LabOne Programming Manual

\\ /e
A

Zurich
Instruments

LabOne Programming Manual
Zurich Instruments AG

Publication date Revision 31421

Copyright © 2008-2015 Zurich Instruments AG

The contents of this document are provided by Zurich Instruments AG (ZI), “as is”. ZI makes no representations or warranties with
respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications
and product descriptions at any time without notice.

LabVIEW is a registered trademark of National Instruments Inc. All other trademarks are the property of their respective owners.

Revision History

Revision 31421, 8-Jul-2015:
Update of the LabOne Programming Manual for LabOne Release 15.05.

= The LabOne LabVIEW and C (ziAPI) APIs are now ziCore-based.
= Additions and modifications for MFLI support.

Revision 28870, 18-Mar-2015:
Update of the LabOne Programming Manual for LabOne Release 15.01.

= Added description of API Level 5.

Revision 26206, 01-0ct-2014:
Update of the LabOne Programming Manual for LabOne Release 14.08.

= Added PLL Advisor Module section to ziCore Modules.
= Consistency update of ziCore Module parameters.
= |mprovements to plots in Software Trigger ziCore Module section.

Revision 23212, 23-Apr-2014:

= Firstrelease of the LabOne Programming Manual.

Table of Contents

[. LabOne Programming CONCEPLS .. oooiiiiiiiiii e 4
I) Ao o [Ao o ISP 5

1.1. LabOne Software ArchiteCture ..o 6

1.2. Comparison of the LabOne INterfacesocviiiiiiiiiiiiiii e 9

1.3. LabOne AP LEVELS ..uiiiiii e 10

1.4. Finding settings: The Node Hierarchy ... 12

1.5. Obtaining Data from the Instrument ... 14

1.6. Instrument-Specific Considerationscccooieiiiiiiiiiiii e 16

2. ziCore Programming OVEIVIEWciiiiiiiiiiiie e 17

2.1. An Introduction to ziCore-based APISoiiiiiiiiie 18

2.2. SWeepEr MOAULE .. 21

2.3. Z0OMFFT MOGULE e e e 30

2.4. Software Trigger (Recorder) Module ... 32

2.5. Device Settings ModULE ... 37

2.6. PLL AQVISOTr MOQULE it 38

2.7. TIPS @Nd THICKS ottt e 40

I I= o1 o= Y PP 41
3. Matlab Programming ... 42

3.1. Installing the LabOne Matlab APl, 43

3.2. Getting Started with the LabOne Matlab APl ..., 46

3.3. LabOne Matlab API Tips and TriCKS ..ocoiviieiiiiiieeei e 50

3.4. Troubleshooting the LabOne Matlab APl ..., 52

3.5. LabOne Matlab API (ziDAQ) Command Referencecccoceeveiemmnininnnnnnnnnnns 54

4. Python Programming ..o 70

4.1. Installing the LabOne Python APL L. 71

4.2. Getting Started with the LabOne Python APl ... 75

4.3. LabOne Python API Tips and TriCKS ...ocoieiiiiiiii e 79

4.4, LabOne Python API (ziPython) Command Referencecccooeeeiiiiiiiiiinn... 80

5. LabVIEW Programmingccooiiiiiii e 113

5.1. Installing the LabOne LabVIEW API ... 114

5.2. Getting Started ... 116

5.3. LabVIEW Programming Tips and Tricksooiiiiiiiiiiiiiiiii e, 121

B. C Programming ..o e 122

B.1. Getting Started ... 123

6.2. Module DoCUMENTATION ..uiiiiii e 125

6.3. Data Structure DocumMentation ..o 201

B.4. File DOCUMENTAION oiitiiiii e 237

1L TS TT- Y Y PSP 346
T = G PSP 352

LabOne Programming Manual Revision 31421 Zurich Instruments 3

http://www.zhinst.com

Part |. LabOne Programming Concepts

This introduction gives an overview of LabOne programming and deals with generic concepts applicable to
any of Zurich Instruments' APIs. It also helps guide the user to an appropriate choice of API.

Refer to:

Section 1.1 for an overview of the LabOne Software Architecture .
Section 1.2 fora Comparison of the LabOne Interfaces.

Section 1.3 for an explanation of LabOne API Levels.

Section 1.4 for Finding settings: The Node Hierarchy .

Section 1.5 for Obtaining Data from the Instrument .

Section 1.6 for Instrument-Specific Considerations.

Chapter 2 for an overview to working with ziCore-based APIs and Modules.

Chapter 1. Introduction

This chapter briefly describes the different possibilities to interface with a Zurich Instruments
device, other thanvia the LabOne User Interface or ziControl (HF2 Series only). Zurich Instruments
devices are designed with the concept that "the computer is the cockpit"; there are no controls
on the front panel of the instrument, instead the user can configure their instrument from and
stream data directly to their computer. The aim of this approach is to give the user the freedom to
choose where they connect to, and how they control, their instrument.

As an example, the user can either work on a computer directly connected to the instrument via
USB or remotely from a different computer on the network, away from their experimental setup.
Then, on either computer, the user can configure and retrieve data from their instrument via a
number of different software interfaces, i.e. viathe web-based LabOne User Interface and/or their
own custom programs. In this way the user can decide which connectivity setup and combination
of interfaces best suits their experimental setup and data processing needs.

Refer to:

= Section 1.1 for an overview of the LabOne Software Architecture .
= Section 1.2 fora Comparison of the LabOne Interfaces .

= Section 1.3 for an explanation of LabOne API Levels.

= Section 1.4 for Finding settings: The Node Hierarchy .

= Section 1.5 for Obtaining Data from the Instrument.

= Section 1.6 for Instrument-Specific Considerations.

Note
New users could benefit by first familiarizing themselves with the instrument using the LabOne

User Interface or ziControl; please refer to the appropriate user manual for your instrument for
more details.

Note

The Real-time Option (RTK) for the HF2 Series is not a PC-based interface for controlling an
instrument and is documented in the HF2 User Manual.

LabOne Programming Manual Revision 31421 Zurich Instruments 5

http://www.zhinst.com

1.1. LabOne Software Architecture

1.1. LabOne Software Architecture

Zurich Instruments devices uses a server-based connectivity methodology. Server-based means
that all communication between the user and the instrument takes place via a computer
program called a server, the Data Server. The Data Server recognizes available instruments and
manages all communication between the instrument and the host computer on one side, and
communication to all the connected clients on the other side. This allows for:

This software architecture is organized in layers, see Figure 1.1 for a schematic of the software

between all interfaces by the single instance of the Data Server.

layers.

Figure 1.1. Software architecture

First, we briefly explain some terminology that is used throughout this manual.

Host computer: The computer where the Data Serveris running and thatis directly connected
to the instrument. Multiple remote computers on a local area network can access the
instrument by creating an APl connection to the Data Server running on the host computer.

Data Server : Acomputer program that runs on the host computer and manages settings on,
and data transfer to and from instruments by receiving commands from clients. It always
has the most up-to-date configuration of the device and ensures that the configuration is

synchronized between different clients.

A multi-client configuration: Multiple interfaces (even from multiple computers on the
network) can access the settings and data on an instrument. Settings are synchronized

A multi-device setup: Any of the Data Server's clients can access multiple devices
simultaneously.

Application Layer

Web Server Layer

Data Server Layer

Devices

Web Browser Web Browser Matlab Python LabView
Q © N2 N2, N/
ziDAQ API ziPython API API
S 3 A N A
....... ol - A e e
[} O
[~
| Session | | Session | <t < <
o o o
N2 . ® =z =
LabOne Web Server - - -
/\ . o o o
O O O
= [[~
o
o
............... o [I I AN
o
o
'_
API Session API| Session | | API Session | | AP| Session
P g
of |2
m m I8
....... 172 [y 7 1 e e mmmmmm e eeeeeeemeaa e
o]] o o
ol |2
M N =
N7 Devi N7 b N7 b
evice 1 Device 2 Device 3
VAN VAN VAN

ziServer.exe: The Data Server that handles communication with HF2 Instruments.

LabOne Programming Manual

Revision 31421

Zurich Instruments

http://www.zhinst.com

1.1. LabOne Software Architecture

= ziDataServer.exe: The Data Server that handles communication with UHFLI and MFLI
Instruments. Note, in the case of MFLI Instruments the Data Server runs on the instrument
itself.

= Remote computer: Acomputer, available onthe same network as the host computer, that can
communicate with an instrument via the Data Server program running on the host.

= (Client: Acomputer program that communicates with an instrument via the Data Server. The
client can be running either on the host or the remote computer.

= APl (Application Programming Interface): a collection of functions and data structures
which enable communication between software components. In our case, the various APIs
(e.g., LabVIEW, Matlab®) provide functions to configure instruments and receive measured
experimental data.

= |nterface: Either a client or an API.

= GUI (Graphical User Interface): A computer program that the user can operate via images as
opposed to text-based commands.

= | abOne User Interface: The browser-based user interface that connects to the Web Server.

= | abOne Web Server: The program that generates the browser-based LabOne User Interface.
= ziControl: The GUI for HF2 Instruments.

= ziCore: The core C++ library upon which many APIs are based, see Part Il of this document.

= Modules: ziCoreSoftware components that provide a unified interface to APIs to perform
high-level common tasks such as sweeping data.

1.1.1. LabOne Port and Hostname Selection

In order for an API client to connect to the correct Data Server, both the correct "hostname" and
"port" must be provided when the API session is instantiated.

Firstly, LabOne Programmers must be aware that HF2 Instruments use a different Data Server
program than UHFLI and MFLI Instruments. A LabOne API client connects to the correct Data
Server for their instrument by specifying the appropriate port; use port 8004 for UHF and MFLI
Instruments and 8005 for HF2 Instruments. Both servers can handle connections to multiple
devices from multiple software interfaces (APIs or User Interfaces) simultaneously, see Figure 1.2
for an example configuration.

Secondly, MFLI Programmers should be aware that, in contrast to HF2 and UHFLI instruments,
the Data Server runs on the instrument itself. Thus, the instrument's hostname must be provided
astheinputargumentwhen the APl session is instantiated. This will be the same hostname thatis
used to access the LabOne User Interface on the instrument remotely from a web browser, please
see the Getting Started chapter of the MFLI User Manual for help on determining the hostname.

LabOne Programming Manual Revision 31421 Zurich Instruments 7

http://www.zhinst.com

1.1. LabOne Software Architecture

EEVRCIE a8 127.0.0.1: 8004 Data Server UHF UHF Instrument(s)
< ziDataServer.exe
Python Client 127.0.0.1: 8004

Web Server UHF
<>

" 127.0.0.1: 8006

LabVIEW Client 127.0.0.1: 8005 Data Server HF2 HF2 Instrument(s)
ziServer.exe

&
<
&
<

MATLAB Client 127.0.0.1: 8005
<>

Figure 1.2. Server port handling: Use 8004 for UHF Instruments and 8005 for HF2 Instruments.

<)

LabOne Programming Manual Revision 31421 Zurich Instruments

http://www.zhinst.com

1.2. Comparison of the LabOne Interfaces

1.2. Comparison of the LabOne Interfaces

The various software interfaces available in LabOne allow the user to pick a programming
environment they are familiar with to achieve fast results. All other things being equal, here is a
brief discussion of the merits of each interface.

= The LabVIEW interface allows for quick and efficient implementation of virtual instruments
that run independently. These can easily be integrated in existing experiment control
performed in LabVIEW. For most applications that need functions not included by ziControl,
this is a sensible interface to use. This interface requires a National Instruments LabVIEW
license and LabVIEW 2009 (or higher).

= The Matlab® interface allows the user to directly obtain measurement data within the
Matlab programming environment, where they can make use of the many built-in functions
available. The user can utilize high-level functionality provided by ziCore's Modules to
perform common measurement tasks. This interface requires a Mathworks Matlab license,
but no additional Matlab Toolboxes.

= The Pythoninterface allows the usertodirectly obtain measurement data within python. The
user can utilize high-level functionality provided by ziCore's Modules to perform common
measurement tasks. Python is available as free and open source software; no license is
required to use it.

= The CAPI, ziAPI, is a very versatile interface that will run on most platforms. However, since
Cis a low-level programming language, the development cycle is slower than with the other
programming environments and high-level functionality provided by ziCore's Modules is
not available.

= The text-based interface (HF2 Series only) allows the user to manually connect to the
HF2 Data Server in a console via telnet. While this interface is a very useful tool for HF2
programmers to verify instrument configuration set by other interfaces, it is limited in terms
of performance and maximum demodulator sample rate. See the HF2 User Manual for more
details.

LabOne Programming Manual Revision 31421 Zurich Instruments 9

http://www.zhinst.com

1.3. LabOne API Levels

1.3. LabOne API Levels

1.3.1.

1.3.2.

All of the LabOne APIs depend on the base ziAPI (the C API). Needless to say, we try as hard
as possible to make any improvements in ziAPl backwards compatible for the convenience
of our users. We take care that existing programs do not need to be changed upon a new
software release. Occasionally, however, we do have to make a breaking change in our API by
removing some old functionality. This old functionality is, however, phased out over several
software releases. First, the functionality is marked as deprecated and the user is informed via
a depreciation warning (this can be turned off). This indicator warns that this function may be
unsupported in the future. If we have to break some functionality we use a so-called API level.

With support of new devices and features we need to break functionality on the ziAPl.h e.g. data
returned by poll commands. In order to still support the old functionality we introduced APl levels.
If a program is only using old functionality the API level 1 (default) can be used. If a user needs
new functionality, they need to use a higher API level. This will usually need some changes on the
existing code.

Available API levels as of LabOne Software Release 15.01 are:

= APl Level 1: HF2 support, basic UHF support.
= APl Level 4: UHF support with timestamps and PWA, name clean-up.

= API Level 5: Introduction of scope offset for extended (non-hardware) scope inputs (UHF).

Note that Levels 2 and 3 are used only internally and are not available to the general public.

Note

The HF2 Series only supports APl Level 1.

Note

New UHFLI and MFLI APl users are recommended to use API Level 5.

API Level 4 Features

The new features in API Level 4 are:

= Timestamps are available for any settings or data node.
= Greatly improved Scope data transfer rates (and new Scope data structure).

= Greatly improved UHF Boxcar and PWA support.

APl Level 5 Features

APl Level b was introduced in LabOne Release 15.01 to accommodate a necessary change in the
Scope data structure:

= The Scopedatastructure was extended with the new field "channeloffset" which contains the
offset value that must be added to the scaled wave value in order to obtain the physical value

LabOne Programming Manual Revision 31421 Zurich Instruments 10

http://www.zhinst.com

1.3. LabOne API Levels

recorded by the scope. For previous hardware scope "inputselects" there is essentially no
change, since their offset is always zero. However, for the extended values of "inputselects”,
such as PID Out value, (available with the DIG option) the offset is determined by the values
of "limitlower" and "limitupper" configured by the user.

LabOne Programming Manual Revision 31421 Zurich Instruments 11

http://www.zhinst.com

1.4. Finding settings: The Node Hierarchy

1.4. Finding settings: The Node Hierarchy

In order to communicate with an Zurich Instruments device via text-based commands in an
API, it is necessary to understand how the settings and measurement data of the instrument
are accessed. All the settings and data of the instrument are organized in a file-system-like
hierarchical structure. The features of the instrument, such as demodulators, are accessed as
branches in this tree and their individual settings are leaves of these branches. It is also possible
to browse branches inside the tree as if the user were navigating in a file-system. This hierarchy
is used, no matter which interface you use when performing measurements.

An example demonstrating the hierarchy is the representation of the first demodulator on the
device, given by the node:

/devX/demods/0

which, as we've already noted, is very similar to a path on a computer's file-system. Note that,
the top level of the path is the device that you are connected to. The demodulators are then given
as a top-level node under your device-node and the node of the first demodulator is indexed by
0. This path represents a branch in the node hierarchy which, in this case, if we explore further,
has the following nodes:

/devX/demods/0/adcselect
/devX/demods/0/order
/devX/demods/0/timeconstant
/devX/demods/0/rate
/devX/demods/0/trigger
/devX/demods/0/oscselect
/devX/demods/0/harmonic
/devX/demods/0/phaseshift
/devX/demods/0/sinc
/devX/demods/0/sample

These nodes are leaves, the most bottom-level nodes which represent a setting of an instrument
or a field that can be read to retrieve measurement data. For example, /devX/demods/0/
adcselect is the leaf that controls the setting corresponding to the choice of signal input for
the first demodulator. To set the index of the signal input the user writes to this node. The leaf /
devX/demods/0/sample is the leaf where the demodulator's output (timestamp, demodulated
x-value, demodulated y-value) are written at the frequency specified by /devX/demods/0/rate.
In order to obtain the demodulator output you read the values from this node by polling this node.
Polling a node sends a request from the client to ziServer to obtain the data from the node at that
particular pointin time.

Note

The numbering onthe front panel of the UHFI, MFLI and HF2 Instruments and the block numbering
in the graphical user interfaces generally start with 1 (1-based indexing). Note, that when
accessing settings and data via a software interface, the numbering starting with 0 (0-based
indexing).

Note

Ausefulmethod tolearnaboutthe nodes ofyourinstrumentis tolook atthe output of the historyin
the bottom of the graphical userinterface. The status line always shows the last applied command
and you can view the entire history by clicking the 'Show Log' or 'Show History' button. You will
find paths like

LabOne Programming Manual Revision 31421 Zurich Instruments 12

http://www.zhinst.com

1.4. Finding settings: The Node Hierarchy

/devx/sigins/0/ac = 1

after you switched on the AC mode for signal input 1, or

/devx/demods/1/rate = 7200.000000

after changing the readout rate of demodulator 2 to 7.2kHz.

LabOne Programming Manual Revision 31421 Zurich Instruments

13

http://www.zhinst.com

1.5. Obtaining Data from the Instrument

1.5. Obtaining Data from the Instrument

The subscribe and poll commands

The easiest way to obtain data from an instrument is via the poll command, available in all
of the LabOne APl interfaces. The pol1 command is a function for synchronous data recording
from specified nodes of an instrument. Synchronous means that the interface is blocked during
execution of the command, see Section 2.1.4 for asynchronous alternatives. pol1 takes two
obligatory input arguments recording time and timeout.

The subscribe and unsubscribe commands are used to select the nodes from which data
should be recorded. After subscribing to the node, the Data Server's internal data buffer will
start filling with data from the subscribed nodes. The pol1l command will return the data that
was recorded for the specified recording time (obligatory input argument) and any data that was
already in the buffer since the last poll. To get rid of the data from earlier measurements it's
possible to clear the buffer before polling by using the £1ush command.

In order to avoid losing data (the Data Server has a finite amount of memory available for its data
buffers), long recording times (> 20s, depending on sampling rates and available memory) should
be avoided. However, since internal data buffering on the Data Server ensures that no data is lost
between poll commands, it's possible to record for longer periods of time by using the pol1l
command inside a loop. In order to check that no data has been lost during a poll, the demodulator
sample's time flags can be checked, see Section 1.5.1.

If no data was stored in the Data Server's data buffer after issuing a pol1, the command will wait
for the data until the timeout time. If the buffer is empty after timeout time passed, poll will
throw an error.

Note

If Matlab or Python are available, one of the LabOne ziCore Modules could be a more efficient
choice for data retrieval than the comparably low-level po11 command, see the Section ziCore
Modules in Partll.

1.5.1. Demodulator Sample Data Structure

An instrument's demodulator data is returned as a data structure (typically a struct) with the
following fields (regardless of which API Level is used):

sample.timestamp The instrument's timestamp of the measured demodulator
datauint64. Divide by the instrument's clockbase (/dev123/
clockbase) to obtain the time in seconds.

sample.x The demodulator x value in Volts [double].

sample.y The demodulator y value in Volts [double].

sample. frequency The current frequency used by the demodulator in Hertz
[double].

sample.phase The oscillator's phase in Radians (not the demodulator phase)
[double].

sample.auxin0 Auxiliary input channel 0 value in Volts [double].

sample.auxinl Auxiliary input channel 1 value in Volts [double].

sample.time.dataloss Indicator of sample loss (including block loss) [bool].

sample.time.blockloss Indication of data block loss over the socket connection. This

may be the result of a too long break between subsequent poll
commands [bool].

LabOne Programming Manual Revision 31421 Zurich Instruments 14

http://www.zhinst.com

1.5. Obtaining Data from the Instrument

sample.time.invalidtimestamgdication of invalid time stamp data as a result of a sampling
rate change during the measurement [bool].

Note

Chapter 6 contains some details of other data structures.

LabOne Programming Manual Revision 31421 Zurich Instruments 15

http://www.zhinst.com

1.6. Instrument-Specific Considerations

1.6. Instrument-Specific Considerations

1.6.1.

This section describes some instrument-specific considerations when programming with the
LabOne APIs.

UHF-Specific Considerations

UHF Lock-in Amplifiers perform an automatic calibration 10 minutes after power-up of the
Instrument. This internal calibration is necessary to achieve the specifications of the system.
However, if necessary, it can be ran manually by setting the device node /devN/system/calib/
calibrate to 1 and then disabled using the /devN/system/calib/auto node.

The calibration routine takes about 200 ms and during that time the transfer of measurement
datawill be stopped on the Data Server level. Ifa ziAPI (LabOne CAPI) or LabVIEW clientis polling
data during this time, the user will experience data loss; ziAPI has no functionality to deal with
such a streaming interrupt. Clients polling data from ziCore-based APIs (i.e. Matlab or Python
APIs) will be informed of dataloss, which allows the user to ignore this data.

Please see the UHF User Manual for more information about device calibration.

LabOne Programming Manual Revision 31421 Zurich Instruments 16

http://www.zhinst.com

Chapter 2. ziCore Programming Overview

The LabOne Matlab and Python APIs provide interfaces to configure, acquire data from, and
run integral functionality of your Zurich Instruments device in powerful high-level programming
environments. These high-level interfaces are, however, just thin application layers based on a
shared core API, ziCore. This chapter aims to describe the common functionality that's available
to any of the interfaces based on ziCore.

Refer to:

Section 2.1 for AnIntroduction to ziCore-based APIs .
Section 2.2 for the Sweeper Module .

Section 2.3 for the zoomFFT Module .

Section 2.4 for the Software Trigger (Recorder) Module .
Section 2.5 for the Device Settings Module .

Section 2.6 for the PLL Advisor Module .

Section 2.7 for some ziCore programming Tips and Tricks.

LabOne Programming Manual Revision 31421 Zurich Instruments 17

http://www.zhinst.com

2.1. An Introduction to ziCore-based APIs

2.1. An Introduction to ziCore-based APIs

All the ziCore-based APIls share a common structure which provides a uniform interface for
programming Zurich Instruments devices. The aim of this section is to familiarize the user with
the key ziCore programming concepts.

2.1.1. Software Architecture

Each of the ziCore-based APIs are designed to have a minimal code footprint: They are simply
small interface layers that use the functionality derived from ziCore, a central C++ API. The
derived APl interfaces, Matlab and Python, provide a familiar interface to the user and allow the
user to receive and manipulate data from their instrument using the API language's native data
types and formats. See Section 1.1 for an overview of the LabOne software architecture.

2.1.2. ziCore Modules

In addition to the usual APl commands available for instrument configuration and data retrieval,
e.g., setInt, poll), ziCore-based APIs also provide a number of so-called Modules: high-level
interfaces that perform common tasks such as sweeping data or performing FFT s.

The Module's functionality is implemented in ziCore and each derived high-level APl simply
provides an interface to that module from the API's native environment. This design ensures that
the user can expect the same behavior from each module irrespective of which APl is being used;
if the user is familiar with a module available in one high-level programming AP, it is quick and
easy to start using the module in a different API. In particular, the LabOne User Interface is also
based on ziCore and as such, the user can expect the same behavior using a ziCore-based API
that is experienced in the LabOne User Interface, see Figure 2.1 .

°
o
=

m
)
o
w

\
\

Demodulator 1 R

Amplitude (mV)

o
N}
N
o

Amdplltuge (mV)
g c
2

Frequency (Hz)
80

,_.
o
o
Phase (deg)

Demodulator 1 Phase

40 F

10° 10* 10° 10° 20" 207

1
Frequency (Hz)
Frequency (Hz)

Figure 2.1. The same results and behavior can be obtained from Modules in any ziCore-based
interface; Sweeper Module results from the LabOne Matlab API (left) and the LabOne User
Interface (right) using the same Sweeper and instrument settings.

The modules currently available in ziCore are:

= The Sweeper Module for obtaining data whilst performing a sweep of one of the instrument's
setting, e.g., measuring a frequency response.

= The zoomFFT Module for calculating the FFT of demodulator output.

LabOne Programming Manual Revision 31421 Zurich Instruments 18

http://www.zhinst.com

2.1. An Introduction to ziCore-based APIs

= The Software Trigger (Recorder) Module for recording instrument data asynchronously
based upon user-defined triggers.

= The Device Settings Module for saving and loading instrument settings to and from (XML)
files.

= The PLL Advisor Module for modelling/simulating the PLL (phase-locked loop) incorporated
in the instrument (available for UHF Lock-in Amplifiers only).

In addition to providing a unified-interface between APls, modules also provide a uniform work-
flow regardless of the functionality the module performs (e.g., sweeping, recording data), see
Section 2.1.3.

An important difference to low-level ziCore APl commands is that Modules execute their
commands asynchronously, see Section 2.1.4.

Note

The LabOne User Interface Command Log can be setto store commands in either Matlab or Python
formats which can then be used to start writing custom programs, see Section 2.7 .

Note

Much of the same functionality is provided in ziControl, but ziControl Ul is not based on ziCore.

2.1.3. ziCore Module Work-Flow

Regardless of the Module's function, all ziCore Modules follow same work flow in all of the
derived interfaces:

= create (instantiate) an instance of the module,

= setthe module's parameters using path, value pairs,

= subscribe to instrument nodes from which to obtain data,

= execute the module,

= wait until the module has finished executing; intermediate reading of data is possible,

= read the module's data,

= clear the module to remove it from memory.

The highlighted words above are commands for all the Modules. For interface-specific concepts
when using Modules see the following Sections:

= Using ziCore Modules in the LabOne Matlab API .

= Using ziCore Modules in the LabOne Python API .

LabOne Programming Manual Revision 31421 Zurich Instruments 19

http://www.zhinst.com

2.1. An Introduction to ziCore-based APIs

2.1.4. Synchronous versus Asynchronous Commands

The low-level APl commands such as setInt and poll are synchronous commands, that is the
interface will be blocked until that command has finished executing; the user can not run any
commands in the meantime. Another feature of ziCore's Modules is that each instantiation of a
Module creates a new Thread and, as such, the commands executed by a Module are performed
asynchronously. Asynchronous means that the task is performed in the background and the
interface's process is available to perform other tasks in the meantime, i.e., Module commands
are non-blocking for the user.

LabOne Programming Manual Revision 31421 Zurich Instruments 20

http://www.zhinst.com

2.2. Sweeper Module

2.2. Sweeper Module

2.2.1.

The Sweeper Module allows the user to perform sweeps as in the Sweeper Tab of the LabOne User
Interface. In general, the Sweeper can be used to obtain data when measuring a DUT 's response
tovarying (or sweeping) one instrument setting while other instrument settings are kept constant.

Configuring the Sweeper

In the following we briefly describe how to configure the Sweeper Module. See Table 2.1 for a full
list of the Sweeper's input parameters and Table 2.2 for a description of the Sweeper's outputs.

Specifying the Instrument Setting to Sweep

The Sweeper's sweep/gridnode parameter, the so-called sweep parameter, specifies the
instrument's setting to be swept, specified as a path to an instrument's node . This is typically
an oscillator frequency in a Frequency Response Analyzer , e.g., /dev123/oscs/0/freq, but
a wide range of instrument settings can be chosen, such as a signal output amplitude or a PID
controller's setpoint.

Specifying the Range of Values for the Sweep Parameter

The Sweeper will change the sweep parameter's value sweep/samplecount times within the
range of values specified by sweep/start and sweep/stop. The sweep/xmapping parameter
specifies whether the spacing between two sequential values in the range is linear (=0) or
logarithmic (=1).

Controlling the Scan mode: The Selection of Range Values

The sweep/scan parameter defines the order that the values in the specified range are written
to the sweep parameter. In sequential scan mode (=0), the sweep parameter's values change
incrementally from smaller to larger values, see Figure 2.3.

In binary scan mode (=1) the first sweep parameter's value is taken as the value in the middle
of the range, then the range is split into two halves and the next two values for the sweeper
parameter are the values in the middle of those halves. This process continues until all the values
in the range were assigned to the sweeper parameter, see Figure 2.5 . Binary scan mode ensures
that the sweep parameter usesvalues fromthe entire range near the beginning of ameasurement,
which allows the user to get feedback quickly about the measurement's entire range. Since the
Sweeper Module is an asynchronous interface, it's possible to continuously read and plot data
whilst the sweep measurement is ongoing and update points in a graph dynamically.

In bidirectional scan mode (=2) the sweeper parameter's values are first set from smaller to larger
values as in sequential mode, but are then set in reverse order from larger to smaller values, see
Figure 2.4 . This allows for effects in the sweep parameter to be observed that depend on the order
of changes in the sweep parameter's values.

LabOne Programming Manual Revision 31421 Zurich Instruments 21

http://www.zhinst.com

2.2. Sweeper Module

Controlling how the Sweeper sets the Demodulator's Time Constant

The sweep/bandwidthcontrol parameter specifies which demodulator filter bandwidth
(equivalently time constant) the Sweeper should set for the current measurement point. The
user can either specify the bandwidth manually (=0), in which case the value of the current
demodulator filter's bandwidth is simply used for all measurement points; specify a fixed
bandwidth (=1), specified by sweep/bandwidth, for all measurement points; or specify that
the Sweeper sets the demodulator's bandwidth automatically (=2). Note, to use either Fixed or
Manual mode, sweep/bandwidth must be set to a value > 0 (even though in manual mode it is
ignored).

Specifying the Sweeper's Settling Time

For each change in the sweep parameter that takes effect on the instrument the Sweeper waits
before recording measurement data in order to allow the measurement to settle. This behavior is
configured with the parameters in the sweep/settling/ branch.

The sweep/settling/tc parameter defines the minimum number of time constants (of the
demodulator filter) that will Sweeper module wait after setting the sweep/gridnode value
before recording measurement data. This corresponds to the settling time required by the lock-
in amplifier to measure the response in the system. The sweep/settling/time parameter
specifies the minimum number of seconds to wait before taking the measurement data, which
corresponds to the settling time required by the user's experimental setup before measuring the
response in the system. The actual time that the Sweeper waits before recording data is defined
in Equation 2.1.

t,=max(sweep_settling tc x tc, sweep_settling time)

Equation 2.1. The settling time ¢, used by the Sweeper for each measurement point; the amount
of time between setting the sweep parameter and recording measurement data is determined
by the parameters sweep/settling/tc and sweep/settling/time.

Note, the Sweeper may change the value of the demodulator filter's bandwidth (equivalently time
constant), depending on the value of sweep/bandwidthcontrol and this will effect the settling
time as specified by sweep/settling/tc, see above, Controlling how the Sweeper sets the
Demodulator's Time Constant. For a frequency sweep, the sweep/settling/tc parameter will
tend to influence the settling time at lower frequencies, whereas sweep/averaging/sample
will influence the settling time at higher frequencies.

The recommended value for the sweep/settling/tc settingis 15. For noise measurements a
higher value should be used, e.g, 50.

Specifying which Data to Measure

Which measurement data is actually returned by the Sweeper's read command is configured by
subscribing to node paths using the Sweeper Module's subscribe command.

LabOne Programming Manual Revision 31421 Zurich Instruments 22

http://www.zhinst.com

2.2. Sweeper Module

Specifying how the Measurement Data is Averaged

One Sweeper measurement point is obtained by averaging recorded data which is configured via
the parameters in the sweep/averaging/ branch.

The sweep/averaging/tc parameter specifies the minimum time window in factors of
demodulator filter time constants during which samples will be recorded in order to average for
onereturned sweeper measurement point. The sweep/averaging/sample parameter specifies
the minimum number of data samples that should be recorded and used for the average. The
Sweeper takes both these settings into account for the measurement point's average according
to Equation 2.2.

N =max(sweep_averaging tc x tc x sampling rate, sweep averaging sample)

Equation 2.2. The number of samples N used to average one sweeper measurement point is
determined by the parameters sweep/averaging/tc and sweep/averaging/sample.

Note, the value of the demodulator filter's time constant may be controlled by the Sweeper
depending on the value of sweep/bandwidthcontrol and sweep/bandwidth, see above,
Controlling how the Sweeper sets the Demodulator's Time Constant . For a frequency sweep, the
sweep/averaging/tcparameterwilltendtoinfluence the numberof samplesrecorded atlower
frequencies, whereas sweep/averaging/sample will influence averaging behavior at higher
frequencies.

An Explanation of Settling and Averaging Times in a Frequency Sweep

Figure 2.2 shows which demodulator samples are used in order to calculate an averaged
measurement point in a frequency sweep. This explanation of the Sweeper's parameters is
specific to the following commonly-used Sweeper settings:

= sweep/gridnode is settoan oscillator frequency, e.g., /dev123/oscs/0/freq.

= sweep/bandwidthcontrol issetto 2, corresponding to automatic bandwidth control, i.e.,
the Sweeper will set the demodulator's filter bandwidth settings optimally for each frequency
used.

= sweep/scan is set to 0, corresponding to sequential scan mode for the range of frequency
values swept, i.e, the frequency is increasing for each measurement point made.

Each one of the three red segments in the demodulator data correspond to the data used to
calculate one single Sweeper measurement point. The light blue bars correspond to the time the
sweeper should wait as specified by the sweep/settling/tc parameter and the purple bars
correspond to the time specified by the sweep/settling/time parameter. The sweeper will
wait for the maximum of these two times according to Equation 2.1 . When measuring at lower
frequencies the Sweeper sets a smaller demodulator filter bandwidth (due to automatic sweep/
bandwidthcontrol) corresponding to a larger demodulator filter time constant. Therefore,
the sweep/settling/tc parameter dominates the settling time used by the Sweeper at low
frequencies and at high frequencies the sweep/settling/time parameter takes effect. Note,
that the light blue bars corresponding to the sweep/settling/tc parameter get shorter for
each measurement point (larger frequency used — shorter time constant required), whereas
the purple bars corresponding to sweep/settling/time stay a constant length for each
measurement point. Similarly, the sweep/averaging/tc parameter (yellow bars) dominates
the Sweeper's averaging behavior at low frequencies, whereas sweep/averaging/samples
(green bars) specifies the behavior at higher frequencies, see also Equation 2.2 .

LabOne Programming Manual Revision 31421 Zurich Instruments 23

http://www.zhinst.com

2.2. Sweeper Module

Sweeper Parameters

Demodulator data

Averaged data

Sweep/averaging/tc :
(R I sweep/averaging/samplel =

Sweep/settling/tc

[Sweep/settling/time

0 2

4

6

8 10 12 14 16

Time [s]

Figure 2.2. Plot demonstrating how the Sweeper records three measurement points from
demodulator data when using automatic bandwidth control in a frequency sweep. Please see
An Explanation of Settling and Averaging Times in a Frequency Sweep, above , for a detailed

explanation.

Table 2.1. Sweeper Input Parameters

Setting/Path Type Unit Description

sweep/device byte array - The device ID to perform the sweep on, e.g.,
dev123 (compulsory parameter).

sweep/gridnode byte array| Node |The device parameter (specified by node) to
be swept, e.g., 'oscs/0/freq".

sweep/start double Many |The start value of the sweep parameter.

sweep/stop double Many |The stop value of the sweep parameter.

sweep/samplecount uint64 Many | The number of measurement points to set
the sweep on.

sweep/endless bool - Enable Endless mode; run the sweeper
continuously.

sweep/averaging/ uint64 | Samples |Sets the number of data samples per

sample sweeper parameter point that is considered
in the measurement. The maximum of this
value and sweep/averaging/tcis taken as
the effective calculation time. See Figure 2.2

sweep/averaging/tc double | Seconds |Sets the effective measurement time per
sweeper parameter point that is considered
in the measurement. The maximum between
of this value and sweep/averaging/
sample is taken as the effective calculation
time. See Figure 2.2,

sweep/ uint64 - Specify how the sweeper should specify

bandwidthcontrol the bandwidth of each measurement point,
Automatic is recommended, in particular for

LabOne Programming Manual Revision 31421 Zurich Instruments 24

http://www.zhinst.com

2.2. Sweeper Module

Setting/Path

Type

Unit

Description

logarithmic sweeps and assures the whole
spectrum is covered. 0=Manual (the sweeper
module leaves the demodulator bandwidth
settings entirely untouched); 1=Fixed

(use the value from sweep/bandwidth);
2=Automatic. Note, to use either Fixed or
Manual mode, sweep/bandwidth must

be setto avalue > 0 (even though in manual
mode it is ignored).

sweep/bandwidth

double

Hz

Defines the measurement bandwidth for
Fixed bandwidth selection, and corresponds
to the noise equivalent power bandwidth
(NEP).

sweep/order

uint64

Defines the filter roll off to use in Fixed
bandwidth selection. Valid values are
between 1 (6 dB/octave) and 8 (48 dB/
octave).

sweep/maxbandwidth double

Hz

Specifies the maximum bandwidth used
when in auto bandwidth mode (sweep/

bandwidthcontrol=2). The defaultis

1.25MHz.

sweep/
omegasuppression

double

daB

Damping of omega and 2omega components
when in auto bandwidth mode (sweep/
bandwidthcontrol=2). Defaultis 40dBin
favor of sweep speed. Use a higher value for
strong offset values or 3omega measurement
methods.

sweep/loopcount

uintb4

The number of sweeps to perform.

sweep/phaseunwrap

bool

Enable unwrapping of slowly changing
phase evolutions around the +/-180 degree
boundary.

sweep/sincfilter

bool

Enables the sinc filter if the sweep frequency
is below 50 Hz. This will improve the

sweep speed at low frequencies as omega
components do not need to be suppressed by
the normal low pass filter.

sweep/scan

uint64

Selects the scanning type: 0=Sequential
(incremental scanning from start to stop
value, see Figure 2.3); 1=Binary (Non-
sequential sweep continues increase of
resolution over entire range, see Figure 2.5
), 2=Bidirectional (Sequential sweep from
Start to Stop value and back to Start again,
Figure 2.4).

sweep/settling/tc

double

TC

Minimum wait time in factors of the time
constant (TC) between setting the new
sweep parameter value and the start of the
measurement. The maximum between this
value and sweep/settling/time istaken
as effective settling time. See Figure 2.2.

LabOne Programming Manual

Revision 31421

Zurich Instruments

25

http://www.zhinst.com

2.2. Sweeper Module

Setting/Path Type Unit Description

sweep/settling/time | double | Seconds |[Minimum waittime in seconds between
setting the new sweep parameter value and
the start of the measurement. The maximum
between this value and sweep/settling/
tcis taken as effective settling time. See

Figure 2.2.
sweep/settling/ double - Demodulator filter settling inaccuracy
inaccuracy defining the wait time between a sweep

parameter change and recording of the
next sweep point. Typical inaccuracy
values: 10m for highest sweep speed for
large signals, 100u for precise amplitude
measurements, 100n for precise noise
measurements. Depending on the order the
settling accuracy will define the number of
filter time constants the sweeper has to wait.
The maximum between this value and the
settling time is taken as wait time until the
next sweep point is recorded.

sweep/xmapping uint64 - Selects the spacing of the grid used by
sweep/gridnode (the sweep parameter):
O=linear and 1=logarithmic distribution of
sweep parameter values.

sweep/historylength| uint64 Maximum number of entries stored in the
measurement history.

sweep/clearhistory bool - Remove all records from the history list.

sweep/filename byte array - This parameter is deprecated. If specified,

i.e. not empty, it enables automatic saving of
data in single sweep mode (sweep/endless
= 0).

sweep/savepath byte array - The directory where files are located when
saving sweeper measurements.

sweep/fileformat byte array - The format of the file for saving sweeper
measurements. 0=Matlab, 1=CSV.

Measured value

fy fy f, fy f f f f f f f
Frequency

Figure 2.3. Sweeper scanning modes: Sequential (sweep/scan = 0).

LabOne Programming Manual Revision 31421 Zurich Instruments 26

http://www.zhinst.com

2.2. Sweeper Module

Measured value

[0} ‘\ | i | : i

3 | | | : ‘

g 1 1 1 3 :

<1 [N S R S

(0] ! ! 3 : !

o ! ! +

5 ‘ !

? : /2,/ :

S| |

I ;
M M M N i H i
f, f, f, f, f, fy fy f, f, fy f, f, f, f,
| Frequency increases | | Frequency decreases

Figure 2.4. Sweeper scanning modes: Bidirectional (sweep/scan = 2).

LabOne Programming Manual Revision 31421 Zurich Instruments

27

http://www.zhinst.com

2.2. Sweeper Module

A
()
=
©
>
e}
[
—
>
2]
A R SN O N
(]
= |
fo f f f f f
A
=
{4 J [T S S R S S,
>
o
[}
—
S
2]
©
[}
=
A
[}
=]
©
>
©
]
—
>
(2]
4]
]
= |
fO f1 f2 fS f4 f5
A
o
=]
©
>
o
o
—
>
2}
©
]
=

fe f, fg f
Frequency

Figure 2.5. Sweeper scanning modes: Binary (sweep/scan = 1).

Table 2.2. Sweeper Output Values

Name

Type

Unit Description

timestamp

uint64

Ticks Atimestamp that gets updated each time a
new measurement point has been recorded
by the sweeper (divide by the device's
clockbase to obtain seconds). It is not part of
the sweeper's measurement data and only
relevant for intermediate reads of sweeper

data (before the current sweep has finished).

frequency

double

Hz The oscillator frequency for each
measurement point (for a frequency sweep

this is the same as grid).

double

Volts Demodulator x value.

double

Volts Demodulatory value.

double

VoltsRMS

Demodulator R value.

LabOne Programming Manual

Revision 31421

Zurich Instruments 28

http://www.zhinst.com

2.2. Sweeper Module

Name Type Unit Description

phase double Radians |Demodulator phase value.

auxin0 double Volts Auxiliary Input 1 value.

auxinl double Volts Auxiliary Input 2 value.

frequencystddev double Hz Standard deviation of the oscillator
frequency.

xstddev double Volts Standard deviation of demodulator x value.

ystddev double Volts Standard deviation of demodulator y value.

rstddev double VoltsRMS |Standard deviation of demodulator R value.

phasestddev double Radians |Standard deviation of demodulator phase
value (phase noise).

auxinOstddev double Volts Standard deviation of Auxiliary Input 1 value.

auxinlstddev double Volts Standard deviation of Auxiliary Input 2 value.

XpWTr double Volts? Average power of demodulator x value.

ypwr double Volts® Average power of demodulatory value.

rpwr double Volts? Average power of demodulator R value.

rpwWr double Volts? Average power of demodulator x value.

auxinOpwr double Volts? Average power of Auxiliary Input 1 value.

auxinlpwr double Volts® Average power of Auxiliary Input 2 value.

grid double Many Values of sweeping setting (frequency
values at which demodulator samples where
recorded).

bandwidth double Hz Demodulator filter's bandwidth set for
each measurement point (assuming we're
performing a frequency sweep).

tc double Seconds |Demodulator's filter time constant for each
measurement point.

settling double Seconds |The waiting time for each measurement
point.

settimestamp uint64 Ticks The timestamp at which we verify that the
frequency for the current measurement
point was set on the device (by reading back
demodulator data).

nexttimestamp uint64 Ticks The timestamp at which we can obtain

the data for that measurement point,
i.e.,nexttimestamp - settimestamp
corresponds roughly to the demodulator
filter settling time.

LabOne Programming Manual

Revision 31421

Zurich Instruments

29

http://www.zhinst.com

2.3.zoomFFT Module

2.3. zoomFFT Module

The zoomFFT Module corresponds to the Spectrum Tab of the LabOne User Interface. It allows the
user to perform Fast Fourier Transforms (FFT) on a specified demodulator's output.

See Table 2.3 for the input parameters to configure the ZoomFFT Module and Table 2.4 for a
description of the ZoomFFT's outputs.

Amplitude [@BV]

200
2.9 28934 208935 2,993 3 3.002 3004 3006 3008
Freguency [HZ] w 10"

200 1 1 i I 1] 1
2. 097 2,904 2005 2,943 a 3.002 3.004 3006 3.008
Frequency [HZ] 10"

Amplitude [dBY] scaled with Filter

Figure 2.6. A plot of an FFT created by one of the LabOne Matlab APl examples.

Table 2.3. ZoomFFT Input Parameters

Setting/Path Type Unit Description

zoomFFT/device byte array - The device ID to perform the FFT on, e.g.,
dev123 (compulsory parameter).

zoomFFT/absolute bool - Shifts the frequencies so that the center
frequency becomes the demodulation
frequency rather than 0 Hz.

zoOmFFT/bit uint64 - Number of lines of the FFT spectrum (powers
of 2). Increasing the bits increases the
frequency resolution of the spectrum.

zoomFFT/endless bool - Enable Endless mode; run the zoomFFT
continuously.

zoomFFT/loopcount uint64 - The number of zoomFFTs to perform.

zoomFFT/mode uint64 - Select the source signal for the FFT. 0=FFT(x
+iy), 1=FFT(R), 2=FFT(phase), 3=FFT(Freq)

zoomFFT/overlap double - Overlap of the demodulator data used for

the FFT. Use O for no overlap and 0.99 for
maximal overlap.

LabOne Programming Manual Revision 31421 Zurich Instruments 30

http://www.zhinst.com

2.3.zoomFFT Module

Setting/Path Type Unit Description

zoomFFT/settling/tc| double TC Minimum wait time in factors of the

time constant (TC) before starting the
measurement. The maximum between this
value and zoomFFT/settling/time is
taken as effective settling time.

zoomFFT/settling/ double | Seconds |Minimum wait time in seconds before
time starting the measurement. The maximum
between this value and zoomFFT/
settling/tcistaken as effective settling
time.

zOOmMFFT/window uint64 - The type of FFT window to use.
O=Rectangular, 1T=Hann, 2=Hamming,
3=Blackman Harris.

Table 2.4. ZoomFFT Output Values

Name Type Unit Description

X double Volts The real part, x, of the complex FFT result.

y double Volts The imaginary part, y, of the complex FFT
result.

r double VoltsRMS | The absolute value, R, of the complex FFT
result.

timestamp uint64 Ticks Demodulator timestamp of the measurement
(divide by the device's clockbase to obtain
seconds)

center double Hz The center frequency (corresponds to the
demodulation frequency).

rate double - Sampling rate of the demodulator.

filter double - The filter envelope; the filter compensation
value for each gridnode.

bandwidth double Hz The bandwidth of the demodulator

grid double Hz The frequency grid.

nenbw double - The normalized equivalent noise bandwidth.

resolution double Hz FFT resolution: Spectral resolution defined

by the reciprocal acquisition time (sample
rate, number of samples recorded).

aliasingreject double dB How much damping is present at the border
of your spectrum.

LabOne Programming Manual Revision 31421 Zurich Instruments 31

http://www.zhinst.com

2.4. Software Trigger (Recorder) Module

2.4. Software Trigger (Recorder) Module

The Recorder Module corresponds to the Software Trigger Tab of the LabOne User Interface. It
allows the usertorecord bursts of instrument data based upon pre-defined trigger criteria similar
to that of a laboratory oscilloscope, see Figure 2.7 for an example. The types of trigger available
are listed in Table 2.5.

Table 2.5. Overview of the trigger types available in the Software Trigger Module.

Trigger Type |Description trigger/N/type

Manual For simple recording. 0

Edge Edge trigger with level hysteresis and noise rejection, 1
see Figure 2.8.

Digital Digital trigger with bit masking.

Pulse Pulse width trigger with level hysteresis and noise 3
reduction, see Figure 2.9 and Figure 2.10 .

Tracking Level tracking trigger to compensate signal drift, see 4

(edge or Figure 2.11 .

pulse)

Hardware UHFLI and MFLI only. Trigger on one of the instrument's 6

Trigger hardware trigger channels.

Recorded 10 data segments of duration 0.180 seconds
] ! ! j

-- trigger_delay
-+- trigger_level ||

o3| 1 T o

0.30 SR T B

0.25 N/ P INAY RN SRR

Amplitude (Vi)

o20f ot S— BN\ N er——

-0.05 0.20

Figure 2.7. The plot produced by example record edge trigger.py, an example
distributed with the LabOne Python API. The plot shows 10 bursts of data from a single
demodulator; each burst was recorded when the demodulator's R value exceeded a specified
threshold using a positive edge trigger. See Section 4.2.3 for help getting started with the
Python examples.

LabOne Programming Manual Revision 31421 Zurich Instruments 32

http://www.zhinst.com

2.4. Software Trigger (Recorder) Module

See Table 2.6 for the input parameters to configure the Software Trigger's Module. Note that
some parameters effect all triggers, e.g., trigger/endless, whereas some are configured on
a per-trigger basis, e.g., trigger/N/duration, where N is the index of the trigger, starting at
zero. The data output when using the Software Trigger's read command has the same format as
returned by ziCore's poll command.

trigger/0/duration = 0.018) , - atign trigger/0/holdoff/count = 0 Duration _
] Hold-off Count =
Hold-off Time
12 I I I ; I
trigger/0/holdoff/time = 0.035
10 Delay jil - |+ Delay - |+
tfigger/o/dlay = -0.01 ‘ il Signal
s L ’ Filtered cut-off 500Hz I _
‘\ trigger/O/path = /dev42/demods/O/sample [’
6 trigger/0/source = 2 | r |
= / trigger/0/hysteresis = 2 Path & Source / |
_ J Hysteresis |
g4 r--F -~~~ "~"===="f-"="=-=-=-=-=-=-== T KT T T T T T T
=l ' Edge trigger/0/level = 2 I \
n) f f[,909°r'0/ed9p = 2Trigger Level] | f i\
f— - |- ——) = = - i - = - - - - | = - - |-
! | i |
b Wl e RGBT i
I (il | ! | Y]l | | \ IT[1)1 | |
0 i (RTINS ‘ ANV O, A7 A Pl AR\t it
‘) ‘ M\ AL ‘ Ay TN l‘w AT |
I i\“‘ | J | \ k |
2 | \
Bandwidth
) | | | mggerlolban‘dwmth = 500 | | | | |
0 10 20 30 40 50 60 70 80 90 10¢
Time [ms]
Figure 2.8. Explanation of the Software Trigger Module's parameters for an Edge Trigger.
Iri‘gger/O/durauon = 0.018 Duration
-
\ . Delay - |+
10 “‘ I Signal ‘trigger/o/delay = -0.011
Filtered cut-off 500HZ trigger/0/pulse/max = 0.010
8 r /) fif . |
[trigger/O/path = /dev42/demods/O/sample PulseWidth "‘Wll
6 ‘ trigger/0/source = 2 trjgger/0/pulse/min = 0.0(il f |
= / Path & Source I | | Edge
Z / trigger/O/edge = 1
2| | |]
c
= ‘ trigger/O/level = I \
n | Trigger Level |
0 sl 'm"'.‘: —- - ‘\Il) “ i\ i AR A “ _ ‘}A. L, MR ’ | LA ’\ ’lu "‘ _——) ‘“\ | \’H u‘l
I I I m i W | | Ty ik 1 (TR TV { bl
B = T N T R i
\i \i \ | |
-2 = tfigger/0/hysteresis = 1‘ i
Bandwidth »
4 | | | lr\gger/O/ban‘dwmm = 500 | | | | |
0 10 20 30 40 50 60 70 80 90 10¢
Time [ms]

Figure 2.9. Explanation of the Software Trigger Module's parameters for a positive Pulse Trigger.

LabOne Programming Manual

Revision 31421

Zurich Instruments

33

http://www.zhinst.com

2.4. Software Trigger (Recorder) Module

trigger/0/duration = 0.018 Duration

<
-
10 L | < Delay - |+ |
‘ ‘ Signal trigger/0/delay = -0.011
|
g) Filtered cut-off 500Hz trigger/0/pulse/max = 0.010 . |
‘\ trigger/0/path = /dev42/demods/0/sample PulseWidth -‘lm
6) trigger/O/spurce = 2 tligger/0/pulse/min = 0.00 r K| [|
S / trigger/0/highlevel = 2 Path & Source f \ “E(;gr?o/edge -3
_ J Hysteresis ‘
€4 == === r-F--"—-"="-"-"="-"="="="="="f="~"="="="="="="|=-"="="=-"=--= P -q---=--- =
k=] ‘ trigger/0/level = Jl \
2 TriggerLevel
{)
ik & } | ‘ | | } ' y | 1 |
0 IR, L R - ‘\Il ‘ f “ - ‘}A. AL M ’ gThil \ ’h\ | ‘}1“‘\ o
\ ; '5"\'\' i APTIIEY (G DTGt VAU o i i 1 il
i Hysteresig ! " ! MY iy It
iy \
2t \ i i
Bandwidth
) | | | mggerlO/ban‘dWMIh = 500 | | | | |
0 10 20 30 40 50 60 70 80 90 100
Time [ms]

Figure 2.10. Explanatio
Trigger.

rigger/O/duration = 0.018Duration

n of the Software Trigger parameters for a positive or negative Pulse

trigger/0/holdoff/count = 0 Duration
Hold-off Count

18 T T

16 ‘Delax - |+

trigger/Qfdelay = -0.011

1 Filtered cut-off 10Hz
12 + R
trigger/0/pysteresis = 2.5 - -
S0 r || ~ o _Hysteresis _ —arigmedMipath = /dev42/demuds/0/sample
= l - trigger/0/source = 2
T8 L / Path&Sourge_ -
5 |-=|-=-7 @& Edge -
Pe / rlggerll)/ed Pt TrlggerLeve
V| trigger/0/level|= 4 MW % mlm I
4 === il e
|‘ I l,\md‘hlh‘m“hul
L T B R |
2 MY
o LA |
Bandwidth

-2 | [

Hold-off Time .
T gl

trigger/0/holdoff/time = 0.035

Signal

| mgger/O/bapdwmth =10

0 10 20

30 40 50 60 7 80 0 10¢C

Time [ms]

Figure 2.11. Explanation of the Software Trigger Module's parameters for a Tracking Trigger.

Table 2.6. Software Trigger Input Parameters.

Setting/Path

Type Unit Description

trigger/device

byte array - The device ID to execute the software trigger,
e.g.,dev123 (compulsory parameter).

trigger/buffersize

double | Seconds |Overwrite the buffersize of the trigger
object (set when it was instantiated).
Recommended buffer size is 2*trigger/N/

duration.

trigger/endless uint64 - Enable endless triggering 1=enable;
O=disable.

trigger/ uint64 - Force a trigger.

forcetrigger

LabOne Programming Manual Revision 31421 Zurich Instruments 34

http://www.zhinst.com

2.4. Software Trigger (Recorder) Module

Setting/Path

Type

Unit

Description

trigger/filename

byte array

This parameter is deprecated. If specified,
i.e.not empty, it enables automatic saving
of data in single triggering mode (trigger/
endless = 0).

trigger/savepath

byte array

The directory where files are saved when
saving data.

trigger/fileformat

byte array

The format of the file for saving data.
0=Matlab, 1=CSV.

trigger/
historylength

uint64

Maximum number of entries stored in the
measurement history.

trigger/
clearhistory

uint64

Clear the measurement history

trigger/triggered

uint64

Has the software trigger triggered? 1=Yes,
0=No (read only).

trigger/N/bandwidth

double

Hz

Only for Tracking Triggers. The bandwidth
used in the calculation of the exponential
running average of the source signal.

trigger/N/bitmask

uint64

Only for Digital triggers. Specify the bitmask
used with trigger/N/bits. The trigger
value is bits AND bit mask (bitwise).

trigger/N/bits

uint64

Only for Digital triggers. Specify the bits used
for the Digital trigger value. The trigger value
is bits AND bit mask (bitwise)

trigger/N/count

uint64

The number of triggers to save.

trigger/N/delay

uintb4

Seconds

The amount of time to record data before the
trigger was activated, Delay: Time delay of
trigger frame position (left side) relative to
the trigger edge. For delays smaller than O,
trigger edge inside trigger frame (pre trigger).
For delays greater than O, trigger edge before
trigger frame (post trigger), see Figure 2.8.

trigger/N/duration

double

Seconds

The length of time to record data for, see
Figure 2.8.

trigger/N/edge

uint64

Define on which signal edge to trigger.
Triggers when the trigger input signal crosses
the trigger level from either low to high
(edge=1), high to low (edge=2) or both
(edge=3). Used for Trigger Type edge, pulse,
tracking edge and tracking pulse. In the case
of pulse trigger, the value specifies a positive
(edge=1) or negative (edge=2) pulse relative
to the trigger level (edge=3 specifies either
positive or negative).

trigger/N/findlevel

uint64

Automatically find the value of trigger/N/
level based on the current signal value.

trigger/N/level

uintb4

Many

Specify the main trigger level value.

trigger/N/holdoff/
count

uint64

The holdoff count, the number of skipped
triggers until the next trigger is recorded
again.

LabOne Programming Manual

Revision 31421

Zurich Instruments

35

http://www.zhinst.com

2.4. Software Trigger (Recorder) Module

Setting/Path Type Unit Description

trigger/N/holdoff/ double | Seconds |The holdoff time, the amount of time until the

time next trigger is recorded again.

trigger/N/ uint64 - UHFLI and MFLI only, For HW Triggers only.

hwtrigsource Specify which of the four hardware trigger
channels to trigger on.

trigger/N/ double Many |Specify the hysteresis value (the trigger is re-

hysteresis armed after the signal exceeds trigger/
N/level and then falls below trigger/N/
hysteresis, if using positive edge).

trigger/N/path uint64 - The path to the demod sample to trigger on,
e.g.,demods/3/sample, see also trigger/
N/source

trigger/N/pulse/max | double - Only for Pulse triggers: The maximum pulse
width to trigger on. See Figure 2.9.

trigger/N/pulse/min| double - Only for Pulse triggers: The minimum pulse
width to trigger on. See Figure 2.9.

trigger/N/retrigger | uint64 - 1=enable, O=disable. Enable to allow
retriggering within one trigger duration.
If enabled continue recording data in one
segment if another trigger comes within the
previous trigger's duration. If disabled the
triggers will be recorded as separate events.

trigger/N/source uint64 - The value of trigger/N/path touse
(0=X,1=Y, 2=R, 3=angle, 4=freq, 5=phase,
B=auxin0, 7=auxin1).

trigger/N/type uintb4 - The trigger type, see Table 2.5

Note

For the pulse trigger type, there is a subtle difference between the way the trigger level and
the hysteresis are used for positive/negative pulse triggering (trigger/N/edge= 1 or 2) and both
(trigger/N/edge= 3). The difference can be seen in Figure 2.9 and Figure 2.10.

LabOne Programming Manual

Revision 31421

Zurich Instruments 36

http://www.zhinst.com

2.5. Device Settings Module

2.5. Device Settings Module

The Device Settings Module provides functionality for saving and loading device settings to and
from file. The file is saved in XML format.

In general, users are recommended to use the utility functions provided by the APIs instead
of using the Device Settings module directly. The Matlab API provides ziSaveSettings ()
and ziLoadSettings () and the Python APl provides zhinst.utils.save settings () and
zhinst.utils.load settings.Theseareconvenientwrappers tothe Device Settings module
for loading settings asynchronously, i.e., these functions block until loading or saving has
completed, the desired behavior in most cases. Advanced users can use the Device Settings
module directly if they need to implement loading or saving a synchronously (non-blocking).

See Table 2.7 for the input parameters to configure the Device Settings Module.

