
XLOGO User Manual

Author: Le Coq Löıc

Translated by:

Walker Guy

Donnelly Kevin

Roch Etienne

April 19, 2007

Contents

1 Interface features: 3

1.1 The main window . 3
1.2 The procedure editor . 4

2 Menu options: 5

2.1 “File” Menu . 5
2.2 “Edit” Menu . 5
2.3 “Options” Menu . 5
2.4 “Help” Menu . 6

3 Conventions adopted by XLOGO 8

3.1 Commands and their interpretation . 8
3.2 Procedures . 8
3.3 Specific character \ . 9
3.4 Case-sensitivity . 9
3.5 Operators and syntax . 10
3.6 A word on colors . 11

4 List of primitives 12

4.1 Movement of the turtle; pen and colour settings . 12
4.2 Writing in the text area with the primitive print or write 15
4.3 Arithmetical and logical operations . 17
4.4 Operations on lists . 19
4.5 Booleans . 21
4.6 Testing an expression with the primitive if . 22
4.7 Dealing with procedures and variables . 22

4.7.1 Procedures . 22
4.7.2 Concept of variables . 23
4.7.3 Primitive ’trace’ . 23
4.7.4 Other primitives . 24

4.8 File handling . 25
4.9 Advanced fill function: . 28
4.10 Break commands . 30
4.11 Multiturtle Mode . 30
4.12 Play music . 31
4.13 Loops: . 33

4.13.1 A loop with repeat . 33
4.13.2 A loop with for . 33
4.13.3 A loop with while . 34

1

4.14 Receiving input from the user . 35
4.14.1 Interact with the keyboard . 35
4.14.2 Some examples of usage: . 35
4.14.3 Interact with the mouse . 36
4.14.4 Some examples of usage: . 36

4.15 Time and date . 39
4.16 Using a network with XLogo . 40

4.16.1 The network Howto . 40
4.16.2 Primitives for networking . 40

5 Program examples 42

5.1 Draw houses . 42
5.2 Draw a whole rectangle . 44
5.3 Factorial . 44
5.4 The snowflake (with thanks to Georges Noël) . 44
5.5 A little bit of writing... 46
5.6 And conjugation... 47
5.7 First version . 47
5.8 Second go . 47
5.9 Or even: A little recursion ! . 47
5.10 All about colours . 48
5.11 Introduction . 48
5.12 Let’s get practical! . 48
5.13 And if you want a negative?? . 49
5.14 A good example of using lists (with thanks to Olivier SC) 50
5.15 A pretty rosette . 51

6 Uninstall and bookmark 52

6.1 Uninstall . 52
6.2 Bookmark . 52

7 FAQ - Tricks Things to know 53

7.1 Though I erase a procedure from the editor, it keeps on popping back! 53
7.2 I’m using the version in Esperanto but I can’t write with the special characters! 53
7.3 In the Sound tab from the Preferences dialogue box, no instrument can be found. . . . 53
7.4 I have screen updating problems when the turtle is drawing. 53
7.5 How to type quickly a control used previously? . 53
7.6 How can you be helped? . 54

2

Chapter 1

Interface features:

1.1 The main window

• Along the top, there are the usual menus File Edit Options and Help

• Just below this is the command line, which allows the logo instructions to be applied.

• In the middle of the screen is the drawing area.

• At the bottom is the command history, which shows every command entered, and the associated
response. To quickly recall a command which has already been entered, there are two options:
you can either click on the old command in the history, or you can click several times on the
upper scroll-arrow until the desired command appears. The upper and lower scroll-arrows in fact
allow you to navigate through all the commands that you have already entered (very practical).

• To the right of the history are two buttons: STOP and EDITOR. STOP interrupts the execution
of the program and EDITOR allows the procedure editor to be opened.

3

1.2 The procedure editor

There are three ways to open the editor:

• Enter ed on the command line at the top of the screen. The editor will then open to show all
the procedures already defined. If you only want to edit specific procedures, enter::
ed [procedure_1 procedure_2 . . .

• Press the Editor button on the main screen.

• Use the keyboard shortcut Alt+E

These are the different buttons that you will find in the editor:

Save the changes made in the editor and then close it. It
is this button that you have to press each time you want to
apply newly-entered operations. If you prefer, you can use
the keyboard shortcut ALT+Q.

Quit the editor without saving any of the changes made
there. You can also use the shortcut ALT+C.

Print the contents of the editor.

Copy the selected text to the clipboard

Cut the selected text to the clipboard

Paste the selected text from the clipboard

IMPORTANT:

• Note that clicking on the close button (x) in the window titlebar will have no effect! Only the
two main buttons will allow you to quit the editor.

• To delete one or more unwanted procedures, use the primitives er and erall.

4

Chapter 2

Menu options:

2.1 “File” Menu

• File –> New: Delete all procedures and variables. You create a new workspace.

• File –> Open: open a previously saved logo file.

• File –> Save: save the procedures in the current file.

• File –> Save as ...: save the current procedures under a specific name.

• File –> Quit: quit the XLOGO application.

• File –> Capture image –> Save image as... : allow the image to be saved in the jpg or png
format. If you wish to select only a part of the image, you can define a bounding box by cicking
twice in succession to define the two corners of a diagonal through the bounding box.

• File –> Capture image –> Print image : allows the image to be printed. In the same way as
above, you can select an area to print.

• File –> Capture image –> Copy image into the clipboard: Put the image into the system clip-
board. Just as for prinitng and recording, you can select a zone of the image. This functionality
works very well under the Window environments. On the other hand, it does not work under
Linux (the clipboard have a different behaviour). Untested under Mac.

2.2 “Edit” Menu

• Edit –> Copy: copy the selected text to the clipboard.

• Edit –> Cut: cut the selected text to the clipboard.

• Edit –> Paste: paste the text contained in the clipboard into the command line.

2.3 “Options” Menu

• Options –> Choose the pen colour: allows the colour with which the turtle will write to be
chosen from a palette of colours. Also accessible via the command fcc

• Options –> Choose the background colour: set the colour of the screen background. Accessible
via the primitive fcfg.

5

• Options –> Define start-up files: allows the path to“start-up”files to be defined. Any procedures
contained in these *.lgo format files will then become“pseudo-primitives” in the XLogo language.
They cannot be edited or changed by the user. You can thus define personalised primitives.

• Options –> Translate source...: Allows to translate source from a language to another. In fact,
very usefull when you want to use for example downloaded Logo source written in another
language.

• Options –> Preferences: opens a dialog box in which you can configure several things:

– Language : allows French,Spanish or English to be chosen. Note that the primitives differ
in each language.

– Look: allows the “look” of the XLogo window to be defined. The Windows, native Java
and Motif styles are available.

– Choose the drawing speed. If you prefer to see all the turtle’s movements, you can slow it
down by using the slider bar on the first tab.

– On the second tab, you can choose your preferred turtle.

– On the third tab, many options:

∗ You can choose the maximal pen width allowed. If you don’t want to use this option,
put -1.

∗ You can choose the shape of the pen: round or square.

∗ You can choose the maximal number of turtle in mode multiturtle.

∗ You can choose if you want to clear screen when you leave the editor.

∗ You can choose a personal size for the drawing zone. Otherwise XLogo opens in 1000
on 1000 pixels zone. Be careful, when you increase the size of the image, you might
have to increase the memory size of XLogo. An error message will pop up.

∗ Consequently, you can also change the corresponding memory space allocated to XLogo.
Otherwise it will be a 64 Mo size. You might have to increase it if you want to work
on a bigger drawing zone. When you modify this parameter, you must restart XLogo
so that the change takes place. Be careful, do not over increase this parameter since it
could considerably slow your system down.

∗ Finally, you can choose the accuracy of the drawing line. In high quality definition,
you will especially not have the square effect . Yet do not forget that by increasing the
quality you will lose some execution speed.

