
SIMETRIX
SPICE AND MIXED MODE SIMULATION

VERILOG-A MANUAL

Contact
SIMetrix Technologies Ltd.,
78 Chapel Street,
Thatcham, RG18 4QN, United Kingdom

Tel: +44 1635 866395
Fax: +44 1635 868322
Email: info@simetrix.co.uk
Internet http://www.simetrix.co.uk

Copyright © SIMetrix Technologies Ltd. 1992-2010
SIMetrix Verilog-A Manual 28/9/10

Table of Contents

Introduction 9

What Is Verilog-A? 9
Verilog-A Language Reference Manual 9

Using Verilog-A Compiler 10

Using Verilog-A with SIMetrix Schematics 10
Defining Verilog-A Files in Netlist 10
Messages 11
.LOAD Full Syntax 11
Verilog-A Cache 12
Permananent .SXDEV Installation 13

Writing Verilog-A Code 14

Overview 14
Hello World! 14
A Simple Device Model 16

Module Ports 17
Branch Contributions 17
Parameters 18
Disciplines 18

A Resistor 18
A Soft Limiter 20

Variables 21
$finish 22
Functions 22
Local Parameters 22
Parameter Limits 22
Conditional Statements 22

A Capacitor 23
A Voltage Controlled Oscillator 23
Digital Elements - Overview 24
Digital Gate 25

cross() Monitored Event 26
transition() Analog Operator 27
3

Butterworth Filter 28
Arrays 30
For Loops 30
laplace_nd Function 30

RC Ladder - Loops, Vectored Nodes and genvars 31
Vectors of Nodes 32
Analog For Loops and genvars 33
Compile-time Parameters 33
See Also 34

Verilog-A Reference 35

Verilog-A Functions 35
$abstime 38
$bound_step 38
$debug 38
$discontinuity 39
$display 39
$fclose 41
$fdebug 42
$fdisplay 42
$finish 42
$fmonitor 42
$fopen 42
$fstrobe 43
$fwrite 44
$mfactor 44
$monitor 44
$param_given 45
$port_connected 45
$random 45
$simparam 46
$stop 47
$strobe 47
$table_model 48
$temperature 48
$vt 48
$write 49
abs 49
absdelay 49
ac_stim 50
acos 50
4

acosh 50
analysis 50
asin 51
asinh 51
atan 51
atan2 51
atanh 52
ceil 52
cos 52
cosh 52
cross 52
ddt 53
ddx 54
exp 54
flicker_noise 54
floor 55
hypot 55
idt 55
laplace_nd 55
laplace_np 56
laplace_zd 57
laplace_zp 57
last_crossing 58
limexp 59
ln 59
log 59
max 59
min 59
pow 60
sin 60
sinh 60
slew 60
 sqrt 60
tan 61
tanh 61
timer 61
transition 62
white_noise 63

Analog Operator Restrictions 64

Implementation - vs LRM 66
5

Overview 66
SIMetrix Verilog-A vs LRM 2.2 66

2.6 Strings 66
2.8.1 66
3.2.2 Parameters - Value Range Specification 66
3.2.3 Parameter Units and Descriptions 66
3.4.2.2 Domain Binding 66
3.4.2.3 Empty Disciplines 66
3.4.2.4 Disciplines of Wires and Undeclared Nets 67
3.4.2.7 User Defined Attributes 67
3.4.3.1 Net Descriptions 67
3.4.3.2 Net Discipline Initial (Nodeset) Values 67
3.4.5 Implicit Nets 67
3.5 Real Net Declarations 67
3.6 Default Discipline 67
3.7 Discipline Precedence 67
3.8 Net compatibility 67
3.9 Branches 67
4.1.6 Case Equality Operator 68
4.1.13 Concatenations 68
4.2.3 Error Handling 68
4.4.1 Restrictions on Analog Operators 68
4.4.4 Time derivative Operator 68
4.4.5 Time integral operator 68
4.4.6 Circular Intergral Operators 69
4.4.13 Z-transform filters 69
4.5.1 Analysis 69
4.5.2 DC analysis 69
4.5.4.3 Noise_table 69
4.6.1 Defining an Analog Function 69
4.6.2 Returning a Value from an Analog Function 69
5.3.2 Indirect Branch Assignments 69
6.7.5. Above Function 69
7 Hierarchical Structures 69
8 70
9 Scheduling Semantics 70
10.1 Environment Parameter Functions 70
10.2 $random Function 70
10.2 $dist_ Functions 70
10.4 Simulation Control System Tasks 70
10.7 Announcing Discontinuity 70
10.9 Limiting Functions 70
6

10.10 Hierarchical System Parameter Functions 70
11.1 ‘default_discipline 70
11.2 ‘default_transition 70
11.6 ‘resetall 70
11.7 Pre-defined Macros 71
12, 13 71

SIMetrix Extensions 71
In an Ideal World... 71
Analog Operator Syntax 71
Instance Parameters 72
Device Mapping 72
Tolerances 73
Analysis() Function 73
$simparam() Function 74
$fopen() Function 74

Verilog-A Interaction with SIMetrix Features 74
Real-Time Noise 74
Transient Snapshots 74
Pseudo-Transient Analysis 75
7

8

Verilog-A User Manual
Chapter 1 Introduction

What Is Verilog-A?

Verilog-A is a language for defining analog models; it is suitable for defining
behavioural models with a high level of abstraction as well as highly detailed models for
semiconductor devices.

Prior to the introduction of Verilog-A and other similar languages (e.g. VHDL-AMS and
MAST), the definition of such models could only be achieved, if at all, using subcircuits
of controlled sources, arbitrary sources and various semiconductor devices. This method
is inflexible, clumsy and usually very inefficient.

Further, SIMetrix Verilog-A is a compiled language. This means that the Verilog-A code
is compiled to a binary executable program in the same way that built-in device models
are implemented. This makes Verilog-A models very fast.

The SIMetrix implementation of Verilog-A uses a compiler to translate the Verilog-A
source into program code using the ‘C’ language. This in turn is compiled into a DLL
which is then loaded into the SIMetrix memory image. Access to the verilog-A
description is then made at the netlist level using models and instance lines.

For Windows operation, you do not need to install a ‘C’ compiler to use Verilog-A.
SIMetrix Verilog-A is supplied with the open-source ‘C’ compiler gcc using the mingw
extensions. We have used a stripped down version of gcc that includes only the essential
files needed for this. For running on Linux, you need to make sure that the gcc compiler
is installed for the Verilog-A system to work.

The SIMetrix Verilog-A compiler was developed by us; we do not license a third-party’s
product, nor is it based on open-source software. This means that we know it inside out
and will be able to offer the same high level of support that we have always offered with
all our products.

Verilog-A Language Reference Manual

The language reference manual may be obtained from http://www.eda.org/verilog-ams/
htmlpages/lit.html. The SIMetrix implementation is based on version 2.2.
9

Chapter 2 Using Verilog-A Compiler
Chapter 2 Using Verilog-A Compiler

Using Verilog-A with SIMetrix Schematics

SIMetrix has a simple feature that will create a schematic symbol for use with a Verilog-
A definition. The feature invokes the Verilog-A compiler using an option that tells it just
to execute the first part of the compilation process. This allows the script to learn some
information about the Verilog-A file such as module and port names. The script will ask
you where you wish each pin to be located and after that will create a symbol and place
it on the schematic. The symbol will be decorated with all necessary properties to
interface the Verilog-A model to the simulator.

To use the script, create a Verilog-A definition, then executethe schematic menu Verilog-
A | Construct Verilog-A Symbol. Navigate to the Verilog-A file (extension .va) then
close. Select pin locations as requested. Image of symbol will appear for placement.

The symbol can be found for future use using Place | From Symbol Library then
navigate to “Auto Created Symbols -> Verilog-A Symbols”.

Defining Verilog-A Files in Netlist

Use the simulator statement ‘.LOAD’ to specify the Verilog-A source file. E.g.:

.LOAD resistor.va

This will invoke the Verilog-A compiler (va.exe) which will create one common ‘C’ file
and one ‘C’ file per module statement within the Verilog-A file. The ‘C’ files will then
be compiled and linked using gcc to produce the final DLL which has the extension
.sxdev. These files are all placed in the directory
%APPDATAPATH%\SIMetrix600\vacache where %APPDATAPATH% is your
application data directory.

Having compiled the va file, .LOAD will load the .sxdev file into the SIMetrix memory
image. It will then map the code within into the simulator’s model table making the new
device ready for use.

To use the new device or devices, defined with Verilog-A module statements, you must
specify a .MODEL statement. These must be placed after the .LOAD statement. The
format of the .MODEL statement should be:

.MODEL modelname va-module-name parameters
10

Verilog-A User Manual
Where modelname is the model name referred to on the instance (see below), va-
module-name is the name of the module in the Verilog-A source file and parameters are
parameters defined using the Verilog-A parameter keyword.

To create instances of the new device create an instance line (or schematic symbol with
appropriate properties) that begins with one of the letters ‘N’, ‘P’, ‘W’, ‘U’ or ‘Y’. You
can use other letters as long as the number of terminals is compatible with the original
use of that letter. For example, you can use the letter ‘M’ as long as the device has four
terminals - as a MOS device would have. But you must use one of ‘N’, ‘P’, ‘W’, ‘U’ or
‘Y’ for devices with more than 4 terminals or only a single terminal. ‘Q’ will work for
three or four terminals, but you should avoid using it as it is full of amiguities as a result
of SPICE history.

When you start a new simulation, any sxdev files loaded in the previous run will be
unloaded and the model table entries removed.

Messages

When running a simulation, you will see a number of messages in the command shell.
These are output by the VA compiler, the MAKE utility and, if you are unlucky, the ‘C’
compiler.

Errors or warning output by the Verilog-A compiler will be displayed during this
process.These will be in the form:

*** ERROR *** (@’verilog-a-filename’,linenum), error-message

If the problem is with the syntax, the message will say *** SYNTAX ERROR ***.

 NOTE: Identifiers that you use in your Verilog-A code (e.g. variables, parameters,
ports etc) may be prefixed with an underscore when referenced in any warning or error
message.

When you run a .VA file for the sescond and subsequent time without editing it, you will
not see any messages from the Verilog-A compiler.

.LOAD Full Syntax

.LOAD file [instparams=parameter_list] [nicenames=0|1] [goiters=goiters]
[ctparams=ctparams] [suffix=suffix] [warn=warnlevel]

file can specify either a Verilog-A fileor a .SXDEV file. If the extension is .SXDEV, no
compilation will be performed and the specified file will be loaded directly. The
11

Chapter 2 Using Verilog-A Compiler
remaining options described above will not be recognised in this case. Otherwise the
build sequence described above will be initiated. Paths are relative to the current
working directory. Don’t use .VA file names containing spaces.

parameter_list is a list of parameter name separated by commas. There should be no
spaces in this list. Each parameter in this list will be defined as an instance parameter.
See “Instance Parameters” on page 72 for details.

goiters specifies the number of global optimiser iterations. The default is 3. A higher
number may improve the execution speed of the code at the expense of a longer
compilation time. In practice this will only have a noticeable effect on very large
verilog-a files. Setting the value to zero will disable the global optimiser. This is likely
to slow execution speed a little. The global optimiser is an algorithm that cleans up
redundant statements in the ‘C’ file.

ctparams defines ‘Compile-time parameters’ and is a list of comma-separated parameter
name/value pairs in the form name=value. Any parameters listed will be substituted with
the constant value defined during compilation as if it were entered as a literal constant in
the verilog-a code. This feature is especially useful for items such as array sizes and
vectored port sizes. A considerably more efficient result will be produced if the values
of such items are known at compile time.

warnlevel sets a filter for warning messages. If set to zero, no warnings will be
displayed. If set to 2, all warnings will be displayed. The default is 1 which will cause
most warnings to be displayed but will omit those that are less serious.

nicenames=0|1 is an advanced feature for debugging purposes. It tells the compiler to
use meaningful names in the ‘C’ file if possible. Otherwise it will used short names.
There is a small risk of a name clash in the ‘C’ file if this option is switched on.

