
Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 1

Y180
8-bit Microprocessor

Synthesizable
Verilog HDL Model

User Manual

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 2

Disclaimer

Systemyde International Corporation reserves the right to make changes at any
time, without notice, to improve design or performance and provide the best product
possible. Systemyde International Corporation makes no warrant for the use of its
products and assumes no responsibility for any errors which may appear in this document
nor does it make any commitment to update the information contained herein.

Systemyde International Corporation products are not authorized for use in life
support devices or systems unless a specific written agreement pertaining to such use is
executed between the manufacturer and the President of Systemyde International
Corporation. Nothing contained herein shall be construed as a recommendation to use any
product in violation of existing patents, copyrights or other rights of third parties. No
license is granted by implication or otherwise under any patent, patent rights or other
rights, of Systemyde International Corporation. All trademarks are trademarks of their
respective companies.

Copyright 1995 Systemyde International Corporation Livermore, Ca. All rights
reserved.

Systemyde International Corporation
http://www.systemyde.com

y180@systemyde.com

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 3

Table of Contents

1 Introduction 6
2 Features 7
3 Functional Description 8

3.1 Block Diagram 8
3.2 Register Description 9
3.3 Flags Description 10
3.4 Instruction Maps 11

3.4.1 Main Code page 11
3.4.2 ED Code page 12
3.4.3 DD Code page 13
3.4.4 FD Code page 14
3.4.5 CB Code page 15
3.4.6 DD-CB Code page 16
3.4.7 FD-CB Code page 17

3.5 Execution Tables. 18
3.5.1 Execution Table conventions 18
3.5.2 Instruction Opcode, Timing and Operation . . 19
3.5.3 Address Bus Contents 24
3.5.4 Next Machine State 29

4 Pin Descriptions 34
4.1 A_[15:0] (Address Bus) 35
4.2 AOEB_ (Address Output Enable) 35
4.3 BUSACKB_ (Bus Acknowledge) 35
4.4 BUSREQB_ (Bus Request) 35
4.5 CLEARB_ (Master Clear) 35
4.6 CLK_ (Clock) 36
4.7 CLKB_ (Clock-Bar) 36
4.8 COEB_ (Control Output Enable) 36
4.9 DIN_[7:0] (Data Input Bus) 36
4.10 DOEB_ (Data Output Enable) 36
4.11 DOUT_[7:0] (Data Output Bus) 37
4.12 E_ (Enable) 37
4.13 HALTB_ (Halt Mode) 37
4.14 INTB_ (Interrupt Request) 37
4.15 IOCB_ (I/O Control Select) 37
4.16 IORQB_ (I/O Request) 38
4.17 M1B_ (Machine Cycle 1) 38
4.18 M1E_ (Machine Cycle 1 Enable) 38
4.19 MREQB_ (Memory Request) 38
4.20 NMIB_ (Non-Maskable Interrupt Request) . . . 38
4.21 RDB_ (Read) 39
4.22 RESETB_ (Master Reset) 39
4.23 SLPB_ (Sleep Mode) 39

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 4

Table of Contents (continued)

4.24 ST_ (Status) 39
4.25 TRAPB_ (Trap) 39
4.26 WAITB_ (Wait Request) 40
4.27 WRB_ (Write) 40

5 Bus Cycles 41
5.1 Instruction Fetch (without Wait state) 41
5.2 Instruction Fetch (with Wait state) 42
5.3 Memory Read/Write (without Wait state) . . . 43
5.4 Memory Read/Write (with Wait state) 44
5.5 I/O Read/Write (without Wait state) 45
5.6 I/O Read/Write (with Wait state) 46
5.7 Bus Request/Acknowledge (Entry) 47
5.8 Bus Request/Acknowledge (Exit) 48
5.9 Trap (Second Opcode) 49
5.10 Trap (Third Opcode) 50
5.11 Non-Maskable Interrupt Acknowledge 51
5.12 Mode 0 Interrupt Acknowledge. 52
5.13 Mode 1 Interrupt Acknowledge. 53
5.14 Mode 2 Interrupt Acknowledge. 54
5.15 Return From Interrupt (RETI) 55
5.16 Halt (Entry and Exit) 56
5.17 Sleep (Entry and Exit) 57
5.18 E_ Signal during Sleep 58
5.19 E_ Signal during Bus Request/Acknowledge . . . 59
5.20 Reset and Clear 60

6 Differences 61
7 Future Enhancements 63
8 Model Organization 64

8.1 Y180_TOP (Top Level Module) 64
8.2 PARAMS (Parameter Definition `include file) . . . 64
8.3 IO_CTRL (I/O Interface Module) 65
8.4 M_STATE (Machine State Module) 65
8.5 CTR_CTL (Central Control Module) 65
8.6 DATA_IO (Address and Data Module) 65
8.7 REG_BYTE (Byte-wide Register in the Register File) . . 65
8.8 REG_8BIT (Byte-wide General-Purpose Register) . . 66

9 Test Suite 66
9.1 TOP_LEV (Top Level for Simulation) 67
9.2 SETUP_HL (Initialization Pattern) 67
9.3 INT_OPS (Interrupt Operation) 68
9.4 ALU_OPS (ALU Operation) 68
9.5 DAT_MOV (Data Movement Operation) . . . 68
9.6 TRP_2ND (Trap on Second Byte Operation) . . . 68

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 5

Table of Contents (continued)

9.7 TRP_3RD (Trap on Third Byte Operation) . . . 68
9.8 BIT_OPS (Bit Manipulation Operation) 68
9.9 JMP_OPS (Jump Operation) 69
9.10 IO_OPS (I/O Operation). 69

10 Installation. 70
10.1 File Structure 71

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 6

1 Introduction

The Y180 is a synthesizable Verilog HDL model of the Z80180 CPU. It is
software and hardware compatible with the Z80180 CPU and is software compatible with
several other industry-standard processors. The Y180 is an original design, based on
publically available documentation, that employs design techniques suitable for a
technology-independent implementation. It is a fully synchronous design that does not use
3-state busses. The design is structured in a way that allows its use either with or without
modification by the customer. The combinatorial logic portions of the design may be
implemented in either random logic or as a PLA, and control signals are treated
symbolically in the design to allow either encoded or unencoded implementations (the
default is encoded). The Y180 is accompanied by full design documentation, in the form
of a large spreadsheet, which describes nearly every facet of the internal operation of the
processor. This provides knowledgable users the opportunity to customize the design for
unique application requirements.

The Y180 is a powerful medium-performance processor that executes 181
instructions and includes an undefined opcode trap for illegal opcodes. The device
contains a full complement of 8-bit arithmetic and logical instructions, and enough 16-bit
instructions to properly handle the 16-bit address range. Included are bit manipulation
instructions as well as an 8x8 multiply instruction. The device allows for other bus masters
and includes a powerful vectored interrupt capability. The Y180 can be easily integrated
with RAM, ROM or other application-specific logic to create a single-chip product. The
technology-independent nature of the design provides the full spectrum of design
alternatives relative to cost, power consumption and speed. Although currently limited to
8-bit data and 16-bit addresses, the architecture of the Y180 can be upgraded to 16-bit
data and 32-bit addresses with relative ease.

The Y180 is written in Verilog HDL and can be synthesized using any Verilog-
compatible logic synthesizer. The Y180 package includes full design documentation,
including a Verilog simulation and test suite.

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 7

2 Features

* Fully functional synthesizable Verilog HDL model of the Z80180 CPU

* Vendor and technology independent

* Software compatible with several industry-standard processors

* 181 Instructions, plus an undefined opcode trap

* Eight addressing modes

* 64K byte addressing capability

* 8 bit ALU with bit, byte and BCD operations

* 8x8 multiply instruction

* Powerful vectored interrupt capability

* Static, fully synchronous design

* Designed without 3-state busses

* Easily modified external interface

* Architectural upgrade path to 16 or 32 bits possible

* Full design documentation included

* Verilog simulation and test suite included

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 8

3 Functional Description

The Y180 is a general-purpose 8-bit microprocessor that is compatible with the
Zilog Z80180 CPU. The device contains an 8-bit ALU, numerous 8- and 16-bit registers,
a 64K byte addressing range, and a powerful vectored interrupt capability. The device
executes 181 instructions, and performs an undefined opcode trap on all illegal
instructions. The Y180 is completely software compatible with several industry-standard
processors.

The Y180 is designed without using 3-state buses internally for maximum
technology independence, and is a static, fully synchronous design. Architectural upgrades
to a wider ALU, wider registers, or a wider address bus are possible. The Y180 is supplied
in the form of a synthesizable Verilog HDL model, which is independent of technology,
clock speed (within the limits of the chosen technology), and vendor.

3.1 Block Diagram

The figure below shows a simplified block diagram of the Y180, organized in the
same fashion as the Verilog HDL model is organized. The I/O Interface Module controls
all of the pins of the Y180, and translates the internal busses and signals into the externally
visible pins. The Machine State Module contains the machine cycle and clock cycle state
machines, which control the sequence and timing of everything that happens within the
Y180. The Central Control Module decodes the instruction and state information to
generate all of the internal control signals. And the Address and Data Module contains the
actual address and data manipulation portions of the Y180, including the ALU, the
register file, and the various busses and special purpose registers.

A_[15:0]

AOEB_
BUSACKB_

COEB_
DOEB_
DOUT_[7:0]
E_

HALTB_
IORQB_
M1B_
MREQB_
RDB_

SLPB_
ST_
TRAPB_
WRB_

data_in

add_reg
dout_reg

mach_cyc
clock_cyc

{page_reg, inst_reg}

IO_CTRL

CTR_CTL DATA_IOMACH_ST

BUSREQB_
CLEARB_

CLK_

CLKB_
DIN_[7:0]

INTB_
IOCB_

M1E_
NMIB_

RESETB_
WAITB_

I/O Interface Module

Central Control Module Address and Data ModuleMachine State Module

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 9

3.2 Register Description

The figure below shows the registers contained in the Y180 that are visible to the
programmer. The main registers have both a primary and an alternate version. The primary
register set consists of A, F, B, C, D, E, H, and L, while the alternate register set consists
of A', F', B', C', D', E', H', and L'. At any given time only one bank is active, and care must
be used when switching between banks, as there is no way for the programmer to check
which bank is active. The accumulator, A, is the destination for all 8-bit arithmetic and
logic operations, while the Flag register F contains the flag results of arithmetic and logic
operations. The other general-purpose registers can be paired, BC or DE or HL, to form
16-bit registers. There are two index registers, IX and IY, used for indexed addressing
mode. The I register holds the upper eight bits of the interrupt vector table address for use
in Interrupt Mode 2. The R register is left over from the original Z80 architecture, where
it was used to hold a refresh address for DRAMs. In the Y180 it is just another general-
purpose register. The Stack pointer, SP, holds the address of the stack, and the Program
Counter, PC, holds the address of the currently executing instruction.

A
B
D
H

IX
IY

F
C
E
L

A'
B'
D'
H'

F'
C'
E'
L'

I R

SP
PC

Main Register Bank

Alternate Register Bank

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 10

3.3 Flags Description

The figure below shows the flags contained in the F register, which report the
results of instruction execution.

S (Sign) The Sign flag stores the most significant bit of the result. This is used with
signed arithmetic, where the MSB is zero for positive numbers and one for
negative numbers.

Z (Zero) The Zero flag is set to one if the result of the operation is 0.

U5 (User) This is a user-defined flag. It is difficult to use however, because the only
way to access it is to Push the AF register pair onto the stack and then Pop
it back into some other register pair before testing the bit.

H (Half-Carry) The Half-Carry flag is used only by the DAA (Decimal Adjust
Accumulator) instruction to properly adjust the result of an arithmetic
operation on BCD numbers.

U3 (User) This is a user-defined flag. It is difficult to use however, because the only
way to access it is to Push the AF register pair onto the stack and then Pop
it back into some other register pair before testing the bit.

P/V (Parity/Overflow) The Parity/Overflow flag reports the parity of the result for logical
operations, with the flag set to one if the result has even parity and zero if
the result has odd parity. This bit reports the overflow status of arithmetic
operations. Overflow occurs when the two operands have the same sign
but the sign of the result is different. This means that the actual result
cannot be represented in the eight or sixteen bits allocated for the result.

N (Negative) The Negative flag records the type of the last arithmetic operation (add or
subtract) for use with the DAA instruction. The bit is set to one for
subtract operations and set to zero for add operations.

C (Carry) The Carry flag is set to one whenever there is a carry or borrow from the
most significant bit of the result of an arithmetic operation. This is useful
for implementing multiple precision arithmetic in software.

S Z H P/V N CU5 U3

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 11

3.4 Instruction Maps

The following sections contain the opcode maps for the Y180. The most
significant nibble is indexed vertically in the tables, while the least-significant nibble is
indexed horizontally in the tables. Shaded opcodes are invalid and attempted execution of
these opcodes will result in a Trap. In these maps, d is an 8-bit signed displacement, e is
an 8-bit signed relative address, n is an 8-bit constant, and mn is a 16-bit constant.

3.4.1 Main Code Page

This table shows the main code page for the Y180. These instructions are all one
byte long unless they contain immediate data or addresses. The four bytes marked as esc
(for escape) are the first byte of multi-byte instructions, which are shown in subsequent
tables.

\LSB
MSB\

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NOP LD
BC,mn

LD
(BC),A

INC
BC

INC
B

DEC
B

LD
B,n

RLCA EX
AF,AF'

ADD
HL,BC

LD
A,(BC)

DEC
BC

INC
C

DEC
C

LD
C,n

RRCA

1 DJNZ
e

LD
DE,mn

LD
(DE),A

INC
DE

INC
D

DEC
D

LD
D,n

RLA JR
e

ADD
HL,DE

LD
A,(DE)

DEC
DE

INC
E

DEC
E

LD
E,n

RRA

2 JR
NZ,e

LD
HL,mn

LD
(mn),HL

INC
HL

INC
H

DEC
H

LD
H,n

DAA JR
Z,e

ADD
HL,HL

LD
HL,(mn)

DEC
HL

INC
L

DEC
L

LD
L,n

CPL

3 JR
NC,e

LD
SP,mn

LD
(mn),A

INC
SP

INC
(HL)

DEC
(HL)

LD
(HL),n

SCF JR
C,e

ADD
HL,SP

LD
A,(mn)

DEC
SP

INC
A

DEC
A

LD
A,n

CCF

4 LD
B,B

LD
B,C

LD
B,D

LD
B,E

LD
B,H

LD
B,L

LD
B,(HL)

LD
B,A

LD
C,B

LD
C,C

LD
C,D

LD
C,E

LD
C,H

LD
C,L

LD
C,(HL)

LD
C,A

5 LD
D,B

LD
D,C

LD
D,D

LD
D,E

LD
D,H

LD
D,L

LD
D,(HL)

LD
D,A

LD
E,B

LD
E,C

LD
E,D

LD
E,E

LD
E,H

LD
E,L

LD
E,(HL)

LD
E,A

6 LD
H,B

LD
H,C

LD
H,D

LD
H,E

LD
H,H

LD
H,L

LD
H,(HL)

LD
H,A

LD
L,B

LD
L,C

LD
L,D

LD
L,E

LD
L,H

LD
L,L

LD
L,(HL)

LD
L,A

7 LD
(HL),B

LD
(HL),C

LD
(HL),D

LD
(HL),E

LD
(HL),H

LD
(HL),L

HALT LD
(HL),A

LD
A,B

LD
A,C

LD
A,D

LD
A,E

LD
A,H

LD
A,L

LD
A,(HL)

LD
A,A

8 ADD
A,B

ADD
A,C

ADD
A,D

ADD
A,E

ADD
A,H

ADD
A,L

ADD
A,(HL)

ADD
A,A

ADC
A,B

ADC
A,C

ADC
A,D

ADC
A,E

ADC
A,H

ADC
A,L

ADC
A,(HL)

ADC
A,A

9 SUB
B

SUB
C

SUB
D

SUB
E

SUB
H

SUB
L

SUB
(HL)

SUB
A

SBC
A,B

SBC
A,C

SBC
A,D

SBC
A,E

SBC
A,H

SBC
A,L

SBC
A,(HL)

SBC
A,A

A AND
B

AND
C

AND
D

AND
E

AND
H

AND
L

AND
(HL)

AND
A

XOR
B

XOR
C

XOR
D

XOR
E

XOR
H

XOR
L

XOR
(HL)

XOR
A

B OR
B

OR
C

OR
D

OR
E

OR
H

OR
L

OR
(HL)

OR
A

CP
B

CP
C

CP
D

CP
E

CP
H

CP
L

CP
(HL)

CP
A

C RET
NZ

POP
BC

JP
NZ,mn

JP
mn

CALL
NZ,mn

PUSH
BC

ADD
A,n

RST
0

RET
Z

RET JP
Z,mn

esc CALL
Z,mn

CALL
nn

ADC
A,n

RST
1

D RET
NC

POP
DE

JP
NC,mn

OUT
(n),A

CALL
NC,mn

PUSH
DE

SUB
n

RST
2

RET
C

EXX JP
C,mn

IN
A,(n)

CALL
C,mn

esc SBC
A,n

RST
3

E RET
PO

POP
HL

JP
PO,mn

EX
(SP),HL

CALL
PO,mn

PUSH
HL

AND
n

RST
4

RET
PE

JP
(HL)

JP
PE,mn

EX
DE,HL

CALL
PE,mn

esc XOR
n

RST
5

F RET
P

POP
AF

JP
P,mn

DI CALL
P,mn

PUSH
AF

OR
n

RST
6

RET
M

LD
SP,HL

JP
M,mn

EI CALL
M,mn

esc CP
n

RST
7

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 12

3.4.2 ED Code Page

This table shows the code page for instructions whose first byte is EDh. These are
miscellaneous instructions that will usually not be used as often as those on the main code
page.

