
Page 1

CoCoNuts!
T H E L I F E A N D T I M E S O F T H E C O L O R C O M P U T E R

May 2007 Vol. 2 Issue 2

Our Staff

Executive Editor
Chief consultant
Publishing
Senior Writer

Staff Writers

Art Director &
Typesettting

Photos

Mary Kramer
Bob Devries (dad)
Roger Taylor
Robert Gault

Steve (6809er) Bjork
Cris (CaptCPU) Egger
Allen (OS-9er) Huffman
Richard Ivey
John (Sock Master) Kowalski
Brian (Briza) Palmer

Steve (6809er) Bjork

Allen (OS-9er) Huffman
Steve (6809er) Bjork

What's inside ...
Getting to Know: Steve Bjork!
Real Donkey Kong on a CoCo?
The Color Computer 3 Prototype
The 16th Annual CoCoFest
The Asimov Awards
Mister Mind 2007
Getting to Know: Jack Rodda!
LITE PSYCLE
How to read a disk directory DECB
The Coco & Music
Cloud-9's DriveWire

And Much More...

Wow what a year this has been so far. I want to thank everyone for
making this dream of mine come true. I can only hope that my dad
is smiling down on me from heaven. I know if we would have been
able to continue through life together he would have wanted me to
be part of this community back in those times.

I think I have done a pretty good job of bringing most of us closer
together with something we all love. We all love a good magazine
about our favorite machines. I have come to learn that all
CoCoNuts all seem to have three things in common: Astronomy,
Star-Trek, and Dr. Pepper.

I'm sure you note the big change in format with this issue of
CoCoNuts! Steve (6809er) Bjork has stepped in as our art director
and typesetter. He has given us a beutifull new look that is also
easier to read. I'm sure we will see more of Steve Bjork's work in
future issues too.

So if you guys behave yourselves and keep getting submissions in
on time I might just add a couple articles that review our favorite
episodes of Star-Trek, or add in some pictures of vintage Dr.
Pepper cans! I hope you enjoy this issue of CoCoNutz! E-Zine.

Mary Kramer, Executive Editor

2
6
8

13
14
15
16
17
20
23
29

Page 2

CoCoNuts!
T H E L I F E A N D T I M E S O F T H E C O L O R C O M P U T E R

May 2007 Vol. 2 Issue 2

Mary Interviewing Steve

Getting to Know: Steve Bjork!
Steve has been missing from the
CoCo scene for a long time. When
someone challenged me to try to get
him back I immediately sent out the
email. After waiting for a short period
of time I pounced on him in the
CoCo3.com chat one evening.

The ball started to roll. Steve and I
agreed to meet at the fest and do a
video taped interview. I considered
this a great honor and was a bit
nervous. Steve's wonderful personality
quickly won me over. He is a very
polite person and was an absolute
pleasure to talk with. I am so proud to
offer this interview for this issue.

Now Steve is extremely active in our
CoCo community once more. Wel-
come home Steve! This is the tran-
script from that video taped interview. I
want to thank him for this chance to do
this, and also all the help he has given
me on this issue of the E-Zine.

○ ○

Mary: We are here with Steve Bjork.
(Hi Steve)

Steve: Hi Everybody!

Mary: We will start off with "Where do
you live?"

Steve: First of all, I'm going to pro-
nounce my name so everyone gets it
correct, it's "Be-York". It's Scandina-
vian; my father is 100% Swedish and
comes from Minnesota. (Bjork is a
common name back there.)

Anyway, I'm born and raised
Southern California. I'm definitely
a California beach boy, as you can
tell by my music and the time I
spend at the beach.

Mary: I can tell by your tan.

Steve: I definitely spend some time in
the California Sun. As we are record-
ing this, it's the end of March and
we've only two inches of rain since last
July. So that tells you that we get lots
and lots of sunshine.

Love the climate out here and love
being close to Disneyland. Hey, I
used to be a skipper on the Jungle
Boat Cruise for a while. I like to
think that I have a little bit of an
entertainer's soul in me.

Mary: Do you have any Kids?

Steve: I have one child, Jeannie and
she is my pride and joy and she will be
12 this September. My lovely wife Lori
and I met (believe it or not) on a hiking
outing with the Sierra Club.

Mary: So, you get out and do stuff.
Where's woods in Southern Califor-
nia?

Steve: Ah well, what is interesting is
that one of the largest city bound
parks exist in Los Angles by the name
of Griffith Park. There is an Observa-
tory, Zoo, Museums and lots of hiking
in the mountains. The Local chapter of
the Sierra Club host hikes on week-
nights in the spring with up to 500
people hiking in 20 or more groups.
That's a lot of people!

Mary: Do you have a dog or any
other pets?

Steve: No, not at this time. But I'm
fond to Basset Hounds. They have
such a sad face, with those long
droopy ears and big, sad eyes. Their
temperament is great, a kid could pull
there tail and all they would do is turn
with a sad, sorry-full look of "why are
you doing that?"

“Steve's wonderful per-
sonality quickly won me
over.”

Z-89, Zaxxon for the CoCo 3

Article and Photos copyright
2007 by Steve Bjork
Other Photos copyright by
other sources.

Page 3

CoCoNuts!
T H E L I F E A N D T I M E S O F T H E C O L O R C O M P U T E R

May 2007 Vol. 2 Issue 2

Mary: Oh, you got to love them.

Now, how did you get start with
computers?

Steve: Well, I got started back in the
early 70's. Back in high school during
my sophomore year I was taking
electronic classes. I was not inter-
ested in learning about the old tubes
and transistors; I wanted to know
about the new digital stuff.

I started studying about the digital
electronics and I was going a little
faster than the instructor. When the
instructor was teaching the class and
was not sure how to interface some-
thing, he would then look in the back
of the room to see if I was shaking my
head yes or no.

Mary: They had digital electronics
back then?

Steve: Yea, they had digital electronics
back than, but no microprocessors. I
built my very first computer back in
1974 using only discrete integrated
circuits (I.C.) It's memory was 4
groups of three 7489 IC for a total of
64 (12-bit) bytes of memory and it
could only do 8 instructions. (NOP,
ADD, COM, AND, OR, SHIFTLEFT,
SHIFTRIGHT, JUMP_IF_ZERO.) It
was basically a fancy calculator that
did not calculate very well.

About a month after I finished my
computer I saw on the cover of
January 1975 Popular Electronics
magazine the Altar 8800, the first
microcomputer kit using a real micro-
processor. I believe that was my first
"I could had a V-8" moment in my
young life. After spending almost two
years building my "computer" (if you
could call it that), there was a true
computer kit for only $400.

Mary: What changes did you see
because of the Altar 8800?

New "personal" computers based on
the Altar 8800 (and its S-100 bus)
started showing up the scene along
with the Homebrew Computer Club up
in Silicon Valley. From time to time, I

would drive the almost 400 miles for
the club meeting. Why would anyone
drive so far for just a club meeting you
may ask? It was there that I met
people like Steve Wozniak (creator of
the Apple computer) and Adam
Osborne for the first time.

I still remember Steve Wozniak
bringing in his first Apple computer
mounted on a wood board. While
primitive by today's standard, it was
like nothing anyone had seen before.
You could just turn it on and start
writing a BASIC program. It sounds
little a like your CoCo that youu still
play with today? You can thank Steve
for that!

Later in 1975, I finished high school and
move on to Collage while working at
Radio Shack store for the first time. At
this time I was playing around with both
S-100 bus computer based on the Altra-
8800 and the SWPC computer based
on the 6800, a new CPU from Motorola.
I was moving from Collage to Collage
looking for courses that aid me in new
study of Digital Electronic, Micro-

Computers and software programming.

Mary: I was going to ask you about
when you start programming. After all,
you're mostly known for your games
that you programmed.

Steve: Most people probably don't
know that I'm primarily a computer
hardware engineer. I love hardware! I
spend just about as much time with a
soldering iron in my hand as typing on
a keyboard.

I started my studies in programming
back in 1972, about the same time as
digital hardware design. The high
school offered classes on program-
ming in BASIC and FORTRAN.
FORTRAN used punch cards and was
a real pain in the neck because the
program had to be sent "Downtown"
on punch cards. It would take days to
get printout the program's run and to
see if it worked at all. BASIC on the
other hand was entered via a teletype
(with a paper tape for storage) and
you could run the program right away
to see if it worked. You can tell which
one I preferred.

The first personal computer and the
world would never be the same.

“I built my very first
computer back in 1974
using only discrete
integrated circuits (I.C.)”

Steve Wozniak's Apple I computer

The shot fired in the Intel - Motoral CPU war,
The SWPC 6800 computer

Page 4

CoCoNuts!
T H E L I F E A N D T I M E S O F T H E C O L O R C O M P U T E R

May 2007 Vol. 2 Issue 2

It did not take long before I past the
level of what my high school could
offer, so while at the age of 16 and
still in high school I was off to Collage
for courses on Advance BASIC
programming. I was also taking a
Saturday (and sometimes after
school) class offered by the school
district for Assembly and Microcode
programming. It was there that I

learned the most important lesson of
my professional life.

While at the district's computer lab,
the MicroData mini-computer started
having a few problems. Each day,
MicroData would send out a techni-
cian to repair the computer. First
was a hardware guy who found the
hardware working fine, so it had to
be a problem with the software. The
next day, a software guy would look
over the computer and find the
software was up to date and loading
great. Day after day, each of the
techs gave the computer a clean bill
of health till both showed up at the
same time by accident.

As I watched them, I could see their
combined knowledge was needed to
deduce that the problem was a cross
between hardware and software. What
was going on was the ROM that held
the Microcode was dropping just a few
bits so the Microcode was not running

right. Basically, a hard to detect bug in
the hardware was making the software
programs run very buggy.

They showed me that it would take the
knowledge of both hardware and
software to become a success in
computers. Someday I must thank
those two technicians for this life
changing lesson.

Mary: It sounds like you did a lot with
computer before the CoCo. What
other personal computers did you
write for before the CoCo?

Steve: Oh, there were a few comput-
ers here and there. Besides 8080
based computer like the Altar 8800,
there was other computer based on
the 6502. In early 1977 the Apple II
and the Commodore Pet were intro-
duced and I started playing with
those. I still remember being at the

in by switches. Plus the number place
that you by a computer has jump by a
factor of ten overnight. The personal
computer was really here!

When my contract for the Magic show
was over, it was back to Los Angeles
and the start of my real career in
computers. At this time I pulled a Bill
Gates dropped out of collage. (More
like I did not start my classes in the
fall.) First, I start working for the
Shack again but selling computer this
time. I qiuckly became the top sells
person in the district if not in the
country because I knew how to write
programs for my clients.

Mary: What types of programs did you
write to help sell the TRS-80?

Steve: I did a couple of demos real
fast but I also wrote application
programs too. When someone would
come in and ask "what could this
computer could do?" I would then
write the program for them to sell the
computer.

One of the projects that I got paid for
was a loan amortization program for a
local car dealership. The program did
such a great job for the load manager
that he started firing his staff. (The
TRS-80 did a better job at fill out the
load applications than people.). Back
in the 70's, computers taking over
jobs was a big deal and I hate to say
that I was part of it.Steve Wozniak's second Computer,

The Apple II

1977 West Computer Fair and seeing
the introduction of the Apple II.

In the summer of 1977, I took a little
break from computers by working with a
fellow magician at Nevada casino in a
dueling magician magic show. One day
before work, I stopped in the local
Radio Shack store to get the new 1978
store catalog. It was like most other
store catalogs except for a little insert
on the last page for a computer call the
Tandy - Radio Shack or TRS-80!

Radio Shack, the company that I work
once before (at the time with over
5,000 outlets) was going to sell
computers. Yes, a real personal
computer, no kit, no loading programs

“...it would take the
knowledge of both hardware
and software to become a
success in computers.”

TRS-80 Model one computer with
expansion unit and hard drive.

The Apple II was followed by the PET

Page 5

CoCoNuts!
T H E L I F E A N D T I M E S O F T H E C O L O R C O M P U T E R

May 2007 Vol. 2 Issue 2

It did not take long for me I learned
that I could make more money if I
spent all my time writing programs
for clients. After about six months I
moved on to my first paid program-
ming gig at SofTape.

There I wrote programs for the Apple II
and the TRS-80 including my first
game, Space Ball.

Mary: Your first game, what did you
write it in?

Steve: I should first correct myself and
say that Space Ball was not the first
game that I ever wrote. There were a
few BASIC games that I wrote just for
fun. Space Ball was my first game that
was marketed and it was also my first
assembly language game too.

Mary: The same company did Apple
and TRS-80 stuff?

engineer and very over done. It had
small pen with a phototransistor at the
pen end and the other was a pen
holder with 7 transistors, 14 resistors
and 10 other components. It looked
nice but cost over $30 (in 1978
dollars) to make.

Because of my computer electronics
background I understood just how the

cassette input worked on the com-
puter and to redesign the light pen to
take advantaged of it. The new design
used a Darlington phototransistor and
resistor inside the small pen with a
cable running to the battery and the
cassette input jack. The design cost
only $5.00 to build including labor.

Needless to say the designer of the
original Bright Pen was not too
pleased with my lower cost redesign
because he was one of the founders
of Softape. Never show up your boss
they say, so I soon left the company.

Mary: So were did you go after
Softape?

Steve: I have to give a lot of credit to
my parents for my next move. They
both grew up on small farms were you
learned to depend on yourself. After
all, if something broken on the farm, it
was up to you fix it. Also, if you didn't
know how to do something then you
learned how.

They also ran their own business while I
was growing up. It was a hard life
working 6 days week for 8 to 10 hours a
day. I would work there after school or
on Saturdays doing what a boy could
do to help out. It was there that learned
what it took to run your own business.

After Softape, I follow the lead from
my parents and start my first com-
puter company, Computer Light &
Sound. Softape let me keep the
software that I wrote for them plus
the redesign light pen and I used
them to start the company.

It was not long before every TRS-80
third party company that was selling a
Light Pen based on my design and
software. I knew that if I gave them
my design and kept the software price
low then I could corner the Light Pen
Market. I can still remembe walking
the isles of the West Coast Computer
Fair and seeing only my light pen at
the third party TRS-80 booths and
thinking that I had done well.

Besides the Light Pen, I also created
three more video games, Galactic
Fighter, Space Ball II and Galactic
Fighter II. Space Ball was Breakout
meets Space Invaders and Galactic
Fighter was like Galaxian but predates
it by 3 months.

One other Computer Light & Sound
product that I'm proud of was
SoftMusic. This was a two voice music
driver that loaded with your BASIC
program. It had to firsts, playing music
on key thought-out an 8 octave range.
The second was play the music in two
voice harmony and was unheard for a
software only music system.

Mary: Who long did you run Com-
puter Light & Sound?

Steve: I ran the company for a very
fun one and half years. The summer
of 1980 started of a very colorful
period in my career. But that's a story
for the next issue of the CoConutz.

You can contact Steve Bjork via his
website at coco.etechwds.com.

Steve: Yes. Third party computer
would and still do create projects for
more than one type of computers.
While At SoftTape I did work on both the
Apple II and the TRS-80. Beside
games, I also did drivers for Light Pens.

Mary: What is a light Pen?

Steve: In the years before the mouse
(via the Mac) the only way to tell a
computer what to do was via a key-
board and it was not a lot fun. So third
party companies tried to market all
types of new input device. The light
pen was a small pen that you point to
a stop on the screen and the computer
would read where you are pointing at.
But SoftTape's Bright pen was easy to
use because of drivers that could be
added with your programs.

