Accessory 9PTPRO

Single Source Machine Control Power // Flexibility // Ease of Use
21314 Lassen Street Chatsworth, CA 91311 // Tel. (818) 998-2095 Fax. (818) 998-7807 // www.deltatau.com

Copyright Information
© 2003 Delta Tau Data Systems, Inc. All rights reserved.

This document is furnished for the customers of Delta Tau Data Systems, Inc. Other uses are
unauthorized without written permission of Delta Tau Data Systems, Inc. Information contained in
this manual may be updated from time-to-time due to product improvements, etc., and may not
conform in every respect to former issues.

To report errors or inconsistencies, call or email:

Delta Tau Data Systems, Inc. Technical Support
Phone: (818) 717-5656

Fax: (818) 998-7807

Email: support@deltatau.com

Website: http://www.deltatau.com

Operating Conditions

All Delta Tau Data Systems, Inc. motion controller products, accessories, and amplifiers contain
static sensitive components that can be damaged by incorrect handling. When installing or handling
Delta Tau Data Systems, Inc. products, avoid contact with highly insulated materials. Only
qualified personnel should be allowed to handle this equipment.

In the case of industrial applications, we expect our products to be protected from hazardous or conductive materials and/or
environments that could cause harm to the controller by damaging components or causing electrical shorts. When our products are
used in an industrial environment, install them into an industrial electrical cabinet or industrial PC to protect them from excessive or
corrosive moisture, abnormal ambient temperatures, and conductive materials. If Delta Tau Data Systems, Inc. products are directly
exposed to hazardous or conductive materials and/or environments, we cannot guarantee their operation.

mailto:support@deltatau.com
http://www.deltatau.com/

Accessory 9PTPRO

Table of Contents

VI 2 (] 1 L] SRS 1
ROV SIS 1= L SRS 1
What 1S 8N ACHVEX COMEIOI?eeceeceeceeceeese sttt e e s et e s e e e e saeseesbesaeereeneenee s e ssessesaeeneeneeneeseeneeneenns 1
What Can | USE PTaAKDT Wt ...ttt e et esaentesaeeneene e e eneeseeneenaeens 1
What Can PTaKDT A0 FOF IME?......ocueceecece et et ene e e e e e stenbesaesneene e e eneeseeneenaeens 1
What Built in FUNCLIONS DOES PTaIKDT HEAVE?coviiee ettt ettt et et s sre e beeabesnaesneens 1
What You Will NEed tO USE PTalKDT ..ottt ettt sttt st s sae e saeesteeneesanesaeenbeenbeeabesnnesreens 2
HOW 0O | GEL SUDPPOIT?. ...ttt ettt sttt ekt b e s e h e b e b e b e se bt e b e e bt e b et e bt s b et eb e s b et e b s b e e e be e 3

GETTING STARTED ...ttt sttt st b e bt b e e et bt b e s e b e s b e m e b e s b et e bt seen e e be st en e b e st eneebeneenes 5
INSEAHTTING PTAIKDTPIO ...ttt ettt et b e bt s ae e bt et e a e e £eee e e b e s et eh e e Rt embeseeebeebeeaeebe e e anbeseenbenaeens 5

R0 e VAT RS S = L= 1S 5
Setting up ComMUNICALONS WItN PIMACo ittt sttt se e be st e s besbesreese e e enteseentesresnens 6
Plug & Play DeVviCe INStAlALiON..........ccceiiiiieie sttt e e e e e st e besresre e e ensesrenresreens 6
Windows 98/ME Installation (Non Plug & Play DEVICES)cccucuereriereieseseeteseeseesesees et e e e see s snesnes 6
Windows 2000 Installation (Non Plug & Play DEVICES).......cccueeeierierere e steseeseeaeseesie st eseeeeseeseesnes 9
First TimME PTaAKDTPIO USEIS.....iiiiiieiiieeeeeeeeeesees e steste st sse e e eee e ssestesaestesseeseesse e enseseessessesnessesnsensessnnsessessensen 11
Serial POrt CONfIQUIBLTONccuiitieeieiteeeteste ettt ettt st b e e bt b et b bt b e b et et b e e b b 12
UNINSLAING PTAIKDT OCXutiiiiiiiriiieieseeeeiest ettt ettt ket b ettt b bt b e b e e b b 13

HOW TO DESIGN WITH PTALKDT ..ottt ettt st st st st st ne e bt se st nessestenessentens 15
OB To | 1Y, oo L= USROS 15
L L0 T T =AY, oo L= T 16
Altering, Saving and Retrieving PTalkDT SettingS at RUN TiME......cccoiiiiiiineii et 18

COMMUNICALION SEHINGSvveeeieriestes et etere et e st e e s e s re e s aeete e e e aesteseesbesaeetesseesaesestestesaeatesseesesseeseensesenteseesrenses 18
LT s = TS = 1] TS 18

YOUR FIRST VISUAL BASIC MMI WITH PTALKDT ..ottt snens 19

L@ = 1SS 19
S ot 0] TSP 19

YOUR FIRST MICROSOFT VISUAL C++ MMI WITH PTALKDT ..ottt 23

OVEIVIBIW ...ttt ettt ettt eete e e be e be e beeatesaeesheesheesbeeaseeaseeaeeaae e beenbeenbesstesaeesheesheesbesnsesaeesaeeaseanteenbennbesnsesseess 23
ST UCTIONS ...ttt ettt s et e et e s e e saeesaeesbeeabeeaseeseesbeesbeenbeensesasesheesheesbeensesasesaeesseanteenteentenntenseess 23

PTALKDT REFERENCE ..ottt sttt e et sttt b et b e sttt be e eb e s be et st 33
[DToTei W10 gl= 1= Lo g @X0] 01V7= 011]] 1SR 33
L@ Y7 V1= YRR 33
L= L I o o7 1= S 33

7= o= o OSSPSR 33
IS T o USSR 33
LIS = 0 S {1 oo TSP 33
1Y Lo N[0 o= SRS 34
DEVICENUMDEYcueiieiee ettt et e e ee s be s st e aeeae e s e eneeseetesaeaaenseeseesee e enseseeaeeseeeaeeneenennseseensesennrens 34
DOWNI OAODE ELETEINID ...ttt b bbb bbbt b e et b b et b et st e b et et et et et e be et 34
DOWNIOAADO.evieueicteeteecteee et sttt et et e et et e e be e be et e eabesaeesheesbeesteeaseensesaeesaeeabeenbeenbeenbesatesaeesbeesbeesreesseennen 34
DOWNIOAAHITE.oveiteeieeteee ettt ettt e st e et e e be s abesae e saeesaeesbeenseeaseeaeeebeesbeeabesasesaeesbeesbeeseensennnas 35
(Do 1 a1 o= To | oo RN USSR 35
Do T g o= T |1V =T o OSSPSR 35
D T0 Y g F0T= T AV F= b o) = OSSR 35
DOWNIOAAPAI SEcveeueeueeitee sttt sttt et e st et e s te s te s tesaeete e e esteseeseestesaeabesaeeseesseneenseseestesaeatessesaseneensanteseentessenrens 35
DOWNIOAASNOWETTOI'S ... veveeveeuieiteiestestestesteeseeeetesrestesaestesseeseesaessessesaeatesaeeseessessessessessesaeatessesseeseensanseseensessensens 36
L0 o1 T=To /Y =t TS 36
L0010 =To | o X = TSP 36
L0 o102 To [N (0T 0 T 40 7=) TSP 36
L0102 To RS 10 T e | =\ TSP 36
LI =130 o RSO 37

Table of Contents i

Accessory 9PTPRO

[T YT =T o] = SRS 37
DoWNIOAdFITE (fIIE NAIME) ...ttt bbbt b bbbt b et bennene 37
DPRDouble (LSB_ WOrd, MSB_WOIFA) ..ottt sttt se e et e b s sae e e e eneeseesbesaesneas 39
DPRFixed (LSB_WOId, MSB_ WOIT) ...eciuiiuiiiiieiesiesie st st ae st se e b saesbesbe et sae e e amseseesbesaenneas 39
DPRDWordBit Set/Reset and BitSet MEINOUScoueiiiieiiiie et 40
DPRGetDWord and DPRSEDWOrd MELNOUS..........cccciiiieiieirises e s 40
DPRGetFloat and DPRSEFI0at MELNOUSc.ciiiiieiriieisee e 41
DPRGetMem and DPRSEIMEM MELNOUS.........cccoiiiiririeirise ettt 41
DPRGetWord and DPRSEWOId MELNOGS..........coiiiriieiriienee et 42

L U X OSSR 43
GetControlResponse (ReSponse, CONtrol Char)cuivieieeeeeeeere e eeesee st sse e eeeneesresreenes 43
GELLINEACK (RESDOMNSE) ...ttt sttt sttt sttt st b e st eae b e st bt b et b e s b et bt s b et e b e s b et eb e s b et e b e e b et e bt s be e ebesb et ebenrens 44
GELLINECR (RESPONSE)......ceeuertereeieste sttt sttt sttt st sttt s b et be b et b e s e et b e s e et ebese et e b s e e Rt ek e se e bt ebeeb et e b e s be e ebesbe e ebennns 44
GetResponse (ReSPONSE, COMMENG)ooveiiriirieieie ettt et ettt et s he e se e e aseeseesbesbesbeebesneenseseebesaesrenaes 44

RS TSN TA g o N () USRS 45
(0210 85 = 1 1] 0o L3 () USRS 45
[0t o Y A OSSR 46
REIEASEPIMAC() «.veveneetertieetesteteteseeee e te st st es et s te s s ae st s se st e e e seseen e e se s bene e st s beneese b et e se s bene b et e st s benbenenbenbe e esenbens 46
SV = 1110 Y () TS 46

S S LoD =Y o= (S 47

S = 10| @ gV (g =T ot =) S 47

S = 1o | I 0 TC (@0 00T) S 47
ShowPropertyPage () [OBSOLETE]ccciiiriierieesie ettt sttt st sttt st e bbb b sne e 48
UploadData (File Name, Command, Options, Expected Number of LineS)cccceeeeeveerenerenieneseseseeee e 48
PTAKDT EVENES....cciiieiiiie it siese ettt e e st e sttt s e e e e e testesbesbesaeeseemeenseseesaesbesaeebeeseeseensenbeabeseeeseeneenteseeteseesrennes 49
L0 3] =1 o ST P U R UUP TSR 49
L0181 TSRS gTo Tl o o[RS 49
Dual Ported Ram AutomatiC Feature EXAMPIEoooiiiieeeee et 50
DELTA TAU DRIVER CONFIGURATION ...ttt sttt se sttt sa e st sa e s te e s st ansesteeesessns 53
YN Lol o7z IV AT= Vel 1 1] B Y= TSRS 53
(DY o X @0 Tq {0 (U= (o) o SR 53
L U T IR o o YA o £ TSP 53
NON-PlUQG & PlAY POFTS.......eiuiiieiie ittt e st e e e e e seestesbesressesseese e e ensensessessesseeneeneanseseensessensens 53
DEVICE CONFIGUIBLION. ...ttt bbbt b et b b et e b e b st b et et et e b et e b nnene 53
After Setting UpP THe DEVICE DIIVELc.oiiieiieieee ettt e ettt b s nn s 57
ENNBNCEA FEBIUIES........eiiiiieiee ettt sttt st sttt et et e s e e beseeebesseeaees e e e enteseebesbesaeeneeneenseseeteseesrenns 57
SUPPOITEd OPEIratiNg SYSLEMIScueeuieiieeeie sttt sttt et et be b eae e e e eese e besbeebesaesaeeaeese e besaeebesbeaaeese e e anbeseesbesaeans 57
GLOSSARY OF TERMS ...ttt sttt st st st b e e bt b e se bt b e ne ekt s b e se e b e sbeneeb e e beseebesbeseenenbeneas 59
INDEX ettt b et b s bttt b 4R bt £ e R e SR e R £ Rt R e ARt SR e £ Rt R e £ e Rt R e £ e Rt b e bRt b et ne e b e be e et 61

Table of Contents

Accessory 9PTPRO

INTRODUCTION

What is PTalkDT?

PTakDT isauser-friendly interface to Delta Tau’ s 32-bit driver, PComm32. It isdesigned to provide
robust and efficient communication to PMAC®, Delta Tau’s Motion Computer. Since PComm32 will
continually evolve to include additional capabilities (i.e. VME PC's, PCI etc), PTalkDT has been
designed so that your applications code will not be affected. Using PTalkDT ensures that your
application will work for many future releases of Delta Tau' s 32-bit driver (and as aresult many future
capabilities and versions of PMAC).

Unlike previous versions of communication libraries, PTalkDT isin the form of an ActiveX Control, a
new and upcoming form of library that is taking Windows programming by storm. PTalkDT relieves you
of the often-cumbersome task of writing your own communication routines. Experienced programmers
know that communication functions play acritical role in creating reliable application software. We have
taken all the pain out of writing communications software, and have provided what we fedl is the best
approach to creating aPMAC “MMI” (Man Machine Interface).

What is an ActiveX Control?

