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Q Prolog as a Constraint Solver

© EcLiPse Extensions to Prolog
@ Syntactic Facilities
@ lteration Constructs
@ Modules

© constraint Satisfaction with ECL! PS®
@ The Interval Constraints Library: i c
@ Search and Optimization with ECL'PS®
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Scope and
Motivations

@ Constraint Logic Programming (CLP)
@ ECLIPS® constraint solver

@ Search methods for CLP (hints)
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Objectives

@ Re-discover Prolog as a constraint solver

@ Familiarize with ECL'PS® and its extensions to standard

Prolog

@ Get a grasp of Constraint Logic Programming

@ Learn how to model problems in ECL'PS®
@ Use constraint libraries
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Objectives

@ Re-discover Prolog as a constraint solver

@ Familiarize with ECL'PS® and its extensions to standard
Prolog
@ Get a grasp of Constraint Logic Programming

@ Learn how to model problems in ECL'PS®
@ Use constraint libraries

@ ...have fun with the solver
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ECL'PS® CLP Method

Stefano

Benedettini
@ Laboratory lessons will follow a hands-on approach
@ During lessons you are supposed to experiment with
tools and techniques
Symtacic Factes @ Few novel theoretical concepts will be introduced
Iteration Constructs
@ In order to make the most out of these lessons you should:
@ Have a fair theoretical background (i.e., study stuff you
The Interval H
ConsiaisLivary saw during classes)
sechons @ Explore new technologies on your own (documentations,
s tutorials, websites)

Other Constraint

s @ Be productive as soon as possible



ECL'PS® CLP Method

Stefano

Benedettini
@ Laboratory lessons will follow a hands-on approach
@ During lessons you are supposed to experiment with
tools and techniques
B @ Few novel theoretical concepts will be introduced
@ In order to make the most out of these lessons you should:
@ Have a fair theoretical background (i.e., study stuff you
ol saw during classes)
S @ Explore new technologies on your own (documentations,
Simzgton wih tutorials, websites)
Dbrariss @ Be productive as soon as possible

@ ...anything else?
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Method

@ Laboratory lessons will follow a hands-on approach
@ During lessons you are supposed to experiment with
tools and techniques
@ Few novel theoretical concepts will be introduced
@ In order to make the most out of these lessons you should:

@ Have a fair theoretical background (i.e., study stuff you
saw during classes)

@ Explore new technologies on your own (documentations,
tutorials, websites)

@ Be productive as soon as possible

@ Ah, of course! You should have fun!



2 @ Prolog as a Constraint Solver

Constraint

Solver

© ECLiPs® Extensions to Prolog
@ Syntactic Facilities
@ lteration Constructs
@ Modules

© cConstraint Satisfaction with ECL'PS®
@ The Interval Constraints Library: i c
@ Search and Optimization with ECL'PS®
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ECL/PS® CLP Premises
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@ During this course a good understanding of Prolog will
be assumed
s @ You all followed Viroli's course so you'll probably know
e Prolog better than me anyway. ..
@ We will use fancy stuff like custom operators and struc-
tures
@ We won't use fancier stuff like metaprogramming

Optimizaton with @ Though you're free to explore by yourselves
ECL'PS®

Other Constraint

Libraries
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Tools of the Trade

@ At this point any Prolog implementation will do
@ But we will abandon the usual Prolog fairly soon
@ You'd better start with ECL'PS® right away

http://eclipse-clp.org/
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http://eclipse-clp.org/
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Resources for ECL'PS®

@ ECL'PS® main site ht t p: / / ecl i pse-cl p. or g/
@ http://eclipse-clp.org/exanples
© Keep your friends close but your documentation closer:

@ http://eclipse-clp.org/ doc (we will use that in
due time)

@ Introductory book on CP using ECL'PS®: Constraint Logic
Programming Using ECL'PS*®
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http://eclipse-clp.org/
http://eclipse-clp.org/examples
http://eclipse-clp.org/doc
http://www.cambridge.org/catalogue/catalogue.asp?isbn=0521866286
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Resources for Constraint Programming in
General