Table 2.7. Device Settings Input Parameters

Setting/Path Type Description

devicesettings/device byte array |The device ID to save the settings for, e.g.,
dev123 (compulsory parameter).

devicesettings/command byte array |The command to issue: 'load' (load settings
from file); 'save' (read device settings and
save to file) or 'read' (just read the device
settings) (compulsory parameter).

devicesettings/filename byte array |The name of the file to load or save to.
devicesettings/path byte array |The path containing the file to load from or
save to.

Table 2.8. Device Settings Parameters for use only by the LabOne Web Server.

Setting/Path Type Description
devicesettings/throwonerror uint64 | Throw an exception is there was error
executing the command.
devicesettings/errortext byte array |The error text used in error messages.
devicesettings/finished uint64 | The status of the command (read-only).

LabOne Programming Manual Revision 31421 Zurich Instruments 37

http://www.zhinst.com

2.6. PLL Advisor Module

2.6. PLL Advisor Module

The PLL Advisor Module corresponds to the PLL Advisor section of the LabOne User Interface
PLL tab. The PLL Advisor is a mathematical model of the PLL incorporated in the instrument and
provides a convenient way to tune parameters to obtain an optimal feedback loop performance
for the desired application.

Note

Note the PLL Advisor Module is only available for UHF Lock-in Amplifiers.

Table 2.9. PLL Advisor Parameters.

Setting/Path Type Unit |Description

pllAdvisor/bode struct - Output parameter. Contains the resulting
bode plot of the PLL simulation.

pllAdvisor/ uintb4 - Issues a command for the PLL Advisor to

calculate calculate values. Set the value to 1 to start
the calculation.

pllAdvisor/center double Hz Center frequency of the PLL oscillator. The
PLL frequency shift is relative to this center
frequency.

pllAdvisor/d double | Hz/degs |The PID differential gain.

pllAdvisor/demodbw double Hz The demodulator bandwidth to use for the
PLL loop filter.

pllAdvisor/i double | Hz/deg/s |The PID integral gain

pllAdvisor/mode uint64 - Sets the PLL operating mode. Currently only
open-loop mode is supported.

pllAdvisor/order uint64 - Demodulator filter order to use for the PLL
loop filter.

pllAdvisor/p double Hz/deg |The PID proportional gain.

pllAdvisor/pllbw double Hz The demodulator bandwidth to use for the
PLL loop filter.

pllAdvisor/pm double deg Output parameter. Simulated phase margin

of the PLL with the current settings. The
phase margin should be greater than 45 deg
and preferably greater than 65 deg for stable

conditions.

pllAdvisor/pmfreq double - Output parameter. Simulated phase margin
frequency.

pllAdvisor/q double - Quality factor. Currently not used.

pllAdvisor/rate double Hz PLL Advisor sampling rate of the PLL control
loop.

pllAdvisor/stable bool - Output parameter. When 1, the PLL Advisor

found a stable solution with the given
settings. When O, revise your settings and
rerun the PLL Advisor.

LabOne Programming Manual Revision 31421 Zurich Instruments 38

http://www.zhinst.com

2.6. PLL Advisor Module

Setting/Path

Type

Unit

Description

pllAdvisor/targetbw | double

Hz

Requested PLL bandwidth. Higher
frequencies may need manual tuning.

pllAdvisor/
targetfail

bool

Output parameter. 1 indicates the simulated
PLL BW is smaller than the Target BW.

LabOne Programming Manual

Revision 31421

Zurich Instruments

39

http://www.zhinst.com

2.7.Tips and Tricks

2.7.Tips and Tricks

Use the LabOne User Interface's Command Log to start programming

If you use the LabOne User Interface to perform a measurement, you can obtain the commands
senttoyourinstrumentinthe "Command Log" by clicking the "Show Log" button in the status bar
at the bottom of the User Interface. Be sure to set the "Log Format" of the Command Log in the
"User Interface" section of the Config Tab first: The log is available in Matlab and Python formats
and can be used as a starting point for your own custom program.

Use the included examples to get started programming

Both the LabOne Matlab APl and the LabOne Python APl come with examples to help you get
started programming. In particular, both APIs have at least one example for each of the ziCore
modules .

Load LabOne User Interface settings files from the APls.

The XML files used for device settings can be loaded and saved from the LabOne User Interface
or from any of the ziCore-based APIs. This means that an instrument can be conveniently
configured via the LabOne User Interface and then its settings saved to file. This settings file can
then be loaded via an APl in order to configure an instrument for a script. See the Section 2.5.

LabOne Programming Manual Revision 31421 Zurich Instruments 40

http://www.zhinst.com

Part Il. LabOne APIs

This part of the Programming Manual documents language-specific installation and usage for each of the
LabOne APIs. For details of common functionality and features that are shared by all the LabOne APIs please

referto Partl.
Refer to:

= Chapter 3 forthe LabOne Matlab API (ziDAQ).

= Chapter 4 forthe LabOne Python APl (ziPython).
= Chapter 5 forthe LabOne LabVIEW API .

= Chapter 6 forthe LabOne C APl (ziAPI).

Chapter 3. Matlab Programming

The Mathwork's numerical computing environment Matlab® has powerful tools for data analysis
and visualization and can be used to create graphical user interfaces or automatically generate
reports of experimental results in various formats. LabOne's Matlab API, also known as ziDAQ,
"Zurich Instruments Data Acquisition", enables the user to stream data from their instrument
directly into Matlab allowing them to take full advantage of this powerful environment.

This chapter aims to help you get started using Zurich Instruments LabOne's Matlab API, ziDAQ,
to control your instrument, please refer to:

= Section 3.1 for help Installing the LabOne Matlab API .

= Section 3.2 forhelp Getting Started with the LabOne Matlab APl and Runningthe Examples.
= Section 3.3 for some LabOne Matlab API Tips and Tricks..

= Section 3.4 for help Troubleshooting the LabOne Matlab API .

= Section 3.5 for LabOne Matlab API (ziDAQ) Command Reference .

Note

This section and the provided examples are no substitute for a Matlab tutorial. See either
Mathworks' online Documentation Center or one of the many online resources, for example, the
Matlab Programming wikibook for help to get started programming with Matlab.

LabOne Programming Manual Revision 31421 Zurich Instruments 42

http://www.zhinst.com
http://www.mathworks.com
http://www.mathworks.ch/ch/help/matlab/index.html
http://en.wikibooks.org/wiki/MATLAB_Programming

3.71. Instal

ling the LabOne Matlab API

3.1. Installing the LabOne Matlab API

3.1.1.

3.1.2.

Requirements

To use LabOne's Matlab API, ziDAQ, a Matlab 7 R2009b installation (or higher) and license on
Windows or Linux is required. No additional Matlab Toolboxes are required for ziDAQ. Both 32-
bit and 64-bit platforms are supported on both Windows and Linux. On Linux, version 6.0.11 or
higher of 1ibstdc++.so isrequired by ziDAQ, see Section 3.1.3 for more details.

The LabOne Matlab APl ziDAQ is included in a standard LabOne installation. Some configuration
isrequired, however, inordertouse ziDAQ in Matlab. The LabOne installeris available from Zurich
Instruments' download page (login required).

Windows or Linux

Technically, no installation is required to use ziDAQ on either Windows or Linux; it's only
necessary to add the folder containing LabOne's Matlab API library to Matlab's search path. This
is done as following:

1. Start Matlab and set the "Current Folder" (current working directory) to the Matlab API folder
in your LabOne installation.

On Windows this is typically:
C:\Program Files\Zurich Instruments\LabOne\API\MATLAB2012\
On Linux this is the location where you unpacked the LabOne . tar.gz file:

[PATH] /LabOne64/API/MATLAB2012/

2. Inthe Matlab Command Window, run the Matlab script ziAddPath located inthe MATLAB2012
directory:

>> ziAddPath;
On Windows (similar for Linux) you should see the following output in Matlab's Command

Window:

Added ziDAQ's Driver, Utilities and Examples directories to Matlab's path
for this session.

To make this configuration persistent across Matlab sessions either:

1. Run the 'pathtool' command in the Matlab Command Window and add the
following paths WITH SUBFOLDERS to the Matlab search path:

C:\Program Files\Zurich Instruments\LabOne\API\MATLAB2012\
or
2. Add the following line to your Matlab startup.m file:

run ('C:\Program Files\Zurich Instruments\LabOne\API\MATLAB2012\ziAddPath');

This is sufficient configuration if you would only like to use zi DAQ in the current Matlab session.

LabOne Programming Manual Revision 31421 Zurich Instruments 43

http://www.zhinst.com
http://www.zhinst.com/downloads

3.1. Installing the LabOne Matlab API

3. To make this configuration persistent between Matlab sessions do either one of the next two
steps (as also indicated by the output of ziAddPath):

a. Runthepathtool andclick "Add with Subfolders". Browse to the "MATLAB2012" directory
that was located above in Step 1 and click "OK".

b. Edityour startup.mtocontainthelineindicated in the output from Step 2 above. For more
help on Matlab's startup.mfile, type the following in in Matlab's Command Window:
>> docsearch('startup.m')
4. On Linux, perform the additional step described in Section 3.1.3.

5. Verify your Matlab configuration as described in Section 3.1.4.

3.1.3. Additional Configuration Required on Linux

To use ziDAQ in Matlab on Linux it's necessary to additionally perform the following steps:

1. Tell Matlab the location of the zibaQ MEX-file by appending its location to the
LD LIBRARY PATH environmentvariable. The MEX-file is located in the Driver subdirectory
found in [PATH] /LabOne64/API/MATLAB2012/ (the path used above in Section 3.1.2).

This can be performed in a terminal before starting Matlab, or set in your shell's configuration
file. For the Bash shell, for example, in the ~/ .bashrc:

export LD LIBRARY PATH=${LD LIBRARY PATH}:"[PATH]/LabOne64/API/MATLAB2012/Driver"

2. Tell Matlab the location of the shared C++ library (1ibstdc++.so) it should use via the
LD PRELOAD environment variable. This is necessary because ziDAQ is compiled against a
newer version of 1ibstdc++ than is typically included (and used by default) in a standard
Matlab installation. More recent versions of libstdc++ are readily available in Linux
distributions; telling Matlab to use this one instead doesn't have any negative side effects since
the standard C++ library is backwards compatible.

We proceed as following:

a. Locate the version of 1ibstdc++ available within your Linux distribution, for example, on
Ubuntu 12.04 LTS the location and versions are:

= /usr/lib/i386-linux-gnu/libstdc++.s50.6.0.16 (32-bit),
= /usr/lib/x86 64-linux-gnu/libstdc++.s0.6.0.16 (64-bit).

Note: Version 6.0.11 or higheris required by ziDAQ.
b. Append this path to the LD _PRELOAD environment variable:

export LD PRELOAD="${LD PRELOAD}:"/path/to/libstdc++.s0.6.0.22"

3. Restart Matlab if necessary.

LabOne Programming Manual Revision 31421 Zurich Instruments 44

http://www.zhinst.com

3.1. Installing the LabOne Matlab API

3.1.4. Verifying Successful Matlab Configuration

In order to verify that Matlab is correctly configured to use ziDAQ please perform the following
steps:

1. Ensure that the correct Data Server is running for your device and that your device is currently
connected to the Data Server. The quickest way to check is to start the User Interface for your
device, see Section 1.1 for more details.

2. Check that ziDAQ's connect command can instantiate an APl session to the Data Server by
using the following command (with the correct port for your instrument, c¢f. Section 1.1.1) in
the Matlab command window:

\o

m >> 7ziDAQ('connect', 'localhost', 8005) % 8005 for HF2 Series

m >> ziDAQ('connect', 'localhost', 8004)

o

8004 for UHFLI
m >> ziDAQ('connect', mf-hostname, 8004) % 8004 for MFLI (see below)

\

Note, using 'localhost' above assumes that the Data Server is running on the same
computer fromwhichyou are using Matlab. See Section 1.1.1 forinformation about port choice
and connecting to the Data Server. For MFLI instruments the hostname/IP address of the MFLI
instrument must be provided (the value of mf-hostname), see Section 1.1.1 and the Getting
Started chapter of the MFLI User Manual for more information.

3. If no error is reported then Matlab is correctly configured to use ziDAQ - congratulations!
Otherwise, please try the steps listed in Troubleshooting the LabOne Matlab API.

LabOne Programming Manual Revision 31421 Zurich Instruments 45

http://www.zhinst.com

3.2. Getting Started with the LabOne Matlab API

3.2. Getting Started with the LabOne Matlab API

This section introduces the user to the LabOne Matlab API.

3.2.1. Contents of the LabOne Matlab API

Alongside the driver for interfacing with your Zurich Instruments device, the LabOne Matlab API
includes many files for documentation, utility functions and examples. See the Contents.mfile
located in a LabOne Matlab API directory (see Step 1 in Section 3.1.2 for its typical location) for

a description of the API's sub-folders and files.

>> doc ('Contents')

Run the command:

in the Matlab Command Window in the LabOne Matlab API directory to access the following

contents interactively in Matlab.

o0 oo

oo

FILES

o0 oo o

oo

ziDAQ : The LabOne Matlab API for interfacing with Zurich Instruments Devices

ziAddPath - add the LabOne Matlab drivers, utilities and examples to
Matlab's Search Path for the current session
README. txt - a README briefly describing how to get started with ziDAQ

% DIRECTORIES

% Driver/ - contains Matlab driver for interfacing with Zurich Instruments
% devices

% Utils/ - contains some utility functions for common tasks

% Examples/ - contains examples for performing measurements on Zurich

% Instruments devices

% DRIVER

% Driver/ziDAQ.m - ziDAQ command reference documentation.

% Driver/ziDAQ.mex* - z1DAQ API driver

% UTILS

% Utils/ziAutoConnect - create a connection to a Zurich Instruments

% server

% Utils/ziAutoDetect - return the ID of a connected device (if only one
% device is connected)

% Utils/ziDevices - return a cell array of connected Zurich Instruments
% devices

o0 oo o

oo

example connect -

o©

oo

example connect config -

o©

oo

example poll -

o©

oo

example record async -

o©

oo

example record demod trigger -

o©

oo

example record digital trigger -

o©

oe

example save device settings simple -

oe o

o©

example save device settings expert -

o0 oo

oo

example sweeper -

o©

Utils/ziCheckPathInData - check whether a node is present in data and non-empty

EXAMPLES/COMMON - Examples that will run on any Zurich Instruments Device

A simple example to demonstrate how to
connect to a Zurich Instruments device
Connect to and configure a Zurich
Instruments device

Record demodulator data using
ziDAQServer's synchronous poll function
Record data asyncronously using ziDAQ's
record module

Record demodulator data upon a rising
edge trigger via ziDAQ's record module
Record data using a digital trigger via
ziDAQ's record module

Save and load device settings
synchronously using ziDAQ's utility
functions

Save and load device settings
asynchronously with ziDAQ's
devicesettings module

Perform a frequency sweep using ziDAQ's
sweep module

LabOne Programming Manual Revision 31421 Zurich Instruments 46

http://www.zhinst.com

3.2. Getting Started with the LabOne Matlab API

3.2.2.

3.2.3.

o©

example sweeper rstddev fixedbw - Perform a frequency sweep plotting the
stddev in demodulator output R using
ziDAQ's sweep module

oe

o©

% example sweeper two demods - Perform a frequency sweep saving data

% from 2 demodulators using ziDAQ's sweep
S module

% example zoomfft - Perform an FFT using ziDAQ's zoomFFT

S module

o©

oe

EXAMPLES/UHF - Examples specific to the UHF Series

% uhf example_ boxcar - Record boxcar data using ziDAQServer's

% synchronous poll function

% uhf example_ scope - Record scope data using ziDAQServer's

% synchronous poll function

% uhf example_scope_ offset - Record digitizer data using ziDAQServer's

oo

synchronous poll function

oo

oe

EXAMPLES/HF2 - Examples specific to the HF2 Series
hf2 example autorange - determine and set an appropriate range
for a sigin channel
hf2 example poll hardware trigger - Poll demodulator data in combination
with a HW trigger

o° oo oe

oe

% hf2 example_ scope - Record scope data using ziDAQServer's
% synchronous poll function
% hf2 example_zsync_poll - Synchronous demodulator sample timestamps

oe

from multiple HF2s via the Zsync feature

Note

On Windows the MEX-file is called either ziDAQ.mexw64 or ziDAQ.mexw32 for 64-bit and 32-
bit platforms respectively and on Linux it is called ziDAQ.mexa64 or ziDAQ.mexa32. If more
than one MEX-file is present, Matlab automatically selects the correct MEX-file for the current
platform.

Using the Built-in Documentation

To access ziDAQ's documentation within Matlab, type either of the following in the Matlab
Command Window:

>> help ziDAQ
>> doc ziDAQ

This documentation is located in the file MATLAB2012/Driver/ziDAQ.m. See Section 3.5,
LabOne Matlab API (ziDAQ) Command Reference for a printer friendly version.

Running the Examples

Prerequisites for running the Matlab examples:

1. Matlab is configured for ziDAQ as described above in Section 3.1 .

2. The Data Server program is running and the instrument is connected to the Data Server. See
Section 1.1.1 and the User Manual specific to the instrument for more help connecting.

LabOne Programming Manual Revision 31421 Zurich Instruments 47

http://www.zhinst.com

3.2. Getting Started with the LabOne Matlab API

3. Signal Output 1 of the instrument is connected to Signal Input 1 via a BNC cable; many of the
Matlab examples measure on this hardware channel.

See Section 3.2.1 for a list of available examples bundled with the LabOne Matlab API. All the
examples follow the same structure and take one input argument: the device ID of the instrument
they are to be ran with. For example:

>> example sweeper ('devl23');

The example should produce some output in the Matlab Command Window, such as:

ziDAQ version Jul 7 2015 accessing server localhost 8005.
Will run the example on "dev123°, an "HF2LI" with options "MFK|PLL|MOD|RTK|PID .
Sweep progress 9%

Sweep progress 19%

Sweep progress 30%

Sweep progress 42%

Sweep progress 52%

Sweep progress 58%

Sweep progress 68%

Sweep progress 79%

Sweep progress 91%

Sweep progress 100%

ziDAQ: AtExit called

Most examples will also plot some data in a Matlab figure, see Figure 3.1 for an example. If you
encounter an error message please ensure that the above prerequisites are fulfilled and see
Section 3.4 for help troubleshooting the error.

0.5

Amplitude [dBV]
o
n o
i

'
-
1

A5 ‘ ; R ‘ R A R
10 10

Frequency [Hz]

Phase [ded]
s mw B8 B 8
R

n

10
Frequency [Hz]

Figure 3.1. The plot produced by the LabOne Matlab APl example example sweeper.m; the
plots show the instruments demodulator output when performing a frequency sweep over a
simple feedback cable.

LabOne Programming Manual Revision 31421 Zurich Instruments 48

http://www.zhinst.com

3.2. Getting Started with the LabOne Matlab API

3.2.4.

Note

The examples serve as a starting point for your own measurement needs. However, before editing
the m-files, be sure to copy them to your own user space (they could be overwritten upon updating
your LabOne installation) and give them a unique name to avoid name conflicts in Matlab.

Using ziCore Modules in the LabOne Matlab API

In the LabOne Matlab APl ziCore Modules are configured and controlled via Matlab "handles".
For example, in order to use the Sweeper Module a handle is created via:

>> timeout milliseconds = 500;
>> h = ziDAQ('sweep', timeout milliseconds);

and the Module's parameters are configured using the set command and specifying the Module's
handle with a path, value pair, for example:

>> ziDAQ('set', h, 'sweep/start', 1.2e5);

The parameters can be read-back using the get command, which supports wildcards, for
example:

>> sweep params = ziDAQ('get', h, 'sweep/*');

The variable sweep params now contains a struct of all the Sweeper's parameters. The other
main Module commands are used similarly, e.g., ziDAQ ('execute', h) to start the sweeper.
See Section 2.1.2 for more help with Modules and a description of their parameters.

LabOne Programming Manual Revision 31421 Zurich Instruments 49

http://www.zhinst.com

3.3. LabOne Matlab API Tips and Tricks

3.3. LabOne Matlab API Tips and Tricks

In this section some tips and tricks for working with the LabOne Matlab APl are provided.

The structure of zi DAQcommands.

All LabOne Matlab APl commands are based on a call to the Matlab function ziDaQ (). The
first argument to ziDAQ () specifies the APl command to be executed and is an obligatory
argument. For example, a session is instantiated between the APl and the Data Server with the
Matlab command ziDAQ ('connect'). Depending on the type of command specified, optional
arguments may be required. For example, to obtain an integer node value, the node path must be
specified as a second argument to the "getInt' command:

s = ziDAQ('getInt', '/devl123/sigouts/0/on"');
where the output argument contains the current value of the specified node.

To set an integer node value, both the node path and the value to be set must be specified as the
second and third arguments:

ziDAQ ('setInt', '/devl123/sigouts/0/on', 1);.

See the LabOne Matlab API (ziDAQ) Command Reference for a list of all available commands.

Data Structures returned by zi DAQ

The output arguments that ziDAQ returns are designed to use the native data structures
that Matlab users are familiar with and that reflect the data's location in the instruments
node hierarchy. For example, when the poll command returns data from the instruments
fourth demodulator (located in the node hierarchy as /dev123/demods/3/sample), the output
argument contains a nested struct in which the data can be accessed by

data = ziDAQ('poll', poll length, poll timeout);
X data.dev1l23.demods (4) .sample.x;
y data.devl23.demods (4) .sample.y;

The instrument's node tree uses zero-based indexing; Matlab uses
one-based indexing.
See the tip Data Structures returned by ziDaAQ. : The fourth demodulator sample

located at /dev123/demods/3/sample, is indexed in the data structure returned by poll as
data.devl23.demods (4) .sample

Explicitly convert ui nt 64 data types to doubl e.

Matlab's native data type is double-precision floating point and doesn't support performing
calculations with with other data types such as 64-bit unsigned integers, for example:

>> a = uint64(2); b = uint64(1l); a - b
??? Undefined function or method 'minus' for input arguments of type 'uinto6d'.

Due to this limitation, be sure to convert demodulator timestamps to double before performing
calculations. For example, in the following, both clockbase and timestamp (both 64-bit unsigned

LabOne Programming Manual Revision 31421 Zurich Instruments 50

http://www.zhinst.com

3.3. LabOne Matlab API Tips and Tricks

integers) need to be converted to double before converting the timestamps from the instrument's
native "ticks" to seconds via the instrument's clockbase:

data = ziDAQ('poll', 1.0, 500); % poll data

sample = data. (device) .demods (0) .sample; % get the sample from the zeroth demod
% convert timestamps from ticks to seconds via the device's clockbase

% (the ADC's sampling rate), specify reference start time wvia tO.

clockbase = doubl e (ziDAQ ('getInt', ['/' device '/clockbase']));

t = (doubl e (sample.timestamp) - doubl e (sample.timestamp(1l)))/clockbase;

Use the utility function zi CheckPat hl nDat a.

Checking that a sub-structure in the nested data structure returned by pol1 actually exists can
be cumbersome and can require multiple nested i f statements; this can be avoided by using the
utility function ziCheckPathInData. For example, the code:

data = ziDAQ('poll', poll length, poll timeout);
if isfield(data,device)
if isfield(data. (device), 'demods"')
if length(data. (device) .demods) >= channel
if ~isempty(data. (device) .demods (channel) .sample)
% do something with the demodulator sample...

can be replaced by:

data = ziDAQ('poll', poll length, poll timeout);
if ziCheckPathInData(data, ['/' device '/demods/' demod c '/sample']);
% do something with the demodulator sample...

LabOne Programming Manual Revision 31421 Zurich Instruments 51

http://www.zhinst.com

3.4. Troubleshooting the LabOne Matlab API

3.4. Troubleshooting the LabOne Matlab API

This section intends to solve possible error messages than can occur when using ziDAQ in Matlab.

Error message: "Undefined function or method 'ziDAQ' for input
arguments of type '*'"

Matlab can not find the LabOne Matlab API library. Check whether the MATLAB2012/Driver
subfolder of your LabOne installation is in the Matlab Search Path by using the command:

>> path

and repeating the steps to configure Matlab's search path in Section 3.1.2.

Error message: "Undefined function or method 'example_sweeper

Matlab can not find the example. Check whether the MATLAB2012 /Examples/Common subfolder
(respectively MATLAB2012/Examples/UHF or MATLAB2012/Examples/HF2) of your LabOne
installation are in the Matlab Search Path by using the command:

>> path

and repeating the steps to configure Matlab's search path in Section 3.1.2.

Error message: "Error using: ziDAQ ZIAPIException with status code:
32870. Connection invalid."

The Matlab API can not connect to the Data Server. Please check that the correct port was used;
that the correct server is running for your device and that the device is connected to the server,
see Section 1.1.1.

Error Message: "Error using: ziAutoConnect at 63 ziAutoConnect():
failed to find a running server or failed to find a connected a device..."

The utility function ziAutoConnect () located inMATLAB2012/Utils/ triestodetermine which
Data Server is running and whether any devices are connected to that Data Server. It is only
supported by UHFLI and HF2 Series instruments, MFLI instruments are not supported. Some
suggestions to verify the problem:

= Please verify in the User Interface, whether a device is connected to the Data Server running
on your computer.

= |fthe Data Serverisrunningon adifferent computer, connect manually to the Data Server via
ziDAQ's connect function:

>> ziDAQ ('connect', hostname, port);

where hostname should be replaced by the IP of the computer the Data Server is running on
and port is specified asin Section 1.1.1.

LabOne Programming Manual Revision 31421 Zurich Instruments 52

http://www.zhinst.com

3.4. Troubleshooting the LabOne Matlab API

Error Message: "Error using: ziDAQ ZIAPIException on path /dev123/
sigins/0/impb0 with status code: 16387. Value or Node not found"

The APlis connected to the Data Server, but the command failed to find the specified node. Please:

= (Check whether your instrument is connected to the Data Server in the User Interface; if it is
not connected the instruments device node tree, e.g., /dev123/, will not be constructed by
the Data Server.

= (Check whether the node path is spelt correctly.

= [xplore the node tree to verify the node actually exists with the 1istNodes command:

>> ziDAQ('listNodes', '/dev123/sigins/0', 3)

Error Message: "using: ziDAQ Server not connected. Use
'ziDAQ('connect’, ...) first."

A ziDAQ command was issued before initializing a connection to the Data Server. First use the
connect command:

>> ziDAQ ('connect', hostname, port);

where hostname should be replaced by the IP address of the computer the Data Server is running
onand port is specified asin Section 1.1.1. If the Data Server is running on the same computer,
use 'localhost' asthe hostname

Error Message: "Attempt to execute SCRIPT ziDAQ as a function:
ziDAQ.m"

There could be a problem with your LabOne Matlab APl installation. The call to ziDAQ () is trying
to call the help file ziDAQ.m as a function instead of calling the ziDAQ () function defined in
the MEX-file. In this case you need to ensure that the ziDaQ MEX-file is in your search path as
described in Section 3.1 and navigate away from from the Driver directory. Secondly, ensure
that the LabOne Matlab MEX-file is in the Driver folder as described in Section 3.2.1 .

LabOne Programming Manual Revision 31421 Zurich Instruments 53

http://www.zhinst.com

3.5. LabOne Matlab API (ziDAQ) Command Reference

3.5. LabOne Matlab API (ziDAQ) Command
Reference

Copyright 2009-2015, Zurich Instruments Ltd, Switzerland
This software is a preliminary version. Function calls and
parameters may change without notice.

This version is linked against Matlab 7.9.0.529 (R2009b) libraries.
In case of incompatibility with the currently used Matlab version. Send
us the requested version (use 'ver' command) .

ziDAQ is a interface for communication with the ZI server.
Usage: ziDAQ ([command], [optionl], [option2])
[command] = 'clear', 'connect', 'connectDevice',

'disconnectDevice', 'finished', 'flush', 'get',
'getAsEvent', 'getAuxInSample', 'getByte',
'getDIO', 'getDouble', 'getInt',
'getSample', 'listNodes', 'logOn', 'logOff',
'poll', 'pollEvent', 'programRT', 'progress',6 'read',
'record', 'setByte', 'setDouble', 'syncSetDouble',
'setInt', 'syncSetInt', 'subscribe',
'sweep', 'trigger', 'unsubscribe', 'update',
'zoomFFT', 'deviceSettings'

Preconditions: ZI Server must be running (check task manager)

ziDAQ ('connect', [host = '127.0.0.1'], [port = 8005], [apilevel = 1]);
[host] = Server host string (default is the localhost)
[port] = Port number (double)

Use port 8005 to connect to the HF2 Data Server
Use port 8004 to connect to the UHF Data Server
[apiLevel] = Compatibility mode of the API interface
Use API level 1 to use code written for HF2.
Higher API levels are currently only supported
for UHF devices. To get full functionality for
an UHF device use API level 5.
To disconnect use 'clear ziDAQ'

result = ziDAQ ('getConnectionAPILevel');
Returns ziAPI level used for the active connection.

ziDAQ ('connectDevice', [device], [interfacel]):;
[device] = Device serial string to connect (e.g. 'DEV2000')
[interface] = Interface string e.g. 'USB', '1GbE', '1l0GbE'
Connect with the data server to a specified device over the
specified interface. The device must be visible to the server.
If the device is already connected the call will be ignored.
The function will block until the device is connected and
the device is ready to use. This method is useful for UHF
devices offering several communication interfaces.

ziDAQ ('disconnectDevice', [devicel]);
[device] = Device serial string of device to disconnect.
This function will return immediately. The disconnection of
the device may not yet finished.

result = ziDAQ('listNodes', [path], [flags(int64) = 0]);
[path] = Path string
[flags] = int64(0) -> ZI LIST NONE 0x00

The default flag, returning a simple
listing if the given node

int64 (1) -> ZI LIST RECURSIVE 0x01
Returns the nodes recursively

A A d° A% O° O dC AP O° OO A A A OO A A I A% A O O A O° O A A A A A A I O O O IO A O O A A I O A A I A% I A IO A A A A A IO O° O° A I J° o°

LabOne Programming Manual Revision 31421 Zurich Instruments

54

http://www.zhinst.com

3.5. LabOne Matlab API (ziDAQ) Command Reference

int64(2) -> ZI_LIST ABSOLUTE 0x02
Returns absolute paths

inted (4) -> ZI_LIST LEAFSONLY 0x04
Returns only nodes that are leafs,
which means the they are at the
outermost level of the tree.

inte4 (8) -> ZI_LIST SETTINGSONLY 0x08
Returns only nodes which are marked
as setting

Or combinations of flags might be used.

result = ziDAQ('getSample', [pathl):;
[path] = Path string
Returns a single demodulator sample (including
DIO and AuxIn). For more efficient data recording
use subscribe and poll functions.

result = ziDAQ ('getAuxInSample', [path]);
[path] = Path string
Returns a single auxin sample. The auxin data
is averaged in contrast to the auxin data embedded
in the demodulator sample.

result = ziDAQ('getDIO', [path]);
[path] = Path string
Returns a single DIO sample.

result = ziDAQ ('getDouble', [pathl):;
[path] = Path string

result = ziDAQ ('getInt', [pathl]);
[path] = Path string

result = ziDAQ ('getByte', [path]);
[path] = Path string

ziDAQ ('setDouble', [path], [value(double)]);
[path] = Path string
[value] = Setting value

ziDAQ ('syncSetDouble', [path], [value(double)]);
[path] = Path string
[value] = Setting value

ziDAQ ('setInt', [path], [value(int64)1]);
[path] = Path string
[value] = Setting value

ziDAQ ('syncSetInt', [path], [value(int64)]);
[path] = Path string
[value] = Setting value

ziDAQ ('setByte', [path], [value(uint8)1]);
[path] = Path string
[value] = Setting value

ziDAQ ('subscribe', [pathl);
[path] = Path string
Subscribe to the specified path to receive streaming data
or setting data if changed over the poll or pollEvent
commands .

ziDAQ ('unsubscribe', [path]);
[path] = Path string

ziDAQ ('getAsEvent', [path]);
[path] = Path string

A0 A0 d° O Od° O° A° d° O° OO A AdC A O A A A IO I A A A O O A Ad° A A A A A A% I A A A O O A A A A A A A IO I A A d° O° A A d° A A A A A A% I A° A d° J° o° o°

LabOne Programming Manual Revision 31421 Zurich Instruments

http://www.zhinst.com

3.5. LabOne Matlab API (ziDAQ) Command Reference

Triggers a single event on the path to return the current
value. The result can be fetched with the poll or pollEvent
command.

ziDAQ ('update') ;
Detect HF2 devices connected to the USB. On Windows this
update is performed automatically.

ziDAQ ('get', [pathl);
[path] = Path string
Gets a structure of the node data from the specified
branch. High-speed streaming nodes (e.g. /devN/demods/0/sample)
are not returned. Wildcards (*) may be used, in which case
read-only nodes are ignored.

ziDAQ ('flush');
Flush all data in the socket connection and API buffers.
Call this function before a subscribe with subsequent poll
to get rid of old streaming data that might still be in
the buffers.

z1DAQ ('echoDevice', [device]);
[device] = device string e.g. 'dev100'
Sends an echo command to a device and blocks until
answer is received. This is useful to flush all
buffers between API and device to enforce that
further code is only executed after the device executed
a previous command.

ziDAQ ('sync') ;
Synchronize all data path. Ensures that get and poll
commands return data which was recorded after the
setting changes in front of the sync command. This
sync command replaces the functionality of all syncSet,
flush, and echoDevice commands.

ziDAQ ('programRT', [device], [filename]);
[device] = device string e.g. 'dev100'
[filename] = filename of RT program
Writes down the RT program. To use this function
the RT option must be available for the specified

device.
result = ziDAQ('secondsTimeStamp', [timestamps]);
[timestamps] = vector of uint64 ticks

Deprecated. In order to convert timestamps to seconds divide the
timestamps by the value instrument's clockbase device node,
e.g., /dev99/clockbase.

[Converts a timestamp vector of uint64 ticks

into a double vector of timestamps in seconds (HF2 Series).]

Synchronous Interface

ziDAQ ('poll', [duration(double)], [timeout(int6é4)], [flags(uint32)1]);

[duration] = Recording time in [s]
[timeout] = Poll timeout in [ms]
[flags] = Flags that specify data polling properties

Bit[0] FILL : Fill data loss holes

Bit[1] ALIGN : Align data of several demodulators

Bit[2] THROW : Throw if data loss is detected
Records data for the specified time. This function call
is blocking. Use the asynchronous interface for long
recording durations.

result = ziDAQ('pollEvent', [timeout (int64)]);
[timeout] = Poll timeout in [ms]
Just execute a single poll command. This is a low-level

A0 A0 d° O Od° O° A° d° O° OO A AdC A O A A A IO I A A A O O A Ad° A A A A A A% I A A A O O A A A A A A A IO I A A d° O° A A d° A A A A A A% I A° A d° J° o° o°

LabOne Programming Manual Revision 31421 Zurich Instruments

56

http://www.zhinst.com

3.5. LabOne Matlab API (ziDAQ) Command Reference

function.
cases.

Asynchronous Interface

Trigger Parameters

trigger/0/holdoff/count int

trigger/0/holdoff/time double

trigger/N/hwtrigsource int

% trigger/buffersize double
% trigger/device string
% trigger/endless bool

% trigger/forcetrigger bool

% trigger/0/path string
% trigger/0/source int

% trigger/0/count int

% trigger/0/type int

% trigger/0/edge int

% trigger/0/findlevel bool

% trigger/0/bits int

% trigger/0/bitmask int

% trigger/0/delay double
% trigger/0/duration double
% trigger/0/level double
% trigger/0/hysteresis double
% trigger/0/retrigger int

% trigger/triggered bool

% trigger/0/bandwidth double

trigger/0/pulse/min double

The poll function is better suited for most

Overwrite the buffersize [s] of the trigger

object (set when it was instantiated).

The recommended buffer size is

2*trigger/0/duration.

The device ID to execute the software trigger,

e.g. devl23 (compulsory parameter).

Enable endless triggering l=enable; 0O=disable.

Force a trigger.

The path to the demod sample to trigger on,

e.g. demods/3/sample, see also trigger/0/source

Signal that is used to trigger on.

0 = x [X SOURCE]

= y [Y_SOURCE]

= r [R SOURCE]

angle [ANGLE SOURCE]

= frequency [FREQUENCY SOURCE]

= phase [PHASE SOURCE]

= auxiliary input 0 [AUXINO SOURCE]

= auxiliary input 1 [AUXIN1 SOURCE]

Number of trigger edges to record.

Trigger type used. Some parameters are

only valid for special trigger types.

= trigger off

= analog edge trigger on source

= digital trigger mode on DIO

= analog pulse trigger on source

= analog tracking trigger on source

rigger edge

= rising edge

= falling edge

= both

Automatically find the value of trigger/0/level

based on the current signal value.

Digital trigger condition.

Bit masking for bits used for

triggering. Used for digital trigger.

Trigger frame position [s] (left side)

relative to trigger edge.

delay = 0 -> trigger edge at left border.

delay < 0 -> trigger edge inside trigger
frame (pretrigger).

delay > 0 -> trigger edge before trigger
frame (posttrigger).

Recording frame length [s]

Trigger level voltage [V].

Trigger hysteresis [V].

Record more than one trigger in a

Has the software trigger triggered? l=Yes, 0=No

(read only) .

Filter bandwidth [Hz] for pulse and

tracking triggers.

Number of skipped triggers until the

next trigger is recorded again.

Hold off time [s] before the next

trigger is recorded again. A hold off

time smaller than the duration will

produce overlapped trigger frames.

Only available for devices that support

hardware triggering. Specify the channel

to trigger on.

Minimal pulse width [s] for the pulse

~ oo W N
Il

WNEFEH > WNDREO

LabOne Programming Manual

Revision 31421

Zurich Instruments 57

http://www.zhinst.com

3.5. LabOne Matlab API (ziDAQ) Command Reference

A0 A0 d° O Od° O° A° d° O° OO A AdC A O A A A IO I A A A O O A Ad° A A A A A A% I A A A O O A A A A A A A IO I A A d° O° A A d° A A A A A A% I A° A d° J° o° o°

ziDAQ ('subscribe',

ziDAQ ('unsubscribe',

ziDAQ ('get',

ziDAQ ('set',

[s]

This parameter is deprecated.
it enables automatic saving of

data in single trigger mode
(trigger/endless = 0).

1=CSV.

[timeout (int64) 1) ;
[s]

[ms]

The thread is not yet

for the pulse

If specified,

The format of the file for saving data.
Maximum number of entries stored in the

Remove all records from the history list.

started.

Before the thread start subscribe and set command have

The default

[flags (int6d) = 0

trigger.
trigger/0/pulse/max double Maximal pulse width
trigger.
trigger/filename string
i.e., not empty,
trigger/savepath string
data.
trigger/fileformat string
0=Matlab,
trigger/historylength bool
measurement history.
triggerclearhistory bool
handle = ziDAQ ('record' [duration (double)],
[duration] = Recording time in
[timeout] = Poll timeout in
Creates a recorder class.
to be called.
execute function.
the recording of a frame.
result = ziDAQ('listNodes', [handle], [path],
[path] = Path string
[flags] = int64(0)

-> ZI LIST NONE 0x00

flag, returning a simple

listing if the given node

int64 (1)
Returns the
int64 (2)

-> ZI LIST RECURSIVE 0x01

nodes recursively

-> 7ZI_LIST ABSOLUTE 0x02

Returns absolute paths

int64 (4)

which means

-> ZI LIST LEAFSONLY
Returns only nodes that are

0x04
leafs,

the they are at the

outermost level of the tree.

int64(8)

-> 7ZI LIST SETTINGSONLY 0x08

Returns only nodes which are marked

as setting

[handle],

Or combinations of flags might be used.

[path]);

To start the real measurement use the
After that the trigger will start

1)

Subscribe to one or several nodes. After subscription

the recording process can be started with the

'execute'

command. During the recording process paths can not be
subscribed or unsubscribed.

[handle] = Reference to
[path] = Path string of

the ziDAQRecorder class.
the node.

select all. Alternatively also a list of path
strings can be specified.

[handle],
Unsubscribe from one or
recording process paths
unsubscribed.

[handle] = Reference to
[path] = Path string of

[path]);
several nodes.
can not be subscribed or

the ziDAQRecorder class.
the node. Use wild card

select all. Alternatively also a list of path
strings can be specified.

[handle], [path])
[handle] = Reference to
[path] = Path string of

[handle],
[handle] =

[path],
Reference to

the ziDAQRecorder class.
the node.

[value]) ;
the ziDAQRecorder class.

Use wild card to

During the

to

The directory where files are saved when saving

LabOne Programming Manual

Revision 31421

Zurich Instruments

58

http://www.zhinst.com

3.5. LabOne Matlab API (ziDAQ) Command Reference

[path] = Path string of the node.

ziDAQ ('set', [handle], [path], [valuel]);
[handle] = Reference to the ziDAQRecorder class.
[path] = Path string of the node.

ziDAQ ('set', [handle], [path], [valuel);
[handle] = Reference to the ziDAQRecorder class.
[path] = Path string of the node.

z1iDAQ ('execute', [handle]);
Start the recorder. After that command any trigger will
start the measurement. Subscription or unsubscription
is no more possible until the recording is finished.

ziDAQ ('trigger', [handlel]);
[handle] = Handle of the recording session.
Triggers the measurement recording.

result = ziDAQ('finished', [handle]);
[handle] = Handle of the recording session.
Returns 1 if the recording is finished, otherwise 0.

result = ziDAQ('read', [handle]):;
[handle] = Handle of the recording session.
Transfer the recorded data to Matlab.

ziDAQ ('finish', [handle]);
Stop recording. The recording may be restarted by
calling 'execute' again.

result = ziDAQ ('progress', [handle]);
Report the progress of the measurement with a number
between 0 and 1.
ziDAQ ('clear', [handlel]);
[handle] = Handle of the recording session.
Stop recording.

Sweep Module

Sweep Parameters

sweep/device string Device that should be used for
the parameter sweep, e.g. 'dev99'.
sweep/start double Sweep start frequency [Hz]
sweep/stop double Sweep stop frequency [Hz]
sweep/gridnode string Path of the node that should be

used for sweeping. For frequency
sweep applications this will be e.g.
'oscs/0/freq'. The device name of
the path can be omitted and is given
by sweep/device.
sweep/loopcount int Number of sweep loops (default 1)
sweep/endless int Endless sweeping (default 0)
0 = Use loopcount value
1 = Endless sweeping enabled, ignore
loopcount
sweep/samplecount int Number of samples per sweep
sweep/settling/time double Settling time before measurement is
performed, in [s]
sweep/settling/tc double Settling precision
5 ~ low precision
15 ~ medium precision
50 ~ high precision
sweep/settling/inaccuracy int Demodulator filter settling inaccuracy defining
the wait time between a sweep parameter change
and recording of the next sweep point. Typical

A0 A0 d° O Od° O° A° d° O° OO A AdC A O A A A IO I A A A O O A Ad° A A A A A A% I A A A O O A A A A A A A IO I A A d° O° A A d° A A A A A A% I A° A d° J° o° o°

LabOne Programming Manual Revision 31421 Zurich Instruments 59

http://www.zhinst.com

3.5. LabOne Matlab API (ziDAQ) Command Reference

sweep/xmapping int

sweep/scan int

sweep/bandwidth double

sweep/bandwidthcontrol int

sweep/order int

sweep/maxbandwidth double

sweep/omegasuppression double

sweep/averaging/tc double

sweep/averaging/sample int

sweep/phaseunwrap bool

sweep/sincfilter bool

sweep/filename string

sweep/savepath string

sweep/fileformat string

sweep/historylength bool

sweep/clearhistory bool
Note:

Settling time
Averaging time

max (settling.tc
max (averaging.

A0 A0 d° O Od° O° A° d° O° OO A AdC A O A A A IO I A A A O O A Ad° A A A A A A% I A A A O O A A A A A A A IO I A A d° O° A A d° A A A A A A% I A° A d° J° o° o°

handle ziDAQ ('sweep', [timeout (

inaccuracy values: 10m for highest sweep speed

for large signals, 100u for precise amplitude

measurements, 100n for precise noise

measurements. Depending on the order the

settling accuracy will define the number of

filter time constants the sweeper has to

wait. The maximum between this value and the

settling time is taken as wait time until the

next sweep point is recorded.

Sweep mode

0 = linear

1 logarithmic

Scan type

0 = sequential

1 binary

2 bidirectional

3 reverse

Fixed bandwidth [Hz]

0 Automatic calculation (obsolete)

Se the bandwidth control mode (default 2)
Manual (user sets bandwidth and order)

= Fixed (uses fixed bandwidth value)

= Auto (calculates best bandwidth value)
Equivalent to the obsolete bandwidth
setting

Defines the filter roll off to use in Fixed

bandwidth selection.

Valid values are between 1 (6 dB/octave)

and 8 (48 dB/octave). An order of 0

triggers a read-out of the order from the

selected demodulator.

Maximal bandwidth used in auto bandwidth

mode in [Hz]. The default is 1.25MHz.

Damping in [dB]

Default is 40dB in favor of sweep speed.

Use higher value for strong offset values or

3omega measurement methods.

Min averaging time [tc]

0 no averaging (see also time!)

5 ~ low precision

15 ~ medium precision

50 ~ high precision

Min samples to average

1 no averaging (if averaging/tc 0)

Enable unwrapping of slowly changing phase

evolutions around the +/-180 degree boundary.

Enables the sinc filter if the sweep frequency

is below 50 Hz. This will improve the sweep

speed at low frequencies as omega components

do not need to be suppressed by the normal

low pass filter.

This parameter is deprecated. If specified,
i.e. not empty, it enables automatic saving of
data in single sweep mode (sweep/endless
The directory where files are located when

saving sweeper measurements.

The format of the file for saving sweeper
measurements. 0=Matlab, 1=CSV.

Maximum number of entries stored in the
measurement history.

Remove all records from the history list.

ts

N = O

0

* tc, settling.time)
tc * tc, averaging.sample / sample-rate)

int64)]);

of omega and 2omega components.

0).

LabOne Programming Manual Revision 31421

Zurich Instruments

60

http://www.zhinst.com

3.5. LabOne Matlab API (ziDAQ) Command Reference

A0 A0 d° O Od° O° A° d° O° OO A AdC A O A A A IO I A A A O O A Ad° A A A A A A% I A A A O O A A A A A A A IO I A A d° O° A A d° A A A A A A% I A° A d° J° o° o°

[timeout] = Poll timeout in [ms]

Creates a sweep class. The thread is not yet started.
Before the thread start subscribe and set command have
to be called. To start the real measurement use the
execute function.

result = ziDAQ('listNodes', [handle], [path], [flags(inte6d4) = 0]);
[path] = Path string
[flags] = int64(0) -> ZI LIST NONE 0x00

The default flag, returning a simple
listing if the given node

inte6d (1) -> ZI LIST RECURSIVE 0x01
Returns the nodes recursively

inte64 (2) -> ZI LIST ABSOLUTE 0x02
Returns absolute paths

inte6d (4) -> ZI LIST LEAFSONLY 0x04
Returns only nodes that are leafs,
which means the they are at the
outermost level of the tree.

int64 (8) -> ZI LIST SETTINGSONLY 0x08
Returns only nodes which are marked
as setting

Or combinations of flags might be used.

ziDAQ ('subscribe', [handle], [path]);
Subscribe to one or several nodes. After subscription
the recording process can be started with the 'execute'
command. During the recording process paths can not be
subscribed or unsubscribed.
[handle] = Reference to the ziDAQSweeper class.
[path] = Path string of the node. Use wild card to
select all. Alternatively also a list of path
strings can be specified.

ziDAQ ('unsubscribe', [handle], [pathl);
Unsubscribe from one or several nodes. During the
recording process paths can not be subscribed or

unsubscribed.
[handle] = Reference to the ziDAQSweeper class.
[path] = Path string of the node. Use wild card to

select all. Alternatively also a list of path
strings can be specified.

z1DAQ ('execute', [handle]);
Start the sweep. Subscription or unsubscription
is no more possible until the sweep is finished.

result = ziDAQ('finished', [handle]);
[handle] = Handle of the sweep session.
Returns 1 if the sweep is finished, otherwise 0.

result = ziDAQ('read', [handle]):;
[handle] = Handle of the sweep session.
Transfer the sweep data to Matlab.

result = ziDAQ ('progress', [handle]);
Report the progress of the measurement with a number
between 0 and 1.

ziDAQ ('finish', [handle]);
Stop the sweep. The sweep may be restarted by
calling 'execute' again.

ziDAQ ('clear', [handle]);
[handle] = Handle of the sweep session.
Stop the current sweep.

LabOne Programming Manual Revision 31421 Zurich Instruments

61

http://www.zhinst.com

3.5. LabOne Matlab API (ziDAQ)

Command Reference

z1DAQ

Zoom FFT Module

zoomFFT/devi

zoomFFT/bit
zoomFFT/mode

zoomFFT/loop
zoomFFT/endl

zoomFFT/over
zoomFFT/sett
zoomFFT/sett

zoomFFT/abso

handle = ziDAQ

result = ziDAQ

ziDAQ

A0 A0 d° O Od° O° A° d° O° OO A AdC A O A A A IO I A A A O O A Ad° A A A A A A% I A A A O O A A A A A A A IO I A A d° O° A A d° A A A A A A% I A° A d° J° o° o°

('save', [handle]);

Save the measured data to a file.

[handle] = Handle of the sweep session.
[filename] = File in which to store the data.

Zzoom FFT Parameters

ce string Device that should be used for
the zoom FFT, e.g. 'dev99'.
int Number of FFT points 27bit
int Zoom FFT mode
0 = Perform FFT on X+iY
1 = Perform FFT on R
2 = Perform FFT on Phase
count int Number of zoom FFT loops (default 1)
ess int Perform endless zoom FFT (default 0)
0 = Use loopcount value
1 = Endless zoom FFT enabled, ignore
loopcount
lap double FFT overlap 0 = none, [0..1]
ling/time double Settling time before measurement is performed

ling/tc double Settling time in time constant units before
the FFT recording is started.
5 ~ low precision
15 ~ medium precision
50 ~ high precision

zoomFFT/window int FFT window (default 1 = Hann)

0 = Rectangular
1 = Hann
2 = Hamming
3 = Blackman Harris 4 term

lute bool Shifts the frequencies so that the center

frequency becomes the demodulation frequency
rather than 0 Hz.

('"zoomFFT', [timeout (int64)]);

[timeout] = Poll timeout in [ms]

Creates a zoom FFT class. The thread is not yet started.
Before the thread start subscribe and set command have
to be called. To start the real measurement use the
execute function.

('listNodes', [handle], [path], [flags(int64) = 0]);
[path] = Path string
[flags] = int64(0) -> 2T LIST NONE 0x00

The default flag, returning a simple
listing if the given node

int64 (1) -> ZI_LIST RECURSIVE 0x01
Returns the nodes recursively

int64(2) -> ZI_LIST ABSOLUTE 0x02
Returns absolute paths

int64 (4) -> ZI_LIST LEAFSONLY 0x04
Returns only nodes that are leafs,
which means the they are at the
outermost level of the tree.

int64(8) -> ZI_LIST SETTINGSONLY 0x08
Returns only nodes which are marked
as setting

Or combinations of flags might be used.

('subscribe', [handle], [path]);

Subscribe to one or several nodes. After subscription
the recording process can be started with the 'execute'
command. During the recording process paths can not be
subscribed or unsubscribed.

[handle] = Reference to the ziDAQZoomFFT class.

LabOne Programming Manual

Revision 31421 Zurich Instruments

62

http://www.zhinst.com

3.5. LabOne Matlab API (ziDAQ) Command Reference

[path]

Path string of

ziDAQ ('"unsubscribe', [handle],
Unsubscribe from one or
recording process paths
unsubscribed.
[handle] Reference to
[path] Path string of

z1DAQ ('execute', [handle]);
Start the zoom FET.

between 0 and 1.

ziDAQ ('finish', [handle]);
Stop the zoomFFT.
calling 'execute' again.

ziDAQ ('clear', [handlel]);

[handle]

Device Settings Module

Device Settings Parameters

devicesettings/device string
devicesettings/path string
devicesettings/filename string
devicesettings/command string

A0 A0 d° O Od° O° A° d° O° OO A AdC A O A A A IO I A A A O O A Ad° A A A A A A% I A A A O O A A A A A A A IO I A A d° O° A A d° A A A A A A% I A° A d° J° o° o°

The default

the node. Use wild card to

select all. Alternatively also a list of path
strings can be specified.

[pathl);
several nodes. During the
can not be subscribed or

the ziDAQZoomFFT class.
the node. Use wild card to

select all. Alternatively also a list of path
strings can be specified.

Subscription or unsubscription
is no more possible until the zoomFFT is finished.

otherwise 0.

result = ziDAQ('finished', [handle]);
[handle] = Handle of the zoom FFT session.
Returns 1 if the zoom FFT is finished,
result = ziDAQ('read', [handle]):;
[handle] = Handle of the zoom FFT session.
Transfer the zoomFFT data to Matlab.
result = ziDAQ ('progress', [handle]);

Report the progress of the measurement with a number

The zoom FFT may be restarted by

Handle of the zoom FFT session.
Stop the current zoom FFT.

Device whose settings are to be
saved/loaded, e.g. 'dev99'.

Path where the settings files are to
be located. If not set, the default
settings location of the LabOne
software is used.

The file to which the settings are to
be saved/loaded.

The save/load command to execute.

'save' = Read device settings and save
to file.
'load' = Load settings from file and
write to device.
'read' = Read device settings only
(no save) .
handle = ziDAQ('deviceSettings', [timeout (int64)1]);
[timeout] = Poll timeout in [ms]
Creates a device settings class for saving/loading device
settings to/from a file. Before the thread start, set the path,
filename and command parameters. To run the command, use the
execute function.
result = ziDAQ('listNodes', [handle], [path], [flags(int64) = 0]);
[path] = Path string
[flags] = int64(0) -> zZI LIST NONE 0x00

flag, returning a simple

LabOne Programming Manual Revision 31421

Zurich Instruments

63

http://www.zhinst.com

3.5. LabOne Matlab API (ziDAQ) Command Reference

[handle]

result = ziDAQ('read',
[handle]

between
ziDAQ ('finish'
calling
ziDAQ ('clear',
[handle]
End the

PLL Advisor Module

PLL Advisor Parameters
pllAdvisor/bode

pllAdvisor/calculate
pllAdvisor/center
pllAdvisor/d
pllAdvisor/demodbw

pllAdvisor/i
pllAdvisor/mode

pllAdvisor/order
plladvisor/p
pllAdvisor/pllbw

pllAdvisor/pm

A0 A0 d° O Od° O° A° d° O° OO A AdC A O A A A IO I A A A O O A Ad° A A A A A A% I A A A O O A A A A A A A IO I A A d° O° A A d° A A A A A A% I A° A d° J° o° o°

ziDAQ ('subscribe',

zi1iDAQ ('unsubscribe',

ziDAQ ('execute',

Execute the command.

result = ziDAQ('finished',

result = ziDAQ ('progress',
Report the progress of the command with a number

listing if the given node

int64 (1

) -> Z2I LIST RECURSIVE 0x01

Returns the nodes recursively

int64 (2

) -> Z2I LIST ABSOLUTE 0x02

Returns absolute paths

int64 (4

) -> ZI LIST LEAFSONLY 0x04

Returns only nodes that are leafs,
which means the they are at the
outermost level of the tree.

int64 (8) -> ZI LIST SETTINGSONLY 0x08
Returns only nodes which are marked
as setting

Or combinations of flags might be used.

[handle], [path]);
Not relevant for the device settings module.

[handle], [path]);
Not relevant for the device settings module.

[handle]);

[handlel]) ;

= Handle of the device settings session.

[handle])

Returns 1 if the command is finished, otherwise 0.

’

= Handle of the device settings session.

0 and 1.

Transfer the device settings to Matlab.
Not relevant since device settings are saved to a file.

[handle]);

, [handle]) ;

'execute'

[handle]

Stop the device settings module. The module may be restarted by

again.

)

= Handle of the device settings session.
current device settings thread.

struct
int
double
int
int

double
double

double
int

int

int

Output parameter. Contains the resulting bode
plot of the PLL simulation.

Command to calculate values. Set to 1 to start
the calculation.

Center frequency of the PLL oscillator. The PLL
frequency shift is relative to this center
frequency.

Differential gain.

Demodulator bandwidth used for the PLL loop
filter.

Integral gain.

Select PLL Advisor mode. Currently only one mod
(open loop) is supported.

Demodulator order used for the PLL loop filter.
Proportional gain.

Demodulator bandwidth used for the PLL loop
filter.

Output parameter. Simulated phase margin of the
PLL with the current settings. The phase margin
should be greater than 45 deg and preferably

e

LabOne Programming Manual Revision 31421

Zurich Instruments

64

http://www.zhinst.com

3.5. LabOne Matlab API (ziDAQ) Command Reference

device. Before the
call execute () and
the simulation.

int64 (1)

int64(2)

int64 (4)

int64(8)

z1iDAQ ('execute', [handle]

result = ziDAQ('read', [handle]):;

subset of the data

between 0 and 1.

ziDAQ ('finish', [handle])

ziDAQ ('clear', [handlel]);

A0 A0 d° O Od° O° A° d° O° OO A AdC A O A A A IO I A A A O O A Ad° A A A A A A% I A A A O O A A A A A A A IO I A A d° O° A A d° A A A A A A% I A° A d° J° o° o°

greater than 65 deg for stable conditions.

pllAdvisor/pmfreq int Output parameter. Simulated phase margin
frequency.

pllAdvisor/q int Quality factor. Currently not used.

pllAdvisor/rate int PLL Advisor sampling rate of the PLL control
loop.

pllAdvisor/stable int Output parameter. When 1, the PLL Advisor found
a stable solution with the given settings. When
0, revise your settings and rerun the PLL
Advisor.

pllAdvisor/targetbw int Requested PLL bandwidth. Higher frequencies may
need manual tuning.

pllAdvisor/targetfail int Output parameter. 1 indicates the simulated PLL

BW is smaller than the Target BW.

handle = ziDAQ('pllAdvisor', [timeout (int64)]);
[timeout] = Poll timeout in [ms]
Creates a PLL Advisor class for simulating the PLL in the

thread start, set the command parameters,
then set the "calculate" parameter to start

result = ziDAQ('listNodes', [handle], [path], [flags(int6d4) = 0]);
[path] = Path string
[flags] = int64(0) -> ZI LIST NONE 0x00

The default flag, returning a simple
listing if the given node

-> ZI LIST RECURSIVE 0x01

Returns the nodes recursively

-> 7ZI_LIST ABSOLUTE 0x02

Returns absolute paths

-> 7ZI LIST LEAFSONLY 0x04

Returns only nodes that are leafs,
which means the they are at the
outermost level of the tree.

-> 7ZI LIST SETTINGSONLY 0x08

Returns only nodes which are marked
as setting
Or combinations of flags might be used.

ziDAQ ('subscribe', [handle], [path]);
Subscribe to one or several nodes.

ziDAQ ('unsubscribe', [handle], [path]);
Unsubscribe from one or several nodes..

)

Start the PLL Advisor.

result = ziDAQ('finished', [handle]);
[handle] = Handle of the PLL Advisor session.
Returns 1 if the command is finished, otherwise 0.

[handle] = Handle of the PLL Advisor session.
Read pllAdvisor data. If the simulation is still ongoing only a

is returned.

result = ziDAQ ('progress', [handle]);
Report the progress of the command with a number

’

Stop the PLL Advisor module.

[handle] = Handle of the PLL Advisor session.

LabOne Programming Manual Revision 31421

Zurich Instruments

65

http://www.zhinst.com

3.5. LabOne Matlab API (ziDAQ) Command Reference

End the current PLL Advisor thread.

