangle(0.0, 4.0, -57.0, -30.0, -0.5, -57.0, 0.0,-0.5,-40.0) 
   call draw_triangle(30.0,-0.5,-57.0, -30.0, -0.5, -57.0, 0.0, 4.0, -57.0) 
   call draw_triangle(0.0,0.5,-40.0, 3.0, 0.5, -57.0, 0.0, 25.0, -65.0) 
   call draw_triangle(0.0, 25.0, -65.0, -3.0, 0.5, -57.0, 0.0,0.5,-40.0) 
   call draw_triangle(3.0,0.5,-57.0, -3.0, 0.5, -57.0, 0.0, 25.0, -65.0) 
   call end_drawing 
end 
 
''initialize the flight parameters randomly 
method moving_jet'init 
   let flight_radius = uniform.f(100.0, 1500.0, 1) 
   let flight_angle = uniform.f(0.0, pi.c * 2.0, 1) 
   let airspeed = uniform.f(50.0, 500.0, 1) 
   let elevation = uniform.f(0.0, 200.0, 1) 
   let vertical_airspeed = uniform.f(-50.0, 50.0, 1) 
end 
 
''This method is called automatically by the system.  Using the "dt"  
''argument we can determine the next location and orientation using the  
''current elevation, airspeed, and vertical airspeed. 
method moving_jet'motion(dt) 
   add arcsin.f(min.f(1.0, airspeed * dt / flight_radius)) to flight_angle 
   add vertical_airspeed * dt to elevation 
 
   if elevation > _max_elevation or elevation < 0.0 
      let vertical_airspeed = -vertical_airspeed 
   always 
 
   call set_location(flight_radius * cos.f(flight_angle), elevation,  
                     flight_radius * sin.f(flight_angle)) 
   call set_forward(cos.f(flight_angle+pi.c/2.0), 0.0, 
sin.f(flight_angle+pi.c/2.0)) 
end 
 
''We call this method from sky_window'action if a jet is clicked on. 
method moving_jet'action(event) 
   let event=event 
   let string(the_message) = name + " was clicked on" 

 89



   call update_drawing(the_message)(3dgraphic'_once) 
   return with 0 
end 
 
''overriding the window's action methods lets us to get mouse clicks. 
''If the user pushes the mouse button, call the "select_node" method 
''to see if a plane was clicked on  
method sky_window'action(event) 
   define node as a 3dnode reference variable 
 
   if id(event) = 3devent'_mouse_down 
      let node = select_node(the_world)(x(event), y(event)) 
      if node <> 0 
         call action(node)(event) 
      else 
         let string(the_message) = "Click on a plane.." 
         call update_drawing(the_message)(3dgraphic'_once) 
      always 
   always 
 
   return with 0 
end 
 
main 
   define _num_planes=10 as a constant 
   define i as an integer variable 
   define plane as a moving_jet reference variable 
   define names as a 1-dim text array 
   
   reserve names(*) as _num_planes 
   let names(1) =  "Bobcat" 
   let names(2) =  "Prince" 
   let names(3) =  "Mercury" 
   let names(4) =  "Jumper" 
   let names(5) =  "Cowboy" 
   let names(6) =  "Flash" 
   let names(7) =  "Joker" 
   let names(8) =  "Iceman" 
   let names(9) =  "Reddog" 
   let names(10) = "Ace" 
  
   ''create the window 
   create the_window 
   let title(the_window) = "Simulation and 3d graphics"  
   let color(the_window) = color'rgb(0.1, 0.2, 0.5) 
 
   ''create the world 
   create the_world 
   file the_world in world_set(the_window) 
 
   ''create the camera 
   create the_camera 
   call set_forward(the_camera)(0.0, 0.0, -1.0) 
   call set_location(the_camera)(0.0, 500.0, 1500.0) 
   call set_perspective(the_camera)(60.0, 1.0, 1.0, 3000.0, 1) 
   file this the_camera in camera_set(the_world) 
 
   ''create the axis graphics 
   for i = 1 to _num_planes 
   do 
      create plane 
      let color(plane) = color'rgb(0.5, random.f(1), random.f(1)) 
      let name(plane) = names(i) 

 90



      file this plane in node_set(the_world) 
      file this plane in 3d.m:motion_set 
   loop 
 
   ''create a text message using the 3dtext object 
   ''give it a raster font so that its size will not depend on  
   ''its distance from the camera 
   create the_message 
   call set_location(the_message)(-250.0, -250.0, 0.0) 
   let font(the_message) = 3dtext'times_roman_24_font 
   let string(the_message) = "Click on a plane.." 
   file the_message in node_set(the_world) 
 
   ''simulate sunlight using a directional light from the top 
   create the_light 
   let ambient_color(the_light) = color'_black 
   let diffuse_color(the_light) = color'_white 
   let variety(the_light) = 3dlight'_directional 
   call set_forward(the_light)(0.0, -1.0, 0.0) ''point straight down 
   file this the_light in light_set(the_world) 
 
   let ambient_color(the_world) = color'rgb(0.0, 0.0, 0.3) 
 
   call display(the_window) 
 
   activate a animate(the_window)(1000) now 
   let timescale.v = 100  ''set the speed of the animation 
   start simulation 
end 
 
 

 91



 
Figure  9.1: Example 13 output, planes circling in the sky. 
 

 92



 

10. 3d Class reference 
 

3dbox (lineage: 3dbox -> 3dshape -> 3dgraphic -> 3dnode) 
 
A 3dBox is used to implement a simple box with width, height and depth.  The set_size 
method can be called to set these parameters.  If an instances material attribute is set, it 
will apply to all sides.  However, by using the materials array attribute, each side can 
have its own distinct color and texture.  This array is reserved and destroyed 
automatically and its elements can be indexed using the following constants defined by 
3dBox: 
 
define _front=1, _back, _left, _right, _top, _bottom as constants 
 
The inherited attribute 3dshape’inside_lighting attribute should be set to “1” if the viewer 
is intended to be inside the box.  (This allowed effects such as a sky and ground to be 
implemented). 
 

3dcamera (lineage: 3dcamera -> 3dnode) 
A 3dcamera is used show a view of the 3dworld on the canvas of a window.  For each 
3d.m application, at least one camera must be created, oriented, and filed in the 
“camera_set” owned by the 3dworld, otherwise nothing will be seen.  Since the 3dcamera 
object is derived from 3dnode, it inherits the set_location, set_orientation, and 
set_forward methods.  All can be used to position and orient the camera much in the 
same way that a “real” camera would be positioned.   
 
A 3dcamera can optionally be filed into a node_set allowing it to move and rotate 
automatically with the owner node.  For example, a 3dcamera could be filed into the 
node_set owned by a jet plane and if positioned at the cockpit, would provide the same 
shifting view of scenery that a pilot would see as the plane flies. 
 
The portion of the 3dworld seen by the camera is projected onto a rectangular area of the 
canvas called a viewport.  Normally, the viewport dimensions will match the canvas 
dimensions.  In fact, if the viewport_autosize attribute of 3dcamera is non-zero (default) 
the view will automatically size to match the canvas whenever the user resizes the 
window.  However, if more than one camera is present, the multiple views should be 
mapped to different regions of the canvas.  The set_viewport method specifies the 
viewport rectangle (in pixels) with the (0,0) coordinate located at the lower left corner of 
the canvas.  The call to set_viewport will usually have to be made in response to the user 
resizing the window.  (At this time, the new pixel dimensions of the canvas are known, 
allowing the viewport to be sized appropriately.)  This can be accomplished by sub-
classing the 3dwindow object and overriding the “action” method.  If the event id is 

 93



“_resize” then the “x” and “y” attributes of the event will have the new size of the 
window. 
 
define set_viewport as a method given 
      2 integer arguments,    ''x, y in pixels. 
      2 integer arguments,    ''width, height pixels.  
      1 integer argument      ''1=>size viewport to window canvas 
''Defines the viewport within the window that will display what is seen 
''by the Camera. Values are given in pixels with (0,0) located at the  
''lower left corner of the window. 
''DEFAULT: <viewport_autosize = 1> 
 
Two different types of projections are possible when using a 3dcamera, orthographic, 
and perspective.  When using orthographic projections, the distance from the camera to 
the viewed object does not affect the size of its image seen on the canvas.  A simple view 
volume defines to portion of the 3d world that is “seen” by the camera.  This box is of 
course oriented and positioned with respect to the camera, not the world.  The 
set_orthographic method specifies the view volume.  If the “auto resize” flag is specified, 
the view volume will be adjusted automatically when the user resizes the window.  
Values are specified relative to the camera’s own orientation and location. 
 
define set_orthographic as a method given  
      2 double arguments,    ''left, right,  
      2 double arguments,    ''bottom, top,  
      2 double arguments,    ''far,    near,  
      1 integer argument     ''1=> adjust size automatically after  
                             ''window resize 
''sets up an orthogonal (parallel) projection.  It is assumed that the 
''eye is located at the "location" of the camera and looking down the 
''negative z axis.  The ortho_xlo, ortho_xhi, ortho_ylo, ortho_yhi,  
''ortho_zlo, ortho_zhi, and ortho_autosize attributes are set. 
 