\LSB
MSB\

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 IN0
B,(n)

OUT0
(n),B

TST
B

IN0
C,(n)

OUT0
(n),C

TST
C

1 IN0
D,(n)

OUT0
(n),D

TST
D

IN0
E,(n)

OUT0
(n),E

TST
E

2 IN0
H,(n)

OUT0
(n),H

TST
H

IN0
L,(n)

OUT0
(n),L

TST
L

3 TST
(HL)

IN0
A,(n)

OUT0
(n),A

TST
A

4 IN
B,(C)

OUT
(C),B

SBC
HL,BC

LD
(mn),BC

NEG RETN IM
0

LD
I,A

IN
C,(C)

OUT
(C),C

ADC
HL,BC

LD
BC,(mn)

MLT
BC

RETI LD
R,A

5 IN
D,(C)

OUT
(C),D

SBC
HL,DE

LD
(mn),DE

IM
1

LD
A,I

IN
E,(C)

OUT
(C),E

ADC
HL,DE

LD
DE,(mn)

MLT
DE

IM
2

LD
A,R

6 IN
H,(C)

OUT
(C),H

SBC
HL,HL

LD
(mn),HL

TST
n

RRD IN
L,(C)

OUT
(C),L

ADC
HL,HL

LD
HL,(mn)

MLT
HL

RLD

7 SBC
HL,SP

LD
(mn),SP

TSTIO
n

SLP IN
A,(C)

OUT
(C),A

ADC
HL,SP

LD
SP,(mn)

MLT
SP

8 OTIM OTDM

9 OTIMR OTDMR

A LDI CPI INI OUTI LDD CPD IND OUTD

B LDIR CPIR INIR OTIR LDDR CPDR INDR OTDR

C

D

E

F

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 13

3.4.3 DD Code Page

This table shows the code page for instructions whose first byte is DDh. All
instructions on this code page imply the use of the IX register in one way or another. Note
that wherever the HL register is used in a main code page instruction, the corresponding
instruction on this code page uses either the IX register, or the indexed addressing mode
using the IX register.

\LSB
MSB\

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 ADD
IX,BC

1 ADD
IX,DE

2 LD
IX,mn

LD
(mn),IX

INC
IX

ADD
IX,IX

LD
IX,(mn)

DEC
IX

3 INC
(IX+d)

DEC
(IX+d)

LD
(IX+d),n

ADD
IX,SP

4 LD
B,(IX+d)

LD
C,(IX+d)

5 LD
D,(IX+d)

LD
E,(IX+d)

6 LD
H,(IX+d)

LD
L,(IX+d)

7 LD
(IX+d),B

LD
(IX+d),C

LD
(IX+d),D

LD
(IX+d),E

LD
(IX+d),H

LD
(IX+d),L

LD
(IX+d),A

LD
A,(IX+d)

8 ADD
A,(IX+d)

ADC
A,(IX+d)

9 SUB
(IX+d)

SBC
A,(IX+d)

A AND
(IX+d)

XOR
(IX+d)

B OR
(IX+d)

CP
(IX+d)

C esc

D

E POP
IX

EX
(SP),IX

PUSH
IX

JP
(IX)

F LD
SP,IX

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 14

3.4.4 FD Code Page

This table shows the code page for instructions whose first byte is FDh. All
instructions on this code page imply the use of the IY register in one way or another. This
code page is identical to the DD code page with the IY register substituted for the IX
register.

\LSB
MSB\

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 ADD
IY,BC

1 ADD
IY,DE

2 LD
IY,mn

LD
(mn),IY

INC
IY

ADD
IY,IY

LD
IY,(mn)

DEC
IY

3 INC
(IY+d)

DEC
(IY+d)

LD
(IY+d),n

ADD
IX,SP

4 LD
B,(IY+d)

LD
C,(IY+d)

5 LD
D,(IY+d)

LD
E,(IY+d)

6 LD
H,(IY+d)

LD
L,(IY+d)

7 LD
(IY+d),B

LD
(IY+d),C

LD
(IY+d),D

LD
(IY+d),E

LD
(IY+d),H

LD
(IY+d),L

LD
(IY+d),A

LD
A,(IY+d)

8 ADD
A,(IY+d)

ADC
A,(IY+d)

9 SUB
(IY+d)

SBC
A,(IY+d)

A AND
(IY+d)

XOR
(IY+d)

B OR
(IY+d)

CP
(IY+d)

C esc

D

E POP
IY

EX
(SP),IY

PUSH
IY

JP
(IY)

F LD
SP,IY

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 15

3.4.5 CB Code Page

This table shows the code page for instructions whose first byte is CBh. The
instructions on this code page are the majority of the shift, rotate and bit manipulation
instructions.

\LSB
MSB\

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 RLC
B

RLC
C

RLC
D

RLC
E

RLC
H

RLC
L

RLC
(HL)

RLC
A

RRC
B

RRC
C

RRC
D

RRC
E

RRC
H

RRC
L

RRC
(HL)

RRC
A

1 RL
B

RL
C

RL
D

RL
E

RL
H

RL
L

RL
(HL)

RL
A

RR
B

RR
C

RR
D

RR
E

RR
H

RR
L

RR
(HL)

RR
A

2 SLA
B

SLA
C

SLA
D

SLA
E

SLA
H

SLA
L

SLA
(HL)

SLA
A

SRA
B

SRA
C

SRA
D

SRA
E

SRA
H

SRA
L

SRA
(HL)

SRA
A

3 SRL
B

SRL
C

SRL
D

SRL
E

SRL
H

SRL
L

SRL
(HL)

SRL
A

4 BIT
0,B

BIT
0,C

BIT
0,D

BIT
0,E

BIT
0,H

BIT
0,L

BIT
0,(HL)

BIT
0,A

BIT
1,B

BIT
1,C

BIT
1,D

BIT
1,E

BIT
1,H

BIT
1,L

BIT
1,(HL)

BIT
1,A

5 BIT
2,B

BIT
2,C

BIT
2,D

BIT
2,E

BIT
2,H

BIT
2,L

BIT
2,(HL)

BIT
2,A

BIT
3,B

BIT
3,C

BIT
3,D

BIT
3,E

BIT
3,H

BIT
3,L

BIT
3,(HL)

BIT
3,A

6 BIT
4,B

BIT
4,C

BIT
4,D

BIT
4,E

BIT
4,H

BIT
4,L

BIT
4,(HL)

BIT
4,A

BIT
5,B

BIT
5,C

BIT
5,D

BIT
5,E

BIT
5,H

BIT
5,L

BIT
5,(HL)

BIT
5,A

7 BIT
6,B

BIT
6,C

BIT
6,D

BIT
6,E

BIT
6,H

BIT
6,L

BIT
6,(HL)

BIT
6,A

BIT
7,B

BIT
7,C

BIT
7,D

BIT
7,E

BIT
7,H

BIT
7,L

BIT
7,(HL)

BIT
7,A

8 RES
0,B

RES
0,C

RES
0,D

RES
0,E

RES
0,H

RES
0,L

RES
0,(HL)

RES
0,A

RES
1,B

RES
1,C

RES
1,D

RES
1,E

RES
1,H

RES
1,L

RES
1,(HL)

RES
1,A

9 RES
2,B

RES
2,C

RES
2,D

RES
2,E

RES
2,H

RES
2,L

RES
2,(HL)

RES
2,A

RES
3,B

RES
3,C

RES
3,D

RES
3,E

RES
3,H

RES
3,L

RES
3,(HL)

RES
3,A

A RES
4,B

RES
4,C

RES
4,D

RES
4,E

RES
4,H

RES
4,L

RES
4,(HL)

RES
4,A

RES
5,B

RES
5,C

RES
5,D

RES
5,E

RES
5,H

RES
5,L

RES
5,(HL)

RES
5,A

B RES
6,B

RES
6,C

RES
6,D

RES
6,E

RES
6,H

RES
6,L

RES
6,(HL)

RES
6,A

RES
7,B

RES
7,C

RES
7,D

RES
7,E

RES
7,H

RES
7,L

RES
7,(HL)

RES
7,A

C SET
0,B

SET
0,C

SET
0,D

SET
0,E

SET
0,H

SET
0,L

SET
0,(HL)

SET
0,A

SET
1,B

SET
1,C

SET
1,D

SET
1,E

SET
1,H

SET
1,L

SET
1,(HL)

SET
1,A

D SET
2,B

SET
2,C

SET
2,D

SET
2,E

SET
2,H

SET
2,L

SET
2,(HL)

SET
2,A

SET
3,B

SET
3,C

SET
3,D

SET
3,E

SET
3,H

SET
3,L

SET
3,(HL)

SET
3,A

E SET
4,B

SET
4,C

SET
4,D

SET
4,E

SET
4,H

SET
4,L

SET
4,(HL)

SET
4,A

SET
5,B

SET
5,C

SET
5,D

SET
5,E

SET
5,H

SET
5,L

SET
5,(HL)

SET
5,A

F SET
6,B

SET
6,C

SET
6,D

SET
6,E

SET
6,H

SET
6,L

SET
6,(HL)

SET
6,A

SET
7,B

SET
7,C

SET
7,D

SET
7,E

SET
7,H

SET
7,L

SET
7,(HL)

SET
7,A

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 16

3.4.6 DD-CB Code Page

This table shows the code page for instructions whose first two bytes are DDh,
followed by CBh. All instructions on this code page imply the use of the IX register in one
way or another. Note that wherever the HL register is used in a CB code page instruction,
the corresponding instruction on this code page uses either the IX register, or the indexed
addressing mode using the IX register.

\LSB
MSB\

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 RLC
(IX+d)

RRC
(IX+d)

1 RL
(IX+d)

RR
(IX+d)

2 SLA
(IX+d)

SRA
(IX+d)

3 SRL
(IX+d)

4 BIT
0,(IX+d)

BIT
1,(IX+d)

5 BIT
2,(IX+d)

BIT
3,(IX+d)

6 BIT
4,(IX+d)

BIT
5,(IX+d)

7 BIT
6,(IX+d)

BIT
7,(IX+d)

8 RES
0,(IX+d)

RES
1,(IX+d)

9 RES
2,(IX+d)

RES
3,(IX+d)

A RES
4,(IX+d)

RES
5,(IX+d)

B RES
6,(IX+d)

RES
7,(IX+d)

C SET
0,(IX+d)

SET
1,(IX+d)

D SET
2,(IX+d)

SET
3,(IX+d)

E SET
4,(IX+d)

SET
5,(IX+d)

F SET
6,(IX+d)

SET
7,(IX+d)

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 17

3.4.7 FD-CB Code Page

This table shows the code page for instructions whose first two bytes are FDh,
followed by CBh. All instructions on this code page imply the use of the IY register in one
way or another. This code page is identical to the DD-CB code page with the IY register
substituted for the IX register.

\LSB
MSB\

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 RLC
(IY+d)

RRC
(IY+d)

1 RL
(IY+d)

RR
(IY+d)

2 SLA
(IY+d)

SRA
(IY+d)

3 SRL
(IY+d)

4 BIT
0,(IY+d)

BIT
1,(IY+d)

5 BIT
2,(IY+d)

BIT
3,(IY+d)

6 BIT
4,(IY+d)

BIT
5,(IY+d)

7 BIT
6,(IY+d)

BIT
7,(IY+d)

8 RES
0,(IY+d)

RES
1,(IY+d)

9 RES
2,(IY+d)

RES
3,(IY+d)

A RES
4,(IY+d)

RES
5,(IY+d)

B RES
6,(IY+d)

RES
7,(IY+d)

C SET
0,(IY+d)

SET
1,(IY+d)

D SET
2,(IY+d)

SET
3,(IY+d)

E SET
4,(IY+d)

SET
5,(IY+d)

F SET
6,(IY+d)

SET
7,(IY+d)

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 18

3.5 Execution Tables

The tables below show the operation of the Y180 in detail for all instructions and
exception conditions. These tables are a part of the spreadsheet included in the full
electronic documentation for the Y180, which contains things like ALU operations, bus
contents, internal register addresses, etc. The tables below should be sufficient for the
majority of users of the Y180, but if you intend to modify the Y180 for your application,
or merely want to understand the internal workings of the design, refer to the full
spreadsheet for more detailed information.

3.5.1 Execution Table Conventions

The conventions used in the instruction, opcode and operation columns of the
execution tables are as follows:

b bit select (000 = bit 0, 001 = bit 1, 010 = bit 2, 011 = bit 3, 100 = bit 4,
101 = bit 5, 110 = bit 6, 111 = bit 7)

cc condition code select (00 = NZ, 01 = Z, 10 = NC, 11 = C)
d 8-bit (signed) displacement
dd word register select (00 = BC, 01 = DE, 10 = IX, 11 = SP)
e 8-bit (signed) displacement
f condition code select (000 = NZ, 001 = Z, 010 = NC, 011 = C,

100 = PO, 101 = PE, 110 = P, 111 = M)
m MSB of a 16-bit constant
mn 16-bit constant
n 8-bit constant or LSB of a 16-bit constant
r, r' byte register select (000 = B, 001 = C, 010 = D, 011 = E, 100 = H,

101 = L, 111 = A)
ss word register select (00 = BC, 01 = DE, 10 = HL, 11 = SP)
v Restart address select (000 = 0000h, 001 = 0008h, 010 = 0010h, 011 = 0018h,

100 = 0020h, 101 = 0028h, 110 = 0030h, 111 = 0038h)
xx word register select (00 = BC, 01 = DE, 10 = IX, 11 = SP)
yy word register select (00 = BC, 01 = DE, 10 = IY, 11 = SP)
zz word register select (00 = BC, 01 = DE, 10 = HL, 11 = AF)

The conventions used in the flag columns of the execution tables are as follows:

- No change
* Updated per convention
0, 1 Reset to zero or set to one
IE Set to value of IEF1 bit
P, V Reports the parity (P) or overflow (V) status of the result

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 19

3.5.2 Instruction Opcode, Timing and Operation

The execution table below shows the instruction or exception, the opcode, the
addressing mode, the number of machine cycles, the number and organization of the clock
cycles, the flags affected by the instruction, and the operation performed by the instruction
or exception.