The design of the Bright Pen's circuit
was done by old time electrical

A light Pen for a TRS-80

A Space Ball for a TRS-80

“While At SoftTape I did
work on both the Apple II
and the TRS-80 model I”

Page 6

CoCoNuts!
T H E L I F E A N D T I M E S O F T H E C O L O R C O M P U T E R

May 2007 Vol. 2 Issue 2

Mary: What inspired you to do this?

John: I've been wanting to do
something really neat on the CoCo
for some years now, but I've never
had the free time that I would need to
do something really big. When some
free time actually presented itself - I
decided to use it! I hadn't really
decided what I would do at first,
except that I wanted to do something
that had never been done on the
CoCo before. That part is important
to me. After thinking about it a bit, I
finally settled on a game.

Mary: Why did you choose Donkey
Kong instead of a different arcade
game....

John: I had made a short list of about
5 arcade games that would be
interesting to do on the CoCo. I
didn't want to do something too easy.
I didn't want to try something that
turned out to be impossible after all.

The real Donkey Kong
on a CoCo? NO WAY!
As many of you already know I went to the fest this year
with a very special purpose. I was going to debut the
newest and most amazing project by none other than the
great Sockmaster!

Nick, John and I kept people waiting in the chatrooms on
coco3.com. I was the main person to blame for all the
torture amongst the others in chat. Two weeks before
the release of John's secret project Nick and I would
drop little hints.

There was a lot of discussion as to what John's latest
project could be. Some thought it was a graphics editor
others thought it was a game.

 No one guessed that it was something so awesome.
This game wasn't just a recreation but the actual game
ported over to the CoCo3 with 512k ram. Most of you
now want to know just how this all happened. Here is
what John had to say.

I didn't want to do a game that had
already been done too many times on
the CoCo. I wanted to pick a game
that would look impressive on the
CoCo.

After weighing all sorts of details
Donkey Kong came out on top of the
list.

Mary: What was your fist step in
looking at how to do this?

John: First, find out everything you
can about the original arcade game
and hardware. See what it's capable
of doing and then try to figure out how
to get the CoCo to do the same thing.

Mary: You did this via an emulator
right? What kind of emulator?

John: Not exactly. To do true emula-
tion, the CoCo would have had to
have been several times faster and
more powerful than the arcade game.
There are lots of emulators on the PC

now specifically because it's several
thousand times faster than these old
games were. The CoCo on the other
hand is from the same era as these
arcade games. It *isn't* several times
faster or

John: The trick is to emulate only
the parts of the hardware that is
within the capacity of the CoCo to
emulate, and the hardware must be
emulated because it simply does not

1982 version of Donkey King by Chris
Latham for a 32k CoCo.

“...true emulation, the CoCo would have
had to have been several times faster and
more powerful than the arcade game. ”

Page 7

CoCoNuts!
T H E L I F E A N D T I M E S O F T H E C O L O R C O M P U T E R

May 2007 Vol. 2 Issue 2

exist on the CoCo.

The other parts that cannot be emu-
lated... need to be converted into
something that would work on the
CoCo. The big part that can't be
emulated is Donkey Kong's Z80 CPU
& Z80 program code. The CoCo has
a 6809 CPU, not a Z80. What I had
to do there was reverse engineer
the Z80 code and translate it into
6809 code. That way it can run on
the CoCo, and still run the same
way that it did originally.

Mary: Explain the reason for the colors
lines while decompressing?

John: The decompression takes about
20 seconds to process. That's a long
time to wait. If there was nothing
happening on the screen, people
might think the program was not
working and reset the computer!
The crazy colors are an easy way
to show that the computer is
actually doing something. Many
demos on the Amiga and Atari
ST used to use the same effect
for the same reason. I figured it
would be fitting for the CoCo to
do it too.

Mary: Is this the identical game
speed etc just ported over?

John: The game should play
identically to the arcade. Same
speed, same difficulty, same
tricks and techniques.

Mary: Of course everyone wants to
know what is up your sleeve for a
next project?

John: Even I don't know the answer to
that.

Mary: Do you plan to release the
emulator source code?

to hackers in Donkey Kong's rom
code. Did you know that Donkey Kong
actually "runs out" of barrels when the
time runs out on the first level?

I learned a number of gameplay tricks.
You can actually pull out the rivets

without crossing over to the other
side - useful when you have the
hammer and wouldn't be able to
jump back. If you do it right, you
can also jump off the top level of
this stage and you'll just bounce
back.

On the elevator level, you don't
have to jump off the elevators
- you can simply just walk off
and land safely.

Mary: Do we have cheat codes?

John: There are no cheat codes
in the game. I do have one

POKE for the cheaters out there.
Just add a POKE9665,230 before

the EXEC in line 100 of the loader
for unlimited lives. It kind of spoils the
game, so I'd recommend not using it.

You can downlaod the game for free at
John's website:

 www.axess.com/twilight/sockJohn: I'm not sure yet. If it looks like
other people are actually in the
process of doing similar arcade-to-
CoCo conversions and if I decide this
source code could be helpful to the
CoCo community, I may. Everybody
"just wanting it" and ganging up on me
to ask isn't going to help, by the way...

Mary: Did you learn any secrets about
DK along the way?

John: Lots! There's a short message
First Level and it's dead on Every level is dead on

Second Level of 1982 version of Donkey
King by Chris Latham for a 32k CoCo.

Same level on 2007 version of Donkey King
by John Kowalski for a 512k CoCo 3.

Page 8

CoCoNuts!
T H E L I F E A N D T I M E S O F T H E C O L O R C O M P U T E R

May 2007 Vol. 2 Issue 2

The Color
Computer 3
Prototype
By Allen Huffman

Prologue - In the Beginning

On a warm August day in 1985, a
Federal Express delivery truck pulled
in to a parking lot in Clive, Iowa like it
did almost every day. The driver
retrieved a nondescript cardboard
box from the back of the truck and
carried it to the lobby. The box was
signed for and left, then the driver
returned to his route, unaware of the
significance of what he had just been
part of. The box, you see, had been
sent by Tandy in Ft. Worth, Texas.
The recipient was a small computer
company called Microware Systems
Corporation. The contents of the box
were a secret prototype for a new
computer which would be appearing
the following year in Radio Shack
stores nationwide: the Tandy Color
Computer 3 (aka, the CoCo 3).

That was two decades ago - a
lifetime in the computer world. Few
specifics about what went on behind
closed doors at Microware or in
Tandy Towers are known. What is
known, however, is that Microware
had previously established a busi-
ness relationship with Tandy to
produce a version of their OS-9
operating system for the original
Color Computer. This time, their
involvement would go far beyond just
doing another port of OS-9 to new
hardware. It would involve them
working on the onboard firmware to
bring the new machine to life.
Microware would be expanding
Extended Color BASIC to take
advantage of the new hardware.

But why Microware? In 1979,
Microsoft (yes, that Microsoft) had
done the original Color BASIC for the
Color Computer so surely they would

be the ones to continue doing so. But,
by 1985, Microsoft had moved beyond
being just a provider of BASIC and
those types of projects just weren't
compelling. Some speculate Microsoft
would have done it, but it was just
cheaper to have another company
work on the project. In either case,
Microware was likely chosen because
they had previous experience working
with Tandy and the CoCo on the OS-9
project. Since there were plans to
bring out the next generation of OS-9
(Level 2) for the new machine, per-
haps the economy of scale (a discount
for doing multiple projects) did play a
role in this decision. We may never
know the full details, but regardless, in
1986 a new CoCo 3 began appearing
at Radio Shack stores nationwide, and
its new Extended Color BASIC fea-
tured enhancements done by
Microware.

Although the story of how Microware
had to patch and extend Microsoft's
code is an interesting one, this is not
that story. Instead, this is the story
of the contents of that secret box.
This is the story of the CoCo 3 that
almost was.

Part 1 - The Discovery

It was January 2005 and the large,
three-story custom-built Microware
building was finally being vacated by
its original owner. Microware had
ceased to exist as an independent
entity in 2001 after it was acquired by
Oregon based RadiSys Corporation.
Over the years, the once thriving
embedded operating system company
had become a much smaller strug-
gling company trying to compete in a

market now filled with hundreds of
competitors, including offerings from
Microsoft and embedded versions of
the free Linux. Although the building,
completed in 1996, was once fully
occupied by Microware staff, it had
slowly been rented out as the com-
pany reduced in size. At some point,
the building was sold and the former
owner became a renting tenant. It
was on this day that the last remain-
ing Microware folks would be relo-
cating to a much more appropriately
sized rented office space a few
miles away.

The move was somewhat emotional
for those who had been with the
company since the 1980s. Efforts
were made to preserve any OS-9
related artifacts that might still prove
useful, such as motherboards for any
versions of OS-9 that were still sup-
ported. VME cards were salvaged and
server racks were saved, but endless
other pieces of ancient hardware were
to be recycled. Large trash units had
been brought in to the parking lot.
Old PCs, SUN workstations, endless
cables and old parts were being
thrown in to them. A mountain of
monitors was stacked high in the
lobby, waiting to be picked up by the
recycler. Decades of history had
been rendered useless by the
advances of technology.

One of the final areas to be cleared
out was a small storage room in the
basement known as "the morgue."
Inside the morgue were some of the
more interesting artifacts of
Microware's past. Shelving units full of
Compact Disc Interactive (CD-i)
development systems stood across

Page 9

CoCoNuts!
T H E L I F E A N D T I M E S O F T H E C O L O R C O M P U T E R

May 2007 Vol. 2 Issue 2

from piles of old software disks and
tapes. Endless VME I/O cards,
motherboards and reference hardware
sat under layers of dust next to boxes
of blank EPROMS and serial cables. It
was a place that, in the 1980s, would
have been a hardware hacker's wet
dream, but today it was just a room of
ancient technology with no modern
value or use to anyone.

Just like Noah and the Ark, two of
each potentially useful item was to be
saved. Anything that was no longer
supported (or functioning) was to be
sent to the great recycling center in
the sky. Some historic items were
allowed to be taken home,
including an infamous Japa-
nese video game system that
ran OS-9 and featured mecha-
nized 5 1/4" floppy drives and a
fancy joystick. There were a
few other pieces of unusual
OS-9 hardware that escaped a
crushing fate.

For instance, the CD-i ma-
chines also had some historic
significance. Many were
development systems used to
create the tools Phillips and
other companies used for
making CD-i content. Others
had been part of a shopping kiosk
business known as Micromall, co
owned by Microware in the 1990s.
These CD-i machines were saved
then sold off at the 2006 Chicago
CoCoFest, hopefully helping them
end up somewhere better than the
recycle bin.

During all of this purging, a nonde-
script brown cardboard box was
discovered. One of the remaining long
time employees knew of its contents
and made sure to set it aside. This box
was the same box that Federal
Express had delivered twenty years
earlier. This box contained not one,
but two Color Computer 3 prototypes
and a few other surprises. The con-
tents of this box have since helped us
learn a bit more about what Tandy had
intended the CoCo 3 be.

Part 2 - From Prototype to
Pre-Production

Before the discovery of the actual
Color Computer 3 prototypes, the
CoCo community had already seen
what was being called "prototype
CoCo 3s." A few years earlier, some
pre-production CoCos were displayed
at a CoCoFest convention. The CoCo
Communityís official monk, Brother
Jeremy, had acquired them somehow.
They were the ones used by
Microware for developing OS-9 and,
we assumed, the Extended Color
BASIC extensions. Externally they

looked like the CoCo 3s we are all
familiar with, but the motherboards
inside were different. The GIME chips
were earlier prototype versions,
different from the ones found in later
production units. Little else is known
about these machines, but news of
their existence spread through the
community.

After hearing that "prototype" CoCo 3s
had been shown publicly, one of the
original Microware CoCo 3 developers
made a comment that those couldn't
possibly be the real prototypes
because the real ones were still in
storage at Microware. This was the
first clue that there was something
else still to be discovered. Something
few had seen, and something hidden
away somewhere in a box stored
down in a basement.

When the box was opened, it was
clear no one had seen or touched its
contents for many years, and quite
possibly not since 1986. The insides
were dusty. The labels were faded and
cracked. A small supply of bubble
wrap was all that protected the
contents. Inside were two large green
circuit boards and three smaller ones.

The large boards were covered in
chips and wires. The only thing that
gave any clue that this was connected
to the Color Computer was a series of
familiar connectors on the back edge.
The standard CoCo joystick, serial
and cassette ports were there along

with a cartridge connector.
Elsewhere on the board could
be found a keyboard connector,
and further inspection of the
chips revealed a few recogniz-
able ones, like a 6809 proces-
sor. The amount of chips (on a
board four or more times the
size of a production CoCo
motherboard) was staggering.
The back side of the board was
covered in dozens and dozens
of long green jumper wires.

 Two smaller CoCo cartridge
boards were also found as well
as an unidentified third board

that didn't seem to plug in to anything.
The cartridges matched one that had
shown up a few years earlier at a
CoCoFest that was thought to be
some kind of Ethernet networking pak.
The third mystery board carried a
Copyright 1984 Tandy notice on it,
indicating it was probably too early to
be anything CoCo 3 specific. It was
this set of five boards that was shown
at the 2006 Chicago

CoCoFest, and this was when the next
round of discoveries were made.

Part 3 - Blue Sky CoCo

"Everything, even the CoCo, starts
with a dream."

When Disney's Imagineers start
designing a new ride or attraction for
one of the theme parks, they initially

Page 10

CoCoNuts!
T H E L I F E A N D T I M E S O F T H E C O L O R C O M P U T E R

May 2007 Vol. 2 Issue 2

start with what they call the "blue sky"
phase. That is, "the sky is the limit."
Anything is possible, even if impos-
sible. These initial concepts and ideas
may be far grander than what is
technically possibly, or perhaps
possible but economically unfeasible.
As the project continues, the budget
(and often the realities of technology)
whittles down the blue sky plans to
something much more humble which
hopefully will get approved and built.
Disney fans know far too well how
grand plans originally become much
smaller realities, such as how Walt
Disney World's Epcot "Space
Pavilion" went from a full experience
with a space shuttle launch to a
space station, to just a simulator ride
that didn't pretend to be
anything grander.

This same approach is common
in many areas of design, and
likely played a role in the
evolution of the Color Computer
series. For instance, it is
documented that a Deluxe
Color Computer was planned
but never released. Evidence of
this includes references to a
deluxe model in the Color
Computer 2 manuals. Little is
known about the features of this
version other than a documented
ability to enter BASIC commands in
lowercase. Such capabilities never
made it in to any official version of
Radio Shack CoCo BASIC, but later
models did include support for a
lowercase display. There were also
references to extra keyboard keys.
Coincidentally, Radio Shack stores
sold some keyboards as spare parts
during this time. Theses keyboards
had a few extra keys and could be
plugged directly in to an existing
CoCo. It is believed that these key-
boards were designed for the never-
produced Deluxe CoCo. Perhaps
some day a prototype of this machine
will surface.

It is possible that the CoCo 3 grew out
of blue sky plans for the Deluxe CoCo,

actually allowing more ambitious plans
to be made than just minor improve-
ments. All that known for sure today is
that the Deluxe CoCo plans got far
enough for keyboards to be manufac-
tured and for manuals to be revised
and printed.

