
Rule-based Analysis of Dimensional Safety

Feng Chen, Grigore Roşu, Ram Prasad Venkatesan

Department of Computer Science
University of Illinois at Urbana - Champaign, USA

{fengchen,grosu,rpvenkat}@uiuc.edu

Abstract. Dimensional safety policy checking is an old topic in software
analysis concerned with ensuring that programs do not violate basic prin-
ciples of units of measurement. Scientific and/or navigation software is
routinely dimensional and violations of measurement unit safety policies
can hide significant domain-specific errors which are hard or impossible
to find otherwise. Dimensional analysis of programs written in conven-
tional programming languages is addressed in this paper. We draw gen-
eral design principles for dimensional analysis tools and then discuss our
prototypes, implemented by rewriting, which include both dynamic and
static checkers. Our approach is based on assume/assert annotations of
code which are properly interpreted by our tools and ignored by standard
programming language compilers/interpreters. The output of our proto-
types consists of warnings that list those expressions violating the unit
safety policy. These prototypes are implemented in the rewriting system
Maude, using more than 2,000 rewriting rules. This paper presents a
non-trivial application of rewriting techniques to software analysis.

1 Introduction
Checking software for measurement unit consistency, also known as dimensional
analysis, is an old topic in software analysis. Software developed for scientific do-
mains, such as physics, mechanics, mathematics or applications of those, often
involves units of measurement despite the lack of support provided by underlying
programming languages. Computations using entities having attached physical
units can be quite complex; detecting dimensional inconsistencies in such com-
putations, for example adding or comparing meters and seconds, can reveal deep
domain-specific errors which can be hard, if not impossible, to find by just ana-
lyzing programs within their language’s semantics, automatically or not.

To emphasize the importance and nontrivial nature of dimensional analysis,
we remind the reader two notorious real-life NASA failures. NASA’s Mars Cli-
mate Orbiter spacecraft crashed into Mars’ atmosphere on September 30, 1999,
due to a software navigation error; the peer review findings indicate that one
team used English units (e.g., inches, feet and pounds) while the other used
metric units for a key spacecraft operation [24]. This happened less than 15
years after the space shuttle Discovery flew upside down over Maui during an
experiment on June 19, 1985, in an attempt to point the mirror to a spot 10,023
nautical miles above see level; that number was supplied in units of feet and then
fed into the onboard guidance system, which unfortunately was expecting units
in nautical miles, not feet [22]. These two failures, as well as many other lower
magnitude ones, could have been avoided by using dimensional analysis tools.



There is much work on supporting measurement units in programming lan-
guages. The earliest mention of the idea of incorporating units in programming
languages, to our knowledge was in 1960 [5]. Karr and Loveman [17] suggested a
flexible mechanism that allowed units to occur meaningfully in programs. There
have been proposals for dimensional checking within existing languages like Pas-
cal [9, 10] and Ada [11], and even in formal specification of software [14]. An in-
tuitive approach to strengthen type checking in programming languages was also
suggested in [16]. These approaches are based on defining a strong type check-
ing system with physical units on top of a programming paradigm, and then
using the compiler to catch dimensional inconsistencies. A similar approach was
taken by the Mission Data System (MDS) team at NASA JPL, who developed a
large C++ library incorporating a few hundred classes representing typical units,
like MeterSecond, together with appropriate methods to replace the arithmetic
operators when measurement unit objects are involved. However, these tech-
niques based on type checking, in addition to adding runtime overhead due to
the additional method or function calls (which can admittedly be minimized by
optimized compilers), cause inconvenience to programmers, and make develop-
ment of reusable software difficult. Furthermore, they limit the class of allowable
(or type checkable) programs to an unacceptably low level. For example, a pro-
gram calculating the geometric mean of the elements in a vector of meters needs
a temporary variable which is multiplied incrementally by each element in the
array; the unit of this temporary variable changes at each iteration, so it cannot
be declared using any domain-specific fixed type. The solution adopted by MDS
in such situations is to remove and attach types to numerical values via ap-
propriate extractors and constructors, which, of course, is a serious safety leak.

Packages for dimensional analysis and integrity in Ada have been proposed
in [15, 20], employing the use of Ada’s abstraction facilities, such as operator
overloading and type parameterization. Using a discipline of polymorphic pro-
gramming, it was suggested in [21] that type checking can and should be sup-
ported by semantic proof and theory. This was extended in [23] using explicit
type scheme annotations and type declarations and in [27] for type-indexed val-
ues in ML-like languages. The approach in [25] associated numeric types with
polymorphic dimension parameters, avoiding dimension errors and unit errors.
Kennedy proposed a formally verified method to incorporate, infer and check di-
mension types in ML-style languages [19], and provided a parametricity theorem
saying that the behavior of programs is independent of the units used [18]. Thus,
an abstract model of the language can be achieved to validate the equivalences
of units, with the property that any program which can be type checked is unit
safe. However, as Kennedy himself admitted, there are still interesting unit safe
programs which cannot be type-checked, including the simple geometric mean.

