Database Connectivity
User's Manual

CACI

Copyright © 2002 CACI Products Co.

All rights reserved. No part of this publication may be reproduced by any means without written permission
from CACIL.

For product information or technical support contact:

CACI Products Company

1011 Camino Del Rio South, Suite 230
San Diego, CA 92108

Phone: (619) 542-5228

Fax: (619) 692-1013

The information in this publication is believed to be accurate in all respects. However, CACI cannot assume
the responsibility for any consequences resulting from the use thereof. The information contained herein is
subject to change. Revisions to this publication or new editions of it may be issued to incorporate such change.

SIMSCRIPT IL.5 is a registered trademark of CACI Products Company.
Windows is a registered trademark of Microsoft Corporation.

DB?2 is a registered trademark of IBM Corporation.
Oracle is a registered trademark of Oracle Corporation.

Table of Contents

Chapter 1 Introduction to SDBC...........oociiiricrrrccr e s 1
1.1 SETTING UP A DATABASE ...ttt et e e e e e e e e et eee e e e e e e e et e e e e e e e e rntaaeens 1
1.2 DECLARING THE SDBC FUNCTIONS AND ROUTINESuuuieiieeiieeiieee et e e 2
1.3 CONNECTING TO ADATABASEtuieeeeeeeeeee et e e e e e et e e e e e e e et e e e e e e e eeaanaeens 2
1.4 INTERPRETING RUN-TIME ERRORScciititiiiieieeee ettt e e e e et e e e e e anaa s 3
Chapter 2 SQL Updates.........cccceermmmrmrrrinisssssnmnrrreessssssssssssssssssssssssssssssnns 5
B O = N T T 1YY= = S 5
2.2 INSERTING ROWS ...ttt e e e e e et e e e e e e e et e e e e e e e eeananaeeas 7
2.3 MODIFYING ROWS ...ttt et e e e e e e et e e e e e e e e ens 9
2.4 DELETING ROWS ...ttt ettt e et e e e e e ee e e e e e e e et aaeeaees 10
Chapter 3 SQL QUETIEScccccmmmrrrrrrriissesssssserre e s s s s s s ssssmnses e e s s sssssssnnnns 13
3.1 QUERYING THE DATABASEcettieeeieiieieeeeeaeeeeseeiteeeeeeaeessaaneseaeeeaaeeesasnnsaeeeaeaessaannnnenes 13
3.2 SPECIFYING SQL EXPRESSIONSuuuviiiiiieeeeeieeiieeeeeeaesssneneeeeaaassssaanssseeeeeeaessannnnsenes 15
3.3 SELECTING ROWSttt e ettt e e e e e e e e e e e e e e st e e e e e e eeeeannanns 17
3.4 JOINING TABLES cieeetetee e e e ettt e e e et e e e e e e e e ee e e e e e e e e eeaaa e e e e e eessaa e eeeeeeensannnnns 19
Chapter 4 SQL Parameters ..o esennnas 23
Chapter 5 Database Transactions..........cccccciiiiieeiiiirecc e e 25
Chapter 6 Example Program: Bank Simulationcccorrrinnneeee. 27
Chapter 7 Example Program: Job Shop Simulation........................... 39
APPENDIX A SDBC Functions and Routines......cc..ccooeveeciiirreencceennees 53
APPENDIX B SQL SyntaX........cccceeemrmmmmsissiisimrssnssnssssssssssssssssssssssssssssennns 57
APPENDIX C SQLSTATE COdeS....cccuuuuiiiiiiiiiieemmnncciss s e eresssmmsnssssseeeees 61

SIMSCRIPT II.5 Database Connectivity User's Manual

Chapter 1 Introduction to SDBC

SIMSCRIPT II.5® Database Connectivity (SDBC) is a library of functions and
routines that enables SIMSCRIPT I1.5 programs to access databases. SDBC makes
it possible for SIMSCRIPT II.5 programs to create tables in relational databases; to
insert, modify, and delete the rows of database tables; and to perform database
queries.

To use SDBC, it is necessary to have installed a database management system
(DBMS). There are many to choose from, including Microsoft Access, Microsoft
SQL Server, IBM DB2®, IBM Informix, and Oracle®. SDBC provides a common
interface to all of these.

SDBC is patterned after and utilizes Microsoft’s Open Database Connectivity
(ODBC). SDBC works with any DBMS having an ODBC 3.0 driver. SIMSCRIPT
I1.5 programs call SDBC functions and routines, which in turn call ODBC functions
that communicate with the DBMS through this driver.

This manual assumes that the reader has a working knowledge of the SIMSCRIPT
IL.5 programming language and is familiar with relational database concepts,
including Structured Query Language (SQL).

1.1 Setting Up a Database

The first step is to create a database. Each DBMS provides its own mechanism for
creating a database. For example, a database is created in Microsoft Access by
selecting New from the File menu. Consult the DBMS documentation to learn how
to create a database.

The second step is to define an ODBC data source, which associates an ODBC data
source name with the database and specifies the ODBC 3.0 driver to use. In
Microsoft Windows®, this is accomplished by running the ODBC Data Source
Administrator program which can be found in the Control Panel.

SIMSCRIPT II.5 Database Connectivity User's Manual

1.2 Declaring the SDBC Functions and Routines

The SDBC functions and routines must be declared in the Preamble of the
SIMSCRIPT II.5 program. A text file containing the required declarations is
provided as part of the SDBC installation. Copy the contents of this file into the
Preamble:

preamble

''SDBC Functions and Routines

define DB.AUTOCOMMIT.R as a routine given 1 argument
define DB.COMMIT.R as a routine given 0 arguments
define DB.CONNECT.R as a routine given 3 arguments
define DB.DISCONNECT.R as a routine given 0 arguments
define DB.EXISTS.F as an integer function given 1 argument
define DB.FETCH.F as an integer function given 0 arguments
define DB.GETINT.F as an integer function given 1 argument
define DB.GETREAL.F as a double function given 1 argument
define DB.GETTEXT.F as a text function given 1 argument
define DB.NULL.F as an integer function given 1 argument
define DB.QUERY.R as a routine given 1 argument
define DB.ROLLBACK.R as a routine given 0 arguments
define DB.SETINT.R as a routine given 2 arguments
define DB.SETREAL.R as a routine given 2 arguments
define DB.SETTEXT.R as a routine given 2 arguments
define DB.UPDATE.F as an integer function given 1 argument
end

1.3 Connecting to a Database

Before any operations can be performed on a database, the SIMSCRIPT II.5
program must first connect to the database. This is accomplished by calling
DB.CONNECT.R:

call DB.CONNECT.R(DSNAME, USERNAME, PASSWORD)

DSNAME is a text value specifying the ODBC data source name associated with the
database. If the database has been set up for secure access, then text values
USERNAME and PASSWORD must provide a valid user name and password for this
database. If no security has been established for this database, then any user name
and password may be given to this routine. (Consult the DBMS documentation for
information on how to secure a database.)

1. Introduction to SDBC

Example:

define USER, PWD as text variables

write as "Enter your database user name:", /
read USER

write as "Enter your database password:", /
read PWD

call DB.CONNECT.R("TESTDB1", USER, PWD)

When finished with the database, the program calls DB.DISCONNECT.R to
disconnect:

call DB.DISCONNECT.R

It is not possible to connect to more than one database at a time. However, after
disconnecting from one database, the program may connect to a second database (or
reconnect to the first database). If the program calls DB.CONNECT.R while already
connected to a database, an implicit disconnection occurs before the new
connection is attempted. A program that terminates while connected to a database
is implicitly disconnected.

1.4 Interpreting Run-time Errors

SIMSCRIPT II.5 run-time error #2400 is generated for every SDBC-related error.
For example, if an invalid ODBC data source name is passed to DB.CONNECT . R, the
following error message may be produced:

RUN-TIME ERROR #2400: [IM002][0] [Microsoft] [ODBC Driver
Manager] Data source name not found and no default driver
specified

The error message may have come from the DBMS and may be too long to fit in
the SIMSCRIPT II.5 SimDebug display. In this case, the message is truncated:

RUN-TIME ERROR #2400: [23000][-1605] [Microsoft] [ODBC Microsoft
Access Driver] The changes you requested to the table were
not successful...

Refer to the file named SDBC.log in the current working directory for the full
message:

SDBC Run-time Error, Thu Jan 10 14:03:18 2002

[23000] [-1605] [Microsoft] [ODBC Microsoft Access Driver] The
changes you requested to the table were not successful because
they would create duplicate values in the index, primary key,

SIMSCRIPT II.5 Database Connectivity User's Manual

or relationship. Change the data in the field or fields that
contain duplicate data, remove the index, or redefine the index
to permit duplicate entries and try again.

As illustrated by these examples, an SDBC run-time error message may contain
special information in brackets. The first value in brackets (e.g., 23000) is an
SOLSTATE code; see Appendix C for a list of these codes and their meanings. The
second value in brackets (e.g., -1605) is an error code specific to the DBMS; see
the DBMS documentation for details. The other bracketed information identifies
the vendor, ODBC component, and DBMS from which the error message came.

Chapter 2 SQL Updates

After connecting to a database via DB.CONNECT.R, the SIMSCRIPT IL.5 program
may pass SQL statements one at a time to the DBMS for processing. An SQL
statement that modifies the database is executed by DB.UPDATE.F, which is
discussed in this section. An SQL statement that queries the database, without
modifying it, is processed by DB.QUERY.R, which is covered in Section 3. The
following is an example of a DB. UPDATE. F call:

NUMROWS = DB.UPDATE.F (COMMAND)

COMMAND is a text value giving the SQL statement to be processed. This function
returns after the given statement has been executed by the DBMS on the connected
database. The integer return value indicates the number of rows affected by the
execution of this statement, if applicable.

2.1 Creating Tables

Passing an SQL CREATE TABLE statement to DB.UPDATE.F creates a database table
A CREATE TABLE statement names the table and its columns, and specifies the data
type for each column. The following SQL data types are supported by almost every
DBMS:

SMALLINT a signed 16-bit integer

INTEGER a signed 32-bit integer

REAL a single-precision floating-point number
DOUBLE a double-precision floating-point number
CHAR (n) a fixed-length character string of length n

VARCHAR () a variable-length character string having a maximum length of n

A DBMS may permit a variety of synonyms for these data types, such as SHORT for
SMALLINT; INT or LONG for INTEGER; SINGLE for REAL; DOUBLE PRECISION for
DOUBLE; CHARACTER for CHAR; and CHAR VARYING Or CHARACTER VARYING for
VARCHAR. A DBMS may also support a variety of other data types, such as
BOOLEAN, BYTE, COUNTER, DECIMAL, DATE, and TIME. Also, a DBMS may require
that long character strings be stored as a special data type called TEXT, LONGTEXT, or
LONG VARCHAR. Consult the DBMS documentation for details.