Verilog-A Cache

SIMetrix will reuse existing Verilog-A binary files without recompiling if the source
files have not changed. It determines whether or not the file has changed by calculating
an MD5 checksum on the source files and comparing this with a value stored in the
.sxdev file. While this method is slower than the more conventional method of checking
file dates, it is more robust and reliable.

This cache mechanism can save significant time if the VA definition is large. The hicum
model, for example, takes about 6 seconds to compile.

You can clear the cache at any time using the schematic menu Verilog-A | Clear Cache.
This will delete all files in the cache directory.
12

Verilog-A User Manual
Permananent .SXDEV Installation

The .SXDEV files may be relocated to the plugins\devices directory in which case they
become a built-in device. Currently, you should not expect binary compatibility between
versions. A Verilog-A license is required to load a .sxdev file.
13

Chapter 3 Writing Verilog-A Code
Chapter 3 Writing Verilog-A Code

Overview

We will introduce Verilog-A by showing a number of examples. Each example
introduces a new concept or language feature. This is not a definitive reference of the
language but we hope to demonstrate the most commonly used features.
The table below lists the examples used in this manual along with the path of the files
where you can find a read-to-run schematic and Verilog-A definition file.

Hello World!

It has become customary to instroduce any computer language with a “Hello world”
program. That is a program that simply prints “Hello World!”. While Verilog-A was not
designed to perform this type of task, it is nevertheless possible to write such a program.
Here is an example:

module hello_world ;

 analog
 begin

 @(initial_step)
 $strobe("Hello World!") ;

Example File Location

Hello World! Examples/Verilog-A/Manual/Hello-world

A Simple Device Model Examples/Verilog-A/Manual/Gain-block

A Resistor Example/Verilog-A/Manual/Resistor

A Soft Limiter Example/Verilog-A/Manual/Soft-limiter

A Capacitor Example/Verilog-A/Manual/Capacitor

A Voltage Controlled
Oscillator

Example/Verilog-A/Manual/Vco

Digital Gate Example/Verilog-A/Manual/Gates

Butterworth Filter Example/Verilog-A/Manual/Butterworth-filter

RC Ladder - Loops, Vectored
Nodes and genvars

Example/Verilog-A/Manual/RC-ladder
14

Verilog-A User Manual
 end
endmodule

You can try this using the following procedure:

1. Open a test editor and enter the lines above. (This will copy and paste from the PDF
OK, but be aware that in general copying and pasting ASCII text from PDFs can
result in strange problems. In particular, watch out for ‘-’ characters. These aren’t
always what they seem.)

2. Save to a file called hello_world.va

3. Start SIMetrix if you have not already done so. Open an empty schematic sheet

4. Select menu Verilog-A | Construct Verilog-A Symbol

5. Navigate to the file you created in step 2 above

6. Select OK

7. Place symbol that is created. It’s just a box with no pins

8. Add a resistor connected to ground to the schematic. We need to do this as SIMetrix
will otherwise fail with a no-ground error message

9. Setup a transient analysis with any stop time you like

10. Run simulation

The first time you run this, you will see messages relating to the compilation procedure.
After that the message “Hello World!” will be displayed in the command shell.

If you get any error messages, check the code you entered. The error message should
point to the line where the problem occurred. Be aware that sometimes the line number
given may not be exact. The point where the parser detects that something is wrong may
occur one or two lines after the actual cause of the problem. For example, if you omitted
the ‘;’ on the line containing the $strobe call, you would the error “Unexpected token
‘end’” error reported for the following line or possibly even the line after that. The ‘end’
token would not be expected if the ‘;’ was missing but this is on the next line.

Although our hello world program does not do much, it does introduce a number of
Verilog-A concepts:

1. Modules. All devices that can be instantiated as models and instances are defined as
modules. In the above example the module has the name hello_world. This name
is used in the associated .MODEL statement in the SIMetrix netlist to access this
module.
15

Chapter 3 Writing Verilog-A Code
2. The analog block denoted by the keyword analog. This is where the main body of
the Verilog-A definition is placed

3. Initial step event denoted by @(initial_step). The statement following this will
be executed only in the first step of the simulation, that is, the dc operating point
phase. You might like to see what happens if you remove this line. You can do this
easily by ‘commenting it out’ which can be done with to forward slashes like this:

//@(initial_step)

4. $strobe. This is known as a system task in the Verilog-A LRM (language reference
manual). $strobe outputs a message to the command shell. It can also output values
in various format and behaves in a similar way to the ‘C’ printf function. We will see
more of this later.

A Simple Device Model

We will now show how to make a simple gain block. Here is the Verilog-A design:

`include "disciplines.vams"
module gain_block(in, out) ;

 electrical in, out ;
 parameter real gain=1.0 ;

 analog
 V(out) <+ V(in)*gain ;

endmodule

You may like to enter the above example in the same manner as the previous hello world
example. We suggest entering this circuit:

U1-out

 Sine(0 1 1k 0 0)

V1

U1

gain_block

in out
16

Verilog-A User Manual
When using the menu Verilog-A | Construct Verilog-A Symbol for the above definition,
you will notice a dialog box appear asking the location for the device’s pins. You would
not have seen this with the hello world example as that device does not have any pins.
Choose ‘left’ for ‘in’ and ‘right’ for ‘out’.

We have supplied the above pre-built. See Examples/Manual/gain-block. All the
examples used in this manual are available from Examples/Manual. However, you may
find it more instructive to enter the code and schematics manually.

Run the above in the usual way. You should see an output that follows the input; that is a
1V 1kHz sine wave.

Module Ports

In the above definition we have introduced two ‘module ports’ to the module definition.
These define connection terminals and the generated symbol shows these as pins ‘in’
and ‘out’.

Branch Contributions

The line:

V(out) <+ V(in)*gain ;

defines the relationship between the module ports out and in. This is known as a
branch contribution in the LRM. Branch contributions define a relationship that the
simulator must maintain between the ‘probes’ (V(in) in the above) on the right hand
side and the ‘source’ (V(out) above) on the left hand side. They behave in the same
way as arbitrary source devices. The above, for example, is equivalent to a SIMetrix
netlist line like this:

B1 out 0 v = V(in) * gain

Branch contributions, however, differ from arbitrary sources in that they are additive.
Successive branch contributions with the same left hand side add to each other. This
applies to both voltage and current sources. For example:

V(out) <+ V(in)*gain ;
V(out) <+ 1.0 ;

is the same as:

V(out) <+ V(in)*gain + 1.0 ;

The V() function in the above is known as an access function. Access functions may
17

Chapter 3 Writing Verilog-A Code
have one or two arguments each of which must refer to a port or internal node. If two
arguments are provided, V() accesses the potential between the two nodes. If only a
single node is supplied, it accesses the potential between that node and ground.

The access function I() access the current flowing between its two nodes. As with the
voltage access function, if only a single node is provided, the second node is implicitly
ground.

The access functions V() and I() are not defined as language keywords but are in fact
defined by the electrical discipline contained within the disciplines.vams file.

Parameters

parameter real gain=1.0 ;

defines a parameter and gives it a default value of 1.0. This value can be edited at the
netlist level. If you used a generated symbol or our pre-built example, double click the
device U1, then enter:

gain=5

Now rerun the schematic. Notice the output amplitude increase to 5V peak.

Disciplines

Finally, you will notice two other lines not in the hello world example:

 electrical in, out ;

defines the discipline for the module ports in this case ‘electrical’. Verilog-A supports
other disciplines such as thermal, mechanical and rotational allowing simulation of
physical processes other than electrical and electronic. The definitions of these other
disciplines are defined in the disciplines.vams file which is included using the line:

`include "disciplines.vams"

Nearly all Verilog-A definitions include this line at the top of the file. We excluded it
from the hello world example as that did not need it.

A Resistor

In this example we define a simple resistor. A resistor is a device whose current is
proportional to the voltage difference between its terminals. This is defined in Verilog-A
using a branch contribution as follows:
18

Verilog-A User Manual
I(p,n) <+ V(p,n)/resistance ;

This defines the current/voltage relationship that the simulator must maintain on the
nodes p and n. I(p,n) represents the current flowing from port p to port n and V(p,n)
represents the potential difference measured between nodes p and n.

Here is the full definition:

`include "disciplines.vams"

module va_resistor(p,n) ;

 parameter real resistance = 1000.0 from (0.0:inf] ;
 electrical p, n ;

 analog
 I(p,n) <+ V(p,n)/resistance ;

endmodule

In the above the resistance parameter has been given value range limits to prevent
resistance value of zero or below. A resistance of zero would lead to a divide-by-zero
error.

Instead of blocking resistors with a value of zero, we could instead implement a zero
resistance using a zero voltage contribution. This is how:

`include "disciplines.vams"

module va_resistor(p,n) ;

 parameter real resistance = 1000.0 ;
 electrical p, n ;

 analog
 begin
 if (resistance!=0.0)
 I(p,n) <+ V(p,n)/resistance ;
 else
 V(p,n) <+ 0.0 ;
 end

endmodule

Note the conditional statement starting if (resistance!=0.0). Notice also, that
the analog block is now enclosed with the keywords begin and end. These are not
actually necessary in this case, but are necessary where there is more than one statement
19

Chapter 3 Writing Verilog-A Code
in the analog block.

A Soft Limiter

This is a definition for a soft limiter device. This will pass the input signal through
unchanged up to some limit after which it will follow a decaying exponential in the
form:

1 - exp(-(v-vlim))

The same in reverse occurs for the lower limit. Here is the full definition:

`include "disciplines.vams"
module soft_limiter(in, out) ;

 electrical in, out ;
 parameter real vlow=-1.0,
 vhigh=1.0,
 soft=0.1 from (0:1.0) ;

 localparam real band = (vhigh-vlow)*soft,
 vlow_1 = vlow+band,
 vhigh_1 = vhigh-band ;

 real vin ;

 analog
 begin

 @(initial_step)
 if (vhigh<vlow)
 begin
 $strobe(
 "Lower limit must be less than higher limit") ;
 $finish ;
 end

 vin = V(in) ;

 if (vin>vhigh_1)
 V(out) <+ vhigh_1+band*(1.0-exp(-(vin-vhigh_1)/band));
 else if (vin<vlow_1)
 V(out) <+ vlow_1-band*(1.0-exp((vin-vlow_1)/band)) ;
 else
 V(out) <+ vin ;

 end
20

Verilog-A User Manual

endmodule

See Examples/Manual/Soft-limiter example

The above example introduces the following new concepts:

1. Variables. We use vin to hold the value of V(in). In this example we have done this
simply to make the code a little more readable. But variables can store any value or
expression and have a much wider use

2. The $finish system task.

3. The exp function

4. Local parameters using the localparam keyword

5. Parameter value range limits using the from keyword. (Also used in the resistor
above)

The soft limit example also uses a conditional statements using if and else which we
first saw with the resistor example above.

Variables

Variables, such as vin in the example must be declared first. In the above example this
declaration is the line:

real vin ;

This declares the variable ‘real’. This is ‘real’ in the computing sense meaning that the
value is stored using floating point arithmetic and can take non-integer values. The
alternative declaration is integer which means the variable stores whole numbers.
Variable declarations, like parameter declarations must be placed within the module -
endmodule block. They can be declared outside the analog block, as in the example
above, or they can be declared inside a named begin - end block. For example

 begin : main
 real vin ;
 ...
 end

If declared this way, the variable may only be used within the begin - end block in
which it was declared.
21

Chapter 3 Writing Verilog-A Code
$finish

The $finish system task aborts the simulation unconditionally.

