
CMU-ITC-85-037

LW P User Manual

24 June 85 13:12

Jonathan Rosenberg
(Larry Raper)

Information Technology Center
Carnegie-Mellon University

Schenley Park
Pittsburgh, PA 15213

Table of Contents
Preface 1

1. The LWP Package 3

1.1. Key Design Choices 5
1.2. A Simple Example 5
1.3. Constants and Data Structures 6
1.4. LWP Runtime Calls 8

2. The Lock Package 19

2.1. Key Design Choices 19
2.2. A Simple Example 20
2.3. Constants, Macros and Data Structures 21
2.4. Lock Calls 23

3. The IOMGR Package 29

3.1. Key Design Choices 29
3.2. A Simple Example 29
3.3. IOMGR Calls 30

4. The Timer Package 33

5, A Simple Example 35
5.1. Timer Calls 36

Appendix I, Summary of LWP-Related Calls 43

Appendix II, Usage Notes for the ITC SUN Systems 45
I1.1. LWP 45
11.2.Lock 45
11.3.IOMGR 45

11.4.Timer 45

Preface

This document describes several packages of programs that have been designed for use by the VICE

group. The packages are all based on the LWP package, which is a suite of lightweight process

functions usable from a C program. The LWP package is described first, followed by sections for
each of the additional utilities.

1. The LWP Package
The LWP package implements primitive functions providing basic facilities that enable procedures

written in C, to proceed in an unsynchronized fashion. These separate threads of control may

effectively progress in parallel, and more or less independently of each other. This facility is meant to

be general purpose with a heavy emphasis on simplicity. Interprocess communication facilities can

be built on top of this basic mechanism, and, in fact, many different IPC mechanisms could be

implemented. The functions described here currently are available on the SUN Microsystems

Workstation under Unix 4.2.1

In order to set up the environment needed by the lightweight process support, a one-time invocation

of the LWP_lnitializeProcessSupport function must precede the use of the facilities described

here. The initialization function carves an initial process out of the currently executing C procedure.

The process id of this initial process is returned as the result of the LWP InitializeProcessSupport

function. For symmetry a LWP__TerminateProcessSupport function may be used explicitly to

release any storage allocated by its initial counterpart. If used, it must be issued from the process

created by the LW P InitiatizeP rocessSupport function.

Upon completion of any of the lightweight process functions, an integer value is returned to indicate

whether any error conditions were encountered.

A global variable Iwp_debug can be set to activate or deactivate debugging messages tracing the

flow of control within the LWP routines. To activate debugging messages, set Iwp debug to a

non-zero value. To deactivate, reset it to zero. All debugging output from the LWP routines is sent to

stdout.

Macros, typedefs, and manifest constants for error codes needed by the lightweight process

mechanism reside in the file I itcl itcl nfsl Include/Iwp.h. A process is identified by an object of

type PROCESS, which is defined in the include file.

The process model supported by the operations described here is based on a non-preemptive priority

dispatching scheme. (A priority is an integer in the range [0..LW P_MAX_PRIORITY], where 0 is the

lowest priority.) Once a given lightweight process is selected and dispatched, it remains in control

until it voluntarily relinquishes its claim on the CPU. Relinquishment may be either explicit

(LWP_DispatchProcess) or implicit (through the use of certain other LWP operations). In general,

1The LWP package was originally developed by Larry Raper for use in implementing the SNA network protocol on the Sun.

4

all LWP operations that may cause a higher priority process to become ready for dispatching,

preempt the process requesting the service. When this occurs, the priority dispatching mechanism

takes over and dispatches the highest priority process automatically. Services in this category (where

the scheduler is guaranteed to be invoked in the absence of errors) are

LWP CreateProcess

LWP WaitProcess

LWP MwaitProcess

LW P_Sig nalProcess

LWP_Dispatch Process

LW P_Destroy Process

The following services are guaranteed not to cause preemption (and so may be issued with no fear of

losing control to another lightweight process):

LWPInitializeProcessSupport

LWP NoYieldSignal

LWP CurrentProcess

LW P ActiveProcess

t.1. Key Design Choices

Thepackageshouldbesmallandfast;

All processes are assumed to be trustworthy - processes are not protected from each

other's actions;

There is no time slicing or preemption -- the processor must be yielded explicitly.