SIMSCRIPT II.5 Database Connectivity User's Manual

The following SQL statement creates a table named RESULT. Each row in this table
will record the result of one simulation run.

CREATE TABLE RESULT

(RUNID INTEGER NOT NULL PRIMARY KEY,
MAXQLEN INTEGER,

AVGQLEN REAL,

COMMENT VARCHAR (80))

This table has four columns: RUNID, MAXQLEN, AVGQLEN, and COMMENT. RUNID holds
an integer ID that uniquely identifies the simulation run; therefore, this column has
been designated as the primary key for the table. MAXQLEN contains an integer value
giving the maximum queue length observed during the run. AVGQLEN holds a
single-precision floating-point value giving the average queue length observed
during the run. cOMMENT provides space for a text comment, up to 80 characters in
length. Each column may be undefined and assigned a null value, except RUNID
which has been designated as NOT NULL and must always contain a non-null value.

To create this table, the CREATE TABLE statement is passed as a text value to
DB.UPDATE.F. Since the text value is rather long, we use CONCAT . F to construct it:

define CMD as a text variable
define ROWS as an integer variable

CMD = CONCAT.F(

"CREATE TABLE RESULT ",

"(RUNID INTEGER NOT NULL PRIMARY KEY,",
" MAXQLEN INTEGER,",

" AVGQLEN REAL,",

" COMMENT VARCHAR (80))")

ROWS = DB.UPDATE.F (CMD)

Upon return from DB.UPDATE.F, a table has been created with the specified name
and columns, containing no rows. The return value in Rows is undefined and should
be ignored.

To destroy this table, pass a DROP TABLE statement to DB . UPDATE. F:
ROWS = DB.UPDATE.F ("DROP TABLE RESULT")

Refer to Appendix B in this manual, and the DBMS documentation, for a
specification of the syntax of the CREATE TABLE and DROP TABLE statements.

CREATE TABLE and DROP TABLE are examples of SQL Data Definition Language
(DDL) statements. A DBMS may support many other types of DDL statements,
including ALTER TABLE, CREATE/DROP VIEW, CREATE/DROP INDEX,

2. SQL Updates

CREATE/ALTER/DROP DOMAIN, CREATE/DROP ASSERTION, and GRANT/REVOKE. See
the DBMS documentation for details. Any DDL statement may be passed to
DB.UPDATE.F for execution. For all DDL statements, the return value from
DB.UPDATE. F is undefined and should be ignored.

SDBC supplies a function named DB.EXISTS.F to determine whether a table exists.
This function takes a table name as its only argument and returns 1 if the table
exists or 0 if the table does not exist. To avoid a run-time error for attempting to
create a table that already exists, call this function to verify that the table does not
exist before creating it:

if DB.EXISTS.F("RESULT") = 0 ''the table does not exist
''create the table

always
Likewise, to avoid a run-time error for attempting to drop a table that does not exist,
call DB.EXISTs.F to verify that the table exists before dropping it:

if DB.EXISTS.F("RESULT") = 1 ''the table exists
''drop the table

alwé&é
Please note that SIMSCRIPT I1.5 programs can access tables that have been created

by other means, such as by an interactive SQL command processor supplied by the
DBMS; and DBMS tools can access tables created by SIMSCRIPT I1.5 programs.

2.2 Inserting Rows

To insert a row into a table, an SQL INSERT statement is passed to DB.UPDATE.F.
The following code inserts a row into the RESULT table, setting RUNID to 101,
MAXQLEN to 12, AVGQLEN to 2.75, and coMMENT to "First test run in December":

define CMD as a text variable
define ROWS as an integer variable

CMD = CONCAT.F (
"INSERT INTO RESULT",
" VALUES (101, 12, 2.75, 'First test run in December')")

ROWS = DB.UPDATE.F (CMD)

Upon return from DB.UPDATE. F, the specified row has been inserted into the table.
The return value in RoWS is 1, indicating that one row has been inserted. Note that

SIMSCRIPT II.5 Database Connectivity User's Manual

text literals in SQL are delimited by single quotes, not double quotes as in
SIMSCRIPT IL.S.

When one or more columns are undefined, a variant of the SQL INSERT statement
may be used that specifies only the defined columns of the new row. The following
code inserts a row into the RESULT table, setting RUNID to 200 and COMMENT to
"Demo". To MAXQLEN and AVGQLEN, which are omitted, null values are assigned
implicitly. (If the DBMS supports default values, the omitted columns receive their
default values, which may be non-null.)

2. SQL Updates

ROWS = DB.UPDATE.F (
"INSERT INTO RESULT (RUNID, COMMENT) VALUES (200, 'Demo')")

Or null values may be specified explicitly for the undefined columns:

ROWS = DB.UPDATE.F (
"INSERT INTO RESULT VALUES (200, NULL, NULL, 'Demo')")

Another variant of the INSERT statement specifies a query and inserts each row
returned by the query.

The INSERT statement is an SQL Data Manipulation Language (DML) statement.
Refer to Appendix B in this manual, and the DBMS documentation, for a
specification of its syntax.

2.3 Modifying Rows

To modify the value of one or more columns in one or more rows, an SQL UPDATE
statement is passed to DB.UPDATE.F. The following code changes the values of
MAXQLEN to 10 and AVGQLEN to 2.25 in the row that has RUNID equal to 101:

define CMD as a text variable
define ROWS as an integer variable

CMD = CONCAT.F (
"UPDATE RESULT",
" SET MAXQLEN
" WHERE RUNID

10, AVGQLEN = 2.25",
101")

ROWS = DB.UPDATE.F (CMD)

Upon return from DB.UPDATE.F, the requested modification has been performed.
The return value in Rows indicates the number of rows modified. Presumably
ROWS=1 in our example; however, it could be zero if there does not exist a row
having RUNID=101, or greater than one if more than one row has RUNID=101.

If no wHERE clause is specified in the UPDATE statement, then the modification is
applied to every row in the table. For example, the following code adds 1000 to
every RUNID:

ROWS = DB.UPDATE.F ("UPDATE RESULT SET RUNID = RUNID + 1000")

In this case, the return value in ROWS equals the number of rows in the table since
every row was modified.

SIMSCRIPT II.5 Database Connectivity User's Manual

The following example sets the coMMENT field to null for every RUNID greater than
1200:

ROWS = DB.UPDATE.F (
"UPDATE RESULT SET COMMENT = NULL WHERE RUNID > 1200")

The wHERE clause may specify any conditional expression allowed in SQL.
Expressions are discussed in Section 3.2.

The uPDATE statement is an SQL Data Manipulation Language (DML) statement.
Refer to Appendix B in this manual, and the DBMS documentation, for a
specification of its syntax.

2.4 Deleting Rows

To delete one or more rows, an SQL DELETE statement is passed to DB.UPDATE.F.
The following code deletes the row that has RUNID equal to 101:

define ROWS as an integer variable

ROWS = DB.UPDATE.F ("DELETE FROM RESULT WHERE RUNID = 101")

Upon return from DB.UPDATE.F, the requested deletion has been performed. The
return value in ROWs indicates the number of rows deleted. Presumably rRows=1 in
our example; however, it could be zero if there did not exist a row having
RUNID=101, or greater than one if more than one row had RUNID=101.

If no wHERE clause is specified in the DELETE statement, then every row in the table
is deleted:

ROWS = DB.UPDATE.F ("DELETE FROM RESULT")

In this case, the return value in ROWs equals the number of rows that were in the
table before they were all deleted.

The following example deletes all rows having a RUNID greater than or equal to
1000 and less than 2000:

ROWS = DB.UPDATE.F (
"DELETE FROM RESULT WHERE RUNID >= 1000 AND RUNID < 2000")

The wHERE clause may specify any conditional expression allowed in SQL.
Expressions are discussed in Section 3.2.

10

2. SQL Updates

The DELETE statement is an SQL Data Manipulation Language (DML) statement.
Refer to Appendix B in this manual, and the DBMS documentation, for a
specification of its syntax.

1"

Chapter 3 SQL Queries

After connecting to a database via DB.CONNECT.R, the SIMSCRIPT IL.5 program
may submit queries to the DBMS for processing. The SQL SELECT statement is
used to query the database. After executing a query, the rows returned by the query
are retrieved by the program.

3.1 Querying the Database
Any SELECT statement may be passed as a text value to DB.QUERY.R for execution:
call DB.QUERY.R("SELECT ...")

The rows returned by the query are then fetched one at a time by calling
DB.FETCH.F for each row. This function returns 1 if it has successfully fetched the
next row and returns 0 when there are no more rows.

After fetching a row, the values of the columns in the row are obtained by calling
DB.GETINT.F for each integer column, DB.GETREAL.F for each floating-point
column, and DB.GETTEXT. F for each character-string column.

The following query returns all rows in the table named RESULT:
SELECT * FROM RESULT

The asterisk is shorthand for listing all of the columns of the table, in the order in
which they were defined in the CREATE TABLE statement. So the above query is
equivalent to:

SELECT RUNID, MAXQLEN, AVGQLEN, COMMENT FROM RESULT

The following code is typical of SDBC query processing. First, the query is
executed, and then a while loop fetches the rows returned by the query. For each
row, the column values are obtained and then some code is executed that uses these
values. In this example, program variables are given the same names as columns,
but this is done only for clarity and is not a requirement. However, the modes of
these variables should match the SQL data types of the columns.

13

SIMSCRIPT II.5 Database Connectivity User's Manual

define RUNID, MAXQLEN as integer variables
define AVGQLEN as a real variable
define COMMENT as a text variable

' 'execute the query
call DB.QUERY.R("SELECT * FROM RESULT")

''fetch the rows

while DB.FETCH.F =1

do
''a row has been fetched;
''now obtain the value of each column
RUNID = DB.GETINT.F (1)

MAXQLEN = DB.GETINT.F (2)
AVGQLEN = DB.GETREAL.F (3)
COMMENT = DB.GETTEXT.F (4)

''do some processing using these values

loop

One row is processed in each iteration of the while loop. DB.FETCH.F returns 0
when there are no more rows, which terminates the loop.

A column number is the ordinal position of a column within a row. For this query,
RUNID is column number 1, MAXQLEN is column number 2, AVGQLEN is column
number 3, and COMMENT is column number 4. DB.GETINT.F, DB.GETREAL.F, and
DB.GETTEXT.F return the value of the column identified by the given column
number. Specifying a column number less than 1 or greater than the number of
columns produces a run-time error.