Instruction Opcode
byte 1

Opcode
byte 2

Opcode
byte 3

Opcode
byte 4

Addr
Mode

Mach
State

Clock cycles S Z H P
V

N C Operation

ADC A,(HL) 10001110 reg ind 2 6 (3,3) * * * V 0 * A = A + (HL) + CF

ADC A,(IX+d) 11011101 10001110 ----d--- index 5 14 (3,3,3,2,3) * * * V 0 * A = A + (IX+d) + CF

ADC A,(IY+d) 11111101 10001110 ----d--- index 5 14 (3,3,3,2,3) * * * V 0 * A = A + (IY+d) + CF

ADC A,n 11001110 ----n--- immed 2 6 (3,3) * * * V 0 * A = A + n + CF

ADC A,r 10001-r- reg 2 4 (3,1) * * * V 0 * A = A + r + CF

ADC HL,ss 11101101 01ss1010 reg 3 10 (3,3,4) * * * V 0 * HL = HL + ss + CF

ADD A,(HL) 10000110 reg ind 2 6 (3,3) * * * V 0 * A = A + (HL)

ADD A,(IX+d) 11011101 10000110 ----d--- index 5 14 (3,3,3,2,3) * * * V 0 * A = A + (IX+d)

ADD A,(IY+d) 11111101 10000110 ----d--- index 5 14 (3,3,3,2,3) * * * V 0 * A = A + (IY+d)

ADD A,n 11000110 ----n--- immed 2 6 (3,3) * * * V 0 * A = A + n

ADD A,r 10000-r- reg 2 4 (3,1) * * * V 0 * A = A + r

ADD HL,ss 00ss1001 reg 2 7 (3,4) * * * V 0 * HL = HL + ss

ADD IX,xx 11011101 00xx1001 reg 3 10 (3,3,4) * * * V 0 * IX = IX + xx

ADD IY,yy 11111101 00yy1001 reg 3 10 (3,3,4) * * * V 0 * IY = IY + yy

AND (HL) 10100110 reg ind 2 6 (3,3) * * 1 P 0 0 A = A & (HL)

AND (IX+d) 11011101 10100110 ----d--- index 5 14 (3,3,3,2,3) * * 1 P 0 0 A = A & (IX+d)

AND (IY+d) 11111101 10100110 ----d--- index 5 14 (3,3,3,2,3) * * 1 P 0 0 A = A & (IY+d)

AND n 11100110 ----n--- immed 2 6 (3,3) * * 1 P 0 0 A = A & n

AND r 10100-r- reg 2 4 (3,1) * * 1 P 0 0 A = A & r

BIT b,(HL) 11001011 01-b-110 reg ind 3 9 (3,3,3) - * 1 - 0 - (HL) & bit

BIT b,(IX+d)) 11011101 11001011 ----d--- 01-b-110 index 5 15 (3,3,3,3,3) - * 1 - 0 - (IX+d) & bit

BIT b,(IY+d)) 11111101 11001011 ----d--- 01-b-110 index 5 15 (3,3,3,3,3) - * 1 - 0 - (IY+d) & bit

BIT b,r 11001011 01-b--r- reg 2 6 (3,3) - * 1 - 0 - r & bit

CALL f,mn 11-f-100 ----n--- ----m--- immed 2 (F)
6 (T)

6 (3,3)
16 (3,3,3,1,3,3) - - - - - - if {f}

(SP-1) = PCH; (SP-2) = PCL; PC = mn; SP = SP-2

CALL mn 11001101 ----n--- ----m--- immed 6 16 (3,3,3,1,3,3) - - - - - - (SP-1) = PCH; (SP-2) = PCL; PC = mn; SP = SP-2

CCF 00111111 none 1 3 - - 0 - 0 * CF = ~CF

CP (HL) 10111110 reg ind 2 6 (3,3) * * * V 1 * A - (HL)

CP (IX+d) 11011101 10111110 ----d--- index 5 14 (3,3,3,2,3) * * * V 1 * A - (IX+d)

CP (IY+d) 11111101 10111110 ----d--- index 5 14 (3,3,3,2,3) * * * V 1 * A - (IY+d)

CP n 11111110 ----n--- immed 2 6 (3,3) * * * V 1 * A - n

CP r 10111-r- reg 2 4 (3,1) * * * V 1 * A - r

CPD 11101101 10101001 implied 4 12 (3,3,3,3) * * * * 1 - A - (HL); BC = BC-1; HL = HL-1

CPDR 11101101 10111001 implied 4 (F)
5 (T)

12 (3,3,3,3)
14 (3,3,3,3,2) * * * * 1 - if {(BC != 0) | (A != (HL))} repeat:

A - (HL); BC = BC-1; HL = HL-1

CPI 11101101 10100001 implied 4 12 (3,3,3,3) * * * * 1 - A - (HL); BC = BC-1; HL = HL+1

CPIR 11101101 10110001 implied 4 (F)
5 (T)

12 (3,3,3,3)
14 (3,3,3,3,2) * * * * 1 - if {(BC != 0) | (A != (HL))} repeat:

A - (HL); BC = BC-1; HL = HL+1

CPL 00101111 implied 1 3 - - 1 - 1 - A = ~A

DAA 00100111 implied 2 4 (3,1) * * * P - * Decimal Adjust Accumulator

DEC (HL) 00110101 reg ind 4 10 (3,3,1,3) * * * V 1 * (HL) = (HL) - 1

DEC (IX+d) 11011101 00110101 ----d--- index 7 18 (3,3,3,2,3,1,3) * * * V 1 * (IX+d) = (IX+d) -1

DEC (IY+d) 11111101 00110101 ----d--- index 7 18 (3,3,3,2,3,1,3) * * * V 1 * (IY+d) = (IY+d) -1

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 20

Instruction Opcode
byte 1

Opcode
byte 2

Opcode
byte 3

Opcode
byte 4

Addr
Mode

Mach
State

Clock cycles S Z H P
V

N C Operation

DEC IX 11011101 00101011 reg 3 7 (3,3,1) - - - - - - IX = IX - 1

DEC IY 11111101 00101011 reg 3 7 (3,3,1) - - - - - - IY = IY - 1

DEC r 00-r-101 reg 2 4 (3,1) * * * V 1 * r = r - 1

DEC ss 00ss1011 reg 2 4 (3,1) - - - - - - ss = ss - 1

DI 11110011 none 1 3 - - - - - - IEF1 = 0; IEF2 = 0

DJNZ e 00010000 --(e-2)- relative 3 (F)
4 (T)

7 (3,1,3)
9 (3,1,3,2) - - - - - - B = B-1; if {B != 0} PC = PC + e

EI 11111011 none 1 3 - - - - - - IEF1 =1; IEF2 = 1

EX (SP),HL 11100011 implied 6 16 (3,3,3,1,3,3) - - - - - - H <-> (SP+1); L <-> (SP)

EX (SP),IX 11011101 11100011 implied 7 19 (3,3,3,3,1,3,3) - - - - - - IXH <-> (SP+1); IXL <-> (SP)

EX (SP),IY 11111101 11100011 implied 7 19 (3,3,3,3,1,3,3) - - - - - - IYH <-> (SP+1); IYL <-> (SP)

EX AF,AF' 00001000 implied 2 4 (3,1) - - - - - - AF <-> AF'

EX DE,HL 11101011 implied 1 3 - - - - - - DE <-> HL

EXX 11011001 implied 1 3 - - - - - - BC <-> BC'; DE <-> DE'; HL <-> HL'

HALT 01110110 none 1 3 - - - - - - CPU halted

IM 0 11101101 01000110 none 2 6 (3,3) - - - - - - Interrupt mode 0

IM 1 11101101 01010110 none 2 6 (3,3) - - - - - - Interrupt mode 1

IM 2 11101101 01011110 none 2 6 (3,3) - - - - - - Interrupt mode 2

IN A,(n) 11011011 ----n--- direct 3 9 (3,3,3) - - - - - - A = (An)

IN r,(C) 11101101 01-r-000 indirect 3 9 (3,3,3) * * 0 P 0 - r = (BC)

IN0 r,(n) 11101101 00-r-000 ----n--- direct 4 12 (3,3,3,3) * * 0 P 0 - r = (n)

INC (HL) 00110100 reg ind 4 10 (3,3,1,3) * * * V 0 * (HL) = (HL) + 1

INC (IX+d) 11011101 00110100 ----d--- index 7 18 (3,3,3,2,3,1,3) * * * V 0 * (IX+d) = (IX+d) + 1

INC (IY+d) 11111101 00110100 ----d--- index 7 18 (3,3,3,2,3,1,3) * * * V 0 * (IY+d) = (IY+d) + 1

INC IX 11011101 00100011 reg 3 7 (3,3,1) - - - - - - IX = IX + 1

INC IY 11111101 00100011 reg 3 7 (3,3,1) - - - - - - IY = IY + 1

INC r 00-r-100 reg 2 4 (3,1) * * * V 0 * r = r + 1

INC ss 00ss0011 reg 2 4 (3,1) - - - - - - ss = ss + 1

IND 11101101 10101010 implied 4 12 (3,3,3,3) - * - - * - (HL) = (BC); HL = HL-1; B = B-1

INDR 11101101 10111010 implied 4 (F)
5 (T)

12 (3,3,3,3)
14 (3,3,3,3,2) - 1 - - * - if {B != 0} repeat: (HL) = (BC); HL = HL-1; B = B-1

INI 11101101 10100010 implied 4 12 (3,3,3,3) - * - - * - (HL) = (BC); HL = HL+1; B = B-1

INIR 11101101 10110010 implied 4 (F)
5 (T)

12 (3,3,3,3)
14 (3,3,3,3,2) - 1 - - * - if {B != 0} repeat: (HL) = (BC); HL = HL+1; B = B-1

JP (HL) 11101001 implied 1 3 - - - - - - PC = HL

JP (IX) 11011101 11101001 implied 2 6 (3,3) - - - - - - PC = IX

JP (IY) 11111101 11101001 implied 2 6 (3,3) - - - - - - PC = IY

JP f,mn 11-f-010 ----n--- ----m--- immed 2 (F)
3 (T)

6 (3,3)
9 (3,3,3) - - - - - - if {f} PC = mn

JP mn 11000011 ----n--- ----m--- immed 3 9 (3,3,3) - - - - - - PC = mn

JR cc,j 001cc000 --(j-2)- relative 2 (F)
3 (T)

6 (3,3)
8 (3,3,2) - - - - - - if {cc} PC = PC + j

JR j 00011000 --(j-2)- relative 3 8 (3,3,2) - - - - - - PC = PC + j

LD (BC),A 00000010 implied 3 7 (3,1,3) - - - - - - (BC) = A

LD (DE),A 00010010 implied 3 7 (3,1,3) - - - - - - (DE) = A

LD (HL),n 00110110 ----n--- immed 3 9 (3,3,3) - - - - - - (HL) = n

LD (HL),r 01110-r- reg 3 7 (3,1,3) - - - - - - (HL) = r

LD (IX+d),n 11011101 00110110 ----d--- ----n--- immed 5 15 (3,3,3,3,3) - - - - - - (IX+d) = n

LD (IX+d),r 11011101 01110-r- ----d--- reg 5 15 (3,3,3,3,3) - - - - - - (IX+d) = r

LD (IY+d),n 11111101 00110110 ----d--- ----n--- immed 5 15 (3,3,3,3,3) - - - - - - (IY+d) = n

LD (IY+d),r 11111101 01110-r- ----d--- reg 5 15 (3,3,3,3,3) - - - - - - (Iy+d) = r

LD (mn),A 00110010 ----n--- ----m--- direct 5 13 (3,3,3,1,3) - - - - - - (mn) = A

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 21

Instruction Opcode
byte 1

Opcode
byte 2

Opcode
byte 3

Opcode
byte 4

Addr
Mode

Mach
State

Clock cycles S Z H P
V

N C Operation

LD (mn),HL 00100010 ----n--- ----m--- direct 6 16 (3,3,3,1,3,3) - - - - - - (mn) = L; (mn+1) = H

LD (mn),IX 11011101 00100010 ----n--- ----m--- direct 7 19 (3,3,3,3,1,3,3) - - - - - - (mn) = IXL; (mn+1) = IXH

LD (mn),IY 11111101 00100010 ----n--- ----m--- direct 7 19 (3,3,3,3,1,3,3) - - - - - - (mn) = IYL; (mn+1) = IYH

LD (mn),ss 11101101 01ss0011 ----n--- ----m--- direct 7 19 (3,3,3,3,1,3,3) - - - - - - (mn) = ssl; (mn+1) = ssh

LD A,(BC) 00001010 implied 2 6 (3,3) - - - - - - A = (BC)

LD A,(DE) 00011010 implied 2 6 (3,3) - - - - - - A = (DE)

LD A,(mn) 00111010 ----n--- ----m--- direct 4 12 (3,3,3,3) - - - - - - A = (mn)

LD A,I 11101101 01010111 implied 2 6 (3,3) * * 0 IE 0 - A = I

LD A,R 11101101 01011111 implied 2 6 (3,3) * * 0 IE 0 - A = R

LD dd,(mn) 11101101 01dd1011 ----n--- ----m--- direct 6 18 (3,3,3,3,3,3) - - - - - - ddl = (mn); ddh = (mn+1)

LD dd,mn 00dd0001 ----n--- ----m--- direct 3 9 (3,3,3) - - - - - - dd = mn

LD HL,(mn) 00101010 ----n--- ----m--- direct 5 15 (3,3,3,3,3) - - - - - - L = (mn); H = (mn+1)

LD I,A 11101101 01000111 implied 2 6 (3,3) - - - - - - I = A

LD IX,(mn) 11011101 00101010 ----n--- ----m--- direct 6 18 (3,3,3,3,3,3) - - - - - - IXL = (mn); IXH = (mn+1)

LD IX,mn 11011101 00100001 ----n--- ----m--- direct 4 12 (3,3,3,3) - - - - - - IX = mn

LD IY,(mn) 11111101 00101010 ----n--- ----m--- direct 6 18 (3,3,3,3,3,3) - - - - - - IYL = (mn); IYH = (mn+1)

LD IY,mn 11111101 00100001 ----n--- ----m--- direct 4 12 (3,3,3,3) - - - - - - IY = mn

LD r,(HL) 01-r-110 reg ind 2 6 (3,3) - - - - - - r = (HL)

LD r,(IX+d) 11011101 01-r-110 ----d--- index 5 14 (3,3,3,2,3) - - - - - - r = (IX+d)

LD r,(IY+d) 11111101 01-r-110 ----d--- index 5 14 (3,3,3,2,3) - - - - - - r = (IY+d)

LD R,A 11101101 01001111 implied 2 6 (3,3) - - - - - - R = A

LD r,n 00-r-110 ----n--- immed 2 6 (3,3) - - - - - - r = n

LD r,r' 01-r--r' reg 2 4 (3,1) - - - - - - r = r'

LD SP,HL 11111001 implied 2 4 (3,1) - - - - - - SP = HL

LD SP,IX 11011101 11111001 implied 3 7 (3,3,1) - - - - - - SP = IX

LD SP,IY 11111101 11111001 implied 3 7 (3,3,1) - - - - - - SP = IY

LDD 11101101 10101000 implied 4 12 (3,3,3,3) - - 0 * 0 - (DE) = (HL); BC = BC-1; DE = DE-1; HL = HL-1

LDDR 11101101 10111000 implied 4 (F)
5 (T)

12 (3,3,3,3)
14 (3,3,3,3,2) - - 0 * 0 - if {BC != 0} repeat:

(DE) = (HL); BC = BC-1; DE = DE-1; HL = HL-1

LDI 11101101 10100000 implied 4 12 (3,3,3,3) - - 0 * 0 - (DE) = (HL); BC = BC-1; DE = DE+1; HL = HL+1

LDIR 11101101 10110000 implied 4 (F)
5 (T)

12 (3,3,3,3)
14 (3,3,3,3,2) - - 0 * 0 - if {BC != 0} repeat:

(DE) = (HL); BC = BC-1; DE = DE+1; HL = HL+1

MLT ww 11101101 01ww1100 reg 3 16 (3,3,10) - - - - - - ww = wwl * wwh

NEG 11101101 01000100 implied 2 6 (3,3) * * * V 1 * A = 0 - A

NOP 00000000 none 1 3 - - - - - - No operation

OR (HL) 10110110 reg ind 2 6 (3,3) * * 0 P 0 0 A = A | (HL)

