
process AIRPLANE
     call TOWER giving GATE yielding RUNWA Y
     work TAXI.TIME (GATE, RUNWAY) minutes
     request 1 RUNWAY
     work TAKEOFF.TIME (AIRPLANE) minutes 
     relinquish 1 RUNWAY
end " process AIRPLANE

Since 1962S
Database Connectivity
User's Manual



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Copyright © 2002 CACI Products Co. 
 
All rights reserved.  No part of this publication may be reproduced by any means without written permission 
from CACI. 
 
For product information or technical support contact: 
 
CACI Products Company 
1011 Camino Del Rio South, Suite 230 
San Diego, CA 92108 
Phone: (619) 542-5228 
Fax: (619) 692-1013 
 
 
The information in this publication is believed to be accurate in all respects.  However, CACI cannot assume 
the responsibility for any consequences resulting from the use thereof.  The information contained herein is 
subject to change.  Revisions to this publication or new editions of it may be issued to incorporate such change. 
 
SIMSCRIPT II.5 is a registered trademark of CACI Products Company. 
 
Windows is a registered trademark of Microsoft Corporation. 
DB2 is a registered trademark of IBM Corporation. 
Oracle is a registered trademark of Oracle Corporation. 

 



 

Table of Contents 
 

Chapter 1 Introduction to SDBC............................................................. 1 

1.1 SETTING UP A DATABASE .............................................................................................1 
1.2 DECLARING THE SDBC FUNCTIONS AND ROUTINES .......................................................2 
1.3 CONNECTING TO A DATABASE.......................................................................................2 
1.4 INTERPRETING RUN-TIME ERRORS ................................................................................3 

Chapter 2 SQL Updates........................................................................... 5 

2.1 CREATING TABLES .......................................................................................................5 
2.2 INSERTING ROWS.........................................................................................................7 
2.3 MODIFYING ROWS........................................................................................................9 
2.4 DELETING ROWS........................................................................................................10 

Chapter 3 SQL Queries ......................................................................... 13 

3.1 QUERYING THE DATABASE..........................................................................................13 
3.2 SPECIFYING SQL EXPRESSIONS.................................................................................15 
3.3 SELECTING ROWS ......................................................................................................17 
3.4 JOINING TABLES.........................................................................................................19 

Chapter 4 SQL Parameters ................................................................... 23 

Chapter 5 Database Transactions........................................................ 25 

Chapter 6 Example Program: Bank Simulation .................................. 27 

Chapter 7 Example Program: Job Shop Simulation........................... 39 

APPENDIX A SDBC Functions and Routines...................................... 53 

APPENDIX B SQL Syntax...................................................................... 57 

APPENDIX C SQLSTATE Codes........................................................... 61 

INDEX ........................................................................................................ 65 

 

   i 



SIMSCRIPT II.5 Database Connectivity User’s Manual 

 
 
 
 

 

 ii 



   

Chapter 1 Introduction to SDBC 
 

SIMSCRIPT II.5® Database Connectivity (SDBC) is a library of functions and 
routines that enables SIMSCRIPT II.5 programs to access databases.  SDBC makes 
it possible for SIMSCRIPT II.5 programs to create tables in relational databases; to 
insert, modify, and delete the rows of database tables; and to perform database 
queries. 

To use SDBC, it is necessary to have installed a database management system 
(DBMS).  There are many to choose from, including Microsoft Access, Microsoft 
SQL Server, IBM DB2®, IBM Informix, and Oracle®.  SDBC provides a common 
interface to all of these. 

SDBC is patterned after and utilizes Microsoft’s Open Database Connectivity 
(ODBC).  SDBC works with any DBMS having an ODBC 3.0 driver.  SIMSCRIPT 
II.5 programs call SDBC functions and routines, which in turn call ODBC functions 
that communicate with the DBMS through this driver. 

This manual assumes that the reader has a working knowledge of the SIMSCRIPT 
II.5 programming language and is familiar with relational database concepts, 
including Structured Query Language (SQL). 

1.1 Setting Up a Database 

The first step is to create a database.  Each DBMS provides its own mechanism for 
creating a database.  For example, a database is created in Microsoft Access by 
selecting New from the File menu.  Consult the DBMS documentation to learn how 
to create a database. 

The second step is to define an ODBC data source, which associates an ODBC data 
source name with the database and specifies the ODBC 3.0 driver to use.  In 
Microsoft Windows®, this is accomplished by running the ODBC Data Source 
Administrator program which can be found in the Control Panel. 

 1 



SIMSCRIPT II.5 Database Connectivity User’s Manual 

1.2 Declaring the SDBC Functions and Routines 

The SDBC functions and routines must be declared in the Preamble of the 
SIMSCRIPT II.5 program.  A text file containing the required declarations is 
provided as part of the SDBC installation.  Copy the contents of this file into the 
Preamble: 
 
    preamble 
 
    ... 
 
    ''SDBC Functions and Routines 
    define DB.AUTOCOMMIT.R as a          routine  given 1 argument 
    define DB.COMMIT.R     as a          routine  given 0 arguments 
    define DB.CONNECT.R    as a          routine  given 3 arguments 
    define DB.DISCONNECT.R as a          routine  given 0 arguments 
    define DB.EXISTS.F     as an integer function given 1 argument 
    define DB.FETCH.F      as an integer function given 0 arguments 
    define DB.GETINT.F     as an integer function given 1 argument 
    define DB.GETREAL.F    as a  double  function given 1 argument 
    define DB.GETTEXT.F    as a  text    function given 1 argument 
    define DB.NULL.F       as an integer function given 1 argument 
    define DB.QUERY.R      as a          routine  given 1 argument 
    define DB.ROLLBACK.R   as a          routine  given 0 arguments 
    define DB.SETINT.R     as a          routine  given 2 arguments 
    define DB.SETREAL.R    as a          routine  given 2 arguments 
    define DB.SETTEXT.R    as a          routine  given 2 arguments 
    define DB.UPDATE.F     as an integer function given 1 argument 
 
    ... 
 
    end 

1.3 Connecting to a Database 

Before any operations can be performed on a database, the SIMSCRIPT II.5 
program must first connect to the database.  This is accomplished by calling 
DB.CONNECT.R: 
 
    call DB.CONNECT.R(DSNAME, USERNAME, PASSWORD) 

DSNAME is a text value specifying the ODBC data source name associated with the 
database.  If the database has been set up for secure access, then text values 
USERNAME and PASSWORD must provide a valid user name and password for this 
database.  If no security has been established for this database, then any user name 
and password may be given to this routine.  (Consult the DBMS documentation for 
information on how to secure a database.) 

 2 



 1.  Introduction to SDBC 

Example: 
 
    define USER, PWD as text variables 
 
    write as "Enter your database user name:", / 
    read USER 
    write as "Enter your database password:", / 
    read PWD 
 
    call DB.CONNECT.R("TESTDB1", USER, PWD) 

When finished with the database, the program calls DB.DISCONNECT.R to 
disconnect: 
 
    call DB.DISCONNECT.R 

It is not possible to connect to more than one database at a time.  However, after 
disconnecting from one database, the program may connect to a second database (or 
reconnect to the first database).  If the program calls DB.CONNECT.R while already 
connected to a database, an implicit disconnection occurs before the new 
connection is attempted.  A program that terminates while connected to a database 
is implicitly disconnected. 

1.4 Interpreting Run-time Errors 

SIMSCRIPT II.5 run-time error #2400 is generated for every SDBC-related error.  
For example, if an invalid ODBC data source name is passed to DB.CONNECT.R, the 
following error message may be produced: 
 
    RUN-TIME ERROR #2400: [IM002][0][Microsoft][ODBC Driver 
    Manager] Data source name not found and no default driver 
    specified 

The error message may have come from the DBMS and may be too long to fit in 
the SIMSCRIPT II.5 SimDebug display.  In this case, the message is truncated: 
 
    RUN-TIME ERROR #2400: [23000][-1605][Microsoft][ODBC Microsoft 
    Access Driver] The changes you requested to the table were 
    not successful... 

Refer to the file named SDBC.log in the current working directory for the full 
message: 
 
    SDBC Run-time Error, Thu Jan 10 14:03:18 2002 
    [23000][-1605][Microsoft][ODBC Microsoft Access Driver] The 
    changes you requested to the table were not successful because 
    they would create duplicate values in the index, primary key, 

   3 



SIMSCRIPT II.5 Database Connectivity User’s Manual 

    or relationship.  Change the data in the field or fields that 
    contain duplicate data, remove the index, or redefine the index 
    to permit duplicate entries and try again. 

As illustrated by these examples, an SDBC run-time error message may contain 
special information in brackets.  The first value in brackets (e.g., 23000) is an 
SQLSTATE code; see Appendix C for a list of these codes and their meanings.  The 
second value in brackets (e.g., -1605) is an error code specific to the DBMS; see 
the DBMS documentation for details.  The other bracketed information identifies 
the vendor, ODBC component, and DBMS from which the error message came. 

 

 4 



   

Chapter 2 SQL Updates 
 

After connecting to a database via DB.CONNECT.R, the SIMSCRIPT II.5 program 
may pass SQL statements one at a time to the DBMS for processing.  An SQL 
statement that modifies the database is executed by DB.UPDATE.F, which is 
discussed in this section.  An SQL statement that queries the database, without 
modifying it, is processed by DB.QUERY.R, which is covered in Section 3.  The 
following is an example of a DB.UPDATE.F call: 
 
    NUMROWS = DB.UPDATE.F(COMMAND) 

COMMAND is a text value giving the SQL statement to be processed.  This function 
returns after the given statement has been executed by the DBMS on the connected 
database.  The integer return value indicates the number of rows affected by the 
execution of this statement, if applicable. 

2.1 Creating Tables 

Passing an SQL CREATE TABLE statement to DB.UPDATE.F creates a database table 
A CREATE TABLE statement names the table and its columns, and specifies the data 
type for each column.  The following SQL data types are supported by almost every 
DBMS: 
 
 SMALLINT a signed 16-bit integer 
 INTEGER a signed 32-bit integer 
 
 REAL  a single-precision floating-point number 
 DOUBLE a double-precision floating-point number 
 
 CHAR(n) a fixed-length character string of length n 
 VARCHAR(n) a variable-length character string having a maximum length of n 

A DBMS may permit a variety of synonyms for these data types, such as SHORT for 
SMALLINT; INT or LONG for INTEGER; SINGLE for REAL; DOUBLE PRECISION for 
DOUBLE; CHARACTER for CHAR; and CHAR VARYING or CHARACTER VARYING for 
VARCHAR.  A DBMS may also support a variety of other data types, such as 
BOOLEAN, BYTE, COUNTER, DECIMAL, DATE, and TIME.  Also, a DBMS may require 
that long character strings be stored as a special data type called TEXT, LONGTEXT, or 
LONG VARCHAR.  Consult the DBMS documentation for details. 

 5 



SIMSCRIPT II.5 Database Connectivity User’s Manual 

The following SQL statement creates a table named RESULT.  Each row in this table 
will record the result of one simulation run. 
 
    CREATE TABLE RESULT 
    (RUNID   INTEGER NOT NULL PRIMARY KEY, 
     MAXQLEN INTEGER, 
     AVGQLEN REAL, 
     COMMENT VARCHAR(80)) 

This table has four columns: RUNID, MAXQLEN, AVGQLEN, and COMMENT.  RUNID holds 
an integer ID that uniquely identifies the simulation run; therefore, this column has 
been designated as the primary key for the table.  MAXQLEN contains an integer value 
giving the maximum queue length observed during the run.  AVGQLEN holds a 
single-precision floating-point value giving the average queue length observed 
during the run.  COMMENT provides space for a text comment, up to 80 characters in 
length.  Each column may be undefined and assigned a null value, except RUNID 
which has been designated as NOT NULL and must always contain a non-null value. 

