
ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

An Introduction to Constraint (Logic)
Programming Using ECLiPSe

Stefano Benedettini

DEIS - Dipartimento di Elettronica Informatica e Sistemistica
University Bologna, Second Faculty of Engineering

Artificial Intelligence 2010

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Outline

1 Prolog as a Constraint Solver

2 ECLiPSe Extensions to Prolog
Syntactic Facilities
Iteration Constructs
Modules

3 Constraint Satisfaction with ECLiPSe

The Interval Constraints Library: ic
Search and Optimization with ECLiPSe

Other Constraint Libraries

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Topics

Constraint Logic Programming (CLP)

ECLiPSe constraint solver

Search methods for CLP (hints)

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Objectives

Re-discover Prolog as a constraint solver

Familiarize with ECLiPSe and its extensions to standard
Prolog
Get a grasp of Constraint Logic Programming

Learn how to model problems in ECLiPSe

Use constraint libraries

. . . have fun with the solver

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Objectives

Re-discover Prolog as a constraint solver

Familiarize with ECLiPSe and its extensions to standard
Prolog
Get a grasp of Constraint Logic Programming

Learn how to model problems in ECLiPSe

Use constraint libraries

. . . have fun with the solver

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Method

Laboratory lessons will follow a hands-on approach
During lessons you are supposed to experiment with
tools and techniques

Few novel theoretical concepts will be introduced

In order to make the most out of these lessons you should:

Have a fair theoretical background (i.e., study stuff you
saw during classes)
Explore new technologies on your own (documentations,
tutorials, websites)
Be productive as soon as possible

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Method

Laboratory lessons will follow a hands-on approach
During lessons you are supposed to experiment with
tools and techniques

Few novel theoretical concepts will be introduced

In order to make the most out of these lessons you should:

Have a fair theoretical background (i.e., study stuff you
saw during classes)
Explore new technologies on your own (documentations,
tutorials, websites)
Be productive as soon as possible
. . . anything else?

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Method

Laboratory lessons will follow a hands-on approach
During lessons you are supposed to experiment with
tools and techniques

Few novel theoretical concepts will be introduced

In order to make the most out of these lessons you should:

Have a fair theoretical background (i.e., study stuff you
saw during classes)
Explore new technologies on your own (documentations,
tutorials, websites)
Be productive as soon as possible

Ah, of course! You should have fun!

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Outline

1 Prolog as a Constraint Solver

2 ECLiPSe Extensions to Prolog
Syntactic Facilities
Iteration Constructs
Modules

3 Constraint Satisfaction with ECLiPSe

The Interval Constraints Library: ic
Search and Optimization with ECLiPSe

Other Constraint Libraries

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Premises

During this course a good understanding of Prolog will
be assumed

You all followed Viroli’s course so you’ll probably know
Prolog better than me anyway. . .

We will use fancy stuff like custom operators and struc-
tures
We won’t use fancier stuff like metaprogramming

Though you’re free to explore by yourselves

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Tools of the Trade

At this point any Prolog implementation will do

But we will abandon the usual Prolog fairly soon

You’d better start with ECLiPSe right away

http://eclipse-clp.org/

http://eclipse-clp.org/

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Resources for ECLiPSe

1 ECLiPSe main site http://eclipse-clp.org/

2 http://eclipse-clp.org/examples
3 Keep your friends close but your documentation closer:

http://eclipse-clp.org/doc (we will use that in
due time)

4 Introductory book on CP using ECLiPSe: Constraint Logic
Programming Using ECLiPSe

http://eclipse-clp.org/
http://eclipse-clp.org/examples
http://eclipse-clp.org/doc
http://www.cambridge.org/catalogue/catalogue.asp?isbn=0521866286

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Resources for Constraint Programming in
General

CS problems and models in various languages:
http://www.csplib.org/

Gecode: THE C++ library for CP (not for the faint of
heart)

Guido Tack’s Ph.D. dissertation (for a challenge)

Java library: http://jacop.osolpro.com/

Python library (proprietary):
http://www.eveutilities.com/products/emma

Python library (GPL):
http://labix.org/python-constraint

http://www.csplib.org/
http://www.gecode.org
http://www.ps.uni-saarland.de/Papers/abstracts/tackDiss.html
http://jacop.osolpro.com/
http://www.eveutilities.com/products/emma
http://labix.org/python-constraint

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Resources for Constraint Programming in
General

Comet language:
http://dynadec.com/support/downloads/ (keep
an eye on this)
On-line guide to CP by Roman Bartak

...and much more!