OR (IX+d) 11011101 10110110 ----d--- index 5 14 (3,3,3,2,3) * * 0 P 0 0 A = A | (IX+d)

OR (IY+d) 11111101 10110110 ----d--- index 5 14 (3,3,3,2,3) * * 0 P 0 0 A = A | (IY+d)

OR n 11110110 ----n--- immed 2 6 (3,3) * * 0 P 0 0 A = A | n

OR r 10110-r- reg 2 4 (3,1) * * 0 P 0 0 A = A | r

OTDM 11101101 10001011 implied 6 14 (3,3,1,3,3,1) * * * P * * (C) = (HL); HL = HL-1; B = B-1; C = C-1

OTDMR 11101101 10011011 implied 6 (F)
6 (T)

14 (3,3,1,3,3,1)
16 (3,3,1,3,3,3) 0 1 0 P * 0 if {B != 0} repeat:

(BC) = (HL); HL = HL-1; B = B-1; C = C-1

OTDR 11101101 10111011 implied 4 (F)
5 (T)

12 (3,3,3,3)
14 (3,3,3,3,2) - 1 - - * - if {B != 0} repeat: (BC) = (HL); HL = HL-1; B = B-1

OTIM 11101101 10000011 implied 6 14 (3,3,1,3,3,1) * * * P * * (C) = (HL); HL = HL+1; B = B-1; C = C-1

OTIMR 11101101 10010011 implied 6 (F)
6 (T)

14 (3,3,1,3,3,1)
16 (3,3,1,3,3,3) 0 1 0 P * 0 if {B != 0} repeat:

(BC) = (HL); HL = HL+1; B = B-1; C = C-1

OTIR 11101101 10110011 implied 4 (F)
5 (T)

12 (3,3,3,3)
14 (3,3,3,3,2) - 1 - - * - if {B != 0} repeat: (BC) = (HL); HL = HL+1; B = B-1

OUT (C),r 11101101 01-r-001 indirect 4 10 (3,3,1,3) - - - - - - (BC) = r

OUT (n),A 11010011 ----n--- direct 4 10 (3,3,1,3) - - - - - - (An) = A

OUT0 (n),r 11101101 00-r-001 ----n--- direct 5 13 (3,3,3,1,3) - - - - - - (n) = r

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 22

Instruction Opcode
byte 1

Opcode
byte 2

Opcode
byte 3

Opcode
byte 4

Addr
Mode

Mach
State

Clock cycles S Z H P
V

N C Operation

OUTD 11101101 10101011 implied 4 12 (3,3,3,3) - * - - * - (BC) = (HL); HL = HL-1; B = B-1

OUTI 11101101 10100011 implied 4 12 (3,3,3,3) - * - - * - (BC) = (HL); HL = HL+1; B = B-1

POP IX 11011101 11100001 reg 4 12 (3,3,3,3) - - - - - - IXL = (SP); IXH = (SP+1); SP = SP + 2

POP IY 11111101 11100001 reg 4 12 (3,3,3,3) - - - - - - IYL = (SP); IYH = (SP+1); SP = SP + 2

POP zz 11zz0001 reg 3 9 (3,3,3) - - - - - - zzl = (SP); zzh = (SP+1); SP = SP + 2

PUSH IX 11011101 11100101 reg 5 14 (3,3,2,3,3) - - - - - - (SP-1) = IXH; (SP-2) = IXL; SP = SP - 2

PUSH IY 11111101 11100101 reg 5 14 (3,3,2,3,3) - - - - - - (SP-1) = IYH; (SP-2) = IYL; SP = SP - 2

PUSH zz 11zz0101 reg 4 11 (3,2,3,3) - - - - - - (SP-1) = zzh; (SP-2) = zzl; SP = SP - 2

RES b,(HL) 11001011 10-b-110 reg ind 5 13 (3,3,3,1,3) - - - - - - (HL) = (HL) & ~bit

RES b,(IX+d) 11011101 11001011 ----d--- 10-b-110 index 7 19 (3,3,3,3,3,1,3) - - - - - - (IX+d) = (IX+d) & ~bit

RES b,(IY+d) 11111101 11001011 ----d--- 10-b-110 index 7 19 (3,3,3,3,3,1,3) - - - - - - (IY+d) = (IY+d) & ~bit

RES b,r 11001011 10-b--r- reg 3 7 (3,3,1) - - - - - - r = r & ~bit

RET 11001001 implied 3 9 (3,3,3) - - - - - - PCL = (SP); PCH = (SP+1); SP = SP+2

RET f 11-f-000 implied 2 (F)
4 (T)

5 (3,2)
10 (3,1,3,3) - - - - - - if {f} PCL = (SP); PCH = (SP+1); SP = SP+2

RETI 11101101 01001101 implied 4 (0,1)
8 (2)

12 (3,3,3,3) 22
(3,3,3,3,1,3,3,3) - - - - - - PCL = (SP); PCH = (SP+1); SP = SP+2

RETN 11101101 01000101 implied 4 12 (3,3,3,3) - - - - - - PCL = (SP); PCH = (SP+1); SP = SP+2; IEF2 = IEF1

RL (HL) 11001011 00010110 reg ind 5 13 (3,3,3,1,3) * * 0 P 0 * {CY,(HL)} = {(HL),CY}

RL (IX+d) 11011101 11001011 ----d--- 00010110 index 7 19 (3,3,3,3,3,1,3) * * 0 P 0 * {CY,(IX+d)} = {(IX+d),CY}

RL (IY+d) 11111101 11001011 ----d--- 00010110 index 7 19 (3,3,3,3,3,1,3) * * 0 P 0 * {CY,(IY+d)} = {(IY+d),CY}

RL r 11001011 00010-r- reg 3 7 (3,3,1) * * 0 P 0 * {CY,r} = {r,CY}

RLA 00010111 implied 1 3 - - 0 - 0 * {CY,A} = {A,CY}

RLC (HL) 11001011 00000110 reg ind 5 13 (3,3,3,1,3) * * 0 P 0 * (HL) = {(HL)[6,0],(HL)[7]}; CY = (HL)[7]

RLC (IX+d) 11011101 11001011 ----d--- 00000110 index 7 19 (3,3,3,3,3,1,3) * * 0 P 0 * (IX+d) = {(IX+d)[6,0],(IX+d)[7]}; CY = (IX+d)[7]

RLC (IY+d) 11111101 11001011 ----d--- 00000110 index 7 19 (3,3,3,3,3,1,3) * * 0 P 0 * (IY+d) = {(IY+d)[6,0],(IY+d)[7]}; CY = (IY+d)[7]

RLC r 11001011 00000-r- reg 3 7 (3,3,1) * * 0 P 0 * r = {r[6,0],r[7]}; CY = r[7]

RLCA 00000111 implied 1 3 - - 0 - 0 * A = {A[6,0],A[7]}; CY = A[7]

RLD 11101101 01101111 implied 5 16 (3,3,3,4,3) * * 0 P 0 - A[3,0] = (HL)[7,4]; (HL) = {(HL)[3,0],A[3,0]}

RR (HL) 11001011 00011110 reg ind 5 13 (3,3,3,1,3) * * 0 P 0 * {(HL),CY} = {CY,(HL)}

RR (IX+d) 11011101 11001011 ----d--- 00011110 index 7 19 (3,3,3,3,3,1,3) * * 0 P 0 * {(IX+d),CY} = {CY,(IX+d)}

RR (IY+d) 11111101 11001011 ----d--- 00011110 index 7 19 (3,3,3,3,3,1,3) * * 0 P 0 * {(IY+d),CY} = {CY,(IY+d)}

RR r 11001011 00011-r- reg 3 7 (3,3,1) * * 0 P 0 * {r,CY} = {CY,r}

RRA 00011111 implied 1 3 - - 0 - 0 * {A,CY} = {CY,A}

RRC (HL) 11001011 00001110 reg ind 5 13 (3,3,3,1,3) * * 0 P 0 * (HL) = {(HL)[0],(HL)[7,1]}; CY = (HL)[0]

RRC (IX+d) 11011101 11001011 ----d--- 00001110 index 7 19 (3,3,3,3,3,1,3) * * 0 P 0 * (IX+d) = {(IX+d)[0],(IX+d)[7,1]}; CY = (IX+d)[0]

RRC (IY+d) 11111101 11001011 ----d--- 00001110 index 7 19 (3,3,3,3,3,1,3) * * 0 P 0 * (IY+d) = {(IY+d)[0],(IY+d)[7,1]}; CY = (IY+d)[0]

RRC r 11001011 00001-r- reg 3 7 (3,3,1) * * 0 P 0 * r = {r[0],r[7,1]}; CY = r[0]

RRCA 00001111 implied 1 3 - - 0 - 0 * A = {A[0],A[7,1]}; CY = A[0]

RRD 11101101 01100111 implied 5 16 (3,3,3,4,3) * * 0 P 0 - A[3,0] = (HL)[3,0]; (HL) = {A[3,0],(HL)[7,4]}

RST v 11-v-111 implied 4 11 (3,2,3,3) - - - - - - (SP-1) = PCH; (SP-2) = PCL; SP = SP - 2; PC = v

SBC (IX+d) 11011101 10011110 ----d--- index 5 14 (3,3,3,2,3) * * * V 1 * A = A - (IX+d) - CY

SBC (IY+d) 11111101 10011110 ----d--- index 5 14 (3,3,3,2,3) * * * V 1 * A = A - (IY+d) - CY

SBC A,(HL) 10011110 reg ind 2 6 (3,3) * * * V 1 * A = A - (HL) - CY

SBC A,n 11011110 ----n--- immed 2 6 (3,3) * * * V 1 * A = A - n - CY

SBC A,r 10011-r- reg 2 4 (3,1) * * * V 1 * A = A - r - CY

SBC HL,ss 11101101 01ss0010 reg 3 10 (3,3,4) * * * V 1 * HL = HL - ss - CF

SCF 00110111 none 1 3 - - 0 - 0 1 CF = 1

SET b,(HL) 11001011 11-b-110 reg ind 4 13 (3,3,3,1,3) - - - - - - (HL) = (HL) | bit

SET b,(IX+d) 11011101 11001011 ----d--- 11-b-110 index 7 19 (3,3,3,3,3,1,3) - - - - - - (IX+d) = (IX+d) | bit

SET b,(IY+d) 11111101 11001011 ----d--- 11-b-110 index 7 19 (3,3,3,3,3,1,3) - - - - - - (IY+d) = (IY+d) | bit

SET b,r 11001011 11-b--r- reg 3 7 (3,3,1) - - - - - - r = r | bit

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 23

Instruction Opcode
byte 1

Opcode
byte 2

Opcode
byte 3

Opcode
byte 4

Addr
Mode

Mach
State

Clock cycles S Z H P
V

N C Operation

SLA (HL) 11001011 00100110 reg ind 5 13 (3,3,3,1,3) * * 0 P 0 * (HL) = {(HL)[6,0],0}; CY = (HL)[7]

SLA (IX+d) 11011101 11001011 ----d--- 00100110 index 7 19 (3,3,3,3,3,1,3) * * 0 P 0 * (IX+d) = {(IX+d)[6,0],0}; CY = (IX+d)[7]

SLA (IY+d) 11111101 11001011 ----d--- 00100110 index 7 19 (3,3,3,3,3,1,3) * * 0 P 0 * (IY+d) = {(IY+d)[6,0],0}; CY = (IY+d)[7]

SLA r 11001011 00100-r- reg 3 7 (3,3,1) * * 0 P 0 * r = {r[6,0],0}; CY = r[7]

SLP 11101101 01110110 none 3 8 (3,3,2) - - - - - - Sleep

SRA (HL) 11001011 00101110 reg ind 5 13 (3,3,3,1,3) * * 0 P 0 * (HL) = {(HL)[7],(HL)[7,1]}; CY = (HL)[0]

SRA (IX+d) 11011101 11001011 ----d--- 00101110 index 7 19 (3,3,3,3,3,1,3) * * 0 P 0 * (IX+d) = {(IX+d)[7],(IX+d)[7,1]}; CY = (IX+d)[0]

SRA (IY+d) 11111101 11001011 ----d--- 00101110 index 7 19 (3,3,3,3,3,1,3) * * 0 P 0 * (IY+d) = {(IY+d)[7],(IY+d)[7,1]}; CY = (IY+d)[0]

SRA r 11001011 00101-r- reg 3 7 (3,3,1) * * 0 P 0 * r = {r[7],r[7,1]}; CY = r[0]

SRL (HL) 11001011 00111110 reg ind 5 13 (3,3,3,1,3) * * 0 P 0 * (HL) = {0,(HL)[7,1]}; CY = (HL)[0]

SRL (IX+d) 11011101 11001011 ----d--- 00111110 index 7 19 (3,3,3,3,3,1,3) * * 0 P 0 * (IX+d) = {0,(IX+d)[7,1]}; CY = (IX+d)[0]

SRL (IY+d) 11111101 11001011 ----d--- 00111110 index 7 19 (3,3,3,3,3,1,3) * * 0 P 0 * (IY+d) = {0,(IY+d)[7,1]}; CY = (IY+d)[0]

SRL r 11001011 00111-r- reg 3 7 (3,3,1) * * 0 P 0 * r = {0,r[7,1]}; CY = r[0]

SUB (HL) 10010110 reg ind 2 6 (3,3) * * * V 1 * A = A - (HL)

SUB (IX+d) 11011101 10010110 ----d--- index 5 14 (3,3,3,2,3) * * * V 1 * A = A - (IX+d)

SUB (IY+d) 11111101 10010110 ----d--- index 5 14 (3,3,3,2,3) * * * V 1 * A = A - (IY+d)

SUB n 11010110 ----n--- immed 2 6 (3,3) * * * V 1 * A = A - n

SUB r 10010-r- reg 2 4 (3,1) * * * V 1 * A = A - r

TST (HL) 11101101 00110100 reg ind 4 10 (3,3,1,3) * :* 1 P 0 0 A & (HL)

TST n 11101101 01100100 ----n--- immed 3 9 (3,3,3) * * 1 P 0 0 A & n

TST r 11101101 00-r-100 reg 3 7 (3,3,1) * * 1 P 0 0 A & r

TSTIO n 11101101 01110100 ----n--- direct 4 12 (3,3,3,3) * * 1 P 0 0 (C) & n

XOR (HL) 10101110 reg ind 2 6 (3,3) * * 0 P 0 0 A = [A & ~(HL)] | [~A & (HL)]

XOR (IX+d) 11011101 10101110 ----d--- index 5 14 (3,3,3,2,3) * * 0 P 0 0 A = [A & ~(IX+d)] | [~A & (IX+d)]

XOR (IY+d) 11111101 10101110 ----d--- index 5 14 (3,3,3,2,3) * * 0 P 0 0 A = [A & ~(IY+d)] | [~A & (IY+d)]

XOR n 11101110 ----n--- immed 2 6 (3,3) * * 0 P 0 0 A = [A & ~n] | [~A & n]

XOR r 10101-r- reg 2 4 (3,1) * * 0 P 0 0 A = [A & ~r] | [~A & r]

ZIACK0 none 1 3 - - - - - - IEF1=0; IEF2=0

ZIACK1 none 3 9 (3,3,3) - - - - - - (SP-1) = PCH; (SP-2) = PCL; SP = SP-2;
IEF2 = 0; IEF1 = 0; PC = 0038h

ZIACK2 none 6 16 (3,1,3,3,3,3) - - - - - - (SP-1) = PCH; (SP-2) = PCL; SP = SP-2;
IEF2 = 0; IEF1 = 0; PC = (VT)

ZNMIACK none 4 11 (3,2,3,3) - - - - - - (SP-1) = PCH; (SP-2) = PCL; SP = SP-2;
IEF2 = IEF1; IEF1 = 0; PC = 0066h

ZTRAP2 none 3 12 (6,3,3) - - - - - - (SP-1) = PCH; (SP-2) = PCL; SP = SP-2; PC = 0000h

ZTRAP3 none 3 10 (4,3,3) - - - - - - (SP-1) = PCH; (SP-2) = PCL; SP = SP-2; PC = 0000h

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 24

3.5.3 Address Bus Contents

The execution table below shows the contents of the Address Bus for each
machine cycle. The Address Bus is only valid during memory, I/O, and interrupt
acknowledge cycles, and will be undefined during internal operation cycles. The default
address output is the Program Counter, so this is what will usually be on the Address Bus
during internal operation cycles.