– On the fourth tab, you can choose an instrument for your MIDI interface. Some prob-
lem of detection can appear, sorry... This function could be accessed with the primitive
setinstrument.

– On the fifth tab, You can choose the font for the interface.

2.4 “Help” Menu

• Menu –> Licence: shows the GPL license under which this software is distributed.

6

• Menu –> Translation: shows a translation of the above license. This translation has no official
standing - this belongs only to the English version, and the translation is provided here only as
an aid to understanding.

• Menu – > About: The standard thing and xlogo.tuxfamily.org for your bookmarks !! o:)

7

Chapter 3

Conventions adopted by XLOGO

This section sets out some key points about the LOGO language itself, and about XLOGO specifically.

3.1 Commands and their interpretation

The LOGO language allows certain events to be triggered by internal commands - these commands are
called primitives. Each primitive may have a certain number of parameters which are called arguments.
For example, the primitive cs , which clears the screen, takes no arguments, while the primitive sum

takes two arguments.

print sum 2 3 will return 5.

LOGO arguments are of three kinds:

• Numbers: some primitives expect numbers as an argument: fd 100 is an example.

• Words: Words are marked by an initial ”. An example of a primitive which can take a word
argument is print. print "hello returns hello. Note that if you forget the ”, the interpreter
will return an error message. In effect, print expects the argument, or for the interpreter,
hello does not represent anything, since it is not a number, a word, a list, or an already defined
procedure.

• Lists: These are defined between brackets.

Numbers are treated in some instances as a numeric value (eg: fd 100), and in others as a word (eg:
print empty? 12 writes false).

3.2 Procedures

In addition to these primitives, you can define your own commands. These are called procedures.
Procedures are introduced by the word to and conclude with the word end. They can be created
using the internal XLOGO procedure editor. Here is a small example:

to square

repeat 4[forward 100 right 90]

end

8

These procedures can take advantage of arguments as well. To do that, variables are used. A
variable is a word to which a value can be assigned. Here is a very simple example:

to twice :word

print :word

print :word

end

twice [1 2 3] -----> 1 2 3

1 2 3

See the various examples of procedures at the end of the manual.

3.3 Specific character \

The specific character \ (backlash) especially allows the creation of words containing blank or line
feed symbols. If \n is used, the phrase skips to the following line, and \ followed by a blank means a
blank in a word. Example:

pr "xlogo\ xlogo

xlogo xlogo

pr "xlogo\nxlogo

xlogo

xlogo

You can therefore only write the \ symbol by typing \\.

Same behaviour, characters () [] # are specific delimiters of Logo. If you want to use them in
a word, you just have to add the character \before.

All \ only symbols are ignored. This remark is especially important for the use of files.
To set your current directory path to c:\My Documents:

setdir "c:\\My\ Documents.

Please note the use of \ to notify the space between My and Documents. If, you forget the double
backclash, the path that will be defined will then be c:My Documents and the interpretor will send
you an error message.

3.4 Case-sensitivity

XLOGO makes no distinctions on case as regards procedure names and primitives. Thus, with the
procedure square as defined earlier, whether you type SQUARE or sQuaRe, the command interpreter
will translate it correctly and execute square. On the other hand, XLOGO is case-sensitive on lists
and words:

print "Hello ----> "Hello (the initial capital H is retained)

9

3.5 Operators and syntax

There are two ways to write certain commands. For example, to add 4 and 7, there are two possibili-
ties: you can either use the primitive somme which expects two arguments: somme 4 7, or you can use
the operator +: 4+7. Both have the same effect.
This table shows the relationship between operators and primitives:

sum difference product quotient

+ - * /

or and equal?

| (ALT GR+6) & =
The two operators | and & are specific to XLOGO. They do not exist in traditional versions of

LOGO. Here are some examples of usage:

pr 3+4=7-1 ----> true

pr 3=4 | 7=49/7 ----> true

pr 3=4 & 7=49/7 ----> false

10

3.6 A word on colors

Colors are defined in XLogo with a list of three numbers [r g b] between 0 and 255. The number
r is the red component, b the blue and g the green. Xlogo has 16 predefined colours: you can access
with their rgb list, with a number, or with a primitive. look at this table:

Number Primitives [R G B] Color

0 black [0 0 0]

1 red [255 0 0]

2 green [0 255 0]

3 yellow [255 255 0]

4 blue [0 0 255]

5 magenta [255 0 255]

6 cyan [0 255 255]

7 white [255 255 255]

8 gray [128 128 128]

9 lightgray [192 192 192]

10 darkred [128 0 0]

11 darkgreen [0 128 0]

12 darkblue [0 0 128]

13 orange [255 200 0]

14 pink [255 175 175]

15 purple [128 0 255]

16 brown [153 102 0]

These three instructions are the same

setsc orange

setsc 13

setsc [255 200 0]

11

Chapter 4

List of primitives

As noted above, the turtle is controlled by means of internal commands called ‘primitives’ . The
following sections set out these primitives:

4.1 Movement of the turtle; pen and colour settings

This first table sets out the primitives which govern the movement of the turtle.

Primitives Arguments Utilisation

forward, fd
n : number of
steps

Moves the turtle forward n steps in the direction it is
currently facing.

back, bk
n: number of
steps

Moves the turtle backwards n steps in the direction it
is currently facing.

right, rt
n: angle Turns the turtle n degrees towards the right in relation

to the direction it is currently facing.

left, lt
n: angle Turns the turtle n degrees towards the right in relation

to the direction it is currently facing.

circle
R: number Draws a circle of R radius around the turtle.

arc R cap1 cap2:
numbers

Draws an arc of R radius around the turtle. This arc
is inscribed between the caps cap1 and cap2.

home
any Returns the turtle to its initial position, that is, the

co-ordinates [0 0] with a heading of 0 degrees.

setpos
[x y]: list of
two nunbers

Moves the turtle to the co-ordinates specified by the
two numbers in the list (x specifies the x-axis and y
the y-axis)

setx
x: x-axis Moves the turtle horizontally to the point x on the

x-axis

sety
y: y-axis Moves the turtle vertically to the point y on the y-axis

setxy
x y: x-co-
ordinate
followed by
y-co-ordinate

Identical to setpos [x y]

12

Primitives Arguments Utilisation

setheading
n: heading or
bearing

Orients the turtle in the specified direction. 0 corre-
sponds to a position facing vertically upwards. The
heading when the turtle is rotated is then based on
compass bearings.

label
a: word or list Draw the specified word or list at the turtle’s location,

and following the direction it is facing. Eg: label

[Hello there!] will write the sentence ”Hello there!”
wherever the turtle is, and corresponding to its bearing
or heading.

labellength
a: word or list Returns the length that needs the word or the list to

be displayed on the screen with the primitive label

using the current font.

dot
a: list The point defined by the co-ordinates in the list will

be highlighted (in the pen colour).

This second table sets out the primitives which allow the properties of the turtle to be adjusted.
For example, should the turtle be visible on screen? What colour should it draw when it moves?

Primitives Arguments Utilisation

showturtle, st
none Makes the turtle visible on the screen.

hideturtle, ht
none Makes the turtle invisible on the screen.

clearscreen, cs
none Empties the drawing area.

wash
none Erases the drawing area but leaves the turtle in the

same place.

pendown, pd
none The turtle will draw a line when it moves.

penup, pu none The turtle will not draw a line when it moves.

penerase, pe none The turtle will rub out any marks that it meets.

penreverse, px none Lower the pen and put the turtle in inverted mode.

penpaint, ppt
none Lower the pen and put the turtle in classic drawing

mode.

animation
true or false

• if the argument is true: you go into animation
mode. The turtle does not draw on the screen
anymore but follows the stored line. To up-
date the drawing on the screen, use the primitive
update. It is very useful to create an animation
or to draw a line faster.

• If the argument is false: you switch back to
classical mode. You can see the turtle’s moves
on screen.