A blog on CP (serious stuff)

http://dynadec.com/support/downloads/
http://kti.ms.mff.cuni.cz/~bartak/constraints/
http://kti.ms.mff.cuni.cz/~bartak/guides.html
http://www.hakank.org/constraint_programming_blog/

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Mapping CSPs in Prolog

What we would like to do
Setup variables and domains

State constraints

Specify a search strategy

What Prolog has to offer
Logic variables and closed world assumption

Predicates can be seen as very basic form of constraint

Backtracking for free

What Prolog lacks
Constraint propagation ⇒ Efficiency!

Constraints and variables are not first-class citizens

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Constraints in Prolog

Any predicate is really a constraint

Example

member(X, [X|_]).
member(X, [_|T]) :- member(X, T).

p(X, X).
p(X, 3).

:- member(X, [1, 2, 3, 4]), X > 2.

yields X = 3, X = 4, while

:- member(X, [1, 2, 3, 4]), member(Y, [2, 3, 4, 5]),
p(X, Y).

yields (X, Y) = (1, 3), (2, 2), (2, 3), (3, 3), (3, 3), (4, 3), (4, 4)

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Do Constraints in Prolog Really Work. . . ?

Example
How about these?

:- X > 3, X < 2. % clearly inconsistent
:- 4 is X + 3. % clearly X = 1

Both raise an “Instantiation fault” error

Non-logical predicates and closed world assumption are
Prolog greatest weaknesses

Variables in arithmetic predicates must be instantiated
(else error)

For which values the second query is satisfied? For
none, because you never told Prolog that 1 + 3 is true

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Do Constraints in Prolog Really Work. . . ?

Example
How about these?

:- X > 3, X < 2. % clearly inconsistent
:- 4 is X + 3. % clearly X = 1

Both raise an “Instantiation fault” error

Non-logical predicates and closed world assumption are
Prolog greatest weaknesses

Variables in arithmetic predicates must be instantiated
(else error)

For which values the second query is satisfied? For
none, because you never told Prolog that 1 + 3 is true

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

. . . The Answer Is: “So So”

Consequences
Constraints can only be tested for satisfiability

There is no “constraint propagation” (domain reduction)

Prolog natively supports only generate and test!

CSP in Prolog

solve_problem(Variables) :-
declare_domains(Variables),
search(Variables),
test_constraints(Variables).

First I generate a complete assignment to the decision
variables

Then I test satisfiability

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

The Simplest Prolog Constraint Solver That
Can Possibly Work

% Define domains for a list of variables
domain([], _, []).
domain([H|T], D, [H dom D|Rest]) :- domain(T, D, Rest

).

% Define integral domains for a list of variables
ints(Xs, Min, Max, Vs) :-
int_range(Min, Max, R),
domain(Xs, R, Vs).

% Simple labeling
label([]).
label([V dom D|T]) :- member(V, D), label(T).

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Some Constraints

% In constraint
X in D :- member(X, D).

% Not in constraint
_ not_in [].
X not_in [H|T] :- not(X in [H|T]).

% All different
all_different([]).
all_different([H|T]) :-
all_different(T),
H not_in T.

% Ordered
ordered([_]).
ordered([X, Y|Z]) :- X < Y, ordered([Y|Z]).

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Outline

1 Prolog as a Constraint Solver

2 ECLiPSe Extensions to Prolog
Syntactic Facilities
Iteration Constructs
Modules

3 Constraint Satisfaction with ECLiPSe

The Interval Constraints Library: ic
Search and Optimization with ECLiPSe

Other Constraint Libraries

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

The ECLiPSe Programming Environment

ECLiPSe supports a number of extensions that facilitate
Prolog programming:

1 Structures and arrays
2 “Function-like” predicates
3 Iteration constructs
4 Modules

For more information, please refer to the User Manual
ECLiPSe is a mature piece of software. We won’t have time
to cover everything. You are encouraged to explore by
yourselves.

http://87.230.22.228/doc/userman/umsroot.html

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Outline

1 Prolog as a Constraint Solver

2 ECLiPSe Extensions to Prolog
Syntactic Facilities
Iteration Constructs
Modules

3 Constraint Satisfaction with ECLiPSe

The Interval Constraints Library: ic
Search and Optimization with ECLiPSe

Other Constraint Libraries

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

“Function-like” Predicates

Unofficial name to refer to a syntactic facility that allows
you to use custom predicates in expression context

“Expression Context” is wherever ECLiPSe expects arith-
metic operations that are subsequently evaluated
Usually indicated with metavariable Expr in documenta-
tion

You can use a n-ary predicate p(X1, . . . , Xn) as a func-
tion that expects X1, . . . , Xn−1 as arguments and returns
Xn as result

Example

p(_, 3).

summation([], 0).
summation([H|T], S) :- summation(T, S1), S is S1 + H.

