
The PracTEX Journal, 2006, No. 4
Article revision 2006/11/03

A Beginner’s Guide to METAPOST for
Creating High-Quality Graphics
Troy Henderson

Address Department of Mathematical Sciences
United States Military Academy
West Point, NY 10996, USA
troy@tlhiv.org
http://www.tlhiv.org

Abstract Individuals that use TEX (or any of its derivatives) to typeset their docu-
ments generally take extra measures to ensure paramount visual quality.
Such documents often contain mathematical expressions and graphics to
accompany the text. Since TEX was designed “for the creation of beautiful
books – and especially for books that contain a lot of mathematics”[4], it is
clear that it is sufficient (and in fact exceptional) at dealing with mathematics
and text. TEX was not designed for creating graphics; however, certain add-
on packages can be used to create modest figures. TEX, however, is capable
of including graphics created with other utilities in a variety of formats.
Because of their scalability, Encapsulated PostScript (EPS) graphics are the
most common types used. This paper introduces METAPOST and demon-
strates the fundamentals needed to generate high-quality EPS graphics for
inclusion into TEX-based documents.

1 Introduction

To accompany TEX, Knuth developed METAFONT as a method of “creating
entire families of fonts from a set of dimensional parameters and outline
descriptions.”[1] Approximately ten years later, John Hobby began work on
METAPOST – “a powerful graphics language based on Knuth’s METAFONT, but

1. All graphics in this article (except Figure 2) are created with METAPOST, and the source code
and any required external data files for each of these graphics are embedded as file attachments
in the electronic PDF version of the article.

mailto:troy@tlhiv.org
http://www.tlhiv.org

with PostScript output and facilities for including typeset text.”[3] Although sev-
eral packages (e.g., PICTEX, Xy-pic, and then native LATEX picture environement
to name a few) are available for creating graphics within TEX-based documents,
they all rely on TEX. Since TEX was designed to typeset text, it seems natural that
an external utility should be used to generate graphics instead. Furthermore, in
the event that the graphics require typeset text, then the utility should use TEX
for this requirement. This premise is exactly the philosophy of METAPOST.

Since METAPOST is a programming language, it accommodates data struc-
tures and flow control, and compilation of the METAPOST source code yields
EPS graphics. These features provide an elegant method for generating graph-
ics. Figure 1 illustrates how METAPOST can be used programatically. The figure
is generated by rotating one of the circles multiple times to obtain the desired
circular chain. The programming language constructs of METAPOST also deliver

Figure 1: Rotated circles

a graceful mechanism for creating animations without having to manually cre-
ate each frame of the animation. The primary advantage of EPS is that it can be
scaled to any resolution without a loss in quality. It can also be easily converted to
raster formats, e.g. Portable Network Graphics (PNG) and Joint Photographic Ex-
perts Group (JPEG), et. al, or other vector formats including Portable Document
Format (PDF) and Scalable Vector Graphics (SVG), et al.

2

beginfig(-1);
	% Use 8 circles
	N:=8;

	% Compute the "correct" radius
	r:=54*sind(180/N)/(1+sind(180/N));

	% Define one of the cirlces
	path p;
	p:=fullcircle scaled (2*r);

	% Draw all 8 circles
	for n=0 upto N-1: draw p shifted (r/sind(180/N),0) rotated (360/N*n); endfor;
endfig;
end
ÿ

2 METAPOST Compilation

A typical METAPOST source file consists of one or more figures. Compilation of
the source file generates an EPS graphic for each figure. These EPS graphics are
not self contained in that fonts used in labels are not embedded into the graphic.

If foo.mp is a typical METAPOST source file, then its contents are of the fol-
lowing form:

beginfig(1);
draw commands

endfig;
beginfig(2);

draw commands
endfig;
...
beginfig(n);

draw commands
endfig;
end;

Executing

mpost foo.mp

yields the following output:

This is MetaPost, Version 〈version〉
(foo.mp [1] [2] [3] . . . [n])
n output files written: foo.1 .. foo.n
Transcript written on foo.log.