All the above study based on extensions, sometimes quite heavy, of program-
ming languages, builds a foundation for languages equipped with dimensional
information. However, due to some practical, economical and/or taste reasons,
these approaches have not been accepted by mainstream programmers and have
not been widely used in real large applications. For instance, it is exceedingly
inconvenient for programmers to rewrite a whole large application in another



language – the one extended with unit types – just to avoid measurement unit
conflicts. In this paper we propose a lighter-weight rewriting-based approach
to check measurement unit consistency, which has the main advantage that it
does not modify the underlying programming language at all. The user interacts
with our tools by providing code annotations, which are just comments, and
by receiving safety policy violation warning reports. We provide an integrated
tool containing both dynamic and static checkers, which are implemented by
rewriting in Maude, and explain their trade-offs of which users should be aware.

Due to space limits and to the complexity and large size of the discussed tools,
we cannot present our work in as much depth as we would like. Consequently, we
will mainly focus on examples and general concepts, mentioning that our Maude
rewriting implementation has more than 2,000 rewriting rules. However, we have
developed a web-site dedicated to the presented work, where the interested reader
can find more information (including complete source code) and download our
tools, at http://fsl.cs.uiuc.edu. The work presented in this paper has been
started by the second author as a former researcher at NASA.

2 Preliminaries
In this section we recall the basics of the BC and Maude languages. BC is the
language on which we applied our measurement unit safety checking approach
presented in this paper, but an implementation targeting C is under current
development and one targeting Java is under design. Maude is a rewriting based
executable specification language that we used to implement our prototypes.

BC Our domain-specific safety checking approach is general, both with respect
to the domain of interest and with respect to the underlying programming lan-
guage, but we firstly applied it to the GNU BC language, which comes with
any Unix platform [1], because it is the simplest but still practical language
having most of the characteristics of current imperative languages. BC [1] is
an arbitrary precision calculator language, typically used for mathematical and
scientific computation. The most basic element in BC is the number. BC has
only two types of variables, simple variables and arrays, which are used to store
numbers. The syntax of expressions and statements in BC is very similar to that
of C. It includes all the arithmetic, logical and relational operators found in C, in
addition to the increment “++” and decrement “--” operators, and it also allows
control structures for branching and looping through constructs like if, for and
while. Comments start with the characters /* and end with */. BC programs
are executed as the code is read, on a line by line basis; multiple instructions
on a single line are allowed if separated by semicolon. It allows auto variables
in functions, which are intended as variables for local usage; however, they are
distinguished from the traditional local variables, their active range being ex-
tended over those functions called by the function in which they are defined,
thus giving BC a dynamic scoping language flavor. By pushing auto variables
and parameters of functions into stack dynamically, BC supports recursive func-
tions. One can type man bc on any UNIX platform for more information on GNU
BC. For some unexplained reason, only one-character identifiers are allowed by
the BC implementation on Sun platforms; therefore we recommend the readers
interested in experimenting with large examples to use the Linux version of BC.



Maude Maude [6] is a high performance specification and verification system
in the OBJ family [13] that supports both equational and rewriting logics. It
provides a good framework to create executable environments for different log-
ics, theorem provers, programming languages and models of computation. We
use Maude to specify the BC programming language along with its executable
semantics and its domain-specific operational semantics with respect to units
of measurements. Since Maude can execute its specifications efficiently, one can
use these specifications to execute BC programs directly into the mathematical
semantics of the language, and further, to analyze BC programs for safety policy
violations directly into the mathematical definition of the safety policy. There-
fore, Maude provides the foundation for our work in this paper. The following
is a Maude specification implemented in our measurement unit safety analysis
tool, defining a segment of the theory of units of measurement:

fmod UNITS is
protecting INT .
sorts BUnit SpecialUnit Unit UnitList .
subsorts BUnit SpecialUnit < Unit < UnitList .
ops mile kg meter second Newton Celsius Fahrenheit : -> BUnit .
ops noUnit any fail : -> SpecialUnit . op _^_ : Unit Int -> Unit [prec 10] .
op __ : Unit Unit -> Unit [assoc comm prec 15] . op nil : -> UnitList .
op _,_ : UnitList UnitList -> UnitList [assoc id: nil] .
vars U U’ : Unit . vars N M : Int .
eq Newton = kg meter second ^ -2 .
eq U noUnit = U . eq U any = U . eq U fail = fail .
eq fail ^ N = fail . eq any ^ N = any . eq noUnit ^ N = noUnit .
eq U ^ 0 = noUnit . eq U ^ 1 = U . eq U U = U ^ 2 .
eq U (U ^ N) = U ^ (N + 1) . eq (U ^ N) (U ^ M) = U ^ (N + M) .
eq (U U’) ^ N = (U ^ N) (U’ ^ N) . eq (U ^ N) ^ M = U ^ (N * M) .