ActiveX controls are the latest addition to Microsoft’s OLE (Object Linking and Embedding) family,
providing unprecedented compatibility to almost any devel opment geared application software. ActiveX
controls, sometimes referred to as reusable components, give you, the programmer, the easiest way to
incorporate advanced functionality into your applications with little or no programming. For those of you
familiar with OCXs, ActiveX controls are the next generation; they have an added array of functions for
networking ability.

What Can | use PTalkDT with?

PTakDT can be used with the 32-bit version of Visual Basic, Visual C++ (4.x and beyond), 32-bit
Delphi or C++ Builder, and just about any development package that supports ActiveX controls. In this
manual, most of the examples and descriptions will pertain to Visual Basic (version 5.0) and Delphi
(version 2.0).

What Can PTalkDT do for me?

PTakDT provides you with a very stable and high-speed communications link to PMAC. Our intent isto
allow you to focus on the functionality of your MMI (Man Machine Interface) by removing the burden of
writing communication software to “talk” to Delta Tau’s PMAC (hence, the name PTalkDT). PTalkDT
gives your application instant communication capability to PMAC over the PC-bus, Dual Ported Ram or
serial port with you writing little or no code. Furthermore, PTalkDT has been designed to quickly trap
bugsin your code by centralizing the error handling (via an Event, discussed later on).

What Built in Functions Does PTalkDT Have?

Two classes of functions (or, more technically speaking, methods) are included, “Basic Communication”
and “ Extended” Functions. This manual only covers the Basic Communication methods, among them:

DownloadFile Thisallowsyou to download atext file or multiple text filesto PMAC. A
powerful string substitution preprocessor is included.

Flush A useful method to clear out PMAC’ s output string buffer before sending a
new command.

GetControlRes Sendsasingle control character to PMAC and retrieves any pending string

ponse response from PMAC.

GetLineACK Retrieves a string response from PMAC, stopping after receiving an ACK
character (ASCII value of 6)

GetLineCR Retrieves a response from PMAC, stopping after receiving a CR character

Introduction 1

Accessory 9PTPRO

GetResponse

L oadSettings
SendChar
SelectDevice

SaveSettings
UploadData

DPR Read-
Write

(ASCII value of 13)

This allows you send commands to and receive string responses from PMAC
in one convenient method.

Retrieves the last saved communication settings.

Send a single character to PMAC.

Shows PTalkDT’ s Select Device dialog to allow end usersto select, add, and
configure PMAC devices.

Stores PTalkDT communications settings to disk.

This allows you to upload a series of string responses from PMAC—
commonly used to obtain variables, motion, and PLC programs from PMAC.
Numeric Read/Write. Enable use of DPR Automatic Features

All extended methods are prefixed with an “x” (i.e. XDPRRotBuf ()) and are detailed in Delta Tau' s 32-
bit driver manual (PComm32.DOC see Delta Tau’s BBS or Web site WWW.DeltaTau.COM). Extended
functions are rarely used.

What You Will Need to use PTalkDT

The minimum hardware and software requirements to install and support the use of PTalkDT are:

e |BM or compatible PC/AT (486, Pentium or higher CPU) with 8 MB of memory, one 3.25” floppy
disk drive, and one hard disk drive with 3 MB of space

® VGA or SVGA display adapter
® Microsoft Windows 98, Windows NT, Windows 2000

e Development environment supporting 32-bit OCX controls such as Microsoft’s Visual Basic (4.x or
greater), Visual C++ (4.x or greater), or Delphi (2.x or greater).

I ntroduction

Accessory 9PTPRO

How do | Get Support?

If you encounter problems your first troubleshooting steps should be to:

1. Review this manual and the Troubleshooting Guide in the Appendix of this manual-- doing this can
save you time and money.

2. Get your Serial/Registration number from your diskettes or the back of your manual Contact our
technical support for PTalkDT by faxing, sending E-mail or calling the following numbers (include
serial number):

Fax: (818) 998-7807
Web Page WWW.DeltaTau.COM
E-mail: Support@DeltaTau.COM
VoiceCalls: (818) 998 2095

We hope that PTalkDT’ s ease of use and this manual will provide all the help you need. (Hint: E-mail is
the quickest. Include your Registration Number.).

Introduction

http://www.deltatau.com/

Accessory 9PTPRO

I ntroduction

Accessory 9PTPRO

GETTING STARTED
Installing PTalkDTPro

Before installing PTalkDTPro, read the license agreement included in this manual (behind title page).
Also, please see the README.TXT file on the first installation disk. If there are corrections or additions
to this manual, they will belisted in afile caled README.TXT. Thisfile can be displayed directly from
the installation diskette using the Windows NOTEPAD utility. After the installation, thisfile can be read
by double-clicking the PTalkDT README icon in the newly created program group.

Note:
Visual Basic users should install Visual Basic before PTalkDT.

Toinstal PTalkDTPro from the Delta Tau Software CD, insert the CD into the CD drive. Auto install
menu will popup. Click on the Pewin32 from the Suite to launch PTakDTPro installation. To install
PTakDTPro from the floppy disks, put the PTalkDTPro distribution disk labeled “Disk #1” into a floppy
drive and choose File | Run from the Program Manager. Enter A:\SETUP.EXE or substitute ‘A’ for the
letter of your floppy drive.

PComm32 drivers were rewritten when PCI, USB and Ethernet communication modes were added. It is
therefore important to uninstall all old Delta Tau software products before installing Pewin32RPO.

The installation program will suggest a directory path where the program files should be copied. Usethe
suggested directory location for the installation for the purposes of uniformity among all PTalkDTPro
users (and trouble shooting if need be).

Read the “readme.txt” file for last minute additions to this manual .

Y ou will want to setup communication before running PTalkDTPro for the first time. For details on
Setting up communications see " Setting up Communications with PMAC".

What Was Installed?
Theinstallation will create a new program group called PTakDT. This group containsa README.TXT,
and DIFFERENCES.TXT icons, three Visual Basic project, and one Visual C++ demo project icons.

The DIFFERENCES.TXT file shows the changes between one release and the next and will be useful for
those upgrading to a new version of PTalkDT.

Be sure to see the “ Setting up Communications with PMAC” section of this manual to “hook up” your
operating system with the PMAC devices installed on your system. No communication to PMAC will
occur before thisis done.

We encourage you to run the Visual Basic and/or Visual C++ example projects. Please note that these
will only work if you have the corresponding devel opment environment.

After you have tried the example projects, try to make a simple application of your own by following the
steps described in the section “Y our First Visual Basic MMI with PTalkDT”. Then you might want to
look at the example program code that is provided.

Note

When these example programs were written, less than 5% of the development time
was used for PMAC communications! Most of the effort went into making the
various screens for these programs.

Getting Started 5

Accessory 9PTPRO

Setting up Communications with PMAC

No applications, including those created with PTalkDTPro, will be used to add, remove or configure
PMAC devicesin your system. Rather, communication settings have been centralized in your operating
system, making the set up of each PMAC much like other devicesin your computer (i.e. video card,
sound card etc.) All setup is done through the Control Panels Add New Hardware Wizard. Following
steps will help installing and registering the newly installed devices. Before using this application itis
important that all applications that use PComm32 (the Delta Tau 32-bit communication driver) be shut
down. Thisincludes Pewin32Pro, NC for Windows, and any applications developed with PComm32 or
PTalkDT.

Plug & Play Device Installation
Plug & Play are configured automatically at boot time or whenever plugged in (USB device). Devices
can be reconfigured at any time for updated drivers as well.

Uninstall all old Delta Tau software packages
Install PTalkDTPro
Shutdown computer
Install PMAC-PCI hardware (USB UMAC can be plugged in at any time. Once computer restarts
after PTakDTPro installation, computer will detect a USB UMAC and instal the driver
automatically.
Restart computer.
Computer will recognize new hardware and configure the hardware. If prompted give the path of
driver file(s). These file(s), depending on the operating systems, are in the following folders:

a Windows 98/ME c:\windows\system32\drivers

b. Windows 2000 c:\winnt\system32\drivers

At this stage the Plug & play PMAC devices are configured and ready for use. Please see the First Time
Pewin32 Users section for instructions on how to register the newly added devices.

PWODNPE

o u

Non-plug & play devices are configured through windows standard "hardware wizard.” The steps
involved in the installation of PComm32 driver under Windows 98/ME and Windows 2000 are slightly
different. Next two sections describe all the necessary stepsinvolved.

Windows 98/ME Installation (Non Plug & Play Devices)
1. Run Add new hardwar e from the control panel.

6 Getting Started

Accessory 9PTPRO

2. Continue through the auto plug and play device search wizard.

e i e e i O g ¢ gy] e S
IEEE

1 e iy G D b i g e b g B TP o e
To mrdrss o e

o [T owew |

3. Continue until the following screen appears. Select No from the Windows auto search option.

In the following screen select other devices from the hardware types (Needs to be done first time
only.) Once device database is modified then Maotion will be listed in the hardware types list and you
will select the Motion type for future device additions.

4. Once device database is compiled Delta Tau Data Systems Inc. will be added to the manufacturers
list. Scroll through the manufacturer list and select Delta Tau Data Systems Inc.

Getting Started

Accessory 9PTPRO

5. Select the Model from the available list (PMAC ISA or PMAC Seria Port) controller. Base address,

Memory configuration and/or IRQ assignments are re-configurable. Serial Port configurations are
done at the application level.

i riar el rr——
o
ey T oy ey ey e $ sevemy bl S ——r
=5]

—e
rre w— 17t g 1) o e e g
b we T) ey e— e S ———
——r

Tu r——— mpm— ey e S e

[P = |

e T T |

6. Select model specifiesthe required driver file(s) PMACISA.SYSor PMACSER.SY Sfor ISA or

Serial configuration(s) respectively. If asked, specify the path of driver file(s). The required files are
aready in the Windows\System32\Driver s folder.

T T - |
B

; : (=) |
Eel s il e -y i O g

Sy B by g F By e e
"EETETL T i e B ey i

= Py
oy B W I.
IR 0 x| b |

At this stage the driver isinstalled on your computer. A restart of computer is required after the driver
installation before use.

Above steps are necessary for addition of anew device. Step (6) is different under Windows 98/ME as
compared to Windows 2000. Therefore, following steps are necessary to assign appropriate resources to
PMAC ISA configuration. Stepsfor resource reconfiguration are as follows:

1. There are essentially FOUR configurations available for ISA BUS. They are 1/O Port only, 1/0 Port
w/DPRAM, 1/0O Port w/DPRAM & IRQ and finally 1/0 Port w/IRQ only. One PMAC can be
configured for only one of these configurations at a given time. Under Windows 98/ME. These
resources can only be changed from Control Panel’ s device manager. Device manager can be

launched from the Control Panel’s System menu or directly by checking the properties of My
Computer from the Desktop.

Getting Started

Accessory 9PTPRO

2. From the properties of PMAC ISA Motion Controller select the desired configuration and change the
resources according to Jumper setting and available computer resources and respective jumper
settings on PMAC controller. A computer restart may be required one the resources are altered. Once
adeviceis configured successfully it isregistered and available for use.

Serial Port Configuration such as, port number, baud rate, timeouts, handshake and parity options are
done at the application level. Properties of a Serial Device are enabled in the PmacSelect dialog, which
allows the selection of different options.

Windows 2000 Installation (Non Plug & Play Devices)
1. Run Add New Hardware from the control panel.

Wil nEer H Di S W eiries ol el &
W sam

- -

2. From choose a hardware task select Add/Troubleshoot a device

3. From choose a hardware device select add a new device.
el o e

i
Y el m

S LRSS B Al

oamma_ Iy I

Getting Started

Accessory 9PTPRO

4. From find new hardware select No and continue.

T 1
aa m — 3 .

B EEL . L e,
= R

5. From hardware types select other devices from the hardware types (Needs to be done first time only).
Once device database is modified then Motion Controllers will be listed in the hardware types list and
you will select the Motion Controllers type for future device additions.

el o e |
e J m

s e St

I

" e

L3

!:_—

e

6. Once device database is compiled Delta Tau Data Systems Inc. will be added to the manufacturers
list. Scroll through the manufacturers list and select Delta Tau Data Systems Inc.

ST CUTEE—— 1
——uta i
s e A 8 e M L A M B L |
e e T e EEL
- B

7. Select the Model from the available list (PMAC ISA or PMAC Seria Port) controller. Windows 2000
alows the resource configuration during installation. Therefore, at this stage, Base address, Memory
configuration and/or IRQ assignments are configured. Select the appropriate configuration and after
highlighting the resource press change settings to set the desired values. Confirm the “ Create a forced

configuration” message.

= e —— 1
e
P =
1
: £
e ==

10 Getting Started

Accessory 9PTPRO

8. At this stage once you need to provide the path of driver file(s).
TN =
o e [E

|

1
v (i T !
5 il A L 100 e il A B el i

R T T O S
L3N

9. Select Modd specifiesdriver file(s) PMACISA.SYS or PMACSER.SY Sfor ISA or the Serial
configuration(s) respectively. If asked, specify the path of the driver file(s). The required files are
located in the Winnt\System32\Driver s folder.

s B b

10. Finish the installation and restart your computer. Y ou can review and reconfigure the resources before
restarting the computer as well. These resources, however, can be changed any time by launching the
device manager.