To create this table, the CREATE TABLE statement is passed as a text value to 
DB.UPDATE.F.  Since the text value is rather long, we use CONCAT.F to construct it: 
 
    define CMD  as a text variable 
    define ROWS as an integer variable 
 
    CMD = CONCAT.F( 
    "CREATE TABLE RESULT ", 
    "(RUNID   INTEGER NOT NULL PRIMARY KEY,", 
    " MAXQLEN INTEGER,", 
    " AVGQLEN REAL,", 
    " COMMENT VARCHAR(80))") 
 
    ROWS = DB.UPDATE.F(CMD) 

Upon return from DB.UPDATE.F, a table has been created with the specified name 
and columns, containing no rows.  The return value in ROWS is undefined and should 
be ignored. 

To destroy this table, pass a DROP TABLE statement to DB.UPDATE.F: 
 
    ROWS = DB.UPDATE.F("DROP TABLE RESULT") 

Refer to Appendix B in this manual, and the DBMS documentation, for a 
specification of the syntax of the CREATE TABLE and DROP TABLE statements. 

CREATE TABLE and DROP TABLE are examples of SQL Data Definition Language 
(DDL) statements.  A DBMS may support many other types of DDL statements, 
including ALTER TABLE, CREATE/DROP VIEW, CREATE/DROP INDEX, 

 6 



 2.  SQL Updates 

CREATE/ALTER/DROP DOMAIN, CREATE/DROP ASSERTION, and GRANT/REVOKE.  See 
the DBMS documentation for details.  Any DDL statement may be passed to 
DB.UPDATE.F for execution.  For all DDL statements, the return value from 
DB.UPDATE.F is undefined and should be ignored. 

SDBC supplies a function named DB.EXISTS.F to determine whether a table exists.  
This function takes a table name as its only argument and returns 1 if the table 
exists or 0 if the table does not exist.  To avoid a run-time error for attempting to 
create a table that already exists, call this function to verify that the table does not 
exist before creating it: 
 
    if DB.EXISTS.F("RESULT") = 0 ''the table does not exist 
       ''create the table 
       ... 
    always 

Likewise, to avoid a run-time error for attempting to drop a table that does not exist, 
call DB.EXISTS.F to verify that the table exists before dropping it: 
 
    if DB.EXISTS.F("RESULT") = 1 ''the table exists 
       ''drop the table 
       ... 
    always 

Please note that SIMSCRIPT II.5 programs can access tables that have been created 
by other means, such as by an interactive SQL command processor supplied by the 
DBMS; and DBMS tools can access tables created by SIMSCRIPT II.5 programs. 

2.2 Inserting Rows 

To insert a row into a table, an SQL INSERT statement is passed to DB.UPDATE.F.  
The following code inserts a row into the RESULT table, setting RUNID to 101, 
MAXQLEN to 12, AVGQLEN to 2.75, and COMMENT to "First test run in December": 
 
    define CMD  as a text variable 
    define ROWS as an integer variable 
 
    CMD = CONCAT.F( 
    "INSERT INTO RESULT", 
    " VALUES (101, 12, 2.75, 'First test run in December')") 
 
    ROWS = DB.UPDATE.F(CMD) 

Upon return from DB.UPDATE.F, the specified row has been inserted into the table.  
The return value in ROWS is 1, indicating that one row has been inserted.  Note that 

   7 



SIMSCRIPT II.5 Database Connectivity User’s Manual 

text literals in SQL are delimited by single quotes, not double quotes as in 
SIMSCRIPT II.5. 

When one or more columns are undefined, a variant of the SQL INSERT statement 
may be used that specifies only the defined columns of the new row.  The following 
code inserts a row into the RESULT table, setting RUNID to 200 and COMMENT to 
"Demo".  To MAXQLEN and AVGQLEN, which are omitted, null values are assigned 
implicitly.  (If the DBMS supports default values, the omitted columns receive their 
default values, which may be non-null.) 

 8 



 2.  SQL Updates 

    ROWS = DB.UPDATE.F( 
    "INSERT INTO RESULT (RUNID, COMMENT) VALUES (200, 'Demo')") 

Or null values may be specified explicitly for the undefined columns: 
 
    ROWS = DB.UPDATE.F( 
    "INSERT INTO RESULT VALUES (200, NULL, NULL, 'Demo')") 

Another variant of the INSERT statement specifies a query and inserts each row 
returned by the query. 

The INSERT statement is an SQL Data Manipulation Language (DML) statement.  
Refer to Appendix B in this manual, and the DBMS documentation, for a 
specification of its syntax. 

2.3 Modifying Rows 

To modify the value of one or more columns in one or more rows, an SQL UPDATE 
statement is passed to DB.UPDATE.F.  The following code changes the values of 
MAXQLEN to 10 and AVGQLEN to 2.25 in the row that has RUNID equal to 101: 
 
    define CMD  as a text variable 
    define ROWS as an integer variable 
 
    CMD = CONCAT.F( 
    "UPDATE RESULT", 
    " SET MAXQLEN = 10, AVGQLEN = 2.25", 
    " WHERE RUNID = 101") 
 
    ROWS = DB.UPDATE.F(CMD) 

Upon return from DB.UPDATE.F, the requested modification has been performed.  
The return value in ROWS indicates the number of rows modified.  Presumably 
ROWS=1 in our example; however, it could be zero if there does not exist a row 
having RUNID=101, or greater than one if more than one row has RUNID=101. 

If no WHERE clause is specified in the UPDATE statement, then the modification is 
applied to every row in the table.  For example, the following code adds 1000 to 
every RUNID: 
 
    ROWS = DB.UPDATE.F("UPDATE RESULT SET RUNID = RUNID + 1000") 

In this case, the return value in ROWS equals the number of rows in the table since 
every row was modified. 

   9 



SIMSCRIPT II.5 Database Connectivity User’s Manual 

The following example sets the COMMENT field to null for every RUNID greater than 
1200: 
 
    ROWS = DB.UPDATE.F( 
    "UPDATE RESULT SET COMMENT = NULL WHERE RUNID > 1200") 

The WHERE clause may specify any conditional expression allowed in SQL.  
Expressions are discussed in Section 3.2. 

The UPDATE statement is an SQL Data Manipulation Language (DML) statement.  
Refer to Appendix B in this manual, and the DBMS documentation, for a 
specification of its syntax. 

2.4 Deleting Rows 

To delete one or more rows, an SQL DELETE statement is passed to DB.UPDATE.F.  
The following code deletes the row that has RUNID equal to 101: 
 
    define ROWS as an integer variable 
 
    ROWS = DB.UPDATE.F("DELETE FROM RESULT WHERE RUNID = 101") 

Upon return from DB.UPDATE.F, the requested deletion has been performed.  The 
return value in ROWS indicates the number of rows deleted.  Presumably ROWS=1 in 
our example; however, it could be zero if there did not exist a row having 
RUNID=101, or greater than one if more than one row had RUNID=101. 

If no WHERE clause is specified in the DELETE statement, then every row in the table 
is deleted: 
 
    ROWS = DB.UPDATE.F("DELETE FROM RESULT") 

In this case, the return value in ROWS equals the number of rows that were in the 
table before they were all deleted. 

The following example deletes all rows having a RUNID greater than or equal to 
1000 and less than 2000: 
 
    ROWS = DB.UPDATE.F( 
    "DELETE FROM RESULT WHERE RUNID >= 1000 AND RUNID < 2000") 

The WHERE clause may specify any conditional expression allowed in SQL.  
Expressions are discussed in Section 3.2. 

 10 



 2.  SQL Updates 

The DELETE statement is an SQL Data Manipulation Language (DML) statement.  
Refer to Appendix B in this manual, and the DBMS documentation, for a 
specification of its syntax. 

 

   11 





   

Chapter 3 SQL Queries 
 

After connecting to a database via DB.CONNECT.R, the SIMSCRIPT II.5 program 
may submit queries to the DBMS for processing.  The SQL SELECT statement is 
used to query the database.  After executing a query, the rows returned by the query 
are retrieved by the program. 

3.1 Querying the Database 

Any SELECT statement may be passed as a text value to DB.QUERY.R for execution: 
 
    call DB.QUERY.R("SELECT ...") 

The rows returned by the query are then fetched one at a time by calling 
DB.FETCH.F for each row.  This function returns 1 if it has successfully fetched the 
next row and returns 0 when there are no more rows. 

After fetching a row, the values of the columns in the row are obtained by calling 
DB.GETINT.F for each integer column, DB.GETREAL.F for each floating-point 
column, and DB.GETTEXT.F for each character-string column. 

The following query returns all rows in the table named RESULT: 
 
    SELECT * FROM RESULT 

The asterisk is shorthand for listing all of the columns of the table, in the order in 
which they were defined in the CREATE TABLE statement.  So the above query is 
equivalent to: 
 
    SELECT RUNID, MAXQLEN, AVGQLEN, COMMENT FROM RESULT 

The following code is typical of SDBC query processing.  First, the query is 
executed, and then a while loop fetches the rows returned by the query.  For each 
row, the column values are obtained and then some code is executed that uses these 
values.  In this example, program variables are given the same names as columns, 
but this is done only for clarity and is not a requirement.  However, the modes of 
these variables should match the SQL data types of the columns. 

 13 



SIMSCRIPT II.5 Database Connectivity User’s Manual 

    define RUNID, MAXQLEN as integer variables 
    define AVGQLEN as a real variable 
    define COMMENT as a text variable 
 
    ''execute the query 
    call DB.QUERY.R("SELECT * FROM RESULT") 
 
    ''fetch the rows 
    while DB.FETCH.F = 1 
    do 
       ''a row has been fetched; 
       ''now obtain the value of each column 
       RUNID   = DB.GETINT.F(1) 
       MAXQLEN = DB.GETINT.F(2) 
       AVGQLEN = DB.GETREAL.F(3) 
       COMMENT = DB.GETTEXT.F(4) 
       ''do some processing using these values 
       ... 
    loop 

One row is processed in each iteration of the while loop.  DB.FETCH.F returns 0 
when there are no more rows, which terminates the loop. 

A column number is the ordinal position of a column within a row.  For this query, 
RUNID is column number 1, MAXQLEN is column number 2, AVGQLEN is column 
number 3, and COMMENT is column number 4.  DB.GETINT.F, DB.GETREAL.F, and 
DB.GETTEXT.F return the value of the column identified by the given column 
number.  Specifying a column number less than 1 or greater than the number of 
columns produces a run-time error. 

When the value of a column is null, DB.GETINT.F returns 0, DB.GETREAL.F returns 
0.0, and DB.GETTEXT.F returns the zero-length string ("").  However, these values 
can also be returned for non-null columns.  Therefore, SDBC supplies a function 
named DB.NULL.F to determine whether a column contains a null value.  This 
function accepts a column number as its only argument and returns 1 if the value of 
the column is non-null and returns 0 if the value is null.  For example: 
 
    if DB.NULL.F(3) = 0 ''column number 3 is null 
       ... 
    always 
 
    if DB.NULL.F(2) = 1 ''column number 2 is non-null 
       ... 
    always 

Note that DB.GETINT.F, DB.GETREAL.F, DB.GETTEXT.F, and DB.NULL.F refer only 
to the most recently fetched row.  It is not possible to access any other row.  
Likewise, DB.FETCH.F fetches only rows returned by the most recent query.  It is 
not possible to fetch rows returned by a prior query. 

 14 



 3.  SQL Queries 

It is not necessary to retrieve all column values if the program only needs some.  It 
is also not required to fetch all of the rows returned by the query; that is, the 
program may terminate the while loop early, before all rows have been retrieved. 