Instruction if1 dly if2 of1 of2 if3 iop sif1 sdly sif2 rd1 rd2 siop wr1 wr2 fiopfiop

ADC A,(HL) PC HL

ADC A,(IX+d) PC PC PC xx IX+d

ADC A,(IY+d) PC PC PC xx IY+d

ADC A,n PC PC

ADC A,r PC xx

ADC HL,ss PC PC xx

ADD A,(HL) PC HL

ADD A,(IX+d) PC PC PC xx IX+d

ADD A,(IY+d) PC PC PC xx IY+d

ADD A,n PC PC

ADD A,r PC xx

ADD HL,ss PC xx

ADD IX,xx PC PC xx

ADD IY,yy PC PC xx

AND (HL) PC HL

AND (IX+d) PC PC PC xx IX+d

AND (IY+d) PC PC PC xx IY+d

AND n PC PC

AND r PC xx

BIT b,(HL) PC PC HL

BIT b,(IX+d)) PC PC PC PC IX+d

BIT b,(IY+d)) PC PC PC PC IY+d

BIT b,r PC PC

CALL f,mn PC PC PC xx SP-1 SP-2

CALL mn PC PC PC xx SP-1 SP-2

CCF PC

CP (HL) PC HL

CP (IX+d) PC PC PC xx IX+d

CP (IY+d) PC PC PC xx IY+d

CP n PC PC

CP r PC xx

CPD PC PC HL xx

CPDR PC PC HL xx xxxx

CPI PC PC HL xx

CPIR PC PC HL xx xxxx

CPL PC

DAA PC xx

DEC (HL) PC HL xx HL

DEC (IX+d) PC PC PC xx IX+d xx IX+d

DEC (IY+d) PC PC PC xx IY+d xx IY+d

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 25

Instruction if1 dly if2 of1 of2 if3 iop sif1 sdly sif2 rd1 rd2 siop wr1 wr2 fiopfiop

DEC IX PC PC xx

DEC IY PC PC xx

DEC r PC xx

DEC ss PC xx

DI PC

DJNZ j PC xx PC xx

EI PC

EX (SP),HL PC SP SP+1 xx SP+1 SP

EX (SP),IX PC PC SP SP+1 xx SP+1 SP

EX (SP),IY PC PC SP SP+1 xx SP+1 SP

EX AF,AF' PC xx

EX DE,HL PC

EXX PC

HALT PC

IM 0 PC PC

IM 1 PC PC

IM 2 PC PC

IN A,(n) PC PC An

IN r,(C) PC PC BC

IN0 r,(n) PC PC PC 0n

INC (HL) PC HL xx HL

INC (IX+d) PC PC PC xx IX+d xx IX+d

INC (IY+d) PC PC PC xx IY+d xx IY+d

INC IX PC PC xx

INC IY PC PC xx

INC r PC xx

INC ss PC xx

IND PC PC BC HL

INDR PC PC BC HL xxxx

INI PC PC BC HL

INIR PC PC BC HL xxxx

JP (HL) PC

JP (IX) PC PC

JP (IY) PC PC

JP f,mn PC PC PC

JP mn PC PC PC

JR cc,j PC PC xx

JR j PC PC xx

LD (BC),A PC xx BC

LD (DE),A PC xx DE

LD (HL),n PC PC HL

LD (HL),r PC xx HL

LD (IX+d),n PC PC PC PC IX+d

LD (IX+d),r PC PC PC xx IX+d

LD (IY+d),n PC PC PC PC IY+d

LD (IY+d),r PC PC PC xx IY+D

LD (mn),A PC PC PC xx mn

LD (mn),HL PC PC PC xx mn mn+1

LD (mn),IX PC PC PC PC xx mn mn+1

LD (mn),IY PC PC PC PC xx mn mn+1

LD (mn),ss PC PC PC PC xx mn mn+1

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 26

Instruction if1 dly if2 of1 of2 if3 iop sif1 sdly sif2 rd1 rd2 siop wr1 wr2 fiopfiop

LD A,(BC) PC BC

LD A,(DE) PC DE

LD A,(mn) PC PC PC mn

LD A,I PC PC

LD A,R PC PC

LD dd,(mn) PC PC PC PC mn mn+1

LD dd,mn PC PC PC

LD HL,(mn) PC PC PC mn mn+1

LD I,A PC PC

LD IX,(mn) PC PC PC PC mn mn+1

LD IX,mn PC PC PC PC

LD IY,(mn) PC PC PC PC mn mn+1

LD IY,mn PC PC PC PC

LD r,(HL) PC HL

LD r,(IX+d) PC PC PC xx IX+d

LD r,(IY+d) PC PC PC xx IY+d

LD R,A PC PC

LD r,n PC PC

LD r,r' PC xx

LD SP,HL PC xx

LD SP,IX PC PC xx

LD SP,IY PC PC xx

LDD PC PC HL DE

LDDR PC PC HL DE xxxx

LDI PC PC HL DE

LDIR PC PC HL DE xxxx

MLT ww PC PC xx

NEG PC PC

NOP PC

OR (HL) PC HL

OR (IX+d) PC PC PC xx IX+d

OR (IY+d) PC PC PC xx IY+d

OR n PC PC

OR r PC xx

OTDM PC PC xx HL 0C xxxx

OTDMR PC PC xx HL xx 0C xxxx

OTDR PC PC HL BC xxxx

OTIM PC PC xx HL 0C xxxx

OTIMR PC PC xx HL xx 0C xxxx

OTIR PC PC HL BC xxxx

OUT (C),r PC PC xx BC

OUT (n),A PC PC xx An

OUT0 (n),r PC PC PC xx 0n

OUTD PC PC HL BC

OUTI PC PC HL BC

POP IX PC PC SP SP+1

POP IY PC PC SP SP+1

POP zz PC SP SP+1

PUSH IX PC PC xx SP-1 SP-2

PUSH IY PC PC xx SP-1 SP-2

PUSH zz PC xx SP-1 SP-2

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 27

Instruction if1 dly if2 of1 of2 if3 iop sif1 sdly sif2 rd1 rd2 siop wr1 wr2 fiopfiop

RES b,(HL) PC PC HL xx HL

RES b,(IX+d) PC PC PC PC IX+d xx IX+d

RES b,(IY+d) PC PC PC PC IY+d xx IY+d

RES b,r PC PC xx

RET PC SP SP+1

RET f PC xx SP SP+1 xx

RETI PC PC xx PC xx PC SP SP+1

RETN PC PC SP SP+1

RL (HL) PC PC HL xx HL

RL (IX+d) PC PC PC PC IX+d xx IX+d

RL (IY+d) PC PC PC PC IY+d xx IY+d

RL r PC PC xx

RLA PC

RLC (HL) PC PC HL xx HL

RLC (IX+d) PC PC PC PC IX+d xx IX+d

RLC (IY+d) PC PC PC PC IY+d xx IY+d

RLC r PC PC xx

RLCA PC

RLD PC PC HL xx HL

RR (HL) PC PC HL xx HL

RR (IX+d) PC PC PC PC IX+d xx IX+d

RR (IY+d) PC PC PC PC IY+d xx IY+d

RR r PC PC xx

RRA PC

RRC (HL) PC PC HL xx HL

RRC (IX+d) PC PC PC PC IX+d xx IX+d

RRC (IY+d) PC PC PC PC IY+d xx IY+d

RRC r PC PC xx

RRCA PC

RRD PC PC HL xx HL

RST v PC xx SP-1 SP-2

SBC (IX+d) PC PC PC xx HL

SBC (IY+d) PC PC PC xx IX+d

SBC A,(HL) PC IY+d

SBC A,n PC PC

SBC A,r PC xx

SBC HL,ss PC PC xx

SCF PC

SET b,(HL) PC PC HL xx HL

SET b,(IX+d) PC PC PC PC IX+d xx IX+d

SET b,(IY+d) PC PC PC PC IY+d xx IY+d

SET b,r PC PC xx

SLA (HL) PC PC HL xx HL

SLA (IX+d) PC PC PC PC IX+d xx IX+d

SLA (IY+d) PC PC PC PC IY+d xx IY+d

SLA r PC PC xx

SLP PC PC xx

SRA (HL) PC PC HL xx HL

SRA (IX+d) PC PC PC PC IX+d xx IX+d

SRA (IY+d) PC PC PC PC IY+d xx IY+d

SRA r PC PC xx

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 28

Instruction if1 dly if2 of1 of2 if3 iop sif1 sdly sif2 rd1 rd2 siop wr1 wr2 fiopfiop

SRL (HL) PC PC HL xx HL

SRL (IX+d) PC PC PC PC IX+d xx IX+d

SRL (IY+d) PC PC PC PC IY+d xx IY+d

SRL r PC PC xx

SUB (HL) PC HL

SUB (IX+d) PC PC PC xx IX+d

SUB (IY+d) PC PC PC xx IY+d

SUB n PC PC

SUB r PC xx

TST (HL) PC PC xx HL

TST n PC PC PC

TST r PC PC xx

TSTIO n PC PC PC 0C

XOR (HL) PC HL

XOR (IX+d) PC PC PC xx IX+d

XOR (IY+d) PC PC PC xx IY+d

XOR n PC PC

XOR r PC xx

ZIACK0

ZIACK1 SP-1 SP-2

ZIACK2 VT VT+1 xx SP-1 SP-2

ZNMIACK xx SP-1 SP-2

ZTRAP2 xx SP-1 SP-2

ZTRAP3 xx SP-1 SP-2

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 29

3.5.4 Next Machine State

The execution table below shows the sequence of machine cycles for each
instruction or exception condition. All instructions start with the IF1 (instruction fetch 1)
state, while exception conditions start with some kind of interrupt acknowledge state or
the instruction fetch where the illegal opcode was fetched, which are not shown in the
table. In each column is listed the next machine cycle for each instruction or exception.
The word "done" in a column means that the corresponding machine cycle is the last one
for that particular instruction or exception condition, and the next state will be either IF1
(for execution of another instruction) or an interrupt acknowledge cycle if an interrupt
condition is present. Where there are two entries listed in a column for an instruction, the
next state depends on the condition being tested in the instruction. The top entry
corresponds to the condition being false, while the bottom entry corresponds to the
condition being true. Shaded entries are not used for that particular instruction or
exception condition. The names and descriptions of the machine cycles are listed following
the table.

Instruction if1 dly if2 of1 of2 if3 iop sif1 sdly sif2 rd1 rd2 siop wr1 wr2 fiopfiop

ADC A,(HL) rd2 done

ADC A,(IX+d) if2 of1 iop2 rd2 done

ADC A,(IY+d) if2 of1 iop2 rd2 done

ADC A,n of1 done

ADC A,r iop1 done

ADC HL,ss if2 iop4 done

ADD A,(HL) rd2 done

ADD A,(IX+d) if2 of1 iop2 rd2 done

ADD A,(IY+d) if2 of1 iop2 rd2 done

ADD A,n of1 done

ADD A,r iop1 done

ADD HL,ss iop4 done

ADD IX,xx if2 iop4 done

ADD IY,yy if2 iop4 done

AND (HL) rd2 done

AND (IX+d) if2 of1 iop2 rd2 done

AND (IY+d) if2 of1 iop2 rd2 done

AND n of1 done

AND r iop1 done

BIT b,(HL) if2 rd2 done

BIT b,(IX+d)) if2 of1 if3 rd2 done

BIT b,(IY+d)) if2 of1 if3 rd2 done

BIT b,r if2 done

CALL f,mn of1 done
of2 iop1 wr1 wr2 done

CALL mn of1 of2 iop1 wr1 wr2 done

CCF done

CP (HL) rd2 done

CP (IX+d) if2 of1 iop2 rd2 done

CP (IY+d) if2 of1 iop2 rd2 done

CP n of1 done

CP r iop1 done

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 30

Instruction if1 dly if2 of1 of2 if3 iop sif1 sdly sif2 rd1 rd2 siop wr1 wr2 fiopfiop

CPD if2 rd2 siop3 done

CPDR if2 rd2 siop3 done
fiop2 donedone

CPI if2 rd2 siop3 done

CPIR if2 rd2 siop3 done
fiop2 donedone

CPL done

DAA iop1 done

DEC (HL) rd2 siop1 wr2 done

DEC (IX+d) if2 of1 iop2 rd2 siop1 wr2 done

DEC (IY+d) if2 of1 iop2 rd2 siop1 wr2 done

DEC IX if2 iop1 done

DEC IY if2 iop1 done

DEC r iop1 done

DEC ss iop1 done

DI done

DJNZ j dly of1 done
iop2 done

EI done

EX (SP),HL rd1 rd2 siop1 wr1 wr2 done

EX (SP),IX if2 rd1 rd2 siop1 wr1 wr2 done

EX (SP),IY if2 rd1 rd2 siop1 wr1 wr2 done

EX AF,AF' iop1 done

EX DE,HL done

EXX done

HALT done

IM 0 if2 done

IM 1 if2 done

IM 2 if2 done

IN A,(n) of1 rd2 done

IN r,(C) if2 rd2 done

IN0 r,(n) if2 of1 rd2 done

INC (HL) rd2 siop1 wr2 done

INC (IX+d) if2 of1 iop2 rd2 siop1 wr2 done

INC (IY+d) if2 of1 iop2 rd2 siop1 wr2 done

INC IX if2 iop1 done

INC IY if2 iop1 done

INC r iop1 done

INC ss iop1 done

IND if2 rd2 wr2 done

INDR if2 rd2 wr2 done
fiop2 donedone

INI if2 rd2 wr2 done

INIR if2 rd2 wr2 done
fiop2 donedone

JP (HL) done

JP (IX) if2 done

JP (IY) if2 done

JP f,mn of1 done
of2 done

JP mn of1 of2 done

JR cc,j of1 done
iop2 done

JR j of1 iop2 done

LD (BC),A iop1 wr2 done

LD (DE),A iop1 wr2 done

LD (HL),n of1 wr2 done

LD (HL),r iop1 wr2 done

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 31

Instruction if1 dly if2 of1 of2 if3 iop sif1 sdly sif2 rd1 rd2 siop wr1 wr2 fiopfiop

LD (IX+d),n if2 of1 of2 wr2 done

LD (IX+d),r if2 of1 iop3 wr2 done

LD (IY+d),n if2 of1 of2 wr2 done

LD (IY+d),r if2 of1 iop3 wr2 done

LD (mn),A of1 of2 iop1 wr2 done

LD (mn),HL of1 of2 iop1 wr1 wr2 done

LD (mn),IX if2 of1 of2 iop1 wr1 wr2 done

LD (mn),IY if2 of1 of2 iop1 wr1 wr2 done

LD (mn),ss if2 of1 of2 iop1 wr1 wr2 done

LD A,(BC) rd2 done

LD A,(DE) rd2 done

LD A,(mn) of1 of2 rd2 done

LD A,I if2 done

LD A,R if2 done

LD dd,(mn) if2 of1 of2 rd1 rd2 done

LD dd,mn of1 of2 done

LD HL,(mn) of1 of2 rd1 rd2 done

LD I,A if2 done

LD IX,(mn) if2 of1 of2 rd1 rd2 done

LD IX,mn if2 of1 of2 done

LD IY,(mn) if2 of1 of2 rd1 rd2 done

LD IY,mn if2 of1 of2 done

LD r,(HL) rd2 done

LD r,(IX+d) if2 of1 iop2 rd2 done

LD r,(IY+d) if2 of1 iop2 rd2 done

LD R,A if2 done

LD r,n of1 done

LD r,r' iop1 done

LD SP,HL iop1 done

LD SP,IX if2 iop1 done

LD SP,IY if2 iop1 done

LDD if2 rd2 wr2 done

LDDR if2 rd2 wr2 done
fiop2 donedone

LDI if2 rd2 wr2 done

LDIR if2 rd2 wr2 done
fiop2 donedone

MLT ww if2 iop10 done

NEG if2 done

NOP done

OR (HL) rd2 done

OR (IX+d) if2 of1 iop2 rd2 done

OR (IY+d) if2 of1 iop2 rd2 done

OR n of1 done

OR r iop1 done

OTDM if2 iop1 rd2 wr2 fiop1 donedone

OTDMR if2 iop1 rd2 wr2 fiop1
fiop3 donedone

OTDR if2 rd2 wr2 done
fiop2 donedone

OTIM if2 iop1 rd2 wr2 fiop1 donedone

OTIMR if2 iop1 rd2 wr2 fiop1
fiop3 donedone

OTIR if2 rd2 wr2 done
fiop2 donedone

OUT (C),r if2 iop1 wr2 done

OUT (n),A of1 iop1 wr2 done

OUT0 (n),r if2 of1 iop1 wr2 done

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 32

Instruction if1 dly if2 of1 of2 if3 iop sif1 sdly sif2 rd1 rd2 siop wr1 wr2 fiopfiop