:- 10 is 7 + p(ciao).
:- 19 < summation([1, 2, 3]) + 15.

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Structure Notation

An easy way to declare and access arguments of a Pro-
log structure

Declare a structure using:
:- local struct(functorName(fieldNames...)).
Can refer to fields by name instead of index
Use fieldName of structName to obtain field index

Example
Declaring and using a structure

:- local struct(student(name, surname, exam, mark)).

:- student{name:john, surname:doe} = student(N, SN, _
, _), N = john, SN = doe.

:- S = student{name:jane}, arg(4, S, 30), S = student
(jane, _, _, M), M = 30.

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Enumerations

ECLiPSe does not support directly enumerations, but they
can be emulated via structures

Encode each value of your enumeration with an integer
Declare a structure whose field names are the enumer-
ation values
Use operator of to map a value to an integer
You should never instantiate a structure of that kind
The inverse mapping is not as easy

Example
A color example

:- local struct(colors(black, white, red, green, blue
)).

:- X = black of colors, X = 1
:- X is (white of colors) + (red of colors), X = 5 %

useless but still

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Arrays

Arrays in ECLiPSe are really a syntactic convenience to indi-
cate structures of structures
Functor name is irrelevant

matrix(row(1, 2, 3), row(4, 5, 6)) is a 2×3
array and so is a(b(1, 2, 3), c(4, 5, 6))

dim(A, D) unifies a new array A with functor name [] and
its dimensions D
Use subscript/3 to access individual elements or array
slices
Usual C-like subscription operator available in expression con-
text provides same behaviour as subscript/3

Example

:- dim(A, [2, 3]), A = []([](_, _, _), [](_, _, _))
:- dim([]([](1, 2), [](3, 4)), D), D = [2, 2]
:- dim(A, [2, 3]), subscript(A, [2, 1..3], R1), R2 is

A[2, 1..3], R1 = R2

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Outline

1 Prolog as a Constraint Solver

2 ECLiPSe Extensions to Prolog
Syntactic Facilities
Iteration Constructs
Modules

3 Constraint Satisfaction with ECLiPSe

The Interval Constraints Library: ic
Search and Optimization with ECLiPSe

Other Constraint Libraries

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Why Iteration in Prolog?

Although every form of iteration can be expressed by a
recursion, this bring some disadvantages:
Code bloat: every iteration requires you to write an ad-

ditional predicate
Readability: those predicates are coded far away in your

code and impact readability
Non-locality: if your iteration has to access many local

variables, you have to write a predicate with
that many parameters

Iteration in ECLiPSe is as powerful as recursion and of-
ten more concise

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Iteration Constructs Generalities

All iteration constructs have the form
(IterationSpecifiers do Body)

IterationSpecifiers is a comma-separated sequence of
iteration specifiers

Each specifier introduces an iteration variable visible only
in Body

Body can access only variables provided by iteration
specifiers (but see param)

Each iteration step, iterations variables in Body are uni-
fied with iteration values

All iteration specifiers step in parallel and the whole loop
stops when one of the specifiers completes

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Iteration Constructs: foreach

(foreach(E, List) do Body) executes goal Body
iteratively unifying E to each element in list List

Has invertible semantics: can be used to scan a list or
to construct a list

Example

:- (foreach(E, [1, 2, 3]) do writeln(E)). % prints 1
2 3

:- (foreach(X, L), foreach(E, [10, 20, 30]) do X is E
// 10), L = [1, 2, 3].

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Iteration Constructs: param and count

param(Variables...) makes Variables visible in-
side iteration body

count(Index, MinExpr, MaxExpr) unifies Index to
each integer in [MinExpr , MaxExpr]

Example

multiply(L, K, Out) :-
(foreach(E, L), foreach(X, Out), param(K) do X is K

* E).

my_length(L, X) :- % same as length/2 builtin
(foreach(_, L), count(_, 1, X) do true).

