
MA299-024-00-00

Doc. ver.: 1.7

M16C v3.1

C Compiler,

Assembler, Linker

User's Manual

A publication of

Altium BV

Documentation Department

Copyright  2002-2005 Altium BV

All rights reserved. Reproduction in whole or part is prohibited

without the written consent of the copyright owner.

TASKING is a brand name of Altium Limited.

The following trademarks are acknowledged:

FLEXlm is a registered trademark of Macrovision Corporation.

Intel is a trademark of Intel Corporation.

Motorola is a registered trademark of Motorola, Inc.

MS-DOS and Windows are registered trademarks of Microsoft Corporation.

SUN is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark of X/Open Company, Ltd.

All other trademarks are property of their respective owners.

Data subject to alteration without notice.

http://www.tasking.com

http://www.altium.com

The information in this document has been carefully reviewed and is
believed to be accurate and reliable. However, Altium assumes no liabilities
for inaccuracies in this document. Furthermore, the delivery of this
information does not convey to the recipient any license to use or copy the
software or documentation, except as provided in an executed license
agreement covering the software and documentation.

Altium reserves the right to change specifications embodied in this
document without prior notice.

TABLE OF

CONTENTS
C

O
N

T
E

N
T

S

Table of ContentsIV
C
O
N
T
E
N
T
S

C
O

N
T

E
N

T
S

Table of Contents V

• • • • • • • •

SOFTWARE INSTALLATION AND CONFIGURATION 1-1

1.1 Introduction 1-3.

1.2 Software Installation 1-3.

1.2.1 Installation for Windows 1-3.

1.2.2 Installation for Linux 1-4.

1.2.3 Installation for UNIX Hosts 1-6.

1.3 Software Configuration 1-7.

1.3.1 Configuring the Embedded Development Environment 1-7

1.3.2 Configuring the Command Line Environment 1-9.

1.4 Licensing TASKING Products 1-12.

1.4.1 Obtaining License Information 1-12.

1.4.2 Installing Node-Locked Licenses 1-13.

1.4.3 Installing Floating Licenses 1-14.

1.4.4 Modifying the License File Location 1-16.

1.4.5 How to Determine the Host ID 1-17.

1.4.6 How to Determine the Host Name 1-17.

GETTING STARTED 2-1

2.1 Introduction 2-3.

2.2 Working With Projects in EDE 2-7.

2.3 Start EDE 2-8.

2.4 Using the Sample Projects 2-9.

2.5 Create a New Project Space with a Project 2-10.

2.6 Set Options for the Tools in the Toolchain 2-14.

2.7 Build your Application 2-17.

2.8 How to Build Your Application on the Command Line 2-18

2.9 Debug getstart.elf 2-19.

C LANGUAGE 3-1

3.1 Introduction 3-3.

3.2 Programming Strategies 3-4.

3.2.1 Memory Spaces 3-4.

3.2.2 Bit Programming 3-6.

Table of ContentsVI
C
O
N
T
E
N
T
S

3.2.3 Floating-Point 3-7.

3.2.4 General Optimization Tips 3-8.

3.3 Data Types 3-10.

3.4 Memory Qualifiers 3-12.

3.4.1 Memory Type Qualifiers 3-13.

3.4.2 Accessing Peripherals from C: __sfr 3-15.

3.4.3 Declare a Data Object at an Absolute Address: __at() 3-18.

3.5 Memory Models 3-19.

3.6 Using Assembly in the C Source: __asm() 3-20.

3.7 Controlling the Compiler: Pragmas 3-27.

3.8 Predefined Macros 3-28.

3.9 Initialized Variables 3-30.

3.10 Strings 3-30.

3.11 Switch Statement 3-31.

3.12 Functions 3-32.

3.12.1 Parameter Passing 3-32.

3.12.2 Function Return Types 3-33.

3.12.3 Inlining Functions: inline 3-34.

3.12.4 Intrinsic Functions 3-36.

3.12.5 Calling Assembly Functions: __asmfunc 3-37.

3.12.6 Interrupt Functions 3-38.

3.12.6.1 Defining an Interrupt Service Routine: __interrupt() 3-39. .

3.12.6.2 Register Bank Switching: __bankswitch 3-40.

3.12.6.3 Interrupt Frame: __frame() 3-41.

3.13 Section Naming 3-42.

3.14 Libraries 3-44.

3.14.1 Overview of Libraries 3-44.

3.14.2 Printf and Scanf Formatting Routines 3-45.

3.14.3 Rebuilding Libraries 3-46.

3.15 Converting C Modules to ISO C99 3-47.

Table of Contents VII

• • • • • • • •

ASSEMBLY LANGUAGE 4-1

4.1 Introduction 4-3.

4.2 Assembly Syntax 4-3.

4.3 Assembler Significant Characters 4-4.

4.4 Operands of an Assembly Instruction 4-5.

4.5 Symbol Names 4-6.

4.6 Assembly Expressions 4-7.

4.6.1 Numeric Constants 4-8.

4.6.2 Strings 4-8.

4.6.3 Expression Operators 4-9.

4.7 Built-in Assembly Functions 4-11.

4.8 Assembler Directives and Controls 4-13.

4.8.1 Overview of Assembler Directives 4-14.

4.8.2 Overview of Assembler Controls 4-16.

4.9 Working with Sections 4-17.

4.10 Macro Operations 4-19.

4.10.1 Defining a Macro 4-19.

4.10.2 Calling a Macro 4-21.

4.10.3 Using Operators for Macro Arguments 4-22.

4.10.4 Using the DUP, DUPA, DUPC, DUPF Directives as

Macros 4-26.

4.10.5 Conditional Assembly: IF, ELIF and ELSE Directives 4-26. . .

USING THE COMPILER 5-1

5.1 Introduction 5-3.

5.2 Compilation Process 5-4.

5.3 Compiler Optimizations 5-5.

5.3.1 Optimize for Size or Speed 5-9.

5.4 Calling the Compiler 5-10.

5.5 How the Compiler Searches Include Files 5-15.

5.6 Compiling for Debugging 5-15.

5.7 C Code Checking: MISRA-C 5-16.

5.8 C Compiler Diagnostics 5-19.

Table of ContentsVIII
C
O
N
T
E
N
T
S

5.9 Run-Time Error Checking 5-21.

5.9.1 Step 1: Build Your Application for Run-Time

Error Checking 5-24.

5.9.2 Step 2: Execute the Application 5-25.

5.9.3 Examples Producing Run-time Errors 5-25.

PROFILING 6-1

6.1 What is profiling? 6-3.

6.1.1 Three methods of profiling 6-4.

6.2 Profiling using Code Instrumentation 6-5.

6.2.1 Step 1: Build your Application for Profiling 6-7.

6.2.1.1 Profiling Modules and Libraries 6-8.

6.2.1.2 Linking Profiling Libraries 6-9.

6.2.2 Step 2: Execute the Application 6-9.

6.2.3 Step 3: Displaying Profiling Results 6-11.

USING THE ASSEMBLER 7-1

7.1 Introduction 7-3.

7.2 Assembly Process 7-3.

7.3 Assembler Optimizations 7-4.

7.4 Calling the Assembler 7-5.

7.5 How the Assembler Searches Include Files 7-8.

7.6 Generating a List File 7-8.

7.7 Assembler Error Messages 7-9.

USING THE LINKER 8-1

8.1 Introduction 8-3.

8.2 Linking Process 8-4.

8.2.1 Phase 1: Linking 8-6.

8.2.2 Phase 2: Locating 8-7.

8.2.3 Linker Optimizations 8-9.

8.3 Calling the Linker 8-11.

Table of Contents IX

• • • • • • • •

8.4 Linking with Libraries 8-14.

8.4.1 Specifying Libraries to the Linker 8-15.

8.4.2 How the Linker Searches Libraries 8-16.

8.4.3 How the Linker Extracts Objects from Libraries 8-17.

8.5 Incremental Linking 8-18.

8.6 Controlling the Linker with a Script 8-19.

8.6.1 Purpose of the Linker Script Language 8-19.

8.6.2 EDE and LSL 8-20.

8.6.3 Structure of a Linker Script File 8-21.

8.6.4 The Architecture Definition 8-24.

8.6.5 The Derivative Definition 8-26.

8.6.6 The Memory Definition 8-28.

8.6.7 The Section Layout Definition: Locating Sections 8-30.

8.6.8 The Processor Definition: Using Multi-Processor

Systems 8-34.

8.7 Linker Labels 8-35.

8.8 Generating a Map File 8-37.

8.9 Linker Error Messages 8-38.

USING THE UTILITIES 9-1

9.1 Introduction 9-3.

9.2 Control Program 9-4.

9.2.1 Calling the Control Program 9-4.

9.3 Make Utility 9-9.

9.3.1 Calling the Make Utility 9-11.

9.3.2 Writing a Makefile 9-12.

9.4 Archiver 9-23.

9.4.1 Calling the Archiver 9-23.

9.4.2 Examples 9-25.

9.5 Flash Utility 9-27.

9.5.1 Calling the Flash Utility 9-27.

INDEX

Table of ContentsX
C
O
N
T
E
N
T
S

Manual Purpose and Structure XI

• • • • • • • •

MANUAL PURPOSE AND STRUCTURE

The documentation explains and describes how to use the M16C toolchain

to program an M16C MCU.

Windows Users

You can use the tools either with the graphical Embedded Development

Environment (EDE) or from the command line in a command prompt

window.

Unix Users

For UNIX the toolchain works the same as it works for the Windows

command line.

Directory paths are specified in the Windows way, with back slashes as in

\cm16c\bin. Simply replace the back slashes by forward slashes for use

with UNIX: /cm16c/bin.

Structure

The toolchain documentation consists of a User's Manual (this manual)

which includes a Getting Started section and a separate Reference Manual.

First you need to install the software. This is described in Chapter 1,

Software Installation and Configuration

After installation you are ready to follow the Getting Started in Chapter 2.

Next, move on with the other chapters which explain how to use the

compiler, assembler, linker and the various utilities.

Once you are familiar with these tools, you can use the Reference Manual

to lookup specific options and details to make full use of the M16C

toolchain.

User's ManualXII
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

SHORT TABLE OF CONTENTS

Chapter 1: Software Installation and Configuration

Guides you through the installation of the software. Describes the most

important settings, paths and filenames that you must specify to get the

package up and running.

Chapter 2: Getting Started

Overview of the toolchain and its individual elements. Describes the

relation between the toolchain and specific features of the M16C. Explains

step-by-step how to write, compile, assemble and debug your application.

Teaches how you can use projects to organize your files.

Chapter 3: C Language

The TASKING M16C C compiler is fully compatible with ISO-C. This

chapter describes the specific M16C features of the C language, including

language extensions that are not standard in ISO-C. For example, pragmas

are a way to control the compiler from within the C source.

Chapter 4: Assembly Language

Describes the specific features of the assembly language as well as

'directives', which are pseudo instructions that are interpreted by the

assembler.

Chapter 5: Using the Compiler

Describes how you can use the compiler. An extensive overview of all

options is included in the Reference Manual.

Chapter 6: Profiling

Profiling is a method of gathering data about the amount of time function

execution takes and how many times functions are called. This profiling

implementation is code instrumention based, which means that the

compiler adds extra code which gathers the requested data during

execution of the program. This chapter explains this profiling method into

detail.

Chapter 7: Using the Assembler

Describes how you can use the assembler. An extensive overview of all

options is included in the Reference Manual.

Manual Purpose and Structure XIII

• • • • • • • •

Chapter 8: Using the Linker

Describes how you can use the linker. An extensive overview of all

options is included in the Reference Manual.

Chapter 9: Using the Utilities

Describes several utilities and how you can use them to facilitate various

tasks. The following utilities are included: control program, make utility

and archiver.

User's ManualXIV
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

CONVENTIONS USED IN THIS MANUAL

Notation for syntax

The following notation is used to describe the syntax of command line

input:

bold Type this part of the syntax literally.

italics Substitute the italic word by an instance. For example:

filename

Type the name of a file in place of the word filename.

{ } Encloses a list from which you must choose an item.

[] Encloses items that are optional. For example

cm16c [-?]

Both cm16c and cm16c -? are valid commands.

| Separates items in a list. Read it as OR.

... You can repeat the preceding item zero or more times.

,... You can repeat the preceding item zero or more times,

separating each item with a comma.

Example

cm16c [option]... filename

You can read this line as follows: enter the command cm16c with or

without an option, follow this by zero or more options and specify a

filename. The following input lines are all valid:

cm16c test.c

cm16c -g test.c

cm16c -g -E test.c

Not valid is:

cm16c -g

According to the syntax description, you have to specify a filename.

Manual Purpose and Structure XV

• • • • • • • •

Icons

The following illustrations are used in this manual:

Note: notes give you extra information.

Warning: read the information carefully. It prevents you from making

serious mistakes or from loosing information.

This illustration indicates actions you can perform with the mouse. Such as

EDE menu entries and dialogs.

Command line: type your input on the command line.

Reference: follow this reference to find related topics.

User's ManualXVI
M

A
N

U
A

L
 S

T
R

U
C

T
U

R
E

RELATED PUBLICATIONS

C Standards

• C A Reference Manual (fifth edition) by Samual P. Harbison and Guy L.

Steele Jr. (2002, Prentice Hall)

• The C Programming Language (second edition) by B. Kernighan and D.

Ritchie (1988, Prentice Hall)

• ISO/IEC 9899:1999(E), Programming languages - C [ISO/IEC]

See also http://www.ansi.org

• DSP-C, An Extension to ISO/IEC 9899:1999(E),

Programming languages - C [TASKING, TK0071-14]

MISRA C

• Guidelines for the Use of the C Language in Vehicle Based Software

[MIRA limited, 1998]

See also http://www.misra.org.uk

• MISRA-C:2004: Guidelines for the use of the C Language in critical

systems [MIRA limited, 2004]

See also http://www.misra-c.com

TASKING Tools

• M16C C Compiler, Assembler, Linker Reference Manual

[TASKING, MB299-024-00-00]

• M16C C++ Compiler User's Manual

[TASKING, MA299-012-00-00]

• M16C CrossView Pro Debugger User's Manual

[TASKING, MA299-041-00-00]

M16C

• M16C Group Specification [Renesas]

• M16C/60/20 Series Software Manual [Renesas]

1

SOFTWARE

INSTALLATION AND

CONFIGURATION
C

H
A

P
T

E
R

User's Manual1-2
IN
S
TA

L
L
A
T
IO
N

1

C
H

A
P

T
E

R

Software Installation and Configuration 1-3

• • • • • • • •

1.1 INTRODUCTION

This chapter guides you through the procedures to install the software on

a Windows system or on a Linux or UNIX host.

The software for Windows has two faces: a graphical interface (Embedded

Development Environment) and a command line interface. The Linux and

UNIX software has only a command line interface.

After the installation, it is explained how to configure the software and

how to install the license information that is needed to actually use the

software.

1.2 SOFTWARE INSTALLATION

1.2.1 INSTALLATION FOR WINDOWS

1. Start Windows 95/98/XP/NT/2000, if you have not already done so.

2. Insert the CD-ROM into the CD-ROM drive.

If the TASKING Showroom dialog box appears, proceed with Step 5.

3. Click the Start button and select Run...

4. In the dialog box type d:\setup (substitute the correct drive letter for

your CD-ROM drive) and click on the OK button.

The TASKING Showroom dialog box appears.

5. Select a product and click on the Install button.

6. Follow the instructions that appear on your screen.

You can find your serial number on the invoice, delivery note, or picking

slip delivered with the product.

7. License the software product as explained in section 1.4, Licensing
TASKING Products.

User's Manual1-4
IN
S
TA

L
L
A
T
IO
N

1.2.2 INSTALLATION FOR LINUX

Each product on the CD-ROM is available as an RPM package, Debian

package and as a gzipped tar file. For each product the following files are

present:

SWproduct-version-RPMrelease.i386.rpm

swproduct_version-release_i386.deb

SWproduct-version.tar.gz

These three files contain exactly the same information, so you only have

to install one of them. When your Linux distribution supports RPM

packages, you can install the .rpm file. For a Debian based distribution,

you can use the .deb file. Otherwise, you can install the product from the

.tar.gz file.

RPM Installation

1. In most situations you have to be "root" to install RPM packages, so either

login as "root", or use the su command.

2. Insert the CD-ROM into the CD-ROM drive. Mount the CD-ROM on a

directory, for example /cdrom. See the Linux manual pages about mount

for details.

3. Go to the directory on which the CD-ROM is mounted:

cd /cdrom

4. To install or upgrade all products at once, issue the following command:

rpm -U SW*.rpm

This will install or upgrade all products in the default installation directory

/usr/local. Every RPM package will create a single directory in the

installation directory.

The RPM packages are 'relocatable', so it is possible to select a different

installation directory with the --prefix option. For instance when you

want to install the products in /opt, use the following command:

rpm -U --prefix /opt SW*.rpm

For Red Hat 6.0 users: The --prefix option does not work with RPM

version 3.0, included in the Red Hat 6.0 distribution. Please upgrade to

RPM verion 3.0.3 or higher, or use the .tar.gz file installation described

in the next section if you want to install in a non-standard directory.

Software Installation and Configuration 1-5

• • • • • • • •

Debian Installation

1. Login as a user.

Be sure you have read, write and execute permissions in the installation

directory. Otherwise, login as "root" or use the su command.

2. Insert the CD-ROM into the CD-ROM drive. Mount the CD-ROM on a

directory, for example /cdrom. See the Linux manual pages about mount

for details.

3. Go to the directory on which the CD-ROM is mounted:

cd /cdrom

4. To install or upgrade all products at once, issue the following command:

dpkg -i sw*.deb

This will install or upgrade all products in a subdirectory of the default

installation directory /usr/local.

Tar.gz Installation

1. Login as a user.

Be sure you have read, write and execute permissions in the installation

directory. Otherwise, login as "root" or use the su command.

2. Insert the CD-ROM into the CD-ROM drive. Mount the CD-ROM on a

directory, for example /cdrom. See the Linux manual pages about mount

for details.

3. Go to the directory on which the CD-ROM is mounted:

cd /cdrom

4. To install the products from the .tar.gz files in the directory

/usr/local, issue the following command for each product:

tar xzf SWproduct-version.tar.gz -C /usr/local

Every .tar.gz file creates a single directory in the directory where it is

extracted.

User's Manual1-6
IN
S
TA

L
L
A
T
IO
N

1.2.3 INSTALLATION FOR UNIX HOSTS

1. Login as a user.

Be sure you have read, write and execute permissions in the installation

directory. Otherwise, login as "root" or use the su command.

If you are a first time user, decide where you want to install the product.

By default it will be installed in /usr/local.

2. Insert the CD-ROM into the CD-ROM drive and mount the CD-ROM on a

directory, for example /cdrom.

Be sure to use an ISO 9660 file system with Rock Ridge extensions

enabled. See the UNIX manual pages about mount for details.

3. Go to the directory on which the CD-ROM is mounted:

cd /cdrom

4. Run the installation script:

sh install

Follow the instructions appearing on your screen.

First a question appears about where to install the software. The default

answer is /usr/local.

On some hosts the installation script asks if you want to install SW000098,

the Flexible License Manager (FLEXlm). If you do not already have FLEXlm

on your system, you must install it otherwise the product will not work on

those hosts. See section 1.4, Licensing TASKING Products.

If the script detects that the software has been installed before, the

following messages appear on the screen:

 *** WARNING ***

SWxxxxxx xxxx.xxxx already installed.

Do you want to REINSTALL? [y,n]

Answering n (no) to this question causes installation to abort and the

following message being displayed:

=> Installation stopped on user request <=

Software Installation and Configuration 1-7

• • • • • • • •

Answer y (yes) to continue with the installation. The last message will be:

Installation of SWxxxxxx xxxx.xxxx completed.

5. If you purchased a protected TASKING product, license the software

product as explained in section 1.4, Licensing TASKING Products.

1.3 SOFTWARE CONFIGURATION

Now you have installed the software, you can configure both the

Embedded Development Environment and the command line environment

for Windows, Linux and UNIX.

1.3.1 CONFIGURING THE EMBEDDED DEVELOPMENT

ENVIRONMENT

After installation, the Embedded Development Environment is

automatically configured with default search paths to find the executables,

include files and libraries. In most cases you can use these settings. To

change the default settings, follow the next steps:

1. Double-click on the EDE icon on your desktop to start the Embedded

Development Environment (EDE).

2. From the Project menu, select Directories...

The Directories dialog box appears.

3. Fill in the following fields:

• In the Executable Files Path field, type the pathname of the

directory where the executables are located. The default directory is

$(PRODDIR)\bin.

• In the Include Files Path field, add the pathnames of the

directories where the compiler and assembler should look for

include files. The default directory is $(PRODDIR)\include.

Separate pathnames with a semicolon (;).

The first path in the list is the first path where the compiler and

assembler look for include files. To change the search order, simply

change the order of pathnames.

User's Manual1-8
IN
S
TA

L
L
A
T
IO
N

• In the Library Files Path field, add the pathnames of the

directories where the linker should look for library files. The default

directory is $(PRODDIR)\lib. Separate pathnames with a

semicolon (;).

The first path in the list is the first path where the linker looks for

library files. To change the search order, simply change the order of

pathnames.

Instead of typing the pathnames, you can click on the Configure...

button.

A dialog box appears in which you can select and add directories, remove

them again and change their order.

Software Installation and Configuration 1-9

• • • • • • • •

1.3.2 CONFIGURING THE COMMAND LINE

ENVIRONMENT

To facilitate the invocation of the tools from the command line (either

using a Windows command prompt or using Linux or UNIX), you can set

environment variables.

You can set the following variables:

Environment
Variable

Description

PATH With this variable you specify the directory in which

the executables reside (default: c:\cm16c\bin).

This allows you to call the executables when you

are not in the bin directory.

Usually your system already uses the PATH variable

for other purposes. To keep these settings, you

need to add (rather than replace) the path. Use a

semicolon (;) to separate pathnames.

CM16CINC With this variable you specify one or more additional

directories in which the C compiler cm16c looks for

include files. The compiler first looks in these

directories, then always looks in the default

include directory relative to the installation

directory.

ASM16CINC With this variable you specify one or more additional

directories in which the assembler asm16c looks for

include files. The assembler first looks in these

directories, then always looks in the default

include directory relative to the installation

directory.

CCM16CBIN With this variable you specify the directory in which

the control program ccm16c looks for the

executable tools. The path you specify here should

match the path that you specified for the PATH

variable.

CCM16COPT With this variable you specify options and/or

arguments to each invocation of the control program

ccm16c. The control program processes these

arguments before the command line arguments.

LIBM16C

LIBR8C

With this variable you specify one or more

alternative directories in which the linker lkm16c
looks for library files for a specific core. The linker

first looks in these directories, then always looks in

the default lib directory.

User's Manual1-10
IN
S
TA

L
L
A
T
IO
N

DescriptionEnvironment
Variable

LM_LICENSE_FILE With this variable you specify the location of the

license data file. You only need to specify this

variable if the license file is not on its default location

(c:\flexlm for Windows,

/usr/local/flexlm/licenses for UNIX).

TASKING_LIC_WAIT If you set this variable, the tool will wait for a license

to become available, if all licenses are taken. If you

have not set this variable, the tool aborts with an

error message. (Only useful with floating licenses)

TMPDIR With this variable you specify the location where

programs can create temporary files. Usually your

system already uses this variable. In this case you

do not need to change it.

Table 1-1: Environment variables

The following examples show how to set an environment variable using

the PATH variable as an example.

Example for Windows 95/98

Add the following line to your autoexec.bat file:

set PATH=%path%;c:\cm16c\bin

You can also type this line in a Command Prompt window but you will

loose this setting after you close the window.

Example for Windows NT

1. Right-click on the My Computer icon on your desktop and select

Properties from the menu.

The System Properties dialog appears.

2. Select the Environment tab.

3. In the list of System Variables select Path.

4. In the Value field, add the path where the executables are located to the

existing path information. Separate pathnames with a semicolon (;). For

example: c:\cm16c\bin.

5. Click on the Set button, then click OK.

Software Installation and Configuration 1-11

• • • • • • • •

Example for Windows XP / 2000

1. Right-click on the My Computer icon on your desktop and select

Properties from the menu.

The System Properties dialog appears.

2. Select the Advanced tab.

3. Click on the Environment Variables button.

The Environment Variables dialog appears.

4. In the list of System variables select Path.

5. Click on the Edit button.

The Edit System Variable dialog appears.

6. In the Variable value field, add the path where the executables are

located to the existing path information. Separate pathnames with a

semicolon (;). For example: c:\cm16c\bin.

7. Click on the OK button to accept the changes and close the dialogs.

Example for UNIX

Enter the following line (C-shell):

setenv PATH $PATH:/usr/local/cm16c/bin

User's Manual1-12
IN
S
TA

L
L
A
T
IO
N

1.4 LICENSING TASKING PRODUCTS

TASKING products are protected with license management software

(FLEXlm). To use a TASKING product, you must install the license key

provided by TASKING for the type of license purchased.

You can run TASKING products with a node-locked license or with a

floating license. When you order a TASKING product determine which

type of license you need (UNIX products only have a floating license).

Node-locked license (PC only)

This license type locks the software to one specific PC so you can use the

product on that particular PC only.

Floating license

This license type manages the use of TASKING product licenses among

users at one site. This license type does not lock the software to one

specific PC or workstation but it requires a network. The software can then

be used on any computer in the network. The license specifies the

number of users who can use the software simultaneously. A system

allocating floating licenses is called a license server. A license manager

running on the license server keeps track of the number of users.

1.4.1 OBTAINING LICENSE INFORMATION

Before you can install a software license you must have a "License Key"

containing the license information for your software product. If you have

not received such a license key follow the steps below to obtain one.

Otherwise, you can install the license.

Windows

1. Run the License Administrator during installation and follow the steps to

Request a license key from Altium by E-mail.

2. E-mail the license request to your local TASKING sales representative. The

license key will be sent to you by E-mail.

Software Installation and Configuration 1-13

• • • • • • • •

UNIX

1. If you need a floating license on UNIX, you must determine the host ID

and host name of the computer where you want to use the license

manager. Also decide how many users will be using the product. See

section 1.4.5, How to Determine the Host ID and section 1.4.6, How to
Determine the Host Name.

2. When you order a TASKING product, provide the host ID, host name and

number of users to your local TASKING sales representative. The license

key will be sent to you by E-mail.

1.4.2 INSTALLING NODE-LOCKED LICENSES

If you do not have received your license key, read section 1.4.1, Obtaining
License Information, before continuing.

1. Install the TASKING software product following the installation procedure

described in section 1.2.1, Installation for Windows, if you have not done

this already.

2. Create a license file by importing a license key or create one manually:

Import a license key

During installation you will be asked to run the License Administrator.

Otherwise, start the License Administrator (licadmin.exe) manually.

In the License Administrator follow the steps to Import a license key

received from Altium by E-mail. The License Administrator creates a

license file for you.

Create a license file manually

If you prefer to create a license file manually, create a file called

"license.dat" in the c:\flexlm directory, using an ASCII editor and

insert the license key information received by E-mail in this file. This file is

called the "license file". If the directory c:\flexlm does not exist, create

the directory.

If you wish to install the license file in a different directory, see section

1.4.4, Modifying the License File Location.

User's Manual1-14
IN
S
TA

L
L
A
T
IO
N

If you already have a license file, add the license key information to the

existing license file. If the license file already contains any SERVER lines,

you must use another license file. See section 1.4.4, Modifying the License
File Location, for additional information.

The software product and license file are now properly installed.

1.4.3 INSTALLING FLOATING LICENSES

If you do not have received your license key, read section 1.4.1, Obtaining
License Information, before continuing.

1. Install the TASKING software product following the installation procedure

described earlier in this chapter on each computer or workstation where

you will use the software product.

2. On each PC or workstation where you will use the TASKING software

product the location of a license file must be known, containing the

information of all licenses. Either create a local license file or point to a

license file on a server:

Add a licence key to a local license file

A local license file can reduce network traffic.

On Windows, you can follow the same steps to import a license key or

create a license file manually, as explained in the previous section with the

installation of a node-locked license.

On UNIX, you have to insert the license key manually in the license file.

The default location of the license file license.dat is in directory

/usr/local/flexlm/licenses for UNIX.

If you wish to install the license file in a different directory, see section

1.4.4, Modifying the License File Location.

If you already have a license file, add the license key information to the

existing license file. If the license file already contains any SERVER lines,

make sure that the number of SERVER lines and their contents match,

otherwise you must use another license file. See section 1.4.4, Modifying
the License File Location, for additional information.

Software Installation and Configuration 1-15

• • • • • • • •

Point to a license file on the server

Set the environment variable LM_LICENSE_FILE to "port@host", where

host and port come from the SERVER line in the license file. On Windows,

you can use the License Administrator to do this for you. In the License

Administrator follow the steps to Point to a FLEXlm License Server to

get your licenses.

3. If you already have installed FLEXlm v8.4 or higher (for example as part of

another product) you can skip this step and continue with step 4.

Otherwise, install SW000098, the Flexible License Manager (FLEXlm), on

the license server where you want to use the license manager.

It is not recommended to run a license manager on a Windows 95 or

Windows 98 machine. Use Windows XP, NT or 2000 instead, or use UNIX

or Linux.

4. If FLEXlm has already been installed as part of a non-TASKING product

you have to make sure that the bin directory of the FLEXlm product

contains a copy of the Tasking daemon. This file is present on every

product CD that includes FLEXlm, in directory licensing.

5. On the license server also add the license key to the license file. Follow

the same instructions as with "Add a license key to a local license file" in

step 2.

See the FLEXlm PDF manual delivered with SW000098, which is present

on each TASKING product CD, for more information.

User's Manual1-16
IN
S
TA

L
L
A
T
IO
N

1.4.4 MODIFYING THE LICENSE FILE LOCATION

The default location for the license file on Windows is:

c:\flexlm\license.dat

On UNIX this is:

/usr/local/flexlm/licenses/license.dat

If you want to use another name or directory for the license file, each user

must define the environment variable LM_LICENSE_FILE.

If you have more than one product using the FLEXlm license manager you

can specify multiple license files to the LM_LICENSE_FILE environment

variable by separating each pathname (lfpath) with a ';' (on UNIX ':'):

Example Windows:

set LM_LICENSE_FILE=c:\flexlm\license.dat;c:\license.txt

Example UNIX:

setenv LM_LICENSE_FILE

/usr/local/flexlm/licenses/license.dat:/myprod/license.txt

If the license file is not available on these hosts, you must set

LM_LICENSE_FILE to port@host; where host is the host name of the

system which runs the FLEXlm license manager and port is the TCP/IP port

number on which the license manager listens.

To obtain the port number, look in the license file at host for a line starting

with "SERVER". The fourth field on this line specifies the TCP/IP port

number on which the license server listens. For example:

setenv LM_LICENSE_FILE 7594@elliot

See the FLEXlm PDF manual delivered with SW000098, which is present

on each TASKING product CD, for detailed information.

Software Installation and Configuration 1-17

• • • • • • • •

1.4.5 HOW TO DETERMINE THE HOST ID

The host ID depends on the platform of the machine. Please use one of

the methods listed below to determine the host ID.

Platform Tool to retrieve host ID Example host ID

HP-UX lanscan
(use the station address without

the leading '0x')

0000F0050185

Linux hostid 11ac5702

SunOS/Solaris hostid 170a3472

Windows licadmin (License Administrator,

or use lmhostid)

0060084dfbe9

Table 1-2: Determine the host ID

On Windows, the License Administrator (licadmin) helps you in the

process of obtaining your license key.

If you do not have the program licadmin you can download it from our

Web site at: http://www.tasking.com/support/flexlm/licadmin.zip . It is

also on every product CD that includes FLEXlm, in directory licensing.

1.4.6 HOW TO DETERMINE THE HOST NAME

To retrieve the host name of a machine, use one of the following methods.

Platform Method

UNIX hostname

Windows NT licadmin or:

Go to the Control Panel, open "Network". In the

"Identification" tab look for "Computer Name".

Windows XP/2000 licadmin or:

Go to the Control Panel, open "System". In the "Computer

Name" tab look for "Full computer name".

Table 1-3: Determine the host name

User's Manual1-18
IN
S
TA

L
L
A
T
IO
N

2

GETTING STARTED
C

H
A

P
T

E
R

User's Manual2-2
G

E
T

T
IN

G
 S

TA
R

T
E

D 2

C
H

A
P

T
E

R

Getting Started 2-3

• • • • • • • •

2.1 INTRODUCTION

With the TASKING M16C suite you can write, compile, assemble, link and

locate applications for the several M16C cores.

Embedded Development Environment

The TASKING Embedded Development Environment (EDE) is a Windows

application that facilitates working with the tools in the toolchain and also

offers project management and an integrated editor.

EDE has three main functions: Edit / Project management, Build and

Debug. The figure below shows how these main functionalities relate to

each other.

makefile

make

compiler

absolute file

debugger

assembler

linker

EDE

project management

editor

tool options

toolchain selection

EDIT

BUILD

DEBUG

Figure 2-1: EDE development flow

User's Manual2-4
G

E
T

T
IN

G
 S

TA
R

T
E

D

In the Edit part you make all your changes:

- create a project space

- create and maintain one or more projects in a project space

- add, create and edit source files in a project

- set the options for each tool in the toolchain

- select another toolchain if you want to create an application for

another target than the M16C.

In the Build part you build your files:

- a makefile (created by the Edit part) is used to invoke the needed

toolchain components, resulting in an absolute object file.

In the Debug part you can debug your project:

- call the TASKING debugger �CrossView Pro" with the generated

absolute object file.

This Getting Started Chapter guides you step-by-step through the most

important features of EDE

The TASKING EDE is an embedded environment and differs from a native
program development.

A native program development environment is often used to develop

applications for systems where the host system and the target are the

same. Therefore, it is possible to run a compiled application directly from

the development environment.

In an embedded environment, however, a simulator or target hardware is

required to run an application. TASKING offers a number of simulators

and target hardware debuggers.

Toolchain overview

You can use all tools in the toolchain from the embedded development

environment (EDE) and from the command line in a Command Prompt

window or a UNIX shell.

The next illustration shows all components of the M16C toolchain with

their input and output files.