When the value of a column is null, DB.GETINT. F returns O, DB.GETREAL. F returns
0.0, and DB.GETTEXT.F returns the zero-length string (""). However, these values
can also be returned for non-null columns. Therefore, SDBC supplies a function
named DB.NULL.F to determine whether a column contains a null value. This
function accepts a column number as its only argument and returns 1 if the value of
the column is non-null and returns 0 if the value is null. For example:

if DB.NULL.F(3) 0 '"'column number 3 is null

always

if DB.NULL.F(2) 1l '"'column number 2 is non-null

always
Note that DB.GETINT.F, DB.GETREAL.F, DB.GETTEXT.F, and DB.NULL. F refer only
to the most recently fetched row. It is not possible to access any other row.

Likewise, DB.FETCH.F fetches only rows returned by the most recent query. It is
not possible to fetch rows returned by a prior query.

14

3. SQL Queries

It is not necessary to retrieve all column values if the program only needs some. It
is also not required to fetch all of the rows returned by the query; that is, the
program may terminate the while loop early, before all rows have been retrieved.

After pB.FETCH.F has returned 0, which indicates there are no more rows to be
fetched, calling DB. FETCH. F again, without first executing a new query, produces a
run-time error.

If pB.GETINT.F is called to retrieve a floating-point column value, it returns the
value rounded to the nearest integer. If DB.GETREAL.F retrieves an integer column
value, it returns the value as a real number. If DB.GETINT.F or DB.GETREAL.F
retrieves a character-string column value, it attempts to convert the value to a
number. If DB.GETTEXT.F retrieves an integer or floating-point column value, it
converts the value to text.

3.2 Specifying SQL Expressions

Like SIMSCRIPT II.5 names, SQL names are case-insensitive and may consist of
any combination of letters and digits; however, an SQL name must begin with a
letter. An SQL name may not contain periods unless it is a qualified name, such as
a column name qualified by a table name (e.g., RESULT.RUNID). An SQL name
may contain underscores (€.g., FIRST NAME). See the DBMS documentation for a
list of reserved SQL key words (e.g., SELECT, FROM, INSERT), which may not be
used to name a table or column.

Numeric constants in SQL and SIMSCRIPT I1.5 are specified in the same way,
except that SQL permits scientific notation in constants (e.g., 3.87E-4). Text
literals in SQL are delimited by 'single quotes', rather than "double quotes" as in
SIMSCRIPT IL.5: 'This is an SQL text literal', 'Embedded quotes
aren''t a problem', the zero-length string looks like this ' .

SQL and SIMSCRIPT IL.5 share the following operators:
+ - * / AND OR = <> < > <= >=

In SQL, NoT may be used for logical negation. SQL does not have an
exponentiation operator (**) and does not support any of the English abbreviations
(e.g., EQ, LT) or phrases (e.g., EQUALS, LESS THAN) allowed in SIMSCRIPT ILS5.
SQL permits the following expressions to test for nulls: X IS NULL, X IS NOT
NULL.

SIMSCRIPT 1II.5's concise 0 < X < 100 must be expressed in SQL as
0 < X AND X < 100. However, 0 <= X <= 100 may be expressed in SQL as
X BETWEEN 0 AND 100. Its negation, expressed as 0 <= X <= 100 IS FALSE in

15

SIMSCRIPT II.5 Database Connectivity User's Manual

SIMSCRIPT I1.5, is expressed in SQL as NOT (X BETWEEN 0 AND 100) or simply,
X NOT BETWEEN 0 AND 100.

16

3. SQL Queries

SQL's IN operator provides convenient shorthand for testing whether a column
value belongs to a list of values:

X IN (20, 21, 26, 31, 32)
CITY NOT IN ('Detroit', 'Chicago', 'Cincinnati')

In SQL, a SELECT statement known as a subquery may appear within an expression.
Given a subquery as an operand, the IN operator returns true if a given value is
returned by the subquery, and the ExIsTs operator returns true if the subquery
returns at least one row. A scalar subquery returns the value of a single column in
a single row.

Full treatment of SQL expressions is beyond the scope of this manual. Please refer
to a book on SQL and the DBMS documentation for more information.

3.3 Selecting Rows

The WHERE clause in a SELECT statement specifies an SQL conditional expression.
Only rows for which the expression evaluates to true are returned by the query. The
following query returns the RUNID, AVGQLEN, and COMMENT columns of each row in
RESULT that has a RUNID between 2000 and 2999 and an AVGQLEN greater than or
equal to 2.0:

SELECT RUNID, AVGQLEN, COMMENT

FROM RESULT

WHERE RUNID BETWEEN 2000 AND 2999
AND AVGQLEN >= 2.0

The rows returned by a query are unordered unless an ORDER BY clause is specified.
To sort the rows by descending AVGQLEN and then by ascending RUNID for rows
having the same AVGQLEN, the following clause is appended to the SELECT
statement:

ORDER BY AVGQLEN DESC, RUNID ASC

Because ascending is the default, the asc key word may be omitted. Column
numbers may be specified in place of the column names. For this query, RUNID is
column number 1, AVGQLEN is column number 2, and COMMENT is column number 3;
therefore, the following ORDER BY clause is equivalent to the one above:

ORDER BY 2 DESC, 1

The following code executes the above query and prints the five longest average
queue lengths. If the query returns fewer than five rows, then all of the rows will be

17

SIMSCRIPT II.5 Database Connectivity User's Manual

fetched and printed. If the query returns more than five rows, then only the first
five will be fetched and printed.

define CMD as a text variable
define I as an integer variable

''construct the query

CMD = CONCAT.F(

"SELECT RUNID, AVGQLEN, COMMENT FROM RESULT",

" WHERE RUNID BETWEEN 2000 AND 2999 AND AVGQLEN >= 2.0",
" ORDER BY 2 DESC, 1")

' 'execute the query
call DB.QUERY.R (CMD)

''print column headings
print 1 line as follows
AVGQLEN RUNID COMMENT

''fetch and print the first five rows

for T =1 to 5 while DB.FETCH.F =1
print 1 line with DB.GETREAL.F(2), DB.GETINT.F (1),
DB.GETTEXT.F(3) as follows

* k% * khkkhkkkhkhkkhkhkkkhkkkhkkkhkkkhkkkkkkkk

The output might look like this:

AVGQLEN RUNID COMMENT
118.38 2391 Extremely slow server
41.91 2877
17.00 2017 Test M7
17.00 2018 Test M8
14.96 2450 Tried a Weibull distribution

In this example, the row with RUNID=2877 has a null coMMENT, which is returned by
DB.GETTEXT.F as a zero-length string ("") and gets printed as blanks.

SQL provides the following aggregate functions:

COUNT (*) returns the number of rows

AVG (column) returns the average of the values in column
MAX (column) returns the largest value in column

MIN (column) returns the smallest value in column

SUM (column) returns the sum of the values in column

The following code uses aggregate functions to report the number of rows in
RESULT and the minimum, maximum, and average value of AVGQLEN:

18

3. SQL Queries

' 'execute the query

call DB.QUERY.R (CONCAT.F (

"SELECT COUNT (*), MIN(AVGQLEN), MAX (AVGQLEN), AVG (AVGQLEN)",
" FROM RESULT"))

if DB.FETCH.F = 1 ''fetched the only row
write DB.GETINT.F (1), DB.GETREAL.F(2), DB.GETREAL.F(3),
DB.GETREAL.F(4) as "In ", I 4,
" simulation runs, the average queue length", /,
"ranged from ", D(4,2), " to ", D(6,2),
" with an average of ", D(5,2), ".", /

always

The output might look like this:

In 3236 simulation runs, the average queue length
ranged from 0.15 to 172.81 with an average of 8.39.

Aggregate functions are commonly applied to groups of rows specified in GROUP
BY and HAVING clauses of a SELECT statement.

The sELECT statement is an SQL Data Manipulation Language (DML) statement.
Refer to Appendix B in this manual, and the DBMS documentation, for a
specification of its syntax.

3.4 Joining Tables

One of the most important database operations is the ability to join two or more
tables. This section illustrates a query that joins two tables.

In the RESULT table, each row records the result of one simulation run and each run
is identified by a unique RUNID. Suppose there exists a second table, named
DETAIL, with the following definition:

CREATE TABLE DETAIL

(RUNID INTEGER NOT NULL,
START TIME REAL NOT NULL,
END_TIME REAL NOT NULL,
QLEN INTEGER NOT NULL)

A row in DETAIL indicates there was a constant queue length (QLEN) from
simulation time START TIME to END_TIME in the simulation run identified by RUNID.

The DETAIL and RESULT tables have a many-to-one relationship: for each row in
RESULT, there are many rows in DETAIL. In SIMSCRIPT IL5 terminology, this
relationship may be described in terms of entities and sets: each RESULT entity owns
a set of DETAIL entities.

19

SIMSCRIPT II.5 Database Connectivity User's Manual

With this detailed information, a simulation run can be analyzed in greater depth.
The following code calculates and displays the total simulation time for each queue
length for run #2300:

define JOIN as a text variable
define MAXQLEN, QLEN as integer variables
define DURATION as a l-dimensional real array

''construct a query that joins tables RESULT and DETAIL;
''since RUNID names a column in both tables, it must be
''qualified by the table name

JOIN = CONCAT.F(

"SELECT RESULT.RUNID, AVGQLEN, MAXQLEN,",

" END TIME - START TIME, QLEN",

" FROM RESULT, DETAIL", ''the tables to join
" WHERE RESULT.RUNID = DETAIL.RUNID", ''how to join them

" AND RESULT.RUNID = 2300")

' 'execute the query
call DB.QUERY.R (JOIN)

if DB.FETCH.F = 0 ''the query returned no rows
write as "There is no record of this simulation run", /
else ''fetched the first row

write DB.GETINT.F(l) as "Run #", I 4, /
write as "Average queue length: "
if DB.NULL.F(2) = 1 ''AVGQLEN is non-null
write DB.GETREAL.F(2) as D(5,2), /
else ''AVGQLEN is null
write as "undefined", /
always

if DB.NULL.F(3) = 0 ''MAXQLEN is null
write as "Maximum queue length: undefined", /
else ''MAXQLEN is non-null

MAXQLEN = DB.GETINT.F (3)

''reserve an array with one element for each possible
''"queue length; queue length ranges from 0 to MAXQLEN so
''" (MAXQLEN+1) elements are needed; the duration for queue
''"length I is summed in element (I+1)
reserve DURATION(*) as MAXQLEN + 1
add DB.GETREAL.F(4) to DURATION (DB.GETINT.F(5) + 1)
while DB.FETCH.F = 1 ''fetched another row

add DB.GETREAL.F (4) to DURATION (DB.GETINT.F(5) + 1)

''display the distribution of queue lengths
write as /, "QLEN DURATION", /
for QLEN = 0 to MAXQLEN
write QLEN, DURATION(QLEN + 1) as I 4, " ", D(8,2), /

20

release DURATION (*)

always

always

The output might look like this:

Run #2300

Average queue length:

QLEN DURATION

0 157
1 281.
2 479.
3 394
4 317
5 231.
6 141.
7 89.
8 46.
9 28.
10 12
11 6
12 2
13 0
14 0
15 0

.41

31
98

.01
.84

09
33
77
62
16

.79
.13
.01
.89
.32
.13

3. SQL Queries

21

Chapter 4 SQL Parameters

The query in Section 3.4 retrieves the data for run #2300. To process the same
query on a different run, the value 2300 needs to be changed in the query. Rather
than modify the query string for every new run ID, an SQL parameter, in the form
of a question mark (?), may be specified in the query as a placeholder for the run
ID. The value of this parameter is set prior to the execution of the query. For
example:

define JOIN as a text variable
define RUNID as an integer variable

''construct a query that uses an SQL parameter
JOIN = CONCAT.F(

"SELECT RESULT.RUNID, AVGQLEN, MAXQLEN,",

" END_TIME - START TIME, QLEN",

" FROM RESULT, DETAIL",

" WHERE RESULT.RUNID = DETAIL.RUNID",

" AND RESULT.RUNID = °?")

