The Modular Web Framework
User’s manual

Carlos Viegas Damadsio, Anastasia Analyti, and Grigoris Antoniou

1. Introduction

The Modular Web Framework (MWeb) allows the use and combination of several rulebases
in a principled way, supporting safe uses of non-monotonic negation in scoped closed and
open world assumptions in logic rules for Semantic Web applications.

Currently it supports experimentally RDF Schema ontologies and is integrated with the
state-of-the-art inference engines XSB and Smodels.
Support of RIF and Integration with OWL-2 is foreseen in the near future.

MWeb’s main features are

Safe support of monotonic (strong) and non-monotonic (weak or naf) negations
under full control of rulebase providers and consumers;

Immediate specification of scoped open and closed world assumptions
independently of the existing or shared rulebases;

Full-fledged theory and results guaranteeing monotonicity under broad conditions;
Independent interpretations of shared knowledge via explicit or implicit export and
import directives;

Adoption and transparent use of main semantics for logic rule bases (well-founded
and answer set based);

Detection of knowledge dependent on contradictions;

Separate interface and rulebase module code;

Embellished Prolog-like syntax for simplifying rulebase development;

Modular and independent compilation of modules with dynamic loading;
Compilation into XSB prolog modules with tabling to guarantee termination and
efficiency;

Seamless integration with XSB Prolog system with no overhead.

2. Copyright and Contacts

Copyright 2009 Carlos Viegas Damasio

MWeb is free software: you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.

MWeb is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with MWeb. If
not, see <http://www.gnu.org/licenses/>.

The MWeb software has been developed by

Carlos Viegas Damasio(cd@di.fct.unl.pt)
Centro de Inteligéncia Artificial (CENTRIA)
Faculdade de Ciéncias e Tecnologia
Universidade Nova de Lisboa

Quinta da Torre

2829-516 Caparica

Portugal

The MWeb framework is a joint work of Anastasia Analyti, Grigoris Antoniou, Carlos Viegas
Damasio with contributions from Gerd Wagner. More information can be found at MWeb’s
web page http://centria.di.fct.unl.pt/~cd/mweb.

3. Download and installation

The MWeb framework assumes that XSB Prolog version 3.2 or later is properly installed
with Smodels support. The XSB system can be obtained from http://xsb.sourceforge.net.
The Smodels system is distributed with XSB, but users can obtain further information at
http://www.tcs.hut.fi/Software/smodels/ .

After that, download the tgz archive from http://centria.di.fctunl.pt/~cd/mweb and
unpack it in a directory of your choice (let’s denote it by USERDIR/mweb).

For simpler use we suggest the following line to be added to your xsbrc.P file, usually
located in ~/ . xsb directory (do not forget the quotes):

:- assert(library directory('USERDIR/mweb/source')).

Compile the MWeb framework with the command xsb mweb. You should obtain in the
output something like (ignore any warning messages that might exist) the following
sequence of text (parts have been removed):

$ xsb mweb

[xsb_configuration loaded]

[sysinitrc loaded]

[siteinitrc loaded]

[xsbrc loaded]

[Compiling /Users/carlosdamasio/Documents/Codigo/mweb/mweb]

% Specialising partially instantiated calls to mwebExecuteGoal/4

% Specialising partially instantiated calls to mwebCompileGoal/4

% Specialising partially instantiated calls to ord_union/3

[mweb compiled, cpu time used: 0.0730 seconds]

[xasp loaded]

[sm_clause_store loaded]

[Compiling /Users/carlosdamasio/Documents/Codigo/mweb/mwebParser]

% Specialising partially instantiated calls to declare prefixes/3

% Specialising partially instantiated calls to process_mweb_ scope/5

% Specialising partially instantiated calls to process_mweb predicate/4
% Specialising partially instantiated calls to process_mweb defines predicates/8
% Specialising partially instantiated calls to process_mweb uses_mode/5
% Specialising partially instantiated calls to process_mweb_ atom/6

% Specialising partially instantiated calls to process_curie/3

% Specialising partially instantiated calls to process_strong negation/2
% Specialising partially instantiated calls to process_slots/3

% Specialising partially instantiated calls to process_and_slots/3

% Specialising partially instantiated calls to expand mweb atom/6
[Module mwebParser compiled, cpu time used: 0.1400 seconds]

[Compiling /Users/carlosdamasio/Documents/Codigo/mweb/mwebCompiler]
Specialising partially instantiated calls to mwebLocalPredicateName/3
Specialising partially instantiated calls to mwebEncodelLiteral/4
Specialising partially instantiated calls to mwebCompileListUses/3
Specialising partially instantiated calls to mwebCompileOneUses/7
Specialising partially instantiated calls to mwebExportDeclarations/5
Specialising partially instantiated calls to mwebCompileLiteral/4
Specialising partially instantiated calls to mwebPredicateName/5

% Specialising partially instantiated calls to mwebDualPrologPredicate/1
[Module mwebCompiler compiled, cpu time used: 0.0900 seconds]
[mwebCompiler loaded]

[Compiling /Users/carlosdamasio/Documents/Codigo/mweb/mwebRuntime]
[Module mwebRuntime compiled, cpu time used: 0.0040 seconds]
[mwebRuntime loaded]

00 00 00 o0 0P o° o

End XSB (cputime 0.32 secs, elapsetime 0.38 secs)

Check that the installation is fine by cding to USERDIR/mweb/examples/security and
consulting file testSecurity. The output should be similar to:

| ?- [testSecurity].

[Compiling ./testSecurity]

[testSecurity compiled, cpu time used: 0.0130 seconds]
[testSecurity loaded]

[mweb loaded]

[xasp loaded]

[sm_clause_store loaded]

[mwebParser loaded]

[fancyProlog loaded]

[iri loaded]

[iriparse loaded]

[utilities loaded]

[builtins loaded]

[mwebCompiler loaded]

[mwebRuntime loaded]

[Compiling ./http%3A%2F%2Fgeography%2Eint]
[Preprocessing ./http%3A%2F%2Fgeography%2Eint.pl]
[Module http%3A%2F%2Fgeography%2Eint compiled, cpu time used: 0.0150 seconds]
[Compiling ./http%3A%2F%2Feuropa%2Eeu]

[Preprocessing ./http%3A%2F%2Feuropa%2Eeu.pl]

++Warning[XSB]: [Compiler] ./http%3A%2F%2Feuropa%2Eeu : Unused symbol $rbnaf/1
++Warning[XSB]: [Compiler] ./http%3A%2F%2Feuropa%2Eeu : Unused symbol @/2
++Warning[XSB]: [Compiler] ./http%3A%2F%2Feuropa%2Eeu : Unused symbol

tneg http://geography.int#Country/2

++Warning[XSB]: [Compiler] ./http%3A%2F%2Feuropa%2Eeu : Unused symbol usermod/0
++Warning[XSB]: [Compiler] ./http%3A%2F%2Feuropa%2Eeu : Unused symbol

tpos_http://geography.int#Country/2

++Warning[XSB]: [Compiler] ./http%3A%2F%2Feuropa%2Eeu : Unused symbol
tupos_http://geography.int#Country/2

++Warning[XSB]: [Compiler] ./http%3A%2F%2Feuropa%2Eeu : Unused symbol @@/2
++Warning[XSB]: [Compiler] ./http%3A%2F%2Feuropa%2Eeu : Unused symbol
tuneg_http://geography.int#Country/2

[Module http%3A%2F%2Feuropa%2Eeu compiled, cpu time used: 0.0160 seconds]
[Compiling ./http%3A%2F%2Fsecurity%2Eint]

[Preprocessing ./http%3A%2F%2Fsecurity%2Eint.pl]

[Module http%3A%2F%2Fsecurity%2Eint compiled, cpu time used: 0.0250 seconds]
[Compiling ./http%3A%2F%2Fgov%2Ecountry]

[Preprocessing ./http%3A%2F%2Fgov%2Ecountry.pl]

++Warning[XSB]: [Compiler] ./http%3A%2F%2Fgov%2Ecountry : Unused symbol @@/2
[Module http%3A%2F%2Fgov%2Ecountry compiled, cpu time used: 0.0500 seconds]

yes

Ignore the warnings and execute the query load, test, obtaining exactly the following
output:
| ?- load, test.

MWebWFS solutions:
Anne

MWebAS solutions:
Anne
Boris

yes
| 2-

You are now ready to start learning to use the MWeb system.

4. Overview and syntax of the MWeb framework

MWeb rulebases are defined by an interface and a logic program. By convention, the current
implementation of MWeb assumes that these are specified in files with extensions ‘“mw’ and
“rb’, respectively.

The MWeb rulebase interface specifies the predicates defined and visible to the outside
world (exported predicates) as well as the used (imported) predicates. The logic program
of the rulebase defines by means of logic rules the meaning of the predicates defined in the
rulebase. By design principles all defined and used predicated must be declared.

The current implementation of the MWeb framework specifies rulebases in syntax very
similar to Prolog with a slight user-friendly differences. It is expected that other input
formats to be supported in the future (e.g. RIF, N3, Jena, Prolog, etc...).

The MWeb Interface

The syntax of the MWeb interface is given by the following pattern, where terminals are
quoted in 'bold’, and non-terminals in italic. Notice that the several language constructs are
aligned with RIF syntax in order to foster future integration. All statements end with a dot,
and terminals can be separated with whitespace. Comments can be put inside pairs /* */ or
be line comments starting with %.

Table 1. MWeb interface file constructs

€

‘rulebase’ IRIRef ¢.’

(‘:-¢ ‘base’ IRIRef *‘.’)?

(‘:-¢ ‘prefix’ Name ‘=’ IRIRef (‘,’ Name ‘=’ IRIRef)* ¢.’)*
(:-¢ “import(‘ FileName ¢,’ ¢ interface’ ‘)’ ‘.’)*

(“:-¢ ‘vocabulary’ Const (‘,’ Const)* ¢.’)*

(¢:-¢ DefinesDecl)*

(“:-¢ UsesDecl)*

The MWeb interface starts with a mandatory rulebase declaration providing its unique
identifier. For maintaining compatibility with Prolog, it is allowed to use an IRI reference as
module identifier instead of restricting exclusively to Absolute IRIs. For uniformity, IRI
references should be put inside quotes.

An optional Base IRIRef can be specified to resolve Compact URIs for the default namespace.
The optional declaration of other namespace prefixes and its association with IRIRefs follow
immediately. Notice that several prefix declarations can occur sequentially in the same
interface file.

The contents of other MWeb interface files can be in-place inserted via the import
declaration. For the time being the file should be in the machine’s file system and cannot be
loaded from the Web. Do not forget the parenthesis.

The users can declare domain constants by resorting to the optional vocabulary declaration.
Notice that all constants found in the corresponding rulebase logic program are
automatically added to the rulebase vocabulary without any user intervention. However, for
some applications it might be necessary to declare extra constants not found in the logic
program.

The MWeb interface file continues with a sequence of defines declarations and uses
declarations, which roughly correspond to export and import declarations respectively.
These declarations are detailed on Table 2 and the syntax is given by an EBNF grammar.

Table 2. Grammar of defines and uses declarations

DefinesDecl ::= 'defines' ScopeDecl RegimePred
['wrt' 'context' PredicateInd] ['visible' 'to' RulebaselList] '.'

UsesDecl::= 'uses' RegimePred ['from' Rulebaselist] '.'

| "import (' ('definite' | 'normal') Predicatelist 'from' RulebaseIRI ')' '.'
ScopeDecl ::= 'global' | 'local' | 'internal'
RegimePred ::= ('definite' | 'open' | 'closed' | 'normal') Predicatelist
Predicatelist ::= PredicateInd (',' Predicatelist)*
PredicateInd ::= PosPredicateInd | NegPredicateInd
NegPredicateInd ::= 'neg' PosPredicatelnd
PosPredicatelInd ::= CURIE '/' NATURAL | Atom |

'class(C' CURIE ')' | 'property(' CURIE ')'

Rulebaselist ::= RulebaseIRI (, RulebaselIRI)*

RulebaseIRI ::= IRIRef

CURIE ::= PREFIX '":' LOCALNAME | IRIRef

PREFIX ::= Name

LOCALNAME : := Name

IRIRef ::= Name | '\'' PROLOGCHAR* '\"''

Const ::= PROLOGCONST | '""' PROLOGCHAR* '"' "AA' CURIE

The defines declaration starts with the scope specifying the span of a predicate. Next, the
regime (reasoning mode) should be mandatorily specified. Several predicates can be
specified with a single defines declaration. Afterwards, an optional context predicate can be
given for the objective and closed modes (ignored in the other cases). Finally, visibility can
be controlled by providing an explicit list of rulebases which can use the predicates; if
absent the predicates defined can be used by any rulebase. The defines declaration is
synthesized on Table 3.