Getting Started 2-5

• • • • • • • •

assembly file

assembler

relocatable object file

C++ compiler

C++ source file

.cc

C source file

C compiler

.ic

cpm16c

cm16c

asm16c

relocatable object library.a

archiver

arm16c

list file .lst

.src

.obj

C source file

assembly file

(hand coded)

.c

.asm

(hand coded)

error messages .ers

linker

relocatable linker object file

lkm16c

.eln

linker map file .map

error messages .elk

linker script file

.lsl

relocatable linker object file .eln

error messages .err

memory definition

.mdffile

CrossView Pro

debugger

Motorola S-record

absolute object file

.s

Intel Hex

absolute object file

.hex

ELF/DWARF 2

absolute object file

.elf

execution

environment

xfwm16c

Figure 2-2: M16C toolchain

User's Manual2-6
G

E
T

T
IN

G
 S

TA
R

T
E

D

The following table lists the file types used by the M16C toolchain.

Extension Description

Source files

.cc C++ source file, input for the C++ compiler

.c C source file, input for the C compiler

.asm Assembler source file, hand coded

.lsl Linker script file using the Linker Script Language

Generated source files

.ic C source file, generated by the C++ compiler, input for the C

compiler

.src Assembler source file, generated by the C compiler, does not

contain macros

Object files

.obj ELF/DWARF relocatable object file, generated by the assembler

.a Archive with ELF/DWARF object files

.eln Relocatable linker output file

.elf ELF/DWARF absolute object file, generated by the locating part

of the linker

.hex Absolute Intel Hex object file

.s Absolute Motorola S-record object file

List files

.lst Assembler list file

.map Linker map file

.mdf Memory definition file

.mcr MISRA C report file

Error list files

.err Compiler error messages file

.ers Assembler error messages file

.elk Linker error messages file

Table 2-1: File extensions

Getting Started 2-7

• • • • • • • •

2.2 WORKING WITH PROJECTS IN EDE

EDE is a complete project environment in which you can create and

maintain project spaces and projects. EDE gives you direct access to the

tools and features you need to create an application from your project.

A project space holds a set of projects and must always contain at least one

project. Before you can create a project you have to setup a project space.

All information of a project space is saved in a project space file (.psp):

• a list of projects in the project space

• history information

Within a project space you can create projects. Projects are bound to a

target! You can create, add or edit files in the project which together form

your application. All information of a project is saved in a project file
(.pjt):

• the target for which the project is created

• a list of the source files in the project

• the options for the compiler, assembler, linker and debugger

• the default directories for the include files, libraries and executables

• the build options

• history information

When you build your project, EDE handles file dependencies and the

exact sequence of operations required to build your application. When

you push the Build button, EDE generates a makefile, including all

dependencies, and builds your application.

Overview of steps to create and build an application

1. Create a project space

2. Add one or more projects to the project space

3. Add files to the project

4. Edit the files

5. Set development tool options

6. Build the application

User's Manual2-8
G

E
T

T
IN

G
 S

TA
R

T
E

D

2.3 START EDE

Start EDE

• Double-click on the EDE shortcut on your desktop.

- or -

Launch EDE via the program folder created by the installation program.

Select Start -> Programs -> TASKING toolchain -> EDE.

Figure 2-3: EDE icon

The EDE screen contains a menu bar, a toolbar with command buttons,

one or more windows (default, a window to edit source files, a project

window and an output window) and a status bar.

Output Window
Contains several tabs to display

and manipulate results of EDE

operations. For example, to view

the results of builds or compiles.

Document Windows
Used to view and edit files.

Project Window
Contains several

tabs for viewing

information about

projects and other

files.

Compile Build Rebuild Debug On-line ManualsProject Options

Figure 2-4: EDE desktop

Getting Started 2-9

• • • • • • • •

2.4 USING THE SAMPLE PROJECTS

When you start EDE for the first time (see section 2.3, Start EDE), EDE

opens with a ready defined project space that contains several sample

projects. Each project has its own subdirectory in the examples directory.

Each directory contains a file readme.txt with information about the

example. The default project is called demo.pjt and contains a CrossView

Pro debugger example.

Select a sample project

To select a project from the list of projects in a project space:

1. In the Project Window, right-click on the project you want to open.

A menu appears.

2. Select Set as Current Project.

The selected project opens.

3. Read the file readme.txt for more information about the selected sample

project.

Building a sample project

To build the currently active sample project:

• Click on the Execute 'Make' command button.

Once the files have been processed you can inspect the generated messages
in the Build tab of the Output window.

User's Manual2-10
G

E
T

T
IN

G
 S

TA
R

T
E

D

2.5 CREATE A NEW PROJECT SPACE WITH A PROJECT

Creating a project space is in fact nothing more than creating a project

space file (.psp) in an existing or new directory.

Create a new project space

1. From the File menu, select New Project Space...

The Create a New Project Space dialog appears.

2. In the the Filename field, enter a name for your project space (for

example MyProjects). Click the Browse button to select a directory first

and enter a filename.

3. Check the directory and filename and click OK to create the .psp file in

the directory shown in the dialog.

A project space information file with the name MyProjects.psp is
created and the Project Properties dialog box appears with the project space
selected.

Getting Started 2-11

• • • • • • • •

Add a new project to the project space

4. In the Project Properties dialog, click on the Add new project to project

space button (see previous figure).

The Add New Project to Project Space dialog appears.

User's Manual2-12
G

E
T

T
IN

G
 S

TA
R

T
E

D

5. Give your project a name, for example getstart\getstart.pjt (a

directory name to hold your project files is optional) and click OK.

A project file with the name getstart.pjt is created in the directory
getstart, which is also created. The Project Properties dialog box appears
with the project selected.

Add new files to the project

Now you can add all the files you want to be part of your project.

6. Click on the Add new file to project button.

The Add New File to Project dialog appears.

Getting Started 2-13

• • • • • • • •

7. Enter a new filename (for example hello.c) and click OK.

A new empty file is created and added to the project. Repeat steps 6 and 7 if
you want to add more files.

8. Click OK.

The new project is now open. EDE loads the new file(s) in the editor in
separate document windows.

EDE automatically creates a makefile for the project (in this case

getstart.mak). This file contains the rules to build your application.

EDE updates the makefile every time you modify your project.

Edit your files

9. As an example, type the following C source in the hello.c document

window:

#include <stdio.h>

void main(void)

{

 printf("Hello World!\n");

}

10. Click on the Save the changed file <Ctrl-S> button.

EDE saves the file.

User's Manual2-14
G

E
T

T
IN

G
 S

TA
R

T
E

D

2.6 SET OPTIONS FOR THE TOOLS IN THE TOOLCHAIN

The next step in the process of building your application is to select a

target processor and specify the options for the different parts of the

toolchain, such as the C compiler, assembler, linker and debugger.

Select a target processor

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Processor entry and select Processor Definition.

3. In the Select core list select (for example) M16C.

4. In the Select group list select (for example) M16C62A.

5. In the Select processor list select (for example) M30624FGAFP/GP.

6. Optional for some processors, select a Processor mode.

7. Click OK to accept the new project settings.

Getting Started 2-15

• • • • • • • •

Set tool options

1. From the Project menu, select Project Options...

The Project Options dialog appears. Here you can specify options that are
valid for the entire project. To overrule the project options for the currently
active file instead, from the Project menu select Current File Options...

2. Expand the C Compiler entry.

The C Compiler entry contains several pages where you can specify C
compiler settings.

3. For each page make your changes. If you have made all changes click OK.

The Cancel button closes the dialog without saving your changes. With

the Default... button you can restore the default project options (for the

current page, or all pages in the dialog).

4. Make your changes for all other entries (Assembler, Linker, CrossView Pro,

Flasher) of the Project Options dialog in a similar way as described above

for the C compiler.

If available, the Options string field shows the command line options

that correspond to your graphical selections.

User's Manual2-16
G

E
T

T
IN

G
 S

TA
R

T
E

D

Synchronize options with the ROM monitor

If you use a ROM monitor for debugging, you must be sure that all EDE

settings are correct for communicating with the ROM monitor. If the ROM

monitor target board is connected to your PC, EDE can automatically set

the correct options based on the ROM monitor. To do this:

1. Click on the Synchronize options with the ROM monitor button.

The Synchronize Options dialog appears.

2. Specify the Serial port and Baud rate at which the ROM monitor is

connected and click Scan. If you do not know the port or baud rate, you

can click Scan All to scan all COM ports for the ROM monitor.

3. Click Sync to synchronize the shown options with the current project.

A message appears that the current project has been synchronized with the
ROM monitor.

4. Click OK to close the message box.

5. Click Close to close the dialog.

Getting Started 2-17

• • • • • • • •

2.7 BUILD YOUR APPLICATION

If you have set all options, you can actually compile the file(s). This results

in an absolute ELF/DWARF object file which is ready to be debugged.

Build your Application

To build the currently active project:

• Click on the Execute 'Make' command button.

The file is compiled, assembled, linked and located. The resulting file is
getstart.elf.

The build process only builds files that are out-of-date. So, if you click

Make again in this example nothing is done, because all files are

up-to-date.

Viewing the Results of a Build

Once the files have been processed, you can see which commands have

been executed (and inspect generated messages) by the build process in

the Build tab of the Output window.

This window is normally open, but if it is closed you can open it by

selecting the Output menu item in the Window menu.

Compiling a Single File

1. Select the window (document) containing the file you want to compile or

assemble.

2. Click on the Execute 'Compile' command button. The following button

is the execute Compile button which is located in the toolbar.

If you selected the file hello.c, this results in the compiled and assembled
file hello.obj.

User's Manual2-18
G

E
T

T
IN

G
 S

TA
R

T
E

D

Rebuild your Entire Application

If you want to compile, assemble and link/locate all files of your project

from scratch (regardless of their date/time stamp), you can perform a

rebuild.

• Click on the Execute 'Rebuild' command button. The following

button is the execute Rebuild button which is located in the toolbar.

2.8 HOW TO BUILD YOUR APPLICATION ON THE

COMMAND LINE

If you are not using EDE, you can build your entire application on the

command line. The easiest way is to use the control program ccm16c

1. In a text editor, write the file hello.c with the following contents:

#include <stdio.h>

void main(void)

{

 printf("Hello World!\n");

}

2. Build the file getstart.elf:

ccm16c -ogetstart.elf hello.c -v

The control program calls all tools in the toolchain. The -v option shows all
the individual steps. The resulting file is getstart.elf.

Getting Started 2-19

• • • • • • • •

2.9 DEBUG GETSTART.ELF

The application getstart.elf is the final result, ready for execution

and/or debugging. The debugger uses getstart.elf for debugging but

needs symbolic debug information for the debugging process. This

information must be included in getstart.elf and therefore you need

to compile and assemble hello.c once again.

ccm16c -g -ogetstart.elf hello.c

Now you can start the debugger with getstart.elf and see how it

executes.

Start CrossView Pro

• Click on the Debug application button.

CrossView Pro is launched. CrossView Pro will automatically download the
file getstart.elf for debugging.

See the CrossView Pro Debugger User's Manual for more information.

User's Manual2-20
G

E
T

T
IN

G
 S

TA
R

T
E

D

3

C LANGUAGE
C

H
A

P
T

E
R

User's Manual3-2
C

 L
A

N
G

U
A

G
E

3

C
H

A
P

T
E

R

C Language 3-3

• • • • • • • •

3.1 INTRODUCTION

The TASKING C cross-compiler (cm16c) fully supports the ISO C99

standard. In addition, it adds extra possibilities to write fast and compact

code for the M16C and to use the special functions of the M16C.

In addition to the standard C language, the compiler supports the

following:

• extra data type __bit

• intrinsic (built-in) functions that result in M16C specific assembly

instructions

• pragmas to control the compiler from within the C source

• predefined macros

• the possibility to use assembly instructions in the C source

• keywords to specify memory types for data and functions

• attributes to specify alignment and absolute addresses

• keywords for programming interrupt routines

• libraries

All non-standard keywords have two leading underscores (__).

This chapter first describes programming strategies and tips for writing

optimal code for the M16C. Next, the M16C specific characteristics of the C

language are described into more detail.

User's Manual3-4
C

 L
A

N
G

U
A

G
E

3.2 PROGRAMMING STRATEGIES

3.2.1 MEMORY SPACES

Choosing Memory Spaces

The TASKING M16C toolchain introduces several qualifiers to control how

and where you want to allocate C objects in memory. Among others, the

following memory qualifiers exist:

• __far anywhere in the 20 bit space, objects can be of any size.

• __paged anywhere in the 20 bit space, objects must be smaller

than 64 kB and will never cross 64k boundaries

• __near first 64k

• __bita first 8k (the bitaddressable space)

Most M16C instructions can address operands in memory only if they lie in

the first 64k. For far addresses, expensive load/store instructions are

needed. For this reason, using __near qualified variables generates much

faster code than using __far or __paged variables.

A pointer to a __near qualified object fits in one 16 bit address register,

for a pointer to a __far or __paged object the double register A1A0 is

needed. Also, pointer arithmetic for __near pointers is much faster.

__paged qualified objects are guaranteed not to be allocated accross 64k

boundaries. Therefor, pointer arithmetic on pointers to paged memory

only requires updates of the A0 register. For pointers to far memory both

A1 and A0 need to be altered. So, pointer arithmetic is often twice as fast

for pointers to paged memory.

The stack lies always in the first 64k bytes, so a variable on the stack is

implicitly __near qualified. This means that automatic variables are

always fastest (regardless of the chosen memory model).

Objects qualified with __bita are bit-addressable. This means that setting

and getting individual bits can be done with the fast bit instructions of the

M16C.

C Language 3-5

• • • • • • • •

String and Constant Allocation

Strings and constants can be allocated in both ROM and RAM memory. If

allocated in RAM, they have to be initialized from a copy in ROM during

program startup. So allocating in ROM saves both memory and time. You

can achieve this by enabling the options Keep strings in ROM and Keep

constants in ROM on the Code Generation page of the C Compiler

options. Note that strings in ROM cannot be modified at run-time.

Usual M16C hardware configurations have no ROM in the near space (first

64k of memory). So by default, even with Keep strings in ROM and

Keep constants in ROM enabled, __near qualified objects in those cases

are allocated in RAM.

In case your hardware does have ROM in the near space, you should

enable the option ROM is available in first 64k of memory on the Code

Generation page of the C Compiler options.

Choosing a Memory Model

The memory model determines the default memory space qualifier for

objects. It also determines which library must be linked (library functions

have no memory qualifiers in their prototypes).

In the small memory model, all objects get the __near qualifier implicitly.

In the large memory model, all objects get the __far qualifier implicitly.

In the medium memory model, all constants, string literals and pointers

get the __paged qualifier implicitly, while variables get the __near

qualifier.

Note that the medium memory model is specifically tailored to allocate

constants and strings in ROM. Constants get the __paged qualifier

implicitly, so they can be put in ROM. Other variables get the __near

qualifier for optimal performance. By default, pointers are implicitly

__paged qualified, so they can point to both constants and variables.

Variables that do not fit in near memory can easily be qualified as

__paged, as this leads to no problems with default pointers and library

calls. For before mentioned reasons, the medium memory model is the

default.

User's Manual3-6
C

 L
A

N
G

U
A

G
E

Strategies

As explained above, allocating everything in the near memory space by

using the small memory model yields the fastest and most compact code.

However, for larger projects this obviously is not an option. To reap some

of the benefits though, you can use memory qualifiers to force frequently

used and/or small variables in near memory and rarely used and/or large

variables in far memory.

One strategy is to use the small memory model, but qualify large objects

as __paged or __far when absolutely necessary. 'Far' pointers cannot be

cast to 'near' pointers. The compiler will check this, but it can be

inconvenient, especially for library calls.

Another strategy is the other way around: use the large memory model

and qualify, where possible, variables as __near. Be careful with pointers

though, default pointers are __far qualified and will produce inefficient

code if used with __near objects.

3.2.2 BIT PROGRAMMING

The M16C has efficicient instructions to manipulate individual bits.

However, these instructions are usually only available for variables in the

first 8kB of memory (the bita space).

To generate these fast bit instructions, the compiler cm16c supports the

__bit basic type. This type is implicitly allocated in the bit space.

Pointers to __bit variables are special, since they use bit addresses

instead of bytes. Therefore, __bit variables do have some restrictions (see

subsection Bit Data Type in section 3.3, Data Types).

By using the __bit type, the compiler cm16c can also generate fast bit

instructions for bitfield operations. To make this possible, you have to

allocate the structure in the bita space using the __bita memory qualifier:

__bita struct

{

 int bit0 : 1;

 int bit1 : 1;

 int bit2 : 1;

} threebits;

is equivalent to:

C Language 3-7

• • • • • • • •

struct

 __bit bit0;

 __bit bit1;

 __bit bit2;

} threebits;

Note however that the upper example places bitfields in the bita space,

making each bit within a byte addressable (mau 8), whereas the lower

example places bits in the bit space making each bit directly addressable

(mau 1).

Former TASKING M16C toolchains supported __atbit() for an

equivalent construction. While this is still supported, its use is deprecated.

3.2.3 FLOATING-POINT

Floating-point operations are not supported by M16C hardware. Instead

run-time functions are used to handle floating-points. Try to avoid using

floating-point and use integers instead.

If you still need floating-point arithmetric, try to use single precision

floating-point. Arithmetic with floats is much faster than with doubles.

To illustrate this using the whetstone example:

Whetstone Float Double Achievement

whet.c 1869 bytes 2335 bytes
Size of module whet_CO is 20%

smaller for float than for double.

whet.elf 9618 bytes 15079 bytes
Size of application is 36% smaller

for float than for double.

time 36 sec 220 sec
Execution time is 84% faster for

float than for double.

Floating-point constants like 1.0 are double precision according to the C

standard. If you only need single precision, make sure to use the float

postfix notation for constants, for example 1.0f.

User's Manual3-8
C

 L
A

N
G

U
A

G
E

In ISO C99 all library function like double cos(double) have a single

precision parallel function like float cosf(float). Use these single

precision functions whenever possible. The tgmath.h header file even

contains type generic functions which automatically call the best variant

(see section 2.2.13, Math.h and Tgmath.h in Chapter Libraries of the

Reference Manual).

Variable argument lists can never be float, only double. But there is one

exception: with the option Use single precision float point only on the

floating-point page of the Compiler options, floats are used everywhere

instead of doubles, also in varargs! This is the only way to have single

precision floats in vararg functions like printf.

3.2.4 GENERAL OPTIMIZATION TIPS

Try to use local variables instead of global variables because:

• Locals can often be allocated in registers.

• Memory on the stack can be reused by sibling functions

• The compiler must assume external function calls read and write all

global variables, which might make some optimizations impossible.

Avoid taking the address of variables (using the & operator) because:

• Variables whose address is taken cannot be allocated in a register

• The compiler must assume every external function can call the variable

by reference, precluding some optimizations.

Optimization settings

Inline function calls

• Enable Function inlining (or choose the Agressive (all) optimization

level) on the Optimization page of the Compiler options (command

line option -Oi or -O3)

• Use function qualifiers inline and __noinline to give extra hints to

the compiler.

• Inlining results in faster, but often in larger code if Optimize for size is

not set.

• Debugging inlined code can be harder

Reverse inlining

C Language 3-9

• • • • • • • •

• The compiler has an option to 'reverse inline' functions: by making a

compiler-generated function for repeated code sequences. This always

results in smaller, but slower code. To get the smallest code size

possible, this optimization can really help.

• You can enable both Function inlining and Reverse inlining at the

same time. Inlining may increase the possibilities for reverse inlining

which leads to faster and smaller code.

• The cm16c compiler offers the option to compile several C-modules in

one single pass, this is called MIL linking. This makes several compiler

optimizations much more effective, notably inlining and reverse

inlining.

• To enable MIL linking, enable the option MIL linking (compile

multiple C files simultaneously) on the Optimization page of the

C Compiler options, or choose Agressive (all) optimization).

Be cautious with inline assembly (__asm)

• __asm() statements are not analyzed by the compiler, they are copied

verbatim to the output assembly. Because of this, the compiler cannot

optimize the surrounding code. It is recommended to use plain C and

intrinsic functions whenever possible.

User's Manual3-10
C

 L
A

N
G

U
A

G
E

3.3 DATA TYPES

The TASKING C compiler for the M16C architecture supports the following

data types:

Type Keyword
Size
(bit)

Align
(bit)

Ranges

Bit __bit 1 1 0 or 1

Boolean _Bool 1 8 0 or 1

Character char

signed char
8 8 -27 .. 27-1

unsigned char 8 8 0 .. 28-1

Integral short

signed short

int

signed int

16 8 / 16* -215 .. 215-1

unsigned short

unsigned int
16 8 / 16* 0 .. 216-1

enum 1

8

16

8

8 / 16*

8 / 16*

0 or 1

-27 .. 27-1

-215 .. 215-1

long

signed long
32 8 / 16* -231 .. 231-1

long long

signed

 long long

64 8 / 16* -263 .. -263-1

unsigned long 32 8 / 16* 0 .. 232-1

unsigned

 long long
64 8 / 16* 0 .. 264-1

Pointer pointer to

__sfr, __bita
16 8 / 16* 0 .. 213-1

pointer to

__near
16 8 / 16* 0 .. 216-1

pointer to

__far, __paged
32 8 / 16* 0 .. 220-1

C Language 3-11

• • • • • • • •

Ranges
Align
(bit)

Size
(bit)

KeywordType

Floating

Point
float 32 8 / 16*

-3.402e38 .. -1.175e-38

1.175e-38 .. 3.402e38

double

long double
64 8 / 16*

-1.797e308 .. -2.225e-308

2.225e-308 .. 1.797e308

float

 _Imaginary
32 8 / 16*

-3.402e38i .. -1.175e-38i

1.175e-38i .. 3.402e38i

float _Complex 32+32 8 / 16* real part + imaginary part

double/

long double

 _Imaginary
64 8 / 16*

-1.797e308i .. -2.225e-308i

2.225e-308i .. 1.797e308i

double/

long double

 _Complex
64+64 8 / 16* real part + imaginary part

Table 3-1: Data Types

* For the marked data types, the alignment is 16 if you specify compiler

option --align, otherwise the alignment is 8.

When you use the enum type, the compiler will use the smallest sufficient

integer type (_Bool, char, int), unless you use compiler option

--integer-enumeration (always use 16-bit integers for enumeration).

float is implemented in little endian IEEE 32-bit single precision format.

double is implemented in little endian IEEE 64-bit double precision

format.

When you compile for the R8C/tiny (compiler option --r8c) __far and

__paged are the same as __near.

See also the Applications Binary Interface (ABI).

User's Manual3-12
C

 L
A

N
G

U
A

G
E

Bit Data Type

You can use the __bit type to define scalars in the bit-addressable area

and for the return type of functions. A struct containing bit fields cannot

be used for this purpose, for example because the struct is aligned at a

byte boundary. Unlike the _Bool type the __bit type is aligned on a bit

boundary.

The following rules apply to __bit type variables:

• A __bit type variable is always unsigned.

• A __bit type variable can be exchanged with all other type-variables.

The compiler generates the correct conversion.

A __bit type variable is like a boolean. Therefore, if you convert an

int type variable to a __bit type variable, it becomes 1 (true) if the

integer is not equal to 0, and 0 (false) if the integer is 0. The next two

C source lines have the same effect:

 bit_variable = int_variable;

 bit_variable = int_variable ? 1 : 0;

• Pointer to __bit is allowed, but you cannot take the address of a bit

on the stack.

• The __bit type is allowed as a structure member. However, a bit

structure can only contain members of type __bit, and you cannot

push a bit structure on the stack or return a bit structure via a function.

• A union of a __bit structure and another type is not allowed.

• A __bit type variable is allowed as a parameter of a function.

• A __bit type variable is allowed as a return type of a function.

• A __bit typed expression is allowed as switch expression.

• The sizeof of a __bit type is 1.

• Global or static __bit type variable can be initialized.

• A __bit type variable can be declared volatile.

3.4 MEMORY QUALIFIERS

You can use memory qualifiers to allocate static objects in a particular part

of the addressing space of the processor.

In addition, you can place variables at absolute addresses with the

keyword __at().

C Language 3-13

• • • • • • • •

3.4.1 MEMORY TYPE QUALIFIERS

In the TASKING C language you can specify that a variable must lie in a

specific part of memory. You can do this with a memory type qualifier.

You can use the following memory type qualifiers:

Qualifier Description

__bita Bit-addressable RAM (first 8 kB of memory)

__sfr Defines a special function register. Special optimizations are

performed on this type of variables. Data is located in the

SFR space.

__near Data is located in the first 64 kB of memory

__far Data is located anywhere in memory

__paged Data is located in a 64 kB page, anywhere in memory

__rom Data defined with this qualifier is placed in ROM. This

section is excluded from automatic initialization by the

startup code. __rom is not the same as const.

Table 3-2: Memory type qualifiers

If you do not specify a memory type qualifier for the M16C, the variable

implicitly gets the default memory type of the selected memory model (see

section 3.5, Memory Models).

Functions are by default allocated in ROM. In this case you can omit the

memory qualifier __rom. You cannot use memory qualifiers for function

return values.

See also the assembler directive DEFSECT (Declare section), in section

3.3, Assembler Directives, in Chapter Assembly Language of the Reference
Manual.

Examples using explicit memory types

__rom char text[] = "No smoking";

__bita int array[10][4];

The memory type qualifiers are treated like any other data type specifier

(such as unsigned). This means the examples above can also be declared

as:

User's Manual3-14
C

 L
A

N
G

U
A

G
E

char __rom text[] = "No smoking";

int __bita array[10][4];

Pointers

Pointers declarations can have two memory type qualifiers. For example,

the pointer itself can reside in the bita space, while pointing to a function

that resides in the rom space: For example:

__rom char *__bita p; /* pointer residing in BITA,

 pointing to ROM */

In this declaration pointer p is qualified with __bita (allocated in

bit-addressable RAM), but points to a char which is qualified with __rom

(allocated in ROM). The memory type qualifier used to the left of the '*',

specifies the target memory of the pointer, the memory type qualifier used

to the right of the '*', specifies the storage memory of the pointer.

The TASKING M16C C compiler recognizes two types of pointers: pointers

with a size of 2 bytes or 4 bytes in memory. Pointers to __sfr, __bita

are 13-bit pointers (2 bytes in memory) and pointers to __near are 16-bit

pointers and can point only to locations in the lowest 64K bytes of

memory. Pointers to __far and __paged are 20-bit pointers (4 bytes in

memory) and can point anywhere in memory. Pointer arithmetic with

__far is 32 bits, whereas with __paged 16-bit pointer arithmetic is used,

because an __paged object is always located in a 64 kB page.

Function pointers for the M16C core are always __far pointers and

function pointers for the R8C core are always __near pointers.

Structures

A structure declaration is intended to specify the layout of a structure or

union. A structure declaration itself, nor its members can be bound to any

storage area. (Members of type pointer of course can point to variables in

a particular memory space).

A tag then is used to define objects of the declared structure type. You can

qualify this object with a memory type qualifier to allocate it in a particular

memory space. The whole object, including its members is allocated in the

specified memory.

struct S {

 __near int i; /* referring to storage: not correct */

 __far char *p; /* used to specify target memory: correct */

 };

C Language 3-15

• • • • • • • •

In the declaration above the compiler ignores the erroneous __near

memory type qualifier.

__near struct S my_struct;

The compiler now reserves 6 bytes for the object my_struct: 2 bytes for

int i and 4 bytes for pointer p which points to a variable in far memory.

The following example is also correct:

__near struct S {

 int i;

 __near char *p;

 } my_struct

The example above combines the structure declaration S and the structure

definition of my_struct. In this case the object my_struct is located in

near memory where 4 bytes are reserved: 2 bytes for int i and 2 bytes

for pointer p which points to a variable in near memory.

Typedef

Typedef declarations follow the same scope rules as any declared object.

Typedef names may be (re-)declared in inner blocks but not at the

parameter level. However, in typedef declarations, memory type

qualifiers are allowed. A typedef declaration should at least contain one

type qualifier.

typedef __near int NEARINT; /* storage type __near: OK */

typedef int __near *PTR; /* PTR points to an int in __near

 PTR resides in default memory */

3.4.2 ACCESSING PERIPHERALS FROM C: __SFR

It is easy to access Special Function Registers (SFRs) that relate to

peripherals from C. The SFRs are defined in a special function register file

(*.sfr) as symbol names for use with the compiler. An SFR file contains

the names of the SFRs and the bits in the SFRs.

Based on the target processor, the compiler includes the correct SFR file.

(See compiler option -C in chapter Tool Options of the Reference Manual).
Using the correct SFR file, you can access the special function registers and

its individual bits using the symbols defined in the SFR file.

User's Manual3-16
C

 L
A

N
G

U
A

G
E

Example use in C for the M30100 target with SFR file regm30100.sfr

P0 = 0x88; // fill port register p0

P1_3 = 1; // set bit 3 of port register P1

if (P1_4 == 1)

{

 P1_3 = 0;

}

INT0EN = 1; // use of bit name: set the int0 interrupt

 // enable bit in the external interrupt

 // enable register.

The compiler generates:

_main: type func

 mov.b #136, 224

 bset 3,225

 btst 4,225

 jltu _2

 bclr 3,225

_2:

 bset 0,150

You can easily find a list of defined SFRs and defined bits by inspecting

the SFR file for a specific core. The files are named regcore.sfr, for

example regm30100.sfr.

Define Special Function Registers: __sfr

With the __sfr memory type qualifier you can define a symbol as a

Special Function Register (SFR). The compiler may assume that special SFR

operations can be performed on such symbols. The compiler can decide

to use bit instructions for those special function registers that are bit

accessible. For example, if bits are defined in the SFR definition, these bits

can be accessed using bit instructions.

C Language 3-17

• • • • • • • •

A typical definition of a special function register looks as follows:

typedef struct

 _Bool __b0:1;

 _Bool __b1:1;

 _Bool __b2:1;

 _Bool __b3:1;

 _Bool __b4:1;

 _Bool __b5:1;

 _Bool __b6:1;

 _Bool __b7:1;

 ...

 _Bool __b31:1;

} __bitstruct_t;

#define P0 (*(__sfr unsigned char *)0x00E0)

#define P0_0 ((__sfr __bitstruct_t *)&P0)->__b0

#define INTEN (*(__sfr unsigned char *)0x0096)

#define INT0EN ((__sfr __bitstruct_t *)&INTEN)->__b0

Example of access to the SFR:

P0 = 0x56;

P0_0 = INT0EN;

It is incorrect to optimize away access to registers. Therefore, the compiler

deals with the special function registers as if they were declared with the

volatile qualifier. In fact __sfr is treated as volatile __bita.

Non-initialized global SFR variables are not cleared at program startup. For

example:

__sfr int i; // global SFR not cleared

It is not allowed to initialize global SFR variables. SFR variables are not

initialized at startup. For example:

__sfr int j=10; // not allowed to initialize global SFR

See also compiler option -C (Use SFR definitions for CPU) in section

Compiler Options in Chapter Tool Options of the Reference Manual.

User's Manual3-18
C

 L
A

N
G

U
A

G
E

3.4.3 DECLARE A DATA OBJECT AT AN ABSOLUTE

ADDRESS: __at()

Just like you can declare a variable in a specific part of memory, you can

also place an object at an absolute address in memory. This may be useful

to interface with other programs using fixed memory schemes, or to access

special function registers.

With the attribute __at() you can specify an absolute address.

Examples

unsigned char Display[80*24] __at(0x2000)

The array Display is placed at address 0x2000. In the generated

assembly, an absolute section is created. On this position space is reserved

for the variable Display.

int myvar __at(0x100)=1;

The variable myvar is placed at address 0x100 and is initialized at 1.

void f(void) __at(0xf0ff + 1) { }

The function f is placed at address 0xf100.

Restrictions

Take note of the following restrictions if you place a variable at an

absolute address:

• The argument of the __at() attribute must be a constant address

expression.

• You can place only variables with static storage at absolute addresses.

Parameters of functions, or automatic variables within functions cannot

be placed at absolute addresses.

• When declared extern, the variable is not allocated by the compiler.

When the same variable is defined within another module but on a

different address, the compiler, assembler or linker will not notice.

• When the variable is declared static, no public symbol will be

generated (normal C behavior).

• You cannot place structure members at absolute addresses.

• Absolute variables cannot overlap each other. If you define two

absolute variables at the same address, the assembler and / or linker

issues an error. The compiler does not check this.

C Language 3-19

• • • • • • • •

• When you define the same absolute variable within two modules, this

produces conflicts during link time. (An extern declaration in one

module and a definition of the same variable in another module is of

course possible.)

3.5 MEMORY MODELS

The M16C C compiler (cm16c) supports three reentrant memory models:

small, medium and large. You can select one of these models with the

compiler option -M.

If no memory model is specified on the command line, cm16c uses the

small model because this model generates the most efficient code. The

following table illustrates the meaning of each data model.

Model Data Constants Pointers

Small __near: in first 64 kB __near __near

Medium __near: in first 64 kB __paged __paged

Large __far: anywhere in 1 MB __far __far

Table 3-3: cm16c memory models

When you compile for the R8C/tiny (compiler option --r8c) only the

small model is allowed.

Using predefined macro __MODEL__ to write conditional code

With the predefined macro __MODEL__ you can write conditional C code

in one source for different memory models. Depending on the memory

model for which you compile, the macro __MODEL__ expands to:

's' (small memory model)

'm' (medium memory model)

'l' (large memory model)

Example

#if __MODEL__ == 'l'

/* this part is only for the large memory model */

...

#endif

User's Manual3-20
C

 L
A

N
G

U
A

G
E

3.6 USING ASSEMBLY IN THE C SOURCE: __asm()

With the __asm() keyword you can use assembly instructions in the C

source and pass C variables as operands to the assembly code. Be aware

that C modules that contain assembly are not portable and harder to

compile in other environments.

Furthermore, assembly blocks are not interpreted by the compiler: they are

regarded as a black box. So, it is your responsibility to make sure that the

assembly block is syntactically correct.