When using a perspective projection, distant objects will appear smaller.  This form of 
projection provides a more realistic view.  The set_perspective method is used to specify 
the attributes of a perspective projection.  The distance from the camera to both the near 
and far clipping planes is specified as well as the angle (in degrees) of the view from the 
location of the camera.  Decreasing the angle of view has the same effect as “zooming in” 
with a traditional camera.    
 
define set_perspective as a method given 
      1 double argument,     ''angle > 0.0, < 180.0 degrees 
      1 double argument,     ''aspect ratio. 
      2 double arguments,    ''near, far clipping planes 
      1 integer argument     ''1=>compute aspect ratio after win resize 
''sets up a perspective viewing transformation.  The view angle is 
''relative to the eye.  The aspect ratio will equal the width of the 
''projection divided by its height.  The location of clipping planes is  
''specified relative to the camera.  Geometry in front of the near, or  
''behind the far clipping planes is clipped. 
 
By default, a camera will use the perspective projection.    

 94



 
A camera can be programmed to track (point at) a particular 3dnode object that is filed in 
the same world_set.  Assigning the tracked_node attribute to a 3dnode instance will cause 
the camera to track the node automatically, even if both objects are moving.  The camera 
will remain oriented so that the global y-axis appears to point up.  Tracking can be 
stopped by assigning tracked_node  to zero. 
 
define tracked_node as a 3dnode reference variable  
       monitored on the left 
''Can be assigned to a 3dnode in the same 3dworld.  Will cause the  
''camera to automatically point to the given node.  Must be assigned to 
''zero before the tracked_node can be destroyed. 

3dcone (lineage: 3dcone -> 3dshape -> 3dgraphic -> 3dnode) 
The 3dcone can be created and filed into a node_set to add a cone shaped object to the 
scene-graph.  The distance from its tip to base can be set by assigning the length attribute.  
Its radius attribute controls the radius of its base circle.  The default value for both 
dimensions is “1.0”. 
 

3dcylinder (lineage: 3dcylinder -> 3dshape -> 3dgraphic -> 
3dnode) 
The 3dcylinder can be created and filed into a node_set to add a cylinder shaped object to 
the scene-graph.  Its size can be adjusted by setting its length and radius attributes.  The 
default value for both dimensions is “1.0”. 
 

3dellipse (lineage: 3dellipse -> 3dshape -> 3dgraphic -> 3dnode) 
The 3dellipse can be created and filed into a node_set to add a circle or ellipse object to 
the scene-graph.  This object can actually be used to draw a variety of shapes depending 
on the hollow and shape_mode attributes: 
 
 “hollow” attribute  “shape_mode” attribute Resulting shape 
0 _full_mode Solid ellipse or circle.  This is the 

DEFAULT. 
0 _arc_mode Chord drawn from start_angle to 

end_angle. 
0 _pie_mode Solid pie slice Chord drawn from 

start_angle to end_angle.. 
0 _chord_mode Chord drawn from start_angle to 

end_angle. 
1 _full_mode Hollow ellipse or circle. 
1 _arc_mode Arc drawn from start_angle to 

end_angle. 
1 _pie_mode Hollow pie slice drawn from 

start_angle to end_angle. 

 95



1 _chord_mode Hollowed chord drawn from 
start_angle to end_angle. 

 
When the shape_mode attribute is not set to _full_mode, The start_angle and stop_angle 
attributes determine the starting point and range of the pie, arc, or chord.  Each angle is  
measured in degrees counter-clockwise from the positive local x-axis.  Defaults values 
for start_angle and stop_angle are 0 and 360 respectfully. 
 
The radius_x and radius_y attributes specify the major and minor axis length 
respectfully.  (For a circle, radius_x = radius_y, for an elliptical shape radius_x <> 
radius_y). 
 

3devent (lineage: 3devent -> gui.m:guievent) 
An instance of a 3devent is passed to the 3dwindow’action method when the user types 
on the keyboard, clicks in the window with the mouse, or resizes the window.   3devent is 
derived from gui.m’guievent and each instance will contain attributes pertinent to the 
type of event.   
 
button_number  ''number of the mouse button that was pressed 
click_count    ''1 => single click, 2 => double click 
key_code       ''either "_literal_key" or a special key like "_f6_key" 
key_literal    ''letter or number that was pressed 
modifiers      ''presence of alt, ctrl and/or shift keys during event 
x,y            ''location of mouse click, mouse move, new canvas size  
               '' (pixels)  
 
The id attribute contains an enumerated constant describing what type of event had 
occurred.  The following events are currently handled: 
 
_activate,      ''window frame brought to front 
_close,         ''attempt to close window 
_key_down,      ''key pushed down.  key_code, key_literal contain info 
_key_up,        ''key released.  key_code, key_literal contain key info 
_mouse_down,    ''(x,y) is click location in pixels 
_mouse_up,      ''(x,y) is click location in pixels 
_mouse_move,    ''(x,y) is new mouse location in pixels 
_mouse_wheel_forward,   ''spin mouse wheel away from user 
_mouse_wheel_back,      ''spin mouse wheel toward user 
_reposition,    ''(x,y) is new location of window in pixels 
_resize         ''(x,y) is new size of window in pixels 
 
 

The user may choose to hold down the shift, ctlr, or alt key during the event.  This can be 
detected by examining the modifiers attribute for the presence of the _alt_mod, 
_ctrl_mod, _shift_mod, bits.   
 
If an application needs to respond to selection by mouse of a visible 3dnode, the 
3dworld’select_node method can be called to see if a node in the world has been clicked.  
The 3dnode object defines an “action” method that can be overridden by classes that 

 96



receive mouse clicks or other events.  An example of a user defined “action” method is 
shown below.  This method responds to “shift” clicks on  a node owned by “the_world”. 
 
Method my_3dwindow'action(event) 
   Define node as a 3dnode reference variable 
 
   If id(event) = 3devent'_mouse_down and   ''mouse click 
      and.f(modifiers(event), 3devent'_shift_mod) <> 0 ''shift key down 
      Let node = select_node(the_world)(x(event), y(event)) 
      If node <> 0 
         Call action(node)(event)  ''pass event to 3dnode'action 
      Always 
   Always 
End 
 
The 3devent instance will be destroyed after the 3dwindow’action method is called.   

3dfaces (lineage: 3dfaces -> 3dgraphic -> 3dnode) 
This class can be used to draw various segmented surfaces.  Each “face” must be planar 
but exists in 3d space.  Coordinate geometry is defined by a 1-dim double array attribute 
called points.  The points are assigned to the array with successive array elements 
assigned to x then y then z coordinate values for each point.  I.e. (x1, y1, z1, x2, y2, z2, 
x3, y3, z3 …) The size of the array must therefore be three times the number of points 
(npoints * 3).   A 1-dim real array attribute called normals can be assigned to specify a 
normal vector corresponding to each point.  The size of normals array must match the 
points array.  The format attribute can be assigned to one of the following enumerated 
constants: 
 
_triangles:   

Each successive group of 3 points defines a triangle 
_triangle_strip:  

For each index n > 2 a triangle is defined by points at n-2, n-1 and n in counter-
clockwise order.  Sometimes this is called the “triangular mesh” or just “mesh”. 

_triangle_fan:  
For each index n > 2 a triangle is defined by points at n, n-1 and 1 

_quads:  
Each successive group of 4 points defines a quadrilateral face. 

_quad_strip: 
For each 2 indices n, n-1, a new quadrilateral is composed of points at n-3, n-1, n, 
n-2 in counter-clockwise order. 

_polygon:   
The outline of the polygon is defined by points.  Again, the points for front facing 
polygons should be arranged in a counter-clockwise order. 

 
 
The diagrams below show how the points array defines specifically formatted geometry 
 
 

 97



 
Figure 1: 3dgraphic’_triangles format 
 
 

 
 
Figure 2: the 3dgraphic’_triangle_strip format. 
 
 

 98



 
Figure 3: the 3dgraphic’_triangle_fan format. 
 
 

 
Figure 4: 3dgraphic’_quads format. 
 
 

 99



 
Figure 5: 3dgraphic’_quad_strip format. 
 
 

 
Figure 6: 3dgraphic’_polygon format. 
 
The material attribute of 3dfaces can be set to a 3dmaterial instance.  The material colors 
will be applied to each face.  The texture_points real array attribute will be utilized if the 
texture_name attribute of the material has been specified.  (See the reference for the 
3dMaterial class for a description of supported texture mapping functions.) 
 
The edge_flags array attribute of 3dfaces can be assigned to a 1-dim integer array sized to 
match the points array.  Each element value defines the visibility of the corresponding 
face edge (with a non-zero value meaning “visible”).  If the array is not assigned, all 
edges are visible. 