Compaptwsy Foa & od Flperes | o
Wil ad

At this stage the driver isinstalled on your computer. A restart of computer is required after the driver
installation before use.

Also at this stage your Non-Plug & play PMAC devices are configured and ready for use. Please see the
First Time Pewin32 Users section for instructions on how to register the newly added devices.

First Time PTalkDTPro Users
Following steps are necessary to ensure proper startup of applications.

1. Once devices are configured, run PTalkDTPro. From the Setup menu, choose General Setup and
Options.

2. Ifit'sthefirst time no device will be listed in the registered device list. Press insert to register the
available device(s).

L|[

i

Getting Started 11

Accessory 9PTPRO

3. All configured devices are listed in the available PMAC devices list. Select the desired device to
register. Repeat this procedure to register all available devices.

5. OnceaPMAC islisted in the PMAC Select window, it is registered and can be communicated with.
It is highly recommended to test a device upon registering. At this time you should see a familiar
screen and are ready to launch any window.

Serial Port Configuration

Serial port configurations are available at the application level. Properties button in the PmacSel ect list
alows the user to select the Port number, set the baud rate, set timeouts, handshake options and other
selections as Odd/Even Parity checks.

AR Dhiasensm wws vl |

Fod Flumbhiai Elrmsp iy - a
Futy Carami |
r‘f—q £ T D

HFE Corhl

 Dimabisd T Enmbled
™ riandahinks ~ Toggs
Timueoues (meses.]

CHAiBET f Cagut)

T
Flaaty §10

Taeit

The next time the program is executed, it will start with the arrangement it had upon exiting.

12 Getting Started

Accessory 9PTPRO

Uninstalling PTalkDT OCX
It is highly suggested that you uninstall PTalkDT before upgrading to a newer version of the product.

To uninstall PTalkDT, from Windows click the Start button from the taskbar and select Settings then
Control Panel.

[5tan) Evphring - Brochuse | I Microsoh woed -Py_|

Within the control panel, select the Add/Remove Programsicon. Double click onthe PTalkDT entry in
the list box or push the Add/Remove button to uninstall.

Bl Edi Y Huip ;
@ ‘# -_ lrul-l-Ur-d-ll'nr-:- Suip | g Dk |
""""-:I -ﬁ Tz raisll 5 res prograe o & Boppg sk oo COAOW
Bt QDD Acoomrisbly Add Hes Twean [et ol sl
[IESH Hdsmn R
B e]
‘wn A
b radl : yisck -
a - - * pe Iolvarn L S Tl] By
Tl:'r”?f Eﬁ"m
= ' bkt b
D BB & D e
bladwadFos Boicach M Hadaa il Fuig Thth dunieps Qlbgperrs [ILET| 30
Skl Fuill Tirl sl
Rarminips Tomhs b 'l 55
] r”:l*-\.rp"\.i# el
jﬂ . Py inaal Cs
Fhoziod vioul | oaTe &
Itves Faarensd Perie Regranal ot Pl ko wWirdevr® 55
Sl l' i
[|
= -
Sabary AP |
|% PR
A | |

All files copied during the installation will be removed (only if other programs are not currently
dependent on them). Furthermore, if files have been added to the installation directory (i.e. program files
you created) then the uninstall wizard will report that not all directories could be deleted. Y ou will have
to manually remove these files.

Getting Started 13

Accessory 9PTPRO

14

Getting Started

Accessory 9PTPRO

HOW TO DESIGN WITH PTALKDT

In Desigh Mode

First, configure your PMAC(s) in your system. See the Setting up Communications with PMAC section
of this manual to “hook up” your operating system with the PMAC devicesinstalled on your system. No
communication to PMAC will occur before thisis done.

For most of the remainder of this manual, al examples will be described assuming you are using
something similar to Visual Basic. If you are using a different development environment, the procedures
described here will be analogous.

First add the PTalkDT control to your development environments toolbox. Thisis usually done by
going to the “Tool” menu, and then selecting “Components’. Now place a PTakDT within the form that
you are currently designing (Usually the main form of the application).

Note
PTakDT uses Delta Tau’ s time tested 32-bit driver, PComm32 Pro.

The next thing most folks will want to do is configure the many properties of PTalkDT. This can be done
by viewing the custom property page for a newly inserted PTalkDT. The custom property page can be
viewed by double clicking on the “ Custom” property (in other development environments you may
double click the PTakDT icon within the form).

[PTalkoTl #Takor =
fighabeti: | Categorzed |

&
hlars) PTaEOTL

r-ieahl e 0l - BEVICED

porboadDelet e Tamp True

P g e] Trusi=

g e gt] Truse

ovrioadlog Palse |
[CuasEans)

The custom property page is shown below:

Proprly Pages J il

Geneml |L‘I:rm|\:ud| Upkoend | Abecant |

WELDORE! This comirol allows vouio sasity missace with PUMAL Pleass
solkec & PRAL Diersice Humber by pressing he befion belos

i Salact PMAC Devics Humbar | [0
: H ez PRAAL ks arevmilsble salech &

""Simsiiksin d Cominn i caton

| o | Cancel

How to Design with PTalkDT 15

Accessory 9PTPRO

If you are developing without a PMAC be sure to set the Simulate Communication property to TRUE
(check the box) and skip the next paragraph.

To choose from all functioning PMACs in your system, press the “ Select PMAC Device Number button”.

Each PTakDT control you add to your project isintended to talk to asingle PMAC. If your application
is going to communicate with more than one PMAC, you will need to add a separate PTalkDT control for
each PMAC. Within asingle application, you are allowed to have a maximum of 8 PTalkDT controls. In
general, itisavery good ideato use only one PTalkDT control per PMAC in your application's code.

Although the PTalkDT control has many important properties, here are a couple you should be familiar
with to begin with:

Properties Description

Enabled Sets and returns an internal PTalkDT variable which enables or
disables communications to the PMAC. Resetsitself back to
FALSE if communication can’t be established. If the Enabled
property resetsitself back to FALSE, seethe LastError String
property for info and also seethe CONTROL PANEL’s

MOTION applet.
Simulate Communication Set to TRUE if developing without aPMAC in the system (DRY
RUN)
Run Time Mode
Note

Communications can only be attempted during run time if the Simulate
Communication property is set to FALSE AND the Enabled property has been
successfully set to TRUE.

Upon executing your application, communications will be initialized when the Enabled property is or has
been setto “True’. Thisisnot automatically done—you must set Enabled yourself (either in design
mode or in your code).

Note

During run time, the PTalkDT control icon is not visible.

16 How to Design with PTalkDT

Accessory 9PTPRO

The PTakDT methods in the table below are typically used for communication. Again, if the Enabled
property is FALSE or Simulate Communication is“TRUE”, no communications to PMAC will actually
take place, and these methods will do nothing.

Methods Description
DownL oadFileg() Download afileto PMAC.

Flush() Empty out PMAC' s input/output buffer.

GetControlResponsg() Send PMAC acontrol character and retrieve any pending
response from PMAC.

GetResponsg() Send PMAC acommand, and retrieve the subsequent
response.

L oadSettings() Restore the last stored communications configuration from
disk.

SendChar () Send a single character to PMAC.

SelectDevice() Shows PTalkDT’s Select Device dialog to alow end usersto
select, add, and configure PMAC devices.

SaveSettings() Store PTakDT’ s communications configuration to disk.

UploadData() Upload a series of string responses to afile.

DPR Read-Writeroutines Numeric Read/Write. Enable use of DPR Automatic
Features

The following simple Visual Basic example shows how to establish basic PMAC communications via the
PC Bus:

Private Sub Form_Load ()
Dim response As String
Dim return_value AsLong

PTakDT1.Enabled = True

‘ test communications by a query of motor status

return_value = PTalkDT1.GetResponse(response, “?")

if return_value = 0then * if communications failed...

* Anerror occurred--, either handle here using use the

‘* LastError and LastErrorString properties of PTalkDT or
‘ havethe OnError event handlethis.

endif
End Sub

Debugging

The OnError event is used for trouble shooting and debugging. If you can't establish communications,
or if you are timing out, or if aPMAC error was generated, then thisevent will be caled. Asa
suggestion, your code associated with OnError may simply display the error message to you (while
developing), or perhaps act on the error without the user ever knowing a problem occurred (good for
release versions of your application). Seethe OnError event description for more details.

How to Design with PTalkDT 17

Accessory 9PTPRO

Altering, Saving and Retrieving PTalkDT Settings at Run Time

Communication Settings
After you've added PMAC devices to your operating system (see “ Device Configuration” section of this
manual) the communication settings are saved in the registry.

\HKEY_LOCAL_MACHINE\System\CurrentControl Set\Services PMAC\DEV ICEO

for PMAC device 0 and
\HKEY_LOCAL_MACHINE\System\CurrentControl Set\Services PMAC\DEVICE1

for PMAC devicel and soon....

Three communication properties that aren’t stored in the registry but rather in an initialization file are the
Enabled, Simulate Communications and DeviceNumber properties. You may ensure that the state of
these properties will persist by calling PTalkDT’ s L oadSettings() at the beginning of your application
and SaveSettings() at the termination of your program.

General Settings
In addition to SimulateCommunication and DeviceNumber, the following properties may be
saved/restored in PTalkDT’ sinitialization file (via the SaveSettings()/L oad Settings() methods):

DownloadDo
DownloadPar se
DownloadL og
DownloadM ap
DownloadDeleteT emp
DownloadHide
DownloadShowErrors
DownloadM axErrors
UploadHide
UploadShowProgr ess
UploadNoComments
UploadAppend

18 How to Design with PTalkDT

Accessory 9PTPRO

YOUR FIRST VISUAL BASIC MMI WITH PTALKDT

Overview

This section will guide you through building asimple Visual Basic 5.0 MMI (man-machine interface)

application using PTalkDT. The resulting application displays the value of PMAC's constantly changing

servo counter register. The code generated here can be similarly constructed with other devel opment

environments.

Instructions

1. Start Visual Basic 6.0 and choose “ Standard EXE” for project type.

2. Choose Project from the top menu bar and select Components. Select the “PTalkDT Control” module

and then select the OK button.

Components

Contrals | Designersl Inzertable Dbiectsl

[Microsoft Winsack Control 5.0

[Pinnacle-EPS Graph Conkraol

] PoinkCastListBozx: 1.0 Type Library
[Jportz 1.0 Type Library
FdEFTalkDT Activer Control madule
[Realtudio Activer Conkral Library
[]sequencer library

[]sheridan 30 Conkrals

[]5heridan TabMatebook QC¥ Contral
[skruckuredaraphics library

[TLEMSMusCH

[]WCI First Impression Library

YT Formnula One Library

YT Visualspeller Library

|

hd [gelected Items Only

Erowse. ., |

—PTalkDT Actives Control module
Location: CiWINOSISYSTEM\PTALEDT, OCy

0k I Cancel | Apply

The PTakDT icon [EHAL | should appear at the bottom of your tool palette:

Click on the PTalkDT icon and place it anywhere on ablank Visual Basic form.
4. With the PTakDT icon on the form selected, press F4 to view the Visual Basic PTalkDT property

window.

Your First Visual Basic MMI with PTalkDT

19

Accessory 9PTPRO

g, Mot - Meooma# Youasl Bass |dengn] - (el [Fos]]
Bl Pl it s Promst Pgresi [shug Ban Jeoke §dd-ine Gickes fisk - |
Be-T EH L DP A b= NEFRWR
O projees Fllpits -]
Bt | TG =l
. Mphana | Caimgerind |
o sk | =
A fe CLEFC
T Howra | el
= E— e]
= e R
Ls . s aciln Trem
E el e LT
El * Y ooy Fany
i x o e S Fis
G = mrna By Freay 1
LS TS o T Tras =
B E e L e T T T
Erabiar Tres
7~ w
H E : = ¥ing ul v el
m i § 151 =l
e
(e d LT

5. Now we will begin to form the user interface. To allow the user to select aPMAC in their system,
and modify PTalkDT’ s properties, place a button on the form and set the caption property to * Setup
PTalkDT".

- |} L

6. Double click on the Setup PTalkDT button to associate code with the pressing of the button. Enter
the following code

Private Sub Commandl Click(Q)
PTalkDT1.SelectDevice
PTalkDT1.SaveSettings

End Sub

This code will call PTakDT’s SelectDevice() and SaveSetings() methods when the Configure button is
pressed giving the user the ability to configure the appropriate communication settings at run time and
making them persistent. SaveSettings() combined with the use of L oadSettings() ensures that the end
users won't have to reconfigure PTalkDT settings every time the user runs the program.

Setting the Enabled property to TRUE will reinitialize communication if required.

Now put the L oadSettings() method in the Form_Load() method of the form by double clicking on any
“free” spot within the form. The routine should look like so when done:

Private Sub Form_Load()
PTalkDT1.LoadSettings
PTalkDT1.Enabled = True

End Sub

20 Your First Visual Basic MMI with PTalkDT

Accessory 9PTPRO

Setting the Enabled property to TRUE will guarantee that PTalkDT will at least attempt to establish
communication with the PMAC DeviceNumber selected.