General syntax of the __asm keyword

__asm("instruction_template"

 [: output_param_list

 [: input_param_list

 [: register_save_list]]]);

instruction_template Assembly instructions that may contain

parameters from the input list or output list in

the form: %parm_nr [.regnum]

 %parm_nr[.regnum] Parameter number in the range 0 .. 31. With the

optional .regnum you can access an individual

register from a register pair. For example, with

the word register R2R0, .0 selects register R0.

output_param_list [["=[&]constraint_char"(C_expression)],...]

input_param_list [["constraint_char"(C_expression)],...]

 & Says that an output operand is written to before

the inputs are read, so this output must not be

the same register as any input.

 constraint _char Constraint character: the type of register to be

used for the C_expression.

(see table 3-4)

 C_expression Any C expression. For output parameters it must

be an lvalue, that is, something that is legal to

have on the left side of an assignment.

register_save_list [["register_name"],...]

 register_name Name of the register you want to reserve.

C Language 3-21

• • • • • • • •

Typical example: adding two C variables using assembly

int a, b, result;

void main(void)

{

 __asm("add.w %1, %2\n\t"

 "mov.w %2, %0" : "=m"(result) : "r"(a), "r"(b));

}

generated code:

mov.w _b, R0

mov.w _a, R1

add.w R1, R0

mov.w R0, _result

%0 corresponds to the first C variable, %1 corresponds to the second and

so on. The escape sequence \t generates a tab, \n generates a newline.

Specifying registers for C variables

With a constraint character you specify the register type for a parameter.

In the example above, the r is used to force the use of registers (Rn) for

the parameters a and b.

You can reserve the registers that are already used in the assembly

instructions, either in the parameter lists or in the reserved register list

(register_save_list, also called "clobber list"). The compiler takes account of

these lists, so no unnecessary register saves and restores are placed around

the inline assembly instructions.

Constraint
character

Type Operand Remark

a address register A0, A1 word register

A address register A1A0 double-word register

b bit R[0..3]H.[0..7]

R[0..3]L.[0..7]

A[0..1].[0..7]

C

_bitvar

bit registers/variables

h data register R[0..3]H

R[0..3]L

byte registers

i immediate value #value

m memory address, label,
_variable

memory variable or

function address

User's Manual3-22
C

 L
A

N
G

U
A

G
E

RemarkOperandTypeConstraint
character

r data register R[0..3] word registers

R registers R2R0, R3R1 double-word registers

number other operand same as

%number
used when input and

output operands must be

the same

Table 3-4: Available input/output operand constraints

Loops and conditional jumps

The compiler does not detect loops with multiple __asm statements or

(conditional) jumps across __asm statements and will generate incorrect

code for the registers involved.

If you want to create a loop with __asm, the whole loop must be

contained in a single __asm statement. The same counts for (conditional)

jumps. As a rule of thumb, all references to a label in an __asm statement

must be in that same statement.

Example 1: no input or output

A simple example without input or output parameters. You can just output

any assembly instruction:

__asm("nop");

Generated code:

nop

Example 2: using output parameters

Assign the result of inline assembly to a variable. With the constraint h a

byte data register is chosen for the parameter; the compiler decides which

data register it uses. The %0 in the instruction template is replaced with the

name of this data register. Finally, the compiler generates code to assign

the result to the output variable.

char result;

void main(void)

{

 __asm("mov.b #0xFF,%0" : "=h"(result));

}

C Language 3-23

• • • • • • • •

Generated assembly code:

mov.b #0xFF,R0H

mov.b R0H,_result

Example 3: using input and output parameters

Add two C variables and assign the result to a third C variable. Data

registers are used for the input and output parameters (constraint r, %1 for

a and %2 for b in the instruction template) and memory is used for the

output parameter (constraint m, %0 for result in the instruction template).

The compiler generates code to move the input expressions into the input

registers and to assign the result to the output variable.

int a, b, result;

void add2(void)

{

 __asm("add.w %1, %2\n\t"

 "mov.w %2, %0" : "=m"(result) : "r"(a), "r"(b));

}

void main(void)

{

 a = 3;

 b = 4;

 add2();

}

Generated assembly code:

_add2:

 mov.w _b, R0

 mov.w _a, R1

 add.w R1, R0

 mov.w R0, _result

_main:

 mov.w #3, _a

 mov.w #4, _b

 jsr _add2

User's Manual3-24
C

 L
A

N
G

U
A

G
E

Example 4: reserve registers

Sometimes an instruction knocks out certain specific registers. The most

common example of this is a function call, where the called function is

allowed to do whatever it likes with some registers. If this is the case, you

can list specific registers that get clobbered by an operation after the

inputs.

Same as Example 3, but now register R0 is a reserved register. You can do

this by adding a reserved register list (: "R0"). As you can see in the

generated assembly code, register R0 is not used (the first register used is

R1).

int a, b, result;

void add2(void)

{

 __asm("add.w %1, %2\n\t"

 "mov.w %2, %0" : "=m"(result) : "r"(a), "r"(b) : "R0");

}

Generated assembly code:

mov.w _b, R2

mov.w _a, R1

add.w R1, R2

mov.w R2, _result

Example 5: input and output are the same

If the input and output must be the same you must use a number

constraint. The following example inverts the value of the input variable

ivar and returns this value to ovar. Since the assembly instruction not.w

uses only one register, the return value has to go in the same place as the

input value. To indicate that ivar uses the same register as ovar, the

constraint '0' is used which indicates that ivar also corresponds with %0.

int ovar;

void invert(int ivar)

{

 __asm ("not.w %0": "=r"(ovar): "0"(ivar));

}

void main(void)

{

 invert(255);

}

C Language 3-25

• • • • • • • •

Generated assembly code:

_invert:

 not.w R0

 mov.w R0,_ovar

_main:

 mov.w #255,R0

 jsr _invert

Example 6: inlining assembly functions

Because you can use any assembly instruction with the __asm keyword,

you can use the __asm keyword to perform tasks that have no

equivalence in C. By inlining such a function, rather than calling it, you

can create fast 'functions' to perform tasks that have no equivalent in C.

In fact, this way you create your own intrinsic functions.

First write a function with assembly in the body using the keyword __asm.

We use the add routine from Example 3.

Next make sure that the function is inlined rather than being called. You

can do this with the function qualifier inline. This qualifier is discussed

in more detail in section 3.12.3, Inlining Functions.

int a, b, result;

inline void my_add(void)

{

 __asm("add.w %1, %2\n\t"

 "mov.w %2, %0" : "=m"(result) : "r"(a), "r"(b));

}

void main(void)

{

 // call to function my_add

 my_add();

}

When you call this function from within your C source, the next assembly

code will be inlined (not called!):

_main:

 ; __my_add code is inlined here

 mov.w _b, R0

 mov.w _a, R1

 add.w R1, R0

 mov.w R0, _result

User's Manual3-26
C

 L
A

N
G

U
A

G
E

Example 7: accessing individual registers in a register pair

You can access the individual registers in a register pair by adding a '.'

after the operand specifier in the assembly part, followed by the index in

the register pair.

int f1, f2;

void foo(long l)

{

 __asm ("mov.w %2.0, %0\n\t"

 "mov.w %2.1, %1"

 : "=m"(f1), "=m"(f2): "R"(l));

}

The first mov.w instruction uses index #0 of argument 2 (which is a long

placed in a RnRn register) and the second mov.w instruction uses index

#1. The input operand is located in register pair R2R0. The assembly

output becomes:

 mov.w R0, _f1

 mov.w R2, _f2

 rts

If the index is not a valid index (for example, the register is not a register

pair, or the argument has not a register constraint), the '.' is passed into the

assembly output. This way you can still use the '.' in assembly instructions.

C Language 3-27

• • • • • • • •

3.7 CONTROLLING THE COMPILER: PRAGMAS

Pragmas are keywords in the C source that control the behavior of the

compiler. Pragmas overrule compiler options.

The syntax is:

#pragma pragma-spec [ON | OFF | DEFAULT]

or:

_Pragma("pragma-spec [ON | OFF | DEFAULT]")

For example, you can set a compiler option to specify which optimizations

the compiler should perform. With the #pragma optimize flags you

can set an optimization level for a specific part of the C source. This

overrules the general optimization level that is set in the C compiler

Optimization page in the Project Options dialog of EDE (command line

option -O).

The compiler recognizes the following pragmas, other pragmas are

ignored.

Pragma name Description

alias symbol=defined-symbol Defines an alias for a symbol

align

align-data

align-func

Specifies object alignment.

See compiler option --align in section

4.1, Compiler Options in Chapter Tool
Options of the Reference Manual.

auto_switch
jump_switch
linear_switch
lookup_switch

Specifies switch statement.

See section 3.11, Switch Statement

clear

noclear
Specifies 'clearing' of non-initialized

static/public variables

extension isuffix Enables the language extension to

specify imaginary floating-point

constants by adding an 'i' to the

constant

extern symbol Forces an external reference

inline

noinline

smartinline

Specifies function inlining.

See section 3.12.3, Inlining Functions.

User's Manual3-28
C

 L
A

N
G

U
A

G
E

DescriptionPragma name

macro

nomacro
Specifies macro expansion

message "string" ... Emits a message to standard output

optimize flags
endoptimize

Controls compiler optimizations.

See section 5.3, Compiler
Optimizations in Chapter Using the
Compiler

renamesect spec
endrenamesect

Changes section names

See section 3.13, Section Naming and

compiler option -R in section 4.1,

Compiler Options in Chapter Tool
Options of the Reference Manual

source
nosource

Specifies which C source lines must

be shown in assembly output.

See compiler option -s in section 4.1,

Compiler Options in Chapter Tool
Options of the Reference Manual.

tradeoff level Controls the speed/size tradeoff for

optimizations.

See compiler option -t in section 4.1,

Compiler Options in Chapter Tool
Options of the Reference Manual.

warning [number,...] Disables warning messages.

See compiler option -w in section 4.1,

Compiler Options in Chapter Tool
Options of the Reference Manual.

weak symbol Marks a symbol as 'weak'

Table 3-5: Overview of pragmas

For a detailed description of each pragma, see section 1.6, Pragmas, in
Chapter C Language of the Reference Manual.

3.8 PREDEFINED MACROS

In addition to the predefined macros required by the ISO C standard, the

TASKING C compiler supports the predefined macros as defined in Table

3-6. The macros are useful to create conditional C code.

C Language 3-29

• • • • • • • •

Macro Description

__SINGLE_FP__ Defined when you use compiler option -F (Treat

double as float)

__CM16C__ Identifies the compiler. You can use this symbol to flag

parts of the source which must be recognized by the

cm16c compiler only. It expands to the version

number of the compiler.

__CPU__ Expands to the CPU type specified to the compiler

option -C, or 0 otherwise.

__LITTLE_ENDIAN__ Expands to 1, indicating the processor accesses data

in little-endian.

__MODEL__ Identifies the memory model for which the current

module is compiled. For example, if you compile for

the small memory model, the macro expands to s.

__M16C__ Defined when you select a M16C core.

__R8C__ Defined when you select a R8C core (--r8c).

__TASKING__ Identifies the compiler as a TASKING compiler. It

expands to 1.

__DSPC__ Indicates conformation to the DSP-C standard.

Expands to 0, DSP-C extensions are not supported.

__VERSION__ Identifies the version number of the compiler. For

example, if you use version 3.0r1 of the compiler,

__VERSION__ expands to 3000 (dot and revision

number are omitted, minor version number in 3 digits).

__REVISION__ Identifies the revision number of the compiler. For

example, if you use version 3.0r1 of the compiler,

__REVISION__ expands to 1.

__BUILD__ Identifies the build number of the compiler, composed

of decimal digits for the build number, three digits for

the major branch number and three digits for the

minor branch number. For example, if you use build

1.22.1 of the compiler, __BUILD__ expands to

1022001. If there is no branch number, the branch

digits expand to zero. For example, build 127 results

in 127000000.

Table 3-6: Predefined macros

Example

#ifdef __CM16C__

 /* this part is for the M16C compiler */

#endif

User's Manual3-30
C

 L
A

N
G

U
A

G
E

3.9 INITIALIZED VARIABLES

Non-static initialized variables use the same amount of space in both ROM

and RAM (for all possible RAM memory spaces). This is because the

initializers are stored in ROM and copied to RAM at start-up.

An exception is when an initialized variable resides in ROM by means of

the __rom memory type qualifier or when you specify the option

--romconstants to force constants in rom:

Examples

 int i = 100; /* 2 bytes in far rom and

 2 bytes in ram */

__rom int j = 3; /* 2 bytes in rom, no ram */

__rom char a[] = "HELP"; /* 5 bytes in rom, no ram */

Option --romconstants enabled:

const __far int i = 100; /* 2 bytes in far rom only */

See also the next section 3.10, Strings.

3.10 STRINGS

A string is defined as a separate occurrence of a string in a C program.

Array variables initialized with strings can have storage qualifiers, and are

not the same as strings. See also section 3.9 Initialized Variables.

By default, strings are copied from ROM to RAM at start-up. However,

string literals in a C source program, which are not used to initialize an

array, have static storage duration and the ISO C standard does not require

these strings to be modifiable. Therefore, allocating strings in ROM only is

allowed.

With compiler option --romstrings the compiler will place strings in the

ROM area.

Examples

char *world = "hello"; /* 5 bytes in far rom

 5 bytes in ram */

Option --romstrings enabled (in large memory model):

char *world = "hello"; /* 5 bytes in far rom only */

C Language 3-31

• • • • • • • •

3.11 SWITCH STATEMENT

The TASKING C compiler supports three ways of code generation for a

switch statement: a jump chain (linear switch), a jump table or a lookup

table.

A jump chain is comparable with an if/else-if/else-if/else construction. A

jump table is a table filled with target addresses for each possible switch

value. The switch argument is used as an index within this table. A lookup
table is a table filled with a value to compare the switch argument with

and a target address to jump to. A binary search lookup is performed to

select the correct target address.

By default, the compiler will automatically choose the most efficient switch

implementation based on code and data size and execution speed. You

can influence the selection of the switch method with compiler option -t

(--tradeoff), which determines the speed/size tradeoff.

It is obvious that, especially for large switch statements, the jump table

approach executes faster than the lookup table approach. Also the jump

table has a predictable behavior in execution speed. No matter the switch

argument, every case is reached in the same execution time. However,

when the case labels are distributed far apart, the jump table becomes

sparse, wasting code memory. The compiler will not use the jump table

method when the waste becomes excessive.

With a small number of cases, the jump chain method can be faster in

execution and shorter in size.

How to overrule the default switch method

You can overrule the compiler chosen switch method with a pragma:

#pragma linear switch /* force jump chain code */

#pragma jump_switch /* force jump table code */

#pragma lookup_switch /* force lookup table code */

#pragma auto_switch /* let the compiler decide

 the switch method used */

Pragma auto_switch is also the default of the compiler.

User's Manual3-32
C

 L
A

N
G

U
A

G
E

3.12 FUNCTIONS

3.12.1 PARAMETER PASSING

A lot of execution time of an application is spent transferring parameters

between functions. The fastest parameter transport is via registers.

Therefore, function parameters are first passed via registers. If no more

registers are available for a parameter, the parameter is passed via the

stack. The table below shows the register usage when parameters of

several types are passed.

Parameter Type Parameter Number

1 2 3 4 5 .. 16

__bit / _Bool 0,R0 1,R0 2,R0 3,R0 4,R0 .. 15,R0

char R0L R0H

8-bit struct R0L R0H

short / int R0 R2 R1 R3

16-bit struct R0 R2 R1 R3

16-bit pointer A0 A1

32-bit pointer A1A0

long R2R0 R3R1

long long R3R1R2R0

float /

float _Imaginary

R2R0 R3R1

float _Complex R3R1R2R0

double /

double _Imaginary

R3R1R2R0

Table 3-7: Register usage for parameter passing

All '...' parameters of a variable argument list function are always passed

over the stack. Parameters are pushed in reverse order, so all ISO C

macros defined in stdarg.h can be applied.

C Language 3-33

• • • • • • • •

Example with five arguments

func1(char a, long b, long c, int d, char e)

- a (first parameter) is passed in register R0L

- b (second parameter) is passed in registers R3R1

- c (third parameter) is passed via the stack

- d (fourth parameter) is passed in register R2

- e (fifth parameter) is passed in register R0H

Example with variable argument function

printf(char *format, ...)

- format (first parameter) is passed in register A0

- all other parameters are passed via the stack

3.12.2 FUNCTION RETURN TYPES

The C compiler uses registers to store C function return values, depending

on the function return types.

Return type Register

__bit / _Bool C

char R0L

8-bit struct R0L

short / int R0

16-bit struct R0

16-bit pointer A0

32-bit pointer A1A0

long R2R0

long long R3R1R2R0

float /

float _Imaginary

R2R0

float _Complex R3R1R2R0

double /

double _Imaginary

R3R1R2R0

double _Complex on the stack

Table 3-8: Register usage for function return types

User's Manual3-34
C

 L
A

N
G

U
A

G
E

3.12.3 INLINING FUNCTIONS: INLINE

You can use the inline keyword to tell the compiler to inline the

function body instead of calling the function. Use the __noinline

keyword to tell the compiler not to inline the function body.

Normally, you must define inline functions in the same source module as

in which you call the function, because the compiler only inlines a

function in the module that contains the function definition. When you

need to call the inline function from several source modules, you must:

• include the definition of the inline function in each module (for

example using an include file containing the definition).

• enable MIL linking on the Optimizations page of the C compiler

options and compile the involved files in the same run.

The compiler inserts the function body at the place the function is called.

If the function is not called at all, the compiler does not generate code for

it.

Example: inline

int w,x,y,z;

inline int add(int a, int b)

{

 return(a + b);

}

void main(void)

{

 w = add(1, 2);

 z = add(x, y);

}

The function add() is defined before it is called. The compiler inserts

(optimized) code for both calls to the add() function. The generated

assembly is:

C Language 3-35

• • • • • • • •

_main:

 mov.w #3, _w

 mov.w _y, A0

 add.w _x, A0

 mov.w A0, _z

Example: #pragma inline / #pragma noinline

Instead of the inline qualifier, you can also use #pragma inline and

#pragma noinline to inline a function body:

int w,x,y,z;

#pragma inline

int add(int a, int b)

{

 return(a + b);

}

#pragma noinline

void main(void)

{

 w = add(1, 2);

 z = add(x, y);

}

If a function has an inline/__noinline function qualifier, then this

qualifier will overrule the current pragma setting.

#pragma smartinline

By default, small fuctions that are not too often called, are inlined. This

reduces execution time at the cost of code size (compiler option -Oi).

With the #pragma noinline / #pragma smartinline you can

temporarily disable this optimization.

With the compiler options --inline-max-incr and --inline-max-size

you have more control over the function inlining process of the compiler.

See for more information of these options, section Compiler Options in
Chapter Tool Options of the Reference Manual.

User's Manual3-36
C

 L
A

N
G

U
A

G
E

Combining inline with __asm to create intrinsic functions

With the keyword __asm it is possible to use assembly instructions in the

body of an inline function. Because the compiler inserts the (assembly)

body at the place the function is called, you can create your own intrinsic

function.

See section 3.6, Using Assembly in the C Source, for more information

about the __asm keyword.

Example 6 in that section shows how to inline assembly functions with the

inline keyword.

3.12.4 INTRINSIC FUNCTIONS

Some specific M16C assembly instructions have no equivalence in C.

Intrinsic functions give the possibility to use these instructions. Intrinsic

functions are predefined functions that are recognized by the compiler.

The compiler then generates the most efficient assembly code for these

functions.

The compiler always inlines the corresponding assembly instructions in the

assembly source rather than calling the function. This avoids unnecessary

parameter passing and register saving instructions which are normally

necessary when a function is called.

Intrinsic functions produce very efficient assembly code. Though it is

possible to inline assembly code by hand, registers are used even more

efficient by intrinsic functions. At the same time your C source remains

very readable. Intrinsic functions do not limit the optimization possibilities

of the compiler opposed to assembly that is hand coded with __asm.

You can use intrinsic functions in C as if they were ordinary C (library)

functions. All intrinsics begin with a double underscore character. The

following example illustrates the use of an intrinsic function and its

resulting assembly code.

char q;

q = __divb_q(10,3); // return quotient of divide

The resulting assembly code is inlined rather than being called:

mov.w #10, R0

div.b #3

mov.b R0L, _q

C Language 3-37

• • • • • • • •

For extended information about all available intrinsic functions, refer to

section 1.5, Intrinsic Functions, in Chapter C Language of the Reference
Manual.

3.12.5 CALLING ASSEMBLY FUNCTIONS: __asmfunc

For a fixed register-based interface between C and assembly functions the

function qualifier __asmfunc is available. You can use this function

qualifier for a prototype of an assembly function to be called from C or for

a function definition of a C function to be called from assembly. Normally,

the C compiler adds a leading underscore when it generates an assembly

function, with __asmfunc the C compiler does not add the extra

underscore.

Example:

 /* prototype of assembly function */

extern __asmfunc int

special_out(int port, long config, int value);

void main(void)

{

 long cfg;

 int y;

 ...

 if(special_out(1, cfg, y)) /* call assembly

 function */

 {

 ...

 }

 ...

}

The number of arguments that can be passed is limited by the number of

available registers. (See section 3.12.1, Parameter Passing. If too many

arguments are used, the compiler will issue an error.

User's Manual3-38
C

 L
A

N
G

U
A

G
E

3.12.6 INTERRUPT FUNCTIONS

The TASKING M16C C compiler supports a number of function qualifiers

and keywords to program interrupt service routines (ISR).

An interrupt service routine (or: interrupt function, or: interrupt handler) is

called when an interrupt event (or: service request) occurs. This can be a

software interrupt or a hardware interrupt.

A software interrupt occurs when certain instructions are executed.

Software interrupt are non-maskable, which means that the interrupt

cannot be enable or disabled by the interrupt enable flag (I flag) or that its

interrupt priority cannot be changed by priority level.

A hardware interrupt can be a special (non-maskable) interrupt, for

example an interrupt triggered by a watchdog timer, or a peripheral

function interrupt generated by a microcomputer's internal function.

Peripheral function interrupts are maskable, which means that the interrupt

can be enable or disabled by the interrupt enable flag (I flag) or that its

interrupt priority can be changed by priority level.

Each maskable interrupt has an interrupt priority level. This number (0 to

7) is set in the interrupt control register (xxxIC) by the interrupt control

unit. If multiple interrupts occur at the same time, the interrupt request that

has the highest priority is accepted. A request is handled if the priority

number is higher than the processor interrupt priority level (IPL). An

interrupt service routine can be interrupted again by another interrupt

request with a higher priority. Interrupts with priority number 0 are never

handled.

The M16C uses two interrupt vector tables for the hardware and software

interrupts: a relocatable vector table and a fixed vector table. The interrupt

vector contains the start address of the interrupt service routine.

With the following function qualifiers you can declare an interrupt handler

using the relocatable or fixed vector table respectively:

__interrupt()

__interrupt_fixed()

For an extensive description of the M16C interrupt system, see chapter

Overview of Interrupt in the M16C Group Specification [Renesas]

C Language 3-39

• • • • • • • •

3.12.6.1 DEFINING AN INTERRUPT SERVICE ROUTINE:

__interrupt()

A function can be declared as an interrupt service routine with one of the

following function qualifiers:

__interrupt(vector,...)

__interrupt_fixed(vector,...)

Both function qualifiers takes vector as an argument which identifies the

interrupt number entry in the interrupt vector table. This number must be

in the range 0 to 63 for __interrupt() or 0 to 8 for

__interrupt_fixed(). Interrupt functions cannot accept arguments and

do not return anything.

For the relocatable vector table use:

__interrupt(vector,...)

void isr(void)

{ ... }

For the fixed vector table use:

__interrupt_fixed(vector,...)

void isr(void)

{ ... }

When you define an interupt service routine, the compiler generates the

appropriate interrupt vector, consisting of an instruction jumping to the

interrupt function. You can suppress this with the compiler option

--novector or the #pragma novector. The difference between a normal

function and an interrupt function is that an interrupt function ends with a

RETI instruction instead of a RET instruction, and that all registers that

might possibly be corrupted during the execution of the interrupt function

are saved on function entry (this is called the interrupt frame) and restored

on function exit.

User's Manual3-40
C

 L
A

N
G

U
A

G
E

Example

The next example illustrates the function definition for a function for a

software interrupt with vector number 0x30 in the relocatable vector table:

int c;

void __interrupt(0x30) transmit(void)

{

 c = 1;

}

Compiler option --novector (Do not generate interrupt vectors)

3.12.6.2 REGISTER BANK SWITCHING: __bankswitch

Normally when an interrupt function is called, all registers that might

possibly be corrupted during the execution of the interrupt function are

saved on the stack so the registers are available for the interrupt function.

After return from thrrupt function the original values are restored from the

stack.

With the function qualifier __bankswitch you can specify to use register

bank 1 for the interrupt function. This minimizes the interrupt latency

because registers do not need to be pushed on the stack. You can use this

to reduce time for high-speed interrupt handling.

__interrupt(vector,...) __bankswitch

void isr(void)

{

...

}

__interrupt_fixed(vector,...) __bankswitch

void isr(void)

{

...

}

C Language 3-41

• • • • • • • •

3.12.6.3 INTERRUPT FRAME: __frame()

With the function qualifier __frame() you can specify which registers

must be saved for a particular interrupt function. Only the specified

registers will be pushed and popped from the stack. The syntax is:

__interrupt(vector,...) __frame(reg,...)

void isr(void)

{

...

}

__interrupt_fixed(vector,...) __frame(reg,...)

void isr(void)

{

...

}

where, reg can be one of the following registers: R0..R3, A0, A1, FB or SB.

If you do not specify the function qualifier __frame(), the C compiler

determines which registers must be pushed and popped.

Example

__interrupt(1) __frame(R0,R1)

void alarm(void)

{

 /* an interrupt function */

}

When you do not want the interrupt frame (saving/restoring registers) to

be generated you can use the compiler option --noframe. In that case

you will have to specify your own interrupt frame. For this you can use

the inline capabilities of the compiler.

Compiler option --noframe (Do not generate frame for interrupt handler)

User's Manual3-42
C

 L
A

N
G

U
A

G
E

3.13 SECTION NAMING

The compiler generates code and data in several types of sections. The

compiler uses the following section naming convention:

module-name[_attr]_mem[_address]

The mem suffix depends on the type of the section and the optional attr
suffix depends on the section attributes and determines if the section is

initialized, constant or uninitialized. The compiler adds the optional

_address when you use the __at() keyword to specify an absolute

address.

Type
mem
suffix

Description Qualifier

code CO program code

data DA __near data (first 64 kB of memory) __near

fdata FD __far data __far

bit BI __bit type section

bita BA __bita type section (bit-addressable data) __bita

Table 3-9: Section types and mem section name suffixes

Attribute
attr
suffix

Description Qualifier

init INI defines that the section contains

initialization data, which is copied from ROM

to RAM at program startup

clear CLR section is cleared (zeroed) at startup

noclear NCL section is not cleared at startup

romdata RO section contains data to be placed in ROM __rom

fit 65536 PG section fits in a 64 kB page __paged

Table 3-10: Section attributes and attr section name suffixes

Rename sections

You can change the default section names with the following pragma:

#pragma renamesect mem=name [attribute] [__at(address)]

C Language 3-43

• • • • • • • •

The new name replaces the module-name part of the section names that

have type mem. With the optional attribute you can overrule the section

attribute. With the optional __at() keyword you can place a section at an

absolute address.

For example,

#pragma renamesect DA=flash clear __at(0x20)

All sections of type 'data' have the name "flash_attr_DA" and have

attribute 'clear' and 'at 0x20'.

The following pragma restores the default section naming for type mem.

#pragma endrenamesect mem

See also compiler option -R in section Compiler Options in Chapter Tool
Options of the Reference Manual.

User's Manual3-44
C

 L
A

N
G

U
A

G
E

3.14 LIBRARIES

The TASKING C compiler comes with standard C libraries (ISO/IEC

9899:1999) and header files with the appropriate prototypes for the library

functions. The standard C libraries are available in object format and in C

or assembly source code.

A number of standard operations within C are too complex to generate

inline code for. These operations are implemented as run-time library

functions.

The lib directory of the toolchain contains subdirectories with separate

libraries for the M16C and the R8C.

3.14.1 OVERVIEW OF LIBRARIES

The following tables lists the libraries included in the M16C toolchain, for

the M16C and R8C processors.

Library to link Description

libcs.a

libcm.a

libcl.a

C library for small, medium or large memory model

(Some functions require the floating-point library. Also

includes the startup code.)

libcss.a

libcms.a

libcls.a

Single precision C library for small, medium or large memory

model (compiler option -F)

(Some functions require the floating-point library. Also

includes the startup code.)

libfps.a

libfpm.a

libfpl.a

Floating-point library (non-trapping) for each model

libfpst.a

libfpmt.a

libfplt.a

Floating-point library (trapping) for each model

(Control program option --fp-trap)

librts.a

librtm.a

librtl.a

Run-time library for each model

Table 3-11: Overview of M16C libraries

C Language 3-45

• • • • • • • •

Library to link Description

libc.a C library

(Some functions require the floating-point library. Also

includes the startup code.)

libcs.a Single precision C library (compiler option -F)

(Some functions require the floating-point library. Also

includes the startup code.)

libfp.a Floating-point library (non-trapping)

libfpt.a Floating-point library (trapping)

(Control program option --fp-trap)

librt.a Run-time library

Table 3-12: Overview of R8C libraries

See section 2.2, Library Functions, in Chapter Libraries of the Reference
Manual for an extensive description of all standard C library functions.

3.14.2 PRINTF AND SCANF FORMATTING ROUTINES

The C library functions printf(), fprintf(), vfprintf(),

vsprintf(), ... call one single function, _doprint(), that deals with the

format string and arguments. The same applies to all scanf type functions,

which call the function _doscan(), and also for the wprintf and

wscanf type functions which call _dowprint() and _dowscan()

respectively. The C library contains three versions of these routines: int,

long and long long versions. If you use floating-point, the formatter

function for floating-point _doflt() or _dowflt() is called. Depending

on the formatting arguments you use, the correct routine is used from the

library. Of course the larger the version of the routine the larger your

produced code will be.

Note that when you call any of the printf/scanf routines indirect, the

arguments are not known and always the long long version with

floating-point support is used from the library.

User's Manual3-46
C

 L
A

N
G

U
A

G
E

Example:

#include <stdio.h>

long L;

void main(void)

{

 printf("This is a long: %ld\n", L);

}

The linker extracts the long version without floating-point support from

the library.

3.14.3 REBUILDING LIBRARIES

If you have manually changed one of the standard C library functions, you

need to recompile the standard C libraries.

'Weak' symbols are used to extract the most optimal implementation of a

function from the library. For example if your application does not use

floating-point variables the prinf alike functions do not support

floating-point types either. The compiler emits strong symbols to guide

this process. Do not change the order in which modules are placed in the

library since this may break this process.

The sources of the libraries are present in the lib\src directory. This

directory also contains subdirectories with a makefile for each type of

library:

lib\src\

 m16c\

 libcl\makefile

 libcm\makefile

 libcs\makefile

 librtl\makefile

 librtm\makefile

 librts\makefile

 r8c\

 libc\makefile

 librt\makefile

To rebuild the libraries, follow the next steps.

C Language 3-47

• • • • • • • •

First make sure that the bin directory for the toolchain is included in your

PATH environment variable. (See section 1.3.2, Configuring the Command
Line Environment.

1. Make the directory lib\src\m16c\libcl the current working

directory.

This directory contains a makefile which also uses the default make
rules from mkm16c.mk from the cm16c\etc directory.

2. Edit the makefile.

See section 9.3, Make Utility, in Chapter Utilities for an extensive

description of the make utility and makefiles.

3. Assuming the lib\src\m16c\libcl directory is still the current

working directory, type:

mkm16c

to build the library.

The new library is created in the lib\src\m16c\libcl directory.

4. Make a backup copy of the original library and copy the new library to

the lib\m16c directory of the product.

3.15 CONVERTING C MODULES TO ISO C99

The TASKING M16C C compiler fully supports the ISO/IEC 9899:1999(E)

standard. V2.3 and older C source files may not meet the requirements of

the ISO C99 standard. However, EDE provides an option to convert these

files automatically.

To convert one or more C source files:

1. Click on the Convert C modules to the ISO-C style button.

The Conversion dialog box appears.

User's Manual3-48
C

 L
A

N
G

U
A

G
E

2. Select whether you want to convert All C files in project or the Current

selected file.

3. Enable or disable the options Prompt before replace and Insert

comment with each replacement.

If you select comments, you can format the comments to be inserted.

4. Type a format string in the comment field.

For example, to insert C++ style comments with a date, type:

// 2004 1 (where 1 is replaced with the standard replacement message).

5. Click OK to start the conversion.

During conversion the following will be changed:

• M16C keywords with a single underscore are replaced with keywords

with double underscore. For example, replace _bit with __bit.

• Old predefined macro names are replaced with new macro names. For

example, replace _MODEL with __MODEL__.

• Pragmas are replaced, removed or commented because their meaning

has changed. For example, replace #pragma asm/endasm part with

__asm keyword.

• M16C intrinsic functions with a single underscore are replaced with

intrinsic functions with double underscore. For example, replace

_absb with __absb.

4

ASSEMBLY

LANGUAGE
C

H
A

P
T

E
R

User's Manual4-2
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

4

C
H

A
P

T
E

R

Assembly Language 4-3

• • • • • • • •

4.1 INTRODUCTION

This chapter describes the most important aspects of the M16C assembly

language. For a complete overview of the M16C assembly language, refer

to the M16C Series Software Manual [Renesas].

4.2 ASSEMBLY SYNTAX

An assembly program consists of zero or more statements. A statement

may optionally be followed by a comment. Any source statement can be

extended to more lines by including the line continuation character (\) as

the last character on the line. The length of a source statement (first line

and continuation lines) is only limited by the amount of available memory.

Mnemonics and directives are case insensitive. Labels, symbols, directive

arguments, and literal strings are case sensitive.

The syntax of an assembly statement is:

[label[:]] [instruction | directive | macro_call] [;comment]

label A label is a special symbol which is assigned the value and

type of the current program location counter. A label can

consist of letters, digits and underscore characters (_). The

first character cannot be a digit. A label which is prefixed by

whitespace (spaces or tabs) has to be followed by a colon (:).

The size of an identifier is only limited by the amount of

available memory.