CS problems and models in various languages:
http://ww. csplib.org/

Gecode: THE C++ library for CP (not for the faint of
heart)

Guido Tack’s Ph.D. dissertation (for a challenge)
Java library: http: / /] acop. osol pro. com

Python library (proprietary):
http://ww. eveutilities.coniproducts/ema

Python library (GPL):
http://1abi x. org/ pyt hon-constrai nt


http://www.csplib.org/
http://www.gecode.org
http://www.ps.uni-saarland.de/Papers/abstracts/tackDiss.html
http://jacop.osolpro.com/
http://www.eveutilities.com/products/emma
http://labix.org/python-constraint
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Resources for Constraint Programming in
General

@ Comet language:

http://dynadec. com support/downl oads/ (keep
an eye on this)

@ On-line guide to CP by Roman Bartak
@ ...and much more!

@ A blog on CP (serious stuff)
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http://dynadec.com/support/downloads/
http://kti.ms.mff.cuni.cz/~bartak/constraints/
http://kti.ms.mff.cuni.cz/~bartak/guides.html
http://www.hakank.org/constraint_programming_blog/

Mapping CSPs in Prolog

a%?lrﬁ“a;i What we would like to do

ErmEsa @ Setup variables and domains

Constraint

Solver @ State constraints

- @ Specify a search strategy

Prolog

What Prolog has to offer
Constraint

- @ Logic variables and closed world assumption

with ECL' PS®

@ Predicates can be seen as very basic form of constraint
@ Backtracking for free

What Prolog lacks

@ Constraint propagation = Efficiency!
@ Constraints and variables are not first-class citizens
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Constraints in Prolog

@ Any predicate is really a constraint

menber (X, [X _]).

menber (X, [_|T]) :- menber(X, T).
pP(X, X).

p(X, 3).

i- menber(X, [1, 2, 3, 4]), X > 2.
yields X = 3, X = 4, while

- menber (X, [1, 2, 3, 4]), member(Y, [2, 3, 4, 5]),
p(X Y).

yields (X, Y) = (1, 3), (2, 2), (2, 3), (3, 3), (3, 3), (4, 3), (4, 4) )
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How about these?

- X >3, X< 2. %clearly inconsistent
- 4is X+ 3. %clearly X =1
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EQLPS® CLP Do Constraints in Prolog Really Work. .. ?

Stefano
Benedettini

How about these?

- X >3, X< 2. %clearly inconsistent
- 4is X+ 3. %clearly X =1

Syntactic Facilities

Both raise an “Instantiation fault” error

Modules

@ Non-logical predicates and closed world assumption are

el Prolog greatest weaknesses
S @ Variables in arithmetic predicates must be instantiated
S (else error)

Libraries

@ For which values the second query is satisfied? For
none, because you never told Prolog that 1 + 3 is true



... The Answer Is: “So So”

oo |l Consequences

folased @ Constraints can only be tested for satisfiability

- @ There is no “constraint propagation” (domain reduction)
ECL'PS® .

Extensions to @ Prolog natively supports only generate and test!

Prolog

CSP in Prolog

Constraint
Satisfaction

with ECL! pse sol ve_probl en{Vari abl es) : -
decl are_domai ns(Vari abl es),
search(Vari abl es),

test _constraints(Vari abl es).

@ First | generate a complete assignment to the decision
variables

@ Then | test satisfiability
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The Simplest Prolog Constraint Solver That
Can Possibly Work

% Define domains for a |ist of variables

domain([], _, [])-

domain([H T], D, [H dom D|Rest]) :- domain(T, D, Rest
).

% Define integral donmins for a list of variables
ints(Xs, Mn, Mx, Vs) :-

int_range(Mn, Max, R),

domai n(Xs, R Vs).

% Si npl e | abel i ng
| abel ([]) .
label ([V dom D[ T]) :- nmenber(V, D), label(T).
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Some Constraints

% I n constraint
Xin D:- nenber(X, D).

% Not in constraint

_not_in [].

Xnot_in [HT] :- not(Xin [HT]).