PID Advisor Module

PID Advisor Parameters

pidAdvisor/advancedmode int
pidAdvisor/auto int
pidAdvisor/bode struct
pidAdvisor/bw double
pidAdvisor/calculate int

pidAdvisor/display/fregstart double

pidAdvisor/display/fregstop double

pidAdvisor/display/timestart double

Disable automatic calculation of the
start and stop value.

Automatic response calculation triggered
by parameter change.

Output parameter. Contains the resulting
bode plot of the PID simulation.

Output parameter. Calculated system
bandwidth.

In/Out parameter.
values. Set to 1 to start the
calculation.

Start frequency for Bode plot.

For disabled advanced mode the start
value is automatically derived from the
system properties.

Stop frequency for Bode plot.

Start time for step response.

Command to calculate

% pidAdvisor/display/timestop double Stop time for step response.

% pidAdvisor/dut/bw double Bandwith of the DUT (device under test).

% pidAdvisor/dut/damping double Damping of the second order

% low pass filter.

% pidAdvisor/dut/delay double IO Delay of the feedback system

% describing the earliest response for

% a step change.

% pidAdvisor/dut/fcenter double Resonant frequency of the of the modelled

% resonator.

% pidAdvisor/dut/gain double Gain of the DUT transfer function.

% pidAdvisor/dut/q double quality factor of the modelled resonator.

% pidAdvisor/dut/source int Type of model used for the external

% device to be controlled by the PID.

% source = 1: Lowpass first order

% source = 2: Lowpass second order

% source = 3: Resonator frequency

% source = 4: Internal PLL

% source = 5: VCO

% source = 6: Resonator amplitude

% pidAdvisor/impulse struct Output parameter. Impulse response

% (not yet supported).

% pidAdvisor/index int PID index for parameter detection.

% pidAdvisor/pid/autobw int Adjusts the demodulator bandwidth to fit

% best to the specified target bandwidth

% of the full system.

% pidAdvisor/pid/d double In/Out parameter. Differential gain.

% pidAdvisor/pid/dlimittimeconstant

% double In/Out parameter. Differential filter

% timeconstant.

% pidAdvisor/pid/i double In/Out parameter. Integral gain.

% pidAdvisor/pid/mode double Select PID Advisor mode. Mode value is

% bit coded, bit 0: P, bit 1: I, bit 2: D,

% bit 3: D filter limit.

% pidAdvisor/pid/p double In/Out parameter. Proportional gain.

% pidAdvisor/pid/rate double In/Out parameter. PID Advisor sampling

% rate of the PID control loop.

% pidAdvisor/pid/targetbw double PID system target bandwidth.

% pidAdvisor/pm double Output parameter. Simulated phase margin

% of the PID with the current settings.

% The phase margin should be greater than

% 45 deg and preferably greater than 65 deg

% for stable conditions.

% pidAdvisor/pmfreq double Output parameter. Simulated phase margin

% frequency.

% pidAdvisor/stable int Output parameter. When 1, the PID Advisor
LabOne Programming Manual Revision 31421 Zurich Instruments 66

http://www.zhinst.com

3.5. LabOne Matlab API (ziDAQ) Command Reference

[timeout] =

device.
call execute ()
the simulation.

A0 A0 d° O Od° O° A° d° O° OO A AdC A O A A A IO I A A A O O A Ad° A A A A A A% I A A A O O A A A A A A A IO I A A d° O° A A d° A A A A A A% I A° A d° J° o° o°

[handle] =

Poll timeout in
Creates a PID Advisor class for simulating the PID in the
Before the thread start,
and then set the "calculate" parameter to start

found a stable solution with the given
settings. When 0, revise your settings
and rerun the PID Advisor.

pidAdvisor/step struct Output parameter. Contains the resulting
step response plot of the PID simulation.
pidAdvisor/targetbw double Requested PID bandwidth. Higher
frequencies may need manual tuning.
pidAdvisor/targetfail int Output parameter. 1 indicates the
simulated PID BW is smaller than the
Target BW.
pidAdvisor/tf/closedloop int Switch the response calculation mode
between closed or open loop.
pidAdvisor/tf/input int Start point for the plant response
simulation for open or closed loops.
pidAdvisor/tf/output int End point for the plant response
simulation for open or closed loops.
pidAdvisor/tune int Optimize the PID parameters so that
the noise of the closed-loop
system gets minimized.
handle = ziDAQ('pidAdvisor', [timeout (int64)]);

[ms]

set the command parameters,

result = ziDAQ('listNodes', [handle], [path], [flags(int64) = 0]);
[handle] = Handle of the PID Advisor session.
[path] = Path string
[flags] = int64(0) -> ZI LIST NONE 0x00
The default flag, returning a simple
listing if the given node
inte6d (1) -> ZI LIST RECURSIVE 0x01
Returns the nodes recursively
inte64 (2) -> ZI LIST ABSOLUTE 0x02
Returns absolute paths
inte6d (4) -> ZI LIST LEAFSONLY 0x04
Returns only nodes that are leafs,
which means the they are at the
outermost level of the tree.
int64 (8) -> ZI LIST SETTINGSONLY 0x08
Returns only nodes which are marked
as settings
Or combinations of flags might be used.
ziDAQ ('subscribe', [handle], [path]);
[handle] = Handle of the PID Advisor session.
Subscribe to one or several nodes.
ziDAQ ('unsubscribe', [handle], [pathl);
[handle] = Handle of the PID Advisor session.
Unsubscribe from one or several nodes..
ziDAQ ('get', [handle], [pathl);
[handle] = Handle of the PID Advisor session.
[path] = Path string of the node.
ziDAQ ('execute', [handle]);
[handle] = Handle of the PID Advisor session.
Starts the pidAdvisor if not yet running.
ziDAQ ('trigger', [handle]);
Not applicable to this module.
result = ziDAQ('finished', [handle]);

Handle of the PID Advisor session.

LabOne Programming Manual Revision 31421

Zurich Instruments

67

http://www.zhinst.com

3.5. LabOne Matlab API (ziDAQ) Command Reference

oe o

o©

result =

o0 oo de o

oe

result =

A0 d° O O° o° A d° O° OO A d° A° OO A A A A% O A A A° A° O A Ad° A A A A I A I A A A° O O A A A OO A A I A% A A A A° I° O A d° J° O° ° o e

oo

Returns 1 if the command is finished,

ziDAQ ('read',

[handle]

Read pidAdvisor data.

ziDAQ ('progress',

[handle]

between

ziDAQ('finish',

[handle]

ziDAQ ('clear',

[handle]

ziDAQ ('save',

[handle]);

ot

herwise 0.

= Handle of the PID Advisor session.
If the simulation is still ongoing only a
subset of the data is returned.

[handlel]) ;

= Handle of the PID Advisor session.
Report the progress of the command with a number

0 and 1.

[handle]) ;

= Handle of the PID Advisor session.
Stop the PID Advisor module.

[handle]) ;

= Handle of the PID Advisor session.
End the current PID Advisor thread.

[handle]) ;

Save the measured data to a file.
= Handle of the PID Advisor session.

[handle]

[filename] =
Debugging Functions

ziDAQ ('setDebugLevel',
[debuglevel] =

error:4,

fatal:5,

File name string

(trace:0,

(without

[debuglevell]) ;
Debug level
status:6) .

inf

extension) ..

o:1, debug:2,

Enables debug log and sets the debug level.

ziDAQ ('writeDebugLog',
[severity] =

error:4,

[message] =
Outputs message to the debug log

ziDAQ ('logOn',

Flags =

fatal:5,

[flags],
LOG_NONE:

Severity

[severity],
(trace:0,
status:0) .
Message to output to the log.

[filename],

LOG_SET DOUBLE:

LOG_SET INT:
LOG_SET BYTE:

LOG_SYNC_SET DOUBLE:
LOG_SYNC SET INT:
LOG_SYNC_SET BYTE:
LOG_GET DOUBLE:

LOG_GET INT:

LOG_GET BYTE:

LOG_GET_ DEMOD:
LOG_GET DIO:

LOG_GET_ AUXIN:
LOG_LISTNODES:
LOG_SUBSCRIBE:
LOG_UNSUBSCRIBE:
LOG_GET AS EVENT:
LOG_UPDATE:
LOG_POLL EVENT:
LOG_POLL:
LOG ALL

Log file name

[filename] =
LOG_STYLE TELNET: 0
LOG_STYLE_MATLAB: 1

2

[style] =

LOG_STYLE PYTHON:

Log all messages sent to the ziServer.
for debugging.

[message]) ;
info:1,

(1f ena

[stylel]);

0x00000000
0x00000001
0x00000002
0x00000004
0x00000010
0x00000020
0x00000040
0x00000100
0x00000200
0x00000400
0x00001000
0x00002000
0x00004000
0x00010000
0x00020000
0x00040000
0x00080000
0x00100000
0x00200000
0x00400000
OxfEffffff

(default)

debug:2,

bled) .

This is useful

warning:3,

warning:3,

LabOne Programming Manual

Revision 31421

Zurich Instruments

68

http://www.zhinst.com

3.5. LabOne Matlab API (ziDAQ) Command Reference

o©

ziDAQ ('logOff'") ;

oe

o©

Turn of message logging.

LabOne Programming Manual Revision 31421

Zurich Instruments

69

http://www.zhinst.com

Chapter 4. Python Programming

Python is open source software, freely available for download from Python's official website .
Python is a high-level programming language with an extensive standard library renowned for
its "batteries included" approach. Combined with the NumPy package for scientific computing,
Python is a powerful computational tool for scientists that does not require expensive software
licenses. The Zurich Instruments LabOne Python API, also known as ziPython enables the user
to configure and stream data from their instrument directly into Python.

This chapter aims to help you get started using the Zurich Instruments LabOne Python AP,
ziPython, to control your instrument, please refer to:

= Section 4.1 for help Installing the LabOne Python API .

= Section 4.2 for help Getting Started with the LabOne Python APl and Runningthe Examples.
= Section 4.3 for LabOne Python API Tips and Tricks .

= Section 4.4 for the LabOne Python API (ziPython) Command Reference .

Note

This chapter and the provided examples are not intended to be a Python tutorial. For help getting
started with Python itself, see either the Python Tutorial or one of the many online resources, for
example, the learnpython.org. The Interactive Python Course is an interesting resource for those
already familiar with Python basics.

LabOne Programming Manual Revision 31421 Zurich Instruments 70

http://www.zhinst.com
http://www.python.org
http://www.numpy.org
https://docs.python.org/2/tutorial/
http://www.learnpython.org
http://interactivepython.org/courselib/static/pythonds/index.html

4.1. Installing the LabOne Python API

4.1. Installing the LabOne Python API

4.1.1.

4.1.2.

Requirements

In order to install and use the LabOne Python APl you require:

1. Either a Python 2.6 or a Python 2.7 installation on either Windows or Linux.
2. The NumPy python package installed for your Python installation.

3. The correct version of ziPython for your Python version and platform, available from the
Zurich Instruments download page (login required).

Note

Linux users must also ensure they download the version of zi Python that is Unicode compatible
with their Linux distribution's Python installation, see Section 4.1.4 for help determining which
version is required.

Note

Important: If you your system already has an existing zi Python installation older than version
14.08, please be sure to either manually uninstall ziPython or manually remove the existing
zhinst installation folder. Thisis due toimprovementsin the zhinst package structure in 14.08
(examples for different device classes are now organized in separate module/sub-directories) and
the Python installer simply overwrites the existing installation, leading to a duplication of some
files. For help locating [PYTHONROOT] \1ib\site-packages\zhinst\ onyour system, please
see the section called “Locating the zhinst Installation Folder and Examples”.

Recommended Python Packages

The following Python packages can additionally be useful for programming with the LabOne
Python API:

1. Matplotlib - recommended to plot the output from many of ziPython's examples.

2. SciPy - recommended to load data saved from the LabOne Ul in binary Matlab format ((mat).

Note

Unofficial pre-compiled 32-bit and 64-bit Windows binaries of NumPy, SciPy and matplotlib are
available from Christoph Gohlke's pythonlibs page .

LabOne Programming Manual Revision 31421 Zurich Instruments 71

http://www.zhinst.com
http://www.numpy.org
http://www.zhinst.com/downloads
http://matplotlib.org
http://www.scipy.org
http://www.lfd.uci.edu/%7Egohlke/pythonlibs

4.1. Installing the LabOne Python API

4.1.3. Windows Installation

Toinstall ziPython on Windows execute the .msi installer available from the Zurich Instruments
download page (login required). It will guide you through the installation process as displayed in

the following screenshots.

15! Python ziPythan-14.08.25901 Setup (=5

Select whether to install Python ziPython-14.08.25901 for
all users of this computer.

' Install just for me

Back [Mext =] [Cancel]

Figure 4.1. Windows ziPython installation: Step 1.

If multiple Python Installations are available on your system, the installer will ask which Python
version the ziPython package should be installed. The ziPython package will be installed in

selected versions in the folder [PYTHONROOT] \1ib\site-packages\zhinst\.

15 Python ziPython-14.08.25901 Setup ==

Select Python Installations
Select the Python locations where ziPythion-14.08.25901 should be in...

=R |rython 2.7 from registry
---------- Python from another location

< Back [Mext »] [Cancel]

Figure 4.2. Windows ziPython installation: Step 2.

LabOne Programming Manual Revision 31421 Zurich Instruments

72

http://www.zhinst.com
http://www.zhinst.com/downloads

4.1. Installing the LabOne Python API

1) Python ziPython-14.08.25901 Setup (=3

Install Python ziPython-14.08.25901

Please wait while the Installer installs Pythion ziPython-14.02,25901, This
may take several minutes,

Status: Walidating install

< Back MNext =

Figure 4.3. Windows ziPython installation: Step 3.

4.1.4. Linux Installation

In addition to the requirements above and selecting the correct version of ziPython for your
Python distribution (2.6 or 2.7) and platform (32-bit or 64-bit), on Linux the correct Unicode version
must also be installed. This is because some Python distributions on Linux are compiled to use
UCS-2 character encoding, whereas some use UCS-4.

Determining the correct Unicode version of zi Pyt hon for your Python

distribution

In order to determine which version of Unicode your Python distribution uses, please type the
following commands in the interactive shell of your target Python distribution:

>>> import sys
>>> print sys.maxunicode
If the last command prints:

= 55535, use the UCS-2 version of ziPython,
= 1114111, usetheUCS-4versionof ziPython.

Note
The installation needs root access rights. If you do not have these permissions, ask your system
administrator for help.

Toinstall ziPythonona Debian-derived distribution such as Ubuntu perform the following steps:

1. If required, install Python, NumPy and matplotlib (with elevated access rights):

$ sudo apt-get install python python-numpy python-matplotlib

LabOne Programming Manual Revision 31421 Zurich Instruments 73

http://www.zhinst.com

4.1. Installing the LabOne Python API

2. Unpack the ziPython software bundle:
$ tar xzf ziPython-[version]-[build]-[linux32|1linux64].tar.gz
3. Change directory into the unpacked folder and run the setup script setup.py as following:

$ cd ziPython-[version]-[build]-(1linux32|linux64)
$ python setup.py build
$ sudo python setup.py install --install-layout=deb # Elevated access rights

It's possible to skipthebuildstep (install willautomatically perform this step), but splitting
the steps avoids creating a directory in your user space which is owned by root.

LabOne Programming Manual Revision 31421 Zurich Instruments 74

http://www.zhinst.com

4.2. Getting Started with the LabOne Python API

4.2. Getting Started with the LabOne Python API

4.2.1.

4.2.2.

4.2.3.

This section introduces the user to the LabOne Python API.

Contents of the LabOne Python API

Alongside the driver for interfacing with your Zurich Instruments device, the LabOne Python API
includes utility functions and examples. See:

= Section 4.4.1 to see which examples are available in ziPython.

= Section 4.4.2 to see which utility functions are available in ziPython.

Using the Built-in Documentation

ziPython's built-in documentation can be accessed using the help command in a python
interactive shell:

= On module level:

>>> import zhinst.ziPython as ziPython
>>> help(ziPython)

= Onclass level, for example, for the Sweeper Module:

>>> import zhinst.ziPython as ziPython
>>> help (ziPython.ziDAQSweeper)

= On function level, for example, for the ziDAQServer poll method:

>>> import zhinst.ziPython as ziPython
>>> help (ziPython.ziDAQServer.poll)

See Section 4.4, LabOne Python API (ziPython) Command Reference for a printer friendly version
of the built-in documentation.

Running the Examples

Prerequisites for running the Python examples:

1. The zhinst package is installed as described above in Section 4.1 .

2. The Data Server program is running and the instrument is connected to the Data Server. See
Section 1.1.1 and the User Manual specific to the instrument for more help connecting.

3. Signal Output 1 of the instrument is connected to Signal Input 1 via a BNC cable; many of the
Python examples measure on this hardware channel.

It's also recommended to install the Matplotlib Python package in order to plot the data obtained
in many of the examples, see Section 4.1.2.

The APl examples are available in the module zhinst.examples, which is organized into sub-
modules according to the target Instrument class:

= zhinst.examples.common:examples compatible with with any class of instrument,

LabOne Programming Manual Revision 31421 Zurich Instruments 75

http://www.zhinst.com
http://matplotlib.org

4.2. Getting Started with the LabOne Python API

= zhinst.examples.uhf:examples only compatible with the UHF Lock-in Amplifier,

= zhinst.examples.hf2:examples only compatible with HF2 Series Instruments.

All the examples follow the same structure and take one input argument: The device ID of the
instrument to run the example with. The recommended way to run a ziPython example is to
import the example's module in an interactive shell and call the run_example () function. For
example, to run the zoomFFT Module example:

>>> import zhinst.examples
>>> # Use do plot=False if matplotlib is unavailable
>>> zhinst.examples.common.example zoomfft.run example('devl23', do plot=True);

The example should produce some output in the Python shell, such as:

Will perform 1 zoomFFTs

Individual zoomFFT 100.00 complete.
sample contains 1 zoomFFTs

Number of lines in first zoomFFT: 65535

Most examples will also plot the retrieved data using matplotlib, see Figure 4.4 for an example.
If you encounter an error message please ensure that the above prerequisites are fulfilled.

Results of zoomFFT

=50

-100

Amplitude (dBV)

—150

i I | | | |
1000 2000 3000 4000 5000 6000 7000

-150

| I |
4000 5000 6000 7000
Frequency (Hz) +1.496e6

I I I
1000 2000 3000

E’ Frequency (Hz) +1.496e6
i 0 ! ! ! ! ! !

=

=

=

T 50 .
o

g
S‘_100_”_”@__““””_@___“_””g___”“”““_”__““”5”___”_“3””____”3””__
[aa] | | | | | |

S . . : . : :

@

=

2

I=3

£

<

Figure 4.4. The plot produced by the LabOne Python APl example example zoomfft.py;the
plots show the results of an FFT performed with ziCore's zoomFFT module on demodulator
output obtained over a simple feedback cable.

Exploring which Examples are available

Python's help system can be used to see which examples are available for a particular device
class; when help is called on the module the available examples are listed under the "Package
Contents" section. For example, for the zhinst.examples. common package:

LabOne Programming Manual Revision 31421 Zurich Instruments 76

http://www.zhinst.com

4.2. Getting Started with the LabOne Python API

>>> help ('zhinst.examples.common')
Help on package zhinst.examples.common in zhinst.examples:

NAME
zhinst.examples.common - Zurich Instruments LabOne Python API Examples (for any
instrument class).

FILE
/usr/lib/python2.7/dist-packages/zhinst/examples/common/ init .py

MODULE DOCS
http://docs.python.org/library/zhinst.examples.common

PACKAGE CONTENTS
example connect
example connect config
example poll
example record edge trigger
example save device settings
example save device settings expert
example save device settings simple
example_ sweeper
example zoomfft

DATA
all = ['example connect', 'example connect', 'example connect conf...

Locating the zhi nst Installation Folder and Examples

The examples distributed with the zhinst package can serve as a starting point to program your
own measurement needs. The example python files, however, are generally not installed in user
space. In order to ensure that you have sufficient permission to edit the examples and that your
modifications are not overwritten by a later upgrade of the zhinst package, please copy them to
your own user space before editing them.

The examples are contained in a subfolder of the zhinst package installation folder

[PYTHONROOT]\lib\site-packages\zhinst\

If you are unsure about the location of your PYTHONROOT, the _path _ attribute of the zhinst
module can be used in order to determine its location, for example,

>>> import zhinst
>>> print zhinst. path

will output something similar to:

C:\Python27\1lib\site-packages\zhinst

4.2.4. Using ziCore Modules in the LabOne Python API

In the LabOne Python APl ziCore Modules are configured and controlled by instantiating an
object of the Module's class. For example, in order to use the Sweeper Module a sweeper object
is created as following;:

LabOne Programming Manual Revision 31421 Zurich Instruments 77

http://www.zhinst.com

4.2. Getting Started with the LabOne Python API

>>> daq = ziPython.ziDAQServer ('localhost', 8004, 4) # Create a connection to the
Data Server
(running on the same PC as the API client)
>>> timeout milliseconds = 500
>>> sweeper = daq.sweep (timeout milliseconds);

Note, that since creating a Module object without an APl connection to the Data Server does not
make sense, the Sweeper object is instantiated via the sweep method of the ziDAQServer class,
not directly from from the ziDAQSweeper class.

The Module's parameters are configured using the Module's set method and specifying a path,
value pair, for example:

>> sweeper.set ('sweep/start', 1.2e5);

The parameters can be read-back using the get method, which supports wildcards, for example:

>> sweep params = sweeper.get ('sweep/*');

Thevariable sweep params now contains adictionary of all the Sweeper's parameters. The other
main Module commands are similarly used, e.g., sweeper.execute (), to start the sweeper. See
Section 2.1.2 for more help with Modules and a description of their parameters.

LabOne Programming Manual Revision 31421 Zurich Instruments 78

http://www.zhinst.com

4.3. LabOne Python API Tips and Tricks

4.3. LabOne Python API Tips and Tricks

In this section some tips and tricks for working with the LabOne Python APl are provided.

Data Structures returned by zi Pyt hon.

The output arguments that ziPython returns are designed to use the native data structures
that Python users are familiar with and that reflect the data's location in the instruments
node hierarchy. For example, when the poll command returns data from the instruments
fourth demodulator (located in the node hierarchy as /dev123/demods/3/sample), the output
argument contains a tree of nested dictionaries in which the data can be accessed by

data = dag.poll(poll length, poll timeout);
x = data['devl23']['demods']['4'] ['sample']['x"'];
y = data['dev123']['demods']['4"']['sample']['y']:

Tell pol | toreturn a flat dictionary

By default, the data returned by pol1l is contained in a tree of nested dictionaries that closely
mimics the tree structure of the instrument node hierarchy. By setting the optional fifth argument
of pollto True, the data will be a flat dictionary. This can help avoid many nested i f statements
in order to check that the expected data was returned by pol1. For example:

dag.subscribe ('/dev123/demods/0/sample")
flat dictionary key = False
data = dag.poll (0.1, 200, 1, flat dictionary key)
if 'devl23' in data:
if 'demods' in data['device']:

if '0' in data['device']['demods']:
access the demodulator data:
x = data['devl23']['demods']['0'] ['sample'] ['x"]
y = data['dev123']['demods']['0'] ['sample']l['y"']

Could be rewritten more concisely as:

dag.subscribe ('/dev123/demods/0/sample’')
flat dictionary key = True
data = dag.poll (0.1, 200, 1, flat dictionary key)
if '/devl23/demods/0/sample' in data:

access the demodulator data:

x = data['/devl23/demods/0/sample'] [’

A}
]
y = data['/devl23/demods/0/sample']['y"

x
v']

Use the Utility Routines to load Data saved from the LabOne Ul and
ziControl in Python.

The utilities package zhinst.utils contains several routines to help loading .csv or .mat
files saved from either the LabOne User Interface or ziControl into Python. These functions are
generally minimal wrappers around NumPy (genfromtxt ())or SciPy (loadmat ()) routines.
However, the function load labone demod csv () is optimized to load demodulator data
saved in .csv format by the LabOne Ul (since it specifies the .csv columns' dtypes explicitly)
and the function load zicontrol zibin () candirectly load data saved in binary format from
ziControl. See Section 4.4.2 for reference documentation on these commands.

LabOne Programming Manual Revision 31421 Zurich Instruments 79

http://www.zhinst.com
http://www.numpy.org
http://www.scipy.org

4.4, LabOne Python API (ziPython) Command Reference

4.4. LabOne Python API (ziPython) Command
Reference

4.4.1.

4.4.2.

The following reference documentation for ziPython is available in from within a python session
using python's help (see Section 4.2.2) command; It is included here for convenience.

The documentation is grouped by module and class as following:

= Help forthe zhinst Python Package

= Help for zhinst's Utility Functions

= Help for ziPython's ziDAQServer class

= Help forziPython's ziDeviceSettings class
= Help for ziPython's ziDAQSweeper class

= Help for ziPython's zi DAQZoomFFT class

= Help for ziPython's ziDAQRecorder class

= Help forziPython's ziP11Advisor class

= Help forziPython's ziPidAdvisor class

Help for the zhi nst Python Package

>>> help ('zhinst"')
Help on package zhinst:

NAME
zhinst - Zurich Instruments LabOne Python API

FILE
/usr/lib/python2.7/dist-packages/zhinst/ init .py

MODULE DOCS
http://docs.python.org/library/zhinst

DESCRIPTION
Contains the API driver, utility functions and examples for Zurich Instruments
devices.

PACKAGE CONTENTS
examples (package)
utils
ziPython

DATA
all = ['ziPython', 'utils']

Help for zhinst's Utility Functions
>>> help ('zhinst.utils"')

Help on module zhinst.utils in zhinst:

NAME
zhinst.utils - Zurich Instruments LabOne Python API Utility Functions.

LabOne Programming Manual Revision 31421 Zurich Instruments 80

http://www.zhinst.com

4.4, LabOne Python API (ziPython) Command Reference

FILE
/usr/lib/python2.7/dist-packages/zhinst/utils.py

MODULE DOCS
http://docs.python.org/library/zhinst.utils

DESCRIPTION
This module provides basic utility functions for:

- Creating an API session by connecting to an appropriate Data Server.
- Detecting devices.
- Loading and saving device settings.

- Loading data saved by either the Zurich Instruments LabOne User Interface or
ziControl into Python as numpy structured arrays.

FUNCTIONS
autoConnect (default_port=None, api_level=None)
Try to connect to a Zurich Instruments Data Server with an attached
available UHF or HF2 device.

Important: autoConnect () does not support MFLI devices.
Args:

default port (int, optional): The default port to use when connecting to
the Data Server (specify 8005 for the HF2 Data Server and 8004 for the
UHF Data Server).

api level (int, optional): The API level to use, either 1, 4 or 5. HF2 only
supports Level 1, Level 5 is recommended for UHF and MFLI devices.

Returns:

ziDAQServer: An instance of the ziPython.ziDAQServer class that is used
for communication to the Data Server.

Raises:

RunTimeError: If no running Data Server is found or no device is found
that is attached to a Data Server.x

If default port is not specified (=None) then first try to connect to a HF2,
if no server devices are found then try to connect to an UHF. This behaviour
is useful for the API examples. If we cannot connect to a server and/or
detect a connected device raise a RunTimeError.

If default port is 8004 try to connect to a UHF; if it is 8005 try to
connect to an HF2. If no server and device is detected on this port raise
a RunTimeError.

autoDetect (daqg, exclude=None)
Return a string containing the first device ID (not in the exclude list)
that is attached to the Data Server connected via daq, an instance of the
ziPython.ziDAQServer class.

Args:

daq (ziDAQServer): An instance of the ziPython.ziDAQServer class
(representing an API session connected to a Data Server).

exclude (list of str, optional): A list of strings specifying devices to
exclude. autoDetect () will not return the name of a device in this
list.

LabOne Programming Manual Revision 31421 Zurich Instruments 81

http://www.zhinst.com

4.4, LabOne Python API (ziPython) Command Reference

Returns:
A string specifying the first device ID not in exclude.
Raises:

RunTimeError: If no device was found.
RunTimeError: If dag is not an instance of ziPython.ziDAQServer.

Example:

zhinst.utils

dagq = zhinst.utils.autoConnect ()

device = zhinst.utils.autoDetect (daq)

check for_sampleloss (timestamps)

Check whether timestamps are equidistantly spaced, it not, it is an
indication that sampleloss has occurred whilst recording the demodulator
data.
This function assumes that the timestamps originate from continuously saved
demodulator data, during which the demodulator sampling rate was not
changed.

Arguments:

timestamp (numpy array): a l-dimensional array containing
demodulator timestamps

Returns:
idx (numpy array): a l-dimensional array indicating the indices in
timestamp where sampleloss has occurred. An empty array 1is returned in no
sampleloss was present.

devices (daq)

Return a list of strings containing the device IDs that are attached to the

Data Server connected via daq, an instance of the ziPython.ziDAQServer

class. Returns an empty list if no devices are found.

Args:

daq (ziDAQServer): An instance of the ziPython.ziDAQServer class
(representing an API session connected to a Data Server).

Returns:

A list of strings of connected device IDs. The list is empty if no devices
are detected.

Raises:
RunTimeError: If dag is not an instance of ziPython.ziDAQServer.
Example:
import zhinst.utils
dag = zhinst.utils.autoConnect () # autoConnect not supported for MFLI
devices

device = zhinst.utils.autoDetect (daq)

get default settings path (daq)
Return the default path used for settings by the ziDeviceSettings module.

Arguments:

LabOne Programming Manual Revision 31421 Zurich Instruments 82

http://www.zhinst.com

4.4, LabOne Python API (ziPython) Command Reference

dag (instance of ziDAQServer): A ziPython API session.
Returns:
settings path (str): The default ziDeviceSettings path.
load labone csv(fname)
Load a CSV file containing generic data as saved by the LabOne User
Interface into a numpy structured array.
Arguments:
filename (str): The filename of the CSV file to load.

Returns:

sample (numpy ndarray): A numpy structured array of shape (num points,)

whose field names correspond to the column names in the first line of the

CsV file. num points is the number of lines in the CSV file - 1.
Example:

import zhinst.utils

Load the CSV file of PID error data (node: /dev2004/pids/0/error)
data = zhinst.utils.load_labone_csv('dev2004_pids_0_error_00000.csv')
import matplotlib.pyplot as plt

Plot the error

plt.plot(data['timestamp'], datal['value'l])

load labone demod csv(fname, column names=('chunk', 'timestamp',6 'x', 'y',
'freq', 'phase', 'dio', 'trigger', 'auxinO', 'auxinl'))
Load a CSV file containing demodulator samples as saved by the LabOne User
Interface into a numpy structured array.

Arguments:

fname (file or str): The file or filename of the CSV file to load.

column names (list or tuple of str, optional): A list (or tuple) of column

names to load from the CSV file. Default is to load all columns.
Returns:

sample (numpy ndarray): A numpy structured array of shape (num points,)

whose field names correspond to the column names in the first line of the

CSV file. num points is the number of lines in the CSV file - 1.
Example:

import zhinst.utils

sample =
zhinst.utils.load labone demod csv('dev2004 demods 0 sample 00000.csv',
('timestamp', 'x', 'yv'))

import matplotlib.pyplot as plt

import numpy as np

plt.plot (sample['timestamp'], np.abs(sample['x'] + 1lj*sample['y']))

load labone mat (filename)
A wrapper function for loading a MAT file as saved by the LabOne User
Interface with scipy.io's loadmat () function. This function is included
mainly to document how to work with the data structure return by
scip.io.loadmat () .

Arguments:

filename (str): the name of the MAT file to load.

LabOne Programming Manual Revision 31421 Zurich Instruments

83

http://www.zhinst.com

4.4, LabOne Python API (ziPython) Command Reference

Returns:

data (dict): a nested dictionary containing the instrument data as
specified in the LabOne User Interface. The nested structure of '‘“data '
corresponds to the path of the data's node in the instrument's node
hierarchy.

Further comments:

The MAT file saved by the LabOne User Interface (UI) is a Matlab V5.0 data
file. The LabOne UI saves the specified data using native Matlab data
structures in the same format as are returned by commands in the LabOne
Matlab API. More specifically, these data structures are nested Matlab
structs, the nested structure of which correspond to the location of the
data in the instrument's node hierarchy.

Matlab structs are returned by scipy.io.loadmat () as dictionaries, the
name of the struct becomes a key in the dictionary. However, as for all
objects in MATLAB, structs are in fact arrays of structs, where a single
struct is an array of shape (1, 1). This means that each (nested)
dictionary that is returned (corresponding to a node in node hierarchy) is
loaded by scipy.io.loadmat as a l-by-1 array and must be indexed as

such. See the "~ 'Example’ section below.

For more information please refer to the following link:
http://docs.scipy.org/doc/scipy/reference/tutorial/io.htmlfmatlab-structs

Example:
device = 'dev88'
See " "Further explanation’ above for a comment on the indexing:
timestamp = data[device] [0,0]['demods'][0,0]['sample'][0,0]["'timestamp'] [0]

x = datal[device] [0,0]['demods'][0,0]['sample'][0,0]["'x"]1[0]
y datal[device] [0,0] ['demods'] [0,0] ['sample'][0,0]1["'y"]11[0]
import matplotlib.pyplot as plt

import numpy as np

plt.plot (timestamp, np.abs(x + 1j*y))

If multiple demodulator's are saved, data from the second demodulator,
e.g., 1s accessed as following:
x = datal[device] [0,0]['demods'][0,1]['sample'][0,0]["'x"]1[0]

load settings(daq, device, filename)
Load a LabOne settings file to the specified device. This function is
synchronous; it will block until loading the settings has finished.

Arguments:

dag (instance of ziDAQServer): A ziPython API session.

device (str): The device ID specifying where to load the settings,
e.g., 'devl23'.

filename (str): The filename of the xml settings file to load. The
filename can include a relative or full path.

Raises:

RunTimeError: If loading the settings times out.

Examples:

import zhinst.utils as utils
dagq = utils.autoConnect ()
dev = utils.autoDetect (daq)

Then, e.g., load settings from a file in the current directory:

LabOne Programming Manual Revision 31421 Zurich Instruments 84

http://www.zhinst.com

4.4, LabOne Python API (ziPython) Command Reference

utils.load settings(dag, dev, 'my settings.xml')

Then, e.g., load settings from the default LabOne settings path:
filename = 'default ui.xml'

path = utils.get default settings path (daq)

utils.load settings(dag, dev, path + os.sep + filename)

load zicontrol csv(filename, column names=('t', 'x', 'y', 'freq', 'dio',
'auxin0O', 'auxinl'))
Load a CSV file containing demodulator samples as saved by the ziControl
User Interface into a numpy structured array.

Arguments:
filename (str): The file or filename of the CSV file to load.

column names (list or tuple of str, optional): A list (or tuple) of column
names (demodulator sample field names) to load from the CSV file. Default
is to load all columns.

Returns:

sample (numpy ndarray): A numpy structured array of shape (num points,)
whose field names correspond to the field names of a ziControl demodulator
sample. num points is the number of lines in the CSV file - 1.

Example:

import zhinst.utils

sample = zhinst.utils.load labone csv('Freql.csv', ('t', 'x', 'y'))
import matplotlib.plt as plt

import numpy as np

plt.plot(sample['t'], np.abs(sample['x'] + 1j*sample['y']))

load zicontrol zibin(filename, column names=('t', 'x', 'y', 'freq', 'dio',
'auxin0O', 'auxinl'))
Load a ziBin file containing demodulator samples as saved by the ziControl
User Interface into a numpy structured array. This is for data saved by
ziControl in binary format.

Arguments:
filename (str): The filename of the .ziBin file to load.

column names (list or tuple of str, optional): A list (or tuple) of column
names to load from the CSV file. Default is to load all columns.

Returns:

sample (numpy ndarray): A numpy structured array of shape (num points,)
whose field names correspond to the field names of a ziControl demodulator
sample. num points is the number of sample points saved in the file.

Further comments:

Specifying a fewer names in "~ “column names ~ will not result in a speed-up
as all data is loaded from the binary file by default.

Example:

import zhinst.utils

sample = zhinst.utils.load_zicontrol_ zibin('Fregl.ziBin')
import matplotlib.plt as plt

import numpy as np

plt.plot (sample['t'], np.abs(sample['x'] + 1lj*sample['y']))

save_ settings(daq, device, filename)
Save settings from the specified device to a LabOne settings file. This

LabOne Programming Manual Revision 31421 Zurich Instruments 85

http://www.zhinst.com

4.4, LabOne Python API (ziPython) Command Reference

DATA

function is synchronous; it will block until saving the settings has

finished.
Arguments:
daq (instance of ziDAQServer): A ziPython API session.

device (str): The device ID specifying where to load the settings,
e.g., 'devl23'.

filename (str): The filename of the LabOne xml settings file. The filename

can include a relative or full path.
Raises:

RunTimeError: If saving the settings times out.
Examples:

import zhinst.utils as utils
dag = utils.autoConnect ()
dev = utils.autoDetect (daq)

Then, e.g., save settings to a file in the current directory:
utils.save settings(dag, dev, 'my settings.xml')

Then, e.g., save settings to the default LabOne settings path:
filename = 'my settings example.xml'

path = utils.get default settings path (daq)

utils.save settings(daq, dev, path + os.sep + filename)

LABONE_DEMOD DTYPE =
LABONE DEMOD FORMATS
LABONE_DEMOD NAMES =

ZICONTROL FORMATS = ('f8', 'f8', 'f8', 'f8', 'ud4', 'f8', 'f8")
ZICONTROL NAMES = ('t', 'x', 'y', 'freq', 'dio', 'auxinO', 'auxinl')

4.4.3. Help for ziPython's zi DAQSer ver class

>>> help ('zhinst.ziPython.ziDAQServer"')

Help on class ziDAQServer in zhinst.ziPython:

zhinst.ziPython.ziDAQServer = class ziDAQServer (Boost.Python.instance)

Class to connect with the instrument server of Zurich Instruments.

Method resolution order:
ziDAQServer
Boost.Python.instance
__builtin .object

Methods defined here:

__init (...)
__init_ ((object)argl) -> None

~_init ((object)argl, (str)arg2, (int)arg3) -> None
Connect to the server by using host address and port number.
argl: Reference to the ziDAQServer class.

[('chunk', 'u8'), ('timestamp', 'u8'), ('x', 'f8'...
= ('u8', 'us', 'f8', 'f8', 'f8', 'f8', 'ud', 'ud'...
('chunk', 'timestamp', 'x', 'y', 'freqg', 'phase', ...
ZICONTROL DTYPE = [('t', 'f8"'), ('x', 'f8'), ('y', 'f8'), ('freq', 'f8...
]

LabOne Programming Manual Revision 31421 Zurich Instruments

86

http://www.zhinst.com

4.4, LabOne Python API (ziPython) Command Reference

arg2: Host string e.g. '127.0.0.1' for localhost.
arg3: Port number e.g. 8004 for the ziDataServer.

__init ((object)argl, (str)arg2, (int)arg3, (int)arg4) -> None
Connect to the server by using host address and port number.
argl: Reference to the ziDAQServer class.
arg2: Host string e.g. '127.0.0.1' for localhost.
arg3: Port number e.g. 8004 for the ziDataServer.
arg4: API level number.

__reduce__ = <unnamed Boost.Python function>(...)
connect (...)

connect ((ziDAQServer)argl) -> None
connectDevice (...)

connectDevice ((ziDAQServer)argl, (str)arg2, (str)arg3, (str)arg4) -> None

Connect with the data server to a specified device over the specified
interface. The device must be visible to the server. If the device is
already connected the call will be ignored. The function will block
until the device is connected and the device is ready to use. This
method is useful for UHF devices offering several communication
interfaces.

argl: Reference to the ziDAQServer class.

arg2: Device serial.

arg3: Device interface.

arg4: Optional interface parameters string.

connectDevice ((ziDAQServer)argl, (str)arg2, (str)arg3) -> None

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| deviceSettings(...)

| deviceSettings ((ziDAQServer)argl, (long)arg2) -> ziDeviceSettings

| Create a deviceSettings class. This will start a thread for running an
| asynchronous deviceSettings.

| argl: Reference to the ziDAQServer class.

| arg2: Timeout in [ms]. Recommended value is 500ms.

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

disconnect (...)
disconnect ((ziDAQServer)argl) -> None

disconnectDevice(...)
disconnectDevice ((ziDAQServer)argl, (str)arg2) -> None
Disconnect a device on the data server. This function will return
immediately. The disconnection of the device may not yet finished.
argl: Reference to the ziDAQServer class.
arg2: Device serial string of device to disconnect.

echoDevice (...)
echoDevice ((ziDAQServer)argl, (str)arg2) -> None
Sends an echo command to a device and blocks until
answer is received. This is useful to flush all
buffers between API and device to enforce that
further code is only executed after the device executed
a previous command.
argl: Reference to the ziDAQServer class.
arg2: Device string e.g. 'dev100'.

flush(...)
flush((ziDAQServer)argl) -> None
Flush all data in the socket connection and API buffers.
Call this function before a subscribe with subsequent poll
to get rid of old streaming data that might still be in
the buffers.
argl: Reference to the ziDAQServer class.

get(...)
get ((ziDAQServer)argl, (str)arg2, (bool)arg3) -> object

LabOne Programming Manual Revision 31421 Zurich Instruments

http://www.zhinst.com

4.4, LabOne Python API (ziPython) Command Reference

Return a dict with all nodes from the
High-speed streaming nodes (e.g. /devN
are not returned. Wildcards (*) may be
read-only nodes are ignored.
argl: Reference to the ziDAQServer
arg2: Path string of the node. Use
select all.
arg3[optional]: Specify which type
Return data either as a flat
dict tree (False). Default =

get ((ziDAQServer)argl, (str)arg2) -> obje

getAsEvent (...)
getAsEvent ((ziDAQServer)argl, (str)arg?2)
Trigger an event on the specified node
subsequent poll command.
argl: Reference to the ziDAQServer
arg2: Path string of the node.

getAuxInSample (...)
getAuxInSample ((ziDAQServer)argl, (str)ar

specified sub-tree.
/demods/0/sample)
used, 1in which case

class.
wild card to

of data structure to return.
dict (True) or as a nested
False.

ct

-> None

. The node data is returned by a

class.

g2) -> object

Returns a single auxin sample. The auxin data is averaged in contrast to

the auxin data embedded in the demodul
argl: Reference to the ziDAQServer
arg2: Path string

getByte(...)
getByte ((ziDAQServer)argl, (str)arg2) ->

ator sample.
class.

object

Get a byte array (string) wvalue from the specified node.

argl: Reference to the ziDAQServer
arg2: Path string of the node.

getConnectionAPILevel ((ziDAQServer)argl)
Returns ziAPI level used for the actiwv

getDIO(...)

class.

-> int
e connection.

getDIO((ziDAQServer)argl, (str)arg2) -> object

Returns a single DIO sample.
argl: Reference to the ziDAQServer
arg2: Path string

getDouble(...)
getDouble ((ziDAQServer)argl, (str)arg2) -
Get a double value from the specified
argl: Reference to the ziDAQServer
arg2: Path string of the node.

getInt(...)
getInt ((ziDAQServer)argl, (str)arg2) -> i
Get a integer value from the specified
argl: Reference to the ziDAQServer
arg2: Path string of the node.

getList(...)
getlList ((ziDAQServer)argl, (str)arg2) ->
Return a list with all nodes from the
argl: Reference to the ziDAQServer
arg2: Path string of the node. Use
select all.

getSample(...)
getSample ((ziDAQServer)argl, (str)arg2) -
Returns a single demodulator sample (i
efficient data recording use subscribe

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| getConnectionAPILevel(...)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| argl: Reference to the ziDAQServer

class.

> float
node.
class.

nt
node.
class.

object

specified sub-tree.
class.

wild card to

> object
ncluding DIO and AuxIn). For more
and poll methods.

class.

LabOne Programming Manual Revision 31421 Zurich Instruments

88

http://www.zhinst.com

4.4, LabOne Python API (ziPython) Command Reference

arg2: Path string

listNodes (...)
listNodes ((ziDAQServer)argl, (str)arg2, (int)arg3) -> list
This function returns a list of node names found at the specified path.
argl: Reference to the ziDAQRecorder class.
arg2: Path for which the nodes should be listed. The path may
contain wildcards so that the returned nodes do not
necessarily have to have the same parents.
arg3: Enum that specifies how the selected nodes are listed.
ziPython.ziListEnum.none -> 0x00
The default flag, returning a simple
listing if the given node
ziPython.zilListEnum.recursive -> 0x01
Returns the nodes recursively
ziPython.zilListEnum.absolute -> 0x02
Returns absolute paths
ziPython.zilListEnum.leafsonly -> 0x04
Returns only nodes that are leafs,
which means the they are at the
outermost level of the tree.
ziPython.zilListEnum.settingsonly -> 0x08
Returns only nodes which are marked
as setting
Or combinations of flags can be used.

logOff(...)
logOff((ziDAQServer)argl) -> None
Disables logging of commands sent to a server.
argl: Reference to the ziDAQServer class.

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| logOn(...)

| logOn ((ziDAQServer)argl, (int)arg2, (str)arg3, (int)arg4) -> None
| Enables logging of commands sent to a server.

| argl: Reference to the ziDAQServer class.

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

arg2: Flags (LOG NONE: 0x00000000
LOG_SET DOUBLE: 0x00000001
LOG_SET INT: 0x00000002
LOG_SET BYTE: 0x00000004
LOG_SYNC_SET DOUBLE: 0x00000010
LOG_SYNC SET INT: 0x00000020
LOG_SYNC_SET BYTE: 0x00000040
LOG_GET DOUBLE: 0x00000100
LOG_GET_ INT: 0x00000200
LOG_GET BYTE: 0x00000400
LOG_GET_ DEMOD: 0x00001000
LOG_GET DIO: 0x00002000
LOG_GET AUXIN: 0x00004000
LOG_LISTNODES: 0x00010000
LOG_SUBSCRIBE: 0x00020000
LOG_UNSUBSCRIBE: 0x00040000
LOG_GET_AS_EVENT: 0x00080000
LOG_UPDATE: 0x00100000
LOG_POLL_EVENT: 0x00200000
LOG_POLL: 0x00400000
LOG_ALL : Oxffffffff)

arg3: Log file name.
arg4: Log style (LOG_STYLE TELNET: O (default),
LOG_STYLE MATLAB: 1, LOG STYLE PYTHON: 2).

logOn((ziDAQServer)argl, (int)arg2, (str)arg3) -> None

pidAdvisor(...)
pidAdvisor ((ziDAQServer)argl, (long)arg2) -> ziPidAdvisor
Create a pidAdvisor class. This will start a thread for running an
asynchronous pidAdvisor.
argl: Reference to the ziDAQServer class.

LabOne Programming Manual Revision 31421 Zurich Instruments

http://www.zhinst.com

4.4, LabOne Python API (ziPython) Command Reference

arg2: Timeout in [ms]. Recommended value is 500ms.

pllAdvisor(...)
pllAdvisor ((ziDAQServer)argl, (long)arg2) -> ziPllAdvisor
Create a pllAdvisor class. This will start a thread for running an
asynchronous pllAdvisor.
argl: Reference to the ziDAQServer class.

arg2: Timeout in [ms]. Recommended value is 500ms.
poll(...)
poll((ziDAQServer)argl, (float)arg2, (long)arg3, (int)arg4, (bool)arg5) ->
object
This function returns subscribed data previously in the API's buffers or
obtained during the specified time. It returns a dict tree containing
the recorded data. This function blocks until the recording time is
elapsed. argl: Reference to the ziDAQServer class.
arg2: Recording time in [s]. The function will block during that.
time.
arg3: Poll timeout in [ms]. Recommended value is 500ms.
arg4[optional]: Poll flags.
FILL = 0x0001 : Fill holes.
ALIGN = 0x0002 : Align data that contains a
timestamp.
THROW = 0x0004 : Throw EOFError exception if sample
loss is detected.
argS[optional]: Specify which type of data structure to return.
Return data either as a flat dict (True) or as a nested
dict tree (False). Default = False.
poll ((ziDAQServer)argl, (float)arg2, (long)arg3 [, (int)argd4]) -> object
pollEvent (...)

pollEvent ((ziDAQServer)argl, (long)arg2) -> object
Execute a single poll command. Note: only one data packet will be
fetched. To get all data waiting in the buffers this command should be
executed continuously until nothing is returned anymore. This is a low
level command. Use the poll command or asynchronous recording instead.
argl: Reference to the ziDAQServer class.
arg2: Poll timeout in [ms]. Recommended value is 500ms.

programRT (.. .)
programRT ((ziDAQServer)argl, (str)arg2, (str)arg3) -> None
Program RT.
argl: Device identifier e.g. 'dev99'.
arg2: File name of the RT program.

record(...)
record((ziDAQServer)argl, (float)arg2, (long)arg3, (int)arg4d) ->

iDAQRecorder

Create a recording class. This will start a thread for asynchronous
recording.

argl: Reference to the ziDAQServer class.

arg2: Maximum recording time for single triggers in [s].

arg3: Timeout in [ms]. Recommended value is 500ms.
arg4[optional]: Record flags.
FILL = 0x0001 : Fill holes.
ALIGN = 0x0002 : Align data that contains a
timestamp.

THROW = 0x0004 : Throw EOFError exception if
sample loss is detected.

record((ziDAQServer)argl, (float)arg2, (long)arg3) -> ziDAQRecorder
revision(...)

revision((ziDAQServer)argl) -> int
Get the revision number of the Python interface of Zurich Instruments.

LabOne Programming Manual Revision 31421 Zurich Instruments 90

http://www.zhinst.com

4.4, LabOne Python API (ziPython) Command Reference

argl: Reference to the ziDAQServer class.

set(...)
set ((ziDAQServer)argl, (object)arg2) -> None
argl: Reference to the ziDAQServer class.
arg2: A list of path/value pairs.

setByte(...)
setByte ((ziDAQServer)argl, (str)arg2, (object)arg3) -> None
argl: Reference to the ziDAQServer class.
arg2: Path string of the node.

setDebugLevel (...)
setDebuglevel ((ziDAQServer)argl, (int)arg2) -> None
Enables debug log and sets the debug level.
argl: Reference to the ziDAQServer class.
arg2: Debug level (trace:0, info:1, debug:2, warning:3, error:4,
fatal:5, status:0).

setDouble (...)
setDouble ((ziDAQServer)argl, (str)arg2, (float)arg3) -> None
argl: Reference to the ziDAQServer class.
arg2: Path string of the node.

setInt(...)
setInt ((ziDAQServer)argl, (str)arg2, (int)arg3) =-> None
argl: Reference to the ziDAQServer class.
arg2: Path string of the node.

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| subscribe (...)

| subscribe ((ziDAQServer)argl, (object)arg2) -> None

| Subscribe to one or several nodes. Fetch data with the poll
| command. In order to avoid fetching old data that is still in the
| buffer execute a flush command before subscribing to data streams.
| argl: Reference to the ziDAQServer class.

| arg2: Path string of the node. Use wild card to
| select all. Alternatively also a list of path
| strings can be specified.

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

sweep (...)
sweep ((ziDAQServer)argl, (long)arg2) -> ziDAQSweeper
Create a sweeper class. This will start a thread for asynchronous
sweeping.
argl: Reference to the ziDAQServer class.
arg2: Timeout in [ms]. Recommended value is 500ms.

sync(...)
sync ((ziDAQServer)argl) -> None
Synchronize all data path. Ensures that get and poll
commands return data which was recorded after the
setting changes in front of the sync command. This
sync command replaces the functionality of all syncSet,
flush, and echoDevice commands.
argl: Reference to the ziDAQServer class.
syncSetDouble(...)

syncSetDouble ((ziDAQServer)argl, (str)arg2, (float)arg3) -> float
argl: Reference to the ziDAQServer class.
arg2: Path string of the node.

syncSetInt (...)
syncSetInt ((ziDAQServer)argl, (str)arg2, (int)arg3) -> int
argl: Reference to the ziDAQServer class.
arg2: Path string of the node.

unsubscribe(...)
unsubscribe ((ziDAQServer)argl, (object)arg2) -> None

LabOne Programming Manual Revision 31421 Zurich Instruments

91

http://www.zhinst.com

4.4, LabOne Python API (ziPython) Command Reference

Unsubscribe data streams. Use this command after recording to avoid
buffer overflows that may increase the latency of other command.
argl: Reference to the ziDAQServer class.
arg2: Path string of the node. Use wild card to
select all. Alternatively also a list of path
strings can be specified.

update(...)
update ((ziDAQServer)argl) -> None
Check if additional devices are attached. This function is not needed
for servers running under windows as devices will be detected
automatically.
argl: Reference to the ziDAQServer class.

version(...)
version((ziDAQServer)argl) -> str
Get version string of the Python interface of Zurich Instruments.
argl: Reference to the ziDAQServer class.

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| writeDebugLog(...)

| writeDebugLog((ziDAQServer)argl, (int)arg2, (str)arg3) -> None
| Outputs message to the debug log (if enabled).
| argl: Reference to the ziDAQServer class.
| arg2: Severity (trace:0, info:1, debug:2, warning:3, error:4,
| fatal:5, status:0).

| arg3: Message to output to the log.
|

| ZOOMEFFT (...)

| zoomFFT ((ziDAQServer)argl, (long)arg2) -> ziDAQZoomFFT

| Create a zoomFFT class. This will start a thread for running an
| asynchronous zoomFET.

| argl: Reference to the ziDAQServer class.

| arg2: Timeout in [ms]. Recommended value is 500ms.

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Data and other attributes defined here:
__instance _size = 48

Data descriptors inherited from Boost.Python.instance:
_ dict
__weakref

Data and other attributes inherited from Boost.Python.instance:

new = <built-in method new of Boost.Python.class object>
T. new (S, ...) -> a new object with type S, a subtype of T

4.4.4. Help for ziPython's zi Devi ceSet ti ngs class

An instance of ziDeviceSettings is initialized using the deviceSettings method from
ziDAQServer:

>>> help('zhinst.ziPython.ziDAQServer.deviceSettings"')

Help on method deviceSettings in zhinst.ziPython.ziDAQServer:

LabOne Programming Manual Revision 31421 Zurich Instruments 92

http://www.zhinst.com

4.4, LabOne Python API (ziPython) Command Reference

zhinst.ziPython.ziDAQServer.deviceSettings = deviceSettings(...) unbound
zhinst.ziPython.ziDAQServer method
deviceSettings((ziDAQServer)argl, (long)arg2) -> ziDeviceSettings
Create a deviceSettings class. This will start a thread for running an
asynchronous deviceSettings.
argl: Reference to the ziDAQServer class.
arg2: Timeout in [ms]. Recommended value is 500ms.

Reference help for the ziDeviceSettings class.
>>> help('zhinst.ziPython.ziDeviceSettings"')
Help on class ziDeviceSettings in zhinst.ziPython:

zhinst.ziPython.ziDeviceSettings = class ziDeviceSettings (Boost.Python.instance)
| Method resolution order:

ziDeviceSettings

Boost.Python.instance

__builtin .object

Methods defined here:
~_reduce_ = <unnamed Boost.Python function>(...)

clear(...)
clear ((ziDeviceSettings)argl) -> None
End the deviceSettings thread.

execute(...)
execute ((ziDeviceSettings)argl) -> None
Execute the save/loadcommand.

finish(...)
finish((ziDeviceSettings)argl) -> None
Stop the load/save command. The command may be restarted by calling
'execute' again.

finished(...)
finished((ziDeviceSettings)argl) -> bool
Check if the command execution has finished. Returns True if finished.

get(...)
get ((ziDeviceSettings)argl, (str)arg2, (bool)arg3d) -> object
Return a dict with all nodes from the specified sub-tree.
argl: Reference to the ziDAQDeviceSettings class.
arg2: Path string of the node. Use wild card to
select all.
arg3[optional]: Specify which type of data structure to return.
Return data either as a flat dict (True) or as a nested
dict tree (False). Default = False.

get ((ziDeviceSettings)argl, (str)arg2) -> object

listNodes (...)
listNodes ((ziDeviceSettings)argl, (str)arg2, (int)arg3) -> list
This function returns a list of node names found at the specified path.
argl: Reference to the pyDeviceSettings class.
arg2: Path for which the nodes should be listed. The path may
contain wildcards so that the returned nodes do not
necessarily have to have the same parents.
arg3: Enum that specifies how the selected nodes are listed.
ziPython.ziListEnum.none -> 0x00
The default flag, returning a simple
listing if the given node
ziPython.zilListEnum.recursive -> 0x01
Returns the nodes recursively

LabOne Programming Manual Revision 31421 Zurich Instruments

http://www.zhinst.com

4.4, LabOne Python API (ziPython) Command Reference

ziPython.ziListEnum.absolute -> 0x02
Returns absolute paths

ziPython.ziListEnum.leafsonly ->
Returns only nodes that are

which means the
outermost level

ziPython.ziListEnum.settingsonly

0x04
leafs,
they are at the
of the tree.

-> 0x08

Returns only nodes which are marked

as setting

Or combinations of flags can be used.

progress (...)

progress((ziDeviceSettings)argl)

-> object

Reports the progress of the command with a number between

0 and 1.

read(...)

read((ziDeviceSettings)argl,

(bool)arg?2)

-> object

Read device settings. Only relevant for the save command.

argl[optional]:

Return data either as a flat dict
Default =

dict tree (False).

read((ziDeviceSettings)argl)
save(...)

save ((ziDeviceSettings)argl,

(str)arg2)

Specify which type of data structure to return.

(True) or as a nested

False.

-> object

-> None

Not relevant for the deviceSettings module.

set(...)
set ((ziDeviceSettings)argl,
Device Settings Parameters

Path name Type

devicesettings/path string

devicesettings/filename string
devicesettings/command string

set ((ziDeviceSettings)argl,

set ((ziDeviceSettings)argl,

set ((ziDeviceSettings)argl,
argl:
arg2: A list of path/value

subscribe(...)

subscribe ((ziDeviceSettings)argl,

(str)arg2,

(str)arg2,
(str)arg2,

(object)arg2)
Reference to the pyDeviceSettings class.

(float)arg3) -> None
Description

Device that should be used for
loading/saving device settings,
e.g. 'dev99'.

Directory where settings files should be
located. If not set, the default settings
location of the LabOne software is used.
Name of settings file to use
The command to execute
'save' = Read device settings and save to
file.

Load settings from file and
write to device.
Read device settings only

(no save) .

'load' =

'read' =

(int)arg3) -> None

(str)arg3) -> None
-> None

pairs.

(str)arg2) -> None

Not relevant for the deviceSettings module.

trigger(...)
trigger((ziDeviceSettings)argl)
Not applicable to this module.

unsubscribe(...)

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| devicesettings/device string
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| unsubscribe (
|

(ziDeviceSettings)argl,

-> None

(str)arg2) -> None

Not relevant for the deviceSettings module.

LabOne Programming Manual Revision 31421

Zurich Instruments

94

http://www.zhinst.com

4.4, LabOne Python API (ziPython) Command Reference

Data and other attributes defined here:
~init = <built-in function init >

Raises an exception
This class cannot be instantiated from Python

Data descriptors inherited from Boost.Python.instance:
_dict
__weakref

Data and other attributes inherited from Boost.Python.instance:

new = <built-in method new of Boost.Python.class object>
T. new (S, ...) -> a new object with type S, a subtype of T

4.4.5. Help for ziPython's zi DAQSweeper class

Aninstance of ziDAQSweeper is initialized using the sweep method from ziDAQServer:

>>> help ('zhinst.ziPython.ziDAQServer.sweep')
Help on method sweep in zhinst.ziPython.ziDAQServer:

zhinst.ziPython.ziDAQServer.sweep = sweep(...) unbound zhinst.ziPython.ziDAQServer
method
sweep ((ziDAQServer)argl, (long)arg2) -> ziDAQSweeper
Create a sweeper class. This will start a thread for asynchronous

sweeping.
argl: Reference to the ziDAQServer class.
arg2: Timeout in [ms]. Recommended value is 500ms.