Examples:

 LAB1: ; This label is followed by a colon and

 can be prefixed by whitespace

LAB1 ; This label has to start at the beginning

 of a line

User's Manual4-4
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

instruction An instruction consists of a mnemonic and zero, one or more

operands. It must not start in the first column. Operands are

described in section 4.4, Operands of an Assembly
Instruction. The instructions are described in the M16C Series
Software Manual [Renesas].

Examples:

REIT ; No operand

PUSH.W R0 ; One operand

ADD.W R0,R1 ; Two operands

STZX #12,#22,15[FB] ; Three operands

directive With directives you can control the assembler from within the

assembly source. These must not start in the first column.

Directives are described in section 4.8, Assembler Directives
and Controls.

macro_call A call to a previously defined macro. It must not start in the

first column. Macros are described in section 4.10 Macro
Operations.

You can use empty lines or lines with only comments.

Apart from the assembly statements as described above, you can put a

so-called 'control line' in your assembly source file. These lines start with

a $ in the first column and alter the default behavior of the assembler.

$control

For more information on controls see section 4.8, Assembler Directives and
Controls.

4.3 ASSEMBLER SIGNIFICANT CHARACTERS

You can use all ASCII characters in the assembly source both in strings and

in comments. Also the extended characters from the ISO 8859-1 (Latin-1)

set are allowed.

Some characters have a special meaning to the assembler. Special

characters associated with expression evaluation are described in section

4.6.3, Expression Operators. Other special assembler characters are:

Assembly Language 4-5

• • • • • • • •

Character Description

; Start of a comment

\ Line continuation character or

Macro operator: argument concatenation

? Macro operator: return decimal value of a symbol

% Macro operator: return hex value of a symbol

^ Macro operator: override local label

" Macro string delimiter or

Quoted string DEFINE expansion character

' String constants delimiter

@ Start of a built-in assembly function

$ Location counter substitution

Constant number (immediate addressing mode)

++ String concatenation operator

[] Substring delimiter or

Indirect addressing mode operator

Note that macro operators have a higher precedence than expression

operators.

4.4 OPERANDS OF AN ASSEMBLY INSTRUCTION

In an instruction, the mnemonic is followed by zero, one or more

operands. An operand has one of the following types:

Operand Description

symbol A symbolic name as described in section 4.5, Symbol
Names. Symbols can also occur in expressions.

register Any valid data register (R0, R0H, R0L, R1, R1H, R1L, R2,

R3), address register (A0, A1), frame base register (FB),

static base register (SB), control register (PC, INTB, USP,

ISP, FLG) or special function register. For some instruction

you can use a register pair (R2R0, R3R1, A1A0).

expression Any valid expression as described in the section 4.6,

Assembly Expressions.

address A combination of expression, register and symbol.

User's Manual4-6
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

The M16C assembly language has several addressing modes. These

described in detail in the M16C Series Software Manual [Renesas].

4.5 SYMBOL NAMES

User-defined symbols

A user-defined symbol can consist of letters, digits and underscore

characters (_). The first character cannot be a digit. The size of an

identifier is only limited by the amount of available memory. The case of

these characters is significant. You can define a symbol by means of a

label declaration or an equate or set directive.

Labels

Symbols used for memory locations are referred to as labels.

Reserved symbols

Register names and names of assembler directives and controls are

reserved for the system, so you cannot use these for user-defined symbols.

The case of these built-in symbols is insignificant.

Examples

 CON1 EQU 3H ; The symbol CON1 represents

 ; the value of 3 hex

 MOV.W CON1 + 020H, R1 ; Move contents of address

 ; 023H to register R1

Valid symbol names Invalid symbol names

loop_1

ENTRY

a_B_c

_aBC

1_loop (starts with a number)
R0 (reserved register name)
DEFINE (reserved directive name)

Assembly Language 4-7

• • • • • • • •

4.6 ASSEMBLY EXPRESSIONS

An expression is a combination of symbols, constants, operators, and

parentheses which represent a value that is used as an operand of an

assembler instruction (or directive).

Expressions can contain user-defined labels (and their associated integer

or floating-point values), and any combination of integers, floating-point

numbers, or ASCII literal strings.

Expressions follow the conventional rules of algebra and boolean

arithmetic.

Expressions that can be evaluated at assembly time are called absolute
expressions. Expressions where the result is unknown until all sections

have been combined and located, are called relocatable or relative
expressions.

When any operand of an expression is relocatable, the entire expression is

relocatable. Relocatable expressions are emitted in the object file and are

evaluated by the linker. Relocatable expressions can only contain integral

functions; floating-point functions and numbers are not supported by the

ELF/DWARF object format.

The assembler evaluates expressions with 64-bit precision in two's

complement.

An expression can be any of the following:

- numeric contant

- string

- symbol

- expression binary_operator expression

- unary_operator expression

- (expression)

- function call

All types of expressions are explained in separate sections.

User's Manual4-8
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

4.6.1 NUMERIC CONSTANTS

Numeric constants can be used in expressions. If there is no prefix, the

assembler assumes the number is a decimal number.

Base Description Example

Binary '0B' or '0b' followed by binary digits (0,1).
0B1101

0b11001010

Hexadecimal
'0X' or '0x' followed by a hexadecimal

digits (0-9, A-F, a-f).

0X12FF

0x45

0x9abc

Decimal,

integer
Decimal digits (0-9).

12

1245

Decimal,

floating point

Includes a decimal point, or an 'E' or 'e'

followed by the exponent.

6E10

.6

3.14

2.7e10

4.6.2 STRINGS

ASCII characters, enclosed in single (') or double (″) quotes constitue an

ASCII string. Strings between double quotes allow symbol substitution by a

DEFINE directive, whereas strings between single quotes are always literal

strings. Both types of strings can contain escape characters.

Strings constants in expressions are evaluated to a number (each character

is replaced by its ASCII value). Strings in expressions can have a size of up

to a long word (first 4 characters) or less depending on the operand of an

instruction or directive; any subsequent characters in the string are

ignored. In this case the assembler issues a warning. An exception to this

rule is when a string longer than 4 characters is used in a DB assembler

directive; in that case all characters result in a constant byte. Null strings

have a value of 0.

Square brackets ([]) delimit a substring operation in the form:

[string,offset,length]

offset is the start position within string. length is the length of the desired

substring. Both values may not exceed the size of string.

Assembly Language 4-9

• • • • • • • •

Examples

'ABCD' ; (0x41424344)

'''79' ; to enclose a quote double it

"A\"BC" ; or to enclose a quote escape it

'AB'+1 ; (0x4143) string used in expression

'' ; null string

dl 'abcdef' ; (0x61626364) 'ef' are ignored

 ; warning: string value truncated

'ab'++'cd' ; you can concatenate two strings

 ; with the '++' operator.

 ; This results in 'abcd'

['TASKING',0,4] ; results in the substring 'TASK'

4.6.3 EXPRESSION OPERATORS

The next table shows the assembler operators. They are ordered according

to their precedence. Operators of the same precedence are evaluated left

to right. Expressions between parentheses have the highest priority

(innermost first).

Valid operands include numeric constants, literal ASCII strings and

symbols.

Most assembler operators can be used with both integer and floating-point

values. If one operand has an integer value and the other operand has a

floating-point value, the integer is converted to a floating-point value

before the operator is applied. The result is a floating-point value.

User's Manual4-10
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

Type Oper
ator

Name Description

() parentheses Expressions enclosed by

parenthesis are evaluated first.

Unary + plus Returns the value of its operand.

- minus Returns the negative of its operand.

~ complement Returns complement, integer only

! logical negate Returns 1 if the operands' value is

1; otherwise 0. For example, if buf

is 0 then !buf is 1.

Arithmetic * multiplication Yields the product of two operands.

/ division Yields the quotient of the division of

the first operand by the second.

With integers, the divide operation

produces a truncated integer.

% modulo Integer only: yields the remainder

from a division of the first operand

by the second.

+ addition Yields the sum of its operands.

- subtraction Yields the difference of its

operands.

Shift << shift left Integer only: shifts the left operand

to the left (zero-filled) by the

number of bits specified by the right

operand.

>> shift right Integer only: shifts the left operand

to the right (sign bit extended) by

the number of bits specified by the

right operand.

Relational <

<=

>

>=

==

!=

less than

less or equal

greater than

greater or equal

equal

not equal

If the indicated condition is:

- True: result is an integer 1

- False: result is an integer 0

Be cautious when you use floating

point values in an equality test;

rounding errors can cause

unexpected results.

Assembly Language 4-11

• • • • • • • •

DescriptionNameOper
ator

Type

Bitwise & AND Integer only: yields bitwise AND

| OR Integer only: yields bitwise OR

^ exclusive OR Integer only: yields bitwise exlusive

OR

Logical && logical AND Returns an integer 1 if both

operands are nonzero; otherwise, it

returns an integer 0.

|| logical OR Returns an integer 1 if either of the

operands is nonzero; otherwise, it

returns an integer 1

Table 4-1: Assembly expression operators

4.7 BUILT-IN ASSEMBLY FUNCTIONS

The assembler has several built-in functions to support data conversion,

string comparison, and math computations. You can use functions as terms

in any expression. Functions have the following syntax:

Syntax of an assembly function

@function_name([argument[,argument]...])

Functions start with the '@' character and have zero or more arguments,

and are always followed by opening and closing parentheses. White space

(a blank or tab) is not allowed between the function name and the

opening parenthesis and between the (comma-separated) arguments.

The built-in assembler functions are grouped into the following types:

• Mathematical functions comprise, among others, transcendental,

random value, and min/max functions.

• String functions compare strings, return the length of a string, and

return the position of a substring within a string.

• Macro functions return information about macros.

• Address calculation functions return the high or low part of an

address.

• Assembler mode functions relating assembler operation.

User's Manual4-12
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

The following tables provide an overview of all built-in assembler

functions. For a detailed description of these functions, see section 3.2,

Built-in Assembly Function, in Chapter Assembly Language of the

Reference Manual.

Overview of mathematical functions

Function Description

@ABS(expr) Absolute value

@MAX(expr,[,...,exprN]) Maximum value

@MIN(expr,[,...,exprN]) Minimum value

@SGN(expr) Returns the sign of an expression as -1, 0 or 1

Overview of string functions

Function Description

@CAT(str1,str2) Concatenate strings

@LEN(string) Length of string

@POS(str1,str2[,start]) Position of substring in string

@SCP(str1,str2) Returns 1 if two strings are equal

@SUB(string,expr,expr) Returns substring in string

Overview of macro functions

Function Description

@ARG('symbol'|expr) Test if macro argument is present

@CNT() Return number of macro arguments

@MAC(symbol) Test if symbol is defined as a macro

@MXP() Test if macro expansion is active

Overview of address calculation functions

Function Description

@LSW(expr) Returns lower 16 bits of expression value

@MSW(expr) Returns bits 16..31 of expression value

Assembly Language 4-13

• • • • • • • •

Overview of assembler mode functions

Function Description

@DEF('symbol'|symbol) Returns 1 if symbol has been defined

@LST() LIST control flag value

4.8 ASSEMBLER DIRECTIVES AND CONTROLS

An assembler directive is simply a message to the assembler. Assembler

directives are not translated into machine instructions. There are three

main groups of assembler directives.

• Assembler directives that tell the assembler how to go about translating

instructions into machine code. This is the most typical form of

assembly directives. Typically they tell the assembler where to put a

program in memory, what space to allocate for variables, and allow

you to initialize memory with data. When the assembly source is

assembled, a location counter in the assembler keeps track of where

the code and data is to go in memory.

The following directives fall under this group:

- Assembly control directives

- Symbol definition directives

- Data definition / Storage allocation directives

- Debug directives

• Directives that are interpreted by the macro preprocessor. These

directives tell the macro preprocessor how to manipulate your

assembly code before it is actually being assembled. You can use these

directives to write macros and to write conditional source code. Parts of

the code that do not match the condition, will not be assembled at all.

• Some directives act as assembler options and most of them indeed do

have an equivalent assembler (command line) option. The advantage

of using a directive is that with such a directive you can overrule the

assembler option for a particular part of the code. Directives of this

kind are called controls. A typical example is to tell the assembler with

an option to generate a list file while with the controls $LIST ON and

$LIST OFF you overrule this option for a part of the code that you do

not want to appear in the list file. Controls always appear on a separate

line and start with a '$' sign in the first column.

User's Manual4-14
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

The following controls are available:

- Assembly listing controls

- Miscellaneous controls

Each assembler directive or control has its own syntax. You can use

assembler directives and controls in the assembly code as pseudo

instructions.

4.8.1 OVERVIEW OF ASSEMBLER DIRECTIVES

The following tables provide an overview of all assembler directives. For a

detailed description, see section 3.3.2, Detailed Description of Assembler
Directives, in Chapter Assembly Language of the Reference Manual.

Overview of assembly control directives

Directive Description

COMMENT Start comment lines. You cannot use this directive in

IF/ELSE/ENDIF constructs and MACRO/DUP

definitions.

DEFINE Define substitution string

DEFSECT Define section name, type and attributes

END End of source program

FAIL Programmer generated error message

INCLUDE Include file

MSG Programmer generated message

RADIX Change input radix for constants

SECT Activate a declared section

UNDEF Undefine DEFINE symbol

WARN Programmer generated warning

Assembly Language 4-15

• • • • • • • •

Overview of symbol definition directives

Directive Description

BTEQU Bit equate

EQU Assigns permanent value to a symbol

EXTERN External symbol declaration

GLOBAL Global symbol declaration

LOCAL Local symbol declaration

SET Set temporary value to a symbol

SIZE Set size of symbol in the ELF symbol table

TYPE Set symbol type in the ELF symbol table

WEAK Mark symbol as 'weak'

Overview of data definition / storage allocation directives

Directive Description

ALIGN Define alignment

ASCII / ASCIZ Define ASCII string without / with ending NULL byte

BS Define block storage (initialized)

BSB Define byte block storage (initialized)

BSBIT Define bit block storage in bit-addressable data

BSW / BSL Define word / long block storage (initialized)

DB Define constant byte

DBIT Define constant bit

DS Define storage

DW / DL Define a word / long constant

FLOAT / DOUBLE Define a float / double constant

User's Manual4-16
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

Overview of macro and conditional assembly directives

Directive Description

DUP Duplicate sequence of source lines

DUPA Duplicate sequence with arguments

DUPC Duplicate sequence with characters

DUPF Duplicate sequence in loop

ENDM End of macro or duplicate sequence

EXITM Exit macro

IF/ELIF/ELSE/ENDIF Conditional assembly

MACRO Define macro

PMACRO Undefine (purge) macro

Overview of debug directives

Directive Description

CALLS Passes call information to object file. Used by the

linker to build a call graph and calculate stack size

4.8.2 OVERVIEW OF ASSEMBLER CONTROLS

The following tables provide an overview of all assembler controls. For a

detailed description, see section 3.3.4, Detailed Description of Assembler
Controls, in Chapter Assembly Language of the Reference Manual.

Overview of assembly listing controls

Control Description

$LIST ON/OFF Generation of assembly list file temporary ON/OFF

$LIST "flags" Exclude / include lines in assembly list file

$PAGE Generate formfeed in assembly list file

$PAGE settings Define page layout for assemly list file

$PRCTL Send control string to printer

$STITLE string Set program subtitle in header of assembly list file

$TITLE string Set program title in headerof assembly list file

Assembly Language 4-17

• • • • • • • •

Overview of miscellaneous assembler controls

Control Description

$CASE ON/OFF Case sensitive user names ON/OFF

$DEBUG ON/OFF Generation of symbolic debug ON/OFF

$DEBUG "flags" Generation of symbolic debug ON/OFF

$IDENT

 LOCAL/GLOBAL

Assembler treats labels by default as local or global

$OBJECT Alternative name for the generated object file

$OPTJ ON/OFF Turn on/off conditional optimization

$WARNING OFF [num] Suppress one or all warnings

4.9 WORKING WITH SECTIONS

Sections are absolute or relocatable blocks of contiguous memory that can

contain code or data. Some sections contain code or data that your

program declared and uses directly, while other sections are created by

the compiler or linker and contain debug information or code or data to

initialize your application. These sections can be named in such a way that

different modules can implement different parts of these sections. These

sections are located in memory by the linker (using the linker script

language, LSL) so that concerns about memory placement are postponed

until after the assembly process.

All instructions and directives which generate data or code must be within

an active section. The assembler emits a warning if code or data starts

without a section definition and activation. The compiler automatically

generates sections. If you program in assembly you have to define sections

yourself.

For more information about locating sections see section 8.6.7 The Section
Layout Definition: Locating Sections in chapter Using the Linker.

Section definition

Sections are defined with the DEFSECT directive and have a name. A

section may have attributes to instruct the linker to place it on a

predefined starting address, or that it may be overlaid with another

section.

DEFSECT "name", type [, attribute]... [AT address]

User's Manual4-18
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

See the DEFSECT directive in section 3.3.2, Detailed Description of
Assembler Directives, in chapter Assembly Language of the Reference
Manual, for a complete description of all possible attributes.

Section activation

Sections are defined once and are activated with the SECT directive.

SECT "name"

The linker will check between different modules and emits an error

message if the section attributes do not match. The linker will also

concatenate all matching section definitions into one section. So, all "code"

sections generated by the compiler will be linked into one big "code"

chunk which will be located in one piece. By using this naming scheme it

is possible to collect all pieces of code or data belonging together into one

bigger section during the linking phase. A SECT directive referring to an

earlier defined section is called a continuation. Only the name can be

specified.

Example 1

DEFSECT "test_CO", CODE

SECT "test_CO"

Defines and activates a relocatable section in CODE memory. Other parts

of this section, with the same name, may be defined in the same module

or any other module. Other modules should use the same DEFSECT

statement. When necessary, it is possible to give the section an absolute

starting address with the locator description file.

Example 2

DEFSECT "test_ABS_CO", CODE AT 0x1000

SECT "test_ABS_CO"

Defines and activates an absolute section named test_ABS_CO starting on

address 0x1000.

Assembly Language 4-19

• • • • • • • •

Example 3

DEFSECT "test_CLR_DA", DATA, CLEAR

SECT "test_CLR_DA"

Defines a relocatable named section in DATA memory. The CLEAR

attribute instructs the linker to clear the memory located to this section.

When this section is used in another module it must be defined identically.

Continuations of this section in the same module are as follows:

SECT "test_CLR_DA"

4.10 MACRO OPERATIONS

Macros provide a shorthand method for inserting a repeated pattern of

code or group of instructions. Yuo can define the pattern as a macro, and

then call the macro at the points in the program where the pattern would

repeat.

Some patterns contain variable entries which change for each repetition of

the pattern. Others are subject to conditional assembly.

When a macro is called, the assembler executes the macro and replaces

the call by the resulting in-line source statements. 'In-line' means that all

replacements act as if they are one the same line as the macro call. The

generated statements may contain substitutable arguments. The statements

produced by a macro can be any processor instruction, almost any

assembler directive, or any previously-defined macro. Source statements

resulting from a macro call are subject to the same conditions and

restrictions as any other statements.

Macros can be nested. The assembler processes nested macros when the

outer macro is expanded.

4.10.1 DEFINING A MACRO

The first step in using a macro is to define it in the source file. The

definition of a macro consists of three parts:

• Header, which assigns a name to the macro and defines the arguments.

• Body, which contains the code or instructions to be inserted when te

macro is called.

User's Manual4-20
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

• Terminator, which indicates the end of the macro definition (ENDM

directive).

A macro definition takes the following form:

Header: macro_name MACRO [arg[,arg]...] [; comment]

 .

Body: source statements

 .

Terminator: ENDM

If the macro name is the same as an existing assembler directive or

mnemonic opcode, the assembler replaces the directive or mnemonic

opcode with the macro and issues a warning.

The arguments are symbolic names that the macro preprocessor replaces

with the literal arguments when the macro is expanded (called). Each

argument must follow the same rules as global symbol names. Argument

names cannot start with a percent sign (%).

Example

The macro definition:

CONSTD MACRO reg,value ;header

 mov.w #value,reg ;body

 ENDM ;terminator

The macro call:

 DEFSECT "data",DATA

 SECT "data"

 CONSTD R0,0x1234

 END

The macro expands as follows:

 mov.w #0x1234,R0

Assembly Language 4-21

• • • • • • • •

4.10.2 CALLING A MACRO

To invoke a macro, construct a source statement with the following format:

[label] macro_name [arg[,arg]...] [; comment]

where:

label An optional label that corresponds to the value of the

location counter at the start of the macro expansion.

macro_name The name of the macro. This may not start in the first

column.

arg One or more optional, substitutable arguments. Multiple

arguments must be separated by commas.

comment An optional comment.

The following applies to macro arguments:

• Each argument must correspond one-to-one with the formal arguments

of the macro definition. If the macro call does not contain the same

number of arguments as the macro definition, the assembler issues a

warning.

• If an argument has an embedded comma or space, you must surround

the argument by single quotes (').

• You can declare a macro call argument as NULL in three ways:

- enter delimiting commas in succession with no intervening spaces

macroname ARG1,,ARG3 ; the second argument

 is a NULL argument

- terminate the argument list with a comma, the arguments that

normally would follow, are now considered NULL

macroname ARG1, ; the second and all following

 arguments are NULL

- declare the argument as a NULL string

• No character is substituted in the generated statements that reference a

NULL argument.

User's Manual4-22
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

4.10.3 USING OPERATORS FOR MACRO ARGUMENTS

The assembler recognizes certain text operators within macro definitions

which allow text substitution of arguments during macro expansion. You

can use these operators for text concatenation, numeric conversion, and

string handling.

Operator Name Description

\ Macro argument

concatenation

Concatenates a macro argument with

adjacent alphanumeric characters.

? Return decimal

value of symbol

Substitutes the ?symbol sequence with a

character string that represents the decimal

value of the symbol.

% Return hex

value of symbol

Substitutes the %symbol sequence with a

character string that represents the

hexadecimal value of the symbol.

" Macro string

delimiter

Allows the use of macro arguments as literal

strings.

^ Macro local label

override

Causes local labels in its term to be evaluated

at normal scope rather than at macro scope.

Argument Concatenation Operator - \

Consider the following macro definition:

SWAP_REG MACRO REG1,REG2 ;swap register contents

 XCHG.B R\REG1\H, R\REG2\H

 ENDM

The macro is called as follows:

 SWAP_REG 0,1

The macro expands as follows:

 XCHG.B R0H, R1H

The macro preprocessor substitutes the character '0' for the argument

REG1, and the character '1' for the argument REG2. The concatenation

operator (\) indicates to the macro preprocessor that the substitution

characters for the arguments are to be concatenated with the character 'R'.

Without the '\' operator the macro would expand as:

 XCHG.B RREG1H, RREG2H

Assembly Language 4-23

• • • • • • • •

which results in an assembler error (invalid operand).

Decimal value Operator - ?

Instead of substituting the formal arguments with the actual macro call

arguments, you can also use the value of the macro call arguments.

Consider the following source code that calls the macro SWAP_SYM after

the argument AREG has been set to 0 and BREG has been set to 1.

AREG SET 0

BREG SET 1

 SWAP_SYM AREG,BREG

If you want to replace the arguments with the value of AREG and BREG

rather than with the literal strings 'AREG' and 'BREG', you can use the ?

operator and modify the macro as follows:

SWAP_SYM MACRO REG1,REG2 ;swap memory contents

 XCHG.W R\?REG1, R\?REG2

 ENDM

The macro first expands as follows:

 XCHG.W R\?AREG, R\?BREG

Then ?AREG is replaced by '0' and ?BREG is replaced by '1':

 XCHG.W R\0, R\1

Because of the concatenation operator '\' the strings are concatenated:

 XCHG.W R0, R1

Hex Value Operator - %

The percent sign (%) is similar to the standard decimal value operator (?)

except that it returns the hexadecimal value of a symbol.

Consider the following macro definition:

GEN_LAB MACRO LAB,VAL,STMT

LAB\%VAL STMT

 ENDM

User's Manual4-24
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

A symbol with the name NUM is set to 10 and the macro is called with

NUM as argument:

NUM SET 10

 GEN_LAB HEX,NUM,NOP

The macro expands as follows:

HEXA NOP

The %VAL argument is replaced by the character 'A' which represents the

hexadecimal value 10 of the argument VAL.

Argument String Operator - "

To generate a literal string, enclosed by single quotes ('), you must use the

argument string operator (") in the macro definition.

Consider the following macro definition:

STR_MAC MACRO STRING

 DB "STRING"

 ENDM

The macro is called as follows:

STR_MAC ABCD

The macro expands as follows:

 DB 'ABCD'

Within double quotes DEFINE directive definitions can be expanded. Take

care when using constructions with quotes and double quotes to avoid

inappropriate expansions. Since a DEFINE expansion occurs before a

macro substitution, all DEFINE symbols are replaced first within a macro

argument string:

 DEFINE LONG 'short'

STR_MAC MACRO STRING

 MSG 'This is a LONG STRING'

 MSG "This is a LONG STRING"

 ENDM

If the macro is called as follows:

 STR_MAC sentence

Assembly Language 4-25

• • • • • • • •

The macro expands as:

MSG 'This is a LONG STRING'

MSG 'This is a short sentence'

Single quotes prevent expansion.

Macro Local Label Override Operator - ^

If you use labels in macros, the assembler normally generates another

unique name for the labels (such as LAB__M_L0000001).

The macro ^-operator prevents name mangling on macro local labels.

Consider the following macro definition:

INIT MACRO ARG, CNT

 MOV.W #CNT,A0

^LAB:

 DB ARG

 DEC.W A0

 JNZ ^LAB

 ENDM

The macro is called as follows:

 INIT 2,4

The macro expands as:

 MOV.W #4,A0

LAB:

 DB 2

 DEC.W A0

 JNZ LAB

Without the ^ operator, the macro preprocessor would choose another

name for LAB because the label already exists. The macro then would

expand like:

 MOV.W #4,A0

LAB__M_L000001:

 DB 2

 DEC.W A0

 JNZ LAB__M_L000001

User's Manual4-26
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

4.10.4 USING THE DUP, DUPA, DUPC, DUPF

DIRECTIVES AS MACROS

The DUP, DUPA, DUPC, and DUPF directives are specialized macro forms

to repeat a block of source statements. You can think of them as a

simultaneous definition and call of an unnamed macro. The source

statements between the DUP, DUPA, DUPC, and DUPF directives and the

ENDM directive follow the same rules as macro definitions.

For a detailed description of these directives, see section 3.3, Assembler
Directives, in Chapter Assembly Language of the Reference Manual.

4.10.5 CONDITIONAL ASSEMBLY: IF, ELIF AND ELSE

DIRECTIVES

With the conditional assembly directives you can instruct the macro

preprocessor to use a part of the code that matches a certain condition.

You can specify assembly conditions with arguments in the case of

macros, or through definition of symbols via the DEFINE, SET, and EQU

directives.

The built-in functions of the assembler provide a versatile means of testing

many conditions of the assembly environment.

You can use conditional directives also within a macro definition to check

at expansion time if arguments fall within a certain range of values. In this

way macros become self-checking and can generate error messages to any

desired level of detail.

The conditional assembly directive IF has the following form:

IF expression

 .

 .

[ELIF expression] ;(the ELIF directive is optional)

 .

 .

[ELSE] ;(the ELSE directive is optional)

 .

 .

ENDIF

Assembly Language 4-27

• • • • • • • •

The expression must evaluate to an absolute integer and cannot contain

forward references. If expression evaluates to zero, the IF-condition is

considered FALSE. Any non-zero result of expression is considered as

TRUE.

For a detailed description of these directives, see section 3.3, Assembler
Directives, in Chapter Assembly Language of the Reference Manual.

User's Manual4-28
A

S
S

E
M

B
LY

 L
A

N
G

U
A

G
E

5

USING THE

COMPILER
C

H
A

P
T

E
R

User's Manual5-2
C
O
M
P
IL
E
R

5

C
H

A
P

T
E

R

Using the Compiler 5-3

• • • • • • • •

5.1 INTRODUCTION

EDE uses a makefile to build your entire project, from C source till the

final ELF/DWARF object file which serves as input for the debugger.

Although in EDE you cannot run the compiler separately from the other

tools, this chapter discusses the options that you can specify for the

compiler.

On the command line it is possible to call the compiler separately from the

other tools. However, it is recommended to use the control program

ccm16c for command line invocations of the toolchain (see section 9.2,

Control Program, in Chapter Using the Utilities). With the control program

it is possible to call the entire toolchain with only one command line.

The compiler takes the following files for input and output:

assembly file

C source file

C compiler

.ic

cm16c
.err

.src

C source file

(hand coded)

.c

error messages

Figure 5-1: C compiler

This chapter first describes the compilation process which consists of a

frontend and a backend part. During compilation the code is optimized in

several ways. The various optimizations are described in the second

section. Third it is described how to call the compiler and how to use its

options. An extensive list of all options and their descriptions is included

in the section 4.1, Compiler Options, in Chapter 4, Tool Options, of the

Reference Manual. Finally, a few important basic tasks are described.

User's Manual5-4
C
O
M
P
IL
E
R

5.2 COMPILATION PROCESS

During the compilation of a C program, the compiler cm16c runs through

a number of phases that are divided into two groups: frontend and

backend.

The backend part is not called for each C statement, but starts after a

complete C module or set of modules has been processed by the frontend

(in memory). This allows better optimization.

Frontend phases

1. The preprocessor phase:

The preprocessor includes files and substitutes macros by C source. It uses

only string manipulations on the C source. The syntax for the preprocessor

is independent of the C syntax but is also described in the ISO/IEC

9899:1999(E) standard.

2. The scanner phase:

The scanner converts the preprocessor output to a stream of tokens.

3. The parser phase:

The tokens are fed to a parser for the C grammar. The parser performs a

syntactic and semantic analysis of the program, and generates an

intermediate representation of the program. This code is called MIL

(Medium level Intermediate Language).

4. The frontend optimization phase:

Target processor independent optimizations are performed by transforming

the intermediate code.

Using the Compiler 5-5

• • • • • • • •

Backend phases

1. Instruction selector phase:

This phase reads the MIL input and translates it into Low level

Intermediate Language (LIL). The LIL objects correspond to an M16C

processor instruction, with an opcode, operands and information used

within the compiler.

2. Peephole optimizer phase:

This phase replaces instruction sequences by equivalent but faster and/or

shorter sequences, rearranges instructions and deletes unnecessary

instructions.

3. Register allocator phase:

This phase chooses a physical register to use for each virtual register.

4. The backend optimization phase:

Performs target processor independent and dependent optimizations which

operate on the Low level Intermediate Language.

5. The code generation/formatter phase:

This phase reads through the LIL operations to generate assembly

language output.

5.3 COMPILER OPTIMIZATIONS

The compiler has a number of optimizations which you can enable or

disable. To enable or disable optimizations:

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the C Compiler entry and select Optimization.

3. Select an optimization level in the Optimization level box.

or:

In the Optimization level box, select Custom optimization and

enable the optimizations you want in the Custom optimization box.

User's Manual5-6
C
O
M
P
IL
E
R

Optimization levels

The TASKING C compilers offer four optimization levels and a custom

level, at each level a specific set of optimizations is enabled.

• Level 0: No optimizations are performed. The compiler tries to achieve

a 1-to-1 resemblance between source code and produced code.

Expressions are evaluated in the order written in the source code,

associative and commutative properties are not used.

• Level 1: Enables optimizations that do not affect the debug-ability of

the source code. Use this level when you are developing/debugging

new source code.

• Level 2: Enables more aggressive optimizations to reduce the memory

footprint and/or execution time. The debugger can handle this code

but the relation between source code and generated instructions may

be hard to understand. Use this level for those modules that are already

debugged. This is the default optimization level.

• Level 3: Enables aggressive global optimization techniques. The

relation between source code and generated instructions can be very

hard to understand. The debugger does not crash, will not provide

misleading information, but does not fully understand what is going

on. Use this level when your program does not fit in the memory

provided by your system anymore, or when your program/hardware

has become too slow to meet your real-time requirements.

• Custom level: you can enable/disable specific optimizations.

Optimization pragmas

If you specify a certain optimization, all code in the module is subject to

that optimization. Within the C source file you can overrule the compiler

options for optimizations with #pragma optimize flag and #pragma

endoptimize. Nesting is allowed:

#pragma optimize e /* Enable expression

... simplification */

... C source ...

...

#pragma optimize c /* Enable common expression

... elimination. Expression

... C source ... simplification still enabled */

...

#pragma endoptimize /* Disable common expression

... elimination */

#pragma endoptimize /* Disable expression

... simplification */

The compiler optimizes the code between the pragma pair as specified.

Using the Compiler 5-7

• • • • • • • •

You can enable or disable the optimizations described below. The

command line option for each optimization is given in brackets.

See also option -O (--optimize) in section 4.1, Compiler Options, of

Chapter Tool Options of the Reference Manual.

Generic optimizations (frontend)

Common subexpression elimination (CSE) (option -Oc/-OC)

The compiler detects repeated use of the same (sub-)expression. Such a

"common" expression is replaced by a variable that is initialized with the

value of the expression to avoid recomputation. This method is called

common subexpression elimination (CSE).

Expression simplification (option -Oe/-OE)

Multiplication by 0 or 1 and additions or subtractions of 0 are removed.

Such useless expressions may be introduced by macros or by the compiler

itself (for example, array subscription).

Constant propagation (option -Op/-OP)

A variable with a known constant value is replaced by that value.

Function Inlining (option -Oi/-OI)

Small functions that are not too often called, are inlined. This reduces

execution time at the cost of code size.

Compaction (reverse inlining) (option -Or/-OR)

Compaction is the opposite of inlining functions: large chunks of code

that occur more than once, are transformed into a function. This reduces

code size at the cost of execution speed.

Control flow simplification (option -Of/-OF)

A number of techniques to simplify the flow of the program by removing

unnecessary code and reducing the number of jumps. For example:

Switch optimization:
A number of optimizations of a switch statement are performed, such

as removing redundant case labels or even removing an entire switch.

User's Manual5-8
C
O
M
P
IL
E
R

Jump chaining:
A (conditional) jump to a label which is immediately followed by an

unconditional jump may be replaced by a jump to the destination label

of the second jump. This optimization speeds up execution.