% Al different

all _different([]).

all _different([HT]) :-
all _different(T),
Hnot_in T.

% Or der ed
ordered([_]).
ordered([X, Y|Z]) :- X <Y, ordered([VY]Z]).



Q Prolog as a Constraint Solver

ECL'PS® H .
Extensions to a ECL'PS® Extensions to Prolog
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@ Syntactic Facilities
@ lteration Constructs
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EaLiPs® cL The ECL'PS® Programming Environment

Stefano

Benedettini

ECL'PS® supports a number of extensions that facilitate

Prolog programming:

@ Structures and arrays
Sk e @ “Function-like” predicates
© lteration constructs

O Modules

‘éz;;l”.:’:.i‘m.y» For more information, please refer to the User Manual
ECL'PS® is a mature piece of software. We won't have time
S to cover everything. You are encouraged to explore by

Libraries

yourselves.


http://87.230.22.228/doc/userman/umsroot.html

Q Prolog as a Constraint Solver

© EcLiPse Extensions to Prolog
@ Syntactic Facilities
@ lteration Constructs
@ Modules

© cConstraint Satisfaction with ECL'PS®
@ The Interval Constraints Library: i c
@ Search and Optimization with ECL'PS®
@ Other Constraint Libraries
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ECLIPS® CLP “Function-like” Predicates

Stefano
Senedetint @ Unofficial name to refer to a syntactic facility that allows
you to use custom predicates in expression context
o “Expression Context” is wherever ECL'PS® expects arith-
metic operations that are subsequently evaluated
@ Usually indicated with metavariable Expr in documenta-
tion
rolog @ You can use a n-ary predicate p(Xy,...,X,) as a func-
y tion that expects Xy, . .., Xn_1 as arguments and returns
X, as result
Csnsuamls Library:
Optmagaonvi p(_, 3).
-
EES sunmation([], 0).

summation([H T], S) :- summation(T, S1), Sis S1 + H.

- 10 is 7 + p(ciao).
:- 19 < summation([1, 2, 3]) + 15.




ECLIPS® CLP Structure Notation

Stefano
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@ An easy way to declare and access arguments of a Pro-
log structure
@ Declare a structure using:
;- local struct(functorNanme(fieldNanes...)).
@ Can refer to fields by name instead of index
Syt Facies @ Usefi el dNanme of struct Nane to obtain field index

Example

Declaring and using a structure

Modules

The Interval
Constraints Library:

i :- local struct(student(nane, surnane, exam nark)).
e

e :- student{nane: john, surnane: doe} = student(N, SN
e ), N = john, SN = doe

:- S = student{nane:jane}, arg(4, S, 30), S = student
(jane, _, ., M, M= 30.
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Enumerations

@ ECL'PS® does not support directly enumerations, but they
can be emulated via structures
@ Encode each value of your enumeration with an integer
@ Declare a structure whose field names are the enumer-
ation values
@ Use operator of to map a value to an integer
@ You should never instantiate a structure of that kind
@ The inverse mapping is not as easy

Example
A color example

;- local struct(colors(black, white, red, green, blue

).

- X = black of colors, X =1
- Xis (white of colors) + (red of colors), X =5 %
usel ess but still
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Arrays

Arrays in ECL'PS® are really a syntactic convenience to indi-
cate structures of structures

Functor name is irrelevant
emtrix(rom1l, 2, 3), rom4, 5 6))isa2x3
arrayandsoisa(b(1, 2, 3), c(4, 5, 6))
di (A, D) unifies a new array A with functor name [] and
its dimensions D

Use subscri pt/ 3 to access individual elements or array
slices

Usual C-like subscription operator available in expression con-
text provides same behaviour as subscri pt/ 3

c-odin(A [2, 3]), A=TI1001(L - O [1(L - D)
c- o din([1([1(2, 2), [1(3, 4)), D, D=1[2, 2]

.- dim(A [2, 3]), subscript(A [2, 1..3], Rl), R is
A2, 1..3], RL = R



Q Prolog as a Constraint Solver

© EcLiPse Extensions to Prolog
@ Syntactic Facilities
@ lteration Constructs
@ Modules

© cConstraint Satisfaction with ECL'PS®
@ The Interval Constraints Library: i c
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EcLlps® cLp Why Iteration in Prolog?