13

Primitives Arguments Utilisation

repaint
none In animation mode, updates the screen: the image on

the drawing area is updated.

setpencolor, setpc
a: whole num-
ber or list [r g
b]

Sets the pen color. See p.11.

setscreencolor,
setsc

a: whole num-
ber or list [r g
b]

Sets the screen color. See p.11.

pos none Gives the current position of the turtle.Eg: pos re-
turns [10 -100]

heading
none Gives the bearing or heading of the turtle (cf

setheading)

towards
a: list The list must contain two numbers representing co-

ordinates. Gives the heading which the turtle must fol-
low to go towards the point defined by the co-ordinates
in the list.

distance
a: list The list must contain two numbers representing co-

ordinates. Gives the number of steps between the cur-
rent position and the point defined by the co-ordinates
in the list.

pencolor, pc
a: list Gives the current colour of the pen. This colour is

specified by a list [r g b] where r is the red component,
b the blue and g the green.

screencolor, sc
a: list Gives the current colour of the screen (background).

This colour is specified by a list [r g b] where r is the
red component, b the blue and g the green.

window
none The turtle can travel outside the drawing area (but of

course, it cannot draw there).

wrap none If the turtle leaves the drawing area, it will reappear
on the opposite side!

close
none The turtle is confined to the drawing area. If it is

about to go outside, an error message will let you
know, and give you the maximum number of steps
the turtle can move before the exit point is reached
(to within 1 or 2 steps ...).

findcolor,fc
a: list Returns to the colour of the a coordinates pixel. This

color is determined thanks to a [r g b] list where r is
red, g is green and b is blue.

setpenwidth, setpw
n: number Defines the thickness of the pen nib in pixels. The

default is 1. The pen has a square nib. (Other shapes
will be provided in future versions.)

setshape
n: number You can choose your preferred turtle with the sec-

ond tab of menu Options-Preferences.... But you can
choose your favourite turtle with setshape. The num-
ber n goes from 0 to 6. (0 is the triangular shape).

14

Primitives Arguments Utilisation

shape
none Returns the number that represents the shape of the

turtle.

setfontsize, setfs
n: number When you write on the screen with the primitive

label, it’s possible to modify the size of the font with
setfontsize. The size of the font is 12 by default.

fontsize
none Returns the size of the font when you write on the

screen with the primitive label.

setfn, setfontname
n: number Select the font number n when you write on the screen

with the primitive label. You can find the link be-
tween number and font in Menu –> Options –> Pref-
erences –> Tab Font.

fontname
none Returns a list with two elements. The first is the num-

ber corresponding to the font used when you write on
the screen with the primitive label. The last element
is a list which contains the name of the font.

setseparation,

setsep

a: number Determines the ratio between the graphic screen and
the history zone. The number a must be included
between 0 and 1. When a equals 1 the drawing zone
uses all the space, when a equals 0, the history zone
uses all the window.

separation, sep
none Provides the current ratio between the drawing zone

and the history zone.

zonesize
none Returns a list which contains four numbers. These

integers are the coordinates of the left upper corner
of the drawing zone and the coordinates for the right
bottom corner.

message, msg a: list Shows the message in list in a dialog box, the program
stops until the user has clicked the button ”OK”

4.2 Writing in the text area with the primitive print or write

This table sets out the primitives which allow the properties of the text area to be adjusted. Those
primitive that control the color and the size of the history area, are available only for the primitives
print or write

15

Primitives Arguments Utilisation

ct, cleartext
none Empties the area containing the command and com-

ment history.

pr, print
word, list or
number

shows the argument specified in the history zone.

pr "abcd --------> abcd

pr [1 2 3 4] ----> 1 2 3 4

pr 4 ------------> 4

write
word, list or
number

The same as for the print primitive but doesn’t go
back to the line.

sft,

setfonttext

a: number Define the size of the font in the command history.
Only valid with the primtive print

ftext,

fonttext

none Returns the size of the font with primitive print.

sct,

setcolortext

a:number or
list

Define the color of the font in command history. Valid
only with the primitive . See p.11.

ctext,

colortext

none Returns the color of the font with the primitive print
in the command history.

setfnt,
setfontnametext

n: number Select the font number n when you write on the the
command history with the primitive print. You can
find the link between number and font in Menu –>
Options –> Preferences –> Tab Font.

fnt,

fontnametext

none Returns a list with two elements. The first is the num-
ber corresponding to the font used when you write on
the command history with the primitive print. The
last element is a list which contains the name of the
font.

setstyle, ssty
list or word Set the format of the police in the text area. You can

choose between seven styles: none, bold, italic,

strike, underline, superscript, subscript. If
you want several styles together, write them in a list.
Look at examples after this table.

style, sty
none Returns a list which contains the differents styles used

for the primitive print.

A few examples for formatting text:

setstyle [bold underline] print "hello

hello

ssty "strike write [strike] ssty "italic write "\ x ssty "superscript print 2

strike x
2

16

4.3 Arithmetical and logical operations

Primitives Parameters Usage

sum
a b: numbers
to add

Adds the two numbers a and b and returns the result

Eg: sum 40 60 returns 100

difference
a b: numbers Returns a-b.

Eg: difference 100 20 returns 80

minus
a : number Returns the negative of a.

Eg: minus 5 returns -5. See the note at the end of
this table.

product
a b : numbers Returns the result of multiplying a by b.

div, divise
a b: numbers Returns the result of dividing a by b

div 3 6 returns 0.5

quotient
a b: numbers Returns quotient a by b

quotient 15 6 returns 2

remainder
a b: whole
numbers

Returns the remainder after dividing a by b.

round, rnd
a: number Returns the nearest whole number to the number a.

round 6.4 returns 6

integer
a: number returns the integer part of the number. integer 8.9

returns 8
integer 6.8 returns 6

power
a b: numbers Returns a raised to the power of b.

power 3 2 returns 9

sqrt , sqrt
n : number returns the square root.

log10
n : number Returns the decimal logarithm of n

sin, sine
a: number Returns the sine of a. (a is expressed in degrees)

cos, cosine
a: number Returns the cosine of a. (a is expressed in degrees)

tan, tangent
a: number Returns the tangent of a. (a is expressed in degrees)

acos,

arccosine

a: number Returns the angle in range [0-180] which cosine is a.

asin, arcsine
a: number Returns the angle which sine is a.

atan,

arctangent

a: number Returns the angle which tangent is a.

pi
aucun Returns the number π (3.141592653589793)

random, ran
n: whole num-
ber

Returns a random number between 0 and n− 1.

absolute, abs
n: nombre Returns the absolute value (its numerical value with-

out regard to its sign) of a number.17

Important : Be careful with those primitives which require two parameters!
Eg:
setxy a b If b is negative

For example, setxy 200 -10

The logo interpreter will carry out the operation 200-10 (ie it will subtract 10 from 200). It will
therefore conclude that there is only one parameter (190) when it requires two, and will generate an
error message. To avoid this type of problem, use the primitive“minus”to specify the negative number
- setxy 200 minus 10.
This is a list of logical operators:

Primitives Parameters Usage

or
b: booleans Returns true if a or b is true, otherwise returns false

and
b: booleans Returns true if a and b is true, otherwise returns false

not
a :boolean Returns the negation of a. If a is true, returns false.

If a is false, returns true.

18

4.4 Operations on lists

Primitives Parameters Usage

word
a b Concatenates the two words a and b. Eg: pr word ”a

1 returns a1

list
a b Returns a list composed of a and b. For example, list

3 6 returns [3 6]. list “a “list returns [a list]

sentence, se
a b Returns a list composed of a and b. If a or b is a list,

then each element of a and b will become an element
of the resulting list (square brackets are deleted).
Eg: se [4 3] “hello returns [4 3 hello]
se [how are] “things returns [how are things]

fput
a b: a any-
thing, b list

Insert a in the first slot in list b.