To understand what was happening, it
is helpful to look at what had already
happened. Tandy has already evolved
the original grey case CoCo several
times. There were a few revisions to
the original motherboard with the final
versions supporting 64K without
hardware hacks. A small run of white
cased CoCo 1s was also produced
which included an updated keyboard.
Next was the CoCo 2 in a smaller
white case with a similar keyboard,

though they were soon revised to
have an improved keyboard which
would continue to be used on all later
models. There were numerous
revisions to the CoCo 2 models,
though the only significant feature was
the addition of true lowercase for the
"Tandy" branded units. (None of the
models labeled as TRS-80s had this
enhanced video chip.) There was also
another minor revision that caused the
need for Color BASIC 1.3, but the end
result was a machine that was effec-
tively no different than the original
1980 model other than in appearance.

To truly make a successor, Tandy
needed something bolder than just a
new keyboard and case. Game
developers wanted to see enhanced
graphics. Similar peer systems, such

as the Commodore 64, had more
colors and hardware sprite capabilities
which allowed more advanced games
to be created easier. Some of these
capabilities were already available as
expansion pak add-ons for the CoCo,
but developers couldn't target those
enhancements since the base CoCo
did not have them. In order to be
useful, the hardware would have to be
integrated.

Looking at the lineup of add-on
hardware paks sold by Radio Shack,
certainly building in enhanced audio
(like the Speech/Sound Pak) would be
useful. The RS-232 pak would also
have made a nice addition, effectively
giving all those "power user" features
to the base model. A "really deluxe"

CoCo with better graphics
would also need to support
something other than an old-
style television set. Other
obvious enhancements would
include more memory and
speed.

Ultimately, the CoCo 3 that
was released in 1996 only
contained a handful of these
blue sky items. Compromises
had to be made to keep costs
down. One of the original
Tandy CoCo 3 developers,

Steve Bjork, has stated that there was
a requirement for the CoCo 3 to be
produced at a lower cost than the
CoCo 2 it was replacing. This ambi-
tious economic goal certainly limited
all the developer's requests for
enhanced hardware.

When released, the production model
CoCo 3 did contain better graphics (up
to 640x480 with four colors, or
320x225 with 16 out of 64 colors).
More memory was added, with the
base model of 128K expandable to
512K. RGB-analog monitor output was
added, as well as audio/video outputs
for hooking to VCRs or composite
monitors. The CoCo 3 could also run
at double speed even in RAM mode,
allowing a boost in performance for
more than just BASIC ROM calls. (The

Page 11

CoCoNuts!
T H E L I F E A N D T I M E S O F T H E C O L O R C O M P U T E R

May 2007 Vol. 2 Issue 2

CoCo 1 and 2 had a "double speed"
poke which sped up ROM access, but
the so-called "triple speed" poke that
sped up RAM access garbled the
video display. The CoCo 3 allowed the
"triple speed" poke to work for both
RAM and ROM code without losing
the display.)

Other additions were compromises. In
lieu of real sound hardware, develop-
ers such a Steve Bjork lobbied for and
received an enhanced IRQ timer. This
didn't compete with the music chip in
the Commodore 64s, but it did allow
enhanced background sound effects
using the existing CoCo sound
capabilities. There was another IRQ
that would have dramatically helped
with RS-232 performance over the
printer/ serial "bit banger" port. It is
believed this was meant to
substitute for a hardware
RS-232 interface, but it
was miswired so that
potential was never
realized. The list of other
enhancements that would
have been nice but didn't
make it is something
discussed to this day,
usually under the guise of
what would have been in a
CoCo 4.

Overall, the CoCo 3 was a significant
leap forward for the series. It con-
tained better graphics, more memory,
faster usable speed and even added
the extra keys that would have been
part of the Deluxe CoCo (but still no
BASIC enhancements to allow enter-
ing commands in lowercase). The new
monitor outputs and new color CM-8
monitor allowed using an 80 column
screen, finally breaking away from the
1980-vintage 32-column display. It
was a significant upgrade and one that
developers took too quickly. The new
generation of programs, from en-
hanced games with full color and
background sound to the power of
OS-9 Level 2, made the new model a
more revolutionary a leap than from
CoCo 1 to CoCo 2.

This brings us back to that box and
the prototype within. By the time
hardware is created, even if it's just a
massive circuit board stuffed with
chips and wiring, most blue sky goals
have been eliminated. The goal of the
initial prototype is to begin working on
what will hopefully be produced later.
Projects certainly continue to evolve,
often based on feedback from working
with the prototypes, but examining
early designs can shed light on the
intent of the designers at that moment
in time.

As mentioned earlier, the CoCo 3
prototype contained the common ports
found on all CoCos up to that point -
cassette, joystick, printer, TV RF out,
and cartridge. New RCA jacks were
added for composite audio/ video

output, and a DB9 appeared for the
new RGB-analog monitor. While the
RCA jacks would make it to the
production CoCo 3s, the DB9 connec-
tor did not. Instead, an odd square 10-
pin header connector was added to
the bottom of the machine. This was
likely a cost reduction move since
placing the connector there on the
motherboard probably saved some
layout money, and using a surface-
mount header was cheaper than
adding a DB9 port. Still, it does
indicate that Tandy may have intended
to use some kind of monitor that had a
DB9 connector like other monitors of
the day.

On a side note, the production CoCo 3
still contains one mystery related to
the monitor port. Under the machine
where the monitor plugs in is a square

indention that could have fit some kind
of small box. Perhaps there was an
idea of converting the main RGB-A
output to some other format via a
converter box (maybe simplifying
monitors between US and other parts
of the world). Perhaps there was some
other intended us that we may never
learn about. Perhaps the CoCo 3
prototype will eventually give us a
clue. (A more pressing mystery is why
CoCo 3 software always asks Com-
posite/TV or RGB? on startup, even
though there was a way to detect if a
CM-8 was plugged in.)

Something else learned by inspecting
the prototype is that Tandy may have
had much higher goals for their base
model machine. The prototype has no
place for RAM expansion. Instead, it is

populated with 512K. This
would have driven up
cost and would have
caused real problems
during the RAM price
crisis of the late 1980s
when memory upgrades
shot up by hundreds of
dollars due to a fire at an
overseas production
facility. Looking back,
releasing a cheaper 128K

unit that could be upgraded later was
probably a smart move though it
ultimately led to few official Radio
Shack products taking advantage of
systems with that much memory.

Another interesting discovery was
noticing a 1773 chip on the prototype.
This chip was part of the CoCo floppy
drive controller pak. The prototype had
the floppy drive circuitry built in and
contained a ribbon cable connector for
the disk drive. Tandy must have
wanted to integrate disk support in the
base model, and perhaps had goals of
shipping a floppy drive with the system
or allowing the CoCo 3 to just plug in
an external drive without needing the
drive controller. Tandy actually did this
very thing with their Tandy 1000 EX
and HX PC compatibles. While those
systems contained a built-in floppy

Page 12

CoCoNuts!
T H E L I F E A N D T I M E S O F T H E C O L O R C O M P U T E R

May 2007 Vol. 2 Issue 2

drive (5 1/4" and 3.5" respectively),
there was also a port that allowed
plugging up an external drive. More on
this later.

Probably the most curious observation
was that the prototype did not even
have a GIME chip. The GIME was a
custom IC created to handle things
like graphics and memory. In the early
prototype stages, before such an
expensive chip could be made,
designers created the functionality of
the GIME using programmable PAL
chips and other support hardware. It is
unknown how much GIME support is
on the prototype, but since Microware
used it to create the Extended Color
BASIC enhancements (which included
the new graphics modes), and since
the prototype had 512K, is believed to
have implemented the graphics and
memory controller that the GIME later
would handle.

There could be other secrets in this
prototype. Early developers, under
Non Disclosure Agreements with
Tandy, received pre-production CoCo
3s with pre-production GIME chips.
There were two known revisions to the
production GIME (86 and 87 revision),
and the early development units are
believed to have been just earlier (and
buggier) versions of what was re-
leased. But, documents given to
Microware during this project indicated

that one of the specifications for the
CoCo 3 was a 256-color mode. Steve
Bjork has stated that this mode never
existed in any manufactured CoCo 3s,
and notes that the graphics hardware
itself did not have enough bits avail-
able to represent a 256-color map.
However, this early prototype may
have had the basis for such a mode
before it was deemed either too costly
or, perhaps, too likely to compete with
the Tandy 1000 graphics. The mys-
tery of the specified 256-color mode
may finally be unlocked in these
early designs.

In a side note, the whole suspicion of
a 256-color mode started when a
former Tandy Color Computer product
manager made reference to it years
later. "Has anyone found the 256 color
mode?" he asked. No one had, but
noted Color Computer programmers
John Kowalski

("SockMaster") and Australia's Nick
Marentes were able to find abnormali-
ties in the CoCo 3 schematics pub-
lished by Radio Shack in the Color
Computer 3 Technical Service Manual.
As Steve Bjork has mentioned, there
were not enough address lines for
doing an 8-bit color, but the schemat-
ics showed some evidence of alter-
ations in that area. There where two
extra lines being routed away from the
normal path. Perhaps there were plans

to achieve the 256-color mode by some
way that would allow accessing those
extra lines? Nick was able to track
down the original designer of the GIME,
but he had no recollection of any such
mode. It seems likely that this mode, if it
ever existed, may not have even made
it to the GIME stages.

So the prototype, while not quite a
"blue sky" machine with enhanced
sound and true RS-232 serial hard-
ware, did certainly represent a some-
what nicer machine than what was
actually released. Imagine a CoCo 3
with 512K standard, normal DB9
monitor port on the back, and a place
to plug the disk drive ribbon cable in
and still have the cartridge port
available. This would have removed
need for the MultiPak for the large
number of CoCoists who used floppy
and RS-232, or perhaps floppy and
the Speech/Sound Pak.

When the prototypes are fully in-
spected and, hopefully, reverse
engineered, there may be more
mysteries discovered. Though the
prototypes were supposedly working
when they were packed away 20
years ago, until someone qualified has
time to inspect them, no attempts are
going to be made to power them up.

The conclusion in the next issue of
CoCoNuts!

Allen's CoCoFest Map

Drop by and place your mark on the map. This
will not only give an idea on who all is going (or
may be going), but it can be used to help coordi-
nate ride sharing (if that helps some folks attend
who might not otherwise get to attend).

http://www.frappr.com/cocofest2008

Page 13

CoCoNuts!
T H E L I F E A N D T I M E S O F T H E C O L O R C O M P U T E R

May 2007 Vol. 2 Issue 2

The 16th Last Annual
Chicago CoCofest

My experiences there.

I have never attended a fest or
anything like this. I was excited to go. I
planned for several months and even
kidnaped my younger brother to go
with me. I had never even been to
Chicago. My mother was upset I was
going to Chicago, and my husband
just couldn't understand why I wanted
to travel so far to look at a bunch of
old computers. I am very headstrong
and told them both I was going
weather they liked it or not. My mother
demanded that I leave my son home
with her and so I did. The drive up
there was fairly nice until we hit
Chicago.. Chicago was a huge
surprise I was amazed to see all the
big buildings and the sears tower
crowded with , I think it was fog? I had
never seen those above ground
subway train things before. I thought
that was neat that they had passenger
trains running right next to the main
roads. I did however miss a lot of the
tolls cause I was unable to get into the
right lanes. I figure I owe Chicago at
least 5 dollars.

My intentions as to going to the fest
were to debut Sockmasters Donkey
Kong and video tape as much as I
could of the fest. I was also extremely
excited to meet and chat with Steve
Bjork and talking him into an interview
for this issue. I got there around noon
and stayed until 5pm at the fest. In
those short 5 hours I did hook up my
coco3 for the debut of Sock's game.

When I first set it up people didn't
know what to think. The first reaction
was that it was a remake. Then
people started to read the opening
screen and someone said "holy cow
this is the real Donkey Kong". Confu-
sion set in as one of the guys started
to play the game. So I let them soak it
all in as I walked around the room and
handed out copies of the game to
everyone. I handed out a total of 30
copies. We had a little problem

setting the game up at first. We tried to
use Glenside's coco3 and couldn't get
a joystick to work…. The whole time
Allen Huffman is thinking to
himself…..I knew it was an April fools
joke…(Yes Allen I knew what you were
thinking.) Finally I thought perhaps it
was the Glenside's coco3's joystick
port. I then went out to my car and got
my coco3 and disk drive. I was right it
was the joystick port on the other
CoCo. So then we got the game
going and the crowd gathered a little
at a time. I think one of the kids
played the game for almost an hour!

I was so pressed for time the only
thing I really got to video tape was a
scan of the room, and the seminar
given by cloud nine. I will have that
ported over by someone as soon as
possible so others can see it. I found it
very interesting how they explained
everything. I also have on video Mark
Marlette sitting behind his table with
his monitor facing to the crowd for
people to see as they walked by. The
monitor had a Windows prompt on it! I
thought that was rather amusing.

I also was asked to sit in on Steve
Bjork's panel for his discussion of how
the CoCo changed your life. During
the discussion Steve brought out his
Electric Crayon machine and Allen
also showed his COCO prototype! I
was real nice to see those items and
hear the story that went along with it.
Allen Huffman videotaped this event.
If we bug him enough maybe one day
all his fest footage will be published?

The last part of my day before I had to
return to my family was when I sat
down to talk with Steve. This interview
was also videotaped by Allen Huffman
and we used an audio copy to create
a transcript for this issue. The funniest
thing I have ever seen was watching
Mark Marlette and the others belly
crawl so they wouldn't disturb the
recording.

I found everyone there at the fest to
be wonderful and a pleasure to talk
with.

I will be back next year but I will have
to work out alternate transportation.
My drive home was dangerous and
very long. I will not drive to the fest
again. I will however return next year.

Since I missed seeing one of the
people I talk to the most online I
asked someone to draw up a
cartoonage of him. Diego Barizo
shows the true spirit of wanting
something so much he was willing to
risk everything. We have all come
together to help him pay his price for
attending the fest. Diego has true
spirit and brought a smile to all the
faces at the fest. I wish I could have
been there to give him a hug like I did
some of the others. Diego I don't
want to say you are honored because
of your situation but I do want to say
you are honored because of your
determination. You took a 20 hour
train ride to get to the fest. That alone
is dedication and desire to the ma-
chines we all love so much. I know
that we are all one big family and this
was like a reunion for him and myself.
That is why it is worth it to ride 20
hours on a train to get there.

So this picture is for you Diego. I will
see you next year at the fest!

Mary Kramer

John (Sock Master) KowalskiJohn (Sock Master) KowalskiJohn (Sock Master) KowalskiWhile At SoftTape I did work on both the Apple II and the TRS-80

Page 14

CoCoNuts!
T H E L I F E A N D T I M E S O F T H E C O L O R C O M P U T E R

May 2007 Vol. 2 Issue 2

The Asimov Awards - The
final decision!

A chat with Diego Barizo

Mary: How many people turned in a game?

Diego: Only 3 this year, and in one of
the cases, I asked the participant if he
wanted to include his already finished
program in the contest.

I think another two were working on
something, but I'm not that sure
about that.

Mary: Did you extend the deadline?
Why?

Diego: Yes, at the last minute, it was
extended by some 2 extra weeks.

The official version is that some of
the programs were almost ready, with
the programmers working really hard
to get them ready in time for the
original deadline.

The fact that someone cared enough to
work that hard just to be able to enter,
was more than enough a reason to do it.
Also, at that time I was felling a bit
disappointed by the low number of
entries, and I really wanted to have more
than just 2 participants.

The unofficial, is that I was late check-
ing the programs that were already
sent, so I put those extra weeks to a
good use.