Stefano
Benedettini

@ Although every form of iteration can be expressed by a
recursion, this bring some disadvantages:
Code bloat: every iteration requires you to write an ad-
ditional predicate
e s Readability: those predicates are coded far away in your
code and impact readability
Non-locality: if your iteration has to access many local

variables, you have to write a predicate with
o that many parameters
Otrer Corstrait @ lteration in ECL'PS® is as powerful as recursion and of-

ten more concise



ECLIPS® CLP Iteration Constructs Generalities

Stefano
Benedettini

All iteration constructs have the form
(IterationSpecifiers do Body)

@ lterationSpecifiers is a comma-separated sequence of
iteration specifiers

(]

i @ Each specifier introduces an iteration variable visible only
in Body

@ Body can access only variables provided by iteration
specifiers (but see par an)
@ Each iteration step, iterations variables in Body are uni-
e fied with iteration values

Libraries

@ All iteration specifiers step in parallel and the whole loop
stops when one of the specifiers completes



ECLIPS® CLP Iteration Constructs: f or each

Stefano
Benedettini
@ (foreach(E, List) do Body) executes goal Body
iteratively unifying E to each element in list Li st
@ Has invertible semantics: can be used to scan a list or
Sy rcies to construct a list
I;E;;,”,:’:g'm,y. D - (;ogr) each(E, [1, 2, 3]) do witeln(E)). %prints 1
opmzston .- (foreach(X, L), foreach(E, [10, 20, 30]) do X is E

e ot // 10), L =1[1, 2, 3].

Libraries




EQLIPS® CLP Iteration Constructs: par amand count

Stefano
Benedettini

@ param( Vari abl es...) makes Variables visible in-
side iteration body

@ count (I ndex, M nExpr, MaxExpr) unifiesIndex to
each integer in [MinExpr, MaxExpr]

Syntactic Facilities

Iteration Constructs EX am p | e

Modules

mul tiply(L, K Qut) :-
e e (foreach(E, L), foreach(X, Qut), param(K) do X is K
Icsnsuamlsubrary * E) .

Search and
Optimization with

s ny_length(L, X) :- %sanme as length/2 builtin

Other Constraint

L (foreach(_, L), count(_, 1, X) do true).

:- (count(l, 1, 4) do witeln(l)). %prints 1 2 3 4
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Iteration Constructs: f or eachar g and
f oreachel em

@ f oreachar g/ 2 iterates on a structure/array arguments

o f oreachel eml 2 works only for arrays (functor name
must be []). Flattens the array and iterate on its ele-
ments

@ Both support an optional third argument that is unified to
element index

Example

- M= [1([1(2, 2, 3), []1(4, 5, 6)), (foreachel en(E,
M do witeln(E)), %prints 1 2 3 456

(foreacharg(Row, M do witeln(Row)), % prints [](1,
2, 3) [1(4, 5, 6)

(foreachelem(E, M [I, J]) do witeln(l-J-E)), %
prints 1-1-1 1-2-2 1-3-3 2-1-4 2-2-5 2-3-6

(foreacharg(R, M 1) do witeln(l-R)). %prints
1'[](11 21 3) 2'[](41 51 6)
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Iteration Constructs: f or and nul ti f or

@ for(Index, M nExpr, MaxExpr) work like its im-
perative counterpart

@ mul tifor(lndexList, MnList, MxList) con-
cisely describes multiply nested f or s

@ Both constructs support an optional fourth argument to
provide an iteration step

Example

evens(L) :-
(for(l, 2, 100, 2), foreach(l, L) do true).

mutliplication_table(T) :-
dim(T, [10, 10]),
(multifor([X, Y], [1, 1], [10, 10]), %also nultifor