Functions

Verilog-A has a range of mathematical functions built-in. In the above example we have
used the exp function. See “Verilog-A Functions” on page 35 for a complete list.

Local Parameters

A local parameter is one that cannot be changed by the user via the .MODEL statement
or any other means. Local parameters are a way of defining constant vaues as, unlike
variables, they cannot be assigned except in their declaration. In our example we
declared the band local parameter as:

localparam real band = (vhigh-vlow)*soft

We could just as simply have defined a variable to do this. However, by using a local
parameter we know it can’t be subsequently modified. This aids readibility and also
allows easier optimisation by the compiler.

Parameter Limits

Parameters can be given maximum and minimum limits. This is done using the from
keyword. In the above example:

soft=0.1 from (0:1.0)

defines the limits for soft from 0 to 1.0 exclusive. This means that any value greater
than 0 and less than 1.0 will be accepted but the values 0 and 1.0 will not be allowed.
You can also define inclusive limits using a square bracket instead of a round
parenthesis. E.g in the following 1.0 is allowed:

soft=0.1 from (0:1.0]

Conditional Statements

Conditional statements are in the form:

 if (conditional-expression)
 statement ;
 else
 statement ;

statement may be a single statement such as a branch contribution or it may be a
collection of statements enclosed by begin and end.
22

Verilog-A User Manual
A Capacitor

To implement a capacitor we need a time derivative function. In Verilog-A this is
achieved using the ddt analog operator. A capacitor can be defined using the branch
contribution statement:

I(p,n) <+ capacitance * ddt(V(p,n)) ;

Like the resistor, this defines the current/voltage relationship that the simulator must
maintain on the nodes p and n. However, this definition has time dependence.

Here is the complete definition for a capacitor:

`include "disciplines.vams"

module va_capacitor(p,n) ;

 parameter real capacitance = 1n ;
 electrical p, n ;

 analog
 I(p,n) <+ capacitance * ddt(V(p,n)) ;

endmodule

See Examples/Manual/Capacitor. Note there is another definition for a capacitor with an
initial condition parameter - capacitor_with_ic.va. This uses the time integration
operator idt which allows the specification of an initial condition.

A Voltage Controlled Oscillator

Verilog-A may be used to create signal sources. Here we show how to make a voltage
controlled oscillator.

`include "disciplines.vams"
`include "constants.vams"

module vco(in, out) ;

 parameter real amplitude = 1.0,
 centre_frequency = 1K,
 gain = 1K ;
 parameter integer steps_per_cycle=20 ;

 localparam real omegac = 2.0 * `M_PI * centre_frequency,
 omega_gain = 2.0 * `M_PI * gain ;
23

Chapter 3 Writing Verilog-A Code

 electrical in, out ;

 analog
 begin : main

 real vin, instantaneousFreq ;

 vin = V(in) ;
 V(out) <+ amplitude*sin(idt(vin*omega_gain+omegac,0.0)) ;

 // Use $bound_step system task to limit time step
 // This is to ensure that sine wave is rendered with
 // adequate detail.
 instantaneousFreq = centre_frequency + gain * vin ;
 $bound_step (1.0 / instantaneousFreq / steps_per_cycle) ;

 end
endmodule

This can be found in Examples/Manual/Vco

This model uses the idt analog operator to integrate frequency to obtain phase. The
frequency is calculated from omegac which is the constant term and vin*omega_gain
which the voltage controlled term.

A problem with sinusoidal signals is that in order to obtain adequate resolution, the time
step must be limited to a controlled fraction of the cycle time. In the above the parameter
steps_per_cycle is used to define a minimum number of steps per cycle. This is
implemented using the $bound_step system task. This tells the simulator the
maximum time step it can use for the next time point. It can use a smaller step if needed
but must not use a larger step.

The above can suffer a problem if left to run for a very large number of cycles. The
return value from the idt operator increases continuously and eventually the size of this
value will impact on the calculation precision available leading to inaccuracy. The
problem can be resolved using the idtmod operator. However, this language feature has
not yet been implemented in the SIMetrix Verilog-A. We expect to offer this in the first
revision.

Digital Elements - Overview

Verilog-A can model digital devices as well as analog. This is useful in situations where
some simple logic function interfaces mostly with analog elements. An example is a
phase detector in a phase-locked loop. At least one of its inputs would often come from
24

Verilog-A User Manual
an analog source and its output would usually drive a low-pass filter also implemented
with analog components. Some phase detector designs employ a digital state machine
that would usually suit a digital event driven simulator. But if it interfaces with analog
devices, interface bridges would need to be connected to the analog signals. This
complicates and slows down the simulation. Using Verilog-A we can efficiently
implement the entire function in the analog domain.

We have provided an example of a phase detector; see Examples/phase_detector.

In this section we will show how to create some simple logic elements.

Digital Gate

Here is a definition for an AND gate

`include "disciplines.vams"

module and_gate(in1, in2, out);

 electrical in1, in2, out ;

 parameter real digThresh = 2.0,
 digOutLow = 0.0,
 digOutHigh = 5.0,
 trise=10n,
 tfall=10n ;

 analog
 begin : main

 integer dig1, dig2, logicState ;

 // Detect in1 threshold
 @ (cross(V(in1)-digThresh, 0, 1n))
 if (V(in1)>digThresh)
 dig1 = 1 ;
 else
 dig1 = 0 ;

 // Detect in2 threshold
 @ (cross(V(in2)-digThresh, 0, 1n))
 if (V(in2)>digThresh)
 dig2 = 1 ;
 else
 dig2 = 0 ;

 logicState = dig1 && dig2 ? digOutHigh : digOutLow ;
25

Chapter 3 Writing Verilog-A Code
 V(out) <+ transition(logicState , 0.0, trise, tfall) ;
 end
endmodule

This example introduces two new concepts:
1. The cross event

2. The transition analog operator

cross() Monitored Event

The cross event function is used to detect when an input signal crosses its logic
threshold. Consider the line:

 @ (cross(V(in1)-digThresh, 0, 1n))

This line both defines the event and also responds to the event when it is triggered. The
arguments define the event, while the statement that follows it is the action taken when
the event is triggered.

The function has the following form:

cross(expr, edge, time_tol, expr_tol)

Only the first argument is compulsory.

expr expression to test. The event is triggered when the
expression crosses zero.

edge 0, +1 or -1 to indicate edge. +1 means the event will only
occur when expr is rising, -1 means it will only occur
while falling and 0 means it will occur on either edge.
Default=0 if omitted

time_tol Time tolerance for detection of zero crossing. Unless the
input is moving in an exact linear fashion, it is not
possible for the simulator to predict the precise location of
the crossing point. But it can make an estimate and then
cut or extend the time step to hit it within a defined
tolerance. time_tol defines the time tolerance for this
estimate. The event will be triggered when the difference
between the current time step and the estimated crossing
point is less than time_tol. If omitted or zero or negative,
no timestep control will be applied and the event will be
triggered at the first natural time point after the crossing
point. See diagram below for an illustration of the
meaning of this parameter.
26

Verilog-A User Manual
expr_tol Similar to time_tol but instead defines the tolerance on the
input expression. See below:

Cross Event Function Behaviour

transition() Analog Operator

The transition function at the end is one of a class of functions called analog
operators. The ddt and idt functions seen earlier are also analog operators. The
transition analog operator is designed to handle signals that change in discrete steps
such as the output of logic devices and digital to analog converters. In the and gate
example above, the output logic level can change instantaneously but the output of a real
device would typically follow a specified rise or fall time. The transition analog operator
converts the discrete input value to a continuous output value using specified rise and
fall times. The function has the following form

transition(expr, td, rise_time, fall_time, time_tol)

expr Input expression

td Delay time. This is a transport or stored delay. That is, all
changes will be faithfully reproduced at the output after
the specified delay time, even if the input changes more
than once during the delay period. This is in contrast to
intertial delay which swallows activity that has a shorter
duration than the delay. Default=0

rise_time Rise time of output in response to change in input

fall_time Fall time of output in response to change in input

time_tol Ignored. The LRM does not explicitly state what this is
supposed to do and we see no purpose for a tolerance
parameter.

Time
points

time_tol

Estimated
crossing
point

expr_tol

Event triggered
here if time_tol
or/and expr_tol satisfied
27

Chapter 3 Writing Verilog-A Code
If fall_time is omitted and rise_time is specified, the fall_time will default to rise_time.
If neither is specified or are set to zero, a minimum but non-zero time rise/fall time is
used. This is set to the value of MINBREAK which is the minimum break point value.
Refer .OPTIONS in the Simulator Reference Manual for details of MINBREAK.

The transition analog operator should not be used for continuously changing input
values; use the slew or absdelay analog operators instead.

Transition Analog Operator Waveforms

Butterworth Filter

Here we present a butterworth filter with arbitrary order. SIMetrix already has
something like this built-in, but we show a Verilog-A version to demonstrate arrays,
looping constructs and the Laplace analog operators.

The design allows the user to specify the order of the filter using a model parameter. The
filter itself is implemented using the analog operator laplace_nd which provides a
Laplace transfer function defined by its numerator and denominator polynomial
coefficients. To calculate the coefficients for the specified order, we build an array for
the denominator coefficients using a for loop. The array only needs to be calculated once
so we put this calculation in response to an initial_step event. (Actually it will be
recalculated on each dc operating point iteration which is not as efficient as it could be.
This is an area that we hope to address in a future revision.)

`include "disciplines.vams"
`include "constants.vams"

td

rise_time

Output

Input

fall_time

td
28

Verilog-A User Manual
module laplace_butter(in,ref,out) ;

 real res ;
 electrical in, ref, out ;
 parameter freq=1.0 ;
 parameter integer order=5 ;

 real scale, bPrev ;
 // Denominator array size order+1
 real den[order:0] ;
 integer k ;

 analog
 begin

 // Calculate Butterworth coefficients
 @ (initial_step)
 begin
 scale = 1.0/freq/2/`M_PI ;
 bPrev = 1.0 ;
 den[0] = 1.0 ;

 for (k=1 ; k<order+1 ; k=k+1)
 begin
 bPrev = scale*cos((k-1.0)/order*(`M_PI*0.5))/
 sin((k*0.5)/order*`M_PI) * bPrev ;
 den[k] = bPrev ;

 $strobe("den coeff %d = %g", k, den[k]) ;
 end
 end

 // Actual Butterworth filter
 res = laplace_nd(V(in,ref), {1.0}, den) ;
 V(out,ref) <+ res ;
 end
endmodule

See Examples/Manual/Butterworth-filter

This design introduces these language features:
1. Array variables

2. For loops

3. The lapalace_nd analog operator
29

Chapter 3 Writing Verilog-A Code
Arrays

Verilog-A supports arrays of both variables and parameters. In the example above we
use an array to store the denominator coefficients for the laplace_nd analog operator.
Array variables must be declared with their range of allowed indexes using this syntax:

type array_name[low_index:high_index] ;

Where:
type real or integer

array_name name of array

low_index Minimum index allowed

high_index Maximum index allowed

low_index and high_index determine the number of elements in the array to be
high_index-low_index+1.