Mary: Did you play each of these games?

Diego: Yes, more than a few times,
and on the real deal (A CoCo, not an
emulator). I had to learn a bit how to
play the games, and try to make sure
there were no obvious errors in them.
If possible, I wanted to see all the
screens and endings, but I must admit
that being a very bad gamer, that was
not something I expected to achieve.

Mary: What made you decide on the
winner?

Diego: I think that what influenced me
the most was the fact that it was the
only game that took advantage of the
CoCo 3 capabilities.

I tried to reach my decision based only
on the "user experience". How big the
files are, or how advanced the tech-

niques involved are not important at all.

The winning program seems to me to
be a very polished product, easy to use
and understand.

Most of the games (I think that all but
one) are not original concepts. The only
one that I haven't seen before is
"Sentinel" That's why it deserved a
special mention award.

Mary: Where there other judges?

Diego: No. Just me. I'm completely
guilty and deserving target of any and
all critics.

If I get a high number of programs for next
year, I might ask for a helping hand.

Mary: What was the prize?

Diego: The original prize was $100 in
cash to the winner. Eventually, a
second prize of $20 was established.

And I still have to send the winners some
certificate/diploma. Yes I am lazy.

Mary: How did you get the money for this?

Diego: Out of my pocket. The second
prize came from a donation.

At the CoCoFest I traded diskettes with
the programs for donations. I'm sorry that
I wasn't able to be there on Saturday. My
plans were to be there on a table and
talk to people about the awards. But
since I had already missed half of the
fest, I just couldn't stay on a table. I also
forgot to take the power supply for the
laptop which I was going to use to show
the games running in an emulator.

Anyway, after the word started to
spread, people was actually offering me
donations and asking for the diskettes.

Mary: Are there copies of the winning
games?

Diego: Yes, I made a DSK file including
all the programs that were submitted,

plus another one that I would have
submitted if someone else had organized
the awards.

I also included a simple program that
explains what this is all about, and
works as a menu for the disk.

Mary: How can I get a copy?

Diego: You can download it from http://
coco.sclaudia.net/AA.DSK

I still have to put a real link to it in the
page http://coco.sclaudia.net/AA/aa.html

There is also an OpenOffice document
that I used to make the disk sleeves at
http://coco.sclaudia.net/disk_sleeve.odt

Mary: Is there copies of the other
contenders games?

Diego: Yes, all the programs are there.
It was always my intention to make all
the programs available, even if I had to
use a "flippie" or multiple disks.

Mary: Does the game work in an
emulator?

Diego: yes all of them do. I use a little
known one called "Bjork" (I believe it
was also known as "Poco")

http://members.lycos.co.uk/poco6809/
bjork/index.html

They should work OK in any other
emulator

Mary: Does the winning game need a
joystick

Diego: No, the only game that needs
one is "Glove". All the other ones work
with the keyboard.

Mary: What is the name of the winning
game?

Diego: The winning program is "Mister
Mind". A computer version of the classic
board game "Master Mind."

Mary: Who wrote it?

Diego: Christian Bilodeau.

On a final note, 1 of the participants is
from UK, and the other 2, from Canada.

Let's hope that Team USA shows up for
the 2007 edition (Yes, this is a cheap
shoot trying to make national pride
another reason to participate.

Page 15

CoCoNuts!
T H E L I F E A N D T I M E S O F T H E C O L O R C O M P U T E R

May 2007 Vol. 2 Issue 2

Mary:The sound is awesome, is that
your voice?

Chris: Yes it is my voice. I recorded all
with my PC microphone in a wave
editor program and saved it as a
wave. I used my Tandy CCR-81 to
record the music sample.

Mary:How did you do that?

Chris: I recorded all the digital
samples on the PC. First part was to
record the song that would be played
when the player win the game. I was
limited by the available memory as I
didn't want a bad playback and I
needed to fit the entire game into 128k
(Asimov contest restriction).

It ended-up with around only 2
seconds of song samples looped
into a 10 seconds song for a total of
5 to 6 seconds recording with the
voice. Note that I had to place the
song samples strategically in the
coco memory to have it played like if
it was one non stop song. After that,
I recorded "Mister Mind" with added
sound effects and finally all the
game peg colors.

Once I got all that recorded as WAV
format, I used a Coco program
called Maxsound made by
Gimmesoft in 1987 to convert the
wave to a Coco file. After getting
that Coco sound file done, I moved it
back to the PC again to edit the
samples memory location, to cut the
unwanted blank space and moved it
back again to the Coco. I've done
those tasks couple times before
getting the final wanted result. To

play it, I used a small ML routine to
call the sound from BASIC.

Mary: How you came up with the
idea?

Chris: I made some programs with
digital sound back in 80's. I remember
2 of them, one was for the Coco Club
annual year-end activity. It was a
BASIC QUIZ, the computer was
asking question then applauding when
the right answer was selected. It was
saying "BRAVO" at the end.

The other one was for Radio Shack, I
connected the Coco to the infrared
sensor placed at the store entrance.
When customers were walking in, the
computer was saying HELLO instead
of the usual bell sound. It was funny, I
remember some customers answering
the computer thinking it was us
talking.

Mary: Why did you choose
mistermind?

Chris: I originally made that game in
1989 when I was still a kid. I liked to
play that game back then but never
completed it the way I wanted. They
original version had a simple introduc-
tion page, no Digital sound, no
Scoreboard, no instruction and the
Gameboard was taking about 30
seconds to draw before each game.
As well, the original version didn't
have a game level 2. When level 2 is
selected the computer can choose up
to 3 times the same color instead of 4
different adding more challenge to the
game. Last thing was the composite
monitor colors (CMP). I had a CM-8

Asimov Award Winner
Mister Mind 2007
By Chris Bilodeau

back then and only worked it out for
RGB. Because of the poor image
quality on composite screens and the
details in the game, using equivalent
CMP colors was making the game
almost unplayable because we hardly
could read the computer hints after
each line (crosses). I had to select
different colors as well as displaying
the hints (crosses) in a different
manner.

Mary: How long did it take?

Chris: I don't remember how many
hours I worked on the original version
and I'm not sure how much more for
the actual version. I can say that I
worked a lot, some non stop program-
ming overnights not having any sleep
(I usually prefer working full time on
projects since it always takes time to
get back into it when left for a little
while).

Mary: How did you decide to partici-
pate to the Asimov?

Chris: I was reading Diego's website
and found out about the Asimov
contest last summer but didn't really
think I would participate. I got back
interest for the coco last July almost
13 years after I packed it up (took it
out from time to time and played a bit
with MESS around year 2000 but
rarely). Couple months later, I went on
the coco3 chat then met some more
coconuts/friends as well as Diego.
Somewhere in December I guess,
after a chat session with Diego, I
decided it was the time. I needed a
reason to do so, and wanted to help
the cause and maybe having a chance

Page 16

CoCoNuts!
T H E L I F E A N D T I M E S O F T H E C O L O R C O M P U T E R

May 2007 Vol. 2 Issue 2

to win. I worked it all in January and
submitted the Version 2.0 in early
Febuary.

After the winner was announced, I
started working on the version 2.1 and
got that one a week before the Chi-
cago Fest giving Diego's time to
update the game on the Asimov 2006
disks.

Conclusion

I had a great time working on that
game and I would like to say congratu-
lation to all other participants as I think
they all did a fantastic job. Thanks
Diego's for that contest initiative, I
hope more people will participate next
year. Have fun playing the games.

CoCoNut introduction
Getting to Know Jack Rodda

Ok. It's time to get back to programming
on the 6809. I've been away from the
CoCo world for about 23 years.

First, a bit of background. I was
working for Falconbridge Nickel Mines
Ltd. (a base metal mining company in
Sudbury, Ontario, Canada) when I
started out programming on an IBM
1800 process control computer in Sept
1969. My first 2 years were spent
writing FORTRAN programs on this
computer, and on a remote S/360. In
July 1971, the IBM 1800 was replaced
with a DEC PDP-8/E computer.
Falconbridge personnel wrote the
operating system and a FORTRAN
compiler/interpreter for this new com-
puter. I did mainly FORTRAN program-
ming on this computer, but also taught
myself Assembly language program-
ming in my spare time, using a spare
CPU that we kept as backup for the
main computer that was controlling one
of Falconbridge's ore-processing plants.

By 1974, I was doing mostly Assem-
bly programming, and in 1976-77 did
most of the coding for an executive
for a dual PDP-8/A system being
installed in our Nickel smelter.
Between 1978 and 1990 I did a lot of
Assembler coding for this system and
another PDP-8/A, and did some

enhancements to our in-house
FORTRAN compiler/interpreter.
During this time I also got some
hardware experience helping our
Instrumentation Dept. work on the
interfaces for the PDP-8. I also got
some exposure to microcomputers
with an Apple II that was bought by
our computer department and then 4
hardened industrial microcomputers
based on the Commodore PET.

In 1980 or 81 I bought my first "per-
sonal computer", my CoCo1 with 4K of
RAM and color Basic which I quickly
upgraded to 16K and extended color
Basic with Radio Shack parts and then
modified to accept 64K RAMs. I still
have this computer, although all the
manuals and my EDTASM+ cartridge
have been lost in the intervening years.

My extensive background in Assem-
bly programming and DEC systems
lead to an interest in Assembly
language programming on the CoCo,
so I bought an EDTASM+ cartridge
and proceeded to start playing
around with 6809 assembler, which I
found to be very similar to PDP-11
assembler. In fact, it was the 6809
processor, which was called at that
time "the 8-bit PDP-11", that attracted
me to the CoCo in the first place.

One project that I toyed with for a while
was a FORTRAN interpreter similar to

the one that had been written for our
PDP-8 systems at work. It can be
most easily described as being similar
to the P-code virtual machine used to
implement UCSD Pascal on the Apple
II in the mid 1970s, except our's was
developed in 1970-71.

In the Falconbridge FORTRAN system, a
compiler reads FORTRAN source
statements and produces an intermedi-
ate code that a "virtual machine" or
interpreter executes at runtime. Al-
though the net result is not as fast as
code which compiles to assembly code,
the programs are usually very small- an
important consideration when you only
have 4K of memory, as we did on our
first PDP-8s.

Falconbridge's first PDP-8 system had
only 8K of core memory, a 256 Kword
disk, paper tape reader/punch and an
ASR-33 teletype as an operator's
console. Our second system had two
256 Kword disks, and we thought it was
marvelous. Subsequent PDP-8
systems were equipped with 1.6 Mword
disks and 32Kwords of memory. All of
our initial systems had a 4Kword
executive, and allowed 4Kwords for
programs to run in. Our later 32Kword
systems kept the restriction of 4Kwords
for all programs, using the additional
memory for disk caching and keyboard
and printer buffering as well as addi-
tional process control programs.

Page 17

CoCoNuts!
T H E L I F E A N D T I M E S O F T H E C O L O R C O M P U T E R

May 2007 Vol. 2 Issue 2

This enabled us to build multi-user,
multitasking real-time systems on the
PDP-8 that ran in 32K memory with
disk buffering, 4 simultaneous non-
process users as well as all the process
control in the plant, and monitoring of
environmental monitoring stations
scattered around a 30 mile radius.

Benchmarks

Experience on multiple systems
invariably leads to questions of "What'll
she do?". Benchmark programs were
becoming popular about this time, and
we compared our "ancient" PDP-8
systems to the more modern Apple II,
and the latest kid on the block, the IBM
PC, and the even more impressive IBM
PC AT, using a simple program that
calculates all prime numbers between 1
and 1000. It's not sophisticated, but it
translates easily into BASIC, FOR-
TRAN, PASCAL and C, and gives a
good idea of the relative performance of
the arithmetic in the various systems.

Unfortunately, the CoCo with its inter-
preted Basic barely kept up to the IBM
PC's interpreted Basic, and was no
match for the compiled Basic on the PC,
or even our PDP-8 FORTRAN.

Obviously, the next step was to write a
CoCo version of our FORTRAN com-
piler/interpreter to see if I could pump
up the performance. The easiest and

fastest route was to write the arithmetic
part of the interpreter (FORTRAN
"virtual machine") first and just hand-
compile the simple little program into
interpreter code. As I recall, preliminary
results were very good, with the 6809
easily matching the performance of the
compiled Basic on the PC.

Unfortunately, that's as far as I went,
and the work that I did has been lost in
the intervening 20-odd years. I'm going
to have to start over again, with what I
can remember of the coding I did, and
some borrowing of coding that I've done
on the x86 along the same lines.

Unfortunately, along with my original
coding, I've also lost my EDTASM+
cartridge and all my CoCo manuals, as
well as the cassette recorder and all the
cabling. The only thing I got back from
my brother-in-law is the CoCo1 itself.

Once I figure out how to run these
new-fangled cross-assemblers on my
PC, I'll try to get started at this again,
(although I don't know why- no one
would want a FORTRAN system on the
CoCo). Just something I'd like to do.
I'll have to cobble up an RS-232 cable
from the PC 9-pin to the DIN recep-
tacle on the CoCo.

I've been retired for over 15 years now,
having retired at 50 years of age on Jan
1, 1992. Since I retired, my wife and I

have moved at least 6 times (4 of which
were "double moves" - first into storage
for periods ranging from 1 to 7 months,
then into the second house). It's a
wonder that I can find any of my old
computer stuff at all.

This is starting to ramble, so I'd better
close for now. Meanwhile, does anyone
out there think there may be any
interest in a simple FORTRAN IV-like
language for the CoCo? It seems to
me that all of the users on CoCo3.com
are interested primarily in games, which
certainly doesn't fit with FORTRAN.

LITE PSYCLE
by CaptCPU
(captcpu@clubltdstudios.com)

One of my favorite CoCo program-
mers of all time has got to be Richard
Ramella. Each month when I was a
wee lad, I'd eagerly open up the new

issue of Hot CoCo and flip straight to
Elmer's Arcade. Usually, I'd be punch-
ing in Mr. Ramella's latest game
before even reading the latest goings
on at Elmer's. The genius of his
games came from the simplicity.
Playing Dang It! and Broken Field
Nightmare over and over contributed
mightily to the nut case I am today.

Most of my programming endeavors at
the moment focus around the same
concept. I'm nowhere near as skilled
or inventive as Mr. Ramella, of course.
But I think a bit of visiting Elmer's each
month rubbed off and the idea of
creating a super simple, but im-
mensely fun game that will run on just
about any CoCo has a huge appeal.
This isn't it, but it's a step.

This first offering was actually a test of
Roger Taylor's Rainbow IDE for
programming in Extended Color
BASIC. Not exactly the use for which it
was intended, but it certainly beats
NotePad by leaps and bounds!

Lite Cycle is a variation of the game
everyone probably writes up for the
CoCo at some point. Kind of the
"Hello, World!" program of games. In
some forms it's called snakes or
Tron-style light cycles, or what-
have-you. But it makes an interest-
ing beginner's programming exer-
cise. Being a rank amateur, I figure
it's a good place to start.

Requirements

Lite Cycles uses smidgen more than

Page 18

CoCoNuts!
T H E L I F E A N D T I M E S O F T H E C O L O R C O M P U T E R

May 2007 Vol. 2 Issue 2

800 bytes (that's with comments,
spacing, and formatting), so it should
run on any CoCo, 4K and up, tape or
disk. I don't think I used any ECB
commands in there, so it should run
on a Color BASIC machines as well.

I tested it on Ramona (CoCo 3, DECB
2.1, 128K) and Ol' Betty (CoCo 1, F-
Board, DECB 1.1, 64K), as well as the
CoCo 2B and CoCo 3 (NTSC) emula-
tion in MESS.