endfm

We next briefly introduce the reader to the Maude notation, at the same ex-
plaining some intuitions underlying the module above needed later. The key-
words sort and op refer to the types of data and the operations on these data
respectively. In the above module, we have different types (sorts) of data: BUnit
for basic units, SpecialUnit, Unit and UnitList. Units like mile and noUnit have
been declared as constants of sorts BUnit and SpecialUnit, respectively. The in-
tuition for the special units is that they can be used in any unit context but
can be distinguished from the basic units if needed. The unit any is a unit which
can be dynamically converted to any other unit, depending on the context; for
example, in a BC statement like x++, the increment 1 is of unit any and is dy-
namically converted to the current unit associated to the variable x. The special
unit noUnit is used to distinguish a canceled unit (for example after calculating
meter^(1-1)) from the unit any, in order to report appropriate warnings, and
the special unit fail is attached to a variable in case its unit cannot be com-
puted due to safety violations, such as, for example, the unit of z after executing
the BC assignment z = x + y in an environment in which x has the unit meter

while y has the unit second. The result sort of an operation is listed after the
-> symbol, while the argument sorts are listed between the : and -> symbols.
The power operator defined by op _^_ : Unit Int -> Unit implies that the op-
erator takes a unit and an integer and returns another unit (the power). Maude
allows attributes like associativity, commutativity, precedence and identity to
be associated with binary operators. This makes it a very elegant language for



specifying and manipulating sets and lists. In the above module, by virtue of
op __ : Unit Unit -> Unit being declared commutative and associative with a
precedence of 15, Maude considers meter second and second meter equivalent,
which is natural. Variables of a sort can be defined using the keyword var. The
equations in the above module, introduced via the keyword eq, define the se-
mantics of the power operator. We claim, without proof, that the specification
above is canonical, that is, confluent and terminating, so it can be used as a
proper computational model for unit equivalences. Thus Maude provides a clean
and efficient way of defining abstract domains as equational specifications.

3 Executable Semantics of Programming Languages

Equational logic is an important paradigm in computer science. It admits com-
plete deduction and is efficiently mechanizable by rewriting: CafeOBJ [8], Maude
[6] and Elan [3] are equational specification and verification systems in the OBJ
[13] family that can perform millions and tens of millions of rewrites per second
on standard PC platforms. It is expressive: Bergstra and Tucker [2] showed that
any computable data type can be characterized by means of a finite equational
specification, and Goguen and Malcolm [12], Wand [26], Broy, Wirsing and Pep-
per [4], and many others showed that equational logic is essentially strong enough
to easily describe virtually all traditional programming language features.

Following the example of Goguen and Malcolm [12], we have defined the
semantics of BC as an equational algebraic specification in Maude. Our BC
specification has about 500 equations in Maude, all unconditional. Thanks to
Maude’s speed in executing unconditional equational specifications, we were able
to run dozens of non-trivial, often recursive BC programs directly within their
semantics in Maude. The overall reduction in speed was a factor of about 25-30,
which we found pretty satisfactory for our prototypes, which essentially extend
the executable semantics of BC with new, domain specific definitions for safety
policies. Equational specifications of programming languages, as well as exten-
sions of them, can be developed usually very rapidly because they just reflect
the definition of the language. In fact, they are nothing but formal definitions
of languages. We believe that this is an appropriate level to start developing a
software analysis tool, because one does not have to worry about implementation
details of the programming language but rather focus on the main issues. One
can download our BC specification from http://fsl.cs.uiuc.edu, together with
all its extensions to units of measurement, and soon those for C and Java.

Briefly, the executable semantics of BC declares an operation run which takes
a program and a list of integers (its input) and returns another list of integers (its
output). To execute programs properly, one needs to also define environments,
which are sets of pairs (variable, integer). Because of recursive function calls, one
needs to also stack these environments dynamically, as the program executes.
Appropriate operations to update the environment are also defined, as well as
operations to properly deal with return, break and continue statements.

4 Design Conventions and Annotation Schemas
The design of our prototypes has been influenced by three major factors: correct-
ness, unchanged native programming language, and low amount of annotations.