Reference help for the ziDAQSweeper class.

>>> help('zhinst.ziPython.ziDAQSweeper')
Help on class ziDAQSweeper in zhinst.ziPython:

zhinst.ziPython.ziDAQSweeper = class ziDAQSweeper (Boost.Python.instance)
| Method resolution order:

z1iDAQSweeper

Boost.Python.instance

~_builtin .object

Methods defined here:
~_reduce = <unnamed Boost.Python function>(...)

clear(...)
clear((ziDAQSweeper)argl) -> None
End the sweeper thread.

execute(...)
execute ((ziDAQSweeper)argl) -> None
Start the sweeper. Subscription or unsubscription is no more
possible until the sweep is finished.

LabOne Programming Manual Revision 31421 Zurich Instruments

http://www.zhinst.com

4.4, LabOne Python API (ziPython) Command Reference

finish(...)
finish((ziDAQSweeper)argl) -> None
Stop sweeping. The sweeping may be restarted by calling
'execute' again.

finished(...)
finished((ziDAQSweeper)argl) =-> bool
Check if the sweep has finished. Returns True if finished.

get(...)
get ((ziDAQSweeper)argl, (str)arg2, (bool)arg3) -> object
Return a dict with all nodes from the specified sub-tree.

argl: Reference to the ziDAQSweeper class.

arg2: Path string of the node. Use wild card to
select all.

arg3[optional]: Specify which type of data structure to return.
Return data either as a flat dict (True) or as a nested
dict tree (False). Default = False.

get ((ziDAQSweeper)argl, (str)arg2) -> object

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| listNodes (...)

| listNodes ((ziDAQSweeper)argl, (str)arg2, (int)arg3) -> list

| This function returns a list of node names found at the specified path.
| argl: Reference to the ziDAQRecorder class.

| arg2: Path for which the nodes should be listed. The path may
| contain wildcards so that the returned nodes do not

| necessarily have to have the same parents.

| arg3: Enum that specifies how the selected nodes are listed.
| ziPython.ziListEnum.none -> 0x00

| The default flag, returning a simple

| listing if the given node

| ziPython.zilListEnum.recursive -> 0x01

| Returns the nodes recursively

| ziPython.zilListEnum.absolute -> 0x02

| Returns absolute paths

| ziPython.ziListEnum.leafsonly -> 0x04

| Returns only nodes that are leafs,

| which means the they are at the

| outermost level of the tree.

| ziPython.zilListEnum.settingsonly -> 0x08

| Returns only nodes which are marked

| as setting

| Or combinations of flags can be used.

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

progress(...)
progress ((ziDAQSweeper)argl) -> object
Reports the progress of the measurement with a number between
0 and 1.

read(...)
read((ziDAQSweeper)argl, (bool)arg2) -> object

Read sweep data. If the sweeping is still ongoing only a subset

of sweep data is returned. If huge data sets

are recorded call this method to keep memory usage reasonable.

argl[optional]: Specify which type of data structure to return.

Return data either as a flat dict (True) or as a nested
dict tree (False). Default = False.

read((ziDAQSweeper)argl) -> object

save (...)
save ((ziDAQSweeper)argl, (str)arg2) -> None
Save sweeper data to file.
argl: Reference to the ziDAQSweeper class.
arg2: File name string (without extension).

LabOne Programming Manual Revision 31421 Zurich Instruments

http://www.zhinst.com

4.4, LabOne Python API (ziPython) Command Reference

set(...)
set (

(ziDAQSweeper) argl, (str)arg2,

Sweep Parameters

Path name Type
sweep/device string
sweep/start double
sweep/stop double
sweep/gridnode string
sweep/loopcount int
sweep/endless int
sweep/samplecount int
sweep/settling/time double
sweep/settling/tc double

sweep/settling/inaccuracy int

sweep/xmapping int
sweep/scan int
sweep/bandwidth double
sweep/bandwidthcontrol int
sweep/order int
sweep/maxbandwidth double

sweep/omegasuppression double

(float)arg3) -> None
Description
Device that should be used for

the parameter sweep, e.g. 'dev99'.
Sweep start frequency [Hz]
Sweep stop frequency [Hz]

Path of the node that should be

used for sweeping. For frequency

sweep applications this will be e.g.
'oscs/0/freq'. The device name of

the path can be omitted and is given

by sweep/device.

Number of sweep loops (default 1)

Sweep endless (default 0)

0 = endless off, use loopcount,

1 = endless on, ignore loopcount.

Number of samples per sweep.

Settling time before measurement is
performed.

Settling time in time constant units

5 ~ low precision

15 ~ medium precision

50 ~ high precision

Demodulator filter settling inaccuracy
defining the wait time between a sweep
parameter change and recording of the
next sweep point. Typical inaccuracy
values: 10m for highest sweep

speed for large signals, 100u for precise
amplitude measurements, 100n for precise
noise measurements. Depending on the
order the settling accuracy will define
the number of filter time constants the
sweeper has to wait. The maximum between
this value and the settling time is taken
as wait time until the next sweep point
is recorded.

Sweep mode:

0 = linear,

1 = logarithmic.

Scan type:

0 = sequential,

1 = binary,

2 = bidirectional,

3 = reverse.

Fixed bandwidth [Hz],

0 = Automatic calculation.

Sets the bandwidth control mode,
(default 2):

0 = Manual (user sets bandwidth and
order),

1 = Fixed (uses fixed bandwidth value),

2 = Auto (calculates best bandwidth
value) Equivalent to the obsolete
bandwidth = 0 setting.

Defines the filter roll off to use in
Fixed bandwidth selection.

Valid values are between 0 (6 dB/octave)
and 8 (48 dB/octave). An order of 0
triggers a read-out of the order from
the selected demodulator.

Maximal bandwidth used in auto bandwidth
mode in [Hz]. The default is 1.25MHz.
Damping in [dB] of omega and 2-omega

LabOne Programming Manual

Revision 31421

Zurich Instruments

97

http://www.zhinst.com

4.4, LabOne Python API (ziPython) Command Reference

sweep/averaging/tc

sweep/phaseunwrap

sweep/sincfilter

sweep/filename

sweep/savepath

sweep/fileformat

sweep/historylength
sweep/clearhistory
set ((ziDAQSweeper)argl,
set ((ziDAQSweeper)argl,

set ((ziDAQSweeper)argl,

argl:

subscribe(...)
subscribe (

argl:
arg2:

trigger(...)
trigger (

unsubscribe(...)
unsubscribe (

argl:
arg2:

sweep/averaging/sample

(ziDAQSweeper)argl,
Subscribe to one or several nodes. After subscription the
process can be started with the
sweep process paths can not be subscribed or unsubscribed.
Reference to the ziDAQSweeper class.

Path string of the node. Use wild card to
select all. Alternatively also a list of path
strings can be specified.

(ziDAQSweeper)argl)
Execute a manual trigger.

(ziDAQSweeper)argl,
Unsubscribe from one or several nodes.
sweep process paths can not be subscribed or unsubscribed.
Reference to the ziDAQSweeper class.

Path string of the node.
select all. Alternatively also a list of path
strings can be specified.

double

int

bool

bool

string

string

string

bool
bool
(str)arg2,

(str)arg2,

(object)arg2)
Reference to the ziDAQSweeper class.
arg2: A list of path/value pairs.

Data and other attributes defined here:

(str)arg?)

(str)arg?2)

components.
Default is
Use higher
or 3-omega
Min averaging time

40dB in favor of sweep speed.
value for strong offset values
measurement methods.

[tc]

0 = no averaging (see also time!)
5 ~ low precision
15 ~ medium precision

50 ~ high precision

Min samples to average

1 = no averaging (if averaging/tc =
Enable unwrapping of slowly changing
phase evolutions around the +/-180 degree
boundary.

Enables the sinc filter if the sweep
frequency is below 50 Hz.

This will improve the sweep speed at low
frequencies as omega components do not
need to be suppressed by the normal low
pass filter.

This parameter is deprecated. If
specified, i.e. not empty, it enables
automatic saving of data in single sweep
mode (sweep/endless = 0).

The directory where files are located
when saving sweeper measurements.

The format of the file for saving sweeper
measurements:

0 = Matlab,

1 = CSV.

Maximum number of entries stored in the
measurement history.

Remove all records from the history list.

0)

(int)arg3) -> None

(str)arg3) -> None

-> None

-> None
sweep

'execute' command. During the

-> None

-> None
During the

Use wild card to

LabOne Programming Manual

Revision 31421

Zurich Instruments

98

http://www.zhinst.com

4.4, LabOne Python API (ziPython) Command Reference

__init = <built-in function _ init >
Raises an exception
This class cannot be instantiated from Python

Data descriptors inherited from Boost.Python.instance:

__weakref

Data and other attributes inherited from Boost.Python.instance:

new = <built-in method _ new of Boost.Python.class object>

|
|
|
|
|
|
|
|
[dict
|
|
|
|
|
|
|
|

T. new (S, ...) -> a new oggect with type S, a subtype of T

4.4.6. Help for ziPython's zi DAQZoontFT class

Aninstance of ziDAQZoomFFT is initialized using the zoomFFT method from ziDAQServer:

>>> help ('zhinst.ziPython.ziDAQServer.zoomFFT")
Help on method zoomFFT in zhinst.ziPython.ziDAQServer:

zhinst.ziPython.ziDAQServer.zoomFFT = zoomFFT(...) unbound
zhinst.ziPython.ziDAQServer method
zoomFFT ((ziDAQServer)argl, (long)arg2) -> ziDAQZoomFFT
Create a zoomFFT class. This will start a thread for running an
asynchronous zoomFFT.
argl: Reference to the ziDAQServer class.
arg2: Timeout in [ms]. Recommended value is 500ms.

Reference help for the ziDAQZoomFFT class.

>>> help('zhinst.ziPython.ziDAQZoomFFT")
Help on class ziDAQZoomFFT in zhinst.ziPython:

zhinst.ziPython.ziDAQZoomFFT = class ziDAQZoomFFT (Boost.Python.instance)
| Method resolution order:
z1DAQZoomFFT
Boost.Python.instance
~_builtin .object

Methods defined here:
_ reduce__ = <unnamed Boost.Python function>(...)

|

|

|

|

|

|

|

|

| clear(...)

| clear ((ziDAQZoomFFT)argl) -> None
| End the zoom FFT thread.
|

|

|

|

|

|

|

|

execute(...)
execute ((ziDAQZoomFFT)argl) -> None
Start the zoom FFT. Subscription or unsubscription is no more
possible until the zoom FFT is finished.

finish(...)
finish((ziDAQZoomFFT)argl) -> None

LabOne Programming Manual Revision 31421 Zurich Instruments

http://www.zhinst.com

4.4, LabOne Python API (ziPython) Command Reference

Stop the zoom FFT. The zoom FFT may be restarted by calling
'execute' again.

finished(...)
finished((ziDAQZoomFFT)argl) -> bool
Check if the zoom FFT has finished. Returns True if finished.

get(...)
get ((ziDAQZoomFFT)argl, (str)arg2, (bool)arg3) -> object
Return a dict with all nodes from the specified sub-tree.
argl: Reference to the ziDAQZoomFFT class.
arg2: Path string of the node. Use wild card to
select all.

arg3[optional]: Specify which type of data structure to return.
Return data either as a flat dict (True) or as a nested

dict tree (False). Default = False.
get ((ziDAQZoomFFT)argl, (str)arg2) -> object

listNodes (...)
listNodes ((ziDAQZoomFFT)argl, (str)arg2, (int)arg3) -> list

This function returns a list of node names found at the specified path.

argl: Reference to the pyDAQZoomFFT class.

arg2: Path for which the nodes should be listed. The path may

contain wildcards so that the returned nodes do not
necessarily have to have the same parents.

arg3: Enum that specifies how the selected nodes are listed.

ziPython.zilListEnum.none -> 0x00
The default flag, returning a simple
listing if the given node

ziPython.zilListEnum.recursive -> 0x01
Returns the nodes recursively

ziPython.ziListEnum.absolute -> 0x02
Returns absolute paths

ziPython.zilListEnum.leafsonly -> 0x04
Returns only nodes that are leafs,
which means the they are at the
outermost level of the tree.

ziPython.zilListEnum.settingsonly -> 0x08
Returns only nodes which are marked
as setting

Or combinations of flags can be used.

progress (...)
progress ((ziDAQZoomFFT)argl) -> object
Reports the progress of the measurement with a number between
0 and 1.

read(...)
read((ziDAQZoomFFT)argl, (bool)arg2) -> object

Read zoom FFT data. If the zoom FFT is still ongoing only a subset

of zoom FFT data is returned.

argl[optional]: Specify which type of data structure to return.
Return data either as a flat dict (True) or as a nested

dict tree (False). Default = False.
read((ziDAQZoomFFT)argl) -> object

save (...)
save ((ziDAQZoomFFT)argl, (str)arg2) -> None
Save zoom FFT data to file.
argl: Reference to the ziDAQZoomFFT class.
arg2: File name string (without extension).

set(...)
set ((ziDAQZoomFFT)argl, (str)arg2, (float)arg3) -> None
Zoom FFT Parameters

LabOne Programming Manual Revision 31421 Zurich Instruments

100

http://www.zhinst.com

4.4, LabOne Python API (ziPython) Command Reference

Path name
zoomFFT/device

zoomFFT/bit
zoomFFT/mode

zoomFFT/loopcount
zoomFFT/endless

zoomFFT/overlap
zoomFFT/settling/time

zoomFFT/settling/tc

zoomFFT/window

zoomFFT/absolute

Type
string

int
int

int

int

double
double

double

int

bool

Description

Device that should be used for
the zoom FFT, e.g. 'dev99'.
Number of FFT points 27bit

Zoom FFT mode

0 = Perform FFT on X+iY

1 = Perform FFT on R

2 = Perform FFT on Phase

Number of zoomFFT loops (default
Perform endless zoomFFT (default
0 = endless off, use loopcount

1 = endless on, ignore loopcount
FFT overlap 0 = none, [0..1]
Settling time before measurement
performed.

Settling time in time constant units
before the FFT recording is started.

5 ~ low precision

15 ~ medium precision

50 ~ high precision

FFT window (default 1 = Hann)

0 = Rectangular
1 = Hann
2 = Hamming

3 = Blackman Harris 4 term

is

Shifts the frequencies so that the center
frequency becomes the demodulation

frequency rather than 0 Hz.

set ((ziDAQZoomFFT)argl, (str)arg2, (int)arg3) -> None

set ((ziDAQZoomFFT)argl, (str)arg2, (str)arg3) -> None

argl: Reference to the ziDAQZoomFFT class.
arg2: A list of path/value pairs.

subscribe (...)

subscribe ((ziDAQZoomFFT)argl,
Subscribe to one or several nodes. After subscription the zoom FFT

(str)arg2) -> None

process can be started with the 'execute' command. During the
zoom FFT process paths can not be subscribed or unsubscribed.
argl: Reference to the ziDAQZoomFFT class.
arg2: Path string of the node. Use wild card to
select all. Alternatively also a list of path
strings can be specified.

trigger(...)

trigger ((ziDAQZoomFFT)argl)

Execute a manual trigger.

unsubscribe(...)

unsubscribe ((ziDAQZoomFFT)argl,
Unsubscribe from one or several nodes. During the
zoom FFT process paths can not be subscribed or unsubscribed.
argl: Reference to the ziDAQZoomFFT class.
arg2: Path string of the node. Use wild card to
select all. Alternatively also a list of path
strings can be specified.

-> None

(str)arg2) -> None

Data and other attributes defined here:

__init = <built-in function _ init >

Raises an exception

This class cannot be instantiated from Python

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| set ((ziDAQZoomFFT)argl, (object)arg2) -> None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

LabOne Programming Manual Revision 31421

Zurich Instruments

101

http://www.zhinst.com

4.4, LabOne Python API (ziPython) Command Reference

Data descriptors inherited from Boost.Python.instance:

_dict

__weakref

Data and other attributes inherited from Boost.Python.instance:

new = <built-in method _ new

of Boost.Python.class object>

T. new (S, ...) —-> a new oggect with type S, a subtype of T

4.4.7. Help for ziPython's zi DAQRecor der class

Aninstance of ziDAQRecorder is initialized using the record method from ziDAQServer:

>>> help ('zhinst.ziPython.ziDAQServer.record"')

Help on method record in zhinst.ziPython.ziDAQServer:

zhinst.ziPython.ziDAQServer.record = record(...) unbound zhinst.ziPython.ziDAQServer
method
record((ziDAQServer)argl, (float)arg2, (long)arg3, (int)arg4) -> ziDAQRecorder

Create a recording class.
recording.

This will start a thread for asynchronous

argl: Reference to the ziDAQServer class.

arg2: Maximum recording time for single triggers in [s].
Recommended value is 500ms.
arg4[optional]: Record flags.

arg3: Timeout in [ms].

FILL = 0x0001
ALIGN = 0x0002
THROW = 0x0004
record((ziDAQServer)argl, (float)arg2,

Reference help for the ziDAQRecorder class.

>>> help ('zhinst.ziPython.ziDAQRecorder")

Fill holes.

Align data that contains a
timestamp.

Throw EOFError exception if
sample loss is detected.

(long)arg3) -> ziDAQRecorder

Help on class ziDAQRecorder in zhinst.ziPython:

zhinst.ziPython.ziDAQRecorder = class ziDAQRecorder (Boost.Python.instance)

Method resolution order:
ziDAQRecorder
Boost.Python.instance
__builtin .object

Methods defined here:

~_reduce_ = <unnamed Boost.Python function>(...)

clear(...)

clear((ziDAQRecorder)argl)

End the recording thread.

execute(...)

execute ((ziDAQRecorder)argl)

-> None

-> None

LabOne Programming Manual

Revision 31421

Zurich Instruments

102

http://www.zhinst.com

4.4, LabOne Python API (ziPython) Command Reference

Start the recorder. After that command any trigger will start
the measurement. Subscription or unsubscription is no more
possible until the recording is finished.

finish(...)
finish((ziDAQRecorder)argl) =-> None
Stop recording. The recording may be restarted by calling
'execute' again.
finished(...)

finished((ziDAQRecorder)argl) -> bool
Check if the recording has finished. Returns True if finished.

get(...)
get ((ziDAQRecorder)argl, (str)arg2, (bool)arg3) -> object
Return a dict with all nodes from the specified sub-tree.
argl: Reference to the ziDAQRecorder class.
arg2: Path string of the node. Use wild card to
select all.

arg3[optional]: Specify which type of data structure to return.
Return data either as a flat dict (True) or as a nested

dict tree (False). Default = False.
get ((ziDAQRecorder)argl, (str)arg2) -> object

listNodes (...)
listNodes ((ziDAQRecorder)argl, (str)arg2, (int)arg3) -> list

This function returns a list of node names found at the specified path.

argl: Reference to the ziDAQRecorder class.

arg2: Path for which the nodes should be listed. The path may

contain wildcards so that the returned nodes do not
necessarily have to have the same parents.

arg3: Enum that specifies how the selected nodes are listed.

ziPython.zilListEnum.none -> 0x00
The default flag, returning a simple
listing if the given node

ziPython.zilListEnum.recursive -> 0x01
Returns the nodes recursively

ziPython.ziListEnum.absolute -> 0x02
Returns absolute paths

ziPython.zilListEnum.leafsonly -> 0x04
Returns only nodes that are leafs,
which means the they are at the
outermost level of the tree.

ziPython.zilListEnum.settingsonly -> 0x08
Returns only nodes which are marked
as setting

Or combinations of flags can be used.

progress (...)
progress ((ziDAQRecorder)argl) -> object
Reports the progress of the measurement with a number between
0 and 1.

read(...)
read((ziDAQRecorder)argl, (bool)arg2) -> object

Read recorded data. If the recording is still ongoing only a subset
of recorded data is returned. If many triggers or huge data sets

are recorded call this method to keep memory usage reasonable.

argl[optional]: Specify which type of data structure to return.
Return data either as a flat dict (True) or as a nested

dict tree (False). Default = False.
read ((ziDAQRecorder)argl) -> object

save(...)
save ((ziDAQRecorder)argl, (str)arg2) -> None

LabOne Programming Manual Revision 31421 Zurich Instruments

103

http://www.zhinst.com

4.4, LabOne Python API (ziPython) Command Reference

Save trigger data to file.
argl: Reference to the ziDAQRecorder class.
arg2: File name string (without extension).

set(...)
set ((ziDAQRecorder)argl, (str)arg2, (float)arg3) -> None

Trigger Parameters

Path name Type Description

trigger/buffersize double Overwrite the buffersize [s] of the
trigger object (set when it was
instantiated). Recommended buffer size
is 2*trigger/0/duration.

trigger/device string The device ID to execute the software
trigger, e.g. devl23 (compulsory
parameter) .

trigger/endless bool Enable endless triggering:

1 = enable,
0 = disable.

trigger/forcetrigger bool Force a trigger.

trigger/0/path string The path to the demod sample to trigger
on, e.g. demods/3/sample, see also
trigger/0/source.

trigger/0/source int Signal that is used to trigger on.

0 = x [X_SOURCE]
1 =y [Y SOURCE]

2 = r [R_SOURCE]

3 = angle [ANGLE SOURCE]

4 = frequency [FREQUENCY SOURCE]

5 = phase [PHASE SOURCE]

6 = auxiliary input 0 [AUXINO_ SOURCE]

7 = auxiliary input 1 [AUXIN1 SOURCE]
trigger/0/count int Number of trigger edges to record.
trigger/0/type int Trigger type used. Some parameters are

= trigger off
analog edge trigger on source
digital trigger mode on DIO
= analog pulse trigger on source
analog tracking trigger on source
trigger/0/edge int Trigger edge

1 = rising edge

B W N o
Il

2 = falling edge
3 = both
trigger/0/findlevel bool Automatically find the value of

trigger/0/level based on
the current signal value.

trigger/0/bits int Digital trigger condition.

trigger/0/bitmask int Bit masking for bits used for
triggering. Used for digital trigger.

trigger/0/delay double Trigger frame position [s] (left side)

relative to trigger edge.

delay = 0 -> trigger edge at left
border.

delay < 0 -> trigger edge inside
trigger frame (pretrigger).

delay > 0 -> trigger edge before

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| only valid for special trigger types.
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| trigger frame (posttrigger).
|
|
|
|
|
|
|
|
|
|

trigger/0/duration double Recording frame length [s].
trigger/0/level double Trigger level voltage [V].
trigger/0/hysteresis double Trigger hysteresis [V].
trigger/0/retrigger int Record more than one trigger in a
trigger frame.
trigger/triggered bool Has the software trigger triggered?
1=Yes, 0=No (read only).
trigger/0/bandwidth double Filter bandwidth [Hz] for pulse and
tracking triggers.
trigger/0/holdoff/count int Number of skipped triggers until the

LabOne Programming Manual Revision 31421 Zurich Instruments 104

http://www.zhinst.com

4.4, LabOne Python API (ziPython) Command Reference

next trigger is recorded again.
trigger/0/holdoff/time double Hold off time [s] before the next
trigger is recorded again. A hold off
time smaller than the duration will
produce overlapped trigger frames.
trigger/N/hwtrigsource int Only available for devices that support
hardware triggering. Specify the channel
to trigger on.

trigger/0/pulse/min double Minimal pulse width [s] for the pulse
trigger.

trigger/0/pulse/max double Maximal pulse width [s] for the pulse
trigger.

trigger/filename string This parameter is deprecated. If

specified, i.e. not empty, it enables
automatic saving of data in single
trigger mode (trigger/endless = 0).

trigger/savepath string The directory where files are saved when
saving data.

trigger/fileformat string The format of the file for saving data:
0 = Matlab,
1 = CSV.

trigger/historylength bool Maximum number of entries stored in the
measurement history.

trigger/clearhistory bool Remove all records from the history list.
set ((ziDAQRecorder)argl, (str)arg2, (int)arg3) -> None
set ((ziDAQRecorder)argl, (str)arg2, (str)arg3) -> None

set ((ziDAQRecorder)argl, (object)arg2) -> None
argl: Reference to the ziDAQRecorder class.
arg2: A list of path/value pairs.

subscribe ((ziDAQRecorder)argl, (str)arg2) -> None
Subscribe to one or several nodes. After subscription the recording
process can be started with the 'execute' command. During the
recording process paths can not be subscribed or unsubscribed.
argl: Reference to the ziDAQRecorder class.
arg2: Path string of the node. Use wild card to
select all. Alternatively also a list of path
strings can be specified.

trigger(...)
trigger ((ziDAQRecorder)argl) -> None
Execute a manual trigger.

unsubscribe(...)
unsubscribe ((ziDAQRecorder)argl, (str)arg2) -> None
Unsubscribe from one or several nodes. During the
recording process paths can not be subscribed or unsubscribed.
argl: Reference to the ziDAQRecorder class.
arg2: Path string of the node. Use wild card to
select all. Alternatively also a list of path
strings can be specified.

Data and other attributes defined here:

__init = <built-in function _ init >
Raises an exception
This class cannot be instantiated from Python

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| subscribe (...)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| Data descriptors inherited from Boost.Python.instance:
|
|

_ dict

LabOne Programming Manual Revision 31421 Zurich Instruments 105

http://www.zhinst.com

4.4, LabOne Python API (ziPython) Command Reference

Data and other attributes inherited from Boost.Python.instance:

new = <built-in method new of Boost.Python.class object>
T. new (S, ...) -> a new object with type S, a subtype of T

4.4.8. Help for ziPython's zi Pl | Advi sor class

Aninstance of ziP11Advisor isinitialized using the pl1Advisor method from ziDAQServer:

>>> help ('zhinst.ziPython.ziDAQServer.pllAdvisor")
Help on method pllAdvisor in zhinst.ziPython.ziDAQServer:

zhinst.ziPython.ziDAQServer.pllAdvisor = pllAdvisor(...) unbound
zhinst.ziPython.ziDAQServer method
pllAdvisor ((ziDAQServer)argl, (long)arg2) -> ziPllAdvisor
Create a pllAdvisor class. This will start a thread for running an
asynchronous pllAdvisor.
argl: Reference to the ziDAQServer class.
arg2: Timeout in [ms]. Recommended value is 500ms.

Reference help for the ziP11Advisor class.

>>> help('zhinst.ziPython.ziPllAdvisor'")
Help on class ziPllAdvisor in zhinst.ziPython:

zhinst.ziPython.ziPllAdvisor = class ziPllAdvisor (Boost.Python.instance)
| Method resolution order:

ziPl1lAdvisor

Boost.Python.instance

__builtin .object

Methods defined here:
~_reduce_ = <unnamed Boost.Python function>(...)

clear(...)
clear((ziPllAdvisor)argl) -> None
End the pllAdvisor thread.

execute(...)
execute ((ziPllAdvisor)argl) -> None
Starts the pllAdvisor if not yet running.

finish(...)
finish((ziPllAdvisor)argl) -> None
Stop the pllAdvisor.

finished(...)
finished((ziPllAdvisor)argl) -> bool
Check if the command execution has finished. Returns True if finished.

get(...)
get ((ziPllAdvisor)argl, (str)arg2, (bool)arg3) -> object
Return a dict with all nodes from the specified sub-tree.
argl: Reference to the ziPllAdvisor class.

LabOne Programming Manual Revision 31421 Zurich Instruments 106

http://www.zhinst.com

4.4, LabOne Python API (ziPython) Command Reference

arg2: Path string of the node. Use wild card to
select all.

arg3[optional]: Specify which type of data structure to return.
Return data either as a flat dict (True) or as a nested
dict tree (False). Default = False.

get ((ziPllAdvisor)argl, (str)arg2) -> object

listNodes (...)
listNodes((ziPllAdvisor)argl, (str)arg2, (int)arg3) -> list
This function returns a list of node names found at the specified path.
argl: Reference to the ziPllAdvisor class.
arg2: Path for which the nodes should be listed. The path may
contain wildcards so that the returned nodes do not
necessarily have to have the same parents.
arg3: Enum that specifies how the selected nodes are listed.
ziPython.ziListEnum.none -> 0x00
The default flag, returning a simple
listing if the given node
ziPython.zilListEnum.recursive -> 0x01
Returns the nodes recursively
ziPython.zilListEnum.absolute -> 0x02
Returns absolute paths
ziPython.zilListEnum.leafsonly -> 0x04
Returns only nodes that are leafs,
which means the they are at the
outermost level of the tree.
ziPython.zilListEnum.settingsonly -> 0x08
Returns only nodes which are marked
as setting
Or combinations of flags can be used.

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| progress(...)

| progress((ziPllAdvisor)argl) -> object
| Reports the progress of the command with a number between
| 0 and 1.

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

read(...)
read((ziPllAdvisor)argl, (bool)arg2) -> object
Read pllAdvisor data. If the simulation is still ongoing only a subset
of the data is returned.
argl[optional]: Specify which type of data structure to return.
Return data either as a flat dict (True) or as a nested
dict tree (False). Default = False.

read((ziPllAdvisor)argl) -> object

save(...)
save ((ziPllAdvisor)argl, (str)arg2) -> None
Save PLL advisor data to file.
argl: Reference to the ziPllAdvisor class.
arg2: File name string (without extension).

set(...)
set ((ziPllAdvisor)argl, (str)arg2, (float)arg3) -> None
PLL Advisor Parameters

Path name Type Description

pllAdvisor/bode struct Output parameter. Contains the resulting
bode plot of the PLL simulation.

pllAdvisor/calculate int Command to calculate values. Set to 1 to
start the calculation.

pllAdvisor/center double Center frequency of the PLL oscillator.

The PLL frequency shift is relative to
this center frequency.

pllAdvisor/d double Differential gain.

pllAdvisor/demodbw double Demodulator bandwidth used for the PLL
loop filter

LabOne Programming Manual Revision 31421 Zurich Instruments 107

http://www.zhinst.com

4.4, LabOne Python API (ziPython) Command Reference

pllAdvisor/i double Integral gain.
pllAdvisor/mode double Select PLL Advisor mode. Currently only
one mode (open loop) 1is supported.

pllAdvisor/order double Demodulator order used for the PLL loop
filter.

pllAdvisor/p double Proportional gain.

pllAdvisor/pllbw double Demodulator bandwidth used for the PLL
loop filter.

pllAdvisor/pm double Output parameter. Simulated phase margin

of the PLL with the current settings. The
phase margin should be greater than 45 deg
and preferably greater than 65 deg for
stable conditions.

pllAdvisor/pmfreq double Output parameter. Simulated phase margin
frequency.

pllAdvisor/q double Quality factor. Currently not used.

pllAdvisor/rate double PLL Advisor sampling rate of the PLL
control loop.

pllAdvisor/stable int Output parameter. When 1, the PLL Advisor

found a stable solution with the given
settings. When 0, revise your settings and
rerun the PLL Advisor.

pllAdvisor/targetbw int Requested PLL bandwidth. Higher
frequencies may need manual tuning.

pllAdvisor/targetfail int Output parameter. 1 indicates the
simulated PLL BW is smaller than the
Target BW.

set((ziPllAdvisor)argl, (str)arg2, (int)arg3) -> None
set((ziPllAdvisor)argl, (str)arg2, (str)arg3) -> None

set((ziPllAdvisor)argl, (object)arg2) -> None
argl: Reference to the ziPllAdvisor class.
arg2: A list of path/value pairs.

subscribe(...)
subscribe ((ziPllAdvisor)argl, (str)arg2) -> None
Subscribe to one or several nodes.

trigger(...)
trigger ((ziPllAdvisor)argl) -> None
Not applicable to this module.

unsubscribe(...)
unsubscribe((ziPllAdvisor)argl, (str)arg2) -> None
Unsubscribe from one or several nodes.

Data and other attributes defined here:

__init = <built-in function _ init >

Raises an exception
This class cannot be instantiated from Python

Data descriptors inherited from Boost.Python.instance:

_dict

__weakref

Data and other attributes inherited from Boost.Python.instance:

new = <built-in method new of Boost.Python.class object>

T. new (S, ...) -> a new object with type S, a subtype of T

LabOne Programming Manual Revision 31421 Zurich Instruments 108

http://www.zhinst.com

4.4, LabOne Python API (ziPython) Command Reference

4.4.9. Help for ziPython's zi Pi dAdvi sor class

Aninstance of ziPidAdvisor isinitialized using the pidAdvisor method from ziDAQServer:

>>> help ('zhinst.ziPython.ziDAQServer.pidAdvisor")
Help on method pidAdvisor in zhinst.ziPython.ziDAQServer:

zhinst.ziPython.ziDAQServer.pidAdvisor = pidAdvisor(...) unbound
zhinst.ziPython.ziDAQServer method
pidAdvisor ((ziDAQServer)argl, (long)arg2) -> ziPidAdvisor
Create a pidAdvisor class. This will start a thread for running an
asynchronous pidAdvisor.
argl: Reference to the ziDAQServer class.
arg2: Timeout in [ms]. Recommended value is 500ms.

Reference help for the ziPidAdvisor class.

>>> help('zhinst.ziPython.ziPidAdvisor'")
Help on class ziPidAdvisor in zhinst.ziPython:

zhinst.ziPython.ziPidAdvisor = class ziPidAdvisor (Boost.Python.instance)
| Method resolution order:

ziPidAdvisor

Boost.Python.instance

__builtin .object

Methods defined here:
~_reduce_ = <unnamed Boost.Python function>(...)

clear(...)
clear ((ziPidAdvisor)argl) -> None
End the pidAdvisor thread.

execute(...)
execute ((ziPidAdvisor)argl) -> None
Starts the pidAdvisor if not yet running.

finish(...)
finish((ziPidAdvisor)argl) -> None
Stop the pidAdvisor.

finished(...)
finished((ziPidAdvisor)argl) -> bool

get(...)
get ((ziPidAdvisor)argl, (str)arg2, (bool)arg3) -> object
Return a dict with all nodes from the specified sub-tree.

argl: Reference to the ziPidAdvisor class.

arg2: Path string of the node. Use wild card to
select all.

arg3[optional]: Specify which type of data structure to return.
Return data either as a flat dict (True) or as a nested
dict tree (False). Default = False.

get ((ziPidAdvisor)argl, (str)arg2) -> object

Check if the command execution has finished. Returns True if finished.

LabOne Programming Manual Revision 31421 Zurich Instruments

109

http://www.zhinst.com

4.4, LabOne Python API (ziPython) Command Reference

listNodes (...)
listNodes((ziPidAdvisor)argl, (str)arg2, (int)arg3) -> list
This function returns a list of node names found at the specified path.
argl: Reference to the ziPidAdvisor class.
arg2: Path for which the nodes should be listed. The path may
contain wildcards so that the returned nodes do not
necessarily have to have the same parents.
arg3: Enum that specifies how the selected nodes are listed.
ziPython.ziListEnum.none -> 0x00
The default flag, returning a simple
listing of the given node
ziPython.zilListEnum.recursive -> 0x01
Returns the nodes recursively
ziPython.zilListEnum.absolute -> 0x02
Returns absolute paths
ziPython.zilListEnum.leafsonly -> 0x04
Returns only leaf nodes,
which means the they are at the
outermost level of the tree.
ziPython.zilListEnum.settingsonly -> 0x08
Returns only nodes which are marked
as settings
Or combinations of flags can be used.

progress(...)
progress ((ziPidAdvisor)argl) -> object
Reports the progress of the command with a number between
0 and 1.
read(...)

read((ziPidAdvisor)argl, (bool)arg2) -> object
Read pidAdvisor data. If the simulation is still ongoing, only a subset
of the data is returned.
argl[optional]: Specify which type of data structure to return.
Return data either as a flat dict (True) or as a nested
dict tree (False). Default = False.

read((ziPidAdvisor)argl) -> object

save(...)
save ((ziPidAdvisor)argl, (str)arg2) -> None
Save PID advisor data to file.
argl: Reference to the ziPidAdvisor class.
arg2: File name string (without extension).

set(...)
set ((ziPidAdvisor)argl, (str)arg2, (float)arg3) -> None
PID Advisor Parameters

Path name Type Description

pidAdvisor/advancedmode int Disable automatic calculation of
the start and stop value.

pidAdvisor/auto int Automatic response calculation
triggered by parameter change.

pidAdvisor/bode struct Output parameter. Contains the
resulting bode plot of the PID
simulation.

pidAdvisor/bw double Output parameter. Calculated system
bandwidth.

pidAdvisor/calculate int In/Out parameter. Command to

calculate values. Set to 1 to start

the calculation.
pidAdvisor/display/fregstart double Start frequency for Bode plot.

For disabled advanced mode the

start value is automatically

derived from the system properties.
pidAdvisor/display/fregstop double Stop frequency for Bode plot.
pidAdvisor/display/timestart double Start time for step response.

LabOne Programming Manual Revision 31421 Zurich Instruments 110

http://www.zhinst.com

4.4, LabOne Python API (ziPython) Command Reference

pidAdvisor/display/timestop
pidAdvisor/dut/bw

pidAdvisor/dut/damping

pidAdvisor/dut/delay

pidAdvisor/dut/fcenter

pidAdvisor/dut/gain
pidAdvisor/dut/q

pidAdvisor/dut/source

pidAdvisor/impulse

pidAdvisor/index
pidAdvisor/pid/autobw

pidAdvisor/pid/d

double
double

double

double

double

double
double

int

struct

int
int

double

pidAdvisor/pid/dlimittimeconstant

pidAdvisor/pid/i
pidAdvisor/pid/mode

pidAdvisor/pid/p

pidAdvisor/pid/rate

pidAdvisor/pid/targetbw
pidAdvisor/pm

pidAdvisor/pmfreq

pidAdvisor/stable

pidAdvisor/step

pidAdvisor/targetbw

pidAdvisor/targetfail

pidAdvisor/tf/closedloop

pidAdvisor/tf/input

double

double
double

double

double

double
double

double

int

struct

double

int

int

int

Stop time for step response.
Bandwith of the DUT (device under
test) .

Damping of the second order low
pass filter.

IO Delay of the feedback system
describing the earliest response
for a step change.

Resonant frequency of the of the
modelled resonator.

Gain of the DUT transfer function.
quality factor of the modelled
resonator.

Type of model used for the external
device to be controlled by the PID.

source = 1: Lowpass first order
source = 2: Lowpass second order
source = 3: Resonator frequency
source = 4: Internal PLL

source = 5: VCO

source = 6: Resonator amplitude
Output parameter. Impulse response
(not yet supported).

PID index for parameter detection.
Adjusts the demodulator bandwidth
to fit best to the specified target
bandwidth of the full system.
In/Out parameter. Differential
gain.

In/Out parameter. Differential
filter timeconstant.

In/Out parameter. Integral gain.
Select PID Advisor mode. Mode value
is bit coded, bit 0: P, bit 1: I,
bit 2: D, bit 3: D filter limit.
In/Out parameter. Proportional
gain.

In/Out parameter. PID Advisor
sampling rate of the PID control
loop.

PID system target bandwidth.
Output parameter. Simulated phase
margin of the PID with the current
settings. The phase margin should
be greater than 45 deg and
preferably greater than 65 deg for
stable conditions.

Output parameter. Simulated phase
margin frequency.

Output parameter. When 1, the PID
Advisor found a stable solution
with the given settings. When O,
revise your settings and rerun the
PID Advisor.

Output parameter. Contains the
resulting step response plot of the
PID simulation.

Requested PID bandwidth. Higher
frequencies may need manual tuning.
Output parameter. 1 indicates the
simulated PID BW is smaller than
the Target BW.

Switch the response calculation
mode between closed or open loop.
Start point for the plant response
simulation for open or closed

LabOne Programming Manual

Revision 31421

Zurich Instruments 111

http://www.zhinst.com

4.4, LabOne Python API (ziPython) Command Reference

loops.

pidAdvisor/tf/output int End point for the plant response
simulation for open or closed
loops.

pidAdvisor/tune int Optimize the PID parameters so that

the noise of the closed-loop system

gets minimized.

set ((ziPidAdvisor)argl, (str)arg2, (int)arg3) -> None
set ((ziPidAdvisor)argl, (str)arg2, (str)arg3) -> None
set ((ziPidAdvisor)argl, (object)arg2) -> None

argl: Reference to the ziPidAdvisor class.
arg2: A list of path/value pairs.

subscribe (...)
subscribe((ziPidAdvisor)argl, (str)arg2) -> None
Subscribe to one or several nodes.

trigger(...)
trigger((ziPidAdvisor)argl) -> None
Not applicable to this module.

unsubscribe(...)
unsubscribe ((ziPidAdvisor)argl, (str)arg2) -> None
Unsubscribe from one or several nodes.

Data and other attributes defined here:

~init = <built-in function init >
Raises an exception
This class cannot be instantiated from Python

Data descriptors inherited from Boost.Python.instance:
_dict

__weakref

Data and other attributes inherited from Boost.Python.instance:

new = <built-in method _ new of Boost.Python.class object>

T. new (S, ...) —-> a new oggect with type S, a subtype of T

LabOne Programming Manual Revision 31421 Zurich Instruments

112

http://www.zhinst.com

Chapter 5. LabVIEW Programming

Interfacing with your Zurich Instruments device via National Instruments’ LabVIEW® is an
efficient choice in terms of development time and run-time performance. LabVIEW is a graphical
programming language designed to interface with laboratory equipment via so-called VIs ("virtual
instruments"), whose key strength is the ease of displaying dynamic signals obtained from your
instrument.

This chapter aims to help you get started using the Zurich Instruments LabOne LabVIEW API to
control your instrument, please refer to:

= Section 5.1 for help Installing the LabOne LabVIEW API.

= Section 5.2.2 for anintroduction to LabOne LabVIEW Programming Concepts .

= Section 5.2.3 for Finding help for the LabOne VIs from within LabVIEW .

= Section 5.2.4 for help Finding the LabOne LabVIEW API Examples .

= Section 5.2.5 for help Running the LabOne Example Vls.

= Section 5.3 for some LabVIEW Programming Tips and Tricks .

Note

This section and the provided examples are no substitute for a general LabVIEW tutorial. See, for
example, the National Instruments website for help to get started programming with LabVIEW.

LabOne Programming Manual Revision 31421 Zurich Instruments 113

http://www.zhinst.com
http://www.ni.com/labview/
https://www.ni.com/gettingstarted/labviewbasics/

5.1. Installing the LabOne LabVIEW API

5.1. Installing the LabOne LabVIEW API

5.1.1. Requirements

A LabVIEW 2009 (or higher) installation is required on either Windows or Linux in order to use the
LabOne LabVIEW API.

The LabOne LabVIEW APl is included in a standard LabOne installation. However, in order to make
the LabOne LabVIEW API available for use within LabVIEW, a directory needs to be copied to
a specific directory of your LabVIEW installation. The LabOne installer is available from Zurich
Instruments' download page (login required).

5.1.2. Windows

1. Locate the instr.1ib directory in your LabVIEW installation and delete any previous Zurich
Instruments APl directories. The instr.lib directory is typically located at:

C:\Program Files\National Instruments\LabVIEW 201x\instr.lib\

Previous Zurich Instruments installations will be directories located in the instr.lib
directory that are named either:

m Zurich Instruments HF2,or

m Zurich Instruments LabOne.

These folders may simply be deleted (administrator rights required).

2. On Windows, navigate to the APT\LabVIEW subdirectory of your LabOne installation, typically
found at:

C:\Program Files\Zurich Instruments\LabOne\API\LabVIEW\
and copy the subdirectory located there
Zurich Instruments LabOne

tothe instr.1lib directory in your LabVIEW installation as located in Step 1. Note, you will
need administrator rights to copy to this directory.

3. Restart LabVIEW and verify your installation as described in Section 5.1.4 .

5.1.3. Linux

1. Locate the instr.libdirectoryinyour LabVIEW installation and remove any previous Zurich
Instruments APl installations. The instr.lib directory is typically located at:

/usr/local/natinst/LabVIEW-201x/instr.lib/

Previous Zurich Instruments installations will be folders located in the instr.1ib directory
that are named either:

LabOne Programming Manual Revision 31421 Zurich Instruments 114

http://www.zhinst.com
http://www.zhinst.com/downloads

5.1. Installing the LabOne LabVIEW API

m Zurich Instruments HF2,o0r

m 7Zurich Instruments LabOne.

These folders may simply be deleted (administrator rights required).

2. Navigate to the path where you unpacked LabOne and locate the subdirectory

[PATH] /LabOnelLinux64/API/LabVIEW/
3. Copy the directory

[PATH] /LabOnelLinux64/API/LabVIEW/Zurich Instruments LabOne/

to the instr.1lib directory in your LabVIEW installation as located in Step 1. Note, you will
need administrator rights to copy to this directory.

4. Restart LabVIEW and verify your installation as described in Section 5.1.4.

5.1.4. Verifying your Installation

If the LabOne LabVIEW API palette can be accessed from within LabVIEW, the LabOne LabVIEW
APl is correctly installed. See Section 5.2.1 for help finding the palette.

LabOne Programming Manual Revision 31421 Zurich Instruments 115

http://www.zhinst.com

5.2. Getting Started

5.2. Getting Started
5.2.1. Locating the LabOne LabVIEW VI Palette

In order to locate the LabOne LabVIEW Vls start LabVIEW and create a new VI. In the VI's "Block
Diagram" (Ctrl-e) you can to access the LabOne LabVIEW API palette with a mouse right-click and
browsing the tree under "Instrument I/0" — "Instr. Drivers", see Figure 5.1.

1 Untitled 1 Block Diagram on Zurich Instruments LabOne.Ivproj/My Computer | = e)
t Operate Tools Window Help
)[1] (@] 2] Mol] o [50t Application Font |~] [$=[%a~ 1

Q, Search |
>

>
2

jio!flo8

4
E)

iR

x£] A el
2iModFinish.vi 2iModUnSub... ziModStatus.vi ziModGethe...

[Zurich Tnstruments LabOne.vproy/My Computer ¢

Figure 5.1. Locating the LabOne LabVIEW Palette

5.2.2

LabOne LabVIEW Programming Concepts

As described in Section 1.1 a LabVIEW program communicates to a Zurich Instrument device
via a software program running on the PC called the data server. In general, the outline of the
instruction flow for a LabVIEW virtual instrument is as following:

1. Initialization: Open a connection from the API to the data server program.

2. Configuration: Perform the instrument's settings. For example, using the virtual instrument
ziSetValueDouble.vi.

3. Data: Read data from the instrument.

4. Utility: Perform data analysis on the read data, potentially repeating Step 2 and/or Step 3.

5. Close: Terminate the API's connection to the data server program.

TheVI Tree.viincludedthe LabOne LabVIEW APl demonstrates this flow and lists common Vlis
used for working with a Zurich Instruments device, see Figure5.2.TheVI Tree.vi can befound

either via the LabOne VI palette, see Section 5.2.1, or by opening the file in the Public folder of
your LabOne LabVIEW installation, typically located at:

LabOne Programming Manual Revision 31421 Zurich Instruments 116

http://www.zhinst.com

5.2. Getting Started

C:\Program Files\National Instruments\LabVIEW 2012\instr.lib\Zurich
Instruments LabOne\Public\VI Tree.vi

Modules (e.g. Sweeper,...) enable additional functionality of your Zurich instrument device in
Labview. The outline of the instruction flow for a LabVIEW Module is as following:
1. Initialization: Create a ziModHandle from a ziHandle ziModStart.vi.

2. Configuration: Perform the module's settings. For example, using the virtual instrument
ziModSetValue.vi.

3. Subscribe: Define the recorded data node ziModSubscribe.vi.
4. Execute: Start the operation of the module ziModExecute.vi.

5. Data: Read data from the module. For example, using the ziModGetNextNode.vi and
ziModGetData.vi.

6. Utility: Perform data analysis on the read data, potentially repeating Step 2, Step 3 and/or Step
4,

7. Clear: Terminate the API's connection to the module ziModClear.vi.

‘Zuri:h Instruments LabOne VI Treel

Use the Example Finder and search for "LabOne” to find examples for the usage of the LabOne instrument driver.
To launch Example Finder, select "Find Examples..." from the LabVIEW Help menu.

Initialize Configuration Data Utility Close
ziOpenwi ziSetValuevi ziGetValueDoublevi ziSubscribenvi ziPollDataEx.vi ziloadSettings.vi zilist.vi zilistDevices.vi ziClosewi
o -— 21 - o - 2 -— o - o - 2 - o - 2 -
P Y ? - | = udliS ! =1 —_— L
Double zilnSubscribewvi ziGetEvent.vi ziSaveSettings.vi ziSelectDevicewi
2 - o - o - 2 -
ziSetValueDemod.vi ziGetValueDemodSamplevi xZ] L o))
ZI{-) : AuxIn Sample = [zi5weepGeneratorfziSweepUnitConviziSweeper.vi]
(g nr — = a—
ziCpuProgram.vi ziGetValueDIOvi ziGetValueAsPollvi [Fapeed] b Gweep
2 -— o -— 2 — i
1 ? =1 [ziBW2TC i) [ziTC2BWAi] [ziAutoRange.vi]
o o — 2 — -
ziGetValueString.vi BWRTC TC2EH
o —
7 2iTicks25.vi
abe o — ==
Ticks
s ﬂ
Modules
ziModStartvi ziModSetValuewi ziModSubscribevi ziModExecutevi ziModGetMextModewi ziModGetDatawi ziModUnSubscribevi ziModClear.vi
= = 20— 2 - = = = =
fiiee o HoD HaD T ion ion rion
[== 1 + | (S x£] e _
ziModRead.vi ziModFinish.vi
e 3
x

ziModStatus.vi
20—

HoD

|

Context Help

C:\..00%instr.lib\Zurich Instruments LabOne\Public\Configure\ziGetValueDoublevi

Handle in === Handle out
Path - ? Value
errorin error out

This vi retrieves the numerical value of the specified node as an double-type value,
The vi returns the value first found that matches Path if more than one value is
available (2 wildcard is used in the Path).

[#[507] « '

Figure 5.2. An overview of the LabOne LabVIEW Vls is given in VI Tree.vi. Press Ctrl-h after
selecting one of the Vls to obtain help.

5.2.3. Finding help for the LabOne VIs from within LabVIEW

LabOne Programming Manual Revision 31421 Zurich Instruments 117

http://www.zhinst.com

5.2. Getting Started

5.2.4.

5.2.5.

As is customary for LabVIEW, built-in help for LabOne's VIs can be obtained by selecting the VI
with the mouse in a block diagram and pressing Ctrl-h to view the VI's context help. See Figure 5.2
for an example.

Finding the LabOne LabVIEW APl Examples

Many examples come bundled with the LabOne LabVIEW APl which demonstrate the most
important concepts of working with Zurich Instrument devices. The easiest way to browse the list
of available examples is via the NI Example Finder: In LabVIEW select "Find Examples..." from the
"Help" menu-bar and search for "LabOne", see Figure 5.3.

The examples are located in the directory instr.lib/Zurich Instruments LabOne/
Examples found in LabVIEW installation directory. In order to modify an example for your needs,
please copy it to your local workspace.

B NI Example Finder =] @ |zl
Search Double-click an example to open it. Information
A 27 examples match your search criteria A | |Description: -
Enter keyword(s)

This is an example for a Zurich
Instruments HF2 or UHFLI
instrurmnent. This vi uses the aux
outputs and aux inputs.

LabOne ziExample-Boxcarvi

ziExample-Burstsvi

Keywords El ziExample-DIOwi

Search for: ziExample-HF2-ExtTriggerDemodData.vi
all the words E| ziExample-HF2-ImpedanceSweep.vi
ziExample-HF2-Moise.vi
’% zixample-HF2-PLLi
Labone_‘ dbample-HR-RTKPLvi
ziExample-HF2-5aveload_Settings.vi
ziExample-HF2-Scopewvi
ziExample-HF2-5etParameters.vi
ziExample-HF2-Sweep.wvi
ziExample-HF2-5weepPtByPtvi
ziExample-HF2-TipProtect.vi
ziExample-HF2-ZoomFFT vi
ziExample-InitializeParameters.vi
ziExample-LabOne-GettingStarted.vi
ziExample-ListDevices.vi
ziExample-PIDAdviserModulvi
ziExample-PollData.wvi

m

Requirements

Visit ni.com ziExample-PWA_Signallnput.vi
for more examples ziExample-Read5SingleValuewi
ziExample-SaveDemodData.vi

Hardware ziExample-Scopei

Find hardware El ziExample-Set Get Freauencv.vi

sivkleieivbie il b oo lite oo b o

-

[T] Limit results to hardware [Add to Favorites] [Setup...] [Help] [Close]

Figure 5.3. Search for "LabOne" in NlI's Example Finder to find examples to run with your
instrument.

Running the LabOne Example Vls

This section describes how to run a LabOne LabVIEW example on your instrument.

Note

Please ensure that the example you would like to run is supported by your instrument class and
its options set. For example, examples for HF2 Instruments can be found in the Example Finder

LabOne Programming Manual Revision 31421 Zurich Instruments 118

http://www.zhinst.com

5.2. Getting Started

(see Section 5.2.4) by searching for "HF2", examples for the UHFLI by searching for "UHFLI" and
examples for the MFLI by searching for "MFLI".

Device Connection

After opening one of the LabOne LabVIEW examples, please ensure that the example is configured
to run on the desired instrument type. ziOpen.vi establishes a connection to a Data Server.
The address is of the format {<host>} { :<port>}::{<Device ID>}.Usuallyitis sufficientto
provide the Device ID only highlighted in Figure 5.4 . The host and port are then determined by
network discovery. Should the discovery not work, prepend <host>:<port>: : to the Device ID.
Examples are "myhf2.company.com:8004::dev466" or "myhf2.company.com:8004". In the latter
case the first found instrument on the data server listening on "myhf2.company.com:8004" will
be selected.

8 zibample-PoliData.vi [===
File Edit View Project Operate Tools Window Help -
I P T E—
Address | DEV465
5 TR - Tested Instruments: \ /
equirements: HF2, or -
see block diagram for VI descliption) mfzﬂ - / \]
- UHFLI
I .
.. || b Zurich
I 1l uric
o
3 oomoss-J| | |
: ml“.‘lm M qu Instruments
a UU?UW-
ziValueType
DEMOD_SAMPLE
0128
01275
5 0127
a
5 01265
]
< 0126
01255+
0135}
157457 159456
a4
u
=2
234
[=]
=
49702
Time
Lacked Context Help =
| -
C:\Program Files (x86)\National Instruments\LabVIEW 200%\instr.lib\Zurich Instruments LabOne\Public\ziOpen.vi
Address 2l - HandleOut
Hostname obsalete (auto, ’—-a-""“"'"l- Selected Device
Port obsolete (auto L’Errur Qut
ErrorIn
Creates a connection to a Data Server. Address is of the format {<host> {:<port]:{ < Device ID= | Usually it is sufficient
to provide the Device ID only. The host and port are then determined by netwark discovery. Should the discovery not
work, prepend <host>:<part>:: to the Device 1D, Examples are "myhf2.company.com:3004::devd66” or
"myhfZ.company.com:8004", In the latter case the first found instrument on the data server listening on
myhf2.company.com:8004 will be selected.)|
3 8

Figure 5.4. LabOne LabVIEW Example Poll Data: Device selection.

Running the VI and Block Diagram

The example can be ran as any LabVIEW program; by clicking the "Run" icon in the icon bar. Be
sure to check the example's code and explanation by pressing Ctrl-e to view the example's block
diagram, see Figure 5.5.

LabOne Programming Manual Revision 31421 Zurich Instruments 119

http://www.zhinst.com

5.2. Getting Started

File Edit View Project Operats Tools Window Help

Gemodsi0jsample. &
auxins{i0fsample
dicss/Ofinput
N
zi0pen.vi ziSubstribe.vi
art] =
a

BIEH——emtom

[initalize & connection] [Subscribe required nades]

L

[This example V1 explains the pracedurs For streaming instrument cutput data,
IRequirements: HFZ ar UHFLI device connected ko the computer, user interfac to adjust s=ttings and meke sure that the device is properly connected.

[ata i streamed using the Folloving steps:
{17 & connection is iniislized and the required data is subscribed.

2} After the subscription, the LabWIEW vi continuoulsy receives data from the "aiServer, which is the interface to the device, To read demodulator samples
2 a defined sampling rate, i is recommended to subscribe ta & demadulator nade and to fetch the data using the ZPalData,vi functian. In the left part of
khe black diagram, bath demedulator 1 and 2 samples are subseribed using & laop (by adding more erries to the array, a subscription ko even more
demodulatars can be dane with litle effort).

l¢3 Mow samples are written to a buffer in the deta server and can be read by the ziPollDataEx.vi, which waits for an event without using CPU time. Once
lsample data i received {which means that ne timeout oceured), it i displayed on the Front panel. & case structure first checks whether a tmeaut occured
land then evaluates the data source and thus data bype channel praperty of the demeduatar sample structure. The data can naw be stared n an array or @
lqueue or be shown in a waveform chart.

(3" Finally, the connection s losed,

wrich Instrumerits AG, www.zhinst.com

Foll Loop

imeout ?

W[Fase -]
'a3ka source?
B'DEMODS" ~]

ZialeType g =

SXH] WM

o] Lo

ziClose vi

= o
L P e

[Demod Sample ~

Demmod

Timestamps (Hicks)
Cirms)
Crms)
Ot Phase (rady
nd Freq (Hz)
[ie)
A In 0(V]
A In 1 (V)
Tringer

[Close connection

Figure 5.5. LabOne LabVIEW Example Poll Data: Block Diagram.

LabOne Programming Manual

Revision 31421 Zurich Instruments

120

http://www.zhinst.com

5.3. LabVIEW Programming Tips and Tricks

5.3. LabVIEW Programming Tips and Tricks

Use the User Interface's command log or Server's text interface while
programming with LabVIEW

As with all other interfaces, LabVIEW uses the "path" and "nodes" concept to address settings on
an instrument, see Section 1.1 .In order to learn about or verify the nodes available it can be very
helpful to view the command log in the User Interface (see the bar in the bottom of the screen)
to see which node has been configured during a previous setting change. The text interface (HF2
Series) provides a convenient way to explore the node hierarchy.

Always close ziHandles and ziModHandles or LabVIEW runs out of
memory

If you use the "Abort Execution" button of LabVIEW, your LabVIEW program will not close any
existing connections to the ziServer. Any open connection inside of LabVIEW will persist and
continue to consume about 12 MB of RAM so that with time you will run out of memory. Completely
exit LabVIEW in order to release the memory again.

Use shift registers
The structure of efficient LabVIEW code is distinguished by signals being "piped through" by use

of shiftregistersinloops and by the absence of object replication. Using shift registersin LabVIEW
avoids copying of data and, more important, running the garbage collector frequently.

" | simpleLoop.vi Block Diagram on My Computer _Tal [x] "] simpleLoop Wrong.vi Block Diagram on My Compui[_ | | [x]
Fie Ecit Wew Project Operate Tools Window Help Fic Edit Wew Froect Operate Tooks Window Help
@@uﬂ 10pt Application Font \-l =”'l ﬁvl @@uﬂ 10pt Application Font \-l =”'l ﬁvl

=

BEWARET This 15 an rvort SR =
C"ﬁ?;,:‘?f'rgégér:a"d'g‘ This copies the handls for Use shift registers
each iteration of the loop. instead.
emadsiizample il [demodsizample
2iOpen vi 21 GetWalug Demod Sample i | ziclosey ziOpen vi ziGet\alue Demod Sample i ziClose vl

)

3 o

e
S - e , - S —r

#o5L [{vhms) Using shifiregisters for dala abiects E [T EXRETTEY)
» W (W f avoics memary allocation and running b g f

oo

the garbage collector too often.
o o5 2 garbage collestor toa often o o1
— ———————————
Ty Computer _4| | » Ty Computer _4| | .|

Figure 5.6. Examples of simple LabVIEW programs for the Zurich Instruments HF2 Series. Left:
A well implemented loop, Right: An example for-loop gone wrong.