For users who just want to “get started” using METAPOST, a METAPOST Pre-
viewer is located at http://www.tlhiv.org/MetaPostPreviewer. This previewer
(illustrated in Figure 2) is simply a graphical interface to METAPOST itself. It
generates a single graphic with the option to save the output in both EPS and
PDF filetypes. Users may also choose to save the source code and can view the
compilation log to assist in debugging.

3

http://www.tlhiv.org/MetaPostPreviewer

Figure 2: METAPOST Previewer

3 Data Types

There are nine data types in METAPOST – numeric, pair, path, transform, color,
string, boolean, picture, and pen. These data types allow users to store fragments
of the graphics for later use. We will briefly discuss each of these data types and
elaborate on how they are used in a typical METAPOST program.

numeric – numbers

pair – ordered pairs of numerics

path – Bézier curves (and lines)

picture – pictures

transform – transformations such as shifts, rotations, and slants

color – triplets in the unit cube with red, green, and blue (RGB) components

4

beginfig(-1);
	% Draw the diamond
	draw (2,0)--(0,2)--(-2,0)--(0,-2)--cycle;
endfig;
end
ÿ

beginfig(-1);
	% Draw the diamond
	draw (2,0)--(0,2)--(-2,0)--(0,-2)--cycle;
endfig;
end
ÿ

beginfig(-1);
	% Draw the diamond
	draw (2,0)--(0,2)--(-2,0)--(0,-2)--cycle;
endfig;
end
ÿ

beginfig(-1);
	% Draw the diamond
	draw (2,0)--(0,2)--(-2,0)--(0,-2)--cycle;
endfig;
end
ÿ

beginfig(-1);
	% Draw the diamond
	draw (2,0)--(0,2)--(-2,0)--(0,-2)--cycle;
endfig;
end
ÿ

beginfig(-1);
	% Draw the diamond
	draw (2,0)--(0,2)--(-2,0)--(0,-2)--cycle;
endfig;
end
ÿ

string – strings to be labeled

boolean – “true” or “false” values

pen – stroke properties

Virtually all programming languages provide a way of storing and retriev-
ing numerical values. This is precisely the purpose of the numeric data type in
METAPOST. Since graphics drawn with METAPOST are simply two dimensional
pictures, it is clear that an ordered pair is needed to identify each point in the
picture. The pair data type provides this functionality. Each point in the plane
consists of an x (i.e., abscissa) part and a y (i.e., ordinate) part. METAPOST uses
the standard syntax for defining points in the plane, e.g., (x,y) where both x and
y are numeric data typed variables.

In order to store paths between points, the path data type is used. All paths
in METAPOST are represented as cubic Bézier curves. Cubic Bézeier curves are
simply parametric splines of the form (x(t), y(t)) where both x(t) and y(t) are
piecewise cubic polynomials of a common parameter t. Since Bézier curves are
splines, they pairwise interpolate the points. Furthermore, cubic Bézier curves are
diverse enough to provide a “smooth” path between all of the points for which it
interpolates. METAPOST provides several methods for affecting the Bézier curve
between a list of points. For example, piecewise linear paths (i.e., linear splines)
can be drawn between a list of points since all linear polynomials are also cubic
polynomials. Furthermore, if a specific direction for the path is desired at a given
point, this constraint can be forced on the Bézier curve.

The picture data type is used to store an entire picture for later use. For exam-
ple, in order to create animations, usually there are objects that remain the same
throughout each frame of the animation. So that these objects do not have to be
manually drawn for each frame, a convenient method for redrawing them is to
store them into a picture variable for later use.

When constructing pairs, paths, or pictures in METAPOST, it is often conve-
nient to apply affine transformations to these objects. As mentioned above, Figure
1 can be constructed by rotating the same circle several times before drawing it.
METAPOST provides built-in affine transformations as “building blocks” from
which other transformations can be constructed. These include shifts, rotations,
horizontal and vertical scalings, and slantings.