 100



 
In some cases, a performance improvement can be gained by using indexed vertex arrays.  
If vertices are naturally shared in the geometry, the unique vertices can be specified in the 
points array with index values of (possibly multiple) references stored in the indices array 
attribute.  Using this method can save memory and improve performance.  For example, a 
cube consists of 8 unique vertices.  Using the _quads format without indexed vertex 
arrays to define the faces, requires 24 vertices, or a points array of dim (24 x 3) = 72 (576 
bytes).  Using vertex arrays, the smaller indices integer array would contain the 24 
elements to define zero based indices into the points array (96 bytes).  The points array 
would contain only the unique eight vertices, or (8 x 3) = 24 elements (192 bytes).  The 
total memory requirement for the geometry is (192+96) = 288  bytes for index vertex 
arrays, versus 576 bytes.  See below: 
 

 
 
Figure 7: Using the  3dfaces’indices attribute to define a cube. 
 
Three helper methods called set_point, set_normal, and set_texture_point can be used to 
assign values in the points, normals, or texture_points arrays respectfully.  The (1 based) 
index is given followed by the vector or coordinates.  The corresponding array must be 
reserved beforehand and must be large enough to store the vector at the specified index. 
 
define set_normal as a method given 
      1 integer argument,     ''index 
      3 real arguments        ''nx,ny,nz normal vector 
''This helper method assigns one of the normal vectors in the "normals" 
''array to (nx,ny,nz). 
 
define set_point as a method given 
      1 integer argument,     ''index 
      3 double arguments      ''px,py,pz coordinates of vertex 
''This helper method assigns a point (vertex) in the 'points' array 
''to (px,py,pz). 
 
define set_texture_point as a method given 
      1 integer argument,     ''index 
      2 real arguments        ''(s,t) 
''This helper method assigns a texture coordinate in the 
'''texture_points' array to (s,t). 
 
Another helper method called compute_normal_vectors can be called to automatically 
assign normal vectors to the normals array based on the geometry in the points array and 

 101



the format attribute.  This method does not automatically smooth the surface and will 
result in a “faceted” look.  The normals  arrays must be reserved and the points and 
format attributes assigned before calling compute_normal_vectors. 

3dgraphic (lineage: 3dgraphic -> 3dnode) 
The 3dgraphic is the base class for all objects whose geometry is defined by program 
code, and not by offline models stored in a file.  Classes derived from 3dgraphic can be 
seen by a 3dcamera and illuminated by a 3dlight.  Since 3dgraphic is derived from 
3dnode, instances must be filed into a node_set (owned by either the 3dworld or by 
another 3dnode attached to a 3dworld).   
 
Geometry and surface materials can be specified by sub-classing 3dgraphic and 
overriding the draw method.  The draw method is called automatically when the system 
needs to have the 3dgraphic object rendered.  (Calling the 3dwindow’display method will 
invoke this method.  Draw may also be called as a result of event handling). The draw 
method is programmed to make calls to begin_drawing and end_drawing class methods 
to define each surface.   After the call to begin_drawing, calls to class methods such as 
draw_normal, draw_texture_coordinate, and draw_vertex allow geometry to be specified 
for the surface.  A call to end_drawing will mark the end of the geometry description 
started by begin_drawing.   
 
define begin_drawing as a method given 
    1 integer argument   ''format 
 
define end_drawing as a method 
 
The “format” argument to begin_drawing must be one of the following predefined 
constants: 
 
_points: 

Draw dots in 3d space.  Each call to draw_vertex adds a dot.  (See 3dpoints class). 
_lines: 
 Each 2 successive vertices defines a line segment (see 3dlines class). 
_line_loop: 

Each vertex is connected to the next with the first connected to last (see 3dlines 
class). 

_line_strip: 
Each vertex is connected to the next (see 3dlines class). 

_triangles:   
Each successive group of 3 vertices defines a triangle 

_triangle_strip:  
For each index n > 2 a triangle is defined by vertex at n-2, n-1 and n in counter-
clockwise order.  Sometimes this is called the “triangular mesh” or just “mesh”. 

_triangle_fan:  
For each index n > 2 a triangle is defined by vertex at n, n-1 and 1 

_quads:  
Each successive group of 4 vertices defines a quadrilateral face. 

_quad_strip: 

 102



For each 2 indices n, n-1, a new quadrilateral is composed of vertices at n-3, n-1, 
n, n-2 in counter-clockwise order. 

_polygon:   
The outline of the polygon is defined by vertices.  Again, the vertices for front 
facing polygons should be arranged in a counter-clockwise order. 

 
The draw_normal class method can be called to specify a normal vector to be applied to 
all subsequent vertices.  X, y, z components are specified and the given vector should be 
normalized to the range (0.0, 1.0).  
 
define draw_normal as a method given 
   3 double arguments  ''(x,y,z) 
 
The draw_texture_coordinate method can be called to map the next vertex to a given 2d 
texture coordinate.  These “texture” coordinates reference the texture of the current 
material (see 3dgraphic’set_material).   The texture is a bitmapped image with the (0.0, 
0.0) coordinate in the lower left corner and (1.0,1.0) in the upper right.  These two “s” 
and “t” coordinates are the given arguments to the method.   
 
define draw_texture_coordinate as a method given 
   2 double arguments  ''(s,t) 
 
The draw_vertex class method adds a new 3d vertex to the current drawing given the x, y, 
and z components. 
 
define draw_vertex as a method given 
    3 double arguments   ''(x,y,z) 
 
The draw_vertex, draw_normal, and draw_texture_coordinate methods MUST be called 
between begin_drawing and end_drawing methods.  Other class methods can be called to 
set features for drawing materials and lines.  The set_color method can be used to define 
surface color or, if called before draw_vertex, can set the color applied to individual 
vertices.   
 
define set_color as a method given  
   1 integer argument,  ''_front, _back, or _front_and_back 
   1 integer argument,  ''_ambient, _diffuse, _specular 
   1 integer ''color'' argument     ''color (color'rgb(r,g,b)) 
 
The first argument indicates which side the color should be applied to, and must be 
_front, _back or _front_and_back.  The second gives the type of lighting, _ambient, 
_diffuse, or _specular that should reflect the color (see 3dlight).  The third argument is 
the color value obtained from the gui.m:color’rgb class.  
 
Attributes of the 3dmaterial object (colors and texture) can be applied to drawings as 
well.  The set_material method can be called before begin_draw and takes a 3dmaterial 
instance as an argument.   This instance must be filed in the 3dworld'material_set before 
the draw is invoked. 
 

 103



define set_material as a method given 
      1 3dmaterial reference argument    ''pointer to material 
 
When lines are being drawn, the set_pen_size and set_pen_pattern methods can be called 
to set the line width and pattern.   
 
define set_pen_size as a method given  
   1 integer argument       ''line width in pixels 
 
define set_pen_pattern as a method given  
   1 integer argument       ''line style  
 
These methods must be called before begin_drawing.  The current pen size is always in 
pixels.  The pattern is one of the following constants: _solid, _long_dash, _dotted, 
_dash_dotted, _medium_dash, _dash_dot_dotted, _short_dash, _alternate.  (See 3dlines 
for more). 
 
The shininess of the surface (used for specular lighting) is set by calling the set_shininess 
class method.   
 
define set_shininess as a method given  
      1 integer argument,      ''_front, _back, or _front_and_back 
      1 double argument        ''shininess (0.0 to 1.0) 
 
The first argument must be one of the constants _front, _back, or _front_and_back. The 
second “shininess” argument must be a value between 0.0 and 1.0 (see 3dlight). 
 
By default, both the front and back sides of a surface are visible.  In some cases, back or 
front side of an object is never seen.  Faster rendering can be achieved for single sided 
drawings by defining which side is to be made visible.  The set_visibility method can be 
called to accomplish this.  The method call must be made before begin_drawing.   
 
define set_visibility as a method given 
   1 integer argument  ''_front, _back or _front_and_back 
 
Individual edges for surfaces specified by calls to draw_vertex are normally visible.  For 
some edges such as those on the interior of a complicated shape, this visibility can lead to 
unwanted artifacts when the 3dgraphic is displayed.  The set_edge_visibility method can 
be used to hide or show future edges added to the shape by draw_vertex. 
 
define set_edge_visibility as a method given 
   1 integer ''boolean'' argument       ''0=>invisible, 1=>visible 
''specifies visibility of future edges of a face 
 
By default the draw method is only called once by the system when the 3dgraphic first 
appears.  If the geometry or surface has changed, the update_drawing method must be 
used to indicate that the 3dgraphic is “old” and that the draw method should be invoked 
(the draw method should never be called directly).   
 
define update_drawing as a method given 

 104



      1 integer argument   ''_always, _once, _never 
 
_never 

Draw will not be called.  Graphic will effectively be hidden from view. 
_once 

Draw called the next time the window is refreshed.  The image of the 3dgraphic 
will be “cached” for future refreshes of the screen.  The update_drawing method 
must be called for draw to be invoked again. 