The meaning of class and property constructs is explained in the ERDF section of this
document where syntax is expanded to cater for RIF frames. However, it should be noticed
that it is expected a unary context predicate for classes and a binary one for properties
(more discussion on the examples section).

The previous EBNF grammar is dependent on the following symbols: PROLOGCHAR,
PROLOGCONST, Name, and Atom. The terminal PROLOGCHAR matches Prolog characters,
briefly ASCII character. The terminal PROLOGCONST matches any atomic symbol defined
by Prolog syntax. Name is an alphanumeric string of literals starting in lower or upper case,
while Atom matches an optionally prefixed logical atom with arguments. Here users can use
names starting with upper case but need to prefix variables with a question mark '? symbol.
These are detailed in Table 6.

Table 3. Summary syntax and meaning of the defines declaration

defines

ScopeDecl

global

The predicates can be defined in several rulebases.

local

The predicates can be defined only in a single rulebase.

internal

The predicates are invisible to other rulebases.

RegimePred

definite

The rules for the predicates are monotonic. Non-weakly
negated conclusions are monotonic. Only strong negation can
be used in the defining rules and normal predicates are
forbidden. Similar to Horn programs but with strong negation.

open

The rules for the predicates are monotonic with open world
assumption. Non-weakly negated conclusions are monotonic.
Only strong negation can be used in the defining rules and
normal predicates are forbidden. Similar to Horn programs but
with strong negation allowed with open world assumption.

closed

The rules for the predicates are associated with a positive or
negative closed world assumption, depending on the keyword
neg in PredicateList. Conclusions are non-monotonic. Only
strong negation can be used in the defining rules and normal
predicates are forbidden. Similar to Horn programs but with
strong negation allowed with closed world assumption.

normal

Arbitrary rules with monotonic (strong - neg) and non-
monotonic (weak - naf) negation. Conclusions are non
monotonic. Corresponds to extended logic programs.

PredicateList

Specifies the comma separated list of the defined predicates.
Each predicate can have the keywork neg before it. This
keyword is used in regime closed to indicate that the predicate
is negatively closed; otherwise it is ignored.

Prefix:Local/N

Prefix:Local(?A1,...,7An)

Defines a predicate with N arguments with name constructed
by appending the namespace IRI with Local. An IRIref should
be obtained, unless the reserved prefix atom is used.

Defines a predicate with n arguments with name constructed
by appending the namespace IRI with Local. A valid IRIref
should be obtained. The list of arguments is explicitly provided
and can be used to bind arguments with the context predicate.

Local/N
Local(?A1,...,7An)

The same as before but it is appended to the default base IRI to
construct the name.

For compatibility with Prolog if there is no base IRI then Local
is used as name. A valid IRI reference should be obtained.

wrt
context

Predicatelnd

Specifies an optional context predicate for the open or closed
world assumptions of objective and closed regimes.

The arity (number of arguments) of this predicate must be the
same as any defined predicate in the list. The binding of
variables of the context predicate with the defined predicates
can be implicitly left to right (using arity) or explicit (using
explicit variables).

If absent, the open and closed world assumptions are done
with respect to the vocabulary of any loaded rulebase.

visible
to

RulebaselList

Limits the use of the non-internal predicates to the rulebases
in the specified comma separated list. If absent, the non-
internal predicates can be used by any rulebase.

The uses declaration is simpler to use and just requires the expressing of the import regime
and the provider rulebases. If the rulebase list is absent then the predicate is imported from

any loaded rulebase defining the predicate in either global or local scope. The regime of the
used predicate is combined with the regime of the defined declaration in order to obtain the
regime followed at query time. The rules for obtaining the regime are condensed on Table 4,
roughly meaning that it is used the least regime of the use and defines declaration where
regimes are totally ordered by definite < open < closed < normal. The X marks an error
condition which can be disabled with a call to mwebSetErrorLevel (none).

Table 4. Combination of regime modes

d{d|d|d|X
B lojld|lo|o|X
Slcld|o|c|X
n|{d|o|c|n
d|{o|c|n

defines

It is also provided a declaration that can be used to import XSB prolog predicates under
normal regime; XSB builtins can also be used by importing from the appropriate module (or
usermod for inline predicates). The use of parenthesis is mandatory (mark the extra space).

Finally, notice that a predicate can be defined and used in the same MWeb interface file by
allowing users to redefine a particular implementation of a predicate defined elsewhere. In
particular, if defined in internal scope, even local predicates can be used internally and
redefined in other rulebases.

The MWeb Logic Program

The syntax of MWeb rulebases is very similar to Prolog, with some single exceptions in
order to approximate the syntax to the one used by RIF. The summary of the syntax is
collected on Table 5 and Table 6. The syntax will be extended subsequently to handle RIF
syntax, in particular RIF frames, equality, class membership and subclass relation (see
Section 5 for more details). Additionally, the MWeb logic program allows the definition of
internal predicates as well as inline importing of other MWeb logic programs. The general
syntax is covered by the grammar on Table 5.

Table 5. Syntax of MWeb logic programs

MWebLogicProgram ::= Statement*

Statement ::= ':-' Import | ':-' DefinesInternal | Rule
Import ::= ‘import(‘ FileName ¢,’ ¢ rulebase’ ‘)’ ‘.’
DefinesInternal ::= 'defines internal' RegimePred ['wrt' 'context' PredicateInd] '.'

The definition of internal predicates is explained in the previous section. The import
directive is recursively substituted by the contents of Filename. The syntax of rules is
presented and explained next.

Table 6. Syntax of MWeb logic rules

Name \ Syntax | Comment

Rule Implies | Fact
Implies Head ':-' Body '.' A rule if Body then Head. Head must be an
atom or the strong negation of an atom, while
Body is an arbitrary formula.
Fact Head '.' Abbreviation for a rule with true body.
And Conj1 '," .. "," ConjN A conjunction (separator is comma)
or Disji ';' .. ';' DisjN A disjunction (separator is semi colon)
Qualified | Default '@' RulebaseIRI A call to Default literal in RulebaselRI
Default 'naf' Objective | '~' Objective Weakly (nonmonotonic) negated Objective
literal. Naf is the preferred syntax.
Objective | 'neg' Atom | '-' Atom Strongly negated Atom (monotonic). Neg is the
preferred syntax. '-' should be avoided.
Atom (Prefix ':')? Name An optionally prefixed Name with an optional
C'C’ Term1'," . ', TermN ')")7 | list of term arguments.
Term Const | Var | A term is either a constant, a variable or a
C Prefix ":')7 Name complex term.
C'¢C " Term1 ',' .. '," TermN ')')?
Const A XSB Prolog constant or a typed literal '"' PROLOGCHAR* '"' 'AA' (URIE.
Currently no syntax checking of typed literals is performed.
Var '?" Name | Differently from Prolog, a variable must be
'?' _[Name]l prefixed with a question mark.
The name of the variable can be an arbitrary
name (i.e. start with lower case, or even be a
Prolog atom). ?_is an anonymous variable.
Name A name can be an identifier starting with a letter (lower or upper-case!) separated with
underscores or an arbitrary UTF-8 string inside quotes.

The special predicate Domain(+ListOfVars) can be used in bodies of rules to
instantiate unbound variables with all the vocabulary available from loaded rulebases. This
is particularly useful when using rules with weak negations in order to instantiate the
corresponding variables; otherwise, floundering problems may occur.

The MWebWFS and MWebAS semantics

Two semantics are defined for the MWeb framework, and selected at query time. The
MWebWFS is a semantics based on Paraconsistent Well-fouded Semantics with Explicit
negation. Ground queries can be evaluated in polynomial time on the size of the instantiated
rulebase and existence of a single model is guaranteed. Users can check consistency of a
query by checking if L and naf L are simultaneously true. If so, the query is itself
contradictory (and thus neg L is also true) or dependent on contradiction. This semantics is
the best tractable approximation to MWebAS currently known. No consistency checks are
done for this semantics.

The MWebAS semantics is the semantics based on Answer Set semantics, and consequently
has the benefits and disadvantages of the latter. Consistency checks are done automatically
for this semantics and some rulebases may not have a model. In particular, in face of
contradictions everything is entailed from the program, and users are informed of
inconsistency. This semantics is computationally more expensive (entailment is coNP-
complete) and thus more expressive (see the examples).

10

5. Experimental Support of RIF and (E)RDF Schema

The MWeb implementation is currently being extended to support both a dialect as
specialization of the Rule Interchange Format (RIF) and the Extended Resource Description
Framework Schema (ERDF). In order to maintain compatibility with RIF and generality, all
properties and classes are assumed to be normal, allowing for the use of weak negation in
the bodies. However, as expected, monotonicity is not guaranteed.

The implementation of these extensions is done through MWeb rulebases where the
interface and meaning can be entirely defined within MWeb. This demonstrates the
simplicity, usefulness, and generality of our approach. A preliminary implementation is
available for testing and already interesting behaviour can be obtained.

RIF support

The supported dialect implements fully the semantics of classification (member and
subclass), frames, and partially equality. Regarding connectives, the usual binary boolean
connectives conjunction and disjunction, as well as strong and weak negations are
supported (under Paraconsistent Well-founded Semantics with Explicit Negation and
Answer Set Semantics). No disjunction is allowed in the heads of rules.

Syntactically, the MWeb parser supports RIF frames (molecules) of the form
?0.[?A1 ->>?V1, ..., 7An ->> ?Vn]
which internally are translated into a conjunction (mark the order of arguments)
'->'(?A1,70,?V1), .., "->'(?An,?0,?Vn),
The other binary RIF predicates '=' (equality), '#' (member, Isa), and '##' (subclass) have

the exact syntax of RIF. The semantics of these predicates are provided by the following
MWeb rulebase:

RIF’s MWeb interface (rif.mw) RIF’'s MWeb logic program (rif.rb)
:- rulebase 'http://www.w3.0rg/2007 /rif". % RIF member relation extended to handle strong negation
:- prefix rif="http://www.w3.0rg/2007 /rif#'. 70 #7CL :- 70 # ?SCL, ?SCL ## ?CL.

neg 70 # ?SCL :-neg 70 # 7?CL, ?SCL ## ?CL.
:- defines internal normal name:'="/2.
:- defines internal normal name:'#'/2. % RIF subclass relation. No rule needed for strong negation
:- defines internal normal name:'##'/2. ?2C1 ## 7C3 :- 7C1 ## 7C2,?7C2 ## ?C3.

:- defines internal normal name:'->"/3.
% RIF partial equality theory.

:- defines global normal class(mw:Vocabulary). ?T=7?T :-?T# mw:Vocabulary.
?T1=?T2:-?T2="7T1.
?T1=7T3:-?T1=7T2,?T2="7T3.

neg ?T1=7?T2:- neg ?T2 = ?T1.

neg ?T1 =7T3:-?T1=7T2,neg ?T2 = ?T3.

% RIF frames obtained by equality reasoning.
?0.[?P ->>?V] :- ?01.[?P ->> ?V], 70 = 701.
?0.[?P ->>?V] :- ?0.[?P1 ->> ?V], ?P = ?P1.
?0.[?P ->> ?V] :- 70.[?P ->> ?V1], ?V =?V1.

11

RIF predicates are declared internal in order to prevent disclosure of unintended
information. Users can then make visible instances of particular predicates or classes by
declaring them local or internal. The special class mw:Vocabulary collects all the defined
vocabulary implicitly or explicitly in vocabulary declarations.

Class inheritance is captured by the first rule in file ‘rif.rb’. Mark the need to have a
rule for taking care of the case where it is known that something does not belong to the
extension of some class (second rule). For subclass relation it is only required transitivity;
transitivity does not have a dual negative rule. Frames do not have any special meaning,
thus no rules are needed to capture them.

The most difficult predicate to capture is equality. Our approach is designed to
handle correctly equality among constants; no recursion on arguments is performed. For
instance, if some user states that a = b and b =c the consequence c = a is obtained but not
f(a) = f(c). The OWL 2 /RL rules of equality can be easily captured.

Users wishing to use RIF should import the files ‘rifmw’ and ‘rif.rb’ into their
MWeb interface and logic program files, respectively (see example in the next subsection).

ERDF support

The MWeb’s implementation of the Extended Resource Description Framework
builds on the RIF frame constructs and is made in three stages: rdf support, rdfs support,
and finaly erdf support. All the three can be used independently by importing the
corresponding files.

