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Overview of the Vespa Package 
 

The Vespa package extends the maintenance and development of three previously 
developed magnetic resonance spectroscopy (MRS) software tools by migrating them 
into an integrated, open source, open development platform. Vespa stands for Versatile 
Simulation Pulses and Analysis. The original tools that have been migrated into this 
package include GAVA/Gamma - software for spectral simulation, MatPulse – software 
for RF pulse design and IDL_Vespa – a package for spectral data processing and 
analysis. The new Vespa project will address current software limitations, including: 
non-standard data access, closed source multiple language software that complicates 
algorithm extension and comparison, lack of integration between programs for sharing 
prior information, and incomplete or missing documentation and educational content.  
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Introduction to Vespa-Simulation 
Vespa-Simulation is a graphical control and visualization program written in the Python 
programming language that provides a user friendly front end to the Gamma/PyGamma NMR 
simulation libraries. The Vespa-Simulation interface allows users to:  

1) Create and run an Experiment (consisting of one or more spectral simulations) from lists 
of metabolites and pulse sequences.  

2) Store Experiment results in a database.  

3) Display the results in a flexible plotting/graphing tool. 

4) Compare side-by-side results from one or more Experiments 

5) Output results in text or graphical format 

6) Export/Import experiments, metabolites or pulse sequences from other users 

What is an Experiment? An ‘Experiment’ object consists of one or more spectral Simulation 
objects. Each Experiment object uses only one “pulse sequence” but can contain one or more 
metabolites and one or more sets of timings for the pulse sequence. Each Simulation object 
contains results for a single metabolite for one set of sequence timings. Each call to the 
PyGamma library produces results for a single Simulation object. Vespa-Simulation loops 
through spectral simulations for all timings and metabolites to completely fill an Experiment. 

There are a number of predefined pulse sequences in the Vespa-Simulation environment, and 
users can also develop their own PyGamma pulse sequence scripts. The database also 
maintains the prior information for the NMR parameters of available compounds (J-coupling and 
chemical shift values) necessary to run the simulations. NMR parameters are available in this 
database for approximately 30 compounds commonly observed for in vivo 1H MRS.  

The following chapters run through the operation of the Vespa-Simulation program both in 
general and widget by widget.  

In this manual, command line instructions will appear in a fixed-width font on individual lines, for 
example: 

˜/Vespa-Simulation/ % ls 

Specific file and directory names will appear in a fixed-width font within the main text. 

Examples of spectral simulation for pulse optimization and spectral fitting: 

Young K, Govindaraju V, Soher BJ and Maudsley AA. Automated Spectral Analysis I: Formation of a 
Priori Information by Spectral Simulation. Magnetic Resonance in Medicine; 40:812-815 (1998) 
 
Young K, Soher BJ and Maudsley AA. Automated Spectral Analysis II: Application of Wavelet 
Shrinkage for Characterization of Non-Parameterized Signals. Magnetic Resonance in Medicine; 
40:816-821 (1998) 
 
Soher BJ, Young K, Govindaraju V and Maudsley AA. Automated Spectral Analysis III:  Application to in 
Vivo Proton MR Spectroscopy and Spectroscopic Imaging. Magnetic Resonance in Medicine; 40:822-
831 (1998) 
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Soher BJ, Vermathen P, Schuff N, Wiedermann D, Meyerhoff DJ, Weiner MW, Maudsley AA. Short TE 
in vivo (1)H MR spectroscopic imaging at 1.5 T: acquisition and automated spectral analysis. Magn 
Reson Imaging;18(9):1159-65 (2000). 
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Using Simulation – A User Manual 
1. Overview – How to launch Vespa-Simulation 
See the Vespa Installation guide for full details on package dependencies and how to install the 
software. The easiest way to start Simulation under Windows is to create a shortcut that 
executes the program: 

 Right click on the desktop and select New->Shortcut  

 Type the following Target, change directories as needed:                                             

C:\Python25\python.exe C:\vespa\simulation\src\main.py 

 Click Next and name the alias Simulation (or whatever), click OK  

This shortcut will run python and Vespa-Simulation from a command window.  If there is a bug 
in this release of Vespa-Simulation and the program crashes, it should display information in 
this window.  Please refer to this code if you are reporting bugs. 

 
Shown here is a screen shot of a Vespa-Simulation session with two Experiment tabs opened 
side by side for comparison. The functionality of all tools will be described further in the following 
sections. 

2. The Simulation Main Window 
This is a view of the main Vespa-Simulation user interface window.  It is the first window that 
pops up when you run the program. It contains the Experiment Notebook, a menu bar and 
status bar. The Experiment Notebook can be populated with one or more Experiment Tabs, 
each of which contains the results of one Experiment. An Experiment is a collection of spectral 
Simulations. Each Simulation contains the result for one metabolite that has been run through a 
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simulated pulse sequence for a given 
set of sequence parameters. Thus, an 
Experiment may consist of one 
metabolite for multiple sets of pulse 
sequence parameters, or multiple 
metabolites for one set of pulse 
sequence parameters, or multiple 
metabolites for multiple collections of 
pulse sequence parameters. 

The Experiment Notebook is initially 
populated with a welcome text 
window, but no Experiment results. 
From the Experiment menu bar you 
can 1) load a previously run 
Experiment from the Simulation 
database into a tab, or 2) create a new 
Experiment in a tab and set it up and run it. The Management menu allows users to run pop-up 
dialogs to create, edit, view, delete and import/export Experiment, Metabolites and Pulse 
Sequences from the Simulation database. 

The status bar provides information about where the cursor is in various plots and images 
throughout the program. It also reports short messages that reflect current processing while 
long running events are occurring. 

On the Menu Bar 

Experiment→New    Opens a new Experiment Tab in the Experiment Notebook. 

Experiment→Open    Runs the Experiment Browser dialog. 

Management 
→Manage Experiments  Launches the Experiment Browser dialog. Allows user to view, clone, delete, 

import and export Experiments. 

Management 
→Manage Metabolites  Launches the Manage Metabolite dialog. Allows user to create, edit, view, 

clone, (de-)activate, delete, import and export Metabolite prior information. 

Management 
→Manage Pulse Sequences  Launches the Manage Pulse Sequences dialog. Allows user to create, edit, 

view, clone, delete, import and export Pulse Sequence information. 

Modes→Experiment This menu item allows the user to switch back and forth between preset 
groups of panes/widgets in the main window. At the moment, there is only the 
Experiment Mode, which shows the Experiment Notebook. At some point in 
the future there will also be a Pulse Sequence Design Mode and possibly 
others. 

Help→Show Inspection Tool  Launches the wxPython widget inspection tool. This is a debugging aid to help 
developers track the events attached to each widget. 

Help→About Giving credit where credit is due. 

 
 

3. The Experiment Notebook 
The Experiment Notebook is an “advanced user interface” notebook widget (AUINotebook). 
Multiple tabs can be opened up inside the window. They can be moved around, arranged and 
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“docked” as the user desires by left-click and dragging the desired tab to a new location inside 
the notebook boundaries. In this manner, the tabs can be positioned side-by-side, top-to-bottom 
or stacked (as show in Sections 1 and 4). They can also be arranged in any mixture of these 
positions.  

The Experiment Notebook can be populated with one or more Experiment Tabs, each of which 
contains the results of one Experiment. Tabs can be closed using the X box on the tab or with a 
middle-click on the tab itself. When a Tab is closed, the Experiment is removed from memory, 
but can be reloaded from the database at a future time.  