Correctness By “correctness” we mean that there are no possible violations of
safety policy in the program which our tool does not report. We consider correct-
ness a crucial aspect because, unlike other tools like Extended Static Checking
[7] being mainly intended to help users find some bugs in their programs with
relatively little effort, our tools are intended to be used in the context of safety
critical software, such as air craft and navigation, where software engineers, our
users, want to be aware of any inconsistency in their code.
Unmodified Programming Language Another major influencing factor in
the design of our prototypes was the decision to not modify the underlying pro-
gramming language at all, for example by adding new types. Our reason for this
decision is multiple. First, we do not want to worry about providing domain
specific compilers; one can just use the state of the art optimized compilers for
the specific programming language under consideration, without any modifica-
tion. Second, by enforcing an auxiliary typing policy on top of a programming
language in order to detect unit inconsistencies via type checking, one should
pay the price of some runtime overhead due to method calls that will replace all
the normal arithmetic operators; our static prototype does not add any runtime
overhead. Third and perhaps most importantly, since we do not add new types
to the language, we do not put the user in the unfortunate situation to have a
correct program rejected because it cannot be type checked, which is in our view
the major drawback of typed approaches to unit safety; instead, our user has
the option to either add auxiliary unit specific information to help the checker
or to ignore some of the warning messages.
Annotation Schemas The mechanism by which the users can add auxiliary,
in this case measurement unit specific, information to their program is by means
of annotations, which are inserted as special comments at appropriate places
in the program. Annotations are introduced with the syntax /*U _ U*/, which
is understood by our tools and ignored by compilers, and are of two kinds:
assumptions and assertions. Our annotation schemas are general and can be
applied to any domain-specific safety policy checker, but in this paper we will
focus on unit safety policy.
Assumptions. There are two types of assumptions currently supported by our
tools, namely /*U assume unit(_) = _ U*/ and /*U assume returns _ U*/. The
first can appear anywhere in the program and takes as arguments (the under-
scores) a variable and a unit expression. The variable can be an indexed one in
the dynamic version and should be a simple one in the static version; if it is
not a simple one then it will be automatically replaced by its simple root, e.g.,
s[10][i] will be replaced by just s. The unit expression can be any combination
of basic units and unit(Expr), the second being evaluated in the current execu-
tion environment(s). For example, if x, y, acc, dist and time are variables then
the following are admissible assumptions:

/*U assume unit(x) = meter U*/ /*U assume unit(x) = unit(y) U*/
/*U assume unit(acc) = meter second^-2 U*/
/*U assume unit(acc) = unit(dist/time) second^-1 U*/

The second assumption annotation is used only for functions, to enforce the unit
of the returned value to a specific unit. It can be used within unit conversion
functions, such as from Fahrenheit to Celsius (we will show such an example



soon), or simply to state the result unit of a function when that cannot or is
not desired to (in order to keep the complexity of the tool low), be inferred. It
is placed just before the body of the function and takes a unit expression as a
sole argument, which will be evaluated before the body of the function but after
the arguments of the function are instantiated. For example, the following naive
function calculates the square root over integers and can be applied on any units:

define sqrtNaive(x) /*U assume returns unit(x)^(1/2) U*/
{ auto temp; temp = 0;

while (1) {if (temp*temp == x) return temp; if (temp*temp > x) return temp - 1; temp += 1;}
}

In fact, our tools will report warnings for the two conditionals above because
they cannot prove that the units of temp*temp and x are compatible. However, the
returned value of sqrtNaive will be used as unit(x)^(1/2) in every callee context,
where the unit of x is calculated dynamically, also in the callee’s context.
Assertions. Assertions have the syntax /*U assert _ U*/, where the argument
can be any boolean expression on units, using the usual connectors and, or,
implies, not, over equalities of unit expressions. The next are some examples:

/*U assert unit(x) = meter U*/ /*U assert unit(x) = unit(y) U*/
/*U assert unit(acc * time ^ 2) = unit(dist) and unit(speed) unit(time) = unit(dist) U*/
/*U assert unit(x) = unit(y) implies unit(z) = unit(x) ^ 2 U*/

It is worth noticing that our assertions can be highly unit invariant. For example,
the variables above can be represented either in the metric or in the English
system as far as they respect the specified dimensional constraints. Assertions
can be anywhere in a program, including just before the body of a function:

define Fah2Cel(z)/*U assert unit(z) = Fahrenheit U*//*U assume returns Celsius U*/
{ return (z - 32) * 5 / 9; }

Example. We next present a less trivial example showing some of the complex
unit expressions that can be manipulated by our tool, and also emphasizing the
importance of annotations. The program below provides functions to calculate
distances, convert energy and calculate the angle under which a projectile of a
given weight should be launched in order to travel a given distance:

define sqrtnaive(x) {
auto temp; temp = 0; /*U assume unit(temp) = sqrt(unit(x)) U*/
while(1) {if (temp*temp>=x) return temp; if (temp*temp>x) return temp-1; temp += 1;}

}
define lb2kg(w) /*U assert unit(w) = lb U*/ /*U assume returns kg U*/
{return 10 * w / 22;}
define distance(x1, y1, x2, y2) {return sqrtnaive((x2-x1)^2 + (y2-y1)^2);}
define energy2speed(energy, weight) {return sqrtnaive(2 * energy / weight);}
define prjTangent(dist, speed, g) /*U assert unit(speed)^2 = unit(dist) unit(g) U*/
{ auto dx, dy;

dx = speed * speed + sqrtnaive(speed^4 - (dist * g)^2); dy = dist * g
return dx/dy