7.

11.

12.

13.

Next lets add real time display of PMAC’ s servo clock. Add atext control and atimer control to the
form.

Press Fa to view the timer’ s property window.

Set the timer’ s property I nterval to 10.

Double click on the timer and add the following code (shown below in bold):

Private Sub Timerl Timer()
Static Response As String
Static return_value as Long

return_value =PTalkDT1.GetResponse(Response, “RX0)
Textl.Text = Response
End Sub

Press s to run your application. If al iswell the servo clock isvery quickly being updated in your
newly created PTalkDT application. Try pressing the “ Setup PTalkDT” button to setup. If you do
have a PMAC be sure to uncheck the “ SimulateCommunication” check box within the property page
window. Noticethat the PTalkDT icon is not visible during run time (neither is the timer control’s
icon).

For further examples, see the installation group box in your desktop’s “ Start\Programs’ menu. Also
check out Delta Tau' s BBS/Website. Study the code and feel free to use it in your own applications.

Your First Visual Basic MMI with PTalkDT 21

Accessory 9PTPRO

22

Your First Visual Basic MMI with PTalkDT

Accessory 9PTPRO

YOUR FIRST MICROSOFT VISUAL C++ MMI WITH PTALKDT

Overview

This section will guide you through building a simple Microsoft Visual C++ MMI (man-machine
interface) application using PTalkDT. The resulting application displays the value of PMAC’ s constantly
changing servo counter register. The code generated here can be similarly constructed with other
development environments.

Instructions
1. Start Visual C++.

2. Choose FILE from the top menu bar and select New. Highlight Project Workspace from the list box
and then select the OK button.

Mew

Mew: K

Cancel

Project "Workspace
Rezource Script
Rezource Template Help
Binary File
Bitrmap File
lcon File
Curzor File

gl

3. Inthenext dialog box, select MFC AppWizard (exe) from the list box, type in a project name (such as
ExPTalk), and click on Create:

it Fiojic Wodkinate

Tipw Marw

- WL i |

B
i

ﬁ MWFC Apghafizan jd
|'E OLE Comtaolcand
— Elaifoam:
! ApDb:shin T ' d2
@] | DprasiracLirk Likasiy
i (=10 1
S AR =] [EMEDE PromctsExPT ak [

Your First Microsoft Visual C++ MMI with PTalkDT 23

Accessory 9PTPRO

4. Onthe next dialog box, select the Dialog Based radio button and click on Next >:

MFC AppWizard - Step 1]|
— Application “Wihat tope of application would vou like to create™?
" Single document

" Multiple documents

What language would you ke pour resources in'?

| English [Urited States] [(4PPWwZENU.DLL ¥

< Back I Mest » I

Finizh Cancel Help |

5. Onthelast dialog box, place a check mark for 3D controls, OL E automation, and OL E controls and

click on Finish:

MFC AppWizard - Step 2 of 4 H|

Application

Editing Constrol: IRecold

F Check Box @ Radic Betton
O Radio Button

“What features waould you like ta include?

[T Context-zensitive Help

W 3D contrals
“What OLE support would you like to include?

W OLE automation
v OLE controls

Wwhould you like ta include WOSA suppart?

[Windows Sockets

Pleaze enter a title for pour dialog:

|E:-cF'T alk

< Back I Mewt = I

Finizh | Cancel | Help |

At this point, a set of C++ files have been generated in a directory with the same name as the project
name you selected. Go ahead and compile this newly created project and run it to verify it works
correctly. When you execute this program, a blank dialog box with an OK and Cancel button should

appear:

Now, let us go back and add the PTalkDT control to this dialog box.

24

Your First Microsoft Visual C++ MMI with PTalkDT

Accessory 9PTPRO

From within the Visual C++ workspace environment, select to view the existing resources (which were
created by the AppWizard in the previous steps) and click on the Dialog resource. Y our screen should
look like this:

"s Microzoft Developer Studio - ExPTalk - [ExPTalk.rc - IDD_EXPTALK_DIALOG [Dialog]]

Fil= Edt Yiew Inzet Buld Tool: Layout Window Help

‘i%|ci-”| =& & == 22| ivs_oie ErroPrRTe =] &% Galsd] &8 [E

2| | | [ExPTalk - win32 Release =] =L ﬁ|@|#&|w|@|5ﬁ|%|§g|5| _I
=- 'a EEHF;;:Ichresuumes ExPTalk |LI

d..lglma EXPTALK_DISLOG] 3 E :4;
% ‘-Sf:irr;i%r-wrahle :. TODO: Place dialog contols here. ﬂl - x| @B

: m | &

[] =) iy

e

... —— . |5 |

4| | »]
2 ==

6. With your mouse pointing to the dialog box (on the right, called “ExPTalk”), click the right mouse
button to expose the following pop-up menu and select Insert OLE Control.

:, TODO: Pl oy

FHaste

[t Cancel |
I

Ihzert OLE Cantral...

Sige o Conternt
Align Left Edges
Sign e Edges

Check kMnemaonics

Clazs\wizard...
Properties

Your First Microsoft Visual C++ MMI with PTalkDT

25

Accessory 9PTPRO

7. A new dialog box will appear containing alist of available controls. Scroll down and choose the
control called PTalkDT Control and then click OK:

Insert OLE Control |

OLE contral; -m
PicClip Control af
FICS Date Edit Control Cancel |
Finnacle-BPS Graph Control
FPLabel Contral Help |
Phezzage Contral
ProgreszBar Cantral _|

Pratavfiew Diagrarrming Cantral [1D0]
PStatuz Control

IHealﬁ.udin[tm] Activer Contral [32-bit] Ell

Path:
E:AMSDEVAPROJECTSSPTALKIGOINDEBUGAPT ALK, OC

The PTakDT control should now be visible in your dialog box:

U e .
Hl ExPT alk Il-‘

M 5:5:
: =N
:, TODO: Place dialog contralz here. -
N I

8. Our next step isto use the MFC Class Wizard within Visual C++ to generate code that will create a
control classfor this newly added PTalkDT control. To do this, select the View menu and then Class
Wizard. The MFC Class Wizard dialog box will appear. Select the Member Variablestab. Your
screen should look like this:

Mestage Mapt | Menbes Vassbles || OUE Sutsnstion | DLE Eventa | Clia ke |
] Tl Futires STz . I
|E-:'r-al j I'.Emﬁ:ﬁl j "
EA_\ERPTalE T abligh, B\ \ExPT abiEsPT shlig cop _bckverutin.. |
Contsal [0 Topa e I
DARICEL |
LK I
(i peipher,
[o | cuew | b |

26 Your First Microsoft Visual C++ MMI with PTalkDT

Accessory 9PTPRO

Highlight IDC_PTALKCTRL1 and press Add Variable. When you do this, the following dialog box will
appear:

Microsoft Developer Studio E

The OLE control "PTalk Contral has not been inzerted into the project. Developer Studio
will do thiz now and generate a C++ wrapper class for it

Cancel |

9. Select OK. On the next dialog box, select OK again.

10. The next dialog box will ask you to type in aname for the variable that will be used to access all of
PTalkDT’s properties and methods in your C++ code. Use the name shown on below and click on
OK:

hdd Menber Varable |

tember variable name; 0k |
{rm_PTak

Caticel |
LCateqany:
IE:::ntru:uI j Help |
Yariable type:
|CPTalk =l
Dezcription:
map to CPT alk member

Your First Microsoft Visual C++ MMI with PTalkDT 27

Accessory 9PTPRO

Click on OK again. At thispoint, the MFC Class Wizard has generated a new C++ file and header file,
which contains the code to allow you' re to access all the functionality of PTalkDT! For each property, a
specific function has been created, making it easy to read or set the various PTalkDT properties. To see
these new functions created, select to view the classesin your project. When you do this, your screen
should look like this:

"o Wioiosofl Developer Studio - ExPTak - [plalk. opp]

D Fle Ed yiew Jned Bukd Took Widow Hep

D|cE| @] R[] 24| s] fosveltrr oeRRTe =] &S] @
e ararr— T R T

JEH:FT-‘ laz = raturn rerule
= clazoms
+ WS O ePTsbAnn
+ B2 CEFTakig
5 S CPTa !
% Ahoufiod) BarProparty (dah
CieaiefLPCT STR ladwtindon ame, DWORD bt iyl I
% Conalel FLTSTR lpazCleasbligme, LFCTSTR Ipzswinde

woid CPFTalk::SacDE

W Dosnboad® 2|
& DPRDoubl])
& DPRON B RS ell]

EDOL CRTalk: :GazEr

HOOL resuln;

CavPropacyy (IEH
& PR ordFeili) ratarn rerulk;
& PR ord]|
& DFFRF wed] .
& PR el e poid CPTalk::SazEn
: :’ige:_:u_ j_ BanProperry (ISH
0 L ¥
% DPRSaliwond]
& PSS Pios|| shoge CPTall: : Ger]
& DPRseiod]] i
L Fhahi] ghors repalc;
& GetBusdas] CavProparty (dad
li:
W Gt Bues Tyl) raturn rerulk
% GaiChid] -
'I — -""r]"'"“""'"" _.|—|| weid CPTalk:: Satln
g Classiew |) Fesounceiiens | [2) Fisvies | § infoview | T e

28 Your First Microsoft Visual C++ MMI with PTalkDT

Accessory 9PTPRO

11. We will now add atimer function to our dialog box, which will use PTalkDT to continuously query
PMAC for information. We will use the MFC Class Wizard again to do this. Select the View menu
and then Class Wizard. The MFC Class Wizard dialog box will appear. Select the Message Maps
tab, locate, and highlight the item called WM_TIMER in the Messages list box. Click on Add
Function and then OK.

Message Heps | Membes Varisbles | OLE Automation | OLE Events | Cassinko |

Project Clavis: e Add Clas. # |

B B =] g
B AT Ak EAPTab Dl h, E:\ \EsPT Al EvPT al kg cp _ e Funciion |
Obmact [T s I
Wi _SE T LLIAS0R -
OC_PIALECTHLT Wk SHOWWIND O =l ¥ Code |
OCANCEL wik_SIZE
ok, ARL
LM VEETTOITEM
W WECROLL El
Membes [urcliore:
¥ Dol ataEchange
W OriniDiskog H_wM_INITDLALDG
W OrPanl OM_wWM_PAIRT
W OriuenDisgico (H_wi_GUERTDRAGICON

[escription |rechicadess brresoid inkerval or 3 et hes slapsed

o | came | Hee |

A new function for the timer is has now been created. We will add code to this function later on.

12. We must now change the name of the static text that was automatically placed there by the
AppWizard when the project wasfirst created. We will be using this text to display the response
from PMAC in our dialog box. Bring up the dialog box in the resource editor, double -click on the
static text and modify its variable name as shown on the next page. The name used hereis
IDC_TEXT.

' Micioeel Developer Studie - ExPTalk - [ExPTalloic - IDD_EXPTALE_MALDE [Dialoql]
[E Be ES ‘ew |roed Huld Tosh Lapeul Wiwiea Help
| D] ¥ |m|#] o] ¢ oS ERR oPRRTD =] &)
S|P | [FFTa e rekenis =] MlC®] a3 | o3| 4 un
S y— T R |
=0
K (1be_E57aly_] (=
=
= = Siwr " T ahd= L
=l Yermen

n [-
:”Il:l H-.'lﬁi.u:n'ﬁphhrl. a

W F] Gowed | Shbes | Essencded Sy |

—|—pn — 2] Dot [T000 Pace dakog o
__IHJEIEI_ E bow K

rD-I-j:IHI [~ Tststog

Your First Microsoft Visual C++ MMI with PTalkDT 29

Accessory 9PTPRO

Now bring up the Class Wizard again to create a usable variable so that we may access this static text in
our code. Select the View menu and then Class Wizard. The MFC Class Wizard dialog box will appear.
Select the Member Variablestab, locate, and highlight the item called IDC_TEXT in the Control ID list
box. Click on Add Variable typein m_Text for the variable name and then OK twice to back out of al
the dialog boxes.