([X Y], 1, 10)
foreachel em(E, T) do
Eis X* Y




ECLPS® CLP Iteration Constructs: front o

Stefano
Benedettini

@ Most general construct
@ (fronto(lnit, In, Qut, Last) do Body) intro-
duces local variables In and Out in Body and behaves
as follows:
O Firstlnit = In
@ Executes iteration body
© After each iteration checks whether Last = Qut and
i Cansets breaks if unification succeeds
e @ Otherwise unifies a fresh In variable with Out and re-
peats from step 2

The Inte |
SR Example
e

Search and
Optimization with

Ea'Ps® filter_even(L, F) :-

s (foreach(E, L), fromo(L, In, Qut, []) do
(0Ois Erem2 ->1n =[ET], Qut =T, In = Qut)
).

reverse(L, R :-
(foreach(E, L), fronmto([], In, [E[In], R do true).
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ECL'PS® Modules in a Nutshell

Group functionally related predicates in the same place
@ Usually one module for each file

Control naming access
Modules form a namespace structure

use | i b( Modul eNarre) to compile an ECL'PS® library
and import exported names

use use_nodul e( Modul eNane) to compile a module
and import its exported names

use : operator to disambiguate a name:
Modul eNane: ( predi cat e)
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ECL'PS® Modules in a Nutshell

@ use directive nodul e( Modul eNane) at the top of a
source file to define a module

@ export directive states which predicates to export

| \

Example

;- nmodul e(my_little_nodul e).
1- export print_nmatrix/1.

print_row Row) : -
(foreachel em(E, Row) do wite(E), wite(" ")),
nl.

print_matrix(M :-
(foreacharg(Row, M, param(M do print_row(Row)).

print_matrix is available when this module is imported
but pri nt _rowis not.

ot
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Overcoming Prolog Limitations

Variables in arithmetic constraints must be instantiated

Constraint predicates are mostly used for testing and
cannot instantiate variables except the simplest like or ,
and, etc. ..

No constraint propagation

Every goal (i.e., constraint) that is not fully instantiated
is suspended and put into the constraint store

Propagation is applied to variable domains at different
strength

o
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Before the Cure

Example

ordered_list([_]).
ordered_list([X, VY|T]) :- X<Y, ordered_|list([Y|T]).

:- ordered_list([1, 2, 3, 4, 5]). % works as expected
;- ordered_ list([1, X, 3, Y, 5]). %we suppose X, Y
be integral variabl es

The second goal raises an instantiation error.
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After the Cure

Example

- lib(ic). %load a solver library

ordered_list([_]).
ordered_list([X, VY|T]) :- X#<Y, ordered_list([Y|T])

;- ordered list([1, X, 3, Y, 5]).
;- ordered_ list([1, X Y, 5]).

In the first case ECL' PS® enforces variable integrality and cor-
rectly propagates the constraints 1 < X <3and3 <Y <5
thereby inferring X =2,Y = 4.

In the second case we have a delayed goal, that is a goal
that cannot be solved at the moment. ECL'PS® propagates
inequalities and infers X € 2,3,Y € 3,4.

ot



CSP in ECL'PS®

Constraint
Satisfaction
with ECL' PS®

sol ve_probl em Vari abl es) : -
decl are_domai ns( Vari abl es),

setup_constrai nts(Vari abl es),
search(Vari abl es).
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How to Write a Problem Model

Extensions to
Prolog

CSP in ECL'PS®
sol ve_probl em Vari abl es) : -
decl are_domai ns( Vari abl es),
Constraint
Satisfaction
with ECL'PS®

setup_constraints(Vari abl es),

This part comprises model definition.




CSP in ECL'PS®
sol ve_probl em(Vari abl es) : -
decl are_domai ns( Vari abl es),
Constraint
Satisfaction
with ECL'PS®

setup_constrai nts(Vari abl es),
search(Vari abl es) .

This is the actual search.

DA
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How to Write a Problem Model

CSP in ECL'PS®

sol ve_probl em Vari abl es) : -
decl are_domai ns( Vari abl es),
setup_constraints(Vari abl es),
search(Vari abl es) .

Modeling and search are independent phases in the resolu-

tion of a problem.