Eg : fput “cocoa [2] returns [cocoa 2]

lput
a b: a any-
thing, b list

Insert a in the last slot of list b

Eg: lput 5 [7 9 5] returns [7 9 5 5]

reverse
a : list Reverse the order of elements in list a

reverse [1 2 3] returns [3 2 1]

pick
a : a word or
list

If a is a word, returns one of the letters of a at random.
If a is a list, returns one of the elements of a at random.

remove
a b: a any-
thing, b list

Remove element a from list b if it occurs there.

Eg: remove 2 [1 2 3 4 2 6] returns [1 3 4 6]

item
a b: a whole
number, b list
or word

If b is a word, returns the letter numbered a from the
word (1 represents the first letter). If b is a list, returns
the element numbered a from the list.

butlast,bl
a: list or word If a is a list, returns the whole list except for its last

element. If a is a word, returns the word minus its last
letter.

butfirst, bf
a: list or word If a is a list, returns the whole list except for its first

element. If a is a word, returns the word minus its
first letter.

last
a: list or word If a is a list, returns the last element of the list. If a

is a word, returns the last letter of the word.

first
a: list or word If a is a list, returns the first element of the list. If a

is a word, returns the first letter of the word.

setitem,

replace

li1 n li2: li1
list, n integer,
li2 word or list

Replace the element number n in the list li, by the
word or the list li2.

replace [a b c] 2 8 --> [a 8 c]

additem
li1 n li2: li1
list, n integer,
li2 word or list

Adds at the position n in the list li the word or the
list li2

additem [a b c] 2 8 --> [a 8 b c]

19

count
a: list or word If a is a word, returns the number of letters in a. If a

is a list, returns the number of elements in a.

unicode
a: word returns the Unicode value of the character "a".

pr unicode "A returns 65

character,

char

a: number returns the character which Unicode value is "a".

pr character 65 returns "A

20

4.5 Booleans

A boolean is a primitive which returns the word “true or the word “false. These primitives terminate
in a question-mark.

Primitives Parameters Usage

true
none Returns ”true.

false
none Returns ”false.

word?
a Returns true if a is a word, false otherwise.

number?
a Returns true if a is a number, false otherwise.

integer?
a returns true if a is a whole number, false otherwise.

list?
a Returns true if a is a list, false otherwise.

empty?
a Returns true if a is an empty word or an empty list,

false otherwise.

equal?
a b Returns true if a and b are equal, false otherwise.

before?
a b : words Returns true if a is before b in terms of alphabetical

order, false otherwise.

member?
a b If b is a list, specifies if a is an element of b. If b is a

word, specifies if a is a letter in b.

member
a b If b is a list, look for the element a in this list. There

are two possible outcomes:
-If a is in b, returns a sublist containing all list ele-
ments from the first instance of a in b.
-If a is not in b, returns the word false.
If b is a word, look for the character a in this word.
There are two possibilities:
- If a is in b, return the latter part of the word, starting
from a.
-Otherwise, return the word false.
member “o “cocoa return ocoa
member 3 [1 2 3 4] returns [3 4]

pd?, pendown?
anything Returns the word true is the pen is down, false other-

wise.

visible?
anything Returns the word true if the turtle is visible, false oth-

erwise.

prim?,

primitive?

a: word Returns true if the word is an XLOGO primitive, false
otherwise.

proc?,

procedure?

a: word Returns true if the word is a procedure defined by the
user, false otherwise.

21

4.6 Testing an expression with the primitive if

As in all programming language, Logo allows you to check if a condition is satisfied and then to execute
the desired code if it’s true or false.
With the primitive if you can realize those tests. Here is the syntax:

if expression_test [list1] [list2]

if expression_test is true, the instructions included in list1 are executed. Else, if expression_test
is false, the instructions in list2 are executed. This second list is optional.
Examples:

• if 1+2=3[print "true][print "false]

• if (first "XLOGO)="Y [fd 100 rt 90] [pr [XLOGO starts with a X!]]

• if (3*4)=6+6 [pr 12]

4.7 Dealing with procedures and variables

4.7.1 Procedures

Procedures are a kind of “program”. When a procedure is called, the instructions in the body of the
procedure are executed. A procedure is defined with the keyword to.

to name_of_procedure :v1 :v2 :v3

Body of the procedure

end

name of procedure is the name given to the procedure.
:v1 :v2 :v3 stand for the variables used internally in this procedure (local variables).
Body of the procedure represents the commands to be executed when this procedure is called.

Eg:

to square :s

repeat 4[fd :s rt 90]

end

The procedure is called square and takes a parameter called s. square 100 will therefore produce
a square, the length of whose sides is 100. (See the examples of procedures at the end of this manual.)

Since version 0.7c, it is possible to insert comments in the code preceded by #.

to square :s

#this procedure allows a square to be drawn whose side equals :s.

repeat 4[fd :s rt 90] # handy, isn’t it?

end

IMPORTANT: There must be no comments on the to or end lines.

22

4.7.2 Concept of variables

There are two kinds of variables:

• Global variables: these are always accessible from any location in the program.

• Local variables: these are only accessible in the procedure where they are defined.

In this version of LOGO, local variables are not accessible in sub-procedures. At the end of the pro-
cedure, the local variables are deleted.

4.7.3 Primitive ’trace’

It is possible so as to follow the working of a program to have it show the procedures which are working.
This mode equally allows to show if the procedures provide arguments thanks to the primitive output.
To operate this mode, you type:

trace true

Of course, trace false will disactivate the "trace" mode. A small example with the factorial (see page
44).

trace vrai pr fac 4

fac 4

fac 3

fac 2

fac 1

fac returns 1

fac returns 2

fac returns 6

fac returns 24

24

23

4.7.4 Other primitives

Primitives Arguments Usage

make
a b: a word, b
anything

If the local variable a exists, assigns it the value b. If
not, creates a global variable a and assigns it the value
b.
Eg: make “a 100 assigns the value 100 to the variable
a

local
a: word Creates a variable called a. Note, this is not initialised.

To assign it a value, see make.

localmake
a b: a word, b
anything

Creates a new local variable and assigns it the value
b.

def, define
word1 list2
list3

Define a new procedure called word1, which
requires the variables in list2. The procedure’s
instructions are contained in list3.

def "polygon [nb length]

[repeat :nb[fd :length rt 360/:nb]]

—-> this command defines a procedure called
polygon with two variables (:nb and :length).
This procedure draws a regular polygon, we can
choose the number of sides and their length.

thing
a: word returns the value of the variable :a. thing "a is simi-

lar to :a

er, erase a: word Deletes the procedure calling a.

kill
a: word Deletes the variable a.

erall
none Deletes all the variables and procedures currently run-

ning.

poall
none Enumerates all the procedures currently defined.

run a :list Executes the list of instructions contained in list a.

listvariables,
lvars

none Returns a list which contains all the defined variables.

24

4.8 File handling

Primitives Arguments Usage

ls, listfiles
none By default, lists the contents of the directory. (Equiv-

alent to the ls command for Linux users and the dir
command for DOS users)

loadimage, li
a: list Load the image file contained in the list. Its upper left

corner will be placed at the turtle’s location. The only
supported formats are .png and .jpg. The path speci-
fied must be relative to the current folder. Eg: setdir
"C:\\my_images_dir loadimage "turtle.jpg

setdir,

setdirectory

l: list Specifies the current directory. The path must be ab-
solute. The directory must be specified with a word.

changedirectory,

cd

m: word Allows to choose the current directory. The path is
related to the current directory. You can use the ’..’
notation to refer to the parent directory.

dir, directory
aucun Gives the current directory. The default is the user’s

home directory, ie /home/your_login for Linux users,
C:\WINDOWS for Windows users.

save w: word l:list A good example to explain this: save "test.lgo

[proc1 proc2 proc3] saves in the file test.lgo in the
current directory the procedues proc1, proc2 et proc3.
If the extension .lgo is omitted, it is added by default.
The specified word gives a relative path starting from
the current directory. This command will not work
with an absolute path.

saved
w: word saved "test.lgo saves in the file test.lgo in the cur-

rent directory the collection of procedures currently
defined. If the extension .lgo is omitted, it is added
by default. The specified word gives a relative path
starting from the current directory. This command
will not work with an absolute path.

load
w: word Opens and reads the file w. For example, to delete

all the defined procedures and load the file test.lgo,
you would use: efns load "test.lgo. The specified
word gives a relative path starting from the current di-
rectory. This command will not work with an absolute
path.

openflow
id file When you want to read or write in a file, you must

first open a flow toward this file. The argument file
must be the name of the file you want. You must use
a phrase to show the name of the file in the current
directory. The id argument is the number given to
this flux so as to identify it.