LabOne Programming Manual Revision 31421 Zurich Instruments 121

http://www.zhinst.com

Chapter 6. C Programming

The LabOne C API, also known as ziAPI, provides a simple and robust way to communicate with
the Data Server. It enables you to get or set parameters and receive streaming data.

LabOne Programming Manual Revision 31421 Zurich Instruments 122

http://www.zhinst.com

6.1. Getting Started

6.1. Getting Started

After installing the LabOne software package and relevant drivers for your instrument you are
ready start programming with ziAPI. All you need is a C compiler, linker and editor.

The structure of a program using ziAPI can be split into three parts: initialization/connection, data
manipulation and disconnection/cleanup. The basic object thatis always used is the ziConnection
data structure. First, ziConnection is has to be initialized by calling ziAPIInit . After initialization
ziConnection is ready to connect to a ziServer by calling ziAPIConnect . Then ziConnection is
ready to be used for getting and setting parameters and streaming data. When ziConnection
is not needed anymore the established connection to the ziServer has to be hung up using
ziAPIDisconnect before cleaning it up by calling ziAPIDestroy .

6.1.1. Example

Below you find a simple program, which sets the demodulator rate of all demods for all devices.

#include <stdlib.h>
#include <stdio.h>

#include "
ziAPI.h

int main ()

{

ZIResult enum RetVal;
char* ErrBuffer;

ZIConnection Conn;

//initialize the ZIConnection
if((Retval =
ziAPIInit
(&Conn)) !=
zI INFO_ SUCCESS
)

z1APIGetError
(RetVval, &ErrBuffer, NULL);
fprintf (stderr, "Can't init Connection: %s\n", ErrBuffer);
return 1;

}

//connect to the ziServer running on localhost
//using the port 8005 (default)
if((RetvVal =
ziAPIConnect
(Conn,
"localhost",
8005)) !=
ZI INFO_SUCCESS
)

z1APIGetError
(Retval, &ErrBuffer, NULL);
fprintf (stderr, "Can't connect: %$s\n", ErrBuffer);
}
else

{

LabOne Programming Manual Revision 31421 Zurich Instruments 123

http://www.zhinst.com

6.1. Getting Started

//set all demodulator rates of all devices to 150Hz
if((RetvVal =
z1APISetValueD
(Conn,
"*/demods/*/rate",
150)) !=
ZI INFO_SUCCESS

ziAPIGetError
(RetVval, &ErrBuffer, NULL);
fprintf (stderr, "Can't set parameter: %$s\n", ErrBuffer

//disconnect from the ziServer
//since ZIAPIDisconnect always returns ZI_INFO SUCCESS
//no error handling is required

ziAPIDisconnect
(Conn);

//destroy the ZIConnection
//since ZIAPIDestroy always returns ZI_INFO_SUCCESS
//no error handling is required

ziAPIDestroy
(Conn);

return 0;

)i

LabOne Programming Manual Revision 31421 Zurich Instruments

124

http://www.zhinst.com

6.2. Module Documentation

6.2. Module Documentation

6.2.1. Connecting to Data Server

This sectiondescribes how toinitialize the ZIConnection and establish a connection to Data Server

as well as how to disconnect after all data handling is done and cleanup the ZIConnection.

Typedefs

Functions

typedef ZIConnection

The ZIConnection is a connection reference; it holds
information and helper variables about a connection to the
Data Server. There is nothing in this reference which the user
user may use, so it is hidden and instead a dummy pointer is
used. See ziAPIInit for how to create a ZIConnection.

ZIResult_enum ziAPIInit (ZIConnection * conn)
Initializes a ZIConnection structure.

ZIResult_enum ziAPIDestroy (ZIConnection conn)
Destroys a ZIConnection structure.

ZIResult_enum ziAPIConnect (ZIConnection conn, const
char* hostname, uint16_t port)

Connects the ZIConnection to Data Server.

ZIResult_enum ziAPIDisconnect (ZIConnection conn)
Disconnects an established connection.

ZIResult_enum ziAPIListimplementations (char*
implementations, uint32_t bufferSize)

Returns the list of supported implementations.
ZIResult_enum ziAPIConnectEx (ZIConnection conn, const

char* hostname, uint16_t port, ZIAPIVersion_enum apilevel,
const char* implementation)

Connects to Data Server and enables extended ziAPI.
ZIResult_enum ziAPIGetConnectionAPILevel (ZIConnection
conn, ZIAPIVersion_enum* apilevel)

Returns ziAPI level used for the connection conn.

ZIResult_enum ziAPIGetRevision (unsigned int* revision)
Retrieves the revision of ziAPI.

Detailed Description

LabOne Programming Manual Revision 31421 Zurich Instruments

125

http://www.zhinst.com

6.2. Module Documentation

#include <stdio.h>

#include "
ziAPI.h
int main()
{
ZIResult enum RetVal;
char* ErrBuffer;
ZIConnection Connj;
if((RetvVal =
z1APIInit
(&Conn)) !=

ZI INFO_SUCCESS

z1APIGetError
(RetvVal, &ErrBuffer, NULL);
fprintf (stderr, "Can't init Connection: %s\n", ErrBuffer);
return 1;

//connect to the ziServer set as default using the default port
if((Retval =
ziAPIConnect
(Conn, NULL, 0)) !=
ZI INFO SUCCESS

z1APIGetError
(RetVal, &ErrBuffer, NULL

)i
fprintf (stderr, "Can't connect to ziServer: %s\n", ErrBuffer);

else

/*
do something using the ZIConnection here

*/

//since ZIAPIDisconnect always returns ZI_INFO SUCCESS
//no error handling is required

z1APIDisconnect
(Conn);

//since ZIAPIDestroy always returns ZI_INFO_SUCCESS
//no error handling is required

ziAPIDestroy
(Conn);

return 0;

LabOne Programming Manual Revision 31421 Zurich Instruments

126

http://www.zhinst.com

6.2. Module Documentation

LabOne Programming Manual Revision 31421 Zurich Instruments 127

http://www.zhinst.com

6.2. Module Documentation

Function Documentation

ziAPIlInit

ZIResult_enum ziAPlInit (ZIConnection * conn)
Initializes a ZIConnection structure.

This function initializes the structure so that it is ready to connect to Data Server. It allocates
memory and sets up the infrastructure needed.

Parameters:

[out] conn
Pointer to ZIConnection thatis to be initialized

Returns:

= /|_INFO_SUCCESS on success
= 7|_ERROR_MALLOC on memory allocation failure

See Also:
ziAPIDestroy, ziAPIConnect, ziAPIDisconnect

See Connection foranexample

LabOne Programming Manual Revision 31421 Zurich Instruments 128

http://www.zhinst.com

6.2. Module Documentation

ziAPIDestroy

ZIResult_enum ziAPIDestroy (ZIConnection conn)
Destroys a ZIConnection structure.

This function frees all memory that has been allocated by ziAPIInit . If it is called with an
uninitialized ZlConnection struct it may result in segmentation faults as well when it is called
with a struct for which ZIAPIDestroy already has been called.

Parameters:

[in] conn
Pointer to ZIConnection struct that has to be destroyed

Returns:
= 7| _INFO_SUCCESS

See Also:
ziAPIlInit, ziAPIConnect, ziAPIDisconnect

See Connection foranexample

LabOne Programming Manual Revision 31421 Zurich Instruments 129

http://www.zhinst.com

6.2. Module Documentation

ziAPIConnect

ZIResult_enum ziAPIConnect (ZIConnection conn, const char* hostname, uint16_t

port)

Paramet

Returns:

See Also

Connects the ZIConnection to Data Server.

Connects to Data Server using a ZlConnection and prepares for data exchange. For most cases
it is enough to just give a reference to the connection and give NULL for hostname and O for the
port, so it connects to localhost on the default port.

ers:

[in] conn

Pointer to ZIConnection with which the connection should be
established

[in] hostname

Name of the Host to which it should be connected, if NULL
"localhost" will be used as default

[in] port

The Number of the port to connect to. If O, default port of the local
Data Server will be used (8005)

= Z|I_INFO_SUCCESS on success

= Z|I_ERROR_HOSTNAME if the given host name could not be found

= 7|_ERROR_SOCKET_CONNECT if no connection could be established

= 7| _ERROR_OVERFLOW when a FIFO overflow occurred

= 7| _ERROR_SOCKET_INIT if initialization of the socket failed

= /|_ERROR_CONNECTION when the Data Server didn't return the correct answer
= Z|I_ERROR_TIMEQUT when initial communication timed out

-ziAPIDisconnect, ZiAPIInit, ziAPIDestroy

See Connection foranexample

LabOne Pr

ogramming Manual Revision 31421 Zurich Instruments 130

http://www.zhinst.com

6.2. Module Documentation

ziAPIDisconnect

ZIResult_enum ziAPIDisconnect (ZIConnection conn)
Disconnects an established connection.

Disconnects from Data Server. If the connection has not been established and the function is
called it returns without doing anything.

Parameters:

[in] conn
Pointer to ZIConnection to be disconnected

Returns:
= 7| _INFO_SUCCESS

See Also:
ziAPIConnect, ziAPIInit, ziAPIDestroy

See Connection foranexample

LabOne Programming Manual Revision 31421 Zurich Instruments 131

http://www.zhinst.com

6.2. Module Documentation

ziAPIListImplementations

ZIResult_enum ziAPIListimplementations (char* implementations, uint32_t
bufferSize)

Returns the list of supported implementations.

Returned names are defined by implementations in the linked library and may change depending
on software version.

Parameters:

[out] implementations

Pointer to a buffer receiving a newline-delimited list of the names
of all the supported ziAPI implementations. The string is zero-
terminated.

[in] bufferSize
The size of the buffer assigned to the implementations parameter

Returns:

= 7| _INFO_SUCCESS on success

= Z|I_ERROR_LENGTH if the length of the char-buffer given by MaxLen is too small for all
elements

See Also:
ziAPIConnectEx

LabOne Programming Manual Revision 31421 Zurich Instruments 132

http://www.zhinst.com

6.2. Module Documentation

ziAPIConnectEx

ZIResult_enum ziAPIConnectEx (ZIConnection conn, const char* hostname, uint16_t

port, ZIA

PIVersion_enum apilLevel, const char* implementation)
Connects to Data Server and enables extended ziAPI.

With apiLevel=ZI_API_VERSION_1 and implementation=NULL, this call is equivalent to plain
ziAPIConnect . With other version and implementation values enables corresponding ziAPI
extension and connection using different implementation.

Parameters:

Returns:

See Also

[in] conn

Pointer to the ZIConnection with which the connection should be
established

[in] hostname

Name of the host to which it should be connected, if NULL
"localhost" will be used as default

[in] port

The number of the port to connect to. If O the port of the local Data
Server will be used

[in] apilLevel

Specifies the ziAPI compatibility level to use for this connection (1 or
4).

[in] implementation

Specifies implementation to use for a connection, must be one of
the returned by ziAPIListimplementations or NULL to select default
implementation

= /|_INFO_SUCCESS on success

= 7| _ERROR_HOSTNAME if the given host name could not be found

= 7| _ERROR_SOCKET_CONNECT if no connection could be established
= 7| _ERROR_OVERFLOW when a FIFO overflow occurred

= 7| _ERROR_SOCKET_INIT if initialization of the socket failed

= /|_ERROR_CONNECTION when the Data Server didn't return the correct answer or requested
implementation is not found or doesn't support requested ziAPI level

= Z|_ERROR_TIMEQUT when initial communication timed out
ZiAPIListimplementations , ziAPIConnect , ziAPIDisconnect , ziAPIInit , ziAPIDestroy ,
ZiAPIGetConnectionVersion

LabOne Pr

ogramming Manual Revision 31421 Zurich Instruments 133

http://www.zhinst.com

6.2. Module Documentation

See Connection foranexample

LabOne Programming Manual Revision 31421 Zurich Instruments 134

http://www.zhinst.com

6.2. Module Documentation

ziAPIGetConnectionAPIlLevel

ZIResult_enum ziAPIGetConnectionAPILevel (ZIConnection conn,
ZIAPIVersion_enum* apilLevel)

Returns ziAPI level used for the connection conn.

Parameters:

[in] conn

Pointer to ZIConnection

[out] apilevel
Pointer to preallocated ZIAPIVersion_enum, receiving the ziAPI level

Returns:

= 7| _INFO_SUCCESS on success
= 7| _ERROR_CONNECTION if level can not be determined due to conn is not connected

See Also:
ziAPIConnectEx , ziAPIGetVersion

LabOne Programming Manual Revision 31421 Zurich Instruments 135

http://www.zhinst.com

6.2. Module Documentation

ziAPIGetRevision

ZIResult_enum ziAPIGetRevision (unsigned int* revision)
Retrieves the revision of ziAPI.
Sets an unsigned int with the revision (build number) of the ziAPI you are using.

Parameters:

[in] revision

Pointer to an unsigned int to fill up with the revision.

Returns:

= Z|_INFO_SUCCESS

LabOne Programming Manual Revision 31421 Zurich Instruments 136

http://www.zhinst.com

6.2. Module Documentation

6.2.2. Tree

All parameters and streams are organized in a tree. You can list the whole tree, parts of it or single
items using ziAPIListNodes or you may update the tree with nodes of newly connected devices
by using ziAPIUpdateDevices .

Enumerations

= enum ZlListNodes_enum {ZI_LIST_NODES_NONE,
ZI_LIST_NODES_RECURSIVE, ZI_LIST_NODES_ABSOLUTE,
ZI_LIST_NODES_LEAFSONLY,
ZI_LIST_NODES_SETTINGSONLY, ZI_LIST_NONE,
ZI_LIST_RECURSIVE, ZI_LIST_ABSOLUTE,
ZI_LIST_LEAFSONLY, ZI_LIST_SETTINGSONLY }

Defines the values of the flags used in ziAPIListNodes.

Functions

= ZIResult_enum ziAPIListNodes (ZIConnection conn, const
char* path, char* nodes, int bufferSize, int flags)

Returns all child nodes found at the specified path.

= ZIResult_enum ziAPIUpdateDevices (ZIConnection conn)
Search for the newly connected devices and update the tree.
= ZIResult_enum ziAPIConnectDevice (ZIConnection conn,

const char* deviceSerial, const char* devicelnterface, const
char* interfaceParams)

Connect a device to the server.

= ZIResult_enum ziAPIDisconnectDevice (ZIConnection conn,
const char* deviceSerial)
Disconnect a device from the server.

Detailed Description
#include <stdio.h>

#include "
ziAPI.h

"

void PrintChildren(ZIConnection Conn,
char* Path)
{

ZIResult enum RetVal;
char* ErrBuffer;

LabOne Programming Manual Revision 31421 Zurich Instruments 137

http://www.zhinst.com

6.2. Module Documentation

char NodesBuffer[8192];

if((RetvVal =
z1APIListNodes
(Conn,
Path,
NodesBuffer,
8192,

ZI_LIST NODES NONE
)) 1=
ZI_INFO_ SUCCESS

z1APIGetError
(RetvVal, &ErrBuffer, NULL);
fprintf (stderr, "Can't List Nodes: %s\n", ErrBuffer);
else
char* Ptr = NodesBuffer;

char* LastPtr = Ptr;

//print out each node on a separate line with dash as prefix

for(; *Ptr != 0; Ptr++)
{
if(*Ptr == '\n')
{
*Ptr = 0;
printf ("- %$s\n", LastPtr);

LastPtr = Ptr + 1;

//print out the last node
if(Ptr != LastPtr)
printf ("- %s\n", LastPtr);

LabOne Programming Manual Revision 31421 Zurich Instruments 138

http://www.zhinst.com

6.2. Module Documentation

Enumeration Type Documentation

enum ZlListNodes_enum

Defines the values of the flags used in ziAPIListNodes .

Enumerator:

ZI_LIST_NODES_NONE

Default, return a simple listing of the given node immediate
descendants.

ZI_LIST_NODES_RECURSIVE
List the nodes recursively.

ZI_LIST_NODES_ABSOLUTE
Return absolute paths.

ZI_LIST_NODES_LEAFSONLY

Return only leaf nodes, which means the nodes at the
outermost level of the tree.

ZI_LIST_NODES_SETTINGSONLY
Return only nodes which are marked as setting.

ZI_LIST_NONE

Default, return a simple listing of the given node immediate
descendants.

ZI_LIST_RECURSIVE
List the nodes recursively.

ZI_LIST_ABSOLUTE
Return absolute paths.

ZI_LIST_LEAFSONLY

Return only leaf nodes, which means the nodes at the
outermost level of the tree.

ZI_LIST_SETTINGSONLY
Return only nodes which are marked as setting.

LabOne Programming Manual Revision 31421 Zurich Instruments

139

http://www.zhinst.com

6.2. Modul

e Documentation

Function Documentation

ziAPIListNodes

ZIResult_enum ziAPIListNodes (ZIConnection conn, const char* path, char* nodes,

int buffe

Paramet

Returns:

rSize, int flags)
Returns all child nodes found at the specified path.

This function returns a list of node names found at the specified path. The path may contain
wildcards so that the returned nodes do not necessarily have to have the same parents. The listis
returned in a null-terminated char-buffer, each element delimited by a newline. If the maximum
length of the buffer (bufferSize) is not sufficient for all elements, nothing will be returned and the
return value will be ZI_LENGTH .

ers:

[in] conn

Pointer to the ZIConnection for which the node names should be
retrieved.

[in] path

Path for which all children will be returned. The path may contain
wildcard characters.

[out] nodes

Upon call filled with newline-delimited list of the names of all the
children found. The string is zero-terminated.

[in] bufferSize
The length of the buffer used for the nodes output parameter.

[in] flags

A combination of flags (applied bitwise)as defined in
ZlListNodes_enum .

= 7| _INFO_SUCCESS on success

= 7|_ERROR_CONNECTION when the connection is invalid (not connected) or when a
communication error occurred

= 7| _ERROR_LENGTH if the path's length exceeds MAX_PATH_LEN or the length of the char-
buffer for the nodes given by bufferSize is too small for all elements

= 7| _ERROR_OVERFLOW when a FIFO overflow occurred

= /|_ERROR_COMMAND on anincorrect answer of the server

= 7| _ERROR_SERVER_INTERNAL if aninternal error occurred in Data Server
= 7|_ERROR_NOTFOUND if the given path could not be resolved

= Z|_ERROR_TIMEQUT when communication timed out

LabOne Pr

ogramming Manual Revision 31421 Zurich Instruments 140

http://www.zhinst.com

6.2. Module Documentation

See Tree Listing foran example

See Also:
ZiAPIUpdate

LabOne Programming Manual Revision 31421 Zurich Instruments 141

http://www.zhinst.com

6.2. Module Documentation

ziAPIUpdateDevices

ZIResult_enum ziAPIUpdateDevices (ZIConnection conn)
Search for the newly connected devices and update the tree.

This function forces the Data Server to search for newly connected devices and to connect to run
them

Parameters:

[in] conn
Pointer to ZIConnection

Returns:
= 7| _INFO_SUCCESS

See Also:
ziAPIListNodes

LabOne Programming Manual Revision 31421 Zurich Instruments 142

http://www.zhinst.com

6.2. Module Documentation

ziAPIConnectDevice

ZIResult_enum ziAPIConnectDevice (ZIConnection conn, const char* deviceSerial,
const char* devicelnterface, const char* interfaceParams)

Connect a device to the server.

This function connects a device with deviceSerial via the specified devicelnterface for use with

the server.
Parameters:
[in] conn

Pointer to the ZIConnection with which the connection should be
established

[in] deviceSerial
The serial of the device to connect to, e.g., dev2100

[in] devicelnterface
The interface to use for the connection, e.g., USB|1GbE

[in] interfaceParams
Parameters for interface configuration

Returns:

= 7| _INFO_SUCCESS on success
m 7| _ERROR_TIMEOUT when communication timed out

See Also:
ziAPIDisconnectDevice, ziAPIConnect, ziAPIDisconnect, ziAPlInit

LabOne Programming Manual Revision 31421 Zurich Instruments 143

http://www.zhinst.com

6.2. Module Documentation

ziAPIDisconnectDevice

ZIResult_enum ziAPIDisconnectDevice (ZIConnection conn, const char*
deviceSerial)

Disconnect a device from the server.

This function disconnects a device specified by deviceSerial from the server.

Parameters:

[in] conn
Pointer to the ZIConnection with which the connection should be
established

[in] deviceSerial

The serial of the device to connect to, e.g., dev2100
Returns:

= 7|_INFO_SUCCESS on success

m 7| _ERROR_TIMEOUT when communication timed out

See Also:
ziAPIConnectDevice, ziAPIConnect, ziAPIDisconnect, ziAPlInit

LabOne Programming Manual Revision 31421 Zurich Instruments

144

http://www.zhinst.com

6.2. Module Documentation

6.2.3. Set and Get Parameters

This section describes several functions for getting and setting parameters of different datatypes.
Functions

= ZIResult_enum ziAPIGetValueD (ZIConnection conn, const
char* path, ZIDoubleData* value)

gets the double-type value of the specified node

= ZIResult_enum ziAPIGetValuel (ZIConnection conn, const
char* path, ZlintegerData* value)
gets the integer-type value of the specified node

= ZIResult_enum ziAPIGetDemodSample (ZIConnection
conn, const char* path, ZIDemodSample * value)
Gets the demodulator sample value of the specified node.

= ZIResult_enum ziAPIGetDIOSample (ZIConnection conn,
const char* path, ZIDIOSample * value)
Gets the Digital I/0 sample of the specified node.

= ZIResult_enum ziAPIGetAuxInSample (ZIConnection conn,
const char* path, ZIAuxInSample * value)
gets the Auxin sample of the specified node

= ZIResult_enum ziAPIGetValueB (ZIConnection conn, const

char* path, unsigned char* buffer, unsigned int* length,
unsigned int bufferSize)

gets the Bytearray value of the specified node

= ZIResult_enum ziAPISetValueD (ZIConnection conn, const
char* path, ZIDoubleData value)
asynchronously sets a double-type value to one or more
nodes specified in the path

= ZIResult_enum ziAPISetValuel (ZIConnection conn, const
char* path, ZlintegerData value)
asynchronously sets an integer-type value to one or more
nodes specified in a path

= ZIResult_enum ziAPISetValueB (ZIConnection conn, const
char* path, unsigned char* buffer, unsigned int length)
asynchronously sets the binary-type value of one ore more
nodes specified in the path

= ZIResult_enum ziAPISyncSetValueD (ZIConnection conn,
const char* path, ZIDoubleData* value)
synchronously sets a double-type value to one or more nodes
specified in the path

= ZIResult_enum ziAPISyncSetValuel (ZIConnection conn,
const char* path, ZlintegerData* value)

synchronously sets an integer-type value to one or more
nodes specified in a path

LabOne Programming Manual Revision 31421 Zurich Instruments 145

http://www.zhinst.com

6.2. Module Documentation

= ZIResult_enum ziAPISyncSetValueB (ZIConnection conn,
const char* path, uint8_t* buffer, uint32_t* length, uint32_t
bufferSize)

Synchronously sets the binary-type value of one ore more
nodes specified in the path.

= ZIResult_enum ziAPISync (ZIConnection conn)
Synchronizes the session by dropping all pending data.

= ZIResult_enum ziAPIEchoDevice (ZIConnection conn, const
char* deviceSerial)
Sends an echo command to a device and blocks until answer

is received.

= ZIResult_enum ziAPIAsyncSetDoubleData (ZIConnection
conn, const char* path, ZIDoubleData value)

= ZIResult_enum ziAPIAsyncSetintegerData (ZIConnection
conn, const char* path, ZlIntegerData value)

= ZIResult_enum ziAPIAsyncSetByteArray (ZIConnection
conn, const char* path, uint8_t* buffer, uint32_t length)

= ZIResult_enum ziAPIGetValueS (ZIConnection conn, char*
path, DemodSample * value)

= ZIResult_enum ziAPIGetValueDIO (ZIConnection conn,
char* path, DIOSample * value)

= ZIResult_enum ziAPIGetValueAuxIn (ZIConnection conn,
char* path, AuxInSample * value)

LabOne Programming Manual Revision 31421 Zurich Instruments 146

http://www.zhinst.com

6.2. Module Documentation

Function Documentation

ziAPIGetValueD

ZIResult_enum ziAPIGetValueD (ZIConnection conn, const char* path,
ZIDoubleData* value)

gets the double-type value of the specified node

This function retrieves the numerical value of the specified node as an double-type value. The
value first found is returned if more than one value is available (a wildcard is used in the path).

Parameters:

[in] conn

Pointer to ZIConnection with which the value should be retrieved

[in] path
Path to the node holding the value

[out] value
Pointer to a double in which the value should be written

Returns:

= 7| _INFO_SUCCESS on success

= 7Z|_ERROR_CONNECTION when the connection is invalid (not connected) or when a
communication error occurred

= 7|_ERROR_LENGTH if the path's length exceeds MAX_PATH_LEN

= Z|_ERROR_OVERFLOW when a FIFO overflow occurred

= /|_ERROR_COMMAND on anincorrect answer of the server

= 7| _ERROR_SERVER_INTERNAL if an internal error occurred in Data Server

= 7| _ERROR_NOTFOUND if the given path could not be resolved or no value is attached to the
node

= 7| _ERROR_TIMEOUT when communication timed out

#include <stdlib.h>
#include <stdio.h>

#include "
ziAPI.h

"

void UpdateValue(ZIConnection Conn)

{
ZIResult enum RetVal;
char* ErrBuffer;

ZIDoubleData ValueD;

if((RetVal =

LabOne Programming Manual Revision 31421 Zurich Instruments 147

http://www.zhinst.com

6.2. Module Documentation

ziAPISetValuel
(Conn,
"DEV1046/demods/*/rate",
100)) !=
ZI INFO SUCCESS

z1APIGetError
(Retval, &ErrBuffer, NULL);
fprintf (stderr, "Can't set Parameter: %$s\n", ErrBuffer

if((RetvVal =
z1APIGetValueD
(Conn,
"DEV1046/demods/0/rate",
&ValueD)) !'=
ZI_ INFO SUCCESS

ziAPIGetError
(Retval, &ErrBuffer, NULL);
fprintf(stderr, "Can't get Parameter: %s\n", ErrBuffer

}
else

{
printf("Value = $f\n", ValueD);

See Also:
ziAPISetValueD , ziAPIGetValueAsPollData

LabOne Programming Manual Revision 31421 Zurich Instruments

148

http://www.zhinst.com

6.2. Module Documentation

ziAPIGetValuel

ZIResult_enum ziAPIGetValuel (ZIConnection conn, const char* path, ZlIntegerData*
value)

gets the integer-type value of the specified node

This function retrieves the numerical value of the specified node as an integer-type value. The
value first found is returned if more than one value is available (a wildcard is used in the path).

Parameters:

[in] conn

Pointer to ZIConnection with which the value should be retrieved

[in] path
Path to the node holding the value

[out] value
Pointer to an 64bit integer in which the value should be written

Returns:

= /| _INFO_SUCCESS on success

= 7|_ERROR_CONNECTION when the connection is invalid (not connected) or when a
communication error occurred

= Z|_ERROR_LENGTH if the path's length exceeds MAX_PATH_LEN

= Z|_ERROR_OVERFLOW when a FIFO overflow occurred

= 7| _ERROR_COMMAND on an incorrect answer of the server

= 7| _ERROR_SERVER_INTERNAL if an internal error occurred in Data Server

= Z|I_ERROR_NOTFOUND if the given path could not be resolved or no value is attached to the
node

= 7| _ERROR_TIMEOUT when communication timed out

#include <stdlib.h>
#include <stdio.h>

#include "
ziAPI.h

"

void UpdateValue(ZIConnection Conn)

{

ZIResult enum RetVal;
char* ErrBuffer;
ZIIntegerData ValueI;

if((RetvVal =
z1APISetValueD
(Conn,

LabOne Programming Manual Revision 31421 Zurich Instruments 149

http://www.zhinst.com

6.2. Module Documentation

"DEV1046/demods/*/rate",
5.53)) I!=
ZI INFO SUCCESS

z1APIGetError
(Retval, &ErrBuffer, NULL);
fprintf (stderr, "Can't set Parameter: %$s\n", ErrBuffer

if((RetvVal =
z1APIGetValuel
(Conn,
"DEV1046/demods/0/rate",
&ValuelI)) !=
ZI_ INFO_ SUCCESS

ziAPIGetError
(RetvVal, &ErrBuffer, NULL);
fprintf (stderr, "Can't get Parameter: %s\n", ErrBuffer

}
else

{
printf("Value = %f\n", (float)Valuel);

See Also:
ziAPISetValuel , ziAPIGetValueAsPollData

LabOne Programming Manual Revision 31421 Zurich Instruments

150

http://www.zhinst.com

6.2. Module Documentation

ziAPIGet

DemodSample

ZIResult_enum ziAPIGetDemodSample (ZIConnection conn, const char* path,
ZIDemodSample * value)

Paramet

Returns:

Gets the demodulator sample value of the specified node.

This function retrieves the value of the specified node as an DemodSample struct. The value first
foundis returned if more than one value is available (a wildcard is used in the path). This function
is only applicable to paths matching DEMODS/[0-9]+/SAMPLE.

ers:

[in] conn

Pointer to ZIConnection with which the value should be retrieved

[in] path
Path to the node holding the value

[out] value

Pointerto a ZIDemodSample struct in which the value should be
written

= /| _INFO_SUCCESS on success

= 7|_ERROR_CONNECTION when the connection is invalid (not connected) or when a
communication error occurred

= 7|_ERROR_LENGTH if the path's length exceeds MAX_PATH_LEN

= 7| _ERROR_OVERFLOW when a FIFO overflow occurred

= 7|_ERROR_COMMAND on an incorrect answer of the server

= 7| _ERROR_SERVER_INTERNAL if an internal error occurred in Data Server

= 7| _ERROR_NOTFOUND if the given path could not be resolved or no value is attached to the
node

m 7| _ERROR_TIMEOUT when communication timed out

#include <stdlib.h>
#include <stdio.h>

#include "
ziAPI.h

"

void GetSample(ZIConnection Conn)

{

ZIResult enum RetVal;
char* ErrBuffer;

ZIDemodSample

LabOne Programming Manual Revision 31421 Zurich Instruments 151

http://www.zhinst.com

LabOne Programming Manual

6.2. Module Documentation

DemodSample;

if((Retval =

z1iAPIGetDemodSample
(Conn,

"DEV1046/demods/0/sample™,
&DemodSample)) !=
ZI INFO_SUCCESS

ziAPIGetError
(RetvVal, &ErrBuffer, NULL);
fprintf (stderr, "Can't get Parameter: %s\n", ErrBuffer
}

else
{
printf("TS = $f, X=%f,

= Y=%f\n",
(float) DemodSample.

timeStamp

’

DemodSample.

’

DemodSample.

Y
)

See Also:
ziAPIGetValueAsPollData

Revision 31421 Zurich Instruments

152

http://www.zhinst.com

6.2. Module Documentation

ziAPIGet

DIOSample

ZIResult_enum ziAPIGetDIOSample (ZIConnection conn, const char* path,
ZIDIOSample * value)

Paramet

Returns:

Gets the Digital I/0 sample of the specified node.

This function retrieves the newest available DIO sample from the specified node. The value first
foundis returned if more than one value is available (a wildcard is used in the path). This function
is only applicable to nodes ending in "/DIOS/[0-9]+/INPUT".

ers:

[in] conn
Pointer to the ZIConnection with which the value should be retrieved

[in] path
Path to the node holding the value

[out] value

Pointer to a ZIDIOSample structin which the value should be
written

= 7| _INFO_SUCCESS on success

= /|_ERROR_CONNECTION when the connection is invalid (not connected) or when a
communication error occurred

= Z|I_ERROR_LENGTH if the Path's Length exceeds MAX_PATH_LEN or the length of the char-
buffer for the nodes given by MaxLen is too small for all elements

= /| _ERROR_OVERFLOW when a FIFO overflow occurred
= 7| _ERROR_COMMAND on an incorrect answer of the server
= 7| _ERROR_SERVER_INTERNAL if an internal error occurred in the Data Server

= 7| _ERROR_NOTFOUND if the given path could not be resolved or no value is attached to the
node

= 7|_ERROR_TIMEQOUT when communication timed out

#include <stdlib.h>
#include <stdio.h>

#include "
z1iAPI.h

"

void GetSample(ZIConnection Conn)
{

ZIResult enum RetVal;
char* ErrBuffer;

LabOne Programming Manual Revision 31421 Zurich Instruments 153

http://www.zhinst.com

6.2. Module Documentation

ZIDIOSample
DIOSample;

if((Retval =
ziAPIGetDIOSample
(Conn,
"DEV1046/dios/0/output",
&DIOSample)) !=
ZI_ INFO SUCCESS

ziAPIGetError
(Retval, &ErrBuffer, NULL);
fprintf (stderr, "Can't get Parameter: %s\n", ErrBuffer
}
else
{
printf("TS = %f, bits=%08x\n",
(float) (DIOSample.
timeStamp
)
DIOSample.
bits
) 7

See Also:
ziAPIGetValueAsPollData

LabOne Programming Manual Revision 31421 Zurich Instruments

154

http://www.zhinst.com

6.2. Module Documentation

ziAPIGet

ZIResult

AuxinSample

_enum ziAPIGetAuxInSample (ZIConnection conn, const char* path,

ZIAuxInSample * value)

gets the Auxin sample of the specified node

This function retrieves the newest available Auxin sample from the specified node. The value first
foundis returned if more than one value is available (a wildcard is used in the path). This function
is only applicable to nodes ending in "/AUXINS/[0-9]+/SAMPLE".

Parameters:

Returns:

[in] conn

Pointer to the ziConnection with which the Value should be retrieved

[in] path
Path to the Node holding the value

[out] value

Pointer to an ZIAuxInSample structin which the value should be
written

= /| _SUCCESS on success

= Z|_CONNECTION when the connection is invalid (not connected) or when a communication
error occurred

= 7|_LENGTH if the Path's Length exceeds MAX_PATH_LEN or the length of the char-buffer for
the nodes given by MaxLen is too small for all elements

= 7|_OVERFLOW when a FIFO overflow occurred

= 7|_COMMAND on an incorrect answer of the server

= 7|_SERVER_INTERNAL if an internal error occurred in the Data Server

= 7|_NOTFOUND if the given path could not be resolved or no value is attached to the node

= /| _TIMEOUT when communication timed out

#include <stdlib.h>
#include <stdio.h>

#include "
ziAPI.h

"

void GetSample(ZIConnection Conn)

{

ZIResult enum RetVal;
char* ErrBuffer;

ZIAuxInSample

LabOne Programming Manual Revision 31421 Zurich Instruments 155

http://www.zhinst.com

6.2. Module Documentation

AuxInSample;

if((Retval =

ziAPIGetAuxInSample
(Conn,

"DEV1046/auxins/0/sample",
&AuxInSample)) !=
ZI INFO_SUCCESS

z1APIGetError
(RetvVal, &ErrBuffer, NULL);
fprintf (stderr, "Can't get Parameter: %s\n", ErrBuffer);
}

else
{
printf("TS = %f, ch0=%f, chl=%f\n",
(float)AuxInSample.

timeStamp
’
AuxInSample.
chO
’
AuxInSample.
chl

)

See Also:
ziAPIGetValueAsPollData

LabOne Programming Manual

Revision 31421 Zurich Instruments

156

http://www.zhinst.com

6.2. Module Documentation

ziAPIGetValueB

ZIResult_enum ziAPIGetValueB (ZIConnection conn, const char* path, unsigned

char* bu

ffer, unsigned int* length, unsigned int bufferSize)
gets the Bytearray value of the specified node

This function retrieves the newest available DIO sample from the specified node. The value first
found is returned if more than one value is available (a wildcard is used in the path).

Parameters:

Returns:

[in] conn
Pointer to the ziConnection with which the value should be retrieved

[in] path
Path to the Node holding the value

[out] buffer
Pointer to a buffer to store the retrieved data in

[out] length

Pointer to an unsigned int to store the length of datain. if an error
ocurred or the length of the passed buffer dosn't reach a zero will be
returned

[in] bufferSize
The length of the passed buffer

= 7| _SUCCESS on success

= Z|_CONNECTION when the connection is invalid (not connected) or when a communication
error occurred

= Z|I_LENGTH if the Path's Length exceeds MAX_PATH_LEN or the length of the char-buffer for
the nodes given by MaxLen is too small for all elements

= 7|_OVERFLOW when a FIFO overflow occurred

= 7|_COMMAND on an incorrect answer of the server

= 7| _SERVER_INTERNAL if an internal error occurred in the Data Server

= Z|I_NOTFOUND if the given path could not be resolved or no value is attached to the node

= 7| _TIMEOUT when communication timed out

#include <stdlib.h>
#include <stdio.h>

#include "
ziAPI.h

LabOne Pr

ogramming Manual Revision 31421 Zurich Instruments 157

http://www.zhinst.com

6.2. Module Documentation

void PrintVersion(ZIConnection Conn)
{

ZIResult enum RetVal;
char* ErrBuffer;

const char* Path = "ZI/ABOUT/VERSION";
unsigned char Buffer[Oxff];
unsigned int Length;

if((RetvVal =
z1APIGetValueB
(Conn,
Path,
Buffer,
&Length,
sizeof (Buffer) - 1)) !=

ZI INFO_SUCCESS

z1APIGetError
(RetvVal, &ErrBuffer, NULL);
fprintf (stderr, "Can't get value: %s\n", ErrBuffer);
}
else

{
Buffer[Length] = 0;
printf ("$s=\"%s\"\n", Path, Buffer);

See Also:
ziAPISetValueB, ziAPIGetValueAsPollData

LabOne Programming Manual Revision 31421 Zurich Instruments 158

http://www.zhinst.com

6.2. Modul

e Documentation

ziAPISetValueD

ZIResult_enum ziAPISetValueD (ZIConnection conn, const char* path, ZIDoubleData

value)

Paramet

Returns:

asynchronously sets a double-type value to one or more nodes specified in the path

This function sets the values of the nodes specified in path to Value. More than one value can be
set if a wildcard is used. The function sets the value asynchronously which means that after the
function returns you have no security to which value it is finally set nor at what point in time it is
set.

ers:

[in] conn
Pointer to the ziConnection for which the value(s) will be set

[in] path
Path to the Node(s) for which the value(s) will be set to Value

[in] value
the double-type value that will be written to the node(s)

m /| _SUCCESS on success

= Z|_CONNECTION when the connection is invalid (not connected) or when a communication
error occurred

= ZI_LENGTH if the Path's Length exceeds MAX_PATH_LEN

= Z|I_OVERFLOW when a FIFO overflow occurred

= 7|_READONLY on attempt to set a read-only node

= 7|_COMMAND on an incorrect answer of the server

= /|_SERVER_INTERNAL if aninternal error occurred in the Data Server

= 7|_NOTFOUND if the given path could not be resolved or no node given by path is able to hold
values

= Z|_TIMEOUT when communication timed out

#include <stdlib.h>
finclude <stdio.h>

finclude "
ziAPI.h

"

void UpdateValue(ZIConnection Conn)

{

ZIResult enum RetVal;
char* ErrBuffer;
ZIIntegerData ValueI;

LabOne Programming Manual Revision 31421 Zurich Instruments 159

http://www.zhinst.com

6.2. Module Documentation

if((RetvVal =
ziAPISetValueD
(Conn,
"DEV1046/demods/*/rate",
5.53)) I!=
ZI INFO SUCCESS

z1APIGetError
(Retval, &ErrBuffer, NULL);
fprintf (stderr, "Can't set Parameter: %$s\n", ErrBuffer

if((RetvVal =
z1APIGetValuel
(Conn,
"DEV1046/demods/0/rate",
&ValuelI)) !=
ZI_ INFO SUCCESS

ziAPIGetError
(RetvVal, &ErrBuffer, NULL);
fprintf(stderr, "Can't get Parameter: %s\n", ErrBuffer

}
else

{
printf("Value = %f\n", (float)Valuel);

See Also:
ZiAPIGetValueD . ziAPISyncSetValueD

)

LabOne Programming Manual Revision 31421 Zurich Instruments

160

http://www.zhinst.com

6.2. Modul

e Documentation

ziAPISetValuel

ZIResult_enum ziAPISetValuel (ZIConnection conn, const char* path, ZlintegerData

value)

Paramet

Returns:

asynchronously sets an integer-type value to one or more nodes specified in a path

This function sets the values of the nodes specified in path to Value. More than one value can be
set if a wildcard is used. The function sets the value asynchronously which means that after the
function returns you have no security to which value it is finally set nor at what point in time it is
set.

ers:

[in] conn
Pointer to the ziConnection for which the value(s) will be set

[in] path
Path to the Node(s) for which the value(s) will be set

[in] value
the int-type value that will be written to the node(s)

m /| _SUCCESS on success

= Z|_CONNECTION when the connection is invalid (not connected) or when a communication
error occurred

= ZI_LENGTH if the Path's Length exceeds MAX_PATH_LEN

= Z|I_OVERFLOW when a FIFO overflow occurred

= 7|_READONLY on attempt to set a read-only node

= 7|_COMMAND on an incorrect answer of the server

= /|_SERVER_INTERNAL if aninternal error occurred in the Data Server

= 7|_NOTFOUND if the given path could not be resolved or no node given by path is able to hold
values

= Z|_TIMEOUT when communication timed out

#include <stdlib.h>
finclude <stdio.h>

finclude "
ziAPI.h

"

void UpdateValue(ZIConnection Conn)

{

ZIResult enum RetVal;
char* ErrBuffer;
ZIDoubleData ValueD;

LabOne Programming Manual Revision 31421 Zurich Instruments 161

http://www.zhinst.com

6.2. Module Documentation

if((RetvVal =
ziAPISetValuel
(Conn,
"DEV1046/demods/*/rate",
100)) !=
ZI INFO SUCCESS

z1APIGetError
(Retval, &ErrBuffer, NULL);
fprintf (stderr, "Can't set Parameter: %$s\n", ErrBuffer

if((RetvVal =
z1APIGetValueD
(Conn,
"DEV1046/demods/0/rate",
&ValueD)) !=
ZI_ INFO SUCCESS

ziAPIGetError
(RetvVal, &ErrBuffer, NULL);
fprintf(stderr, "Can't get Parameter: %s\n", ErrBuffer

}
else

{
printf("Value = $f\n", ValueD);

See Also:
ZiAPIGetValuel . ziAPISyncSetValuel

)

LabOne Programming Manual Revision 31421 Zurich Instruments

162

http://www.zhinst.com

6.2. Module Documentation

ziAPISetValueB

ZIResult

_enum ziAPISetValueB (ZIConnection conn, const char* path, unsigned

char* buffer, unsigned int length)

asynchronously sets the binary-type value of one ore more nodes specified in the path

This function sets the values at the nodes specified in a path. More than one value can be set if a
wildcard is used. The function sets the value asynchronously which means that after the function
returns you have no security to which value it is finally set nor at what point in time it is set.

Parameters:

Returns:

[in] conn

Pointer to the ziConnection for which the value(s) will be set

[in] path
Path to the Node(s) for which the value(s) will be set

[in] buffer
Pointer to the byte array with the data

[in] length
Length of the data in the buffer

= 7| _SUCCESS on success

= Z|_CONNECTION when the connection is invalid (not connected) or when a communication
error occurred

= Z|_LENGTH if the Path's Length exceeds MAX_PATH_LEN

= /|_OVERFLOW when a FIFO overflow occurred

= 7|_READONLY on attempt to set a read-only node

= /|_COMMAND on an incorrect answer of the server

= 7|_SERVER_INTERNAL if an internal error occurred in the Data Server

= 7|_NOTFOUND if the given path could not be resolved or no node given by path is able to hold
values

= /7| _TIMEOUT when communication timed out

#include <stdlib.h>
#include <stdio.h>

#include "
ziAPI.h

"

void ProgramCPU(ZIConnection Conn,
unsigned char* Buffer,
int Len)

LabOne Programming Manual Revision 31421 Zurich Instruments 163

http://www.zhinst.com

6.2. Module Documentation

ZIResult enum RetVal;
char* ErrBuffer;

if((RetvVal =
ziAPISetValueB
(Conn,
"DEV1046/cpus/0/program",
Buffer,
Len)) !=

ZI_INFO SUCCESS

z1APIGetError
(RetVval, &ErrBuffer, NULL);
fprintf(stderr, "Can't set Parameter: %$s\n", ErrBuffer

See Also:
ZiAPIGetValueB . ziAPISyncSetValueB

LabOne Programming Manual Revision 31421 Zurich Instruments

164

http://www.zhinst.com

6.2. Module Documentation

ziAPISyn

cSetValueD

ZIResult_enum ziAPISyncSetValueD (ZIConnection conn, const char* path,
ZIDoubleData* value)

Paramet

synchronously sets a double-type value to one or more nodes specified in the path

This function sets the values of the nodes specified in path to Value. More than one value can be
setif awildcard is used. The function sets the value synchronously. After returning you know that
itis set and to which value it is set.

ers:

[in] conn
Pointer to the ziConnection for which the value(s) will be set

[in] path
Path to the Node(s) for which the value(s) will be set to value

[in] value

Pointer to a double-type containing the value to be written. When
the function returns value holds the effectively written value.

Returns:
= 7| _SUCCESS on success
= ZI_CONNECTION when the connection is invalid (not connected) or when a communication
error occurred
m 7|_LENGTH if the Path's Length exceeds MAX_PATH_LEN
= 7| _OVERFLOW when a FIFO overflow occurred
= 7|_READONLY on attempt to set a read-only node
= Z|_COMMAND on an incorrect answer of the server
= Z|_SERVER_INTERNAL if an internal error occurred in the Data Server
= 7|_NOTFOUND if the given path could not be resolved or no node given by path is able to hold
values
= Z|I_TIMEOUT when communication timed out
See Also:

ziAPIGetValueD, ziAPISetValueD

LabOne Programming Manual Revision 31421 Zurich Instruments 165

http://www.zhinst.com

6.2. Modul

e Documentation

ziAPISyn

cSetValuel

ZIResult_enum ziAPISyncSetValuel (ZIConnection conn, const char* path,
ZlintegerData* value)

Paramet

Returns:

See Also

synchronously sets an integer-type value to one or more nodes specified in a path

This function sets the values of the nodes specified in path to value. More than one value can be
setif awildcard is used. The function sets the value synchronously. After returning you know that
itis set and to which value it is set.

ers:

[in] conn
Pointer to the ziConnection for which the value(s) will be set

[in] path
Path to the node(s) for which the value(s) will be set

[in] value

Pointer to a int-type containing then value to be written. when the
function returns value holds the effectively written value.

= 7| _SUCCESS on success

= Z|_CONNECTION when the connection is invalid (not connected) or when a communication
error occurred

m 7|_LENGTH if the Path's Length exceeds MAX_PATH_LEN

= 7| _OVERFLOW when a FIFO overflow occurred

= 7|_READONLY on attempt to set a read-only node

= Z|_COMMAND on an incorrect answer of the server

= Z|_SERVER_INTERNAL if an internal error occurred in the Data Server

= 7|_NOTFOUND if the given path could not be resolved or no node given by path is able to hold
values

= 7| _TIMEOUT when communication timed out

ziAPIGetValuel , ziAPISetValuel

LabOne Pr

ogramming Manual Revision 31421 Zurich Instruments 166

http://www.zhinst.com

6.2. Modul

e Documentation

ziAPISyncSetValueB

ZIResult_enum ziAPISyncSetValueB (ZIConnection conn, const char* path, uint8_t*

buffer, u

Paramet

Returns:

See Also

int32_t* length, uint32_t bufferSize)
Synchronously sets the binary-type value of one ore more nodes specified in the path.

This function sets the values at the nodes specified in a path. More than one value can be set if
awildcard is used. This function sets the value synchronously. After returning you know that it is
set and to which value it is set.

ers:

[in] conn
Pointer to the ziConnection for which the value(s) will be set

[in] path
Path to the Node(s) for which the value(s) will be set

[in] buffer
Pointer to the byte array with the data

[in] length
Length of the data in the buffer

[in] bufferSize
Length of the data in the buffer

= 7| _SUCCESS on success

= Z|_CONNECTION when the connection is invalid (not connected) or when a communication
error occurred

= 7|_LENGTH if the Path's Length exceeds MAX_PATH_LEN

= 7| _OVERFLOW when a FIFO overflow occurred

= 7|_READONLY on attempt to set a read-only node

= Z|_COMMAND on anincorrect answer of the server

= Z|_SERVER_INTERNAL if an internal error occurred in the Data Server

= 7|_NOTFOUND if the given path could not be resolved or no node given by path is able to hold
values

= 7| _TIMEOUT when communication timed out

ziAPIGetValueB, ziAPISetValueB

LabOne Pr

ogramming Manual Revision 31421 Zurich Instruments 167

http://www.zhinst.com

6.2. Module Documentation

ziAPISync

ZIResult_enum ziAPISync (ZIConnection conn)
Synchronizes the session by dropping all pending data.

This function drops any data that is pending for transfer. Any data (including poll data) retrieved
afterwards is guaranteed to be produced not earlier than the call to ziAPISync. This ensures in
particularthatany settings made prior to the call to ziAPISync have been propagated to the device,
and the data retrieved afterwards is produced with the new settings already set to the hardware.
Note, however, that this does not include any required settling time.

Parameters:

[in] conn

Pointer to the ZIConnection that is to be synchronized
Returns:

= 7| _INFO_SUCCESS on success
m 7| _ERROR_TIMEOUT when communication timed out

LabOne Programming Manual Revision 31421 Zurich Instruments 168

http://www.zhinst.com

6.2. Module Documentation

ziAPIEchoDevice

ZIResult_enum ziAPIEchoDevice (ZIConnection conn, const char* deviceSerial)
Sends an echo command to a device and blocks until answer is received.

This is useful to flush all buffers between API and device to enforce that further code is only
executed after the device executed a previous command. Per device echo is only implemented for
HF2. For other device types it is a synonym to ziAPISync, and deviceSerial parameter is ignored.

Parameters:

[in] conn
Pointer to the ZIConnection that is to be synchronized

[in] deviceSerial
The serial of the device to get the echo from, e.g., dev2100
Returns:

= 7| _INFO_SUCCESS on success
m 7| _ERROR_TIMEOUT when communication timed out

LabOne Programming Manual Revision 31421 Zurich Instruments 169

http://www.zhinst.com

6.2. Module Documentation

ziAPIAsyncSetDoubleData

ZIResult_enum ziAPIAsyncSetDoubleData (ZIConnection conn, const char* path,
ZIDoubleData value)

LabOne Programming Manual Revision 31421 Zurich Instruments 170

http://www.zhinst.com

6.2. Module Documentation

ziAPIAsyncSetintegerData

ZIResult_enum ziAPIAsyncSetIntegerData (ZIConnection conn, const char* path,
ZlintegerData value)

LabOne Programming Manual Revision 31421 Zurich Instruments 171

http://www.zhinst.com

6.2. Module Documentation

ziAPlAsyncSetByteArray

ZIResult_enum ziAPIAsyncSetByteArray (ZIConnection conn, const char* path,
uint8_t* buffer, uint32_t length)

LabOne Programming Manual Revision 31421 Zurich Instruments 172

http://www.zhinst.com

6.2. Module Documentation

ziAPIGetValueS

ZIResult_enum ziAPIGetValueS (ZIConnection conn, char* path, DemodSample *
value)

LabOne Programming Manual Revision 31421 Zurich Instruments 173

http://www.zhinst.com

6.2. Module Documentation

ziAPIGetValueDIO

ZIResult_enum ziAPIGetValueDIO (ZIConnection conn, char* path, DIOSample *
value)

LabOne Programming Manual Revision 31421 Zurich Instruments 174

http://www.zhinst.com

6.2. Module Documentation

ziAPIGetValueAuxIn

ZIResult_enum ziAPIGetValueAuxIn (ZIConnection conn, char* path, AuxinSample *
value)

LabOne Programming Manual Revision 31421 Zurich Instruments 175

http://www.zhinst.com

6.2. Module Documentation

6.2.4. Data Streaming

This section describes how to perform data streaming. It allows for recording at high data rates
without sample loss.

Data Structures

= struct ZIEvent

This struct holds event data forwarded by the Data Server.

™ struct ziEvent

This struct holds event data forwarded by the Data Server.
Deprecated: See ZIEvent.

Functions

= Z|Event * ziAPIAllocateEventEx ()
Allocates ZIEvent structure and returns the pointer to it.
Attention!!! It is the client code responsibility to deallocate
the structure by calling ziAPIDeallocateEventEx!

= void ziAPIDeallocateEventEx (ZIEvent * ev)
Deallocates ZIEvent structure created with
ziAPIAllocateEventEx() .

= ZIResult_enum ziAPISubscribe (ZIConnection conn, const
char* path)
subscribes the nodes given by path for ziAPIPollDataEx

= ZIResult_enum ziAPIUnSubscribe (ZIConnection conn,
const char* path)
unsubscribes to the nodes given by path

= Z|Result_enum ziAPIPollDataEx (ZIConnection conn,
ZIEvent * ev, uint32_t timeOutMilliseconds)
checks if an event is available to read

= ZIResult_enum ziAPIGetValueAsPollData (ZIConnection
conn, const char* path)
triggers a value request, which will be given back on the poll
event queue

= ZIResult_enum ziAPIPollData (ZIConnection conn, ziEvent
* ev, int timeOut)

Checks if an event is available to read. Deprecated: See
ziAPIPollDataEx() .

Detailed Description

#include <stdio.h>

LabOne Programming Manual Revision 31421 Zurich Instruments 176

http://www.zhinst.com

6.2. Module Documentation

#include <stdlib.h>

#include "
ziAPI.h

void EventLoop (ZIConnection Conn)
{

ZIResult enum RetVal;
char* ErrBuffer;

ZIEvent
* Event;
unsigned int Cnt = 0;

/*
allocate ZIEvent in heap memory instead of
getting it from stack will secure
against stack overflows especially in windows
*/
if((Event =
ziAPIAllocateEventEx
()) == NULL)

fprintf (stderr, "Can't allocate memory\n");
return;

//subscribe to all nodes
if((Retval =
z1iAPISubscribe
(Conn, "*")) 1=
zI_INFO SUCCESS

z1APIGetError
(RetvVal, &ErrBuffer, NULL);
fprintf(stderr, "Can't subscribe: %s\n", ErrBuffer);

ziAPIDeallocateEventEx
(Event);

return;

//loop 1000 times
while(Cnt < 1000)
{

//get all demod rates from all devices every 10th cycle
if(+4Cnt % 10 == 0)
{
if((Retval =

z1APIGetValueAsPollData
(
Conn, "*/demods/*/rate")) !=
ZI_ INFO_ SUCCESS

LabOne Programming Manual Revision 31421 Zurich Instruments 177

http://www.zhinst.com

6.2. Module Documentation

ziAPIGetError
(Retval, &ErrBuffer, NULL);
fprintf (stderr, "Can't get value as poll data: %s\n",
ErrBuffer);

break;

//poll data until no more data is available
while(1)
{

if((Retval =
ziAPIPollDataEx

(
Conn, Event, 0)) !=
ZI INFO_SUCCESS

z1APIGetError
(Retval, &ErrBuffer, NULL);
fprintf (stderr, "Can't poll data: %$s\n", ErrBuffer);

break;
}
else
{

//The field Count of the Event struct is zero when
//no data has been polled
if (Event->
valueType
1=
Z1_VALUE TYPE NONE
&& Event->
count
> 0)

/*
process the received event here

*/

}
else
{
//no more data is available so go on
break;

if(
z1APIUnSubscribe
(Conn, "*") I=
ZI INFO_SUCCESS

LabOne Programming Manual Revision 31421 Zurich Instruments 178

http://www.zhinst.com

6.2. Module Documentation

z1APIGetError
(Retval, &ErrBuffer, NULL);
fprintf (stderr, "Can't unsubscribe: %$s\n", ErrBuffer);

ziAPIDeallocateEventEx
(Event);

LabOne Programming Manual Revision 31421 Zurich Instruments 179

http://www.zhinst.com

6.2. Module Documentation

Data Structure Documentation

struct ZIEvent

This struct holds event data forwarded by the Data Server.

#include "ziAPI.h"

typedef struct ZIEvent {

uint32 t

uint8 t

void*

ZIDoubleData*

ZIIntegerData*

ZIValueType enum

valueType

count

path

[256];

untyped

doubleData

ZIDoubleDataTS

doubleDataTs

integerData

ZIIntegerDataTsS

integerDataTS

ZIByteArray

byteArray

ZIByteArrayTS

byteArrayTsS

ZITreeChangeData

treeChangeData

TreeChange

treeChangeDatalld

ZIDemodSample

demodSample

LabOne Programming Manual

Revision 31421 Zurich Instruments

180

http://www.zhinst.com

6.2. Module Documentation

ZIAuxInSample

auxInSample

ZIDIOSample

dioSample

ZIScopeWave

scopeWave

ScopeWave

scopeWaveOld

ZIPWAWave
pwaWave

union ZIEvent::@1
value

uint8 t
data
[0x4000007;
} ZIEvent;

Data Fields

= ZWNalueType_enum valueType
Specifies the type of the data held by the ZIEvent.

™ uint32_tcount

Number of values available in this event.

= uint8_t path
The path to the node from which the event originates.

= void* untyped

For convenience. The void field doesn't have a corresponding
data type.

= ZlDoubleData* doubleData
when valueType == ZI_VALUE_TYPE_DOUBLE_DATA

= ZIDoubleDataTS* doubleDataTS
when valueType == ZI_VALUE_TYPE_DOUBLE_DATA_TS

= ZlintegerData* integerData
when valueType == ZI_VALUE_TYPE_INTEGER_DATA

= ZlintegerDataTS* integerDataTS
when valueType == ZI_VALUE_TYPE_INTEGER_DATA_TS

= ZIByteArray* byteArray
when valueType == ZI_VALUE_TYPE_BYTE_ARRAY

LabOne Programming Manual Revision 31421 Zurich Instruments 181

http://www.zhinst.com

6.2. Module Documentation

= ZIByteArrayTS* byteArrayTS
when valueType == ZI_VALUE_TYPE_BYTE_ARRAY_TS

= ZlTreeChangeData* treeChangeData
when valueType == ZI_VALUE_TYPE_TREE_CHANGE_DATA

™= TreeChange* treeChangeDataOld
when valueType ==
ZI_VALUE_TYPE_TREE_CHANGE_DATA_OLD

= ZIDemodSample* demodSample
when valueType == ZI_VALUE_TYPE_DEMOD_SAMPLE

= ZIAuxInSample* auxInSample
when valueType == ZI_VALUE_TYPE_AUXIN_SAMPLE

= ZIDIOSample* dioSample
when valueType == ZI_VALUE_TYPE_DIO_SAMPLE

= ZIScopeWave* scopeWave
when valueType == ZI_VALUE_TYPE_SCOPE_WAVE

= ScopeWave* scopeWaveOld
when valueType == ZI_VALUE_TYPE_SCOPE_WAVE_OLD

= ZIPWAWave* pwaWave
when valueType == ZI_VALUE_TYPE_PWA_WAVE

= union ZIEvent:@1 value

Convenience pointer to allow for access to the first entry in
Data using the correct type according to ZIEvent.valueType
field.

= uint8_tdata
The raw value data.

Detailed Description

ZIEvent is used to give out events like value changes or errors to the user. Event handling
functionality is provided by ziAPISubscribe and ziAPIUnSubscribe as well as ziAPIPollDataEx.