''read the run ID
write as "Enter Run #:", /
read RUNID

''set the parameter value
call DB.SETINT.R(1, RUNID)

' 'execute the query using the parameter value
call DB.QUERY.R (JOIN)

The routine DB. SETINT.R sets the value of the parameter to the value of the RUNID
variable. This value is used in place of the question mark when the query is
executed by DB.QUERY.R. DB.SETINT.R is used to set an integer parameter;
DB.SETREAL.R sets a floating-point parameter; and DB. SETTEXT.R sets a character-
string parameter.

23

SIMSCRIPT II.5 Database Connectivity User's Manual

The following example from Section 2.2 illustrates how to insert a row into the
RESULT table:

define CMD as a text variable
define ROWS as an integer variable

CMD = CONCAT.F (
"INSERT INTO RESULT",
" VALUES (101, 12, 2.75, 'First test run in December')")

ROWS = DB.UPDATE.F (CMD)

If the column values for the new row are stored in program variables, then it takes
some effort to construct this query. However, using SQL parameters, the task
becomes easier:

define ROWS, RUNID, MAXQLEN as integer variables
define AVGQLEN as a real variable
define COMMENT as a text variable

''set the value of variables RUNID, MAXQLEN, AVGQLEN,
''and COMMENT to the column values of a new row

''set four parameter values
call DB.SETINT.R(1, RUNID)
call DB.SETINT.R(2, MAXQLEN)
call DB.SETREAL.R (3, AVGQLEN)
call DB.SETTEXT.R (4, COMMENT)

''insert the new row
ROWS = DB.UPDATE.F ("INSERT INTO RESULT VALUES (?, ?, ?, ?)")

A parameter number is the ordinal position of a parameter (i.e., question mark)
within an SQL statement. In this example, DB. SETINT.R sets parameter numbers 1
and 2 to integer values; DB. SETREAL.R sets parameter number 3 to a floating-point
value; and DB. SETTEXT.R sets parameter number 4 to a text value. Failing to set a
parameter before executing the SQL statement produces a run-time error.
Specifying a parameter number less than 1 is also an error. Specifying a parameter
number greater than the number of question marks is not an error; the extra
parameter is simply ignored. Multiple parameters may be set in any order. It is not
possible to set a parameter to a null value.

After the SQL statement has been processed by DB.QUERY.R or DB.UPDATE.F, all

parameter values become undefined and must be set again before the next SQL
statement with parameters is executed.

24

Chapter S Database Transactions

A database transaction is an atomic sequence of modifications to a database in
which all or none of the modifications are made permanent. If the transaction is
committed, then all of the changes are made permanent. If the transaction is rolled
back, then all modifications made during the transaction are undone and the
database is returned to the state it was in before the transaction was started.

A database may be shared and accessed concurrently by multiple users and
executing programs. Transactions prevent them from seeing one another's
uncommitted changes to the database, i.e., their work in progress. In addition,
transactions enable the DBMS to restore a database to a known state following a
system or program failure.

When Auto-Commit is ON, each SQL statement executed by DB.UPDATE.F is its
own transaction. That is, either the statement completes successfully and all
changes made by the statement are made permanent (the transaction is committed),
or the statement fails and all changes made by the statement are undone (the
transaction is rolled back). Auto-Commit is ON by default.

To execute two or more SQL statements atomically within a single transaction, it is
necessary to turn Auto-Commit OFF. This is accomplished by passing zero to
DB.AUTOCOMMIT.R:

call DB.AUTOCOMMIT.R(0)

With Auto-Commit OFF, all executed SQL statements are part of the same
transaction, which is terminated by calling DB.COMMIT.R or DB.ROLLBACK.R. To
save all changes made to the database during the transaction:

call DB.COMMIT.R
To undo all changes made to the database during the transaction:
call DB.ROLLBACK.R

After terminating a transaction, a new transaction is begun implicitly.

25

SIMSCRIPT II.5 Database Connectivity User's Manual

The following code atomically deletes all rows associated with a given simulation
run from tables RESULT and DETAIL:

define RUNID, DELETED as integer variables

''turn Auto-Commit OFF
call DB.AUTOCOMMIT.R(0)

''read the run ID
write as "Enter # of Run to Delete:", /
read RUNID

''delete the RESULT row
call DB.SETINT.R(1, RUNID)
DELETED = DB.UPDATE.F ("DELETE FROM RESULT WHERE RUNID = °?")

''delete all DETAIL rows

call DB.SETINT.R(1, RUNID)

add DB.UPDATE.F ("DELETE FROM DETAIL WHERE RUNID = ?")
to DELETED

''end the current transaction,
''making all of the deletions permanent
call DB.COMMIT.R

if DELETED = 0
write RUNID as "There are no rows to delete for Run #", I 4,
n

else
write DELETED, RUNID as "All ", I 4, " rows for Run #", I 4,
" have been deleted.", /

always

The output might look like this:
All 387 rows for Run #1542 have been deleted.

Once Auto-Commit has been turned OFF, it remains OFF until it is explicitly
turned ON by passing a non-zero value to DB.AUTOCOMMIT .R:

call DB.AUTOCOMMIT.R(1)

Turning Auto-Commit ON implicitly terminates and commits the current
transaction. When Auto-Commit is ON, calling DB.COMMIT.R or DB.ROLLBACK.R
has no effect.

Any transaction that is ongoing when a SIMSCRIPT II.5 program terminates is
automatically rolled back by the DBMS.

26

Chapter 6 Example Program: Bank Simulation

This section presents a complete SIMSCRIPT IL.5 example program that calls
SDBC functions and routines. This program simulates a bank with a single queue
and multiple tellers and keeps track of simulation runs in a database. Each run is
recorded as one row in a database table with the following definition:

CREATE TABLE BANKSIM
(RUNID INTEGER NOT NULL PRIMARY KEY,
TELLERS INTEGER NOT NULL,

IATIME REAL NOT NULL,

SRVTIME REAL NOT NULL,

UTIL REAL,

AVGQLEN REAL,

MAXQLEN INTEGER)

RUNID is an integer ID that uniquely identifies the run. The input parameters are
recorded in columns TELLERS, IATIME, and SRVTIME. TELLERS is the number of
tellers working at the bank. The interarrival time of customers is exponentially
distributed with a mean of IATIME minutes. The time required for a teller to serve a
customer is exponentially distributed with a mean of sSRVTIME minutes. The results
of the run are stored in columns UTIL, AVGQLEN, and MAXQLEN. UTIL is the
utilization of the tellers. AVGQLEN and MAXQLEN are the average and maximum
length of the queue, respectively.

The main routine begins by prompting the user for the data source name, user name,
and password, and then connects to the specified database. If the BANKSIM table
does not exist, the CREATE . TABLE routine is called to create it. Then the MAIN. LOOP
routine takes over and repeatedly displays a menu of choices, obtains the user's
choice and processes it.

The user may choose to Define a Run by entering the ID and input parameters for a
new run. A row is inserted into the BANKSIM table containing the specified RUNID,
TELLERS, IATIME, and SRVTIME, with null values in the result columns, uTIL,
AVGQLEN, and MAXQLEN.

The user may choose to Execute a Run by entering the ID of a defined run. The
program obtains the input parameters for this run by retrieving its row. It then
simulates one eight-hour day at the bank using these parameters. The results of the
simulation are displayed to the user and saved in the UTIL, AVGQLEN, and MAXQLEN
columns of the row.

27

SIMSCRIPT II.5 Database Connectivity User's Manual

The user may choose to Show All Runs; all rows of the BANKSIM table are retrieved
and displayed, sorted by RUNID. The user may choose to Delete a Run by entering
its ID; the row corresponding to this run is deleted from the BANKSIM table.