1.2.A Simple Example

Include "/itc/itc/nfs/Include/Iwp.h*

static read process(id)
Int * id;

{
LWP DispatchProcess(); /* Just relinquish control for now */

for (;;) {
/ * Wait until there Is something in the queue *1

while (empty(q)) LWP WaitProcess(q);

/* Process queue entry*/

LW P_Dispatch Process();
}

}

static write processO
{

,.o

/* Loop & write data to queue */

1or (mesg = messages; * mesg! =0; mesg + +) {
insert(q, * mesg);

LW P_Sig nal Process(q);

}
}

main(argc, argv)

int argc; char * * argv;

{
PROCESS * id;

LW P InitializeP rocessSu pport (0, &id);
/* Now create readers */

for (i =0; i <nreaders; t+ +)

LWP .CreateProcess(read_process, STACK_SIZE, 0, i, *Reader', &readers[i]);

LWP CreateProcess(wnte_process, STACK SIZE, 1,0, "Writer', &writer);
/ * Wait for processes to terminate * /

LW P Wait Process(&done);

for (i =nreaders-1; i >=0; i-) LWP DestroyProcess(readers[i]);
}

Editorial Note:

These definitions are found in the C header file "/itc/itc/nfs/include/Iwp.h'. Those header files are

the authoritative source of these definitions, and will be more up-to-date than this manual.

1.3.Constants and Data Structures

t •

* Information Technology Center *

• Carnegie-Mellon University •
e •

• (c) Copyright IBM Corporation, 1985 *

define LWP SUCCESS 0
define LWP EBADPID -1

define LWP EBLOCKED -2
define LWP EINIT -3

define LWP EMAXPROC -4

define LWP ENOBLOCK -5
defineLWP ENOMEM -6
defineLWP ENOPROCESS -7

defineLWP ENOWAIT -8
define LWP EBADCOUNT -9

define LWP EBADEVENT -10

define LWP EBADPRI -11
define LWP NO STACK -12

I* Maximum priority permissible (minimum is always 0) */
define LWP MAX PRIORITY 1

I * Maximum # events that process may wait on at any time * I
define LWP MAX EVENTS 20

typedef struct lwp pcb * PROCESS;

struct Iwp context { /* saved context for dispatcher*/

char*topstack; /* ptrtotopofprocessstack*/
};

struct Iwp pcb { /* process control b_ock * I
char name[32]; I t ASCII name*/
int rc; /* most recent return code e/

char status; / * status flags */
char *eventlist[LWP MAX EVENTS]; /* ptrto arrayof eventids*/

int eventcnt; / * no. of events in eventlist array*/

in, wakevent; / * index of eventid causing wakeup */
in* waitcnt; I * rain number of events awaited • /

char blockflag; / * if (blockfiag), process blocked */

int priority, /* dispatching priority*/
PROCESS misc; / * for LWP internal use only *1

char *stack; I* ptr to process stack */
int stacksize; / * size of stack *1

int (*ep)(); /* initial entry point */

char * parm; I* initial parm for process */
struct Iwp context

context; I* saved context for next dispatch */

PROCESS next, prev; / * ptrs to next and previous pcb *1
};

ffndef LWP KERNEL
define LWP ActiveProcess (Iwp cpptr+0)

define LWP SignaIProcess[event) LWP INTERNALSIGNAL{event, 1)

define LWP NoYieldSignal(event) LWP INTERNALSIGNAL(event, 0)

extern

endif

PROCESS Iwp cpptr;, /* pointer to current process pcb */

struct Iwp ctl { /* LWP control structure*/
int processcnt; /* number of lightweight processes *1

char * outersp; / * outermost stack pointer */

PROCESS outerpid; I* process carved bylnitialize*/
PROCESS first, last; I* ptrs to ftrst and last pcbs */

char dsptchstack[800]; / * stack for dispatcher use only*/

};

ifndefLWP KERNEL
extern

endif

char Iwp debug; /* ON = show LWP debugging trace*/

8

1.4.LWP Runtime Calls

LWP InitializeProcessSupport

Initialize LWP support & start initial process

Call:
int LWP._lnitializeProcessSupport(in int priority, out PROCESS*pid)