5

beginfig(-1);
	% Draw the diamond
	draw (2,0)--(0,2)--(-2,0)--(0,-2)--cycle;
endfig;
end
ÿ

beginfig(-1);
	% Draw the diamond
	draw (2,0)--(0,2)--(-2,0)--(0,-2)--cycle;
endfig;
end
ÿ

beginfig(-1);
	% Draw the diamond
	draw (2,0)--(0,2)--(-2,0)--(0,-2)--cycle;
endfig;
end
ÿ

There are five built-in colors in METAPOST: black, white, red, green, and
blue. However, custom colors can be defined using the color data type. Colors in
METAPOST are simply ordered triplets of the form (r,g,b) where r, g, and b are
numerics between 0 and 1. These values r, g, and b identify what fraction of the
color is red, green, and blue, respectively. For example, the built-in color red is
simply a synonym for (1, 0, 0) and black is a synonym for (0, 0, 0). If a particular
color is to be used several times throughout a figure, it is natural to store this
color into a variable (of type color) for multiple uses.

The most common application of string data types is reusing a particular string
that is typeset (or labeled). The boolean data type acts in the same way as in other
programming languages to be used in conditional statements for testing. Finally,
the pen data type is used to affect the actual stroke paths. The default unit of
measurement in METAPOST is 1 bp = 1/72 in, and the default thickness of all
stroked paths is 0.5 bp. An example for using the pen data type may include
changing the thickness of several stroked paths. This new pen can be stored and
then referenced for drawing each of the paths.

4 Common Commands

The METAPOST manual [3] lists 26 build-in commands along with 23 function-
like macros for which pictures can be drawn and manipulated using METAPOST.
We will not discuss each of these commands here; however, we will focus on
several of the most common commands and provide examples of their usage.

4.1 The draw command

The most common command in METAPOST is the draw command. This com-
mand is used to draw paths or pictures. In order to draw a path from z1:=(0,0)
to z2:=(54,18) to z3:=(72,72), we should first decide how we want the path
to look. For example, if we want these points to simply be connected by line
segments, then we use

draw z1--z2--z3;

However, if we want a smooth path between these points, we use

6

draw z1..z2..z3;

In order to specify the direction of the path at the points, we use the dir operator.
In Figure 3 we see that the smooth path is horizontal at z1, a 45° angle at z2, and
vertical at z3. These constraints on the Bézier curve are imposed by

draw z1{right}..z2{dir 45}..{up}z3;

Figure 3: draw examples

Notice that z2{dir 45} forces the outgoing direction at z2 to be 45°. This implies
an incoming direction at z2 of 45°. In order to require different incoming and
outgoing directions, we would use

draw z1{right}..{dir θi}z2{dir θo}..{up}z3;

where θi and θo are the incoming and outgoing directions, respectively.

4.2 The fill Command

Another common command in METAPOST is the fill command. This is used to
fill closed paths (or cycles). In order to construct a cycle, cycle may be appended
to the path declaration. For example,

path p;
p:=z1{right}..z2{dir 45}..{up}z3--cycle;
fill p withcolor red;
draw p;

7

verbatimtex
%&latex
\documentclass{minimal}
\begin{document}
etex

beginfig(-1);
	% Set unit size to 72bp = 1in
	u:=72;

	% Draw line segmented path
	draw (0,0)--(3*u/4,u/4)--(u,u) dashed evenly scaled 0.6;

	% Draw curved path
	draw (0,0){right}..{dir 45}(3*u/4,u/4){dir 45}..{up}(u,u);

	% Label the 3 points
	label.bot(btex \texttt{z1} etex,(0,0));
	label.lrt(btex \texttt{z2} etex,(3*u/4,u/4));
	label.rt(btex \texttt{z3} etex,(u,u));
endfig;
end
ÿ

Figure 4: fill example

produces Figure 4. Notice that p is essentially the same curved path as in Figure
3 with the additional piece that connects z3 back to z1 with a line segment using
–cycle.