}
projectilex = 0; /*U assume unit(projectilex) = meter U*/
projectiley = 0; /*U assume unit(projectiley) = unit(projectilex) U*/
targetx = 17; /*U assume unit(targetx) = unit(projectilex) U*/
targety = 21; /*U assume unit(targety) = unit(projectiley) U*/
dist = distance(projectilex, projectiley, targetx, targety);
projectileweight = 5; /*U assume unit(projectileweight) = lb U*/
energy = 2560; /*U assume unit(energy) = kg meter^2 second^-2 U*/
speed = energy2speed(energy, projectileweight);
g = 10; /*U assume unit(g) = meter second^-2 U*/
print(prjTangent(dist, speed, g));



The first function is the naive implementation of square root and the second one
is a converting routine, from lb to Kg. The next function computes the distance
between two points. No annotations are given, but a warning will be generated
anyway if the arguments do not have the same unit. The fourth function com-
putes the speed of an object, given the energy acting on it. The last function
computes the tangent of the angle of a projectile, given a certain distance it wants
to reach, an initial speed and a gravitational acceleration. This function is an-
notated with an assertion describing a unit invariant among its arguments. This
allows one to use such functions in various contexts, such as under metric or En-
glish system conventions, as well as for other possible combinations of units. One
can now assume a context in which these functions are called. The above code
contains a unit safety violation, which is immediately reported by both checkers.
The error will be reported when the function projectileTangentAngle is called,
because the unit of speed is Kg^(1/2) meter second^-1 lb^(-1/2) so the assertion
of function projectileTangentAngle will be violated. To correct this problem, the
user should first properly convert the projectile weight to Kg, so the speed should
be assigned the expression energy2speed(energy, lb2kg(projectileWeight)).

Reducing the Amount of Annotations Another major factor influencing
our design significantly was the overall observed and sometimes openly declared
reluctance of ordinary programmers and software engineers to modify or insert
annotations in their programs. Therefore, we paid special attention to reducing
the amount of annotations to a minimum possible. As a consequence, every
variable by default is considered to have its own unit, which is different from
any other existing unit. This principle of course extends to auto variables, their
units being considered different from the units of global variables having the
same name. Our tool will therefore output a warning on the simple program
print(x+y), because x and y cannot be shown to have the same unit. Similarly,
the program x = 10; y = 10; print(x+y) will be output a warning on its third
statement, for the same reason.

This brings us to another major design convention of our tools, which we
call the locality principle, which says that the user is assumed to know and un-
derstand what (s)he is doing locally, within a single instruction, with respect to
constants. For example, if one writes x++, then one means to increase the value
of x by 1, and this 1 has exactly the same unit as x at that particular moment
during the execution of the program. The same increment instruction can be
reached twice or more times during the execution of the program; each time
the unit of the increment will be dynamically converted to the unit of x, which
can be different each time. There is, and there should be, no difference between
the statements x++ and x = x + 1, so we apply the same locality principle to
numerical constants. That implies that in x = x + 5, the unit of 5 will be con-
verted to the unit of x and no warning will be reported. Additionally, a constant
assignment to a variable, such as x = 5, will not change the unit of x. Our moti-
vation for these conventions is again to keep the amount of code annotation low,
but the users thinking that our locality principle yields a safety leak have the
option to always attach a unit to numerical values via appropriate assumptions,



e.g., temp = 5 ; /*U assume unit(temp) = second U*/, and then execute x = x

+ temp; a warning will be reported in this case if the unit of x cannot be shown
to be second. Based on these efforts, the following example of sorting needs only
one assumption to satisfy the safety policy:

n = 25 ; /*U assume unit(i) = any U*/
for (i = 1 ; i <= n ; i = i + 1) a[i] = n - i + 1 ;
for (i = 1 ; i < n ; i = i + 1)

for (j = i + 1 ; j <= n ; j = j + 1)
if (a[j] < a[i]) { temp = a[i] ; a[i] = a[j] ; a[j] = temp ; }

for (i = 1 ; i <= n ; i = i + 1) print(a[i]) ;

The only assumption needed, assigning the universal unit any to the counter i,
guarantees the compatibility of i and n when they are compared later, within the
loop conditions. The first loop, which assigns decreasing numbers to the elements
of the array a, also assigns the unit of n, which is considered to be a fresh unit
different from any other unit because no unit has been explicitly assigned to it,
to each of the 25 elements of a. In the case of the static analyzer, the array a will
be assigned the unit of n by executing the loop body symbolically only twice,
regardless of the value of n (because the environment set stabilizes; see Subsec-
tion 5). Then the second loop is analyzed and no warning is reported because
the nested loop assigns the unit of i, which is any, to j, so any subsequent com-
parisons of j are safe; the environment set also stabilizes in two iterations of the
loop. Similarly the third loop can be certified without any auxiliary information.
Without the assumption, 5 warnings would be reported.