Color Computer 3 users that have an
RGB or VGA monitor will want to type:

PALETTE RGB

prior to running the game. Might even
add a line there at the top:

1 WIDTH 32:PALETTE RGB

since the game will not run properly
out of 40 or 80 column mode.

I also recommend the high speed
POKE for those that prefer a little
more action. (I play it exclusively at
this speed. It's way more fun.)

CoCo 3: POKE 65497,0

CoCo 1/2: POKE 65495,0

Be sure to slow down before access-
ing the disk or tape:

CoCo 3: POKE 65496,0

CoCo 1/2: POKE 65494,0

Some very old CoCo 1's may not be
able to use this POKE.

Game Play

Playing the game is pretty simple. You
find yourself on the VidGrid en-
sconced in the ever popular and
overly cliché Lite Psycle. Your job is to
drive about and snag all the colored
squares you can before you bash into
your own light trail. But beware, the
evil video game controller gods have
set upon the field nasty green
squares that will smash you just as
easily as smacking into your trail.
Avoid them, drive like a maniac (using
the arrow keys) and rack up as many
points as you can!

I always liked weird scoring sys-

tems. So here's one! Every space on
the screen your psycle moves you
get 10 points. Easy enough. When
you snag a colored square, though,
you get 10 points plus the ASCII
value of that square! Do you know
your CoCo colors? If so, hitting
those "higher" colors can net you
more points.

In the spirit of simplicity, there's no
exit. Hit BREAK when you're tired of it.

The Program

The program itself is dirt simple and
should be easily readable. This is
probably more explanation than
needed for this kind of program, but
for completeness:

Lines 10 - 50 just set up a few things,
like clearing the screen and setting X,
Y, and score variables.

Lines 70-100 are kind of neat because
they're "pushing" the CoCo's buttons,
as it were. POKE 135 it like mashing a
key. The values simulate pressing up,
down, left and right keys. In this case,
we're randomly setting the direction of
initial travel for the psycle. (By the

way, to get a more "random" number
from the program, add the line 5
R=RND(-TIMER) to the listing. I didn't
notice much difference, so I left it out,
but for the purists, there ya go!).

Lines 110-140 just POKE in random
dots around the screen. I chose 25
after some experimentation, but you
can raise or lower this value according
to your tastes. Line 120 looks like a
mess, but it's pretty straight forward.

The value 1024 corresponds to the
first (upper left) location of the CoCo's
text (or low-res) screen. There are 32
times 16, or 512, locations (1024
through 1536) . So POKEing a value
into that location makes the CoCo
display the ASCII equivalent of the
value to the screen. We want a
random location somewhere within 32
columns (0-31) and 15 rows (0-14).
There are 16 rows on the CoCo's
screen, but we'll save the bottom bit
for score information. The second part
of the POKE selects what character is
to be placed at the screen location
selected previously. In this case we
want a solid color block. Value 128 is
a solid black block, to which we add

Page 19

CoCoNuts!
T H E L I F E A N D T I M E S O F T H E C O L O R C O M P U T E R

May 2007 Vol. 2 Issue 2

color using the formula found on page
292 of the Color Computer 3 Extended
BASIC manual.

Lines 150-230 represent checking for
a key press and then making sure the
psycle stays on the screen. POKE 135
is a handy little guy for reading the
keyboard (with some limitations, you
can't read multiple key presses at the
same time, for example). The values
tested are for the arrow keys, up,
down, left and right respectively (see
pages 289 and 291 of the Color
Computer 3 Extended BASIC
manual). As a challenge, there's no
border indicated and the psycle just
wraps around the screen. So watch
out!

Lines 240 and 250 check to see if a
colored square has been hit. If it's not
code 143, a green square, the player
scores. If it is code 143, then the
player has either hit a random green
square, or hit their own light trail and
the game ends.

Line 260 actually displays the next
square for the light psycle's path, as
calculated in lines 150-230.

Line 270 adds 10 to the score for a
successful move, sans crash.

Line 280 prints the current score on
the screen.

Line 290 finishes the main loop and
sends the CoCo back for the next
move.

Line 300 is necessary to clear out the
keyboard, resetting it to its "no key
pressed" state. Without it, the INKEY$
in the next line barfs and thinks a key
is pressed. No waiting!

Line 310 waits while you lament your
recent demise.

Line 320 checks to see if you scored
enough for a high score and loads up
that variable (to be displayed on
restart way back on Line 20).

Line 330 is the do over line. Hit
BREAK to quit.

----Program Listing ----
10 CLS0
20 PRINT@500,"HIGH:"HS;
30 'LIGHT CYCLE, CAPTAIN COMPUTER SOFTWARE, 2006
40 'HTTP://COCO.CLUBLTDSTUDIOS.COM
50 X=15:Y=7:S=0:B$=CHR$(128)
60 D=RND(3)
70 IF D=0 THEN POKE135,8
80 IF D=1 THEN POKE135,9
90 IF D=2 THEN POKE135,10
100 IF D=3 THEN POKE135,94
110 FOR L=1 TO 25
120 C=RND(8)
130 POKE (1024+RND(31)+(RND(14)*32)),128+16*(C-1)+15
140 NEXT L
150 P=PEEK(135)
160 IF P=94 THEN Y=Y-1
170 IF P=10 THEN Y=Y+1
180 IF P=8 THEN X=X-1
190 IF P=9 THEN X=X+1
200 IF Y<0 THEN Y=14
210 IF Y>14 THEN Y=0
220 IF X<0 THEN X=31
230 IF X>31 THEN X=0
240 IF PEEK (1024+X+(Y*32))>143 THEN S=S+PEEK(135):SOUND200,1
250 IF PEEK (1024+X+(Y*32))=143 THEN
PRINT@263,"crash"+B$+"crash"+B$+"crash";:GOTO 300
260 POKE 1024+X+(Y*32),143
270 S=S+10
280 PRINT@480,"SCORE:";S;
290 GOTO 150
300 POKE135,0
310 IF INKEY$="" THEN GOTO 310
320 IF S>HS THEN HS=S
330 GOTO 10

Play With It!

One of the fun things about silly
simple programs like this is modifying
and expanding them, of course. Add
joystick control, two players, have the
psycle change colors when it hits a
block (and then wreck it if hits the
same color block next), or any number
of bits and pieces.

In the end, this didn't turn out to be a
good game, but it was an interesting

programming exercise. I also got to
play with Rainbow IDE and ended up
with a game my daughter thinks is
pretty neat. (Hey, she's 7.) It's been 17
years since I did this, so it's fun to get
back into it and relearn. I hope others
out there will do the same. And if you
do, post your efforts!

Capt's CoCo Hut, http://
coco.clubltdstudios.com - The CoCo
Hut Blog http://cocohut.blogspot.com

Page 20

CoCoNuts!
T H E L I F E A N D T I M E S O F T H E C O L O R C O M P U T E R

May 2007 Vol. 2 Issue 2

How to read a disk directory
in DISK EXTENDED COLOR
BASIC

by Bob Devries

While reading the directory using a
BASIC programme is not trivial, it is
not difficult once you understand the
structure of the disk directory track.
Let me refresh your memories on what
is where.

I'll start with a brief explanation of the
structure of a Colour Computer disk.
The disk is divided into 35 tracks (like
rings) numbered from 0 to 34. Each of
these tracks is divided into 18 sectors,
which each contain 256 bytes (charac-
ters). This structure is repeated for
each side of the disk. So the capacity
of the disk is 35 * 18 * 256 = 161280
bytes per side. Take out the directory
track, and you'll be left with 156672
bytes of storage. The directory track
stores the file names and other
pertinent information about the file.

The directory is stored on track 17 of
the disk, starting at sector 3. On a
standard 35 track disk, there are 9
sectors used for directory entries. The
maximum number of files is limited not
by the directory capacity, but by the
granule table, which is stored on track
17 sector 2. This table has only 68
entries. If you're using a modified
DISK EXTENDED COLOR BASIC that
allows 40 track or 80 track disks, you
will have comparatively more directory
entries.

Each directory entry takes up 32 bytes
(characters) of the directory track
sectors, of which half is normally
unused. The first 8 bytes are the
filename, padded with spaces; the
next 3 are for the extension. Next
comes 1 byte for the filetype, either 0
for BASIC file, 1 for BASIC DATA file,
2 for BINARY file, and 3 for TEXT
EDITOR file. After that is the ASCII
flag byte. A flag byte is one that stores
one of two values, like YES or NO,
TRUE or FALSE, ON or OFF. It is 0 for
normal binary saved files, and -1
(&HFF) for ASCII (text) files. Then

comes a byte pointing to the first
granule of the file (more on granules
later), and then two bytes to show how
many bytes in the last sector of the file
(1 to 256). The next 16 bytes are
usually zeros (&H00), but may be
used for other information. Disk
EDTASM uses that area for its own
values, and some other DISK EX-
TENDED COLOR BASIC versions use
it for the creation date and time. There
may be other uses.

So, what is a GRANULE? It is some-
times known as a cluster, or chunk. In
DISK EXTENDED COLOR BASIC, it
is a block of 9 contiguous sectors,
starting at either sector 1 of a track or
sector 10. This is the smallest amount
that can be allocated to a file, and
amounts to 9 * 256 = 2304 bytes. The
GAT (Granule Allocation Table) is a
section of sector 2 of the directory
track. It fills the first 68 bytes of that
sector. Each byte is a granule, starting
at 0 (track 0 sectors 1-9) and ending,
on 35 track disks, at 68, which is track
34 sectors 10-18. The directory track
is NOT allocated a granule, and is
simply skipped, so entries in the GAT
with values over 34 (&H22) actually
point to one track more than the
number would suggest.

So, how do we read a directory? The
core of the programme is the use of
the DISK EXTENDED COLOR BASIC
command DSKI$. Its template is like
this:

DSKI$ <drive>, <track>, <sector>,
<string variable 1>, <string variable 2>

The first three variables are fairly self-
explanatory. Drive number (0-3), track
number (0 to 34) but I only use 17 for
the directory track in my example, and
sector number (1 to 18) but 3 to 11 for
my example.

The string variables are there to store
the data read in by the command from
the disk sector. Why two? I'm glad you
asked. Remember that the maximum
length of a string variable in BASIC is
255 bytes. A sector is 256 bytes long!
So 128 bytes are stored in the each

string variable. For the purposes of my
example programme, 127 bytes from
the second string variable are concat-
enated to or added to the end of the
first, and the last byte can be dis-
carded, because it does not have any
information in it that is needed to
interpret the directory entries. Perhaps
a more correct way would be to detect
when the first string has been used,
and simply copy the second string to
the first. My version is however,
simple, and it works!

So to read the first of the sectors
containing the directory entries, the
command will be:

DSKI$ 0, 17, 3, A$, B$

Of course, any string variable names
could be used, and the drive could be
any of the four possible drives (0-3).

There are 8 possible directory entries
in each sector. I say possible, because
not all the entries are always valid.
DISK EXTENDED COLOR BASIC
marks a file that it has deleted by
setting the first character of the file
name to 0 (&H00) as well as setting all
the granules to free by making them
255 (&HFF). Also, when a disk is
newly formatted, the directory track
(and all the other tracks) is filled with
255 (&HFF), so when the end of the
directory is reached, the next filename
will have 255 as its first character.
That means we can easily write code
to skip deleted entries and stop when
the end is reached, by examining the
first byte of each filename extracted.

Now that I've covered the technical
details of what is where, I can go on to
the dissection of the programme which
I wrote to display this.

First, some house-keeping and a title:

10 CLEAR 2000:REM ASSIGN
ENOUGH VARIABLE SPACE

20 PRINT"DIRECTORY UTILITY"

Next, prompt the user for a drive
number, giving the option to keep the
default drive, which is found in
memory at &H095A. Drive numbers

Page 21

CoCoNuts!
T H E L I F E A N D T I M E S O F T H E C O L O R C O M P U T E R

May 2007 Vol. 2 Issue 2

are only valid from 0 to 3. Variable
DN$ is used to get the user response.
This is converted to numeric in ND,
bounds tested, and transferred to
variable DN, to be used in later
programme lines.

30 DN=PEEK(&H095A):REM DE-
FAULT DRIVE

40 PRINT"WHICH DRIVE
(ENTER=";DN;:INPUT")";DN$

50 IF DN$<>"" THEN
ND=VAL(DN$):IF ND<0 OR ND>3
THEN 40 ELSE DN=ND

Next, the option to output to the printer
is given. The PR variable is set to -2 if
printer output is wanted, or 0 if screen.

60 PRINT"OUTPUT TO PRINTER (Y
OR N)";:INPUT PR$

70 IF PR$="Y" THEN PR=-2 ELSE
PR=0

Next, a table header is printed.

80 PRINT #PR,"FILENAME EXT TYP
ASC 1ST LAST"

90 PRINT #PR," FLG GRN
SECT"

Here's where the real work starts. The
track variable TK is set to 17, the
directory track, and a FOR-NEXT loop
is started, beginning at 3, and ending
at 18. Line 120 does the actual
reading of the data, as explained
earlier. Line 130 concatenates 127
bytes from B$ onto the end of A$,
giving a length of 255 bytes. For our
purposes, the last byte can be dis-
carded, as mentioned above.

100 TK=17:REM DIRECTORY AT
TRACK 17

110 FOR SE=3 TO 18:REM DIR
ENTRIES START AT SECTOR 3

120 DSKIDN,TK,SE,A,B$

130 A$=A$+LEFT$(B$,127)

Next, a FOR-NEXT loop is started to
read the 8 directory entries in the
sector that was just read.

140 FOR EN=0 TO 7:REM 8 DIR
ENTRIES PER SECTOR

Line 150 extracts the FILENAME from
the sector. Note that for this example,
the data is not stored, but this could
be done by using an array. The offset
into the sector is calculated from the
entry number variable EN (0-7),
multiplied by the number of bytes per
directory entry, which is 32, plus 1,
because string variables are indexed
starting at 1. Filenames are always
padded out to 8 characters using
space characters (&H20). The MID$
command extracts 8 characters from
A$ starting at EN*32+1, which for the
first entry will result in a value of 1.
Subsequent values will be 33, 65,…

150 FI$=MID$(A$,EN*32+1,8):REM
1ST 8 CHARS IS FILENAME

Similarly, the EXTENSION is ex-
tracted in line 160, except that this
time, the offset has 8 added to it, and
the number of characters extracted is
only 3.

160 EX$=MID$(A$,EN*32+1+8,3):
REM NEXT 3 CHARS IS EXTENSION

Line 170 gets the FILETYPE of the
file. Values can be 0 - 3 as explained
above. Here, the ASC command is
used to convert the string to its
numeric equivalent.

170 TY=ASC(MID$(A$,EN*32+1+11,
1)):REM NEXT CHAR IS FILETYPE

Lines 180 and 190 do the same for the
ASCII FLAG. This byte is usually
displayed as either "A" or "B" when
you type DIR, so I have maintained
that convention here, using AF$ to
receive the flag to be printed later.

180 AF=ASC(MID$(A$,EN*32+1+12,
1)):REM NEXT CHAR IS ASCII FLAG

190 IF AF=255 THEN AF$="A" ELSE
AF$="B"

Line 200 is used to find the first
granule entry of the file in the GAT.
Again, ASC is used to convert the
string variable to its numeric equiva-
lent.