After DB.FETCH.F has returned 0, which indicates there are no more rows to be 
fetched, calling DB.FETCH.F again, without first executing a new query, produces a 
run-time error. 

If DB.GETINT.F is called to retrieve a floating-point column value, it returns the 
value rounded to the nearest integer.  If DB.GETREAL.F retrieves an integer column 
value, it returns the value as a real number.  If DB.GETINT.F or DB.GETREAL.F 
retrieves a character-string column value, it attempts to convert the value to a 
number.  If DB.GETTEXT.F retrieves an integer or floating-point column value, it 
converts the value to text. 

3.2 Specifying SQL Expressions 

Like SIMSCRIPT II.5 names, SQL names are case-insensitive and may consist of 
any combination of letters and digits; however, an SQL name must begin with a 
letter.  An SQL name may not contain periods unless it is a qualified name, such as 
a column name qualified by a table name (e.g., RESULT.RUNID).  An SQL name 
may contain underscores (e.g., FIRST_NAME).  See the DBMS documentation for a 
list of reserved SQL key words (e.g., SELECT, FROM, INSERT), which may not be 
used to name a table or column. 

Numeric constants in SQL and SIMSCRIPT II.5 are specified in the same way, 
except that SQL permits scientific notation in constants (e.g., 3.87E-4).  Text 
literals in SQL are delimited by 'single quotes', rather than "double quotes" as in 
SIMSCRIPT II.5: 'This is an SQL text literal', 'Embedded quotes 
aren''t a problem', the zero-length string looks like this ''. 

SQL and SIMSCRIPT II.5 share the following operators: 
 
    +  -  *  /  AND  OR  =  <>  <  >  <=  >= 

In SQL, NOT may be used for logical negation.  SQL does not have an 
exponentiation operator (**) and does not support any of the English abbreviations 
(e.g., EQ, LT) or phrases (e.g., EQUALS, LESS THAN) allowed in SIMSCRIPT II.5.  
SQL permits the following expressions to test for nulls: X IS NULL, X IS NOT 
NULL. 

SIMSCRIPT II.5's concise 0 < X < 100 must be expressed in SQL as 
0 < X AND X < 100.  However, 0 <= X <= 100 may be expressed in SQL as 
X BETWEEN 0 AND 100.  Its negation, expressed as 0 <= X <= 100 IS FALSE in 

   15 



SIMSCRIPT II.5 Database Connectivity User’s Manual 

SIMSCRIPT II.5, is expressed in SQL as NOT (X BETWEEN 0 AND 100) or simply, 
X NOT BETWEEN 0 AND 100. 

 16 



 3.  SQL Queries 

SQL's IN operator provides convenient shorthand for testing whether a column 
value belongs to a list of values: 
 
    X IN (20, 21, 26, 31, 32) 
    CITY NOT IN ('Detroit', 'Chicago', 'Cincinnati') 

In SQL, a SELECT statement known as a subquery may appear within an expression.  
Given a subquery as an operand, the IN operator returns true if a given value is 
returned by the subquery, and the EXISTS operator returns true if the subquery 
returns at least one row.  A scalar subquery returns the value of a single column in 
a single row. 

Full treatment of SQL expressions is beyond the scope of this manual.  Please refer 
to a book on SQL and the DBMS documentation for more information. 

3.3 Selecting Rows 

The WHERE clause in a SELECT statement specifies an SQL conditional expression.  
Only rows for which the expression evaluates to true are returned by the query.  The 
following query returns the RUNID, AVGQLEN, and COMMENT columns of each row in 
RESULT that has a RUNID between 2000 and 2999 and an AVGQLEN greater than or 
equal to 2.0: 
 
    SELECT RUNID, AVGQLEN, COMMENT 
     FROM RESULT 
     WHERE RUNID BETWEEN 2000 AND 2999 
       AND AVGQLEN >= 2.0 

The rows returned by a query are unordered unless an ORDER BY clause is specified.  
To sort the rows by descending AVGQLEN and then by ascending RUNID for rows 
having the same AVGQLEN, the following clause is appended to the SELECT 
statement: 
 
     ORDER BY AVGQLEN DESC, RUNID ASC 

Because ascending is the default, the ASC key word may be omitted.  Column 
numbers may be specified in place of the column names.  For this query, RUNID is 
column number 1, AVGQLEN is column number 2, and COMMENT is column number 3; 
therefore, the following ORDER BY clause is equivalent to the one above: 
 
     ORDER BY 2 DESC, 1 

The following code executes the above query and prints the five longest average 
queue lengths.  If the query returns fewer than five rows, then all of the rows will be 

   17 



SIMSCRIPT II.5 Database Connectivity User’s Manual 

fetched and printed.  If the query returns more than five rows, then only the first 
five will be fetched and printed. 
 
    define CMD as a text variable 
    define I   as an integer variable 
 
    ''construct the query 
    CMD = CONCAT.F( 
    "SELECT RUNID, AVGQLEN, COMMENT FROM RESULT", 
    " WHERE RUNID BETWEEN 2000 AND 2999 AND AVGQLEN >= 2.0", 
    " ORDER BY 2 DESC, 1") 
 
    ''execute the query 
    call DB.QUERY.R(CMD) 
 
    ''print column headings 
    print 1 line as follows 
       AVGQLEN   RUNID   COMMENT 
 
    ''fetch and print the first five rows 
    for I = 1 to 5 while DB.FETCH.F = 1 
       print 1 line with DB.GETREAL.F(2), DB.GETINT.F(1), 
       DB.GETTEXT.F(3) as follows 
          *.**       *   ****************************** 

The output might look like this: 
 
       AVGQLEN   RUNID   COMMENT 
        118.38    2391   Extremely slow server 
         41.91    2877 
         17.00    2017   Test M7 
         17.00    2018   Test M8 
         14.96    2450   Tried a Weibull distribution 

In this example, the row with RUNID=2877 has a null COMMENT, which is returned by 
DB.GETTEXT.F as a zero-length string ("") and gets printed as blanks. 

SQL provides the following aggregate functions: 
 
 COUNT(*) returns the number of rows 
 AVG(column) returns the average of the values in column 
 MAX(column) returns the largest value in column 
 MIN(column) returns the smallest value in column 
 SUM(column) returns the sum of the values in column 

The following code uses aggregate functions to report the number of rows in 
RESULT and the minimum, maximum, and average value of AVGQLEN: 

 18 



 3.  SQL Queries 

    ''execute the query 
    call DB.QUERY.R(CONCAT.F( 
    "SELECT COUNT(*), MIN(AVGQLEN), MAX(AVGQLEN), AVG(AVGQLEN)", 
    " FROM RESULT")) 
 
    if DB.FETCH.F = 1 ''fetched the only row 
       write DB.GETINT.F(1), DB.GETREAL.F(2), DB.GETREAL.F(3), 
       DB.GETREAL.F(4) as "In ", I 4, 
       " simulation runs, the average queue length", /, 
       "ranged from ", D(4,2), " to ", D(6,2), 
       " with an average of ", D(5,2), ".", / 
    always 

The output might look like this: 
 
In 3236 simulation runs, the average queue length 
ranged from 0.15 to 172.81 with an average of  8.39. 

Aggregate functions are commonly applied to groups of rows specified in GROUP 
BY and HAVING clauses of a SELECT statement. 

The SELECT statement is an SQL Data Manipulation Language (DML) statement.  
Refer to Appendix B in this manual, and the DBMS documentation, for a 
specification of its syntax. 

3.4 Joining Tables 

One of the most important database operations is the ability to join two or more 
tables.  This section illustrates a query that joins two tables. 

In the RESULT table, each row records the result of one simulation run and each run 
is identified by a unique RUNID.  Suppose there exists a second table, named 
DETAIL, with the following definition: 
 
    CREATE TABLE DETAIL 
    (RUNID      INTEGER NOT NULL, 
     START_TIME REAL    NOT NULL, 
     END_TIME   REAL    NOT NULL, 
     QLEN       INTEGER NOT NULL) 

A row in DETAIL indicates there was a constant queue length (QLEN) from 
simulation time START_TIME to END_TIME in the simulation run identified by RUNID. 

The DETAIL and RESULT tables have a many-to-one relationship: for each row in 
RESULT, there are many rows in DETAIL.  In SIMSCRIPT II.5 terminology, this 
relationship may be described in terms of entities and sets: each RESULT entity owns 
a set of DETAIL entities. 

   19 



SIMSCRIPT II.5 Database Connectivity User’s Manual 

With this detailed information, a simulation run can be analyzed in greater depth.  
The following code calculates and displays the total simulation time for each queue 
length for run #2300: 
 
    define JOIN as a text variable 
    define MAXQLEN, QLEN as integer variables 
    define DURATION as a 1-dimensional real array 
 
    ''construct a query that joins tables RESULT and DETAIL; 
    ''since RUNID names a column in both tables, it must be 
    ''qualified by the table name 
    JOIN = CONCAT.F( 
    "SELECT RESULT.RUNID, AVGQLEN, MAXQLEN,", 
    "       END_TIME – START_TIME, QLEN", 
    " FROM RESULT, DETAIL",               ''the tables to join 
    " WHERE RESULT.RUNID = DETAIL.RUNID", ''how to join them 
    "   AND RESULT.RUNID = 2300") 
 
    ''execute the query 
    call DB.QUERY.R(JOIN) 
 
    if DB.FETCH.F = 0 ''the query returned no rows 
       write as "There is no record of this simulation run", / 
    else ''fetched the first row 
 
       write DB.GETINT.F(1) as "Run #", I 4, / 
       write as "Average queue length: " 
       if DB.NULL.F(2) = 1 ''AVGQLEN is non-null 
          write DB.GETREAL.F(2) as D(5,2), / 
       else ''AVGQLEN is null 
          write as "undefined", / 
       always 
 
       if DB.NULL.F(3) = 0 ''MAXQLEN is null 
          write as "Maximum queue length: undefined", / 
       else ''MAXQLEN is non-null 
 
          MAXQLEN = DB.GETINT.F(3) 
 
          ''reserve an array with one element for each possible 
          ''queue length; queue length ranges from 0 to MAXQLEN so 
          ''(MAXQLEN+1) elements are needed; the duration for queue 
          ''length I is summed in element (I+1) 
          reserve DURATION(*) as MAXQLEN + 1 
          add DB.GETREAL.F(4) to DURATION(DB.GETINT.F(5) + 1) 
          while DB.FETCH.F = 1 ''fetched another row 
             add DB.GETREAL.F(4) to DURATION(DB.GETINT.F(5) + 1) 
 
          ''display the distribution of queue lengths 
          write as /, "QLEN  DURATION", / 
          for QLEN = 0 to MAXQLEN 
             write QLEN, DURATION(QLEN + 1) as I 4, "  ", D(8,2), / 
 

 20 



 3.  SQL Queries 

          release DURATION(*) 
 
       always 
 
    always 

The output might look like this: 
 
Run #2300 
Average queue length:  3.28 
 
QLEN  DURATION 
   0    157.41 
   1    281.31 
   2    479.98 
   3    394.01 
   4    317.84 
   5    231.09 
   6    141.33 
   7     89.77 
   8     46.62 
   9     28.16 
  10     12.79 
  11      6.13 
  12      2.01 
  13      0.89 
  14      0.32 
  15      0.13 

 

   21 





   

Chapter 4 SQL Parameters 
 

The query in Section 3.4 retrieves the data for run #2300.  To process the same 
query on a different run, the value 2300 needs to be changed in the query.  Rather 
than modify the query string for every new run ID, an SQL parameter, in the form 
of a question mark (?), may be specified in the query as a placeholder for the run 
ID.  The value of this parameter is set prior to the execution of the query.  For 
example: 
 
    define JOIN  as a text variable 
    define RUNID as an integer variable 
 
    ''construct a query that uses an SQL parameter 
    JOIN = CONCAT.F( 
    "SELECT RESULT.RUNID, AVGQLEN, MAXQLEN,", 
    "       END_TIME – START_TIME, QLEN", 
    " FROM RESULT, DETAIL", 
    " WHERE RESULT.RUNID = DETAIL.RUNID", 
    "   AND RESULT.RUNID = ?") 
 