The semantics of the combination is the one adopted by RIF and specified in the
W3C Candidate Recommendation (RIF RDF and OWL Compatibility). A triple s p o is
syntactically represented by the RIF frame s.[p ->> 0].

In our implementation, the erdf rulebase imports the rdfs rulebase, and the rdfs
rulebase imports the rdf rulebase. The supporf of RIF primitives is guaranteed by the import
of rif by the rdf modular rulebase. For the sake of completeness, we present next the
MWeb'’s implementation of each rulebase for the different profiles (or entailment regimes).

RDF’s MWeb interface (rdf.mw)

:- rulebase 'http://www.w3.0rg/1999/02/22-rdf-syntax-ns'.

:- prefix rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#'.
:- import('rif mw’, interface).

:- defines internal normal class(rdf:Property).

:- defines internal normal class(rdf:XMLLiteral).
:- defines internal normal class(rdf:List).

:- defines internal normal class(rdf:Statement).
:- defines internal normal class(rdf:Seq).

:- defines internal normal class(rdf:Bag).

:- defines internal normal class(rdf:Alt).

:- defines internal normal property(rdf:type).

:- defines internal normal property(rdf:subject).

:- defines internal normal property(rdf:predicate).
:- defines internal normal property(rdf:object).

:- defines internal normal property(rdf:first).

:- defines internal normal property(rdfirest).

:- defines internal normal property(rdf:value).

12

RDF’s MWeb logic program (rdf.rb)

:- import('rif.rb’, rulebase). % RDF Axiomatic triples
rdf:type.[rdf:type->>rdf:Property].

% RDF compatibility with RIF rdf:subject.[rdf:type->>rdf:Property].

% makes # and rdf:type equivalent rdf:predicate.[rdf:type->>rdf:Property].
rdf:object.[rdf:type ->> rdf:Property].

X # 7Y - 7X[rdf:itype ->> ?Y]. rdf:first.[rdf:type ->> rdf:Property].

2X.[rdf:itype ->> ?7Y] :- 72X #?Y. rdfirest.[rdf:type ->> rdf:Property].
rdf:value.[rdf:type ->> rdf:Property].

% RDF Entailment rule rdfinil.[rdf:type ->> rdf:List].

?Z.[rdf:itype ->> rdf:Property] :- ?_.[?Z->>?7_] .
% Handles container membership properties. They are infinitely many.
% The rule only takes effect if called explicitly with the object grounded.
?X.[rdf:type ->> rdf:Property] :-

External(name:atom(?X), prolog),

External(name:atom_concat(rdf:'_", ?N, ?X), prolog),

External(name:is_number_atom(?N), prolog).

The support of RDF entailment is immediate. All the classes and properties defined
in RDF are declared internal. The property(CURIE) construct allows to declare RDF
properties. In fact, this is syntactic sugar for the RIF frame ?_.[CURIE ->> ?_] resulting in
better looking interface files, and expects a binary context predicate. A class declaration
class(CURIE) is shortfor 2 # CURIE.

By the recommendation governing RIF-RDF compatibility, the predicates '#'/2 and
rdf:itype should be made equivalent; this is achieved by the first rules. The only rule
necessary for RDF entailment states that any predicate of a triple must have type
rdf:Property. Then, the axiomatic RDF triples are stated, concluding with the special
treatment of RDF container membership properties.

The RDF container membership properties are treated specially since they are
infinitely many (rdf:_1, rdf:_2, etc...). The rule only fires if the subject of the triple is bound
at query time with an atom; if you need to use these properties please include them on your
vocabulary for performing appropriately closed and open world assumptions. Our RIF
dialect also supports externally defined terms External(?Term, prolog) to perform Prolog
calls, as shown in the implementation of equality; the prefix name which is bound to the
empty string is essential to avoid resolution against the default base IRL

RDF Schema entailment is more complex to specify, but immediate. According to
RIF-RDF compatibility every RIF subclass instance is also an RDFS subClassOf instance (but
not vice-versa). Afterwards, all the RDF schema inference rules and axiomatic triples are
encoded; container membership properties are treated as in the implementation of RDF. No
other special treatment is necessary expect for XML Literals which are not currently taken
care (as well as the other RIF and XML Schema datatypes).

RDFS’ MWeb interface (rdfs.mw)

:- rulebase 'http://www.w3.0rg/2000/01/rdf-schema’.
:- prefix rdfs="http://www.w3.0rg/2000/01/rdf-schema#'. :- defines internal normal property(rdfs:domain).
:- import('rdf.mw’, interface). :- defines internal normal property(rdfs:range).
:- defines internal normal property(rdfs:subClassOf).
:- defines internal normal class(rdfs:Resource). :- defines internal normal property(rdfs:subPropertyOf).
:- defines internal normal class(rdfs:Literal). :- defines internal normal property(rdfs:member).
:- defines internal normal class(rdfs:Datatype). :- defines internal normal property(rdfs:comment).
:- defines internal normal class(rdfs:Class). :- defines internal normal property(rdfs:seeAlso).
:- defines internal normal class(rdfs:Container), :- defines internal normal property(rdfs:isDefinedBy).
class(rdfs:ContainerMembershipProperty). :- defines internal normal property(rdfs:label).

13

RDFS’ MWeb logic program (rdfs.rb)

:- import('rdf.rb’, rulebase).

% RDFS compatibility with RIF requires
% including ## into rdfs:subClassOf
?X.[rdfs:subClassOf ->> ?Y] :- ?X ## ?Y.

% RDFS entailment rules
?Z.[rdf:itype ->> ?Y] :-

?X.[rdfs:domain ->> ?Y], ?Z.[?X ->> ?W].
W[rdf:itype ->> ?Y] :-

?X.[rdfs:range ->> ?Y], ?Z.[7X ->>?W].

?X.[rdfs:subClassOf ->> rdfs:Resource] :-
?X.[rdf:type ->> rdfs:Class] .

?7X.[rdf:itype ->> rdfs:Class | :- ?X.[rdfs:subClassOf ->> ?Y].
?Y.[rdfitype ->> rdfs:Class | :- ?X.[rdfs:subClassOf ->>?Y].

?Z.[rdf:itype ->> ?Y] :-
?X.[rdfs:subClassOf ->> ?Y], ?Z.[rdf:type ->> ?X].

?7X.[rdfs:subClassOf ->> ?X] :- ?X.[rdf:type ->> rdfs:Class] .
?7X.[rdfs:subClassOf ->> ?Z] :-

?X.[rdfs:subClassOf ->> ?Y],

?Y.[rdfs:subClassOf ->> ?Z] .

?7X.[rdf:itype ->> rdf:Property | :-
?X.[rdfs:subPropertyOf ->> ?Y |.

?Y.[rdfitype ->> rdf:Property | :-
?X.[rdfs:subPropertyOf ->> ?Y].

Z1.[7Y ->>?Z2] :-

?X.[rdfs:subPropertyOf ->>?Y], ?Z1.[?X ->>?Z2].
?X.[rdfs:subPropertyOf ->> ?X] :-

?X.[rdf:type ->> rdf:Property] .
?X.[rdfs:subPropertyOf ->> ?Z] :-

?X.[rdfs:subPropertyOf ->> ?Y],

?Y.[rdfs:subPropertyOf ->> ?7] .

?X.[rdfs:subClassOf ->> rdfs:Literal] :-
?X.[rdf:type ->> rdfs:Datatype] .
7X.[rdfs:subPropertyOf ->> rdfs:member] :-
?X.[rdf:type ->> rdfs:ContainerMembershipProperty] .

% RDFS Axiomatic triples

rdf:type.[rdfs:domain ->> rdfs:Resource].
rdfs:domain.[rdfs:domain ->> rdf:Property].
rdfs:range.[rdfs:domain ->> rdf:Property].
rdfs:subPropertyOf.[rdfs:domain ->> rdf:Property].
rdfs:subClassOf.[rdfs:domain ->> rdfs:Class].
rdf:subject.[rdfs:domain ->> rdf:Statement].
rdf:predicate.[rdfs:domain ->> rdf:Statement].
rdf:object.[rdfs:domain ->> rdf:Statement].
rdfs:member.[rdfs:domain ->> rdfs:Resource].
rdf:first.[rdfs:domain ->> rdf:List].
rdf:rest.[rdfs:domain ->> rdf:List].
rdfs:seeAlso.[rdfs:domain ->> rdfs:Resource].
rdfs:isDefinedBy.[rdfs:domain ->> rdfs:Resource].
rdfs:comment.[rdfs:domain ->> rdfs:Resource].
rdfs:label.[rdfs:domain ->> rdfs:Resource].
rdf:value.[rdfs:domain ->> rdfs:Resource].

rdf:type.[rdfs:range ->> rdfs:Class].
rdfs:domain.[rdfs:range ->> rdfs:Class].
rdfs:range.[rdfs:range ->> rdfs:Class].
rdfs:subPropertyOf.[rdfs:range ->> rdf:Property].
rdfs:subClassOf.[rdfs:range ->> rdfs:Class].
rdf:subject.[rdfs:range ->> rdfs:Resource].
rdf:predicate.[rdfs:range ->> rdfs:Resource].
rdf:object.[rdfs:range ->> rdfs:Resource].
rdfs:member.[rdfs:range ->> rdfs:Resource].
rdf:first.[rdfs:range ->> rdfs:Resource].
rdf:rest.[rdfs:range ->> rdf:List].
rdfs:seeAlso.[rdfs:range ->> rdfs:Resource].
rdfs:isDefinedBy.[rdfs:range ->> rdfs:Resource].
rdfs:comment.[rdfs:range ->> rdfs:Literal].
rdfs:label.[rdfs:range ->> rdfs:Literal].
rdf:value.[rdfs:range ->> rdfs:Resource].

rdf:Alt.[rdfs:subClassOf ->> rdfs:Container].
rdf:Bag.[rdfs:subClassOf ->> rdfs:Container].
rdf:Seq.[rdfs:subClassOf ->> rdfs:Container].

?X.[rdf:type ->> rdfs:ContainerMembershipProperty,
rdfs:domain ->> rdfs:Resource, rdfs:range ->> rdfs:Resource] :-
External(atom:atom(?X), prolog),
External(atom:atom_concat(rdf:'_", ?N, ?X), prolog),
External(atom:is_number_atom(?N), prolog).

rdfs:ContainerMembershipProperty.[rdfs:subClassOf ->>
rdf:Property].

rdfs:isDefinedBy.[rdfs:subPropertyOf ->> rdfs:seeAlso].
rdf:XMLLiteral.[rdf:type ->> rdfs:Datatype].

rdf:XMLLiteral.[rdfs:subClassOf ->> rdfs:Literal].
rdfs:Datatype.[rdfs:subClassOf ->> rdfs:Class].

The Extended Resource Description Framework introduces the notions of total and closed
class, as well as total and closed property, and a mechanism to express complementary
properties. Totalness is captured by declaring the class and property having rdf:type
erdf:TotalClass and erdf:TotalProperty classes, respectively. For declaring closed classes
and properties, the erdf:PositivelyClosedClass, erdf:NegativelyClosedClass,
erdf:PositivelyClosedProperty, and erdf:NegativelyClosedProperty can be used, with the
expected meaning. The semantics of these ERDF constructs is specified by normal rules, and
grounding of variables is made in the code by using the instances of class mw:Vocabulary.

14

ERDF’s MWeb interface (erdf.mw)

:- rulebase 'http://erdf.org'.
:- prefix erdf="http://erdf.org#".

:- import('rdfs.mw’, interface).

:- defines internal normal class(erdf:TotalClass).

:- defines internal normal class(erdf:PositivelyClosedClass).

:- defines internal normal class(erdf:NegativelyClosedClass).

:- defines internal normal class(erdf:TotalProperty).

:- defines internal normal class(erdf:PositivelyClosedProperty).

:- defines internal normal class(erdf:NegativelyClosedProperty).

:- defines internal normal property(erdf:complementOf).

ERDF’s MWeb logic program (erdf.rb)

:- import('rdfs.rb’, rulebase).

% Equivalence of neg # and neg rdf:type (RIF compatibility)
neg ?X # ?Y :- neg ?X.[rdf:type ->> ?Y].
neg ?X.[rdf:type ->> ?Y] :- neg 72X # ?Y.

% Inclusion of negative subclass extension
neg ?X.[rdfs:subClassOf ->> ?Y] :- neg ?X ## ?Y.

% ERDF extra rule for obtaining RDF properties
?Z.[rdf:type ->> rdf:Property] :- neg ?_.[?Z ->>?_] .