Memage baps Mewber Vaisblesr | OLE Automation | OLE Everts | Clast Infu |

Fiopct Clazz porra skl -rI
ExPT] Ee1s -

£ raeraone .
BN AEFToREFTablligh B MEFTSREFTSRD g cop

Corara |D's Type Merites |
IDC_FTALFLCTALT CFTak m Pk I

IDCAMCEL

DK Akl Mombes Variate |

Galmpag

[= b |
[hasciiption mr ki e

|:3-!r|.| j

[mpcaptior:] QH*I

sirnphe C5 g hanafe

13. We now need to add code to setup the properties of PTalkDT to correspond to how you will be
communicating with PMAC. InthefileExPTalkDlg.CPP, locate the function
CExPTalkDIlg: :OnInitDialog and add the following code shown in bold:

BOOL CExPTalkDIlg::OnInitDialog()

{
CDialog: :OnInitDialog();

Setlcon(m_hlcon, TRUE); // Set big icon
Setlcon(m_hlcon, FALSE); // Set small icon

m_PTalkDT.SetEnabled(TRUE);
SetTimer(1l, 50, NULL);
return TRUE

+

14. Now locate the code for the CExPTalkDIg: :OnTimer function. Thisfunction will be called on a
repeated basis about every 50 milliseconds. In thisfunction we will place the code to query PMAC
for the contents of its servo clock register and copy this number to the static text variablem_Text.
Add the code shown in bold:

void CExPTalkDIg::OnTimer(UINT nlIDEvent)
{
// TODO: Add your message handler code here
TCHAR buf[255];
BSTR response = SysAllocString(L""");

30 Your First Microsoft Visual C++ MMI with PTalkDT

Accessory 9PTPRO

m_PTalkDT .GetResponse(&response, ""RX0") ;
USES_CONVERSION;
strcpy(buf,OLE2T(response));

m_Text = buf;

UpdateData (FALSE);
SysFreeString(response);

CDialog::OnTimer(nIDEvent);

}

Also, add this #include statement after the
#include <afxpriv.h>

It should look like this after:
#include " stdafx.h"
#include " ExPtalk.h"
#include " ExPtalkDlg.h"
#include <afxpriv.h>

15. We must use the MFC Class Wizard one |last time to created one last function. Select the View menu
and then Class Wizard. The MFC Class Wizard dialog box will appear. Select the Message Maps tab
and locate and highlight the item called DestroyWindow in the Messages list box. Click on Add

Function and then OK.

=] AddClass.. = |
il

Dietete Furctio: |

Mestage Mapis | Mermber vassbles | OLE usormaion | OLE Events | Class Info |
Projct: [lazz name
[EFT b =] |CE«FTskDig
Exh AEWPT akAEPTakDIgh, E:b NExPT skAEWPTakDig opp
Okt Jlvx Hessages:
Caklindosiflac
DC_PTALECTALT Creghe
DC_TEXT DefirdovPin:
DCARCEL
OaE Dl ol & s b
Lo el
GeforoEalni j
Member furciore:

W DolatsE wchangs

il Edi Code |

W Oriniisky OH_WH_IHITDIALOG
W IrFPend OH_'Wh_PaMT
W OriuenDisolcon QN WM QUEFTDRAGICON =
Diascription Diastca e Windows window attached to the Cwind
[| cwcs | Hew

L ocate this newly added function CExPTalkDlg: :DestroyWindow and add the code shown in bold:

BOOL CExPTalkDlg: :DestroyWindow()
{

KillTimer (1);

return CDialog: :DestroyWindow();
}

Your First Microsoft Visual C++ MMI with PTalkDT

Accessory 9PTPRO

Y ou are now ready to run your program. Press F5 to run the program. If your PMAC has been
configured appropriately in the CONTROL PANELsMOTION applet, you should see anumber in the
label which is continually counting upwards. Notice that the PTalkDT icon is not visible during run time.

32 Your First Microsoft Visual C++ MMI with PTalkDT

Accessory 9PTPRO

PTALKDT REFERENCE

Documentation Conventions

This manual uses the following notational conventions:

Source code and data structures are displayed in a monospaced
typeface.

Note
Warnings or important information are bounded on top and bottom with single
lines.
Overview

As mentioned before, PTalkDT isa 32-bit ActiveX control designed to handle all communications
between your application and Delta Tau’'s PMAC. It is meant to be used asaPMAC application
development tool. You may use PTakDT in any 32-bit OLE container application such as Visual Basic,
Delphi , etc. PTalkDT’ s built-in features make most communications tasks as easy as calling asimple
method (function).

Note

PTakDT will force PMAC' s |-variable 3=2 at all times to ensure high speed and
efficient communications.

PTalkDT Properties
Enabled

Data Type Boolean or Long Integer

Default Value Zero (for "False")

Description Enables or disables PtalkDT from communicating with PMAC.

Remarks Used to specify or determin is PtalkDT is allowed to communicate with PMAC. You
must set this property to "True" and SimulateCommunication to "Falseto allow
PtalkDT to communicate to PMAC.

Note

At end of the SelectDevice() method the Enabled property is set to True
internally. If communication was successful, the Enabled property retains the True
value.

LastError

Data Type Long Integer

Default Value 0

Description Used in the debugging of an application using PTalkDT

Remarks Used to read the state of PtalkDT's most recent communications error. This property is
usually used in the debugging of an application. Y ou may want to set this property to 0
just before calling a PtalkDT method. Then recheck LastError for anon-zero code. The
error may be due to a PMAC reported error (i.e. invalid command) or bad parameters
passed to a PtalkDT method.

See Also LastErrorString, OnError

LastErrorString
Data Type String
Default Value NULL

PTalkDT Reference 33

Accessory 9PTPRO

Description
Remarks

See Also

Used in the debugging of an application using PTakDT.

Returnsthe last error string generated. The error may be due to a PMAC reported error
(i.e. invalid command) or bad parameters passed to aPTakDT method. See also the
OnError() event..

LastError, OnError

Device Number

Data Type
Default Value
Description
Remarks

See Also

Long Integer

0

Used to uniquely identify which PMAC device the PtalkDT will use to communicate to.
The CONTROL PANEL'S"MOTION" applet may be used to add/remove or set up
PMAC'sin your operating system. A device number (starting from 0) will be associated
with each PMAC you add. Use this same device number when specifying which PMAC
you want your PtalkDT Active X control to communicate to.

Enabled, SimulateCommunication

DeviceNumber

Data Type
Default Value
Description
Remarks

See Also

Long Integer

0

Used to uniquely identify which PMAC device the PTalkDT will use to communicate to.
The CONTROL PANEL’'s “MOTION" applet may be used to add/remove or setup
PMAC’sin your operating system. A device number (starting from 0) will be associated
with each PMAC you add. Use this same device number when specifying which PMAC
you want your PTalkDT ActiveX control to communicate to.

Enabled, SimulateCommunication

DownloadDeleteTemp

Data Type
Default Value
Description

Remarks

See Also

Boolean or Long Integer

>0 True

For use with the DownloadFile() method. To eliminate any intermediary filesthat are
created after downloading, set this property to True.

Intermediary fileswill be created if the DownloadPar se method is set to true. Thefiles
created will have the same name as the original argument to DownloadFile(), but the
extensionswill be “PMA”, “LOG”, and “56K”.

DownloadDo, DownloadHide, DownloadL og, DownloadPar se, DownloadM ap,
DownloadShowErrors, DownloadM axErrors

DownloadDo

Data Type
Default Value
Description

Remarks
See Also

Boolean or Long Integer

>0 True

Used when the DownloadFile() method is called. To only to Macro parsing and
compiling of PLCC' s set this property to False and the end resulting file (*.56K) will not
get downloaded to PMAC.

Rarely used

DownloadDeleteT emp, DownloadHide, DownloadL og, DownloadPar se,

DownloadMap, DownloadShowErrors, DownloadM axErrors

34

PTalkDT Reference

Accessory 9PTPRO

DownloadHide

Data Type
Default Value
Description

Remarks
See Also

Boolean or Long Integer

True

Used when the DownloadFile() method is called. To hide the DownloadFile() dialog set
thisvalueto True.

Can be set in the property page.

DownloadDeleteT emp,DownloadDo, DownloadL og, DownloadPar se,

DownloadM ap, DownloadShowErrors, DownloadMaxErrors

DownloadLog

Data Type
Default Value
Description

Remarks
See Also

Boolean or Long Integer

False

Used when the DownloadFile() method is called. To have the event log of the
DowloadFile() method recorded, set this property to True. Thefile created will have the
same name as the argument to DownloadFile() method but have the “LOG” file
extension (i.e. “MYFILE.LOG").

Can be set in the property page.

DownloadDeleteT emp, DownloadDo, DownloadHide, DownloadPar se,
DownloadMap, DownloadShowErrors, DownloadM axErrors

DownloadMap

Data Type
Default Value
Description

Remarks
See Also

Boolean or Long Integer

False

Used when the DownloadFile() method is called. To create a cross referencing of
MACROS used set this property to True. Thefile created will have the same name as the
argument to DownloadFile() but with the“MAP” extension.

To be of any use, the DownloadPar se property must be set to True.
DownloadDeleteTemp,DownloadDo, DownloadHide, DownloadL og,
DownloadPar se,, DownloadShowErrors, DownloadM axErrors

DownloadMaxErrors

Data Type
Default Value
Description

Remarks
See Also

Long Integer

10

Used when the DownloadFile() method is called. This property limitsthe number of
errors before the DownloadFile() method aborts.

Can be set in the property page.

DownloadDeleteT emp, DownloadDo, DownloadHide, DownloadL og,
DownloadPar se, DownloadM ap, DownloadShowErrors

DownloadParse

Data Type
Default Value
Desctription

Remarks
See Also

Boolean or Long Integer

True

Used when the DownloadFile() method is called. If the file you are downloading has
PLCC's or macro definitions, then you’ Il want to set this property to True. Otherwise, if
thefileis strictly PMAC native code with no PLCC' sfeel free to set DownloadPar se to
False.

Can be set in the property page.

DownloadDeleteTemp, DownloadDo, DownloadHide, DownloadL og,

DownloadM ap, DownloadShowErrors, DownloadMaxErrors

PTalkDT Reference 35

Accessory 9PTPRO

DownloadShowErrors

Data Type
Default Value
Description

Remarks
See Also

Boolean or Long Integer

False

Used when the DownloadFile() method is called. If errors occurred in the downloading
of afile and this property is set to True, the log file that was created will be shownin
NotePad.EXE.

If the DownloadL og property is False no Errorswill be shown.
DownloadDeleteT emp, DownloadDo, DownloadHide, DownloadL og,
DownloadPar se, DownloadM ap, DownloadM axErrors

UploadAppend

Data Type
Default Value
Description

Remarks
See Also

UploadHide

Data Type
Default Value
Description

Remarks
See Also

Boolean or Long Integer

False

Used in the UploadData() method. When uploading datato afile, you have the option of
overwriting the existing file (UploadAppend = False) or appending to the existing one
(UploadAppend = True)

Can be set in the Property Page

UploadHide, UploadNoComments, UploadShowPr ogr ess

Boolean or Long Integer

True

Used in the UploadData() method. To have the UploadData() methods dialog box hide
itself, set this property to True.

Can be set in the Property Page

UploadAppend, UploadNoComments, UploadShowPr ogress

UploadNoComments

Data Type
Default Value

Description

Remarks
See Also

Boolean or Long Integer
False

Used in the UploadData() method. The specified file that will be created (or appended
to—see the other options), will contain no comments, i.e. only the actual uploaded
responses will be written into thefile.

Can be set in the Property Page
UploadAppend, UploadHide, UploadShowPr ogr ess

UploadShowProgress

Data Type
Default Value
Description

Remarks
See Also

Boolean or Long Integer

True

During the upload process (if the dialog box is not hidden), a progress bar will be shown,
indicating the upload statusiif this property isset to True. To use thisoption correctly,
you must specify a positive value for num_lines argument to the UploadData() method.
Also, num_lines should be as close as possible to the expected number of responsesto be
received.

Can be set in the Property Page

UploadAppend, UploadHide, UploadNoComments

36

PTalkDT Reference

Accessory 9PTPRO

PTalkDT Methods

DPRAvailable()
Description
Return Value

Visual Basic & Delphi

C++

Remarks

Used to check to see that Dual Ported Ram is available for use with PTakDT.

A Boolean value indicating whether or not PTalkDT was able to access PMAC's

Dual Ported Ram.

[form] .controlname.ConfigureDriver

value = Mainform.PTalkl.ConfigureDriver

BOOL controlname->ConfigureDriver()

value = PTalkDT->ConfigureDriver()

This method is useful for those applications that will use PMAC’s Dual Ported
Ram. You may disable that portion of your application that uses DPR if this
function returns False.

DownloadFile (file name)

Description
Return Value
Visual Basic & Delphi

C++

Remarks

Downloads atext file (or a series of files) to PMAC and checks for errors.
Non-zero if successful, zero when afailure occurred.

[form] .ctriname.DownloadFile (Filename$, options As Long)
Mainform_.PTalkDT1.Downloadfile (“c:\files\main.pmc’)

BOOL controlname->DownloadFile (char *filename, long
options)

PTalkDT1->Downloadfile (“‘c:\\files\\main.pmc’)

This method is useful for downloading commands and programsto PMAC. A
full preprocessor is built in and isinvoked if the DownloadPar se property has
been set to TRUE. The only parameter filename is a string containing the full

path of any valid ASCII text file that contains preprocessor or PMAC compatible

code. The following properties should be set up before this method is called:

Property What it does

DownloadDo Used when the DownloadFile() method is called. To only

to Macro parsing and compiling of PLCC’ s set this property
to False and the end resulting file (*.56K) will not get
downloaded to PMAC.

DownloadDeleteTemp | Intermediary fileswill be created if the DownloadPar se

method is set to true. The files created will have the same
name as the original argument to DownloadFile(), but the
extensionswill be “PMA”, “LOG", and “56K”.

DownloadHide Used when the DownloadFile() method iscalled. To hide

the DownloadFile() dialog set this value to True.

