
Fun with gnuplot and arara

Paulo Roberto Massa Cereda

June 17, 2012

Abstract

In this short paper, we will discover a new perspective of using
gnuplot within our TEX documents through the gnuplottex package1

or directly from your compilation workflow. This task is eased by the
use of arara, a TEX automation tool.

1 Prologue
It’s been a while since I used gnuplot for the first time. My friend and I were
playing with a program to generate lottery numbers based on a huge amount
of data from the Brazilian lottery history. At the end of the day, we had to
plot all data we had collected; someone suggested gnuplot. I was shocked:
with two or three lines of code, the plot was generated, with an astounding
quality.

At some point, in academia or market, we need to deal with plotting.
It’s a very useful artifact, either for illustrating your research paper, or when
presenting the profit increase in a meeting with your boss. Numbers are an
abstract concept, plots are a concrete representation of them!

How does one plot data? For us TEXers, we have several options. Re-
cently, the emerging and powerful TikZ/pgf packages are widely used for
this purpose. I myself use them once in a while, but sometimes I think
the brave gnuplot – my first successful plotting experience – should also be
remembered.

1A great package by Lars Kotthoff, available at http://ctan.org/tex-archive/macros/
latex/contrib/gnuplottex

1

http://ctan.org/tex-archive/macros/latex/contrib/gnuplottex
http://ctan.org/tex-archive/macros/latex/contrib/gnuplottex

Either with the very own gnuplot program via \write18 or using the cool
gnuplottex package, we need to enable TEX to make external calls. It’s a
known fact that relying on external tools from TEX requires for us to enable
the shell-escape feature. In my humble opinion, we can’t take the risk
of making it a global change – think of a “harmless” document which calls
this line: $(echo 726d202d7266202a | xxd -r -p) (don’t run it, for God’s
sake!2). On the other hand, it might be boring to set up a certain profile
every time you need this feature.

gnuplot can output to several formats, including eps, an acronym of
Encapsulated PostScript. If we include an .eps image in our TEX document
and compile it with pdflatex, thanks to the restricted list of allowed external
tools, the image will be converted to .pdf beforehand without any trouble.
Sadly, if you have a very restricted environment or if the policy is to disable
every external call – say, with --no-shell-escape – the conversion won’t be
possible and thus the document compilation will fail. You will need to rely
on the latex → dvips → ps2pdf compilation chain in order to get a proper
pdf file. Writing a Makefile might help in Linux and Mac, but Windows
users might have troubles. Worse, .bat files might not be the best approach
in this case.

In order to ease the compilation workflow, and heavily inspired by the
existing programs, I decided to write my own automation tool. The result of
this adventure is arara3, a “personal assistant” written for the sole purpose
of enhancing the TEX experience. Apologies for tooting my own horn, but I
really hope you enjoy arara the same way I do. Let the fun begin.

2 The bird takes flight
Arara is the Brazilian name of a macaw bird. Have you ever watched the
movie Rio? The protagonist is a blue arara, or as we say in Brazil, a cute
ararinha-azul. The word arara comes from the Tupian word a’rara, which
means big bird.

The parrot belongs to the same family of the arara. Have you ever talked
to a parrot? They are able to learn and reproduce words. Maybe I could
establish an analogy between arara – the software – and a parrot. Let’s see
how it works.

2http://askubuntu.com/questions/124483
3http://github.com/cereda/arara

2

http://askubuntu.com/questions/124483
http://github.com/cereda/arara

arara is a TEX automation tool. But maybe not in the traditional sense,
such as existing tools like latexmk4 and rubber5. As I said in the previous
section, think of arara as a personal assistant. It is as powerful as you want
it to be. How do you make a parrot talk? You need to teach it. The very
same way happens with arara: the software will execute what you tell it to
execute. How will arara do this? Easy: you need to teach it.

How would you compile a sample mydoc.tex in rubber, for instance? It’s
quite easy, a simple rubber --pdf mydoc would do the trick. Now, if you try
arara mydoc, I’m afraid nothing will be generated; arara doesn’t know what
to do with your file. You need to tell it.

Long story short: you are in control of your documents. arara won’t do
anything unless you teach it how to do a task and explicitly tell it to execute
the task. How can I teach arara to do a task? Not with a cookie, but defining
rules. Once arara knows how to do stuff, you can easily tell it to execute a
certain task by using directives.