Parameters:

priority Priority at which initial process is to run.

pid The process Id of the initial process will be returned in this parameter.

Completion Codes:

LWPSUCCESS At=wentwell

LWP E/NIT This routine has already been called.

LWPEBADPRI Illegal priority specified (<) ortoo large)

Initializes the LWP package. In addition, this routine turns the current thread of control into the initial
processwiththe specified priority. The processid of this initial processwillbe returned in parameter
pid. This routine mustbe called to ensure proper initializationof the LWP routines. This routine will
not cause the schedulerto be invoked.

LW P_Termin ateProcessSupport

Terminate process support and clean up

Call:

int LWP._TerminateProcessSupport()

Parameters:

None

Completion Codes:

None

This routine will terminate the LWP process support and clean up by freeing any auxiliary storage
used. This routine must be called from within the procedure and process that invoked

LWP InitializeProcessSupport. After LWP TerminateProcessSupport has been called,
LWP InitializeProcessSupport may be called again to resume LWP process support.

10

LWP CreateProcess

Create and start a light-weight process

Call:

int LWP_CreateProcess(in int (* ep)O, in int stacksize, in int priority,
in char *parm, in char *name. out PROCESS *pid)

Parameters:

ep This is the address of the code that is to execute the function of this process.

This parameter should be the address of a C routine with a single parameter.

stacksize This is the size (in bytes) to make the stack for the newly-created process.

The stack cannot be shrunk or expanded, it is fixed for the life of the process.

priority This is the priority to assign to the new process.

parm This is the single argument that will be passed to the new process. Note that

this argument is a pointer and, in general will be used to pass the address of a

structure containing further "parameters'.

name This is an ASCII string that will be used for debugging purposes to identify the

process. The name may be a maximum of 32 characters.

pid The process id of the new process will be returned in this parameter

Completion Codes:

LWP SUCCESS processcreatedsuccessfully

LWPENOMEM Not enough free space to create process

LWP EBADPRI Illegal priority specified (<0 or too large)

LWP_EINIT LWP lnitializeProcessSupport has not been called

This routine is used to create and mark as runnable a new light-weight process. This routine will
cause the scheduler to be called. Note that the new process will begin execution before this call
returns only if the priority of the new process is greater than the creating process.

11

LW P_Destroy Process

Destroy a light-weight process

Call:

int LWP_DestroyProcess(in PROCESS *pid)

Parameters:

pid Theprocessid ofthe processtobedestroyed

Completion Codes:

LWPSUCCESS Processdestroyedsuccessfully

LWP_EINIT LWP Initia2izeProcessSupporthasnotbeencalled

This routine will destroy the specified process. The specified process will be terminated immediately
and its internal storage will be freed. A process is allowed to destroy itself (of course, it will only get to

see the return code if the destroy fails). Note a process may also destroy itself by executing a return
from the C routine. This routine calls the scheduler.

12

LWP WaitProcess

Wait for event

Call:

int LWP._WaitProcess(in char "event)

Parameters:

event Ttle event to wait for. This can be any memo_ address, BUt,0 is an illegal
event.

Completion Codes:

LWP_SUCCESS The event has occured

LWP._EINIT LWP InitializeProcessSupporthas not been called

LWPEBADEVENT The specified event wasillegal (0)

This routine will put the calling process to sleep until another process does a call of

LWP_SignalProcess or LWP NoYieldSignal with the specified event. Note that signals of events are

not queued: if a signal occurs and no process is woken up, the signal is lost. This routine invokes the
scheduler.