Finally, the user may choose to Exit, thereby terminating the MAIN.LOOP routine.
The main routine then disconnects from the database and the program terminates.
preamble

' 'SDBC Example Program

''Single-Queue Multiple-Teller Bank Simulation
''Derived from Example 5 in the book,

''" "Building Simulation Models with SIMSCRIPT II.5"
''" by Edward C. Russell (CACI, 1983)

processes include GENERATOR and CUSTOMER
resources include TELLER

define MEAN.INTERARRIVAL.TIME, MEAN.SERVICE.TIME
as real variables

accumulate UTILIZATION as the average of N.X.TELLER
accumulate AVG.QUEUE.LENGTH as the average
and MAX.QUEUE.LENGTH as the maximum of N.Q.TELLER

''SDBC Functions and Routines

define DB.AUTOCOMMIT.R as a routine given 1 argument
define DB.COMMIT.R as a routine given 0 arguments
define DB.CONNECT.R as a routine given 3 arguments
define DB.DISCONNECT.R as a routine given 0 arguments
define DB.EXISTS.F as an integer function given 1 argument
define DB.FETCH.F as an integer function given 0 arguments
define DB.GETINT.F as an integer function given 1 argument
define DB.GETREAL.F as a double function given 1 argument
define DB.GETTEXT.F as a text function given 1 argument
define DB.NULL.F as an integer function given 1 argument
define DB.QUERY.R as a routine given 1 argument
define DB.ROLLBACK.R as a routine given 0 arguments
define DB.SETINT.R as a routine given 2 arguments
define DB.SETREAL.R as a routine given 2 arguments
define DB.SETTEXT.R as a routine given 2 arguments
define DB.UPDATE.F as an integer function given 1 argument
end

28

6. Example Program: Bank Simulation

main
define DSNAME, USERNAME, PASSWORD as text variables

write as "Enter data source name:", /

read DSNAME

write as "Enter user name:", /

read USERNAME

write as "Enter password:", /

read PASSWORD

call DB.CONNECT.R(DSNAME, USERNAME, PASSWORD)

if DB.EXISTS.F("BANKSIM") = 0 ''BANKSIM table does not exist
call CREATE.TABLE ''so create it

always

create every TELLER(1)

call MAIN.LOOP

call DB.DISCONNECT.R

end

routine CREATE.TABLE

define SQL as a text variable
define ROWS as an integer variable

''construct an SQL CREATE TABLE statement
SQL = CONCAT.F (

"CREATE TABLE BANKSIM ",

" (RUNID INTEGER NOT NULL PRIMARY KEY,",
" TELLERS INTEGER NOT NULL,",

" IATIME REAL NOT NULL,",
" SRVTIME REAL NOT NULL,",
" UTIL REAL,",

" AVGQLEN REAL,",
" MAXQLEN INTEGER)")

''create the table
ROWS = DB.UPDATE.F (SQL)

end

29

SIMSCRIPT II.5 Database Connectivity User's Manual

routine MAIN.LOOP
define CHOICE as an integer variable

'DISPLAY.MENU'
print 7 lines thus

Enter

to Exit

to Define a Run
to Execute a Run
to Show All Runs
to Delete a Run

S WwWMNhEOo

read CHOICE

select case CHOICE

case 0 return

case 1 call DEFINE.RUN

case 2 call EXECUTE.RUN

case 3 call SHOW.RUNS

case 4 call DELETE.RUN

default write as "Invalid choice", /
endselect

go to 'DISPLAY.MENU'

end

30

6. Example Program: Bank Simulation

routine DEFINE.RUN

define RUNID, TELLERS, ROWS as integer variables
define IATIME, SRVTIME as real variables

write as /, "Enter Run #:", /
read RUNID

call DB.SETINT.R(1, RUNID)
call DB.QUERY.R("SELECT COUNT (*) FROM BANKSIM WHERE RUNID = ?")
if DB.FETCH.F = 1 and DB.GETINT.F(1) > O
write as "Run already defined", /
return
otherwise

write as "Enter # of Tellers:", /
read TELLERS

write as "Enter Mean InterArrival Time in Minutes:", /
read IATIME
write as "Enter Mean Service Time in Minutes:", /

read SRVTIME

call DB.SETINT.R(1, RUNID)

call DB.SETINT.R(2, TELLERS)

call DB.SETREAL.R(3, IATIME)

call DB.SETREAL.R (4, SRVTIME)

ROWS = DB.UPDATE.F (CONCAT.F (

"INSERT INTO BANKSIM (RUNID, TELLERS, IATIME, SRVTIME)",
" VALUES (?, ?, 2, ?2)™))

write as "Run defined", /

end

31

SIMSCRIPT II.5 Database Connectivity User's Manual

routine EXECUTE.RUN

define RUNID, MAXQLEN, ROWS as integer variables
define UTIL, AVGQLEN as real variables

write as /, "Enter Run #:", /
read RUNID

''lookup run definition

call DB.SETINT.R(1, RUNID)

call DB.QUERY.R (CONCAT.F (

"SELECT TELLERS, IATIME, SRVTIME, UTIL",
" FROM BANKSIM WHERE RUNID = ?"))

if DB.FETCH.F = 0 ''not found
write as "Run undefined", /
return

otherwise

if DB.NULL.F(4) = 1 ''UTIL is non-null
write as "Run already executed", /
return

otherwise

call SIMULATE.BANK given DB.GETINT.F (1), DB.GETREAL.F(2),
DB.GETREAL.F(3) yielding UTIL, AVGQLEN, MAXQLEN

''save run results

call DB.SETREAL.R(1, UTIL)

call DB.SETREAL.R(2, AVGQLEN)

call DB.SETINT.R(3, MAXQLEN)

call DB.SETINT.R (4, RUNID)

ROWS = DB.UPDATE.F(

"UPDATE BANKSIM SET UTIL=7?,AVGQLEN=? , MAXQLEN=? WHERE RUNID=?")

end

32

6. Example Program: Bank Simulation

routine SIMULATE.BANK given TELLERS, IATIME, SRVTIME
yielding UTIL, AVGQLEN, MAXQLEN

define TELLERS, MAXQLEN as integer variables
define IATIME, SRVTIME, UTIL, AVGQLEN as real variables

U.TELLER(1) = TELLERS
MEAN.INTERARRIVAL.TIME = IATIME
MEAN.SERVICE.TIME = SRVTIME

TIME.V = 0
reset totals of N.X.TELLER(1l) and N.Q.TELLER(1)

activate a GENERATOR now

start simulation

UTIL = UTILIZATION(l) / TELLERS

AVGQLEN = AVG.QUEUE.LENGTH (1)

MAXQLEN = MAX.QUEUE.LENGTH (1)

write TELLERS as "# of Tellers: " I3,/

write IATIME as "Mean InterArrival Time: ", D(5,2),
" minutes", /

write SRVTIME as '"Mean Service Time: ", D(5,2),

" minutes", /

write UTIL as "Teller Utilization: ", D(4,2), /
write AVGQLEN as "Average Queue Length: ", D(6,2), /
write MAXQLEN as "Maximum Queue Length: ", I 3, /

end

process GENERATOR

' 'generate customer arrivals during one 8-hour day
while TIME.V < 8.0 / HOURS.V
do

activate a CUSTOMER now

wait EXPONENTIAL.F (MEAN.INTERARRIVAL.TIME, 1) minutes
loop

end

process CUSTOMER

request 1 TELLER

work EXPONENTIAL.F (MEAN.SERVICE.TIME, 2) minutes
relinquish 1 TELLER

end

33

SIMSCRIPT II.5 Database Connectivity User's Manual

routine SHOW.RUNS

''retrieve all rows sorted by ascending RUNID
call DB.QUERY.R("SELECT * FROM BANKSIM ORDER BY RUNID")

print 4 lines thus

Mean Mean Average Maximum
InterArrival Service Teller Queue Queue
Run# #Tellers Time Time Util. Length Length

while DB.FETCH.F = 1 ''for each row in BANKSIM

do
if DB.NULL.F(5) = 1 '"'UTIL is non-null
print 1 line with DB.GETINT.F(l), DB.GETINT.F(2),
DB.GETREAL.F(3), DB.GETREAL.F(4), DB.GETREAL.F(5),
DB.GETREAL.F(6), DB.GETINT.F(7) thus
* * *.* *.* *.** *.** *
else ''this run has not been executed
print 1 line with DB.GETINT.F(l), DB.GETINT.F(2),
DB.GETREAL.F(3), DB.GETREAL.F(4) thus
* * * * * *
always
loop
end

routine DELETE.RUN
define RUNID, ROWS as integer variables

write as /, "Enter Run #:", /
read RUNID

call DB.SETINT.R(1, RUNID)
ROWS = DB.UPDATE.F ("DELETE FROM BANKSIM WHERE RUNID = ?")

if ROWS = 0 ''no rows were deleted
write as "No such run", /
else
write as "Run deleted", /
always

end

34

6. Example Program: Bank Simulation

The following is a transcript from one execution of this program, starting with an
empty database. User entries are italicized.

Enter data source name:
BANKSIMDB

Enter user name:

STEVE

Enter password:

SECRET

Enter

to Exit

to Define a Run
to Execute a Run
to Show All Runs
to Delete a Run

_Nd WNhRLOo

Enter Run #:

101

Enter # of Tellers:

2

Enter Mean InterArrival Time in Minutes:
5

Enter Mean Service Time in Minutes:

10

Run defined

Enter
0 to Exit
1l to Define a Run
2 to Execute a Run
3 to Show All Runs
4 to Delete a Run
3
Mean Mean Average Maximum
InterArrival Service Teller Queue Queue
Run# #Tellers Time Time Util. Length Length
101 2 5.0 10.0

35

SIMSCRIPT II.5 Database Connectivity User's Manual

Enter

to Exit

to Define a Run
to Execute a Run
to Show All Runs
to Delete a Run

N WDNRFRO

Enter Run #:
101
of Tellers:

Mean InterArrival Time:

Mean Service Time:

Teller Utilization:
Average Queue Length:

2

5.00 minutes

10.00 minutes
.96

3.61

Maximum Queue Length: 13

Enter

to Exit

to Define a Run
to Execute a Run
to Show All Runs
to Delete a Run

W WNRFRO

Mean Mean
InterArrival Service
Run# #Tellers Time Time
101 2 5.0 10.0
Enter
0 to Exit
1l to Define a Run
2 to Execute a Run
3 to Show All Runs
4 to Delete a Run
1
Enter Run #:
102
Enter # of Tellers:

2

Teller
Util.
.96

Enter Mean InterArrival Time in Minutes:

5

Enter Mean Service Time in Minutes:

10
Run defined

36

Average

Queue

Length
3.61

Maximum

Queue

Length
13

6. Example Program: Bank Simulation

Enter

to Exit

to Define a Run
to Execute a Run
to Show All Runs
to Delete a Run

N WDNRFRO

Enter Run #:

102

of Tellers: 2

Mean InterArrival Time: 5.00 minutes
Mean Service Time: 10.00 minutes
Teller Utilization: .90

Average Queue Length: 2.31
Maximum Queue Length: 10

Enter

to Exit

to Define a Run
to Execute a Run
to Show All Runs
to Delete a Run

W WNRFRO

Mean Mean Average Maximum
InterArrival Service Teller Queue Queue
Run# #Tellers Time Time Util. Length Length
101 2 5.0 10.0 .96 3.61 13
102 2 5.0 10.0 .90 2.31 10

Enter

to Exit

to Define a Run
to Execute a Run
to Show All Runs
to Delete a Run

[N Vo =)

Enter Run #:
101
Run deleted

37

SIMSCRIPT II.5 Database Connectivity User's Manual

Enter
0 to Exit
1l to Define a Run
2 to Execute a Run
3 to Show All Runs
4 to Delete a Run
3
Mean Mean Average Maximum
InterArrival Service Teller Queue Queue
Run$# {#Tellers Time Time Util. Length Length
102 2 5.0 10.0 .90 2.31 10
Enter
0 to Exit
1l to Define a Run
2 to Execute a Run
3 to Show All Runs
4 to Delete a Run
0

38

Chapter 7 Example Program: Job Shop
Simulation

This section presents a complete SIMSCRIPT II.5 example program that calls
SDBC functions and routines. This program simulates the operations of a job shop
in which jobs arrive at random intervals and are processed by machines in the shop.
The machines are grouped by type; for example, the shop may house eight drill
presses, five lathes, and four polishing machines.