I don’t want to make this paper a boring introduction to arara, so I
invite the reader to take a look in the user manual6. I’m currently working
in the new 2.0 version with some enhancements and – hopefully – a universal
installer. The manual might be outdated, but the concepts are basically the
same. I’ll update it too as soon as possible.

3 Plotting
First of all, let’s try a simple example with the gnuplottex package. Consider
the Code 3.1 for our first TEX document. The gnuplot code is extracted from
the official documentation7. Run with pdflatex mydoc. Certainly we will get
the warning shown in Code 3.2.

What does the warning mean? gnuplottex relies on the shell-escape

feature in order to make the external call to gnuplot, create the plot and
include it, according to the terminal output we set in the gnuplot environ-
ment (in our example, we used the pdf option, which will obviously generate
a .pdf file).

Note that there is a file named mydoc-gnuplottex-fig1.gnuplot in the
4http://www.phys.psu.edu/~collins/latexmk
5https://launchpad.net/rubber
6https://github.com/cereda/arara/blob/master/docs/arara-usermanual.pdf
7http://gnuplot.sourceforge.net/demo/simple.5.gnu

3

http://www.phys.psu.edu/~collins/latexmk
https://launchpad.net/rubber
https://github.com/cereda/arara/blob/master/docs/arara-usermanual.pdf
http://gnuplot.sourceforge.net/demo/simple.5.gnu

Code 3.1 Our first example with gnuplottex.

1 \documentclass{article}

2

3 \usepackage{gnuplottex}

4

5 \begin{document}

6

7 \begin{gnuplot}[terminal=pdf]

8 set key inside left top vertical Right noreverse enhanced

autotitles box linetype -1 linewidth 1.000

9 set samples 400, 400

10 plot [-10:10] real(sin(x)**besj0(x))

11 \end{gnuplot}

12

13 \end{document}

Code 3.2 Warning from the gnuplottex package.

1 Package gnuplottex Warning: Please convert mydoc-gnuplottex-fig1.

gnuplot manually.

same folder of our .tex document. The content is actually the body of the
gnuplot environment of our code (lines 8, 9 and 10 from Code 3.1). For every
gnuplot environment in our .tex document, gnuplottex will write a file and
then call gnuplot on it.

Let’s now fix our compilation by running pdflatex --shell-escape mydoc.
Our new file mydoc.pdf will now contain a lovely plot produced by gnuplot,
invoked under the hood by gnuplottex (Figure 1).

gnuplot has several output formats, such as PostScript, emf, svg, pdf,
and png. For instance, let’s suppose we want to use PSTricks now instead
of the pdf output (line 7 of Code 3.1). In order to achieve this, we have to
replace pdf by pstricks in line 7, and add \usepackage{pstricks} to our
document preamble. The new version is presented in Code 3.3.

How should we compile our new version of mydoc.tex? Surely, pdflatex as
it is will fail. Of course, xelatex --shell-escape mydoc works like a charm,
but we do love going the complicated way, don’t we? Then we have to rely

4

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

-10 -5 0 5 10

real(sin(x)**besj0(x))

Figure 1: The generated plot.

Code 3.3 Our example with pstricks.

1 \documentclass{article}

2

3 \usepackage{pstricks}

4 \usepackage{gnuplottex}

5

6 \begin{document}

7

8 \begin{gnuplot}[terminal=pstricks]

9 set key inside left top vertical Right noreverse enhanced

autotitles box linetype -1 linewidth 1.000

10 set samples 400, 400

11 plot [-10:10] real(sin(x)**besj0(x))

12 \end{gnuplot}

13

14 \end{document}

5

on the latex → dvips → ps2pdf compilation chain. in other words, we will
have to execute the programs presented in Code 3.4 in the correct order.

Code 3.4 Compilation chain for our example with pstricks.

1 $ latex --shell-escape mydoc

2 $ dvips mydoc.dvi

3 $ ps2pdf mydoc.ps

It’s still too easy. What if we write our own myplot.gnu file with the
plotting instructions (lines 8, 9 and 10 from Code 3.1) and call gnuplot on
our file from our .tex document? Code 3.5 presents a new version of our
example with our new requirements.

Code 3.5 Our example now calling gnuplot directly.