% ERDF / RDFS negative extension rules
neg ?Z.[rdf:itype ->> ?X] :- ?X.[rdfs:subClassOf ->> ?Y], neg ?Z.[rdf:type ->> ?Y].
neg ?Z1.[?X ->> ?Z2] :- ?X.[rdfs:subPropertyOf ->> ?Y |, neg ?Z1.[?Y ->> ?Z2].

% ERDF specific rules

% Closed classes and properties

neg ?Z.[rdf:type ->> ?X] :-
(?X.[rdf:type ->> erdf:PositivelyClosedClass] ; ?X.[rdf:type ->> erdf:TotalClass]),
?Z # mw:Vocabulary, naf ?Z.[rdf:type ->> ?X].

?Z.[rdf:type ->> 7X] :-
(?X.[rdf:type ->> erdf:NegativelyClosedClass] ; ?X.[rdf:type ->> erdf:TotalClass]),
?Z # mw:Vocabulary, naf neg ?Z.[rdf:type ->> ?X].

neg ?Z1.[?X ->> 772] :-
(?X.[rdf:type ->> erdf:PositivelyClosedProperty] ; ?X.[rdf:type ->> erdf:TotalProperty]),
?Z1 # mw:Vocabulary, ?Z2 # mw:Vocabulary, naf ?Z1.[?X ->> ?Z2].
2Z1.[7X ->> 722] -
(?X.[rdf:type ->> erdf:NegativelyClosedProperty] ; ?X.[rdf:type ->> erdf:TotalProperty]),
?Z1 # mw:Vocabulary, ?Z2 # mw:Vocabulary, naf neg ?Z1.[?X ->> ?Z2].

% Inference rule with complements
neg ?S.[?P ->>?0] :- ?P.[erdf:complementOf ->> ?Q], ?S.[?Q ->> ?0].
neg ?S.[?P ->>?0] :- ?Q.[erdf:complementOf ->> ?P], ?S.[?Q ->> ?70].

?S.[?P ->>?0] :- ?P.[erdf:complementOf ->> ?Q], neg ?S.[?Q ->> ?0].
?S.[7P ->>70] :- 7Q.[erdf:complementOf ->> ?P |, neg ?S.[7Q ->> ?0].

% ERDF axiomatic triples

erdf:complementOf.[rdfs:domain ->> rdf:Property, rdfs:range ->> rdf:Property, rdf:type ->> rdf:Property].

erdf:PositivelyClosedClass.[rdfs:subClassOf ->> rdfs:Class].
erdf:NegativelyClosedClass.[rdfs:subClassOf ->> rdfs:Class].
erdf:PositivelyClosedProperty.[rdfs:subClassOf ->> rdfs:Class].
erdf:NegativelyClosedProperty.[rdfs:subClassOf ->> rdfs:Class].

erdf:TotalClass.[rdfs:subClassOf ->> rdfs:Class].
erdf:TotalProperty.[rdfs:subClassOf ->> rdfs:Class].

15

Mark that declaring a class (or property) simultaneously positively and negatively closed
has the same practical effect as declaring it total. The handling of closed classes and
properties is a recent advancement not yet reported in the literature.

ERDF requires extra rules to take care of negative extensions for RDF and RDFS properties.
Most of the rules having strong negation in the heads are in fact capturing the ERDF dual
rules of RDF and RDFS entailment. Finally, by declaring two properties complementary the
positive and negative instances are exchanged, as the ‘erdf.rb’ MWeb logic program file
shows. The axiomatic triples of ERDF are also included. Blank nodes in user theories are
captured by declaring them typed literals of symbol space rif:local, and are local to the files
where they occur.

In a similar way, we expect to capture the OWL 2 RL profile by implementing the full set of
OWL 2 RL/RDF rules.

16

6. Use

After downloading and confirming correct installation (see Section 3) it is necessary to load
the system by consulting the mweb file. An usual session consists of compiling the
rulebases, loading in the corresponding Prolog modules, and then querying the loaded
rulebases. Each of these steps is now detailed.

Compilation

After developing your MWeb rulebases it is necessary to compile them. The compilation can
be done independently for each rulebase and in any order. The name of the rulebase is used
to generate the file names of the interface and logic program files by encoding it and
appending the suffixes, "mw' and ".rb’, respectively.

A prolog module will be generated with the compiled code. The name of the Prolog file is
obtained from the rulebase declaration in the interface source file. The Prolog file has .pl
extension and filename obtained by escaping all chars except for letters, digits, HYPHEN-
MINUS ("-") and LOW_LINE ("_") of the rulebase IRL

A rulebase with source files 'geo.mw' and 'geo.rb’ can be compiled with the command

mwebCompileModule(geo)

generating the file 'http%3A%2F%2Fgeography%2Eint.pl' if the rulebase declaration in
'geo.rw' is

:- rulebase 'http://geography.int'.
Users can also organize the rulebases by using the encoded name. The previous rulebase
could be encoded in the following interface and logic program files

'http%3A%2F%2Fgeography%2Eint. mw’, 'http%3A%2F%2Fgeography%2Eint.rb’,
respectively, and the compilation of the rulebase can be done with the command

mwebCompileModule('http://geography.int')
The binary predicate mwebCompileModule(+InterfaceFile, +RulesFile) allows for
the compilation from explicitly provided interface and logic program files. Currently, all the
files should be in XSB’s default search path.
Output of the compilation process is very verbose and usually some warnings might be

printed. If the rulebase is not legal then an error is thrown. All these predicates compile
immediately the generated XSB’s Prolog file implementing MWeb’s semantics.

Loading

After compiling the rulebase, each module can be loaded one at a time or by recursively
loading the rulebases listed in the rulebases’ uses declarations.

17

The single rulebase loading command is mwebLoadModule(+RulebaseIRI), while the
recursive one is mwvebLoadAl1lModules(+RulebaseIRI).
For instance, the command

mwebLoadModule('http://geography.int')

loads the rulebase compiled in module file 'http%3A%2F%2Fgeography%?2Eint.pl". Several
dynamic predicates are asserted to XSB’s database in order to hide from the user the
internal names used by the MWeb compilation process as well as to support properly global
predicates. Users may unload explicitly modules generated from rulebases with the
command mwebUnloadModule(+RulebaseIRI).

Users may load several modules by using command mwebLoadModules(+ListOfIRIs)
which loads each module appearing in the Prolog list ListOfIRIs. It can also be used to load a
single module. This predicate calls mwebLoadModule/1 for each member of the list. The
command

mwebLoadModules(['http://geography.int', 'http://europa.eu'])

loads the rulebases compiled in files 'http%3A%2F%2Fgeography%Z2Eint.pl' and
'http%3A%2F%2Feuropa%2Eeu.pl'.

Sometimes errors while loading modules leave the MWeb’s internal database in an
inconsistent state. It is better that you start over again in a new instance of XSB, after fixing
any existing bugs or errors.

Finally, mark that visible predicates without a rulebase list in the uses declaration, import
from all the loaded modules that define such predicates. Since they have not rulebase
import lists, most of the times it is necessary to explicit load the appropriate rulebases
explicitly via the mwebLoadModule/1 command.

18

7. Querying

The MWeb querying interface is immediate to use via the several mwebQuery predicates.
For simplifying writing of queries, users may declare prefixes at the console by using the
same syntax of MWeb interface files.

| ?- prefix eu = 'http://europa.eu#', geo = 'http://geography.int#'.
yes

The MWeb system declares initially useful prefixes by the following declarations:

prefix xs = 'http://www.w3.0rg/2001/XMLSchema#"'.

- prefix rdf "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"'.
prefix rdfs "http://www.w3.0rg/2000/01/rdf-schema#"'.

prefix rif = 'http://www.w3.0rg/2007/rif#'.

prefix func 'http://www.w3.0rg/2007/rif-builtin-function#'.
prefix pred = 'http://www.w3.0rg/2007/rif-builtin-predicate#'.
prefix owl = 'http://www.w3.0rg/2002/07/owl#"'.

s o oo eo e ee oo

Any prefix may be redefined by declaring again the new prefix.

The basic binary predicate mwebQuery(+FreevVars, +Query) executes Query in normal
regime using MWebWFS semantics, and by instantiating the free variables in FreeVars with
all possible combinations of constants of the several vocabularies of the loaded rulebases.
The use of the free variables argument must be used when floundering occurs, i.e. calls to
non ground weakly negated literals occur during the execution; in particular when nafis
applied to non-ground literals in the query. Usually, for MWebWFS you can pass an empty
list which is more efficient. If you get an execution error, then put the variables in the
FreeVars list.

Naturally, the command line does not support the fancy syntax, so users should keep to
Prolog conventions. Some example queries are shown below, including the RIF and ERDF
syntax. The full explained examples can be found in Section 8.

We show some examples with the basic syntax using the security example rulebase:

% Determines the pairs of citizen X of country Y
| 7- mwebQuery(C [X,Y], 'http://security.int#citizenOf'(X,Y)).
X = Anne
Y = http://geography.int#Austria;
X = Boris
Y = http://geography.int#Croatia;
no
Determines the countries Y which are know to not being European Union countries

— R

?- mwebQuery([], neg eu:'CountryEU'(Y)).

http://geography.int#Egypt;
= http://geography.int#Canada;
http://geography.int#China;
http://geography.int#Croatia;

< < < =<

19

% Determines the citizens X of non European Union countries.
% Notice the use of parenthesis for complex queries and @ for querying specific rulebases
| ?- mwebQuery([1, ("http://security.int#citizenOf'(X,Y),

(neg eu:'CountryEU'(Y)) @ '"http://europa.eu')).

X = Boris
Y = http://geography.int#Croatia;
no

The next examples show the combination of the RIF syntax with RDF Schema support.

% The entities X which are countries (http://geography.int#Country)
| ?- mwebQuery([X], X # geo : 'Country').

X = http://geography.int#Italy;

X = http://geography.int#Egypt;

X = http://geography.int#Croatia;
no

% The entities X which are countries Chttp://geography.int#Country) now using RIF frames
?- mwebQuery([X], X.[rdf:type ->> geo : 'Country']).

X = http://geography.int#Italy;

X = http://geography.int#Egypt;
X = http://geography.int#Croatia;
no

% Finding the capitals Y of countries X
?- mwebQuery([], X.[rdf:type ->> geo : 'Country', geo:capital ->> Y]).

>
1

http://geography.int#Croatia
Y = http://geography.int#Zagreb;

X = http://geography.int#Italy
Y = http://geography.int#Rome;
X = http://geography.int#Egypt

Y = http://geography.int#Cairo;
no

It is only possible to call rdf:type in the previous two queries because property rdf:type has
been made global by one of the rulebases, otherwise no answer would be obtained. Users
can also work directly with RIF frame internal predicate '->'(Attribute, Object, Value)
obtaining the same results as the query Object.[Attribute ->> Value], as per the example
below. If the free variables list is empty a more convenient unary version of the
mwebQuery(+Query) command is available:

% Obtains all the ‘triples’ which have geo:'Italy' as object
| ?- mwebQuery('->"(Pred,Subj,geo: 'Italy')).

Pred = http://www.travel.org#travel
Subj = http://www.travel_plan.gr#packagel;

20

no

% Obtain the things X which are not RDFS classes
| ?- mwebQuery([X], naf X # rdfs:'Class').

X = http://www.w3.0rg/2000/01/rdf-schema#comment;
X = http://www.travel.org#visit;

.. (the list continues)
The following queries illustrate the flexibility of the system introduced by the two negations

and its use.

% Obtain the European countries
?- mwebQuery([X], (X # geo: 'Europ_Country')).

X = http://geography.int#Croatia;
X = http://geography.int#Italy;
no

% Obtain the non-European countries
I ?7- mwebQuery(C [X], (X # geo:'Country', neg X # geo: 'Europ_Country')).

X = http://geography.int#Egypt;

% Obtain the entities X believed not to be European countries
| ?- mwebQuery([X], naf X # geo:'Europ_Country').

X = http://www.w3.0rg/2000/01/rdf-schema#comment;
X = http://www.travel.org#visit;

.. (the list continues)

More advanced uses of the querying interface may use the other two variants of the
mwebQuery predicate.

The call mwebQuery(Vars, Goal, Semantics), executes Goal with free variables Vars
under Semantics in normal mode. Semantics is either the constant wts (the default based on
Well-founded Semantics - MWebWFS), or asp (the answer set based semantics - MWebAS).
Notice that the asp version requires all variables to be grounded in the query, so all
variables in the query must appear in the Vars list, and can be very inefficient since an
answer set solver is called to handle the query (complexity co-NP-complete).