#include <stdio.h>

#include "
ziAPI.h
void ProcessEvent (
ZIEvent
* Event)
{
unsigned int j;
switch(Event->
valueType

LabOne Programming Manual Revision 31421 Zurich Instruments 182

http://www.zhinst.com

6.2. Module Documentation

case
zI VALUE TYPE DOUBLE DATA
printf("%u elements of double data %s\n",
Event->
count
r
Event->
path
)i
for(j = 0; j < Event->
count
HEE S|
printf ("$f\n", Event->
value
doubleData
(31) 7
break;
case

71 VALUE TYPE INTEGER DATA

printf("%u elements of integer data %$s\n",

Event->
count
4
Event->
path
)i
for(j = 0; j < Event->
count
;oJrt)
printf ("$f\n", (float)Event->
value
integerData
(31)7
break;
case
7zI_VALUE TYPE DEMOD SAMPLE
printf("$u elements of sample data %$s\n",
Event->
count
’
Event->
path
)i
for(j = 0; j < Event->
count
ioJtt)

printf ("TS=%f, X=%f, Y=%f\n",
(float)Event->
value

LabOne Programming Manual Revision 31421 Zurich Instruments

183

http://www.zhinst.com

6.2. Module Documentation

demodSample
(31.
timeStamp

Event->
value

demodSample
(31.

X

Event->
value

demodSample
(31.
Yy
)7

break;

case

71 VALUE TYPE TREE CHANGE DATA

printf("%u elements of tree-changed data $%$s\n",

Event->
count
’
Event->
path
)i
for(j = 0; j < Event->
count
;oJ++ o
switch(Event->
value
treeChangeDatalOld
(31.
Action

case
zI TREE ACTION REMOVE
printf("Tree removed: %s\n",
Event->
value
treeChangeDatalOld
(31.
Name
)i
break;
case

ZI TREE ACTION ADD

printf ("treeChangeDataOld added: %s\n",

Event->
value
treeChangeDatalOld
LabOne Programming Manual Revision 31421 Zurich Instruments 184

http://www.zhinst.com

6.2. Module Documentation

break;

case

ZI TREE ACTION CHANGE

printf ("treeChangeDataOld changed: %s\n",

Event->
value

treeChangeDataOld

(31.
Name
)
break;

break;

default:

printf ("Unexpected event value type:

valueType
)i
break;

See Also:

$d\n",

ziAPISubscribe, ziAPIUnSubscribe, ziAPIPollDataEx

Event->

LabOne Programming Manual Revision 31421 Zurich Instruments

185

http://www.zhinst.com

6.2. Module Documentation

struct ziEvent
This struct holds event data forwarded by the Data Server. Deprecated: See ZIEvent.

#include "ziAPI.h"

typedef struct ziEvent {

ziAPIDataType
Type
unsigned int
Count
unsigned char
Path
[256];
union ziEvent::Val
Val
unsigned char
Data
[0x4000007 ;

} ziEvent;

Data Structures

™ union ziEvent::Val

Data Fields

= ZziAPIDataType Type

™ unsigned int Count

™ unsigned char Path

= union ziEvent::Val Val

™ unsigned char Data

Detailed Description

ziEvent is used to give out events like value changes or errors to the user. Event handling
functionality is provided by ziAPISubscribe and ziAPIUnSubscribe as well as ziAPIPollDataEx.

LabOne Programming Manual Revision 31421 Zurich Instruments 186

http://www.zhinst.com

6.2. Module Documentation

See Also:
ziAPISubscribe , ziAPIUnSubscribe , ziAPIPollDataEx

#include <stdio.h>

#include "
z1iAPI.h
n
void ProcessEvent (
ZIEvent
* Event)
{
unsigned int j;
switch(Event->
valueType

case
zI VALUE TYPE DOUBLE DATA
printf("$u elements of double data %$s\n",
Event->
count
r
Event->
path
)
for(j = 0; j < Event->
count
ioJtt)
printf ("$f\n", Event->
value
doubleData
(31);
break;
case

71_VALUE TYPE INTEGER DATA

printf("%u elements of integer data %s\n",

Event->
count
4
Event->
path
)i
for(j = 0; j < Event->
count
;oJtt)
printf("$f\n", (float)Event->
value
integerData

(31)i

break;

LabOne Programming Manual Revision 31421 Zurich Instruments 187

http://www.zhinst.com

6.2. Module Documentation

case

71 VALUE TYPE DEMOD SAMPLE

printf("%u elements of sample data %s\n",

Event->
count
4
Event->
path
)i
for(j = 0; j < Event->
count
;oJrt)

printf ("TS=%f, X=%f, Y=%f\n",
(float)Event->
value

demodSample
(31.
timeStamp
Event->
value

demodSample
(31.

X

Event->
value

demodSample
(31.
Yy
)7

break;

case

71 VALUE TYPE TREE CHANGE DATA

printf("%u elements of tree-changed data %$s\n",

Event->
count
’
Event->
path
)i
for(j = 0; j < Event->
count
;oJ++ o
switch(Event->
value
treeChangeDatalOld
(31.
Action

case
71 TREE ACTION REMOVE

LabOne Programming Manual Revision 31421 Zurich Instruments

188

http://www.zhinst.com

6.2. Module Documentation

printf("Tree removed: %s\n",

Event->
value
treeChangeDataOld
(31.
Name
)i
break;
case

71 TREE_ACTION ADD

printf ("treeChangeDataOld added: %s\n",

Event->
value
treeChangeDatalOld
(31.
Name
);
break;
case

ZI TREE ACTION CHANGE

printf ("treeChangeDataOld changed: %s\n",
Event->
value

treeChangeDatalOld
(31.
Name
)i
break;

break;
default:

printf ("Unexpected event value type: %d\n", Event->
valueType
)i
break;

LabOne Programming Manual Revision 31421 Zurich Instruments 189

http://www.zhinst.com

6.2. Module Documentation

Data Structure Documentation

union ziEvent::Val

typedef union ziEvent::Val {

void*

ziDoubleType*

ziIntegerType*

} ziEvent::Val;

Data Fields

= void* Void

= DemodSample* SampleDemod
= AuxInSample* SampleAuxIn

= DIOSample* SampleDIO

= ziDoubleType* Double

zilntegerType* Integer

Void

DemodSample

SampleDemod

AuxInSample

SampleAuxIn

DIOSample

SampleDIO

Double

Integer

TreeChange

Tree

ByteArrayData

ByteArray

ScopeWave

Wave

LabOne Programming Manual

Revision 31421 Zurich Instruments

190

http://www.zhinst.com

6.2. Module Documentation

= TreeChange* Tree

= ByteArrayData* ByteArray

= ScopeWave* Wave

LabOne Programming Manual Revision 31421 Zurich Instruments 191

http://www.zhinst.com

6.2. Module Documentation

Function Documentation

ziAPIlAllocateEventEx

ZIEvent * ziAPIAllocateEventEx ()

Allocates ZIEvent structure and returns the pointer to it. Attention!!! It is the client code
responsibility to deallocate the structure by calling ziAPIDeallocateEventEx!

This function allocates a ZIEvent structure and returns the pointer to it. Free the memory using
ziAPIDeallocateEventEx.

See Also:
ziAPIDeallocateEventEx

LabOne Programming Manual Revision 31421 Zurich Instruments 192

http://www.zhinst.com

6.2. Module Documentation

ziAPIDeallocateEventEx

void ziAPIDeallocateEventEx (ZIEvent * ev)
Deallocates ZIEvent structure created with ziAPIAllocateEventEx() .

Parameters:

[in] ev
Pointer to ZIEvent structure to be deallocated..

See Also:
ziAPIAllocateEventEx

This function is the compliment to ziAPIAllocateEventEx()

LabOne Programming Manual Revision 31421 Zurich Instruments 193

http://www.zhinst.com

6.2. Module Documentation

ziAPISubscribe

ZIResult_enum ziAPISubscribe (ZIConnection conn, const char* path)
subscribes the nodes given by path for ziAPIPollDataEx

This function subscribes to nodes so that whenever the value of the node changes the new value
can be polled using ziAPIPollDataEx . By using wildcards or by using a path that is not a leaf node
but contains sub nodes, more than one leaf can be subscribed to with one function call.

Parameters:

[in] conn
Pointer to the ziConnection for which to subscribe for

[in] path
Path to the nodes to subscribe

Returns:

= 7| _SUCCESS on success

= Z|_CONNECTION when the connection is invalid (not connected) or when a communication
error occurred

m 7|_LENGTH if the Path's Length exceeds MAX_PATH_LEN

= 7| _OVERFLOW when a FIFO overflow occurred

= 7|_COMMAND on an incorrect answer of the server

= Z|_SERVER_INTERNAL if an internal error occurred in the Data Server

= 7|_NOTFOUND if the given path could not be resolved or no node given by path is able to hold
values

= 7| _TIMEOUT when communication timed out

See Data Handling for an example

See Also:
ZziIAPIUnSubscribe, ziAPIPollDataEx, ziAPIGetValueAsPollData

LabOne Programming Manual Revision 31421 Zurich Instruments 194

http://www.zhinst.com

6.2. Module Documentation

ziAPIUnSubscribe

ZIResult_enum ziAPIUnSubscribe (ZIConnection conn, const char* path)
unsubscribes to the nodes given by path

This function is the complement to ziAPISubscribe . By using wildcards or by using a path that
is not a leaf node but contains sub nodes, more than one node can be unsubscribed with one

function call.
Parameters:
[in] conn

Pointer to the ziConnection for which to unsubscribe for

[in] path
Path to the Nodes to unsubscribe

Returns:

= 7| _SUCCESS on success

= Z|_CONNECTION when the connection is invalid (not connected) or when a communication
error occurred

m 7|_LENGTH if the Path's Length exceeds MAX_PATH_LEN

= 7| _OVERFLOW when a FIFO overflow occurred

= 7|_COMMAND on an incorrect answer of the server

= Z|_SERVER_INTERNAL if an internal error occurred in the Data Server

= 7|_NOTFOUND if the given path could not be resolved or no node given by path is able to hold
values

= 7| _TIMEOUT when communication timed out

See Data Handling for an example

See Also:
ziAPISubscribe, ziAPIPollDataEx, ziAPIGetValueAsPollData

LabOne Programming Manual Revision 31421 Zurich Instruments 195

http://www.zhinst.com

6.2. Module Documentation

ziAPIPollDataEx

ZIResult_enum ziAPIPollDataEx (ZIConnection conn, ZIEvent * ev, uint32_t
timeOutMilliseconds)

checks if an event is available to read

This function returns immediately if an event is pending. Otherwise it waits for an event for up
to timeOutMilliseconds. All value changes that occur in nodes that have been subscribed to or in
children of nodes that have been subscribed to are sent from the Data Server to the ziAPI session.
For a description of how the data are available in the struct, refer to the documentation of struct
ziEvent . When no event was available within timeOutMilliseconds, the ziEvent::Type field will be
ZI_DATA_NONE and the ziEvent::Count field will be zero. Otherwise these fields hold the values
corresponding to the event that occurred.

Parameters:

[in] conn
Pointer to the ZIConnection for which events should be received

[out] ev

Pointer to a ZIEvent struct in which the received event will be
written

[in] timeOutMilliseconds

Time to wait for an event in milliseconds. If -1 it will wait forever, if O
the function returns immediately.

Returns:
= 7| _SUCCESS on success
= Z|_CONNECTION when the connection is invalid (not connected) or when a communication
error occurred
= 7Z|_OVERFLOW when a FIFO overflow occurred
See Data Handling for an example
See Also:

ziAPISubscribe, ziAPIUnSubscribe, ziAPIGetValueAsPollData, ziEvent

LabOne Programming Manual Revision 31421 Zurich Instruments 196

http://www.zhinst.com

6.2. Module Documentation

ziAPIGetValueAsPollData

ZIResult_enum ziAPIGetValueAsPollData (ZIConnection conn, const char* path)
triggers a value request, which will be given back on the poll event queue

Use this function to receive the value of one or more nodes as one or more events using
ziAPIPollDataEx , even when the node is not subscribed or no value change has occured.

Parameters:

[in] conn

Pointer to the ZIConnection with which the value should be
retrieved

[in] path
Path to the Node holding the value

Returns:

= 7| _SUCCESS on success

= Z|_CONNECTION when the connection is invalid (not connected) or when a communication
error occurred

= 7|_LENGTH if the Path's Length exceeds MAX_PATH_LEN or the length of the char-buffer for
the nodes given by MaxLen is too small for all elements

= 7| _OVERFLOW when a FIFO overflow occurred

= 7|_COMMAND on an incorrect answer of the server

= /| _SERVER_INTERNAL if an internal error occurred in the Data Server

= Z|I_NOTFOUND if the given path could not be resolved or no value is attached to the node

= 7| _TIMEOUT when communication timed out

See Data Handling for an example

See Also:
ziAPISubscribe, ziAPIUnSubscribe, ziAPIPollDataEx

LabOne Programming Manual Revision 31421 Zurich Instruments 197

http://www.zhinst.com

6.2. Module Documentation

ziAPIPollData

ZIResult_enum ziAPIPollData (ZIConnection conn, ziEvent * ev, int timeOut)
Checks if an event is available to read. Deprecated: See ziAPIPollDataEx() .
Parameters:

[in] conn
Pointer to the ZIConnection for which events should be received

[out] ev
Pointer to a ziEvent struct in which the received event will be
written

[in] timeOut
Time to wait for an event in milliseconds. If -1 it will wait forever, if O
the function returns immediately.

Returns:
= 7| _SUCCESS on success
= /|_CONNECTION when the connection is invalid (not connected) or when a communication
error occurred
= 7| _OVERFLOW when a FIFO overflow occurred
See Data Handling foranexample
See Also:

ziAPISubscribe , ziAPIUnSubscribe , ziAPIGetValueAsPollData, ziEvent

LabOne Programming Manual Revision 31421 Zurich Instruments

198

http://www.zhinst.com

6.2. Module Documentation

6.2.5. Error Handling

all functions return ZIResult_enum . To retrieve a full-text description of such a status one
function is provided: ziAPIGetError.

Functions

= ZIResult_enum ziAPIGetError (ZIResult_enum result,
char** buffer, int* base)

returns a description and the severity for a ZIResult_enum

LabOne Programming Manual Revision 31421 Zurich Instruments 199

http://www.zhinst.com

6.2. Module Documentation

Function Documentation

ziAPIGetError

ZIResult_enum ziAPIGetError (ZIResult_enum result, char** buffer, int* base)
returns a description and the severity fora ZIResult_enum

This function returns a static char pointer to a description string for the given ZIResult_enum
error code. It also provides a parameter returning the severity (info, warning, error). If the given
error code does not exist a description for an unknown error and the base for an error will be
returned. If a description or the base is not needed NULL may be passed.

Parameters:

[in] result
A ZIResult_enum for which the description or base will be returned

[out] buffer

A pointer to a char array to return the description. May be NULL if no
description is needed.

[out] base
The severity for the provided Status parameter:

= Z|_INFO_BASE for infos
= ZI_WARNING_BASE for warnings
= 7| _ERROR_BASE forerrors

Returns:

= /|_SUCCESS

LabOne Programming Manual Revision 31421 Zurich Instruments 200

http://www.zhinst.com

6.3. Data Structure Documentation

6.3. Data Structure Documentation

6.3.1. struct AuxInSample

The AuxinSample struct holds data for the ZI_DATA_AUXINSAMPLE data type. Deprecated: See
ZIAuxInSample .

#include "ziAPI.h"

typedef struct AuxInSample {

ziTimeStampType
TimeStamp
double
Cho
double
Chl
} AuxInSample;
Data Fields

= ziTimeStampType TimeStamp

= double ChO

= double Ch1

LabOne Programming Manual Revision 31421 Zurich Instruments 201

http://www.zhinst.com

6.3. Data Structure Documentation

6.3.2. struct ByteArrayData

The ByteArrayData struct holds data for the ZI_DATA_BYTEARRAY data type. Deprecated: See
Z|ByteArray .

#include "ziAPI.h"

typedef struct ByteArrayData {
unsigned int

Len
unsigned char
Bytes
[01;
} ByteArrayData;
Data Fields

™= unsignedint Len

™ unsigned char Bytes

LabOne Programming Manual Revision 31421 Zurich Instruments 202

http://www.zhinst.com

6.3. Data Structure Documentation

6.3.3. struct DemodSample

The DemodSample struct holds data for the ZI_DATA_DEMODSAMPLE data type. Deprecated:
See ZIDemodSample.

#include "ziAPI.h"

typedef struct DemodSample {

ziTimeStampType

TimeStamp
double

X
double

Y
double

Frequency
double

Phase
unsigned int

DIOBits
unsigned int

Reserved
double

AuxInO
double

AuxInl

} DemodSample;
Data Fields

= ziTimeStampType TimeStamp

= double X

= doubleY

= double Frequency

= double Phase

™ unsigned int DIOBits

™ unsigned int Reserved

= double AuxIn0

LabOne Programming Manual Revision 31421 Zurich Instruments 203

http://www.zhinst.com

6.3. Data Structure Documentation

= double AuxIn1

LabOne Programming Manual Revision 31421 Zurich Instruments 204

http://www.zhinst.com

6.3. Data Structure Documentation

6.3.4. struct DIOSample

The DIOSample struct holds data for the ZI_DATA_DIOSAMPLE data type. Deprecated: See
ZIDI0OSample .

#include "ziAPI.h"

typedef struct DIOSample {

ziTimeStampType

TimeStamp
unsigned int

Bits
unsigned int

Reserved

} DIOSample;
Data Fields

= ziTimeStampType TimeStamp

™ unsigned int Bits

™ unsigned int Reserved

LabOne Programming Manual Revision 31421 Zurich Instruments 205

http://www.zhinst.com

6.3. Data Structure Documentation

6.3.5. struct ScopeWave

The structure used to hold a single scope shot (API Level 1). If the client is connected to the
Data Server using APl Level 4 (recommended if supported by your device class) please see
ZIScopeWave instead.

#include "ziAPI.h"

typedef struct ScopeWave {

double

dt
unsigned int

ScopeChannel
unsigned int

TriggerChannel
unsigned int

BWLimit
unsigned int

Count
short

Data

[01;

} ScopeWave;

Data Fields

= doubledt
Time difference between samples.

= unsigned int ScopeChannel
Scope channel of the represented data.

™ unsigned int TriggerChannel
Trigger channel of the represented data.

™ unsigned int BWLimit
Bandwidth-limit flag.

™ unsigned int Count
Count of samples.

= short Data

First wave data.

LabOne Programming Manual Revision 31421 Zurich Instruments 206

http://www.zhinst.com

6.3. Data Structure Documentation

6.3.6. struct TreeChange

The structure used to hold info about added or removed nodes. This is the version without

timestamp used in APl v1 compatibility mode.

#include "ziAPI.h"

typedef struct TreeChange {

uint32 t
Action
char
Name
[32];

} TreeChange;

Data Fields

™ uint32_t Action

field indicating which action occured on the tree. A value of
the ZITreeAction_enum (TREE_ACTION) enum.

= char Name

Name of the Path that has been added, removed or changed.

LabOne Programming Manual Revision 31421 Zurich Instruments

207

http://www.zhinst.com

6.3. Data Structure Documentation

6.3.7. union ziEvent::Val

typedef union ziEvent::Val {
void*
Void

DemodSample

SampleDemod

AuxInSample

SampleAuxIn

DIOSample
SampleDIO

ziDoubleType*
Double

ziIntegerType*

Integer

TreeChange

Tree

ByteArrayData

ByteArray

ScopeWave
Wave

} ziEvent::Val;

Data Fields

™= void* Void

= DemodSample* SampleDemod
= AuxInSample* SampleAuxin

= DIOSample* SampleDIO

= ziDoubleType* Double

= ZilntegerType* Integer

LabOne Programming Manual Revision 31421 Zurich Instruments 208

http://www.zhinst.com

6.3. Data Structure Documentation

= TreeChange* Tree

= ByteArrayData* ByteArray

= ScopeWave* Wave

LabOne Programming Manual Revision 31421 Zurich Instruments 209

http://www.zhinst.com

6.3. Data Structure Documentation

6.3.8. struct ZIAuxInSample

The structure used to hold data for a single auxiliary inputs sample.

#include "ziAPI.h"

typedef struct ZIAuxInSample {

ZITimeStamp
timeStamp
double
chO
double
chl
} ZIAuxInSample;
Data Fields

= ZITimeStamp timeStamp
The timestamp at which the values have been measured.

™= doublechO
Channel O voltage.

= doublech1
Channel 1 voltage.

LabOne Programming Manual Revision 31421 Zurich Instruments 210

http://www.zhinst.com

6.3. Data Structure Documentation

6.3.9. struct ZIByteArray

The structure used to hold an arbitrary array of bytes. This is the version without timestamp used
in API Level 1 compatibility mode.

#include "ziAPI.h"

typedef struct ZIByteArray {
uint32 t
length

uint8 t
bytes

(01
} ZIByteArray;

Data Fields

= uint32_tlength
Length of the data readable from the Bytes field.

= uint8_t bytes
The data itself. The array has the size given in length.

LabOne Programming Manual Revision 31421 Zurich Instruments 211

http://www.zhinst.com

6.3. Data Structure Documentation

6.3.10. struct ZIByteArrayTS

The structure used to hold an arbitrary array of bytes. This is the same as ZIByteArray , but with
timestamp.

#include "ziAPI.h"

typedef struct ZIByteArrayTS {

ZITimeStamp

timeStamp
uint32 t

length
uint8 t

bytes

[01;
} ZIByteArrayTsS;

Data Fields

= ZITimeStamp timeStamp
Time stamp at which the data was updated.

= uint32_t length
length of the data readable from the bytes field

= uint8_t bytes
the data itself. The array has the size given in length

LabOne Programming Manual Revision 31421 Zurich Instruments 212

http://www.zhinst.com

6.3. Data Structure Documentation

6.3.11. struct ZIDemodSample

The structure used to hold data for a single demodulator sample.

#include "ziAPI.h"

typedef struct ZIDemodSample {

ZITimeStamp

timeStamp

double

double

double

frequency

double

phase

uint32 t

dioBits

uint32 t

trigger

double

auxInO

double

auxInl

} ZIDemodSample;

Data Fields

= ZITimeStamp timeStamp

The timestamp at which the sample has been measured.

= double x

X part of the sample.

= doubley

Y part of the sample.

= double frequency

Frequency at that sample.

= double phase

Phase at that sample.

= uint32_tdioBits

the current bits of the DIO.

= uint32_ttrigger
trigger bits

= double auxIn0

LabOne Programming Manual Revision 31421

Zurich Instruments

213

http://www.zhinst.com

6.3. Data Structure Documentation

value of Aux input 0.

= double auxIn1
value of Aux input 1.

LabOne Programming Manual Revision 31421 Zurich Instruments 214

http://www.zhinst.com

6.3. Data Structure Documentation

6.3.12. struct ZIDIOSample

The structure used to hold data for a single digital I/0 sample.

#include "ziAPI.h"

typedef struct ZIDIOSample {

ZITimeStamp

timeStamp
uint32 t

bits
uint32 t

reserved

} ZIDIOSample;
Data Fields

= ZITimeStamp timeStamp

The timestamp at which the values have been measured.

= uint32_tbits
The digital I/0 values.

= uint32_treserved

Filler to keep 8 bytes alignment in the array of ZIDIOSample

structures.

LabOne Programming Manual Revision 31421 Zurich Instruments

215

http://www.zhinst.com

6.3. Data Structure Documentation

6.3.13. struct ZIDoubleDataTS

The structure used to hold a single IEEE double value. Same as ZIDoubleData, but with timestamp.
#include "ziAPI.h"

typedef struct ZIDoubleDataTS {
ZITimeStamp

timeStamp

ZIDoubleData
value

} ZIDoubleDataTS;

Data Fields

ZITimeStamp timeStamp
Time stamp at which the value has changed.

Z|DoubleData value

LabOne Programming Manual Revision 31421 Zurich Instruments 216

http://www.zhinst.com

6.3. Data Structure Documentation

6.3.14. struct ziEvent

This struct holds event data forwarded by the Data Server. Deprecated: See ZIEvent.

#include "ziAPI.h"

typedef struct ziEvent {

ziAPIDataType

Type
unsigned int
Count
unsigned char
Path
[256];
union ziEvent::Val
Val
unsigned char
Data
[0x400000];

} ziEvent;

Data Structures

™ union ziEvent::Val

Data Fields

= ZziAPIDataType Type
™ unsigned int Count
™ unsigned char Path
™ union ziEvent::Val Val

= unsigned char Data

Detailed Description

LabOne Programming Manual Revision 31421

Zurich Instruments

217

http://www.zhinst.com

6.3. Data Structure Documentation

ziEvent is used to give out events like value changes or errors to the user. Event handling
functionality is provided by ziAPISubscribe and ziAPIUnSubscribe as well as ziAPIPollDataEx.

See Also:
ziAPISubscribe, ziAPIUnSubscribe, ziAPIPollDataEx

#include <stdio.h>

#include "
z1iAPI.h
"
void ProcessEvent (
ZIEvent
* Event)
{
unsigned int j;
switch(Event->
valueType

case
ZI1 VALUE TYPE DOUBLE DATA
printf("%$u elements of double data %$s\n",
Event->
count
’
Event->

path
) 7

for(j = 0; j < Event->
count
HES RS |
printf ("$f\n", Event->
value

doubleData
(31

break;

case
zI_VALUE TYPE INTEGER DATA

printf("%u elements of integer data %s\n",
Event->
count

Event->
path
) i

for(j = 0; j < Event->
count
;o)
printf("$f\n", (float)Event->
value

integerData

LabOne Programming Manual Revision 31421 Zurich Instruments 218

http://www.zhinst.com

6.3. Data Structure Documentation

break;

case
ZI_VALUE TYPE DEMOD SAMPLE

printf("%u elements of sample data %s\n",
Event->
count

Event->
path
) 7

for(j = 0; j < Event->
count
;oJHt)
printf ("TS=%f, X=%f, Y=%f\n",
(float)Event->
value

demodSample
(31.
timeStamp

value

demodSample

value

demodSample

break;

case
21 VALUE TYPE TREE CHANGE DATA

printf("%u elements of tree-changed data %$s\n",
Event->
count

Event->
path
) 7

for(j = 0; j < Event->
count
;o o

switch(Event->
value

treeChangeDatalOld
(31

Action

LabOne Programming Manual Revision 31421 Zurich Instruments

219

http://www.zhinst.com

6.3. Data Structure Documentation

case
ZI_TREE ACTION REMOVE

printf("Tree removed: %s\n",

Event->
value
treeChangeDataOld
(37.
Name
) 7
break;
case

ZI_TREE_ACTION ADD

printf ("treeChangeDataOld added: %s\n",

Event->
value
treeChangeDatalOld

(371.
Name
)
break;
case

ZI_TREE ACTION CHANGE

printf ("treeChangeDataOld changed: %s\n",
Event->
value

treeChangeDataOld
(37.
Name
) 7
break;

break;
default:

printf ("Unexpected event value type: %d\n", Event->
valueType
)i
break;

LabOne Programming Manual Revision 31421 Zurich Instruments 220

http://www.zhinst.com

6.3. Data Structure Documentation

Data Structure Documentation

union ziEvent::Val

typedef union ziEvent::Val {

void*

ziDoubleType*

ziIntegerType*

} ziEvent::Val;

Data Fields

= void* Void

Void

DemodSample

SampleDemod

AuxInSample

SampleAuxIn

DIOSample

SampleDIO

Double

Integer

TreeChange

Tree

ByteArrayData

ByteArray

ScopeWave

Wave

= DemodSample* SampleDemod

= AuxInSample* SampleAuxIn

= DIOSample* SampleDIO

= ziDoubleType* Double

LabOne Programming Manual

Revision 31421 Zurich Instruments

221

http://www.zhinst.com

6.3. Data Structure Documentation

™= ZilntegerType* Integer

= TreeChange* Tree

= ByteArrayData* ByteArray

= ScopeWave* Wave

LabOne Programming Manual Revision 31421 Zurich Instruments 222

http://www.zhinst.com

6.3. Data Structure Documentation

6.3.15. struct ZIEvent

This struct holds event data forwarded by the Data Server.

#include "ziAPI.h"

typedef struct ZIEvent {

uint32 t

uint8 t

void*

ZIDoubleData*

ZIIntegerData*

ZIValueType enum

valueType

count

path

[256];

untyped

doubleData

ZIDoubleDataT$s

doubleDataTs

integerData

ZIIntegerDataTS

integerDataTs

ZIByteArray

byteArray

ZIByteArrayTS

byteArrayTS

ZITreeChangeData

treeChangeData

TreeChange

treeChangeDataOld

ZIDemodSample

demodSample

ZIAuxInSample

LabOne Programming Manual

Revision 31421 Zurich Instruments

223

http://www.zhinst.com

6.3. Data Structure Documentation

auxInSample
ZIDIOSample
dioSample
ZIScopeWave
scopeWave
ScopeWave
scopeWaveOld
ZIPWAWave
pwaWave
union ZIEvent::@i
value
uint8 t ,
data
[0x400000] ;
} ZIEvent;
Data Fields
= ZWNalueType_enum valueType
Specifies the type of the data held by the ZIEvent.
= uint32_tcount
Number of values available in this event.
= uint8_t path
The path to the node from which the event originates.
= void* untyped
For convenience. The void field doesn't have a corresponding
data type.
= ZlDoubleData* doubleData
when valueType == ZI_VALUE_TYPE_DOUBLE_DATA
= ZIDoubleDataTS* doubleDataTS
when valueType == ZI_VALUE_TYPE_DOUBLE_DATA_TS
= ZlintegerData* integerData
when valueType == ZI_VALUE_TYPE_INTEGER_DATA
= ZlintegerDataTS* integerDataTS
when valueType == ZI_VALUE_TYPE_INTEGER_DATA_TS
= ZIByteArray* byteArray
when valueType == ZI_VALUE_TYPE_BYTE_ARRAY

Z|ByteArrayTS* byteArrayTS

LabOne Programming Manual Revision 31421 Zurich Instruments

224

http://www.zhinst.com

6.3. Data Structure Documentation

when valueType == ZI_VALUE_TYPE_BYTE_ARRAY_TS

= ZITreeChangeData* treeChangeData
when valueType == ZI_VALUE_TYPE_TREE_CHANGE_DATA

™= TreeChange* treeChangeDataOld
when valueType ==
ZI_VALUE_TYPE_TREE_CHANGE_DATA_OLD

= ZIDemodSample* demodSample
when valueType == ZI_VALUE_TYPE_DEMOD_SAMPLE

= ZlAuxInSample* auxInSample
when valueType == ZI_VALUE_TYPE_AUXIN_SAMPLE

= ZIDIOSample* dioSample
when valueType == ZI_VALUE_TYPE_DIO_SAMPLE

= ZIScopeWave* scopeWave
when valueType == ZI_VALUE_TYPE_SCOPE_WAVE

= ScopeWave* scopeWaveOld
when valueType == ZI_VALUE_TYPE_SCOPE_WAVE_OLD

= ZIPWAWave* pwaWave
when valueType == ZI_VALUE_TYPE_PWA_WAVE

= union ZIEvent:@1 value

Convenience pointer to allow for access to the first entry in
Data using the correct type according to ZIEvent.valueType
field.

= uint8_tdata
The raw value data.

Detailed Description

ZIEvent is used to give out events like value changes or errors to the user. Event handling
functionality is provided by ziAPISubscribe and ziAPIUnSubscribe as well as ziAPIPollDataEx.

#include <stdio.h>

#include "
ziAPI.h
"
void ProcessEvent (
ZIEvent
* Event)
{
unsigned int j;
switch(Event->
valueType

)

LabOne Programming Manual Revision 31421 Zurich Instruments 225

http://www.zhinst.com

6.3. Data Structure Documentation

case
ZI_VALUE TYPE DOUBLE DATA

printf("%u elements of double data %s\n",
Event->
count

Event->
path
) 7

for(j = 0; j < Event->
count
;poJHt)
printf("$f\n", Event->
value

doubleData
[31)7

break;
case
Zz1_VALUE TYPE INTEGER DATA
printf("$u elements of integer data %s\n",
Event->
count
’
Event->
path

)i

for(j = 0; j < Event->
count
i3t)
printf("$f\n", (float)Event->
value

integerData

[31)
break;

case
ZI_VALUE TYPE DEMOD SAMPLE

printf("%u elements of sample data %s\n",
Event->
count

Event->
path
) 7

for(j = 0; j < Event->
count
;poJHt)
printf ("TS=%f, X=%f, Y=%f\n",
(float)Event->
value

LabOne Programming Manual Revision 31421 Zurich Instruments

226

http://www.zhinst.com

6.3. Data Structure Documentation

demodSample

(37.
timeStamp

4

Event->

value
demodSample

[37.
X

’

Event->

value
demodSample

[31.
y

) 7

break;
case
z1 _VALUE TYPE TREE CHANGE DATA
printf("%u elements of tree-changed data %s\n",
Event->

count

’

Event->

path
) 7

for(j = 0; j < Event->
count
poJHt)|

switch(Event->
value
treeChangeDataOld
[31.
Action

case
ZI_TREE ACTION REMOVE

printf("Tree removed: %s\n",

Event->
value
treeChangeDataOld
(37.
Name
) 7
break;
case

ZI_TREE_ACTION ADD

printf ("treeChangeDataOld added: %s\n",
Event->
value

treeChangeDatalOld
(31.

LabOne Programming Manual Revision 31421 Zurich Instruments

227

http://www.zhinst.com

6.3. Data Structure Documentation

Name
break;

case
ZI_TREE_ACTION CHANGE

printf ("treeChangeDataOld changed: %s\n",
Event->
value

treeChangeDatalOld
(371.
Name
)

break;

break;
default:

printf ("Unexpected event value type: %d\n", Event->
valueType
)

break;

See Also:
ZiAPISubscribe , ziAPIUnSubscribe , ziAPIPollDataEx

LabOne Programming Manual Revision 31421 Zurich Instruments 228

http://www.zhinst.com

6.3. Data Structure Documentation

6.3.16. struct ZlIntegerDataTS

The structure used to hold a single 64bit signed integer value. Same as ZlintegerData, but with
timestamp.

#include "ziAPI.h"

typedef struct ZIIntegerDataTS {

ZITimeStamp
timeStamp
ZIIntegerData
value
} ZIIntegerDataTS;
Data Fields

= ZITimeStamp timeStamp
Time stamp at which the value has changed.

= ZlintegerData value

LabOne Programming Manual Revision 31421 Zurich Instruments 229

http://www.zhinst.com

6.3. Data Structure Documentation

6.3.17. struct ZIPWASample

Single PWA sample value.

#include "ziAPI.h"

typedef struct ZIPWASample ({

double

binPhase
double

X
double

Yy
uint32 t

countBin
uint32 t

reserved

} ZIPWASample;
Data Fields

= double binPhase

Phase position of each bin.

= double x

Real PWA result or X component of a demod PWA.

= doubley
Y component of the demod PWA.

™ yint32_tcountBin

Number of events per bin.

= uint32_treserved
Reserved.

LabOne Programming Manual Revision 31421 Zurich Instruments 230

http://www.zhinst.com

6.3. Data Structure Documentation

6.3.18. struct ZIPWAWave

PWA Wave.

#include "ziAPI.h"

typedef struct ZIPWAWave {

ZITimeStamp

uinted t
uint32 t
uint32 t
uint32 t
uint32 t
double

uint8 t
uint8 t
uint8 t
uint8 t

uint32 t

} ZIPWAWave;

Data Fields

timeStamp

sampleCount

inputSelect

oscSelect

harmonic

binCount

frequency

pwaType

mode

overflow

commensurable

reservedUInt

ZIPWASample

= ZlTimeStamp timeStamp

Time stamp at which the data was updated.

= uintB4_t sampleCount

Total sample count considered for PWA.

= uint32_tinputSelect
Input selection used for the PWA.

= uint32_t oscSelect

LabOne Programming Manual

Revision 31421 Zurich Instruments

231

http://www.zhinst.com

6.3. Data Structure Documentation

Oscillator used for the PWA.

™ uint32_t harmonic
Harmonic setting.

= yint32_t binCount
Bin count of the PWA.

= double frequency
Frequency during PWA accumulation.

= uint8_t pwaType
Type of the PWA.

= yint8_t mode
PWA Mode [0: zoom PWA, 1: harmonic PWA].

= uint8_toverflow
Overflow indicators. overflow[0]: Data accumulator overflow,
overflow[1]: Counter at limit, overflow[6..2]: Reserved,
overflow([7]: Invalid (missing frames).

= uint8_tcommensurable
Commensurability of the data.

= uint32_treservedUInt

Reserved unsigned int.

= ZIPWASample data
PWA data vector.

LabOne Programming Manual Revision 31421 Zurich Instruments 232

http://www.zhinst.com

6.3. Data Structure Documentation

6.3.19. struct ZIScopeWave

The structure used to hold scope data. The data may be formatted differently, depending on

settings. See the description of the structure members for details.

#include "ziAPI.h"

typedef struct ZIScopeWave {

ZITimeStamp

ZITimeStamp

double

uint8 t

uint8 t

uint8 t

uint8 t

uint8 t

uint8 t

uint8 t

float

uint32 t

uint32 t

uint32 t

uinteéd t

uint8 t

uint8 t

uint8 t

uint8 t

uint32 t

timeStamp
triggerTimeStamp
dt

channelEnable

(417

channelInput
(417

triggerEnable
triggerInput
reserved0

(21;

channelBWLimit
[41;

channelMath
[41;

channelScaling
(41;
sequenceNumber
segmentNumber
blockNumber
totalSamples
dataTransferMode
blockMarker

flags

sampleFormat

LabOne Programming Manual

Revision 31421 Zurich Instruments

233

http://www.zhinst.com

6.3. Data Structure Documentation

sampleCount
intlé t
dataIntlé6
(017
int32 t
dataInt32
(017
float
dataFloat

(017
union ZIScopeWave::@Q0
data

’

} ZIScopeWave;
Data Fields

= ZITimeStamp timeStamp
Time stamp of the first sample in this data block.

= ZITimeStamp triggerTimeStamp
Time stamp of the trigger (may also fall between samples)

= doubledt
Time difference between samples in seconds.

™= uint8_tchannelEnable
Up to four channels: if channel is enabled, corresponding
elementis non-zero.

= uint8_tchannellnput

Specifies the input source for each of the scope four
channels: 0 = Signal Input 1, 1 = Signal Input 2, 2 = Trigger
Input 1, 3 =Trigger Input 2, 4 = Aux Output 1, 5 = Aux Output
2,6 = Aux Output 3, 7 = Aux Output 4, 8 = Aux Input 1, 9 = Aux
Input 2.

™= uint8_ttriggerEnable
Non-zero if trigger is enabled: Bit(0): rising edge trigger off =
0, on = 1. Bit(1): falling edge trigger off = 0, on = 1.

= uint8_ttriggerinput
Trigger source (same values as for channel input)

= yint8_treserved0

= uint8_t channelBWLimit
Bandwidth-limit flag, per channel. Bit(0): off = 0, on = 1
Bit(7...1): Reserved.

= uint8_t channelMath
Math Operation (e.g averaging) Bit (7..0): Reserved.

= float channelScaling
Data scaling factors for up to 4 channels.

LabOne Programming Manual Revision 31421 Zurich Instruments

234

http://www.zhinst.com

6.3. Data Structure Documentation

= uint32_t sequenceNumber
Current scope shot sequence number. Identifies a scope shot.

™= uint32_t segmentNumber
Current segment number.

= uint32_t blockNumber
Current block number from the beginning of a scope shot.
Large scope shots are split into blocks, which need to be
concatenated to obtain the complete scope shot.

= uintB4_ttotalSamples
Total number of samples in one channel in the current scope
shot, same for all channels.

= uint8_t dataTransferMode
Data transfer mode SingleTransfer = 0, BlockTransfer = 1,
ContinuousTransfer = 3, FFTSingleTransfer = 4. Other values
are reserved.

= uint8_t blockMarker
Block marker: Bit (0): 1 = End marker for continuous or multi-
block transfer Bit (7..0): Reserved.

™= uint8_tflags
Indicator Flags. Bit (0): 1 = Data loss detected (samples are
0), Bit (1): 1 = Missed trigger, Bit (2): 1 = Transfer failure
(corrupted data).

= uint8_t sampleFormat

Data format of samples: Int16 = 0, Int32 = 1, Float = 2,
Int16Interleaved = 4, Int32Interleaved = 5, FloatInterleaved =
6.

= uint32_t sampleCount

Number of samples in one channel in the current block, same
for all channels.

= int16_tdatalnt16

= int32_tdatalnt32

= float dataFloat

= union ZIScopeWave::@0 data
First wave data.

LabOne Programming Manual Revision 31421 Zurich Instruments 235

http://www.zhinst.com

6.3. Data Structure Documentation

6.3.20. struct ZITreeChangeData

The struct is holding info about added or removed nodes.

#include "ziAPI.h"

typedef struct ZITreeChangeData {

ZITimeStamp
timeStamp
uint32 t
action
char
name
[32];
} ZITreeChangeData;
Data Fields

= ZITimeStamp timeStamp
Time stamp at which the data was updated.

™ uint32_t action

field indicating which action occured on the tree. A value of

the ZITreeAction_enum.

= charname

Name of the Path that has been added, removed or changed.

LabOne Programming Manual Revision 31421 Zurich Instruments

236

http://www.zhinst.com

6.4. File Documentation

6.4. File Documentation
6.4.1. File ziAPl.h

Header File for the Zurich Instruments AG C/C++ APl v4 doing Communication with Data Server.

Data Structures

struct ZIDoubleDataTS

The structure used to hold a single IEEE double value. Same
as ZIDoubleData, but with timestamp.

struct ZlintegerDataTS

The structure used to hold a single 64bit signed integer value.

Same as ZlIntegerData, but with timestamp.

struct ZITreeChangeData
The struct is holding info about added or removed nodes.

struct TreeChange

The structure used to hold info about added or removed
nodes. This is the version without timestamp used in API v1
compatibility mode.

struct ZIDemodSample

The structure used to hold data for a single demodulator
sample.

struct ZIAuxInSample

The structure used to hold data for a single auxiliary inputs
sample.

struct ZIDIOSample

The structure used to hold data for a single digital I/0 sample.

struct ZIByteArray

The structure used to hold an arbitrary array of bytes.
This is the version without timestamp used in API Level 1
compatibility mode.

struct ZIByteArrayTS
The structure used to hold an arbitrary array of bytes. This is
the same as ZIByteArray, but with timestamp.

struct ScopeWave

The structure used to hold a single scope shot (API Level 1).
If the client is connected to the Data Server using API Level 4
(recommended if supported by your device class) please see
ZIScopeWave instead.

struct ZIScopeWave

The structure used to hold scope data. The data may be
formatted differently, depending on settings. See the
description of the structure members for details.

LabOne Programming Manual Revision 31421 Zurich Instruments

237

http://www.zhinst.com

6.4. File Documentation

Defines

Typedefs

struct ZIPWASample
Single PWA sample value.

struct ZIPWAWave
PWA Wave.

struct ZIEvent
This struct holds event data forwarded by the Data Server.

struct DemodSample

The DemodSample struct holds data for the
ZI_DATA_DEMODSAMPLE data type. Deprecated: See
ZIDemodSample .

struct AuxInSample

The AuxinSample struct holds data for the
ZI_DATA_AUXINSAMPLE data type. Deprecated: See
ZIAuxIinSample .

struct DIOSample

The DIOSample struct holds data for the
ZI_DATA_DIOSAMPLE data type. Deprecated: See
ZIDI0Sample.

struct ByteArrayData

The ByteArrayData struct holds data for the
ZI_DATA_BYTEARRAY data type. Deprecated: See
Z|ByteArray .

struct ziEvent

This struct holds event data forwarded by the Data Server.
Deprecated: See ZIEvent.

union ziEvent::Val

#define MAX_PATH_LEN 256

The maximum length that has to be used for passing paths to
functions (including terminating zero)

#define MAX_EVENT_SIZE 0x400000
The maximum size of an event's data block.

typedef ZIConnection

LabOne Programming Manual Revision 31421 Zurich Instruments

238

http://www.zhinst.com

6.4. File Documentation

The ZIConnection is a connection reference; it holds
information and helper variables about a connection to the
Data Server. There is nothing in this reference which the user
user may use, so itis hidden and instead a dummy pointer is
used. See ziAPIInit for how to create a ZIConnection.

Enumerations

enum ZIResult_enum {ZI_INFO_BASE, ZI_INFO_SUCCESS,
ZI_INFO_MAX, ZI_WARNING_BASE, ZI_WARNING_GENERAL,
ZI_WARNING_UNDERRUN, ZI_WARNING_OVERFLOW,
ZI_WARNING_NOTFOUND, ZI_WARNING_MAX,
ZI_ERROR_BASE, ZI_ERROR_GENERAL, ZI_ERROR_USB,
ZI_ERROR_MALLOC, ZI_ERROR_MUTEX_INIT,
ZI_ERROR_MUTEX_DESTROY, ZI_ERROR_MUTEX_LOCK,
ZI_ERROR_MUTEX_UNLOCK, ZI_ERROR_THREAD_START,
ZI_ERROR_THREAD_JOIN, ZI_ERROR_SOCKET_INIT,
ZI_ERROR_SOCKET_CONNECT, ZI_ERROR_HOSTNAME,
ZI_ERROR_CONNECTION, ZI_ERROR_TIMEOUT,
ZI_ERROR_COMMAND, ZI_ERROR_SERVER_INTERNAL,

ZI_ERROR_LENGTH, ZI_ERROR_FILE, ZI_ERROR_DUPLICATE,

ZI_ERROR_READONLY, ZI_ERROR_DEVICE_NOT_VISIBLE,

ZI_ERROR_DEVICE_IN_USE, ZI_ERROR_DEVICE_INTERFACE,

ZI_ERROR_DEVICE_CONNECTION_TIMEOUT,
ZI_ERROR_DEVICE_DIFFERENT_INTERFACE,
ZI_ERROR_DEVICE_NEEDS_FW_UPGRADE,
ZI_ERROR_ZIEVENT_DATATYPE_MISMATCH,
ZI_ERROR_MAX, ZI_SUCCESS, ZI_MAX_INFO, ZI_WARNING,
ZI_UNDERRUN, ZI_OVERFLOW, ZI_NOTFOUND,
ZI_MAX_WARNING, ZI_ERROR, ZI_USB, ZI_MALLOC,
ZI_MUTEX_INIT, ZI_MUTEX_DESTROQY, ZI_MUTEX_LOCK,
ZI_MUTEX_UNLOCK, ZI_THREAD_START, ZI_THREAD_JOIN,
ZI_SOCKET_INIT, ZI_SOCKET_CONNECT, ZI_HOSTNAME,
ZI_CONNECTION, ZI_TIMEOUT, ZI_COMMAND,
ZI_SERVER_INTERNAL, ZI_LENGTH, ZI_FILE, ZI_DUPLICATE,
ZI_READONLY, ZI_MAX_ERROR }

Defines return value for all ziAPI functions. Divided into 3
regions: info, warning and error.

enum ZIValueType_enum {ZI_VALUE_TYPE_NONE,
ZI_VALUE_TYPE_DOUBLE_DATA,
ZI_VALUE_TYPE_DOUBLE_DATA_TS,
ZI_VALUE_TYPE_INTEGER_DATA,
ZI_VALUE_TYPE_INTEGER_DATA_TS,
ZI_VALUE_TYPE_DEMOD_SAMPLE,
ZI_VALUE_TYPE_AUXIN_SAMPLE,
ZI_VALUE_TYPE_DIO_SAMPLE,
ZI_VALUE_TYPE_BYTE_ARRAY,
ZI_VALUE_TYPE_BYTE_ARRAY_TS,
ZI_VALUE_TYPE_TREE_CHANGE_DATA,
ZI_VALUE_TYPE_TREE_CHANGE_DATA_OLD,
ZI_VALUE_TYPE_SCOPE_WAVE,
ZI_VALUE_TYPE_SCOPE_WAVE_OLD,

LabOne Programming Manual Revision 31421 Zurich Instruments

239

http://www.zhinst.com

6.4. File Documentation

Functions

ZI_VALUE_TYPE_PWA_WAVE, ZI_DATA_NONE,
ZI_DATA_DOUBLE, ZI_DATA_INTEGER,
ZI_DATA_DEMODSAMPLE, ZI_DATA_SCOPEWAVE,
ZI_DATA_AUXINSAMPLE, ZI_DATA_DIOSAMPLE,
ZI_DATA_BYTEARRAY, ZI_DATA_TREE_CHANGED }

Enumerates all types that data ina ZIEvent may have.
enum ZlTreeAction_enum {ZI_TREE_ACTION_REMOVE,
ZI_TREE_ACTION_ADD, ZI_TREE_ACTION_CHANGE }

Defines the actions that are performed on a tree,
as returned in the ZITreeChangeData::action or
ZITreeChangeDataOld::action.

enum ZIAPIVersion_enum {ZI_API_VERSION_1,
ZI_API_VERSION_4}

enum ZlListNodes_enum {ZI_LIST_NODES_NONE,
ZI_LIST_NODES_RECURSIVE, ZI_LIST_NODES_ABSOLUTE,
ZI_LIST_NODES_LEAFSONLY,
ZI_LIST_NODES_SETTINGSONLY, ZI_LIST_NONE,
ZI_LIST_RECURSIVE, ZI_LIST_ABSOLUTE,
ZI_LIST_LEAFSONLY, ZI_LIST_SETTINGSONLY }

Defines the values of the flags used in ziAPIListNodes.
enum TREE_ACTION {TREE_ACTION_REMOVE,
TREE_ACTION_ADD, TREE_ACTION_CHANGE }

TREE_ACTION defines the values for the TreeChange::Action
Variable.

ZIResult_enum ziAPIInit (ZIConnection * conn)
Initializes a ZIConnection structure.

ZIResult_enum ziAPIDestroy (ZIConnection conn)
Destroys a ZlConnection structure.

ZIResult_enum ziAPIConnect (ZIConnection conn, const
char* hostname, uint16_t port)

Connects the ZIConnection to Data Server.

ZIResult_enum ziAPIDisconnect (ZIConnection conn)
Disconnects an established connection.

ZIResult_enum ziAPIListimplementations (char*
implementations, uint32_t bufferSize)

Returns the list of supported implementations.
ZIResult_enum ziAPIConnectEx (ZIConnection conn, const

char* hostname, uint16_t port, ZIAPIVersion_enum apilevel,
const char* implementation)

Connects to Data Server and enables extended ziAPI.

LabOne Programming Manual Revision 31421 Zurich Instruments

240

http://www.zhinst.com

6.4. File Documentation

= ZIResult_enum ziAPIGetConnectionAPILevel (ZIConnection
conn, ZIAPIVersion_enum* apilevel)

Returns ziAPI level used for the connection conn.

= ZIResult_enum ziAPIGetRevision (unsigned int* revision)
Retrieves the revision of ziAPI.

= ZIResult_enum ziAPIListNodes (ZIConnection conn, const
char* path, char* nodes, int bufferSize, int flags)

Returns all child nodes found at the specified path.

= ZIResult_enum ziAPIUpdateDevices (ZIConnection conn)
Search for the newly connected devices and update the tree.
= ZIResult_enum ziAPIConnectDevice (ZIConnection conn,

const char* deviceSerial, const char* devicelnterface, const
char* interfaceParams)

Connect a device to the server.

= Z|Result_enum ziAPIDisconnectDevice (ZIConnection conn,
const char* deviceSerial)

Disconnect a device from the server.

= ZIResult_enum ziAPIGetValueD (ZIConnection conn, const
char* path, ZIDoubleData* value)

gets the double-type value of the specified node

= ZIResult_enum ziAPIGetValuel (ZIConnection conn, const
char* path, ZlintegerData* value)

gets the integer-type value of the specified node

= ZIResult_enum ziAPIGetDemodSample (ZIConnection
conn, const char* path, ZIDemodSample * value)
Gets the demodulator sample value of the specified node.

= ZIResult_enum ziAPIGetDIOSample (ZIConnection conn,
const char* path, ZIDIOSample * value)

Gets the Digital I/0 sample of the specified node.

= ZIResult_enum ziAPIGetAuxInSample (ZIConnection conn,
const char* path, ZIAuxInSample * value)

gets the Auxin sample of the specified node

= ZIResult_enum ziAPIGetValueB (ZIConnection conn, const
char* path, unsigned char* buffer, unsigned int* length,
unsigned int bufferSize)

gets the Bytearray value of the specified node

= ZIResult_enum ziAPISetValueD (ZIConnection conn, const
char* path, ZIDoubleData value)
asynchronously sets a double-type value to one or more
nodes specified in the path

= ZIResult_enum ziAPISetValuel (ZIConnection conn, const
char* path, ZlintegerData value)

LabOne Programming Manual Revision 31421 Zurich Instruments 241

http://www.zhinst.com

6.4. File Documentation

asynchronously sets an integer-type value to one or more
nodes specified in a path

= ZIResult_enum ziAPISetValueB (ZIConnection conn, const
char* path, unsigned char* buffer, unsigned int length)
asynchronously sets the binary-type value of one ore more
nodes specified in the path

= ZIResult_enum ziAPISyncSetValueD (ZIConnection conn,
const char* path, ZIDoubleData* value)
synchronously sets a double-type value to one or more nodes
specified in the path

= ZIResult_enum ziAPISyncSetValuel (ZIConnection conn,
const char* path, ZlintegerData* value)
synchronously sets an integer-type value to one or more
nodes specified in a path

= ZIResult_enum ziAPISyncSetValueB (ZIConnection conn,
const char* path, uint8_t* buffer, uint32_t* length, uint32_t
bufferSize)

Synchronously sets the binary-type value of one ore more
nodes specified in the path.

= ZIResult_enum ziAPISync (ZIConnection conn)
Synchronizes the session by dropping all pending data.

= ZIResult_enum ziAPIEchoDevice (ZIConnection conn, const
char* deviceSerial)
Sends an echo command to a device and blocks until answer
is received.

= ZIResult_enum ziAPIAsyncSetDoubleData (ZIConnection
conn, const char* path, ZIDoubleData value)

= ZIResult_enum ziAPIAsyncSetintegerData (ZIConnection
conn, const char* path, ZlintegerData value)

= ZIResult_enum ziAPIAsyncSetByteArray (ZIConnection
conn, const char* path, uint8_t* buffer, uint32_t length)

= ZIEvent * ziAPIAllocateEventEx ()
Allocates ZIEvent structure and returns the pointer to it.
Attention!!! It is the client code responsibility to deallocate
the structure by calling ziAPIDeallocateEventEx!

= void ziAPIDeallocateEventEx (ZIEvent * ev)
Deallocates ZIEvent structure created with
ziAPIAllocateEventEx() .

= ZIResult_enum ziAPISubscribe (ZIConnection conn, const
char* path)
subscribes the nodes given by path for ziAPIPollDataEx

LabOne Programming Manual Revision 31421 Zurich Instruments 242

http://www.zhinst.com

6.4. File Documentation

= ZIResult_enum ziAPIUnSubscribe (ZIConnection conn,
const char* path)

unsubscribes to the nodes given by path

= ZIResult_enum ziAPIPollDataEx (ZIConnection conn,
ZIEvent * ev, uint32_t timeOutMilliseconds)
checks if an event is available to read

= ZIResult_enum ziAPIGetValueAsPollData (ZIConnection
conn, const char* path)
triggers a value request, which will be given back on the poll
event queue

= ZIResult_enum ziAPIGetError (ZIResult_enum result,
char** buffer, int* base)
returns a description and the severity for a ZIResult_enum

= ZIResult_enum ReadMEMPFile (const char* filename, char*
buffer, int32_t bufferSize, int32_t* bytesUsed)

= ziEvent * ziAPIAllocateEvent ()
Deprecated: See ziAPIAllocateEventEx() .

= void ziAPIDeallocateEvent (ziEvent * ev)
Deprecated: See ziAPIDeallocateEventEx() .

= ZIResult_enum ziAPIPollData (ZIConnection conn, ziEvent
*ev, int timeOut)

Checks if an event is available to read. Deprecated: See
ziAPIPollDataEx() .

= ZIResult_enum ziAPIGetValueS (ZIConnection conn, char*
path, DemodSample * value)

= ZIResult_enum ziAPIGetValueDIO (ZIConnection conn,
char* path, DIOSample * value)

= ZIResult_enum ziAPIGetValueAuxIn (ZIConnection conn,
char* path, AuxinSample * value)

= double ziAPISecondsTimeStamp (ziTimeStampType TS)

Detailed Description

ziAPI provides all functionality to establish a connection with the Data Server and to communicate
with it. It has functions for setting and getting parameters in a single call as well as an event-

LabOne Programming Manual Revision 31421 Zurich Instruments 243

http://www.zhinst.com

6.4. File Documentation

framework with which the user may subscribe the parameter tree and receive the events which
occur when values change.

= All functions do not check passed pointers if they're NULL pointers. In that case a
segmentation fault will occur.

= The ZIConnection is not thread-safe. One connection can only be used in one thread. If you
want to use the ziAPl in a multi-threaded program you will have to use one ZIConnection for
each thread that is communicating or implement a mutual exclusion.

= The Data Serveris able to handle connections from threads simultaneously. The Data Server
takes over the synchronization.

LabOne Programming Manual Revision 31421 Zurich Instruments 244

http://www.zhinst.com

6.4. File Documentation

Data Structure Documentation

struct ZIDoubleDataTS

The structure used to hold asingle IEEE double value. Same as ZIDoubleData, but with timestamp.

#include "ziAPI.h"

typedef struct ZIDoubleDataTS {

ZITimeStamp
timeStamp
ZIDoubleData
value
} ZIDoubleDataTS;

Data Fields

= ZlTimeStamp timeStamp
Time stamp at which the value has changed.

= Zl|DoubleData value

LabOne Programming Manual Revision 31421 Zurich Instruments 245

http://www.zhinst.com

6.4. File Documentation

struct ZlintegerDataTS

The structure used to hold a single 64bit signed integer value. Same as ZlIntegerData, but with
timestamp.

#include "ziAPI.h"

typedef struct ZIIntegerDataTS {
ZITimeStamp
timeStamp

ZIIntegerData
value

} ZIIntegerDataTS;

Data Fields

= ZITimeStamp timeStamp
Time stamp at which the value has changed.

= ZlintegerData value

LabOne Programming Manual Revision 31421 Zurich Instruments 246

http://www.zhinst.com

6.4. File Documentation

struct ZITreeChangeData
The struct is holding info about added or removed nodes.

#include "ziAPI.h"

typedef struct ZITreeChangeData {

ZITimeStamp
timeStamp
uint32 t
action
char
name
[32];

} ZITreeChangeData;

Data Fields

= ZITimeStamp timeStamp
Time stamp at which the data was updated.

™ uint32_taction
field indicating which action occured on the tree. A value of
the ZITreeAction_enum.

™= charname
Name of the Path that has been added, removed or changed.

LabOne Programming Manual Revision 31421 Zurich Instruments 247

http://www.zhinst.com

6.4. File Documentation

struct TreeChange

The structure used to hold info about added or removed nodes. This is the version without

timestamp used in APl v1 compatibility mode.

#include "ziAPI.h"

typedef struct TreeChange {
uint32 t
Action

char
Name

[321;
} TreeChange;

Data Fields

= yint32_t Action

field indicating which action occured on the tree. A value of
the ZITreeAction_enum (TREE_ACTION) enum.

= char Name

Name of the Path that has been added, removed or changed.

LabOne Programming Manual Revision 31421 Zurich Instruments

248

http://www.zhinst.com

6.4. File Documentation

struct ZIDemodSample

The structure used to hold data for a single demodulator sample.