4. The Experiment Tab 
An Experiment Tab is a widget pane that is added to the Experiment Notebook. Each tab 
contains one entire Experiment. An Experiment Tab can be used to run a new Experiment and 
then look at the results. It can also just be used to load an existing Experiment from the 
database to look at the results or to 
add more metabolites to the 
Experiment.  

Each Experiment Tab has two sub-
tabs called Visualization and 
Simulation. The Simulation tab is 
where a new experiment is set up and 
then run. It is also where the 
parameters and settings for an 
existing Experiment can be reviewed 
when the Experiment is reloaded. The 
Visualization tab is where the results 
of an Experiment can be visualized as 
1D plots, stack plots, and peak integral 
contour maps.  

When a new Experiment is set up, 
there are no results to be displayed so 
the program defaults to the Simulation 
tab for New Experiments. When an 
existing Experiment is loaded, there 
are results to be seen so the program 
defaults to the Visualization tab.  

A New Experiment is typically created, 
set up and run. On completion, the results are automatically saved to the database and the 
Visualization tab updated to display these results.  Once an Experiment has been run once, it 
can only be “run again” to add additional metabolites. The exact same parameters are used for 
subsequent runs, excepting the list of metabolites to be simulated.  

As each Experiment Tab is created, a new menu item appears in the menu bar that allows the 
user to change things inside that particular Experiment Tab. Each tab has an number on it (e.g. 
Experiment1, Experiment2, etc.). The menu item has a matching label.The following lists a 
summary of the functions on the Experiment Tab menu item: 
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On the Menu Bar 

ExperimentX   (where ‘X’ stands for the experiment tab number, e.g. ‘Experiment1’, ‘Experiment2’) 

→ZeroLine On/Off   toggle zero line off/on in 1D and stack display 

→Xaxis →On/Off white lines on black background or reversed 

→Xaxis→PPM/Hz x-axis value in PPM or Hz 

→Plot Color white lines on black background or reversed  

→Data Type select Real Imaginary or Magnitude spectral data to display 

→Lineshape select Gaussian or Lorentzian lineshapes for the basis functions plotted 

→Integral Axes toggles either x or y, or both axes on/off 

→Contour Axes On/Off toggles both axes on/off 

→Output→1D/Stackplot writes plot currently in the 1D or StackPlot canvas to file as either PNG, SVG, 
EPS or PDF format 

→Output→Integral Plot writes plot currently in the Integral plot canvas to file as either PNG, SVG, EPS 
or PDF format 

→Output→Contour Plot writes plot currently in the Contour plot canvas to file as either PNG, SVG, EPS 
or PDF format 

→Output→Text Results opens the operating systems standard text editor and inserts a textual 
rendering of the Experiment results. Typically, this is a summary of the general 
descriptive information, the specific pulse sequence and metabolite 
parameters included and a listing of all metabolite lines for every loop instance 
in the Experiment. 

4.1 Loading an existing Experiment 

The Experiment Browser dialog is launched from the Experiment→Open menu and is shown 
below. A list of Experiment names is shown on left. As an Experiment is clicked on once, its 
comment and metabolites list are displayed on the right. Experiments can be sorted by the 
isotopes contained within the metabolites simulated.  They can also be sorted by field strength 
(given in MHz). 

When the open button is clicked (or an 
Experiment name double-clicked on), 
the program loads the information for 
the Experiment from the database into 
an Experiment object in memory. This 
object then creates a set of basis 
functions for all metabolites for use in 
the Visualization tab plots. NB. In the 
case of large Experiment, this may take 
a significant amount of time to calculate, 
but is indicated on the lower left of the 
status bar while calculating. 

 

4.2  Running a new Experiment 

An ‘Experiment’ object consists of one or more spectral Simulation objects. Each Experiment 
object uses only one “pulse sequence” but can contain one or more metabolites and one or 
more sets of timings for the pulse sequence. Each Simulation object contains results for a single 
metabolite for one set of sequence timings. Each call to the PyGamma library produces results 



11 

for a single Simulation object. Vespa-Simulation loops through spectral simulations for all 
timings and metabolites to complete an Experiment. 

When a user selects the Experiment→New menu option, a new Experiment Tab is created in 
the Experiment Notebook and the default view is for the Simulate sub-tab. This panel enables 
the user to select, define and run a new Experiment from the list of defined pulse sequences 
provided with the Simulation program. Additional pulse sequences can be created by the user 
and accessed using the methods covered in the next section. 

A list of all pulse sequences is kept in the Vespa-Simulation database and can be selected from 
the Pulse Sequence: Name dropdown menu.  The Simulation widget will reconfigure itself 
based on the parameters needed to run that sequence. Users must fill in the Name, 
Investigator, Main Field, Peak Search Ranges, Blend Tolerances and all loop Start Value, 
Step Count and Step Size fields. At least one metabolite must be selected and moved into the 
In Experiment list. Some default values are already included. 

 

Simulation provides the user with four looping variables for use in their pulses sequences. This 
is covered in much more detail in Appendix XX, however, in brief: The first loop is the list of 
selected metabolites. The remaining three loops are defined as evenly spaced floating point 
number series. Each series is defined by a starting value, a number of steps and a step size. So 
for start = 10.2, steps = 4, size = 2.0 we would get the following values in a dimension [10.2, 
12.2, 14.2, 16.2].  This value is passed directly to the user’s PyGamma code and can be used in 
any fashion. One use might be to use these values directly as sequence timing values where 
they represent [ms] timings between RF pulses. Another way might be to use an integer series 
(e.g. [1,2,3,4,5,6]) as the index for a series of RF pulses stored in a file. This way an Experiment 
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could “loop” through the effects of different RF pulses in an experiment. Either way, the user can 
set up three of these loops in the Loops 1, 2 and 3 section of the Simulation sub-tab.  Shown is 
an example of a new Experiment tab configured for a PRESS simulation.  

Note: Metabolite Peak Normalization and Blending 

The transition tables created by the GAMMA routines frequently contain a large number of lines 
caused by degenerate splittings and other processes.  At the end of each pulse sequence, we 
call a standard routine to extract all lines from the transition table.  These lines are then 
normalized using a closed form calculation based on the number of spins. Multiple lines are 
blended by binning them together based on their PPM locations and phases. The following 
parameters are used to set these procedures: 

Peak Search Range – Low/High (PPM):  the range in PPM that is searched for lines from the 
metabolite simulation. 

Peak Blending Tolerance (PPM  and Degrees):  the width of the bins (+/- in PPM and +/- in 
PhaseDegrees) that are used to blend the lines in the simulation.  Lines that are included in the 
same bin are summed using complex addition based on Amplitude and Phase. 

 

4.3  New Experiments with additional user defined parameters 

A full explanation of how to create additional pulse sequences, with or without additional 
parameters that Simulation can use, is given in Appendix XX. The Vespa-Simulation Manage 
Pulse Sequences dialog provides an interface for a user to define the additional parameters 
needed for a given pulse sequence. These are then saved to the Vespa-Simulation database. 
This section describes the 
interface used in a new 
Experiment Simulation Tab to 
run an Experiment using a 
sequence with additional 
parameters. 