The most general version is mwebQuery (+Vars,+Goal,+Semantics,+Regime) which
allows the user to use a particular MWeb regime: d - for definite; o - for open; ¢ - for

closed; n - for normal which is the default one.

All the variants of the querying predicates are further explored in the Examples section.

21

8. Examples

In this section we provide and explain the main features of the MWeb framework by three
extended examples. One of the examples is devoted to explain the several MWeb constructs
and regime modes, as well as practical differences among them (security example). The
second example illustrates the support of ERDF (travel example). The remaining example
illustrates inconsistency handling and global predicates in MWeb (inconsistent example).

Security Example

This example can be found in directory ‘USERDIR/examples/security’ and the rulebase
files can be compiled and loaded by consulting [mweb, testSecurity] and then calling the
predicate load. A test can be performed by executing predicate test:

| ?- load, test.
MWebWFS solutions:
Anne

MWebAS solutions:
Boris

Anne

yes

The example file also declares the prefixes used in the following examples.

First queries

The first rulebase defines World countries via predicate ‘http://geography.int#Country’

whose instances are positively closed. In practice, this means that developers are stating
that the list is complete (not true, as readers can manifestly check). Since the predicate is
defined local it cannot be defined local or global in a different rulebase.

Geo’s MWeb interface (geo.mw) RIF’'s MWeb logic program (geo.rb)
:- rulebase 'http://geography.int'. Country(Austria).
:- base 'http://geography.int#'. Country(Canada).
Country(China).
:- defines local closed Country/1. Country(Croatia).
:- defines global normal class(mw:Vocabulary). Country(Greece).
Country(Egypt).
:- uses normal class(mw:Vocabulary). Country(Portugal).

Let’s check what consequences we can extract from the above rulebase, where results can
be found below, assuming that :

?- mwebQuery(geo: 'Country'(X)). ?- mwebQuery(neg geo:'Country'(X)).

?- mwebQuery([X],naf neg geo:'Country'(X)). ?- mwebQuery([X], naf geo:'Country'(X)).
X = http://geography.int#Portugal; X = Rita;

X = http://geography.int#Greece; X = Anne;

22

X = http://geography.int#Canada; X = Peter;

X = http://geography.int#China; X = Boris;

X = http://geography.int#Egypt; X = Vocabulary;
X = http://geography.int#Croatia;

X = http://geography.int#Austria;

Since the predicate is defined closed, there are no differences between objective queries and
default queries because the vocabulary includes all defined constants exported by modules
(because of the uses normal class(mw:Vocabulary) declaration). On the left, appears the
list of known countries and believe to be countries (naf neg construction); on the right,
appears the entities that are not countries (neg) and believed to not being countries (naf).
Since the developer did not define a context predicate for geo:Country the closed world
assumption is performed with respect to instances of mw:Vocabulary (thus, constants
‘Anne’, ‘Boris’, ‘Peter’ and ‘Rita’ appear elsewhere). Also notice the use of the base directive
to simplify the encoding of the rulebase.

[t is instructive to query with a new constant not in the vocabulary to observe the different
behaviour:

Before adding geo:'UK' to vocabulary After adding geo:'UK' to vocabulary

?- vocabulary geo:'UK'.

yes
?- mwebQuery(geo: 'Country'(geo: "'UK')). ?- mwebQuery(geo: 'Country'(geo: 'UK")).

no no

?- mwebQuery(neg geo: 'Country'(geo: 'UK")). ?7- mwebQuery(neg geo: 'Country'(geo:'UK"')).

no yes
?- mwebQuery(naf geo: 'Country'(geo:'UK')). ?- mwebQuery(naf geo: 'Country'(geo:'UK')).

yes
?7- mwebQuery(
naf neg geo: 'Country'(geo:'UK"')).

yes
?- mwebQuery(
naf neg geo: 'Country'(geo:'UK')).

yes no

Since 'http://geography.int#UK' is not listed in the rulebase it does not hold
"http://geography.int#Country'("http://geography.int#UK"). Because the constant
"http://geography.int#UK' does not belong to the vocabulary then closed world assumption
does not apply and the query neg 'http://geography.int#Country'("http://geography.int#UK"')
fails. The weak negations of these queries succeed. We use here the fully expanded names of
the prefixes in order to remind users that these are in fact the real names of the predicates
and constants.

The constant "http://geography.int#UK' can be added to all loaded rulebases by calling
vocabulary predicate, and different behaviour is obtained (see the right hand side of the
previous table). By closed world assumption, it is concluded that "http://geography.int#UK'
is not a country, and so query neg geo: 'Country'(geo: 'UK') succeeds and naf neg

geo: 'Country'(geo: 'UK") fails.

23

Vocabulary can also be added to a particular rulebase. E.g., a call of the form vocabulary
geo:'UK' @ 'http://geography.int’' would have the same effect in the previous example.

The different reasoning modes

The 'http://geography.int’ rulebase can also be queried in other reasoning modes,
illustrating the differences among them. The definite regime is very similar to ordinary
Prolog, as users can check below:

Objective queries on regime d Default queries on regime d
| 7- mwebQuery([X], | ?- mwebQuery(C [X],
geo: 'Country'(X), wfs, d). naf geo:'Country'(X), wfs, d).
X = http://geography.int#Portugal; X = Rita;
X = http://geography.int#Greece; X = Anne;
X = http://geography.int#Canada; X = Peter;
X = http://geography.int#China; X = Boris;
X = http://geography.int#Egypt; X = http://geography.int#UK;
X = http://geography.int#Croatia; X = Vocabulary;
X = http://geography.int#Austria; no
no
| ?- mwebQuery(C [X], | ?- mwebQuery([X],
neg geo: 'Country'(X), wfs, d). naf neg geo:'Country'(X), wfs, d).
no X = Rita;
X = http://geography.int#Portugal;
| ?- mwebQuery([1, X = http://geography.int#UK;
geo: 'Country'('France'), wfs, d). X = Anne;
X = http://geography.int#Greece;
no X = http://geography.int#Canada;
| ?- mwebQuery([], neg X = Peter;
geo: 'Country'('France'), wfs, d). X = http://geography.int#China;
X = Boris;
no X = http://geography.int#Egypt;
X = http://geography.int#Croatia;
X = http://geography.int#Austria;
X = Vocabulary;
no
| ?- mwebQuery([],
naf geo:'Country'('France'), wfs, o).
yes
| ?7- mwebQuery([],
naf neg geo:'Country'('France'), wfs, o).
yes

As expected, we obtain the list of answers of registered countries. Notice that the default
query naf geo:'Country'(X) obtains the complementary solutions of the registered
vocabulary. Since no rules for neg geo:'Country' (X) are present in the logic program
the query fails with no answers, and thus all the constants in the vocabulary are answers to
the default query naf neg geo: 'Country' (X). It can be shown that objective answers
are monotonic on the extension of the rulebase, while default ones are non-monotonic. This

24

justifies the restriction to forbid the use of weak negation in the bodies of rules. A query
using a constant (' France ') not in the vocabulary has identical behaviour.

The remaining distinctive mode to analyse is the open entailment regime, explained next.

Objective queries on regime o

Default queries on regime o

| ?- mwebQuery([X],
geo: 'Country'(X), wfs, o).

| ?- mwebQuery([X],
naf geo: 'Country'(X), wfs, o).

X = http://geography.int#Portugal; no
X = http://geography.int#Greece; | ?- mwebQuery([X],
X = http://geography.int#Canada; naf neg geo: 'Country'(X), wfs, o).
X = http://geography.int#China;
X = http://geography.int#Egypt; X = http://geography.int#Portugal;
X = http://geography.int#Croatia; X = http://geography.int#Greece;
X = http://geography.int#Austria; X = http://geography.int#Canada;
X = http://geography.int#China;
no X = http://geography.int#Egypt;
| ?7- mwebQuery(C [X], X = http://geography.int#Croatia;
neg geo: 'Country'(X), wfs, o). X = http://geography.int#Austria;
no no

| ?- mwebQuery([],
geo: 'Country'('France'), wfs, o).

| ?- mwebQuery([],
naf geo: 'Country'('France'), wfs, o).

no yes
| 7- mwebQuery([1, | ?- mwebQuery([],
neg geo: 'Country'('France'), wfs, o). naf neg geo:'Country'('France'), wfs, o).

no yes

Regarding objective queries the results are as before. The default queries are very
interesting to explain. Roughly, all the things that are not entailed by the objective part are
undefined (note the symmetries). This mode is monotonic for objective queries, and thus is
the appropriate mode for safe reasoning in the Semantic Web. Moreover, under MWebAS
semantics it can generate alternative worlds and do reasoning by cases. However, it is less
efficient than definite mode for both MWebWFS and MWebAS semantics.

Since constant 'France' does notbelong to the vocabulary (context predicate fails) then
the same behaviour of the other modes is obtained. Therefore, undeclared vocabulary can
bring semantic problems: do not forget to declare all the vocabulary!

To conclude discussion, if the predicate geo: 'Country'/1 is queried in normal mode then
the used mode is in fact closed according to Table 4 because the predicate has been defined
in closed mode. Do not forget that this table is always used to obtain the real mode used to
perform the query.

The different semantics
Consider now the rulebase defining the European countries, built on top of the geography

rulebase. The list of world countries is used to provide the context predicate for performing
the closed world assumptions; in all respects this is very similar to the geography rulebase.

25

Europa’s MWeb interface (europa.mw)

Europa’s MWeb logic program
(europa.rb)

:- rulebase 'http://europa.eu’.

:- prefix eu = 'http://europa.eu#’,
geo = 'http://geography.int#'.

:- defines local closed eu:CountryEU/1
wrt context geo:Country/1.

:- uses definite geo:Country/1 from 'http://geography.int'.
:- uses normal class(mw:Vocabulary) from 'http://geography.int’.

eu : CountryEU(geo:Austria).
eu : CountryEU(geo:Greece).
eu : CountryEU(geo:Portugal).

Some interesting queries are collected below (the order of the answers does not matter):

Objective queries

Default queries

| ?- mwebQuery(

"http://europa.eu#CountryEU’' (C)).
C = http://geography.int#Austria;
C = http://geography.int#Greece;

C = http://geography.int#Portugal;

no
| ?- mwebQuery(
neg "http://europa.eu#CountryEU'(C)).

http://geography.int#Canada;
http://geography.int#China;
http://geography.int#Croatia;
http://geography.int#Egypt;

aNeoNaNe)

| ?
naf

AO OO0 0nN
Il

>
(]

| ?
naf

asNeoNalaNeaaNaNaNe!
|

>
(o)

- mwebQuery([(],
"http://europa.eu#CountryEU' (C)).

Rita;
http://geography.int#UK;
Anne;
http://geography.int#Canada;
Peter;
http://geography.int#China;
Boris;
http://geography.int#Egypt;
http://geography.int#Croatia;
Vocabulary;

- mwebQuery([(],
neg 'http://europa.eu#CountryEU'(C)

= Rita;

http://geography.int#Portugal;
http://geography.int#UK;

Anne;
http://geography.int#Greece;
Peter;

Boris;
http://geography.int#Austria;

= Vocabulary;

Since an explicit context predicate was provided, then the closed world assumptions are
done with respect to the answers of this predicate, thus limiting the things that are known

to not being European countries. With negation as failure more answers are obtained, but

are non-monotonic (later on we might discover that UK is in fact an European Country).

The rulebase 'http://security.int' defines citizenship and suspects of criminal acts. Both
predicates are defined open. However, citizenship relations are only visible to the rulebase

identified by 'http://gov.country’'.

26

Security’s MWeb interface (security.mw)

Security’s MWeb logic program
(security.rb)

:- rulebase 'http://security.int'.

:- prefix sec = 'http://security.int#’,
geo = 'http://geography.int#'.

:- defines local open sec:citizenOf/2
visible to 'http://gov.country'.
:- defines global open sec:Suspect/1.

:- defines global normal class(mw:Vocabulary).
:- uses normal class (mw:Vocabulary).

sec:citizenOf(Anne, geo:Austria).
sec:citizenOf(Boris, geo:Croatia).
sec:Suspect(Peter).

neg sec:Suspect(Rita).

The relevant queries to our example are found below, and the expected behaviour is
obtained since all predicates are declared open.

Objective queries

Default queries

| - mwebQuery([P,C], sec:citizenOf(P,C)).

P = Anne
C = http://geography.int#Austria;

P = Boris
C = http://geography.int#Croatia;

no
| ?- mwebQuery([P,C], neg sec:citizenOf(P,C)).
no

| ?- mwebQuery([P], sec:'Suspect'(P)).