200 GR=ASC(MID$(A$,EN*32+1+
13,1)) :REM NEXT CHAR IS FIRST
GRANULE OF FILE

Line 210 calculates the value of the
number of bytes used in the last
sector of the file. This is a two byte
number, because the complete sector
could be used, resulting in a value of
256 (&H0100), which is two bytes
long. This is calculated by multiplying
the first byte by 256, and then adding
the second, to arrive at a number
between 1 and 256.

210 LS=ASC(MID$(A$,EN*32+1+14,
1))* 256+ ASC(MID$ (A$,EN*32+1+
15,1)):REM NEXT 2 CHARS ARE
LAST SECTOR LENGTH

The next two lines, 220 and 230, are
used to skip deleted files, and detect
the end of the directory. Remember,
deleted files have the first character of
the filename set to 0 (&H00), and the
end of the directory is reached when
the first character of the filename is
255 (&HFF). If the file was deleted, we
simply skip the output part of the
programme, and continue the FOR-
NEXT loop. If the end of directory is
detected, we fool BASIC into ending
the FOR-NEXT loop, by setting the
counter variables SE and EN to one
greater than their maximum count
values, and then continuing the loop.
This has the effect of quitting the loop.

220 IF LEFT$(FI$,1)=CHR$(0) THEN
240:REM SKIP IF FILE DELETED

230 IF LEFT$(FI$,1)=CHR$(255)
THEN SE=19:EN=8:GOTO 240:REM
SKIP IF END OF DIRECTORY
REACHED

Line 240 prints all the data we have
collected either on the printer or the
screen, depending on the value of
variable PR.

240 PRINT #PR,FI$;".";EX$;" ";TY;"
";AF$;" ";GR;" ";LS

Following this we have two lines with
NEXT statements, one for EN and one
for SE.

250 NEXT EN

260 NEXT SE

The last lines, 270, 280 and 290 ask
the user if another disk is to be done,

Page 22

CoCoNuts!
T H E L I F E A N D T I M E S O F T H E C O L O R C O M P U T E R

May 2007 Vol. 2 Issue 2

and either ends if no, or goes back to
the beginning if yes.

270 PRINT"ANOTHER DISK";:INPUT
YN$

280 IF YN$="Y" THEN CLS:GOTO 20

290 END

There you have it. Not as difficult as it
first seems is it?

Here's a sample output from the
programme:

FILENAME EXT TYP ASC 1ST LAST

 FLG GRN SECT

GRN2TKSE.BAS 0 B 32 114

DIRUTIL .BAS 0 B 33 129

DIRUTIL .ASC 0 A 34 19

Next time, I will show how to find all
the granules that are used by a
programme, by searching through the
GAT. That will also allow me to show
the actual file size in bytes.

I hope this tutorial has shed some light
on this subject for some people,
especially those who are new to DISK
EXTENDED COLOR BASIC.

One-Liners by John Kowalski (Sock Master)
This one-liner is “Snow in Spring”. Spring is basically here, but we had a snow storm over here a
few days ago! Here is the CoCo version of it, with bonus spring-style snow.

10 POKE65497,0:CLS0:DIMA(63),C(63),S(63):FORX=0TO63:A(X)=RND(28):C(X)=5:S(X)=1:
SET(X,31,1):NEXT: FORQ=0TO1STEP0:FORX=0TO63:A(X)=A(X)+S(X):SET(X,A(X)+1,C(X)):
RESET(X,A(X)): IFPOINT(X,A(X)+2)THENA(X)=0:C(X)=RND(8):S(X)=RND(0)/2+.5:NEXT :NEXTELSENEXT:NEXT

This one-liner is "Mystify". It started out as a program that let you doodle on the screen, but it ended up evolving
into a mystifying spiro-graph style doodler. Use the right joystick to "draw".

10 POKE65497,0:PMODE4,1:PCLS:SCREEN1,1:DIMX(63),Y(63),C(63),U(63):FORA=0TO1STEP0:
FORE=0TO63:LINE(X(B),Y(B))-(C(B),U(B)),PRESET:X(B)=JOYSTK(0)*4:Y(B)=JOYSTK(1)*3:
C(B)=X(E):U(B)=Y(E):LINE(X(B),Y(B))-(C(B),U(B)),PSET:B=E:NEXT:NEXT

Both programs will work on either a CoCo 1,2 or 3. Just remove the POKE65497,0 or replace it with POKE65496,0 on
CoCo 1/2.

How I made my DSK file into
a Real 5.25 CoCo Disk

By Mary Kramer

On the desktop of my computer I
made a folder named "Mary" and then
moved my DSK file named "COCO"
and the "DSKINI" program into that
folder. Then in windows I went to the
START menu and clicked on RUN and
typed in the word COMMAND and
pressed enter.

Now that I am in DOS I typed CD..
Until I got a C: prompt. Then I typed
in "CD MARY" to give me a c:Mary
prompt. Then I typed DSKINI
(spacebar)A:(spacebar)COCO.DSK.
Should look like this "DSKINI A:
COCO.DSK" A: is the drive letter of
my 3.5 floppy disk drive. Coco is the
name of my DSK file. Then I took
the 3.5 disk I just made and put it in
my Coco's 3.5 drive. Then I put a
5.25 disk into my Coco's 5.25 drive
and typed in "DSKINI0" (ZERO is my

drive letter on the coco) (I have a
dual 3.5 and 5.25 drive setup for my
coco). now with both disks in their
drives I typed "BACKUP0TO1" (that

backup zero to one. one is my 3.5
floppy drive number)

Whallllaaa! I had a real working 5.25
floppy disk of my DSK file.

Page 23

CoCoNuts!
T H E L I F E A N D T I M E S O F T H E C O L O R C O M P U T E R

May 2007 Vol. 2 Issue 2

The Coco & Music
by Robert Gault

There have been a
number of messages
on Malted Media
about using music in
Coco games. Let's consider what is
required to be able to do this. First,
how can the Coco make sounds of
any kind?

There are two pieces of hardware in
all Coco models that permit genera-
tion of sounds, the Digital to Analog
Converter (DAC) and the single bit
sound output from the Peripheral
Interface Device (PIA) at port $FF22.
By choosing the correct PIA settings
either of these "devices" can be
routed to the audio connector (RCA
jack) or cassette output. Having said
this, what quality sound can be
generated by these devices and is it
worth listening to.

What is Sound?

Sound is a rapid change of air pres-
sure which vibrates the eardrum in the
range of 20-20,000Hz (cycles per
second). So, any variation in voltage
in the above range sent to the audio
outlet jack on the Coco will be per-
ceived as sound. We can classify
sound into two basic types, noise and
music. The latter normally implies that
there is a high degree of symmetry to
the pulsations which tend to be sine
wave like in character.

Above is a typical sine wave. Note
that it is a smooth curve and will stay
smooth no matter how much it is
expanded. A musical signal of this
type is said to have 0% distortion. As
the curve becomes less smooth,
distortion increases and large
amounts make the listening experi-

ence very unpleasant. Can the Coco
generate anything close to the above
waveform?

Coco Sound Output

The single bit sound sends either 0v
or 5v DC to the sound amplifier. That's
because a single bit at $FF22 is used
to generate the sound. So the wave
form must be a square wave of
varying frequency but constant
amplitude.

If the above waveform was symmetri-
cal that is constant frequency, it would
seem to be a tone with a very objec-
tionable amount of harmonic distor-
tion. The distortion in this case results
from a square wave actually being a
combination of many frequencies of
sine waves that are overtones of the
fundamental but that goes way
beyond the scope of this article.

The above square wave is not sym-
metrical along the X axis so it is
frequency modulated. A frequency
modulated square wave can sound
like sequence of tones with large
amounts of distortion. It is quite
adequate for generating noise for
games but is not desirable for music.
Can the Coco do better than this?

The DAC used in the Coco is a six bit
unit. Each bit represents a different
voltage level and it is possible to
represent 2^6 or 64 different levels.
This means it is possible to create a
digital version of the analog (smoothly
continuous) sine wave.

As you can see, the wave is now a
stair-step shape. If a complete cycle

were drawn, there would be 32 steps
above and 32 steps below the mid
point on the Y axis. This clearly is not
a true sine wave and it has consider-
able distortion but it is much better to
listen to than a square wave of
equivalent frequency generated by the
single bit sound output.

Evaluating DAC Quality

There is another method for evaluat-
ing the quality of sounds generated by
the Coco or equipment such as Hi-Fi
systems. Signal to noise ratio (SNR) is
a much simpler technique easily
calculated for the Coco while measur-
ing distortion requires special test
equipment. A good example of poor
(low) SNR is a single voice at a party
with many people talking loudly at the
all at the same time. It is quite difficult
to concentrate on that one single
voice.

Since there are only two voltages from
the single bit sound outlet, the signal
to noise ratio becomes meaningless.
Any random output has exactly the
same volume as any desired output.
There is also no possibility for a
change in volume.

The DAC with 64 different voltage
levels has an SNR of 1/64 or 1.56%.
The normal method for expressing
signal to noise is in decibels (dB) and
the values are not linear but logarith-
mic. The formula for calculating SNR
based on bits is SNR = 20olog10(2n)
where n equals the number of bits. So
the Coco DAC SNR is -36dB. To put
this value into perspective, let's look at
some common examples. A good Hi-Fi
system has an SNR of better than -
100dB. A properly recorded CD which
uses 16-bit coding has an SNR of
96dB while a DVD with 24-bit coding
and has an SNR of -144dB. A loud
orchestra can reach 80-90 dB and
amplified rock music 110dB so an
SNR of a CD or DVD is very desirable
for realistic music.

Since a change in volume of +6dB
appears to sound twice as loud, it is a
shame that the Coco did not use an 8-

Page 24

CoCoNuts!
T H E L I F E A N D T I M E S O F T H E C O L O R C O M P U T E R

May 2007 Vol. 2 Issue 2

bit DAC (SNR -48dB) as that would be
perceived as twice as good a unit as
the 6bit DAC. Eight bits is also the
word size for the Coco so the use of
an 8-bit DAC would make program-
ming much easier.

But How Does It Sound?

I doubt that many of us have our Coco
audio routed to a Hi-Fi system so there
will certainly be some loss caused by
the cheap audio equipment in our
monitors or TVs, and there is also the
issue of frequency response. How fast
can a Coco running at 1 or 2 MHz send
data to the DAC and what will that
translate into in terms of sound? We'll
get to that shortly but first let's try to
generate some actual sound.

Don't expect that the commands
SOUND or PLAY will generate any-
thing decent. If you look at the code
for these routines, you will find that
they send only three values to the
DAC, low, medium, and high. That is
not much better than single bit sound.

What we will do is write our own
routines to generate 1-bit and 6bit
sound of the same frequency and
compare the results. The code is
written to make the sound as clean as
possible without regard to practicality
in applications. The code as written,
will compile with the Rainbow IDE but
is easily altered for use with EDTASM.
The code is intended for a real Coco
not an emulator, but might still work
with some of them.

Since you the reader may not have an
assembler, the Basic programs can be
used to create the binaries.

These programs will generate a
square wave and 6 bit sine wave both
about 500Hz. The single bit sound
seems louder both because voltage at
the RCA jack is about 1v peak to peak
while the DAC signal is about 0.75v
peak to peak. The significant amount
of overtones in the square wave also
contribute to its perceived loudness.
For comparison, try the SOUND
command which should be in-between
single bit and 6bit DAC quality.

* Single Bit Sound - This does not work with the MESS v.111 but should with
later versions.

ORG $6000
START ORCC #$50 turn off interrupts

STA $FFD9 fast cpu clock
LDA $FF23 PIA
ANDA #%11110111 program $FF22 as data direction
STA $FF23
LDB $FF22
ORB #2 program single bit sound as output
STB $FF22
ORA #4 return PIA to normal
STA $FF23
LDA $FF22 get current values

A@ LDX #330 set timer
ORA #2 set bit high
STA $FFf22

B@ LEAX -1,X wait
BNE B@
BRN A@ balance loop
LDX #330 reset timer
ANDA #%11111101 set bit low
STA $FF22

C@ LEAX -1,X wait
BNE C@
BRA A@
END START

BASIC Creator Program
10 REM 1-bit SOUND
20 LI=80
30 FOR M=&H6000 TO &H6038 STEP10:SUM=0
40 FOR I=0TO9:READA$:VA=VAL("&H"+A$):SUM=SUM+VA:POKE
M+I,VA:NEXT:READ CHK:IFSUM<>CHK THEN PRINT"ERROR IN
LINE"LI:END
50 LI=LI+10:NEXT
60 SAVEM "1-bit",&H6000,&H6038,&H6000
70 END
80 DATA 1A, 50, B7, FF, D9, B6, FF, 23, 84, FB, 1616
90 DATA B7, FF, 23, F6, FF, 22, CA, 2 , F7, FF, 1714
100 DATA 22, 8A, 4 , B7, FF, 23, B6, FF, 22, 8E, 1262
110 DATA 1 , 4A, 8A, 2 , B7, FF, 22, 30, 1F, 26, 804
120 DATA FC, 21, F2, 8E, 1 , 4A, 84, FD, B7, FF, 1567
130 DATA 22, 30, 1F, 26, FC, 20, E4, 00, 00, 00, 663

BASIC Creator Program
10 REM 1-bit SOUND
20 LI=80
30 FOR M=&H6000 TO &H6038 STEP10:SUM=0
40 FOR I=0TO9:READA$:VA=VAL("&H"+A$):SUM=SUM+VA:POKE
M+I,VA:NEXT:READ CHK:IFSUM<>CHK THEN PRINT"ERROR IN
LINE"LI:END
50 LI=LI+10:NEXT
60 SAVEM "1-bit",&H6000,&H6038,&H6000

Page 25

CoCoNuts!
T H E L I F E A N D T I M E S O F T H E C O L O R C O M P U T E R

May 2007 Vol. 2 Issue 2

70 END
80 DATA 1A, 50, B7, FF, D9, B6, FF, 23, 84, FB, 1616
90 DATA B7, FF, 23, F6, FF, 22, CA, 2 , F7, FF, 1714
100 DATA 22, 8A, 4 , B7, FF, 23, B6, FF, 22, 8E, 1262
110 DATA 1 , 4A, 8A, 2 , B7, FF, 22, 30, 1F, 26, 804
120 DATA FC, 21, F2, 8E, 1 , 4A, 84, FD, B7, FF, 1567
130 DATA 22, 30, 1F, 26, FC, 20, E4, 00, 00, 00, 663

* DAC generated sine wave - works with MESS
ORG $6000

START LBRA BEGIN
*SINE WAVE DAC values

DATA FCB 127,131,135,139,143,151,155,159,163,167
FCB 171,175,179,183,187,191,195,199,203,207
FCB 211,211,215,219,223,227,227,231,235,235
FCB 239,239,243,243,247,247,247,251,251,251
FCB 255,255,255,255,255,255,255,255,255,255
FCB 255,251,251,251,247,247,247,243,243,239
FCB 239,235,235,231,227,227,223,219,215,211
FCB 211,207,203,199,195,191,187,183,179,175
FCB 171,167,163,159,155,151,143,139,135,131
FCB 127,123,119,115,111,103,099,095,091,087
FCB 083,079,075,071,067,063,059,055,051,047
FCB 043,043,039,035,031,027,027,023,019,019
FCB 015,015,011,011,007,007,007,003,003,003
FCB 000,000,000,000,000,000,000,000,000,000
FCB 000,003,003,003,007,007,007,011,011,015
FCB 015,019,019,023,027,027,031,035,039,043
FCB 043,047,051,055,059,063,067,071,075,079
FCB 083,087,091,095,099,103,111,115,119,123
FCB 127

BEGIN JSR $A976 DAC AUDIO ON
ORCC #$50 TURN OFF INTERRUPTS
STA $FFD9 FAST CPU CLOCK
LDA $FF20
ANDA #3 KEEP ONLY CASSETTE AND RS-232 BITS
PSHS A SAVE DATA
LDY #$FF20 POINT TO DAC PORT

A@ LEAX DATA,PCR POINT TO SINEWAVE TABLE, 5cycles
LDB #BEGIN-DATA GET # OF ENTRIES 2cycles

B@ LDA ,X+ GET DATA BYTE
ORA ,S ADD CASSETTE AND RS-232 BITS
STA ,Y SEND TO DAC
DECB UPDATE COUNTER
BEQ A@
NOP BALANCE THE LOOP FOR LEAX & LDB
NOP 7 cycles
BRN B@
BRA B@
END START

10 POKE &HFFD8,0:REM MAKES
SURE THE CLOCK IS 0.98MHz
20 SOUND 130,40

These programs nicely illustrate the
problems of using the Coco to gener-
ate sound. The DAC program can't be
made significantly faster without
discarding or skipping data from the
table and that would increase distor-
tion. The single bit sound can be
made 330 times faster which would
increase the frequency well beyond
our ability to hear it or even get it out
of our speaker system.