Just as it is necessary to fill closed paths, it may also be necessary to unfill
closed paths. For example, the annulus in Figure 5 can be constructed by

color bbblue;
bbblue:=(3/5,4/5,1);
path p,q;
p:=fullcircle scaled (2*54);
q:=fullcircle scaled (2*27);
fill p withcolor bbblue;
unfill q;
draw p;
draw q;

The fullcircle path is a built-in path that closely approximates a circle in META-
POST with diameter 1 bp traversed counter-clockwise. This path is not exactly a
circle since it is parameterized by a Bézier curve and not by trigonometric func-
tions; however, visually it is essentially indistinguishable from an exact circle.
Notice that p is a fullcircle of radius 54 bp (3/4 in) and q is a fullcircle of
radius 27 bp (3/8 in). The annulus is constructed by filling p with the baby blue
color bbblue and then unfilling q. The unfill command above is equivalent to

fill q withcolor background;

where background is a built-in color which is white by default.
Often times the unfill command appears to be the natural method for con-

structing figures like Figure 5. However, the fill and unfill commands in Fig-

8

beginfig(-1);
	% Set unit size to 72bp = 1in
	u:=72;
	
	% Define path
	path p;
	p:=(0,0){right}..{dir 45}(3*u/4,u/4){dir 45}..{up}(u,u)--cycle;
	
	% Fill the path
	fill p withcolor red;

	% Draw the path
	draw p;
endfig;
end
ÿ

Figure 5: unfill example

ure 5 can be replaced by

fill p--reverse q--cycle withcolor bbblue;

Figure 6: Avoiding an unfill

The path p--reverse q--cycle travels around p in a counter-clockwise directions
(since this is the direction that p traverses) followed by a line segment to connect
to q. It then traverses clockwise around q (using the reverse operator) and finally
returns to the starting point along a line segment using –cycle. This path is il-
lustrated in Figure 6. One reason for using this method to construct the annulus
as opposed to the unfill command is to ensure proper transparency when placing
the figure in an external document with a non-white background. If the former
method is used and the annulus is placed on a non-white background, say ma-
genta, then the result is Figure 7. It may be desired to have the interior of q be

9

beginfig(-1);
	% Set unit size to 54bp = 3/4in
	u:=54;

	path p,q;
	% Define circle of radius 3/4in
	p:=fullcircle scaled (2*u);
	% Define circle of radius 3/8in
	q:=fullcircle scaled u;

	% Fill annulus
	fill p--reverse q--cycle withcolor (3/5,4/5,1);
	
	% Draw big circle
	draw p;
	% Draw small circle
	draw q;
endfig;
end
ÿ

verbatimtex
%&latex
\documentclass{minimal}
\begin{document}
etex

beginfig(-1);
	% Set unit size to 54bp = 3/4in
	u:=54;
	
	path p,q;
	% Define circle of radius 3/4in
	p:=fullcircle scaled (2*u);
	% Define circle of radius 3/8in
	q:=fullcircle scaled u;

	% Fill annulus
	fill p--reverse q--cycle withcolor (3/5,4/5,1);

	% This loop draws arrows around the big circle
	N:=12;
	for n=1 upto N:
		drawarrow subpath ((n-1)/N*length(p),n/N*length(p)) of p;
	endfor;
	
	% These 3 commands draw the "cut"
	drawarrow (u,0)--(5*u/6,0);
	draw (5*u/6,0)--(2*u/3,0);
	drawarrow (u/2,0)--(2*u/3,0);
	
	% This loop draws arrows around the small circle
	for n=1 upto N:
		drawarrow subpath ((n-1)/N*length(p),n/N*length(p)) of reverse q;
	endfor;

	% Label p and q
	label.urt(btex \texttt{p} etex,(u/sqrt(2),u/sqrt(2)));
	label.llft(btex \texttt{q} etex,(u/2/sqrt(2),u/2/sqrt(2)));
endfig;
end
ÿ

Figure 7: Improper transparency using unfill

magenta instead of white. This could be accomplished by redefining background;
however, the latter method described above is a much simpler solution.

4.3 Arrow commands

When drawing simple graphs and other illustrations, the use of arrows is often
essential. There are two arrow commands in METAPOST for accommodating this
need – drawarrow and drawdblarrow. Both of these commands require a path
argument. For example,

drawarrow (0,0)--(72,72);

draws an arrow beginning at (0,0) and ending at (72,72) along the line segment
connecting these points.