_always 
Draw will be called each time the canvas is refreshed.  This is useful for objects 
with constantly changing geometry. 

 

3dlight (lineage: 3dlight -> 3dnode) 
A 3dlight object represents a light source in 3d space.  It is derived from 3dnode and 
inherits its location, orientation and “set” properties.   Light sources are apparent only if 
the lighting attribute of the 3dworld is non-zero.  A single light source can have 
“ambient”, “diffuse” and “spot” properties.   
 
Ambient 

This type of light is non-directional and non-positional (location and orientation is 
ignored).  Ambient light will illuminate all surfaces ignoring normal vectors.  The 
ambient term is used simply to keep shadows from turning pitch black. The 
relative intensity of ambient light can be set by assigning the ambient_color 
attribute to an rgb value returned from the gui.m:color’rgb class method.  If less 
ambient light is required, darker colors should be used.  For example, setting 
ambient_color to color’rgb(0.25, 0.25, 0.25) will provide a 1/4th intensity of 
ambient light. 
 

Diffuse 
Diffuse light is reflected from a surface in all directions.  The amount of reflected 
light is determined by the “diffuse” color of surface material (see 3dmaterial).  
Rough surfaces should have a relatively bright diffuse_color  attribute.  Both 
diffuse and specular light allows objects to be shaded based on surface normal 
vectors.   Surface elements with normals pointing at the light source will be 
illuminated while surfaces with normals orthogonal to the light source’s direction 
will not.  The diffuse_color attribute determines the color and intensity of diffuse 
light. 

 
Specular 

Specular light is reflected from a surface in mostly one direction.  Shiny surfaces 
reflect more of the specular light than rough surfaces.  The amount of reflected 
light is determined by the “specular” color of surface material (see 3dmaterial).  
Surface elements with normals pointing at the light source will be illuminated 
while surfaces with normals orthogonal to the light source’s direction will not.  
The specular_color attribute determines the color and intensity of this light. 

 

 105



 
The variety attribute defines the type of lighting.  One of the following constants can be 
assigned. 
 
_positional  

Light emanates in all directions from a single position.  This position is the 
location attribute inherited from 3dnode.   

 
_directional 

Light travels in only a single direction which is determined by the “forward” 
vector inherited form 3dnode.   The location attribute is ignored.   

 
_spot 

Spot lighting is both positional and directional.  The “location” attribute 
determines spot light position while orientation (i.e. the forward vector) inherited 
from 3dnode determines its direction.  The intensity of spot lighting is 
concentrated along the forward vector’s direction.  The spot_cutoff attribute is an 
angle (in degrees) that indicates how the light fans out from its source location.  
The default value is 45 degrees. 

 
The spot_cutoff attribute specifies the radial angle (in degrees) of the cone of light 
emanating from a spot variety light.  The angle is specified from the center line to the 
edge of the cone.  This attribute must range from 0 to 90. 

3dlines (lineage: 3dlines -> 3dgraphic -> 3dnode) 
This class derived from 3dgraphic can be used to draw various segmented lines.    
Coordinate geometry is defined by a 1-dim double array attribute called points.  Vertex 
data is packed into the points array as x1, y1, z1, x2, y2, z2, x3, y3, z3, ….   The format 
attribute can be assigned to one of the following enumerated constants: 
 
_lines: 

Each successive group of 2 points defines a separate line segment (see Figure 8). 
_line_strip: 

Successive points are connected by line segments.  The first and last points are 
not connected (see Figure 8). 

_line_loop: 
Successive points are connected by line segments.  The first and last points are 
connected (see Figure 9). 

 
The diagrams below show how the points array defines specifically formatted geometry: 
 

 106



 
Figure 8: 3dgraphic’_lines format 
 
 

 
Figure 9: 3dgraphic’_line_strip  format 
 

 
Figure 10: 3dgraphic’_line_loop  format 

 107



 
 
Other attributes of the 3dLines object include the color, width and pattern.  The color can 
be obtained from the gui.m:color class, and applies to ambient, diffuse and specular 
colors.  Line width is specified in pixels.  The line pattern refers to the dash style found in 
the 3dgraphic class and must be one of the following: 
 
define _solid=0, _long_dash, _dotted, _dash_dotted, 
       _medium_dash, _dash_dot_dotted, _short_dash,  
       _alternate as constants  
 
 
In most cases the 3dlines object will be used for illustration purposes and the application 
will not want it to be shaded.  If this is the case, the 3dnode’enabled(_lighting) can be 
assigned to “0”.  This will cause the lines to be shown regardless of how lights are 
positioned. 

3dmaterial 
The 3dmaterial object defines the "skin" of the object being drawn.  It is not derived from 
3dnode but instead can be set as the current “drawing” material for the 3dgraphic’draw 
method.  Objects derived from 3dshape also have a material attribute that can be assigned 
an instance of a 3dmaterial object.    
 
A 3dmaterial can be used to define reflectivity a surface has to diffuse, ambient, and 
specular colored light (see 3dLight).   The diffuse_color, ambient_color, and 
specular_color attributes are used for this purpose.   
 
define ambient_color, diffuse_color, specular_color 
    as integer ''color reference'' variables monitored on the left 
   ''ambient_color  DEFAULT: color'_white 
   ''diffuse_color  DEFAULT: color'_white 
   ''specular_color DEFAULT: color’_black 
 
For specular light the shininess attribute relates to the “specular exponent” of the surface.  
This value must range from 0 to 1. Higher values lead to smaller, sharper highlights, 
whereas lower values result in large and soft highlights.   If the surface is to be shiny (i.e. 
metallic in nature) both the specular_color and shininess attributes should be large. 
 

 108



Texture mapping is also supported through the 3dMaterial class.  Texture mapping allows 
a 2d pixel image (such as a windows .BMP file) to be plastered onto a 3d surface.  The 
mapping of 3d geometry to 2d points in the image file is done using texture coordinates 
(see 3dgraphic’draw_texture_coordinate).  Basically, when draw_texture_coordinate is 
called before draw_vertex, the 2d texture coordinate is mapped or “attached” to the 3d 
vertex.  The result is a smooth texturing of the 2d image over the surface.  The 
texture_name attribute of 3dmaterial can be assigned the name of the file containing the 
image.  Currently, only TARGA graphic (.tga) files and Window Bitmap (.bmp) files are 
supported.  (JPEG files can be converted to BMP by a variety of windows programs).  
The width and height of images should be a power of 2, for example 128 by 256, 16 by 
64, 512 by 32, etc. 
 
The 2d coordinates for a texture image range from 0.0 to 1.0.  Coordinate are defined by 
an s axis and a t axis.  The s-axis is horizontal and the t-axis is vertical with (s=0.0, t=0.0) 
located at the lower left corner of the image and (s=1.0, t=1.0) located at the upper right 
corner.   
 
For texture coordinate values greater than 1.0 or less than 0.0 the mapping will be 
handled based on the values of the texture_wrap_s and the texture_wrap_t attributes.  
When an attribute is set to _repeat, the pixel image is repeated as (s,t) values increase past 
1.0 (or decrease past 0.0).  If the texture wrapping attributes are set to _clamp_to_edge, 
the same pixel values found at [s,t] = 1.0 will be copied for all values of [s,t] > 1.0.  Pixel 
values found at [s,t] = 0.0 will be repeated for [s,t] < 0.0. 
 
In some cases it is necessary to specify which sides of a surface can be made visible.  If 
the front or back side is always hidden, some performance improvement can be made by 
marking that side as such.  The visibility attribute of 3dMaterial controls which sides are 
visible (an invisible side will appear translucent when facing the 3dcamera).   
 
define visibility as an integer variable 
      monitored on the left 
 
One of the constants 3dmaterial’_front, 3dmaterial’_back, or 
_3dmaterial’_front_and_back can be assigned to the visibility attribute (_front_and_back 
is the default value). The _front side is defined by a counterclockwise winding of the 
vertices.  The “right-hand thumb” rule can be used as mnemonic reminder.  If a fist is 
made with the right hand and the vertices of a polygon are ordered in the direction the 
fingers point, then the thumb points out from the “front” of the surface. 
 
A caveat to using the 3dmaterial object is that each instance must be filed in a 
material_set before it is rendered.  3dmaterials should be filed into the set owned by the 
3dworld in which it will be visible.  The 3dmodel also owns a material_set containing 
materials to be used within the model.   
 

 109



3dmodel 
The 3d surfaces and geometry shown in the 3dworld can be defined in one of two ways.  
The 3dgraphic and its subclasses allow the application to specify the geometry and 
materials and runtime.  The 3dmodel class allows the surfaces and materials to be loaded 
from a file.  Basically, a single instance of a 3dmodel is created for each separate 3d file.  
The read method loads the contents of the file creating surfaces and materials, which are 
saved in memory.   
 
define read as a method given 
   1 text argument,    ''file name including .3ds, .dxf, .sg2 extension 
   1 text argument     ''name of model in the file (.sg2 files only) 
 
The first argument specifies the name of the file.  Currently, the file must be in either 
autodesk 3dStudio or  “.3ds” format (the extension is required), AutoCAD dxf format, or 
SIMGRAPHICS II “.sg2” format.  For .sg2 files, the name of the model within the file is 
provided in the second argument.  
 