:- (count(I, 1, 4) do writeln(I)). % prints 1 2 3 4

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Iteration Constructs: foreacharg and
foreachelem

foreacharg/2 iterates on a structure/array arguments
foreachelem/2 works only for arrays (functor name
must be []). Flattens the array and iterate on its ele-
ments
Both support an optional third argument that is unified to
element index

Example

:- M = []([](1, 2, 3), [](4, 5, 6)), (foreachelem(E,
M) do writeln(E)), % prints 1 2 3 4 5 6

(foreacharg(Row, M) do writeln(Row)), % prints [](1,
2, 3) [](4, 5, 6)

(foreachelem(E, M, [I, J]) do writeln(I-J-E)), %
prints 1-1-1 1-2-2 1-3-3 2-1-4 2-2-5 2-3-6

(foreacharg(R, M, I) do writeln(I-R)). % prints
1-[](1, 2, 3) 2-[](4, 5, 6)

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Iteration Constructs: for and multifor

for(Index, MinExpr, MaxExpr) work like its im-
perative counterpart
multifor(IndexList, MinList, MaxList) con-
cisely describes multiply nested fors
Both constructs support an optional fourth argument to
provide an iteration step

Example

evens(L) :-
(for(I, 2, 100, 2), foreach(I, L) do true).

mutliplication_table(T) :-
dim(T, [10, 10]),
(multifor([X, Y], [1, 1], [10, 10]), % also multifor

([X, Y], 1, 10)
foreachelem(E, T) do
E is X * Y

).

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Iteration Constructs: fromto

Most general construct
(fromto(Init, In, Out, Last) do Body) intro-
duces local variables In and Out in Body and behaves
as follows:

1 First Init = In
2 Executes iteration body
3 After each iteration checks whether Last = Out and

breaks if unification succeeds
4 Otherwise unifies a fresh In variable with Out and re-

peats from step 2

Example

filter_even(L, F) :-
(foreach(E, L), fromto(L, In, Out, []) do
(0 is E rem 2 -> In = [E|T], Out = T; In = Out)

).

reverse(L, R) :-
(foreach(E, L), fromto([], In, [E|In], R) do true).

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Outline

1 Prolog as a Constraint Solver

2 ECLiPSe Extensions to Prolog
Syntactic Facilities
Iteration Constructs
Modules

3 Constraint Satisfaction with ECLiPSe

The Interval Constraints Library: ic
Search and Optimization with ECLiPSe

Other Constraint Libraries

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

ECLiPSe Modules in a Nutshell

Advantages
Group functionally related predicates in the same place

Usually one module for each file

Control naming access

Modules form a namespace structure

Using modules

use lib(ModuleName) to compile an ECLiPSe library
and import exported names

use use_module(ModuleName) to compile a module
and import its exported names

use : operator to disambiguate a name:
ModuleName:(predicate)

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

ECLiPSe Modules in a Nutshell

Writing modules
use directive module(ModuleName) at the top of a
source file to define a module

export directive states which predicates to export

Example

:- module(my_little_module).
:- export print_matrix/1.

print_row(Row) :-
(foreachelem(E, Row) do write(E), write(" ")),
nl.

print_matrix(M) :-
(foreacharg(Row, M), param(M) do print_row(Row)).

print_matrix is available when this module is imported
but print_row is not.

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Outline

1 Prolog as a Constraint Solver

2 ECLiPSe Extensions to Prolog
Syntactic Facilities
Iteration Constructs
Modules

3 Constraint Satisfaction with ECLiPSe

The Interval Constraints Library: ic
Search and Optimization with ECLiPSe

Other Constraint Libraries

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Overcoming Prolog Limitations

The Disease
Variables in arithmetic constraints must be instantiated

Constraint predicates are mostly used for testing and
cannot instantiate variables except the simplest like or,
and, etc. . .

No constraint propagation

The Cure
Every goal (i.e., constraint) that is not fully instantiated
is suspended and put into the constraint store

Propagation is applied to variable domains at different
strength

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Before the Cure

Example

ordered_list([_]).
ordered_list([X, Y|T]) :- X < Y, ordered_list([Y|T]).

:- ordered_list([1, 2, 3, 4, 5]). % works as expected
:- ordered_list([1, X, 3, Y, 5]). % we suppose X, Y

be integral variables

The second goal raises an instantiation error.