When a sequence with 
additional parameters is 
selected from the Pulse 
Sequences drop-list, the 
Simulate tab will be modified to 
set up widget fields where the 
user can define values for 
these additional parameters. 
Additional parameters are 
displayed in a list below the 
loop fields. Each line contains 
one parameter description and 
a field to set a value. A default value is typically provided. Field names and data types are pre-
defined as String, Long or Float data types for data entry. The user is restricted to entering this 
type of data in any given field.  All other widget functions in the first two columns of the widget 
function as described above. 
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4.4  Visualizing Experiment Results 

Experiments displayed in the Visualize widget can be considered to contain 2, 3, 4 or 5 
dimensions that correspond to the Spectral dimension, the number of metabolites in the 
experiment, and the number of steps in Loops 1, 2 and 3 respectively. Pulse sequences such as 
One-Pulse or Spin-Echo only allow 0 or 1 Loop dimensions and are thus restricted in the types 
of displays they can make use of. However, most other pulse sequences can typically use most 
the plot modes. The three plot modes for displaying results, 1D/StackPlot, Integral Plot and 
Contour Plot, are shown below: 

  

 

 

The 1D/StackPlot window is always open and centered in the screen. The Integral Plot 
window and the Contour Plot window can be toggled on/off using the check box next to their 
names. Both the Integral and Contour plot windows can be undocked, repositioned and re-
docked using the “grab bars” on the left hand side of each window. 

Under the 1D/StackPlot window, a 1D spectrum for one or more metabolites or a 2D spectral 
stack plot along any two Loop dimensions for a single metabolite can be selected.  If more than 
one metabolite is selected for a stack plot, only the first metabolite in the list is displayed 

The mouse can be use to set the x-axis and cursor values in the 1D plots.  The left mouse 
button sets the X-axis Min/Max PPM values. Click and hold the left mouse button in the window 
and a vertical cursor will appear. Drag the mouse either left or right and a second vertical cursor 
will appear. PPM value changes will be reflected in the Plot Control widget. Release the mouse 
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and the plot will be redisplayed for the Min/Max PPM axis values. In a similar fashion, two 
vertical cursors can be set inside the plot window. Click and drag then release to set the two 
cursors anywhere in the window. Changes to the cursor values will be updated in the Integral 
and Contour plots (described below) after these values are changed by the user. Click and 
release the left mouse button in place and the plot will zoom out to its max setting. Click and 
release the right mouse button in place and the plot will zoom to its last zoom setting (ie. If you 
use the left mouse to zoom in three times getting tighter and tighter on a region, clicking in place 
with the right mouse will take you from zoom 3 to zoom2 to zoom1 to full with each successive 
click). 

An Integral plot can be created from a 2D Spectral stack plot experiment for a single 
metabolite. Metabolite areas are measured between the Left and Right Cursor settings in each 
spectrum and for the real, imaginary or magnitude data shown. The plot will show the integral 
along the Stack Plot axis displayed in the 1D/StackPlot Once the Integral plot is displayed, 
changes to the Left and Right Cursor values or to the Loop index widgets are reflected in the 
plot. 

The Contour plot works best for Experiments that contain at least two Loop dimensions, but will 
create a “pseudo-2D” contour plot from an Experiment with only one Loop dimension by 
repeating the first dimension. Contours are integrated over all steps in the two loop dimensions 
selected in the Contour Dimensions drop-box, for the Left and Right Cursor settings shown 
in the Plot control widget and for the real, imaginary or magnitude data shown. Plotted contours 
change as the cursor settings change, but are only refreshed when the right mouse button is 
released. 

On the Visualize Widget 

Display Mode  (drop-list) Selects 1D, or Stack Plots along index 1, 2 or 3 to be displayed in the 1D  
window. 

X Axis Max/Min  (click fields) Controls the PPM limits of the spectrum displayed in the 1D and 2D plots. 
Alternatively, the left mouse button can be used interactively in the 1D Display window to 
set these axes. Click down the left mouse button and drag to set the min/max settings 
using an interactive ‘rubber-band’ display method.  X-axis cursors are displayed in 
gray/red. 

Cursors Max/Min  (click fields) Controls the PPM limits of the cursors displayed in the 1D and Stack Plots. 
These also act as the PPM integral regions calculated in the Integral and Contour plots. 
The cursors are displayed in purple and may not be displayed on the screen if set to 
values outside the X Axis min/max values. Alternatively, the right mouse button can be 
used in an interactive ‘rubber-band’ display method in the 1D Display window to set these 
axes. Click down the left mouse button and drag to set the left/right values.  Cursors are 
displayed in gray/yellow. 

Index 1, 2, 3  (click fields) These fields allow the user to step thru the Loop1 and Loop2 dimensions for 
the various plot modes.  As each Index widget is incremented, the sequence timing’s 
actual value is shown in the adjoining field.  

Metabolites  (list) A list of metabolites in the experiment that can be included in the display. 

Plot ALL Metabolites   Highlight all metabolites in the list. 

Plot ALL Metabolites   Sums all metabolite plots in a list. For 1D display, this sums different metabolite spectra 
together. For Stack Plots the different sequence timings for one metabolite are summed. 

Integral Plot - Show  (check) Toggles Integral Plot display. 

Contour Plot - Show   (check) Toggles Contour Plot display. 

Grayscale   (check) Toggles whether a grayscale image overlay is applied as a background to the 
contour plot. 
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Contour Levels (click field) Select the number of levels to display in the Contour Plot. Note that setting too 
many levels may limit the ability of level values from being displayed. 

Contour Dimensions   (drop-list) Selects index pairs among index 1, 2 and 3 for display in plot. 

Linewidth  (click field) Set the full-width half-max linewidth in Hz of the peaks displayed in the plots. 

Sweep Width  (click field) Set the sweep width in Hz used to reconstruct the spectra. 

Spectral Points   The number of points used to reconstruct the spectra. 

ASCII Display   Displays the current Experiment results in text form. Top information is a summary of the 
Experiment parameters followed by a line by line report of metabolite results. Each line is 
tab-delineated and shows a: Metabolite Name, Loop1, Loop2 Index, Loop3 Index, Group 
Number Index, Line Number Index, Frequency(PPM), Amplitude, and Phase(deg) for each 
line extracted from the transition table for a given simulation. 
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5. Management Dialogs 
The Management dialogs allows the user to Create, Delete, Edit, Import, Export or View 
Metabolites, Experiments and Pulse Sequences.  These dialogs allow the user to manage the 
data in the Simulation database and to add new prior metabolite and pulse sequence 
information. It also provides the means for users to share information between themselves via 
XML files created using the Import/Export functions.  

5.1 Manage Experiments dialog  

Access this dialog by clicking on the 
Management→Manage Experiments 
menu item. The dialog opens and blocks 
other activity until it is closed. An 
example of this dialog is shown in the 
figure. Experiment names are listed in 
the window on the right. This list may be 
sorted by isotope or main B0 field 
strength from the drop-list widgets 
above the list. Users may View, Clone, 
Delete, Import or Export Experiments. 
These functions are summarized below. 

View: Not currently implemented, use 
Output→Text Results from the 
ExperimentN menu item instead. 

Clone: Cloning allows the user to more 
easily re-run an Experiment with modifications to its parameters. Once Experiments are run, 
they can not have their parameters modified other than to add additional metabolites to the run 
list. The clone button allows a user to create a copy of an Experiment that contains all the 
parameter settings of the Experiment, but none of the results. The clone appears in the list as a 
copy of the Experiment name with the date and the word “clone” appended to its name. The 
user can now quit out of the dialog and load this cloned Experiment into a New Experiment Tab, 
modify parameters and run it. 

Delete: Removes the Experiment from the database. 

Import: Allows the user to select an XML file that contains an Experiment. If the UUID in the file 
is unique, it is added to the Simulation database. 