13

LWP MwaitProcess

Wait for a specified number of a group of signals

Call:

int LWP_MwaitProcess(in int wcount, in char" evlist[])

Parameters:

wcount Is the number of eventsthat must be signaledto wake up this process

evlist This a null-terminatedlist of events (remember that 0 Jsnot a legal event).

There maybe at mostLWP MAX EVENTSevents.

Completion Codes:

LWPSUCCESS The specifiednumberof appropriatesignalshas occurred

LWP EBADCOUNT

There are too few events (0), or too many events (more than

LWP MAX_EVENTS),or wcount >the numberof events inevlist

LWP_E/NIT LWP InltializePmcessSupporthas not been called

This routine allows a process to wait for wcount signals of any or the signals in evlist. Any number of

signals of a particular event is only counted once. The scheduler will be invoked.

14

LWP SignalProcess

Signal an event

Call:

int LWP SignalProcess(in char * event)

Parameters:

event The event to be signaled. An event is any memory address except 0

Completion Codes:

LWPSUCCESS The signal was a success (a process was waiting for it)

LWP_EBADEVENT The specified event was illegal (0)

LWPE/NIT LWP_lnitializeProcessSupport was not called

LWP_ENOWA/T No process was waiting for this signa!

This routine causes event to be signaled. This will mark all processes waiting for only this event as
runnable. The scheduler will be invoked. Signals are not queued: if no process is waiting for this
event, the signal will be lost and LWP ENOWAIT will be returned.

15

LW P_NoYieldSignai

Signal an event, but don't yield

Call:

int LWP_No YieldSignal(in char "event)

Parameters:

event Theeventto besJgnalecl.Aneventisanymemoryaddressexcept0

Completion Codes:

LWP SUCCESS Thesignalwasa success(aprocesswaswaitingtorit)

LWP_.EBADEVENT Thespecifiedeventwasillegal(0)

LWPEINIT LWP tnitializeProcessSupportwasnotcalled

LWP__ENOWAIT Noprocesswaswaitingforthis signal

This routine causes event to be signaled. This will mark all processes waiting for only this event as
runnable. This call is identical toLWP SignalProcess except that the scheduler will not be invoked
-- control will remain with the signalling process. Signals are not queued: if no process is waiting for
this event, the signal will be lost and LWP_ENOWAIT will be returned.

16

LWP DispatchProcess

Yield to the scheduler

Call:

int LWP DispatchProcess()

Parameters:

None

Completion Codes:

LWP SUCCESS All wentwell

LWP_.EINIT LWP InitializeProcessSupporthasnotbeencalled

This routine is a voluntary yield to the LWP scheduler,

17

LW P_CurrentProcess

Get the current process id

Call:

int LWP_CurrentProcess(out PROCESS *pid)

Parameters:

pid The current processid will be returned in this parameter

Completion Codes:

LWP SUCCESS The current process id has been returned

LWP_EINIT LWP InitializeProcessSupporthas not been called

This routine will place the current process id in the parameter pid,

18

LW P ActiveProcess

Yield current process id

Call:

PROCESS LWP._AcfiveProcess()

Parameters:

None

Completion Codes:

None

This is a macro that yields the current process id. If LWP InitializeProcessSupport has not been
called, the invocation yields O. It exists because people may find it more convenient than
LWP CurrentProcess.

19

2. The Lock Package
The lock package contains a number of routines and macros that allow C programs that utilize the

LWP abstraction to place read and write locks on data structures shared by several light-weight

processes. Like the LWP package, the lock package was written with simplicity in mind - there is no

protection inherent in the model.

In order to use the locking mechanism for an object, an object of type struct Lock must be

associated with the object. After being initialized, with a call to Locklnit, the lock is used in

invocations of the macros ObtainReadLock, ObtainWriteLock, ReleaseReadLock and

ReleaseW riteLock.