OUTD if2 rd2 wr2 done

OUTI if2 rd2 wr2 done

POP IX if2 rd1 rd2 done

POP IY if2 rd1 rd2 done

POP zz rd1 rd2 done

PUSH IX if2 iop2 wr1 wr2 done

PUSH IY if2 iop2 wr1 wr2 done

PUSH zz iop2 wr1 wr2 done

RES b,(HL) if2 rd2 siop1 wr2 done

RES b,(IX+d) if2 of1 if3 rd2 siop1 wr2 done

RES b,(IY+d) if2 of1 if3 rd2 siop1 wr2 done

RES b,r if2 iop1 done

RET rd1 rd2 done

RET f iop2
iop1

done
rd1 rd2 done

RETI if2 rd1
iop3 sif1 sdly sif2 rd1 rd2 done

RETN if2 rd1 rd2 done

RL (HL) if2 rd2 siop1 wr2 done

RL (IX+d) if2 of1 if3 rd2 siop1 wr2 done

RL (IY+d) if2 of1 if3 rd2 siop1 wr2 done

RL r if2 iop1 done

RLA done

RLC (HL) if2 rd2 siop1 wr2 done

RLC (IX+d) if2 of1 if3 rd2 siop1 wr2 done

RLC (IY+d) if2 of1 if3 rd2 siop1 wr2 done

RLC r if2 iop1 done

RLCA done

RLD if2 rd2 siop4 wr2 done

RR (HL) if2 rd2 siop1 wr2 done

RR (IX+d) if2 of1 if3 rd2 siop1 wr2 done

RR (IY+d) if2 of1 if3 rd2 siop1 wr2 done

RR r if2 iop1 done

RRA done

RRC (HL) if2 rd2 siop1 wr2 done

RRC (IX+d) if2 of1 if3 rd2 siop1 wr2 done

RRC (IY+d) if2 of1 if3 rd2 siop1 wr2 done

RRC r if2 iop1 done

RRCA done

RRD if2 rd2 siop4 wr2 done

RST v iop2 wr1 wr2 done

SBC (IX+d) if2 of1 iop2 rd2 done

SBC (IY+d) if2 of1 iop2 rd2 done

SBC A,(HL) rd2 done

SBC A,n of1 done

SBC A,r iop1 done

SBC HL,ss if2 iop4 done

SCF done

SET b,(HL) if2 rd2 siop1 wr2 done

SET b,(IX+d) if2 of1 if3 rd2 siop1 wr2 done

SET b,(IY+d) if2 of1 if3 rd2 siop1 wr2 done

SET b,r if2 iop1 done

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 33

if1, if2 and if3 are instruction fetch cycles, for the first, second and third opcode
respectively.

dly is used only with DJNZ to speed operation by decrementing and checking
b before fetching the displacement.

of1 and of2 are the operand fetch cycles.
iop are internal operation cycles and can be up to 10 clocks long.
sif1 and sif2 are the RETI instruction refetch cycles.
sdly is a delay cycle needed between the RETI instruction refetch cycles.
rd1 and rd2 are memory or I/O read cycles. rd2 is used for byte reads, and both rd1 and

rd2 are used for word reads.
siop are internal operation cycles and can be up to 5 clocks.
wr1 and wr2 are memory or I/O write cycles. wr2 is used for byte writes, and both wr1

and wr2 are used for word writes.
fiop are internal operation cycles and can be up to 3 clocks long.

Instruction if1 dly if2 of1 of2 if3 iop sif1 sdly sif2 rd1 rd2 siop wr1 wr2 fiopfiop

SLA (HL) if2 rd2 siop1 wr2 done

SLA (IX+d) if2 of1 if3 rd2 siop1 wr2 done

SLA (IY+d) if2 of1 if3 rd2 siop1 wr2 done

SLA r if2 iop1 done

SLP if2 iop2 done

SRA (HL) if2 rd2 siop1 wr2 done

SRA (IX+d) if2 of1 if3 rd2 siop1 wr2 done

SRA (IY+d) if2 of1 if3 rd2 siop1 wr2 done

SRA r if2 iop1 done

SRL (HL) if2 rd2 siop1 wr2 done

SRL (IX+d) if2 of1 if3 rd2 siop1 wr2 done

SRL (IY+d) if2 of1 if3 rd2 siop1 wr2 done

SRL r if2 iop1 done

SUB (HL) rd2 done

SUB (IX+d) if2 of1 iop2 rd2 done

SUB (IY+d) if2 of1 iop2 rd2 done

SUB n of1 done

SUB r iop1 done

TST (HL) if2 iop1 rd2 done

TST n if2 of1 done

TST r if2 iop1 done

TSTIO n if2 of1 rd2 done

XOR (HL) rd2 done

XOR (IX+d) if2 of1 iop2 rd2 done

XOR (IY+d) if2 of1 iop2 rd2 done

XOR n of1 done

XOR r iop1 done

ZIACK0

ZIACK1 wr1 wr2 done

ZIACK2 wr1 rd2 done wr2 done

ZNMIACK wr1 wr2 rd1

ZTRAP2 wr1 wr2 done

ZTRAP3 wr1 wr2 done

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 34

4 Pin Descriptions

This section describes the pins of the Y180 model. All input pins are sampled by
CLK_, CLKB_, or both. All output pins come from flip-flops, although if a pin changes
on both edges of CLK_, the pin will be a simple combination of two flip-flop outputs. The
table below shows pin names, direction, function and sampling or changing CLK_ edge.

BUSACKB_

AOEB_

A_[15:0]

CLEARB_

CLKB_

DIN_[7:0]

Pin name Direction

Output

Function

Address Bus

Address Output Enable

Bus Acknowledge

Output

Output

BUSREQB_ Input Bus Request

CLK_

CLK_

Both

CLKB_

Sampled on

Input Master Clear CLKB_

CLK_ Input Clock

Input Clock-Bar

COEB_ Output Control Output Enable CLK_

Input Data Input Bus Both

DOEB_

DOUT_[7:0]

E_

HALTB_

INTB_

Output

Output

Output

Output

Input

CLK_

CLK_

CLK_

Both

CLKB_

Data Output Enable

Data Output Bus

Enable

Halt Mode

Interrupt Request

IOCB_

IORQB_

M1B_

M1E_

MREQB_

NMIB_

Input

Output

Output

Input

Output

Input

I/O Control Select

I/O Request

Machine Cycle 1

Machine Cycle 1 Enable

Memory Request

Non-Maskable Interrupt Request

CLK_

CLK_

Both

Both

Changes on/

CLK_

CLKB_

RDB_

RESETB_

SLPB_

ST_

TRAPB_

WAITB_

WRB_

Output

Output

Output

Output

Output

Both

Both

CLK_

CLK_

CLK_

CLKB_

CLKB_

Input

Input

Read

Master Reset

Sleep Mode

Strobe

Trap

Wait Request

Write

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 35

4.1 A_[15:0] (Address Bus)

The 16 bit Address Bus is used to address memory and I/O. The address on this
bus will be valid throughout a memory or I/O cycle, but the contents are undefined during
internal operation cycles. The default address output is the Program Counter, so this is
what will usually be on the A_[15:0] during internal operation cycles.

4.2 AOEB_ (Address Output Enable)

The Address Output Enable signal can be used to control 3-state buffers on the
address bus external to the Y180. This signal will be active (Low) when the Y180 should
be driving the address bus and inactive (High) when the Y180 is releasing the bus for
another bus master to drive the address bus.

4.3 BUSACKB_ (Bus Acknowledge)

The Bus Acknowledge signal is active (Low) when the Y180 has relinquished
control of the address bus, data bus and control signals to another bus master in response
to a request on the BUSREQB_ signal.

4.4 BUSREQB_ (Bus Request)

When the Bus Request signal is active (Low), the Y180 will relinquish control of
the address bus, data bus and control signals upon completion of the current machine cycle
and then signal that it has done so by activating the BUSACKB_ signal. An external bus
master may then take control of these buses. The BUSREQB_ is the highest priority
request (except for RESETB_) that will be accepted by the Y180. BUSREQB_ cannot be
masked, and is higher priority than NMIB_.

4.5 CLEARB_ (Master Clear)

The Master Clear signal should be activated (Low) on power-up at the same time
as the RESETB_ signal, but only if the contents of the register file need to be initialized to
known values. CLEARB_ will reset all register file contents to all zeros, as opposed to
RESETB_, which only initializes a few registers. Do not active CLEARB_ at any other
time, unless you really want to clear the register file. In particular, if you are exiting Halt
mode or Sleep mode with reset, use RESETB_ only, unless register file data does not need
to be preserved.

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 36

4.6 CLK_ (Clock)

This is the master Clock input. All internal signals change state on the rising edge
of this clock, as it goes to the clock input of all internal flip-flops. A separate CLKB_ input
is present on the Y180 to allow for compatibility with the Z180 timing on some inputs as
well as some outputs. But CLK_ is used exclusively for internal flip-flops. Care should be
exercised when routing CLK_ to minimize skew, and the buffer chosen must have
sufficient drive for the load presented by all of these flip-flops. Timing analysis should
always be performed after layout to verify proper operation.

4.7 CLKB_ (Clock-Bar)

This is the master Clock-Bar input. It is used only in the IO_CTRL module of the
Y180 to provide compatible timing. CLKB_ is the inverse of CLK_, and is only lightly
loaded. Only the rising edge of CLKB_ (which corresponds to the falling edge of CLK_)
is ever used. The design of the CLK_ and CLKB_ buffers depends on the target
technology for the Y180 and cannot be overemphasized.

4.8 COEB_ (Control Output Enable)

The Control Output Enable signal can be used to control 3-state buffers on the
various control signals external to the Y180. This signal will be active (Low) when the
Y180 should be driving these control signals and inactive (High) when the Y180 is
releasing the bus for another bus master to drive these control signals. Typically, these
control signals would consist of MREQB_, IORQB_, RDB_, and WRB_.

4.9 DIN_ [7:0] (Data Input Bus)

The 8 bit Data Input Bus is used to communicate data into the Y180. DIN_[7:0]
is latched by the rising edge of CLK_ for instruction fetch cycles and for the interrupt
acknowledge cycles in interrupt mode 0. In all other cases, the DIN_[7:0] is sampled by
the rising edge of CLKB_. The DIN_[7:0] and the DOUT_[7:0] may be combined
externally to the Y180, with the direction of this bus controlled by the DOEB_ signal.

4.10 DOEB_ (Data Output Enable)

The Data Output Enable signal can be used to control 3-state buffers on
DOUT_[7:0] external to the Y180, or to control the 3-state buffers on a bidirectional data
bus external to the Y180. This signal will be active (Low) when the Y180 should be

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 37

driving the data bus and inactive (High) when the Y180 is either reading data from the bus
or releasing the bus for another bus master to drive.

4.11 DOUT_ [7:0] (Data Output Bus)

The 8 bit Data Output Bus is used to communicate data from the Y180.
DOUT_[7:0] changes on the rising edge of CLK_ and is valid only for the duration of the
write cycle.

4.12 E_ (Enable)

The Enable signal is a synchronous machine-cycle clock that is active (High)
during bus transactions. It can be used by some peripheral families as a data strobe.

4.13 HALTB_ (Halt Mode)

The Halt Mode signal is active (Low) while the Y180 is in Halt mode or Sleep
mode. Halt mode is entered when the HALT instruction is executed, while Sleep mode is
entered when the SLP instruction is executed. In either case, the Y180 will remain in this
mode until either a RESETB_, INTB_ or NMIB_ occurs.

4.14 INTB_ (Interrupt Request)

When the Interrupt Request input is active (Low) at the end of the current
instruction, and neither BUSREQB_ or NMIB_ is active, the Y180 will perform an
interrupt acknowledge cycle and go to the interrupt service routine. The particular
interrupt acknowledge cycle depends on the interrupt mode of the Y180, and the request
will be ignored if interrupts are not enabled in the Y180.

4.15 IOCB_ (I/O Control Select)

The I/O Control Select signal controls the timing of the IORQB_ and RDB_
signals during an I/O transaction. If the IOCB_ signal is Low, these two control signals go
active (Low) during I/O transactions on the rising edge of CLK_. If the IOCB_ signal is
High, these two control signals go active one half of a clock cycle earlier in the I/O
transaction, on the rising edge of CLKB_. The trailing edge of these two control signals
is not affected by the state of the signal.

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 38

4.16 IORQB_ (I/O Request)

The I/O Request signal is active (Low) during I/O cycles, and also during interrupt
acknowledge cycles when the interrupt vector or instruction should be placed on the
DIN_[7:0].

4.17 M1B_ (Machine Cycle 1)

The Machine Cycle 1 signal is active (Low) during instruction fetch cycles. It will
be active during all instruction fetch cycles if the M1E_ signal is High, and only during the
refetch of the RETI instruction if the M1E_ signal is Low. The M1B_ signal is always
activated during interrupt acknowledge cycles.

4.18 M1E_ (Machine Cycle 1 Enable)

The Machine Cycle 1 Enable signal controls the operation of the M1B_ signal. If
the M1E_ signal is High, the M1B_ signal will be activated for every instruction fetch. If
the M1E_ signal is Low, the M1B_ signal will only be active during the refetch of the
RETI instruction. This signal has no effect on the operation of the M1B_ signal during
interrupt acknowledge cycles, where it is always active.

4.19 MREQB_ (Memory Request)

The Memory Request signal is active (Low) during memory cycles, and also
during non-maskable interrupt acknowledge cycles.

4.20 NMIB_ (Non-Maskable Interrupt Request)

When the Non-Maskable Interrupt Request input is active (Low) for two
successive rising edges of CLKB_, this information is latched and at the end of the current
instruction the Y180 will perform a non-maskable interrupt acknowledge cycle and jump
to location 0066h for the NMI service routine. The NMI service routine should be
terminated with the RETN instruction for proper handling of the maskable interrupt. If
BUSREQB_ is active concurrently with the NMIB_, BUSREQB_ will be given priority.

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 39

4.21 RDB_ (Read)

The Read signal is active (Low) during memory and I/O read cycles, and also
during non-maskable interrupt acknowledge cycles.

4.22 RESETB_ (Master Reset)

The Master Reset signal should be activated (Low) on power-up and at any other
time where initializing the Y180 to a known state is necessary. RESETB_ forces all output
signals inactive, resets all internal state machines, clears the Program Counter, Stack
Pointer, I register and R register. If the remaining registers need to be initialized to known
states, the CLEARB_ signal should be simultaneously active.

4.23 SLPB_ (Sleep Mode)

The Sleep Mode signal is active (Low) while the Y180 is in Sleep mode. Sleep
mode is entered when the SLP instruction is executed. The Y180 will remain in Sleep
mode until either a RESETB_, INTB_ or NMIB_ occurs.