Conditional jump reversal:
A conditional jump over an unconditional jump is transformed into one

conditional jump with the jump condition reversed. This reduces both

the code size and the execution time.

Dead code elimination:
Code that is never reached, is removed. The compiler generates a

warning messages because this may indicate a coding error.

Subscript strength reduction (option -Os/-OS)

An array of pointer subscripted with a loop iterator variable (or a simple

linear function of the iterator variable), is replaced by the dereference of a

pointer that is updated whenever the iterator is updated.

Loop transformations (option -Ol/-OL)

Temporarily transform a loop with the entry point at the bottom, to a loop

with the entry point at the top. This enables constant propagation in the

initial loop test and code motion of loop invariant code by the CSE
optimization.

Forward store (option -Oo/-OO)

A temporary variable is used to cache multiple assignments (stores) to the

same non-automatic variable.

Core specific optimizations (backend)

Coalescer (option -Oa/-OA)

The coalescer seeks for possibilities to reduce the number of moves (MOV

instruction) by smart use of registers. This optimizes both speed as code

size.

Interprocedural register optimization (option -Ob/-OB)

Register allocation is improved by taking note of register usage in

functions called by a given function.

Using the Compiler 5-9

• • • • • • • •

Peephole optimizations (option -Oy/-OY)

The generated assembly code is improved by replacing instruction

sequences by equivalent but faster and/or shorter sequences, or by

deleting unnecessary instructions.

Generic assembly optimizations (option -Og/-OG)

A set of target independent optimizations that increase speed and decrease

code size.

Optimize 'call+return' to jump (option -Oz/-OZ)

A function call which is immediately followed by a function return is

replaced by a jump. With this optimization a call trace is no longer

possible.

5.3.1 OPTIMIZE FOR SIZE OR SPEED

You can tell the compiler to focus on execution speed or code size during

optimizations. You can do this by specifying a size/speed trade-off level

from 0 (speed) to 4 (size). This trade-off does not turn optimization

phases on or off. Instead, its level is a weight factor that is used in the

different optimization phases to influence the heuristics. The higher the

level, the more the compiler focuses on code size optimization.

To specify the size/speed trade-off optimization level:

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the C Compiler entry and select Optimization.

3. Select one of the options Optimize for size or Optimize for speed.

See also option -t (--tradeoff) in section 4.1, Compiler Options, in
Chapter Tool Options of the Reference Manual.

User's Manual5-10
C
O
M
P
IL
E
R

5.4 CALLING THE COMPILER

EDE uses a makefile to build your entire project. This means that you

cannot run the compiler only. If you compile a single C source file from

within EDE, the file is also automatically assembled. However, you can set

options specific for the compiler. After you have build your project, the

output files of the compilation step are available in your project directory.

To compile your program, click either one of the following buttons:

Compiles and assembles the currently selected file. This

results in a relocatable object file (.obj).

Builds your entire project but looks whether there are already

files available that are needed in the building process. If so,

these files will not be generated again, which saves time.

Builds your entire project unconditionally. All steps necessary

to obtain the final .elf file are performed.

To only check for syntax errors, click the following button:

Checks the currently selected file for syntax errors, but does

not generate code.

Select a target processor (core)

Because the toolchain supports several processor cores, you need to

choose a processor type first.

To access the M16C processor options:

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the Processor entry and select Processor Definition.

3. In the Select processor list select the target processor.

4. (Optional) Fill in the Startup Code page.

5. Click OK to accept the processor options.

Processor options affect the invocation of all tools in the toolchain. In
EDE you only need to set them once. The corresponding options for the
compiler are listed in table 5-1.

Using the Compiler 5-11

• • • • • • • •

Based on the target processor, the compiler includes a special function
register file regcpu.sfr. This is an include file written in C syntax which

is shared by the compiler, assembler and debugger. Once the compiler

reads an SFR file you can reference the special function registers (SFR) and

bits within an SFR using symbols defined in the SFR file.

To specify the search path and include directories

1. From the Project menu, select Directories...

The Directories dialog box appears.

2. Fill in the directory path settings and click OK.

To access the compiler options

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the C Compiler entry, fill in the various pages and click OK to

accept the compiler options.

The compiler command line equivalences of your EDE selections are
shown simultaneously in the Options string box.

The following processor options are available:

EDE options Command line

Processor Definition

Select processor -Ccpu

Compile for R8C/tiny instead of M16C/60 --r8c

Memory

Internal memory EDE only

Startup Code

Add <project>_cstart.src to your project EDE only

Table 5-1: Processor options

User's Manual5-12
C
O
M
P
IL
E
R

The following project directories are available:

EDE options Command line

Directories

Executable files path

Include files path

Library files path

$PATH environment

-Idir

linker option -Ldir

Table 5-2: Project directories

The following compiler options are available:

EDE options Command line

Memory Models

Compile using small/medium/large memory model -M{s|m|l}

Code Generation

Keep strings in ROM --romstrings

Keep constants in ROM --romconstants

ROM is available in first 64k of memory --near-rom

Generate code for fixed interrupt vector --novector

Generate frame for interrupt routines --noframe

Preprocessing

Define user macro -Dmacro[=def]

Include an extra file at the beginning of the C source -Hfile

Store the C compiler preprocess output (file.pre) -Eflag

Alignment

Align functions to an even address --align-func

Align data to an even address --align-data

Optimization

Optimization level

Custom optimization

-O{0|1|2|3}

-Oflag

Optimize for size/speed -t{0|4}

Language

ISO C standard 90 or 99 (default: 99) -c{90|99}

Treat 'char' variables as unsigned instead of signed -u

Using the Compiler 5-13

• • • • • • • •

Command lineEDE options

Treat 'int' bitfield as signed --signed-bitfields

Treat enumerated types always as integer --integer-
 enumeration

Language extensions

Allow C++ style comments in C source

Check assignment constant string to

non constant string pointer

-Aflag
-Ap
-Ax

Debug

Generate debug information -g

Floating Point

Use single precision floating point only -F

Floating point trap/exception handling control program option
--fp-trap

Diagnostics

Report all warnings

Suppress all warnings

Suppress specific warnings

Treat warnings as errors

no option -w
-w
-wnum[,num]...

--warnings-as-
errors

MISRA-C

MISRA-C rules --misrac={all|nr[-nr]
,...}

Produce MISRA-C report file linker option
--misra-c-report

Generate warnings instead of errors for advisory

MISRA-C rules

--misrac-advisory-
 warnings

Generate warnings instead of errors for required

MISRA-C rules

--misrac-required-
 warnings

MISRA-C version --misrac-version=year

Miscellaneous

Merge C source code with assembly in output file

(.src)

-s

Additional C Compiler options options

Table 5-3: Compiler options

User's Manual5-14
C
O
M
P
IL
E
R

The following options are available on the command line, and you can set

them in EDE through the Additional C Compiler options field in the

Miscellaneous page:

Description Command line

Display invocation syntax -?

Align all objects on an even address --align

Maximum size of a match with code compaction

(default: 200)

--compact-max-size
= value

Redirect diagnostic messages to a file --error-file[=file]

Read options from file -f file

Always inline function calls --inline

Maximum size increment inlining (in %) (default: 25) --inline-max-incr=
value

Maximum size for function to always inline

(default: 10)

--inline-max-size=
value

Keep output file after errors -k

Maximum call depth, default infinite

(default: -1)

--max-call-depth=
value

Send output to standard output -n

Do not clear non-initialized global variables --noclear

Do not generate frame for interrupt handler --noframe

Specify name of output file -o file

Rename sections -Rmem=name

Treat external definitions as "static" --static

Display version header only -V

Table 5-4: Compiler options only available on the command line

The invocation syntax on the command line is:

cm16c [option]... [file]

The input file must be a C source file (.c or .ic).

cm16c test.c

Using the Compiler 5-15

• • • • • • • •

This compiles the file test.c and generates the file test.src which

serves as input for the assembler.

For a complete overview of all options with extensive description, see

section 4.1, Compiler Options, of Chapter Tool Options of the Reference
Manual.

5.5 HOW THE COMPILER SEARCHES INCLUDE FILES

When you use include files, you can specify their location in several ways.

The compiler searches the specified locations in the following order:

1. The absolute pathname, if specified in the #include statement. Or, if no

path or a relative path is specified, the same directory as the source file.

This is only possible for include files that are enclosed in "".

This first step is not done for include files enclosed in <>.

2. The directories that are specified in the Project | Directories dialog (-I

option).

3. The paths which were set during installation. You can still change these

paths.

See section 1.3.1, Configuring the Embedded Development Environment
and environment variable CM16CINC in section 1.3.2, Configuring the
Command Line Environment, in Chapter Software Installation.

4. The default include directory relative to the installation directory.

5.6 COMPILING FOR DEBUGGING

Compiling your files is the first step to get your application ready to run

on a target. However, during development of your application you first

may want to debug your application.

To create an object file that can be used for debugging, you must instruct

the compiler to include symbolic debug information in the source file.

To include symbolic debug information

1. From the Project menu, select Project Options...

User's Manual5-16
C
O
M
P
IL
E
R

The Project Options dialog box appears.

2. Expand the C Compiler entry and select Debug Information.

3. Enable the option Generate debug information.

4. Click OK to accept the new project settings.

cm16c -g

Debug and optimizations

Due to different compiler optimizations, it might be possible that certain

debug information is optimized away. Therefore, it is best to specify

Debug purpose (-O1) when you want to debug your application. This is

a special optimization level where the source code is still suitable for

debugging.

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the C Compiler entry and select Optimization.

3. In the Optimization level box, select Debug purpose.

5.7 C CODE CHECKING: MISRA-C

The C programming language is a standard for high level language

programming in embedded systems, yet it is considered somewhat

unsuitable for programming safety-related applications. Through enhanced

code checking and strict enforcement of best practice programming rules,

TASKING MISRA-C code checking helps you to produce more robust

code.

MISRA-C specifies a subset of the C programming language which is

intended to be suitable for embedded automotive systems. It consists of a

set of rules, defined by MISRA-C:2004 in Guidelines for the use of the C
Language in critical systems (MIRA Limited, 2004).

Using the Compiler 5-17

• • • • • • • •

The compiler also supports the MISRA-C:1998 version of the MISRA-C

rules. You can select this version with the following C compiler option:

--misrac-version=1998

For a complete overview of all MISRA-C rules, see Chapter 8, MISRA-C
Rules, in the Reference Manual.

Implementation issues

The MISRA-C implementation in the compiler supports nearly all rules.

Only few rules are not supported because they address documentation,

run-time behavior, or other issues that cannot be checked by static source

code inspection, or because they require an application-wide overview.

During compilation of the code, violations of the enabled MISRA-C rules

are indicated with error messages and the build process is halted.

MISRA-C rules are divided in required rules and advisory rules. If rules are

violated, errors are generated causing the compiler to stop. With the

following options warnings, instead of errors, are generated for either or

both the required rules and the advisory rules:

--misrac-required-warnings

--misrac-advisory-warnings

Note that not all MISRA-C violations will be reported when other errors

are detected in the input source. For instance, when there is a syntax error,

all semantic checks will be skipped, including some of the MISRA-C

checks. Also note that some checks cannot be performed when the

optimizations are switched off.

Quality Assurance report

To ensure compliance to the MISRA-C rules throughout the entire project,

the TASKING M16C linker can generate a MISRA-C Quality Assurance

report. This report lists the various modules in the project with the

respective MISRA-C settings at the time of compilation. You can use this in

your company's quality assurance system to provide proof that company

rules for best practice programming have been applied in the particular

project.

User's Manual5-18
C
O
M
P
IL
E
R

Apply MISRA-C code checking to your application

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the C Compiler entry and select MISRA-C.

3. Select a MISRA-C configuration. Select a predefined configuration for

conformance with the required rules in the MISRA-C guidelines.

It is also possible to read a MISRA-C configuration from an external

file.

4. (Optional) In the MISRA-C Rules entry, specify the individual rules.

cm16c --misrac={all | number [-number],...}

See compiler option --misrac in section 4.1, Compiler Options in Chapter

Tool Options of the Reference Manual.

See linker option --misra-c-report in section 4.3, Linker Options in
Chapter Tool Options of the Reference Manual.

Using the Compiler 5-19

• • • • • • • •

5.8 C COMPILER DIAGNOSTICS

At compile time, the cm16c compiler reports the following types of error

messages:

F Fatal errors

After a fatal error the compiler immediately aborts compilation.

E Errors

Errors are reported, but the compiler continues compilation. No output

files are produced unless you have set the compiler option

--keep-output-files (the resulting output file may be incomplete).

W Warnings

Warning messages do not result into an erroneous assembly output file.

They are meant to draw your attention to assumptions of the compiler for

a situation which may not be correct. You can control warnings in the C

Compiler | Diagnostics page of the Project | Project Options... menu

(compiler option -w).

I Information

Information messages are always preceded by an error message.

Information messages give extra information about the error.

S System errors

System errors occur when internal consistency checks fail and should

never occur. When you still receive the system error message

S9##: internal consistency check failed - please report

please report the error number and as many details as possible about the

context in which the error occurred. The following helps you to prepare

an e-mail using EDE:

User's Manual5-20
C
O
M
P
IL
E
R

1. From the Help menu, select Technical Support -> Prepare Email...

The Prepare Email form appears.

2. Fill out the the form. State the error number and attach relevant files.

3. Click the Copy to Email client button to open your email application.

A prepared e-mail opens in your e-mail application.

4. Finish the e-mail and send it.

Display detailed information on diagnostics

1. In the Help menu, enable the option Show Help on Tool Errors.

2. In the Build tab of the Output window, double-click on an error or

warning message.

A description of the selected message appears.

cm16c --diag=[format:]{all | number,...}

See compiler option --diag in section 4.1, Compiler Options in Chapter

Tool Options of the Reference Manual.

Using the Compiler 5-21

• • • • • • • •

5.9 RUN-TIME ERROR CHECKING

To be able to perform run-time error checking, the compiler adds extra

code to your C source. Because of the inserted code, applications will run

slower and require more memory. Therefore it is recommended to use

run-time checking only during the development of the software.

A message is printed on stdout (which is connected to the CrossView

Terminal Window) if an run-time error is detected. Every message is

preceded by the code address where the error was detected. The source

file name and line number are not printed, because that would increase

the code and data size. To obtain the source position, you can either

lookup the address in the map file, or set a breakpoint on

__runtime_error in the debugger to back-trace the error.

Run-time error checking can be done at application wide scope or at

module scope. Only malloc() checks are always executed at application

wide scope.

The following run-time checks are available:

Bounds checking

Bounds checking verifies all pointer operations to detect buffer overflows

and other illegal operations. The bounds checking code keeps track of the

bounds of all objects that may have their address taken somewhere in the

application.

Pointer arithmetic

When a pointer is incremented or decremented, the old and new values

should point to the same object: it would be an error if the new pointer

value is outside the current object. Likewise, comparing or subtracting

pointers to different objects results in undefined behavior according to the

ISO C standard, and will be flagged as well.

Dereferencing invalid pointer

The ISO C standard allows a pointer to point to the first byte after an

object, but dereferencing such a pointer is an error. Therefore, a pointer to

the first address after an object is considered to point "inside" the object,

but dereferencing the pointer will be flagged by the bounds checking

code.

User's Manual5-22
C
O
M
P
IL
E
R

Uninitialized pointers / null pointer

Uninitialized automatic pointers are initialized to a special value that

triggers a run-time error when used. Dereferencing or updating a null

pointer will also trigger a run-time error.

Considerations

• Sub-objects such as structure members, or objects from a memory pool

in the application are not checked for overflow.

• An offset calculation in a static pointer initializer is performed by the

assembler, and cannot be checked.

• Pointers to function parameters cannot be checked.

Unhandled case in a switch

This option reports an unhandled case value in a switch without a default

part. It simply completes any switch without a default part with an extra

function call. This has little impact on the execution speed. To avoid this

type of run-time error, add an empty default part to the case switch

when the switch is not supposed to have a case for every possible value.

Malloc checks

This option uses wrappers around the functions malloc(), realloc()

and free() that will check for common dynamic memory allocation

errors like:

• buffer overflow

• write to freed memory

• multiple calls to free

• passing an invalid pointer to free

For this check some additional code from the library is extracted, but it has

minimal impact on on your application code size. The dynamic memory

usage increases only by a couple of bytes per allocation.

Memory allocated by malloc() is deliberately initialized with a non-zero

value to force a failure when the application fails to initialize the memory.

To detect a buffer overflow, a sentinel byte is placed directly after every

allocation. The sentinel is checked when the memory is freed. Likewise, a

"magic" number before the allocation makes it possible to detect a buffer

underflow. This duplicates some functionality of the bounds checking, but

with lower overhead.

Using the Compiler 5-23

• • • • • • • •

A call to free() overwrites the memory to force a failure when the

memory is used after it has been freed. To detect modification of memory

that has been freed, a call to malloc() will check the items freed since the

previous call (with a maximum of 4) for changes.

Stack overflow

This option adds a test for stack overflow at the start of every function and

for every variable length array declaration. Enabling this check will extend

the function prolog code with a stack overflow test.

Because the functions that report the stack overflow need some stack

space themselves, the overflow is reported before the limit is reached. This

margin is set at 24 bytes.

Division by zero

Reports division by zero when during program execution an attempt was

made to divide by zero. This check will test the divisor just before a

division takes place.

User's Manual5-24
C
O
M
P
IL
E
R

5.9.1 STEP 1: BUILD YOUR APPLICATION FOR

RUN-TIME ERROR CHECKING

To instruct the compiler to add run-time checking code:

For checks at application wide scope:

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

Or, for checks at module scope:

From the Project menu, select Current File Options...

The File Options dialog box appears.

2. Expand the C Compiler entry and select Run-time Error Checking.

3. Enable one or more of the following options:

• Bounds checking

• Report unhandled case in a switch

• Malloc consistency checks

• Stack overflow check

• Division by zero check

cm16c --runtime=[flags]

Instead of using the compiler option to enable run-time error checking for

your whole application, you can also use #pragma runtime to enable

run-time error checking for parts of the application. The pragma works

exactly the same as the compiler option.

#pragma runtime flags

Compiler option --runtime in section 4.1, Compiler Options, in Chapter 4,

Tool Options, of the Reference Manual.

When a run-time error is detected, by default a message is printed on

stdout (which is connected to the CrossView Terminal Window) while the

program continues. If this is not desirable, you can replace the default

error function __runtime_error() by a custom function.

Using the Compiler 5-25

• • • • • • • •

5.9.2 STEP 2: EXECUTE THE APPLICATION

Once you have compiled and linked the application for run-time error

checking, it must be executed. Start CrossView Pro and run your

application in simulation mode.

Run the program as usual: the program should run normally taking the

same input as usual and producing the same output as usual. The

application will run somewhat slower that normal because of the extra

time spent on performing the error checks.

Small heap problem

When the program does not run as usual, this is typically caused by a

shortage of heap space. In this case an out of memory message is issued

(when running with file system simulation, it is displayed in the FSS0

Terminal window).

To solve this problem, increase the size of the heap:

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the Linker entry and select Stack/Heap

3. Enter a new value for Heap size (in bytes), for example 1000.

Below are a number of code examples which generate the possible errors

for the several run-time error checking options.

5.9.3 EXAMPLES PRODUCING RUN-TIME ERRORS

Example 1: Bounds checking

C source

int sum (int* arr, int n)

{

 int total = 0;

 for (int i = 0; i < n; i++)

 {

 total += arr[i];

 }

 return total;

}

User's Manual5-26
C
O
M
P
IL
E
R

int distance (int* arr1, int* arr2)

{

 if (arr2 > arr1)

 {

 return arr2 - arr1;

 }

 else

 {

 return arr1 - arr2;

 }

}

char* inc (char* ptr)

{

 return ptr + 10;

}

int deref (char* ptr)

{

 return *ptr;

}

int list1 [] = {1, 2, 3, 4, 5};

int list2 [] = {6, 7, 8, 9, 10};

int main (void)

{

 char* uninit1;

 static char* uninit2;

 sum(list1, 5); // OK

 sum(list1, 6); // overflow

 distance(list1+1, list1+5); // OK

 distance(list1+1, list2+5); // different objects

 inc(uninit1); // uninitialized pointer

 inc(uninit2); // null pointer

 deref(uninit1); // uninitialized pointer

 deref(uninit2); // null pointer

 return 0;

}

Ouput

error at 000c2283: access beyond end of object

 [00000600,0000060a]

error at 000c2294: pointer a008001a outside object

 [00000600,0000060a]

error at 000c22d3: comparing pointers to different objects

 (00000616/00000602)

error at 000c22f1: subtracting pointers to different objects

 (00000616/00000602)

error at 000c23d9: arithmetic on uninitialized pointer

error at 000c23e0: arithmetic on null pointer

error at 000c2356: dereferencing uninitialized pointer

error at 000c2356: dereferencing null pointer

Using the Compiler 5-27

• • • • • • • •

Example 2: Unhandled case

C source

int sum (int* arr, int n)

{

 int total = 0;

 for (int i = 0; i < n; i++)

 {

 total += arr[i];

 }

 return total;

}

Ouput

error at 000c16b6: unhandled case

Example 3: Malloc checks

C source

#include <stdlib.h>

#include <string.h>

typedef struct

{

 char* item1;

 char* item2;

} node_t;

int main (void)

{

 char* buf = malloc(5);

 strcpy(buf, "hello"); // error: buffer too small

 free(buf); // OK

 free(buf); // error: duplicate free

 free(&buf); // error: invalid pointer

 *buf = '\0'; // error: writing to freed memory

 node_t* node = malloc(sizeof(node_t));

 free(node->item1); // error: uninitialized memory

 free(node); // OK

 free(node->item2); // error: deallocated memory

}

User's Manual5-28
C
O
M
P
IL
E
R

Ouput

error at 000c240b: malloc buffer overflow

 (address 00000e0e, size 5)

error at 000c2415: memory already freed

 (address 00000e0e, size 5)

error at 000c241e: calling free with an invalid pointer

 (00000859)

error at 000c243b: freed memory was modified

 (address 00000e0e, size 5)

error at 000c245b: calling free with an invalid pointer

 (aaaaaaaa)

error at 000c2491: calling free with an invalid pointer

 (bbbbbbbb)

Example 4: Stack overflow

C source

void main (void)

{

 int bigsize = 10000;

 int array[bigsize]; // stack overflow. Calls abort.

}

Ouput

error at 000c2ab2: stack overflow

Example 5: Division by zero

C source

#include <stdio.h>

int b=0;

float f;

int main (void)

{

 f=10/b;

 printf("f=%f",f);

 return f;

}

Ouput

error at 000c3ab5: division by zero

6

PROFILING
C

H
A

P
T

E
R

User's Manual6-2
C

 L
A

N
G

U
A

G
E

6

C
H

A
P

T
E

R

C Language 6-3

• • • • • • • •

6.1 WHAT IS PROFILING?

Profiling is a collection of methods to gather data about your application

which helps you to identify code fragments where execution consumes

the greatest amount of time.

TASKING supplies a number of profiler tools each dedicated to solve a

particular type of performance tuning problem. Performance problems can

be solved by:

• Identifying time-consuming algorithms and rewrite the code using a

more time-efficient algorithm.

• Identifying time-consuming functions and select the appropriate

compiler optimizations for these functions (for example, enable

loop unrolling or function inlining).

• Identifying time consuming loops and add the appropriate pragmas

to enable the compiler to further optimize these loops.

A profiler helps you to find and identify the time consuming constructs

and provides you this way with valuable information to optimize your

application.

TASKING employs various schemes for collecting profiling data,

depending on the capabilities of the target system and different

information needs.

User's Manual6-4
C

 L
A

N
G

U
A

G
E

6.1.1 THREE METHODS OF PROFILING

There are several methods of profiling: recording by an instruction set

simulator, profiling using the debugger and profiling with code

instrumentation techniques. Each method has its advantages and

disadvantages.

Profiling by an instruction set simulator

On way way to gather profiling information is built into the instruction set

simulator (ISS). The ISS records the time consumed by each instruction

that is executed. The debugger then retrieves this information and

correlates the time spent for individual instructions to C source statements.

Advantages

- it gives (cycle) accurate information with extreme fine granularity

- the executed code is identical to the non-profiled code

Disadvantages

- the method requires an ISS as execution environment

Profiling with the debugger

The second method of profiling is built into the debugger. You specify

which functions you want to profile. The debugger places breakpoints on

the function entry and all its exit addresses and measures the time spent in

the function and its callees.

Advantages

- the executed code is identical to the non-profiled code

Disadvantage

- each time a profiling breakpoint is hit the target is stopped and control

is passed to the debugger. Although the debugger restarts the

application immediately, the application's performance is significantly

reduced.

See Section Profiling in Chapter Special Features of the CrossView Pro

Debugger User's Manual.

C Language 6-5

• • • • • • • •

Profiling using code instrumentation techniques

The TASKING compiler contains an option to add code to your application

which takes care of the profiling process. This is called code
instrumentation. The gathered profiling data is first stored in the target's

memory and will be written to a file when the application finishes

execution or when the function __prof_cleanup() is called.

Advantages

- it can give a complete call graph of the application annotated with the

time spend in each function and basic block

- this profiling method is execution environment independent

- the application is profiled while it executes on its aimed target taking

real-life input

Disadvantage

- instrumentation code creates a significant run-time overhead, and

instrumentation code and gathered data take up target memory

This method provides a valuable complement to the other two methods

and will be described into more detail below.

6.2 PROFILING USING CODE INSTRUMENTATION

Profiling can be used to determine which parts of a program take most of

the execution time.

Once the collected data are presented, it may reveal which parts of your

code execute slower than expected and which functions contribute most

to the overall execution time of a program. It gives you also information

about which functions are called more or less often than expected. This

information not only may reveal design flaws or bugs that had otherwise

been unnoticed, it also reveals parts of the program which can be

effectively optimized.

User's Manual6-6
C

 L
A

N
G

U
A

G
E

Important considerations

The code instrumentation method adds code to your original application

which is needed to gather the profiling data. Therefore, the code size of

your application increases. Furthermore, during the profiling process, the

gathered data is initially stored into dynamically allocated memory of the

target. The heap of your application should be large enough to store this

data. Since code instrumentation is done by the compiler, assembly

functions used in your program do not show up in the profile.

The profiling information is collected during the actual execution of the

program. Therefore, the input of the program influences the results. If a

part/function of the program is not activated while the program is profiled,

no profile data is generated for that part/function.

It is possible to execute the application multiple times (while varying the

input data) and combine the profiling results of those runs.

(See section 6.2.3, Step 3: displaying profiling results).

Overview of steps to perform

To obtain a profile using code instrumentation, perform the following

steps:

1. Compile and link your program with profiling enabled

2. Execute the program to generate the profiling data

3. Display the profiling results

C Language 6-7

• • • • • • • •

6.2.1 STEP 1: BUILD YOUR APPLICATION FOR

PROFILING

The first step is to add the code that takes care of the profiling, to your

application. This is done with compiler options:

For profiling at application wide scope:

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

Or, for profiling at module scope:

From the Project menu, select Current File Options...

The File Options dialog box appears.

2. Expand the C Compiler entry and select Profiler.

3. Enable one or more of the following profiler options to select which

profiles should be obtained.

• Block counters (not with Call graph or Function timers)

• Call graph

• Function counters

• Function timers

Block counters (not in combination with Call graph or Time)

This will instrument the code to perform basic block counting. As

the program runs, it will count how many time it executed each

branch of each if statement, each iteration of a for loop, and so

on. Note that though you can combine Block counters with

Function counters, this has no effect because Function counters is a

subset of Block counters.

Call graph (not in combination with Block counters)

This will instrument the code to reconstruct the run-time call graph.

As the program runs it stores the relation between the caller and the

gathered profiling data.

Function counters

This will instrument the code to perform function call counting. This

is a subset of the basic Block counters.

User's Manual6-8
C

 L
A

N
G

U
A

G
E

Time (not in combination with Block counters)

This will instrument the code to measure the time spent in a

function. This includes the time spent in all called functions

(callees).

Clock(): ticks per second

The profiler uses the C library function clock() to measure time.

This is a target dependent function. Default, the clock() function

is implemented for the Tasking simulator which runs at 10 MHz. If

you do not use the simulator for execution, you must provide your

own clock() function. To obtain correct time measurements, fill in

the resolution of your clock() function (in MHz). The default is 10

MHz.

4. From the Build menu select Rebuild.

For the command line, see the command line compiler option -p

(--profile) in Section 4.1, Compiler Options in Chapter Tool Options of

the reference manual.

6.2.1.1 PROFILING MODULES AND LIBRARIES

Profiling individual modules

It is possible to profile individual C modules. In this case only limited

profiling data is gathered for the functions in the modules compiled

without the profiling option. When you use the suboption Call graph, the

profiling data reveals which profiled functions are called by non-profiled

functions. The profiling data does not show how often and from where

the non-profiled functions themselves are called. Though this does not

affect the flat profile, it might reduce the usefulness of the call graph.

Profiling library functions

EDE and/or the control program tcc will link your program with the

standard version of the C library libc*.a. Functions from this library

which are used in your application, will not be profiled. If you do want to

incorporate the library functions in the profile, you must set the

appropriate compiler options in the C library makefiles and rebuild the

library.

C Language 6-9

• • • • • • • •

6.2.1.2 LINKING PROFILING LIBRARIES

When building your application, the application must be linked against a

profile library. EDE (or the control program tcc) automatically select the

correct library based on the profiling options you specified. However, if

you compile, assemble and link your application manually, make sure you

specify the correct library.

See Section 8.4, Linking with Libraries in Chapter Using the Linker for an

overview of the (profiling) libraries.

6.2.2 STEP 2: EXECUTE THE APPLICATION

Once you have compiled and linked the application for profiling, it must

be executed to generate the profiling data. Run the program as usual: the

program should run normally taking the same input as usual and

producing the same output as usual. The application may run somewhat

slower than normal because of the extra time spent on collecting the

profiling data.

Startup code

The startup code initializes the profiling functions by calling the function

__prof_init(). EDE will automatically make the required modifications

to the startup code. Or, when you use the control program, this extracts

the correct startup code from the C library.

If you use your own startup code, you must manually insert a call to the

function __prof_init just before the call to _main and its stack setup.

An application can have multiple entry points, such as main() and other

functions that are called by interrupt. This does not affect the profiling

process.

User's Manual6-10
C

 L
A

N
G

U
A

G
E

Small heap problem

When the program does not run as usual, this is typically caused by a

shortage of heap space. In this case an out of memory message is issued.

(When running with file system simulation, it is displayed on the Debug

console.)

To solve this problem, increase the size of the heap:

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the Linker entry and select Stack/Heap

3. Enter a new value for Heap size (in bytes).

After execution

When the program has finished (returning from main()), the exit code

calls the function __prof_cleanup(). This function writes the gathered

profiling data to a file on the host system using the debugger's file system

simulation features. If your program does not return from main(), you

can force this by inserting a call to the function __prof_cleanup() in

your application source code. Please note the double underscores when

calling from C code!

The resulting profiling data file is named amon.prf. This file is written to

the current working directory.

If your program does not run under control of the debugger and therefore

cannot use the file simulation system (FSS) functionality to write a file to

the host system, you must implement a way to pass the profiling data

gathered on the target to the host. Adapt the function _prof_cleanup()

in the profiling libraries or the underlying I/O functions for this purpose.

C Language 6-11

• • • • • • • •

6.2.3 STEP 3: DISPLAYING PROFILING RESULTS

The result of the profiler can be displayed in EDE.

1. Return to the EDE window.

2. In EDE, from the Build menu select Profile.

The Select Profile Files dialog appears.

Normally, profiling information is stored in the file amon.prf.

However, you can rename this file to keep previous results.

3. Browse to the profile file you want to display

(amon.prf or one of the renamed profiling files).

It is possible to select multiple .prf files. The results are combined.

4. Click OK to confirm.

The profile information of the selected file is displayed in the Profiling
tab of the Output window.

The Output-Profiling window

Results table Shows the timing and call information for all functions

and/or blocks in the profile.

Callers table Shows the functions that called the focus function.

Callees table Shows the functions that are called by the focus function.

• Double clicking on a function in a table, makes the function the

focus function.

• To sort the rows in the table, click on one of the column headers.

• Right-clicking in a table opens a quick-access menu.

• With the copy functions it is possible to copy a table (or selected

rows) to other applications. To select one or more rows, hold down

the Shift-key or Ctrl-key and click the rows you want to add to the

selection.

User's Manual6-12
C

 L
A

N
G

U
A

G
E

The profiling information

Based on the profiling options you have set before compiling your

application, some columns in the profiling window may remain empty.

The columns in the tables represent the following information:

In the results table:

Module The C source module in which the function resides.

#Line Line number of first statement in the Function.

Function The function for which profiling data is gathered and

(if present) the code block number.

Total time Total amount of time (seconds) that was spend in the

function. This includes the time spent in callees of the

function.

Self time Total amount of time (seconds) that was spend executing

the command of the function itself. This excludes the

spent in callees of the function.

% in function The relative amount of time spent in this function. These

should add up to 100%.

Calls/Block Counts

Number of calls (function counters) and basic block

counts.

#Callers Number of functions by which this function is called.

Each function should have at least one caller (except

_START).

#Callees Number of different functions that can be called from this

function.

C Language 6-13

• • • • • • • •

In the caller table:

Module The C source module in which the function resides.

#Line Line number of first statement in the Function.

Caller The name(s) of the function(s) which called the focus

function.

Total time Total amount of time (seconds) that was spend in the

focus function. This includes the time spent in callees of

the function.

Self time Total amount of time (seconds) that was spend executing

the command of the focus function itself. This excludes

the spent in callees of the function.

Contribution% Relative amount of time contributed to the total time of

the focus function. These should add up to 100%.

Calls Number of calls to the focus function.

Calls % Number of calls to the focus function as a percentage of

all calls to the focus function. These should add up to

100%.

In the callee table:

This table basically contains the same columns as the caller table. Only the

caller column is replaced by the callee column which also changes the

meaning of the calls and calls % column:

Callee The name(s) of the function(s) that are called by the focus

function.

Calls Number of calls from the focus function.

Calls % Number of calls from the focus function as a percentage

of all calls from the focus function. These should add up

to 100%.

Note that the self time of the focus function plus the total time of its

callees result in the total time of the focus function.