Export: The user selects an Experiment from the list. Simulation asks if both parameter and 
results should be included in export or just parameters. A second dialog allows the user to 
browse for the output filename, select if output should be compressed and allows an additional 
export comment to be typed in. Note that the action of exporting an object caused it to be 
marked as “frozen” in the database. This means that no changes can be made. This is for the 
sake of consistency as results are shared. However, a frozen Experiment can still be deleted 
from the database if needed. This file can be imported into another Vespa-Simulation 
installation using the Import function.  

5.2 Manage Metabolites dialog  

Access this dialog by clicking on the Management→Manage Metabolites menu item. Actions 
that can be taken on the Metabolite dialog include, New, Edit, View, Clone, (De)activate, Delete, 
Import and Export. An example of the widget used to display and edit Metabolite information is 
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shown.  The "Public" column indicates if a metabolite has ever been exported (or imported from 
someone else). This means that it should not be edited. The "Use Count" column indicates how 
many local Experiments use this metabolite.  While in use by any Experiments, the metabolite 
can not be deleted. 

 
New: A dialog will pop up that gives the user a blank metabolite form to fill out. Select the 
number of spins in the metabolite and the form will enable the appropriate chemical shift and j-
coupling fields. Edit the fields appropriately and hit ACCEPT or Cancel.  See the sample in the 
figure below. 

Edit:  The highlighted metabolite is opened in a metabolite form. Only the metabolite Name, and 
Comment are editable. The name is editable because Experiments save Metabolite references 
by UUID which are not editable. Use the "Clone" option to create a copy of a Metabolite that is 
editable. 
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View:   Similar to Edit but no fields are editable. 

Clone:  Select a metabolite in the list, hit clone and a copy of that metabolite is made that is 
now fully editable. The new metabolite has the name of the original metabolite followed by the 
date and the word "_clone". 

Delete: Only metabolites that have not been used by an experiment may be deleted. This is 
because to reconstruct any given Experiment, that object must refer to the original list of 
metabolites used to create it. The "Use Count" column indicates if a metabolite is in use by an 
Experiment. If not in use by an Experiment, the highlighted metabolite in the list is deleted from 
the database. 

(De-)activate : When a metabolite is no longer being used, it can be set to a "deactivated" state 
where it no longer shows up in the Experiment Tab - Simulate metabolite list for use in new 
Experiments. This state is indicated in the Metabolite dialog by the word "(not active)" appended 
to the metabolite name in the list. 

Import: Allows the user to select an XML file that contains a Metabolite. If the UUID in the file is 
unique, it is added to the Simulation database. 

Export: The user selects an Metabolite from the list. A second dialog allows the user to browse 
for the output filename, select if output should be compressed and allows an additional export 
comment to be typed in. Note that the action of exporting an object caused it to be marked as 
“frozen” in the database. This means that no changes can be made. This is for the sake of 
consistency as results are shared. However, a frozen Metabolite can still be deleted from the 
database if needed. This file can be imported into another Vespa-Simulation installation using 
the Import function.  

5.3 Manage Pulse Sequences dialog  

Access this dialog by clicking on the Management→Manage Pulse Sequences menu item. 
Actions that can be taken on the Pulse Sequences dialog include, New, Edit, View, Clone, 
Delete, Import and Export. An example of the widget used to display and edit pulse sequence 
information is shown.  The "Public" column indicates if a sequence has ever been exported (or 
imported from someone else). This means that it should not be edited. The  "Use Count" column 
indicates how many local 
Experiments use this sequence.  
While in use by any Experiments, 
the sequence can not be deleted. 

As mentioned already, the Vespa-
Simulation program enables users 
to create their own pulse 
sequences that can then be saved 
in the database. The input 
parameters for user functions are 
very specific and are described in 
more detail in Appendix XX. This 
section describes a couple of ways 
that external sequences can be 
included into the Vespa-Simulation 
program 

New:  A widget pops up that allows the user to describe to Vespa-Simulation the PyGamma 
code to run for a pulse sequence and how to lay out the Experiment Tab - Simulate window to 
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display standard and user-defined parameters. The New Pulse Sequence widget is shown 
below. Please note that there are 3 tabs affiliated with this dialog: Description, Sequence Code 
and Binning Code.  All three tabs must be filled out properly to successfully enter a new pulse 
sequence. 

 

Description Tab 

Name: This is how the Experiment Tab - Simulate lists the pulse sequence in the drop-list. 

Creator: The name of the person creating the pulse sequnce 

Loop Labels and Multipliers: When the pulse sequence is called, it can make use of up to 
three looping variables to create a variety of conditions for investigating metabolite behavior.  
In the Loop1, Loop2 and Loop3 rows the user gives information that allows Simulation to 
parse these loop variables. The Label field is a string used in creating the Experiment Tab - 
Simulate window that describe these loops.  An example would be “TE [ms]” for a spin echo 
experiment.  In this case, the user could also set the Mult field equal to 1000 to indicate that 
the Vespa-Simulation program should divide the values given for the Loop-Start and Step 
values before passing them to the pulse sequence function (unless the user specifically 
writes their function to process these variables as millisecond values, then the Mult would 
remain 1.0). 

Additional Parameter Definitions: The user may add/remove additional parameters 
expected by the external pulse sequence using the respective buttons. Additional widgets 
will appear as requested. Each parameter is described by three fields: a data type drop-list, 
"Name" string and "Default Value" string. The name field will be used by the Experiment Tab 
- Simulate window as a label to describe this field in its far right hand column when the pulse 
sequence is selected for an Experiment. The corresponding default value is the value that is 
displayed in that field. As described in Appendix XX, the label also serves as a key in the 
control dictionary sent to run the actual PyGamma simulation, which can be referenced to 
return the user set value.   
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NB. By selecting a data type in the drop down menu, the user will be forced to enter that 
field as that variable type, and will be passed to the PyGamma simulation as that type. 
Please select your default types and values accordingly.   

Sequence Code Tab 

This is a text window in which PyGamma code can be pasted. As defined in more detail in 
Appendix XX, this code is executed using the Python "exec()" command and so should be 
constructed as if it were going to be run in-place with appropriate space/tab layout.  

 
Binning Code Tab 

This is a text window like the Sequence Code tab in which PyGamma code can be pasted. 
The default binning code, as defined in Appendix XX, is already in place when the New 
Sequence dialog is created, but can be deleted/edited as the user wishes. As defined 
(again) in more detail in Appendix XX, this code is executed using the Python "exec()" 
command immediately following the Sequence Code and so should be constructed as if it 
were going to be run in-place with appropriate space/tab layout.  

Edit:  The highlighted sequence is opened in a form similar to the New Sequence dialog. Only 
the metabolite Name, and Comment are editable. The name is editable because Experiments 
save Pulse Sequence references by UUID which are not editable. Use the "Clone" option to 
create a copy of a Pulse Sequence that is editable. 

View:   Similar to Edit but no fields are editable. 

Clone:  Select a sequence in the list, hit clone and a copy of that sequence is made that is now 
fully editable. The new sequence has the name of the original sequence followed by the date 
and the word "_clone". 

Delete: Only sequences that have not been used by an experiment may be deleted. This is 
because to reconstruct any given Experiment, that object must refer to the original sequence 
used to create it. The "Use Count" column indicates if a sequence is in use by an Experiment. If 
not in use by an Experiment, the highlighted sequence in the list is deleted from the database. 
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Import: Allows the user to select an XML file that contains a Pulse Sequence. If the UUID in the 
file is unique, it is added to the Simulation database. 