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

After the Cure

Example

:- lib(ic). % load a solver library

ordered_list([_]).
ordered_list([X, Y|T]) :- X #< Y, ordered_list([Y|T])

.

:- ordered_list([1, X, 3, Y, 5]).
:- ordered_list([1, X, Y, 5]).

In the first case ECLiPSe enforces variable integrality and cor-
rectly propagates the constraints 1 < X < 3 and 3 < Y < 5
thereby inferring X = 2, Y = 4.
In the second case we have a delayed goal, that is a goal
that cannot be solved at the moment. ECLiPSe propagates
inequalities and infers X ∈ 2, 3, Y ∈ 3, 4.

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

How to Write a Problem Model

CSP in ECLiPSe

solve_problem(Variables) :-
declare_domains(Variables),
setup_constraints(Variables),
search(Variables).

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

How to Write a Problem Model

CSP in ECLiPSe

solve_problem(Variables) :-
declare_domains(Variables),
setup_constraints(Variables),
search(Variables).

This part comprises model definition.

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

How to Write a Problem Model

CSP in ECLiPSe

solve_problem(Variables) :-
declare_domains(Variables),
setup_constraints(Variables),
search(Variables).

This is the actual search.

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

How to Write a Problem Model

CSP in ECLiPSe

solve_problem(Variables) :-
declare_domains(Variables),
setup_constraints(Variables),
search(Variables).

Modeling and search are independent phases in the resolu-
tion of a problem.

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

How to Write a Problem Model

CSP in ECLiPSe

solve_problem(Variables) :-
declare_domains(Variables),
setup_constraints(Variables),
search(Variables).

Problem model and choice points
Do not leave choice points during constraint setup!

If you do, the solver will miss an opportunity do con-
straint propagation

You are actually splitting a CSP into multiple CSPs, mak-
ing choices before propagation, not after

But it doesn’t mean you can’t use Prolog non determin-
ism

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

An Overview of the Libraries

We’ll mostly use only the more recent ic library and
briefly touch its derivatives:
ic_global very useful global constraints
ic_sets supports set variables

ic_symbolic handles (not so) conveniently symbolic
domains

Don’t use old fd libraries: stick with ic!

Basic searching strategies and B&B optimization
Many more constraints available (look them up in the
documentation):

Bin packing
Knapsack
Scheduling

Generalized Propagation and Constraint Handling Rules
(CHR) will be barely mentioned

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Outline

1 Prolog as a Constraint Solver

2 ECLiPSe Extensions to Prolog
Syntactic Facilities
Iteration Constructs
Modules

3 Constraint Satisfaction with ECLiPSe

The Interval Constraints Library: ic
Search and Optimization with ECLiPSe

Other Constraint Libraries

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Introduction

Powerful hybrid solver that works on (intervals of) inte-
gers and reals

Variable domains are unions of disjoint intervals
It enforces bound consistency:

Weaker than arc-consistency
Iteratively “squeezes” a variable domain: x , y ∈ [0, 5] ∩
Z, x < y ⇒ x ∈ [0, 4], y ∈ [1, 5]
Cannot propagate “holes”

Handles linear, arithmetic and non-linear constraints
Issues with real variables:

How do we cope with limited precision?
How do we represent “holes” in a real domain?
Does this make sense: x ∈ [0, 1], x 6= 0.5?

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Variable Domains

Constrains integer as well real domains with ::, $::
and #:: operators:

ListOfVariables :: RangeSpecification
specify either an integer or a real domain depending on
the range specification
$:: enforces real domains
#:: enforces integer domain
I suggest to employ only #:: or $:: to clearly state
variable type

These operators work also with multidimensional arrays

See documentation for further details

Example

:- Var #:: [1..5, 7, 9..12].
:- [X, Y] #:: 1..5.
:- dim(A, [3, 2]), A :: 0..1.0.

http://eclipse-clp.org/doc/bips/lib/ic/index.html

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Arithmetic Constraints

ic support every arithmetic and comparison operator of
standard Prolog

qualified use: ic:(X op Y) where op is one of >, <,
=<, =:=, =\=, +, -, *, . . .
Prepend $ to comparison predicates to avoid qualifica-
tion: $>, $<, $=<, $=, $\=, . . .
Prepend # to comparison predicates to also enforce in-
tegrality: #>, #<, #=<, #=, #\=, . . .