User's Manual6-14
C

 L
A

N
G

U
A

G
E

Presumable incorrect call graph

The call graph is based on the compiled source code. Due to compiler

optimizations the call graph may therefore seem incorrect at first sight. For

example, the compiler can replace a function call immediately followed by

a return instruction by a jump to the callee, thereby merging the callee

function with the caller function. In this case the time spent in the callee

function is not recorded separately anymore, but added to the time spent

in the caller function (which, as said before, now holds the callee

function). This represents exactly the structure of your source in assembly

but may differ from the structure in the initial C source.

7

USING THE

ASSEMBLER
C

H
A

P
T

E
R

User's Manual7-2
A
S
S
E
M
B
L
E
R

7

C
H

A
P

T
E

R

Using the Assembler 7-3

• • • • • • • •

7.1 INTRODUCTION

The assembler converts hand-written or compiler-generated assembly

language programs into machine language, resulting in object files in the

Executable and Linking Format (ELF).

The assembler takes the following files for input and output:

assembly file

assembler

asm16c

.src
assembly file .asm

(hand coded)

relocatable object file

.obj

list file .lst

error messages .ers

(compiler generated)

Figure 7-1: Assembler

This chapter first describes the assembly process. The various assembler

optimizations are described in the second section. Third it is described

how to call the assembler and how to use its options. An extensive list of

all options and their descriptions is included in the Reference Manual.
Finally, a few important basic tasks are described.

7.2 ASSEMBLY PROCESS

The assembler generates relocatable output files with the extension .obj.

These files serve as input for the linker.

Phases of the assembly process

1. Parsing of the source file: preprocessing of assembler directives and

checking of the syntax of instructions

2. Optimization (instruction alignment, size and generic instructions)

3. Generation of the relocatable object file and optionally a list file

The assembler integrates file inclusion and macro facilities. See section

4.10, Macro Operations, in Chapter Assembly Language for more

information.

User's Manual7-4
A
S
S
E
M
B
L
E
R

7.3 ASSEMBLER OPTIMIZATIONS

The asm16c assembler performs various optimizations to reduce the size

of the assembled applications. To enable or disable optimizations:

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the Assembler entry and select Optimization.

You can enable or disable the optimizations described below. The

command line option for each optimization is given in brackets.

See also option -O (--optimize) in section 4.2, Assembler Options, in
Chapter Tool Options of the Reference Manual.

Instruction alignment (option -Oa/-OA)

When this option is enabled, the assembler aligns instructions with an

even size on even addresses. Odd sized instructions are not aligned.

Allow generic instructions (option -Og/-OG)

When this option is enabled, you can use generic instructions in your

assembly source. The assembler tries to replace the generic instructions by

faster or smaller instructions. For example, the generic instruction

jeq _label1 is replaced by jne __T1; jz _label1; __T1:.

By default this option is enabled. Because shorter instructions may

influence the number of cycles, you may want to disable this option when

you have written timed code. In that case the assembler encodes all

instructions as they are.

Optimize instruction size (option -Os/-OS)

When this option is enabled, the assembler tries to find the shortest

possible operand encoding for instructions. By default this option is

enabled.

Using the Assembler 7-5

• • • • • • • •

7.4 CALLING THE ASSEMBLER

EDE uses a makefile to build your entire project. You can set options

specific for the assembler. After you have built your project, the output

files of the assembling step are available in your project directory.

To assemble your program, click either one of the following buttons:

Assembles the currently selected assembly file (.asm or

.src). This results in a relocatable object file (.obj).

Builds your entire project but looks whether there are already

files available that are needed in the building process. If so,

these files will not be generated again, which saves time.

Builds your entire project unconditionally. All steps necessary

to obtain the final .elf file are performed.

To only check for syntax errors, click the following button:

Checks the currently selected assembly file for syntax errors,

but does not generate code.

Select a target processor (core)

Because the toolchain supports several processor cores, you need to

choose a processor type first.

To access the M16C processor options:

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the Processor entry, fill in the Processor Definition page

and optionally the Startup Code page and click OK to accept the

processor options.

Processor options affect the invocation of all tools in the toolchain. In
EDE you only need to set them once. The corresponding options for the
assembler are listed in table 7-1.

Based on the target processor, the assembler includes a special function
register file regcpu.sfr. This is an include file written in C syntax which

is shared by the compiler, assembler and debugger. Once the assembler

reads an SFR file you can reference the special function registers (SFR) and

bits within an SFR using symbols defined in the SFR file.

User's Manual7-6
A
S
S
E
M
B
L
E
R

To access the assembler options

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the Assembler entry, fill in the various pages and click OK to

accept the project options.

The assembler command line equivalences of your EDE selections are
shown simultaneously in the Options string box.

The following processor options are available:

EDE options Command line

Processor Definition

Select processor -Ccpu

Target R8C/tiny instead of M16C/60 --r8c

Memory

Internal memory EDE only

Startup Code

Add <project>_cstart.src to your project EDE only

Table 7-1: Processor options

The following assembler options are available:

EDE options Command line

Preprocessing

Define user macro -Dmacro[=def]

Include this file before source -Hfile

Optimization

Optimize speed by means of instruction alignment

Allow generic instructions

Optimize instruction size

-Oa/-OA (= on/off)

-Og/-OG
-Os/-OS

Debug

No debug information

Automatic HLL or assembly level debug information

Custom debug information

-gAHLS
-gs
-gflag

Using the Assembler 7-7

• • • • • • • •

Command lineEDE options

List File

Generate list file -l

Custom list file generation options -Lflags

Generate section summary in list file -tl

Diagnostics

Report all warnings

Suppress all warnings

Suppress specific warnings

no option -w
-w
-wnum[,num]...

Treat warnings as errors --warnings-as-errors

Miscellaneous

Generate section summary -tc

Case sensitive identifiers no option -c

Additional assembler options options

Table 7-2: Assembler options

The following options are available on the command line, and you can set

them in EDE through the Additional assembler options field in the

Miscellaneous page:

Description Command line

Display invocation syntax -?

Emit local symbols --emit-locals

Redirect diagnostic messages to a file --error-file[=file]

Read options from file -f file

Labels are by default:

local (default)

global

-il
-ig

Keep output file after errors -k

Select TASKING preprocessor or no preprocessor -m{t|n}

Specify name of output file -o file

Verbose information -v

Display version header only -V

Table 7-3: Assembler command line options

User's Manual7-8
A
S
S
E
M
B
L
E
R

The invocation syntax on the command line is:

asm16c [option]... [file]

The input file must be an assembly source file (.asm or .src).

asm16c test.asm

This assembles the file test.asm for and generates the file test.o

which serves as input for the linker.

For a complete overview of all options with extensive description, see

section 4.2, Assembler Options, of Chapter Tool Options of the Reference
Manual.

7.5 HOW THE ASSEMBLER SEARCHES INCLUDE FILES

When you use include files, you can specify their location in several ways.

The assembler searches the specified locations in the following order:

1. The absolute pathname, if specified in the INCLUDE directive. Or, if no

path or a relative path is specified, the same directory as the source file.

2. The directories that are specified in the Project | Directories dialog (-I

option).

3. The paths which were set during installation. You can still change these

paths.

See section 1.3.1, Configuring the Embedded Development Environment
and environment variable ASM16CINC in section 1.3.2, Configuring the
Command Line Environment, in Chapter Software Installation.

4. The default include directory relative to the installation directory.

7.6 GENERATING A LIST FILE

The list file is an additional output file that contains information about the

generated code. You can also customize the amount and form of

information.

If the assembler generates errors or warnings, these are reported in the list

file just below the source line that caused the error or warning.

Using the Assembler 7-9

• • • • • • • •

To generate a list file

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Assembler entry and select List File.

3. In the List file generation box, select Enable default list file

generation or Custom list file generation options.

4. If you selected Custom, enable the options you want to include in the

list file.

EDE generates a list file for each source file in your project. A list file gets
the same basename as the source file but with extension .lst.

Example on the command line

The following command generates the list file test.lst.

asm16c -l test.src

See section 5.1, Assembler List File Format, in Chapter List File Formats of

the Reference Manual for an explanation of the format of the list file.

7.7 ASSEMBLER ERROR MESSAGES

The assembler produces error messages of the following types:

F Fatal errors

After a fatal error the assembler immediately aborts the assembling

process.

E Errors

Errors are reported, but the assembler continues assembling. No output

files are produced unless you have set the assembler option

--keep-output-files (the resulting output file may be incomplete).

User's Manual7-10
A
S
S
E
M
B
L
E
R

W Warnings

Warning messages do not result into an erroneous assembly output file.

They are meant to draw your attention to assumptions of the assembler for

a situation which may not be correct. You can control warnings in the

Assembler | Diagnostics page of the Project | Project Options...

menu (assembler option -w).

Display detailed information on diagnostics

1. In the Help menu, enable the option Show Help on Tool Errors.

2. In the Build tab of the Output window, double-click on an error or

warning message.

A description of the selected message appears.

asm16c --diag=[format:]{all | number,...}

See assembler option --diag in section 4.2, Assembler Options in Chapter

Tool Options of the Reference Manual.

8

USING THE LINKER
C

H
A

P
T

E
R

User's Manual8-2
L
IN
K
E
R

8

C
H

A
P

T
E

R

Using the Linker 8-3

• • • • • • • •

8.1 INTRODUCTION

The linker lkm16c is a combined linker/locator. The linker phase

combines relocatable object files (.obj files, generated by the assembler),

and libraries into a single relocatable linker object file (.eln). The locator

phase assigns absolute addresses to the linker object file and creates an

absolute object file which you can load into a target processor. From this

point the term linker is used for the combined linker/locator.

The linker takes the following files for input and output:

relocatable object files

linker

relocatable linker object file

lkm16c

.obj

.eln

linker map file .map

error messages .elk

relocatable object library.a

linker script file .lsl

relocatable linker object file .eln memory definition

.mdffile

Motorola S-record

absolute object file

.s

Intel Hex

absolute object file

.hex

ELF/DWARF 2

absolute object file

.elf

Figure 8-1: Linker

This chapter first describes the linking process. Then it describes how to

call the linker and how to use its options. An extensive list of all options

and their descriptions is included in section 4.3, Linker Options, of the

Reference Manual.

To gain even more control over the link process, you can write a script for

the linker. This chapter shortly describes the purpose and basic principles

of the Linker Script Language (LSL) on the basis of an example. A

complete description of the LSL is included in Chapter 7, Linker Script
Language, of the Reference Manual.

The end of the chapter describes how to generate a map file and contains

an overview of the different types of messages of the linker.

User's Manual8-4
L
IN
K
E
R

8.2 LINKING PROCESS

The linker combines and transforms relocatable object files (.obj) into a

single absolute object file. This process consists of two phases: the linking

phase and the locating phase.

In the first phase the linker combines the supplied relocatable object files

and libraries into a single relocatable object file. In the second phase, the

linker assigns absolute addresses to the object file so it can actually be

loaded into a target.

Glossary of terms

Term Definition

Absolute object file Object code in which addresses have fixed absolute

values, ready to load into a target.

Address A specification of a location in an address space.

Address space The set of possible addresses. A core can support

multiple spaces, for example in a Harvard architecture

the addresses that identify the location of an instruction

refer to code space, whereas addresses that identify the

location of a data object refer to a data space.

Architecture A description of the characteristics of a core that are of

interest for the linker. This encompasses the logical

address space(s) and the internal bus structure. Given

this information the linker can convert logical addresses

into physical addresses.

Copy table A section created by the linker. This section contains

data that specifies how the startup code initializes the

data sections. For each section the copy table contains

the following fields:

- action: defines whether a section is copied or zeroed

- destination: defines the section's address in RAM

- source: defines the sections address in ROM

- length: defines the size of the section in MAUs

 of the destination space

Core An instance of a core architecture.

Derivative The design of a processor. A description of one or more

cores including internal memory and any number of

buses.

Library Collection of relocatable object files. Usually each

object file in a library contains one symbol definition

(for example, a function).

Using the Linker 8-5

• • • • • • • •

DefinitionTerm

Logical address An address as encoded in an instruction word, an

address generated by a core (CPU).

LSL file The set of linker script files that are passed to the linker.

MAU Minimum Addressable Unit. For a given processor the

number of bits loaded between an address and the next

address. This is not necessarily a byte or a word.

Object code The binary machine language representation of the

C source.

Physical address An address generated by the memory system.

Processor An instance of a derivative. Usually implemented as a

(custom) chip, but can also be implemented in an

FPGA, in which case the derivative can be designed by

the developer.

Relocatable object

file

Object code in which addresses are represented by

symbols and thus relocatable.

Relocation The process of assigning absolute addresses.

Relocation

information

Information about how the linker must modify the

machine code instructions when it relocates addresses.

Section A group of instructions and/or data objects that occupy

a contiguous range of addresses.

Section attributes Attributes that define how the section should be linked

or located.

Target The hardware board on which an application is

executing. A board contains at least one processor.

However, a complex target may contain multiple

processors and external memory that may be shared

between processors.

Unresolved

reference

A reference to a symbol for which the linker did not find

a definition yet.

Table 8-1: Glossary of terms

User's Manual8-6
L
IN
K
E
R

8.2.1 PHASE 1: LINKING

The linker takes one or more relocatable object files and/or libraries as

input. A relocatable object file, as generated by the assembler, contains the

following information:

• Header information: Overall information about the file, such as the

code size, name of the source file it was assembled from, and creation

date.

• Object code: Binary code and data, divided into various named

sections. Sections are contiguous chunks of code or data that have to

be placed in specific parts of the memory. The program addresses start

at zero for each section in the object file.

• Symbols: Some symbols are exported - defined within the file for use

in other files. Other symbols are imported - used in the file but not

defined (external symbols). Generally these symbols are names of

routines or names of data objects.

• Relocation information: A list of places with symbolic references that

the linker has to replace with actual addresses. When in the code an

external symbol (a symbol defined in another file or in a library) is

referenced, the assembler does not know the symbol's size and

address. Instead, the assembler generates a call to a preliminary

relocatable address (usually 0000), while stating the symbol name.

• Debug information: Other information about the object code that is

used by a debugger. The assembler optionally generates this

information and can consist of line numbers, C source code, local

symbols and descriptions of data structures.

The linker resolves the external references between the supplied

relocatable object files and/or libraries and combines the supplied

relocatable object files into a single relocatable linker object file.

The linker starts its task by scanning all specified relocatable object files

and libraries. If the linker encounters an unresolved symbol, it remembers

its name and continues scanning. The symbol may be defined elsewhere

in the same file, or in one of the other files or libraries that you specified

to the linker. If the symbol is defined in a library, the linker extracts the

object file with the symbol definition from the library. This way the linker

collects all definitions and references of all of the symbols.

Using the Linker 8-7

• • • • • • • •

With this information, the linker combines the object code of all

relocatable object files. The linker combines sections with the same section

name and attributes into single sections, starting each section at address

zero. The linker also substitutes (external) symbol references by

(relocatable) numerical addresses where possible. At the end of the linking

phase, the linker either writes the results to a file (a single relocatable

object file) or keeps the results in memory for further processing during

the locating phase.

The resulting file of the linking phase is a single relocatable object file

(.eln). If this file contains unresolved references, you can link this file

with other relocatable object files (.obj) or libraries (.a) to resolve the

remaining unresolved references.

With the linker command line option --link-only, you can tell the linker

to only perform this linking phase and skip the locating phase. The linker

complains if any unresolved references are left.

8.2.2 PHASE 2: LOCATING

In the locating phase, the linker assigns absolute addresses to the object

code, placing each section in a specific part of the target memory. The

linker also replaces references to symbols by the actual address of those

symbols. The resulting file is an absolute object file which you can actually

load into a target memory. Optionally, when the resulting file should be

loaded into a ROM device the linker creates a so-called copy table section

which is used by the startup code to initialize the data sections.

Code modification

When the linker assigns absolute addresses to the object code, it needs to

modify this code according to certain rules or relocation expressions to
reflect the new addresses. These relocation expressions are stored in the

relocatable object file. Consider the following snippet of x86 code that

moves the contents of variable a to variable b via the eax register:

A1 3412 0000 mov a,%eax (a defined at 0x1234, byte reversed)
A3 0000 0000 mov %eax,b (b is imported so the instruction refers to
 0x0000 since its location is unknown)

Now assume that the linker links this code so that the section in which a

is located is relocated by 0x10000 bytes, and b turns out to be at 0x9A12.

The linker modifies the code to be:

User's Manual8-8
L
IN
K
E
R

A1 3412 0100 mov a,%eax (0x10000 added to the address)
A3 129A 0000 mov %eax,b (0x9A12 patched in for b)

These adjustments affect instructions, but keep in mind that any pointers

in the data part of a relocatable object file have to be modified as well.

Output formats

The linker can produce its output in different file formats. The default

ELF/DWARF2 format (.elf) contains an image of the executable code and

data, and can contain additional debug information. The Intel-Hex format

(.hex) and Motorola S-record format (.s) only contain an image of the

executable code and data. You can specify a format with the options -o

(--output) and -c (--chip-output).

Controlling the linker

Via a so-called linker script file you can gain complete control over the

linker. The script language used to describe these features is called the

Linker Script Language (LSL). You can define:

• The types of memory that are installed in the embedded target system:

To assign locations to code and data sections, the linker must know

what memory devices are actually installed in the embedded target

system. For each physical memory device the linker must know its

start-address, its size, and whether the memory is read-write accessible

(RAM) or read-only accessible (ROM).

• How and where code and data should be placed in the physical

memory:

Embedded systems can have complex memory systems. If for example

on-chip and off-chip memory devices are available, the code and data

located in internal memory is typically accessed faster and with

dissipating less power. To improve the performance of an application,

specific code and data sections should be located in on-chip memory.

By writing your own LSL file, you gain full control over the locating

process.

• The underlying hardware architecture of the target processor.

Using the Linker 8-9

• • • • • • • •

To perform its task the linker must have a model of the underlying

hardware architecture of the processor you are using. For example the

linker must know how to translate an address used within the object

file (a logical address) into an offset in a particular memory device

(a physical address). In most linkers this model is hard coded in the

executable and can not be modified. For the lkm16c linker this

hardware model is described in the linker script file. This solution is

chosen to support configurable cores that are used in system-on-chip

designs.

When you want to write your own linker script file, you can use the

standard linker script files with architecture descriptions delivered with the

product.

See also section 8.6, Controlling the Linker with a Script.

8.2.3 LINKER OPTIMIZATIONS

During the linking and locating phase, the linker looks for opportunities to

optimize the object code. Both code size and execution speed can be

optimized. To enable or disable optimizations:

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the Linker entry and select Optimization.

You can enable or disable the optimizations described below. The

command line option for each optimization is given in brackets.

See also option -O (--optimize) in section 4.3, Linker Options, in Chapter

Tool Options of the Reference Manual.

First fit decreasing (option -Ol/-OL)

When the physical memory is fragmented or when address spaces are

nested it may be possible that a given application cannot be located

although the size of the available physical memory is larger than the sum

of the section sizes. Enable the first-fit-decreasing optimization when this

occurs and re-link your application.

User's Manual8-10
L
IN
K
E
R

The linker's default behavior is to place sections in the order that is

specified in the LSL file. This also applies to sections within an unrestricted

group. If a memory range is partially filled and a section must be located

that is larger than the remainder of this range, then the section and all

subsequent sections are placed in a next memory range. As a result of this

gaps occur at the end of a memory range.

When the first-fit-decreasing optimization is enabled the linker will first

place the largest sections in the smallest memory ranges that can contain

the section. Small sections are located last and can likely fit in the

remaining gaps.

Copy table compression (option -Ot/-OT)

The startup code initializes the application's data areas. The information

about which memory addresses should be zeroed and which memory

ranges should be copied from ROM to RAM is stored in the copy table.

When this optimization is enabled the linker will try to locate sections in

such a way that the copy table is as small as possible thereby reducing the

application's ROM image.

This optimization reduces both memory and startup speed.

Compress ROM image (option -Oz/-OZ)

Reduce the size of the application's ROM image by compressing the ROM

image of initialized data sections. At application startup time the ROM

image is decompressed and copied to RAM.

Delete unreferenced sections (option -Oc/-OC)

This optimization removes unused sections from the resulting object file.

Because debug information normally refers to all sections, this

optimization has no effect until you compile your project without debug

information or use linker option --strip-debug to remove the debug

information.

Delete duplicate code sections (option -Ox/-OX)

Delete duplicate data sections (option -Oy/-OY)

These two optimizations remove code and constant data that is defined

more than once, from the resulting object file.

Using the Linker 8-11

• • • • • • • •

8.3 CALLING THE LINKER

EDE uses a makefile to build your entire project. This means that you

cannot run only the linker. However, you can set options specific for the

linker. After you have build your project, the output files of the linking

step are available in your project directory, unless you specified an

alternative output directory in the Build Options dialog.

To link your program, click either one of the following buttons:

Builds your entire project but only updates files that are

out-of-date or have been changed since the previous build,

which saves time.

Builds your entire project unconditionally. All steps necessary

to obtain the final .elf file are performed.

To get access to the linker options:

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the Linker entry. Select the subentries and set the options in

the various pages.

The command line variant is shown simultaneously.

User's Manual8-12
L
IN
K
E
R

The following linker options are available:

EDE options Command line

Output Format

Output formats -o[filename][:format
[:addr_size][,space]]

-c[basename]:format
[:addr_size]

Libraries

Link default C libraries -lx

Rescan libraries to solve unresolved exernals --no-rescan

Link case sensitive (required for C language) no option
--case-insensitive

Optimization

Use a 'first fit decreasing' algorithm

Use copy table compression

Compress ROM image

Delete unreferenced sections

Delete duplicate code

Delete duplicate constant data

-Ol/-OL (= on/off)

-Ot/-OT
-Oz/-OZ
-Oc/-OC
-Ox/-OX
-Oy/-OY

Map File

Generate a map file (.map) -M

Suboptions for the Generate a map file option -mflags

Warnings

Report all warnings

Suppress all warnings

Suppress specific warnings

no option -w
-w
-wnum[,num]...

Treat warnings as errors --warnings-as-errors

Miscellaneous

Use standard copy-table for initialization no option -i

Strip symbolic debug information -S

Dump processor and memory info from LSL file --lsl-dump[=file]

Select linker script file -dfile,...

Additional linker options options

Table 8-2: Linker options

Using the Linker 8-13

• • • • • • • •

The following options are only available on the command line:

Description Command line

Display invocation syntax -?

Define preprocessor macro -Dmacro[=def]

Specify a symbol as unresolved external -esymbol

Redirect errors to a file with extension .elk --error-file[=file]

Read options from file -f file

Scan libraries in given order --first-library-first

Search only in -L directories, not in default path --ignore-default-
library-path

Keep output files after errors -k

Link only, do not locate --link-only

Check LSL file(s) and exit --lsl-check

Activate muncher in pre locate phase --munch

Do not generate ROM copy -N

Locate all ROM sections in RAM --non-romable

Link incrementally -r

Display version header only -V

Print the name of each file as it is processed -v

Table 8-3: Linker command line options

The invocation syntax on the command line is:

lkm16c [option]... [file]...]...

When you are linking multiple files (either relocatable object files (.obj)

or libraries (.a), it is important to specify the files in the right order. This

is explained in Section 8.4.1, Specifying Libraries to the Linker

Example:

lkm16c -otest.elf -dm16c.lsl test.obj

This links and locates the file test.obj and generates the file test.elf.

For a complete overview of all options with extensive description, see

section 4.3, Linker Options, of the Reference Manual.

User's Manual8-14
L
IN
K
E
R

8.4 LINKING WITH LIBRARIES

There are two kinds of libraries: system libraries and user libraries.

System library

The lib directory of the toolchain contains subdirectories with separate

system libraries for the M16C and the R8C. An overview of the system

libraries is given in the following tables.

Library to link Description

libcs.a

libcm.a

libcl.a

C library for small, medium or large memory model

(Some functions require the floating-point library. Also

includes the startup code.)

libcss.a

libcms.a

libcls.a

Single precision C library for small, medium or large memory

model (compiler option -F)

(Some functions require the floating-point library. Also

includes the startup code.)

libfps.a

libfpm.a

libfpl.a

Floating-point library (non-trapping) for each model

libfpst.a

libfpmt.a

libfplt.a

Floating-point library (trapping) for each model

(Control program option --fp-trap)

librts.a

librtm.a

librtl.a

Run-time library for each model

Table 8-4: Overview of M16C libraries

Library to link Description

libc.a C library

(Some functions require the floating-point library. Also

includes the startup code.)

libcs.a Single precision C library (compiler option -F)

(Some functions require the floating-point library. Also

includes the startup code.)

libfp.a Floating-point library (non-trapping)

libfpt.a Floating-point library (trapping)

(Control program option --fp-trap)

librt.a Run-time library

Table 8-5: Overview of R8C libraries

Using the Linker 8-15

• • • • • • • •

For more information on these libraries see section 3.14, Libraries, in
Chapter C Language.

User library

You can also create your own libraries. Section 9.4, Archiver, in Chapter

Using the Utilities, describes how you can use the archiver to create your

own library with object modules. To link user libraries, specify their

filenames on the command line.

8.4.1 SPECIFYING LIBRARIES TO THE LINKER

In EDE you can specify both system and user libraries.

Link a system library with EDE

To specify to link the default C libraries:

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the Linker entry and select Libraries.

3. Select Link default C libraries.

4. Click OK to accept the linker options.

When you want to link system libraries from the command line, you must

specify this with the linker option -l. With the option -lcl you specify the

system library libcl.a. For example:

lkm16c -lcl start.obj

Link a user library in EDE

To specify your own libraries, you have to add the library files to your

project:

1. From the Project menu, select Properties...

The Project Properties dialog box appears.

2. In the Members tab, click on the Add existing files to project

button.

User's Manual8-16
L
IN
K
E
R

3. Select the libraries you want to add and click Open.

4. Click OK to accept the new project settings.

The invocation syntax on the command line is for example:

lkm16c start.obj mylib.a

If the library resides in a subdirectory, specify that directory with the

library name:

lkm16c start.obj mylibs\mylib.a

Library order

The order in which libraries appear on the command line is important. By

default the linker processes object files and libraries in the order in which

they appear on the command line. Therefore, when you use a weak

symbol construction, like printf, in an object file or your own library,

you must position this object/library before the C library.

With the option --first-library-first you can tell the linker to scan the

libraries from left to right, and extract symbols from the first library where

the linker finds it. This can be useful when you want to use newer

versions of a library routine.

Example:

lkm16c --first-library-first a.a test.obj b.a

If the file test.obj calls a function which is both present in a.a and

b.a, normally the function in b.a would be extracted. With this option

the linker first tries to extract the symbol from the first library a.a.

8.4.2 HOW THE LINKER SEARCHES LIBRARIES

System libraries

You can specify the location of system libraries (specified with option -l)

in several ways. The linker searches the specified locations in the

following order:

1. The linker first looks in the directories that are specified in the

Directories dialog (-L option). If you specify the -L option without a

pathname, the linker stops searching after this step.

Using the Linker 8-17

• • • • • • • •

2. When the linker did not find the library (because it is not in the specified

library directory or because no directory is specified), it looks which paths

were set during installation. You can still change these paths if you like.

See environment variables LIBM16C in section 1.3.2, Configuring the
Command Line Environment, in Chapter Software Installation.

3. When the linker did not find the library, it tries the default lib directory

relative to the installation directory.

User library

If you use your own library, the linker searches the library in the current

directory only.

8.4.3 HOW THE LINKER EXTRACTS OBJECTS FROM

LIBRARIES

A library built with arm16c always contains an index part at the beginning

of the library. The linker scans this index while searching for unresolved

externals. However, to keep the index as small as possible, only the

defined symbols of the library members are recorded in this area.

When the linker finds a symbol that matches an unresolved external, the

corresponding object file is extracted from the library and is processed.

After processing the object file, the remaining library index is searched. If

after a complete search of the library unresolved externals are introduced,

the library index will be scanned again. After all files and libraries are

processed, and there are still unresolved externals and you did not specify

the linker option --no-rescan, all libraries are rescanned again. This way

you do not have to worry about the library order. However, this

rescanning does not work for 'weak symbols'. If you use a weak symbol

construction, like printf, in an object file or your own library, you must

position this object/library before the C library

The -v option shows how libraries have been searched and which objects

have been extracted.

User's Manual8-18
L
IN
K
E
R

Resolving symbols

If you are linking from libraries, only the objects that contain symbol

definition(s) to which you refer, are extracted from the library. This implies

that if you invoke the linker like:

lkm16c mylib.a

nothing is linked and no output file will be produced, because there are

no unresolved symbols when the linker searches through mylib.a.

It is possible to force a symbol as external (unresolved symbol) with the

option -e:

lkm16c -e main mylib.a

In this case the linker searches for the symbol main in the library and (if

found) extracts the object that contains main. If this module contains new

unresolved symbols, the linker looks again in mylib.a. This process

repeats until no new unresolved symbols are found.

8.5 INCREMENTAL LINKING

With the M16C linker lkm16c it is possible to link incrementally.
Incremental linking means that you link some, but not all .obj modules

to a relocatable object file .eln. In this case the linker does not perform

the locating phase. With the second invocation, you specify both new

.obj files and the .eln file you had created with the first invocation.

Incremental linking is only possible on the command line.

lkm16c -r test1.obj -otest.eln

lkm16c test2.obj test.eln

This links the file test1.obj and generates the file test.eln. This file is

used again and linked together with test2.obj to create the file

task1.elf (the default name if no output filename is given in the default

ELF/DWARF 2 format).

With incremental linking it is normal to have unresolved references in the

output file until all .obj files are linked and the final .eln or .elf file

has been reached. The option -r for incremental linking also suppresses

warnings and errors because of unresolved symbols.

Using the Linker 8-19

• • • • • • • •

8.6 CONTROLLING THE LINKER WITH A SCRIPT

With the options on the command line you can control the linker's

behavior to a certain degree. From EDE it is also possible to determine

where your sections will be located, how much memory is available,

which sorts of memory are available, and so on. EDE passes these locating

directions to the linker via a script file. If you want even more control over

the locating process you can supply your own script.

The language for the script is called the Linker Script Language, or shortly

LSL. You can specify the script file to the linker, which reads it and locates

your application exactly as defined in the script. If you do not specify your

own script file, the linker always reads a standard script file which is

supplied with the toolchain.

8.6.1 PURPOSE OF THE LINKER SCRIPT LANGUAGE

The Linker Script Language (LSL) serves three purposes:

1. It provides the linker with a definition of the target's core architecture.

This definition is supplied with the toolchain.

2. It provides the linker with a specification of the memory attached to

the target processor.

3. It provides the linker with information on how your application should

be located in memory. This gives you, for example, the possibility to

create overlaying sections.

The linker accepts multiple LSL files. You can use the specifications of the

M16C and R8C architectures that Altium has supplied in the include.lsl

directory. Do not change these files.

If you use a different memory layout than described in the LSL file

supplied for the target core, you must specify this in a separate LSL file

and pass both the LSL file that describes the core architecture and your LSL

file that contains the memory specification to the linker. Next you may

want to specify how sections should be located and overlaid. You can do

this in the same file or in another LSL file.

LSL has its own syntax. In addition, you can use the standard ANSI C

preprocessor keywords because the linker sends the script file first to the

C preprocessor before it starts interpreting the script.

User's Manual8-20
L
IN
K
E
R

The complete syntax is described in Chapter 7, Linker Script Language, in
the Reference Manual.

8.6.2 EDE AND LSL

In EDE you can specify the size of the stack and heap; the physical

memory attached to the processor; identify that particular address ranges

are reserved; and specify which sections are located where in memory.

EDE translates your input into an LSL file that is stored in the project

directory under the name project.lsl and passes this file to the linker.

If you want to learn more about LSL you can inspect the generated file

project.lsl.

To change the LSL settings

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the Processor entry and select Memory.

3. Make your changes.

4. Also make your changes, if necessary, in the pages Sections,

Reserved Areas and/or Stack/Heap in the Linker entry.

Each time you close the Project Options dialog the file project.lsl is

updated and you can immediately see how your settings are encoded in

LSL.

Note that EDE supports ChromaCoding (applying color coding to text) and

template expansion when you edit LSL files.

Specify your own LSL file

If you want to write your own linker script file, you can use the EDE

generated file project.lsl as an example. Specify this file to EDE as

follows:

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the Linker entry and select Miscellaneous.

Using the Linker 8-21

• • • • • • • •

3. Select Use project specific linker script file and add your own file in

the edit field.

8.6.3 STRUCTURE OF A LINKER SCRIPT FILE

A script file consists of several definitions. The definitions can appear in

any order.

The architecture definition (required)

In essence an architecture definition describes how the linker should

convert logical addresses into physical addresses for a given type of core.

If the core supports multiple address spaces, then for each space the linker

must know how to perform this conversion. In this context a physical

address is an offset on a given internal or external bus. Additionally the

architecture definition contains information about items such as the

(hardware) stack and the interrupt vector table.

This specification is normally written by Altium. For the M16C core

architecture, a separate LSL file is provided m16c.lsl. For the R8C core

architecture, a separate LSL file is provided r8c.lsl.

The architecture definition of the LSL file should not be changed by you

unless you also modify the core's hardware architecture. If the LSL file

describes a multi-core system an architecture definition must be available

for each different type of core.

The derivative definition (required)

The derivative definition describes the configuration of the internal

(on-chip) bus and memory system. Basically it tells the linker how to

convert offsets on the buses specified in the architecture definition into

offsets in internal memory. A derivative definition must be present in an

LSL file. Microcontrollers and DSPs often have internal memory and I/O

sub-systems apart from one or more cores. The design of such a chip is

called a derivative.

When you design an FPGA together with a PCB, the components on the

FPGA become part of the board design and there is no need to distinguish

between internal and external memory. For this reason you probably do

not need to work with derivative definitions at all. There are, however,

two situations where derivative definitions are useful:

User's Manual8-22
L
IN
K
E
R

1. When you re-use an FPGA design for several board designs it may be

practical to write a derivative definition for the FPGA design and

include it in the project LSL file.

2. When you want to use multiple cores of the same type, you must

instantiate the cores in a derivative definition, since the linker

automatically instantiates only a single core for an unused architecture.