P = Peter;
no

| - mwebQuery([P], neg sec:'Suspect'(P)).

P =Rita;
no

| ?- mwebQuery([P,C], naf sec:citizenOf(P,C)).
no

| ?- mwebQuery([P,C], naf neg sec:citizenOf(P,C)).

P = Anne
C = http://geography.int#Austria;

P = Boris
C = http://geography.int#Croatia;
no

| 7- mwebQuery([P], naf sec:'Suspect'(P)).

P = Rita;
no

| 2- mwebQuery([P], naf neg sec:'Suspect'(P)).

P = Peter;
no

Finally, rulebase 'http://gov.country' expresses some rules to allow entering into an
imaginary country resorting to all the previous rulebases.

Gov's MWeb interface (gov.mw)

Gov’'s MWeb logic program (gov.rb)

:- rulebase 'http://gov.country'.

:- prefix gov = 'http://gov.country#'.

:- prefix eu = 'http://europa.eu#'.

:- prefix geo = 'http://geography.int#'.
:- prefix sec = 'http://security.int#'.

:- defines local normal gov:Enter/1
visible to 'http://security.int'.

:- defines local closed neg gov:RequiresVisa/1
wrt context geo:Country/1.

:- uses definite geo:Country/1 from 'http://geography.int'.

:- uses open eu:CountryEU/1 from 'http://europa.eu’.
:- uses definite sec:citizenOf/2, sec:Suspect/1
from 'http://security.int'.

:- uses normal class(mw:Vocabulary).

:- defines internal open sec:citizenOf/2.

gov:Enter(?P) :- eu:CountryEU(?C), sec:citizenOf(?P,?C),
~ sec:Suspect(?P) @ 'http://security.int'.
gov:Enter(?P) :- - eu:CountryEU(?C), sec:citizenOf(?P,?C),
- gov:RequiresVisa(?C),
~ sec:Suspect(?P) @ 'http://security.int'.

-gov:RequiresVisa(geo:Croatia).

sec:citizenOf(Peter,geo:Greece).

27

The rulebase shows other important features of the MWeb framework. First, users can
always refine existing predicates by using it in definite mode and defining it internal on the
wished regime; extra facts and rules can be defined internally in the rulebase (see
sec:citizen0f/2 predicate). A predicate defined in normal mode can have occurrences of
weak negation in the bodies of its rules, as the gov:Enter/1 predicate shows. A rulebase

can query a specific rulebase by using the ‘@’ operator.

This last rulebase also helps to understand the differences between MWebWFS and
MWeDbAS semantics. Let’s check which persons are allowed to enter the country:

Answers under MWebWFS semantics

Answers under MWebAS semantics

| - mwebQuery([P], 'http://gov.country#Enter'(P), wfs).
P = Anne;
no

| 2- mwebQuery([P], 'http://gov.country#Enter'(P), asp).
P = Anne;
P = Boris;

no
| ?- mwebQuery([P], neg 'http://gov.country#Enter'(P)).
no | ?- mwebQuery([P], neg 'http://gov.country#Enter'(P), asp).
no

| 7- mwebQuery([P], naf 'http://gov.country#Enter'(P)).
P = Peter; | ?- mwebQuery([P], naf 'http://gov.country#Enter'(P), asp).
no P = Peter;

no

| - mwebQuery([P], naf neg 'http://gov.country#Enter'(P)).
| 2- mwebQuery([P], naf neg 'http://gov.country#Enter'(P),
P =Rita; asp).

P = http://geography.int#Portugal;
P = http://geography.int#UK;

P = Anne;

P = http://geography.int#Greece;
P = http://geography.int#Canada;

P = Rita;

P = http://geography.int#Portugal;
P = http://geography.int#UK;

P = Anne;

P = Peter; P = http://geography.int#Greece;
P = http://geography.int#China; P = http://geography.int#Canada;
P = Boris; P = Peter;

P = http://geography.int#Egypt; P = http://geography.int#China;
P = http://geography.int#Croatia; P = Boris;

P = http://geography.int#Austria; P = http://geography.int#Egypt;
P =Vocabulary; P = http://geography.int#Croatia;
no P = http://geography.int#Austria;
P = Vocabulary;

no

Under MWebWFS and MWebAS we conclude that Anne is allowed to enter the country,
since she is a citizen of Austria, an European country, and she is not believed suspect of any
criminal actions. However, we can only conclude that Boris is allowed to enter the country
using MWebAS. This is so because we need to do some case analysis (consider multiple
possible models).

It is known that Boris is a citizen of Croatia and is not suspect. However we do not know if
Croatia is a European country. Since predicate eu:CountryEU/1 is used in open mode, the
MWebAS semantics considers a model where Croatia is an European country, and thus
Boris can enter by the first rule, and considers another model where Croatia is not an
European country, but since it is not required a Visa for Croatia, Boris can also enter the
country in this case by the second rule. Since, in all possibilities Boris can enter the country
by cautious reasoning we conclude that it is safe to allow Boris enter the country.

Since there are no rules for neg gov:Enter/1 and predicate is defined in normal mode,
there is no way to conclude explicitly false knowledge. However, we are able to conclude
that the system believes that Peter should not enter the country (because he is a suspect).

28

Regarding Rita we cannot conclude anything since she might be a citizen of an European
country or not. Therefore, she might be allowed to enter in some models, and refused to
enter in other models (where she has non-European nationality).

Since reasoning in MWebWEFS considers only one model, reasoning is polynomial on the size
of the grounded rulebase. In the worst case, reasoning in MWebAS is co-NP-complete
(intractable) since it might be necessary to consider an exponential number of possible
models.

29

Travel Example

The travel example can be found in directory ‘USERDIR/examples/travel’ and the
rulebase files can be compiled and loaded by consulting [mweb, testTravel] and then
calling the predicate load. Since this example can consume quite a large amount of memory
with MWebAS semantics, users are advised to invoke XSB with parameter -m 50000. A
simple test can be performed by executing predicate test:

| ?- load, test.
MWebWFS solutions:

(Chttp://www.travel_plan.gr#package2 ',' http://geography.int#Croatia)
(http://www.pyramis.gr#packagel ',"' http://geography.int#Egypt)
MWebAS solutions:

(Chttp://www.travel_plan.gr#package2 ',' http://geography.int#Croatia)
(http://www.pyramis.gr#packagel ',' http://geography.int#Egypt)

yes

A more extensive test can be executed by calling predicate testall, dumping the list of triples
(Subject,Property,Object) which can be concluded from the example under MWebWFS and
MWebAS semantics. Users can evidence the different response times of both semantics
(MWebWEFS is faster than MWebAS).

Using ERDF syntax and semantics

We start again by defining a rulebase with world and European countries. This time we use
the ERDF support of the MWeb framework, which introduces new syntax for simplifying
writing of rulebases on top of the (Extended) Resource Description Framework.

Geo’s RDF MWeb interface (geordf.mw) Geo’s RDF MWeb logic program (geordf.rb)

:- rulebase 'http://geography.int’. :- import('erdf.rb’,rulebase).

:- base 'http://geography.int'. geo:Europ_Country.[rdf:itype ->> erdf:PositivelyClosedClass].
:- prefix geo = 'http://geography.int#'. geo:Europ_Country.[rdfs:subClassOf ->> '#Country'].

:- import(‘erdf.mw',interface). geo:Egypt.[rdf:type ->> geo:Country].

geo:Egypt.[geo:capital ->> geo:Cairo].

:- defines local normal class(geo:Country).

:- defines local normal class(geo:Europ_Country). geo:Italy.[rdf:type ->> geo:Europ_Country,

:- defines local normal property(geo:capital). geo:capital ->> geo:Rome].

geo:Croatia.[rdf:type ->> geo:Europ_Country,
geo:capital ->> geo:Zagreb].

The rulebase defines properties and classes. In fact, only classes that require context literals
must be declared. However, properties for which we have rules must always be declared.

A class declaration class (CURIE) is short for 2 # mw:Vocabulary (coinciding

with? .[rdf:type ->> CURIE]).Recall thatin MWeb ERDF all classes and properties
normal, and notice that the rdf(s) properties are declared elsewhere and imported both in
the interface file (declarations) and logic program (rules). Observe also how triples (frames)
for the same subject can be aggregated together. The intended semantics of this rulebase is
also pretty clear: we have a positively closed list of European Countries, some instances are
listed as well their capitals.

30

Some interesting queries illustrating some features are shown next:

ERDF queries using RIF frames

ERDF queries using RIF relations

| ?- mwebQuery([X], X.[rdf:type ->> geo:'Country']).
X = http://geography.int#ltaly;

X = http://geography.int#Croatia;

X = http://geography.int#Egypt;

no
| ?- mwebQuery([X], neg X.[rdf:type ->> geo:'Country']).

no
| ?- mwebQuery([X], X.[rdf:type ->> geo:'Europ_Country']).

X = http://geography.int#ltaly;
X = http://geography.int#Croatia;

no

| ?-
mwebQuery([X], (X.[rdf:type ->> geo:'Country’],

neg X.[rdf:type ->> geo:'Europ_Country'])).

X = http://geography.int#Egypt;
no

| - mwebQuery([X,Y], X[rdf:itype ->> geo:'Europ_Country’,
geo:capital ->>Y).

X = http://geography.int#Italy
Y = http://geography.int#Rome;

X = http://geography.int#Croatia
Y = http://geography.int#Zagreb;

no

?- mwebQuery([X], geo:'Europ_Country'.[rdfs:subClassOf ->> X]).

no;

| 7- mwebQuery([X], X # geo:'Country").
X = http://geography.int#ltaly;

X = http://geography.int#Croatia;

X = http://geography.int#Egypt;

no
| ?- mwebQuery([X], neg X # geo:'Country').

no
| 7- mwebQuery([X], X # geo:'Europ_Country').

X = http://geography.int#Italy;
X = http://geography.int#Croatia;

no
| ?-
mwebQuery([X], (X # geo:'Country’,

neg X # geo:'Europ_Country')).
X = http://geography.int#Egypt;

no

| - mwebQuery([X,Y], (X # geo:'Europ_Country’,
X.[geo:capital ->>Y])).

X = http://geography.int#Italy
Y = http://geography.int#Rome;

X = http://geography.int#Croatia
Y = http://geography.int#Zagreb;

no

| - mwebQuery([X], geo:'Europ_Country' ## X).
no

The expected answers are obtained. However the last query deserves some explanation.
Using rdfs:subClassOf one does not obtain answers because the property is declared
internal and thus is not visible. No naswer is obtained using '##' /2 because '##'/2 is
included in rdfs:subClassOf but not vice-versa and the predicate is also invisible.

Be very careful when negating RIF frame formulas, since the current parser only supports
negation of frames with a single property. So, users cannot query naf
X.[rfds:subClassOf ->> Y, Y rdfs:subClassOf Z].

Total and closed classes/properties

The rulebase 'http://europa.eu’ defines an open (and incomplete) list of European Union
countries. The open world assumption is declared by the statement that
'http://europa.eu#CountryEU" is an erdf:TotalClass. A class closed world assumption can be
declared in a similar manner, by erdf:PositivelyClosedClass and erdf:NegativelyClosedClass,
as shown in the previous geordf.rb MWeb logic program.

31

Europa’s MWeb interface (europardf.mw)

Europa’s MWeb logic program
(europardf.rb)

:- rulebase 'http://europa.eu’.
:- base 'http://europa.eu#’.

:- prefix eu = 'http://europa.eu#’, geo = 'http://geography.int#'.

:- import('erdf.mw',interface).

:- defines local normal class(eu:CountryEU).

:- uses normal class(geo:Country) from 'http://geography.int'.
:- uses normal class(mw:Vocabulary) from 'http://geography.int’.

:- import(‘erdf.rb’,rulebase).
eu:CountryEU.[rdf:type ->> erdf:TotalClass].

geo:Italy.[rdf:itype ->> eu:CountryEU].
geo:Greece.[rdf:type ->> eu:CountryEU].

To check that the European Union class is really open, users can perform the following
queries to contrast the different behaviour of European countries according to
'http://europa.eu’ rulebase and 'http://geography.int’.

Checking open class

Checking closed class

| - mwebQuery([X], X # eu:'CountryEU").

X = http://geography.int#ltaly;
X = http://geography.int#Greece;

no
| - mwebQuery([X], neg X # eu:'CountryEU").

no
| ?- mwebQuery([X], naf X # eu:'CountryEU").