A job requires a sequence of tasks to be performed by machines in the shop. When
the job arrives, it is sent to the machine group needed for the first task. If there is a
unit currently available (idle) in this group, the task commences immediately using
this unit; otherwise, the job waits in line for a unit to become available. Once the
first task has finished, the job is sent to the machine group needed for the second
task, and so on, until all of the tasks have been completed.

Each type of machine is described by one row in a database table named Machines
with the following definition:

CREATE TABLE Machines

(Machine_ID CHAR (2) NOT NULL PRIMARY KEY,
Machine Name VARCHAR (20) NOT NULL,
Number of Units SMALLINT NOT NULL)

Machine ID is a two-character code that uniquely identifies the machine type.
Machine Name gives the name of the machine type, and Number of Units
specifies the number of units of this type in the shop.

The program assumes that the Machines table has already been created and
populated with rows. For example, the contents of the table might look like this:

Machine_ ID Machine Name Number of Units
Cu Casting Units 14
DP Drill Presses 8
LA Lathes 5
PL Planes 4
PM Polishing Machines 4
SH Shapers 16

39

SIMSCRIPT II.5 Database Connectivity User's Manual

The shop will only process jobs of a certain type. The accepted job types are
described in a database table named Job_Types with the following definition:

CREATE TABLE Job_Types

(Job_Type Number SMALLINT NOT NULL,

Sequence_Number SMALLINT NOT NULL,

Machine ID CHAR(2) NOT NULL REFERENCES Machines,
Mean Service Time REAL NOT NULL,

PRIMARY KEY (Job_Type Number, Sequence_ Number))

Each row of this table describes one task of the job type identified by
Job_Type Number. The task requires the use of one unit of machine type
Machine_ ID for a random number of hours that is exponentially distributed with a
mean of Mean_Service_Time. Sequence Number is used to specify the order of
tasks for a given job type. The combination of Job_Type Number and
Sequence_Number uniquely identifies a row and is designated as the primary key.
Machine ID is declared as a foreign key by the REFERENCES clause, which
guarantees that its value is present in the Machine ID column of the Machines
table.

The program assumes that the Job_Types table has already been created and
populated with rows. For example, the following table describes the tasks of three
job types: Job Type 117 (four tasks), Job Type 123 (three tasks), and Job Type 125
(five tasks).

Job_Type Number Sequence Number Machine ID Mean_ Service Time

117 1 Cu 2.0833
117 2 PL 0.5833
117 3 LA 0.3333
117 4 PM 1.0000
123 1 SH 1.7500
123 2 DP 1.5000
123 3 LA 1.0833
125 1 Cu 3.9166
125 2 SH 4.1666
125 3 DP 0.8333
125 4 PL 0.5000
125 5 PM 0.4166

40

7. Example Program: Job Shop Simulation

One simulation run measures the utilization of each machine group and the average
and maximum number of jobs waiting for each group. This data is stored in a
database table named Results with the following definition. (This table is
assumed by the program to exist.)

CREATE TABLE Results

(Run_Number SMALLINT NOT NULL,

Machine ID CHAR(2) NOT NULL REFERENCES Machines,
Utilization REAL NOT NULL,

Avg Backlog REAL NOT NULL,

Max Backlog INTEGER NOT NULL,

PRIMARY KEY (Run_Number, Machine_ 1ID))

The main routine begins by prompting the user for the data source name, user name,
and password, and then connects to the specified database. The user then enters a
run number. If results for this run can be found in the Results table, they are
retrieved and displayed to the user and no simulation is performed; otherwise, the
program prepares to run a new simulation.

First, the SETUP.MACHINES routine reads the machine types from the Machines
table. Second, the SETUP.JOB.TYPES routine reads the job types from the
Job_Types table and stores them as a set of job types where each job type owns a
set of its tasks. In addition, this routine prompts the user to enter the probability of
each job type. Third, the program prompts the user to enter the mean job
interarrival time and duration of the simulation, and then begins the simulation.

When the simulation has finished, the SAVE.RESULTS routine inserts the results
atomically into the Results table, so that either all or none of the results are saved.
The sHOW.RESULTS routine retrieves the results from the database and displays
them to the user. Lastly, the program disconnects from the database before
terminating.

41

SIMSCRIPT II.5 Database Connectivity User's Manual

preamble

' 'SDBC Example Program

''Job Shop Simulation

' 'Derived from Example 6 in the book,

''" "Building Simulation Models with SIMSCRIPT II.5"
''" by Edward C. Russell (CACI, 1983)

processes include GENERATOR and JOB
resources

every MACHINE
has a MACHINE.ID,
a MACHINE.NAME,
and a NUMBER.OF.UNITS
define MACHINE.ID, MACHINE.NAME as text variables
define NUMBER.OF.UNITS as an integer variable

temporary entities

every TASK

has a MACHINE.INDEX

and a MEAN.SERVICE.TIME

and belongs to a TASK.SEQUENCE
define MACHINE.INDEX as an integer variable
define MEAN.SERVICE.TIME as a real variable

every JOB.TYPE
has a JOB.TYPE.NUMBER,
owns a TASK.SEQUENCE,
and belongs to the JOB.TYPE.LIST
define JOB.TYPE.NUMBER as an integer variable

the system
has a RUN.NUMBER,
a MEAN.INTERARRIVAL.TIME,
a STOP.TIME,
and a JOB.MIX random step variable
and owns the JOB.TYPE.LIST
define RUN.NUMBER as an integer variable
define MEAN.INTERARRIVAL.TIME, STOP.TIME as real variables
define JOB.MIX as an integer, stream 9 variable

define TASK.SEQUENCE, JOB.TYPE.LIST as FIFO sets
accumulate UTILIZATION as the average of N.X.MACHINE
accumulate AVG.BACKLOG as the average

and MAX.BACKLOG as the maximum of N.Q.MACHINE

define HOURS to mean units

42

' 'SDBC
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define

end

Functions and Routines
.AUTOCOMMIT.R as a
DB.
DB.
DB.
DB.
DB.
DB.
DB.
.GETTEXT.F
.NULL.F
.QUERY.R
.ROLLBACK.R
.SETINT.R
.SETREAL.R
.SETTEXT.R
.UPDATE.F

DB

COMMIT.R
CONNECT.R

DISCONNECT.R

EXISTS.F
FETCH.F
GETINT.F
GETREAL.F

as
as
as
as
as
as
as
as
as
as
as
as
as
as
as

a
a
a
an
an
an
a

p

n

[R T

integer
integer
integer
double
text
integer

integer

7. Example Program

routine
routine
routine
routine
function
function
function
function
function
function
routine
routine
routine
routine
routine
function

given
given
given
given
given
given
given
given
given
given
given
given
given
given
given
given

RrNMNMMNDORRRFRPFRLPORPROWOHR

: Job Shop Simulation

argument
arguments
arguments
arguments
argument
arguments
argument
argument
argument
argument
argument
arguments
arguments
arguments
arguments
argument

43

SIMSCRIPT II.5 Database Connectivity User's Manual

main
define DSNAME, USERNAME, PASSWORD as text variables

write as "Enter data source name:", /

read DSNAME

write as "Enter user name:", /

read USERNAME

write as "Enter password:", /

read PASSWORD

call DB.CONNECT.R(DSNAME, USERNAME, PASSWORD)

write as /, "Enter Run #:", /
read RUN.NUMBER

call DB.SETINT.R(1, RUN.NUMBER)

call DB.QUERY.R(

"SELECT COUNT (*) FROM Results WHERE Run_Number = ?")

if DB.FETCH.F = 1 and DB.GETINT.F(1) > 0 ''this is an old run
go to 'FINISH' ''display results of old run

otherwise

''simulate new run
call SETUP.MACHINES
call SETUP.JOB.TYPES

write as /, "Enter mean job interarrival time in hours:", /
read MEAN.INTERARRIVAL.TIME

write as "Enter duration of simulation in hours:", /

read STOP.TIME

activate a GENERATOR now
start simulation

'FINISH'
call SHOW.RESULTS
call DB.DISCONNECT.R

write as /, "Press return to exit", /
read as /

end

44

7. Example Program: Job Shop Simulation

routine SETUP.MACHINES

''retrieve machine information from the database and
''use it to initialize the MACHINE resource

''first determine the number of machine groups

call DB.QUERY.R("SELECT COUNT (*) FROM Machines")

if DB.FETCH.F = 1 ''should always be true
create every MACHINE (DB.GETINT.F (1))

always

''then obtain the information for each machine group

write as /, "Machines:", /

call DB.QUERY.R("SELECT * FROM Machines ORDER BY Machine Name")
for each MACHINE while DB.FETCH.F =1

do
MACHINE. ID (MACHINE) = DB.GETTEXT.F (1)
MACHINE .NAME (MACHINE) = DB.GETTEXT.F (2)
NUMBER.OF.UNITS (MACHINE) = DB.GETINT.F(3)
U.MACHINE (MACHINE) = NUMBER.OF.UNITS (MACHINE)
write NUMBER.OF.UNITS (MACHINE), MACHINE.NAME (MACHINE)
as I 3, " ", T~x*, /

loop

end

45

SIMSCRIPT II.5 Database Connectivity User's Manual

routine SETUP.JOB.TYPES

define JOB.TYPE, TASK as pointer variables
define PROBABILITY as a real variable

''retrieve job types and their tasks in sequence
call DB.QUERY.R("SELECT * FROM Job Types ORDER BY 1, 2")
while DB.FETCH.F = 1 ''for each row in Job_Types
do
if JOB.TYPE.LIST is empty or
DB.GETINT.F(1) > JOB.TYPE.NUMBER (JOB.TYPE)
' 'encountered a new job type
create a JOB.TYPE
JOB.TYPE.NUMBER (JOB.TYPE) = DB.GETINT.F (1)
file JOB.TYPE in JOB.TYPE.LIST
write JOB.TYPE.NUMBER (JOB.TYPE)
as /, "Job Type ", I 3, ":", /
always
''save task information
create a TASK
for each MACHINE with MACHINE.ID (MACHINE) = DB.GETTEXT.F (3)
find the first case
MACHINE. INDEX (TASK) = MACHINE
MEAN.SERVICE.TIME (TASK) = DB.GETREAL.F (4)
file TASK in TASK.SEQUENCE (JOB.TYPE)
write MEAN.SERVICE.TIME (TASK), MACHINE.NAME (MACHINE)
as D(7,4), " hours on ", T *, /
loop