So there is always a trade off between
frequency response and distortion with
the low sampling rate possible on the
Coco. This works in the opposite
direction as well. We are not going to
get very far creating music from a sine
wave table even though Dennis Kitsz
did an amazing job with his 4 part
harmony music editor, Quaver,
published in The Color Computer
Magazine. We will probably want to
capture snippets of sound with a
cheap microphone and store the
sound files on disk for later use. The
DAC can be used to measure voltage
(that's how the joysticks work) and a
waveform can come from a tape
recorder, radio, or microphone via a
preamp. The problem is that the
fastest ml programs (properly bal-
anced so they don't introduce errors)
can't read the DAC (in this case ADC,
Analog to Digital Converter) faster
than that required for about 8-10 kHz
tones. In any case, the amount of data
generated would rapidly flood the
Coco memory even with add-on
boards of 2-8Megs. Storage of the
data would require a hard drive
system.

There was one fairly good commercial
sound editing system for the Coco3,
"Studio Works" by Jeff Noyle sold by
Oblique Triad. It took the input of the
ADC (6-bits) and stored short snippets
of sound in memory. These could be
saved to disk and later used by Basic
or by machine language programs.

Page 26

CoCoNuts!
T H E L I F E A N D T I M E S O F T H E C O L O R C O M P U T E R

May 2007 Vol. 2 Issue 2

BASIC Creator Program
10 REM DAC
20 LI=80
30 FOR M=&H6000 TO &H60DF STEP10:SUM=0
40 FOR I=0TO9:READA$:VA=VAL("&H"+A$):SUM=SUM+VA:POKE
M+I,VA:NEXT:READ CHK:IFSUM<>CHK THEN PRINT"ERROR IN
LINE"LI:END
50 LI=LI+10:NEXT
60 SAVEM "DAC",&H6000,&H60DF,&H6000
70 END
80 DATA 16, 0 , B5, 7F, 83, 87, 8B, 8F, 97, 9B, 1184
90 DATA 9F, A3, A7, AB, AF, B3, B7, BB, BF, C3, 1770
100 DATA C7, CB, CF, D3, D3, D7, DB, DF, E3, E3, 2142
110 DATA E7, EB, EB, EF, EF, F3, F3, F7, F7, F7, 2406
120 DATA FB, FB, FB, FF, FF, FF, FF, FF, FF, FF, 2538
130 DATA FF, FF, FF, FF, FB, FB, FB, F7, F7, F7, 2514
140 DATA F3, F3, EF, EF, EB, EB, E7, E3, E3, DF, 2342
150 DATA DB, D7, D3, D3, CF, CB, C7, C3, BF, BB, 2038
160 DATA B7, B3, AF, AB, A7, A3, 9F, 9B, 97, 8F, 1646
170 DATA 8B, 87, 83, 7F, 7B, 77, 73, 6F, 67, 63, 1202
180 DATA 5F, 5B, 57, 53, 4F, 4B, 47, 43, 3F, 3B, 770
190 DATA 37, 33, 2F, 2B, 2B, 27, 23, 1F, 1B, 1B, 398
200 DATA 17, 13, 13, F , F , B , B , 7 , 7 , 7 , 134
210 DATA 3 , 3 , 3 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 9
220 DATA 0 , 0 , 0 , 0 , 3 , 3 , 3 , 7 , 7 , 7 , 30
230 DATA B , B , F , F , 13, 13, 17, 1B, 1B, 1F, 198
240 DATA 23, 27, 2B, 2B, 2F, 33, 37, 3B, 3F, 43, 502
250 DATA 47, 4B, 4F, 53, 57, 5B, 5F, 63, 67, 6F, 894
260 DATA 73, 77, 7B, 7F, BD, A9, 76, 1A, 50, B7, 1249
270 DATA FF, D9, B6, FF, 20, 84, 3 , 34, 2 , 10, 1146
280 DATA 8E, FF, 20, 30, 8D, FF, 34, C6, B5, A6, 1470
290 DATA 80, AA, E4, A7, A4, 5A, 27, F1, 12, 12, 1263
300 DATA 21, F3, 20, F1, 00, 00, 00, 00, 00, 00, 549

Hardware Hacking

The only way to get around the hard-
ware limitations of the Coco is to add
new hardware. Tandy did this with the
Speech/Sound and Orchestra-90
cartridges. They take over the task of
sound generation from the CPU and
DAC. The Orc-90 pack contains the
equivalent of two 8-bit DACs (actually
just resistor arrays on chips) and
produces both stereo and higher quality
sound. The Orc-90 pack also provides
a perfect platform for adding a new
ADC to the Coco to simplify and
increase the sampling rate for digitally
recording programs.

I chose the ADC0802 which used to
be sold by Tandy (276-1792). This
chip (except for speed) was ideal as it
could be directly connected to the
6809 data bus. Since I needed to both
read and write to the chip, I had to add
read addressing to the Orc-90. I chose
to piggy back another 74LS138 on top
IC3 of the Orc-90. A low profile IC
socket was soldered to IC3 except for
pins 5, 14, and 15 which had their legs
bent up. Pin 5 was used as an "en-
able" line and grounded, pin 14 was
left unconnected, and pin 15 was
connected to pin 1 (CS) of the ADC.

One additional chip was required for
the new circuit, some type of inverter.
The ADC required separate read write
lines having the same logic values.
The 6809 systems use a single read/
write line giving read and write oppo-
site logic values. The circuit below
shows a TTL inverter but a 74LS02
(NOR) with one input grounded was
actually used, the other connected to
the pak R/W line (P18).

The data lines D0-D7 of the ADC were
connected to the Orc-90 ROM (IC1)
pins 11-19 using ribbon cable as a
simple way to access the 6809 bus.
The ADC clock was connected to the
pak E clock line (P6) and the pak
CART line was connected to the ADC
interrupt line (P8). A simple resistor
divider with an isolating capacitor was
used to create a line level input for an
AC signal and bias it to 2.5 volts.

Page 27

CoCoNuts!
T H E L I F E A N D T I M E S O F T H E C O L O R C O M P U T E R

May 2007 Vol. 2 Issue 2

All parts except for the new 74LS138
were mounted on copper backed perf
board and easily fit into the Orc-90
case. In my case, I just sacrificed the
Orc-90 left channel but one could
easily use a toggle switch to select
either the Orc-90 left output or the
ADC input.

How Does It Work?

The above circuit worked but not as
well as I had wanted. The problem
was the low conversion speed of the
ADC. I'm sure that those of you that
like hardware projects could find a
faster unit.

The chip is rated at a clock speed of
640 kHz which makes the optimal
conversion rate 8767 measurements
per second. If nothing were done
about this, the maximum frequency
without aliasing distortion would be
4000Hz resulting in terrible audio.

I connected the ADC clock to the Coco
E clock line resulting in a rate of
1.79MHz. The maximum rated clock of
the ADC is 1.46MHz but the chip
worked anyway. This faster clock gave
a conversion rate of 24kHz which
meant alias free signals up to 12kHz
or AM radio quality sound.

The drawback of the faster clock was
a loss in accuracy of conversion. The
circuit should give a reading of $80

with no input (2.5v bias) but read $87,
a 5% error. At a clock of 0.89MHz, the
circuit read $80 with no input, a 0%
error. I have not determined if the error
is constant, linear, or other.

In actual use, the circuit sounds like a
good portable AM/FM radio with
software that reads the ADC and
sends the data to the Orc-90 DAC. If
you send requests to the editor of this
publication and there is enough
demand, I'll publish a program that
demonstrates how to use this hard-
ware. For now, all that is necessary to
know that the ADC trigger is at $FF7A
and the data port is at $FF7B. That
means you tell the ADC to get a
sample with a write of anything to
$FF7A and read the 8-bit result at
$FF7B. With the ADC in use, you can
still send data to the Orc-90 DAC right
channel by writing to $FF7B.

Put an optional switch as indicated in
the schematic, and you can select
either the ADC input or Orc-90 left
channel output. Another option would
be to replace the passive input with an
op-amp having a volume control so
that weak signals can be amplified. As
designed above, a full input signal
needs to be 5v peak to peak which is
somewhat larger than a typical line
output. A Hi-Fi preamp should work
but a direct feed from a CDROM drive
or sound card may be too weak.

What Have We Gained?

The addition of an 8-bit ADC to the
Coco unfortunately does not give
you a bed of roses. You can record
much better sound but are severely
restricted by the Coco storage
capabilities. Maximum length sound
clips are about 21 seconds and
require 442,368 bytes of storage.
That's equal to 96 tracks or 2 1/2
forty track disks. In short, we are not
much further ahead than we were
using SOUND or PLAY.

Hope you had fun with a project that
can teach us much about a very
interesting topic and open doors to
new ones. With this new hardware, I
have written a program to turn the
Coco into an oscilloscope permitting
measurement and display of signals
with frequencies under about
650Hz. If you are willing to sacrifice
sound quality (significant drop in
sampling rate), you can use Con-
tinuously Variable Slope Delta
Modulation (CVSDM) to compress
eight bits into one bit in real time.
Using CVSDM, I have written a
program that extends recording
capacity to just over three minutes
although the sound is not very good.

Want to read about these programs
and see their code, contact the
editor for more articles.

What is the V.R. (Virtual Reality)
CoCo 4 Project?

For years, many of us in the CoCo
community have talked about what we
would love to see in the next version of
the Color Computer. But the sad truth
is that Tandy stopped the production of
the CoCo almost 20 years ago so there
is no hope of a true CoCo 4.

What's happing at CoCo3.com, The Color Computer Super Site!

In the past two decades we've seen
PC and Mac system become so
advance that they can emulate a
CoCo 3 system with plenty of power
left over. Why not use the extra power
to emulate a more powerful CoCo?
That is the cornerstone of the V.R.
CoCo 4 Project.

This is not a hardware project! The

goal of the project is to create the next
level of a CoCo by using software only
via an emulator. Some of the features
of the V.R. CoCo 4 will be faster
speed, better graphics and sound.

What are your ideas on the project?

Add your input in the V.R. CoCo 4
section of the forms at coco3.com.

Page 28

CoCoNuts!
T H E L I F E A N D T I M E S O F T H E C O L O R C O M P U T E R

May 2007 Vol. 2 Issue 2

Game Review By Brian (Briza)
Palmer .

We die-hard game players have
waited 20 years for a version of
Donkey Kong to call our own. Sure we
did get a clone of "Return of Junior's
Revenge". But it was never classed as
a classic in the Coco gamer's field.
What we needed was the Classic of all
Donkey Kong games to be done for
the Coco3. And only the master of the
impossible, SockMaster, would dream
of doing such a port.

But what a way to do it? Not do a
clone. But a actual port of the game
using the Arcade machines Z80 code
translated to 6809. And doing hard-
ware emulation into software based
code then routed to the Coco3 hard-
ware that could do it. I'm not a Techy
by nature but that's the best way I can
describe the achievement Sock's did
in doing DK.

Now onto what Donkey Kong is and
what it means on the Coco3. All I can
say is. Can any other 8bitter platform
do Donkey Kong better then the
Coco3 version? Maybe they could. But
I think that it is only a dream on those
machines.

The aim of this game is to rescue
your Girlfriend from the clutches of
Donkey Kong. Who it seems was
your former pet in a cage until he
escaped. So to get back at his
former owner (Mario) Donkey Kong
decides to Kidnap Mario's Girlfriend
Alice(I think this is her real name in
the Japanese game Market).

This game has all the original screens.
From the intro screen to the intermis-
sion screens and game screens.

First game screen you see is DK
carrying Alice up the long ladder to the
Girders screen and this is where the
fun and excitement begins. You start
at the Bottom left of the screen and
which you have to Jump Bash and run
your way to the top Girder. And just
when you think you have rescued
Alice DK picks her up and runs to the
next stage of this game.

Some Hints for getting to the top
faster. If you time your run off from the
left of the screen, you can actually just
run jump to get to the top no need to
use a hammer at all. Here's another
nifty feature which only the original
did. you can actually run behind the
burning oil barrel at the start of this
level. But once its alight. You cant
jump past it, only run. In this stage you
have to avoid the Barrels that Dk
throws at you and the Flames that
chase you after a barrel hits the Oil
drum.

Second stage involves you collecting
the treasures (Alice's Belongings), and
collecting the rivets to get to Alice. I
found this to be the easiest stage to
finish. No hints for this stage. Here you
have to avoid the flames

3rd Stage (Elevators), now this I
would have to say is the hardest for
me to beat; I always seem to get a
Hourglass landing on top of my
head. Object is to collect the trea-
sures, Umbrella and Hat and just
make it to the top Girder where Alice
is calling out to you. Here you have
to avoid being hit by a hourglass
and Flames.

4th Stage (Conveyors), This I would
rate as the second hardest to beat.
And this is the final Stage in this game
also. But you never actually get to
rescue Alice, as you always start at
the beginning again. Just gets harder
to beat each stage.

Here you just have to collect the
Treasures if you want, these being a

Umbrella, Hat, Alice's purse, and
some nice tasty pies. Then jumping
over the flames and avoiding Dk on
the top conveyor.

By the way, this Dk game has the US
and Japanese versions. I find the US
is harder then the Japanese versions.

Controls are Right joystick to run and
jump, and directional movements.

You also have the option to start with 3
men standard or increase your men to
6. 2 monitor displays are available,
RGB or CMP.

After you select your options press the
right joystick button to start. Best part
is the musical tunes. You feel like your
beginning the game on an original
arcade machine.

Here are the Specs for DK:

Graphics screen: 256x225 (Horizontal)
x16 colors
6 Bit DAC for sound.
512k ram is needed.
And by what Sock's said, all game
data (800kb's) compressed down to fit
1x157kb single sided floppy diskette is
just amazing.

Sorry Sock's but I pinched your
screenshots of Dk. My screenshots
just can't do this game justice. Have to
use the best for this game review.

I hope you enjoy this game review. If
you haven't tried DK yet then what are
you waiting for. Make a real copy and
crank up the coco 3 with the volume
turned up full. Sit back and enjoy the
trip back in time.

Until next time, happy CoCoing.