DownloadL og Used when the DownloadFile() method iscalled. To have

the event log of the DowloadFile() method recorded, set
this property to True. The file created will have the same
name as the argument to DownloadFile() method but have
the“LOG" file extension (i.e. “MYFILE.LOG”).

DownloadMap Used when the DownloadFile() method is called. To create

across referencing of MACROS used set this property to
True. Thefile created will have the same name as the
argument to DownloadFile() but with the “MAP”
extension.

DownloadMaxErrors | Used when the DownloadFile() method iscalled. This

property limits the number of errors before the
DownloadFile() method aborts.

DownloadParse Used when the DownloadFile() method iscalled. If thefile

you are downloading has PLCC' s or macro definitions, then

PTalkDT Reference

37

Accessory 9PTPRO

you'll want to set this property to True. Otherwise, if the
fileis strictly PMAC native code with no PLCC'sfeel free
to set DownloadPar se to False.

DownloadShowErrors | Used when the DownloadFile() method is called. If errors

occurred in the downloading of afile and this property is
set to True, the log file that was created will be shown in
NotePad.EXE.

About the preprocessor

The preprocessor provides the ability to use #include file statements and

macro string substitution in your code just like in the C and C++ languages.
Delta Tau’'s PMAC Executive Program supports this same use of #include file
and macro string substitution.

Directive

Example

Description

#define name { command or variable}

#define COUNTER P1

Declares the name of amacro
string substitution. For every
occurrence of name, the
preprocessor will substitutein
{command or variable}.

#define name

#define DEBUG_MODE

Declares avariable name that
can be used for compiler
directives.

#include* filename”

#include “macros.txt”
#include
“C:\\PE\\macros. txt”

Preprocess and download the
specified file from the current
directory or given path. Thisis
useful for including multiple
files as part of the download.

#ifdef name #ifdef DEBUG_MODE Tests to seeif name has been
previoudly declared. If so, the
#else subsequent lines of code are
..; (this code included in the downl oad.
ighored)
#endif
#ifndef name #ifndef DEBUG_MODE Teststo see if name hasNOT
been previously declared. If
#else name has NOT been declared,
..; (this code the subsequent lines of code
ignored) (until the next #else or #endif)
#endif are included in the downl oad.
#else #ifdef DEBUG_MODE In the example, if
DEBUG_MODE has not been
#else declared, the lines of code
following the #else are included
#endif in the download. Thisdirective
provides a means to alternate
lines of code when the #ifdef or
#ifndef conditions are false.
#endif #ifdef DEBUG_MODE For every #ifdef or #ifndef, you

#else

#endif

must include a matching #endif.

PTalkDT Reference

Accessory 9PTPRO

DPRDouble (LSB_word, MSB_word)

Description

Return Value

ConvertsaPMAC 48 hit floating point data value (as found in PMAC’s Dual
Port RAM) to a 64 bit floating point value compatible with Visual Basic, C++,
Delphi, etc.

A 64-hit floating-point value (of type double) converted from the passed in
parameters.

Visual Basic & Delphi [form].controlname.DPRDouble (lo_val as Long,hi_val As

C++

Remarks

Long)

value = Mainform.PTalkl.DPRDouble (lo_val,hi_val)

double controlname->DPRDouble (long lo_val,long hi_val)
value = PTalkDT->DPRDouble (lo_val, hi_val)

Floating-point values within PMAC’ s internal memory are stored as 48-bit
numbers. Floating-point valuesin your PC's memory are typically stored as 32-
bit values (float or single) and 64-bit values (double). These formats are not
directly compatible. When accessing various floating point registersin PMAC's
Dual Port RAM, they can be accessed by reading two 32-bit integers (or
“words’) and combining them to form a PC-compatible 64-bit number. For this
function, the first word, LSB_word, specified in the parametersis treated as the
least significant word. And the second word, MSB_word, is the most significant
word. Thisfunction will prove very useful when reading the many floating point
registersin the Real Time Buffer section of PMAC’s Dual Port RAM.

DPRFixed (LSB_word, MSB_word)

Description

Return Value

ConvertsaPMAC 48 hit integer data value (as found in PMAC’ s Dual Port
RAM) to a 64 bit floating point value compatible with Visual Basic, C++,
Delphi, etc.

A 64-hit floating-point value (of type double) converted from the passed in
parameters.

Visual Basic & Delphi [form].controlname.DPRFixed (lo_val as Long,hi_val As Long)

C++

Remarks

value = Mainform.PTalkl.DPRFixed (lo_val, hi_val)

double controlname->DPRFixed (long lo_val,long hi_val)
value = PTalkDT->DPRFixed (lo_val,hi_val)

Integer values within PMAC’ sinternal memory are stored as 48-bit numbers.
Floating-point values in your PC’s memory are typically stored as 32-bit values
(float or single) and 64-bit values (double). These formats are not directly
compatible. When accessing various integer based registersin PMAC’s Dual
Port RAM, they can be accessed by reading two 32-bit integers (or “words’) and
combining them to form a PC-compatible 64-bit number. For this function, the
first word, LSB_word, specified in the parameters is treated as the least
significant word. And the second word, MSB_word, is the most significant word.
This function will prove very useful when reading the many integer based
registersin the Real Time Buffer section of PMAC’ s Dual Port RAM such as
motor position.

PTalkDT Reference

39

Accessory 9PTPRO

DPRDWordBit Set/Reset and BitSet Methods
DPRDWordSetBit (offset, bit_position)
DPRDWordResetBit (offset, bit_position)
DPRDWordBitSet (offset, bit_position)
Description These functions can be used to set (assign a bit value of 1), reset (assign a bit
value of 0), or query, respectively, the state of an individua bit within a 32 bit
integer located in the address space of PMAC's Dual Ported Ram.

Return Value DPRDWordSetBit and DPRDWordResetBit return “ True” if successful,
otherwise “False”. DPRDWordBitSet returns the value of the bit being queried,
eitheralorO.

Visual Basic & Delphi [form].ctrlname.DPRDWordSetBit (offset as long, bit As long)
[form].ctriname.DPRDWordResetBit (offset As long, bit As long)
[form].ctriname.DPRDWordBitSet (offset As long, bit As long)
Call Mainform.PTalkl.DPRWordSetBit (&H0800&,2)

C++ BOOL controlname-> DPRDWordSetBit (long offset, long bit)
BOOL controlname-> DPRDWordResetBit (long offset, long bit)
BOOL controlname-> DPRDWordBitSet (long offset, long bit)
PTalkDT->DPRFixed (0x800,2)

Remarks The offset parameter is the number of PMAC addresses from the base address of
the DPR within the PMAC address space. PMAC's Dual Ported Ram base
addressis always $D000 (the last DPR address is $DFFF). For example to
specify address $D200 in the DPR use avalue of $200 (that is hex 200, or 512
decimal)

The bit parameter specifies the bit within the double word. Valid rangesfor bit
arefrom0to 31.

DPRGetDWord and DPRSetDWord Methods
DPRGetDWord (base_address offset)
DPRSetDWord (base address offset, value)

Description These functions can be used to read and write 32 bit integers from and to PMAC's Dual
Ported RAM.
Return Value DPRGetDWord returns the 32-bit integer read from PMAC's Dual Ported Ram.

DPRSetDWord returns “ True” if successful, “False” if afailure occurred.
Visual Basic & Delphi [form].ctrlname.DPRDGetDWord (offset As long) As long
[form] .ctriname.DPRDSetDWord (offset As long,value As long)
value = Mainform.PTalkl.DPRGetWord (&H0800&)
C++ long controlname-> DPRDGetDWord (long offset)
BOOL controlname-> DPRDSetDWord (long offset, long value)
value = PTalkDT->DPRGetWord (0x800)

Remarks The base_addr_offset parameter is the number of PMAC addresses from the base address
of the DPR within the PMAC address space. PMAC's Dual Ported Ram base addressis
always $D000 (the last DPR addressis $DFFF). For example to specify address $D200
inthe DPR use avalue of $200 (that ishex 200, or 512 decimal)

Example Var

aBool : Bool;
aLong : Longlnt;
of fset : Longlnt ;
aString: string[11];
begi n
/1l Assign offset of 512 from DPR Base Address (PMAC
Addr ess $D200)

40 PTalkDT Reference

Accessory 9PTPRO

of fset := 512;
aLong : = Forml. PTal kKCt r| 1. DPRGet DWor d(of f set) ;
Str(asShort, aString); [// Convert to a string

Edit8. Text := aString; // Wite to an edit box
/Il Wite to first 4 bytes of DPR
aBool := Fornil. PTal kCtrl| 1. DPRSet DWor d(O, aShort);
end;
DPRGetFloat and DPRSetFloat Methods
DPRGetFl oat (offset)
DPRSetFloat (offset, value)
Description These functions can be used to read and write 32 floating-point values from and
to PMAC's Dual Ported Ram.
Return Value DPRGetFloat returns the 32-bit floating-point value read from PMAC's Dual
Ported RAM. DPRSetFloat returns“True” if successful, “False” if afailure
occurred.

Visual Basic & Delphi [form].ctrlname.DPRDGetFloat (offset As long) As long
[form].ctriname.DPRDSetFloat (offset As long,value As Single)
value = Mainform.PTalkl.DPRGetFloat (&H0800&)

C++ float controlname-> DPRDGetFLoat (long offset)

BOOL controlname-> DPRDSetFloat (long offset, float value)
value = PTalkDT->DPRGetFloat (0x800);

Remarks The offset parameter is the number of PMAC addresses from the base address of
the DPR within the PMAC address space. PMAC's Dual Ported Ram base
addressis always $D000 (the last DPR address is $DFFF). For example to
specify address $D200 in the DPR use avalue of $200 (that is hex 200, or 512
decimal)

PMAC's specia m-variable format "F"' may be used to easily assign 32 bit
floating-point values to Dua Ported RAM.

Example Var
aBool : Bool;
aFloat : Single;
offset : Longlnt ;
begin
offset := 100; // Assign offset from PMAC's base address
aFloat := 1.2345; I/ Assign float
aBool := Forml.PTalkCtrll.DPRSetFloat(offset,aFloat);
aFloat := Forml.PTalkCtrl1.DPRGetFloat(offset);
end;
DPRGetMem and DPRSetMem Methods
DPRGetMem
DPRSetMem (long Offset, long NumL ongWords, long FAR* LongArray)
Description These functions can be used to read and write a user defined number of 32 bit
integers from and to PMAC's Dual Ported RAM.
Return Value Both these functions return TRUE if successful, otherwise FALSE (0).

Visual Basic & Delphi [form].ctrlname.DPRGetMem(Offset As Long, NumLongWords As
long,LongArray as Long) As long
[form].ctriname.DPRSetMem(Offset As Long, NumLongWords As
long,LongArray as Long) As long
Private Sub cmdDPRGetMem_Click()

Dim mylongarray(0 To 9) As Long

PTalkDT Reference 41

Accessory 9PTPRO

C++

Remarks

" BOOL DPRGetMem(long Offset, long NumLongWords, long FAR*
LongArray)
" Note OFFSET is in PMAC Words
IT (PTalkDT1.DPRGetMem(0, 10, mylongarray(0))) Then
MsgBox (*'Cool™)
Els eMsgBox ("'Un cool'™)
End If
End Sub
Private Sub cmdSetMemTest Click()
Dim mylongarray(0 To 9) As Long
mylongarray(0)
mylongarray (1)
mylongarray(2)
mylongarray(3)
mylongarray(4)
mylongarray(5)
mylongarray(6)
mylongarray(7)
mylongarray(8)
mylongarray(9) = 10
" BOOL DPRSetMem(long Offset, long NumLongWords, long
FAR* LongArray)
" Note OFFSET is in PMAC Words
IT (PTalkDT1.DPRSetMem(0, 10, mylongarray(0))) Then
MsgBox (*'Cool™)
Else
MsgBox (*'Un cool™)
End If
End Sub
long controlname-> DPRDGetWord (long Offset, long NumLongWords,
long FAR* LongArray);
BOOL controlname-> DPRDSetWord (long Offset, long NumLongWords,
long FAR* LongArray);
value = PTalkDT->DPRGetWord (0,10,LongArray[0]);
The offset parameter is the number of PMAC addresses from the base address of
the DPR within the PMAC address space. PMAC's Dual Ported Ram base
address is always $D000 ($60000 for Turbo). For example to specify address
$D200 in the DPR use avalue of $200 (that is hex 200, or 512 decimal).
The NumLongWords parameter should be the size of the array passed in.

L | I | I VO VA |
©CO~NOOITA~AWNPE

DPRGetWord and DPRSetWord Methods
DPRGetWord(bank, offset)
DPRSetWord(bank, offset, value)

Description

Return Value

These functions can be used to read and write 16 bit integers from and to
PMAC's Dual Ported RAM.

DPRGetWord returns the 16-bit integer read from PMAC's Dual Ported
am. DPRSetWord returns “ True” if successful, “False” if afailure
occurred.