The semantics of a lock is such that any number of readers may hold a lock. But only a single writer

(and no readers) may hold the clock at any time. The lock package guarantees fairness: each reader

and writer will eventually have a chance to obtain a given lock. However, this fairness is only

guaranteed if the priorities of the competing processes are identical. Note that no ordering is

guaranteed by the package.

In addition, it is illegal for a process to request a particular lock more than once, without first releasing

it. Failure to obey this restriction may cause deadlock.

2.1. Key Design Choices

The package must be simple and fas_3:in the case that a lock can be obtained
immediately, it should require a minimum of instructions;

All the processes using a lock are trustworthy;

The lock routines ignore priorities;

2O

2.2.A Simple Example

include'lock,h"

struct Vnode {
,..

struct Lock lock; /* Used to Iockthis vnode*/
..,

};

define READ 0
clefineWRITE 1

struct Vnode*get vnocle(name, how)
char * name;

int how;

{
struct Vnode * v;,

v --- lookup(name);

if(how == READ)
Obtain Read Lock(&v- >lock);

else

ObtainWriteLock(&v- >lock);

}

21

Editorial Note:

Thesedefinitionsarefoundin theCheaderfile "/itc/itc/nfs/include/Iock.h'. Thoseheaderfilesare

the authoritative source of these definitions, and will be more up-to-date than this manual.

2.3. Constants, Macros and Data Structures

• Information Technology Center •

• Carnegie-Mellon University *

• (c) Copyright IBM Corporation, 1985 *
• t

/*

Include file for using Vice locking routines.
*/

struct Lock {

int readers waiting; /* # readers waiting */

Int readers reading; I* # readers actually with read locks*/
lnt writers waiting; /* # writers waiting */
unsigned char write locked; / • i =0 if a writer has it locked */

};

define READ LOCK 1
defineWRITE LOCK 2

define ObtainReadLock(Iock)\

if(f(Iock)-:_write locked && !(Iock)-:wnters waiting)\
(lock) ->readers reading + +;\

else\

Lock Obtain(lock, READ LOCK)

define ObtainWriteLock(Iock)\

if (!(Iock)-:_wnte locked && l(Iock)-:l'eaders reading)\
(lock)- >write locked++;\

else\

Lock Obtain(lock, WRITE LOCK)

define ReleaseReadLock(Iock)\
(i-(Iock)-_'eaders reading && (Iock)-:_,'nters waiting ?\

LWP SignalProcess(&(Iock)-:writers waiting) :\
0)

define ReleaseWriteLock(Iock)\

((lock)- _write locked-,\

(Iock)-_'eaders waiting ? LWP SignalProcess(&(Iock)-_,eaders waiting) :0,\

I(Iock)-:_,_aders reading && (Iock)-:wnters waiting ?\
LWP SignalProcess(&(Iock)-:_vnters waiting) :\
0)

define CheckLock(Iock)\

22

(-((int)(Iock)-:_wnte locked) + (Iock)-::_aders reading)
/ * I changed above from:

(-(Iock)-:_wnte locked +(Iock)-_eaders reading)
because write locked wash1 being sign extended.
The following code was generated:

movl a6L_ (C),a5

movb aS@ (20),dO
negb dO

andl # Oxff,dO
addl aS_ (18),d0

moveq # OxO,dl

cmpl # OxO,dO
scs dl

negb dl

movl dl,a6@ (FFFFFFFC)
(Bob)

*/

23

2.4. Lock Calls

Locklnit

Initialize a lock

Call:

Locklnit(out struct Lock ° lock)

Parameters:

lock The(addressofthe)lockto beinitialized

Completion Codes:

None

This routine must be called to initialize a lock before it is used.

24

ObtainReadLock

Obtain a read lock

Call:
ObtainReadLock(in out struct Lock "lock)

Parameters:

lock Tl_elockto berP_,ad-locked

Completion Codes:

None

A read lock will be obtained on the specified lock. Note that this is a macro and not a routine. Thus,
results are not guaranteed if the lock argument is a side-effect producing expression.