New variables spawn into existence as soon they are
used

Example

:- [X, Y] :: 1..5.0, Z #= X + 1, ic:(Z < Y). % 1
:- length(V, 4), V :: 0..5, (fromto(V, [X, Y|T], [Y|T

], [_]) do ic:(X < Y)). % 2

1 X ∈ [1, 3] ∩ N, Y ∈ [2, 5], Z ∈ [2, 4] ∩ N

2 ∀i ∈ [1, 4] xi ∈ N, x1 ∈ [0, 2], x2 ∈ [1, 3], x3 ∈ [2, 4], x4 ∈ [3, 5]

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Boolean Constraints

ic supports basic boolean operators:
or, and, xor, => all infix and neg (for negation)

They automatically enforce a boolean domain, that is
{0, 1}

Example
How to solve a SAT without really trying

:- X and (Y or Z) and (X or neg Y)
:- X and neg X

1 Infers X = 1
2 Infers inconsistency

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Reified Constraints

How can we conditionally enforce a constraint?
How can I express if x ∈ [1, 3] then y < z?
Remember that we cannot leave choice points so, for
instance, operator -> is out of question

Reified constraints come to the rescue
Domain, comparison and boolean constraints all have a
reified version

If the original constraint is op(X, Y), its reified version
is op(X, Y, B) where B is a boolean variable
If B = 1 the constraint holds, otherwise holds its nega-
tion

Thanks to “function-like predicate” facility we can “chain”
reified constraints in expression context

:- #<(X, Y, B1), #::(X, 1..5, B2), B1 or B2.

becomes

:- (X #< Y) or (X #:: 1..5).

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Global Constraints and Propagation Strength

Most of constraints in ic are binary
Also alldifferent is nothing more than manually set-
ting pairwise inequalities

We need a better way to model global constraints than
separating them in binary constraints

Propagation strength is lower
That is we cannot rule out as many values as a we could

Enter ic_global
Lots of high level constraints:

Minimum/maximum of a list
occurrences
a stronger alldifferent
ordered (useful for symmetry breaking)

Also check ac_eq in ic
Provides an arc-consistent (and not only bound consis-
tent) version of X #= Y + C (C is an integer constant)

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

An Example with Global Constraints

:- length(V, 100), V #:: 1..99, ic:alldifferent(V).
:- length(V, 100), V #:: 1..99, ic_global:

alldifferent(V).
:- length(V, 5), V #:: 1..5, ordered(<, V).
:- [X, Y] #:: 1..10, X #\= 7, X #= Y + 2.
:- [X, Y] #:: 1..10, X #\= 7, ac_eq(X, Y, 2).

1 Clearly inconsistent but no propagation is performed
2 Immediately returns “No” as answer
3 Correctly infers, Xi = i , i = 1, . . . , 5
4 X ∈ [3, 6] ∪ [8, 10] and Y ∈ [1, 8] but cannot propagate

the “hole” at X = 7
5 X ∈ [3, 6] ∪ [8, 10] and Y ∈ [1, 4] ∪ [6, 8]: now it is arc

consistent

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Outline

1 Prolog as a Constraint Solver

2 ECLiPSe Extensions to Prolog
Syntactic Facilities
Iteration Constructs
Modules

3 Constraint Satisfaction with ECLiPSe

The Interval Constraints Library: ic
Search and Optimization with ECLiPSe

Other Constraint Libraries

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Labeling

Propagation is insufficient to prove satisfiability in all but the
simplest CSPs
In ECLiPSe this translate into having delayed goals
The simples strategy consists in:

1 Recursively considering all unassigned variables in some
order

2 Try all values in its domain in ascending order
3 Return a feasible assignment or backtrack and try another

value

this is called labeling

Example
Pythagorean Triplets

:- V = [A, B, C], V #:: 1..100, ordered(<, V), A^2 + B^2
#= C^2, findall(V, labeling(V), L).

There are 52 unique Pythagorean triplets of integers in
[1, 100]
Note the use of ordered to remove symmetries

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Fine Tuning Your Search

ECLiPSe provides a general mechanism to customize a
search in the form of predicate ic:search

You must specify:
1 Variable selection strategy
2 Value selection strategy

Some heuristics are already defined:
Variable selection: input order, (anti) first-fail, most-constrained,

. . .
Value selection: ascending order, starting from max/mid-

dle/min value, . . .