The processor definition

The processor definition describes an instance of a derivative. A processor

definition is only needed in a multi-processor embedded system. It allows

you to define multiple processors of the same type.

If for a derivative 'A' no processor is defined in the LSL file, the linker

automatically creates a processor named 'A' of derivative 'A'. This is why

for single-processor applications it is enough to specify the derivative in

the LSL file, for example with -dm16c.lsl.

The memory and bus definitions (optional)

Memory and bus definitions are used within the context of a derivative

definition to specify internal memory and on-chip buses. In the context of

a board specification the memory and bus definitions are used to define

external (off-chip) memory and buses. Given the above definitions the

linker can convert a logical address into an offset into an on-chip or

off-chip memory device.

The board specification

The processor definition and memory and bus definitions together form a

board specification. LSL provides language constructs to easily describe

single-core and heterogeneous or homogeneous multi-core systems. The

board specification describes all characteristics of your target board's

system buses, memory devices, I/O sub-systems, and cores that are of

interest to the linker. Based on the information provided in the board

specification the linker can for each core:

• convert a logical address to an offset within a memory device

• locate sections in physical memory

• maintain an overall view of the used and free physical memory within

the whole system while locating

Using the Linker 8-23

• • • • • • • •

The section layout definition (optional)

The optional section layout definition enables you to exactly control

where input sections are located. Features are provided such as: the ability

to place sections at a given address, to place sections in a given order, and

to overlay code and/or data sections.

Example: Skeleton of a Linker Script File

A linker script file that defines a derivative "X'" based on the M16C

architecture, its external memory and how sections are located in memory,

may have the following skeleton:

architecture M16C

{

 // Specification of the M16C core architecture.

 // Written by Altium.

}

derivative X // derivative name is arbitrary

{

 // Specification of the derivative.

 // Written by Altium.

 core M16C // always specify the core

 {

 architecture = M16C;

 }

 bus data_bus // internal bus

 {

 // maps to data_bus in "M16C" core

 }

 // internal memory

}

processor proc1 // processor name is arbitrary

{

 derivative = X;

 // You can omit this part, except if you use a

 // multi-core system.

}

User's Manual8-24
L
IN
K
E
R

memory ext_name

{

 // external memory definition

}

section_layout proc1:M16C:near // section layout

{

 // section placement statements

 // sections are located in address space 'near'

 // of core 'M16C' of processor 'proc1'

}

8.6.4 THE ARCHITECTURE DEFINITION

Although you will probably not need to program the architecture

definition (unless you are building your own processor core) it helps to

understand the Linker Script Language and how the definitions are

interrelated.

Within an architecture definition the characteristics of a target processor

core that are important for the linking process are defined. These include:

• space definitions: the logical address spaces and their properties

• bus definitions: the I/O buses of the core architecture

• mappings: the address translations between logical address spaces, the

connections between logical address spaces and buses and the address

translations between buses

Address spaces

A logical address space is a memory range for which the core has a

separate way to encode an address into instructions. Most microcontrollers

and DSPs support multiple address spaces. For example, the M16C has

separate spaces for byte-addressable data and bit-addressable data.

Normally, the size of an address space is to 2N, with N the number of bits

used to encode the addresses.

The relation of an address space with another address space can be one of

the following:

• one space is a subset of the other. These are often used for "small"

absolute, and relative addressing.

Using the Linker 8-25

• • • • • • • •

• the addresses in the two address spaces represent different locations so

they do not overlap. This means the core must have separate sets of

address lines for the address spaces. For example, in Harvard

architectures we can identify at least a code and a data memory space.

Address spaces (even nested) can have different minimal addressable units

(MAU), alignment restrictions, and page sizes.

The M16C architecture in LSL notation

The best way to program the architecture definition, is to start with a

drawing. The following figure shows a part of the M16C architecture:

0

1M

64k

space far

space near

bus data_bus

id = 1

mau = 8

id = 2

mau = 8

mau = 8

width=8

Figure 8-2: Scheme of (part of) the M16C architecture

The figure shows two address spaces called near, and far. The address

space near is a subset of the address space far. All address spaces have

attributes like a number that identifies the logical space (id), a MAU size

and an alignment. In LSL notation the definition of these address spaces

looks as follows:

space near

{

 id = 1;

 mau = 8;

 map (src_offset=0x00000, dest_offset=0x00000,

 size=64k, dest=space:far);

}

space far

{

 id = 2;

 mau = 8;

 map (src_offset=0x00000, dest_offset=0x00000,

 size=1M, dest=bus:data_bus);

}

User's Manual8-26
L
IN
K
E
R

The keyword map corresponds with the arrows in the drawing. You can

map:

• address space => address space

• address space => bus

• memory => bus (not shown in the drawing)

• bus => bus (not shown in the drawing)

Next the internal bus, named data_bus must be defined in LSL:

bus data_bus

{

 mau = 8;

 width = 8; // there are 8 data lines on the bus

}

This completes the LSL code in the architecture definition. Note that all

code above goes into the architecture definition, thus between:

architecture M16C

{

 All code above goes here.

}

8.6.5 THE DERIVATIVE DEFINITION

Although you will probably not need to program the derivative definition

(unless you are using multiple cores) the description below helps to

understand the Linker Script Language and how the definitions are

interrelated.

A derivative is the design of a processor, as implemented on a chip (or

FPGA). It comprises one or more cores and on-chip memory. The

derivative definition includes:

• core definition: an instance of a core architecture

• bus definition: the I/O buses of the core architecture

• memory definitions: internal (or on-chip) memory

Using the Linker 8-27

• • • • • • • •

Core

Each derivative must have at least one core and each core must have a

specification of its core architecture. This core architecture must be defined

somewhere in the LSL file(s).

core M16C

{

 architecture = M16C;

}

Bus

Each derivative can contain a bus definition for connecting external

memory. In this example, the bus data_bus maps to the bus data_bus

defined in the architecture definition of core M16C:

bus data_bus

{

 mau = 8;

 width = 8;

 map (dest=bus:M16C:data_bus, dest_offset=0, size=256);

}

Memory

Memory is usually described in a separate memory definition, but you can

specify on-chip memory for a derivative. For example:

memory internal_ram

{

 type = ram;

 size = 16k;

 mau = 8;

 map(src_offset=0x0000, dest_offset=0x0000,

 size=16k, dest=bus:M16C:data_bus);

}

This completes the LSL code in the derivative definition. Note that all code

above goes into the derivative definition, thus between:

derivative X // name of derivative

{

 All code above goes here.

}

User's Manual8-28
L
IN
K
E
R

If you want to create a custom derivative and you want to use EDE to

select sections, the derivative must be called "M16C", since EDE uses this

name in the generated LSL file. If you want to specify external memory in

EDE, the custom derivative must contain a bus named "data_bus" for the

same reason. In EDE you have to define a target processor in the

Processor pages of the Project | Project Options dialog.

8.6.6 THE MEMORY DEFINITION

Once the core architecture is defined in LSL, you may want to extend the

processor with memory. You need to specify the location and size of the

physical external memory devices in the target system.

The principle is the same as defining the core's architecture but now you

need to fill the memory definition:

memory name

{

 memory definitions.

}

0

1M

8k

space far

space near

bus data_bus

id = 1

mau = 8

id = 2

mau = 8

mau = 8

width=8
16k

0

memory iram

mau = 8

256k

memory irom

0

mau = 8

1k

0
mau = 8

memory my_nvram

Figure 8-3: Adding external memory to the M16C architecture

Suppose your embedded system has 16k of RAM, named iram., 1k of

non-volatile RAM called my_nvram and 256k of ROM, named irom (see

figure above). The memories are connected to the bus data_bus. In LSL

this looks like:

Using the Linker 8-29

• • • • • • • •

memory iram

{

 type = ram;

 size = 16k;

 mau = 8;

 map(src_offset=0x0000, dest_offset=0x0400,

 size=16k, dest=bus:M16C:data_bus);

}

The memory my_nvram is connected to the bus with an offset of 0x5000:

memory my_nvram

{

 type = ram;

 size = 1k;

 mau = 8;

 map(src_offset=0x0000, dest_offset=0x5000,

 size=1k, dest=bus:M16C:data_bus);

}

The memory irom is connected to the bus with an offset of 0xC0000:

memory irom

{

 type = rom;

 size = 256k;

 mau = 8;

 map(src_offset=0x0000, dest_offset=0xc0000,

 size=256k, dest=bus:M16C:data_bus);

}

If you use a different memory layout than described in the LSL file

supplied for the target core, you can specify this in EDE or you can specify

this in a separate LSL file and pass both the LSL file that describes the core

architecture and your LSL file that contains the memory specification to the

linker.

In order to bypass the default memory setup, your memory LSL file must

contain a #define __NODEFAULTMEM, and you must specify this file

before the core architecture LSL file.

Adding memory using EDE

In EDE you can only specify external memory if the processor does not

run in single chip mode.

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the Processor entry and select Processor Definition.

User's Manual8-30
L
IN
K
E
R

3. Select Memory Expansion mode or Microprocessor mode or select

-- User Defined -- in the Select processor box for a user defined

processor.

4. Open the Memory page.

5. In the External Memory box add your memory (for example

my_nvram), by specifying the type, name, start address and size.

8.6.7 THE SECTION LAYOUT DEFINITION: LOCATING

SECTIONS

Once you have defined the internal core architecture and optional

memory, you can actually define where your application must be located

in the physical memory.

During compilation, the compiler divides the application into sections.

Sections have a name, an indication in which address space it should be

located and attributes like writable or read-only.

In the section layout definition you can exactly define how input sections

are placed in address spaces, relative to each other, and what their

absolute run-time and load-time addresses will be. To illustrate section

placement the following example of a C program is used:

Example: section propagation through the toolchain

To illustrate section placement, the following example of a C program

(bat.c) is used. The program saves the number of times it has been

executed in battery back-upped memory, and prints the number.

#define BATTERY_BACKUP_TAG 0xa5f0

#include <stdio.h>

int uninitialized_data;

int initialized_data = 1;

#pragma renamesect DA "non_volatile" noclear

int battery_backup_tag;

int battery_backup_invok;

#pragma endrenamesect DA

Using the Linker 8-31

• • • • • • • •

void main (void)

{

 if (battery_backup_tag != BATTERY_BACKUP_TAG)

 {

 // battery back-upped memory area contains invalid data

 // initialize the memory

 battery_backup_tag = BATTERY_BACKUP_TAG;

 battery_backup_invok = 0;

 }

 printf("This application has been invoked %d times\n",

 battery_backup_invok++);

}

The compiler assigns names and attributes to sections. With the #pragma

renamesect DA "name" the compiler's default section naming

convention is overruled and a section with the name

non_volatile_CLR_DA is defined. In this section the battery

back-upped data is stored.

By default the compiler creates the section bat_CLR_DA, data, clear

(a section with the name bat_CLR_DA carrying section attributes "data"

and "clear") to store uninitialized data objects. The section attributes tell

the linker to locate the section in address space data and that the section

content should be filled with zeros at startup.

As a result of the #pragma renamesect DA "non_volatile"

noclear, the data objects between the pragma pair are placed in

non_volatile_CLR_DA, data, noclear. Note that because battery

back-upped sections should not be cleared we used the "noclear"

attribute.

The generated assembly may look like:

 extern (code)_printf

 extern (code)___printf_int

 extern (code)__START

 defsect "bat_CO", code

 sect "bat_CO"

 global _main

User's Manual8-32
L
IN
K
E
R

; Function _main

_main: type func

 cmp.w #42480, _battery_backup_tag

 jeq _2

 .

 .

 jsr _printf

 rts

 size _main, $-_main

 ; End of function

 ; End of section

 defsect "bat_CLR_DA", data, clear

 sect "bat_CLR_DA"

 global _uninitialized_data

_uninitialized_data: type object

 size _uninitialized_data, 2

 ds 2

 ; End of section

 defsect "bat_INI_DA", data, init

 sect "bat_INI_DA"

 global _initialized_data

_initialized_data: type object

 size _initialized_data, 2

 dw 1

 ; End of section

 defsect "non_volatile_CLR_DA", data, noclear

 sect "non_volatile_CLR_DA"

 global _battery_backup_tag

_battery_backup_tag: type object

 size _battery_backup_tag, 2

 ds 2

 global _battery_backup_invok

_battery_backup_invok: type object

 size _battery_backup_invok, 2

 ds 2

 ; End of section

 sect "bat_INI_DA"

__1_ini: type object

 size __1_ini, 44

 db 84, 104, 105, 115, 32, 97, 112, 112, 108, 105

 db 99, 97, 116, 105, 111, 110, 32, 104, 97, 115

 db 32, 98, 101, 101, 110, 32, 105, 110, 118, 111

 db 107, 101, 100, 32, 37, 100, 32, 116, 105, 109

 db 101, 115, 10, 0

 ; This application has been invoked %d times\n

 ; Module end

Using the Linker 8-33

• • • • • • • •

Section placement

The number of invocations of the example program should be saved in

non-volatile (battery back-upped) memory. This is the memory my_nvram

from the example in the previous section.

To control the locating of sections, you need to write one or more section

definitions in the LSL file. At least one for each address space where you

want to change the default behavior of the linker. In our example, we

need to locate sections in the address space near:

section_layout ::near

{

 Section placement statements

}

To locate sections, you must create a group in which you select sections

from your program. For the battery back-up example, we need to define

one group, which contains the section non_volatile_CLR_DA. All other

sections are located using the defaults specified in the architecture

definition. Section non_volatile_CLR_DA should be placed in

non-volatile ram. To achieve this, the run address refers to our

non-volatile memory called my_nvram:

group (ordered, run_addr = mem:my_nvram)

{

 select "non_volatile_CLR_DA";

}

Section placement from EDE

To specify the above settings using EDE, follow these steps:

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the Linker entry and select Sections.

Here you can specify where sections are located in memory.

3. In the Section type field, select Near Data.

4. In the Section name field, enter non_volatile_CLR_DA.

5. In the Absolute address field, enter mem:my_nvram

6. In the Section attr field, select Code/Data part.

User's Manual8-34
L
IN
K
E
R

7. Click OK.

This completes the LSL file for the sample architecture and sample

program. You can now call the linker with this file and the sample

program to obtain an application that works for this architecture.

For a complete description of the Linker Script Language, refer to Chapter

7, Linker Script Language, in the Reference Manual.

8.6.8 THE PROCESSOR DEFINITION: USING

MULTI-PROCESSOR SYSTEMS

The processor definition is only needed when you write an LSL file for a

multi-processor embedded system. The processor definition explicitly

instantiates a derivative, allowing multiple processors of the same type.

processor proc_name

{

 derivative = deriv_name

}

If no processor definition is available that instantiates a derivative, a

processor is created with the same name as the derivative.

Using the Linker 8-35

• • • • • • • •

8.7 LINKER LABELS

The linker creates labels that you can use to refer to from within the

application software. Some of these labels are real labels at the beginning

or the end of a section. Other labels have a second function, these labels

are used to address generated data in the locating phase. The data is only

generated if the label is used.

Linker labels are labels starting with __lc_. The linker assigns addresses to

the following labels when they are referenced:

Label Description

__lc_cp Start of copy table. Same as __lc_ub_table. The copy

table gives the source and destination addresses of

sections to be copied. This table will be generated by the

linker only if this label is used.

__lc_bh Begin of heap. Same as __lc_ub_heap.

__lc_eh End of heap. Same as __lc_ue_heap.

__lc_bs Begin of stack. Same as __lc_ub_sp.

__lc_es End of stack. Same as __lc_ue_sp.

__lc_u_name User defined label. The label must be defined in the LSL

file. For example,

 "__lc_u_int_tab" = (INTTAB);

__lc_ub_name

__lc_b_name

Begin of section name. Also used to mark the begin of the

stack or heap or copy table.

__lc_ue_name

__lc_e_name

End of section name. Also used to mark the begin of the

stack or heap.

__lc_cb_name Start address of an overlay section in ROM.

__lc_ce_name End address of an overlay section in ROM.

__lc_gb_name Begin of group name. This label appears in the output file

even if no reference to the label exist in the input file.

__lc_ge_name End of group name. This label appears in the output file

even if no reference to the label exist in the input file.

Table 8-6: Linker labels

The linker only allocates space for the stack and/or heap when a reference

to either of the section labels exists in one of the input object files.

User's Manual8-36
L
IN
K
E
R

At C level, all linker labels start with one leading underscore (the compiler

adds an extra underscore).

Example

Suppose in an LSL file you have defined a user stack section with the

name "ustack" (with the keyword stack). You can refer to the begin

and end of the stack from your C source as follows (labels have one

leading underscore):

#include <stdio.h>

extern char *_lc_ub_ustack;

extern char *_lc_ue_ustack;

void main()

{

 printf("Size of user stack is %d\n",

 _lc_ue_ustack - _lc_ub_ustack);

}

From assembly you can refer to the end of the user stack with:

extern __lc_ue_ustack ; user stack end

Using the Linker 8-37

• • • • • • • •

8.8 GENERATING A MAP FILE

The map file is an additional output file that contains information about

the location of sections and symbols. You can customize the type of

information that should be included in the map file.

To generate a map file

1. From the Project menu, select Project Options...

The Project Options dialog box appears.

2. Expand the Linker entry and select Map File.

3. Select Generate a linker map file (.map)

4. (Optional) Enable the options to include that information in the map

file.

Example on the command line

lkm16c -Mtest.map test.obj

With this command the list file test.map is created.

See section 5.2, Linker Map File Format, in Chapter List File Formats of the

Reference Manual for an explanation of the format of the map file.

User's Manual8-38
L
IN
K
E
R

8.9 LINKER ERROR MESSAGES

The linker produces error messages of the following types:

F Fatal errors

After a fatal error the linker immediately aborts the link/locate process.

E Errors

Errors are reported, but the linker continues linking and locating. No

output files are produced unless you have set the linker option

--keep-output-files.

W Warnings

Warning messages do not result into an erroneous output file. They are

meant to draw your attention to assumptions of the linker for a situation

which may not be correct. You can control warnings in the Linker |

Diagnostics page of the Project | Project Options... menu (linker

option -w).

I Information

Verbose information messages do not indicate an error but tell something

about a process or the state of the linker. To see verbose information, use

the linker option -v.

S System errors

System errors occur when internal consistency checks fail and should

never occur. When you still receive the system error message

S6##: message

please report the error number and as many details as possible about the

context in which the error occurred. The following helps you to prepare

an e-mail using EDE:

1. From the Help menu, select Technical Support -> Prepare Email...

The Prepare Email form appears.

2. Fill out the the form. State the error number and attach relevant files.

3. Click the Copy to Email client button to open your email application.

A prepared e-mail opens in your e-mail application.

Using the Linker 8-39

• • • • • • • •

4. Finish the e-mail and send it.

Display detailed information on diagnostics

1. In the Help menu, enable the option Show Help on Tool Errors.

2. In the Build tab of the Output window, double-click on an error or

warning message.

A description of the selected message appears.

lkm16c --diag=[format:]{all | number,...}

See linker option --diag in section 4.3, Linker Options in Chapter Tool
Options of the Reference Manual.

User's Manual8-40
L
IN
K
E
R

9

USING THE

UTILITIES
C

H
A

P
T

E
R

User's Manual9-2
U
T
IL
IT
IE
S

9

C
H

A
P

T
E

R

Using the Utilities 9-3

• • • • • • • •

9.1 INTRODUCTION

The TASKING toolchain for the M16C processor family comes with a

number of utilities that provide useful extra features.

ccm16c A control program for the M16C toolchain. The control

program invokes all tools in the toolchain and lets you

quickly generate an absolute object file from C source input

files.

mkm16c A utility program to maintain, update, and reconstruct groups

of programs. The make utility looks whether files are out of

date, rebuilds them and determines which other files as a

consequence also need to be rebuild.

arm16c An ELF archiver. With this utility you create and maintain

object library files.

flashm16c A utility to flash an ELF, Intel Hex or Motorola S-Records file.

User's Manual9-4
U
T
IL
IT
IE
S

9.2 CONTROL PROGRAM

The control program ccm16c is a tool that invokes all tools in the

toolchain for you. It provides a quick and easy way to generate the final

absolute object file out of your C sources without the need to invoke the

compiler, assembler and linker manually.

9.2.1 CALLING THE CONTROL PROGRAM

You can only call the control program from the command line. The

invocation syntax is

ccm16c [[option]... [file]...]...

For example:

ccm16c -v test.c

The control program calls all tools in the toolchain and generates the

absolute object file test.elf. With the control program option -v you

can see how the control program calls the tools:

+ c:\cm16c\bin\cm16c -Ms -o test.src test.c

+ c:\cm16c\bin\asm16c -o test.obj test.src

+ c:\cm16c\bin\lkm16c test.obj -o test.elf --map-file

-lcs -lfps -lrts

By default, the control program removes the intermediate output files

(test.src and test.obj in the example above) afterwards, unless you

specify the command line option -t (--keep-temporary-files).

Recognized input files

The control program recognizes the following input files:

• Files with a .cc, .cxx or .cpp suffix are interpreted as C++ source

programs and are passed to the C++ compiler.

• Files with a .c suffix are interpreted as C source programs and are

passed to the compiler.

• Files with a .asm suffix are interpreted as hand-written assembly

source files which have to be passed to the assembler.

• Files with a .src suffix are interpreted as compiled assembly source

files. They are directly passed to the assembler.

Using the Utilities 9-5

• • • • • • • •

• Files with a .a suffix are interpreted as library files and are passed to

the linker.

• Files with a .obj suffix are interpreted as object files and are passed to

the linker.

• Files with a .eln suffix are interpreted as linked object files and are

passed to the locating phase of the linker. The linker accepts only one

.eln file in the invocation.

• An argument with a .lsl suffix is interpreted as a linker script file and

is passed to the linker.

Options of the control program

The following control program options are available:

Description Option

Information

Display invocation options -?

Display version header -V

Check the source but do not generate code --check

Show description of diagnostics --diag=[fmt:]{all|nr}

Verbose option: show commands invoked

Verbose option: show commands without executing

-v
-n

Suppress all warnings -w

Treat warnings as errors --warnings-as-
errors

Show C and assembly warnings for C++

compilations

--show-c++-
warnings

C Language

ISO C standard 90 or 99 (default: 99) --iso={90|99}

Language extensions

Allow C++ style comments in C source

Check assignment constant string to

non constant string pointer

-Aflag
-Ap
-Ax

Treat external definitions as "static" --static

Single precision floating point -F

C++ Language

Treat C++ files as C files --force-c

Force C++ compilation and linking --force-c++

User's Manual9-6
U
T
IL
IT
IE
S

OptionDescription

Force invocation of C++ muncher --force-munch

Force invocation of C++ prelinker --force-prelink

Show the list of object files handled by the C++

prelinker

--list-object-files

Copy C++ prelink (.ii) files from outside the current

directory

--prelink-copy-
if-nonlocal

Use only C++ prelink files in the current directory --prelink-local-only

Remove C++ instantiation flags after prelinking --prelink-remove-
instantiation-flags

Enable C++ exception handling --exceptions

C++ instantiation mode --instantiate=type

C++ instantiation directory --instantiation-dir=
dir

C++ instantiation file --instantiation-file=
file

Disable automatic C++ instantiation --no-auto-
instantiation

Allow multiple instantiations in a single object file --no-one-instantiat
ion-per-object

Preprocessing

Define preprocessor macro -Dmacro[=def]

Remove preprocessor macro -Umacro

Store the C compiler preprocess output (file.pre) -Eflag

Memory models

Select memory model -M{s|m|l}

Code generation

Select CPU type -Ccpu

Generate symbolic debug information -g

Target R8C instead of M16C/60 --r8c

Libraries

Add library directory -Ldir

Add library -llib

Ignore the default search path for libraries --ignore-default-
library-path

Using the Utilities 9-7

• • • • • • • •

OptionDescription

Do not include default list of libraries --no-default-
libraries

Use trapped floating-point library --fp-trap

Input files

Specify linker script file -d file

Read options from file -f file

Add include directory -Idir

Output files

Redirect diagnostic messages to a file --error-file

Select final output file:

 relocatable output file

 object file(s)

 assembly file(s)

-cl
-co
-cs

Specify linker output format (ELF, IHEX, SREC) --format=type

Set the address size for linker IHEX/SREC files --address-size=n

Set linker output space name --space=name

Keep output file(s) after errors -k

Do not generate linker map file --no-map-file

Specify name of output file -o file

Do not delete intermediate (temporary) files -t

Table 9-1: Overview of control program options

For a complete list and description of all control program options, see

section 4.4, Control Program Options, in Chapter Tool Options of the

Reference Manual.

The options in table 9-1 are options that the control program interprets

itself. The control program however can also pass an option directly to a

tool. Such an option is not interpreted by the control program but by the

tool itself. The next example illustrates how an option is passed directly to

the linker to link a user defined library:

ccm16c -Wl-lmylib test.c

Use the following options to pass arguments to the various tools:

User's Manual9-8
U
T
IL
IT
IE
S

Description Option

Pass argument directly to the C++ compiler

Pass argument directly to the C++ pre-linker

Pass argument directly to the C compiler

Pass argument directly to the assembler

Pass argument directly to the linker

-Wcparg
-Wplarg
-Wcarg
-Waarg
-Wlarg

Table 9-2: Control program options to pass an option directly to a tool

If you specify an unknown option to the control program, the control

program looks if it is an option for a specific tool. If so, it passes the

option directly to the tool. However, it is recommended to use the control

program options for passing arguments directly to tools.

With the environment variable CCM16COPT you can define options and/or

arguments that the control programs always processes before the command

line arguments.

For example, if you use the control program always with the option

--no-map-file (do not generate a linker map file), you can specify

"--no-map-file" to the environment variable CCM16COPT.

See section 1.3.2, Configuring the Command Line Environment, in Chapter

Software Installation.

Using the Utilities 9-9

• • • • • • • •

9.3 MAKE UTILITY

If you are working with large quantities of files, or if you need to build

several targets, it is rather time-consuming to call the individual tools to

compile, assemble, link and locate all your files.

You save already a lot of typing if you use the control program ccm16c

and define an options file. You can even create a batch file or script that

invokes the control program for each target you want to create. But with

these methods all files are completely compiled, assembled, linked and

located to obtain the target file, even if you changed just one C source.

This may demand a lot of (CPU) time on your host.

The make utility mkm16c is a tool to maintain, update, and reconstruct

groups of programs. The make utility looks which files are out-of-date

and only recreates these files to obtain the updated target.

Make process

In order to build a target, the make utility needs the following input:

• the target it should build, specified as argument on the command line

• the rules to build the target, stored in a file usually called makefile

In addition, the make utility also reads the file mkm16c.mk which contains

predefined rules and macros. See section 9.3.2, Writing a Makefile.

The makefile contains the relationships among your files (called

dependencies) and the commands that are necessary to create each of the

files (called rules). Typically, the absolute object file (.elf) is updated

when one of its dependencies has changed. The absolute file depends on

.obj files and libraries that must be linked together. The .obj files on

their turn depend on .src files that must be assembled and finally, .src

files depend on the C source files (.c) that must be compiled. In the

makefile makefile this looks like:

test.src : test.c # dependency

 cm16c test.c # rule

test.obj : test.src

 asm16c test.src

test.elf : test.obj

 lkm16c -otest.elf test.obj -lcs -lfps -lrts

You can use any command that is valid on the command line as a rule in

the makefile. So, rules are not restricted to invocation of the toolchain.

User's Manual9-10
U
T
IL
IT
IE
S

Example

To build the target test.elf, call mkm16c with one of the following

lines:

mkm16c test.elf

mkm16c -f mymake.mak test.elf

By default, the make utility reads makefile so you do not need to specify

it on the command line. If you want to use another name for the makefile,

use the option -f my_makefile.

If you do not specify a target, mkm16c uses the first target defined in the

makefile. In this example it would build test.src instead of test.elf.

The make utility now tries to build test.elf based on the makefile

and peforms the following steps:

1. From the makefile the make utility reads that test.elf depends on

test.obj.

2. If test.obj does not exist or is out-of-date, the make utility first tries

to build this file and reads from the makefile that test.obj depends

on test.src.

3. If test.src does exist, the make utility now creates test.obj by

executing the rule for it: asm16c test.src.

4. There are no other files necessary to create test.elf so the make

utility now can use test.obj to create test.elf by executing the

rule lkm16c -otest.elf test.obj -lcs -lfps -lrts.

The make utility has now built test.elf but it only used the assembler

to update test.obj and the linker to create test.elf.

If you compare this to the control program:

ccm16c test.c

This invocation has the same effect but now all files are recompiled

(assembled, linked and located).

Using the Utilities 9-11

• • • • • • • •

9.3.1 CALLING THE MAKE UTILITY

You can only call the make utility from the command line. The invocation

syntax is

mkm16c [[options] [targets] [macro=def]...]

For example:

mkm16c test.elf

target You can specify any target that is defined in the makefile.

A target can also be one of the intermediate files specified

in the makefile.

macro=def Macro definition. This definition remains fixed for the

mkm16c invocation. It overrides any regular definitions

for the specified macro within the makefiles and from the

environment. It is inherited by subordinate mkm16c's but

act as an environment variable for these. That is,

depending on the -e setting, it may be overridden by a

makefile definition.

Exit status

The make utility returns an exit status of 1 when it halts as a result of an

error. Otherwise it returns an exit status of 0.

Options of the make utility

The following make utility options are available:

Description Option

Display options

Display version header

-?
-V

Verbose

Print makefile lines while being read

Display time comparisons which indicate a target is out of date

Display current date and time

Verbose option: show commands without executing (dry run)

Do not show commands before execution

Do not build, only indicate whether target is up-to-date

-D/-DD
-d/-dd
-time
-n
-s
-q

User's Manual9-12
U
T
IL
IT
IE
S

OptionDescription

Input files

Use makefile instead of the standard makefile makefile
Change to directory before reading the makefile

Read options from file

Do not read the mkm16c.mk file

-f makefile
-G path
-m file
-r

Process

Always rebuild target without checking whether it is out-of-date

Run as a child process

Environment variables override macro definitions

Do not remove temporary files

On error, only stop rebuilding current target

Overrule the option -k (only stop rebuilding current target)

Make all target files precious

Touch the target files instead of rebuilding them

Treat target as if it has just been reconstructed

-a
-c
-e
-K
-k
-S
-p
-t
-W target

Error messages

Redirect error messages and verbose messages to a file

Ignore error codes returned by commands

Redirect messages to standard out instead of standard error

Show extended error messages

-err file
-i
-w
-x

Table 9-3: Overview of make utility options

For a complete list and description of all make utility options, see section

4.5, Make Utility Options, in Chapter Tool Options of the Reference Manual.

9.3.2 WRITING A MAKEFILE

In addition to the standard makefile makefile, the make utility always

reads the makefile mkm16c.mk before other inputs. This system makefile

contains implicit rules and predefined macros that you can use in the

makefile makefile.

With the option -r (Do not read the mkm16c.mk file) you can prevent the

make utility from reading mkm16c.mk.

The default name of the makefile is makefile in the current directory. If

on a UNIX system this file is not found, the file Makefile is used as the

default. If you want to use other makefiles, use the option -f my_makefile.

Using the Utilities 9-13

• • • • • • • •

The makefile can contain a mixture of:

• targets and dependencies

• rules

• macro definitions or functions

• comment lines

• include lines

• export lines

To continue a line on the next line, terminate it with a backslash (\):

this comment line is continued\

on the next line

If a line must end with a backslash, add an empty macro.

this comment line ends with a backslash \$(EMPTY)

this is a new line

Targets and dependencies

The basis of the makefile is a set of targets, dependencies and rules. A

target entry in the makefile has the following format:

target ... : [dependency ...] [; rule]

 [rule]

 ...

Target lines must always start at the beginning of a line, leading white

spaces (tabs or spaces) are not allowed. A target line consists of one or

more targets, a semicolon and a set of files which are required to build the

target (dependencies). The target itself can be one or more filenames or

symbolic names.:

all: demo.elf final.elf

demo.elf final.elf: test.obj demo.obj final.obj

You can now can specify the target you want to build to the make utility.

The following three invocations all have the same effect:

mkm16c

mkm16c all

mkm16c demo.elf final.elf

User's Manual9-14
U
T
IL
IT
IE
S

If you do not specify a target, the first target in the makefile (in this

example all) is build. The target all depends on demo.elf and

final.elf so the second and third invocation have also the same effect

and the files demo.elf and final.elf are built.

In MS-Windows you can normally use colons to denote drive letters. The

following works as intended: c:foo.obj : a:foo.c

If a target is defined in more than one target line, the dependencies are

added to form the target's complete dependency list:

all: demo.elf # These two lines are equivalent with:

all: final.elf # all: demo.elf final.elf

For target lines, macros and functions are expanded at the moment they

are read by the make utility. Normally macros are not expanded until the

moment they are actually used.

Special Targets

There are a number of special targets. Their names begin with a period.

.DEFAULT: If you call the make utility with a target that has no definition

in the make file, this target is build.

.DONE: When the make utility has finished building the specified

targets, it continues with the rules following this target.

.IGNORE: Non-zero error codes returned from commands are ignored.

Encountering this in a makefile is the same as specifying the

option -i on the command line.

.INIT: The rules following this target are executed before any other

targets are build.

.SILENT: Commands are not echoed before executing them.

Encountering this in a makefile is the same as specifying the

option -s on the command line.

.SUFFIXES: This target specifies a list of file extensions. Instead of

building a completely specified target, you now can build a

target that has a certain file extension. Implicit rules to build

files with a number of extensions are included in the system

makefile mkm16c.mk.

Using the Utilities 9-15

• • • • • • • •

If you specify this target with dependencies, these are added

to the existing .SUFFIXES target in mkm16c.mk. If you

specify this target without dependencies, the existing list is

cleared.

.PRECIOUS: Dependency files mentioned for this target are never

removed. Normally, if a command in a rule returns an error

or when the target construction is interrupted, the make

utility removes that target file. You can use the -p command

line option to make all target files precious.

Rules

A line with leading white space (tabs or spaces) is considered as a rule

and associated with the most recently preceding dependency line. A rule
is a line with commands that are executed to build the associated target.

A target-dependency line can be followed by one or more rules.

final.src : final.c # target and dependency

 mv test.c final.c # rule1

 cm16c final.c # rule2

You can precede a rule with one or more of the following characters:

@ does not echo the command line, except if -n is used.