25

ObtainWriteLock

Obtain a write lock

Call:
ObtainWnteLock(in out struct Lock "lock)

Parameters:

lock Thelockto bewrite-locked

Completion Codes:

None

A write lock will be obtained on the specified lock. Note that this is a macro and not a routine. Thus,
results are not guaranteed if the lock argument is a side-effect producing expression.

26

ReleaseReadLock

Release a read lock

Call:

ReleaseReadLock(in out struct Lock "lock)

Parameters:

lock The lock to be released

Completion Codes:

None

The specified lock will be released. This macro requires that the lock must have been previously
read-locked. Note that this is a macro and not a routine. Thus, results are not guaranteed if the lock
argument is a side-effect producing expression.

27

ReleaseW riteLock

Release a write lock

Call:
ReleaseWr_teLock(In out struct Lock "lock)

Parameters:

lock Thelocktobe released

Completion Codes:

None

The specified lock will be released. This macro requires that the lock must have been previously
write-locked. Note that this is a macro and not a routine. Thus, results are not guaranteed if the lock
argument is a side-effect producing expression.

28

CheckLock

Check status of a lock

Call:

int CheckLock(in struct Lock "lock)

Parameters:

lock The lock to be checked

Completion Codes:

None

This macro yields an integer that specifies the status of the indicated lock. The value will be -1 if the
lock is write-locked, 0 if unlocked, or a positive integer that indicates the numer of readers with read
locks. Note that this is a macro and not a routine. Thus, results are not guaranteed if the lock
argument is a side-effect producing expression.

29

3. The IOMGR Package
The IOMGR package contains 3 routinesthat aid in performingUnix selects within the LWP

paradigm. After initializing the package, light-weight processes may make calls to IOMGR_Select,

which has parameters identical to the Unix select. IOMGR_Select, however, puts the calling process

to sleep until such time as no user processes are active. At this time the IOMGR process, which runs

at the lowest priority, wakes up and coalesces all of the select requests together. It then performs a

single select and wakes up all processes affected by the result.

3.1. Key Design Choices

The meanings of the parameters, both before and after the call, should be identical to

those of the Unix select;

A blocking select should only be done if no other processes are runnable.

3.2.A Simple Example

void rpc2 SocketLJstener 0
{

Int ReadfclMask, WritefdMask, ExceptfdMask, rc;

struct timeval *tvp;

while(TRUE) {

ExceptfdMask = ReadfdMask ----(1 <<rpc2 RequestSocket);
WntefdMask = 0;

rc = IOMGR Select(8*sizeof(int), &ReadfdMask, &WritefdMask, &ExceptfdMask, tvp);

switc h(rc) {
case0: /*timeout*/

continue; / * main while loop* /

case-1: /* error*/

SystemError(" IOMGR Select');

ex_(-1);

case 1: /* packet on rpc2 RequestSocket */

•.. process packet...
break;

clefault: /* should neveroccur*/

}
}

}

3O

3.3. IOMGR Calls

IOMGR Initialize

Initialize the IOMGR package

Call:

int IOMGR_lnitialize()

Parameters:

None

Completion Codes:

LWP SUCCESS AWlwentwe_l

L WP__ENOMEM Not enough free space to create the IOMGR process

LWPEINIT LWP InitializeProcessSupport has not been called

-1 Something went wrong with the TIMER package

This call will initialize the IOMGR package. Its main task is to create the IOMGR process, which runs
at priority O, the lowest priority. The remainder of the processes must be running at priority 1 or
greater for the IOMGR package to function correctly.

31

IOMGR Finalize

Finalize the IOMGR package

Call:

int IOMGR_Finalize()

Parameters:

None

Completion Codes:

LWP_SUCCESS Packagefinalizedokay

LWPEINIT LWP InitializeProcessSupporthasnot beencalled

This call cleans up when the IOMGR package is no longer needed. It releases all storage and
destroys the IOMGR process.