25

Primitives Arguments Usage

listflow
none Shows the list of the various open fluxes with their

identifiers.

readlineflow
id Opens the flow which identifier corresponds to the

number used as argument and then reads a line in
this file.

readcharflow
id Opens the flux which identifier corresponds to the

number used as argument and then reads a charac-
ter in this file. This primitive sends back a num-
ber representing the value of the character (similar to
readchar).

writelineflow
id list Writes the text line included in the list at the begin-

ning of the file identified thanks to the identifier id.
Be careful, the writing is effective only after the flow
has been closed by the primitive closeflow.

appendlineflow
id list Writes the text line included in the list at the end

of the file identified thanks to the identifier id. Be
careful, the writing is effective only after the flux has
been closed by the primitive closeflow.

closeflow
id Closes the flux when its identifier number is written

as argument.

endflow?
id Sends back "true if it is the end of the file. Otherwise

sends back "false.

Here is an example of the use of primitives allowing to read and write in a file. I will give this
example in a Windows-type framework. Other users should be able to adapt the following example.

The aim of this file is to create the file c:\example containing the following three lines:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
Abcdefghijklmnopqrstuvwxyz
0123456789

You open a flow towards the desired file. This flow is given the number 2

setdirectory "c:\\

openflow 2 "example

You type the desired lines

writelineflow 2 [abcdefghijklmnopqrstuvwxyz]

writelineflow 2 [abcdefghijklmnopqrstuvwxyz]

writelineflow 2 [0123456789]

You close the flux to end the writing

closeflow 2

Now, you can see the writing procedure went alright:

You open a flow towards the file you want to read. This flow is given the number 0

openflow 0 "c:\\example

You read the one after the other the different lines from the file

pr readlineflow 0

pr readlineflow 0

26

pr readlineflow 0

You close the flow

closeflow 0

if you wish to add the line ’Great !’:

setdirectory "c:\\

openflow 1 "example]

appendlineflow 1 [Great!]

closeflow 1

27

4.9 Advanced fill function:

Two primitives allow to colour a figure. The primitive fill and fillzone. These primitives allow
a shape to be coloured in. These primitives can be compared with the ’fill’ feature available in many
image-retouching programs. This feature can extend to the margins of the design area. There are two
rules that must be adhered to in order to use this primitive correctly:

1. The pen must be lowered (pd).

2. The turtle must not be located on a pixel of the colour with which the shape is to be filled. (If
you want to colour things red, it can’t be sitting on red...)

Let’s take a look at an example to see the difference between fill and fillzone:
The pixel under the turtle is white right now. The primitive fill will colour all the neighbouring

Figure 4.1: At the beginning

white pixels with the current pen colour. If for example, you type: setpc 1 fill. Let’s now go back

Figure 4.2: With the primitive fill

to the first case, if the pen colour of the turtle is black, the primitive fillzone colours all pixels until
it encounters the current colour (here black).

This is a good example of the use of this primitive:

to halfcirc :c

draw a half-circle of diameter :c

repeat 180 [fd :c*tan 0.5 rt 1]

fd :c*tan 0.5

rt 90 fd :c

end

28

Figure 4.3: With the primitive fillzone, if you type: setpc 0 fillzone

to tan :angle

renders the tangent of the angle

output (sin :angle)/cos :angle

end

to rainbow :c

if :c<100 [stop]

halfcirc :c rt 180 fd 20 lt 90

rainbow :c-40

end

to dep

pu rt 90 fd 20 lt 90 pd

end

to arc

ht rainbow 400 pe lt 90 fd 20 bk 120 ppt pu rt 90 fd 20 pd

setpc 0 fill dep

setpc 1 fill dep

setpc 2 fill dep

setpc 3 fill dep

setpc 4 fill dep

setpc 5 fill dep

setpc 6 fill dep

end

29

Figure 4.4: Arc-in-LOGO

4.10 Break commands

LOGO has three break commands: stop, stopall and output.

• stop can have two results. If it is included in a repeat or while loop, the program jumps out
of the loop then and there. If it occurs in a procedure, the program breaks out of the procedure
immediately.

• stopall the program breaks out of all the procedure immediately and stops.

• output allows breaking out of a procedure with a value to be returned.

See the numerous instances of usage of these two primitives in the examples at the end of this manual.

4.11 Multiturtle Mode

It’s possible to have several active turtles on the screen. By default, on Xlogo startup, only one turtle
is available. Its number is the 0. If you want to ”create” a new turtle, you can use the primitive
setturtle followed by the number of the turtle. To prevent from obstruction, the turtle is created on
the origin and is invisible (you must use showturtle to show it). Then, the new turtle is the active
turtle, it obeys to all classic primitives while you don’t change active turtle with setturtle. The
maximum number of available turtle can be set in menu Options - Preferences - Tab options.

Here are the primitives for the multiturtle mode:

30

Primitives Argumentss Utilisation

sturtle, setturtle
a: number The turtle numero a is now the active turtle. By de-

fault on Xlogo startup the active turtle is the numero
0.

turtle
none Returns the numero of the active turtle.

turtles
none Returns a list which contains all the numero af the

turtles actually on the screen.

killturtle
a: number Kill the turtle number a

4.12 Play music

Primitives Arguments Utilisation

seq, sequence
a: list Put in memory the sequence in the list. Read after

this table to learn how to write a sequence.

play
none Play the sequence in memory.

instr, instrument
none Returns the number that corresponds to the selected

instrument.

sinstr,

setinstrument

a: number The selected instrument is now the instrument number
a. You can see the list of all available instruments in
menu Options-Preferences-Tab Sound.

indseq,

indexsequence

none Returns where the cursor is located in the current se-
quence.

sindseq,

setindexsequence

a: number Put the cursor to index a in the current sequence in
memory.

delseq,

deletesequence

none Delete the current sequence in memory.

If you want to play music, you must put the notes in memory in a list called sequence. To cre-
ate the sequence, you can use the primitive seq or sequence. These are rules to follow to create a
valid sequence:
do re mi fa sol la si : the usual notes of the first octave.
To make a sharp re, we note re +

To make a flat re, we note re -

If you want to go up or down and octave, we use symbol ”:” followed by + or -. E.g. After :++ in the
sequence, all the notes will be played two octaves up (two ++) .
By default, notes are played for a duration of one. If you want to increase or decrease, you write the
number that corresponds to the duration of notes. E.g. seq [sol 0.5 la si]. will play sol with a
duration 1 and la si with a duration 0.5 (twice faster).
If you want to play this example:

31

to tabac

create the sequence of notes

seq [0.5 sol la si sol 1 la 0.5 la si 1 :+ do do :- si si 0.5 sol la si sol

1 la 0.5 la si 1 :+ do re 2 :- sol]

seq [:+ 1 re 0.5 re do 1 :- si 0.5 la si 1 :+ do re 2 :- la]

seq [:+ 1 re 0.5 re do 1 :- si 0.5 la si 1 :+ do re 2 :- la]

seq [0.5 sol la si sol 1 la 0.5 la si 1 :+ do do :- si si 0.5 sol la si sol

1 la 0.5 la si 1 :+ do re 2 :- sol]

end

To hear music, launch the command: tabac play

Now, we can see an interesting application of the primitive sindseq. Write those commands:

delseq # Delete the sequence in memory

tabac # Put in memory the notes

sindseq 2 # Put the cursor on the second "la".

tabac # Put in memory the same sequence but translated of 2.

play # Great!