- the make utility ignores the exit code of the command (ERRORLEVEL

in MS-DOS). Normally the make utility stops if a non-zero exit code is

returned. This is the same as specifying the option -i on the command

line or specifying the special .IGNORE target.

+ The make utility uses a shell or COMMAND.COM to execute the

command. If the '+' is not followed by a shell line, but the command is

a DOS command or if redirection is used (<, |, >), the shell line is

passed to COMMAND.COM anyway. For UNIX, redirection, backquote

(`) parentheses and variables force the use of a shell.

You can force mkm16c to execute multiple command lines in one

shell environment. This is accomplished with the token combination

';\'. For example:

cd c:\cm16c\bin ;\

ccm16c -V

User's Manual9-16
U
T
IL
IT
IE
S

The ';' must always directly be followed by the '\' token. Whitespace is not

removed when it is at the end of the previous command line or when it is

in front of the next command line. The use of the ';' as an operator for a

command (like a semicolon ';' separated list with each item on one line)

and the '\' as a layout tool is not supported, unless they are separated with

whitespace.

The make utility can generate inline temporary files. If a line contains

<<LABEL (no whitespaces!) then all subsequent lines are placed in a

temporary file until the line LABEL is encountered. Next, <<LABEL is

replaced by the name of the temporary file.

Example:

lkm16c -o $@ -f <<EOF

$(separate "\n" $(match .obj $!))

$(separate "\n" $(match .a $!))

$(LKFLAGS)

EOF

The three lines between <<EOF and EOF are written to a temporary file

(for example mkce4c0a.tmp), and the rule is rewritten as lkm16c -o $@

-f mkce4c0a.tmp.

Instead of specifying a specific target, you can also define a general target.

A general target specifies the rules to generate a file with extension .ex1

to a file with extension .ex2. For example:

.SUFFIXES: .c

.c.src :

 lkm16c $<

Read this as: to build a file with extension .src out of a file with

extension .c, call the compiler with $<. $< is a predefined macro that is

replaced with the basename of the specified file. The special target

.SUFFIXES: is followed by a list of file extensions of the files that are

required to build the target.

Implicit Rules

Implicit rules are stored in the system makefile mkm16c.mk and are

intimately tied to the .SUFFIXES special target. Each dependency that

follows the .SUFFIXES target, defines an extension to a filename which

must be used to build another file. The implicit rules then define how to

actually build one file from another. These files share a common

basename, but have different extensions.

Using the Utilities 9-17

• • • • • • • •

If the specified target on the command line is not defined in the makefile

or has not rules in the makefile, the make utility looks if there is an

implicit rule to build the target.

Example

This makefile says that prog.elf depends on two files prog.obj and

sub.obj, and that they in turn depend on their corresponding source files

(prog.c and sub.c) along with the common file inc.h.

LIB = -lcs # macro

prog.elf: prog.obj sub.obj

 lkm16c prog.obj sub.obj $(LIB) -o prog.elf

prog.obj: prog.c inc.h

 cm16c prog.c

 asm16c prog.src

sub.obj: sub.c inc.h

 cm16c sub.c

 asm16c sub.src

The following makefile uses implicit rules (from mkm16c.mk) to perform

the same job.

LKFLAGS = -lcs # macro used by implicit rules

prog.elf: prog.obj sub.obj # implicit rule used

prog.obj: prog.c inc.h # implicit rule used

sub.obj: sub.c inc.h # implicit rule used

Files

makefile Description of dependencies and rules.

Makefile Alternative to makefile, for UNIX.

mkm16c.mk Default dependencies and rules.

Diagnostics

mkm16c returns an exit status of 1 when it halts as a result of an error.

Otherwise it returns an exit status of 0.

Macro definitions

A macros is a symbol names that is replaced with it's definition before the

makefile is executed. Although the macro name can consist of lower case

or upper case characters, upper case is an accepted convention. The

general form of a macro definition is:

User's Manual9-18
U
T
IL
IT
IE
S

MACRO = text and more text

Spaces around the equal sign are not significant. To use a macro, you must

access it's contents:

$(MACRO) # you can read this as

${MACRO} # the contents of macro MACRO

If the macro name is a single character, the parentheses are optional. Note

that the expansion is done recursively, so the body of a macro may

contain other macros. These macros are expanded when the macro is

actually used, not at the point of definition:

FOOD = $(EAT) and $(DRINK)

EAT = meat and/or vegetables

DRINK = water

export FOOD

The macro FOOD is expanded as meat and/or vegetables and

water at the moment it is used in the export line.

Predefined Macros

MAKE Holds the value mkm16c. Any line which uses MAKE,

temporarily overrides the option -n (Show commands

without executing), just for the duration of the one line. This

way you can test nested calls to MAKE with the option -n.

MAKEFLAGS

Holds the set of options provided to mkm16c (except for

the options -f and -d). If this macro is exported to set the

environment variable MAKEFLAGS, the set of options is

processed before any command line options. You can pass

this macro explicitly to nested mkm16c's, but it is also

available to these invocations as an environment variable.

PRODDIR Holds the name of the directory where mkm16c is installed.

You can use this macro to refer to files belonging to the

product, for example a library source file.

DOPRINT = $(PRODDIR)/lib/src/_doprint.c

When mkm16c is installed in the directory /cm16c/bin this

line expands to:

DOPRINT = /cm16c/lib/src/_doprint.c

Using the Utilities 9-19

• • • • • • • •

SHELLCMD Holds the default list of commands which are local to the

SHELL. If a rule is an invocation of one of these commands, a

SHELL is automatically spawned to handle it.

TMP_CCPROG

Holds the name of the control program: ccm16c. If this

macro and the TMP_CCOPT macro are set and the command

line argument list for the control program exceeds 127

characters, then mkm16c creates a temporary file with the

command line arguments. mkm16c calls the control program

with the temporary file as command input file.

TMP_CCOPT

Holds -f, the control program option that tells it to read

options from a file. (This macro is only available for the

Windows command prompt version of mkm16c.)

$ This macro translates to a dollar sign. Thus you can use "$$"

in the makefile to represent a single "$".

There are several dynamically maintained macros that are useful as

abbreviations within rules. It is best not to define them explicitly.

$* The basename of the current target.

$< The name of the current dependency file.

$@ The name of the current target.

$? The names of dependents which are younger than the target.

$! The names of all dependents.

The $< and $* macros are normally used for implicit rules. They may be

unreliable when used within explicit target command lines. All macros

may be suffixed with F to specify the Filename components (e.g. ${*F},

${@F}). Likewise, the macros $*, $< and $@ may be suffixed by D to

specify the directory component.

The result of the $* macro is always without double quotes ("), regardless

of the original target having double quotes (") around it or not.

The result of using the suffix F (Filename component) or D (Directory

component) is also always without double quotes ("), regardless of the

original contents having double quotes (") around it or not.

User's Manual9-20
U
T
IL
IT
IE
S

Functions

A function not only expands but also performs a certain operation.

Functions syntactically look like macros but have embedded spaces in the

macro name, e.g. '$(match arg1 arg2 arg3)'. All functions are built-in and

currently there are five of them: match, separate, protect, exist and

nexist.

match The match function yields all arguments which match a

certain suffix:

$(match .obj prog.obj sub.obj mylib.a)

yields:

prog.obj sub.obj

separate The separate function concatenates its arguments using the

first argument as the separator. If the first argument is

enclosed in double quotes then '\n' is interpreted as a

newline character, '\t' is interpreted as a tab, '\ooo' is

interpreted as an octal value (where, ooo is one to three octal

digits), and spaces are taken literally. For example:

$(separate "\n" prog.obj sub.obj)

results in:

prog.obj

sub.obj

Function arguments may be macros or functions themselves.

So,

$(separate "\n" $(match .obj $!))

yields all object files the current target depends on, separated

by a newline string.

protect The protect function adds one level of quoting. This

function has one argument which can contain white space. If

the argument contains any white space, single quotes, double

quotes, or backslashes, it is enclosed in double quotes. In

addition, any double quote or backslash is escaped with a

backslash.

Using the Utilities 9-21

• • • • • • • •

Example:

echo $(protect I'll show you the "protect"

function)

yields:

echo "I'll show you the \"protect\"

function"

exist The exist function expands to its second argument if the

first argument is an existing file or directory.

Example:

$(exist test.c ccm16c test.c)

When the file test.c exists, it yields:

ccm16c test.c

When the file test.c does not exist nothing is expanded.

nexist The nexist function is the opposite of the exist function. It

expands to its second argument if the first argument is not an

existing file or directory.

Example:

$(nexist test.src ccm16c test.c)

Conditional Processing

Lines containing ifdef, ifndef, else or endif are used for conditional

processing of the makefile. They are used in the following way:

ifdef macro-name
if-lines
else

else-lines
endif

The if-lines and else-lines may contain any number of lines or text of any

kind, even other ifdef, ifndef, else and endif lines, or no lines at all.

The else line may be omitted, along with the else-lines following it.

User's Manual9-22
U
T
IL
IT
IE
S

First the macro-name after the if command is checked for definition. If

the macro is defined then the if-lines are interpreted and the else-lines are

discarded (if present). Otherwise the if-lines are discarded; and if there is

an else line, the else-lines are interpreted; but if there is no else line,

then no lines are interpreted.

When using the ifndef line instead of ifdef, the macro is tested for not

being defined. These conditional lines can be nested up to 6 levels deep.

See also Defining Macros in section 4.5, Make Utility Options, in Chapter

Tools Options of the Reference Manual.

Comment lines

Anything after a "#" is considered as a comment, and is ignored. If the "#"

is inside a quoted string, it is not treated as a comment. Completely blank

lines are ignored.

test.src : test.c # this is comment and is

 cm16c test.c # ignored by the make utility

Include lines

An include line is used to include the text of another makefile (like

including a .h file in a C source). Macros in the name of the included file

are expanded before the file is included. Include files may be nested.

include makefile2

Export lines

An export line is used to export a macro definition to the environment of

any command executed by the make utility.

GREETING = Hello

export GREETING

This example creates the environment variable GREETING with the value

Hello. The macros is exported at the moment the export line is read so

the macro definition has to proceed the export line.

Using the Utilities 9-23

• • • • • • • •

9.4 ARCHIVER

The archiver arm16c is a program to build and maintain your own library

files. A library file is a file with extension .a and contains one or more

object files (.obj) that may be used by the linker.

The archiver has five main functionalities:

• Deleting an object module from the library

• Moving an object module to another position in the library file

• Replacing an object module in the library or add a new object module

• Showing a table of contents of the library file

• Extracting an object module from the library

The archiver takes the following files for input and output:

assembler

relocatable object file

linker

asm16c

lkm16c

relocatable object library

.a

archiver

arm16c .obj

Figure 9-1: ELF/DWARF archiver and library maintainer

The linker optionally includes object modules from a library if that module

resolves an external symbol definition in one of the modules that are read

before.

9.4.1 CALLING THE ARCHIVER

You can only call the archiver from the command line. The invocation

syntax is:

arm16c key_option [sub_option...] library [object_file]

key_option With a key option you specify the main task which the

archiver should perform. You must always specify a key

option.

User's Manual9-24
U
T
IL
IT
IE
S

sub_option Sub-options specify into more detail how the archiver should

perform the task that is specified with the key option. It is

not obligatory to specify sub-options.

library The name of the library file on which the archiver performs

the specified action. You must always specify a library name,

except for the option -? and -V. When the library is not in

the current directory, specify the complete path (either

absolute or relative) to the library.

object_file The name of an object file. You must always specify an

object file name when you add, extract, replace or remove an

object file from the library.

Options of the archiver utility

The following archiver options are available:

Description Option Sub-option

Main functions (key options)

Replace or add an object module -r -a -b -c -u -v

Extract an object module from the library -x -v

Delete object module from library -d -v

Move object module to another position -m -a -b -v

Print a table of contents of the library -t -s0 -s1

Print object module to standard output -p

Sub-options

Append or move new modules after existing

module name
-a name

Append or move new modules before

existing module name
-b name

Create library without notification if library

does not exist

-c

Preserve last-modified date from the library -o

Print symbols in library modules -s{0|1}

Replace only newer modules -u

Verbose -v

Using the Utilities 9-25

• • • • • • • •

Sub-optionOptionDescription

Miscellaneous

Display options -?

Display version header -V

Read options from file -f file

Suppress warnings above level n -wn

Table 9-4: Overview of archiver options and sub-options

For a complete list and description of all archiver options, see section 4.6,

Archiver Options, in Chapter Tool Options of the Reference Manual.

9.4.2 EXAMPLES

Create a new library

If you add modules to a library that does not yet exist, the library is

created. To create a new library with the name mylib.a and add the

object modules cstart.obj and calc.obj to it:

arm16c -r mylib.a cstart.obj calc.obj

Add a new module to an existing library

If you add a new module to an existing library, the module is added at the

end of the module. (If the module already exists in the library, it is

replaced.)

arm16c -r mylib.a mod3.obj

Print a list of object modules in the library

To inspect the contents of the library:

arm16c -t mylib.a

The library has the following contents:

cstart.obj

calc.obj

mod3.obj

User's Manual9-26
U
T
IL
IT
IE
S

Move an object module to another position

To move mod3.obj to the beginning of the library, position it just before

cstart.obj:

arm16c -mb cstart.obj mylib.a mod3.obj

Delete an object module from the library

To delete the object module cstart.obj from the library mylib.a:

arm16c -d mylib.a cstart.obj

Extract all modules from the library

Extract all modules from the library mylib.a:

arm16c -x mylib.a

Using the Utilities 9-27

• • • • • • • •

9.5 FLASH UTILITY

With the flash utility flashm16c you can load an ELF, Intel Hex or

Motorola S-record file in a flash device.

Configure flash settings from EDE

You can configure all flash settings from EDE.

1. From the Project menu, select Project Options...

The Project Options dialog appears.

2. Expand the Flasher entry and select Flasher Settings.

3. Select serial or USB communication.

4. Select the flash actions.

You can perform several actions with the flash tool:

Blank check

Select this to check if the flash device is properly erased.

Full erase

Select this to erase the entire flash memory.

Program

Select this to program the flash device with the specified file.

Verify

Select this to compare a Motorola S-record file (or other absolute file) with

the content of the FLASH.

9.5.1 CALLING THE FLASH UTILITY

You can call the flash utitlity from the command line or from EDE. The

invocation syntax is:

flashm16c [option]... [file]...

If you invoke flashm16c with the -nodialog command line option the

absolute file is directly flashed into the target.

User's Manual9-28
U
T
IL
IT
IE
S

From EDE, you can start flashing with one click on the Flash an ELF,

Intel Hex or Motorola S-Rec file button located in the toolbar.

Options of the flash utility

The following flash utility options are available:

Description Option

Target selection

Default: M16C20 - M16C60 no option

M16C10 -M16C10

R8C10 - R8C13 -R8C10

Flasher settings

Flash actions:

B - Blank check

F - Erase all blocks

P - Program file

V - Verify programmed blocks

-actions=flag...

Flash ID code

Use id to access the flash -id=id

When IDs 00 or FF fail, do not retry with

opposite

-noidretry

Communication settings

Specify baud rate (default: 9600) -baudrate=baudrate

Specify the serial port to use -com{1|2|3|4}

Use USB connection -USB

Set the target board and upload the hex

file to the USB monitor board

-set_USB_target=target

Files

Set working directory -dir dir

Read options from file -f file

Save original contents before overwriting -backup file

Specify start/end address for backup

(default: 0xC0000 - 0xFFFFF)

-backup_range=start, end

Using the Utilities 9-29

• • • • • • • •

OptionDescription

Append errors to file -err file

Miscellaneous

Do not use the Flash dialog -nodialog

Log level (detail of warnings, 0=none,

3=all)

-level={0|1|2|3}

Display short description of options -h

Show on-board flash program version -version

Example

To erase the flash device and flash the file demo.s at a baud rate of 38400

in a device connected at serial port COM2, using a command line

interface, type:

flashm16c -actions=FP -baudrate=38400 -com2

-id=00.00.00.00.00.00.00 -nodialog demo.s

User's Manual9-30
U
T
IL
IT
IE
S

INDEX
I
N
D
E
X

IndexIndex-2
IN
D
E
X

I
N
D
E
X

Index Index-3

• • • • • • • •

Symbols
-M option, 3-19

__asm, syntax, 3-20

__asmfunc, 3-37

__atbit(), 3-7

__bita, 3-13

__BUILD__, 3-29

__far, 3-13

__LITTLE_ENDIAN__, 3-29

__MODEL__, 3-29

__near, 3-13

__paged, 3-13

__REVISION__, 3-29

__rom, 3-13

__sfr, 3-13, 3-16

__VERSION__, 3-29

A
absolute address, 3-18

absolute variable, 3-18

addressing modes, 4-6

architecture definition, 8-21

archiver, 9-23

invocation, 9-23
options (overview), 9-24

arm16c, 9-23

assembler, setting options, 7-6

assembler controls, overview, 4-16

assembler directives, overview, 4-14

assembler error messages, 7-9

assembler options, overview, 7-6

assembly, programming in C, 3-20

assembly expressions, 4-7

assembly functions, 3-37

assembly syntax, 4-3

auto_switch, 3-31

B
backend

compiler phase, 5-5
optimization, 5-5

board specification, 8-22

bounds checking, 5-21

build, viewing results, 2-17

bus definition, 8-22

C
ccall to jump optimization, 5-9

ccm16c, 9-4

CCM16COPT, 9-8

character, 4-4

clock(), 6-8

coalescer, 5-8, 5-9

code checking, 5-16

code generator, 5-5

Code instrumentation, 6-5

common subexpression elimination,

5-7

compaction, 5-7

compile, 2-17

compile time error checking, 5-19

compiler

invocation, 5-10
optimizations, 5-5
setting options, 5-11

compiler error messages, 5-19

compiler options, overview, 5-11, 5-12

compiler phases

backend, 5-4
code generator phase, 5-5
optimization phase, 5-5
peephole optimizer phase, 5-5

IndexIndex-4
IN
D
E
X

frontend, 5-4
optimization phase, 5-4
parser phase, 5-4
preprocessor phase, 5-4
scanner phase, 5-4

conditional assembly, 4-26

conditional jump reversal, 5-8

configuration

EDE directories, 1-7
UNIX, 1-9

constant propagation, 5-7

continuation, 4-18

control flow simplification, 5-7

control program, 9-4

invocation, 9-4
options (overview), 9-5

control program options, overview,

9-5, 9-24

controls, 4-4

copy table, compression, 8-10

creating a makefile, 2-13

CSE, 5-7

D
data types, 3-10

bit, 3-12
dead code elimination, 5-8

delete duplicate code sections, 8-10

delete duplicate constant data, 8-10

delete unreferenced sections, 8-10

derivative definition, 8-21

directive, conditional assembly, 4-26

directives, 4-4

directories, setting, 1-7, 1-9

division by zero, 5-23

E
EDE, 2-3

build an application, 2-17

create a project, 2-11
create a project space, 2-10
rebuild an application, 2-18
specify development tool options,

2-14
starting, 2-8

ELF/DWARF, archiver, 9-23

ELF/DWARF2 format, 8-8

Embedded Development Environment,

2-3

environment variables, 1-9

ASM16CINC, 1-9
CCM16CBIN, 1-9
CCM16COPT, 1-9, 9-8
CM16CINC, 1-9
LIBM16C, 1-9
LIBR8C, 1-9
LM_LICENSE_FILE, 1-10, 1-16
PATH, 1-9
TASKING_LIC_WAIT, 1-10
TMPDIR, 1-10

diagnostics, compiler, 5-19

error messages

assembler, 7-9
compiler, 5-19
linker, 8-38

expression simplification, 5-7

expressions, 4-7

absolute, 4-7
relative, 4-7
relocatable, 4-7

F
file extensions, 2-6

first fit decreasing, 8-9

flash utility, 9-27

invocation, 9-27
options (overview), 9-28

flashm16c, 9-27

floating license, 1-12

flow simplification, 5-7

Index Index-5

• • • • • • • •

formatters

printf, 3-45
scanf, 3-45

forward store, 5-8

frontend

compiler phase, 5-4
optimization, 5-4

function, 4-11

syntax, 4-11
function qualifiers

__asmfunc, 3-37
__bankswitch, 3-40
__frame, 3-41
__interrupt, 3-39
__interrupt_fixed, 3-39

functions, 3-32

inline, 3-34
parameter passing, 3-32
return types, 3-33

H
host ID, determining, 1-17

host name, determining, 1-17

I
IEEE 32-bit single precision format,

3-11

IEEE 64-bit double precision format,

3-11

include files

default directory, 5-15, 7-8, 8-17
setting search directories, 1-7, 1-9

incremental linking, 8-18

initialized variables, 3-30

inline assembly, 3-25

__asm, 3-20
inline functions, 3-34

inlining functions, 5-7

input specification, 4-3

installation

licensing, 1-12
Linux, 1-4

Debian, 1-5
RPM, 1-4
tar.gz, 1-5

UNIX, 1-6
Windows 95/98/XP/NT/2000, 1-3

instructions, 4-4

Intel-Hex format, 8-8

interprocedural register optimization,

5-8

interrupt frame, 3-41

interrupt function, 3-38

interrupt service routine, 3-38

defining, 3-39
intrinsic functions, 3-36

J
jump chain, 3-31

jump chaining, 5-8

jump table, 3-31

jump_switch, 3-31

L
labels, 4-3, 4-6

libraries

rebuilding, 3-46
setting search directories, 1-8, 1-9

library, user, 8-14

library maintainer, 9-23

license

floating, 1-12
node-locked, 1-12
obtaining, 1-12
wait for available license, 1-10

license file

location, 1-16
setting search directory, 1-10

IndexIndex-6
IN
D
E
X

licensing, 1-12

linear_switch, 3-31

linker, optimizations, 8-9

linker error messages, 8-38

linker options, overview, 8-12

linker output formats

ELF/DWARF2 format, 8-8
Intel-Hex format, 8-8
Motorola S-record format, 8-8

linker script file, 8-8

architecture definition, 8-21
board specification, 8-22
bus definition, 8-22
derivative definition, 8-21
memory definition, 8-22
processor definition, 8-22
section layout definition, 8-23

linker script language (LSL), 8-8, 8-19

internal memory, 8-26
on-chip memory, 8-26

linking process, 8-4

linking, 8-6
locating, 8-7
optimizing, 8-9

list file, generating, 7-8

LM_LICENSE_FILE, 1-16

local label override, 4-25

lookup table, 3-31

lookup_switch, 3-31

loop transformations, 5-8

lsl, 8-19

M
macro, 4-4

argument concatenation, 4-22
argument operator, 4-22
argument string, 4-24
call, 4-21
conditional assembly, 4-26
definition, 4-19

dup directive, 4-26
local label override, 4-25
return decimal value operator, 4-23
return hex value operator, 4-23

macro argument string, 4-24

macro operations, 4-19

macros, 4-19

macros in C, 3-28

make utility, 9-9

.DEFAULT target, 9-14

.DONE target, 9-14

.IGNORE target, 9-14

.INIT target, 9-14

.PRECIOUS target, 9-15

.SILENT target, 9-14

.SUFFIXES target, 9-14
conditional processing, 9-21
dependency, 9-13
else, 9-21
endif, 9-21
exist function, 9-21
export line, 9-22
functions, 9-20
ifdef, 9-21
ifndef, 9-21
implicit rules, 9-16
invocation, 9-11
macro definition, 9-11
macro MAKE, 9-18
macro MAKEFLAGS, 9-18
macro PRODDIR, 9-18
macro SHELLCMD, 9-19
macro TMP_CCOPT, 9-19
macro TMP_CCPROG, 9-19
makefile, 9-9, 9-12
match function, 9-20
nexist function, 9-21
options (overview), 9-11
predefined macros, 9-18
protect function, 9-20
rules in makefile, 9-15
separate function, 9-20

Index Index-7

• • • • • • • •

special targets, 9-14
make utility options, overview, 9-11

makefile, 9-9

automatic creation of, 2-13
updating, 2-13
writing, 9-12

malloc checks, 5-22

memory definition, 8-22

memory models, 3-19

large, 3-19
medium, 3-19
small, 3-19

memory qualifiers, 3-12

__bita, 3-13
__far, 3-13
__near, 3-13
__paged, 3-13
__rom, 3-13, 3-30
__sfr, 3-13

memory type qualifiers, 3-13

MISRA-C, 5-16

advisory rules, 5-17
required rules, 5-17

mkm16c. See make utility

Motorola S-record format, 8-8

N
node-locked license, 1-12

O
operands, 4-5

opimizations, size/speed trade-off, 5-9

optimization (backend)

call to jump, 5-9
coalescer, 5-8, 5-9
interprocedural register optimization,

5-8
loop transformations, 5-8
peephole optimizations, 5-9

subscript strength reduction, 5-8
optimization

backend, 5-5
compiler, common subexpression

elimination, 5-7
frontend, 5-4

optimization (frontend)

compaction, 5-7
conditional jump reversal, 5-8
constant propagation, 5-7
control flow simplification, 5-7
dead code elimination, 5-8
expression simplification, 5-7
flow simplification, 5-7
forward store, 5-8
inlining functions, 5-7
jump chaining, 5-8
reverse inlining, 5-7
switch optimization, 5-7

optimizations

compiler, 5-5
compress ROM image, 8-10
copy table compression, 8-10
delete duplicate code sections, 8-10
delete duplicate constant data, 8-10
delete unreferenced sections, 8-10
first fit decreasing, 8-9

P
parameter passing, 3-32

parser, 5-4

peephole optimization, 5-5, 5-9

pragmas, 3-27

inline, 3-35
noinline, 3-35
smartinline, 3-35

predefined macros in C, 3-28

__CM16C__, 3-29
__CPU__, 3-29
__DSPC__, 3-29
__M16C__, 3-29

IndexIndex-8
IN
D
E
X

__R8C__, 3-29
__SINGLE_FP__, 3-29
__TASKING__, 3-29

printf formatter, 3-45

processor, selecting a core, 5-10, 7-5

processor definition, 8-22

Profiling, 6-3

call graph incorrect, 6-14
code instrumentation, 6-5
heap too small, 5-25, 6-10
with debugger, 6-4
with simulator, 6-4

project, 2-7

add new files, 2-12
create, 2-11

project file, 2-7

project space, 2-7

create, 2-10
project space file, 2-7

Q
quality assurence report, 5-17

R
rebuilding libraries, 3-46

register allocator, 5-5

register bank switching, 3-40

register usage, 3-32, 3-33

registers, 4-5, 4-6

relocatable object file, 8-3

debug information, 8-6
header information, 8-6
object code, 8-6
relocation information, 8-6
symbols, 8-6

relocation expressions, 8-7

reserved symbols, 4-6

return decimal value operator, 4-23

return hex value operator, 4-23

reverse inlining, 5-7

rom, 3-13

ROM image, compression, 8-10

ROM monitor, 2-16

run-time error checking, 5-21

division by zero, 5-23
malloc checks, 5-22
bounds checking, 5-21, 5-23
unhandled case switch, 5-22

S
scanf formatter, 3-45

scanner, 5-4

section layout definition, 8-23

section names, 3-42

sections, 3-42, 4-17

absolute, 4-18
activation, 4-18
cleared, 4-19
definition, 4-17

software installation

Linux, 1-4
UNIX, 1-6
Windows 95/98/XP/NT/2000, 1-3

special function registers, define, 3-16

stack overflow, 5-23

statement, 4-3

storage types. See memory qualifiers

string, 3-30

substring, 4-8
subscript strength reduction, 5-8

substring, 4-8

switch, restore, 3-31

switch optimization, 5-7

switch statement, 3-31

symbol, 4-6

synchronize options with ROM

monitor, 2-16

syntax of an expression, 4-7

Index Index-9

• • • • • • • •

T
temporary files, setting directory, 1-10

transferring parameters between

functions, 3-32

U
unhandled case switch, 5-22

updating makefile, 2-13

utilities

archiver, 9-23

arm16c, 9-23
ccm16c, 9-4
control program, 9-4
flash utility, 9-27
flashm16c, 9-27
make utility, 9-9
mkm16c, 9-9

V
variables, initialized, 3-30

verbose option, linker, 8-17

IndexIndex-10
IN
D
E
X

	TABLE OF CONTENTS
	1. SOFTWARE INSTALLATION AND CONFIGURATION
	1.1 Introduction
	1.2 Software Installation
	1.2.1 Installation for Windows
	1.2.2 Installation for Linux
	1.2.3 Installation for UNIX Hosts

	1.3 Software Configuration
	1.3.1 Configuring the Embedded Development Environment
	1.3.2 Configuring the Command Line Environment

	1.4 Licensing TASKING Products
	1.4.1 Obtaining License Information
	1.4.2 Installing Node-Locked Licenses
	1.4.3 Installing Floating Licenses
	1.4.4 Modifying the License File Location
	1.4.5 How to Determine the Host ID
	1.4.6 How to Determine the Host Name

	2. GETTING STARTED
	2.1 Introduction
	2.2 Working With Projects in EDE
	2.3 Start EDE
	2.4 Using the Sample Projects
	2.5 Create a New Project Space with a Project
	2.6 Set Options for the Tools in the Toolchain
	2.7 Build your Application
	2.8 How to Build Your Application on the Command Line
	2.9 Debug getstart.elf

	3. C LANGUAGE
	3.1 Introduction
	3.2 Programming Strategies
	3.2.1 Memory Spaces
	3.2.2 Bit Programming
	3.2.3 Floating-Point
	3.2.4 General Optimization Tips

	3.3 Data Types
	3.4 Memory Qualifiers
	3.4.1 Memory Type Qualifiers
	3.4.2 Accessing Peripherals from C: __sfr
	3.4.3 Declare a Data Object at an Absolute Address: __at()

	3.5 Memory Models
	3.6 Using Assembly in the C Source: __asm()
	3.7 Controlling the Compiler: Pragmas
	3.8 Predefined Macros
	3.9 Initialized Variables
	3.10 Strings
	3.11 Switch Statement
	3.12 Functions
	3.12.1 Parameter Passing
	3.12.2 Function Return Types
	3.12.3 Inlining Functions: inline
	3.12.4 Intrinsic Functions
	3.12.5 Calling Assembly Functions: __asmfunc
	3.12.6 Interrupt Functions
	3.12.6.1 Defining an Interrupt Service Routine: __interrupt()
	3.12.6.2 Register Bank Switching: __bankswitch
	3.12.6.3 Interrupt Frame: __frame()

	3.13 Section Naming
	3.14 Libraries
	3.14.1 Overview of Libraries
	3.14.2 Printf and Scanf Formatting Routines
	3.14.3 Rebuilding Libraries

	3.15 Converting C Modules to ISO C99

	4. ASSEMBLY LANGUAGE
	4.1 Introduction
	4.2 Assembly Syntax
	4.3 Assembler Significant Characters
	4.4 Operands of an Assembly Instruction
	4.5 Symbol Names
	4.6 Assembly Expressions
	4.6.1 Numeric Constants
	4.6.2 Strings
	4.6.3 Expression Operators

	4.7 Built-in Assembly Functions
	4.8 Assembler Directives and Controls
	4.8.1 Overview of Assembler Directives
	4.8.2 Overview of Assembler Controls

	4.9 Working with Sections
	4.10 Macro Operations
	4.10.1 Defining a Macro
	4.10.2 Calling a Macro
	4.10.3 Using Operators for Macro Arguments
	4.10.4 Using the DUP, DUPA, DUPC, DUPF Directives as Macros
	4.10.5 Conditional Assembly: IF, ELIF and ELSE Directives

	5. USING THE COMPILER
	5.1 Introduction
	5.2 Compilation Process
	5.3 Compiler Optimizations
	5.3.1 Optimize for Size or Speed

	5.4 Calling the Compiler
	5.5 How the Compiler Searches Include Files
	5.6 Compiling for Debugging
	5.7 C Code Checking: MISRA-C
	5.8 C Compiler Diagnostics
	5.9 Run-Time Error Checking
	5.9.1 Step 1: Build Your Application for Run-Time Error Checking
	5.9.2 Step 2: Execute the Application
	5.9.3 Examples Producing Run-time Errors

	6. PROFILING
	6.1 What is profiling?
	6.1.1 Three methods of profiling

	6.2 Profiling using Code Instrumentation
	6.2.1 Step 1: Build your Application for Profiling
	6.2.1.1 Profiling Modules and Libraries
	6.2.1.2 Linking Profiling Libraries

	6.2.2 Step 2: Execute the Application
	6.2.3 Step 3: Displaying Profiling Results

	7. USING THE ASSEMBLER
	7.1 Introduction
	7.2 Assembly Process
	7.3 Assembler Optimizations
	7.4 Calling the Assembler
	7.5 How the Assembler Searches Include Files
	7.6 Generating a List File
	7.7 Assembler Error Messages

	8. USING THE LINKER
	8.1 Introduction
	8.2 Linking Process
	8.2.1 Phase 1: Linking
	8.2.2 Phase 2: Locating
	8.2.3 Linker Optimizations

	8.3 Calling the Linker
	8.4 Linking with Libraries
	8.4.1 Specifying Libraries to the Linker
	8.4.2 How the Linker Searches Libraries
	8.4.3 How the Linker Extracts Objects from Libraries

	8.5 Incremental Linking
	8.6 Controlling the Linker with a Script
	8.6.1 Purpose of the Linker Script Language
	8.6.2 EDE and LSL
	8.6.3 Structure of a Linker Script File
	8.6.4 The Architecture Definition
	8.6.5 The Derivative Definition
	8.6.6 The Memory Definition
	8.6.7 The Section Layout Definition: Locating Sections
	8.6.8 The Processor Definition: Using Multi-Processor Systems

	8.7 Linker Labels
	8.8 Generating a Map File
	8.9 Linker Error Messages

	9. USING THE UTILITIES
	9.1 Introduction
	9.2 Control Program
	9.2.1 Calling the Control Program

	9.3 Make Utility
	9.3.1 Calling the Make Utility
	9.3.2 Writing a Makefile

	9.4 Archiver
	9.4.1 Calling the Archiver
	9.4.2 Examples

	9.5 Flash Utility
	9.5.1 Calling the Flash Utility

	INDEX