5 Rule-based Dynamic and Static Analysis Tool
We next present our tool and its underlying algorithms. We start by describing
how one interacts with our tool, mentioning that the interested reader can down-
load from http://fsl.cs.uiuc.edu. The current version of our tool supports only
the BC language, but it is being extended to support C and Java.
Tool Development The tool is invoked with the command “bc-unit [-so]

filename” where s and o are optional. By default, the tool starts its dynamic
checker, which is described below, and its output consists of a list of warnings
reported in the order of execution. A warning consists of the line number and
the expression violating safety; the same warning can appear many times if
the unsafe expression has been executed more than once. The option “-o” tells
the tool to output the warning list ordered by line numbers without redundancy.
This option decreases the amount of reported safety violations, so only advanced
users should use it. The option “-s” triggers the static checking mode, which is
also described below.

The user of our tool should understand the differences and the tradeoffs
between dynamic and static safety policy checkers. The main advantage of the
dynamic checker is the precision of its reported warnings: any reported warning
represents a violation of the unit safety policy. The user should therefore consider
these reports very seriously and should have strong reasons to ignore them. The
main drawback of the dynamic checker is its coverage: it only covers the path
that was traversed by the particular execution of the program. Therefore, other
errors might exist in the analyzed program which were not revealed and which
can appear when the program is executed with different numerical values as



input. Another drawback of the dynamic unit safety checker is that its execution
time consists of the analyzed program execution time plus the runtime overhead.
Therefore, if a program calculates a computationally complex function or does
not terminate in a reasonable time, then so does the unit safety prototype, which
can be a serious drawback in some applications.

An advantage of the static checker discussed next is that it covers all the
potentially reachable code. So it will not miss any unsafe expression. A careful
and patient analysis of the reported warnings can lead one to find all the unit
safety leaks. Another advantage is its relative efficiency, because it does not
execute the programs, so non-termination of the program does not imply non-
termination of the tool. However, depending on the amount of theorem proving
that one wants to put in such a static certifier, it can actually become rather
inefficient. A major drawback of the static certifier is the potentially long list
of false alarms that it reports. The user can reduce their number using assume
annotations, but one should be careful when using assumptions because they
can be wrong and thus present a serious safety threat.

We used Maude as a rule-based programming language to implement both
the dynamic and the static checkers. Since programs to be analyzed are expected
to be provided as terms to Maude, we have implemented a simple wrapper (about
300 lines of PERL code), whose work-flow is the following:
1. Adjust the input program to be parsable by Maude, e.g., add spaces around

BC symbols, add line numbers, delete unnecessary comments, detect the
variable and function names and define them as appropriate constants, etc.;

2. Invoke either the dynamic or the static Maude checker (which are described
below) to verify the generated program term;

3. Collect Maude’s output, parse it and produce user friendly error messages.
This way users can use our tool in a push-button fashion, without seeing Maude.
Dynamic Checker Our Maude dynamic unit safety checker essentially inter-
prets the BC program within its executable semantics enriched with the unit
safety policy. This is realized by extending the executable semantics specifica-
tion of BC discussed in Section 3. A major extension is with respect to execution
environments. An execution environment is now a set of triples, each triple con-
taining a variable, an integer value and a unit of measurement. The integer value
is used to determine the execution flow of the analyzed program, while the unit
is used to check the safety policy. For example, if the expression x + y is en-
countered at line number 15 and the execution environment contains the triples
[x, 7, meter^2 second] and [y, 3, meter second] then the value 10 is correctly
assigned to the sum of x and y but a warning message will be issued of the form
15 : x + y. If the expression x + y was assigned to a variable, say x, then the
new environment will assign the value 10 and the unit fail to the variable x.
Notice that, since BC supports recursive function calls and auto variables, all
the environment stacking technique needs to be extended to the enriched envi-
ronments.

Another major extension of the BC semantics is with respect to the newly
introduced code annotations, which act like new, domain-specific instructions.
One has to describe their semantics also in an executable manner. An assumption



/*U assume unit(Var) = UnitExp U*/ is interpreted by our dynamic checker as
follows: 1) first evaluate the unit expression UnitExp in the current environment,
hereby obtaining a result which is an expression using just basic units, then
2) modify the current environment by associating the newly calculated unit
to the variable Var, without changing its current integer value; if UnitExp fails
to evaluate to a correct unit, due to violations of the safety policy that it may
contain, then the unit fail will be assigned to Var. Due to its precision in analysis
because of the exact execution path and environment, the dynamic checker can
allow the user to assign different units to different elements in an array. In
fact, any abstract memory location (which can store an integer; note that BC
is arbitrary precision) can have any unit associated with it. Assumptions /*U

assume returns UnitExp U*/ are interpreted as follows: when a function call is
invoked in an expression context, UnitExp is evaluated and returned as unit
associated to the function call; the function call will also take place, and all
additional warnings while executing the function are collected and output to
the user. Assertions of boolean unit expressions are simply evaluated to boolean
values and warnings are returned if they evaluate to false. Assertions act as just
checks in the context of dynamic checking.