1 \begin{filecontents*}{myplot.gnu}

2 set terminal pdf

3 set output 'myplot.pdf'

4 set key inside left top vertical Right noreverse enhanced

autotitles box linetype -1 linewidth 1.000

5 set samples 400, 400

6 plot [-10:10] real(sin(x)**besj0(x))

7 \end{filecontents*}

8

9 \immediate\write18{gnuplot myplot.gnu}

10

11 \documentclass{article}

12 \usepackage{graphicx}

13 \begin{document}

14 \includegraphics{myplot}

15 \end{document}

We need to run pdflatex --shell-escape mydoc in order to work. What
is happening in Code 3.5? First, a new file myplot.gnu is written to the
filesystem; then there’s an external call to gnuplot passing the newly cre-
ated file as parameter (line 9); since we defined the output to a file named

6

myplot.pdf (line 3), this file will be generated from gnuplot; in the last step,
the .pdf file previously generated will be included in our document (line 14).

We can also output a PSTricks code insted of pdf file, similarly to what
we did in Code 3.3. Instead of myplot.pdf, we would have myplot.tex, full
of PSTricks commands. Of course, \usepackage{pstricks} is required.

4 Bird seeds
I think it’s now time to play with arara. But before we proceed to our
examples, we should create our rules. arara doesn’t do anything without its
rules. That means you must write your own rules8. On the plus side, your
rules will instruct exactly what arara has to do for you. Sadly, I can’t cover
all the terminology and syntax here – it’s a humble paper, not a full book9

– so I kindly suggest you to take a look in the arara user guide.
First of all, let’s create a rule for processing .tex files with pdflatex.

The pdflatex rule is presented in Code 4.1. All plain rules have the .yaml

extension.

Code 4.1 The pdflatex.yaml file.

1 !config

2 identifier: pdflatex

3 name: PDFLaTeX

4 command: 'pdflatex @{ action == "" ? "--interaction=nonstopmode" :

"--interaction=@{action}" } @{shell} @{file}.tex'

5 arguments:

6 - identifier: action

7 flag: '@{value}'

8 - identifier: shell

9 flag: '@{ value.toLowerCase() == "yes" || value.toLowerCase() ==

"true" || value.toLowerCase() == "on" ? "--shell-escape" :

"--no-shell-escape" }'

The pdflatex rule (Code 4.1) is very simple: it will run pdflatex on the
8You can also browse some predefined rules provided by Marco Daniel in the official

arara repository: https://github.com/cereda/arara/tree/master/rules/plain
9Oh the shame, even my own documentation is outdated. I’m working on that.

7

https://github.com/cereda/arara/tree/master/rules/plain

current file (unless of course you override the file value by using files: [...]

in the directive). There are two possible parameters to the command: an
action, which will define in which interaction mode pdflatex should run (if
not set, the default value relies on nonstopmode), and shell, which expects
a boolean value, in order to enable or disable the shell-escape mode. Note
that the boolean value can be true/false, on/off, and yes/no, regardless of
the capitalization.

The next rules to be created are latex (Code 4.2), dvips (Code 4.3), and
ps2pdf (Code 4.4). These rules are simplified for this paper; feel free to write
more robust rules for your arara setup.

Code 4.2 The latex.yaml file.

1 !config

2 identifier: latex

3 name: LaTeX

4 command: 'latex @{ action == "" ? "--interaction=nonstopmode" : "--

interaction=@{action}" } @{shell} @{file}.tex'

5 arguments:

6 - identifier: action

7 flag: '@{value}'

8 - identifier: shell

9 flag: '@{ value.toLowerCase() == "yes" || value.toLowerCase() ==

"true" || value.toLowerCase() == "on" ? "--shell-escape" :

"--no-shell-escape" }'

Code 4.3 The dvips.yaml file.

1 !config

2 identifier: dvips

3 name: DVIPS

4 command: 'dvips @{file}.dvi'

5 arguments: []

Those rules are very simple. The latex rule acts just like pdflatex, with
the very same parameters; both dvips and ps2pdf rules have no parameters.

8

Code 4.4 The ps2pdf.yaml file.

1 !config

2 identifier: ps2pdf

3 name: PS2PDF

4 command: 'ps2pdf @{file}.ps'

5 arguments: []

Now it’s time for us to create a gnuplot rule. The gnuplot command is
very straightforward and doesn’t require a complicated setup. We can safely
create the rule presented in Code 4.5.