X = http://www.travel.org#visit;

X = http://www.pyramis.gr#package2;

X = http://www.travel_plan.gr#package2;

X = http://geography.int#Luxor;

X = http://www.travel.org#travel;

X = http://www.pyramis.gr#packagel;

X = http://www.travel_plan.gr#packagel;

X = http://www.anne_travel_pref.gr#choose_trav_package;
X = http://geography.int#Trogir;

X = http://www.anne_travel_pref.gr#visit_other;

no

| ?- mwebQuery([X], naf neg X # eu:'CountryEU").

X = http://geography.int#ltaly;

X = http://geography.int#Greece;

(plus the solutions of the previous query)
no

| 7- mwebQuery([X], X # geo:'Europ_Country').

X = http://geography.int#ltaly;
X = http://geography.int#Croatia;

no
| 7- mwebQuery([X], neg X # geo:'Europ_Country').

X = http://erdf.org#complementOf;

X = http://www.w3.0rg/2000/01/rdf-schema#domain;
X = http://www.w3.0rg/2000/01/rdf-schema#comment;
X = http://www.w3.0rg/1999/02 /22-rdf-syntax-ns#_1;
X = http://geography.int#Country;

no
| 7- mwebQuery([X], naf X # geo:'Europ_Country').

X = http://erdf.org#complementOf;

X = http://www.w3.0rg/2000/01/rdf-schema#domain;
X = http://www.travel.org#visit;

X = http://www.w3.0rg/2000/01/rdf-schema#comment;
X = http://www.w3.0rg/1999/02 /22-rdf-syntax-ns#_1;

| ?- mwebQuery([X], naf neg X # geo:'Europ_Country").
X = http://www.travel.org#visit;

X = http://geography.int#Greece;
X = http://www.pyramis.gr#package2;

Since ‘http://geography.int#Europ_Country’ is closed with respect to the vocabulary of
‘http://geography.int’, the solutions of the last two queries in open mode present some
solutions with vocabulary of other rulebases. ERDF always uses the whole available
vocabulary for open and closed world assumptions.

The declaration of total properties is done in the same way, by stating that the property has
rdf:type erdf:TotalProperty. Closed properties are declared using
erdf:PositivelyClosedProperty and erdf:NegativelyClosedProperty, depending on the

intended semantics.

32

Global predicates

Travel packages are expressed in the following two rulebases 'http://www.pyramis.gr' and
'http://www.travel_plan.gr', whose definition can be found next.

Pyramis rulebase

Travel rulebase

:- rulebase 'http://www.pyramis.gr'.

:- base 'http://www.pyramis.gr'.

:- prefix geo = 'http://geography.int#’,
vac = 'http://www.travel.org#',
pyr = 'http://www.pyramis.gr#'.

:- import(‘erdf.mw',interface).

:- defines global normal property(vac:travel).
:- defines global normal property(vac:visit).

:- rulebase 'http://www.travel_plan.gr'.

:- base 'http://www.travel_plan.gr'.

:- prefix geo = 'http://geography.int#’,
vac = 'http://www.travel.org#',
trav = 'http://www.travel_plan.gr#'.

:- import(‘erdf.mw’,interface).

:- defines global normal property(vac:travel).
:- defines global normal property(vac:visit).

:- import(‘erdf.rb’,rulebase).

pyr:packagel.[vac:travel ->> geo:Egypt,
vac:visit ->> geo:Cairo].

pyr:package2.[vac:travel ->> geo:Egypt,
vac:visit ->> geo:Cairo,
vac:visit ->> geo:Luxor].

:- import('erdf.rb’,rulebase).

trav:packagel.[vac:travel ->> geo:Italy,
vac:visit ->> geo:Rome].

trav:package2.[vac:travel ->> geo:Croatia,
vac:visit ->> geo:Zagreb,
vac:visit ->> geo:Trogir].

We can query to obtain which packages travel to which countries independently where they

are defined:

| ?- mwebQuery([XY], X.[vac:travel ->>Y]).

X = http://www.pyramis.gr#packagel
Y = http://geography.int#Egypt;

X = http://www.pyramis.gr#package?2
Y = http://geography.int#Egypt;

X = http://www.travel_plan.gr#package2
Y = http://geography.int#Croatia;

X = http://www.travel_plan.gr#packagel
Y = http://geography.int#ltaly;

Notice that the solutions obtained by global predicates are simply the union of the answers
of each loaded rulebase where they are defined. Thus, interpretations of predicates may be

distinct in distinct rulebases. If a global interpretation is desired for some rulebase, that

rulebase must use the predicate besides defining it. This fine-grained control is very flexible

and general.

33

Coding complex rules

Rulebase 'http://www.anne_travel_pref.gr' expresses Anne’s travel preferences. Anne’s
rulebase defines only one predicate, in normal mode, which is visible only to Peter’s
rulebase. The logic program captures the following conditions to select travel packages:

1. A package is chosen by Anne if it travels to a non-European country (according to
geography’s rulebase) and visits only one city according to pyramis travel agency. This
is captured by the first and the second rules in the program;

2. Atrip to an EU Country by Travel Plan which visits at least two cities (third rule);

3. Atrip to an European but not a EU Country that visits the capital of the country (fourth

rule).
Anne’s MWeb interface (anne.mw) Anne’s MWeb logic program (anne.rb)
:- rulebase 'http://www.anne_travel_pref.gr'. :- import('erdf.rb’,rulebase).
:- base 'http://www.anne_travel_pref.gr'. ?Package.[ann:choose_trav_package ->> ?Country] :-
neg (?Country # geo:Europ_Country),

:- prefix ann = 'http://www.anne_travel_pref.gr#'. ?Package.[vac:travel ->> ?Country],
:- prefix geo = 'http://geography.int#’, ?Package.[vac:visit ->> ?City] @ 'http://www.pyramis.gr’,

eu = 'http://europa.eu#'. naf neg ?Package.[ann:visit_other ->> ?City].
:- prefix vac="http://www.travel.org#’,

trav="http://www.travel_plan.gr#'. neg ?Package.[ann:visit_other ->> ?City] :-

?Package.[vac:visit ->> ?City] @ 'http://www.pyramis.gr’,

:- import('erdf.mw',interface). ?Package.[vac:visit ->> ?Other | @ 'http://www.pyramis.gr’,

naf(?City = ?Other).
:- defines local normal

property(ann:choose_trav_package) ?Package.[ann:choose_trav_package ->> ?Country] :-
visible to 'http://www.peter_travel_pref.gr'. ?Package.[vac:travel ->> ?Country |,
?Package.[vac:visit ->> ?City1 | @ 'http://www.travel_plan.gr’,
:- uses normal property(vac:travel). ?Package.[vac:visit ->> ?City2 | @ 'http://www.travel_plan.gr’,
:- uses normal property(vac:visit). naf (?City1 = ?City2).
:- uses normal property(geo:capital) ?Package.[ann:choose_trav_package ->> ?Country] :-
from 'http://geography.int’. ?Country.[rdf:type ->> geo:Europ_Country],
:- uses normal class(geo:Europ_Country) neg ?Country.[rdf:type ->> eu:CountryEU],
from 'http://geography.int'. ?Package.[vac:travel ->> ?Country |,
?Package.[vac:visit ->> ?City],
:- uses normal class(eu:CountryEU) from ?City.[geo:capital ->> ?Country].

'http://europa.eu’.

:- uses normal class(mw:Vocabulary).

Since all properties and classes are normal, then negation as failure can be used to capture
universal quantification. This allows for greater generality but with no monotonicity
guarantees.

Mark that the interface uses normal properties vac:travel and vac:visit without stating their
provenance, while in the logic program part of the rulebase some of the queries mention
explicitly the queried rulebase. In the latter case, the corresponding rulebases must be
loaded.

The selected packages by Anne can be obtained by calling predicate test of testTravel. If

users wish to see all the entailed triples then they can enter the query testall.
Let’s obtain the selected packages:

34

| - mwebQuery([Package,Country], Package.[ann:choose_trav_package ->> Country]).

Package = http://www.pyramis.gr#packagel
Country = http://geography.int#Egypt;

Package = http://www.travel_plan.gr#package2
Country = http://geography.int#Croatia;

no

The first solution is obtained by the first condition (captured by the first and second rules),
and the second solution is obtained from the second condition (captured by the third rule).
The first package of Travel Plan is not selected because Italy is a European Union country,
and thus condition neg 'http://geography.int#ltaly'.[rdf:type ->> eu:CountryEU] fails.

35

Inconsistent example

This example can be found in directory ‘USERDIR/examples/inconsistent and the
rulebase files can be compiled by consulting [mweb, testInconsistent], and loaded with
the command load. A test can be performed by executing predicate test:

| ?- load, test.
MWebWFS solutions

(neg 'http://example.org#q'(?X)) @ 'http://example3.org'

?2X = b

?2X = ¢

'http://example.org#p' (?X)

?X = a

?2X = ¢

naf 'http://example.org#p' (?X)
?2X = Db

?2X = ¢

('http://example.org#p' (?X), 'http://example.org#q'(?X))
?X = a

?X = ¢

'http://example.org#r' (?X)

?X = ¢

MWebAS solutions:

(neg 'http://example.org#q'(?X)) @
?X = b

?X = ¢

'http://example.org#p' (?X)
++Error[XSB/Runtime] Unhandled Exception: mweb(Inconsistent modular rulebases!)

'"http://example3.org’

This example is formed by three rulebases depicted below:

Rulebase s1 Rulebase s2 Rulebase s3

:- rulebase 'http://examplel.org’.
:- prefix ex="http://example.org#'.

:- defines local normal ex:p/1.

:- rulebase 'http://example2.org’.
:- prefix ex="http://example.org#'.

:- defines global definite ex:q/1.

:- rulebase 'http://example3.org'.
:- prefix ex="http://example.org#'.

:- defines global normal ex:q/1.

:- defines global normal ex:q/1. :- defines local normal ex:r/1.

:- uses normal ex:q/1.

ex:p(?X) :- ex:q(?X). ex:q(c). ex:q(a).
neg ex:q(b).
neg ex:r(c). neg ex:q(c).
ex:r(c).

The definition of global predicates in normal (or closed) modes is forbidden by the
theoretical MWeb framework due to non-monotonicity. For compatibility with RIF and the
underlying Prolog framework, these are allowed in the implementation. Users are warned
in the console when such potentially problematic situations are found.

Detecting inconsistencies
By design the implementation of the MWebWFS semantics does not check consistencies

automatically, because it uses a paraconsistent semantics, while MWebAS performs checks
before executing goals but taking into account dependencies of the queried goals. For

36

checking consistency under MWebWFS semantics on normal regime, users can call
mwebCheckConsistency:

| ?- mwebCheckConsistency.
++Error[XSB/Runtime] Unhandled Exception: mweb(Inconsistent modular rulebases!)

It is also available the predicate mwebCheckConsistency(+Semantics, +Regime)
for checking general consistency under Semantics in mode Regime.

| ?- mwebCheckConsistency(wfs, d).

yes
| ?- mwebCheckConsistency(asp, d).

yes

| ?- mwebCheckConsistency(asp, n).
++Error[XSB/Runtime] Unhandled Exception: mweb(Inconsistent modular rulebases!)

The results are expected since inconsistencies arise only on normal mode because of the
rules for ex:r/1 and ex:q/1. Notice that in definite mode only ex:q(c) is concluded under
both semantics:

| ?- mwebQuery([X], ex:qg(X) @ 'http://example2.org', wfs, d).

| ?- mwebQuery([X], ex:q(X) @ 'http://example2.org', asp, d).
X = cy

no

One of the interesting features of MWebWFS semantics is that it is able to identify which
conclusions depend on contradiction. Users can always check if some goal depends on
contradiction by querying the goal and its weak negation. If both succeed then the
conclusion is dependent on contradiction. This is illustrated quite well with the following
queries:

| ?- mwebQuery([X], ex:p(X)).

X = a;
X = ¢c;
no

| ?- mwebQuery([X], neg ex:p(X)).

no
| ?- mwebQuery([X], naf ex:p(X)).

X = b;

X = ¢c;

X = Vocabulary;

no

| ?- mwebQuery([X], naf neg ex:p(X)).
X = a;

X = b;

X = ¢c;

X = Vocabulary;

no

37

From the above results it can be concluded that conclusion 'http://example.org#p' (c)
depends on contradiction, since both 'http://example.org#p' (c) and naf
'http://example.org#p' (c) hold butis not itself contradictory because the conclusion
neg 'http://example.org#p' (c) does not hold.

Let’s compare to what happens to predicate ex:q/1:

| ?- mwebQuery([X], ex:qg(X)).