For Loops

For loops use a syntax similar to the ‘C’ language. This is as follows:

for (initial_assignment ; test_expression ; loop_assignment)
 statement

initial_assignment Assignment statement (in the form variable = expression)
that is executed just once on entry to the loop. Typically
this would be an assignment that assigns a loop counter
variable a constant value. In the example it assigns 1 to
the variable k.

test_expression Expression is evaluated at the start of each iteration
around the loop before statement. If the result of the
evaluation is non-zero, statement will be executed. If not
the loop will be terminated

loop_assignment Assignment statement that is executed after statement.
Typically this would be an assignment that increments or
decrements a loop counter variable.In the above it
increments k by 1

laplace_nd Function

The laplace_nd function implements a Laplace transfer function. This is in the form:
30

Verilog-A User Manual
where d0, d1, d2... dm are the denominator coefficients and n0, n1, n2... nm are the

numerator coefficients and the order is m.

The laplace_nd function is in the form:

laplace_nd(expr, num_coeffs, den_coeffs, )

Where
expr Input expression

num_coeffs Numerator coefficients. This can be entered as an array
variable or as an array initialiser. An array initialiser is a
sequence of comma separated values enclosed with ‘{‘
and ‘}’. E.g: { 1.0, 2.3, 3.4, 4.5}. The values do not need
to be constants.

den_coeffs Denominator coefficients in the same format as the
numerator - see above. In the example this is provided as
the array den. The values in den are calculated in the for
loop.

 Tolerance parameter currently unused

If the constant term on the denominator (d0 in equation above) is zero, the laplace

function must exist inside a closed feedback loop. With a zero denominator, the DC
gain is infinite; by putting the function inside a loop, the simulator can maintain the
input at zero providing a finite output. A singular matrix error will result otherwise.

RC Ladder - Loops, Vectored Nodes and genvars

Verilog-A allows definitions to contain repeated elements defined using vectors of
nodes. Here we present an example that defines an RC network with any number of
elements.

`include "discipline.h"

/* Model for an n-stage RC ladder network */
module rc_ladder(inode[0], inode[n]) ;

electrical [0:n] inode ;

/* The compile_time attribute is a SIMetrix extension and is

H s 
n0 n1 s n2 s

2  nm s
m+ +++

d0 d1 s d2 s
2  dm s

m+ +++
---=
31

Chapter 3 Writing Verilog-A Code
 not part of the Verilog standard. compile_time parameters
 must be defined at the time the module is compiled. Their
 values can be specified on the .LOAD line in the netlist
 using the "ctparams" parameter. E.g. ctparams="n=8"
 If not specified on the .LOAD line, the default value
 specified here will be used. */
(* type="compile_time" *)parameter integer n=16 ;
parameter r=1k ;
parameter c=1n ;

genvar i ;

analog
begin

for (i=0 ; i<=n-1 ; i=i+1)
begin

I(inode[i],inode[i+1]) <+(V(inode[i],inode[i+1]))/r;
I(inode[i+1]) <+ ddt(V(inode[i+1])*c) ;

end

end

endmodule

This design introduces the following language features:
1. Vectors of nodes

2. Analog for loops and genvars

3. Compile-time parameters. (This is a SIMetrix extension and not part of the Verilog-
A specification)

Vectors of Nodes

Verilog-A allows nodes to be specified as vectors. This can be used to implement
devices that have multiple inputs or outputs (such as ADCs and DACs) as well as
devices like the above example which has multiple internal elements.

The Verilog-A specification allows the size of vectored nodes to be specified as a
parameter that can be assigned at run time. SIMetrix does allow this in some simple
cases but this would not be accepted in the above example. Usually, however, vectored
node sizes (n in the above example) are specified as a constant to be available at compile
time. This can be done in a number of ways:
1. As a pre-processor constant such as

‘define n 16
32

Verilog-A User Manual
this must then be accessed using the back tick character, i.e. ‘n

2. As a constant localparam parameter. These may not be set by the user and so are
fixed in value at compile time.

3. As a compile-time parameter. See below for details.

Vectors of nodes can be specified in the node discipline declaration. In the example
above, this is the line:

electrical [0:n] inode ;

The nodes are accessed using square brackets enclosing a constant expression in the
same way that array variables are used. For example, inode[0] is the first node in the
vectored node inode while inode[n] is the last.

Analog For Loops and genvars

We saw for-loops in the butterworth filter example. Analog for loops are syntactically
identical but use a special type of variable called a genvar instead of a normal variable.
Analog for loops are the only type of loop where you can iterate through vectored nodes.
They are also the only type of loop where you can use analog operators.

genvars are inherited from the Verilog-A version 1.0 concept called generate statements.
Generate statements define a method of replicating a statement any number of times
while increasing or decreasing a controlling variable - the generate variable or genvar.
In computer science this technique is often called loop-unrolling. Generate statements
are now considered obsolete and have been replaced by analog for loops but the
functionality is similar.

The Verilog-A language specification does not stipulate that analog for loops should be
unrolled but it does impose a number of restrictions on the use of genvars to make
unrolling possible as long as all constant values are available at compile time. Unrolling
loops that refer to vectored nodes is vastly more efficient than evaluation at run-time.

SIMetrix will unroll analog for loops if it can. If it can’t, because one or more values in
the for-loop could not be evaluated at compile-time, it will still attempt to implement the
design but this process may fail in which case an error message will be displayed. If it
succeeds, a level 2 warning will be raised advising that the design would be more
efficient if some variables were constant.

Compile-time Parameters

Compile-time parameters are a SIMetrix extension and not part of the language
specification. Compile-time parameters may be assigned in the .LOAD statement in the
33

Chapter 3 Writing Verilog-A Code
netlist or they may be defined using an attribute in the Verilog-A code, or both. This
concept is in its infancy and we hope to develop it further. The attribute in the code (this
is the (* type="compile_time" *) prefixing the parameter keyword) declares
the parameter as compile-time and provides a default value. The value may be
overridden in the .LOAD statement in the netlist.

See Also

...the DAC example at Examples/DAC. This has a vectored module port with a size that
can be specified at run time via a model parameter.
34

Verilog-A User Manual
Chapter 4 Verilog-A Reference

The official definition of the Verilog-A language can be found in the Language
Reference Manual version 2.2 which may be obtained from here: http://www.eda.org/
verilog-ams/htmlpages/lit.html. Ultimately we intend to write our own reference that
explains the language in a more concise and easy-to-read form than the official
reference, but this work is not complete yet.

Here we present descriptions of all the functions that SIMetrix currently supports.

Verilog-A Functions

Name
Return

type
In types Implemented?

$abstime real () Yes

$angle real () No

$bound_step none (real) Yes

$debug none ([real/integer/string…]) Yes

$discontinuity none ([integer]) Yes

$display none ([real/integer/string…]) Yes

$fclose none (integer) Yes

$fdebug none (integer, [real/integer/string…]) Yes

$fdisplay none (integer, [real/integer/string…]) Yes

$finish none ([integer]) Yes

$fmonitor none (integer, [real/integer/string…]) Yes

$fopen integer (string) Yes

$fstrobe none (integer, [real/integer/string…]) Yes

$fwrite none (integer, [real/integer/string…]) Yes

$hflip real () No

$limit real (access_func,string,real…) No

$mfactor real () Yes

$monitor none ([real/integer/string…]) Yes

$param_given integer identifier Yes
35

Chapter 4 Verilog-A Reference
$port_connected integer identifier Yes

$random integer (integer,[string]) Yes

$rdist_chi_square real (integer,real, [string]) No

$rdist_erlang real (integer,real,real, [string]) No

$rdist_exponential real (integer,real, [string]) No

$rdist_normal real (integer,real,real, [string]) No

$rdist_poisson real (integer,real, [string]) No

$rdist_t real (integer,real, [string]) No

$rdist_uniform real (integer,real,real,[string]) No

$realtime real ([real]) No

$simparam real (string,[real]) Yes

$stop none ([integer]) Yes

$strobe none ([real/integer/string…]) Yes

$table_model real Yes

$temperature real () Yes

$vflip real () No

$vt real ([real] Yes

$write none ([real/integer/string…]) Yes

$xposition real () No

$yposition real () No

above integer (real,[real,[real]]) No

abs copies
args

(real/int) Yes

absdelay real (real, real, [real]) Yes

ac_stim complex (string,[real,[real]]) Yes

acos real (real) Yes

acosh real (real) Yes

analysis integer (string,[…]) Yes

asin real (real) Yes

asinh real (real) Yes

atan real (real) Yes

atan2 real (real,real) Yes

atanh real (real) Yes

ceil real (real) Yes
36

Verilog-A User Manual
cos real (real) Yes

cosh real (real) Yes

cross integer (real,[integer,[real,[real]]]) Yes

ddt real (real,[real/string]) Yes

ddx real (real,access_func) Yes

exp real (real) Yes

flicker_noise real (real,real,[string]) Yes

floor real (real) Yes

hypot real (real,real) Yes

idt real (real,[real,[real,[real/string]]]) Yes

idtmod real (real,[real,[real,[real,[real/
string]]]])

No

laplace_nd real (real,real-array,real-array,[real/
string])

Yes

laplace_np real (real,real-array,real-array,[real/
string])

Yes

laplace_zd real (real,real-array,real-array,[real/
string])

Yes

laplace_zp real (real,real-array,real-array,[real/
string])

Yes

last_crossing real (real,integer) Yes

limexp real (real) Yes

ln real (real) Yes

log real (real) Yes

max copies
args

(real/int,real/int) Yes

min copies
args

(real/int,real/int) Yes

noise_table real (real-array,[string]) No

pow real (real,real) Yes

sin real (real) Yes

sinh real (real) Yes

slew real (real,[real,[real]]) Yes

sqrt real (real) Yes

tan real (real) Yes
37

Chapter 4 Verilog-A Reference
$abstime

real time = $abstime ;

In transient analysis, returns the absolute simulation time in seconds. In all other
analyses returns zero.

$bound_step

$bound_step(expression) ;

Does not return a value.

In transient analysis, instructs simulator to limit the next timestep to the value of
expression.

$debug

$debug(list_of_arguments) ;

Does not return a value.

$debug is a display function that displays information in the command shell. See
$display for a description of its arguments. The $debug function writes to the command
shell on every iteration. By contrast, other display functions such as $display only write
information when an iteration has converged.

See Also

“$fdebug” on page 42
“$display” on page 39

tanh real (real) Yes

timer integer (real,[real,[real]]) Yes

transition real (real,[real,[real,[real,[real]]]]) Yes

white_noise real (real,[string]) Yes

zi_nd real (real,real-array,real-array,
real,[real,[real]])

No

zi_np real (real,real-array,real-array,
real,[real,[real]])

No

zi_zd real (real,real-array,real-array,
real,[real,[real]])

No

zi_zp real (real,real-array,real-array,
real,[real,[real]])

No
38

Verilog-A User Manual
$discontinuity

$discontinuity [(constant_expression)] ;

Does not return a value

Currently $discontinuity performs no action.

$display

$display(list_of_arguments) ;

Does not return a value

$display displays text in the command shell when the current iteration converges.

The arguments can be any sequence of strings, integers or reals. The function will
display these values in the order in which they appear. The values will be output literally
except for the interpretation of special characters that may appear in string values. The
special characters are backslash (‘\’) and percent (‘%’). ‘\’ is used to output special
characters according to the following table:

The ‘%’ character must be followed by a character sequence that defines a format
specification. In execution, the ‘%’ and the format characters are substituted for the next
value in the argument list, formatted according to the string. User’s conversant with the
‘C’ programming language will have seen this method in the printf function. For
example, %d specifies that an integer be displayed in decimal format. So, if count has a
value of 453, the following:

$display("Count=%d", count) ;

would display:

Count=453

in the command shell.

The following table shows the format codes available:

\n Newline character

\t Tab character

\\ Literal \ character

\” “ character

\ddd Character specified by the ASCII code of the 1-3 octal digits
39

Chapter 4 Verilog-A Reference
Real Number Formats

Real numbers have their own more complex format codes. These are in the form:

% [flag] [width] [.precision] type

where:
flag Characters’-’, ‘+’, ‘0’, space or ‘#’.