32

IOMGR Select

Perform an LWP select operation

Call:

int IOMGR_Select(in int fds. in out int * readfds, in out ° writefds,
in out "exceptfds, in struct timeval *timeout)

Parameters:

fds MaxJmum number of bits to consider in masks

readfds Mask of file descriptors that process wants notification of when ready to be

read

writefds Mask of file descriptors that process wants notification of when ready to be

written

exceptfds Mask of file descriptors that process wants notification of when exceptional

condition occurs

timeout Timeout for use on this select

Completion Codes:

None

This function performs an LWP version of Unix select. The parameters have the same meanings as
the Unix call. However, the return value will only be -1 (an error occured), 0 (a timeout occured), or 1
(some number of file descriptors are ready). If this is a polling select, it is done and IOMGR_Select
returns to the user with the results. Otherwise, the calling process is put to sleep. If at some point,
the IOMGR process is the only runnable process, it will awaken and collect all select requests. It will
then perform a single select and awaken those processes the appropriate processes - this will cause
return from the affected IOMGR_selects.

33

4. The Timer Package
The timer package contains a number of routines that assist in manipulating lists of objects of type

struct TM_Elem. TM_Elerns (timers) are assigned a timeout value by the user and inserted in a

package-maintained list. The time remaining to timeout for each timer is kept up to date by the

package under user control. There are routines to remove a timer from its list, to return an expired

timer from a list and to return the next timer to expire. This specialized package is currently used by

the IOMGR package and by the implementation of RPC2.

A timer is used commonly by inserting a field of type struct TM_Elem into a structure. After inserting

the desired timeout value the structure is inserted into a list, by means of its timer field.

34

5.A Simple Example

static struct TM_Elem * requests;

o,,

TM Init(&requests); / ° Initialize timer list */
...

for(;;){
TM_Rescan(requests); / * Update the timers *1

expired -----TM_GetExpired(requests);
it (expired = = 0) break;
•.. process expired element...

}

36

5.1. Timer Calls

TM Init

Initialize a timer list

Call:
int TM_lnit(out struct TM_E/em "" list)

Parameters:

list The list to be initialized

Completion Codes:

0 ok

-1 not enough free storage

The specified list will be initializedsothat it is an empty timer list. This routine mustbe called before
anyother operationsare appliedto the list.

37

TM_Final

Finalize a tim er list

Call:

in t TM_Final(in out struc t TM_Elem * °/ist)

Parameters:

list The listto befinalized

Completion Codes:

0 ok

-1 *listwas0 orlistwasneverinitialized

Call this routine when you are finished with a timer list and the list is empty. This routine releases any
auxiliary storage associated with the list.

38

TM_lnsert

Initialize a timer element and insert it into a timer list

Call:

void TM_lnsert(in struct TM_Elem * list, in out struct TM_Elem ° elem)

Parameters:

list The list into which the element is to be inserted

elem The e_ement to be initialized and inserted

Completion Codes:

None

The element elem is initialized so that the TimeLeft field is equal to the TotalTime field. (The TimeLeft
field may be kept current by use of TM_Rescan.) The element is then inserted into the list.

39

TM Rescan

Update TimeLeft fields of entries on a tim er list and look for expired elements

Call:

int TM Rescan(in out struct TM_Elem *list)

Parameters:

list The list to be updated

Completion Codes:

None

This routine will update the TimeLeft fields of all timers on list. (This is done by checking the time of
day clock in Unix.) This routine returns a count of the number of expired timers on the list. This is the
only routine (besides TM_lnit that updates the TimeLeft field.

4O

TM_GetExpired

Return an expired timer from a list

Call:

struc t TM_Elem "TM_G etExpired(in struct TM_Elem * list)

Parameters:

list The list to be searched

Completion Codes:

None

The specified list will be searched and a pointer to an expired timer will be returned. 0 is returned if
there are no expired timers. An expired timer is one whose TimeLeft field is less than or equal to O.