You can choose you instrument with the primitive sinstr or with the menu Options-Preferences-
Tab sound. You will find the list of all available instruments with their associated number.

32

4.13 Loops:

XLOGO has three primitives which allow the construction of loops: repeat, for and while.

4.13.1 A loop with repeat

This is the syntax for repeat:

repeat n list_of_commands

n is a whole number and list_of_commands is a list containing the commands to execute. The
LOGO interpreter will implement the commands in the list n times: that avoids the need to copy the
same command n times!
Eg:

repeat 4 [forward 100 left 90] # A square of side 100

repeat 6 [forward 100 left 60] # A hexagon of side 100

repeat 360 [forward 2 left 1] # A uh... 360-gon of side 2

In short, almost a circle!

Included in a repeat loop. Its an internal variable. Returns the number of the running iteration.
(The first iteration is number 1).

repeat 3 [pr repcount]

1

2

3

4.13.2 A loop with for

for assign to a variable some successive values in a fixed range with a choosen increment.here is the
syntax:

for list1 list2

List1 contains three arguments: the variable name, the start value, the end value.
A fourth argument is optionnal representing the increment(the step between two successive values).
Default value is 1. Here are a few examples:

for [i 1 4][pr :i*2]

2

4

6

8

Now, i is going from 7 to 2 falling down of 1.5 each times

Look at the negative increment

Then, Displays its square.

for [i 7 2 -1.5][pr list :i power :i 2]

7 49

5.5 30.25

4 16

2.5 6.25

33

4.13.3 A loop with while

This is the syntax for while:

while list_to_evaluate list_of_commands

list_to_evaluate is a list containing an instruction set which can be evaluated as a boolean.
list_of_commands is a list containing the commands to execute. The LOGO interpreter will continue
implementing the list_of_commands so long as the list_to_evaluate is returned as true.
Eg:

while ["true] [rt 1] # The turtle will turn around

An example which allows us to spell the alphabet in reverse

make "list "abcdefghijklmnopqrstuvwxyz

while [not empty? :list] [pr last :list make "list butlast :list]

34

4.14 Receiving input from the user

4.14.1 Interact with the keyboard

Currently, text can be accepted from the user during program execution mainly via 3 primitives: key?,
readchar and read.

key?: is read as true or false according to whether a key has been pressed or not since the start
of program execution.

readchar:

• If key? is false, the program is paused until the user presses a key.

• If key? is true, it gives the key which was pressed last. These are the values given for particular
keys:

A —> 65 B —> 66 C —> 67 etc ... Z —> 90
← —> -37 or -226 (NumPad) ↑ —> -38 or -224 → —> -39 or -227 ↓ —> -40 or -225
Echap —> 27 F1 —> -112 F2 —> -113 F12 —> -123
Shift —> -16 Espace —> 32 Ctrl —> -17 Enter —> 10

Table 4.1: Values for particular keys

If you are uncertain about the value returned by a key, you can type:
pr readchar. The interpreter will then wait for you to type on a key before giving you the corre-
sponding value.

read list_title word: Presents a dialogue box whose title is list_title. The user can then
input a response in a text field, and the response will be stored in the form of a list in the variable
:word, and will be evaluated when the OK button is pressed.

4.14.2 Some examples of usage:

to vintage

read [What is your age?] "age

make "age first :age

if :age<18 [pr [you are a minor]]

if or :age=18 :age>18 [pr [you are an adult]]

if :age>99 [pr [Respect is due!!]]

end

to rallye

if key? [

make "car readchar

if :car=-37 [lt 90]

if :car=-39 [rt 90]

if :car=-38 [fd 10]

if :car=-40 [bk 10]

if :car=27 [stop]

35

]

rallye

end

You can control the turtle with the keyboard, and stop with Esc

4.14.3 Interact with the mouse

Currently, mouse events can be accepted from the user during program execution via three primitives:
readmouse, posmouse and mouse?.

readmouse: the program is paused until the user presses the mouse. Then, it returns a number
that represents the event.

These are the differents values:
0 –> The mouse has moved
1 –> The button 1 has been pressed
2 –> The button 2 has been pressed
...
The button 1 is the left button , the button 2 is the next on the right ...

posmouse: Returns a list that contains the position of the mouse.

, mouse?: Returns true if we touch the mouse since the program begins. Returns false otherwise.

4.14.4 Some examples of usage:

In this first procedure, the turtle follows the mouse when it moves on the screen.

to example

when the mouse moves, go to the next position

if readmouse=0 [setpos posmouse]

example

end

In this second procedure, it’s the same but you must click with the left button of the mouse if you
want the turtle to move.

to example2

if readmouse=1 [setpos posmouse]

example2

end

In this third example, we create two pink buttons. If we left-click on the left button, we draw a square
with a side of 40. if we left-click on the right button, we draw a little circle. Last, if we right-click on
the right button, it stops the program.

36

37

to button

#create a pink rectangular button (height 50 - width 100)

repeat 2[fd 50 rt 90 fd 100 rt 90]

rt 45 pu fd 10 pd setpc [255 153 153]

fill bk 10 lt 45 pd setpc 0

end

to lance

cs button pu setpos [150 0] pd button

pu setpos [30 20] pd label "Square

pu setpos [180 20] pd label "Circle

pu setpos [0 -100] pd

mouse

end

to mouse

we put the value of readmouse in the variable ev

make "ev readmouse

we put the first coordinate of the mouse in variable x

make "x item 1 posmouse

we put the second coordinate of the mouse in variable y

make "y item 2 posmouse

When we click on the left button

if :ev=1 & :x>0 & :x<100 & :y>0 & :y<50 [square]

When we click on the right button

if :x>150 & :x<250 & :y>0 & :y<50 [

if :ev=1 [circle]

if :ev=3 [stop]

]

mouse

end

to circle

repeat 90 [fd 1 lt 4] lt 90 pu fd 40 rt 90 pd

end

to square

repeat 4 [fd 40 rt 90] rt 90 fd 40 lt 90

end

38

4.15 Time and date

XLogo has several primitives for date, time or generating countdown.
Primitives Arguments Usage

wait
n: whole num-
ber

Halts the program, and therefore the turtle, for n

60

seconds.

chrono,

chronometre

n: integer Starts a countdown of n seconds. We know
if this countdown has finished with the primitive
endcountdown?

endcountdown?
none Returns "true if there’s no active countdown. Returns

"false if the countdown is active.

date
none Returns a list wich contains three integers represent-

ing the date. The first integer indicates the day, the
second the month and the last the year. —> [day
month year]

time
aucun Returns a list of three integers representing the time.

The first integer indicates the hour, the second the
minutes and the last the seconds. —> [hour minute
seconde]

pasttime
none Returns the past time in seconds since XLOGO has

started.

Difference between wait and countdown is that countdown doesn’t halt the program.

Here is an example:

to clock

shows time in numerical format

we refresh the time each five seconds

if endcountdown? [

cs

sfont 75 ht

make "heu time

make "h first :heu

make "m item 2 :heu

We shows two number for seconds and minutes. (we must add a 0)

if :m-10<0 [make "m word 0 :m]

make "s last :heu

We shows two number for seconds and minutes. (we must add a 0)

if :s-10<0 [make "s word 0 :s]

label word word word word :h ": :m ": :s

countdown 5

]

clock

end

39

4.16 Using a network with XLogo

4.16.1 The network Howto

First, we have to introduce the basis for network communication before we can use the XLogo primi-
tives Two computers (or more) can communicate through a network if they both have ethernet cards.