4.24 ST_ (Status)

The Status signal is used to aid in decoding of the current machine cycle, especially
when the M1E_ has disabled the activation of the M1B_ signal. The ST_ signal is always
active (Low) during the first instruction fetch cycle of an instruction, and also during the
Halt Mode.

4.25 TRAPB_ (Trap)

The Trap signal is active (Low) for one clock cycle whenever the Y180 has
encountered an undefined opcode. If TRAPB_ is active while the RDB_ signal is High, the
undefined opcode occured in the second byte of the instruction, while if TRAPB_ is
Active while the RDB_ signal is Low, the undefined opcode occured in the third byte of
the instruction.

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 40

4.26 WAITB_ (Wait Request)

When the Wait Request input is active (Low) during a read, write, or interrupt
acknowledge cycle, the cycle is extended for the duration of the WAITB_ Low time, one
clock cycle at a time. The cycle then finishes when the WAITB_ signal returns High. This
allows slow memory or peripheral device time to respond to bus cycles.

4.27 WRB_ (Write)

The Write signal is active (Low) during memory and I/O write cycles.

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 41

5 Bus Cycles

The figures below show the various bus cycles for the Y180. Throughout the
figures, only the relevant pins are shown.

5.1 Instruction Fetch (without Wait state)

The timing for an instruction fetch cycle is shown below. This bus cycle is three
clock cycles long, with the WAITB_ input sampled at the falling edge of CLK_ in T2, and
the DIN_ bus sampled at the rising edge of CLK_ in T3. The ST_ signal is Low only for
the fetch of the first byte of an instruction, and the M1B_ signal is asserted Low during
instruction fetch cycles only if the M1E_ input is High.

CLK_

CLKB_

A_[15:0]

DIN_[7:0]

M1B_

MREQB_

RDB_

WAITB_

ST_

E_

T1 T2 T3

Valid

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 42

5.2 Instruction Fetch (with Wait state)

The timing for an instruction fetch cycle with one Wait state is shown below. This
bus cycle is now four clock cycles long, with the WAITB_ input sampled at the falling
edge of CLK_ in both T2 and TW, and the DIN_ bus sampled at the rising edge of T3. All
of the control signals are stretched by the insertion of the Wait state.

CLK_

CLKB_

A_[15:0]

DIN_[7:0]

M1B_

MREQB_

RDB_

WAITB_

ST_

E_

T1 T2 TW T3

Valid

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 43

5.3 Memory Read/Write (without Wait State)

The timing for a memory read or memory write cycle is shown below. These bus
cycles are three clock cycles long, with the WAITB_ input sampled at the falling edge of
CLK_ in T2. In the case of memory read, the DIN_ bus sampled at the falling edge of
CLK_ in T3 and the RDB_ signal is activated. In the case of memory write, the DOUT_
bus is driven with valid data for the duration of a memory write cycle and the WRB_ and
DOEB_ signals are activated. The DOEB_ signal can be used to control buffer direction
if a 3-state bus is used externally to the model.

CLK_

CLKB_

A_[15:0]

DIN_[7:0]

DOUT_[7:0]

MREQB_

RDB_

WRB_

WAITB_

DOEB_

T1 T2 T3

E_

Valid

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 44

5.4 Memory Read/Write (with Wait State)

The timing for a memory read or memory write cycle with one Wait state is shown
below. These bus cycles are now four clock cycles long, with the WAITB_ input sampled
at the falling edge of CLK_ in both T2 and TW. All of the control signals are stretched by
the insertion of the Wait state.

CLK_

CLKB_

A_[15:0]

DIN_[7:0]

DOUT_[7:0]

MREQB_

RDB_

WRB_

WAITB_

DOEB_

T1 T2 TW

E_

T3

Valid

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 45

5.5 I/O Read/Write (without Wait State)

The timing for an I/O read or I/O write cycle is shown below. These bus cycles are
four clock cycles long (three plus an automatic Wait state), with the WAITB_ input
sampled at the falling edge of CLK_ in TW. In the case of I/O read, the DIN_ bus sampled
at the falling edge of CLK_ in T3 and the RDB_ signal is activated. In the case of I/O
write, the DOUT_ bus is driven with valid data for the duration of a I/O write cycle and
the WRB_ and DOEB_ signals are activated. The IORQB_ signal is used to distinguish
I/O read and write cycles from memory read and write cycles. Note that the timing of the
leading edge of IORQB_ and RDB_ are controlled by the IOCB_ input. Also note that the
timing of the E_ signal is different for I/O read and I/O write.

CLK_

CLKB_

A_[15:0]

DIN_[7:0]

DOUT_[7:0]

IORQB_

RDB_

WRB_

WAITB_

DOEB_

T1 T2 TW

E_ (Read)

T3

E_ (Write)

IOCB_=0IOCB_=1

IOCB_=0IOCB_=1

Valid

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 46

5.6 I/O Read/Write (with Wait State)

The timing for an I/O read or I/O write cycle with one inserted Wait state is shown
below. These bus cycles are five clock cycles long (three plus one automatic and one
inserted Wait state), with the WAITB_ input sampled at the falling edge of CLK_ in TW.
All of the control signals are stretched by the insertion of the Wait state.

CLK_

CLKB_

A_[15:0]

DIN_[7:0]

DOUT_[7:0]

IORQB_

RDB_

WRB_

WAITB_

DOEB_

T1 T2 TW

E_ (Read)

TW

E_ (Write)

IOCB_=0IOCB_=1

IOCB_=0IOCB_=1

T3

Valid

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 47

5.7 Bus Request/Acknowledge (Entry)

The timing of the release of processor control of the bus is shown below. The
Y180 can release the bus after completion of any machine cycle. None of the Y180 signals
actually go floating; rather, the various output enable signals go inactive and the
BUSACKB_ signal is activated.

CLK_

CLKB_

A_[15:0]

DIN_[7:0]

DOUT_[7:0]

BUSREQB_

BUSACKB_

AOEB_

COEB_

DOEB_

T2 or Ti T3 or Ti TX TX

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 48

5.8 Bus Request/Acknowledge (Exit)

The timing for resumption of processor control of the bus is shown below. The
Y180 can reacquire the bus during any clock cycle of the bus release phase. The various
output enable signals go active and the BUSACKB_ signal is deactivated.

CLK_

CLKB_

A_[15:0]

DIN_[7:0]

DOUT_[7:0]

BUSREQB_

BUSACKB_

AOEB_

COEB_

DOEB_

T2TX TX T1

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 49

5.9 Trap (second opcode byte)

The timing of an undefined second byte opcode trap is shown below. The fetch of
the undefined opcode is followed by the Trap cycle, five internal operation cycles, and two
normal write cycles to push the PC of the undefined opcode to the stack. The processor
then jumps to location 0000h and starts fetching instructions. The TRAPB_ information
should be latched outside the CPU to distinguish this case from the normal reset case. The
second byte opcode trap can be distinguished from the third byte opcode trap by the
timing of the TRAPB_ signal. The start of the illegal instruction in this case is the stacked
PC value minus one.

CLK_

A_[15:0]

DIN_[7:0]

M1B_

MREQB_

RDB_

WRB_

TRAPB_

E_

T1 T2 T3

DOUT_[7:0]

TTP Ti Ti Ti Ti Ti T1 T2 T3 T1 T2 T3

SP-1 SP-2

PCLPCH

PC+1PC

Undefined opcode

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 50

5.10 Trap (third opcode byte)

The timing of an undefined third byte opcode trap is shown below. The fetch of the
undefined opcode is followed by the normal Read cycle (all three-byte instructions use
indexed addressing) with an embedded Trap cycle, four internal operation cycles, and two
normal write cycles to push the PC of the undefined opcode to the stack. The processor
then jumps to location 0000h and starts fetching instructions. The TRAPB_ information
should be latched outside the CPU to distinguish this case from the normal reset case. The
third byte opcode trap can be distinguished from the second byte opcode trap by the
timing of the TRAPB_ signal. The start of the illegal instruction in this case is the stacked
PC value minus two.

CLK_

A_[15:0]

DIN_[7:0]

M1B_

MREQB_

RDB_

WRB_

TRAPB_

E_

T1 T2 T3

DOUT_[7:0]

T1 T2 TTP T3 Ti Ti T1 T2 T3 T1 T2 T3

SP-1 SP-2

PCLPCH

IX+d or IY+dPC

Undefined opcode

Ti Ti

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 51

5.11 Non-Maskable Interrupt Acknowledge

The timing of a Non-Maskable interrupt acknowledge cycle is shown below. The
NMIB_ input is edge-sensitive and cannot be masked by software. NMIB_ must be
sampled Low for two consecutive falling edges of CLK_ to be recognized by the
processor. The NMI acknowledge cycle looks exactly like an instruction fetch for the first
three clock cycles, except that the data bus is ignored. These three clock cycles are
followed by two internal operation cycles and two write cycles to push the contents of the
program counter onto the stack. Execution then begins at 0066h with an instruction fetch.
The NMI service routine must end with the RETN instruction to properly restore the state
of the interrupt enable flag prior to the NMI.

CLK_

A_[15:0]

DIN_[7:0]

M1B_

MREQB_

RDB_

WRB_

NMIB_

E_

T1 T2 T3

DOUT_[7:0]

Ti Ti T1 T2 T3 T1 T2 T3

SP-1 SP-2

PCLPCH

PC

Ignored

0066h

T1

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 52

5.12 Mode 0 Interrupt Acknowledge

The timing of a Mode 0 interrupt acknowledge cycle is shown below. The Mode
0 interrupt acknowledge cycle fetches an instruction from the data bus but does not
increment the PC, because this instruction is not part of the program. The data bus is
sampled by the rising edge of CLK_ at the beginning of T3, just as in a normal instruction
fetch cycle. Any instruction can be used, but the most convenient are the Restart (RST)
instructions, because they are only one byte and push the PC onto the stack. The figure
below shows an RST instruction being fetched during the acknowledge cycle. Note that a
Trap is possible if an invalid opcode is fetched during the Mode 0 interrupt acknowledge
cycle.

CLK_

A_[15:0]

DIN_[7:0]

M1B_

IORQB_

MREQB_

WRB_

INTB_

E_

T1 T2 T3

DOUT_[7:0]

TW Ti T1 T2 T3 T1 T2 T3

SP-1 SP-2

PCLPCH

PC

RST instruction

TiTW

RST instruction

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 53

5.13 Mode 1 Interrupt Acknowledge

The timing of a Mode 1 interrupt acknowledge cycle is shown below. The Mode
1 interrupt acknowledge cycle consists of a three clock cycle (plus two automatic Wait
states) special bus cycle, followed by two normal write cycles to push the contents of the
PC onto the stack. The processor then jumps to location 0038h for the service routine.

CLK_

A_[15:0]

DIN_[7:0]

M1B_

IORQB_

MREQB_

WRB_

INTB_

E_

T1 T2 T3

DOUT_[7:0]

TW T1 T2 T3 T1 T2 T3

SP-1 SP-2

PCLPCH

PC

TW T1

0038h

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 54

5.14 Mode 2 Interrupt Acknowledge

The timing of a Mode 2 interrupt acknowledge cycle is shown below. The Mode
2 interrupt acknowledge cycle consists of a three clock cycle (plus two automatic Wait
states) special bus cycle which reads a vector from the data bus, an internal operation
cycle, followed by two normal write cycles to push the contents of the PC onto the stack,
followed by two normal read cycles to fetch the interrupt jump table entry corresponding
to the vector fetched during the special bus cycle. The processor then jumps to the address
fetched from the interrupt jump table for the service routine. The upper eight bits of the
interrupt jump table starting address are held in the I register in the processor. Note that
the vector must be an even number. That is, the least significant bit of the vector must be
a zero.

CLK_

A_[15:0]

DIN_[7:0]

M1B_

IORQB_

MREQB_

WRB_

INTB_

E_

T1 T2 T3

DOUT_[7:0]

TW T1 T2 T3 T1 T2 T3

SP-1 SP-2

PCLPCH

PC

TW Ti

RDB_

T1 T2 T3 T1 T2 T3

Vector Vector+1

Addr LSB Addr MSBVector LSB

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 55

5.15 Return From Interrupt (RETI)

The timing of the RETI instruction sequence is shown below. The Y180 refetches
the two byte opcode of the RETI to allow peripheral controllers to recognize the RETI
instruction. Proper operation of those peripheral controllers that recognize the RETI
instruction requires that the M1E_ input be Low so that only one RETI is recognized.

CLK_

A_[15:0]

DIN_[7:0]

M1B_

MREQB_

ST_

E_

T1 T2 T3

M1B_

T3 T1 T2 T3 T1 T2 T3

PC PC+1PC

T1 T2

RDB_

PC+1

4DhEDh

TiTiTi

EDh 4Dh

(M1E_=1)

(M1E_=0)

PC+2

Ti

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 56

5.16 Halt Entry and Exit

The Halt mode is entered when the HALT instruction is executed, as shown
below. In the Halt mode the processor continuously performs Halt cycles, which are three
clock cycle bus cycles identical to instruction fetch cycles except that the HALTB_ output
is Low. In the Halt mode Bus release (through BUSREQB_ and BUSACKB_) can still
occur, but the only way to exit the Halt mode is with either an interrupt (NMIB_ or
INTB_) or via reset. The timing for exiting the Halt mode via INTB_ is shown below.
Note that INTB_ can only be used to exit the Halt mode interrupts are enabled when the
HALT instruction is executed. If the Halt mode is exited via NMIB_ or INTB_, the
processor will resume instruction execution (after the interrupt service routine) at the
address of the instruction following the HALT instruction.

CLK_

A_[15:0]

DIN_[7:0]

MREQB_

HALTB_

E_

T1 T2 T3

M1B_

T3 T1

PC

T1 T2

RDB_

PC+1

76h

INTB_

HALT mode Interrupt
Acknowledge

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 57

5.17 Sleep Entry and Exit

The Sleep mode is entered when the SLP instruction is executed, as shown below.
In the Sleep mode the processor continuously performs Sleep cycles, which are single
clock cycle bus cycles identical to internal operation cycles except that both the HALTB_
output and SLPB_ outputs are Low. In the Sleep mode Bus release (through BUSREQB_
and BUSACKB_) can still occur, but the only way to exit the Sleep mode is with either an
interrupt (NMIB_ or INTB_) or via reset. The timing for exiting the Sleep mode via
INTB_ is shown below. Note that INTB_ can only be used to exit the Sleep mode
interrupts are enabled when the SLP instruction is executed. If the Sleep mode is exited
via NMIB_ or INTB_, the processor will resume instruction execution (after the interrupt
service routine) at the address of the instruction following the SLP instruction.

CLK_

A_[15:0]

DIN_[7:0]

MREQB_

HALTB_

SLPB_

TST2 TS

M1B_

T3 T1

PC

Ti Ti

RDB_

FFFFh

76h

INTB_

Sleep mode Interrupt
Acknowledge

PC+1

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 58

5.18 E_ Signal during Sleep

In the Sleep mode the E_ signal is continuously generated with a four clock-cycle
period. The timing of the E_signal is synchronized with the start of the Sleep mode, and
terminates cleanly at the end of the Sleep mode, as shown below. This behavior is
controlled by a small state machine in the IO_CTRL section of the design and can be
eliminated if unnecessary or for further power savings during Sleep mode.

CLK_

HALTB_

SLPB_

E_

E_

E_

Ti TS TS T1Ti

E_

TST3T2

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 59

5.19 E_ Signal during Bus Request/Acknowledge

During the release of processor control of the bus the E_ signal is continuously
generated with a four clock-cycle period. The timing of the E_signal is synchronized with
the start of the bus release, and terminates cleanly when the processor reacquires control
of the bus, as shown below. This behavior is controlled by a small state machine in the
IO_CTRL section of the design and can be eliminated if unnecessary.