Export: The user selects a Pulse Sequence from the list. A second dialog allows the user to 
browse for the output filename, select if output should be compressed and allows an additional 
export comment to be typed in. Note that the action of exporting an object causes it to be 
marked as “frozen” in the database. This means that it can not be changed. This is for the sake 
of consistency as results are shared. However, a frozen Pulse Sequence can still be deleted 
from the database if needed. This file can be imported into another Vespa-Simulation 
installation using the Import function.  

6. Results Output  
6.1 Results output into standard text editor 

On the Vespa-Simulation window menu bar, each Experiment Tab has its own menu item 
added to the menu bar. These are named the same as the Experiment Tabs, ie. Experiment1, 
Experiment2, etc. Select the Experiment2→Output→Text Results option and a tab-delineated 
text description of the Experiment is created and loaded into the local computer’s standard text 
editor. On Windows, this is typically Notepad. From here the user can save it wherever they 
please. NB. This command can also be launched from the Experiment Tab – Visualize sub-tab 
using the ASCII Results button. 

The first section of the text file describes the settings of the Experiment. Metabolite simulations 
are saved as a collection of lines with amplitude, PPM and phase that can be used to recreate a 
time domain spectrum. Each line contains: metabolite Name, loop1_value, loop2_value, 
loop3_value, line_number, PPM, area and phase (deg). The index_loop variables may be set to 
other than 0 if the Experiment contains multiple steps in pulse sequence timings.  E.g. an 
Experiment could run NAA, Cr and Cho for 10 TE values, with TE1 being held fixed and TE2 
having 10 values. In the output file, loop1_index would be fixed and loop2_index would 
increment 10 times. The metabolite Name(s) would repeat 10 times as well, as loop2_value is 
incremented. In this way, a 2D Experiment is flattened into a 1D output file. 

--- Experiment 9a146ac7-c47d-4ae2-b7b2-961e942d7d18 --- 
Name: Example OnePulse Data 
Public: True 
Created: 2010-03-24T16:20:18 
Comment (abbr.): Simulation for baseline GAVA database 
PI: bsoher 
Parameters:  
b0: 64.000000 
Peak Search PPM low/high: 0.000000 / 10.000000 
Blend tol. PPM/phase: 0.001500 / 50.000000 
Pulse seq.: bf0b302c-ce1f-46c9-b852-0e7c6b77f95c (One-Pulse) 
3 Metabolites: aspartate, choline-truncated, creatine 
1 Simulations: (not shown) 
 
Simulation Results 
--------------------------------------------------------------------------- 
 
aspartate 0.0 0.0 0.0 0 2.3706 0.03836 0.0 
aspartate 0.0 0.0 0.0 1 2.49372 0.02196 0.0 
aspartate 0.0 0.0 0.0 2 2.64232 0.409 0.0 
aspartate 0.0 0.0 0.0 3 2.70787 0.42219 0.0 
aspartate 0.0 0.0 0.0 4 2.76544 0.52731 0.0 
aspartate 0.0 0.0 0.0 5 2.78347 0.5175 0.0 
aspartate 0.0 0.0 0.0 6 2.97959 0.04772 0.0 
aspartate 0.0 0.0 0.0 7 3.05519 0.01597 0.0 
aspartate 0.0 0.0 0.0 8 3.58274 0.00563 0.0 
aspartate 0.0 0.0 0.0 9 3.79689 0.29328 0.0 
aspartate 0.0 0.0 0.0 10 3.87249 0.25374 0.0 
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aspartate 0.0 0.0 0.0 11 3.92001 0.23456 0.0 
aspartate 0.0 0.0 0.0 12 3.99561 0.21054 0.0 
aspartate 0.0 0.0 0.0 13 4.20976 0.00225 0.0 
choline-truncated 0.0 0.0 0.0 0 3.185 3.0 0.0 
creatine 0.0 0.0 0.0 0 3.027 3.0 0.0 
creatine 0.0 0.0 0.0 1 3.913 2.0 0.0 
creatine 0.0 0.0 0.0 2 6.649 1.0 0.0 
 

6.2 Plot results to image file formats 

Results in the 1D/StackPlot, Integral Plot and Contour Plot windows can all be saved to file in 
PNG (portable network graphic), PDF (portable document file) or EPS (encapsulated postscript) 
formats to save the results as an image. On the Vespa-Simulation window menu bar, each 
Experiment Tab has its own menu item added to the menu bar. These are named the same as 
the Experiment Tabs, ie. Experiment1, Experiment2, etc. Select the Experiment2→Output→ 
option and further select either the 1D/StackPlot, IntegralPlot or ContourPlot menu item. 
Finally, select either Plot to PNG, Plot to PDF or Plot to EPS item. The user will be prompted 
to pick an output filename to which will be appended the appropriate suffix. 

6.3 Plot results to vector graphics formats  

Results in the 1D/StackPlot, Integral Plot and Contour Plot windows can all be save to file in 
SVG (scalable vector graphics) or EPS (encapsulated postscript) formats to save the results as 
a vector graphics file that can be decomposed into various parts. This is particularly desirable 
when creating graphics in PowerPoint or other drawing programs. At the time of writing this, 
only the EPS files were inherently readable into PowerPoint.  

On the Vespa-Simulation window menu bar, each Experiment Tab has its own menu item 
added to the menu bar. These are named the same as the Experiment Tabs, ie. Experiment1, 
Experiment2, etc. Select the Experiment2→Output→ option and further select either the 
1D/StackPlot, IntegralPlot or ContourPlot menu item. Finally, select either Plot to SVG, or 
Plot to EPS item. The user will be prompted to pick an output filename to which will be 
appended the appropriate suffix. 
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Appendix A. Pulse Sequence Design  
 

A.1  What’s under the hood? 
Vespa-Simulation Basic Concepts 

This is a combination of logical concepts and limitations that determine how Simulation works. 
These rules are enforced through the application and, to some extent, the database. 

The main objects in the system are experiments, simulations, spectra, pulse sequences and 
metabolites. Experiments are the primary objects; everything else is secondary. Here's how 
they're related -- 

 Each experiment has zero to many simulations. Simulations are the whole point of an 
experiment, and there's not much to an experiment besides the metatdata that defines 
the simulations. Since entering the experiment metadata is pretty trivial, we don't let 
users save experiments that define zero simulations. Experiments with zero simulations 
can exist, but only in memory. They are never saved to the database or an export file. 

 Each experiment makes use of and refers to exactly one pulse sequence, but the 
experiment may define one or more timing sets for the pulse sequence. 

 Each simulation creates one spectrum. 

 Each spectrum has zero or more lines. Zero is an unusual case, but possible. 

 Each spectrum line has a one PPM, area and phase value in it. 

We expect users to share data via Simulation's export and import functions. For this reason, 
several of Simulation's objects (experiments, pulse sequences and metabolites) 
have universally unique ids (UUIDs) rather than just ordinary integer ids. 

Experiments 

Experiments are the main focus of the Simulation application. An experiment's raison d'etre is to 
run a set of simulations. This set of simulations is the experiment's results space. 

Currently, that space is defined by one to four nested loops. The first loop covers the list of 
metabolites the user has involved in the experiment. The other one, two or three loops are user-
defined lists of numbers. 

The figure below is a visual representation of a 3D results space (one set of metabs and two 
lists of user-defined numbers). For clarity we do not show the 4th dimension (a.k.a. the last user 
defined loop) as stacks of cubes are hard to visualize. 
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Simulations themselves know nothing about one another and are agnostic to the order in which 
they're run. Thus, while the existing code is geared towards generating a very regular results 
space that we iterate over in a very straightforward order, more complex result spaces and 
iteration orders are possible. The sky's the limit, really, provided you can dream up a GUI that 
allows users to describe the results space. 