‘-’ means left align the result within given width (see
width)
‘+’ means always prefix a sign even if positive
‘0’ means prefix with leading zeros
‘#’ forces a decimal point to be always output even if not
required

width Specifies the minimum number of characters that will be
displayed, padding with spaces or zeros if needed

precision For e and f formats (see below) specifies the number of
digits after the decimal point that will be printed. If g or r
format is specified, specifies the maximum number of
significant digits. Default if omitted is 6.

type e, E, f, F, g, G or r, R

e or E: Signed value displayed in exponential format. E.g.
1.23456E3
f or F: Signed value in decimal format. E.g. 1234.56.
Result will be very long if value is very large or very

%h or %H hexadecimal format

%d or %D decimal format

%o or %O octal format

%b or %B binary format

%c or %C ASCII character. E.g a value of 84 would display an uppercase ‘T’

%m or %M display hierarchical name of instance. This does not use one of
the subsequent arguments

%s or %S literal string. Expects a matching string argument

%e or %E Real number format. See Real Number Formats below

%f or %F Real number format. See Real Number Formats below

%g or %G Real number format. See Real Number Formats below

%r or %R Real number format. See Real Number Formats below
40

Verilog-A User Manual
small
g or G: Uses either f or e depending on which is most
compact for give precision.
r or R: displays in engineering units. Uses these scale
factors:

T, G, M, K, k, m, u, n, p, f, a.

Notes

Currently the compiler will raise an error if the type of an argument does not match its
position in a corresponding format string. For example, the following will raise an error
at compile time:

 integer count ;
 ...
 $display("Count=%g", count) ;

Note that the type (i.e. integer or real) of literal constants is determined by the way they
are written. If a decimal point is included or if exponential or engineering formats are
used, the number is real. Otherwise it is an integer. So ‘11’ is an integer, while 11.0 is a
real.

See Also

“$fdisplay” on page 42
“$debug” on page 38
“$monitor” on page 44

$fclose

$fclose(file_descriptor) ;

Does not return a value.

Closes one or more file descriptors opened with $fopen.

See Also

“$fopen” on page 42
“$fdisplay” on page 42
“$fmonitor” on page 42
“$fdebug” on page 42
“$fwrite” on page 44
41

Chapter 4 Verilog-A Reference
$fdebug

$fdebug(file_descriptor, list_of_arguments) ;

Does not return a value

As $debug, but writes to a file or files defined by file_descriptor.

See Also

“$debug” on page 38
“$fopen” on page 42
“$display” on page 39
“$fdisplay” on page 42

$fdisplay

$fdisplay(file_descriptor, list_of_arguments) ;

Does not return a value.

As $display, but writes to a file or files defined by file_descriptor.

See Also

“$display” on page 39
“$fopen” on page 42

$finish

$finish [(n)]

Does not return a value.

Instructs simulator to abort. Currently the argument is ignored.

$fmonitor

$fmonitor(file_descriptor, list_of_arguments) ;

Does not return a value.

As $monitor, but writes to a file or files defined by file_descriptor

$fopen

integer file_descriptor = $fopen(filename) ;
42

Verilog-A User Manual
Returns an integer representing a multi-channel file descriptor. The descriptor can be
used as an argument to $fdebug, $fdisplay, $fmonitor, $fstrobe and $fwrite to write
output to a file.

There are 31 possible channels each represented by a single bit in the 32 bit returned
value. The top (most significant bit) is reserved. The bottom (least siginificant) is used
for standard output - i.e. displays to the command shell. Each new call to $fopen will
assign the next channel and set the relevant bit.
By or’ing together the results from multiple calls to $fopen, it is possible to write to
more than one file at a time.

SIMetrix has a special extension to this function providing access to the list file. Use the
filename “<listfile>” and the descriptor returned will access it. The following code for
example will create a file descriptor that will provide writes to both the list file and a
user file:

 fd = $fopen("<listfile>") ;
 fd = fd | $fopen("a_text_file.txt") ;

Further, by or’ing with 1 the file descriptor will also write to the command shell.

The file descriptor should be closed with $fclose.

See Also

“$fclose” on page 41
“$fdisplay” on page 42

$fstrobe

$fstrobe(file_descriptor, list_of_arguments) ;

Does not return a value.

As $strobe, but writes to a file or files defined by file_descriptor. Note that the $strobe
and $display functions are identical. For detailed documentation see $display.

See Also

“$strobe” on page 47
“$display” on page 39
“$fopen” on page 42
43

Chapter 4 Verilog-A Reference
$fwrite

$fwrite(file_descriptor, list_of_arguments) ;

Does not return a value.

As $write, but writes to a file or files defined by file_descriptor. Note that the $write
function is identical to $display except that it does add a new line character. For detailed
documentation see $display.

See Also

“$write” on page 49
“$display” on page 39
“$fopen” on page 42

$mfactor

real value = $mfactor ;

$mfactor does not take any arguments.

Returns the scaling factor applied to the instance. The scaling factor may be set using the
$mfactor parameter or using a subcircuit multiplier M. If both are used, the final scale
factor will be the product of these. Refer to the LRM for more details.

The LRM currently stipulates that compilers should raise an error if $mfactor is used
inappropriately. This is not currently implemented and $mfactor may be used for any
purpose.

$monitor

$monitor(list_of_arguments) ;

Does not return a value

$monitor behaves in a similar manner to $display except that it only outputs a result
when there is a change. In other words, the behaviour is the same as $display except that
successive repeated messages will not be output.

See Also

“$fmonitor” on page 42
“$display” on page 39
44

Verilog-A User Manual
$param_given

integer value = $param_given(parameter_name) ;

parameter_name must be a parameter defined using the parameter keyword. Returns a
non-zero number if parameter_name has been specified in a .MODEL statement or on
the instance line where relevant.

$port_connected

integer value = $port_connected(port_name[[index_expression]]) ;

Returns a non-zero value if the specified port_name is connected externally. If the port
is vectored, then index_expression defining the element within the vector must also be
specified. No error will be raised if the index supplied is out of range; the function will
simply return false (zero).

Currently, this function will only deem a port to be unconnected if no node is specified
for it in the instance netlist line. It will return true (non-zero) if a node name is supplied
on the netlist line but is not connected to any other component in the netlist. For
example, consider a model for a four-terminal BJTwith nodes ‘C’, ‘B’, ‘E’ and ‘S’
where ‘S’ is the substrate connection:

Q1 C B E S bjtmodelname

In the above the substrate connection is the node S. In this case $port_connected(S)
would return true regardless of whether or not S was connected to anything else. Now
consider the three terminal case:

Q1 C B E bjtmodelname

In this case the substrate connection has been omitted from the netlist line and
$port_connected will return false (zero).

$random

integer value = $random [(seed)] ;

Returns a random number. This has three modes of operation according what if anything
is supplied for seed.

Mode 1: no seed

$random will return a new random number on each call with the system choosing the
seed when random is used for the first time.
45

Chapter 4 Verilog-A Reference
Example:

 value = $random ;

Mode 2: constant seed

seed may be either a literal constant or a conatant expression dependent only on literal
constants and parameters. In this mode $random will return a fixed random value which
will not update.

Example:

 parameter seed=23 ;
 ...
 value = $random(seed) ;

Mode 3: initialised integer variable seed

In this mode the seed variable will be updated on each call and a new random number
will be generated. The sequence of random numbers will thus be repeatable given the
same initial value for seed.

Example:

 real seed ;
 ...
 @(initial_step)
 seed = 23 ;
 ...
 value = $random(seed) ;

In the above, the value of seed will be updated each time random is called.

$simparam

real value = $simparam(string [, default_value]) ;

Returns the value of a simulator parameter defined by string. Possible values of string
are described below. If an unknown string is supplied, $simparam will return the value
of default_value if given. If no default_value value is given, a run-time error will be
raised.
46

Verilog-A User Manual
$simparam strings supported by SIMetrix

The first six items in the above follow recommended names in the Verilog-A LRM. The
remainder are special to SIMetrix.

$stop

$stop [(n)] ;

The function does not return a value. Pauses simulation after completion of current step
and leaves the simulator in the same state as if the user pressed the pause button.

The argument n currently has no effect.

See Also

“$finish” on page 42

$strobe

$strobe(list_of_arguments) ;

Does not return a value

Identical to $display function.

See Also

“$fstrobe” on page 43
“$display” on page 39

"gdev" Conductance added in junction GMIN stepping algorithm

"gmin" Value of GMIN options parameter

"simulatorSubversion" Minor version of SIMetrix simulator. E.g. for version 6.00,
result will be 0, for 6.10 result will be 10 etc

"simulatorVersion" Major version of SIMetrix simulator. For version 6.00 this
will be 6

"sourceScaleFactor" Scale factor used for sources in source stepping algorithm
and pseudo transient analysis algorithm

"tnom" Value of TNOM options parameter

"ptaScaleFactor" Scale factor used for pseudo transient analysis algorithm

"option_name" Any name that may be used in a .OPTIONS statement
and which has a real value
47

Chapter 4 Verilog-A Reference
$table_model

real value = $table_model(table_inputs, table_data_source,
table_control_string) ;

We will supply full documentation for this function in the final release. In the meantime,
please refer to section 10.12 of the Verilog-AMS Language Reference Manual version
2.2. This can be obtained from http://www.eda.org/verilog-ams/htmlpages/lit.html.
SIMetrix implements the LRM specification in full.

$table_model is subject to the same restrictions as analog operators according to the
Verilog-A version 2.2 LRM (See “Analog Operator Restrictions” on page 64). This
restriction has been removed from the version 2.3 standard and indeed there is no
fundamental reason for the restriction as the $table_model function does not need to
store state information. Currently, SIMetrix complies with LRM 2.2 - i.e the restrictions
apply - but we plan to change this with a future release.

$temperature

real value = $temperature ;

Returns the current simulation temperature in Kelvin.

$vt

real value = $vt [(temperature_expression)] ;

Returns the thermal voltage at temperature_expression. If temperature_expression is not
supplied, the value at the current simulation temperature will be returned.

The thermal voltage is defined as

K.T/q

Where, K is boltzmann’s constant, T is temperature (defined by temperature_expression)
and q is thge charge on an electron. The values used for K and q are those that are used
for other simulator models and are the best values known at the time the original SPICE
program was developed. Since that time the accepted values for K and q have been
altered slightly.

The values used are:
K 1.3806226e-23
q 1.6021918e-19

Currently accepted values:
K 1.3806504e-23
48

Verilog-A User Manual
q 1.60217646e-19

$write

$write(list_of_arguments) ;

Does not return a value

$write is identical to the $display function except that it does not add a new line
character at the end of the text. A new line may be explicitly inserted using the ‘\n’
sequence.

See Also

“$fwrite” on page 44
“$display” on page 39

abs

real value = abs(x) ;

Returns the absolute value of x.

absdelay

real value = absdelay(expression, tdelay [, maxdelay]) ;

Applies a transport delay to an input signal.

expression Input signal to delay

tdelay Delay in seconds. If maxdelay is not supplied, only the
value of tdelay at the start of the simulation will be used
and subsequent changes will be ignored. Otherwise
changes to tdelay will be used as long as they do not
exceed maxdelay.

maxdelay Maximum delay permitted. If omitted changes to tdelay
will be ignored. See tdelay above.

In DC analyses, tdelay is ignored and the return value of absdelay is expression. In AC
analysis, the signal defined by expression is phase-shifted according to:

output() = input().exp(-j.tdelay)

In transient analysis, the signal is delayed by an amount equal to the instantaneous value
49

Chapter 4 Verilog-A Reference
of tdelay as long as it is positive and less than maxdelay. absdelay stores the past history
of expression up to maxdelay so that it can retrieve the requested delayed point
instantaneously.

absdelay is an analog operator and is subject to Analog Operator Restrictions (see
page 64).