CLK_

BUSREQB_

BUSACKB_

E_

E_

E_

TX TX TX T1TX

E_

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 60

5.20 Reset and Clear

The Reset state is entered when the RESETB_ pin is Low for two consecutive
rising edges of CLKB_, as shown below. On the next rising edge of CLK_ after
RESETB_ has been sampled Low twice, the Y180 enters the Reset state, independent of
the current machine cycle or clock cycle. It remains in the Reset state until after RESETB_
is sampled High. At that time, the Y180 begins fetching instructions from location 0000h.
The Reset state clears all of the state machines internal to the Y180. It also resets the PC,
SP, I and R registers, selects Interrupt Mode 0, and disables the maskable interrupts. If
CLEARB_ is asserted Low coincident with RESETB_, all of the other registers in the
Y180 are reset also. RESETB_ should always be asserted on power-up, and may be used
to exit from the Halt mode or Sleep mode also.

CLK_

A_[15:0]

AOEB_

DOEB_

RESETB_

SLPB_

Tr T1

COEB_

T2

Address

Tr Tr

HALTB_

0000h

CLEARB_

Reset state Instruction fetch
at location 0000h

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 61

6 Differences

This section describes the differences between the Y180 and the Z80180. All of the
differences are related to input or output timing or operation. All instruction results and
clock cycle timing are identical between the two devices.

AOENB_ The Y180 provides an AOENB_ output for control of an external 3-state
Address bus. The Y180 Address Bus, A_[15:0], is always driven. The
Z80180 address bus is 3-state.

CLEARB_ The Y180 provides a CLEARB_ input to initialize all of the register file.
This input can be quite useful for simulation, but is not strictly necessary
for the final design and can be tied High with no ill effect. The Z80180 has
no such reset mechanism.

CLK_ The Y180 requires both CLK_ and CLKB_, although the CLKB_ input is
used only in the I/O interface module. CLKB_ is required to match the
timing characteristics of the Z80180, which changes outputs and samples
inputs on both edges of the clock.

COENB_ The Y180 provides a COENB_ output for control of external 3-state
buffers on the control signals. Y180 control signals are always driven. The
Z80180 control signals are 3-state.

DOENB_ The Y180 employs separate data input and output busses, DIN_[7:0] and
DOUT_[7:0], and a Data Output Enable signal, DOENB_, to control an
external bidirectional bus, if desired. The DOUT_ bus changes only on the
rising edge of CLK_. The Z80180 employs a bidirectional data bus, and in
the output mode the leading edge of the data changes on the falling edge
of the clock. The timing of the Y180's DOENB_ signal is such that the
timing of an external bidirectional bus, if implemented, will match that of
the Z80180.

IOCB_ The Y180 utilizes an IOCB_ input to control the timing of the RDB_ and
IORQB_ outputs during I/O operations. In the Z80180, the timing of these
two signals is controlled by a bit in a register external to the CPU. This
register can be created for complete compatibility, and its output tied to the
IOCB_ input of the Y180.

M1E_ The Y180 utilizes an M1E_ input to control the operation of the M1B_
signal for compatibility with the Z80180. In the Z80180, the operation of
the /M1 signal is controlled by a bit in a register external to the CPU. This
register can be created for complete compatibility, and its output tied to the
M1E_ input of the Y180.

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 62

NMIB_ The Y180 requires that NMIB_ be Low for two consecutive rising edges
of CLKB_ after being sampled High. The latest that these two rising edges
of CLKB_ can occur, and still be accepted at the end of the current
machine cycle, is during the two clocks preceding the last clock cycle of a
machine cycle. This different than the timing for the Z80180, which catches
the falling edge of /NMI as late as one-half clock before the last clock cycle
of a machine cycle. The Y180 timing is more robust, acting as "glitch filter"
on this edge-sensitive input.

RESETB_ The Y180 requires that RESETB_ be Low for two consecutive rising
edges of CLKB_, and responds on the next rising edge of CLK_ after it is
sampled Low for the second time. On exiting the Reset state, the Y180
starts fetching the instruction at location 0000h one and one-half clock
cycles after sampling RESETB_ High. This is different from the six clock
cycle minimum Low time requirement and the two and one-half clock cycle
response time for the Z80180.

SLPB_ The Y180 provides a separate SLPB_ output to indicate that the device is
in the Sleep mode. The Z80180 requires decoding of the state of several
outputs to indicate that the device is in Sleep mode. Note that the Y180
provides the same encoding on the outputs, but using the SLPB_ output is
easier.

TRAPB_ The Y180 provides a separate TRAPB_ output to indicate that the device
has fetched an illegal opcode. The two different cases of a Trap can be
distinguished by the state of the RDB_ signal when TRAPB_ is Low. The
Z80180 provides a register, outside of the CPU to hold the trap
information. This external register can be easily created and written via the
TRAPB_ signal for compatibility.

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 63

7 Future Enhancements

The basic Z80 architecture has plenty of room for expansion, having been created
when transistor budgets were extremely limited. The Y180, as a Verilog HDL model, is
quite simple to upgrade or change. Some of the possible variants of the Y180 are
described below.

One possible performance enhancement would be in the area of the ALU. If it were
widened to 16 bits, for example, the two clock cycle penalty for calculating the indexed
address would be reduced to one clock cycle. This would also allow the instruction set to
be expanded to provide a full complement of 16-bit instructions. Similarly, dedicated
multiply logic can be added to reduce the time required for the multiply instruction. It
currently uses a shift-and-add technique.

Another straightforward enhancement is an expansion of the address space beyond
the current 64K byte limit. This requires widening at least some of the registers and
modifying such instructions as PUSH, POP, CALL and RETURN, but this is a much
cleaner solution than adding an MMU like the Z80180 does. This is the first extension
planned for the Y180. Note that an MMU (even your own design) can still be easily added
to the basic Y180.
 All of the registers in the Y180 can be widened to a full 32-bits. In addition, it is a
simple modification to add more banks of registers, or dedicated registers that interface to
specialized logic to perform some application-specific function such as a text search,
encryption/decryption, independent I/O transfer, and so on.

Of course, it is a simple matter to modify the interface of the Y180 to fit specific
requirements of timing, signal polarity, and so on. Even the automatic wait-state inserted
for I/O access requires only a single line of Verilog HDL code to be changed.

The Y180 is just the first in a series of designs. Specific future versions are already
planned, but if you have a requirement, please let us know.

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 64

8 Model Organization

The organization of the Y180 Verilog HDL model is identical to that shown in the
block diagram of section 3.1. That is, there is a Top Level Module which contains the four
main modules of the device. Each module is flat, except for the Address and Data Module,
which uses two byte-wide register modules. Even though there are only three hierarchical
levels in the overall model, each module is structured into a number of self-contained
sections for easy modification.

Symbolic label definitions are used, rather than hard encoding, in almost all cases
in the design. Those cases where the hard encoding is used are listed below. In all cases
where hard encoding is not used, the symbolic label definitions can be changed, to provide
unencoded signals, or just different encodings. When modifying symbolic label definitions,
only the `include file that contains all of the parameter definitions needs to be modified.

8.1 Y180_TOP (Top Level Module)

Y180_TOP is the Top Level Module for the device. It contains only the pins and
the four main modules of the Y180. Note that no symbolic labels are used at this level, and
all of the pins of the device use capital letters followed by an underscore.

8.2 PARAMS (Parameter Definition `include File)

PARAMS is the parameter definition `include file for the device. It contains all of
the symbolic label definitions used in the design and is called with an `include in each of
the four main modules of the device. If you want to modify the symbolic label definitions,
only this file needs to be modified. As mentioned previously, some of the encodings must
not be modified. These are described below, and are clearly marked with warning
comments in this file.

The page register encoding, which identifies which code page the instruction is on,
must not be modified, as it seldom treated symbolically. The encoding for the page register
has been carefully chosen to simplify the decoding of groups of similar instructions on
different pages.

The clock cycle encoding, which identifies the particular clock cycle within a
machine cycle, must not be modified. This encoding was chosen very specifically to
minimize the number of bits which change where the next state is conditional on some
signal.

The register address encoding should not be modified, unless the encoded register
address generators in the Central Control Module are also modified, because a portion of
the address is taken directly from bits in the opcode in these address generators.

Obviously, the definition of TRUE and FALSE should not be changed.

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 65

8.3 IO_CTRL (I/O Interface Module)

IO_CTRL is the I/O Interface Module for the device. This module translates
between the external pins and the internal busses and signals of the Y180. This is the only
module which uses CLKB_ and consists primarily of flip-flops to translate timing. This is
where RESETB_ is translated into the internal signal resetb. Because resetb goes to nearly
every flip-flop in the Y180, it will be heavily loaded. This is the only signal, besides the
clock, that will require special attention when implemented.

8.4 M_STATE (Machine State Module)

M_STATE is the Machine State Module for the device. This module contains the
machine cycle state machine, the clock cycle state machine, and the interrupt enable and
mode flip-flops. As mentioned previously, the clock cycle state machine was carefully
designed to minimize state transitions and should not be modified.

8.5 CTR_CTL (Central Control Module)

CTR_CTL is the Central Control Module for the device. This module is purely
combinatorial, and can be implemented as either random logic, microcode, or a
combination of both. The only inputs to this module are the page register, the instruction
register, the machine cycle state and the clock cycle state.

8.6 DATA_IO (Address and Data Module)

DATA_IO is the Address and Data Module for the device. This module contains
the ALU, Program Counter, Instruction Register, Page Register, Flag Registers, register
file and temporary registers. This is where all of the address and data manipulation is done
in the Y180. This is the only module in the Y180, other than the Top Level Module, which
contains other modules.

8.7 REG_BYTE (Byte-wide Register in the Register File)

REG_BYTE is a byte-wide register for use in the register file. A unique register is
used for the register file to allow it to be replaced with something other than flip-flops if
desired. Note that the majority of registers in the register file are reset by the clearb signal,
which is derived from the CLEARB_ input. If CLEARB_ is not used in your design, these
registers do not need to allow for reset. The Stack Pointer, I and R registers are reset by
the resetb signal, however.

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 66

8.8 REG_8BIT (Byte-wide General-Purpose Register)

REG_8BIT is a byte-wide general-purpose register for use other than in the
register file. It is merely a grouping of eight flip-flops that is used for convenience in the
Verilog HDL description.

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 67

9 Test Suite

The Y180 Verilog HDL model includes a complete test suite to verify proper
operation of the device both before and after implementation. The test suite verifies the
proper operation of every valid instruction, trap on every illegal opcode, proper operation
with and without Wait states for every instruction, proper operation with Bus Request
before and after every possible machine cycle, all interrupt modes and proper flag
operation. Running the test suite requires virtually no user intervention.

The test suite does not test every instruction in conjunction with interrupt and
NMI, but rather checks every group of instructions sharing a common interrupt or NMI
Verilog description. The test suite does not currently check for the proper timing of every
input and output. This was done manually during the development of the test suite, and
the model is believed correct as supplied. If exhaustive input and output timing verification
is desired, the top level model can be modified to check this.

It is a relatively straightforward process to trace the inputs and output during
simulation to generate vector files suitable for use with ATE testers. Another alternative
is to allow the synthesizer to insert scan test logic during the synthesis process.

9.1 TOP_LEV (Top Level for Simulation)

TOP_LEV is the top level module for simulation. It contains the Y180 module
itself, a read memory which is loaded with the program to be executed, a compare memory
which is loaded with the compare data for the program, the clock generator, a pair of reset
tasks, a couple of tasks useful for debugging, interrupt and NMI generators, a Wait
generator, a Bus Request generator, and a compare error flag and counter.

The top level as supplied runs through the entire test suite without Wait or Bus
Request, followed by a pass with one wait state in every bus cycle, followed by a pass
where Bus Request is active all the time and is released for one clock cycle at a time to
allow only one machine cycle to be executed between bus requests. The Bus Request pass
is several times longer than an individual pass and can be eliminated if necessary by editing
the file so that the patterns are not executed while the variable DISABLE_BREQ is zero.

9.2 SETUP_HL (Initialization Pattern)

SETUP_HL is a short pattern used to initialize the HL register pair before starting
the first pattern. Executing this pattern first makes it possible to rearrange the order of the
remaining patterns. This is because several of the patterns require HL to contain a jump
address at the start of the pattern. In a similar fashion, the HL register pair is initialized at
the end of every pattern. Every pattern ends with what would be an infinite loop at
location 0C0h. This loop is detected by a test in TOP_LEV and used to load the next
pattern. Any patterns that you add to the test suite should attempt to follow this
convention.

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 68

9.3 INT_OPS (Interrupt Operation)

INT_OPS checks all of the interrupt modes and NMI for all of the possible cases.
This pattern is also used to check that the two input options, M1 Enable and I/O Control
are functioning correctly. Sleep mode and Halt mode are also checked in this pattern.

9.4 ALU_OPS (ALU Operation)

ALU_OPS checks all of the data manipulation instructions and flag results. Every
data manipulation instruction is individually checked, usually more than once, to ensure
both proper operation and flag results. Both byte and 16-bit instructions are checked in
this pattern.

9.5 DAT_MOV (Data Movement Operation)

DAT_MOV checks all of the data movement instructions, both internal and
external. Every data movement instruction is individually checked, usually more than
once, to ensure both proper operation and no adverse consequences (improper decoding,
for example). Both byte and 16-bit instructions are checked in this pattern, but the block
move instructions are checked in a separate pattern.

9.6 TRP_2ND (Trap on Second Byte Operation)

TRP_2ND checks all of the two-byte illegal opcodes. Each two-byte illegal
opcode is individually checked for a trap and no adverse consequences.

9.7 TRP_3RD (Trap on Third Byte Operation)

TRP_3RD checks all of the three-byte illegal opcodes. Each three-byte illegal
opcode is individually checked for a trap and no adverse consequences.

9.8 BIT_OPS (Bit Manipulation Operation)

BIT_OPS checks all of the bit operations. Each bit operation instruction is
individually checked for both proper operation and proper flag results, with no adverse
consequences.

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 69

9.9 JMP_OPS (Jump Operation)

JMP_OPS checks all of the program flow instructions. Each Jump or Call
instruction is individually checked, including the taken/not taken case if it is a conditional
instruction. This is where Restart, Return and DJNZ are checked.

9.10 IO_OPS (I/O Operation)

IO_OPS checks all of the individual and block I/O instructions. The block move
instructions are also checked here. Both the looping and terminating case of the block
instructions are checked.

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 70

10 Installation

The Y180 Verilog HDL Model was developed on a PC, using Microsoft Works
for Windows 2.0 for the spreadsheet, Microsoft Publisher for the text, and Veriwell for
Windows 2.0 for the verification. The model uses only synthesizeable constructs and
contains nothing unique to the simulator used for the development.

The standard method of providing the Y180 Verilog HDL Model is as text files on
a single 3.5" HD disk, since this will be compatible with the majority of destinations. The
file structure of this disk is shown below.

The design spreadsheet will be provided in Microsoft Works for Windows 2.0
format files (zipped) on a 3.5” HD disk. Should the documentation (this manual) be
required in machine-readable format other than the default Acrobat Portable Document
Format (pdf), it will be provided in Microsoft Publisher format (zipped) on a 3.5” HD
disk.

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 71

10.1 File structure

 designctr_ctl.v
...................data_io.v
...................io_ctrl.v
...................m_state.v
...................params.v
...................reg_8bit.v
...................reg_byte.v
...................top_lev.v
...................y180_top.v

 memoryalu_ops.vm
...................alu_opsd.vm
...................bit_ops.vm
...................bit_opsd.vm
...................dat_mov.vm
...................dat_movd.vm
...................int_ops.vm
...................int_opsd.vm
...................io_ops.vm
...................io_opsd.vm
...................jmp_ops.vm
...................jmp_opsd.vm
...................setup_hl.vm
...................trp_2nd.vm
...................trp_2ndd.vm
...................trp_3rd.vm
...................trp_3rdd.vm

 testingalu_ops.s
...................alu_opsd.s
...................bit_ops.s
...................bit_opsd.s
...................dat_mov.s
...................dat_movd.s
...................int_ops.s
...................int_opsd.s
...................io_ops.s
...................io_opsd.s
...................jmp_ops.s
...................jmp_opsd.s
...................setup_hl.s
...................trp_2nd.s
...................trp_2ndd.s
...................trp_3rd.s
...................trp_3rdd.s

Systemyde International Corporation Y180 02/96 Rev. 1.0 Page 72