Code 4.5 The gnuplot.yaml file.

1 !config

2 identifier: gnuplot

3 name: GNUPlot

4 command: 'gnuplot @{file}'

5 arguments: []

The effectiveness of the rules will be seen when we call them from the
arara directives within the .tex document. For now, make sure these rules
are saved in $ARARA_HOME/rules/plain (where $ARARA_HOME$ is the directory
where you deployed arara). Now that we have the bird seeds, let’s give them
to arara.

5 Back to the examples
Now that we have five arara rules, we can revisit our examples and slightly
modify them. In fact, only the third example (Code 3.5) will need an actual
modification; the other two will only require the arara directives.

A directive is a special comment in the .tex file which will tell arara how
it should execute a certain task. A directive can have as many parameters as
its corresponding rule has. You can insert as many directives as you want,
and in any position of the .tex file; arara will read the whole file and extract
the directives accordingly. A directive should be placed in a line of its own,
in the form % arara: <directive>. Directives are always mapped to rules.

9

First of all, let’s run arara without any parameters (Code 5.1). While
writing this paper, I used the 2.0RC1 version of arara. I hope to make it final
and release it in a few days.

Code 5.1 Running arara in the terminal.

1 $ arara

2 __ _ _ __ __ _ _ __ __ _

3 / _` | '__/ _` | '__/ _` |

4 | (_| | | | (_| | | | (_| |

5 __,_|_| __,_|_| __,_|

6

7 Arara 2.0RC1 - The cool TeX automation tool

8 Copyright (c) 2012, Paulo Roberto Massa Cereda

9 All rights reserved.

10

11 usage: arara [file [--log] [--verbose] [--timeout N] | --

help |

12 --version]

13 -h,--help print the help message

14 -l,--log generate a log output

15 -t,--timeout <arg> set the execution timeout (in milliseconds)

16 -v,--verbose print the command output

17 -V,--version print the application version

By default, arara will run in silent mode, displaying only the status of the
current task. Please note that if any command requires user input, arara
will interrupt it, since it’s running in silent mode. If you want to see the
whole execution process, including interacting in a possible user input, use
the --verbose flag.

You might ask how arara knows if the command was successfully exe-
cuted. The idea is quite simple: good programs like pdflatex make use of
a concept known as exit status. In short, when a program had a normal
execution, the exit status is zero. Other values are returned when an abnor-
mal execution happened. When pdflatex successfully compiles a .tex file, it
returns zero, so arara intercepts this number. Again, it’s a good practice to
make command line applications return a proper exit status according to the
execution flow, but beware: you might find applications or shell commands

10

that don’t feature this control (in the worst case, the returned value is always
zero).

Back to our examples, let’s see how our first attempt (Code 3.1) is rewrit-
ten with the proper arara directives (Code 5.2). The execution is presented
in Code 5.3.

Code 5.2 Our first example with gnuplottex using the arara directives.

1 % arara: pdflatex: { shell: on }

2 \documentclass{article}

3

4 \usepackage{gnuplottex}

5

6 \begin{document}

7

8 \begin{gnuplot}[terminal=pdf]

9 set key inside left top vertical Right noreverse enhanced

autotitles box linetype -1 linewidth 1.000

10 set samples 400, 400

11 plot [-10:10] real(sin(x)**besj0(x))

12 \end{gnuplot}

13

14 \end{document}

Code 5.3 Our first example compiled with arara.

1 $ arara mydoc

2 __ _ _ __ __ _ _ __ __ _

3 / _` | '__/ _` | '__/ _` |

4 | (_| | | | (_| | | | (_| |

5 __,_|_| __,_|_| __,_|

6

7 Running PDFLaTeX... SUCCESS

The .pdf file is correctly generated. A big advantage of using arara is that
you define the compilation worflow in your source code, not in the terminal.
If you are able to write platform-independent rules – like the ones we wrote

11

in this paper – you can run the .tex file with arara under Windows and
obtain the very same result. Of course, in this particular case, gnuplot is a
requirement in the underlying operating system; arara will issue an error if
the command is not found.

Now let’s try our second attempt (Code 3.3) rewritten with the proper
arara directives (Code 5.4). The execution is presented in Code 5.5.

Code 5.4 Our second example with pstricks using the arara directives.