Figure 4.5: A simple network

Each computer is identified by a personal address called an IP address. This IP address consists of
four integers, each between 0 and 255 and separated by a dot. For example, The IP address of the
first computer in the illustration is 192.168.1.1

Because it’s not easy to remember these numbers, it’s also possible to identify each computer by
a more usual name. As can be seen in the illustration, we can communicate to the right computer
with its IP address: 192.168.1.2, or with its name: turtle

For the moment, I’ll add just one more thing. The local computer on which you are working is
located by the address: 127.0.0.1. Its general name is localhost. We will see this later in practice.

4.16.2 Primitives for networking

XLogo has 4 primitives that allow it to communicate over a network: listentcp, executetcp, chattcp
and send. In all future examples, we will take the case of the two computers in the previous figure.

• listentcp: this primitive listentcp is the basis for all network communication. It doesn’t
need an argument. When you execute this primitive on a computer, the computer will listen for
instructions sent from other computers on the network.

• executetcp: this primitive allows execution of instructions by a computer on the network.
Syntax: executetcp word list −→ The word is the called IP address or computer name, the
list contains instructions to execute.

Example: I’m on computer hare, I want to draw a square with a side of 100 on the other

40

computer. Thus, on the computer turtle, I have to launch the command listentcp. Then, on
the computer hare, I write:

executetcp "192.168.1.2 [repeat 4[fd 100 rt 90]]

or

executetcp "turtle [repeat 4[fd 100 rt 90]]

• chattcp: Allows chat between two computers on a network. On each computer, it displays a
chat window.
Syntax: chattcp word list −→ The word is the called IP address or computer name, the list
contains the sentence to display.

Example: hare wants to talk with turtle.
First turtle executes listentcp so it is waiting for instructions from network computers. Then
hare writes: chattcp "192.168.1.2 [hello turtle].
Chat windows will open on both computers, allowing them to talk with each other.

• sendtcp: Send data towards a computer on the network and return his answer.

Syntax: sendtcp word list −→ The word is the called IP address or computer name, the
list contains the data to send. When Xlogo is launched on the other computer, il will answer
OK. It is possible with this primitive to communicate with a robot through its network interface.
Then, the answer of the robot could be different.

Example: turtle wants to send to hare the sentence ”3.14159 is quite pi”.
First hare executes listentcp so it is waiting for the other computer to communicate. Then,
turtle writes: print sendtcp "hare [3.14159 is quite pi].

A little hint: Launch two instances of XLogo on the same computer.
- In the first window, execute listentcp.
- In the second one, write executetcp "127.0.0.1 [fd 100 rt 90]

You can move the turtle in the other window! (heh, heh, it’s possible because 127.0.0.1 designates
your local address, so it’s your own computer...)

41

Chapter 5

Program examples

5.1 Draw houses

Figure 5.1: Houses

to house :c

repeat 4[fd 20*:c rt 90]

fd 20*:c rt 30

repeat 3[fd 20*:c rt 120]

end

to place :c

pu lt 30 bk :c*20 rt 90 fd :c*22 lt 90 pd

42

end

to hut

cs pu lt 90 fd 200 rt 90 pd ht

house 3 place 3 house 5 place 5 house 7 place 7 house 10

end

43

Figure 5.2: Rectangle

5.2 Draw a whole rectangle

to rect :lo :la

if :lo=0|:la=0 [stop]

repeat 2[fd :lo rt 90 fd :la rt 90]

rect :lo -1 :la -1

end

5.3 Factorial

Reminder: 5! = 5× 4× 3× 2× 1 = 120

to fac :n

if :n=1[output 1][output :n*fac :n-1]

end

por fac 5

120.0

pr fac 6

720.0

5.4 The snowflake (with thanks to Georges Noël)

to koch :order :len

if :order < 1 | :len <1 [forward :len stop]

koch :order-1 :len/3

lt 60

koch :order-1 :len/3

rt 120

koch :order-1 :len/3

lt 60

koch :order-1 :len/3

end

44

Figure 5.3: The snowflake

to kochflake :order :len

repeat 3 [rt 120 koch :order :len]

end

kochflake 5 450

45

Figure 5.4: Xlogo c’est sympa!

5.5 A little bit of writing...

to write

ht repeat 40[fd 30 rt 9 setpc random 7 label [xlogo is cool!]]

end

46

5.6 And conjugation...

5.7 First version

to Fr_future :word

pr se "je word :word "ai

pr se "tu word :word "as

pr se "il word :word "a

pr se "nous word :word "ons

pr se "vous word :word "ez

pr se "elles word :word "ont

end

Fr_future "parler

je parlerai

tu parleras

il parlera

nous parlerons

vous parlerez

elles parleront

5.8 Second go

to fut :word

make "pronouns [je tu il nous vous elles]

make "endings [ai as a ons ez ont]

make "i 0

repeat 6[make "i :i+1 pr se item :i :pronouns word :word item :i :endings]

end

fut "parler

je parlerai

tu parleras

il parlera

nous parlerons

vous parlerez

elles parleront

5.9 Or even: A little recursion !

to fu :verb

make "pronouns [je tu il nous vous elles]

make "endings [ai as a ons ez ont]

conjugate :verb :pronouns :endings

end

47

to conjugate :verb :pronouns :endings

if empty? :pronouns [stop]

pr se first :pronouns word :verb first :endings

conjugate :verb bf :pronouns bf :endings

end

fu "parler

je parlerai

tu parleras

il parlera

nous parlerons

vous parlerez

elles parleront

5.10 All about colours

5.11 Introduction

Fist, a few explanations: you will note that the command setpc can take either a list or a number as
a parameter. Here, we are interested in coding RGB values.
Every colour in XLOGO is coded using three values: red, green and blue, whence the name RGB
encoding. The three numbers in the list parameter to the primitive setpc therefore represent respec-
tively the red, blue and green components of a colour. This encoding is not really intuitive, and you
can get an idea of the colour which will be given by the encoding by using the dialogue box Options—
-> Choose the pen colour.
Using this encoding, it is very easy to transform an image. For example, if you want to turn a colour
photo into a greyscale image, you can change the colour of each pixel of the image to the average
value of the three components [r g b]. Imagine that the colour of one dot of the image is given by the
encoding [0 100 80]. You calculate the average of these three numbers: 0+100+80

3
= 60, and then assign

the colour [60 60 60] to this pixel. This operation has to be carried out on each pixel of the image.

5.12 Let’s get practical!

We are going to transform a 100 x 100-pixel image to a greyscale. This means that there are
therefore100 × 100 = 10000 pixels to modify. You can access the image used in this example at
the following address:
http://xlogo.tuxfamily.org/images/transfo.png
This is how we are going to proceed: first, we will refer to the top left corner of the image as [0 0].
Then the turtle will examine the first 100 pixels of the first line, followed by the first 100 of the second
line, and so on. Each time, the colour of the pixel will be retrieved with findcolor, and the colour
will then be changed to the average of the three [r g b] values. Here is the relevant code:
(Don’t forget to change the filepath in the transform procedure!)

to pixel :list

return the average of three numbers [r g b]

make "r first :list

make "list bf :list

48

Figure 5.5: XLOGO fait de la retouche d’images....

make "g first :list

make "list bf :list

make "b first :list

make "b round (:r+:g+:b)/3

output se list :b :b :b

end

to greyscale :c

if :y=-100 [stop]

if :c=100 [make "c 0 make "y :y-1]

We assign the "average" colour of the following pixel to the pen

setpc pixel fc liste :c :y

We turn the dot to greyscale

dot list :c :y

greyscale :c+1

end

to transform

You must change the path to the image transfo.png

Eg: setdir "c:\\my_images loadimage "transfo.png]

cs ht setdir "/home/loic loadimage "transfo.png make "y 0 greyscale 0

end

5.13 And if you want a negative??

To change an image to a negative, you can use the same process, except that instead of averaging the
numbers r g b, you replace them by the number you get when you subtract them from 255. Eg: If a
pixel has the colour [2 100 200], you replace it with the colour [253 155 55]