ECLIPS® CLP How to Write a Problem Model

Stefano
Benedettini

sol ve_probl em(Vari abl es) : -
decl are_domai ns( Vari abl es),
setup_constrai nts(Vari abl es),
sear ch(Vari abl es).

Syntactic Facilities
Iteration Constructs

Modules

@ Do not leave choice points during constraint setup!

The Interval

@ If you do, the solver will miss an opportunity do con-

Il

Search and straint propagation

Optimization with
ECL'PS®

@ You are actually splitting a CSP into multiple CSPs, mak-
ing choices before propagation, not after

@ But it doesn’t mean you can’t use Prolog non determin-
ism

v
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Syntactic Facilities
Iteration Constructs
Modules

The Interval
Constraints Library:
ic

Search and
Optimization with
ECL'PS®

Other Constraint
Libraries

An Overview of the Libraries

@ We'll mostly use only the more recent i ¢ library and
briefly touch its derivatives:
i c_gl obal very useful global constraints
i C_sets supports set variables
i c_synbol i ¢ handles (not so) conveniently symbolic
domains

@ Don't use old f d libraries: stick with i c!

@ Basic searching strategies and B&B optimization
@ Many more constraints available (look them up in the
documentation):
@ Bin packing
@ Knapsack
@ Scheduling

@ Generalized Propagation and Constraint Handling Rules
(CHR) will be barely mentioned
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ECLiPS® cLP Introduction
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Benedettini

@ Powerful hybrid solver that works on (intervals of) inte-
gers and reals

@ Variable domains are unions of disjoint intervals
@ It enforces bound consistency:
B @ Weaker than arc-consistency

iz o lteratively “squeezes” a variable domain: x,y € [0,5] N
Z,x <y =x€[0,4],y € [1,5]

@ Cannot propagate “holes”

The Interval

TR @ Handles linear, arithmetic and non-linear constraints
Search and . .

Crizetoln @ Issues with real variables:

Dbrariss @ How do we cope with limited precision?

@ How do we represent “holes” in a real domain?
@ Does this make sense: x € [0,1],x # 0.5?



ECLIPS® CLP Variable Domains
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@ Constrains integer as well real domains with ::, $::
and #: : operators:
o ListOf Variables :: RangeSpecification

specify either an integer or a real domain depending on
the range specification
@ $:: enforces real domains
Symtacic Factes @ #:: enforces integer domain
Iteration Constructs
@ | suggest to employ only #:: or $:: to clearly state
variable type

@ These operators work also with multidimensional arrays
The Interval
o @ See documentation for further details

Search and
Optimization with
ECL'PS®

Other Constraint
Libraries

Modules

:- Var #: [1..5, 7, 9..12].
- [ X Y] #:: 1..5.
- dim(A [3, 2]), A:: 0..1.0.


http://eclipse-clp.org/doc/bips/lib/ic/index.html

ECLIPS® CLP Arithmetic Constraints

Stef:
BenZda:ttt)ini . . . .
@ i c support every arithmetic and comparison operator of
standard Prolog
@ qualified use: i c: (X op Y) where op is one of >, <,
=<, =rE A\ E e
@ Prepend $ to comparison predicates to avoid qualifica-
tion: $>, $<, $=<, $=, $\ =, ...
N —— @ Prepend # to comparison predicates to also enforce in-
tegrality: #>, #<, #=<, #=,#\ =, ...
@ New variables spawn into existence as soon they are
used
The Interval
Constraints Library:
Search and
Dpl\‘rgléeanun with
Other Constraint .
2 - [X Y] 1 1..5.0, Z#=X+1, ic:(Z2<Y). %1

:- length(V, 4), V:: 0..5 (fromto(V, [X YT, [YT
1, []) doici(X<VY). %2

X e[1,3]NN,Y €[2,5],Z € [2,4|nN
vi e [174] Xj € N,Xl S [072]7)(2 S [173]7)(3 S [274]7)(4 S [375]



ECLIPS® CLP Boolean Constraints
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@ i c supports basic boolean operators:
@ or, and, xor, => all infix and neg (for negation)