The path argument of both drawarrow and drawdblarrow need not be line seg-
mented paths – they may be any METAPOST path. The only difference between
drawarrow and drawdblarrow is that drawarrow places an arrow head at the end
of the path and drawdblarrow places an arrow head at the beginning and the end
of the path. As an example, to draw the curved path in Figure 3 with an arrow
head at the end of the path (i.e., at z3), the following command can be used

drawarrow z1{right}..z2{dir 45}..{up}z3;

and is illustrated in Figure 8.

10

beginfig(-1);
	% Set unit size to 54bp = 3/4in
	u:=54;
	
	path p,q;
	% Define circle of radius 3/4in
	p:=fullcircle scaled (2*u);
	% Define circle of radius 3/8in
	q:=fullcircle scaled u;

	% Fill annulus
	fill p--reverse q--cycle withcolor (3/5,4/5,1);
	
	% Draw big circle
	draw p;
	% Draw small circle
	draw q;

	% Above is used to determine the bbox of the annulus
	picture h;
	h:=currentpicture; % Store the currentpicture
	currentpicture:=nullpicture; % Clear the currentpicture

	% Create magenta background
	fill bbox h withcolor (1,0,1);

	% Fill the big circle
	fill p withcolor (3/5,4/5,1);

	% Unfill the small circle
	unfill q;
	
	% Draw the big circle
	draw p;
	% Draw the small circle
	draw q;
endfig;
end
ÿ

Figure 8: Using drawarrow along a path

4.4 The label command

One of the nicest features of METAPOST is that it relies on TEX (or LATEX) to type-
set labels within figures. Almost all figures in technical documents are accompa-
nied by labels which help clarify the situation for which the figure is assisting to
illustrate. Such labels may include anything from simple typesetting as in Figures
3, 6, and 8 to typesetting function declarations and even axes labeling.

The label command requires two arguments – a string to typeset and the
point for which label is placed. For example, the command

label("A",(0,0));

will place the letter “A” at the coordinate (0,0) and the box around this label is
centered vertically and horizontally at this point. Simple strings like "A" require
no real typesetting to ensure that they appear properly in the figure. However,
many typeset strings in technical figures require the assistance of TEX to properly
display them. For example, Figure 9 is an example where typesetting is preferred.
That is, the axes labels and the function declaration look less than perfect if TEX
is not used. For reasons such as this, METAPOST provides a way to escape to TEX
in order to assist in typesetting the labels. Therefore, instead of labeling the “A”
as above,

label(btex A etex,(0,0));

provides a much nicer technique for typesetting the label. The btex ... etex block
instructs METAPOST to process everything in between btex and etex using TEX.
Therefore, the function declaration in Figure 9 is labeled using

label(btex $f(x)=x^2$ etex,(a, b));

11

verbatimtex
%&latex
\documentclass{minimal}
\begin{document}
etex

beginfig(-1);
	% Set unit size to 72bp = 1in
	u:=72;
	
	% Draw arrow around curved path
	drawarrow (0,0){right}..{dir 45}(3*u/4,u/4){dir 45}..{up}(u,u);

	% Label the 3 points
	label.bot(btex \texttt{z1} etex,(0,0));
	label.lrt(btex \texttt{z2} etex,(3*u/4,u/4));
	label.rt(btex \texttt{z3} etex,(u,u));			
endfig;
end
ÿ

Figure 9: Labeling text

where (a, b) is the point for which the label is to be centered.
Since many METAPOST users prefer to typeset their labels using LATEX instead

of plain TEX, METAPOST provides a convenient method for accommodating this.
This is done in the preamble of the METAPOST source file. The following code
ensures that the btex\,...\,etex block escapes to LATEX (instead of plain TEX)
for text processing.

verbatimtex
%&latex
\documentclass{minimal}
\begin{document}
etex
beginfig(n);
〈draw commands〉

endfig;
end

Often times it desirable to typeset labels with a justification that is not centered.
For example, one may wish to place an “A” centered horizontally about (0,0)
but placed immediately on top of (0,0), METAPOST provides eight suffixes to
accommodate such needs. The suffixes .lft, .rt, .bot, and .top align the label
on the left, right, bottom, and top, respectively, of the designated point. A hybrid
of these four justifications provide four additional ones, namely, .llft, .ulft,
.lrt, and .urt to align the label on the lower left, upper left, lower right, and
upper right, respectively, of the designated point. For example,