    ''read the run ID 
    write as "Enter Run #:", / 
    read RUNID 
 
    ''set the parameter value 
    call DB.SETINT.R(1, RUNID) 
 
    ''execute the query using the parameter value 
    call DB.QUERY.R(JOIN) 

The routine DB.SETINT.R sets the value of the parameter to the value of the RUNID 
variable.  This value is used in place of the question mark when the query is 
executed by DB.QUERY.R.  DB.SETINT.R is used to set an integer parameter; 
DB.SETREAL.R sets a floating-point parameter; and DB.SETTEXT.R sets a character-
string parameter. 

 23 



SIMSCRIPT II.5 Database Connectivity User’s Manual 

The following example from Section 2.2 illustrates how to insert a row into the 
RESULT table: 
 
    define CMD  as a text variable 
    define ROWS as an integer variable 
 
    CMD = CONCAT.F( 
    "INSERT INTO RESULT", 
    " VALUES (101, 12, 2.75, 'First test run in December')") 
 
    ROWS = DB.UPDATE.F(CMD) 

If the column values for the new row are stored in program variables, then it takes 
some effort to construct this query.  However, using SQL parameters, the task 
becomes easier: 
 
    define ROWS, RUNID, MAXQLEN as integer variables 
    define AVGQLEN as a real variable 
    define COMMENT as a text variable 
 
    ''set the value of variables RUNID, MAXQLEN, AVGQLEN, 
    ''and COMMENT to the column values of a new row 
    ... 
 
    ''set four parameter values 
    call DB.SETINT.R(1, RUNID) 
    call DB.SETINT.R(2, MAXQLEN) 
    call DB.SETREAL.R(3, AVGQLEN) 
    call DB.SETTEXT.R(4, COMMENT) 
     
    ''insert the new row 
    ROWS = DB.UPDATE.F("INSERT INTO RESULT VALUES (?, ?, ?, ?)") 

A parameter number is the ordinal position of a parameter (i.e., question mark) 
within an SQL statement.  In this example, DB.SETINT.R sets parameter numbers 1 
and 2 to integer values; DB.SETREAL.R sets parameter number 3 to a floating-point 
value; and DB.SETTEXT.R sets parameter number 4 to a text value.  Failing to set a 
parameter before executing the SQL statement produces a run-time error.  
Specifying a parameter number less than 1 is also an error.  Specifying a parameter 
number greater than the number of question marks is not an error; the extra 
parameter is simply ignored.  Multiple parameters may be set in any order.  It is not 
possible to set a parameter to a null value. 

After the SQL statement has been processed by DB.QUERY.R or DB.UPDATE.F, all 
parameter values become undefined and must be set again before the next SQL 
statement with parameters is executed. 

 24 



   

Chapter 5 Database Transactions 
 

A database transaction is an atomic sequence of modifications to a database in 
which all or none of the modifications are made permanent.  If the transaction is 
committed, then all of the changes are made permanent.  If the transaction is rolled 
back, then all modifications made during the transaction are undone and the 
database is returned to the state it was in before the transaction was started. 

A database may be shared and accessed concurrently by multiple users and 
executing programs.  Transactions prevent them from seeing one another's 
uncommitted changes to the database, i.e., their work in progress.  In addition, 
transactions enable the DBMS to restore a database to a known state following a 
system or program failure. 

When Auto-Commit is ON, each SQL statement executed by DB.UPDATE.F is its 
own transaction.  That is, either the statement completes successfully and all 
changes made by the statement are made permanent (the transaction is committed), 
or the statement fails and all changes made by the statement are undone (the 
transaction is rolled back).  Auto-Commit is ON by default. 

To execute two or more SQL statements atomically within a single transaction, it is 
necessary to turn Auto-Commit OFF.  This is accomplished by passing zero to 
DB.AUTOCOMMIT.R: 
 
    call DB.AUTOCOMMIT.R(0) 

With Auto-Commit OFF, all executed SQL statements are part of the same 
transaction, which is terminated by calling DB.COMMIT.R or DB.ROLLBACK.R.  To 
save all changes made to the database during the transaction: 
 
    call DB.COMMIT.R 

To undo all changes made to the database during the transaction: 
 
    call DB.ROLLBACK.R 

After terminating a transaction, a new transaction is begun implicitly. 

 25 



SIMSCRIPT II.5 Database Connectivity User’s Manual 

The following code atomically deletes all rows associated with a given simulation 
run from tables RESULT and DETAIL: 
 
    define RUNID, DELETED as integer variables 
 
    ''turn Auto-Commit OFF 
    call DB.AUTOCOMMIT.R(0) 
 
    ''read the run ID 
    write as "Enter # of Run to Delete:", / 
    read RUNID 
 
    ''delete the RESULT row 
    call DB.SETINT.R(1, RUNID) 
    DELETED = DB.UPDATE.F("DELETE FROM RESULT WHERE RUNID = ?") 
 
    ''delete all DETAIL rows 
    call DB.SETINT.R(1, RUNID) 
    add DB.UPDATE.F("DELETE FROM DETAIL WHERE RUNID = ?") 
    to DELETED 
 
    ''end the current transaction, 
    ''making all of the deletions permanent 
    call DB.COMMIT.R 
 
    if DELETED = 0 
       write RUNID as "There are no rows to delete for Run #", I 4, 
       ".", / 
    else 
       write DELETED, RUNID as "All ", I 4, " rows for Run #", I 4, 
       " have been deleted.", / 
    always 

The output might look like this: 
 
All  387 rows for Run #1542 have been deleted. 

Once Auto-Commit has been turned OFF, it remains OFF until it is explicitly 
turned ON by passing a non-zero value to DB.AUTOCOMMIT.R: 
 
    call DB.AUTOCOMMIT.R(1) 

Turning Auto-Commit ON implicitly terminates and commits the current 
transaction.  When Auto-Commit is ON, calling DB.COMMIT.R or DB.ROLLBACK.R 
has no effect. 

Any transaction that is ongoing when a SIMSCRIPT II.5 program terminates is 
automatically rolled back by the DBMS. 

 26 



.   

Chapter 6 Example Program: Bank Simulation 
 

This section presents a complete SIMSCRIPT II.5 example program that calls 
SDBC functions and routines.  This program simulates a bank with a single queue 
and multiple tellers and keeps track of simulation runs in a database.  Each run is 
recorded as one row in a database table with the following definition: 
 
    CREATE TABLE BANKSIM 
    (RUNID   INTEGER NOT NULL PRIMARY KEY, 
     TELLERS INTEGER NOT NULL, 
     IATIME  REAL    NOT NULL, 
     SRVTIME REAL    NOT NULL, 
     UTIL    REAL, 
     AVGQLEN REAL, 
     MAXQLEN INTEGER) 

RUNID is an integer ID that uniquely identifies the run.  The input parameters are 
recorded in columns TELLERS, IATIME, and SRVTIME.  TELLERS is the number of 
tellers working at the bank.  The interarrival time of customers is exponentially 
distributed with a mean of IATIME minutes.  The time required for a teller to serve a 
customer is exponentially distributed with a mean of SRVTIME minutes.  The results 
of the run are stored in columns UTIL, AVGQLEN, and MAXQLEN.  UTIL is the 
utilization of the tellers.  AVGQLEN and MAXQLEN are the average and maximum 
length of the queue, respectively. 

The main routine begins by prompting the user for the data source name, user name, 
and password, and then connects to the specified database.  If the BANKSIM table 
does not exist, the CREATE.TABLE routine is called to create it.  Then the MAIN.LOOP 
routine takes over and repeatedly displays a menu of choices, obtains the user's 
choice and processes it. 

The user may choose to Define a Run by entering the ID and input parameters for a 
new run.  A row is inserted into the BANKSIM table containing the specified RUNID, 
TELLERS, IATIME, and SRVTIME, with null values in the result columns, UTIL, 
AVGQLEN, and MAXQLEN. 

The user may choose to Execute a Run by entering the ID of a defined run.  The 
program obtains the input parameters for this run by retrieving its row.  It then 
simulates one eight-hour day at the bank using these parameters.  The results of the 
simulation are displayed to the user and saved in the UTIL, AVGQLEN, and MAXQLEN 
columns of the row. 

 27 



SIMSCRIPT II.5 Database Connectivity User’s Manual 

The user may choose to Show All Runs; all rows of the BANKSIM table are retrieved 
and displayed, sorted by RUNID.  The user may choose to Delete a Run by entering 
its ID; the row corresponding to this run is deleted from the BANKSIM table. 

Finally, the user may choose to Exit, thereby terminating the MAIN.LOOP routine.  
The main routine then disconnects from the database and the program terminates. 
preamble 
 
''SDBC Example Program 
''Single-Queue Multiple-Teller Bank Simulation 
''Derived from Example 5 in the book, 
''  "Building Simulation Models with SIMSCRIPT II.5" 
''  by Edward C. Russell (CACI, 1983) 
 
processes include GENERATOR and CUSTOMER 
 
resources include TELLER 
 
define MEAN.INTERARRIVAL.TIME, MEAN.SERVICE.TIME 
as real variables 
 
accumulate UTILIZATION as the average of N.X.TELLER 
accumulate AVG.QUEUE.LENGTH as the average 
       and MAX.QUEUE.LENGTH as the maximum of N.Q.TELLER 
 
''SDBC Functions and Routines 
define DB.AUTOCOMMIT.R as a          routine  given 1 argument 
define DB.COMMIT.R     as a          routine  given 0 arguments 
define DB.CONNECT.R    as a          routine  given 3 arguments 
define DB.DISCONNECT.R as a          routine  given 0 arguments 
define DB.EXISTS.F     as an integer function given 1 argument 
define DB.FETCH.F      as an integer function given 0 arguments 
define DB.GETINT.F     as an integer function given 1 argument 
define DB.GETREAL.F    as a  double  function given 1 argument 
define DB.GETTEXT.F    as a  text    function given 1 argument 
define DB.NULL.F       as an integer function given 1 argument 
define DB.QUERY.R      as a          routine  given 1 argument 
define DB.ROLLBACK.R   as a          routine  given 0 arguments 
define DB.SETINT.R     as a          routine  given 2 arguments 
define DB.SETREAL.R    as a          routine  given 2 arguments 
define DB.SETTEXT.R    as a          routine  given 2 arguments 
define DB.UPDATE.F     as an integer function given 1 argument 
 
end 

 28 



 6.  Example Program: Bank Simulation 

main 
 
define DSNAME, USERNAME, PASSWORD as text variables 
 
write as "Enter data source name:", / 
read DSNAME 
write as "Enter user name:", / 
read USERNAME 
write as "Enter password:", / 
read PASSWORD 
call DB.CONNECT.R(DSNAME, USERNAME, PASSWORD) 
 
if DB.EXISTS.F("BANKSIM") = 0 ''BANKSIM table does not exist 
   call CREATE.TABLE          ''so create it 
always 
 
create every TELLER(1) 
 
call MAIN.LOOP 
 
call DB.DISCONNECT.R 
 
end 
 
 
 
routine CREATE.TABLE 
 
define SQL as a text variable 
define ROWS as an integer variable 
 
''construct an SQL CREATE TABLE statement 
SQL = CONCAT.F( 
"CREATE TABLE BANKSIM ", 
"(RUNID   INTEGER NOT NULL PRIMARY KEY,", 
" TELLERS INTEGER NOT NULL,", 
" IATIME  REAL    NOT NULL,", 
" SRVTIME REAL    NOT NULL,", 
" UTIL    REAL,", 
" AVGQLEN REAL,", 
" MAXQLEN INTEGER)") 
 