Only the pixel procedure needs to be changed in the following program:

to greyscale :c

if :y=-100 [stop]

if :c=100 [make "c 0 make "y :y-1]

setpc pixel fc list :c :y

49

Figure 5.6: XLOGO pretending to be the GIMP ...(pretentious? :-))

dot list :c :y

greyscale :c+1

end

to transform

You must change the path to the image transfo.png

Eg: setdir "c:\\my_images loadimage "transfo.png]

ht cs setdir "/home/loic loadimage "transfo.png make "y 0 greyscale 0

end

to pixel :list

make "r first :list

make "list bf :list

make "g first :list

make "liste bf :list

make "b first :list

output se list 255-:r 255-:g 255-:b

end

5.14 A good example of using lists (with thanks to Olivier SC)

I hope you will appreciate this wonderful program:

to reversew :w

if empty? :w [output "]

output word last :w reversew bl :w

end

to palindrome :w

if equal? :w reversew :w [output "true] [output "false]

end

50

Figure 5.7: Better than using a compass!

to palin :n

if palindrome :n [print :n stop]

print se se se se :n "more reversew :n "equal sum :n reversew :n

palin :n + reversew :n

end

palin 78

78 more 87 equal 165

165 more 561 equal 726

726 more 627 equal 1353

1353 more 3531 equal 4884

4884

5.15 A pretty rosette

to rosette

repeat 6[repeat 60[fd 2 rt 1] rt 60 repeat 120 [fd 2 rt 1] rt 60]

end

to pretty_rosette

rosette

repeat 30[fd 2 rt 1]

rosette

repeat 15[fd 2 rt 1]

rosette

repeat 30[fd 2 rt 1]

rosette

end

setsc 0 cs setpc 5 ht rosette pu setpos [-300 0] pd setheading 0 pretty_rosette

51

Chapter 6

Uninstall and bookmark

6.1 Uninstall

To uninstall XLogo, all that needs to be done is to delete the file XLogo.jar and the configuration file .xl-
ogo (which is located in your home directory (/home/your login) for Linux users, or c:\windows\.xlogo
for Windows users).

6.2 Bookmark

For the latest version and bug-fixes, visit the XLogo site now and again - http://xlogo.tuxfamily.org.
Feel free to contact the author is you have a problem with installation or use. All suggestions are
welcome.

52

Chapter 7

FAQ - Tricks Things to know

7.1 Though I erase a procedure from the editor, it keeps on popping

back!

When you go out of the editor, it just saves or updates whet the editor contains. The only way to
erase a procedure in XLogo is to use the primitive erase or er.
Exemple: erase "toto −→ erase the procedure toto.

7.2 I’m using the version in Esperanto but I can’t write with the
special characters!

When you type in the command line or the editor, if you click with the right button, a rolling screen
appears. In this menu, you can find the traditional editing functions (cut, copy, paste) and the
esperanto special characters when this language is selected.

7.3 In the Sound tab from the Preferences dialogue box, no instru-
ment can be found.

Sorry, this problem has already been spotted. It is because of the java virtual machine. This problem
is totally random. For example, in my case, I have a computer which works with Linux and Win 98.
With Win 98, the list doesn’t appear and with Linux, it does!! And I’m using the same JRE and have
no material problem. This may change from a JRE version to another.

7.4 I have screen updating problems when the turtle is drawing.

This is also a known problem of the JRE. I will try to deal with it in the future, I might be able to do
something about it. For now, there are two solutions:

• to minimize the window and increase its size again.

• To use the JRE 1.4.1 07 proposed on the website. With JRE > 1.5, it seems better.

7.5 How to type quickly a control used previously?

• First method: with the mouse, click on the line in the historic area, it will reappear immediately
on the control line.

53

• Second method: with the keyboard, the UP and Down arrows allow to navigate through the list
of the last controls that have been typed. (very practical).

7.6 How can you be helped?

• By reporting any observed bug. If you are able to reproduce systematically an observed problem,
it is even better.

• Any suggestion to improve the program is welcome.

• By helping to translate: in English especially...

• A little moral support is always welcome!

54

Index

absolute abs, 17
additem, 19
and, 18
animation, 13
appendlineflow, 26
arc, 12
arccosine, acos, 17
arcsine, asin, 17
arctangent, atan, 17

back, bk, 12
before?, 21
black, 11
blue, 11
brown, 11
butfirst, bf, 19
butlast, bl, 19

changedirectory, cd, 25
character,char, 20
chattcp, 41
circle, 12
clearscreen, cs, 13
cleartext, ct, 16
close, 14
closeflow, 26
colortext, ctext, 16
cosine, cos, 17
count, 20
countdown, 39
cyan, 11

darkblue, 11
darkgreen, 11
darkred, 11
date, 39
define, def, 24
deletesequence, delseq, 31
difference, 17
directory, dir, 25
distance, 14
div, divise, 17

dot, 13

empty?, 21
end, 22
endcountdown?, 39
endflow?, 26
equal?, 21
erall, 24
erase, er, 24
executetcp, 40

false, 21
fill, 28
fillzone, 28
findcolor, fc, 14
first, 19
fontname, 15
fontnametext, fnt, 16
fontsize, 15
fonttext, ftext, 16
for, 33
forward, fd, 12
fput, 19

gray, 11
green, 11

heading, 14
hideturtle, ht, 13
home, 12

if, 22
indexsequence, indseq, 31
instrument, instr, 31
integer, 17
integer?, 21
item, 19

key?, 35
kill, 24
killturtle, 31

label, 13
labellength, 13

55

last, 19
left, lt, 12
lightgray, 11
list, 19
list?, 21
listentcp, 40
listfiles, list, 25
listflow, 26
listvariables lvars, 24
load, 25
loadimage, li, 25
local, 24
localmake, 24
log10, 17
lput, 19

magenta, 11
make, 24
member, 21
member?, 21
message, msg, 15
minus, 17
mouse?, 36

not, 18
number?, 21

openflow, 25
or, 18
orange, 11
output, op, 30

pasttime, 39
pencolor, pc, 14
pendown, pd, 13
pendown?, pd, 21
penerase, pe, 13
penpaint, ppt, 13
penreverse, px, 13
penup, pu, 13
pi, 17
pick, 19
pink, 11
play, 31
poall, 24
pos, 14
posmouse, 36
power, 17
pr, print, 16
primitive?, prim?, 21
print, pr, 16

procedure?, proc?, 21
product, 17
purple, 11

quotient, 17

random, ran, 17
read, 35
readchar, 35
readcharflow, 26
readlineflow, 26
readmouse, 36
red, 11
remainder, 17
remove, 19
repaint, 14
repcount, 33
repeat, 33
reverse, 19
right, rt, 12
round, rnd, 17
run, 24

save, 25
saved, 25
screencolor, sc, 14
sendtcp, 41
sentence, se, 19
separation,sep, 15
sequence, seq, 31
setcolortext, sct, 16
setdirectory, setdir, 25
setfontname, setfn, 15
setfontnametext, setfnt, 16
setfontsize, setfs, 15
setfonttext, sft, 16
setheading, 13
setindexsequence, sindseq, 31
setinstrument, sinstr, 31
setitem, replace, 19
setpencolor, setpc, 14
setpenwidth, setpw, 14
setpos, 12
setscreencolor, setsc, 14
setseparation, setsep, 15
setshape, 14
setstyle, ssty, 16
setturtle, sturtle, 31
setx, 12
setxy, 12

56

sety, 12
shape, 15
showturtle, st, 13
sine, sin, 17
sqrt, 17
stop, 30
stopall, 30
sty, style, 16
sum, 17

tangent, tan, 17
thing, 24
time, 39
to, 22
towards, 14
trace, 23
true, 21
turtle, 31
turtles, 31

unicode, 20

visible?, 21

wait, 39
wash, 13
while, 34
white, 11
window, 14
word, 19
word?, 21
wrap, 14
write, 16
writelineflow, 26

yellow, 11

zonesize, 15

57