Search strategy can have a huge impact on efficiency

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Optimization by Branch-and-Bound

ECLiPSe comes also with a ready-made B&B implemen-
tation to tackle constraint optimization problems
You must also provide an objective function f
ECLiPSe B&B works as follows (for minimization prob-
lems):

1 Generates a feasible solution s and impose the con-
straint f (s′) < f (s) for the remainder of the search

2 Restarts or continues the search

Example
Which is the largest integer n < 1000 such that the cube of
the sum of its digits equals the number itself?

:- [X, Y, Z] #:: 0..9,
N #= 100 * X + 10 * Y + Z,
C #= (-N),
(X + Y + Z)^3 #= N,
minimize(labeling([X, Y, Z]), C).

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Optimization by Branch-and-Bound

ECLiPSe comes also with a ready-made B&B implemen-
tation to tackle constraint optimization problems

You must also provide an objective function f
ECLiPSe B&B works as follows (for minimization prob-
lems):

1 Generates a feasible solution s and impose the con-
straint f (s′) < f (s) for the remainder of the search

2 Restarts or continues the search

Example
Convert a maximization into a minimization problem.

:- [X, Y, Z] #:: 0..9,
N #= 100 * X + 10 * Y + Z,
C #= (-N),
(X + Y + Z)^3 #= N,
minimize(labeling([X, Y, Z]), C).

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Optimization by Branch-and-Bound

ECLiPSe comes also with a ready-made B&B implemen-
tation to tackle constraint optimization problems
You must also provide an objective function f
ECLiPSe B&B works as follows (for minimization prob-
lems):

1 Generates a feasible solution s and impose the con-
straint f (s′) < f (s) for the remainder of the search

2 Restarts or continues the search

Example
Which is the largest integer n < 1000 such that the cube of
the sum of its digits equals the number itself? It’s 512.

:- [X, Y, Z] #:: 0..9,
N #= 100 * X + 10 * Y + Z,
C #= (-N),
(X + Y + Z)^3 #= N,
minimize(labeling([X, Y, Z]), C).

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Outline

1 Prolog as a Constraint Solver

2 ECLiPSe Extensions to Prolog
Syntactic Facilities
Iteration Constructs
Modules

3 Constraint Satisfaction with ECLiPSe

The Interval Constraints Library: ic
Search and Optimization with ECLiPSe

Other Constraint Libraries

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Symbolic Domains With ic_symbolic

Sometimes it’s more natural to work with a finite domain
other than (an interval of) integers

Colors
Days of the week

ic_symbolic permits this kind of symbolic domains
This library is implemented on top of ic
Every value in a symbolic domain is mapped to an inte-
ger
Define a new symbolic domain with domain declaration
:- local domain(domainName(values...)).

Example

:- local domain(weekday(mo, tu, we, th, fr, sa, su)).

:- X &:: weekday, X &\= tu, X &< fr.

Note the implicit ordering of values.

ECLiPSe CLP

Stefano
Benedettini

Scope and
Motivations

Prolog as a
Constraint
Solver

ECLiPSe

Extensions to
Prolog
Syntactic Facilities

Iteration Constructs

Modules

Constraint
Satisfaction
with ECLiPSe

The Interval
Constraints Library:
ic

Search and
Optimization with
ECLiPSe

Other Constraint
Libraries

Set Variables With ic_sets

This library manipulates integer set variables
A set is simply a sorted list of integers without repetitions
Much like ic, it provides bound consistency on set vari-
able domains
But what is a “range of sets”?
A set variable σ is a triple: 〈Slb, Sub, C〉

Slb is a set containing all the elements which are cer-
tainly in σ

Sub is a set containing all the elements that might be in
σ (obviously Slb ⊆ Sub)
C is an integer variable equal to |σ|

See also the concept of Lattice

Example

:- X :: [1]..[1, 2, 3], insetdomain(X, _, _, _).

Finds: 〈{1, 2, 3}, {1, 2}, {1, 3}, {1}〉

http://en.wikipedia.org/wiki/Lattice_(order)

	Scope and Motivations
	Prolog as a Constraint Solver
	ECLiPSe Extensions to Prolog
	Syntactic Facilities
	Iteration Constructs
	Modules

	Constraint Satisfaction with ECLiPSe
	The Interval Constraints Library: ic
	Search and Optimization with ECLiPSe
	Other Constraint Libraries