The 3dmodel class is not derived from 3dnode and therefore cannot be shown in a 
window directly.  The 3dmodel can be assigned to the model attribute of a 3dnode.  This 
will provide a link from the image of the 3dmodel to the 3dnode.   Many instances of 
3dnode can reference the same 3dmodel instance.  This scheme allows a single model to 
be drawn in different locations and orientations in the world.   
 
Models may be designed in the 3d editor to have well defined components.  For example, 
a ‘tank’ model may have a “turret” component that can be rotated with respect to the 
tank.  The turret sub-component may in turn have a ‘gun’ sub-component.  The 
application may need access to these sub-components at runtime (i.e. rotate the turret, 
move the gun in and out when it fires, etc).  If sub-components like this are defined in the 
graphics editor, they will be preserved when model is loaded in the application.  The 
node_set owned by the 3dmodel will contain these components.  The find method can be 
called to perform a depth-first search for a sub-component, provided that the component 
has been given a name in the graphics editor.   
 
define find as a 3dnode reference method given 
      1 text argument         ''name of component 
''searches the node_set for a component with the given name 
''If the component is not found, 0 is returned. 
    
Suppose the application wanted to represent the turret sub-component using an object 
derived from 3dnode (instead of the 3dnode base class).  In this case the 3dmodel would 
be sub-classed and its create_component method overridden.   
 
define create_component as a ''virtual'' 3dnode reference method given 
      1 text argument,         ''name of the component 
      1 text argument          ''name of required class 
''This method is called during the execution of the "read" method  
''to create a new sub-node component. The name given in the model file 
''is provided in argument 1.  By default this method will create a  
''instance of the class named by argument 2, but can be overridden to 

 110



''create a sub-class of arg 2. 
 
Create_component is called automatically for each separate component that is created at 
the time a 3dmodel is read.  In the above example, create_component would be 
implemented to create and return a “turret” object if the first argument specified the name 
assigned to the turret component in the graphics editor.  See below. 
 
method tank_model'create_component(component_name, class_name) 
   define my_turret as a turret reference variable 
   if component_name = "Turret_for_tank" 
      if class_name <> "3dnode" ''for safety, check base class 
         write as "error, 3dnode expected", / 
         stop 
      always 
      create a turret called my_turret 
      return with my_turret 
   otherwise 
   return with 3dmodel'create_component(component_name, class_name) 
end 
        
In some cases, the application may require individual images of a 3dmodel to appear 
differently.  For example, if many “tanks” were to be displayed, each turret will have a 
different orientation.  In this case, the 3dnode’load method would be called.  This method 
will make copies of each sub-component and place the nodes into the appropriate 
node_set.   
 
In the following code, two tanks are loaded from a common model, read from the file 
“tank.3ds”.  The turret on the first tank is rotated 90 degrees, while the second turret is 
rotated –45 degrees. 
 
Define tank1, tank2, as tank reference variables 
Define the_model as a tank_model reference variable 
 
Create tank1, tank2, the_model 
File the_model in model_set(the_world) 
File tank1 in node_set(the_world) 
File tank2 in node_set(the_world) 
Call read(the_model)("tank.3ds", "") ''create_component called 
Call load(tank1)(the_model)          ''copy_attributes called 
Call load(tank2)(the_model) 
Call rotate_y(find(tank1)("Turret_for_tank"))(pi.c / 2.0)  
Call rotate_y(find(tank2)("Turret_for_tank"))(-pi.c / 4.0) 
 
 
In the above example, the “load” method call makes copies of all components in the 
model.  Individual attributes are copied by an internal call to the copy_attributesmethod.  
The sub-class can override this method if it defines attributes that need to be copied with 
the rest of the components.  In our tank example, suppose the “turret” class defines 
attributes “azimuth” and “attitude” that are initializes in the model.  We want these values 
to be propagated when turret is copied (via the load method). 
 

 111



Begin class turret 
   Every turret is a 3dnode and has 
     A azimuth, 
     An attitude, and  
     Overrides the copy_attributes 
   Define azimuth, attitude as double variables 
End 
 
The copy_attributes  method’s implementation would look like this: 
 
method turret'copy_attributes(node) 
   define p as a pointer variable 
   define original_turret as a turret reference variable 
 
   let p = node     ''necessary due to original prototyping 
   let original_turret = p 
 
   let azimuth = azimuth(original_turret) 
   let attitude = attitude(original_turret) 
 
   call 3dshape'copy_attributes(node) 
end 
 
There are a couple more options regarding the 3dmodel that can be set before the model 
is read from the file.  They are _smoothing, and _cache_model.  The options are set via a 
left handed use of the enabled method.  For example: 
 
define the_model as a 3dmodel reference variable 
… 
let enabled(the_model)(3dmodel'_smoothing) = 1   ''turn on smoothing 
let enabled(the_model)(3dmodel'_smoothing) = 0   ''turn off smoothing 
 
The _smoothing  option will cause normal vectors to be recomputed at the time the model 
is read from the file.  This will give a smooth appearance of the model.  It is off (0) by 
default. 
 
The _cache_model option, if on, will cause the runtime library to create an internal “call 
list” for the model at the time a 3dnode which references it (via the model attribute) is 
first drawn.  For the case of multiple 3dnode objects referencing the same static model, 
this will improve performance.  This option is not relevant if the load method is used to 
link the 3dnode to the model. 
 
After a model is read, the size of the model can be determined if necessary.  The 
get_bounding_box method can be called to dimensions of a model in the x, y and z 
directions.   
 
define get_bounding_box as a method yielding 
      3 double arguments,     ''(xlo,ylo,zlo)   
      3 double arguments      ''(xhi,yhi,zhi)   
''Computes the smallest 3d box that will enclose the model 
''Must be called after "read" to be effective. 
    

 112



Instances of 3dmodel must be filed into the model_set owned by the 3dworld in which 
the model is to appear.  This must be done before the window is displayed.  Materials 
used in the model are automatically filed into the material_set owned by 3dmodel when 
the 3dmodel’read method is called.   

3dnode 
The 3dnode object is the base class of all objects that can appear in a 3dworld.  Nodes are 
used to build the scene-graph.  This is a directed acyclic graph that represents the spatial 
relationship between objects.   A node owns a set of nodes called node_set and may also 
belong to a node_set allowing a hierarchy to be built.  When the location or orientation of 
a 3dnode is changed, all 3dnode instances attached to the scene-graph via the node_set 
are repositioned as well.  In order to be made visible, a 3dnode must be attached to a 
scene-graph.  The scene-graph is rooted at the 3dworld object, which also owns a 
node_set.  Visible nodes must therefore be filed in a node_set owned by either another 
3dnode or a 3dworld.  See Figure 13. 
 

 
Figure 13.  A scene-graph including window and worlds. 
 
An instance of a 3dnode can therefore be used to create groups of objects; Moving or 
rotating the 3dnode representing the “group” will move/rotate all nodes in the group.  
Complex objects can be divided into “sub-nodes”.  For example, a 3d tank may contain a 
turret sub-node which in turn contains a “cannon” node.  Moving the tank will also move 
both the turret and gun.  Rotating the turret will also rotate the cannon.  
 
Before a 3dnode can be destroyed, it must first be removed from any owner set. 
Destroying a 3dnode will automatically destroy nodes contained in its node_set.  To 
prevent this from happening, nodes should be removed from the set prior to executing the 
destroy statement. 
 
Properties of the 3dnode are its location and orientation.   The location_x, location_y, and 
location_y attributes represent the x, y, and z coordinates of the node’s position with 

 113



respect to its owner node in the scene-graph.  Right handed use of these attributes is 
allowed, but the set_location method should be used to set these attributes. 
 
define location_x, location_y, location_z as double methods 
define set_location as a method given  
   3 double arguments      ''x, y, z 
 
The orientation is defined by 2 vectors, “forward” and “up” (See Figure 14).  The 
forward vector indicated the direction of the local z-axis relative to the owner node in the 
scene-graph.  By default, the forward vector is (0.0, 0.0, 1.0) which would point a node in 
the same direction as its owner node.  The “up” vector is the local y-axis relative to the 
node’s owner in the scene_graph.  By default, this is (0.0, 1.0, 0.0).  The local x-axis is 
computed automatically by taking the cross product of these vectors.   
 

 
Figure 14: Forward and Up vectors.  (In this case the positive X axis would point away 
from the viewer). 
 