X = a;

X = c¢c;

no

| ?- mwebQuery([X], neg ex:q(X)).
X = b;

X = ¢c;

no

| ?- mwebQuery([X], naf ex:q(X)).
X = b;

X = c¢;

no

| ?- mwebQuery([X], naf neg ex:q(X)).
X = a;

X = ¢c;

no

Notice that 'http://example.org#p'(c) andneg 'http://example.org#p'(c)
hold, thus we have contradiction. This can be checked directly or by decting the
dependencies on contradiction since by coherence naf 'http://example.org#p' (c)
and naf neg 'http://example.org#p' (c) both hold, as expected.

As shown before, MWebWEFS is tolerant to the existence of contradictions but is capable of
signalling their effects. MWebAS is not paraconsistent but in some circumstances is capable
of isolating independent parts of the rulebases avoiding trivialization in expected situations.

Global and local models

The MWeb framework is designed in such a way that each rulebase has its own
interpretation of all defined and used predicates, for each regime. This prevents unintended
interactions of loaded modules and trivialization because of inconsistent rulebases, as
illustrated previously.

For simplifying the construction of full models of rulebases the predicate mwebModel(
Rulebase, Literal) and its variants can be used to backtrack over all Literals true in
Rulebase. These can be collected with setof or findall:

| ?- setof(L, mwebModel('http://example3.org', L), Model).

L = h140

[http://example.org#q(a),naf http://example.org#q(Vocabulary),hnaf
http://example.org#q(b),naf http://example.org#q(c),naf neg
http://example.org#g(Vocabulary),naf neg http://example.org#g(a),neg
http://example.org#q(b),neg http://example.org#q(c)];

38

no

The previous command obtains all the literals L true in rulebase ‘http://example3.org’
under semantics MWebWEFS on normal mode, and collects them in list Model. The models of
the remaining rulebases can be obtained similarly, and are shown in the next table, ignoring

the Vocabulary constant:

Rulebase 'http://examplel.org'

Rulebase 'http://example2.org'

Rulebase 'http://example3.org'

http://example.org#p(a),
http://example.org#p(c),
http://example.org#q(a),
http://example.org#q(c),

neg http://example.org#q(b),
neg http://example.org#q(c),

naf http://example.org#p(b),
naf http://example.org#p(c),
naf http://example.org#q(b),
naf http://example.org#q(c),

naf neg http://example.org#p(a),
naf neg http://example.org#p(b),
naf neg http://example.org#p(c),
naf neg http://example.org#q(a),

http://example.org#q(c),
http://example.orgtr(c),

neg http://example.org#r(c),

naf http://example.org#q(a),
naf http://example.org#q(b),
naf http://example.org#r(a),
naf http://example.org#r(b),
naf http://example.org#r(c),

naf neg http://example.org#q(a),
naf neg http://example.org#q(b),
naf neg http://example.org#q(c),
naf neg http://example.org#r(a),
naf neg http://example.org#r(b),
naf neg http://example.org#r(c),

http://example.org#q(a),

neg http://example.org#q(b),
neg http://example.org#q(c),

naf http://example.org#q(b),
naf http://example.org#q(c),

naf neg http://example.org#q(a)

naf neg http://example.org#q(c)

These models clearly show that rulebase ‘http://example3.org’ is consistent, rulebase
‘http://example2.org’ is inconsistent because of predicate r defined in normal model (but
consistent in definite mode since q is defined in this rulebase definite), and rulebase
‘http://examplel.org’ is inconsistent because it uses the global predicate q which is
inconsistent because of conflicting definitions between the other two rulebases. As
explained before, predicate p in the first rulebase depends on q and thus has an instance
inconsistent.

This example also shows how users can share the global definitions of predicates: they must
use the predicate from everywhere, besides declaring it global. The global model of the
loaded rulebases can also be obtained by the mwebModel(+Literal) predicate. However,
results must be interpreted carefully since, as in the present example, not all rulebases may
have the same definition for global predicates. For generating the same interpretation for
global predicates in all rulebases, these must be defined with the same mode and with the
same context, and used with the same mode in all rulebases.

39

9. Current limitations and future developments

For ease of implementation or more flexibility there are some differences to the theoretical
MWeb framework which are collected next:

Users can define global predicates in non-monotonic modes closed and normal. This
is forbidden in the MWeb theoretical framework since these are expected to be
monotonic. Users should use this at their own risk. A warning message is printed.
The vocabulary of any rulebase is always the one obtained from all the loaded
rulebases. The MWeb ERDF theoretical framework obtains the vocabulary from the
dependencies of a given rulebase. For ease of implementation this has not been
implemented, but it is expected to be tackled in the near future.

Goals using vocabulary not defined in the loaded rulebases usually are false by
default instead of raising any kind of runtime error. Forms to circumvent this
problem have been discussed in the examples.

Consistency checks are not performed automatically in MWebWFS. The users must
perform the checks explicitly. A paraconsistent semantics is implemented with a
better behaviour in face of contradiction than the MWebWFS theoretical framework.

The current implementation has several limitations, which are briefly described:

There is no means for using the local rulebase vocabulary as context for open and
closed world assumptions. More complex vocabulary constant using complex terms
is necessary (currently is limited to constants).

Subsumptive tabling is much better in terms of memory consumption than variant
tabling, in particular for RDF reasoning. However, the current implementation is not
handling it appropriately because of some cuts in the generated code. Alternative
coding must be devised.

There is no tabling control by the user, therefore in some situations we are using
more memory than the one strictly necessary. This has negative performance
impacts.

A unique general program transformation is used both for MWebWFS and MWebAS
semantics. For the case of consistent theories, the transformed program can be
simplified reducing tabling.

Elementary support of RIF and XML Schema datatypes just recognizing terms of the
form Literal**IRIL

The command level query syntax is different from the one used in rulebases which
might introduce some confusion to non-expert users.

Restricted number of Prolog external predicates is supported. Better integration is
necessary.

The next developments of the MWeb framework will include:

Support of RIF and XML Schema datatypes.

Direct translation of (Extended) RDF Schema ontologies in XML and NTriples
serialization formats, including automatic support and renaming of blank nodes.
Rulebases specified in Rule Interchange Format, both in presentation and normative
XML syntax.

40

Support of the basic OWL2 profiles, namely OWL2 RL which has a specification on
RIF.

Mechanisms for ontology mapping, in particular mapping of constants in different
rulebases.

Development of a paraconsistent semantics for MWebAS.

41

10. Library Predicates

Compilation

mwebCompileModule(+RulebaseName)

Compiles a rulebase. The RulebaseName is used to generate the file names of the interface
and logic program files by encoding it and appending the suffixes, "mw' and 'rb’,
respectively. Encoding escapes all chars except for letters, digits, HYPHEN-MINUS ("-") and
LOW_LINE ("_"). The mwebCompileModule/2 is then called for performing the
compilation.

mwebCompileModule(+InterfaceFile, +RulesFile)

A prolog module will be generated and compiled. The name of the Prolog file is obtained
from the rulebase declaration in the interface source file. The Prolog file has .pl extension
and filename obtained by escaping all chars except for letters, digits, HYPHEN-MINUS ("-")
and LOW_LINE ("_") of the rulebase IRI.

Loading

mwebLoadModule(+RulebaseIRI)

Loads a given rulebase identified by RulebaselRI into the MWeb shell. The corresponding
Prolog file with encoded RulebaselRI filename and .pl extension must be in XSB’s default
search path.

mwebUnloadModule(+RulebaseIRI)
Removes the rulebase identified with RulebaselRI from the MWeb shell. This can be used
when local predicates have been defined more than once.

mwebLoadModules(+ListOfRulebaseIRIs)
Calls mwebLoadModule/ 1 for each element in the argument list. Also accepts a single
RulebaselRI as in mwebLoadModule/ 1.

mwebLoadAllModules(+RulebaseIRI)

Convenience predicate to load recursively all the modules EXPLICITLY appearing in uses
rulebase lists, starting from RulebaselRI and following the rulebases’ uses lists. If a rulebase
has been previously loaded then it is ignored.

Declarations

prefix/1

Declares a set of prefixes to be used in the MWeb shell. The prefix command expects a
comma separated list of terms Prefix="IRIRef". The prefixes occurring in any loaded rulebase
are NOT declared in the shell.

vocabulary/1

Declares extra vocabulary at the global level, visible to all or to a specific rulebase. It expects
a comma separated list of constants with an optional @ Rulebase.

42

Querying

mwebQuery(+FreeVars, +Query, +Semantics, +Regime)

This is the main predicate for querying the MWeb system. This predicate executes Query
with free variables listed in FreeVars under Semantics in mode Regime. The use of each
argument is now detailed:

FreeVars: in some queries it might be necessary to list the free variables in FreeVars
to perform instantiation before querying in order to avoid floundering problems
(calls of weak negation with non-ground arguments). Users may try first calling with
an empty list and then include the necessary variables to avoid errors.

Query: the query to be executed. More details can be found in the previous sections.

Semantics: either the constant wfs or asp, selecting respectively MWebWFS or
MWebAS semantics to be used. In order to query under MWebAS semantics, XSB
system must be compiled with smodels support. It is always possible to query with
MWebWFS semantics, which is the default mode.

Regime: selects the MWeb querying mode: d for definite, o for open, c for closed, or n
for normal. The default mode is n.

mwebQuery(+Query)
The same as mwebQuery([], Query, wfs, n).

mwebQuery(+FreeVars, +Query)
The same as mwebQuery(FreeVars, Query, wfs, n).

mwebQuery(+FreeVars, +Query, +Semantics)
The same as mwebQuery(FreeVars, Query, Semantics, n).

mwebSetErrorLevel(+Level)

Flag to control runtime behaviour when call of a normal predicate is made from a non-
normal predicate (definite, open or closed). Level can be one of: error, msg, or none.

If error is set (the default) a runtime error is thrown, if msg is set then a warning message
is written in the console, otherwise the computation continues silently (level none).

Consistency Checking

mwebCheckConsistency(+Semantics, +Regime)

Checks global consistency of all loaded rulebases under Semantics and mode Regime.
Semantics takes values wfs or asp, and Regime values d, o, ¢, or n. Notice that the
rulebases might be inconsistent in one regime and consistent in other regimes.

mwebCheckConsistency
The same as mwebCheckConsistency(wfs, n).

43

Model Construction

mwebModel (Rulebase, +Semantics, +Regime, PredInd, ?Literal)

Backtracks over all literals true in Rulebase constructed from PredInd=PredName/Arity
under Semantics with mode Regime. If Rulebase is a variable, then it returns literals true in
the global interpretation. If PredInd is a variable then it is returned all literals true of
defined predicates in the provided rulebase.

mwebModel(Literal)
The same as mwebModel(, wfs, n, , Literal).

mwebModel (Rulebase, Literal)
The same as mwebModel (Rulebase, wfs, n, _, Literal).

mwebModel (Rulebase, Semantics, Literal)
The same as mwebModel (Rulebase, Semantics, n, _, Literal).

mwebModel (Rulebase, Semantics, Regime, Literal)
The same as mwebModel (Rulebase, Semantics, Regime, , Literal).

44

11. Readings

Anastasia Analyti, Grigoris Antoniou, Carlos V. Damasio, MWWeb: A Principled Framework
for Modular Web Rule Bases and its Semantics, Submitted for publication, 2010.

Anastasia Analyti, Grigoris Antoniou, Carlos V. Damasio, A Formal Theory for Modular
ERDF Ontologies, Proceedings of Third International Conference Web Reasoning and Rule
Systems (RR 2009), pp. 212-226, Chantilly, VA, USA, October 2009, Springer-Verlag.

Anastasia Analyti, Grigoris Antoniou, Carlos V. Damasio, A Principled Framework for
Modular Web Rule Bases and its Semantics, Procs. of the 11th International Conference on
Principles of Knowledge Representation and Reasoning (KR 2008), pp. 390-400, Australia,
September 2008, AAAI Press.

Anastasia Analyti, Grigoris Antoniou, Carlos V. Damasio, Gerd Wagner, Extended RDF

as a Semantic Foundation of Rule Markup Languages, Journal of Artificial Intelligence
Research (JAIR), 32, pp. 37-94, 2008, AAAI Press.

Carlos V. Damasio, Anastasia Analyti, Grigoris Antoniou, Gerd Wagner, Supporting
Open and Closed World Reasoning on the Web, Procs. of 4th Workshop on Principles and
Practice of Semantic Web Reasoning (PPSWR 2006), Budva, Montenegro, pp. 149-163, June
2006, Springer-Verlag .

45