@ They automatically enforce a boolean domain, that is
{0,1}

Modules Example

How to solve a SAT without really trying

Syntactic Facilities

The Interval

Consiraints Librry: - Xand (Y or Z) and (X or neg Y)
ic

Search and ;- X and neg X

Optimization with

ECL'PS®

Other Constraint

Libraries 0 Infers X — 1

@ Infers inconsistency
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Syntactic Facilities
Iteration Constructs
Modules

The Interval
Constraints Library:
ic

Search and
Optimization with
ECL'PS®

Other Constraint
Libraries

Reified Constraints

@ How can we conditionally enforce a constraint?
@ How canlexpressifx € [1,3]theny <z?
@ Remember that we cannot leave choice points so, for
instance, operator - > is out of question
@ Reified constraints come to the rescue
@ Domain, comparison and boolean constraints all have a
reified version
@ If the original constraintis op( X, Y), its reified version
isop(X, Y, B) where B is a boolean variable
@ If B = 1 the constraint holds, otherwise holds its nega-
tion
@ Thanks to “function-like predicate” facility we can “chain”
reified constraints in expression context

#<(X, Y, Bl), #:(X 1..5, B2), Bl or B2.
becomes
(X #<Y) or (X #:: 1..5).



EQLPS® CLP Global Constraints and Propagation Strength
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@ Most of constraints in i ¢ are binary
@ Alsoal | di f f er ent is nothing more than manually set-
ting pairwise inequalities
@ We need a better way to model global constraints than
separating them in binary constraints
Symtacic Factes @ Propagation strength is lower
Lo @ That is we cannot rule out as many values as a we could

@ Enteri c_gl obal
@ Lots of high level constraints:

Modules

The Interval

Consrans Library: @ Minimum/maximum of a list

Search and @ occurrences

Optimization with .

S @ astrongeral | di fferent

Dbrariss @ or der ed (useful for symmetry breaking)

@ Also checkac_eqinic

@ Provides an arc-consistent (and not only bound consis-
tent) version of X #= Y + C(C is an integer constant)
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Syntactic Facilities
Iteration Constructs
Modules

The Interval
Constraints Library:
ic

Search and
Optimization with
ECL'PS®

Other Constraint
Libraries

An Example with Global Constraints

:- length(V, 100), V #:: 1..99, ic:alldifferent(V).
:- length(Vv, 100), V #:: 1..99, ic_global:

alldifferent(V).

:- length(V, 5), V #: 1..5 ordered(<, V).
- [ XY] #::001..10, X#\ =7, X#= Y + 2.
- [ X Y] #:001..10, X #\= 7, ac_eq(X Y, 2).

© Clearly inconsistent but no propagation is performed

@ Immediately returns “No” as answer

© Correctly infers, Xj =i,i=1,...,5

Q X €[3,6]U[8,10] and Y € [1,8] but cannot propagate
the “hole” at X =7

© X €[3,6]U[8,10] and Y € [1,4] U [6,8]: now it is arc
consistent
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ECLIPS® CLP Labeling

Stefano

Benedettini
@ Propagation is insufficient to prove satisfiability in all but the
simplest CSPs
@ In ECL'PS? this translate into having delayed goals
@ The simples strategy consists in:
@ Recursively considering all unassigned variables in some
order
@ Try all values in its domain in ascending order
e © Return a feasible assignment or backtrack and try another
Modules value

@ this is called labeling

The Interval

Example

Seacnand Pythagorean Triplets
ECL'PS®

ey Cusi - V=[A B (C, V#: 1..100, ordered(<, V), A*2 + B"2
#= C\2, findall(V, labeling(V), L).

@ There are 52 unique Pythagorean triplets of integers in
[1,100]
@ Note the use of or der ed to remove symmetries




ECL'PS® CLP
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Syntactic Facilities
Iteration Constructs
Modules

The Interval
Constraints Library:
ic

Search and
Optimization with
ECQL'PS®

Other Constraint
Libraries

Fine Tuning Your Search

@ ECL'PS® provides a general mechanism to customize a
search in the form of predicate i c: sear ch
@ You must specify:

@ Variable selection strategy
@ Value selection strategy

@ Some heuristics are already defined:
Variable selection: input order, (anti) first-fail, most-constral

Value selection: ascending order, starting from max/mid-
dle/min value, ...