12

verbatimtex
%&latex
\documentclass{minimal}
\begin{document}
etex

beginfig(-1);
	% Set unit size to 108pt = 3/2in
	u:=108;
	v:=2*u/(1+sqrt(5));

	% Determine the size of the default font
	w:=fontsize defaultfont;

	% Draw the parabola
	draw (-u,2*v){dir -angle(1*u,4*v)}..(-u/2,v/2){dir -angle(1*u,2*v)}..(0,0){right}..(u/2,v/2){dir angle(1*u,2*v)}..(u,2*v){dir angle(1*u,4*v)} withcolor red;

	% Label f(x)
	label.lft(btex $f(x)=x^2$ etex,(u/sqrt(2),v));
	
	% Draw x and y axes arrows
	drawarrow (-u,0)--(u+w/2,0);
	drawarrow (0,0)--(0,2*v+w/2);
	
	% Label the x and y axes
	label.rt(btex x etex,(u+w/2,0));
	label.top(btex y etex,(0,2*v+w/2));

	% Pad left size to horizontally center figure
	label.lft(btex etex,(-u-w/2,0));

	% Shrink figure
	currentpicture:=currentpicture scaled 0.75;
endfig;
end
ÿ

label.top(btex A etex,(0,0));

places the “A” directly above (0,0). Figure 10 demonstrates each of the suffixes
and their corresponding placement of the labels.

Figure 10: Label Suffixes

5 Graphing Functions

One of the most common types of figures for TEX users are those which are the
graphs of functions of a single variable. Hobby recognized this and constructed
a package to accomplish this task. It is invoked by

input graph;

METAPOST has the ability to construct data (i.e., ordered pairs) for graphing sim-
ple functions. However, for more complicated functions, the data should proba-
bly be constructed using external programs such a MATLAB (or Octave), Maple,
Mathematica, Gnuplot, et. al.

A typical data file, say , to be used with the graph package may have
contents

0.0 0.0
0.2 0.447214
0.4 0.632456
0.6 0.774597
0.8 0.894427
1.0 1.0

This data represents the graph of f (x) =
√

x for six equally spaced points in [0, 1].
To graph this data, the size of the graph must first be decided. Choosing a width
of 144 bp and a height of 89 bp, a minimally controlled plot (as in Figure 11) of
this data can be generated by

13

verbatimtex
%&latex
\documentclass{minimal}
\begin{document}
etex

beginfig(-1);
	% Determine the size of the default font
	w:=fontsize defaultfont;

	% Place a "point" at (0,0)
 label(btex $\scriptscriptstyle\bullet$ etex,(0,0)) scaled 1.5;

	% Draw a square around the point
	draw (-7*w/16,-7*w/16)--(7*w/16,-7*w/16)--(7*w/16,7*w/16)--(-7*w/16,7*w/16)--cycle;

	% Draw vertical and horizontal lines through the point
	draw (0,-7*w/16)--(0,7*w/16);
	draw (-7*w/16,0)--(7*w/16,0);

	% Label the 4 positions
	label.lft(btex \texttt{lft} etex,(-w/4,0));
	label.rt(btex \texttt{rt} etex,(w/4,0));
	label.bot(btex \texttt{bot} etex,(0,-w/4));
	label.top(btex \texttt{top} etex,(0,w/4));

	% Manually set the bbox
	setbounds currentpicture to (-2*w,-2*w)--(2*w,-2*w)--(2*w,2*w)--(-2*w,2*w)--cycle;
endfig;
end
ÿ

verbatimtex
%&latex
\documentclass{minimal}
\begin{document}
etex

beginfig(-1);
	% Determine the size of the default font
	w:=fontsize defaultfont;

	% Place a "point" at (0,0)
	label(btex $\scriptscriptstyle\bullet$ etex,(0,0)) scaled 1.5;