''create the table 
ROWS = DB.UPDATE.F(SQL) 
 
end 

   29 



SIMSCRIPT II.5 Database Connectivity User’s Manual 

routine MAIN.LOOP 
 
define CHOICE as an integer variable 
 
'DISPLAY.MENU' 
print 7 lines thus 
 
Enter 
0 to Exit 
1 to Define a Run 
2 to Execute a Run 
3 to Show All Runs 
4 to Delete a Run 
 
read CHOICE 
 
select case CHOICE 
   case 0  return 
   case 1  call DEFINE.RUN 
   case 2  call EXECUTE.RUN 
   case 3  call SHOW.RUNS 
   case 4  call DELETE.RUN 
   default write as "Invalid choice", / 
endselect 
 
go to 'DISPLAY.MENU' 
 
end 

 30 



 6.  Example Program: Bank Simulation 

routine DEFINE.RUN 
 
define RUNID, TELLERS, ROWS as integer variables 
define IATIME, SRVTIME as real variables 
 
write as /, "Enter Run #:", / 
read RUNID 
 
call DB.SETINT.R(1, RUNID) 
call DB.QUERY.R("SELECT COUNT(*) FROM BANKSIM WHERE RUNID = ?") 
if DB.FETCH.F = 1 and DB.GETINT.F(1) > 0 
   write as "Run already defined", / 
   return 
otherwise 
 
write as "Enter # of Tellers:", / 
read TELLERS 
write as "Enter Mean InterArrival Time in Minutes:", / 
read IATIME 
write as "Enter Mean Service Time in Minutes:", / 
read SRVTIME 
 
call DB.SETINT.R(1, RUNID) 
call DB.SETINT.R(2, TELLERS) 
call DB.SETREAL.R(3, IATIME) 
call DB.SETREAL.R(4, SRVTIME) 
ROWS = DB.UPDATE.F(CONCAT.F( 
"INSERT INTO BANKSIM (RUNID, TELLERS, IATIME, SRVTIME)", 
" VALUES (?, ?, ?, ?)")) 
 
write as "Run defined", / 
 
end 

   31 



SIMSCRIPT II.5 Database Connectivity User’s Manual 

routine EXECUTE.RUN 
 
define RUNID, MAXQLEN, ROWS as integer variables 
define UTIL, AVGQLEN as real variables 
 
write as /, "Enter Run #:", / 
read RUNID 
 
''lookup run definition 
call DB.SETINT.R(1, RUNID) 
call DB.QUERY.R(CONCAT.F( 
"SELECT TELLERS, IATIME, SRVTIME, UTIL", 
" FROM BANKSIM WHERE RUNID = ?")) 
 
if DB.FETCH.F = 0 ''not found 
   write as "Run undefined", / 
   return 
otherwise 
 
if DB.NULL.F(4) = 1 ''UTIL is non-null 
   write as "Run already executed", / 
   return 
otherwise 
 
call SIMULATE.BANK given DB.GETINT.F(1), DB.GETREAL.F(2), 
DB.GETREAL.F(3) yielding UTIL, AVGQLEN, MAXQLEN 
 
''save run results 
call DB.SETREAL.R(1, UTIL) 
call DB.SETREAL.R(2, AVGQLEN) 
call DB.SETINT.R(3, MAXQLEN) 
call DB.SETINT.R(4, RUNID) 
ROWS = DB.UPDATE.F( 
"UPDATE BANKSIM SET UTIL=?,AVGQLEN=?,MAXQLEN=? WHERE RUNID=?") 
 
end 

 32 



 6.  Example Program: Bank Simulation 

routine SIMULATE.BANK given TELLERS, IATIME, SRVTIME 
                      yielding UTIL, AVGQLEN, MAXQLEN 
 
define TELLERS, MAXQLEN as integer variables 
define IATIME, SRVTIME, UTIL, AVGQLEN as real variables 
 
U.TELLER(1) = TELLERS 
MEAN.INTERARRIVAL.TIME = IATIME 
MEAN.SERVICE.TIME = SRVTIME 
 
TIME.V = 0 
reset totals of N.X.TELLER(1) and N.Q.TELLER(1) 
 
activate a GENERATOR now 
 
start simulation 
 
UTIL = UTILIZATION(1) / TELLERS 
AVGQLEN = AVG.QUEUE.LENGTH(1) 
MAXQLEN = MAX.QUEUE.LENGTH(1) 
 
write TELLERS as "# of Tellers:          ", I 3, / 
write IATIME  as "Mean InterArrival Time: ", D(5,2), 
" minutes", / 
write SRVTIME as "Mean Service Time:      ", D(5,2), 
" minutes", / 
write UTIL    as "Teller Utilization:      ", D(4,2), / 
write AVGQLEN as "Average Queue Length:  ", D(6,2), / 
write MAXQLEN as "Maximum Queue Length:  ", I 3, / 
 
end 
 
 
 
process GENERATOR 
 
''generate customer arrivals during one 8-hour day 
while TIME.V < 8.0 / HOURS.V 
do 
   activate a CUSTOMER now 
   wait EXPONENTIAL.F(MEAN.INTERARRIVAL.TIME, 1) minutes 
loop 
 
end 
 
 
 
process CUSTOMER 
 
request 1 TELLER 
work EXPONENTIAL.F(MEAN.SERVICE.TIME, 2) minutes 
relinquish 1 TELLER 
 
end 

   33 



SIMSCRIPT II.5 Database Connectivity User’s Manual 

routine SHOW.RUNS 
 
''retrieve all rows sorted by ascending RUNID 
call DB.QUERY.R("SELECT * FROM BANKSIM ORDER BY RUNID") 
 
print 4 lines thus 
 
                    Mean       Mean            Average  Maximum 
                InterArrival  Service  Teller  Queue    Queue 
Run#  #Tellers      Time       Time     Util.  Length   Length 
 
while DB.FETCH.F = 1 ''for each row in BANKSIM 
do 
   if DB.NULL.F(5) = 1 ''UTIL is non-null 
      print 1 line with DB.GETINT.F(1), DB.GETINT.F(2), 
      DB.GETREAL.F(3), DB.GETREAL.F(4), DB.GETREAL.F(5), 
      DB.GETREAL.F(6), DB.GETINT.F(7) thus 
   *       *         *.*        *.*     *.**    *.**       * 
   else ''this run has not been executed 
      print 1 line with DB.GETINT.F(1), DB.GETINT.F(2), 
      DB.GETREAL.F(3), DB.GETREAL.F(4) thus 
   *       *         *.*        *.* 
   always 
loop 
 
end 
 
 
 
routine DELETE.RUN 
 
define RUNID, ROWS as integer variables 
 
write as /, "Enter Run #:", / 
read RUNID 
 
call DB.SETINT.R(1, RUNID) 
ROWS = DB.UPDATE.F("DELETE FROM BANKSIM WHERE RUNID = ?") 
 
if ROWS = 0 ''no rows were deleted 
   write as "No such run", / 
else 
   write as "Run deleted", / 
always 
 
end 

 34 



 6.  Example Program: Bank Simulation 

The following is a transcript from one execution of this program, starting with an 
empty database.  User entries are italicized. 
 
Enter data source name: 
BANKSIMDB 
Enter user name: 
STEVE 
Enter password: 
SECRET 
 
Enter 
0 to Exit 
1 to Define a Run 
2 to Execute a Run 
3 to Show All Runs 
4 to Delete a Run 
1 
 
Enter Run #: 
101 
Enter # of Tellers: 
2 
Enter Mean InterArrival Time in Minutes: 
5 
Enter Mean Service Time in Minutes: 
10 
Run defined 
 
Enter 
0 to Exit 
1 to Define a Run 
2 to Execute a Run 
3 to Show All Runs 
4 to Delete a Run 
3 
 
                    Mean       Mean            Average  Maximum 
                InterArrival  Service  Teller  Queue    Queue 
Run#  #Tellers      Time       Time     Util.  Length   Length 
 101       2         5.0       10.0 

   35 



SIMSCRIPT II.5 Database Connectivity User’s Manual 

Enter 
0 to Exit 
1 to Define a Run 
2 to Execute a Run 
3 to Show All Runs 
4 to Delete a Run 
2 
 
Enter Run #: 
101 
# of Tellers:            2 
Mean InterArrival Time:  5.00 minutes 
Mean Service Time:      10.00 minutes 
Teller Utilization:       .96 
Average Queue Length:    3.61 
Maximum Queue Length:   13 
 
Enter 
0 to Exit 
1 to Define a Run 
2 to Execute a Run 
3 to Show All Runs 
4 to Delete a Run 
3 
 
                    Mean       Mean            Average  Maximum 
                InterArrival  Service  Teller  Queue    Queue 
Run#  #Tellers      Time       Time     Util.  Length   Length 
 101       2         5.0       10.0      .96    3.61      13 
 
Enter 
0 to Exit 
1 to Define a Run 
2 to Execute a Run 
3 to Show All Runs 
4 to Delete a Run 
1 
 
Enter Run #: 
102 
Enter # of Tellers: 
2 
Enter Mean InterArrival Time in Minutes: 
5 
Enter Mean Service Time in Minutes: 
10 
Run defined 

 36 



 6.  Example Program: Bank Simulation 

Enter 
0 to Exit 
1 to Define a Run 
2 to Execute a Run 
3 to Show All Runs 
4 to Delete a Run 
2 
 
Enter Run #: 
102 
# of Tellers:            2 
Mean InterArrival Time:  5.00 minutes 
Mean Service Time:      10.00 minutes 
Teller Utilization:       .90 
Average Queue Length:    2.31 
Maximum Queue Length:   10 
 
Enter 
0 to Exit 
1 to Define a Run 
2 to Execute a Run 
3 to Show All Runs 
4 to Delete a Run 
3 
 
                    Mean       Mean            Average  Maximum 
                InterArrival  Service  Teller  Queue    Queue 
Run#  #Tellers      Time       Time     Util.  Length   Length 
 101       2         5.0       10.0      .96    3.61      13 
 102       2         5.0       10.0      .90    2.31      10 
 
Enter 
0 to Exit 
1 to Define a Run 
2 to Execute a Run 
3 to Show All Runs 
4 to Delete a Run 
4 
 
Enter Run #: 
101 
Run deleted 

   37 



SIMSCRIPT II.5 Database Connectivity User’s Manual 

Enter 
0 to Exit 
1 to Define a Run 
2 to Execute a Run 
3 to Show All Runs 
4 to Delete a Run 
3 
 
                    Mean       Mean            Average  Maximum 
                InterArrival  Service  Teller  Queue    Queue 
Run#  #Tellers      Time       Time     Util.  Length   Length 
 102       2         5.0       10.0      .90    2.31      10 
 
Enter 
0 to Exit 
1 to Define a Run 
2 to Execute a Run 
3 to Show All Runs 
4 to Delete a Run 
0 

 

 38 



.   

Chapter 7 Example Program: Job Shop 
Simulation 
 

This section presents a complete SIMSCRIPT II.5 example program that calls 
SDBC functions and routines.  This program simulates the operations of a job shop 
in which jobs arrive at random intervals and are processed by machines in the shop.  
The machines are grouped by type; for example, the shop may house eight drill 
presses, five lathes, and four polishing machines. 

A job requires a sequence of tasks to be performed by machines in the shop.  When 
the job arrives, it is sent to the machine group needed for the first task.  If there is a 
unit currently available (idle) in this group, the task commences immediately using 
this unit; otherwise, the job waits in line for a unit to become available.  Once the 
first task has finished, the job is sent to the machine group needed for the second 
task, and so on, until all of the tasks have been completed. 