' 'prompt the user to enter job type probabilities and
''use them to initialize the JOB.MIX random step variable
write as /

for each JOB.TYPE in JOB.TYPE.LIST

do
write JOB.TYPE.NUMBER (JOB.TYPE)
as "Enter probability of Job Type ", I 3, ":", /
read PROBABILITY
write PROBABILITY, JOB.TYPE.NUMBER (JOB.TYPE)
as D(5,3), " ", I 3, " " using the buffer
loop

write as "*" using the buffer ''marks the end of the input
read JOB.MIX using the buffer ''initialize random step variable

end

46

7. Example Program: Job Shop Simulation

process GENERATOR

while TIME.V < STOP.TIME
do

activate a JOB now

wait EXPONENTIAL.F (MEAN.INTERARRIVAL.TIME, 10) HOURS
loop

call SAVE.RESULTS

end

process JOB

define TYPE.NUMBER as an integer variable
define JOB.TYPE, TASK as pointer variables

TYPE.NUMBER = JOB.MIX ''randomly generate the job type
for each JOB.TYPE in JOB.TYPE.LIST
with JOB.TYPE.NUMBER (JOB.TYPE) = TYPE.NUMBER

find the first case

''perform the tasks for this job type in sequence
for each TASK in TASK.SEQUENCE (JOB.TYPE)
do
request 1 unit of MACHINE (MACHINE.INDEX (TASK))
work EXPONENTIAL.F (MEAN.SERVICE.TIME (TASK),
MIN.F (MACHINE.INDEX (TASK), 10)) HOURS
relinquish 1 unit of MACHINE (MACHINE.INDEX (TASK))
loop

end

47

SIMSCRIPT II.5 Database Connectivity User's Manual

routine SAVE.RESULTS
call DB.AUTOCOMMIT.R(0) ''turn Auto-Commit OFF

''atomically insert the result rows, one for each machine group
for each MACHINE
do
call DB.SETINT.R(1, RUN.NUMBER)
call DB.SETTEXT.R(2, MACHINE.ID (MACHINE))
call DB.SETREAL.R(3,
UTILIZATION (MACHINE) / NUMBER.OF.UNITS (MACHINE))
call DB.SETREAL.R (4, AVG.BACKLOG (MACHINE))
''although the mode of MAX.BACKLOG is double, it will be
' 'converted to integer when stored in column Max Backlog
call DB.SETREAL.R(5, MAX.BACKLOG (MACHINE))
if DB.UPDATE.F ("INSERT INTO Results VALUES (?,7?,?,?,?)")<>1
call DB.ROLLBACK.R ''error - undo all insertions
go to 'EXIT'
otherwise
loop

call DB.COMMIT.R ''success - make all insertions permanent

'EXIT'
call DB.AUTOCOMMIT.R (1) ''turn Auto-Commit ON

end

48

7. Example Program: Job Shop Simulation

routine SHOW.RESULTS
define JOIN as a text variable

''construct SQL statement to join Machines and Results tables
JOIN = CONCAT.F (

"SELECT Machine Name, Number of Units, Utilization,",

" Avg_Backlog, Max_Backlog",

" FROM Machines, Results",

" WHERE Machines.Machine ID = Results.Machine_ ID",

" AND Run_ Number = ?",

" ORDER BY Machine Name")

' 'execute the query
call DB.SETINT.R(1, RUN.NUMBER)
call DB.QUERY.R (JOIN)

''fetch and display the results of the run
print 4 lines with RUN.NUMBER thus

Results of Run # *:

Average Maximum
Machine #Units Util. Backlog Backlog

while DB.FETCH.F = 1
print 1 line with DB.GETTEXT.F (1), DB.GETINT.F(2),
DB.GETREAL.F (3), DB.GETREAL.F(4), DB.GETINT.F(5) thus

khkkkhkkkhkkkhkkkhkkkkkkkx * * k% * k% *

end

49

SIMSCRIPT II.5 Database Connectivity User's Manual

Assume that the Machines, Job_Types, and Results tables have already been
created and that the Machines and Job_Types tables have been populated with the
contents shown at the beginning of this section. The following is a transcript from
one execution of this program. User entries are italicized.

Enter data source name:
JOBSHOPSIMDB

Enter user name:

STEVE

Enter password:

SECRET

Enter Run #:
1

Machines:
14 Casting Units
8 Drill Presses
5 Lathes
4 Planes
4 Polishing Machines
16 Shapers

Job Type 117:
2.0833 hours on Casting Units
.5833 hours on Planes
.3333 hours on Lathes
1.0000 hours on Polishing Machines

Job Type 123:
1.7500 hours on Shapers
1.5000 hours on Drill Presses
1.0833 hours on Lathes

Job Type 125:
3.9166 hours on Casting Units
4.1666 hours on Shapers
.8333 hours on Drill Presses
.5000 hours on Planes
.4166 hours on Polishing Machines

Enter probability of Job Type 117:
.241

Enter probability of Job Type 123:
.44

Enter probability of Job Type 125:
.319

Enter mean job interarrival time in hours:

.16
Enter duration of simulation in hours:

50

7. Example Program: Job Shop Simulation

40

Results of Run # 1:

Average Maximum
Machine #Units Util. Backlog Backlog
Casting Units 14 .57 .01 2
Drill Presses 8 .62 .25 7
Lathes 5 .65 .63 10
Planes 4 .37 .02 2
Polishing Machines 4 .48 .17 3
Shapers 16 .66 .12 6

Press return to exit

51

APPENDIX A SDBC Functions and Routines

Routine DB.AUTOCOMMIT .R (SETTING)
SETTING: 0 or 1, mode is INTEGER

Turns Auto-Commit OFF if SETTING is 0; otherwise, turns Auto-Commit ON.

Routine DB.COMMIT.R

Terminates and commits the current transaction.

Routine DB.CONNECT .R (DSNAME, USERNAME, PASSWORD)

DSNAME: data source name, mode is TEXT
USERNAME: database user name, mode is TEXT
PASSWORD: database password, mode is TEXT

Connects to the database identified by the named ODBC data source using the given user
name and password.

Routine DB.DISCONNECT.R

Disconnects from the database.

Function DB.EXISTS.F (TABLE)

TABLE: database table name, mode is TEXT
return value: 0 or 1, mode is INTEGER

Returns 1 if the named table exists, or returns 0 if the table does not exist.

53

SIMSCRIPT II.5 Database Connectivity User's Manual

Function DB.FETCH.F
return value: 0 or 1, mode is INTEGER

Retrieves the next row of the query result and returns 1, or returns 0 if there are no more
rOws.

Function DB.GETINT . F (COLUMN)

COLUMN: column number, mode is INTEGER
return value: column value, mode is INTEGER

Returns the INTEGER value of the specified column in the current row.

Function DB.GETREAL . F (COLUMN)

COLUMN: column number, mode is INTEGER
return value: column value, mode is DOUBLE

Returns the DOUBLE value of the specified column in the current row.

Function DB.GETTEXT . F (COLUMN)

COLUMN: column number, mode is INTEGER
return value: column value, mode is TEXT

Returns the TEXT value of the specified column in the current row.

Function DB.NULL. F (COLUMN)

COLUMN: column number, mode is INTEGER
return value: 0 or 1, mode is INTEGER

Returns 0 if the value of the specified column in the current row is null, or returns 1 if the
value is non-null.

54

Appendix A. SDBC Functions and Routines

Routine DB.QUERY . R (COMMAND)
COMMAND: SQL query statement, mode is TEXT

Executes the given SQL query statement.

Routine DB.ROLLBACK.R

Terminates and rolls back the current transaction.

Routine DB. SETINT.R (PARM, VALUE)

PARM: parameter number, mode is INTEGER
VALUE: parameter value, mode is INTEGER

Sets the specified parameter to the given INTEGER value.

Routine DB. SETREAL.R (PARM, VALUE)

PARM: parameter number, mode is INTEGER
VALUE: parameter value, mode is DOUBLE

Sets the specified parameter to the given DOUBLE value.

Routine DB. SETTEXT .R (PARM, VALUE)

PARM: parameter number, mode is INTEGER
VALUE: parameter value, mode is TEXT

Sets the specified parameter to the given TEXT value.

55

SIMSCRIPT II.5 Database Connectivity User's Manual

Function DB . UPDATE . F (COMMAND)

COMMAND: SQL update statement, mode is TEXT
return value: number of affected rows, mode is INTEGER

Executes the given SQL update statement, and returns the number of affected rows if
applicable.

56

APPENDIX B SQL Syntax

SDBC supports, at a minimum, the following SQL syntax based on the Entry Level
of the ANSI SQL-92 standard. Additional SQL features provided by the DBMS
can also be used; see the DBMS documentation for information.

Notation:

SQL key words and special characters are in BOLD

Syntactic placeholders are in ITALICS
Mandatory elements are in { braces }
Optional elements are in [brackets]
Alternatives are separated by |

Lists of one or more elements, separated by commas, are denoted by

Argument to DB . UPDATE. F:

CREATE TABLE | DROP TABLE | INSERT | UPDATE | DELETE

Argument to DB.QUERY . R:

TABLE EXPR

[orRDER BY { { COLUMN | NUMBER } [asc | pEsc | }*]

CREATE TABLE: CREATE TABLE TABLE (TDEF*)

ITDEF:

COLDEF:

DATATYPE:

COLDEF |
{ PRIMARY KEY | UNIQUE |} (COLUMN*) |
FOREIGN KEY (COLUMN*)

REFERENCES TABLE [(COLUMN*)]

COLUMN DATATYPE [NOT NULL]
[PRIMARY KEY | UNIQUE]
[REFERENCES TABLE [(COLUMN) 1]]

SMALLINT | INTEGER |
REAL | DOUBLE [PRECISION] |
CHAR(NUMBER) | VARCHAR(NUMBER)

57

SIMSCRIPT II.5 Database Connectivity User's Manual

DROP TABLE:

INSERT:

UPDATE:

DELETE:

TABLE EXPR:

SELECT:
b

CONDITION:
CTERM:

CFACTOR:

COMPARE:

IN:
BETWEEN:
EXISTS:
NULL:
LIKE:

PATTERN:

58

DROP TABLE 7/ABLE | RESTRICT | CASCADE |

INSERT INTO TABLE [(COLUMN*)]
{ vaLuEs ({ EXPR|NuLL }*) | TABLE EXPR }

UPDATE TABLE
SET { COLUMN = { EXPR | nuLL } +*

[waERE CONDITION]

DELETE FROM TABLE
[woERE CONDITION]