A few other “rules” of note: 

 Once an experiment has been saved, the following attributes become read-only: pulse 
sequence, investigator, user parameters, b0, isotope, peak_search_ppm_low, 
peak_search_ppm_high, blend_tolerance_ppm, blend_tolerance_phase. 

 One can associate additional metabolites with an experiment, but once it is associated 
and the experiment is saved, the metabolite remains with the experiment forever. In 
other words, a metabolite can't be removed from a saved experiment. 

 An experiment's b0 value is always stored in megahertz. 

The take-home lesson from this section is that the Vespa-Simulation application provides 4 
dynamic (looping) variables and 12 standard static variables to each spectral simulation that is 
run. In the example below, we will specify what these are and how they can typically be used. In 
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the second example below, we will specify how user defined static variables can also be passed 
into spectral simulations. 

A.2  Creating a Pulse Sequence without Extra Parameters 
A.2.1 How to create a “One-Pulse” pulse sequence 

The most important thing to remember in pulse sequence design is that no matter the size of 
your looping variables, each distinct set of pulse sequence parameters are sent to their spectral 
simulation independent of all others. To achieve this, a list of “control dictionaries” is created to 
store each distinct set of parameters. Then each dictionary is sent to a function that executes 
the PyGamma spectral simulation that it describes. On completion of each dictionary execution, 
lists of areas, ppms, phases and start/finish time stamps are returned and stored in the 
database. 

The standard variables that are stored as key:value pairs in the control dictionary include: 

‘field’ – (float) main B0 field strength in MHz 

‘sequence_code’ – (string) PyGamma code string executed using exec() to perform the 
simulation 

‘binning_code’ – (string) PyGamma code string executed using exec() immediately after the 
sequence_code to extract the areas, ppms and phases from the transition table. 

‘peak_search_ppm_low’ – (float) range in ppm to be searched in binning code (see below) 

‘peak_search_ppm_high’ – (float) range in ppm to be searched in binning code (see below) 

‘blend_tolerance_ppm’ – (float) width of bins in ppm into which similar lines can be combined 
(see below) 

‘blend_tolerance_phase’ – (float) width of bins in phase degrees into which similar lines can 
be combined (see below) 

‘dims – (list) this list contains the values of the 4 loops as set for this particular simulation. 
Specifically, dims[0] is a string containing the metabolite name, dims[1] dims[2] and dims[3] 
contain the float values of the three counting loops. 

‘met_iso – (list) string value for the isotope of each spin in the current metabolite 

‘met_cs – (list) float ppm value for chemical shift of each spin in the current metabolite 

‘met_js – (list) float ppm value for J-couplings of each spin pair in the current metabolite 

‘nspins – (int) number of spins in the metabolite (for convenience) 

Inside the execution function there are a number of code bits that are automatically provided. 
One is the “import pygamma as pg” statement. Another takes the field, isotopes, chemical shifts 
and j-coupling values from the control dictionary and creates a PyGamma spin_system variable 
called “sys”. However, this sys variable could be over-written by user code as needed, it is only 
provided as a convenience.  

The One-Pulse Example 

Here is the PyGamma code that is in the sequence_code string for the One-Pulse sequence: 

 
H   = pg.Hcs(sys) + pg.HJ(sys)  
D   = pg.Fm(sys, "1H")  
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ac  = pg.acquire1D(pg.gen_op(D), H, 0.000001)  
ACQ = ac  
 
sigma  = pg.sigma_eq(sys)  
sigma0 = pg.Iypuls(sys, sigma, "1H", 90.0)  
mx     = ACQ.table(sigma0) 

 
The first thing to note is that other than the “sys” spin_system variable, this pulse sequence 
does not make use of any of the variables in the control_dict dictionary. There are no loops in 
this simulation and no user-defined static parameters. For examples of how to use these 
variables see the following examples. 

The final line of code demonstrates the one “output” code requirement if user is going to use the 
standard ‘binning_code’ provided by Simulation by default. The user must set up a transition 
table variable called “mx” 

Here is the PyGamma code that is the default binning_code string which is automatically 
inserted into the Binning Code tab for each new pulse sequence definition, and subsequently is 
used in the One-Pulse sequence: 

 
area   = pg.DoubleVector(0) 
ppm    = pg.DoubleVector(0) 
phase  = pg.DoubleVector(0) 
field  = sys.Omega() 
nspins = sys.spins() 
tolppm = float(sim_dict["blend_tolerance_ppm"]) 
tolpha = float(sim_dict["blend_tolerance_phase"]) 
ppmlow = float(sim_dict["peak_search_ppm_low"]) 
ppmhi  = float(sim_dict["peak_search_ppm_high"]) 
 
bins = mx.calc_spectra(ppm, area, phase, field, nspins, \ 

tolppm, tolpha, ppmlow, ppmhi) 
 
if bins > 0: 
    area  = [i for i in area] 
    ppm   = [i for i in ppm] 
    phase = [i for i in phase] 
else: 
    area  = [] 
    ppm   = [] 
    phase = [] 
 

This code expects that there exists already in the namespace a variable named “mx” that is a 
PyGamma transition table. The actual binning code is written in C++ and accessed through a 
Swig mapping. This code creates three equal length lists called area, ppm and phase that are 
subsequently returned from the execution function to the main Simulation application for storage 
in the database.  

If the user wants to write their own ‘binning’ code then they must follow these requirements. If 
the user is careful about what is provided/executed in the ‘sequence_code’ and subsequently  
used in the ‘binning_code’, there may be no need for the “mx” variable. But, the user must 
always return the three equal length lists named area, ppm and phase. 
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A.2.2 The “Ideal-PRESS” pulse sequence – typical use of standard parameters 

Here is the PyGamma code that is in the sequence_code string for the PRESS_Ideal sequence: 

 
te1 = sim_dict["dims"][1]  
te2 = sim_dict["dims"][2] 
 
H   = pg.Hcs(sys) + pg.HJ(sys)  
D   = pg.Fm(sys, "1H")  
ac  = pg.acquire1D(pg.gen_op(D), H, 0.000001)  
ACQ = ac  
 
sigma0 = pg.sigma_eq(sys)  
sigma1 = pg.Iypuls(sys, sigma0, "1H", 90.0) 
 
Udelay = pg.prop(H, te1*0.5) 
sigma0 = pg.evolve(sigma1, Udelay) 
 
sigma1 = pg.Iypuls(sys, sigma0, "1H", 180.0) 
 
Udelay = pg.prop(H, (te1+te2)*0.5) 
sigma0 = pg.evolve(sigma1, Udelay) 
 
sigma1 = pg.Iypuls(sys, sigma0, "1H", 180.0) 
 
Udelay = pg.prop(H, te2*0.5) 
sigma0 = pg.evolve(sigma1, Udelay) 
 
mx = ACQ.table(sigma0) 

 
The first thing to note is that this pulse sequence accesses the “sys” spin_system variable and 
also the control_dict dictionary for the Loop1 and Loop2 values in the “te1 = 
sim_dict["dims"][1]” and “te1 = sim_dict["dims"][2]” lines. There are no 
user-defined static parameters. Similarly to the example above a transition table variable called 
“mx” is set up in the last line of code. 

(Not shown) The default binning_code string is used to return the values from the transition 
table to the main Simulation program. 