41

TM GetEarliest

Return the earliest timer on a list

Call:

struct TM_Elem * TM_G etEartiest(in struct TM_Elem * list)

Parameters:

list The list to be searched

Completion Codes:

None

This routine returns a pointer to the timer that will be next to expire - that with a smallest TimeLeft
field. If there are no timers on the list, 0 is returned.

42

TM_eql

See if 2 timevals are equal

Call:

unsigned char TM_eql(in struct timeval * tl, in struct timeval * t2)

Parameters:

tl atimeval

t2 Anothertimeval

Completion Codes:

None

This routine returns 0 if and only if tl and t2 are not equal.

43

Appendix I

Summary of LWP-Related Calls
Note: The numbers in square brackets indicate the page on which the call is described.

[8l
L WP_lnitializeProcessSupport(in int priority, out PROCESS *pid)

[9]
LWP Terrain atePro cessS upp ortO

[lo]
LWP CreateProcess(i. int (* ep)O, in int stacksize, in int priority,
in char *parm, in char * name, out PROCESS *pid)

[11]
LWP_DestroyProcess(in PROCESS " pid)

[12]
LWP WaitProcess(in char ° event)

[13l
LWP_MwaitProcess(in int wcount, in char" evlist[])

[14]
LWP SignalProcess(in char * event)

[15]
LWP_NoYieldSignal(in char" event)

[161
LWP DispatchProcessO

[17]
L WP_CurrentProc ess(out PROCESS *pid)

[18]
LWP ActiveProcessO

[23]
Lock/nit(out struct Lock * lock)

[24]
ObtainReadLock(in out struct Lock ° lock)

[25]
ObtainWr_teLock(in out struct Lock * lock)

[26]
ReleaseReadLock(in out struct Lock * lock)

[27]
ReleaseWriteLock(in out struct Lock * lock)

[28]

CheckLock(in struct Lock * lock)

[30]

44

IOMGR_lnitializeO

[31]
IOMGR_FinalizeO

[32]
IOMGR_Select(in int fds, in out int * readfds, in out * wrftefds,
in out * exceptfds, in struct timeval * timeout)

[36]
TM Init(out struct TM_Elem * * list)

[37]
TM Final(in out struct TM_Elem * *list)

[38]
TM Insert(ln struct TM_Elem * list, in out struct TM_Elem * elem)

[39]
TM Rescan(in out struct TM_Elem °list)

[40]
TM GetExpired(in struc t TM_Elem * list)

[41}
TM GetEarliest(in struct TM_Elem "list)

[42]
TM eql(in struct timeval * tl , in struct timeval * t2)

45

Appendix II
Usage Notes for the ITC SUN Systems

I1.1. LW P

In order to use the LWP package it is necessary to include the file / itcl itcl nfsl include/Iwp.h in

your C source programs. This file contains the definitions of a process id (PROCESS), the error

return codes and several auxiliary definitions.

The simplest way to link in the LWP objects is by including the library I itc/itc/nfsl lib/Iwp.o

during link editing.

It is also possible to configure your system in such a way that the LWP package will check for stack

overflows during the execution of each process. In order to do this all routines that you desire stack

checking for must be compiled with the -p option to cc. (Note that this means that profiling can not

be performed when stack checking is in effect.) In addition, your system must be linked by using Id

directly as follows:

ld-X/itc/itc/nfs/lib/start.o {your objects} /itc/itc/nfs/lib/lwp. o ...

11.2. Lock

In order to use the lock package it is necessary to include the file I itc/itcl nfsl include/lock,h in

your C source programs.

During link editing the library/itcl itcl nfs/lib/Iwp.o must be included.

11.3.1OMGR

During link editing the library ! itcl itcl nfs/lib/iomgr.o must be included.

11.4. Timer

In order to use the Timer package it is necessary to include the file I itc/itcl nfs/include/timer.h

in your C source programs.

During link editing the library ! itc/itc/nfs/ lib/timer.o must be included.