The Maude implementation of our current unit safety dynamic checker uses
a total of about 1,000 implicit or explicit rewriting or membership rules.
Static Checker The main idea behind our static unit analyzer is that the con-
crete execution path of the program to be checked is entirely ignored; instead, all
execution flows are considered in parallel. An immediate simplifying abstraction
assumption is to also ignore all the numerical values (integers) and only consider
the domain-specific, abstract values (units of measurement) of variables. There-
fore, our environments will now consist of pairs (variable, unit), rather than
triples (variable, integer, unit) like in the case of dynamic unit safety checking.
Moreover, since the concrete indexes in arrays (integers) are not available any-
more we’ll have to also assume that, unlike its dynamic version, all the elements
in an array have the same unit.

Due to the loss of precision, at each point in the program we will have to
consider a set of environments, namely all those in which a potential execution of
the program can be. The necessity of this can probably be seen best in the case
of conditionals. If one wants to analyze a program of the form if (E) Stmt else

Stmt’ ; Pgm in an environment Env then, due to the fact that the concrete values
of variables are not known, one basically has to consider both branches, followed
by Pgm. If one first considers the first branch followed by Pgm and then the second
followed by Pgm, then one misses the whole point which makes unit certification
relatively tractable in practice, namely that despite the apparent exponential
branching of environments, these will actually repeat often. In particular, if
the two branches generate the same environment when they terminate (before
starting Pgm), then the approach above would check the remaining program twice,
which is undesirable. The situation is actually even worse, because evaluating an
expression can generate an arbitrary number of possible environments (due to
function calls). Instead, we prefer to work with sets of environments in parallel.
Each statement will be abstractly evaluated in all the environments. If the unit



safety policy will be violated in any of the environments then a warning will
be output. A new set of environments will be computed after each statement.
Set operations, such as idempotency, will be executed on the fly, so the set of
environments is kept small.

An additional complication is the treatment of return statements. Consider
for example the conditional above and that one of the branches contains a re-
turn statement. Then we must be able to ”freeze” the set of environments that
encounter the return statement, and to return those (after they are properly
popped) to the callee’s environment when all the function’s code was processed.
Any subsequent code will be of course discarded by frozen environments.

Another complication is the treatment of loops. A general solution would
involve loop invariants, which we would like to avoid as much as possible due
to its lack of understanding by ordinary programmers and software engineers.
Our alternative solution, which seems quite promising and very suitable for and
actually inspired from rule-based programming, is one based on code patterns.
More precisely, we define loop patterns that we can efficiently analyze statically.
One such pattern is a loop whose body, when symbolically executed under a set
of possible environments, does not change that set of environments; if this is the
case then the loop can be safely ignored. A generalization of this pattern which
we have also implemented is one which symbolically executes the loop until the
set of environments stabilizes; this pattern for example is triggered in order to
analyze the sorting algorithm in Subsection 4. Other more complex patterns
are also considered. If a certain loop does not fall under any of the provided
patterns, then all the defined variables in the loop are invalidated (their unit is
set to fail) and the static analysis process continues. The user can intervene and
attach proper units to failed variables. The advanced user can add new patterns.

The Maude implementation of our current static checker for unit safety uses
a total of about 1200 Maude rewriting rules.
Some Experiments In most of our experiments the Maude executable defi-
nition of BC was about 25-30 times slower than BC v1.06 on Linux platforms,
which is a good factor considering that we build our tools directly on top of a
mathematically clean setting. Adding measurement unit knowledge to the BC
specification basically doubles its size (adds 500 more axioms) and further in-
creases the execution time of programs by a factor of 5. Since many physics
programs essentially calculate a function and have just one execution path, one
can argue that having a precise dynamic measurement unit safety checker is ex-
tremely useful, even if it slows down the execution of the program by 2-3 orders
of magnitude. The static checker needs more axioms (rules) because it imple-
ments several patterns for loops. If a loop falls under a known pattern then it
is discarded quickly; otherwise, the user intervention may be needed to add new
assumptions as annotations. The killing complexity factor for the static checker
is conditional branches when these modify the unit-specific environment differ-
ently, which in our experience happens very rarely. We tried examples where 10
worst-case 10 line conditionals were serialized, for a total of 1024 situations to
analyze, and it took our static checker about 3 seconds to check it. On the other
hand, if the two branches generate the same abstract environment, that is, if



they both modify the units of variables in the same way, then we were able to
analyze 1,000 repetitions of best-case 10 line conditionals, so a total of 10,000
lines of BC code, in about 1 second.