 

A.3  Creating a Pulse Sequence with Extra Parameters 
A.3.1 The “PRESS-CP with Variable R-groups” Pulse Sequence 

Here is the PyGamma code that is in the sequence_code string for the One-Pulse sequence: 

 
te1     = sim_dict["dims"][1]  
te2     = sim_dict["dims"][2]  
rgroups = sim_dict["dims"][3]  
pd90    = sim_dict["alpha/2 Pulse Time (sec)"] 
ang90   = sim_dict["alpha/2 Pulse Angle (deg)"] 
tauR    = sim_dict["tauR Pulse Duration (sec)"] 
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type    = sim_dict["PulseType(0-Ideal/1-Sand)"] 
 
pd180   = pd90 * 2.0 
ang180  = ang90 * 2.0 
 
H   = pg.Hcs(sys) + pg.HJ(sys)  
D   = pg.Fm(sys, "1H")  
ac  = pg.acquire1D(pg.gen_op(D), H, 0.000001)  
ACQ = ac  
 
sigma0 = pg.sigma_eq(sys)  
sigma1 = pg.Iypuls(sys, sigma0, "1H", 90.0) 
 
Udelay = pg.prop(H, te1*0.5) 
sigma0 = pg.evolve(sigma1, Udelay) 
 
sigma1 = pg.Iypuls(sys, sigma0, "1H", 180.0) 
 
Udelay = pg.prop(H, te1*0.5) 
sigma0 = pg.evolve(sigma1, Udelay) 
 
sigma1 = sigma0 
 
if type == 0: 
 
    # using Ideal 180 pulses 
    for k in range(rgroups):   
        Udelay = pg.prop(H, tauR/2.0); 
        sigma0 = pg.evolve(sigma1,Udelay); 
 
        sigma1 = pg.Iypuls(sys,sigma0,180); 
 
        Udelay = pg.prop(H, tauR/2.0); 
        sigma0 = pg.evolve(sigma1,Udelay); 
 
        sigma1 = sigma0; 
 
else:  
 
    for k in range(rgroups):     
     
     # using 90-180-90 square 'Sandwich' pulses with MLEV16 phase cycling 
        if (k % 4) == 0: 
 
            Udelay = pg.prop(H, tauR/2.0); 
            sigma0 = pg.evolve(sigma1,Udelay); 
 
            sigma1 = pg.Sxpuls(sys, sigma0, H, "1H", offhz, pd90,  ang90); 
            sigma0 = pg.Sypuls(sys, sigma1, H, "1H", offhz, pd180, ang180); 
            sigma1 = pg.Sxpuls(sys, sigma0, H, "1H", offhz, pd90,  ang90); 
 
            Udelay = pg.prop(H, tauR); 
            sigma0 = pg.evolve(sigma1,Udelay); 
 
            sigma1 = pg.Sxpuls(sys, sigma0, H, "1H", offhz, pd90,  ang90); 
            sigma0 = pg.Sypuls(sys, sigma1, H, "1H", offhz, pd180, ang180); 
            sigma1 = pg.Sxpuls(sys, sigma0, H, "1H", offhz, pd90,  ang90); 
 
            Udelay = pg.prop(H, tauR); 
            sigma0 = pg.evolve(sigma1,Udelay); 
 
            sigma1 = pg.Sxpuls(sys, sigma0, H, "1H", offhz, pd90,  -ang90); 
            sigma0 = pg.Sypuls(sys, sigma1, H, "1H", offhz, pd180, -ang180); 
            sigma1 = pg.Sxpuls(sys, sigma0, H, "1H", offhz, pd90,  -ang90); 
 
            Udelay = pg.prop(H, tauR); 
            sigma0 = pg.evolve(sigma1,Udelay); 
 
            sigma1 = pg.Sxpuls(sys, sigma0, H, "1H", offhz, pd90,  -ang90); 
            sigma0 = pg.Sypuls(sys, sigma1, H, "1H", offhz, pd180, -ang180); 
            sigma1 = pg.Sxpuls(sys, sigma0, H, "1H", offhz, pd90,  -ang90); 
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            Udelay = pg.prop(H, tauR/2.0); 
            sigma0 = pg.evolve(sigma1,Udelay); 
 
            sigma1 = sigma0; 
 
        if (k % 4) == 1: 
 
            Udelay = pg.prop(H, tauR/2.0); 
            sigma0 = pg.evolve(sigma1,Udelay); 
 
            sigma1 = pg.Sxpuls(sys, sigma0, H, "1H", offhz, pd90,  -ang90); 
            sigma0 = pg.Sypuls(sys, sigma1, H, "1H", offhz, pd180, -ang180); 
            sigma1 = pg.Sxpuls(sys, sigma0, H, "1H", offhz, pd90,  -ang90); 
 
            Udelay = pg.prop(H, tauR); 
            sigma0 = pg.evolve(sigma1,Udelay); 
 
            sigma1 = pg.Sxpuls(sys, sigma0, H, "1H", offhz, pd90,  ang90); 
            sigma0 = pg.Sypuls(sys, sigma1, H, "1H", offhz, pd180, ang180); 
            sigma1 = pg.Sxpuls(sys, sigma0, H, "1H", offhz, pd90,  ang90); 
 
            Udelay = pg.prop(H, tauR); 
            sigma0 = pg.evolve(sigma1,Udelay); 
 
            sigma1 = pg.Sxpuls(sys, sigma0, H, "1H", offhz, pd90,  ang90); 
            sigma0 = pg.Sypuls(sys, sigma1, H, "1H", offhz, pd180, ang180); 
            sigma1 = pg.Sxpuls(sys, sigma0, H, "1H", offhz, pd90,  ang90); 
 
            Udelay = pg.prop(H, tauR); 
            sigma0 = pg.evolve(sigma1,Udelay); 
 
            sigma1 = pg.Sxpuls(sys, sigma0, H, "1H", offhz, pd90,  -ang90); 
            sigma0 = pg.Sypuls(sys, sigma1, H, "1H", offhz, pd180, -ang180); 
            sigma1 = pg.Sxpuls(sys, sigma0, H, "1H", offhz, pd90,  -ang90); 
 
            Udelay = pg.prop(H, tauR/2.0); 
            sigma0 = pg.evolve(sigma1,Udelay); 
 
            sigma1 = sigma0; 
 
        if (k % 4) == 2: 
 
            Udelay = pg.prop(H, tauR/2.0); 
            sigma0 = pg.evolve(sigma1,Udelay); 
 
            sigma1 = pg.Sxpuls(sys, sigma0, H, "1H", offhz, pd90,  -ang90); 
            sigma0 = pg.Sypuls(sys, sigma1, H, "1H", offhz, pd180, -ang180); 
            sigma1 = pg.Sxpuls(sys, sigma0, H, "1H", offhz, pd90,  -ang90); 
 
            Udelay = pg.prop(H, tauR); 
            sigma0 = pg.evolve(sigma1,Udelay); 
 
            sigma1 = pg.Sxpuls(sys, sigma0, H, "1H", offhz, pd90,  -ang90); 
            sigma0 = pg.Sypuls(sys, sigma1, H, "1H", offhz, pd180, -ang180); 
            sigma1 = pg.Sxpuls(sys, sigma0, H, "1H", offhz, pd90,  -ang90); 
 
            Udelay = pg.prop(H, tauR); 
            sigma0 = pg.evolve(sigma1,Udelay); 
 
            sigma1 = pg.Sxpuls(sys, sigma0, H, "1H", offhz, pd90,  ang90); 
            sigma0 = pg.Sypuls(sys, sigma1, H, "1H", offhz, pd180, ang180); 
            sigma1 = pg.Sxpuls(sys, sigma0, H, "1H", offhz, pd90,  ang90); 
 