#include "ziAPI.h"

typedef struct ZIDemodSample {

ZITimeStamp

double

double

double

double

uint32 t

uint32 t

double

double

} ZIDemodSample;

Data Fields

= ZITimeStamp timeStamp

timeStamp

frequency

phase

dioBits

trigger

auxIn0

auxInl

The timestamp at which the sample has been measured.

= double x

X part of the sample.

doubley
Y part of the sample.

double frequency
Frequency at that sample.

double phase
Phase at that sample.

uint32_t dioBits
the current bits of the DIO.

uint32_t trigger
trigger bits

double auxIn0
value of Aux input O.

LabOne Programming Manual Revision 31421

Zurich Instruments

249

http://www.zhinst.com

6.4. File Documentation

= double auxin1
value of Aux input 1.

LabOne Programming Manual Revision 31421 Zurich Instruments 250

http://www.zhinst.com

6.4. File Documentation

struct ZIAuxInSample
The structure used to hold data for a single auxiliary inputs sample.

#include "ziAPI.h"

typedef struct ZIAuxInSample {

ZITimeStamp
timeStamp
double
chO
double
chl
} ZIAuxInSample;

Data Fields

= ZITimeStamp timeStamp
The timestamp at which the values have been measured.

™= double chO
Channel O voltage.

™= doublech1
Channel 1 voltage.

LabOne Programming Manual Revision 31421 Zurich Instruments 251

http://www.zhinst.com

6.4. File Documentation

struct ZIDIOSample
The structure used to hold data for a single digital I/0 sample.

#include "ziAPI.h"

typedef struct ZIDIOSample {

ZITimeStamp

timeStamp
uint32 t

bits
uint32 t

reserved

} ZIDIOSample;

Data Fields

= ZITimeStamp timeStamp
The timestamp at which the values have been measured.

™= uint32_tbits
The digital I/0 values.

= uint32_treserved

Filler to keep 8 bytes alignment in the array of ZIDIOSample
structures.

LabOne Programming Manual Revision 31421 Zurich Instruments 252

http://www.zhinst.com

6.4. File Documentation

struct ZIByteArray

The structure used to hold an arbitrary array of bytes. This is the version without timestamp used
in APl Level 1 compatibility mode.
#include "ziAPI.h"

typedef struct ZIByteArray {
uint32 t
length

uint8 t

bytes
[01;
} ZIByteArray;

Data Fields
= uint32_t length
Length of the data readable from the Bytes field.

= uint8_t bytes
The data itself. The array has the size given in length.

LabOne Programming Manual Revision 31421 Zurich Instruments 253

http://www.zhinst.com

6.4. File Documentation

struct ZIByteArrayTS

The structure used to hold an arbitrary array of bytes. This is the same as ZIByteArray , but with
timestamp.

#include "ziAPI.h"

typedef struct ZIByteArrayTS {

ZITimeStamp
timeStamp
uint32 t
length
uint8 t
bytes
[01;

} ZIByteArrayTS;

Data Fields
= ZITimeStamp timeStamp
Time stamp at which the data was updated.

= uint32_tlength
length of the data readable from the bytes field

= uint8_t bytes
the data itself. The array has the size given in length

LabOne Programming Manual Revision 31421 Zurich Instruments 254

http://www.zhinst.com

6.4. File Documentation

struct ScopeWave

The structure used to hold a single scope shot (API Level 1). If the client is connected to the
Data Server using APl Level 4 (recommended if supported by your device class) please see
ZIScopeWave instead.

#include "ziAPI.h"

typedef struct ScopeWave {

double

dt
unsigned int

ScopeChannel
unsigned int

TriggerChannel
unsigned int

BWLimit
unsigned int

Count
short

Data

[01;

} ScopeWave;

Data Fields
™= doubledt
Time difference between samples.

™ unsigned int ScopeChannel
Scope channel of the represented data.

= unsigned int TriggerChannel
Trigger channel of the represented data.

= unsigned int BWLimit
Bandwidth-limit flag.

™ unsigned int Count
Count of samples.

= short Data

First wave data.

LabOne Programming Manual Revision 31421 Zurich Instruments 255

http://www.zhinst.com

6.4. File Documentation

struct ZIScopeWave

The structure used to hold scope data. The data may be formatted differently, depending on
settings. See the description of the structure members for details.

#include "ziAPI.h"

typedef struct ZIScopeWave {

ZITimeStamp
timeStamp
ZITimeStamp
triggerTimeStamp
double
dt
uint8 t
channelEnable
[41;
uint8 t
channelInput
[41;
uint8 t
triggerEnable
uint8 t
triggerInput
uint8 t
reserved0
[21;
uint8 t
channelBWLimit
[41;
uint8 t
channelMath
[41;
float
channelScaling
[41;
uint32 t
sequenceNumber
uint32 t
segmentNumber
uint32 t
blockNumber
uinted t
totalSamples
uint8 t
dataTransferMode
uint8 t
blockMarker
uint8 t
flags
uint8 t
sampleFormat
uint32 t

LabOne Programming Manual Revision 31421 Zurich Instruments 256

http://www.zhinst.com

6.4. File Documentation

}
Data Fields

sampleCount
intlé t
dataIntlé6
[0];
int32 t
dataInt32
[01;
float
dataFloat
[0];
union ZIScopeWave::@Q0
data

ZIScopeWave;

ZITimeStamp timeStamp
Time stamp of the first sample in this data block.

ZITimeStamp triggerTimeStamp
Time stamp of the trigger (may also fall between samples)

double dt
Time difference between samples in seconds.

uint8_t channelEnable

Up to four channels: if channel is enabled, corresponding
elementis non-zero.

uint8_t channellnput

Specifies the input source for each of the scope four
channels: 0 = Signal Input 1, 1 = Signal Input 2, 2 = Trigger
Input 1, 3 = Trigger Input 2, 4 = Aux Output 1, 5 = Aux Output
2,6 = Aux Output 3, 7 = Aux Output 4, 8 = Aux Input 1, 9 = Aux
Input 2.

uint8_t triggerEnable

Non-zero if trigger is enabled: Bit(0): rising edge trigger off =
0, on = 1. Bit(1): falling edge trigger off = 0, on = 1.

uint8_t triggerinput

Trigger source (same values as for channel input)

uint8_t reservedO

uint8_t channelBWLimit

Bandwidth-limit flag, per channel. Bit(0): off = 0, on = 1
Bit(7...1): Reserved.

uint8_t channelMath
Math Operation (e.g averaging) Bit (7..0): Reserved.

float channelScaling
Data scaling factors for up to 4 channels.

uint32_t sequenceNumber

LabOne Programming Manual Revision 31421 Zurich Instruments

257

http://www.zhinst.com

6.4. File Documentation

Current scope shot sequence number. Identifies a scope shot.

= uint32_t segmentNumber

Current segment number.

= uint32_t blockNumber
Current block number from the beginning of a scope shot.
Large scope shots are split into blocks, which need to be
concatenated to obtain the complete scope shot.

= uintB4_ttotalSamples
Total number of samples in one channel in the current scope
shot, same for all channels.

™= uint8_tdataTransferMode
Data transfer mode SingleTransfer = 0, BlockTransfer = 1,
ContinuousTransfer = 3, FFTSingleTransfer = 4. Other values
are reserved.

= uint8_t blockMarker
Block marker: Bit (0): 1 = End marker for continuous or multi-
block transfer Bit (7..0): Reserved.

= uint8_tflags
Indicator Flags. Bit (0): 1 = Data loss detected (samples are
0), Bit (1): 1 = Missed trigger, Bit (2): 1 = Transfer failure
(corrupted data).

= uint8_t sampleFormat

Data format of samples: Int16 =0, Int32 = 1, Float = 2,
Int16Interleaved = 4, Int32Interleaved = 5, FloatInterleaved =
6.

= uint32_t sampleCount

Number of samples in one channelin the current block, same
for all channels.

= int16_tdatalnt16

= int32_tdatalnt32

= float dataFloat

™ union ZIScopeWave::@0 data
First wave data.

LabOne Programming Manual Revision 31421 Zurich Instruments 258

http://www.zhinst.com

6.4. File Documentation

struct ZIPWASample

Single PWA sample value.

#include "ziAPI.h"

typedef struct ZIPWASample {

double

binPhase
double

X
double

Yy
uint32 t

countBin
uint32 t

reserved

} ZIPWASample;

Data Fields
= double binPhase
Phase position of each bin.

= doublex

Real PWA result or X component of a demod PWA.

= doubley
Y component of the demod PWA.

= yint32_t countBin

Number of events per bin.

= uint32_treserved
Reserved.

LabOne Programming Manual Revision 31421 Zurich Instruments 259

http://www.zhinst.com

6.4. File Documentation

struct ZIPWAWave

PWA Wave.

#include "ziAPI.h"

typedef struct ZIPWAWave {
ZITimeStamp

timeStamp
uint64 t

sampleCount
uint32 t

inputSelect
uint32 t

oscSelect
uint32 t

harmonic
uint32 t

binCount
double

frequency
uint8 t

pwaType
uint8 t

mode
uint8 t

overflow
uint8 t

commensurable
uint32 t

reservedUInt

ZIPWASample

data

[01;

} ZIPWAWave;

Data Fields

ZITimeStamp timeStamp

Time stamp at which the data was updated.

= uint64_t sampleCount

Total sample count considered for PWA.

= uint32_tinputSelect

Input selection used for the PWA.

= uint32_t oscSelect

Oscillator used for the PWA.

LabOne Programming Manual

Revision 31421 Zurich Instruments

260

http://www.zhinst.com

6.4. File Documentation

= uint32_t harmonic
Harmonic setting.

= yint32_t binCount
Bin count of the PWA.

= double frequency
Frequency during PWA accumulation.

= uint8_t pwaType
Type of the PWA.

= yint8_t mode
PWA Mode [0: zoom PWA, 1: harmonic PWA].

= uint8_toverflow
Overflow indicators. overflow[0]: Data accumulator overflow,
overflow[1]: Counter at limit, overflow[6..2]: Reserved,
overflow([7]: Invalid (missing frames).

= yint8_t commensurable

Commensurability of the data.

= uint32_treservedUInt

Reserved unsigned int.

= ZIPWASample data
PWA data vector.

LabOne Programming Manual Revision 31421 Zurich Instruments 261

http://www.zhinst.com

6.4. File Documentation

struct ZIEvent

This struct holds event data forwarded by the Data Server.

#include "ziAPI.h"

typedef struct ZIEvent ({

uint32 t

uint8 t

void*

ZIDoubleData*

ZIIntegerData*

ZIValueType enum

valueType

count

path

[256];

untyped

doubleData

ZIDoubleDataT$s

doubleDataTs

integerData

ZIIntegerDataTS

integerDataTs

ZIByteArray

byteArray

ZIByteArrayTS

byteArrayTS

ZITreeChangeData

treeChangeData

TreeChange

treeChangeDataOld

ZIDemodSample

demodSample

ZIAuxInSample

auxInSample

LabOne Programming Manual

Revision 31421 Zurich Instruments

262

http://www.zhinst.com

6.4. File Documentation

ZIDIOSample

dioSample

ZIScopeWave

scopeWave

ScopeWave

scopeWaveOld

ZIPWAWave
pwaWave

union ZIEvent::@1
value

uint8 t
data
[0x4000007 ;
} ZIEvent;

Data Fields

= ZWNalueType_enum valueType
Specifies the type of the data held by the ZIEvent.

= yint32_tcount

Number of values available in this event.

= uint8_t path
The path to the node from which the event originates.

= void* untyped

For convenience. The void field doesn't have a corresponding
data type.

= Zl|DoubleData* doubleData
when valueType == ZI_VALUE_TYPE_DOUBLE_DATA

= ZIDoubleDataTS* doubleDataTS
when valueType == ZI_VALUE_TYPE_DOUBLE_DATA_TS

= ZlintegerData* integerData
when valueType == ZI_VALUE_TYPE_INTEGER_DATA

= ZlintegerDataTS* integerDataTS
when valueType == ZI_VALUE_TYPE_INTEGER_DATA_TS

= ZIByteArray* byteArray
when valueType == ZI_VALUE_TYPE_BYTE_ARRAY

= ZIByteArrayTS* byteArrayTS
when valueType == ZI_VALUE_TYPE_BYTE_ARRAY_TS

LabOne Programming Manual Revision 31421 Zurich Instruments 263

http://www.zhinst.com

6.4. File Documentation

= ZlTreeChangeData* treeChangeData
when valueType == ZI_VALUE_TYPE_TREE_CHANGE_DATA

™= TreeChange* treeChangeDataOld
when valueType ==
ZI_VALUE_TYPE_TREE_CHANGE_DATA_OLD

= ZIDemodSample* demodSample
when valueType == ZI_VALUE_TYPE_DEMOD_SAMPLE

= ZlAuxInSample* auxInSample
when valueType == ZI_VALUE_TYPE_AUXIN_SAMPLE

= ZIDIOSample* dioSample
when valueType == ZI_VALUE_TYPE_DIO_SAMPLE

= ZIScopeWave* scopeWave
when valueType == ZI_VALUE_TYPE_SCOPE_WAVE

= ScopeWave* scopeWaveOld
when valueType == ZI_VALUE_TYPE_SCOPE_WAVE_OLD

= ZIPWAWave* pwaWave
when valueType == ZI_VALUE_TYPE_PWA_WAVE

= union ZIEvent:@1 value

Convenience pointer to allow for access to the first entry in
Data using the correct type according to ZIEvent.valueType
field.

= uint8_tdata
The raw value data.

Detailed Description

ZIEvent is used to give out events like value changes or errors to the user. Event handling
functionality is provided by ziAPISubscribe and ziAPIUnSubscribe as well as ziAPIPollDataEx.

#include <stdio.h>

#include "
ziAPI.h
void ProcessEvent (
ZIEvent
* Event)
{
unsigned int j;
switch(Event->
valueType

)

case

LabOne Programming Manual Revision 31421 Zurich Instruments 264

http://www.zhinst.com

6.4. File Documentation

ZI VALUE TYPE DOUBLE DATA

printf("%$u elements of double data %s\n",
Event->
count
r
Event->

path
)i

for(j = 0; j < Event->

count
HEE S|
printf ("$f\n", Event->
value
doubleData

[31);

break;
case
zI VALUE TYPE INTEGER DATA
printf("%u elements of integer data %$s\n",
Event->
count
4
Event->
path
)i
for(j = 0; j < Event->
count
;oJtt)
printf ("$f\n", (float)Event->
value
integerData
(31)7
break;
case

ZI VALUE TYPE DEMOD SAMPLE

printf("$u elements of sample data %$s\n",

Event->
count
’
Event->
path
)i
for(j = 0; j < Event->
count
ioJtt)

printf ("TS=%f, X=%f, Y=%f\n",
(float)Event->
value

demodSample
(31.
timeStamp

LabOne Programming Manual Revision 31421 Zurich Instruments

265

http://www.zhinst.com

6.4. File Documentation

Event->
value

demodSample
(31.

X

Event->
value

demodSample
(31.
Yy
)7

break;

case

71 VALUE TYPE TREE CHANGE DATA

printf("%u elements of tree-changed data %$s\n",

Event->
count
’
Event->
path
)i
for(j = 0; j < Event->
count
;oJ++ o
switch(Event->
value
treeChangeDatalOld
(31.
Action

case
zI TREE ACTION REMOVE
printf("Tree removed: %s\n",
Event->
value
treeChangeDataOld
(31.
Name
)i
break;
case

ZI TREE ACTION ADD

printf ("treeChangeDataOld added: %s\n",

Event->

value
treeChangeDataOld

(31.
Name

)i

break;
LabOne Programming Manual Revision 31421 Zurich Instruments 266

http://www.zhinst.com

6.4. File Documentation

case

ZI TREE ACTION CHANGE

printf ("treeChangeDataOld changed: %s\n",

Event->
value

treeChangeDataOld

(31.
Name
)
break;

break;

default:

printf ("Unexpected event value type:

valueType
)i
break;

See Also:

$d\n",

ziAPISubscribe, ziAPIUnSubscribe, ziAPIPollDataEx

Event->

LabOne Programming Manual Revision 31421 Zurich Instruments

267

http://www.zhinst.com

6.4. File Documentation

struct DemodSample

The DemodSample struct holds data for the ZI_DATA_DEMODSAMPLE data type. Deprecated:
See ZIDemodSample.

#include "ziAPI.h"

typedef struct DemodSample {

ziTimeStampType

TimeStamp
double

X
double

Y
double

Frequency
double

Phase
unsigned int

DIOBits
unsigned int

Reserved
double

AuxInO
double

AuxInl

} DemodSample;

Data Fields

= ziTimeStampType TimeStamp

= double X

= doubleY

= double Frequency

= double Phase

™ unsigned int DIOBits

™ unsigned int Reserved

= double AuxIn0

LabOne Programming Manual Revision 31421 Zurich Instruments 268

http://www.zhinst.com

6.4. File Documentation

= double AuxIn1

LabOne Programming Manual Revision 31421 Zurich Instruments 269

http://www.zhinst.com

6.4. File Documentation

struct AuxInSample

The AuxinSample struct holds data for the ZI_DATA_AUXINSAMPLE data type. Deprecated: See
ZIAuxInSample .

#include "ziAPI.h"

typedef struct AuxInSample {

ziTimeStampType
TimeStamp
double
ChO
double
Chl
} AuxInSample;

Data Fields

= ziTimeStampType TimeStamp

™= double ChO

= double Ch1

LabOne Programming Manual Revision 31421 Zurich Instruments 270

http://www.zhinst.com

6.4. File Documentation

struct DIOSample

The DIOSample struct holds data for the ZI_DATA_DIOSAMPLE data type. Deprecated: See
ZIDI0OSample.

#include "ziAPI.h"

typedef struct DIOSample {

ziTimeStampType

TimeStamp
unsigned int

Bits
unsigned int

Reserved

} DIOSample;
Data Fields

= ziTimeStampType TimeStamp

™ unsigned int Bits

™ unsigned int Reserved

LabOne Programming Manual Revision 31421 Zurich Instruments 271

http://www.zhinst.com

6.4. File Documentation

struct ByteArrayData

The ByteArrayData struct holds data for the ZI_DATA_BYTEARRAY data type. Deprecated: See
ZIByteArray .

#include "ziAPI.h"

typedef struct ByteArrayData {
unsigned int
Len

unsigned char

} ByteArrayData;

Data Fields

™ unsignedintLen

™ unsigned char Bytes

LabOne Programming Manual Revision 31421 Zurich Instruments 272

http://www.zhinst.com

6.4. File Documentation

struct ziEvent
This struct holds event data forwarded by the Data Server. Deprecated: See ZIEvent.

#include "ziAPI.h"

typedef struct ziEvent {

ziAPIDataType
Type
unsigned int
Count
unsigned char
Path
[256];
union ziEvent::Val
Val
unsigned char
Data
[0x4000007 ;

} ziEvent;

Data Structures

™ union ziEvent::Val

Data Fields

= ZziAPIDataType Type

™ unsigned int Count

™ unsigned char Path

= union ziEvent::Val Val

™ unsigned char Data

Detailed Description

ziEvent is used to give out events like value changes or errors to the user. Event handling
functionality is provided by ziAPISubscribe and ziAPIUnSubscribe as well as ziAPIPollDataEx.

LabOne Programming Manual Revision 31421 Zurich Instruments 273

http://www.zhinst.com

6.4. File Documentation

See Also:
ziAPISubscribe , ziAPIUnSubscribe , ziAPIPollDataEx

#include <stdio.h>

#include "
z1iAPI.h
n
void ProcessEvent (
ZIEvent
* Event)
{
unsigned int j;
switch(Event->
valueType

case
zI VALUE TYPE DOUBLE DATA
printf("$u elements of double data %$s\n",
Event->
count
r
Event->
path
)
for(j = 0; j < Event->
count
ioJtt)
printf ("$f\n", Event->
value
doubleData
(31);
break;
case

71_VALUE TYPE INTEGER DATA

printf("%u elements of integer data %s\n",

Event->
count
4
Event->
path
)i
for(j = 0; j < Event->
count
;oJtt)
printf("$f\n", (float)Event->
value
integerData

(31)i

break;

LabOne Programming Manual Revision 31421 Zurich Instruments 274

http://www.zhinst.com

6.4. File Documentation

case

71 VALUE TYPE DEMOD SAMPLE

printf("%u elements of sample data %s\n",

Event->
count
4
Event->
path
)i
for(j = 0; j < Event->
count
;oJrt)

printf ("TS=%f, X=%f, Y=%f\n",
(float)Event->
value

demodSample
(31.
timeStamp
Event->
value

demodSample
(31.

X

Event->
value

demodSample
(31.
Yy
)7

break;

case

71 VALUE TYPE TREE CHANGE DATA

printf("%u elements of tree-changed data %$s\n",

Event->
count
’
Event->
path
)i
for(j = 0; j < Event->
count
;oJ++ o
switch(Event->
value
treeChangeDatalOld
(31.
Action

case
71 TREE ACTION REMOVE

LabOne Programming Manual Revision 31421 Zurich Instruments

275

http://www.zhinst.com

6.4. File Documentation

printf("Tree removed: %s\n",

Event->
value
treeChangeDataOld
(31.
Name
)i
break;
case

71 TREE_ACTION ADD

printf ("treeChangeDataOld added: %s\n",

Event->
value
treeChangeDatalOld
(31.
Name
);
break;
case

ZI TREE ACTION CHANGE

printf ("treeChangeDataOld changed: %s\n",
Event->
value

treeChangeDatalOld
(31.
Name
)i
break;

break;
default:

printf ("Unexpected event value type: %d\n", Event->
valueType
)i
break;

LabOne Programming Manual Revision 31421 Zurich Instruments 276

http://www.zhinst.com

6.4. File Documentation

Data Structure Documentation

union ziEvent::Val

typedef union ziEvent::Val {

void*

ziDoubleType*

ziIntegerType*

} ziEvent::Val;

Data Fields

= void* Void

= DemodSample* SampleDemod
= AuxInSample* SampleAuxIn

= DIOSample* SampleDIO

= ziDoubleType* Double

zilntegerType* Integer

Void

DemodSample

SampleDemod

AuxInSample

SampleAuxIn

DIOSample

SampleDIO

Double

Integer

TreeChange

Tree

ByteArrayData

ByteArray

ScopeWave

Wave

LabOne Programming Manual

Revision 31421 Zurich Instruments

277

http://www.zhinst.com

6.4. File Documentation

= TreeChange* Tree

= ByteArrayData* ByteArray

= ScopeWave* Wave

LabOne Programming Manual Revision 31421 Zurich Instruments 278

http://www.zhinst.com

6.4. File Documentation

union ziEvent::Val

typedef union ziEvent::Val {

void*

ziDoubleType*

ziIntegerType*

} ziEvent::Val;
Data Fields

= void* Void

Void

DemodSample

SampleDemod

AuxInSample

SampleAuxIn

DIOSample

SampleDIO

Double

Integer

TreeChange

Tree

ByteArrayData

ByteArray

ScopeWave

Wave

= DemodSample* SampleDemod

= AuxInSample* SampleAuxIn

= DIOSample* SampleDIO

= ziDoubleType* Double

= ZilntegerType* Integer

LabOne Programming Manual

Revision 31421

Zurich Instruments

279

http://www.zhinst.com

6.4. File Documentation

™= TreeChange* Tree

™= ByteArrayData* ByteArray

= ScopeWave* Wave

LabOne Programming Manual Revision 31421 Zurich Instruments 280

http://www.zhinst.com

6.4. File Documentation

Enumeration Type Documentation

enum ZIResult_enum

Defines return value for all ziAPI functions. Divided into 3 regions: info, warning and error.

Enumerator:

= ZI_INFO_BASE

= 7|_INFO_SUCCESS
Success (no error)

= ZI_INFO_MAX
= ZI_WARNING_BASE

= ZI_WARNING_GENERAL
Warning (general);.

- ZI_WARNING_UNDERRUN
FIFO Underrun.

- ZI_WARNING_OVERFLOW
FIFO Overflow.

= ZI_WARNING_NOTFOUND
Value or Node not found.

= ZI_WARNING_MAX
= ZI_ERROR_BASE

= ZI_ERROR_GENERAL
Error (general)

= ZI_ERROR_USB
USB Communication failed.

= ZI_ERROR_MALLOC
Memory allocation failed.

- ZI_ERROR_MUTEX_INIT
Unable to initisalize mutex.

= ZI_ERROR_MUTEX_DESTRQY
Unable to destroy mutex.

- ZI_ERROR_MUTEX_LOCK
Unable to lock mutex.

= ZI_ERROR_MUTEX_UNLOCK
Unable to unlock mutex.

- ZI_ERROR_THREAD_START
Unable to start thread.

LabOne Programming Manual Revision 31421

Zurich Instruments

281

http://www.zhinst.com

6.4. File Documentation

= ZI_ERROR_THREAD_JOIN
Unable to join thread.

= ZI_ERROR_SOCKET_INIT
Can'tinitialize socket.

= Z7I_ERROR_SOCKET_CONNECT
Unable to connect socket.

- ZI_ERROR_HOSTNAME
Hostname not found.

= Z|I_ERROR_CONNECTION
Connection invalid.

- ZI_ERROR_TIMEQUT
Command timed out.

= ZI_ERROR_COMMAND
Command internally failed.

= ZI_ERROR_SERVER_INTERNAL

Command failed in server.

= ZI_ERROR_LENGTH
Provided Buffer length is too small.

= ZI_ERROR_FILE
Can't open file or read from it.

= ZI_ERROR_DUPLICATE
There is already a similar entry.

= ZI_ERROR_READONLY
Attempt to set a read-only node.

= Z7I_ERROR_DEVICE_NOT_VISIBLE
Device is not visible to the server.

= ZI_ERROR_DEVICE_IN_USE
Device is already connected by a different server.

= ZI_ERROR_DEVICE_INTERFACE
Device does currently not support the specified interface.

= ZI_ERROR_DEVICE_CONNECTION_TIMEOUT

Device connection timeout.

= ZI_ERROR_DEVICE_DIFFERENT_INTERFACE
Device already connected over a different Interface.

= ZI_ERROR_DEVICE_NEEDS_FW_UPGRADE
Device needs FW upgrade.

= ZI_ERROR_ZIEVENT_DATATYPE_MISMATCH

LabOne Programming Manual Revision 31421 Zurich Instruments 282

http://www.zhinst.com

6.4. File Documentation

Trying to get data from a poll event with wrong target data
type.

= ZI_ERROR_MAX

- ZI_SUCCESS
Success (no error)

- ZI_MAX_INFO

- ZI_WARNING
Warning (general);.

= 7|_UNDERRUN
FIFO Underrun.

- ZI_OVERFLOW
FIFO Overflow.

= ZI_NOTFOUND
Value or Node not found.

= ZI_MAX_WARNING

= ZI_ERROR
Error (general)

= ZI_USB
USB Communication failed.

= ZI_MALLOC
Memory allocation failed.

- ZI_MUTEX_INIT
Unable to initialize mutex.

= ZI_MUTEX_DESTROY
Unable to destroy mutex.

= ZI_MUTEX_LOCK
Unable to lock mutex.

= ZI_MUTEX_UNLOCK
Unable to unlock mutex.

= ZI_THREAD_START
Unable to start thread.

= ZI_THREAD_JOIN
Unable to join thread.

= ZI_SOCKET_INIT
Can't initialize socket.

- ZI_SOCKET_CONNECT
Unable to connect socket.

LabOne Programming Manual Revision 31421 Zurich Instruments 283

http://www.zhinst.com

6.4. File Documentation

ZI_HOSTNAME
Hostname not found.

ZI_CONNECTION
Connection invalid.

ZI_TIMEOQUT
Command timed out.

ZI_COMMAND
Command internally failed.

ZI_SERVER_INTERNAL

Command failed in server.

ZI_LENGTH

Provided Buffer length doesn't reach.

ZI_FILE
Can't open file or read from it.

ZI_DUPLICATE
There is already a similar entry.

ZI_READONLY
Attempt to set a read-only node.

ZI_MAX_ERROR

LabOne Programming Manual Revision 31421

Zurich Instruments

284

http://www.zhinst.com

6.4. File Documentation

enum ZIValueType_enum

Enumerates all types that datain a ZIEvent may have.

Enumerator:

ZI_VALUE_TYPE_NONE
No data type, event is invalid.

ZI_VALUE_TYPE_DOUBLE_DATA

ZIDoubleData type. Use the ZIEvent.value.doubleData pointer
to read the data of the event.
ZI_VALUE_TYPE_DOUBLE_DATA_TS

Z1DoubleDataTS type. Use the ZIEvent.value.doubleDataTS
pointer to read the data of the event.
ZI_VALUE_TYPE_INTEGER_DATA

ZlIntegerData type. Use the ZIEvent.value.integerData pointer
to read the data of the event.
ZI_VALUE_TYPE_INTEGER_DATA_TS

ZlintegerDataTS type. Use the ZIEvent.value.integerDataTS
pointer to read the data of the event.
ZI_VALUE_TYPE_DEMOD_SAMPLE

ZIDemodSample type. Use the ZIEvent.value.demodSample
pointer to read the data of the event.
ZI_VALUE_TYPE_AUXIN_SAMPLE

ZIAuxinSample type. Use the ZIEvent.value.auxinSample
pointer to read the data of the event.
ZI_VALUE_TYPE_DIO_SAMPLE

ZIDI0Sample type. Use the ZIEvent.value.dioSample pointer
to read the data of the event.

ZI_VALUE_TYPE_BYTE_ARRAY

ZIByteArray type. Use the ZIEvent.value.byteArray pointer to
read the data of the event.
ZI_VALUE_TYPE_BYTE_ARRAY_TS

ZIByteArrayTS type. Use the ZIEvent.value.byteArrayTS
pointer to read the data of the event.
ZI_VALUE_TYPE_TREE_CHANGE_DATA

ZITreeChangeData type - a list of added or removed nodes.
Use the ZIEvent.value.treeChangeData pointer to read the
data of the event.

ZI_VALUE_TYPE_TREE_CHANGE_DATA_OLD

TreeChange type - a list of added or removed

nodes, used in v1 compatibility mode. Use the
ZIEvent.value.treeChangeDataOld pointer to read the data of
the event.

LabOne Programming Manual Revision 31421 Zurich Instruments

285

http://www.zhinst.com

6.4. File Documentation

= ZI_VALUE_TYPE_SCOPE_WAVE

ZIScopeWave type. Use the ZIEvent.value.scopeWave pointer
to read the data of the event.

= ZI_VALUE_TYPE_SCOPE_WAVE_OLD
ScopeWave type, used in v1 compatibility mode. use the
ZIEvent.value.scopeWaveOld pointer to read the data of the
event.

= ZI_VALUE_TYPE_PWA_WAVE

ZIPWAWave type. Use the ZIEvent.value.pwaWave pointer to
read the data of the event.

= ZI_DATA_NONE
no data type. the ziEvent isinvalid.

= ZI_DATA_DOUBLE

double data type. use the ziEvent::Val.Double Pointer to read
the data of the event.

= ZI_DATA_INTEGER

integer data type. use the ziEvent::Val.Integer Pointer to read
the data of the event.

= ZI_DATA_DEMODSAMPLE

DemodSample data type. use the ziEvent::Val.Sample
Pointer to read the data of the event.

= ZI_DATA_SCOPEWAVE

ScopeWave data type. use the ziEvent::Val.Wave Pointer to
read the data of the event.

= ZI_DATA_AUXINSAMPLE

MiscADValue data type. use the ziEvent::Val.ADValue Pointer
to read the data of the event.

= ZI_DATA_DIOSAMPLE
DIOValue data type. use the ziEvent::Val.DIOValue Pointer to
read the data of the event.

= ZI_DATA_BYTEARRAY
ByteArray data type. use the ziEvent::Val.ByteArray Pointer to
read the data of the event.

= ZI_DATA_TREE_CHANGED

a list of added or removed trees. use the ziEvent::Val.Tree
Pointer to read the data of the event.

LabOne Programming Manual Revision 31421 Zurich Instruments 286

http://www.zhinst.com

6.4. File Documentation

enum ZlTreeAction_enum

Defines the actions that are performed on a tree, as returned in the ZITreeChangeData::action or
ZITreeChangeDataOld::action.

Enumerator:
- ZI_TREE_ACTION_REMOVE
A node has been removed.

- ZI_TREE_ACTION_ADD
A node has been added.

= ZI_TREE_ACTION_CHANGE
Anode has been changed.

LabOne Programming Manual Revision 31421 Zurich Instruments 287

http://www.zhinst.com

6.4. File Documentation

enum ZIAPIVersion_enum

Enumerator:

= ZI_API_VERSION_1

= ZI_API_VERSION_4

LabOne Programming Manual

Revision 31421

Zurich Instruments

288

http://www.zhinst.com

6.4. File Documentation

enum ZlListNodes_enum

Defines the values of the flags used in ziAPIListNodes.

Enumerator:

ZI_LIST_NODES_NONE

Default, return a simple listing of the given node immediate
descendants.

ZI_LIST_NODES_RECURSIVE
List the nodes recursively.

ZI_LIST_NODES_ABSOLUTE
Return absolute paths.

ZI_LIST_NODES_LEAFSONLY

Return only leaf nodes, which means the nodes at the
outermost level of the tree.

ZI_LIST_NODES_SETTINGSONLY
Return only nodes which are marked as setting.

ZI_LIST_NONE

Default, return a simple listing of the given node immediate
descendants.

ZI_LIST_RECURSIVE
List the nodes recursively.

ZI_LIST_ABSOLUTE
Return absolute paths.

ZI_LIST_LEAFSONLY

Return only leaf nodes, which means the nodes at the
outermost level of the tree.

ZI_LIST_SETTINGSONLY
Return only nodes which are marked as setting.

LabOne Programming Manual Revision 31421 Zurich Instruments

289

http://www.zhinst.com

6.4. File Documentation

enum TREE_ACTION
TREE_ACTION defines the values for the TreeChange::Action Variable.

Enumerator:

= TREE_ACTION_REMOVE
atree has been removed

= TREE_ACTION_ADD
atree has been added

= TREE_ACTION_CHANGE
atree has changed

LabOne Programming Manual Revision 31421 Zurich Instruments 290

http://www.zhinst.com

6.4. File Documentation

Function Documentation

ziAPIlInit

ZIResult_enum ziAPlInit (ZIConnection * conn)
Initializes a ZIConnection structure.

This function initializes the structure so that it is ready to connect to Data Server. It allocates
memory and sets up the infrastructure needed.

Parameters:

[out] conn
Pointer to ZIConnection thatis to be initialized

Returns:

= /|_INFO_SUCCESS on success
= 7|_ERROR_MALLOC on memory allocation failure

See Also:
ziAPIDestroy, ziAPIConnect, ziAPIDisconnect

See Connection foranexample

LabOne Programming Manual Revision 31421 Zurich Instruments 291

http://www.zhinst.com

6.4. File Documentation

ziAPIDestroy

ZIResult_enum ziAPIDestroy (ZIConnection conn)
Destroys a ZIConnection structure.

This function frees all memory that has been allocated by ziAPIInit . If it is called with an
uninitialized ZlConnection struct it may result in segmentation faults as well when it is called
with a struct for which ZIAPIDestroy already has been called.

Parameters:

[in] conn
Pointer to ZIConnection struct that has to be destroyed

Returns:
= 7| _INFO_SUCCESS

See Also:
ziAPIlInit, ziAPIConnect, ziAPIDisconnect

See Connection foranexample

LabOne Programming Manual Revision 31421 Zurich Instruments 292

http://www.zhinst.com

6.4. File Documentation

ziAPIConnect

ZIResult_enum ziAPIConnect (ZIConnection conn, const char* hostname, uint16_t

port)

Paramet

Returns:

See Also

Connects the ZIConnection to Data Server.

Connects to Data Server using a ZlConnection and prepares for data exchange. For most cases
it is enough to just give a reference to the connection and give NULL for hostname and O for the
port, so it connects to localhost on the default port.

ers:

[in] conn

Pointer to ZIConnection with which the connection should be
established

[in] hostname

Name of the Host to which it should be connected, if NULL
"localhost" will be used as default

[in] port

The Number of the port to connect to. If O, default port of the local
Data Server will be used (8005)

= Z|I_INFO_SUCCESS on success

= Z|I_ERROR_HOSTNAME if the given host name could not be found

= 7|_ERROR_SOCKET_CONNECT if no connection could be established

= 7| _ERROR_OVERFLOW when a FIFO overflow occurred

= 7| _ERROR_SOCKET_INIT if initialization of the socket failed

= /|_ERROR_CONNECTION when the Data Server didn't return the correct answer
= Z|I_ERROR_TIMEQUT when initial communication timed out

-ziAPIDisconnect, ZiAPIInit, ziAPIDestroy

See Connection foranexample

LabOne Pr

ogramming Manual Revision 31421 Zurich Instruments 293

http://www.zhinst.com

6.4. File Documentation

ziAPIDisconnect

ZIResult_enum ziAPIDisconnect (ZIConnection conn)
Disconnects an established connection.

Disconnects from Data Server. If the connection has not been established and the function is
called it returns without doing anything.

Parameters:

[in] conn
Pointer to ZIConnection to be disconnected

Returns:
= 7| _INFO_SUCCESS

See Also:
ziAPIConnect, ziAPIInit, ziAPIDestroy

See Connection foranexample

LabOne Programming Manual Revision 31421 Zurich Instruments 294

http://www.zhinst.com

6.4. File Documentation

ziAPIListImplementations

ZIResult_enum ziAPIListimplementations (char* implementations, uint32_t
bufferSize)

Returns the list of supported implementations.

Returned names are defined by implementations in the linked library and may change depending
on software version.

Parameters:

[out] implementations

Pointer to a buffer receiving a newline-delimited list of the names
of all the supported ziAPI implementations. The string is zero-
terminated.

[in] bufferSize
The size of the buffer assigned to the implementations parameter

Returns:

= 7| _INFO_SUCCESS on success

= Z|I_ERROR_LENGTH if the length of the char-buffer given by MaxLen is too small for all
elements

See Also:
ziAPIConnectEx

LabOne Programming Manual Revision 31421 Zurich Instruments 295

http://www.zhinst.com

6.4. File Documentation

ziAPIConnectEx

ZIResult_enum ziAPIConnectEx (ZIConnection conn, const char* hostname, uint16_t

port, ZIA

PIVersion_enum apilLevel, const char* implementation)
Connects to Data Server and enables extended ziAPI.

With apiLevel=ZI_API_VERSION_1 and implementation=NULL, this call is equivalent to plain
ziAPIConnect . With other version and implementation values enables corresponding ziAPI
extension and connection using different implementation.

Parameters:

Returns:

See Also

[in] conn

Pointer to the ZIConnection with which the connection should be
established

[in] hostname

Name of the host to which it should be connected, if NULL
"localhost" will be used as default

[in] port

The number of the port to connect to. If O the port of the local Data
Server will be used

[in] apilLevel

Specifies the ziAPI compatibility level to use for this connection (1 or
4).

[in] implementation

Specifies implementation to use for a connection, must be one of
the returned by ziAPIListimplementations or NULL to select default
implementation

= /|_INFO_SUCCESS on success

= 7| _ERROR_HOSTNAME if the given host name could not be found

= 7| _ERROR_SOCKET_CONNECT if no connection could be established
= 7| _ERROR_OVERFLOW when a FIFO overflow occurred

= 7| _ERROR_SOCKET_INIT if initialization of the socket failed

= /|_ERROR_CONNECTION when the Data Server didn't return the correct answer or requested
implementation is not found or doesn't support requested ziAPI level

= Z|_ERROR_TIMEQUT when initial communication timed out
ZiAPIListimplementations , ziAPIConnect , ziAPIDisconnect , ziAPIInit , ziAPIDestroy ,
ZiAPIGetConnectionVersion

LabOne Pr

ogramming Manual Revision 31421 Zurich Instruments 296

http://www.zhinst.com

6.4. File Documentation

See Connection foranexample

LabOne Programming Manual Revision 31421 Zurich Instruments 297

http://www.zhinst.com

6.4. File Documentation

ziAPIGetConnectionAPIlLevel

ZIResult_enum ziAPIGetConnectionAPILevel (ZIConnection conn,
ZIAPIVersion_enum* apilLevel)

Returns ziAPI level used for the connection conn.

Parameters:

[in] conn

Pointer to ZIConnection

[out] apilevel
Pointer to preallocated ZIAPIVersion_enum, receiving the ziAPI level

Returns:

= 7| _INFO_SUCCESS on success
= 7| _ERROR_CONNECTION if level can not be determined due to conn is not connected

See Also:
ziAPIConnectEx , ziAPIGetVersion

LabOne Programming Manual Revision 31421 Zurich Instruments 298

http://www.zhinst.com

6.4. File Documentation

ziAPIGetRevision

ZIResult_enum ziAPIGetRevision (unsigned int* revision)
Retrieves the revision of ziAPI.
Sets an unsigned int with the revision (build number) of the ziAPI you are using.

Parameters:

[in] revision

Pointer to an unsigned int to fill up with the revision.

Returns:

= Z|_INFO_SUCCESS

LabOne Programming Manual Revision 31421 Zurich Instruments 299

http://www.zhinst.com

6.4. File Documentation

ziAPIListNodes

ZIResult_enum ziAPIListNodes (ZIConnection conn, const char* path, char* nodes,

int buffe

Paramet

Returns:

rSize, int flags)
Returns all child nodes found at the specified path.

This function returns a list of node names found at the specified path. The path may contain
wildcards so that the returned nodes do not necessarily have to have the same parents. The listis
returned in a null-terminated char-buffer, each element delimited by a newline. If the maximum
length of the buffer (bufferSize) is not sufficient for all elements, nothing will be returned and the
return value will be ZI_LENGTH .

ers:

[in] conn

Pointer to the ZIConnection for which the node names should be
retrieved.

[in] path

Path for which all children will be returned. The path may contain
wildcard characters.

[out] nodes

Upon call filled with newline-delimited list of the names of all the
children found. The string is zero-terminated.

[in] bufferSize
The length of the buffer used for the nodes output parameter.

[in] flags

A combination of flags (applied bitwise)as defined in
ZlListNodes_enum .

= 7| _INFO_SUCCESS on success

= 7|_ERROR_CONNECTION when the connection is invalid (not connected) or when a
communication error occurred

= 7|_ERROR_LENGTH if the path's length exceeds MAX_PATH_LEN or the length of the char-
buffer for the nodes given by bufferSize is too small for all elements

= 7| _ERROR_OVERFLOW when a FIFO overflow occurred

= 7|_ERROR_COMMAND on anincorrect answer of the server

= /|_ERROR_SERVER_INTERNAL if aninternal error occurred in Data Server
= 7| _ERROR_NOTFOUND if the given path could not be resolved

= /|_ERROR_TIMEQOUT when communication timed out

See Tree Listing foran example

LabOne Pr

ogramming Manual Revision 31421 Zurich Instruments 300

http://www.zhinst.com

6.4. File Documentation

See Also:
ziAPIUpdate

LabOne Programming Manual Revision 31421 Zurich Instruments 301

http://www.zhinst.com

6.4. File Documentation

ziAPIUpdateDevices

ZIResult_enum ziAPIUpdateDevices (ZIConnection conn)
Search for the newly connected devices and update the tree.

This function forces the Data Server to search for newly connected devices and to connect to run
them

Parameters:

[in] conn
Pointer to ZIConnection

Returns:
= 7| _INFO_SUCCESS

See Also:
ziAPIListNodes

LabOne Programming Manual Revision 31421 Zurich Instruments 302

http://www.zhinst.com

6.4. File Documentation

ziAPIConnectDevice

ZIResult_enum ziAPIConnectDevice (ZIConnection conn, const char* deviceSerial,
const char* devicelnterface, const char* interfaceParams)

Connect a device to the server.

This function connects a device with deviceSerial via the specified devicelnterface for use with

the server.
Parameters:
[in] conn

Pointer to the ZIConnection with which the connection should be
established

[in] deviceSerial
The serial of the device to connect to, e.g., dev2100

[in] devicelnterface
The interface to use for the connection, e.g., USB|1GbE

[in] interfaceParams
Parameters for interface configuration

Returns:

= 7| _INFO_SUCCESS on success
m 7| _ERROR_TIMEOUT when communication timed out

See Also:
ziAPIDisconnectDevice, ziAPIConnect, ziAPIDisconnect, ziAPlInit

LabOne Programming Manual Revision 31421 Zurich Instruments 303

http://www.zhinst.com

6.4. File Documentation

ziAPIDisconnectDevice

ZIResult_enum ziAPIDisconnectDevice (ZIConnection conn, const char*
deviceSerial)

Disconnect a device from the server.

This function disconnects a device specified by deviceSerial from the server.

Parameters:

[in] conn
Pointer to the ZIConnection with which the connection should be
established

[in] deviceSerial

The serial of the device to connect to, e.g., dev2100
Returns:

= 7|_INFO_SUCCESS on success

m 7| _ERROR_TIMEOUT when communication timed out

See Also:
ziAPIConnectDevice, ziAPIConnect, ziAPIDisconnect, ziAPlInit

LabOne Programming Manual Revision 31421 Zurich Instruments

304

http://www.zhinst.com

6.4. File Documentation

ziAPIGetValueD

ZIResult_enum ziAPIGetValueD (ZIConnection conn, const char* path,
ZlDoubleData* value)

gets the double-type value of the specified node

This function retrieves the numerical value of the specified node as an double-type value. The
value first found is returned if more than one value is available (a wildcard is used in the path).

Parameters:

[in] conn

Pointer to ZIConnection with which the value should be retrieved

[in] path
Path to the node holding the value

[out] value
Pointer to a double in which the value should be written

Returns:

= /| _INFO_SUCCESS on success

= 7|_ERROR_CONNECTION when the connection is invalid (not connected) or when a
communication error occurred

= Z|_ERROR_LENGTH if the path's length exceeds MAX_PATH_LEN

= Z|_ERROR_OVERFLOW when a FIFO overflow occurred

= 7| _ERROR_COMMAND on an incorrect answer of the server

= 7| _ERROR_SERVER_INTERNAL if an internal error occurred in Data Server

= Z|I_ERROR_NOTFOUND if the given path could not be resolved or no value is attached to the
node

= 7| _ERROR_TIMEOUT when communication timed out

#include <stdlib.h>
#include <stdio.h>

#include "
ziAPI.h

"

void UpdateValue(ZIConnection Conn)

{

ZIResult enum RetVal;
char* ErrBuffer;
ZIDoubleData ValueD;

if((RetvVal =
ziAPISetValuel
(Conn,

LabOne Programming Manual Revision 31421 Zurich Instruments 305

http://www.zhinst.com

6.4. File Documentation

"DEV1046/demods/*/rate",
100)) !=
ZI INFO SUCCESS

z1APIGetError
(Retval, &ErrBuffer, NULL);
fprintf (stderr, "Can't set Parameter: %$s\n", ErrBuffer

if((RetvVal =
z1APIGetValueD
(Conn,
"DEV1046/demods/0/rate",
&ValueD)) !=
ZI_ INFO_ SUCCESS

ziAPIGetError
(RetvVal, &ErrBuffer, NULL);
fprintf (stderr, "Can't get Parameter: %s\n", ErrBuffer

}
else

{
printf("Value = $f\n", ValueD);

See Also:
ziAPISetValueD , ziAPIGetValueAsPollData

LabOne Programming Manual Revision 31421 Zurich Instruments

306

http://www.zhinst.com

6.4. File Documentation

ziAPIGetValuel

ZIResult_enum ziAPIGetValuel (ZIConnection conn, const char* path, ZlIntegerData*
value)

gets the integer-type value of the specified node

This function retrieves the numerical value of the specified node as an integer-type value. The
value first found is returned if more than one value is available (a wildcard is used in the path).

Parameters:

[in] conn

Pointer to ZIConnection with which the value should be retrieved

[in] path
Path to the node holding the value

[out] value
Pointer to an 64bit integer in which the value should be written

Returns:

= /| _INFO_SUCCESS on success

= 7|_ERROR_CONNECTION when the connection is invalid (not connected) or when a
communication error occurred

= Z|_ERROR_LENGTH if the path's length exceeds MAX_PATH_LEN

= Z|_ERROR_OVERFLOW when a FIFO overflow occurred

= 7| _ERROR_COMMAND on an incorrect answer of the server

= 7| _ERROR_SERVER_INTERNAL if an internal error occurred in Data Server

= Z|I_ERROR_NOTFOUND if the given path could not be resolved or no value is attached to the
node

= 7| _ERROR_TIMEOUT when communication timed out

#include <stdlib.h>
#include <stdio.h>

#include "
ziAPI.h

"

void UpdateValue(ZIConnection Conn)

{

ZIResult enum RetVal;
char* ErrBuffer;
ZIIntegerData ValueI;

if((RetvVal =
z1APISetValueD
(Conn,

LabOne Programming Manual Revision 31421 Zurich Instruments 307

http://www.zhinst.com

6.4. File Documentation

"DEV1046/demods/*/rate",
5.53)) I!=
ZI INFO SUCCESS

z1APIGetError
(Retval, &ErrBuffer, NULL);
fprintf (stderr, "Can't set Parameter: %$s\n", ErrBuffer

if((RetvVal =
z1APIGetValuel
(Conn,
"DEV1046/demods/0/rate",
&ValuelI)) !=
ZI_ INFO_ SUCCESS

ziAPIGetError
(RetvVal, &ErrBuffer, NULL);
fprintf (stderr, "Can't get Parameter: %s\n", ErrBuffer

}
else

{
printf("Value = %f\n", (float)Valuel);

See Also:
ziAPISetValuel , ziAPIGetValueAsPollData

LabOne Programming Manual Revision 31421 Zurich Instruments

308

http://www.zhinst.com

6.4. File Documentation

ziAPIGet

DemodSample

ZIResult_enum ziAPIGetDemodSample (ZIConnection conn, const char* path,
ZIDemodSample * value)

Paramet

Returns:

Gets the demodulator sample value of the specified node.

This function retrieves the value of the specified node as an DemodSample struct. The value first
foundis returned if more than one value is available (a wildcard is used in the path). This function
is only applicable to paths matching DEMODS/[0-9]+/SAMPLE.

ers:

[in] conn

Pointer to ZIConnection with which the value should be retrieved

[in] path
Path to the node holding the value

[out] value

Pointerto a ZIDemodSample struct in which the value should be
written

= /| _INFO_SUCCESS on success

= 7|_ERROR_CONNECTION when the connection is invalid (not connected) or when a
communication error occurred

= 7|_ERROR_LENGTH if the path's length exceeds MAX_PATH_LEN

= 7| _ERROR_OVERFLOW when a FIFO overflow occurred

= 7|_ERROR_COMMAND on an incorrect answer of the server

= 7| _ERROR_SERVER_INTERNAL if an internal error occurred in Data Server

= 7| _ERROR_NOTFOUND if the given path could not be resolved or no value is attached to the
node

m 7| _ERROR_TIMEOUT when communication timed out

#include <stdlib.h>
#include <stdio.h>

#include "
ziAPI.h

"

void GetSample(ZIConnection Conn)

{

ZIResult enum RetVal;
char* ErrBuffer;

ZIDemodSample

LabOne Programming Manual Revision 31421 Zurich Instruments 309

http://www.zhinst.com

LabOne Programming Manual

6.4. File Documentation

DemodSample;

if((Retval =

z1iAPIGetDemodSample
(Conn,

"DEV1046/demods/0/sample™,
&DemodSample)) !=
ZI INFO_SUCCESS

ziAPIGetError
(RetvVal, &ErrBuffer, NULL);
fprintf (stderr, "Can't get Parameter: %s\n", ErrBuffer
}

else
{
printf("TS = $f, X=%f,

= Y=%f\n",
(float) DemodSample.

timeStamp

’

DemodSample.

’

DemodSample.

Y
)

See Also:
ziAPIGetValueAsPollData

Revision 31421 Zurich Instruments

310

http://www.zhinst.com

6.4. File Documentation

ziAPIGet

DIOSample

ZIResult_enum ziAPIGetDIOSample (ZIConnection conn, const char* path,
ZIDIOSample * value)

Paramet

Returns:

Gets the Digital I/0 sample of the specified node.

This function retrieves the newest available DIO sample from the specified node. The value first
foundis returned if more than one value is available (a wildcard is used in the path). This function
is only applicable to nodes ending in "/DIOS/[0-9]+/INPUT".

ers:

[in] conn
Pointer to the ZIConnection with which the value should be retrieved

[in] path
Path to the node holding the value

[out] value

Pointer to a ZIDIOSample structin which the value should be
written

= 7| _INFO_SUCCESS on success

= /|_ERROR_CONNECTION when the connection is invalid (not connected) or when a
communication error occurred

= Z|I_ERROR_LENGTH if the Path's Length exceeds MAX_PATH_LEN or the length of the char-
buffer for the nodes given by MaxLen is too small for all elements

= /| _ERROR_OVERFLOW when a FIFO overflow occurred
= 7| _ERROR_COMMAND on an incorrect answer of the server
= 7| _ERROR_SERVER_INTERNAL if an internal error occurred in the Data Server

= 7| _ERROR_NOTFOUND if the given path could not be resolved or no value is attached to the
node

= 7|_ERROR_TIMEQOUT when communication timed out

#include <stdlib.h>
#include <stdio.h>

#include "
z1iAPI.h

"

void GetSample(ZIConnection Conn)
{

ZIResult enum RetVal;
char* ErrBuffer;

LabOne Programming Manual Revision 31421 Zurich Instruments 311

http://www.zhinst.com

6.4. File Documentation

ZIDIOSample
DIOSample;

if((Retval =
ziAPIGetDIOSample
(Conn,
"DEV1046/dios/0/output",
&DIOSample)) !=
ZI_ INFO SUCCESS

ziAPIGetError
(Retval, &ErrBuffer, NULL);
fprintf (stderr, "Can't get Parameter: %s\n", ErrBuffer
}
else
{
printf("TS = %f, bits=%08x\n",
(float) (DIOSample.
timeStamp
)
DIOSample.
bits
) 7

See Also:
ziAPIGetValueAsPollData

LabOne Programming Manual Revision 31421 Zurich Instruments

312

http://www.zhinst.com

6.4. File Documentation

ziAPIGet

ZIResult

AuxinSample

_enum ziAPIGetAuxInSample (ZIConnection conn, const char* path,

ZIAuxInSample * value)

gets the Auxin sample of the specified node

This function retrieves the newest available Auxin sample from the specified node. The value first
foundis returned if more than one value is available (a wildcard is used in the path). This function
is only applicable to nodes ending in "/AUXINS/[0-9]+/SAMPLE".

Parameters:

Returns:

[in] conn

Pointer to the ziConnection with which the Value should be retrieved

[in] path
Path to the Node holding the value

[out] value

Pointer to an ZIAuxInSample structin which the value should be
written

= /| _SUCCESS on success

= Z|_CONNECTION when the connection is invalid (not connected) or when a communication
error occurred

= 7|_LENGTH if the Path's Length exceeds MAX_PATH_LEN or the length of the char-buffer for
the nodes given by MaxLen is too small for all elements

= 7|_OVERFLOW when a FIFO overflow occurred

= 7|_COMMAND on an incorrect answer of the server

= 7|_SERVER_INTERNAL if an internal error occurred in the Data Server

= 7|_NOTFOUND if the given path could not be resolved or no value is attached to the node

= /| _TIMEOUT when communication timed out

#include <stdlib.h>
#include <stdio.h>

#include "
ziAPI.h

"

void GetSample(ZIConnection Conn)

{

ZIResult enum RetVal;
char* ErrBuffer;

ZIAuxInSample

LabOne Programming Manual Revision 31421 Zurich Instruments 313

http://www.zhinst.com

6.4. File Documentation

AuxInSample;

if((Retval =

ziAPIGetAuxInSample
(Conn,

"DEV1046/auxins/0/sample",
&AuxInSample)) !=
ZI INFO_SUCCESS

z1APIGetError
(RetvVal, &ErrBuffer, NULL);
fprintf (stderr, "Can't get Parameter: %s\n", ErrBuffer);
}

else
{
printf("TS = %f, ch0=%f, chl=%f\n",
(float)AuxInSample.

timeStamp
’
AuxInSample.
chO
’
AuxInSample.
chl

)

See Also:
ziAPIGetValueAsPollData

LabOne Programming Manual

Revision 31421 Zurich Instruments

314

http://www.zhinst.com

6.4. File Documentation

ziAPIGetValueB

ZIResult_enum ziAPIGetValueB (ZIConnection conn, const char* path, unsigned

char* bu

ffer, unsigned int* length, unsigned int bufferSize)
gets the Bytearray value of the specified node

This function retrieves the newest available DIO sample from the specified node. The value first
found is returned if more than one value is available (a wildcard is used in the path).