Visual Basic & Delphi [form].ctrlname.DPRGetWord (bank As Long,offset As

long) As long

[form].ctriname.DPRSetWord (bank As Long,offset As
Long,value As integer)

Visual Basic

value = Mainform._PTalkl.DPRGetWord ("X",&H0800&)

42

PTalkDT Reference

Accessory 9PTPRO

Delph
// 88
value

"X*" in ASCII
Mainform.PTalkl.DPRGetWord (88,&H0800&)

C++ long controlname-> DPRDGetWord (long bank,long offset)
BOOL controlname-> DPRDSetWord (long bank,long offset, int
value)
value = PTalkDT->DPRGetWord (*X",0x800);

Remarks The bank parameter specifiesPMAC's X or Y address space. Usea
value of 24 for X or 25for Y (‘or more intuitively an ASCII character
"X, XN or ty", Y.

The offset parameter is the number of PMAC addresses from the base
address of the DPR within the PMAC address space. PMAC's Dual
Ported Ram base address is always $D000 (the last DPR address is
$DFFF). For example to specify address $D200 in the DPR use a value
of $200 (that is hex 200, or 512 decimal).

PMAC"s m-variable formats "X" and “Y” may be used to
easily assign 16 bit integers to Dual Ported RAM
(i.e. m1->X:$D200,0,16,s).

Example Var
aBool : Bool;
asShort : short;
offset : LonglInt ;
aString: string[100];

begin
/I Read from PMAC DPR Address X$D200
offset = 512;
asShort := Forml_PTalkCtrl1_DPRGetWord("X",offset);
Str(aShort, aString); /l Convert to astring
Edit8.Text := aString; [/ Writetoan edit box
I/l Writeto first two bytes of DPR
aBool:=Forml.PTalkCtrll1l.DPRSetWord("X",offset,aShort);

end;
Flush ()
Description Empties PMAC' s response buffer and character 1/0 port.
Return Value “True” for success else “False”

Visual Basic & Delphi [form].controlname.Flush
Call Mainform_PTalkl.Flush

C++ BOOL controlname->Flush ();
PTalkDT->Flush(Q);
Remarks Empties the contents of PMAC'’ s output buffer queue and strips out any

remaining charactersin PMAC' s ASCII queue. The characters that get
“Fushed” cannot be read. Note that this method has no parameters.

GetControlResponse (Response, Control Char)

Description Sends a control character to PMAC and waits for PMAC’ s response.

Return Value Non-zero if successful, zero when afailure occurred.

Visual Basic & Delphi [form].ctrlname.GetControlResponse (Response As String,
controlChar As Integer)
Mainform_.PTalkl.GetControlResponse (Response, 16)

PTalkDT Reference 43

Accessory 9PTPRO

C++

Remarks

BOOL controlname->GetControlResponse (char *response,
char control);

result = PTalkDT->GetControlResponse (response,’P”);
Sends a control character to PMAC and waits up to Timeout iterations for
PMAC’ s response.

Note

This function will not send control-T. Thisisto avoid putting PMAC in afull-
duplex mode. Doing so will keep PTalkDT from re-establishing communications
the next time the application is run.

GetLineAck (Response)

Description
Return Value
Visual Basic & Delphi

C++

Remarks

Gets astring from PMAC up to the terminating <ACK> character.

Number of characters retrieved.

[form].controlname.GetLineAck (Response As String)
Mainform_.PTalkl.GetLineAck (Response)

long controlname->GetLineAck (char *response);

result = PTalkDT->GetLineAck (response);

Communications routine for receiving aresponse from PMAC. Certain
commands can cause PMAC' s response to contain multiple <CR> characters.
Thiswill receive the entire response up to the terminating <ACK> character or
timeout condition. This response string can be as large as 16000 characters.
For most applications the GetResponse method should be used instead of
GetLineAck. Exceptionswould be when you want to receive something from
PMAC without sending acommand asin aterminal program.

GetLineCR (Response)

Description
Return Value
Visual Basic & Delphi

C++

Remarks

Gets astring from PMAC up to the terminating <CR> character.
Number of charactersretrieved

[form].controlname.GetLineCr (Response As String)
Mainform.PTalkl.GetLineAck (Response)

long controlname->GetLineAck (char *response);
result = PTalkDT->GetLineAck (response);

Communications routine for receiving aresponse from PMAC. This routine will
read a pending response up to the next <CR> or <ACK> character.

Although PMAC will respond to commands with a terminating <ACK>
character, sometimes only the part of PMAC’ s response up to the next <CR> is
desired at the moment. In this situation the GetLineCR method can be used.
For most applications the GetResponse method should be used instead of
GetLineCR. Exceptionswould be when you want to receive something from
PMAC without sending acommand asin aterminal program.

Response: Response string will never be greater than 255 characters.

GetResponse (Response, Command)

Description
Return Value
Visual Basic & Delphi

Sends a string to PMAC and waits for PMAC' s response.

Non-zero if successful, zero when afailure occurred.

[form].controlname.GetResponse (Response As String,
command As String)

Mainform.PTalkl.GetResponse (Response,”#1P’")

Ct+ BOOL controlname->GetResponse (char *response,char
*command) ;
result = PTalkDT->GetResponse (response,”#1P”);

“ PTalkDT Reference

Accessory 9PTPRO

Remarks

IsLineWaiting ()
Description

Return Value

Visual Basic & Delphi

C++

Remarks

LoadSettings ()
Description

Return Value

Visual Basic & Delphi

C++

Remarks

General -purpose communications routine for sending a command, and receiving
a conseguential response from PMAC. Response will never be greater than
16,000 characters. Command should not be greater than 250 characters if using
Bus or Serial Port, and should not exceed 150 charactersif using the Dual Ported
Ram.

Used to determine if PMAC iswaiting to say something to the host.

non-zero : PMAC has an ASCII response pending for the host

zero : PMAC does not have an ASCII response pending for host

[form].controlname. IsLineWaiting

result = Mainform.PTalkl.IsLineWaiting

BOOL controlname->IsLineWaiting ();

result = PTalkDT->IsLineWaiting();

This method is excellent for creating applications which will periodically check
to seeif PMAC has an ASCII response for the Host computer. Instead of calling
GetResponse to seeif aresponseis pending use | sLineWaiting instead.
IsLineWaiting will not remove any contents of PMAC' s output buffer, and will
not timeout. Note that this method does not have parameters.

Loadsthe last stored PTalkDT settings.

Non-zero if successful, zero when afailure occurred.

[form] .controlname. LoadSettings

result = Mainform.PTalkl. LoadSettings

BOOL controlname-> LoadSettings();

result = PTalkDT-> LoadSettings();

Loads the last stored parameters via the SaveSettings method. |If the Enabled
property is set to TRUE before this method is called, communication will be re-
attempted after the settings have been loaded.

Settings include the following properties:

DeviceNumber
SimulateCommunication
DownloadDo
DownloadPar se
DownloadL og
DownloadM ap
DownloadDeleteTemp
DownloadHide
DownloadShowErrors
DownloadMaxErrors
UploadHide
UploadShowPr ogr ess
UploadNoComments
UploadAppend

PTalkDT Reference

45

Accessory 9PTPRO

LockPMAC ()
Description

Return Value

Visual Basic & Delphi

C++

Remarks

ReleasePMAC()
Description

Return Value

Visual Basic & Delphi

C++

Remarks

SaveSettings ()
Description

Return Value

Visual Basic & Delphi

C++

Remarks

Locks the PMAC resource from other threads and processes.
None

[form].controlname. LockPMAC
Mainform.PTalkl.LockPMAC

void controlname-> LockPMAC(Q);

PTalkDT-> LockPMACQ);

To be used in conjunction with ReleasePM AC(). These two methods lock and
release the PMAC resource respectively. This should only be used very
sparingly to ensure that no cross talk occurs when using the SendChar (),
SendLing() and any GetLing() methods. All other communication methods are
thread safe.

For Example:

LockPmac() // Hold off any other processes or threads
SendLine(*?”) // Send the line

GetLineACK(response) // Get the response
ReleasePMAC() //Let other threads have access to PMAC

Releases the PMAC resource for other threads and processes
None

[form] .controlname.ReleasePMAC
Mainform_.PTalkl.ReleasePMAC

void controlname-> ReleasePMAC();
PTalkDT->ReleasePMACQ);

To be used in conjunction with LockPMAC(). These two methods lock and
release the PMAC resource. This should only be used very sparingly to ensure
that no cross talk occurs when using the SendChar (), SendL ine() and any
GetLine() methods. All other communication methods are thread safe.

For Example:

LockPmac() // Hold off any other processes or threads
SendLine(*?”) // Send the line

GetLineACK(response) // Get the response
ReleasePMAC() //Let other threads have access to PMAC

Saves the current communications settings.

Non-zero if successful, zero when afailure occurred.

[form] .controlname.SaveSettings

Mainform_PTalkl. SaveSettings

BOOL controlname->SaveSettings();

result = PTalkDT->SaveSettings();

Stores the following properties to an initialization file whose name is the same as
PTakDT’ s name property (i.e. PTalkDT1.ini)

DeviceNumber
SimulateCommunication
DownloadDo
DownloadPar se
DownloadL og
DownloadM ap

46

PTalkDT Reference

Accessory 9PTPRO

SelectDevice()
Description

Return Value
Visual Basic & Delphi

C++

Remarks

DownloadDeleteTemp
DownloadHide
DownloadShowErrors
DownloadM axErrors
UploadHide
UploadShowProgr ess
UploadNoComments

Shows PTalkDT’ s Select Device dialog to allow end usersto select, add, and
configure PMAC devices.

Non-zero if successful, zero when afailure occurred.

[form] .controlname.SelectDevice()

result = Mainform.PTalkl.SelectDevice

BOOL controlname->SelectDevice();

result = PTalkDT->SelectDevice();

Cdlling this function will give your end users the ability to remove, add, and
reconfigure PMAC devices. Consider your end users capability before calling
thisroutine.

SendChar (Character)

Description

Return Value

Visual Basic & Delphi
C++

Remarks

Sends asingle ASCII character, aChar, to PMAC.

Non-zero if successful, zero when afailure occurred.

[form] .controlname.SendChar (character As Long)
Mainform.PTalkl. SendChar(Asc(“P’*))

BOOL controlname-> SendChar(long character);

result = PTalkDT->SendChar(“P?);

Sends asingle ASCII character to PMAC without waiting for PMAC to respond.
Thiswill comein handy when you need to send characters one at atime either in
aterminal or when sending control characters.

SendLine (Command)

Description

Return Value

Visual Basic & Delphi
C++

Remarks

Sends a string to PMAC.

Non-zero if successful, zero when afailure occurred.
[form].controlname.SendLine (command As String)
Mainform.PTalkl.GetResponse (’ListProgl™)

BOOL controlname->SendLine (char *command);

result = PTalkDT->GetResponse (’ListProgl™);

Thisfunction is here only for backward compatibility. Use GetResponse()
instead. If you find that you have to use this function follow these instructions
very carefully.

SendLine() sends PMAC acommand string. PMAC WILL HAVE A
RESPONSE TO THE SENT COMMAND. If PMAC has two or more pending
responses for the host computer, the PMAC will suspend the running of all

PL C'sand motion programs, as well as any incoming ASCIlI commands.
Therefore, always call GetLineACK() after using SendLing() to purge any
pending response from PMAC.

One last very important thing. Use the LockPMAC() method before the SendLine() and the
ReleasePMAC() method after the GetResponse() call to ensure that your program won't
cause any “CROSS TALK” amongst other threads or processes that are using Delta Tau's
32 bit driver, PComm32.

PTalkDT Reference

47

Accessory 9PTPRO

For Example:

LockPmac() // Hold off any other processes or threads
SendLine(**?”’) // Send the line

GetLineACK(response) // Get the response
ReleasePMAC() //Let other threads have access to PMAC

ShowPropertyPage () [OBSOLETE]

Description

Return Value
Visual Basic & Delphi

C++

Remarks

This method is available for backward compatibility only. Use the new
SelectDevice() method instead. Both ShowPropertyPage() and SelectDevice() do
the same thing.

Shows PTalkDT’ s Select Device dialog to allow end usersto select, add, and
configure PMAC devices.

Non-zero if successful, zero when afailure occurred.

[form] .controlname.ShowPropertyPage

result = Mainform.PTalkl.ShowPropertyPage

BOOL controlname->ShowPropertyPage();

result = PTalkDT->ShowPropertyPage();

Calling this function will give your end users the ability to remove, add, and
reconfigure PMAC devices. Consider your end users capability before calling
thisroutine.

UploadData (File Name, Command, Options, Expected Number of Lines)

Description
Return Value
Visual Basic & Delphi

C++

Remarks

Uploads a series of responses from a PMAC command to atext file.