See Also

“slew” on page 60
“transition” on page 62

ac_stim

real value = ac_stim([analysis_name_string [, mag [, phase]]]) ;

Provides a stimulus for AC analysis, essentially identical the AC spec for a standard
SPICE voltage source or current source.

analysis_name_string Analysis name in which source is to be active. Currently
this must be set to "ac" or be omitted altogether.

mag Magnitude of source

phase Phase of source in radians

acos

real value = acos(x) ;

Returns inverse cosine in radians of x. Input range is +/- 1.

acosh

real value = acosh(x) ;

Returns the inverse hyperbolic cosine of x. Range is 1.0 to .

analysis

integer value = analysis(analysis_list) ;

Returns non-zero if the current analysis matches any of the analysis names in the
argument list. analysis_list is a list of strings as defined in the following table.
50

Verilog-A User Manual
asin

real value = asin (x) ;

Returns the inverse sine in radians of x. Range is +/- 1.0.

asinh

real value = asinh(x) ;

Returns the inverse hyperbolic sine of x. Range is  to +.

atan

real value = atan(x) ;

Returns the inverse tangent in radians of x. Range is  to +

atan2

real value = atan2(x, y) ;

Returns the inverse tangent in radians of x/y. The function will return a meaningful value
when y is zero.

"static" Any analysis that solves a DC operating point. This includes the
operating point analyses carried before other analyses such as
transient. It also includes DC sweep

"tran" Transient analysis. Includes the transient analysis used for
pseudo transient analysis

"ac" AC analysis

"dc" DC sweep

"noise" Noise analysis not including real time noise

"tf" Transfer fumction analysis

"pz" Pole zero analysis

"sens" Sensitivity analysis

"ic" The dc operating point analysis that precedes a transient analysis

"smallsig" Any small signal analysis: AC, noise and TF

"rtn" Real-time noise analysis

"pta" Pseudo transient analysis
51

Chapter 4 Verilog-A Reference
atanh

real value = atanh(x) ;

Returns the inverse hyperbolic tangent of x. Range is +/- 1.0.

ceil

real value = ceil(x) ;

Returns the next integer value greater than x.

See Also

“floor” on page 55

cos

real value = cos(x) ;

Returns the cosine of x expressed in radians. Range is  to +

cosh

real value = cosh(x) ;

Returns the hyperbolic cosine of x. Range is approx -709 to +709.

cross

cross(expression [,edge [,time_tol [,expr_tol]]])

cross is an event function and may only be used in event expressions.

expression expression to test. The event is triggered when the
expression crosses zero.

edge 0, +1 or -1 to indicate edge. +1 means the event will only
occur when expr is rising, -1 means it will only occur
while falling and 0 means it will occur on either edge.
Default=0 if omitted

time_tol Time tolerance for detection of zero crossing. Unless the
input is moving in an exact linear fashion, it is not
possible for the simulator to predict the precise location of
the crossing point. But it can make an estimate and then
cut or extend the time step to hit it within a defined
tolerance. time_tol defines the time tolerance for this
52

Verilog-A User Manual
estimate. The event will be triggered when the difference
between the current time step and the estimated crossing
point is less than time_tol. If omitted or zero or negative,
no timestep control will be applied and the event will be
triggered at the first natural time point after the crossing
point. See diagram below for an illustration of the
meaning of this parameter.

expr_tol Similar to time_tol but instead defines the tolerance on the
input expression. See below:

Cross Event Function Behaviour

cross stores state information in the same way as an analog operator. It is therefore
subject to Analog Operator Restrictions (see page 64).

See Also

“timer” on page 61
“transition” on page 62

ddt

real value = ddt(expression) ;

Returns the time derivative of expression:

In DC analyses, ddt returns zero. In AC analysis, the function is defined by the relation:

output() = input().j

Time
points

time_tol

Estimated
crossing
point

expr_tol

Event triggered
here if time_tol
or/and expr_tol satisfied

td
d ressionexp
53

Chapter 4 Verilog-A Reference
ddt is an analog operator and is subject to Analog Operator Restrictions (see page 64).

See Also

“idt” on page 55

ddx

real value = ddx(expression, unknown_variable) ;

Performs symbolic differentiation on expression with respect to unknown_variable.
unknown_variable must be defined in terms of an access function in one of the
following forms:

potential_access_identifier(net_or_port_scalar_expression)
OR

flow_access_identifer(branch_identifier)

A potential_access_identifier is defined in the discipline declarations and is usually ‘V’
for the electrical discipline. Similarly, the flow_access_identifier is usually ‘I’ for the
electrical discipline. net_or_port_scalar_expression can be a module port node or an
internal node. branch_identifier can be a branch defined with the branch keyword or an
unnamed branch specifying the nodes connected to the branch.

exp

real value = exp(x) ;

Returns the exponential of x. Range is - to about 709.

See Also

“limexp” on page 59

flicker_noise

real value = flicker_noise(power, exp [, name]) ;

flicker_noise is only active in small-signal noise analysis and real-time noise analysis; in
other analysis modes it returns zero. It creates a noisy signal with a power of power at

1Hz which varies in proportion to 1/fexp.

name may be used to combine noise sources in the output report and vectors. Noise
sources with the same name in the same instance will be combined together.

In real-time noise analysis flicker_noise simply returns a random number whose
54

Verilog-A User Manual
statistical distribution satisfies the characteistic of 1/f noise. In small signal analysis
flicker_noise defines a 1/f noise source that may be propagated to any output node.

See Also

“white_noise” on page 63

floor

real value = floor(x) ;

returns the next lower integer to x.

See Also

“ceil” on page 52

hypot

real value = hypot(x, y) ;

Returns

idt

real value = idt(expression [, initial_condition]) ;

Returns the time integral of expression.

initial_condition if supplied, sets the value of the function for DC analyses including the
dc operating point that precedes other analyses.

If initial_condition is not supplied, idt must exist inside a closed feedback loop. With no
initial condition the DC gain of idt is infinite; by putting the function inside a loop, the
simulator can maintain the input at zero providing a finite output. A singular matrix
error will result otherwise.

idt is an analog operator and is subject to Analog Operator Restrictions (see page 64).

See Also

“ddt” on page 53

laplace_nd

real value = laplace_nd(expr, num_coeffs, den_coeffs [, ) ;

x
2

y
2

+

55

Chapter 4 Verilog-A Reference
Where
expr Input expression

num_coeffs Numerator coefficients. This can be entered as an array
variable or as an array initialiser. An array initialiser is a
sequence of comma separated values enclosed with ‘{‘
and ‘}’. E.g: { 1.0, 2.3, 3.4, 4.5}. The values do not need
to be constants.

den_coeffs Denominator coefficients in the same format as the
numerator - see above.

 Tolerance parameter currently unused

The laplace_nd analog operator implements a Laplace transfer function. This is in the
form:

where d0, d1, d2... dm are the denominator coefficients and n0, n1, n2... nm are the

numerator coefficients and the order is m.

If the constant term on the denominator (d0 in equation above) is zero, the laplace

function must exist inside a closed feedback loop. With a zero denominator, the DC
gain is infinite; by putting the function inside a loop, the simulator can maintain the
input at zero providing a finite output. A singular matrix error will result otherwise.

laplace_nd is an analog operator and is subject to Analog Operator Restrictions (see
page 64).

See Also

“laplace_np” on page 56
“laplace_zd” on page 57
“laplace_zp” on page 57

laplace_np

real value = laplace_np(expr, num_coeffs, poles [, ) ;

expr Input expression

num_coeffs Numerator coefficients. See laplace_nd for details

poles Poles. See laplace_zp for details

H s 
n0 n1 s n2 s

2  nm s
m+ +++

d0 d1 s d2 s
2  dm s

m+ +++
---=
56

Verilog-A User Manual
 Tolerance parameter currently unused

laplace_np is an analog operator and is subject to Analog Operator Restrictions (see
page 64).

See Also

“laplace_nd” on page 55
“laplace_zd” on page 57
“laplace_zp” on page 57

laplace_zd

real value = laplace_zd(expr, zeros, den_coeffs [, ) ;

expr Input expression

zeros Zeros. See laplace_zp for details

den_coeffs Denominator coefficients. See laplace_nd for details

 Tolerance parameter currently unused

laplace_zd is an analog operator and is subject to Analog Operator Restrictions (see
page 64).

See Also

“laplace_nd” on page 55
“laplace_np” on page 56
“laplace_zp” on page 57

laplace_zp

real value = laplace_zp(expr, zeros, poles [, ) ;

expr Input expression

zeros Array of pairs of real numbers representing the zeros of
the Laplace transform. Each pair consists of a real part
and an imaginary part with the real part first. Each zero
introduces a product term on the numerator in the form

where re is the real part and im imaginary part. If a zero is
complex (i.e. the imaginary part is non-zero) then its

1
s

re j im+
------------------------–
57

Chapter 4 Verilog-A Reference
complex conjugate must also be present. If both real and
imaginary parts are zero then the zero becomes just s.

The values can be entered as an array variable or as an
array initialiser. An array initialiser is a sequence of
comma separated values enclosed with ‘{‘ and ‘}’. E.g: {
1.0, 2.3, 3.4, 4.5}. The values do not need to be constants.

poles Array of pairs of real numbers representing the poles of
the Laplace transform. Each pair consists of a real part
and an imaginary part with the real part first. Each pole
introduces a product term on the denominatr in the form

where re is the real part and im imaginary part. If a pole is
complex (i.e. the imaginary part is non-zero) then its
conjugate must also be present. If both real and imaginary
parts are zero then the pole becomes just s.

The values can be entered as an array variable or as an
array initialiser. An array initialiser is a sequence of
comma separated values enclosed with ‘{‘ and ‘}’. E.g: {
1.0, 2.3, 3.4, 4.5}. The values do not need to be constants.

 Tolerance parameter currently unused

laplace_zp is an analog operator and is subject to Analog Operator Restrictions (see
page 64).

See Also

“laplace_nd” on page 55
“laplace_np” on page 56
“laplace_zd” on page 57

last_crossing

real value = last_crossing(expression, direction) ;

last_crossing returns the time in seconds when expression last crossed zero. First order
interpolation is used to estimate the time of the crossing. direction controls the direction
of the crossing. If +1 then the most recent positive transition is returned. If -1, the most
recent negative transition and if zero the most recent in either direction is returned.

1
s

re j im+
------------------------–
58

Verilog-A User Manual
last_crossing returns a negative number if expression has not crossed zero since the start
of the simulation. SIMetrix Verilog-A last_crossing implementation also returns a
negative number for DC analyses but this is not defined in the standard.

last_crossing is an analog operator and is subject to Analog Operator Restrictions (see
page 64).

limexp

real value = limexp(x) ;

Returns the exponential of x. limexp limits its change in output from iteration to iteration
in order to improve convergence. In situations where its return value is not the true
exponential of x it will force further iterations. The iteration will only be accepted when
the result is the true value of exp(x). Thus, limexp can be seen as a direct replacement
for exp but with improved convergence. But note that limexp is an analog operator and
is therefore subject to Analog Operator Restrictions (see page 64).