            Udelay = pg.prop(H, tauR); 
            sigma0 = pg.evolve(sigma1,Udelay); 
 
            sigma1 = pg.Sxpuls(sys, sigma0, H, "1H", offhz, pd90,  ang90); 
            sigma0 = pg.Sypuls(sys, sigma1, H, "1H", offhz, pd180, ang180); 
            sigma1 = pg.Sxpuls(sys, sigma0, H, "1H", offhz, pd90,  ang90); 
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            Udelay = pg.prop(H, tauR/2.0); 
            sigma0 = pg.evolve(sigma1,Udelay); 
 
            sigma1 = sigma0; 
 
        if (k % 4) == 3: 
 
            Udelay = pg.prop(H, tauR/2.0); 
            sigma0 = pg.evolve(sigma1,Udelay); 
 
            sigma1 = pg.Sxpuls(sys, sigma0, H, "1H", offhz, pd90,  ang90); 
            sigma0 = pg.Sypuls(sys, sigma1, H, "1H", offhz, pd180, ang180); 
            sigma1 = pg.Sxpuls(sys, sigma0, H, "1H", offhz, pd90,  ang90); 
 
            Udelay = pg.prop(H, tauR); 
            sigma0 = pg.evolve(sigma1,Udelay); 
 
            sigma1 = pg.Sxpuls(sys, sigma0, H, "1H", offhz, pd90,  -ang90); 
            sigma0 = pg.Sypuls(sys, sigma1, H, "1H", offhz, pd180, -ang180); 
            sigma1 = pg.Sxpuls(sys, sigma0, H, "1H", offhz, pd90,  -ang90); 
 
            Udelay = pg.prop(H, tauR); 
            sigma0 = pg.evolve(sigma1,Udelay); 
 
            sigma1 = pg.Sxpuls(sys, sigma0, H, "1H", offhz, pd90,  -ang90); 
            sigma0 = pg.Sypuls(sys, sigma1, H, "1H", offhz, pd180, -ang180); 
            sigma1 = pg.Sxpuls(sys, sigma0, H, "1H", offhz, pd90,  -ang90); 
 
            Udelay = pg.prop(H, tauR); 
            sigma0 = pg.evolve(sigma1,Udelay); 
 
            sigma1 = pg.Sxpuls(sys, sigma0, H, "1H", offhz, pd90,  ang90); 
            sigma0 = pg.Sypuls(sys, sigma1, H, "1H", offhz, pd180, ang180); 
            sigma1 = pg.Sxpuls(sys, sigma0, H, "1H", offhz, pd90,  ang90); 
 
            Udelay = pg.prop(H, tauR/2.0); 
            sigma0 = pg.evolve(sigma1,Udelay); 
 
            sigma1 = sigma0; 
 
 
Udelay = pg.prop(H, te2*0.5) 
sigma0 = pg.evolve(sigma1, Udelay) 
 
sigma1 = pg.Iypuls(sys, sigma0, "1H", 180.0) 
 
Udelay = pg.prop(H, te2*0.5) 
sigma0 = pg.evolve(sigma1, Udelay) 
 
mx = ACQ.table(sigma0) 

 

The pulse sequence accesses the “sys” spin_system variable. The first seven lines of code are 
good examples of how to access the control_dict dictionary for all three loop parameters and 
some user-defined static parameters. Note that the dictionary key for each user-defined 
parameter is just the label from the Experiment Tab – Simulate sub-tab panel for each additional 
parameter, e.g. the ‘pd90 = sim_dict["alpha/2 Pulse Time (sec)"]’ line. 
Similarly to the examples above a transition table variable called “mx” is set up in the last line of 
code. 
Also of note in this example is the fact that typical Python control structures can be used in 
these sequence_code strings, for loops, if statements, etc.  However, extreme care should be 
taken to have consistent spacing and (lack of) tabs in the code that is pasted into the new pulse 
sequence dialog tab. 
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Appendix B. Pulse Sequence Diagrams  
 

This section provides some basic information about the standard simulated pulse sequences that are 
provided as part of the Vespa distribution. The full PyGamma code for each pulse sequence can be 
accessed through the Pulse Sequence Management Dialog widget using the View or Edit functions. 

B.1  one-pulse  
B.1.1 Sequence Diagram 

 

B.1.2 Loop Variable 1,2,3 Descriptions  

Loop1 – not used 

Loop2 – not used  

Loop3 – not used 

 

B.1.3 User Defined Static Parameters 

none 

 

B.1.4 General Description 

This is a simulation of a pulse and observe, or one-pulse, pulse sequence.  The typical 90y degree hard 
pulse is modeled by an ideal GAMMA pulse. Despite the slight spacing in the sequence diagram, there is 
no evolution period after the excitation pulse prior to transition table acquisition. 
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B.2  spin-echo  
B.2.1 Sequence Diagram 

 

B.2.2 Loop Variable 1,2,3 Descriptions  

Loop1 – Describes the number of TE values to loop over in [ms]. 

Loop2 – not used 

Loop3 – not used 

 

B.2.3 User Defined Static Parameters 

none 

 

B.2.4 General Description 

This is a simulation of a spin-echo sequence using ideal GAMMA pulses for the 90y and 180y localization 
pulses.  
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B.3  PRESS_Ideal  
B.3.1 Sequence Diagram 

 

B.3.2 Loop Variable 1,2,3 Descriptions  

Loop1 – Describes the number of TE1 values to loop over in [ms]. 

Loop2 – Describes the number of TE2 values to loop over in [ms]. 

Loop3 – not used 

Notes – Pulse sequence TE = TE1+TE2.  

 

B.3.3 User Defined Static Parameters 

none 

 

B.3.4 General Description 

This is a simulation of a Point Resolved Spectroscopy (PRESS).  The typical 90-180-180 localization 
pulses of the PRESS sequence are modeled by ideal GAMMA pulses. The TE1 period is controlled by 
the settings of loop variable 1, the TE2 period is controlled by the settings of loop variable 2, thus either a 
symmetric or asymmetric PRESS experiment can be simulated.  
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B.4  STEAM_Ideal  
B.4.1 Sequence Diagram 

 

 

 

B.4.2 Loop Variable 1,2,3 Descriptions  

Loop1 – Describes the number of TE values to loop over in [ms]. 

Loop2 – Describes the number of TM values to loop over in [ms]. 

Loop3 – not used 

 

B.4.3 User Defined Static Parameters 

none 

 

B.4.4 General Description 

 

This is a simulation of a STimulated Excitation Acquisition Mode (STEAM) pulse sequence.  The typical 
90-90-90 pulses of the STEAM sequence are modeled by ideal GAMMA pulses. The total TE period is 
controlled by the settings of loop variable 1, the TM (mixing time) period is controlled by the settings of 
loop variable 2. 
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B.5  JPRESS_Ideal  
B.5.1 Sequence Diagram 

 

 

 

B.5.2 Loop Variable 1,2,3 Descriptions  

Loop1 – Describes the number of TE1 values to loop over in [ms]. 

Loop2 – not used 

Loop3 – not used 

 

B.5.3 User Defined Static Parameters 

none 

 

B.5.4 General Description 

This is a simulation of a J-PRESS pulse sequence.  The typical 90-180-90-180 pulses of the JPRESS 
sequence are modeled by ideal GAMMA pulses. The total TE period is controlled by the settings of loop 
variable 1. 

 

 