	% Draw a square around the point
	draw (-7*w/16,-7*w/16)--(7*w/16,-7*w/16)--(7*w/16,7*w/16)--(-7*w/16,7*w/16)--cycle;

	% Draw diagonals of the square through the point
	draw (-7*w/16,-7*w/16)--(7*w/16,7*w/16);
	draw (-7*w/16,7*w/16)--(7*w/16,-7*w/16);

	% Label the 4 positions
	label.llft(btex \texttt{llft} etex,(-w/4,-w/4));
	label.ulft(btex \texttt{ulft} etex,(-w/4,w/4));
	label.lrt(btex \texttt{lrt} etex,(w/4,-w/4));
	label.urt(btex \texttt{urt} etex,(w/4,w/4));

	% Manually set the bbox
	setbounds currentpicture to (-11/4*w,-2*w)--(11/4*w,-2*w)--(11/4*w,2*w)--(-11/4*w,2*w)--cycle;
endfig;
end
ÿ

0.0	0.0
0.2	0.447214
0.4	0.632456
0.6	0.774597
0.8	0.894427
1.0	1.0
ÿ

draw begingraph(144bp,89bp);
gdraw "data.d";

endgraph;

The graph package provides many commands used to customize generated
graphs, and these commands are fully documented in the manual [2] for the
graph package.

Figure 11: f (x) =
√

x using the graph package

6 Including METAPOST Figures in LATEX

In order to include a METAPOST figure in LATEX, the graphicx package is sug-
gested. Below is an example of including a METAPOST figure (with name foo.1)
in a LATEX document.

\documentclass{article}
\usepackage{graphicx}
\usepackage{ifpdf}
\ifpdf

\DeclareGraphicsRule{*}{mps}{*}{}
\fi
\begin{document}
...
\includegraphics{foo.1}
...
\end{document}

14

input graph;
beginfig(-1);
	draw begingraph(144bp,89bp);
		gdraw "data.d";
	endgraph;
endfig;
end
ÿ

The ifpdf package and \ifpdf...\fi command is used to prompt PDFLATEX to
convert the METAPOST graphic to PDF “on the fly” using Hans Hagen’s mptopdf.
This conversion is necessary since PDFLATEX performs no PostScript processing.

7 Conclusion

METAPOST is an elegant programming language, and it produces beautiful
graphics. The graphics are vectorial and thus can be scaled to any resolution
without degradation. There are many advanced topics that are not discussed
in this article (e.g., loops, flow control, subpaths, intersections, etc.), and the
METAPOST manual[3] is an excellent resource for these advanced topics. How-
ever, the METAPOST manual may seem daunting for beginners. There are many
websites containing METAPOST examples, and several of these are referenced at
http://www.tug.org/metapost. Finally, we mention that Knuth uses nothing but
METAPOST for his diagrams.

References

[1] N. H. F. Beebe. Metafont. http://www.math.utah.edu/~beebe/fonts/
metafont.html, 2006.

[2] J. D. Hobby. Drawing graphs with MetaPost. Technical Report 164, AT&T
Bell Laboratories, Murray Hill, New Jersey, 1992. Also available at http://
www.tug.org/docs/metapost/mpgraph.pdf.

[3] J. D. Hobby. A user’s manual for MetaPost. Technical Report 162, AT&T Bell
Laboratories, Murray Hill, New Jersey, 1992. Also available at http://www.
tug.org/docs/metapost/mpman.pdf.

[4] D. E. Knuth. The TEXbook, volume A of Computers and Typesetting. Addison
Wesley, Boston, 1986.

15

http://www.tug.org/metapost
http://www.math.utah.edu/~beebe/fonts/metafont.html
http://www.math.utah.edu/~beebe/fonts/metafont.html
http://www.tug.org/docs/metapost/mpgraph.pdf
http://www.tug.org/docs/metapost/mpgraph.pdf
http://www.tug.org/docs/metapost/mpman.pdf
http://www.tug.org/docs/metapost/mpman.pdf

	Introduction
	Metapost Compilation
	Data Types
	Common Commands
	The draw command
	The fill Command
	Arrow commands
	The label command

	Graphing Functions
	Including Metapost Figures in LaTeX
	Conclusion