@ Search strategy can have a huge impact on efficiency
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Search and

Optimization with
ECL'PS®
Other Constraint
Libraries

Optimization by Branch-and-Bound

@ ECL'PS® comes also with a ready-made B&B implemen-
tation to tackle constraint optimization problems
@ You must also provide an objective function f
@ ECL'PS® B&B works as follows (for minimization prob-
lems):
@ Generates a feasible solution s and impose the con-
straint f(s") < f(s) for the remainder of the search
@ Restarts or continues the search

Example

Which is the largest integer n < 1000 such that the cube of
the sum of its digits equals the number itself?

- [ XY, Z] #:: 0..9,
N #= 100 » X + 10 * Y + Z,
C#=(-N),
(X + Y+ 2)"3 #= N,
m nimze(labeling([X, Y, Z]), O.




EQPs® cLp Optimization by Branch-and-Bound
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@ ECL'PS® comes also with a ready-made B&B implemen-
tation to tackle constraint optimization problems

@ You must also provide an objective function f

@ ECL'PS® B&B works as follows (for minimization prob-
lems):
@ Generates a feasible solution s and impose the con-
straint f(s") < f(s) for the remainder of the search
@ Restarts or continues the search

4
=

Example
Convert a maximization into a minimization problem.

Search and
Optimization with
ECQL'PS®

v oran - [X Y, Z1 #: 0..9,
N #= 100 = X + 10 = Y + Z,
C #: ( - N) )

(X +Y + 2)"3 #= N,
mni mze(labeling([X, Y, Z]), O.
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Optimization by Branch-and-Bound

@ ECL'PS® comes also with a ready-made B&B implemen-
tation to tackle constraint optimization problems
@ You must also provide an objective function f
@ ECL'PS® B&B works as follows (for minimization prob-
lems):
@ Generates a feasible solution s and impose the con-
straint f(s") < f(s) for the remainder of the search
@ Restarts or continues the search

Example

Which is the largest integer n < 1000 such that the cube of
the sum of its digits equals the number itself? It's 512.

- [ XY, Z] #:: 0..9,
N #= 100 » X + 10 * Y + Z,
C#=(-N),
(X + Y+ 2)"3 #= N,
m nimze(labeling([X, Y, Z]), O.
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ECL'ps® LP Symbolic Domains With i ¢c_synbol i c

Stefano

seneden @ Sometimes it's more natural to work with a finite domain
other than (an interval of) integers
@ Colors
@ Days of the week
@ i c_synbol i ¢ permits this kind of symbolic domains
@ This library is implemented on top of ic
o @ Every value in a symbolic domain is mapped to an inte-
ger
@ Define a new symbolic domain with domai n declaration
Temeral :- local domai n(domai nNanme(val ues...)).

ic
Search and
Optimization with
ECL'PS®

Other Constraint
Libraries

:- local donmai n(weekday(no, tu, we, th, fr, sa, su)).

- X &: weekday, X & =tu, X & fr.

Note the implicit ordering of values.



ECLIPS® CLP Set Variables Withi c_set s
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This library manipulates integer set variables

A setis simply a sorted list of integers without repetitions
Much like i c, it provides bound consistency on set vari-
able domains

But what is a “range of sets"?
A set variable o is a triple: (Syp, Syp, C)
e @ Sy, is a set containing all the elements which are cer-
o tainly in o
@ Sy Is a set containing all the elements that might be in
o (obviously Sy C Syp)
Consuams Lbcry: e C is an integer variable equal to |o|

See also the concept of Lattice

Search and
Optimization with
ECL'PS®

Other Constraint
Libraries

- X [1]..[2, 2, 3], insetdomain(X, _, _, ).
Finds: ({1,2,3},{1,2},{1,3},{1})


http://en.wikipedia.org/wiki/Lattice_(order)
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