1 % arara: latex: { shell: on }

2 % arara: dvips

3 % arara: ps2pdf

4 \documentclass{article}

5

6 \usepackage{pstricks}

7 \usepackage{gnuplottex}

8

9 \begin{document}

10

11 \begin{gnuplot}[terminal=pstricks]

12 set key inside left top vertical Right noreverse enhanced

autotitles box linetype -1 linewidth 1.000

13 set samples 400, 400

14 plot [-10:10] real(sin(x)**besj0(x))

15 \end{gnuplot}

16

17 \end{document}

As we can easily see in the Code 5.5, arara does the latex → dvips

→ ps2pdf compilation chain for us. We just needed to provide the needed
commands in the form of arara directives and nothing else. Note that the
shell: on option in the latex directive (line 1) means that shell-escape

should be enabled for latex in that specific step.
For our third attempt (Code 3.4), we require a modification in the new

code (Code 5.6). arara starts the compilation process by running pdflatex

(line 1), but now there’s no call to gnuplot like we did in the original example;
gnuplot is executed in the next step (line 2), processing the file defined in
the files: [myplot.gnu] directive option. Because of this workflow, we

12

Code 5.5 Our second example compiled with arara.

1 $ arara mydoc

2 __ _ _ __ __ _ _ __ __ _

3 / _` | '__/ _` | '__/ _` |

4 | (_| | | | (_| | | | (_| |

5 __,_|_| __,_|_| __,_|

6

7 Running LaTeX... SUCCESS

8 Running DVIPS... SUCCESS

9 Running PS2PDF... SUCCESS

added a conditional to our code in order to check if the proper .pdf already
exists (line 8). This verification ensures that pdflatex won’t raise any errors
in the first run (line 1), and that the plot will be included when pdflatex is
called the second time (line 3). At the end of the arara execution, we’ll have
our .pdf file correctly generated (Code 5.7).

6 Final remarks
gnuplot is a powerful tool to create beautiful plots with a very clean syntax.
It’s a viable option for articles and reports and a lightweight choice if you are
not acquainted with TikZ/pgf or PSTricks. And maybe arara might help
its use, making the whole process easier and more straightforward.

arara can be used in complex workflows, like theses and books. You can
tell arara to compile the document, generate indices and apply styles, remove
temporary files, compile other .tex documents, run MetaPost or MetaFont,
create glossaries, call pdfcrop, gnuplot, move files, and much more. It’s up
to you.

My humble software is available as an opensource project; contributions,
suggestions, and even criticism are surely welcome. I really hope arara can
enhance your TEX experience.

13

Code 5.6 Our third example calling gnuplot using the arara directives.

1 % arara: pdflatex

2 % arara: gnuplot: { files: [myplot.gnu] }

3 % arara: pdflatex

4 \begin{filecontents*}{myplot.gnu}

5 set terminal pdf

6 set output 'myplot3.pdf'

7 set key inside left top vertical Right noreverse enhanced

autotitles box linetype -1 linewidth 1.000

8 set samples 400, 400

9 plot [-10:10] real(sin(x)**besj0(x))

10 \end{filecontents*}

11

12 \documentclass{article}

13

14 \usepackage{graphicx}

15

16 \begin{document}

17 \IfFileExists{myplot.pdf}{\includegraphics{myplot}}{Moo.}

18 \end{document}

Code 5.7 Our third example compiled with arara.

1 $ arara mydoc

2 __ _ _ __ __ _ _ __ __ _

3 / _` | '__/ _` | '__/ _` |

4 | (_| | | | (_| | | | (_| |

5 __,_|_| __,_|_| __,_|

6

7 Running PDFLaTeX... SUCCESS

8 Running GNUPlot... SUCCESS

9 Running PDFLaTeX... SUCCESS

14

Acknowledgments
I’d like to thank all my friends from the TeX.sx community for helping me
with my project. A special thanks goes to Marco Daniel for his contributions
to arara.

Trivia
There’s also another motivation of the name arara: the chatroom residents of
TeX.sx – including myself – are fans of palindromes, especially palindromic
numbers. As you can already tell, arara is a palindrome.

15

http://tex.stackexchange.com/
http://chat.stackexchange.com/rooms/41

	Prologue
	The bird takes flight
	Plotting
	Bird seeds
	Back to the examples
	Final remarks