Each type of machine is described by one row in a database table named Machines 
with the following definition: 
 
    CREATE TABLE Machines 
    (Machine_ID      CHAR(2)     NOT NULL PRIMARY KEY, 
     Machine_Name    VARCHAR(20) NOT NULL, 
     Number_of_Units SMALLINT    NOT NULL) 

Machine_ID is a two-character code that uniquely identifies the machine type.  
Machine_Name gives the name of the machine type, and Number_of_Units 
specifies the number of units of this type in the shop. 

The program assumes that the Machines table has already been created and 
populated with rows.  For example, the contents of the table might look like this: 
 
    Machine_ID   Machine_Name           Number_of_Units 
    ----------   --------------------   --------------- 
        CU       Casting Units                 14 
        DP       Drill Presses                  8 
        LA       Lathes                         5 
        PL       Planes                         4 
        PM       Polishing Machines             4 
        SH       Shapers                       16 

 39 



SIMSCRIPT II.5 Database Connectivity User’s Manual 

The shop will only process jobs of a certain type.  The accepted job types are 
described in a database table named Job_Types with the following definition: 
 
    CREATE TABLE Job_Types 
    (Job_Type_Number   SMALLINT NOT NULL, 
     Sequence_Number   SMALLINT NOT NULL, 
     Machine_ID        CHAR(2)  NOT NULL REFERENCES Machines, 
     Mean_Service_Time REAL     NOT NULL, 
     PRIMARY KEY (Job_Type_Number, Sequence_Number)) 

Each row of this table describes one task of the job type identified by 
Job_Type_Number.  The task requires the use of one unit of machine type 
Machine_ID for a random number of hours that is exponentially distributed with a 
mean of Mean_Service_Time.  Sequence_Number is used to specify the order of 
tasks for a given job type.  The combination of Job_Type_Number and 
Sequence_Number uniquely identifies a row and is designated as the primary key.  
Machine_ID is declared as a foreign key by the REFERENCES clause, which 
guarantees that its value is present in the Machine_ID column of the Machines 
table. 

The program assumes that the Job_Types table has already been created and 
populated with rows.  For example, the following table describes the tasks of three 
job types: Job Type 117 (four tasks), Job Type 123 (three tasks), and Job Type 125 
(five tasks). 
 
    Job_Type_Number  Sequence_Number  Machine_ID  Mean_Service_Time 
    ---------------  ---------------  ----------  ----------------- 
          117               1             CU           2.0833 
          117               2             PL           0.5833 
          117               3             LA           0.3333 
          117               4             PM           1.0000 
 

          123               1             SH           1.7500 
          123               2             DP           1.5000 
          123               3             LA           1.0833 
 

          125               1             CU           3.9166 
          125               2             SH           4.1666 
          125               3             DP           0.8333 
          125               4             PL           0.5000 
          125               5             PM           0.4166 

 40 



 7.  Example Program: Job Shop Simulation 

One simulation run measures the utilization of each machine group and the average 
and maximum number of jobs waiting for each group.  This data is stored in a 
database table named Results with the following definition.  (This table is 
assumed by the program to exist.) 
 
    CREATE TABLE Results 
    (Run_Number  SMALLINT NOT NULL, 
     Machine_ID  CHAR(2)  NOT NULL REFERENCES Machines, 
     Utilization REAL     NOT NULL, 
     Avg_Backlog REAL     NOT NULL, 
     Max_Backlog INTEGER  NOT NULL,  
     PRIMARY KEY (Run_Number, Machine_ID)) 

The main routine begins by prompting the user for the data source name, user name, 
and password, and then connects to the specified database.  The user then enters a 
run number.  If results for this run can be found in the Results table, they are 
retrieved and displayed to the user and no simulation is performed; otherwise, the 
program prepares to run a new simulation. 

First, the SETUP.MACHINES routine reads the machine types from the Machines 
table.  Second, the SETUP.JOB.TYPES routine reads the job types from the 
Job_Types table and stores them as a set of job types where each job type owns a 
set of its tasks.  In addition, this routine prompts the user to enter the probability of 
each job type.  Third, the program prompts the user to enter the mean job 
interarrival time and duration of the simulation, and then begins the simulation. 

When the simulation has finished, the SAVE.RESULTS routine inserts the results 
atomically into the Results table, so that either all or none of the results are saved.  
The SHOW.RESULTS routine retrieves the results from the database and displays 
them to the user.  Lastly, the program disconnects from the database before 
terminating. 

   41 



SIMSCRIPT II.5 Database Connectivity User’s Manual 

preamble 
 
''SDBC Example Program 
''Job Shop Simulation 
''Derived from Example 6 in the book, 
''  "Building Simulation Models with SIMSCRIPT II.5" 
''  by Edward C. Russell (CACI, 1983) 
 
processes include GENERATOR and JOB 
 
resources 
 
every MACHINE 
   has a MACHINE.ID, 
       a MACHINE.NAME, 
   and a NUMBER.OF.UNITS 
define MACHINE.ID, MACHINE.NAME as text variables 
define NUMBER.OF.UNITS as an integer variable 
 
temporary entities 
 
every TASK 
   has a MACHINE.INDEX 
   and a MEAN.SERVICE.TIME 
   and belongs to a TASK.SEQUENCE 
define MACHINE.INDEX as an integer variable 
define MEAN.SERVICE.TIME as a real variable 
 
every JOB.TYPE 
   has a JOB.TYPE.NUMBER, 
   owns a TASK.SEQUENCE, 
   and belongs to the JOB.TYPE.LIST 
define JOB.TYPE.NUMBER as an integer variable 
 
the system 
   has a RUN.NUMBER, 
       a MEAN.INTERARRIVAL.TIME, 
       a STOP.TIME, 
   and a JOB.MIX random step variable 
   and owns the JOB.TYPE.LIST 
define RUN.NUMBER as an integer variable 
define MEAN.INTERARRIVAL.TIME, STOP.TIME as real variables 
define JOB.MIX as an integer, stream 9 variable 
 
define TASK.SEQUENCE, JOB.TYPE.LIST as FIFO sets 
 
accumulate UTILIZATION as the average of N.X.MACHINE 
accumulate AVG.BACKLOG as the average 
       and MAX.BACKLOG as the maximum of N.Q.MACHINE 
 
define HOURS to mean units 
 

 42 



 7.  Example Program: Job Shop Simulation 

''SDBC Functions and Routines 
define DB.AUTOCOMMIT.R as a          routine  given 1 argument 
define DB.COMMIT.R     as a          routine  given 0 arguments 
define DB.CONNECT.R    as a          routine  given 3 arguments 
define DB.DISCONNECT.R as a          routine  given 0 arguments 
define DB.EXISTS.F     as an integer function given 1 argument 
define DB.FETCH.F      as an integer function given 0 arguments 
define DB.GETINT.F     as an integer function given 1 argument 
define DB.GETREAL.F    as a  double  function given 1 argument 
define DB.GETTEXT.F    as a  text    function given 1 argument 
define DB.NULL.F       as an integer function given 1 argument 
define DB.QUERY.R      as a          routine  given 1 argument 
define DB.ROLLBACK.R   as a          routine  given 0 arguments 
define DB.SETINT.R     as a          routine  given 2 arguments 
define DB.SETREAL.R    as a          routine  given 2 arguments 
define DB.SETTEXT.R    as a          routine  given 2 arguments 
define DB.UPDATE.F     as an integer function given 1 argument 
 
end 

   43 



SIMSCRIPT II.5 Database Connectivity User’s Manual 

main 
 
define DSNAME, USERNAME, PASSWORD as text variables 
 
write as "Enter data source name:", / 
read DSNAME 
write as "Enter user name:", / 
read USERNAME 
write as "Enter password:", / 
read PASSWORD 
call DB.CONNECT.R(DSNAME, USERNAME, PASSWORD) 
 
write as /, "Enter Run #:", / 
read RUN.NUMBER 
 
call DB.SETINT.R(1, RUN.NUMBER) 
call DB.QUERY.R( 
"SELECT COUNT(*) FROM Results WHERE Run_Number = ?") 
if DB.FETCH.F = 1 and DB.GETINT.F(1) > 0 ''this is an old run 
   go to 'FINISH' ''display results of old run 
otherwise 
 
''simulate new run 
call SETUP.MACHINES 
call SETUP.JOB.TYPES 
 
write as /, "Enter mean job interarrival time in hours:", / 
read MEAN.INTERARRIVAL.TIME 
write as "Enter duration of simulation in hours:", / 
read STOP.TIME 
 
activate a GENERATOR now 
start simulation 
 
'FINISH' 
call SHOW.RESULTS 
call DB.DISCONNECT.R 
 
write as /, "Press return to exit", / 
read as / 
 
end 

 44 



 7.  Example Program: Job Shop Simulation 

routine SETUP.MACHINES 
 
''retrieve machine information from the database and 
''use it to initialize the MACHINE resource 
 
''first determine the number of machine groups 
call DB.QUERY.R("SELECT COUNT(*) FROM Machines") 
if DB.FETCH.F = 1 ''should always be true 
   create every MACHINE(DB.GETINT.F(1)) 
always 
 
''then obtain the information for each machine group 
write as /, "Machines:", / 
call DB.QUERY.R("SELECT * FROM Machines ORDER BY Machine_Name") 
for each MACHINE while DB.FETCH.F = 1 
do 
   MACHINE.ID(MACHINE) = DB.GETTEXT.F(1) 
   MACHINE.NAME(MACHINE) = DB.GETTEXT.F(2) 
   NUMBER.OF.UNITS(MACHINE) = DB.GETINT.F(3) 
   U.MACHINE(MACHINE) = NUMBER.OF.UNITS(MACHINE) 
   write NUMBER.OF.UNITS(MACHINE), MACHINE.NAME(MACHINE) 
   as I 3, " ", T *, / 
loop 
 
end 

   45 



SIMSCRIPT II.5 Database Connectivity User’s Manual 

routine SETUP.JOB.TYPES 
 
define JOB.TYPE, TASK as pointer variables 
define PROBABILITY as a real variable 
 
''retrieve job types and their tasks in sequence 
call DB.QUERY.R("SELECT * FROM Job_Types ORDER BY 1, 2") 
while DB.FETCH.F = 1 ''for each row in Job_Types 
do 
   if JOB.TYPE.LIST is empty or 
   DB.GETINT.F(1) > JOB.TYPE.NUMBER(JOB.TYPE) 
      ''encountered a new job type 
      create a JOB.TYPE 
      JOB.TYPE.NUMBER(JOB.TYPE) = DB.GETINT.F(1) 
      file JOB.TYPE in JOB.TYPE.LIST 
      write JOB.TYPE.NUMBER(JOB.TYPE) 
      as /, "Job Type ", I 3, ":", / 
   always 
   ''save task information 
   create a TASK 
   for each MACHINE with MACHINE.ID(MACHINE) = DB.GETTEXT.F(3) 
      find the first case 
   MACHINE.INDEX(TASK) = MACHINE 
   MEAN.SERVICE.TIME(TASK) = DB.GETREAL.F(4) 
   file TASK in TASK.SEQUENCE(JOB.TYPE) 
   write MEAN.SERVICE.TIME(TASK), MACHINE.NAME(MACHINE) 
   as D(7,4), " hours on ", T *, / 
loop 
 