See Also

“exp” on page 54

ln

real value = ln(x) ;

Returns the natural logarithm of x. Range is 0.0 to .

log

real value = log(x) ;

Returns the logarithm to base 10 of x. Range is 0.0 to .

max

real value = max(x, y) ;

Returns x or y whichever is larger. Equivalent to (x>y ? x : y)

min

real value = min(x, y) ;

Returns x or y whichever is smaller. Equivalent to (x<y ? x : y)
59

Chapter 4 Verilog-A Reference
pow

real value = pow(x, y) ;

Returns xy. if x is less than zero, y must be an integer. If x=0, y must be greater than zero.

sin

real value = sin(x) ;

Returns the sine of x given in radians. Range - to .

sinh

real value = sinh(x) ;

Returns the hyperbolic sine of x. Range is approx -709 to +709

slew

real value = slew(expression [, slew_pos [, slew_neg]]) ;

Implements a slew rate limiter. slew_pos is expected to be positive and slew_neg is
expected to be negative. If slew_neg is not specified or greater than or equal to zero, it
assumes a value of -slew_pos. If neither slew_pos or slew_neg is present, expression is
passed through to value unchanged.

slew limits the positive and negative rate of change of its return value to slew_pos and
slew_neg respectively.

slew is an analog operator and is subject to Analog Operator Restrictions (see page 64).

See Also

“absdelay” on page 49
“transition” on page 62

 sqrt

real value = sqrt(x) ;

Returns the square root of x. Range is 0 to . Although valid, x=0 should be avoided and
if possible code included to prevent x=0. This is because the first derivative of sqrt at
zero is infinite and convergence at this value can be problematic.
60

Verilog-A User Manual
tan

real value = tan(x) ;

Returns the tangent of x given in radians. Range is - to .

tanh

real value = tanh(x) ;

Returns the hyperbolic tangent of x. Range is - to .

timer

timer(time [, period [, time_tol]])

timer is an evant function and may only be used in an event statement in the form:

 @(timer(...))
 statement ;

statement is executed when the event is triggered.

timer sets a future event to occur at a specified time either just once or repeating at a
specified period.

The event is first scheduled at time. If period is specified and is greater then zero,
subsequent events will also be scheduled at time + n*period where n is a positive
integer.

Usually the specified event will be scheduled at exactly the time specified. However, the
analog simulator will not allow time points to be forced too close together as this can
lead to numerical problems as well as unnecessarily long simulation times. For this
reason, the simulator may schedule the event slightly later than specified if the time
point is to close to an existing time point, perhaps set by another device. The time_tol
argument controls the tolerance of the event time. The simulator will always schedule
the event so that it is within time_tol of the requested time. If time_tol is not specified
the event will be scheduled after the requested time but not more than the amount
specified by the MINBREAK simulaion parameter.

See Also

“cross” on page 52
61

Chapter 4 Verilog-A Reference
transition

real value = transition(expr [, td [, rise_time [, fall_time [, time_tol]]]]) ;

The transition analog operator converts the discrete input value to a continuous output
value using specified rise and fall times.

Its arguments are:

expr Input expression

td Delay time. This is a transport or stored delay. That is, all
changes will be faithfully reproduced at the output after
the specified delay time, even if the input changes more
than once during the delay period. This is in contrast to
intertial delay which swallows activity that has a shorter
duration than the delay. Default=0

rise_time Rise time of output in response to change in input

fall_time Fall time of output in response to change in input

time_tol Currently ignored.

If fall_time is omitted and rise_time is specified, the fall_time will default to rise_time.
If neither is specified or are set to zero, a minimum but non-zero time rise/fall time is
used. This is set to the value of MINBREAK which is the minimum break point value.
Refer .OPTIONS in the Simulator Reference Manual for details of MINBREAK.

The transition analog operator should not be used for continuously changing input
values; use the slew or absdelay analog operators instead.
62

Verilog-A User Manual
Transition Analog Operator Waveforms

transition is an analog operator and is subject to Analog Operator Restrictions (see
page 64)

See Also

“absdelay” on page 49
“slew” on page 60

white_noise

real value = white_noise(power [, name]) ;

white_noise is only active in small-signal noise analysis and real-time noise analysis; in
other analysis modes it returns zero. It creates a noisy signal with a power of power and
a flat frequency distribution.

name may be used to combine noise sources in the output report and vectors for small-
signal noise analysis. name is ignored with real-time noise analysis. Noise sources with
the same name in the same instance will be combined together.

In real-time noise analysis white_noise simply returns a random number whose
statistical distribution satisfies the characteistic of Gaussian noise. In small signal
analysis white_noise defines a noise source that may be propagated to any output node.

See Also

td

rise_time

Output

Input

fall_time

td
63

Chapter 4 Verilog-A Reference
“flicker_noise” on page 54

Analog Operator Restrictions

A number of functions are classed as analog operators. These functions store state
information. That is, their return value depends on previous history and not just on the
current value of its arguments. Because of this, analog operators are subject to some
restrictions on where they may be used. These restrictions are as follows:

1. Analog operators may not be used inside a conditional statement (if or case) if the
conditional expression controlling that statement could change during the course of
a transient analysis. For example, the following is not permitted

if (V(n1)>0)
 I(out) <+ ddt(cap*V(out)) ;

In the above V(n1)>0 could change in a transient analysis if the voltage on node n1
rises above or below zero. This means that ddt would only get executed some of the
time and so its state history would not always be correct.

The following is permitted

paramter integer enable_cap = 0 ;
...
if (enable_cap)
 I(out) <+ ddt(cap*V(out)) ;

this is OK because enable_cap is a parameter and will have a fixed value during
the course of a transient analysis. So either ddt will always be executed or it will
never be executed. Both scenarios will work correctly.

2. Analog operators are not permitted in repeat or while loops nor are they
permitted in for loops that are not analog-for loops.

Analog operators are permitted in analog for loops. These are for loops controlled by a
genvar controlling variable. This is explained in “Analog For Loops and genvars” on
page 33.

The analog operator restrictions apply to the following functions

$table_model (see page 48) (But see note in documentation for function)
absdelay (see page 49)
cross (see page 52)
ddt (see page 53)
idt (see page 55)
64

Verilog-A User Manual
laplace_nd (see page 55)
laplace_np (see page 56)
laplace_zd (see page 57)
laplace_zp (see page 57)
last_crossing (see page 58)
limexp (see page 59)
slew (see page 60)
transition (see page 62)
65

Chapter 5 Implementation - vs LRM
Chapter 5 Implementation - vs LRM

Overview

Here we describe how SIMetrix Verilog-A compares with the stadard as defined in
Language Reference Manual 2.2. Full details are below: SIMetrix Verilog-A vs LRM
2.2. For SIMetrix extensions, see “SIMetrix Extensions” on page 71

SIMetrix Verilog-A vs LRM 2.2

In the following we have highlighted areas where the SIMetrix Verilog-A compiler is
not compliant with the LRM 2.2 standard.

2.6 Strings

String variables are not supported. This is compliant with the Annex C ‘Analog
Language Subset’

2.8.1

desc and units attributes may be included but will not be functional.

3.2.2 Parameters - Value Range Specification

Only the first from specification will be functional. Subsequent exclude specifications
will be accepted by the compiler but will have no effect.

3.2.3 Parameter Units and Descriptions

Syntax for “desc” and “units” is recognised but non-functional.

Non-standard SIMetrix attribute “instance” has been implemented. This defines the
parameter as an instance parameter, that is, its value can be set on the device line. See
“Instance Parameters” on page 72.

3.4.2.2 Domain Binding

Anything other than “domain continuous” will raise an error.

3.4.2.3 Empty Disciplines

Implemented but non-functional
66

Verilog-A User Manual
3.4.2.4 Disciplines of Wires and Undeclared Nets

Not supported

3.4.2.7 User Defined Attributes

Accepted but non-functional

3.4.3.1 Net Descriptions

Not implemented. This will lead to a syntax error if used.

3.4.3.2 Net Discipline Initial (Nodeset) Values

Not implemented. This will lead to a syntax error if used.

3.4.5 Implicit Nets

Not meaningful as hierarchical structures are not yet implemented.

3.5 Real Net Declarations

Not supported in Verilog-A

3.6 Default Discipline

Not supported in Verilog-A

3.7 Discipline Precedence

Not meaningful as hierarchical structures are not yet implemented.

3.8 Net compatibility

As hierarchical structures are not yet implemented, this is mostly not relevant.

But this is partially implemented within the simulator. If you connect different
disciplines together you will get a warning. But the inherited disciplines will not be
compatible, only the same disciplines may be inter-connected. ... and you only get a
warning not an error.

3.9 Branches

Compliant for scalars only. Currently named vector branches are not supported.
Unnamed branches are however fully supported.

Discipline compatibility is checked, but it seems that the discipline for each node in a
branch must be identical. The spec requires them to be ‘compatible’ which is not the
67

Chapter 5 Implementation - vs LRM
same thing.

Minor issue: if a branch is unused then the discipline of each node will not be checked at
all and no error will be raised if they are incompatible. This is not defined in the
standard.

4.1.6 Case Equality Operator

Not supported in Verilog-A

4.1.13 Concatenations

Array initialisers are supported. Replication multiplier is not supported.

4.2.3 Error Handling

Not correctly implemented.

Its possible that this may never be implemented to the letter of the standard. While
attempting to iterate to convergence, it is not at all uncommon for maths functions to be
overflow or to receive invalid arguments. When this happens, SIMetrix reduces the step
(whatever that step may be) and tries again. This algorithm is often successful.

Complying with the most literal interpretation of this would be undesirable as it would
mean some simulations failing when they may have been perfectly solveable.

4.4.1 Restrictions on Analog Operators

SIMetrix Verilog-A is mostly compliant with this section with the exception detailed
below.

Analog operators (such as ddt, transition etc) are not allowed in places where their
execution could be dependent on values that change during the course of a simulation.
This is because analog operators store state information which could become invalid.
SIMetrix does not always implement this restriction correctly and there are situation
where it will allow you to use an analog operator but shouldn’t.

4.4.4 Time derivative Operator

Compliant except tolerance is currently ignored.

4.4.5 Time integral operator

idt(expr) - compliant
idt(expr,ic) - compliant

Others not implemented.
68

Verilog-A User Manual
4.4.6 Circular Intergral Operators

Not implemented.

4.4.13 Z-transform filters

Not implemented.

4.5.1 Analysis

Compliant except for “nodeset”

4.5.2 DC analysis

Compliant except for “nodeset”

4.5.4.3 Noise_table

Not implemented

4.6.1 Defining an Analog Function

Compliant except cannot use local parameters

4.6.2 Returning a Value from an Analog Function

Partially compliant. Can use return value for output. Output via passed argument is not
supported.

5.3.2 Indirect Branch Assignments

Not implemented

6.7.5. Above Function

Not implemented

7 Hierarchical Structures

In general, hierarchical structures are not supported by the SIMetrix Verilog-A
implementation and this is the most siginicant feature omitted at this time. However,
much of the functionality provided by this feature may be achieved via the netlist, so this
should not impact on the usefulness of the compiler too much. We do intend to
implement this at the first revision.

This section of the standard does include the syntax for module definitions and this is of
course fully supported. This is covered by the opening paragraphs of section 7.1. The
rest of the section is not implemented.
69

Chapter 5 Implementation - vs LRM
8

Not implemented in Verilog-A

9 Scheduling Semantics

Most of this section is concerned with Verilog-AMS which is the mixed-signal version
and so is not relevant.

10.1 Environment Parameter Functions

$realtime is not supported. All others are compliant.

10.2 $random Function

Supported for first argument only. ‘type_string’ argument is not supported.

10.2 $dist_ Functions

Not supported

10.4 Simulation Control System Tasks

Compliant except argument to functions are ignored.

10.7 Announcing Discontinuity

Accepted but doesn’t actually do anything

10.9 Limiting Functions

Compliant using built-in “pnjlim”. User functions not implemented.