The attributes forward_x, forward_y, forward_z, up_x, up_y and up_z can be used on the 
right.  Both vectors must always be normalized and orthogonal to each other, so they 
should be assigned at the same time.  The set_orientation method allows both the forward 
and up vectors to be updated. 
 
define forward_x, forward_y, forward_z as double methods  
define up_x, up_y, up_z as double methods  
define set_orientation as a method given 
   3 double arguments,     ''forward_x, forward_y, forward_z 
   3 double arguments      ''up_x, up_y, up_z 
 
 
Another method called set_forward allows the forward direction to be specified alone, 
while the “up” vector is computed automatically.  This vector is computed in such a way 
that its projection onto the positive y-axis is maximized.  (for 3dcameras, this will prevent 
the view from tilting assuming the “floor” of the scene lies in the x-z plane)   
 
define set_forward as a method given 
      3 double arguments      ''forward_x, forward_y, forward_z 
 

 114



Another method that may be useful for setting the orientation of a 3dnode is the aim 
method.  Calling the aim method will set the forward direction of the node so that it 
“points at” a given location.  The location should be in global coordinates; non-local to 
the 3dnode.  (The 3dworld’get_location method can be used to convert a location from 
local to global coordinates).  When aim is used on a sub-component, the (local) 
orientation (forward and up vectors) of the sub-component will be modified so that the 
sub-component points (with its positive z-axis) at the given location.  The aim method 
can only be called after the 3dnode has been filed into the node_set.  Since the aim 
method uses the orientation and location of parent nodes, it should be called after all the 
location of all parent (grand-parent, etc.) nodes have been initialized. 
 
define aim as a method given  
   3 double arguments            ''target_x, target_y, target_z 
''sets the forward orientation such that the node points at the  
''target point.  The target points should be given in global (world)  
''coordinates 
 
The set_orientation and set_forward methods expect vectors that are oriented with 
respect to the node’s owner in the scene-graph (or the 3dworld if the 3dnode is filed in 
3dworld’node_set).  Likewise, the set_location method provides coordinates with respect 
to the coordinate system defined by node’s owner in the scene-graph.  However, in some 
cases it may be easier to position the node with respect to its own coordinate system.  The 
move method will shift the position of a node by a movement right, up and forward with 
respect to its own axes.  The node’s location will be moved along its local x-axis, y-axis, 
and z-axis by the three given values. 
 
define move as a method given 
      3 double arguments      ''dx, dy, dz (right, up, forward) 
 
It is also possible to “spin” a 3dnode on one of its three local axes.  The rotate_x, 
rotate_y, and rotate_z methods will do just that.  Each method takes an angle (in degrees) 
as an argument and spins the 3dnode by that amount about the local (not owner) axis.  
These methods are similar to the move method in that they take “delta” values instead of 
absolute values.  For example, if an airplane is pointed forward along its positive z axis, 
call the rotate_x method will pitch up or down.  In this case the local Y and Z axes are 
rotated, but the X axis will remain unchanged.  Calling the rotate_y method will yaw 
about its y axis.  Calling the rotate_z method will “roll” the airplane. 
 
define rotate_x, rotate_y, rotate_z as method given 
   1 double argument       ''angle in degrees 
  
The local axes of a node are rotated with the node itself.  For example, in Figure 10, a 
box is first rotated about the z-axis the moved by 100.0 units in the “Y” direction (up). 
 

 115



 

 
Figure 15: Calling rotate_z followed by move. 
 
The scale method will modify size of the node.  A scaling factor is provided for each axis 
and, as with move and rotate scaling is performed along the local axes.  Each axis is 
scaled by the given scale factor (a value of  “1.0” will not change the axis).   
 
define scale as a method given 
   3 double arguments      ''sx, sy, sz (width, height, depth) 
 
 
In cases where a 3dnode must be located in the hierarchy, the find method can be used.  
This method takes a single text argument and matches it to the name attribute of one of 
the descendants.  First the node_set is searched.  If a match is not found, the find method 
is called recursively for each node in the set.  “0” is returned if no match is found. 
 
   define name as a text variable 
   define find as a 3dnode reference method given 
      1 text argument 
 
Simulation is integrated into the 3dnode by allowing instance to move over simulation 
time.   After the 3dwindow’animate process method is called, all 3dworld instances 
attached to the 3dwindow’world_set will be automatically and frequently updated as 
simulation time is scaled to real time (see timescale.v).   3dnode instances can be filed 
into the 3d.m:motion_set to enable the motion method to be called as time is advanced.  
The change in simulation time is passed as the argument to motion.  Sub-classes of 
3dnode can override the motion method making calls to move, set_forward, etc based on 
the elapsed time.   
 
define motion as a ''virtual'' method given 
   1 double argument    ''dt.  Time elapesed since last call 

 116



 
If simple linear movement is required, the set_velocity method can be called.  A velocity 
vector is given whose components define the speed along the x, y and z axes respectfully.  
Velocity is set with respect to the owner node’s coordinate system.  If a velocity is 
specified, the set_location method is called automatically by the 3dnode’motion method 
to update the location.  If  motion is overridden, 3dnode’motion must be called if the 
velocity attributes are set.  A 3dnode instance must be filed in the motion_set for velocity 
to take effect. 
 
define velocity_x, velocity_y, velocity_z as double methods 
define set_velocity as a method given 
  3 double arguments        ''velocity_x, velocity_y, velocity_z 
 
The move_to process method is convenient way to tell a 3dnode instance to travel to a 
location in 3d space with a certain speed.  The first three arguments specify the location 
in the owner node’s coordinate system.  The fourth argument is the speed, and must be 
positive.  A simulation can “wait for” a node to arrive at the location by calling the 
move_to method instead of scheduling it.  In either case, the instance must be filed in the 
motion_set before the move_to process method is activated. 
  
define move_to as a process method given 
   3 double arguments,     ''x, y, z destination 
   1 double argument       ''speed in units/second 
 
define car as a 3dnode reference variable 
… 
start simulation 
file this car in motion_set 
call set_location(car)(-100.0, 0.0, 0.0) ''start at (-100,0,0) 
call move_to(car)(100.0, 0.0, 0.0, 200.0)''move to (100,0,0) 
 
A 3dnode object may be used to display a model obtained from a 3dmodel instance.  The 
load method can be called to copy the graphics from an existing 3dmodel instance that 
has itself been loaded via the 3dmodel’read method.  Using the load method instead of 
assigning the model attribute is necessary if the program needs to modify sub-nodes 
originally defined by the model.  For example, a “tank” model may have a “turret” sub-
node which must be rotated with respect to the tank.  I this case each tank node in the 
world may have a different turret orientation or position with respect to the tank, 
therefore it is not possible redisplay the same tank image in multiple locations.  When 
load is used, new instances of sub-nodes are copied from the 3dmodel to the node_set 
owned by the 3dnode.  The “find” method can then be used to get a reference to nodes 
named in the model.  The copy_attributes method is automatically invoked for the sub-
nodes when the load method is called.  If application defined sub-classes of 3dnode are 
contained in the model’s node_set, copy_attributes should be overridden to ensure that all 
“new” fields are duplicated. 
 
Another way to define the shape of a node is by assigning its model attribute.   During 
initialization, an instance of a 3dmodel object can be assigned to the model attribute of 
the 3dnode.  The image of the model can then be located and oriented by calling methods 

 117



such as set_location and set_orientation. Multiple 3dnode objects can reference the same 
3dmodel as long as all the objects are attached to the same 3dworld. 
 
define model as a 3dmodel reference variable  
   monitored on the left 
''references the model for drawing this node. 
 
Options that control how a 3dnode is displayed can be set via the enabled attribute.  
Although this attribute is defined as a method, it can be used on the left and right, and 
takes an integer identifier as its argument.   
 
define enabled as an integer method given  
      1 integer argument    ''drawing aspect to enable or disable 
''enables or disables a drawing attribute.  To disable, assign 0.  To 
''enable assign 1. Pass one of the constants, (_lighting, _visibility). 
''method behaves recursively...drawing attributes of all sub-nodes will  
''be modified. 
 
The following flags are currently defined: 
 
_visibility – If this flag is zero, the node will disappear the next time the window is 
updated.  Setting this to zero, is useful to temporarily erase a node. DEFAULT: 1 
_lighting – If this flag is “1”, lighting calculations will be used to shade this object.  
When the flag is zero, the node will be fully visible regardless of the position, direction 
and intensity light sources.  Setting this flag to zero is useful for lines and text that are 
used to label or annotate a node during a simulation.  DEFAULT: 0 
 
For example, to erase the node “car” the following code could be used. 
 
Let enabled(3dnode'_visibility) = 0 
 
Another way to erase a node, is to remove it from the node_set.  When removed, the node 
will not be visible when the window’s canvas is refreshed.   

3dpoints (lineage: 3dpoints -> 3dgraphic -> 3dnode) 
The 3dpoints class is derived from 3dgraphic and represents a collection of simple dots in 
3d space.  The points array attribute is 2-dim array containing the 3d coordinates.  The 
color attribute can be assigned a value returned from the gui.m:color’rgb method and will 
apply to all points.  The size attribute controls the size in pixels of each dot.  The default 
size is “1”. 
 