''prompt the user to enter job type probabilities and 
''use them to initialize the JOB.MIX random step variable 
write as / 
for each JOB.TYPE in JOB.TYPE.LIST 
do 
   write JOB.TYPE.NUMBER(JOB.TYPE) 
   as "Enter probability of Job Type ", I 3, ":", / 
   read PROBABILITY 
   write PROBABILITY, JOB.TYPE.NUMBER(JOB.TYPE) 
   as D(5,3), " ", I 3, " " using the buffer 
loop 
write as "*" using the buffer ''marks the end of the input 
read JOB.MIX using the buffer ''initialize random step variable 
 
end 

 46 



 7.  Example Program: Job Shop Simulation 

process GENERATOR 
 
while TIME.V < STOP.TIME 
do 
   activate a JOB now 
   wait EXPONENTIAL.F(MEAN.INTERARRIVAL.TIME, 10) HOURS 
loop 
 
call SAVE.RESULTS 
 
end 
 
 
 
process JOB 
 
define TYPE.NUMBER as an integer variable 
define JOB.TYPE, TASK as pointer variables 
 
TYPE.NUMBER = JOB.MIX ''randomly generate the job type 
for each JOB.TYPE in JOB.TYPE.LIST 
with JOB.TYPE.NUMBER(JOB.TYPE) = TYPE.NUMBER 
   find the first case 
 
''perform the tasks for this job type in sequence 
for each TASK in TASK.SEQUENCE(JOB.TYPE) 
do 
   request 1 unit of MACHINE(MACHINE.INDEX(TASK)) 
   work EXPONENTIAL.F(MEAN.SERVICE.TIME(TASK), 
   MIN.F(MACHINE.INDEX(TASK), 10)) HOURS 
   relinquish 1 unit of MACHINE(MACHINE.INDEX(TASK)) 
loop 
 
end 

   47 



SIMSCRIPT II.5 Database Connectivity User’s Manual 

routine SAVE.RESULTS 
 
call DB.AUTOCOMMIT.R(0) ''turn Auto-Commit OFF 
 
''atomically insert the result rows, one for each machine group 
for each MACHINE 
do 
   call DB.SETINT.R(1, RUN.NUMBER) 
   call DB.SETTEXT.R(2, MACHINE.ID(MACHINE)) 
   call DB.SETREAL.R(3, 
   UTILIZATION(MACHINE) / NUMBER.OF.UNITS(MACHINE)) 
   call DB.SETREAL.R(4, AVG.BACKLOG(MACHINE)) 
   ''although the mode of MAX.BACKLOG is double, it will be 
   ''converted to integer when stored in column Max_Backlog 
   call DB.SETREAL.R(5, MAX.BACKLOG(MACHINE)) 
   if DB.UPDATE.F("INSERT INTO Results VALUES (?,?,?,?,?)")<>1 
      call DB.ROLLBACK.R ''error - undo all insertions 
      go to 'EXIT' 
   otherwise 
loop 
 
call DB.COMMIT.R ''success - make all insertions permanent 
 
'EXIT' 
call DB.AUTOCOMMIT.R(1) ''turn Auto-Commit ON 
 
end 

 48 



 7.  Example Program: Job Shop Simulation 

routine SHOW.RESULTS 
 
define JOIN as a text variable 
 
''construct SQL statement to join Machines and Results tables 
JOIN = CONCAT.F( 
"SELECT Machine_Name, Number_of_Units, Utilization,", 
"       Avg_Backlog, Max_Backlog", 
" FROM  Machines, Results", 
" WHERE Machines.Machine_ID = Results.Machine_ID", 
"   AND Run_Number = ?", 
" ORDER BY Machine_Name") 
 
''execute the query 
call DB.SETINT.R(1, RUN.NUMBER) 
call DB.QUERY.R(JOIN) 
 
''fetch and display the results of the run 
print 4 lines with RUN.NUMBER thus 
 
Results of Run #  *: 
                                           Average    Maximum 
Machine                 #Units    Util.    Backlog    Backlog 
 
while DB.FETCH.F = 1 
   print 1 line with DB.GETTEXT.F(1), DB.GETINT.F(2), 
   DB.GETREAL.F(3), DB.GETREAL.F(4), DB.GETINT.F(5) thus 
********************       *      *.**      *.**         * 
 
end 

   49 



SIMSCRIPT II.5 Database Connectivity User’s Manual 

Assume that the Machines, Job_Types, and Results tables have already been 
created and that the Machines and Job_Types tables have been populated with the 
contents shown at the beginning of this section.  The following is a transcript from 
one execution of this program.  User entries are italicized. 
 
Enter data source name: 
JOBSHOPSIMDB 
Enter user name: 
STEVE 
Enter password: 
SECRET 
 
Enter Run #: 
1 
 
Machines: 
 14 Casting Units 
  8 Drill Presses 
  5 Lathes 
  4 Planes 
  4 Polishing Machines 
 16 Shapers 
 
Job Type 117: 
 2.0833 hours on Casting Units 
  .5833 hours on Planes 
  .3333 hours on Lathes 
 1.0000 hours on Polishing Machines 
 
Job Type 123: 
 1.7500 hours on Shapers 
 1.5000 hours on Drill Presses 
 1.0833 hours on Lathes 
 
Job Type 125: 
 3.9166 hours on Casting Units 
 4.1666 hours on Shapers 
  .8333 hours on Drill Presses 
  .5000 hours on Planes 
  .4166 hours on Polishing Machines 
 
Enter probability of Job Type 117: 
.241 
Enter probability of Job Type 123: 
.44 
Enter probability of Job Type 125: 
.319 
 
Enter mean job interarrival time in hours: 
.16 
Enter duration of simulation in hours: 

 50 



 7.  Example Program: Job Shop Simulation 

40 
 
Results of Run #  1: 
                                           Average    Maximum 
Machine                 #Units    Util.    Backlog    Backlog 
Casting Units             14       .57       .01         2 
Drill Presses              8       .62       .25         7 
Lathes                     5       .65       .63        10 
Planes                     4       .37       .02         2 
Polishing Machines         4       .48       .17         3 
Shapers                   16       .66       .12         6 
 
Press return to exit 

   51 





.   

APPENDIX A SDBC Functions and Routines 
 
 
 
Routine DB.AUTOCOMMIT.R(SETTING) 
 
SETTING: 0 or 1, mode is INTEGER 
 
Turns Auto-Commit OFF if SETTING is 0; otherwise, turns Auto-Commit ON. 
 
 
 
Routine DB.COMMIT.R 
 
Terminates and commits the current transaction. 
 
 
 
Routine DB.CONNECT.R(DSNAME, USERNAME, PASSWORD) 
 
DSNAME: data source name, mode is TEXT 
USERNAME: database user name, mode is TEXT 
PASSWORD: database password, mode is TEXT 
 
Connects to the database identified by the named ODBC data source using the given user 
name and password. 
 
 
 
Routine DB.DISCONNECT.R 
 
Disconnects from the database. 
 
 
 
Function DB.EXISTS.F(TABLE) 
 
TABLE:  database table name, mode is TEXT 
return value: 0 or 1, mode is INTEGER 
 
Returns 1 if the named table exists, or returns 0 if the table does not exist. 
 

 53 



SIMSCRIPT II.5 Database Connectivity User’s Manual 

Function DB.FETCH.F 
 
return value: 0 or 1, mode is INTEGER 
 
Retrieves the next row of the query result and returns 1, or returns 0 if there are no more 
rows. 
 
 
 
Function DB.GETINT.F(COLUMN) 
 
COLUMN: column number, mode is INTEGER 
return value: column value, mode is INTEGER 
 
Returns the INTEGER value of the specified column in the current row. 
 
 
 
Function DB.GETREAL.F(COLUMN) 
 
COLUMN: column number, mode is INTEGER 
return value: column value, mode is DOUBLE 
 
Returns the DOUBLE value of the specified column in the current row. 
 
 
 
Function DB.GETTEXT.F(COLUMN) 
 
COLUMN: column number, mode is INTEGER 
return value: column value, mode is TEXT 
 
Returns the TEXT value of the specified column in the current row. 
 
 
 
Function DB.NULL.F(COLUMN) 
 
COLUMN: column number, mode is INTEGER 
return value: 0 or 1, mode is INTEGER 
 
Returns 0 if the value of the specified column in the current row is null, or returns 1 if the 
value is non-null. 
 

 54 



 Appendix A.  SDBC Functions and Routines 

Routine DB.QUERY.R(COMMAND) 
 
COMMAND: SQL query statement, mode is TEXT 
 
Executes the given SQL query statement. 
 
 
 
Routine DB.ROLLBACK.R 
 
Terminates and rolls back the current transaction. 
 
 
 
Routine DB.SETINT.R(PARM, VALUE) 
 
PARM:  parameter number, mode is INTEGER 
VALUE:  parameter value, mode is INTEGER 
 
Sets the specified parameter to the given INTEGER value. 
 
 
 
Routine DB.SETREAL.R(PARM, VALUE) 
 
PARM:  parameter number, mode is INTEGER 
VALUE:  parameter value, mode is DOUBLE 
 
Sets the specified parameter to the given DOUBLE value. 
 
 
 
Routine DB.SETTEXT.R(PARM, VALUE) 
 
PARM:  parameter number, mode is INTEGER 
VALUE:  parameter value, mode is TEXT 
 
Sets the specified parameter to the given TEXT value. 
 

   55 



SIMSCRIPT II.5 Database Connectivity User’s Manual 

Function DB.UPDATE.F(COMMAND) 
 
COMMAND: SQL update statement, mode is TEXT 
return value: number of affected rows, mode is INTEGER 
 
Executes the given SQL update statement, and returns the number of affected rows if 
applicable. 
 
 

 56 



.   

APPENDIX B SQL Syntax 
 

SDBC supports, at a minimum, the following SQL syntax based on the Entry Level 
of the ANSI SQL-92 standard.  Additional SQL features provided by the DBMS 
can also be used; see the DBMS documentation for information. 

Notation: SQL key words and special characters are in BOLD 
  Syntactic placeholders are in ITALICS 
  Mandatory elements are in { braces } 
  Optional elements are in [ brackets ] 
  Alternatives are separated by | 
  Lists of one or more elements, separated by commas, are denoted by 
* 

 

Argument to DB.UPDATE.F: 

 CREATE_TABLE  |  DROP_TABLE  |  INSERT  |  UPDATE  |  DELETE 

Argument to DB.QUERY.R: 

TABLE_EXPR 
[  ORDER BY  {  {  COLUMN  |  NUMBER  }  [  ASC  |  DESC  ]  }*  ] 

 

CREATE_TABLE: CREATE TABLE  TABLE  ( TDEF* ) 

TDEF:   COLDEF  | 
   {  PRIMARY KEY  |  UNIQUE  }  ( COLUMN* )  | 
   FOREIGN KEY  ( COLUMN* ) 
   REFERENCES  TABLE  [  ( COLUMN* )  ] 

COLDEF:  COLUMN  DATATYPE  [  NOT NULL  ] 
   [  PRIMARY KEY  |  UNIQUE  ] 
   [  REFERENCES  TABLE  [  ( COLUMN )  ]  ] 

DATATYPE:  SMALLINT  |  INTEGER  | 
   REAL  |  DOUBLE  [  PRECISION  ]  | 
   CHAR( NUMBER )  |  VARCHAR( NUMBER ) 

 57 



SIMSCRIPT II.5 Database Connectivity User’s Manual 

DROP_TABLE:  DROP TABLE  TABLE  [  RESTRICT  |  CASCADE  ] 

INSERT:  INSERT INTO  TABLE  [  ( COLUMN* )  ] 
   {  VALUES  ( { EXPR | NULL }* )  |  TABLE_EXPR  } 

UPDATE:  UPDATE  TABLE 
   SET  {  COLUMN  =  { EXPR | NULL }  }* 
   [  WHERE  CONDITION  ] 

DELETE:  DELETE FROM  TABLE 
   [  WHERE  CONDITION  ] 