10.10 Hierarchical System Parameter Functions

$mfactor implemented. Others are not

11.1 ‘default_discipline

Not implemented

11.2 ‘default_transition

Not implemented

11.6 ‘resetall

Not implemented
70

Verilog-A User Manual
11.7 Pre-defined Macros

Not implemented

12, 13

Not implemented

SIMetrix Extensions

In an Ideal World...

... any standard would be so carefully designed and thought out that nobody would need
to make non-standard extensions. It is our intention to make the SIMetrix Verilog-A
implementation follow the standard as closely as possible so that anyone who writes
Verilog-A code will be able to use it with another implementation.

While that is our idealistic intention, reality never allows ideals. Verilog-A has quite a
few little limitations that we would not want to impose on our users. Some of these we
have already addressed and made non-standard extensions to do so. These are detailed
below.

We will endeavour in the long run to make such extensions in a manner that would allow
a source file to work with other Verilog-A simulators without modification.

Analog Operator Syntax

According to the syntax specification, analog operators, e.g. ddt(), limexp(),
white_noise(), may only be used in a standalone manner and may not be embedded in
expressions. For example, this is allowed:

V(n1, n2) <+ ddt(C*I(n1,n2)) ;

but this isn’t:

V(n1, n2) <+ C*ddt(I(n1,n2)) ;

But you would be allowed to do this:

dd = ddt(I(n1,n2)) ;
V(n1, n2) <+ C * dd ;

This limitation doesn’t make any sense. It might make sense if any variable that an
analog operator was assigned to was required to have a discipline defined. Then, the we
could make sense of what tolerances to use for ddt() operations for example. But such a
71

Chapter 5 Implementation - vs LRM
requirement is not present, indeed there is no method of assigning a discipline to a
variable. So tolerance for ddt() is somewhat hit and miss anyway.

The later language reference manual version 2.3 does in fact not impose the above
restrictions. It’s possible that these restrictions are a consequence of errors in the
definition in the language and not actually intentional.

Currently the $limit function remains subject to the above limitation. But we plan to
change this in a futre revision.

Instance Parameters

The Verlog-A language does not distinguish between instance parameters and model
parameters. An instance parameter is one that can be defined on the device line on a per
instance basis whereas a model parameter is one defined in a .MODEL statement. The
most flexible implementation is one that allows both, with the instance parameter taking
precedence if both are specified by the user. However this method has a cost in terms of
increased memory usage per instance. While memory consumption may not seem to be
a big issue, it can impact on performance. The less memory used, the more likely that
the processor will find what it wants in the cache. For this reason it is desirable to
minimise the number of instance parameters.

The SIMetrix Verilog-A implementation provides two methods of defining instance
parameters: one in the verilog-A source file and the other on the command line of va.exe
which in turn can be passed from .LOAD.

To define an instance parameter in the .VA file, prefix the parameter key word with the
special attribute ‘type’ with a value of “instance”. This is how it should look:

(* type="instance" *) parameter a = 1 ;

To define on .LOAD, add the parameter “instparams=parameter_list” where
parameter_list is a comma separated list of parameter names.

If a parameter is defined as an instance parameter, it will also be available as a model
parameter. If both are specified, the instance value will take precedence.

Device Mapping

You may control how the new device is represented in SIMetrix using a device mapping.
This does the same as the sxcfg file. Mappings are applied as a module attribute in the
form:

(* Mappings="mapping_defs" *)
72

Verilog-A User Manual
This should prefix the “module” keyword.

mapping_def is a semi-colon delimited list of mapping definitions. Each mapping
definition is itself a comma delimited list of attibutes in the following order:

model-type-name,level-number,device-letter,default-parameter,version

Where:
model-type-name is the name used in the .MODEL statement
level is the LEVEL parameter value in the .MODEL statement
device-letter is the device letter to use for this device
default-parameter is a single parameter name and value. This is intended to be used to
define device polarity. E.g. “pnp=1” might define a PNP BJT. This is useful to allow the
definition of BJTs and MOS devices using conventional NPN/PNP or NMOS/PMOS
model type names.
version value of VERSION paramter

For example, the HICUM device is defined with the following mapping:

(* Mappings="hicum_211,0;npn,8,Q,pnp=0,;pnp,8,Q,pnp=1," *)

This has three mappings. You can use hicum_211 with no level parameter to define a
model. In this case the pnp parameter would need to be set for a PNP device.
Alternatively you can use NPN as a model type name along with LEVEL=8 for an NPN
device, or PNP with LEVEL=8 for a PNP device.

Tolerances

The Verilog-A language only allows for absoulte tolerances to be hardwired in the VA
source file. This means for example, that absolute current tolerance, must be specified as
a fixed constant which cannot be changed in the .OPTIONS line or anywhere else.

SIMetrix provides a workaround for this using the special values $abstol, $vntol,
$chgtol and $fluxtol. These can be used to define absolute tolerances in electrical nature
definitions. These are already used in the standard discipline header files supplied with
the SIMetrix Verilog-A compiler. It is quite possible that the final implementation will
solve this problem by some other means so this may be a temporary feature.

Analysis() Function

Additional analyis types:

“sens” sensitivity analysis
“tf” transfer function analysis
“pz” pole-zero analysis
73

Chapter 5 Implementation - vs LRM
“pta” pseudo-transient analysis
“smallsig” small signal analysis
“rtn” real time noise analysis

$simparam() Function

Standard types supported by SIMetrix:

“gdev”
“gmin”
“simulatorSubversion”
“simulatorVersion”
“sourceScaleFactor” - includes pseudo transient scale factor
“tnom”

Additional SIMetrix extensions:

“ptaScaleFactor” - as “sourceScaleFactor” but functional in pseudo transient analysis
only. Default = 1.0

In addition you can specify any option setting defined using .OPTIONS. E.g.
$simparam(“reltol”) will return the value of the RELTOL option.

$fopen() Function

Use the argument “<listfile>” to write to the list file. This is the file created by every
simulation with the extension .OUT.

Verilog-A Interaction with SIMetrix Features

Real-Time Noise

Real-time noise, while not unique to SIMetrix, remains a feature that can only be found
on a few simulators. Because of this, standards such as Verilog-A do not account for it or
support it in any way. The Verilog-A LRM simply says that transient noise should be
implemented by the $random function.

The SIMetrix Verilog-A compiler does fully support the real-time noise feature and the
regular small-signal noise analog operators such as white_noise and flicker_noise will
correctly create noise signals in transient analysis with real time noise enabled without
requiring any special support in the Verilog-A code.

Transient Snapshots

In general it is best to assume that transient snapshots will not work with Verilog-A
74

Verilog-A User Manual
devices. They will in fact work with some depending on what analog operators and/or
system functions are used. We will address this issue before final release.

Pseudo-Transient Analysis

Pseudo transient analysis will work correctly with Verilog-A devices provided they are
not energy sources. Put another way, if all output sources are zero when all input probes
are zero, PTA will work. If there are any sources that are non-zero with zero inputs then
PTA performance may be compromised. In this situation you should use the
$simparam("sourceScaleFactor") system function to scale energy producing outputs.
For example a 5V fixed voltage source should look like this:

V(n1,n2) <+ 5*$simparam("sourceScaleFactor") ;

$simparam("sourceScaleFactor") returns a value from 0.0 to 1.0 representing the supply
ramp in pseudo transient as well as DC source stepping.

It would be possible for the compiler to automatically add this. Currently this isn’t done
as this will not necessarily be beneficial if the device is not energy producing and could
lead to a singular matrix condition in some cases. For this reason we currently put the
onus on you the user to define PTA behaviour.
75

	Chapter 1 Introduction
	What Is Verilog-A?
	Verilog-A Language Reference Manual

	Chapter 2 Using Verilog-A Compiler
	Using Verilog-A with SIMetrix Schematics
	Defining Verilog-A Files in Netlist
	Messages
	.LOAD Full Syntax
	Verilog-A Cache
	Permananent .SXDEV Installation

	Chapter 3 Writing Verilog-A Code
	Overview
	Hello World!
	A Simple Device Model
	Module Ports
	Branch Contributions
	Parameters
	Disciplines

	A Resistor
	A Soft Limiter
	Variables
	$finish
	Functions
	Local Parameters
	Parameter Limits
	Conditional Statements

	A Capacitor
	A Voltage Controlled Oscillator
	Digital Elements - Overview
	Digital Gate
	cross() Monitored Event
	transition() Analog Operator

	Butterworth Filter
	Arrays
	For Loops
	laplace_nd Function

	RC Ladder - Loops, Vectored Nodes and genvars
	Vectors of Nodes
	Analog For Loops and genvars
	Compile-time Parameters
	See Also

	Chapter 4 Verilog-A Reference
	Verilog-A Functions
	$abstime
	$bound_step
	$debug
	$discontinuity
	$display
	$fclose
	$fdebug
	$fdisplay
	$finish
	$fmonitor
	$fopen
	$fstrobe
	$fwrite
	$mfactor
	$monitor
	$param_given
	$port_connected
	$random
	$simparam
	$stop
	$strobe
	$table_model
	$temperature
	$vt
	$write
	abs
	absdelay
	ac_stim
	acos
	acosh
	analysis
	asin
	asinh
	atan
	atan2
	atanh
	ceil
	cos
	cosh
	cross
	ddt
	ddx
	exp
	flicker_noise
	floor
	hypot
	idt
	laplace_nd
	laplace_np
	laplace_zd
	laplace_zp
	last_crossing
	limexp
	ln
	log
	max
	min
	pow
	sin
	sinh
	slew
	sqrt
	tan
	tanh
	timer
	transition
	white_noise

	Analog Operator Restrictions

	Chapter 5 Implementation - vs LRM
	Overview
	SIMetrix Verilog-A vs LRM 2.2
	2.6 Strings
	2.8.1
	3.2.2 Parameters - Value Range Specification
	3.2.3 Parameter Units and Descriptions
	3.4.2.2 Domain Binding
	3.4.2.3 Empty Disciplines
	3.4.2.4 Disciplines of Wires and Undeclared Nets
	3.4.2.7 User Defined Attributes
	3.4.3.1 Net Descriptions
	3.4.3.2 Net Discipline Initial (Nodeset) Values
	3.4.5 Implicit Nets
	3.5 Real Net Declarations
	3.6 Default Discipline
	3.7 Discipline Precedence
	3.8 Net compatibility
	3.9 Branches
	4.1.6 Case Equality Operator
	4.1.13 Concatenations
	4.2.3 Error Handling
	4.4.1 Restrictions on Analog Operators
	4.4.4 Time derivative Operator
	4.4.5 Time integral operator
	4.4.6 Circular Intergral Operators
	4.4.13 Z-transform filters
	4.5.1 Analysis
	4.5.2 DC analysis
	4.5.4.3 Noise_table
	4.6.1 Defining an Analog Function
	4.6.2 Returning a Value from an Analog Function
	5.3.2 Indirect Branch Assignments
	6.7.5. Above Function
	7 Hierarchical Structures
	8
	9 Scheduling Semantics
	10.1 Environment Parameter Functions
	10.2 $random Function
	10.2 $dist_ Functions
	10.4 Simulation Control System Tasks
	10.7 Announcing Discontinuity
	10.9 Limiting Functions
	10.10 Hierarchical System Parameter Functions
	11.1 ‘default_discipline
	11.2 ‘default_transition
	11.6 ‘resetall
	11.7 Pre-defined Macros
	12, 13

	SIMetrix Extensions
	In an Ideal World...
	Analog Operator Syntax
	Instance Parameters
	Device Mapping
	Tolerances
	Analysis() Function
	$simparam() Function
	$fopen() Function

	Verilog-A Interaction with SIMetrix Features
	Real-Time Noise
	Transient Snapshots
	Pseudo-Transient Analysis