[TABLE EXPR UNION [ALL]]
{ SELECT | (TABLE EXPR) }

SELECT [ALL |DISTINCT | { *|{ EXPR[as COLUMN] }*

FROM { TABLE [RANGE VAR] }*
[WHERE CONDITION
[GROUP BY COLREF*]

[HavING CONDITION |
CTERM | CONDITION or CTERM
CFACTOR | CTERM ano CFACTOR

[Nor] { COMPARE | IN | BETWEEN | EXISTS |
NULL | LIKE | (CONDITION) }

EXPR { < | <= | = | <> | > | »>= }
{ EXPR | { aLL | aNY | soME } (TABLE EXPR) }

EXPR [NoT | IN (TABLE EXPR | EXPR*)

EXPR [NoT | BETWEEN EXPR anpD EXPR

EXISTS (TABLE EXPR)

COLREF 1s [NOT | NULL

COLREF [nNoT | LIKE PATTERN | EscapE STRING |

a character string pattern enclosed in single quotes in which
each underscore matches any single character and each

EXPR:

TERM:

FACTOR:

STRING

FUNCTION:

)
COLREEF:

TABLE:

RANGE_VAR:

COLUMN:

NAME:

NUMBER:

STRING:

Appendix B. SQL Syntax

percent sign (%)
matches any sequence of zero or more characters

TERM | EXPR { + | - } TERM
FACTOR | TERM { * | / } FACTOR

[+ | - 1 { FUNCTION | COLREF | NUMBER |

|
(TABLE EXPR) | (EXPR) }

COUNT (* | DISTINCT COLREF) |
{ avG | MAX | MIN | SUM } ([ALL | EXPR | DISTINCT COLREF

[{ TABLE | RANGE VAR } .] COLUMN
NAME

NAME
NAME

a case-insensitive identifier composed of a letter followed by
zero or more letters, digits, and underscores; examples:

address P S52a
Last Name EMP_ID COL2

an integer or real constant with optional sign, and with
optional scientific notation; examples:

5 0.7 -1058
+70.1389 2E12 -.43E-6

a character string enclosed in single quotes; examples:

'NEW MEXICO'
'16 lbs.'

lHey!l lal
ldonlltl T

59

APPENDIX C SQLSTATE Codes

The first value appearing in brackets within an SDBC run-time error message is a
five-character SQLSTATE code. Most of these codes are defined by X/Open Data

Management:

Structured Query Language (SQL), Version 2 (March 1995);

however, additional codes may be defined by the ODBC driver. The following is a
partial list of SQLSTATE codes and their meanings.

01000
01001
01002
01003
01004
01006
01007
01s00
01s01
01s02
01s06
01s07
01s08
01s09

07002
07005
07006
07009
07s01

08001
08002
08003
08004
08007
08s01

21s01
21s02

22001
22002
22003

General warning

Cursor operation conflict

Disconnect error

NULL value eliminated in set function
String data, right truncated

Privilege not revoked

Privilege not granted

Invalid connection string attribute
Error in row

Option value changed

Attempt to fetch before the result set returned the first rowset
Fractional truncation

Error saving File DSN

Invalid keyword

COUNT field incorrect

Prepared statement not a cursor-specification
Restricted data type attribute violation
Invalid descriptor index

Invalid use of default parameter

Client unable to establish connection
Connection name in use

Connection does not exist

Server rejected the connection
Connection failure during transaction
Communication link failure

Insert value list does not match column list
Degree of derived table does not match column list

String data, right truncated

Indicator variable required but not supplied
Numeric value out of range

61

SIMSCRIPT II.5 Database Connectivity User's Manual

22007 Invalid datetime format

22008 Datetime field overflow

22012 Division by zero

22015 Interval field overflow

22018 Invalid character value for cast specification
22019 Invalid escape character

22025 Invalid escape sequence

22026 String data, length mismatch

23000 Integrity constraint violation
24000 Invalid cursor state

25000 Invalid transaction state
25501 Transaction state

25502 Transaction is still active
25503 Transaction is rolled back

28000 Invalid authorization specification
34000 Invalid cursor name

3c000 Duplicate cursor name

3D000 Invalid catalog name

3F000 Invalid schema name

40001 Serialization failure
40003 Statement completion unknown

42000 Syntax error or access violation
42501 Base table or view already exists
42502 Base table or view not found
42511 Index already exists

42512 Index not found

42521 Column already exists

42522 Column not found

44000 WITH CHECK OPTION violation

HY000 General error

HY001 Memory allocation error

HY003 Invalid application buffer type
HY004 Invalid SQL data type

HY007 Associated statement is not prepared

62

HYO008
HYO009
HYO010
HYO1l1
HYO012
HYO013
HYO014
HYO015
HYO016
HYO17
HYO018
HYO019
HYO020
HYO021
HYO024
HYO090
HYO91
HY092
HY093
HYO095
HY096
HY097
HY098
HY099
HY100
HY101
HY103
HY104
HY105
HY106
HY107
HY109
HY110
HY11l1
HYCOO0
HYTOO
HYTO1

IMO001
IMO002
IMO03
IMO004
IMOO5
IMO0O6
IMO007
IM008

Appendix C. SQLSTATE Codes

Operation canceled

Invalid use of null pointer

Function sequence error

Attribute cannot be set now

Invalid transaction operation code
Memory management error

Limit on the number of handles exceeded
No cursor name available

Cannot modify an implementation row descriptor
Invalid use of an automatically allocated descriptor handle
Server declined cancel request
Non-character and non-binary data sent in pieces
Attempt to concatenate a null value
Inconsistent descriptor information
Invalid attribute value

Invalid string or buffer length

Invalid descriptor field identifier

Invalid attribute/option identifier

Invalid parameter number

Function type out of range

Invalid information type

Column type out of range

Scope type out of range

Nullable type out of range

Uniqueness option type out of range
Accuracy option type out of range
Invalid retrieval code

Invalid precision or scale value

Invalid parameter type

Fetch type out of range

Row value out of range

Invalid cursor position

Invalid driver completion

Invalid bookmark value

Optional feature not implemented
Timeout expired

Connection timeout expired

Driver does not support this function

Data source name not found and no default driver specified
Specified driver could not be loaded

Driver's SQLAllocHandle on SQL. HANDLE ENV failed
Driver's SQLAllocHandle on SQL. HANDLE DBC failed
Driver's SQLSetConnectAttr failed

No data source or driver specified; dialog prohibited
Dialog failed

63

SIMSCRIPT II.5 Database Connectivity User's Manual

64

IMO009
IMO010
IMO11
IMO12
IMO013
IMO14
IMO15

Unable to load translation DLL
Data source name too long
Driver name too long
DRIVER keyword syntax error
Trace file error

Invalid name of File DSN
Corrupt file data source

INDEX

A
Auto-Commitooeevvevveneeeeneeeennen. 21, 22,44, 49
D
database
COMIMULeeiiiieeiiee e
concurrency ...
CONNECHION.veiiviierieeereereeeeeeereeeeeeeree e
CIEALION ...ttt eve e 1
diSCONNECHION ... 3
rollback............... 21,22
SCCUTILY wvevvervrenreerieiesieetenteereseeeseeseesnenseseneneas 2
ranSaCtionScoveevveeeeeereeeree e 21,22
DB.AUTOCOMMIT.R..................... 21,22,44,49
DB.COMMIT.R....c..covvveveeirecrrann. 21,22, 44,49
DB.CONNECT.R.......... ...2,3,25,40,49
DB.DISCONNECT.Rccceecuvneeneen. 3, 25,40, 49
DB.EXISTS.F ..oovioiiieeieereeeeceeeeeeeveea 7,25,49

DB.FETCH.F..11-13, 15-17, 27, 28, 30, 40-42, 45,
50

DB.GETINT.F. ... 11-13, 15-17, 27, 28, 30, 40-42,
45, 50

DB.GETREAL.F.. 11-13, 15-17, 28, 30, 42, 45, 50

DB.GETTEXT.F......... 11-13, 15, 41, 42, 45, 50

15): 3] 615 70 12, 17, 28, 30, 50

DB.QUERYR......5, 11, 12, 15-17, 19, 20, 27, 28,
30, 40-42, 45, 51, 53

DB.ROLLBACK.R.......verorrrrrerreenn. 21,22, 44,51

DB.SETINT.R.... 19, 20, 22, 27, 28, 30, 40, 44, 45,
51

DB.SETREALR................... 19, 20, 27, 28, 44, 51

DB.SETTEXT.R ..o 19, 20, 44, 51

DB.UPDATE.F. 5-9, 20-22, 25, 27, 28, 30, 44, 52,
53

(o)
ODBC ...ttt 1-4, 49, 57
P
Preamble declarations............cceeeevvereeeeniieiennenne 2
R
TUN-tiMme €ITOrcvveeeerennnn. 3,4,7,12,13, 20, 57
S
SDBCIOE ..ottt 3
SQL
aggregate functionscceeeeevererceeienne 15,55
column numberccoeevvveenveeennns 12, 14, 50
CREATE TABLE ... 5, 6, 11, 16, 23, 25, 35-37,
53
data tYPES c.vevveeieiieeeeeeeee e
DDL statements.........c.cceevvveeenieeeniieeeeieeenen.
DELETEcooooviovieveeeeeeeees
DML statements
DROP TABLEcooveieeieeieeeeene.
CXPIESSIONS ..vvenerenreereriereeerreneeereneens
INSERT........... .. 7,8,20,27,44, 54
NAMES ..eeevveeeeireeeeieeeeereeeeetreeeeereeeeaeee e 13,55
null 6-8,12, 15, 17, 20, 23, 28, 30, 50
PATAMELELS ..ot 19, 20, 51
SELECT... 11, 14-17, 19, 27, 28, 30, 40-42, 45,
54
text literalS........occveeeveeeiieciicieeieees 7,13,55
UPDATE
SQLSTATE ..ot

65

	Chapter 1Introduction to SDBC
	1.1 Setting Up a Database
	1.2 Declaring the SDBC Functions and Routines
	1.3 Connecting to a Database
	1.4 Interpreting Run-time Errors

	Chapter 2SQL Updates
	2.1 Creating Tables
	2.2 Inserting Rows
	2.3 Modifying Rows
	2.4 Deleting Rows

	Chapter 3SQL Queries
	3.1 Querying the Database
	3.2 Specifying SQL Expressions
	3.3 Selecting Rows
	3.4 Joining Tables

	Chapter 4SQL Parameters
	Chapter 5Database Transactions
	Chapter 6Example Program: Bank Simulation
	Chapter 7Example Program: Job Shop Simulation
	APPENDIX ASDBC Functions and Routines
	APPENDIX BSQL Syntax
	APPENDIX CSQLSTATE Codes
	INDEX