TABLE_EXPR:  [  TABLE_EXPR  UNION  [  ALL  ]  ] 
   {  SELECT  |  ( TABLE_EXPR )  } 

SELECT:  SELECT  [ ALL | DISTINCT ]  { * | { EXPR [ AS COLUMN ] }* 
} 
   FROM  {  TABLE  [  RANGE_VAR  ]  }* 
   [  WHERE  CONDITION  ] 
   [  GROUP BY  COLREF*  ] 
   [  HAVING  CONDITION  ] 

CONDITION:  CTERM  |  CONDITION  OR  CTERM 

CTERM:  CFACTOR  |  CTERM  AND  CFACTOR 

CFACTOR:  [  NOT  ]  {  COMPARE  |  IN  |  BETWEEN  |  EXISTS  | 
   NULL  |  LIKE  |  ( CONDITION )  } 

COMPARE:  EXPR  {  <  |  <=  |  =  |  <>  |  >  |  >=  } 
   {  EXPR  |  {  ALL  |  ANY  |  SOME  }  ( TABLE_EXPR )  } 

IN:   EXPR  [  NOT  ]  IN  ( TABLE_EXPR | EXPR* ) 

BETWEEN:  EXPR  [  NOT  ]  BETWEEN  EXPR  AND  EXPR 

EXISTS:  EXISTS  ( TABLE_EXPR ) 

NULL:   COLREF  IS  [  NOT  ]  NULL 

LIKE:   COLREF  [  NOT  ]  LIKE  PATTERN  [  ESCAPE  STRING  ] 

PATTERN: a character string pattern enclosed in single quotes in which 
each underscore matches any single character and each 

 58 



 Appendix B.  SQL Syntax 

percent sign (%) 
matches any sequence of zero or more characters 

EXPR:   TERM  |  EXPR  {  +  |  -  }  TERM 

TERM:   FACTOR  |  TERM  {  *  |  /  }  FACTOR 

FACTOR:  [  +  |  -  ]  {  FUNCTION  |  COLREF  |  NUMBER  |  
STRING  | 
   ( TABLE_EXPR )  |  ( EXPR )  } 

FUNCTION:  COUNT( * | DISTINCT COLREF )  | 
   { AVG | MAX | MIN | SUM } ( [ ALL ] EXPR | DISTINCT COLREF 
) 

COLREF:  [  {  TABLE  |  RANGE_VAR  }  .  ]  COLUMN 

TABLE:  NAME 

RANGE_VAR:  NAME 

COLUMN:  NAME 

NAME: a case-insensitive identifier composed of a letter followed by 
zero or more letters, digits, and underscores; examples: 

    address P  S52a 
    Last_Name EMP_ID COL2 

NUMBER: an integer or real constant with optional sign, and with 
optional scientific notation; examples: 

    5  0.7  -1058 
    +70.1389 2E12  -.43E-6 

STRING:  a character string enclosed in single quotes; examples: 
    'Hey!' 'a'  'NEW MEXICO' 
    'don''t' ''  '16 lbs.' 

 

   59 





.   

APPENDIX C SQLSTATE Codes 
 

The first value appearing in brackets within an SDBC run-time error message is a 
five-character SQLSTATE code.  Most of these codes are defined by X/Open Data 
Management: Structured Query Language (SQL), Version 2 (March 1995); 
however, additional codes may be defined by the ODBC driver.  The following is a 
partial list of SQLSTATE codes and their meanings. 
 
 01000 General warning 
 01001 Cursor operation conflict 
 01002 Disconnect error 
 01003 NULL value eliminated in set function 
 01004 String data, right truncated 
 01006 Privilege not revoked 
 01007 Privilege not granted 
 01S00 Invalid connection string attribute 
 01S01 Error in row 
 01S02 Option value changed 
 01S06 Attempt to fetch before the result set returned the first rowset 
 01S07 Fractional truncation 
 01S08 Error saving File DSN 
 01S09 Invalid keyword 
 
 07002 COUNT field incorrect 
 07005 Prepared statement not a cursor-specification 
 07006 Restricted data type attribute violation 
 07009 Invalid descriptor index 
 07S01 Invalid use of default parameter 
 
 08001 Client unable to establish connection 
 08002 Connection name in use 
 08003 Connection does not exist 
 08004 Server rejected the connection 
 08007 Connection failure during transaction 
 08S01 Communication link failure 
 
 21S01 Insert value list does not match column list 
 21S02 Degree of derived table does not match column list 
 
 22001 String data, right truncated 
 22002 Indicator variable required but not supplied 
 22003 Numeric value out of range 

 61 



SIMSCRIPT II.5 Database Connectivity User’s Manual 

 22007 Invalid datetime format 
 22008 Datetime field overflow 
 22012 Division by zero 
 22015 Interval field overflow 
 22018 Invalid character value for cast specification 
 22019 Invalid escape character 
 22025 Invalid escape sequence 
 22026 String data, length mismatch 
 
 23000 Integrity constraint violation 
 
 24000 Invalid cursor state 
 
 25000 Invalid transaction state 
 25S01 Transaction state 
 25S02 Transaction is still active 
 25S03 Transaction is rolled back 
 
 28000 Invalid authorization specification 
 
 34000 Invalid cursor name 
 
 3C000 Duplicate cursor name 
 
 3D000 Invalid catalog name 
 
 3F000 Invalid schema name 
 
 40001 Serialization failure 
 40003 Statement completion unknown 
 
 42000 Syntax error or access violation 
 42S01 Base table or view already exists 
 42S02 Base table or view not found 
 42S11 Index already exists 
 42S12 Index not found 
 42S21 Column already exists 
 42S22 Column not found 
 
 44000 WITH CHECK OPTION violation 
 
 HY000 General error 
 HY001 Memory allocation error 
 HY003 Invalid application buffer type 
 HY004 Invalid SQL data type 
 HY007 Associated statement is not prepared 

 62 



 Appendix C.  SQLSTATE Codes 

 HY008 Operation canceled 
 HY009 Invalid use of null pointer 
 HY010 Function sequence error 
 HY011 Attribute cannot be set now 
 HY012 Invalid transaction operation code 
 HY013 Memory management error 
 HY014 Limit on the number of handles exceeded 
 HY015 No cursor name available 
 HY016 Cannot modify an implementation row descriptor 
 HY017 Invalid use of an automatically allocated descriptor handle 
 HY018 Server declined cancel request 
 HY019 Non-character and non-binary data sent in pieces 
 HY020 Attempt to concatenate a null value 
 HY021 Inconsistent descriptor information 
 HY024 Invalid attribute value 
 HY090 Invalid string or buffer length 
 HY091 Invalid descriptor field identifier 
 HY092 Invalid attribute/option identifier 
 HY093 Invalid parameter number 
 HY095 Function type out of range 
 HY096 Invalid information type 
 HY097 Column type out of range 
 HY098 Scope type out of range 
 HY099 Nullable type out of range 
 HY100 Uniqueness option type out of range 
 HY101 Accuracy option type out of range 
 HY103 Invalid retrieval code 
 HY104 Invalid precision or scale value 
 HY105 Invalid parameter type 
 HY106 Fetch type out of range 
 HY107 Row value out of range 
 HY109 Invalid cursor position 
 HY110 Invalid driver completion 
 HY111 Invalid bookmark value 
 HYC00 Optional feature not implemented 
 HYT00 Timeout expired 
 HYT01 Connection timeout expired 
 
 IM001 Driver does not support this function 
 IM002 Data source name not found and no default driver specified 
 IM003 Specified driver could not be loaded 
 IM004 Driver's SQLAllocHandle on SQL_HANDLE_ENV failed 
 IM005 Driver's SQLAllocHandle on SQL_HANDLE_DBC failed 
 IM006 Driver's SQLSetConnectAttr failed 
 IM007 No data source or driver specified; dialog prohibited 
 IM008 Dialog failed 

   63 



SIMSCRIPT II.5 Database Connectivity User’s Manual 

 IM009 Unable to load translation DLL 
 IM010 Data source name too long 
 IM011 Driver name too long 
 IM012 DRIVER keyword syntax error 
 IM013 Trace file error 
 IM014 Invalid name of File DSN 
 IM015 Corrupt file data source 

 64 



.   

INDEX 
 

A 
Auto-Commit ....................................21, 22, 44, 49 

D 
database 

commit .................................................... 21, 22 
concurrency .................................................. 21 
connection................................................... 2, 3 
creation ........................................................... 1 
disconnection .................................................. 3 
rollback ................................................... 21, 22 
security ........................................................... 2 
transactions ............................................. 21, 22 

DB.AUTOCOMMIT.R.....................21, 22, 44, 49 
DB.COMMIT.R................................21, 22, 44, 49 
DB.CONNECT.R............................2, 3, 25, 40, 49 
DB.DISCONNECT.R .........................3, 25, 40, 49 
DB.EXISTS.F ...........................................7, 25, 49 
DB.FETCH.F..11-13, 15-17, 27, 28, 30, 40-42, 45, 

50 
DB.GETINT.F. .... 11-13, 15-17, 27, 28, 30, 40-42, 

45, 50 
DB.GETREAL.F.. 11-13, 15-17, 28, 30, 42, 45, 50 
DB.GETTEXT.F..............11-13, 15, 41, 42, 45, 50 
DB.NULL.F ................................12, 17, 28, 30, 50 
DB.QUERY.R.......5, 11, 12, 15-17, 19, 20, 27, 28, 

30, 40-42, 45, 51, 53 
DB.ROLLBACK.R...........................21, 22, 44, 51 
DB.SETINT.R.... 19, 20, 22, 27, 28, 30, 40, 44, 45, 

51 
DB.SETREAL.R...................19, 20, 27, 28, 44, 51 
DB.SETTEXT.R ...............................19, 20, 44, 51 
DB.UPDATE.F . 5-9, 20-22, 25, 27, 28, 30, 44, 52, 

53 

O 
ODBC....................................................1-4, 49, 57 

P 
Preamble declarations........................................... 2 

R 
run-time error ....................... 3, 4, 7, 12, 13, 20, 57 

S 
SDBC.log ............................................................. 3 
SQL 

aggregate functions ................................. 15, 55 
column number ................................. 12, 14, 50 
CREATE TABLE ... 5, 6, 11, 16, 23, 25, 35-37, 

53 
data types .................................................. 5, 53 
DDL statements............................................... 6 
DELETE ....................................... 9, 22, 30, 54 
DML statements .................................... 8, 9, 16 
DROP TABLE .......................................... 6, 53 
expressions ........................................ 13, 14, 54 
INSERT............................... 7, 8, 20, 27, 44, 54 
names ...................................................... 13, 55 
null ............... 6-8, 12, 15, 17, 20, 23, 28, 30, 50 
parameters ......................................... 19, 20, 51 
SELECT... 11, 14-17, 19, 27, 28, 30, 40-42, 45, 

54 
text literals........................................... 7, 13, 55 
UPDATE......................................... 8, 9, 28, 54 

SQLSTATE.................................................... 4, 57 

 

 65 


	Chapter 1Introduction to SDBC
	1.1 Setting Up a Database
	1.2 Declaring the SDBC Functions and Routines
	1.3 Connecting to a Database
	1.4 Interpreting Run-time Errors

	Chapter 2SQL Updates
	2.1 Creating Tables
	2.2 Inserting Rows
	2.3 Modifying Rows
	2.4 Deleting Rows

	Chapter 3SQL Queries
	3.1 Querying the Database
	3.2 Specifying SQL Expressions
	3.3 Selecting Rows
	3.4 Joining Tables

	Chapter 4SQL Parameters
	Chapter 5Database Transactions
	Chapter 6Example Program: Bank Simulation
	Chapter 7Example Program: Job Shop Simulation
	APPENDIX ASDBC Functions and Routines
	APPENDIX BSQL Syntax
	APPENDIX CSQLSTATE Codes
	INDEX