 

 118



 
Figure 16: 3dpoints class 
 

3drectangle (lineage: 3dshapes.m:drectangle -> 3dshape -> 
3dgraphic -> 3dnode) 
The 3dRectangle is derived from 3dshape and provides an easy way to add rectangular 
shapes to the scene-graph.  Each 3drectangle instance lies in the x-y plane (with the 
positive z-axis pointing “up” from the front).  Since the super-class is 3dnode, a 
3drectangle instance inherits the “location” and “orientation” properties allowing it to be 
rotated and positioned.   
 
The width and height attributes of the rectangle instance set the size of the object.  The 
3dshape’material attribute can be assigned a 3dmaterial instance to set the color and 
texture of the front and back faces.  If the material has a texture, it may be necessary to 
cover the rectangle with a sub-rectangle of the full texture image.  The texture_xlo, 
texture_ylo, texture_xhi, and texture_yhi can be used to delineate a box within the image 
that will be mapped to the surface of the 3drectangle.  (See Figure 17) 
 

Figure 17: 3drectangle using texture_xlo, texture_ylo, texture_xhi,and texture_yhi 
 

 119



3dshape (lineage: 3dshapes.m:3dshape -> 3dgraphic -> 3dnode) 
This class is found in the 3dshapes.m module and is the base class for many shape 
primitive objects that are provided.  Basically, a shape is defined for our purposes as an 
object whose geometry (i.e. points and normal vectors) are computed automatically based 
on the object’s “size” attributes.  Since shapes are derived from from the 3dnode class, 
they can be positioned, oriented, moved over time, etc..  Currently available shapes 
include the 3dbox, 3dcone, 3dcylinder, 3drectangle, and 3dsphere.   
 
The material attribute can be used to specify a 3dmaterial instance to be used on the 
surface of the shape.  (Currently, texture mapping is only supported for the 3dsphere, 
3dbox, and 3drectangle shapes).  If the texture_name attribute of 3dmaterial is assigned, 
the texture coordinates will be computed automatically such that the entire texture is 
mapped to the surface of the shape.   
 
If the inside_lighting attribute is assigned to “1”,  all normal vectors will be reversed.  
This can be useful if the 3dcamera is placed inside the object.  By default inside_lighting 
is zero. 

3dsphere (lineage: 3dsphere -> 3dshape -> 3dgraphic -> 3dnode) 
The 3dsphere can be created to show a sphere object in a 3d graphics scene.  Its radius 
attribute controls the size of the sphere.  The color of the sphere can be specified by 
assigning a 3dmaterial instance to its material attribute.  If this material’s texture_name 
attribute is assigned, the texture image will be wrapped around the shape of the sphere.   
If the 3dcamera will be placed inside the sphere, the inside_lighting attribute should be 
assigned to ”1”. 
 
 

3dtext (lineage: 3dtext -> 3dgraphic -> 3dnode) 
The 3dtext is derived from 3dgraphic and can be used to show a simple text string within 
the scene-graph.  The string attribute must be assigned to the desired text. The text can be 
colored and there are several fonts to choose from.  Currently, only predefined fonts are 
available as class attribute pointers that can be assigned to the font attribute.  These fonts 
are automatically initialized before  the SIMSCRIPT program is run.  The choice of font 
affects not only the appearance of the text but also its behavior.  Both raster and vector 
fonts can be used: 
 
Vector fonts: 
A vector font is rendered by drawing a series of line segments in 3 dimensions.  Vector 
text follows the same rules as do other 3dgraphic shapes with regard to location and 
orientation.  The advantage of using this type of text is that it is “part of” the object, for 
example the text on a road sign, or the monogram on the side of an airplane.  The text 
will increase in size as the camera moves closer to it.  The disadvantage is that the text is 
usually composed of thin lines and may not look good when it is sized big.  
 
The following vector fonts are available: 

 120



 
3dtext’stroke_font  - Variable width vector font 
3dtext’stroke_mono_font  - Fixed width vector font 
 
The size of vector text is controlled by its width and height attributes.  These attributes 
function the same as the width and height for the 3drectangle class do.  The height 
defines the maximum height including descenders and the width applies to the whole text 
string.   
 
Bitmapped fonts 
Characters in a bitmapped or “raster” based font are basically small 2d bitmap images 
that are copied to the screen when the text is rendered.  Text drawn using these types of 
fonts will always appear right side up regardless of how the 3dtext object (or its owner 
node) is oriented.  However, the 3dnode’location properties is still utilized.  In other 
words, the text can be positioned by calling the set_location method.  Bitmapped text will 
appear the same size regardless of its distance from the camera.  If a larger or smaller text 
size is needed, a different font must be assigned to the font attribute.   
 
3dtext'9_by_15_font         ''fixed width bitmap font 
3dtext'8_by_13_font         ''fixed width bitmap font 
3dtext'times_roman_10_font  ''variable width bitmap font 
3dtext'times_roman_24_font  ''variable width bitmap font 
3dtext'helvetica_10_font    ''variable width bitmap font 
3dtext'helvetica_12_font    ''variable width bitmap font 
3dtext'helvetica_18_font    ''variable width bitmap font 
 
For bitmapped fonts, the align_horiz, align_vert attribute allows the text to be centered, 
or left/right, top/bottom justified.   The following constants can be assigned to the 
alignment attribute: 
 
define _left_justified=0, _centered, _right_justified as constants 
''for the "aligh_horiz" attribute 
 
define _bottom=0, _middle, _top, _bottom_cell, _top_cell as constants 
''for the "align_vert" attribute 
 

 
 
Figure 18: 3dtext alignment. 
 

 121



3dwindow (lineage: 3dwindow -> gui.m:guiitem) 
The 3dwindow represents a window that can be resized or moved much the same as other 
windows shown on-screen.  The window is made up of a resizable frame bordering a 
canvas.  It is the canvas that displays one or more 3dworld instances (which in turn 
contain the 3dnode objects composing the scene-graph).  Currently, only the 3dwindow 
class has the capability to display 3d graphics.  The 3dwindow can also respond to user 
events such as window such as an attempt to move, resize or close the window.  
Asynchronous keyboard input is supported via the 3dwindow.   
 
To display a 3dwindow, an instance should first be created.   Since the 3dwindow is the 
top level item in the scene-graph, it is not filed into any set.  The title attribute can be 
assigned to set the title bar text.  The window’s initial size and position is controlled by 
the position_xlo, position_ylo, position_xhi, and position_yhi attributes.  Like the 
gui.m:window class, the position is set in screen coordinates.  The (0.0,0.0) coordinate is 
located at the bottom left corner of the computer screen while (32767.0, 32767.0) is 
located in the upper right corner.  (The Microsoft Windows “start bar” is ignored).  The 
color attribute is also useful for setting the background color.  It can be assigned a value 
obtained from the gui.m:color class and by default is set to gui.m:color’_black. The 
window is made visible (and updated) by calling its display method.  The following code 
displays a 3dwindow in the upper right corner of the computer screen 
 
Define window as a 3dwindow reference variable 
 
Create window 
Let title(window) = "Hello, window" 
Let color(window) = gui.m:color'_blue 
Let position_xlo(window) = 32767.0 / 2.0 
Let position_ylo(window) = 32767.0 / 2.0 
Let position_xhi(window) = 32767.0 
Let position_yhi(window) = 32767.0 
Call display(window) 
 
Instances of the 3dworld object that are to be shown in the window’s canvas must be filed 
into the world_set owned by the 3dwindow (See figure 14).   If more than one 3dworld is 
being used, all nodes contained in the 3dworld filed last in the world_set will be 
displayed on top of nodes attached to other worlds regardless of the distance from the 
camera.  (The depth buffer is cleared before each world is displayed).  
 

 
 

 122



Figure 19: The 3dwindow’s relationship to the scene-graph. 
 
Sub-classes of 3dwindow can override the action method.  This method is called 
automatically in response to a user-driven event.  The action method takes a 3devent 
reference argument, and the following event ids are currently supported: 
 
 
Event Id Cause 
_activate User clicked on window.  Window brought to front. 
_close User clicked on the “X” to close the window. 
_key_down Pushing down a key on the keyboard 
_key_up Releasing a key on the keyboard 
_mouse_down Clicking in the canvas with the mouse. 
_mouse_up Releasing the mouse button in the canvas. 
_mouse_move Moving the mouse in the canvas. 
_mouse_wheel_forward Spin mouse wheel away from user (forward). 
_mouse_wheel_backward Spin mouse wheel toward used (backward). 
_reposition Dragging the window with the mouse. 
_resize Resizing the window with the mouse. 
 

 
Figure 20: Event ids of a 3dwindow object handled by the action method. 
 
The action method should return one of the following two predefined contants: _continue 
or _block.  If _continue is returned, the runtime library will handle the event.  Returning 
with _block means that the runtime library will take no action in response to the event.  
For example, to keep the window from disappearing when closed by the user, the 
overridden action method should return with _block instead of _continue.   
 