Donkey Kong for the Coco3
By John Kowalski

Page 29

CoCoNuts!
T H E L I F E A N D T I M E S O F T H E C O L O R C O M P U T E R

May 2007 Vol. 2 Issue 2

Cloud-9's DriveWire

For the TRS-80 and Tandy Color
Computer

Review by CaptCPU
(captcpu@clubltdstudios.com)

If you've ever wanted to add mass
storage to your Color Computer, but
didn't want to enjoy the expense of
adding an IDE or SCSI interface, the
super geniuses at Cloud-9 have just
the thing. Created by Boisy Pitre, it's
called DriveWire and it turns your PC
into a big fat hard drive for your Color
Computer. Once installed, storing and
retrieving just about everything you've
accumulated for your CoCo over the
last three decades is just a few
commands away.

The DriveWire package includes both
PC and CoCo software on disk, an
instruction manual, and a serial cable
for connecting the two machines
together. The PC software comes on a
3 1/2" disk and includes the server
software. The CoCo software comes
on a 5 1/4" disk. It includes a special
version of HDB-DOS for Disk BASIC
users as well as NitrOS-9 loaders. The
cable included has a PC serial plug on
one end and the round (RS-232)
CoCo serial plug on the other. The
user manual included is nine single
sided pages and details installation
and operation.

Installing DriveWire

There are no hardware modifications
required to use DriveWire. Your CoCo
will need its serial port free and a 5 1/
4" disk drive. I tested the system with
a stock CoCo 3 at 128K and duel FD-
501 disk drive/controller plugged
directly into the pak slot. I also ran
tests using a 512K CoCo 3 with home-
built 40-track 5 1/4" drives on a FD-
501 controller plugged into a Multipak
Interface. There was no noticeable
performance difference between the
two CoCos using DriveWire. The
system will also work on a Color
Computer 1 or 2, though at a slower
baud rate. CoCo 1/2 operation was
not tested for this review. (I hooked it,

was able to transfer a file from the PC,
but didn't have time to do anything
more thorough.)

Your PC will need a 1.44MB 3 1/2"
drive and a serial port installed. The
PC I tested on was an old Pentium 4
1.44 GHz computer running Windows
ME and with the DriveWire plugged
into the serial port set to COM 1. The
only problem a user might run into is a
newer PC without serial ports or a
floppy drive. This is a great reason to
put that old PC back into service!

The user manual covers installation
fairly well. Install the server software
on the PC using the included setup
routine. The server has settings for
COM port setting (COM 1-6) and baud
rate (38400 for the CoCo 1/2 and
57600 bps for the CoCo 3). You need
to go into Window's hardware profiles
and change the default COM port
setting. They're usually set to 9600
bps by default. This hung me up for a
bit when I first installed DriveWire,
resulting in constant I/O errors. I
haven't used a COM port in, oh, years
and years. Once set correctly, though,
things started working a little better.

The CoCo disk includes a wizard
program that builds a custom HDB-
DOS disk. Back this disk up, of
course. The wizard asks a series of
questions to configure the OS, includ-
ing setting your floppy drives up and
setting the step rate to 6ms, which is
handy (no need to POKE them
constantly). It also creates an
EPROMable version of the DOS for
those that have a burner.

For NitrOS-9, the system is even
easier. You first mount the correct .dsk
image in the DriveWire server. These
are copied to the My Documents
folder during installation, along with a
second folder full of ROM images of
the system. There are three .dsk
images for NitrOS-9: one for the Color
Computer 1/2 (Level I), one for the
CoCo 3 6809 (Level II), and one for
the CoCo 3 6309 (Level II). You then
execute a corresponding loader
program on the CoCo floppy disk and

NitrOS-9 loads right up from the
server. This is way faster than doing it
on a floppy disk. Having it boot off a
ROM would make it virtually transpar-
ent.

My initial foray with DriveWire met with
a little resistance. Constant I/O errors
plagued the operation, even after I
managed to get the COM port settings
correct. In some cases, the PC and
CoCo would both completely lock up.
These errors were most likely caused
by my flaky Windows ME installation.
It likes to pause randomly and think for
awhile before returning control. A
quick email to Boisy Pitre at Cloud-9
fixed the problem right up. (Allow me
to insert a plug here. Cloud-9's
support for their products has always
been top notch in my experience. Buy
and install with no fear!)

The fix is to download a newer version
of the server off of Cloud-9's website.
Simply copy the downloaded exe file
over the old one. The newer version
looks better. It has photographic
images of disk drives instead of a gray
dialog box (see screen shot). It also
runs much more stable.

Disk BASIC Operation

First, let's get some of the technical
details out of the way:

Included with DriveWire is a special
edition of HDB-DOS (HBD-DOS DW),
an enhancement for Disk Extended
Color BASIC that let's the CoCo
access hard drives. The included
edition works only with DriveWire. It
can't access IDE or SCSI drives
hooked up to the CoCo at the same
time. (NitrOS-9 can, however. See
below.) HDB-DOS DW adds several
commands to DECB that control
access to DriveWire, as well some
command enhancements and a nifty
command line utility. For simplicity,
when referring to HDB-DOS in this
review, I'm reference the DriveWire
edition, unless specified otherwise.

Users of HDB-DOS 1.1B should be
aware that the DW edition is a differ-
ent version and you'll need to use the

Page 30

CoCoNuts!
T H E L I F E A N D T I M E S O F T H E C O L O R C O M P U T E R

May 2007 Vol. 2 Issue 2

1.1B version to access your hard
drives separately. So to transfer
software from the PC to your CoCo's
hard drive, using DECB, you would
need to first use HDB-DOS DW to
transfer the file to a floppy. Then you
could restart your CoCo, fire up HDB-
DOS 1.1B, and copy the file to your
hard drive. As Boisy Petre explained it
via email, this is a limit of the DECB
environment. Unlike NitrOS-9, you can
only use one controller type at a time.

HDB-DOS runs the CoCo 3 in high
speed mode with no problems access-
ing the floppies. However, if a program
POKEs the CoCo back down to .87
Mhz you'll need to POKE it back up
before accessing the DriveWire
server.

HDB-DOS can be burned to an
EPROM to replace the existing DECB
ROM in your controller. An image for
this is created on the boot floppy when
you run the wizard program. This
feature was not tested for this review.
If you end up using DriveWire as your
primary mass storage device, and you
have access to a burner, though, this
would definitely be the way to go.
Cloud-9 can also provide burned
EPROMs.

DriveWire acts like a hard drive, or
perhaps better stated, a whole lot of
floppy drives attached to your CoCo.
There are four drive slots in the server,
and each slot holds a dsk image that
can contain up to 255 virtual disks.
Access to the drives is done through
the DRIVE #n command, where n is
the drive you wish to access.

Loading and saving programs to and
from the CoCo is as easy as using the
already familiar DECB commands.
SAVE, SAVEM, LOAD, LOADM,
BACKUP, COPY, DSKINI, etc. all work
as they should on the DriveWire virtual
disks.

HDB-DOS adds a couple of com-
mands and modifies a few of the old
ones. For example, the COPY com-
mand no longer needs the second file
name to work. It just uses the same
file name for the copy.

Another handy command is RENAME
which changes the disk label. This is
particularly useful when you start filling
a virtual drive with disks and want to
group them together. The disk labels
can be long and are not limited to 8.3
file naming. A utility that would let the
CoCo display all the disks on a virtual
drive, listing their number and as-
signed label, would be a nice addition,
but alas is not included at this time.

HDB-DOS also includes the FlexiKey
utility that makes command line
editing a lot easier, particularly be-
cause it can recall the last few com-
mands entered. I find myself fre-
quently booting up HDB-DOS just for
FlexiKey!

There's plenty more, including an
update to the DOS command, a fix for
DSKINI (no longer erases a program
in memory!), and an auto execute
feature.

The HDB-DOS DriveWire edition is
pretty much the same as the regular
edition of HDB-DOS, but does not
include several utilities. A full review of
HSB-DOS is beyond the scope of this
review, but it certainly worth consider-
ing if you're interested in working with
DECB and a hard drive. You can view
the entire manual for the regular
edition of HDB-DOS at
www.cloud9tech.com.

NitrOS-9 Operation

As said, using DriveWire with NitrOS-9
is simple. Booting is accomplished
from an included .dsk image that
contains the operating system. Just
put the boot disk in the CoCo's floppy
and execute the correct loader.
NitrOS-9 boots from the DriveWire
server automatically.

You can use a real hard drive in
conjunction with DriveWire under
NitrOS-9. NitrOS-9 can be configured
to assign different drive designations
to different devices. So you could, for
example, have an IDE hard drive, a
SCSI CD-ROM, two floppies and
DriveWire all hooked up and usable at
the same time.

Not being terribly familiar with NitrOS-
9, I wasn't able to test everything.
However, I was able to move files
around, transfer them to floppy, open
files, and execute programs via the
DriveWire without any difficulty. If
you're interested in NitrOS-9, the
ability to use it this way is worth the
price of the DriveWire package alone.
The OS really shines when it has a
little elbow room to play with!

Shuffling Back and Forth

Until you get things organized, there is
a bit of back forth from the CoCo to
the PC as you switch disk images.
This can be a blessing, though, for
getting your CoCo's software collec-
tion organized. For example, you can
create libraries of like programs and
files in separate disk images and
mount them as needed. The CoCo
can't use long file names, but the file
names of dsk images on the PC can.
Each CoCo disk can also be labeled
using the RENAME command in HBD-
DOS. Loading multi-disk programs
seems to require going back and forth,
however. But once you've got every-
thing loaded over to the PC in dsk
format, you might find there's little
need to attach floppy drives to your
CoCo!

Everything I loaded from the PC fired
up just fine. I did not try to load any
programs that needed to be cracked
because of disk protection. These may
pose a problem for DriveWire. Those
that were already cracked worked fine.
I also didn't fire up anything using the
DOS command (nothing on the PC
that used it). If it doesn't work I would
suggest the old Radio Shack DECB
1.0 loader could be used.

The primary reason I bought
DriveWire, however, was to transfer
files from my PC to the CoCo and vise
versa. Particularly, I wanted an easy
way to get stuff downloaded from the
Internet on to a real CoCo floppy. If
you're in a similar frame of mind,
DriveWire fits the bill nicely, without
having to install an old 5 1/4" in your
PC or mess with old terminal software.

Page 31

CoCoNuts!
T H E L I F E A N D T I M E S O F T H E C O L O R C O M P U T E R

May 2007 Vol. 2 Issue 2

Note: In email, Boisy mentioned that
the DriveWire cable is wired like a
standard NULL modem cable, so you
could potentially use it with terminal
software on both ends to transfer files
back and forth, if you were inclined to
do so. This feature would be particu-
larly handy for transferring text,
pictures, music, or other data that you
don't want to have to convert to .dsk
first. It also opens up the possibility of
creating other software that uses the
cable for communications between the
CoCo and the PC. An automated
transfer utility running in the back-
ground under NitrOS-9 might be
interesting, for example.

To illustrate how easy it is to transfer
things back and forth, here's a quick
look. HDB-DOS uses the DRIVE
command to designate which of the
four (0-3) drive slots the server will
use. Each of these virtual drives,
however, can hold 255 virtual disks.
For the example to follow, I'll use the
terms "virtual drive" to indicate the
server's drive slot, and "virtual disk" to
indicate the disk on that virtual drive.
The reason for this is that the DRIVE
command, with the OFF/ON switch,
can also indicate which virtual disk
your CoCo is accessing. You need to
turn the virtual disks off to access the
real disks in your CoCo's floppy drive.
This is, of course, a limitation of
DECB, but the way Cloud-9 got
around it is clever. It works like this:

Let's say we want to transfer a dsk
image of a game to a real CoCo
floppy disk.

Step 1. Type DRIVE #0 on your CoCo.
This sets the server to access the
virtual drive 0 on the PC. (You could
just as easily accomplish the same
tasks on Drives 1, 2, or 3 by typing
DRIVE #n, where n is the drive you
want to work with.)

Step 2. Load the dsk image on the PC
into the first (bottom) virtual drive on
the server.

Step 3. Type BACKUP 0 TO 1. This
copies all the files on virtual disk 0 to

virtual disk 1 on the selected virtual
drive. Once a dsk image is mounted, it
has 255 eligible virtual disks available.
DriveWire handles this transparently.
There's no need to "create" these
disks. Once an image is mounted in a
virtual drive, it can hold as much as
you can cram into its individual virtual
disks.

Step 4. Type DRIVE OFF 0 on the
CoCo. This turns off virtual disk 0 on
the selected virtual drive. This in turn
allows access to the real disk 0 on the
CoCo's floppy drives. DRIVE OFF n
turns off all virtual disks on the active
virtual drive equal to or lower than the
number specified. Real CoCo disks
with those numbers can now be
accessed. For example, DRIVE OFF 2
turns off virtual disks 0,1, and 2. You
can also specify a range of disks.

Step 5. Type BACKUP 1 TO 0. This
will copy the files in virtual disk 0 on
the server to the real disk drive 0
attached to the CoCo. This is why
Step 3 above is necessary. Once
virtual disk 0 is turned off, to allow
access to the floppy drives, you can't
access it any more. So, all the files
need to be copied to a virtual disk with
a drive number higher than the real
floppy drive you'll be using.

Step 6. Type DRIVE ON to disable the
real floppy drives and reactivate all the
DriveWire disks.

That's it. Instant floppy disk you can
now use on your CoCo. Copying files
to the PC from the CoCo is as simple
as reversing the procedure. Just
DRIVE OFF 0, BACKUP 0 TO 1,
DRIVE ON, BACKUP 1 TO 0.

(It's a good idea to copy the files back
to disk 0, since an emulator and other
PC/CoCo utilities might not see them
otherwise.)

This may seem like a bit of work, just
to get a working CoCo floppy disk, but
it's quite intuitive once you do it a few
times. The scheme also allows for a
great deal of compatibility with regular
DECB. There's no new file system for

use with the drives on your PC.
DriveWire just uses the familiar DECB
system. You can also use programs
that don't let you specify which disk to
use, for example game that automati-
cally save to drive 0.

Is It Worth It? Oh, Yeah!

DriveWire does have its limitations.
From talking with some CoCo users,
I've learned that it's not as fast as a
real hard drive. If you need blazing
speed, a SCSI drive and controller is
probably the way to go. On the other
hand, DriveWire is considerably faster
than a floppy. For most users,
DriveWire will be plenty fast enough.

Even with the newer version in place,
DriveWire server still locks up occasion-
ally on my PC. As mentioned, it's a very
old installation of Windows ME. Most of
the problem is there. The lock ups
occur when I'm doing something else
on the PC and letting the server run in
the background. Basically, it doesn't
appear to be very tolerant of interrup-
tions. For the most part this isn't a
problem, but it's something a user will
want to test, and compensate for,
before trying anything mission critical.

Overall, DriveWire is brilliant. Installa-
tion and operation is easy and intui-
tive. For a mere US$40.00 (at the time
of this writing), plus shipping, you can
add mass storage to your Color
Computer. This is, hands down, the
easiest way to transfer files between
your PC and CoCo. If you use DECB,
the HDB-DOS enhancements are a
great bonus by themselves. NitrOS-9
users get another great storage option
and the ability to transfer and execute
programs quickly. In short, DriveWire
makes any CoCo even better and
more capable than ever.

Links

DriveWire is available for order from
Cloud-9 Tech at:
www.cloud9tech.com

Please see the website for the latest
pricing and options available.