6 Conclusion and Future Work
A promising annotation based approach to dimensional safety has been pre-
sented, together with a tool including both dynamic and static safety checkers
implemented by rewriting in Maude. Future work includes extending the pat-
tern database for the static checker and designing a general purpose invariant
based loop analysis technique to be launched as a last pattern before the defined
variables are invalidated. This work is supported by a joint NSF/NASA grant,
CCR-0234524, which assumes that the supported projects will be run on NASA
testbeds and used by NASA scientists.

References

1. GNU BC. URL: http://www.gnu.org/software/bc/bc.html.

2. J. Bergstra and J.V. Tucker. Equational specifications, complete rewriting systems,
and computable and semicomputable algebras. JACM, 42(6):1194–1230, 1995.

3. P. Borovanský, H. Ĉırstea, H. Dubois, C. Kirchner, H. Kirchner, P.-E. Moreau,
C. Ringeissen, and M. Vittek. ELAN. User manual – http://www.loria.fr.

4. M. Broy, M. Wirsing, and P. Pepper. On the algebraic definition of programming
languages. ACM Trans. on Prog. Lang. and Systems, 9(1):54–99, January 1987.

5. T. Cheatham. Handling fractions and n-tuples in algebraic languages. Presented
at the 15th ACM Annual Meeting, Aug. 1960.

6. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. Que-
sada. Maude: specification and programming in rewriting logic. SRI International,
January 1999, http://maude.csl.sri.com.

7. Compaq. ESC for Java, 2000. URL: www.research.compaq.com/SRC/esc.

8. R. Diaconescu and K. Futatsugi. CafeOBJ Report: The Language, Proof Tech-
niques, and Methodologies for Object-Oriented Algebraic Specification. World Sci-
entific, 1998. AMAST Series in Computing, volume 6.

9. A. Dreiheller, M. Moerschbacher, and B. Mohr. Physcal - programming Pascal
with physical units. ACM SIGPLAN Notices, 21(12):114–123, December 1986.

10. N. Gehani. Units of measure as a data attribute. Comp. Lang., 2:93–111, 1977.

11. N. H. Gehani. Ada’s derived types and units of measure. Software: Practice and
Experience, 15(6):555–569, June 1985.

12. J. Goguen and G. Malcolm. Alg. Semantics of Imperative Programs. MIT, 1996.

13. J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud. Intro-
ducing OBJ. In Software Engineering with OBJ: algebraic specification in action,
pages 3–167. Kluwer, 2000.

14. I. J. Hayes and B. P. Mahony. Units of measurement in formal specifications.
Technical report, SVR Centre, University of Queensland, November 1994.

15. P. N. Hilfinger. An ada package for dimensional analysis. ACM Transactions on
Programming Languages and Systems, 10(2):189–203, April 1988.

16. R. T. House. A proposal for the extended form of type checking of expressions.
The Computer Journal, 26(4):366–374, 1983.

17. M. Karr and D. B. Loveman III. Incorporation of units into programming lan-
guages. Communications of the ACM, 21(5):385–391, May 1978.



18. A. J. Kennedy. Relational parametricity and units of measure. In Proceedings
of the 24th Annual ACM Symposium on Principles of Programming Languages.
Association of Computing Machinery, Inc, January 1997. Paris, France.

19. A. J. Kennedy. Programming Languages and Dimensions. PhD thesis, St. Cather-
ine’s College, University of Cambridge, November 1995.

20. G. W. Macpherson. A reusable ada package for scientific dimensional integrity.
ACM Ada Letters, XVI(3):56–69, 1996.

21. R. Milner. A theory of type polymorphism in programming languages. Journal of
Computer and System Sciences, 17:348–375, 1978.

22. Peter G. Neumann. Letter from the editor - risks to the public. ACM SIGSOFT
Software Engineering Notes, 10(3):10, July 1985.

23. M. Odersky and K. Läufer. Putting type annotations to work (preliminary). Tech-
nical report, Newton Institute Workshop on Advances in Type Systems for Com-
puting, Cambridge , England, Ausust 1995.

24. Mars Climate Orbiter. URL: http://mars.jpl.nasa.gov/msp98/orbiter.
25. M. Rittri. Dimensional inference under polymorphic recursion. In Functional

Programming Languages and Computer Architecture, 7th Conference. Association
of Computing Machinery, Inc, 1995.

26. M. Wand. First-order identities as a defining language. Acta Informatica, 14:337–
357, 1980.

27. Z. Yang. Encoding types in ML-like languages. In ICPF 98. Association of Com-
puting Machinery, Inc, 1998. Baltimore, USA.