Parameters:

Returns:

[in] conn
Pointer to the ziConnection with which the value should be retrieved

[in] path
Path to the Node holding the value

[out] buffer
Pointer to a buffer to store the retrieved data in

[out] length

Pointer to an unsigned int to store the length of datain. if an error
ocurred or the length of the passed buffer dosn't reach a zero will be
returned

[in] bufferSize
The length of the passed buffer

= 7| _SUCCESS on success

= Z|_CONNECTION when the connection is invalid (not connected) or when a communication
error occurred

= Z|I_LENGTH if the Path's Length exceeds MAX_PATH_LEN or the length of the char-buffer for
the nodes given by MaxLen is too small for all elements

= 7|_OVERFLOW when a FIFO overflow occurred

= 7|_COMMAND on an incorrect answer of the server

= 7| _SERVER_INTERNAL if an internal error occurred in the Data Server

= Z|I_NOTFOUND if the given path could not be resolved or no value is attached to the node

= 7| _TIMEOUT when communication timed out

#include <stdlib.h>
#include <stdio.h>

#include "
ziAPI.h

LabOne Pr

ogramming Manual Revision 31421 Zurich Instruments 315

http://www.zhinst.com

6.4. File Documentation

void PrintVersion(ZIConnection Conn)
{

ZIResult enum RetVal;
char* ErrBuffer;

const char* Path = "ZI/ABOUT/VERSION";
unsigned char Buffer[Oxff];
unsigned int Length;

if((RetvVal =
z1APIGetValueB
(Conn,
Path,
Buffer,
&Length,
sizeof (Buffer) - 1)) !=

ZI INFO_SUCCESS

z1APIGetError
(RetvVal, &ErrBuffer, NULL);
fprintf (stderr, "Can't get value: %s\n", ErrBuffer);
}
else

{
Buffer[Length] = 0;
printf ("$s=\"%s\"\n", Path, Buffer);

See Also:
ziAPISetValueB, ziAPIGetValueAsPollData

LabOne Programming Manual Revision 31421 Zurich Instruments 316

http://www.zhinst.com

6.4. File Documentation

ziAPISetValueD

ZIResult_enum ziAPISetValueD (ZIConnection conn, const char* path, ZIDoubleData

value)

Paramet

Returns:

asynchronously sets a double-type value to one or more nodes specified in the path

This function sets the values of the nodes specified in path to Value. More than one value can be
set if a wildcard is used. The function sets the value asynchronously which means that after the
function returns you have no security to which value it is finally set nor at what point in time it is
set.

ers:

[in] conn
Pointer to the ziConnection for which the value(s) will be set

[in] path
Path to the Node(s) for which the value(s) will be set to Value

[in] value
the double-type value that will be written to the node(s)

m /| _SUCCESS on success

= Z|_CONNECTION when the connection is invalid (not connected) or when a communication
error occurred

= ZI_LENGTH if the Path's Length exceeds MAX_PATH_LEN

= Z|I_OVERFLOW when a FIFO overflow occurred

= 7|_READONLY on attempt to set a read-only node

= 7|_COMMAND on an incorrect answer of the server

= /|_SERVER_INTERNAL if aninternal error occurred in the Data Server

= 7|_NOTFOUND if the given path could not be resolved or no node given by path is able to hold
values

= Z|_TIMEOUT when communication timed out

#include <stdlib.h>
finclude <stdio.h>

finclude "
ziAPI.h

"

void UpdateValue(ZIConnection Conn)

{

ZIResult enum RetVal;
char* ErrBuffer;
ZIIntegerData ValueI;

LabOne Programming Manual Revision 31421 Zurich Instruments 317

http://www.zhinst.com

6.4. File Documentation

if((RetvVal =
ziAPISetValueD
(Conn,
"DEV1046/demods/*/rate",
5.53)) I!=
ZI INFO SUCCESS

z1APIGetError
(Retval, &ErrBuffer, NULL);
fprintf (stderr, "Can't set Parameter: %$s\n", ErrBuffer

if((RetvVal =
z1APIGetValuel
(Conn,
"DEV1046/demods/0/rate",
&ValuelI)) !=
ZI_ INFO SUCCESS

ziAPIGetError
(RetvVal, &ErrBuffer, NULL);
fprintf(stderr, "Can't get Parameter: %s\n", ErrBuffer

}
else

{
printf("Value = %f\n", (float)Valuel);

See Also:
ZiAPIGetValueD . ziAPISyncSetValueD

)

LabOne Programming Manual Revision 31421 Zurich Instruments

318

http://www.zhinst.com

6.4. File Documentation

ziAPISetValuel

ZIResult_enum ziAPISetValuel (ZIConnection conn, const char* path, ZlintegerData

value)

Paramet

Returns:

asynchronously sets an integer-type value to one or more nodes specified in a path

This function sets the values of the nodes specified in path to Value. More than one value can be
set if a wildcard is used. The function sets the value asynchronously which means that after the
function returns you have no security to which value it is finally set nor at what point in time it is
set.

ers:

[in] conn
Pointer to the ziConnection for which the value(s) will be set

[in] path
Path to the Node(s) for which the value(s) will be set

[in] value
the int-type value that will be written to the node(s)

m /| _SUCCESS on success

= Z|_CONNECTION when the connection is invalid (not connected) or when a communication
error occurred

= ZI_LENGTH if the Path's Length exceeds MAX_PATH_LEN

= Z|I_OVERFLOW when a FIFO overflow occurred

= 7|_READONLY on attempt to set a read-only node

= 7|_COMMAND on an incorrect answer of the server

= /|_SERVER_INTERNAL if aninternal error occurred in the Data Server

= 7|_NOTFOUND if the given path could not be resolved or no node given by path is able to hold
values

= Z|_TIMEOUT when communication timed out

#include <stdlib.h>
finclude <stdio.h>

finclude "
ziAPI.h

"

void UpdateValue(ZIConnection Conn)

{

ZIResult enum RetVal;
char* ErrBuffer;
ZIDoubleData ValueD;

LabOne Programming Manual Revision 31421 Zurich Instruments 319

http://www.zhinst.com

6.4. File Documentation

if((RetvVal =
ziAPISetValuel
(Conn,
"DEV1046/demods/*/rate",
100)) !=
ZI INFO SUCCESS

z1APIGetError
(Retval, &ErrBuffer, NULL);
fprintf (stderr, "Can't set Parameter: %$s\n", ErrBuffer

if((RetvVal =
z1APIGetValueD
(Conn,
"DEV1046/demods/0/rate",
&ValueD)) !=
ZI_ INFO SUCCESS

ziAPIGetError
(RetvVal, &ErrBuffer, NULL);
fprintf(stderr, "Can't get Parameter: %s\n", ErrBuffer

}
else

{
printf("Value = $f\n", ValueD);

See Also:
ZiAPIGetValuel . ziAPISyncSetValuel

)

LabOne Programming Manual Revision 31421 Zurich Instruments

320

http://www.zhinst.com

6.4. File Documentation

ziAPISetValueB

ZIResult

_enum ziAPISetValueB (ZIConnection conn, const char* path, unsigned

char* buffer, unsigned int length)

asynchronously sets the binary-type value of one ore more nodes specified in the path

This function sets the values at the nodes specified in a path. More than one value can be set if a
wildcard is used. The function sets the value asynchronously which means that after the function
returns you have no security to which value it is finally set nor at what point in time it is set.

Parameters:

Returns:

[in] conn

Pointer to the ziConnection for which the value(s) will be set

[in] path
Path to the Node(s) for which the value(s) will be set

[in] buffer
Pointer to the byte array with the data

[in] length
Length of the data in the buffer

= 7| _SUCCESS on success

= Z|_CONNECTION when the connection is invalid (not connected) or when a communication
error occurred

= Z|_LENGTH if the Path's Length exceeds MAX_PATH_LEN

= /|_OVERFLOW when a FIFO overflow occurred

= 7|_READONLY on attempt to set a read-only node

= /|_COMMAND on an incorrect answer of the server

= 7|_SERVER_INTERNAL if an internal error occurred in the Data Server

= 7|_NOTFOUND if the given path could not be resolved or no node given by path is able to hold
values

= /7| _TIMEOUT when communication timed out

#include <stdlib.h>
#include <stdio.h>

#include "
ziAPI.h

"

void ProgramCPU(ZIConnection Conn,
unsigned char* Buffer,
int Len)

LabOne Programming Manual Revision 31421 Zurich Instruments 321

http://www.zhinst.com

6.4. File Documentation

ZIResult enum RetVal;
char* ErrBuffer;

if((RetvVal =
ziAPISetValueB
(Conn,
"DEV1046/cpus/0/program",
Buffer,
Len)) !=

ZI_INFO SUCCESS

z1APIGetError
(RetVval, &ErrBuffer, NULL);
fprintf(stderr, "Can't set Parameter: %$s\n", ErrBuffer

See Also:
ZiAPIGetValueB . ziAPISyncSetValueB

LabOne Programming Manual Revision 31421 Zurich Instruments

322

http://www.zhinst.com

6.4. File Documentation

ziAPISyn

cSetValueD

ZIResult_enum ziAPISyncSetValueD (ZIConnection conn, const char* path,
ZIDoubleData* value)

Paramet

synchronously sets a double-type value to one or more nodes specified in the path

This function sets the values of the nodes specified in path to Value. More than one value can be
setif awildcard is used. The function sets the value synchronously. After returning you know that
itis set and to which value it is set.

ers:

[in] conn
Pointer to the ziConnection for which the value(s) will be set

[in] path
Path to the Node(s) for which the value(s) will be set to value

[in] value

Pointer to a double-type containing the value to be written. When
the function returns value holds the effectively written value.

Returns:
= 7| _SUCCESS on success
= ZI_CONNECTION when the connection is invalid (not connected) or when a communication
error occurred
m 7|_LENGTH if the Path's Length exceeds MAX_PATH_LEN
= 7| _OVERFLOW when a FIFO overflow occurred
= 7|_READONLY on attempt to set a read-only node
= Z|_COMMAND on an incorrect answer of the server
= Z|_SERVER_INTERNAL if an internal error occurred in the Data Server
= 7|_NOTFOUND if the given path could not be resolved or no node given by path is able to hold
values
= Z|I_TIMEOUT when communication timed out
See Also:

ziAPIGetValueD, ziAPISetValueD

LabOne Programming Manual Revision 31421 Zurich Instruments 323

http://www.zhinst.com

6.4. File Documentation

ziAPISyn

cSetValuel

ZIResult_enum ziAPISyncSetValuel (ZIConnection conn, const char* path,
ZlintegerData* value)

Paramet

Returns:

See Also

synchronously sets an integer-type value to one or more nodes specified in a path

This function sets the values of the nodes specified in path to value. More than one value can be
setif awildcard is used. The function sets the value synchronously. After returning you know that
itis set and to which value it is set.

ers:

[in] conn
Pointer to the ziConnection for which the value(s) will be set

[in] path
Path to the node(s) for which the value(s) will be set

[in] value

Pointer to a int-type containing then value to be written. when the
function returns value holds the effectively written value.

= 7| _SUCCESS on success

= Z|_CONNECTION when the connection is invalid (not connected) or when a communication
error occurred

m 7|_LENGTH if the Path's Length exceeds MAX_PATH_LEN

= 7| _OVERFLOW when a FIFO overflow occurred

= 7|_READONLY on attempt to set a read-only node

= Z|_COMMAND on an incorrect answer of the server

= Z|_SERVER_INTERNAL if an internal error occurred in the Data Server

= 7|_NOTFOUND if the given path could not be resolved or no node given by path is able to hold
values

= 7| _TIMEOUT when communication timed out

ziAPIGetValuel , ziAPISetValuel

LabOne Pr

ogramming Manual Revision 31421 Zurich Instruments 324

http://www.zhinst.com

6.4. File Documentation

ziAPISyncSetValueB

ZIResult_enum ziAPISyncSetValueB (ZIConnection conn, const char* path, uint8_t*

buffer, u

Paramet

Returns:

See Also

int32_t* length, uint32_t bufferSize)
Synchronously sets the binary-type value of one ore more nodes specified in the path.

This function sets the values at the nodes specified in a path. More than one value can be set if
awildcard is used. This function sets the value synchronously. After returning you know that it is
set and to which value it is set.

ers:

[in] conn
Pointer to the ziConnection for which the value(s) will be set

[in] path
Path to the Node(s) for which the value(s) will be set

[in] buffer
Pointer to the byte array with the data

[in] length
Length of the data in the buffer

[in] bufferSize
Length of the data in the buffer

= 7| _SUCCESS on success

= Z|_CONNECTION when the connection is invalid (not connected) or when a communication
error occurred

= 7|_LENGTH if the Path's Length exceeds MAX_PATH_LEN

= 7| _OVERFLOW when a FIFO overflow occurred

= 7|_READONLY on attempt to set a read-only node

= Z|_COMMAND on anincorrect answer of the server

= Z|_SERVER_INTERNAL if an internal error occurred in the Data Server

= 7|_NOTFOUND if the given path could not be resolved or no node given by path is able to hold
values

= 7| _TIMEOUT when communication timed out

ziAPIGetValueB, ziAPISetValueB

LabOne Pr

ogramming Manual Revision 31421 Zurich Instruments 325

http://www.zhinst.com

6.4. File Documentation

ziAPISync

ZIResult_enum ziAPISync (ZIConnection conn)
Synchronizes the session by dropping all pending data.

This function drops any data that is pending for transfer. Any data (including poll data) retrieved
afterwards is guaranteed to be produced not earlier than the call to ziAPISync. This ensures in
particularthatany settings made prior to the call to ziAPISync have been propagated to the device,
and the data retrieved afterwards is produced with the new settings already set to the hardware.
Note, however, that this does not include any required settling time.

Parameters:

[in] conn

Pointer to the ZIConnection that is to be synchronized
Returns:

= 7| _INFO_SUCCESS on success
m 7| _ERROR_TIMEOUT when communication timed out

LabOne Programming Manual Revision 31421 Zurich Instruments 326

http://www.zhinst.com

6.4. File Documentation

ziAPIEchoDevice

ZIResult_enum ziAPIEchoDevice (ZIConnection conn, const char* deviceSerial)
Sends an echo command to a device and blocks until answer is received.

This is useful to flush all buffers between API and device to enforce that further code is only
executed after the device executed a previous command. Per device echo is only implemented for
HF2. For other device types it is a synonym to ziAPISync, and deviceSerial parameter is ignored.

Parameters:

[in] conn
Pointer to the ZIConnection that is to be synchronized

[in] deviceSerial
The serial of the device to get the echo from, e.g., dev2100
Returns:

= 7| _INFO_SUCCESS on success
m 7| _ERROR_TIMEOUT when communication timed out

LabOne Programming Manual Revision 31421 Zurich Instruments 327

http://www.zhinst.com

6.4. File Documentation

ziAPIAsyncSetDoubleData

ZIResult_enum ziAPIAsyncSetDoubleData (ZIConnection conn, const char* path,
ZIDoubleData value)

LabOne Programming Manual Revision 31421 Zurich Instruments 328

http://www.zhinst.com

6.4. File Documentation

ziAPIAsyncSetintegerData

ZIResult_enum ziAPIAsyncSetIntegerData (ZIConnection conn, const char* path,
ZlintegerData value)

LabOne Programming Manual Revision 31421 Zurich Instruments 329

http://www.zhinst.com

6.4. File Documentation

ziAPlAsyncSetByteArray

ZIResult_enum ziAPIAsyncSetByteArray (ZIConnection conn, const char* path,
uint8_t* buffer, uint32_t length)

LabOne Programming Manual Revision 31421 Zurich Instruments 330

http://www.zhinst.com

6.4. File Documentation

ziAPIlAllocateEventEx

ZIEvent * ziAPIAllocateEventEx ()

Allocates ZIEvent structure and returns the pointer to it. Attention!!! It is the client code
responsibility to deallocate the structure by calling ziAPIDeallocateEventEx!

This function allocates a ZIEvent structure and returns the pointer to it. Free the memory using
ziAPIDeallocateEventEx.

See Also:
ziAPIDeallocateEventEx

LabOne Programming Manual Revision 31421 Zurich Instruments 331

http://www.zhinst.com

6.4. File Documentation

ziAPIDeallocateEventEx

void ziAPIDeallocateEventEx (ZIEvent * ev)
Deallocates ZIEvent structure created with ziAPIAllocateEventEx() .

Parameters:

[in] ev
Pointer to ZIEvent structure to be deallocated..

See Also:
ziAPIAllocateEventEx

This function is the compliment to ziAPIAllocateEventEx()

LabOne Programming Manual Revision 31421 Zurich Instruments 332

http://www.zhinst.com

6.4. File Documentation

ziAPISubscribe

ZIResult_enum ziAPISubscribe (ZIConnection conn, const char* path)
subscribes the nodes given by path for ziAPIPollDataEx

This function subscribes to nodes so that whenever the value of the node changes the new value
can be polled using ziAPIPollDataEx . By using wildcards or by using a path that is not a leaf node
but contains sub nodes, more than one leaf can be subscribed to with one function call.

Parameters:

[in] conn
Pointer to the ziConnection for which to subscribe for

[in] path
Path to the nodes to subscribe

Returns:

= 7| _SUCCESS on success

= Z|_CONNECTION when the connection is invalid (not connected) or when a communication
error occurred

m 7|_LENGTH if the Path's Length exceeds MAX_PATH_LEN

= 7| _OVERFLOW when a FIFO overflow occurred

= 7|_COMMAND on an incorrect answer of the server

= Z|_SERVER_INTERNAL if an internal error occurred in the Data Server

= 7|_NOTFOUND if the given path could not be resolved or no node given by path is able to hold
values

= 7| _TIMEOUT when communication timed out

See Data Handling for an example

See Also:
ZziIAPIUnSubscribe, ziAPIPollDataEx, ziAPIGetValueAsPollData

LabOne Programming Manual Revision 31421 Zurich Instruments 333

http://www.zhinst.com

6.4. File Documentation

ziAPIUnSubscribe

ZIResult_enum ziAPIUnSubscribe (ZIConnection conn, const char* path)
unsubscribes to the nodes given by path

This function is the complement to ziAPISubscribe . By using wildcards or by using a path that
is not a leaf node but contains sub nodes, more than one node can be unsubscribed with one

function call.
Parameters:
[in] conn

Pointer to the ziConnection for which to unsubscribe for

[in] path
Path to the Nodes to unsubscribe

Returns:

= 7| _SUCCESS on success

= Z|_CONNECTION when the connection is invalid (not connected) or when a communication
error occurred

m 7|_LENGTH if the Path's Length exceeds MAX_PATH_LEN

= 7| _OVERFLOW when a FIFO overflow occurred

= 7|_COMMAND on an incorrect answer of the server

= Z|_SERVER_INTERNAL if an internal error occurred in the Data Server

= 7|_NOTFOUND if the given path could not be resolved or no node given by path is able to hold
values

= 7| _TIMEOUT when communication timed out

See Data Handling for an example

See Also:
ziAPISubscribe, ziAPIPollDataEx, ziAPIGetValueAsPollData

LabOne Programming Manual Revision 31421 Zurich Instruments 334

http://www.zhinst.com

6.4. File Documentation

ziAPIPollDataEx

ZIResult_enum ziAPIPollDataEx (ZIConnection conn, ZIEvent * ev, uint32_t
timeOutMilliseconds)

checks if an event is available to read

This function returns immediately if an event is pending. Otherwise it waits for an event for up
to timeOutMilliseconds. All value changes that occur in nodes that have been subscribed to or in
children of nodes that have been subscribed to are sent from the Data Server to the ziAPI session.
For a description of how the data are available in the struct, refer to the documentation of struct
ziEvent . When no event was available within timeOutMilliseconds, the ziEvent::Type field will be
ZI_DATA_NONE and the ziEvent::Count field will be zero. Otherwise these fields hold the values
corresponding to the event that occurred.

Parameters:

[in] conn
Pointer to the ZIConnection for which events should be received

[out] ev

Pointer to a ZIEvent struct in which the received event will be
written

[in] timeOutMilliseconds

Time to wait for an event in milliseconds. If -1 it will wait forever, if O
the function returns immediately.

Returns:
= 7| _SUCCESS on success
= Z|_CONNECTION when the connection is invalid (not connected) or when a communication
error occurred
= 7Z|_OVERFLOW when a FIFO overflow occurred
See Data Handling for an example
See Also:

ziAPISubscribe, ziAPIUnSubscribe, ziAPIGetValueAsPollData, ziEvent

LabOne Programming Manual Revision 31421 Zurich Instruments 335

http://www.zhinst.com

6.4. File Documentation

ziAPIGetValueAsPollData

ZIResult_enum ziAPIGetValueAsPollData (ZIConnection conn, const char* path)
triggers a value request, which will be given back on the poll event queue

Use this function to receive the value of one or more nodes as one or more events using
ziAPIPollDataEx , even when the node is not subscribed or no value change has occured.

Parameters:

[in] conn

Pointer to the ZIConnection with which the value should be
retrieved

[in] path
Path to the Node holding the value

Returns:

= 7| _SUCCESS on success

= Z|_CONNECTION when the connection is invalid (not connected) or when a communication
error occurred

= 7|_LENGTH if the Path's Length exceeds MAX_PATH_LEN or the length of the char-buffer for
the nodes given by MaxLen is too small for all elements

= 7| _OVERFLOW when a FIFO overflow occurred

= 7|_COMMAND on an incorrect answer of the server

= /| _SERVER_INTERNAL if an internal error occurred in the Data Server

= Z|I_NOTFOUND if the given path could not be resolved or no value is attached to the node

= 7| _TIMEOUT when communication timed out

See Data Handling for an example

See Also:
ziAPISubscribe, ziAPIUnSubscribe, ziAPIPollDataEx

LabOne Programming Manual Revision 31421 Zurich Instruments 336

http://www.zhinst.com

6.4. File Documentation

ziAPIGetError

ZIResult_enum ziAPIGetError (ZIResult_enum result, char** buffer, int* base)
returns a description and the severity for a ZIResult_enum

This function returns a static char pointer to a description string for the given ZIResult_enum
error code. It also provides a parameter returning the severity (info, warning, error). If the given
error code does not exist a description for an unknown error and the base for an error will be
returned. If a description or the base is not needed NULL may be passed.

Parameters:

[in] result
A ZIResult_enum for which the description or base will be returned

[out] buffer

A pointer to a char array to return the description. May be NULL if no
description is needed.

[out] base
The severity for the provided Status parameter:

= Z|_INFO_BASE forinfos
= Z|_WARNING_BASE for warnings
= 7|_ERROR_BASE forerrors

Returns:

= /| _SUCCESS

LabOne Programming Manual Revision 31421 Zurich Instruments 337

http://www.zhinst.com

6.4. File Documentation

ReadMEMFile

ZIResult_enum ReadMEMFile (const char* filename, char* buffer, int32_t bufferSize,
int32_t* bytesUsed)

LabOne Programming Manual Revision 31421 Zurich Instruments 338

http://www.zhinst.com

6.4. File Documentation

ziAPIlAllocateEvent

ziEvent * ziAPIAllocateEvent ()

Deprecated: See ziAPIAllocateEventEx() .

LabOne Programming Manual Revision 31421 Zurich Instruments 339

http://www.zhinst.com

6.4. File Documentation

ziAPIDeallocateEvent

void ziAPIDeallocateEvent (ziEvent * ev)

Deprecated: See ziAPIDeallocateEventEx() .

LabOne Programming Manual Revision 31421 Zurich Instruments 340

http://www.zhinst.com

6.4. File Documentation

ziAPIPollData

ZIResult_enum ziAPIPollData (ZIConnection conn, ziEvent * ev, int timeOut)
Checks if an event is available to read. Deprecated: See ziAPIPollDataEx() .
Parameters:

[in] conn
Pointer to the ZIConnection for which events should be received

[out] ev
Pointer to a ziEvent struct in which the received event will be
written

[in] timeOut
Time to wait for an event in milliseconds. If -1 it will wait forever, if O
the function returns immediately.

Returns:
= 7| _SUCCESS on success
= /|_CONNECTION when the connection is invalid (not connected) or when a communication
error occurred
= 7| _OVERFLOW when a FIFO overflow occurred
See Data Handling foranexample
See Also:

ziAPISubscribe , ziAPIUnSubscribe , ziAPIGetValueAsPollData, ziEvent

LabOne Programming Manual Revision 31421 Zurich Instruments

341

http://www.zhinst.com

6.4. File Documentation

ziAPIGetValueS

ZIResult_enum ziAPIGetValueS (ZIConnection conn, char* path, DemodSample *
value)

LabOne Programming Manual Revision 31421 Zurich Instruments 342

http://www.zhinst.com

6.4. File Documentation

ziAPIGetValueDIO

ZIResult_enum ziAPIGetValueDIO (ZIConnection conn, char* path, DIOSample *
value)

LabOne Programming Manual Revision 31421 Zurich Instruments 343

http://www.zhinst.com

6.4. File Documentation

ziAPIGetValueAuxIn

ZIResult_enum ziAPIGetValueAuxIn (ZIConnection conn, char* path, AuxinSample *
value)

LabOne Programming Manual Revision 31421 Zurich Instruments 344

http://www.zhinst.com

6.4. File Documentation

ziAPISecondsTimeStamp

double ziAPISecondsTimeStamp (ziTimeStampType TS)
Deprecated: timestamps should instead be converted to seconds by dividing by the instrument's
"clockbase". Thisis available as an leaf under the instruments's root "device" branch in the node
hierarchy, e.g., /dev2001/clockbase.

Parameters:

[in] TS
the timestamp to convert to seconds

Returns:
The timestamp in seconds as a double

LabOne Programming Manual Revision 31421 Zurich Instruments 345

http://www.zhinst.com

Glossary

This glossary provides easy to understand descriptions for many terms related to measurement
instrumentation including the abbreviations used inside this user manual.

A

A/D

AC
ADC
AM

Amplitude Modulated AFM
(AM-AFM)

API
ASClI

Atomic Force Microscope
(AFM)

AVAR

B

Bandwidth (BW)

BNC

C

Analog to Digital
See Also ADC.

Alternate Current
Analog to Digital Converter
Amplitude Modulation

AFM mode where the amplitude change between drive and measured signal
encodes the topography or the measured AFM variable.
See Also Atomic Force Microscope.

Application Programming Interface
American Standard Code for Information Interchange

Microscope that scans surfaces by means an oscillating mechanical
structure (e.g. cantilever, tuning fork) whose oscillating tip gets so close
to the surface to enter in interaction because of electrostatic, chemical,
magnetic or other forces. With an AFM it is possible to produce images with
atomic resolution.

See Also Amplitude Modulated AFM, Frequency Modulated AFM, Phase
modulation AFM.

Allen Variance

The signal bandwidth represents the highest frequency components of
interest in a signal. For filters the signal bandwidth is the cut-off point,
where the transfer function of a system shows 3 dB attenuation versus
DC. In this context the bandwidth is a synonym of cut-off frequency fgt-
off or 3dB frequency f.zqg. The concept of bandwidth is used when the
dynamic behavior of a signal is important or separation of different signals
is required.

In the context of a open-loop or closed-loop system, the bandwidth can
be used to indicate the fastest speed of the system, or the highest signal
update change rate that is possible with the system.

Sometimes the term bandwidth is erroneously used as synonym of
frequency range.
See Also Noise Equivalent Power Bandwidth.

Bayonet Neill-Concelman Connector

LabOne Programming Manual

Revision 31421 Zurich Instruments 346

http://www.zhinst.com

CF

Common Mode Rejection
Ratio (CMRR)

CSv

D/A
DAC
DC
DDS
DHCP
DIO
DNS
DSP
DUT

Dynamic Reserve (DR)

XML

FFT

FIFO

FM

Frequency Accuracy (FA)

Frequency Modulated AFM
(FM-AFM)

Clock Fail (internal processor clock missing)

Specification of a differential amplifier (or other device) indicating the
ability of an amplifier to obtain the difference between two inputs while
rejecting the components that do not differ from the signal (common
mode). A high CMRR is important in applications where the signal of
interest is represented by a small voltage fluctuation superimposed on a
(possibly large) voltage offset, or when relevant information is contained
in the voltage difference between two signals. The simplest mathematical
definition of common-mode rejection ratio is: CMRR = 20 * log(differential
gain / common mode gain).

Comma Separated Values

Digital to Analog

Digital to Analog Converter

Direct Current

Direct Digital Synthesis

Dynamic Host Configuration Protocol
Digital Input/Output

Domain Name Server

Digital Signal Processor

Device Under Test

The measure of a lock-in amplifier's capability to withstand the disturbing
signals and noise at non-reference frequencies, while maintaining the
specified measurement accuracy within the signal bandwidth.

Extensible Markup Language.
See Also XML.

Fast Fourier Transform
First In First Out
Frequency Modulation

Measure of an instrument's ability to faithfully indicate the correct
frequency versus a traceable standard.

AFM mode where the frequency change between drive and measured signal
encodes the topography or the measured AFM variable.
See Also Atomic Force Microscope.

LabOne Programming Manual

Revision 31421 Zurich Instruments 347

http://www.zhinst.com

Frequency Response
Analyzer (FRA)

Frequency Sweeper

G

Gain Phase Meter
GPIB

GUI

170

Impedance Spectroscope
(15)

Input Amplitude Accuracy
(IAA)

Input voltage noise (IVN)

IP

L

LAN
LED

Lock-in Amplifier (LI, LIA)

M

Media Access Control
address (MAC address)

Multi-frequency (MF)

Instrument capable to stimulate a device under test and plot the frequency
response over a selectable frequency range with a fine granularity.

See Also Frequency Response Analyzer.

See Also Vector Network Analyzer.
General Purpose Interface Bus

Graphical User Interface

Input / Output

Instrument suited to stimulate a device under test and to measure the
impedance (by means of a current measurement) at a selectable frequency
and its amplitude and phase change over time. The output is both amplitude
and phase information referred to the stimulus signal.

Measure of instrument's capability to faithfully indicate the signal
amplitude at the input channel versus a traceable standard.

Total noise generated by the instrument and referred to the signal input,
thus expressed as additional source of noise for the measured signal.

Internet Protocol

Local Area Network
Light Emitting Diode

Instrument suited for the acquisition of small signals in noisy environments,
or quickly changing signal with good signal to noise ratio - lock-in amplifiers
recover the signal of interest knowing the frequency of the signal by
demodulation with the suited reference frequency - the result of the
demodulation are amplitude and phase of the signal compared to the
reference: these are value pairs in the complex plane (X, Y), (R, ©).

Refers to the unique identifier assigned to network adapters for physical
network communication.

Refers to the simultaneous measurement of signals modulated at arbitrary
frequencies. The objective of multi-frequency is to increase the information
that can be derived from a measurement which is particularly important
for one-time, non-repeating events, and to increase the speed of a
measurement since different frequencies do not have to be applied one after
the other.

See Also Multi-harmonic.

LabOne Programming Manual

Revision 31421 Zurich Instruments 348

http://www.zhinst.com

Multi-harmonic (MH)

N

Noise Equivalent Power
Bandwidth (NEPBW)

Nyquist Frequency (NF)

O

Output Amplitude Accuracy
(0AA)

ov

P

PC
PD

Phase-locked Loop (PLL)

Phase modulation AFM
(PM-AFM)

PID
PL

R

RISC

Root Mean Square (RMS)

Refers to the simultaneous measurement of modulated signals at various
harmonic frequencies. The objective of multi-frequency is to increase the
information that can be derived from a measurement which is particularly
important for one-time, non-repeating events, and to increase the speed of
a measurement since different frequencies do not have to be applied one
after the other.

See Also Multi-frequency.

Effective bandwidth considering the area below the transfer function
of a low-pass filter in the frequency spectrum. NEPBW is used when
the amount of power within a certain bandwidth is important, such as
noise measurements. This unit corresponds to a perfect filter with infinite
steepness at the equivalent frequency.

See Also Bandwidth.

For sampled analog signals, the Nyquist frequency corresponds to two
times the highest frequency component that is being correctly represented
after the signal conversion.

Measure of aninstrument's ability to faithfully output a setvoltage ata given
frequency versus a traceable standard.

Over Volt (signal input saturation and clipping of signal)

Personal Computer
Phase Detector

Electronic circuit that serves to track and control a defined frequency. For
this purpose a copy of the external signalis generated such thatitisin phase
with the original signal, but with usually better spectral characteristics. It
can actas frequency stabilization, frequency multiplication, or as frequency
recovery. In both analog and digital implementations it consists of a phase
detector, a loop filter, a controller, and an oscillator.

AFM mode where the phase between drive and measured signalencodes the
topography or the measured AFM variable.
See Also Atomic Force Microscope.

Proportional-Integral-Derivative

Packet Loss (loss of packets of data between the instruments and the host
computer)

Reduced Instruction Set Computer

Statistical measure of the magnitude of a varying quantity. It is especially
useful when variates are positive and negative, e.g., sinusoids, sawtooth,

LabOne Programming Manual

Revision 31421 Zurich Instruments 349

http://www.zhinst.com

RT

S

Scalar Network Analyzer
(SNA)

SL

Spectrum Analyzer (SA)

SSH

T

TC
TCP/IP
Thread

Total Harmonic Distortion
(THD)

TTL

U

UHF
UHS
UsB

V

VCO

Vector Network Analyzer
(VNA)

XML

square waves. For a sine wave the following relation holds between the
amplitude and the RMS value: Upms = Upk / V2 = Upk / 1.41. The RMS is also
called quadratic mean.

Real-time

Instrument that measures the voltage of an analog input signal providing
just the amplitude (gain) information.
See Also Spectrum Analyzer, Vector Network Analyzer.

Sample Loss (loss of samples between the instrument and the host
computer)

Instrument that measures the voltage of an analog input signal providing
just the amplitude (gain) information over a defined spectrum.
See Also Scalar Network Analyzer.

Secure Shell

Time Constant
Transmission Control Protocol / Internet Protocol
An independent sequence of instructions to be executed by a processor.

Measure of the non-linearity of signal channels (input and output)

Transistor to Transistor Logic level

Ultra-High Frequency
Ultra-High Stability

Universal Serial Bus

Voltage Controlled Oscillator

Instrument that measures the network parameters of electrical networks,
commonly expressed as s-parameters. For this purpose it measures the
voltage of an input signal providing both amplitude (gain) and phase
information. For this characteristic an older name was gain phase meter.
See Also Gain Phase Meter, Scalar Network Analyzer.

Extensible Markup Language: Markup language that defines a set of rules
for encoding documents in a format that is both human-readable and
machine-readable.

LabOne Programming Manual

Revision 31421 Zurich Instruments 350

http://www.zhinst.com

Z

ZCtrl

ZoomFFT

ZSync

Zurich Instruments Control bus

This technique performs FFT processing on demodulated samples, for
instance after a lock-in amplifier. Since the resolution of an FFT depends on
the number of point acquired and the spanned time (not the sample rate), it
is possible to obtain very highly resolution spectral analysis.

Zurich Instruments Synchronization bus

LabOne Programming Manual

Revision 31421 Zurich Instruments 351

http://www.zhinst.com

Index

A

API

Compatibility, 10

Levels, 10

Versions, 10
Asynchronous commands, 20

C

C API (see ziAPI)

C Programming Language (see ziAPI)
Comparison of LabOne APIs, 9

D

Data Server, 6
Device Settings Module, 37- 37

L

LabOne
APl overview, 9
Comparison of APIs, 9

LabVIEW, 113-121
Comparison to other interfaces, 9
Concepts, 116
Examples, finding, 118
Examples, running, 118
Finding examples, 118
Finding help, 117
Getting started, 116
Installing the API, 114

Linux, 114
Windows, 114

LabOne VI Palette, 116
Palette, LabOne, 116
Running examples, 118
Tips and tricks, 121
VI Palette, 116

M

Matlab, 42-69
Built-in help, 47
Command reference, 54
Comparison to other interfaces, 9
Contents of the API package, 46
Examples, running, 47
Getting started, 46
Help, accessing, 47
Installing the API, 43
List of Examples, 46
List of Utility functions, 46
Modules, 49
Modules, configuring, 49
Reference, 54
Requirements, 43

N

Running examples, 47

Tips and tricks, 50
Troubleshooting, 52

Verifying correct configuration, 45

Node

P

Concept, 12
Leaf, 12
Node hierarchy, 12

PLL Advisor Module, 38
Polling Data

Concept, 12

Python, 70- 112

S

Built-in help, 75
Command reference, 80
zhinst package, 80
zhinst's utility functions, 80
ziDAQRecorder class, 102
ziDAQServer class, 86
ziDAQSweeper class, 95
ziDAQZoomFFT class, 99
ziDeviceSettings class, 92
ziPidAdvisor class, 109
ziPlUAdvisor class, 106
Comparison to other interfaces, 9
Contents of the API package, 75
Examples, running, 75
Exploring the available examples, 76
Getting started, 75
Help, accessing, 75
Installing the API, 71
Linux, 73
Windows, 72
Loading data in Python, 79
Locating the zhinst installation, 77
Modules, 77
Modules, configuring, 77

Recommended python packages for ziPython, 71

Reference, 80

Requirements for using ziPython, 71
Running examples, 75

Tips and tricks, 79

Software Trigger Module, 32- 36
Sweeper Module, 21-29

Bandwidth control, 22
Measurement data, 22
Measurement data, averaging, 23
Scanning mode, 21

Settling time, 22

Settling time, definition, 22
Sweep parameter, 21

LabOne Programming Manual Revision 31421

Zurich Instruments

352

http://www.zhinst.com

Sweep range, 21
Synchronous commands, 20

U

UHF
Leaf, 16

Z

ZiAPI
Comparison to other interfaces, 9
ZiAPI, C API functions and data types
Action (see TreeChange)
action (see ZITreeChangeData)
AuxIn0 (see DemodSample)
auxIn0 (see ZIDemodSample)
AuxIn1 (see DemodSample)
auxin1 (see ZIDemodSample)
auxinSample (see ZIEvent)
binCount (see ZIPWAWave)
binPhase (see ZIPWASample)
Bits (see DIOSample)
bits (see ZIDIOSample)
blockMarker (see ZIScopeWave)
blockNumber (see ZIScopeWave)
BWLimit (see ScopeWave)
byteArray (see ZIEvent)
ByteArray (see ziEvent::Val)
byteArrayTS (see ZIEvent)
Bytes (see ByteArrayData)
bytes (see ZIByteArray) (see ZIByteArrayTS)
ChO (see AuxinSample)

doubleDataTS (see ZIEvent)

dt (see ScopeWave) (see ZIScopeWave)
flags (see ZIScopeWave)

Frequency (see DemodSample)
frequency (see ZIDemodSample)
ZIPWAWave)

harmonic (see ZIPWAWave)
inputSelect (see ZIPWAWave)

Integer (see ziEvent::Val)

integerData (see ZIEvent)
integerDataTS (see ZIEvent)

Len (see ByteArrayData)

length (see ZIByteArray) (see ZIByteArrayTS)
MAX_EVENT_SIZE, 238
MAX_PATH_LEN, 238

mode (see ZIPWAWave)

Name (see TreeChange)

name (see ZITreeChangeData)
oscSelect (see ZIPWAWave)

overflow (see ZIPWAWave)

path (see ZIEvent)

Path (see ziEvent)

Phase (see DemodSample)

phase (see ZIDemodSample)

pwaType (see ZIPWAWave)

pwaWave (see ZIEvent)

ReadMEMFile, 338

Reserved (see DemodSample) (see DIOSample)
reserved (see ZIDIOSample) (see ZIPWASample)
reservedQ (see ZIScopeWave)

reservedUInt (see ZIPWAWave)
SampleAuxIn (see ziEvent::Val)

(see

chO (see ZIAuxInSample) sampleCount (see ZIPWAWave) (see

Ch1 (see AuxInSample) ZIScopeWave)

ch1 (see ZIAuxInSample) SampleDemod (see ziEvent::Val)

channelBWLimit (see ZIScopeWave) SampleDIO (see ziEvent::Val)

channelEnable (see ZIScopeWave) sampleFormat (see ZIScopeWave)

channellnput (see ZIScopeWave) ScopeChannel (see ScopeWave)

channelMath (see ZIScopeWave) scopeWave (see ZIEvent)

channelScaling (see ZIScopeWave) scopeWaveOld (see ZIEvent)

commensurable (see ZIPWAWave) segmentNumber (see ZIScopeWave)

count (see ZIEvent) sequenceNumber (see ZIScopeWave)

Count (see ScopeWave) (see ziEvent) TimeStamp (see AuxInSample) (see

countBin (see ZIPWASample) DemodSample) (see DIOSample)

data (see ZIEvent) (see ZIPWAWave) (see timeStamp (see ZlAuxInSample) (see

ZIScopeWave) ZIByteArrayTS) (see ZIDemodSample) (see

Data (see ScopeWave) (see ziEvent) ZIDIOSample) (see ZlIDoubleDataTS) (see

dataFloat (see ZIScopeWave) ZlIntegerDataTS) (see ZIPWAWave) (see

datalnt16 (see ZIScopeWave) ZIScopeWave) (see ZITreeChangeData)

datalnt32 (see ZIScopeWave) totalSamples (see ZIScopeWave)

dataTransferMode (see ZIScopeWave) Tree (see ziEvent::Val)

demodSample (see ZIEvent) treeChangeData (see ZIEvent)

DIOBits (see DemodSample) treeChangeDataOld (see ZIEvent)

dioBits (see ZIDemodSample) TREE_ACTION, 290

dioSample (see ZIEvent) TREE_ACTION_ADD (see TREE_ACTION)

Double (see ziEvent::Val) TREE_ACTION_CHANGE (see TREE_ACTION)

doubleData (see ZIEvent) TREE_ACTION_REMOVE (see TREE_ACTION)
LabOne Programming Manual Revision 31421 Zurich Instruments 353

http://www.zhinst.com

trigger (see ZIDemodSample)
TriggerChannel (see ScopeWave)
triggerEnable (see ZIScopeWave)
triggerInput (see ZIScopeWave)
triggerTimeStamp (see ZIScopeWave)
Type (see ziEvent)

untyped (see ZIEvent)

Val (see ziEvent)

value (see ZIDoubleDataTS) (see ZIEvent) (see
ZlIntegerDataTS)

valueType (see ZIEvent)

Void (see ziEvent::Val)

Wave (see ziEvent::Val)

X (see DemodSample)

x (see ZIDemodSample) (see ZIPWASample)
Y (see DemodSample)

y (see ZIDemodSample) (see ZIPWASample)
ziAPIAllocateEvent, 339
ziAPIAllocateEventEx, 192, 331
ZiAPIAsyncSetByteArray, 172, 330
ZiAPIAsyncSetDoubleData, 170, 328
ziAPIAsyncSetintegerData, 171, 329
ziAPIConnect, 130, 293
ziAPIConnectDevice, 143, 303
ziAPIConnectEx, 133, 296
ziAPIDeallocateEvent, 340
ziAPIDeallocateEventEx, 193, 332
ziAPIDestroy, 129, 292
ziAPIDisconnect, 131, 294
ziAPIDisconnectDevice, 144, 304
ziAPIEchoDevice, 169, 327
ZiAPIGetAuxInSample, 155, 313
ziAPIGetConnectionAPILevel, 135, 298
ZiAPIGetDemodSample, 151, 309
ZiAPIGetDIOSample, 153, 311
ziAPIGetError, 200, 337
ziAPIGetRevision, 136, 299
ZiAPIGetValueAsPollData, 197, 336
ZiAPIGetValueAuxIn, 175, 344
ZiAPIGetValueB, 157, 315
ZiAPIGetValueD, 147, 305
ziAPIGetValueDIO, 174, 343
ZiAPIGetValuel, 149, 307
ZiAPIGetValueS, 173, 342

ZiAPIlInit, 128, 291
ZiAPIListimplementations, 132, 295
ziAPIListNodes, 140, 300
ZiAPIPollData, 198, 341
ziAPIPollDataEx, 196, 335
ZiAPISecondsTimeStamp, 345
ZiAPISetValueB, 163, 321
ZiAPISetValueD, 159, 317
ZiAPISetValuel, 161, 319
ziAPISubscribe, 194, 333
ZiAPISync, 168, 326
ZiAPISyncSetValueB, 167, 325
ZiAPISyncSetValueD, 165, 323

ziAPISyncSetValuel, 166, 324
ZiAPIUnSubscribe, 195, 334
ziAPIUpdateDevices, 142, 302
ZIAPIVersion_enum, 288

ZIConnection, 125, 238

ZlListNodes_enum, 139, 289

ZIResult_enum, 281

ZITreeAction_enum, 287

ZIValueType_enum, 285

ZI_API_VERSION_1 (see ZIAPIVersion_enum)
ZI_API_VERSION_4 (see ZIAPIVersion_enum)
ZI_COMMAND (see ZIResult_enum)
ZI_CONNECTION (see ZIResult_enum)
ZI_DATA_AUXINSAMPLE (see ZIValueType_enum)
ZI_DATA_BYTEARRAY (see ZIValueType_enum)
ZI_DATA_DEMODSAMPLE (see
ZIValueType_enum)

ZI_DATA_DIOSAMPLE (see ZIValueType_enum)
ZI_DATA_DOUBLE (see ZIValueType_enum)
ZI_DATA_INTEGER (see ZIValueType_enum)
ZI_DATA_NONE (see ZIValueType_enum)
ZI_DATA_SCOPEWAVE (see ZIValueType_enum)
ZI_DATA_TREE_CHANGED (see
ZIValueType_enum)

ZI_DUPLICATE (see ZIResult_enum)

ZI_ERROR (see ZIResult_enum)

ZI_ERROR_BASE (see ZIResult_enum)
ZI_ERROR_COMMAND (see ZIResult_enum)
ZI_ERROR_CONNECTION (see ZIResult_enum)
ZI_ERROR_DEVICE_CONNECTION_TIMEOUT (see
ZIResult_enum)
ZI_ERROR_DEVICE_DIFFERENT_INTERFACE (see
ZIResult_enum)

ZI_ERROR_DEVICE_INTERFACE (see
ZIResult_enum)

ZI_ERROR_DEVICE_IN_USE (see ZIResult_enum)
ZI_ERROR_DEVICE_NEEDS_FW_UPGRADE (see
ZIResult_enum)
ZI_ERROR_DEVICE_NOT_VISIBLE (see
ZIResult_enum)

ZI_ERROR_DUPLICATE (see ZIResult_enum)
ZI_ERROR_FILE (see ZIResult_enum)
ZI_ERROR_GENERAL (see ZIResult_enum)
ZI_ERROR_HOSTNAME (see ZIResult_enum)
ZI_ERROR_LENGTH (see ZIResult_enum)
ZI_ERROR_MALLOC (see ZIResult_enum)
ZI_ERROR_MAX (see ZIResult_enum)
ZI_ERROR_MUTEX_DESTROY (see
ZIResult_enum)

ZI_ERROR_MUTEX_INIT (see ZIResult_enum)
ZI_ERROR_MUTEX_LOCK (see ZIResult_enum)
ZI_ERROR_MUTEX_UNLOCK (see
ZIResult_enum)

ZI_ERROR_READONLY (see ZIResult_enum)
ZI_ERROR_SERVER_INTERNAL (see
ZIResult_enum)

LabOne Programming Manual

Revision 31421

Zurich Instruments 354

http://www.zhinst.com

ZI_ERROR_SOCKET_CONNECT
ZIResult_enum)
ZI_ERROR_SOCKET_INIT (see ZIResult_enum)
ZI_ERROR_THREAD_JOIN (see ZIResult_enum)
ZI_ERROR_THREAD_START (see ZIResult_enum)
ZI_ERROR_TIMEOUT (see ZIResult_enum)
ZI_ERROR_USB (see ZIResult_enum)
ZI_ERROR_ZIEVENT_DATATYPE_MISMATCH (see
ZIResult_enum)

ZI_FILE (see ZIResult_enum)

ZI_HOSTNAME (see ZIResult_enum)
ZI_INFO_BASE (see ZIResult_enum)
ZI_INFO_MAX (see ZIResult_enum)
ZI_INFO_SUCCESS (see ZIResult_enum)
ZI_LENGTH (see ZIResult_enum)
ZI_LIST_ABSOLUTE (see ZIListNodes_enum)
ZI_LIST_LEAFSONLY (see ZIListNodes_enum)

(see

ZI_LIST_NODES_ABSOLUTE (see
ZlListNodes_enum)
ZI_LIST_NODES_LEAFSONLY (see

ZlListNodes_enum)
ZI_LIST_NODES_NONE (see ZIListNodes_enum)

ZI_LIST_NODES_RECURSIVE (see
ZlListNodes_enum)
ZI_LIST_NODES_SETTINGSONLY (see

ZIListNodes_enum)

ZI_LIST_NONE (see ZIListNodes_enum)
ZI_LIST_RECURSIVE (see ZIListNodes_enum)
ZI_LIST_SETTINGSONLY (see ZIListNodes_enum)
ZI_MALLOC (see ZIResult_enum)
ZI_MAX_ERROR (see ZIResult_enum)
ZI_MAX_INFO (see ZIResult_enum)
ZI_MAX_WARNING (see ZIResult_enum)
ZI_MUTEX_DESTROY (see ZIResult_enum)
ZI_MUTEX_INIT (see ZIResult_enum)
ZI_MUTEX_LOCK (see ZIResult_enum)
ZI_MUTEX_UNLOCK (see ZIResult_enum)
ZI_NOTFOUND (see ZIResult_enum)
ZI_OVERFLOW (see ZIResult_enum)
ZI_READONLY (see ZIResult_enum)
ZI_SERVER_INTERNAL (see ZIResult_enum)
ZI_SOCKET_CONNECT (see ZIResult_enum)
ZI_SOCKET_INIT (see ZIResult_enum)
Z1_SUCCESS (see ZIResult_enum)
ZI_THREAD_JOIN (see ZIResult_enum)
ZI_THREAD_START (see ZIResult_enum)
ZI_TIMEOUT (see ZIResult_enum)
ZI_TREE_ACTION_ADD (see ZITreeAction_enum)
ZI_TREE_ACTION_CHANGE (see
ZlTreeAction_enum)
ZI_TREE_ACTION_REMOVE
ZlTreeAction_enum)
ZI_UNDERRUN (see ZIResult_enum)
Z1_USB (see ZIResult_enum)
ZI_VALUE_TYPE_AUXIN_SAMPLE
ZIValueType_enum)

(see

(see

ZI_VALUE_TYPE_BYTE_ARRAY
ZIValueType_enum)

(see

ZI_VALUE_TYPE_BYTE_ARRAY_TS (see
ZIValueType_enum)
ZI_VALUE_TYPE_DEMOD_SAMPLE (see
ZIValueType_enum)
ZI_VALUE_TYPE_DIO_SAMPLE (see
ZIValueType_enum)
ZI_VALUE_TYPE_DOUBLE_DATA (see
ZIValueType_enum)
ZI_VALUE_TYPE_DOUBLE_DATA_TS (see
ZIValueType_enum)
ZI_VALUE_TYPE_INTEGER_DATA (see
ZIValueType_enum)
ZI_VALUE_TYPE_INTEGER_DATA_TS (see

ZIValueType_enum)
ZI_VALUE_TYPE_NONE (see ZIValueType_enum)

ZI_VALUE_TYPE_PWA_WAVE (see
ZIValueType_enum)
ZI_VALUE_TYPE_SCOPE_WAVE (see
ZIValueType_enum)
ZI_VALUE_TYPE_SCOPE_WAVE_OLD (see
ZIValueType_enum)
ZI_VALUE_TYPE_TREE_CHANGE_DATA (see

ZIValueType_enum)
ZI_VALUE_TYPE_TREE_CHANGE_DATA_OLD (see
ZIValueType_enum)
ZI_WARNING (see ZIResult_enum)
ZI_WARNING_BASE (see ZIResult_enum)
ZI_WARNING_GENERAL (see ZIResult_enum)
ZI_WARNING_MAX (see ZIResult_enum)
ZI_WARNING_NOTFOUND (see ZIResult_enum)
ZI_WARNING_OVERFLOW (see ZIResult_enum)
ZI_WARNING_UNDERRUN (see ZIResult_enum)
ziCore
Tips and Tricks, 40-40
zoomFFT Module, 30- 31

LabOne Programming Manual Revision 31421

Zurich Instruments 355

http://www.zhinst.com

	LabOne Programming Manual
	Table of Contents
	Part I. LabOne Programming Concepts
	Chapter 1. Introduction
	1.1. LabOne Software Architecture
	1.1.1. LabOne Port and Hostname Selection

	1.2. Comparison of the LabOne Interfaces
	1.3. LabOne API Levels
	1.3.1. API Level 4 Features
	1.3.2. API Level 5 Features

	1.4. Finding settings: The Node Hierarchy
	1.5. Obtaining Data from the Instrument
	1.5.1. Demodulator Sample Data Structure

	1.6. Instrument-Specific Considerations
	1.6.1. UHF-Specific Considerations

	Chapter 2. ziCore Programming Overview
	2.1. An Introduction to ziCore-based APIs
	2.1.1. Software Architecture
	2.1.2. ziCore Modules
	2.1.3. ziCore Module Work-Flow
	2.1.4. Synchronous versus Asynchronous Commands

	2.2. Sweeper Module
	2.2.1. Configuring the Sweeper
	Specifying the Instrument Setting to Sweep
	Specifying the Range of Values for the Sweep Parameter
	Controlling the Scan mode: The Selection of Range Values
	Controlling how the Sweeper sets the Demodulator's Time Constant
	Specifying the Sweeper's Settling Time
	Specifying which Data to Measure
	Specifying how the Measurement Data is Averaged
	An Explanation of Settling and Averaging Times in a Frequency Sweep

	2.3. zoomFFT Module
	2.4. Software Trigger (Recorder) Module
	2.5. Device Settings Module
	2.6. PLL Advisor Module
	2.7. Tips and Tricks

	Part II. LabOne APIs
	Chapter 3. Matlab Programming
	3.1. Installing the LabOne Matlab API
	3.1.1. Requirements
	3.1.2. Windows or Linux
	3.1.3. Additional Configuration Required on Linux
	3.1.4. Verifying Successful Matlab Configuration

	3.2. Getting Started with the LabOne Matlab API
	3.2.1. Contents of the LabOne Matlab API
	3.2.2. Using the Built-in Documentation
	3.2.3. Running the Examples
	3.2.4. Using ziCore Modules in the LabOne Matlab API

	3.3. LabOne Matlab API Tips and Tricks
	3.4. Troubleshooting the LabOne Matlab API
	3.5. LabOne Matlab API (ziDAQ) Command Reference

	Chapter 4. Python Programming
	4.1. Installing the LabOne Python API
	4.1.1. Requirements
	4.1.2. Recommended Python Packages
	4.1.3. Windows Installation
	4.1.4. Linux Installation

	4.2. Getting Started with the LabOne Python API
	4.2.1. Contents of the LabOne Python API
	4.2.2. Using the Built-in Documentation
	4.2.3. Running the Examples
	Exploring which Examples are available
	Locating the zhinst Installation Folder and Examples

	4.2.4. Using ziCore Modules in the LabOne Python API

	4.3. LabOne Python API Tips and Tricks
	4.4. LabOne Python API (ziPython) Command Reference
	4.4.1. Help for the zhinst Python Package
	4.4.2. Help for zhinst's Utility Functions
	4.4.3. Help for ziPython's ziDAQServer class
	4.4.4. Help for ziPython's ziDeviceSettings class
	4.4.5. Help for ziPython's ziDAQSweeper class
	4.4.6. Help for ziPython's ziDAQZoomFFT class
	4.4.7. Help for ziPython's ziDAQRecorder class
	4.4.8. Help for ziPython's ziPllAdvisor class
	4.4.9. Help for ziPython's ziPidAdvisor class

	Chapter 5. LabVIEW Programming
	5.1. Installing the LabOne LabVIEW API
	5.1.1. Requirements
	5.1.2. Windows
	5.1.3. Linux
	5.1.4. Verifying your Installation

	5.2. Getting Started
	5.2.1. Locating the LabOne LabVIEW VI Palette
	5.2.2. LabOne LabVIEW Programming Concepts
	5.2.3. Finding help for the LabOne VIs from within LabVIEW
	5.2.4. Finding the LabOne LabVIEW API Examples
	5.2.5. Running the LabOne Example VIs
	Device Connection
	Running the VI and Block Diagram

	5.3. LabVIEW Programming Tips and Tricks

	Chapter 6. C Programming
	6.1. Getting Started
	6.1.1. Example

	6.2. Module Documentation
	6.2.1. Connecting to Data Server
	Typedefs
	Functions
	Detailed Description
	Function Documentation
	ziAPIInit
	ziAPIDestroy
	ziAPIConnect
	ziAPIDisconnect
	ziAPIListImplementations
	ziAPIConnectEx
	ziAPIGetConnectionAPILevel
	ziAPIGetRevision

	6.2.2. Tree
	Enumerations
	Functions
	Detailed Description
	Enumeration Type Documentation
	enum ZIListNodes_enum

	Function Documentation
	ziAPIListNodes
	ziAPIUpdateDevices
	ziAPIConnectDevice
	ziAPIDisconnectDevice

	6.2.3. Set and Get Parameters
	Functions
	Function Documentation
	ziAPIGetValueD
	ziAPIGetValueI
	ziAPIGetDemodSample
	ziAPIGetDIOSample
	ziAPIGetAuxInSample
	ziAPIGetValueB
	ziAPISetValueD
	ziAPISetValueI
	ziAPISetValueB
	ziAPISyncSetValueD
	ziAPISyncSetValueI
	ziAPISyncSetValueB
	ziAPISync
	ziAPIEchoDevice
	ziAPIAsyncSetDoubleData
	ziAPIAsyncSetIntegerData
	ziAPIAsyncSetByteArray
	ziAPIGetValueS
	ziAPIGetValueDIO
	ziAPIGetValueAuxIn

	6.2.4. Data Streaming
	Data Structures
	Functions
	Detailed Description
	Data Structure Documentation
	struct ZIEvent
	Data Fields
	Detailed Description

	struct ziEvent
	Data Structures
	Data Fields
	Detailed Description
	Data Structure Documentation
	union ziEvent::Val
	Data Fields

	Function Documentation
	ziAPIAllocateEventEx
	ziAPIDeallocateEventEx
	ziAPISubscribe
	ziAPIUnSubscribe
	ziAPIPollDataEx
	ziAPIGetValueAsPollData
	ziAPIPollData

	6.2.5. Error Handling
	Functions
	Function Documentation
	ziAPIGetError

	6.3. Data Structure Documentation
	6.3.1. struct AuxInSample
	Data Fields

	6.3.2. struct ByteArrayData
	Data Fields

	6.3.3. struct DemodSample
	Data Fields

	6.3.4. struct DIOSample
	Data Fields

	6.3.5. struct ScopeWave
	Data Fields

	6.3.6. struct TreeChange
	Data Fields

	6.3.7. union ziEvent::Val
	Data Fields

	6.3.8. struct ZIAuxInSample
	Data Fields

	6.3.9. struct ZIByteArray
	Data Fields

	6.3.10. struct ZIByteArrayTS
	Data Fields

	6.3.11. struct ZIDemodSample
	Data Fields

	6.3.12. struct ZIDIOSample
	Data Fields

	6.3.13. struct ZIDoubleDataTS
	Data Fields

	6.3.14. struct ziEvent
	Data Structures
	Data Fields
	Detailed Description
	Data Structure Documentation
	union ziEvent::Val
	Data Fields

	6.3.15. struct ZIEvent
	Data Fields
	Detailed Description

	6.3.16. struct ZIIntegerDataTS
	Data Fields

	6.3.17. struct ZIPWASample
	Data Fields

	6.3.18. struct ZIPWAWave
	Data Fields

	6.3.19. struct ZIScopeWave
	Data Fields

	6.3.20. struct ZITreeChangeData
	Data Fields

	6.4. File Documentation
	6.4.1. File ziAPI.h
	Data Structures
	Defines
	Typedefs
	Enumerations
	Functions
	Detailed Description
	Data Structure Documentation
	struct ZIDoubleDataTS
	Data Fields

	struct ZIIntegerDataTS
	Data Fields

	struct ZITreeChangeData
	Data Fields

	struct TreeChange
	Data Fields

	struct ZIDemodSample
	Data Fields

	struct ZIAuxInSample
	Data Fields

	struct ZIDIOSample
	Data Fields

	struct ZIByteArray
	Data Fields

	struct ZIByteArrayTS
	Data Fields

	struct ScopeWave
	Data Fields

	struct ZIScopeWave
	Data Fields

	struct ZIPWASample
	Data Fields

	struct ZIPWAWave
	Data Fields

	struct ZIEvent
	Data Fields
	Detailed Description

	struct DemodSample
	Data Fields

	struct AuxInSample
	Data Fields

	struct DIOSample
	Data Fields

	struct ByteArrayData
	Data Fields

	struct ziEvent
	Data Structures
	Data Fields
	Detailed Description
	Data Structure Documentation
	union ziEvent::Val
	Data Fields

	union ziEvent::Val
	Data Fields

	Enumeration Type Documentation
	enum ZIResult_enum
	enum ZIValueType_enum
	enum ZITreeAction_enum
	enum ZIAPIVersion_enum
	enum ZIListNodes_enum
	enum TREE_ACTION

	Function Documentation
	ziAPIInit
	ziAPIDestroy
	ziAPIConnect
	ziAPIDisconnect
	ziAPIListImplementations
	ziAPIConnectEx
	ziAPIGetConnectionAPILevel
	ziAPIGetRevision
	ziAPIListNodes
	ziAPIUpdateDevices
	ziAPIConnectDevice
	ziAPIDisconnectDevice
	ziAPIGetValueD
	ziAPIGetValueI
	ziAPIGetDemodSample
	ziAPIGetDIOSample
	ziAPIGetAuxInSample
	ziAPIGetValueB
	ziAPISetValueD
	ziAPISetValueI
	ziAPISetValueB
	ziAPISyncSetValueD
	ziAPISyncSetValueI
	ziAPISyncSetValueB
	ziAPISync
	ziAPIEchoDevice
	ziAPIAsyncSetDoubleData
	ziAPIAsyncSetIntegerData
	ziAPIAsyncSetByteArray
	ziAPIAllocateEventEx
	ziAPIDeallocateEventEx
	ziAPISubscribe
	ziAPIUnSubscribe
	ziAPIPollDataEx
	ziAPIGetValueAsPollData
	ziAPIGetError
	ReadMEMFile
	ziAPIAllocateEvent
	ziAPIDeallocateEvent
	ziAPIPollData
	ziAPIGetValueS
	ziAPIGetValueDIO
	ziAPIGetValueAuxIn
	ziAPISecondsTimeStamp

	Glossary
	Index