In the following example, the action method is overridden to respond to the user pressing 
the “arrow” keys: 

 123



 
Method action(event) 
   If id(event) = 3devent’_key_down 
      Select case key_code(event) 
         Case 3devent'_up_key 
                ''handle up key 
         Case 3devent'_down_key 
                ''handle down key 
         Case 3devent'_left_key 
                ''handle left key 
         Case 3devent'_right_key 
                ''handle right key 
         Default 
      Endselect 
   Always 
End 
 
Calling the display method will make the window visible.  If the window is already 
visible, the canvas will be updated to show a current image for all 3dworlds (and 
3dnodes) that are contained in the window.  During a simulation there are usually objects 
changing location, orientation and appearance over time.   To make sure that the image of 
the scene-graph is kept up-to-date, the animate process method can be activated.  The 
animate method is scheduled to allow the window canvas to be update automatically 
during a simulation.   
 
define animate as a process method 
   given 1 double argument    ''run length for animation 
 
Animate takes one argument which determines how long (in simulation time units) to run 
the process method.  The method will run indefinitely if “0” is passed.  The display 
method is called repeatedly by animate in between event notices.  It is important to know 
that it at this point the draw method may be called for instances of 3dgraphic objects 
contained in the scene-graph.  Canceling the process method will stop the automatic 
animation. 
 

3dworld 
A 3dWorld acts as a container for lights, cameras, and graphics.  One or more 3dworld 
instances must be created and filed in the world_set owned by 3dwindow.   In turn, the 
3dworld class owns the following sets: 
 
camera_set 

The purpose of the 3dcamera class is to show the 3dnode objects contained in the 
world.  Each camera will only “see” objects that are attached to the same world.  
In order for the view seen by a 3dcamera to be visible, the 3dcamera must be filed 
in a camera_set.  A 3dcamera instance can optionally be filed in a node_set. 

 
light_set 

 124



3dlight instances must be filed into the light_set before use.  A 3dlight instance 
will only illuminate the 3dworld owning the light_set that it is filed in.  A 3dlight 
instance can also be filed in a node_set if it is to be attached to a visible object. 
 

material_set 
3dmaterial instances may be used to define the surface characteristics of a 3dfaces 
or 3dgraphic instance.  They must be filed in the material_set owned by the world 
in which they are used, or alternatively in the 3dmodel’material_set (the 3dmodel 
owner must be filed in the same 3dworld’model_set) 

 
model_set 

A 3dmodel must be filed in the model_set owned by a 3dworld before the 3dnode 
object(s) that reference it are displayed.  Each 3dmodel object instance may be 
referenced by many 3dnode instances, but both the 3dmodel and the 3dnode 
instances must belong to sets owned by the same 3dworld.   

 
node_set 

The node_set contains all objects derived from 3dnode that can be positioned, 
oriented and viewed.  (The hierarchical usage of the 3dworld’node_set is how the 
scene-graph is defined).  Note that 3dcamera and 3dlight instances can optionally 
be filed in the node_set (since they are derived from 3dnode).  This could be used 
to implement the view seen from a moving object, a mobile light source, etc. 

 
The ambient_color attribute controls the color and intensity of ambient light throughout 
the 3dworld.  The intensity of the ambient light can be adjusted by using darker colors.  
(For example, setting ambient_color to gui.m:color’rgb(0.2, 0.2, 0.2) will result in less 
ambient light).   
 
“Picking” or selection is supported through the 3dworld.  The select_node method can be 
used to locate the (visible) node at a given pixel location in the window’s canvas.  The 
select_node method returns the leaf node under the (x,y) pixel location given in the first 2 
arguments.  If overlapping nodes are selected, the node closest to the camera is returned.  
“0” is returned if no node is selected by (x,y).   
 
define select_node as a 3dnode reference method given 
   2 integer arguments  ''pixel x, y location 
 
The easiest way to use the select_node method is from within the action method of the 
3dwindow class.  In the following code, the 3dwindow’action method is overridden to 
receive mouse clicks.  The click location is used to “pick” a node by calling select_node 
for each world in the world_set. 
 
Method my_window'action(event) 
   define node as a 3dnode reference variable 
   define world as a 3dworld reference variable 
 
   ''respond to the _mouse_down event 
   if id(event) = 3devent'_mouse_down 

 125



 126

      for each world in world_set 
      do 
         ''try to pick a node in this world given click location 
         let node = select_node(world)(x(event), y(event)) 
         if node <> 0 
             ''perform action on selection of node 
             call action(node)(event)               
         always 
      loop 
 
      if node = 0 
         ''perform some sort of action on background click 
      always 
   always 
end 
   
 
If two or more 3dworld objects are filed in the same 3dwindow’world_set, instances filed 
last will overlap the instances filed first.  In other words, all graphics filed in the latter 
3dworld will appear on top of all graphics filed in the previous worlds.  The 3d 
coordinates specified by the 3dnode’set_location method (as well as 3d vertices/points) 
are specified relative to the owner 3dnode of the object.  To find the location in “global” 
coordinates (i.e. the system used to position nodes filed directly in the 3dworld’node_set) 
the get_location method can be called.  A reference to the 3dnode instance is the first 
argument, and the global (x,y,z) location is yielded. 
 
define get_location as a method given 
      1 3dnode reference argument,     ''descendant node 
   yielding 
      3 double arguments               ''x,y,z in global coordinates 
 


	Table of Contents
	Preface
	1. Introduction
	1.1 A Typical 3d Graphics Program
	1.2 Example code for a typical 3d graphics program
	1.3 Class hierarchy

	2. The “scene-graph”
	2.1 The “3dworld”
	Set name
	Member

	2.2 Setting the location of a node
	2.3 Setting the orientation of a node
	2.4 Shifting the position of a node
	2.5 Rotating a node
	2.4 Scaling a node
	2.5 Complete Scene-graph example
	3.1 Camera location and orientation
	3.2 Setting up the viewing plane
	3.3 Adding a 3dcamera to the scene-graph
	3.4 Viewports and multiple cameras
	3.5 Tracking a moving object with the 3dcamera

	4. Lighting up a scene-graph
	4.1 Determining the “variety” of lighting
	4.2 Ambient, Diffuse and Specular light
	4.3 Setting up the lighting using the 3dlight

	5. Loading graphics files via Models
	5.1 Reading in the 3dmodel from a file
	5.2 Linking a 3dmodel instance to a 3dnode instance
	5.4 Copying the scene-graph of a 3dmodel
	5.5 Locating named sub-components
	5.6 Deriving from sub-components
	5.7 Misc. 3dmodel options

	6. Geometry
	6.1 Using the 3dgraphic class.
	Constant

	6.2 Surface geometry
	6.4 Surface appearance
	6.5 Surface texture mapping
	6.6 Drawing points and lines
	6.7: Drawing points
	6.8 Text
	Bitmapped fonts

	6.9 Updating the graphic
	6.8 Classes with retained geometry

	7. Surfaces, Textures and Materials
	7.1 Setting the color and shininess of a surface
	7.2 Texture mapping and raster images
	7.3 Front and back side visibility
	7.4 Using instances of 3dmaterial 
	8. User Input
	8.1 Mouse, keyboard and window frame interaction
	8.2 Mouse events
	Value
	Value
	Value
	Value
	Value

	8.3 Keyboard input
	8.4 Selecting a node in the scene-graph

	9. Animation and Simulation
	9.1 Frame Based Animation
	9.2 Time scaling
	9.3 Automatic motion and the motion_set
	9.4 Moving Car Example
	9.5 Achieving customized motion

	10. 3d Class reference
	3dbox (lineage: 3dbox -> 3dshape -> 3dgraphic -> 3dnode)
	3dcamera (lineage: 3dcamera -> 3dnode)
	3dcone (lineage: 3dcone -> 3dshape -> 3dgraphic -> 3dnode)
	3dcylinder (lineage: 3dcylinder -> 3dshape -> 3dgraphic -> 3dnode)
	3dellipse (lineage: 3dellipse -> 3dshape -> 3dgraphic -> 3dnode)
	3devent (lineage: 3devent -> gui.m:guievent)
	3dfaces (lineage: 3dfaces -> 3dgraphic -> 3dnode)
	3dgraphic (lineage: 3dgraphic -> 3dnode)
	3dlight (lineage: 3dlight -> 3dnode)
	3dlines (lineage: 3dlines -> 3dgraphic -> 3dnode)
	3dmaterial
	3dmodel
	3dnode
	3dpoints (lineage: 3dpoints -> 3dgraphic -> 3dnode)
	3drectangle (lineage: 3dshapes.m:drectangle -> 3dshape -> 3dgraphic -> 3dnode)
	3dshape (lineage: 3dshapes.m:3dshape -> 3dgraphic -> 3dnode)
	3dsphere (lineage: 3dsphere -> 3dshape -> 3dgraphic -> 3dnode)
	3dtext (lineage: 3dtext -> 3dgraphic -> 3dnode)
	Bitmapped fonts

	3dwindow (lineage: 3dwindow -> gui.m:guiitem)
	3dworld