Non-zero if successful, zero when afailure occurred.
[form].ctriname.UploadData (Ffilename As String, command As
String, number_of lines As Long)
Mainform.PTalkDT1.UploadData
(““c:\files\main.pmc”,”i10..1023,1023)
Mainform_.PTalkDT1._UploadData (“c:\files\plcl.pmc”,”list plc
17,0)

BOOL controlname->UploadData (char *filename,char

*command, long number_of lines)

result = PTalkl->UploadData
(“c:\\files\\main._pmc”,”10..1023,1023)

This method is useful for receiving a series of responses from PMAC and writing
them to afile. With this method you can upload items such as motion and PLC
programs, |-, P-, Q- and M- variables, and gathered datato adatafile. By
default, helpful comments are also written into the file, including atime and date
stamp. Thefirst parameter filename is the full path of any valid ASCII text file
that will contain the upload data. The second parameter command is the actual
command string that will be sent to PMAC to generate the upload data. The third
parameter number_of _lines specifies the number of expected lines so that the
optional progress bar can show the correct progress status during the upload. For
example, if the command was 10 . . 1023 (which uploads the values of |-
variables 10 through 11023), you expect to receive 1024 responses and you would
set number_of linesequal to 1024. The following PTalkDT properties
summarizes the available options:

48

PTalkDT Reference

Accessory 9PTPRO

Name of Option Description

UploadNoComments The specified file that will be created (or appended

to—see the other options), will contain no comments,
i.e. only the actual uploaded responses will be written
into thefile.

UploadHide The usua dialog box that appears showing the

progress of the upload is not shown. Asaresult, you
will not be able to cancel the upload process before it
completes.

UploadAppend If the specified file already exists, the newly uploaded

datawill be appended to the end of the specified file.
If the specified file does not exist, it will be created.

UploadShowPr ogr ess During the upload process (if the dialog box is not

hidden), a progress bar will be shown, indicating the
upload status. To use this option correctly, you must
specify apositive value for number_of lines. In
addition, this value should be as close as possible to
the expected number of responses to be received.

PTalkDT Events

OnError
Description
Visual Basic

Remarks

See Also

Signalswhen a PTalkDT initialization or communications error has occurred.

Private Sub PTalkl OnError(ByVal ErrorNumber As Long, ErrorString
As String)

FormDebug.Textl.Text = Str(ErrorNumber)

FormDebug.Text2_Text ErrorString

ErrorCount = ErrorCount + 1

FormDebug.Text3 = Val(ErrorCount)

End Sub

The OnError event was meant to be used for troubleshooting. If you can't establish
communications, if you are timing out, if a PMAC error was generated etc. then this
event will notify you. Y our code in this routine may simply display the message,
ErrorSring, to the user (good for developing), or perhaps act on the Error Code without
the end user ever knowing a problem occurred (good for releases). The ErrorCode and
ErrorString parameters passed in this event represent the LastError and
LastErrorString properties just modified state.

PMAC Software Reference Manual \ On line commands\ 16 for an explanation of PMAC
Errors.

Trouble Shooting
To seeif the problem you are encountering is communications related, try disabling the communications
viathe SimulateCommunication property.

Symptom
Cause

Symptom

Cause

Symptom

PTakDT can't seem to load or fails unpredictably.
Visual Basic users should be sureto install Visua Basic first then PTakDT second.

Y ou can't establish serial communications but everything works O.K. once you run the
PMAC Executive Program.

Some PMAC firmware versions (before 1.16A) set the hardware handshaking lines
incorrectly on power up or reset. To get around this problem short pins4 & 5 (CTS &
RTS, clear to send and request to send) on the PC's serial port connector.

Y ou can't establish serial communications period.

PTalkDT Reference 49

Accessory 9PTPRO

Cause Areyou using a known working serial cable? Y ou may just want to see exactly what

your PMAC's baud rate is and use that.

If your PMAC has been put in full-duplex mode (by sending it a control-t)
communications with PTalkDT will not occur. Putting ajumper on the board to put it in
afactory default state (E51 on PMACL, E3 on PMAC?2) should eliminate this problem.

L ook at the port setup from the operating systems control panel . Also, try the supplied
“HyperTermina” application.

Symptom Serial communicationsislosing characters.

Cause Setup your COM port from the Control Panel of the operating system. Make sure that
you are NOT using a FIFO, and that HARDWARE FLOW CONTROL is being used.

Symptom In Microsoft Visual C++ after inserting a PTalkDT control, you can't see any of the
member variables displayed in the class wizard.

Cause The problem may be that the operating system's language may not be set to English(US).
Try switching to this.

Symptom Communications routines return “True”, but don't really work.

Cause SimulateCommunications may be set to “ True”

Symptom Unableto register PTALKDT.OCX.

Cause PTALKDT.OCX cannot access some DLL’sor DLL’s of the correct version.

D

a Makesure PMAC.DLL isinthe SYSTEM directory
b. Look at the supplied installation script, and check it’s accuracy

ual Ported Ram Automatic Feature Example

The example below illustrates how to make use of PMAC's automatic Dual Ported Ram features. Inthis
case were using the "Fixed Real Time Data Buffer" which has motor specific information. All 8 motor
actual positions are being displayed using atimer procedure. The example was donein Delphi.

procedure TForm1. Timer2Timer(Sender: TObject);

var
aBool : Bool;
aShort : short;

astring: string[100];
LongLow: Longlnt;
LongHigh: Longint;
position: double;

begin

/Il Tell PMAC we are busy reading, Y:$D009, 89="Y" in ASCII
aBool ;= Form1.PTakDTCtrl1.DPRSetWord(89,9,1);

I/l Read in servo timer, X:$D009, 88 ="X"in ASCII

aShort := Form1.PTakDTCtrl1.DPRGetWord(88,9);

aShort := aShort and $7FFF;// Bit 15 is a handshake bit, mask off
Str(aShort, aString);

Edit13.Text := aString;

// Read in Motor Actual Positions, 2 long words that need to be

/I converted to afloat via a special method

LongLow := Form1.PTakDTCtrl1.DPRGetDWord(20);
LongHigh := Form1.PTakDTCtrl1.DPRGetDWord(21);

position := Form1.PTakDTCtrl1.DPRFixed(LongL ow,LongHigh);
position := position/(32*96); // I1x08 * 32 scale factor

eM1.Text := FloatToStr(position);

50

PTalkDT Reference

Accessory 9PTPRO

LongLow := Form1.PTakDTCtrl1.DPRGetDWord(35);

LongHigh := Form1.PTakDTCtrl 1. DPRGetDWord(36);

position := Form1.PTalkDTCtrl1.DPRFixed(L ongLow,LongHigh);
position := position/(32*96); // I1x08 * 32 scale factor

eM2.Text := FloatToStr(position);

LongLow := Form1.PTakDTCtrl 1.DPRGetDWord(50);

LongHigh := Form1.PTakDTCtrl 1. DPRGetDWord(51);

position := Form1.PTalkDTCtrl 1. DPRFixed(L ongL ow,LongHigh);
position := position/(32* 96); // 1x08 * 32 scale factor

eM3.Text := FloatToStr(position);

LongLow := Form1.PTakDTCtrl1.DPRGetDWord(65);

LongHigh := Form1.PTakDTCtrl 1. DPRGetDWord(66);

position := Form1.PTalkDTCtrl1.DPRFixed(L ongL ow,LongHigh);
position := position/(32*96); // I1x08 * 32 scale factor

eM4.Text := FloatToStr(position);

LongLow := Form1.PTakDTCtrl 1.DPRGetDWord(80);

LongHigh := Form1.PTakDTCtrl 1. DPRGetDWord(81);

position := Form1.PTalkDTCtrl 1. DPRFixed(L ongL ow,LongHigh);
position := position/(32*96); // 1x08 * 32 scale factor

eMb5.Text := FloatToStr(position);

LongLow := Form1.PTakDTCtrl1.DPRGetDWord(95);

LongHigh := Form1.PTakDTCtrl 1. DPRGetDWord(96);

position := Form1.PTalkDTCtrl1.DPRFixed(LongL ow,LongHigh);
position := position/(32*96); // I1x08 * 32 scal e factor

eM®6.Text := FloatToStr(position);

LongLow := Form1.PTakDTCtrl1.DPRGetDWord(110);
LongHigh := Form1.PTakDTCtrl 1. DPRGetDWord(111);

position := Form1.PTalkDTCtrl 1. DPRFixed(L ongL ow,LongHigh);
position := position/(32*96); // 1x08 * 32 scale factor

eM7.Text .= FloatToStr(position);

LongLow := Form1.PTakDTCtrl1.DPRGetDWord(125);
LongHigh := Form1.PTakDTCtrl 1. DPRGetDWord(126);

position := Form1.PTalkDTCtrl1.DPRFixed(L ongL ow,LongHigh);
position := position/(32*96); // I1x08 * 32 scale factor

eM8.Text := FloatToStr(position);

I/ Tell PMAC we are not busy anymore
aBooal := Form1.PTakDTCtrl1.DPRSetWord(89,9,0);
end;

PTalkDT Reference

Accessory 9PTPRO

52

PTalkDT Reference

Accessory 9PTPRO

DELTA TAU DRIVER CONFIGURATION
A Global View of the Driver

DeltaTau' s 32-bit hardware driver itself consists of three files.
e PCOMM32.DLL - A 32-bit DLL.
e PMACISA(SER, PCI, or USB).SYS—Windows 98/ME or NT 2000 kernel drivers.
® PMACISA(SER, PCI, or USB).INF - Windows Setup Information files.
Theillustration below shows how these modules are related.

|32—Bit APPLICATIONS |

Ring 3 | PtalkDT Wraps (PCOMM32.DLL) |
|
[
RINGO |] Windows 998/ME/NT2000. ...
ISA BUS Serial Port Ethernet PCI BUS USB Port
Hardware PMAC

Figure 1-1. PComm32 Driver Structure

Device Configuration

Plug & Play Ports
e PCIBUSPMAC
e USB Port PMAC

Non-Plug & Play Ports

e |SA BusPMAC

e Seria Port PMAC

e Ethernet port PMAC (expected in 2nd trimester of 2001)

Device Configuration

e Plug & play devices are configured automatically at boot time or whenever plugged in (USB device.)
Devices can be reconfigured at any time for updated drivers as well.

e Non-plug & play devices are configured through windows standard "hardware wizard" as follows:

Delta Tau Driver Configuration 53

Accessory 9PTPRO

In Windows 98/ME/2000, run Add new har dwar e from the control panel. Hardware wizard in

listed under System in Windows 2000.

Tha s ol eboile Bin solbsmie e o e harchaors et
Blertongs Coiniwinm . OOl Sine DD PIOCEse

Caral

[

Tio bescpt insimlingg Tis sofwais on ynie i dewsics. chce fad

Continue for a couple of screens until following screen appears. Select No from the Windows

auto search option.

Wi men e ray sEsch e rerchesss Sl e il Plug e
Py i Mabd i 8 e Do B T ORI et (e e B AT
‘W etk T o ik
deiErmonae B& coreni peings orshe device and inrisis s

CanmEn e Foe fida e nn i i e regiy iecoim mesncksd e
v P Wi i e fadnfe Dl 1 el ot P harnae

O s vl Winiosse o ssmch oy nes hardemm 7

i (P Eoe e reibind |

-« Biark, Fodigie Caiatal

In the following screen, select other devices from the hardware types (First time only.) Next
time, Motion (Motion Controllers under Windows 2000) will be listed in the hardware types list.

Seleci B hepe ol hauremie wou wam o ma ksl

Harchweams tepss

" - pr—
’ln‘mn:n

e Mol ks

‘:'j‘-'\ﬁll =

i B B Funchion mcisgrisrs
R imismh modmpiery
'.E' rher demaces

P T hAC1A sk
A Eoris COM A LFT)
|eal Frinte

1 Fack [y—

Delta Tau Driver Configuration

Accessory 9PTPRO

e Select have disk from the following wizard and specify the path of Setup information file(s)
PMACISA.Inf or PMACSER.Inf depending upon the desired configuration, ISA bus or Serial
respectively. Setup information file(s) are located in Windows\I NF folder (Winnt\INF folder

under Windows 2000.)
Salect thes mamdnctues snd mods| ol your hardeams

o Bemahwemi 19 nof listedd. o #yo) hewe sn metalisbon dsk, dck Heee Ok H
wOLr haiitwais is 90 o isd. cick Back, Sed hen saled! & die i hardwans s

bl Bresta e Pl u
(=] -
Dl Comgruter Coma _I PaZ Sennl Pod kolon Confmlles
[Ciwdin Elmchinrca, in a—d
Cieczn
& = "'
4 I I L3
Hisran Dia b E
& fimck Pz 3 Cancal I

Once hardware is identified from the setup information file(s) select the appropriate model from
PMAC ISA or PMAC Serid Port controller.

- Insei thie manuiacianers insballation sk ino #e
= difve sekactac, and then chok OF

Cancs|

Copy manutactrer's files fom:

IS <] o |

e Setup information file(s) specify the required driver file(s) PMACISA.SYSor PMACSER.SYS
for Bus and Serial configuration(s) respectively. In the following wizard specify the path of driver
files. Pcomm32 installation copies these filesin Windows\System32\Driver s folder
(Winnt\system32\Driver s folder under Windows 2000.)

Lopwing Files_.
_:] The file ‘prnacss sys' on (Unknosn] cannod ba 0
= faund.

Satup coulkd nod find & fla onthe specifiad path,
Ftha path appears balow, make sum s
comect. Click OF ta try copying again,

Cancal
_serw |
LCopry files fram: Datails... I
Browza... I

DOWEL S Y S TEM IS DRVERS

At this stage the driver isinstalled on your computer. Following step is different on Windows
98/ME than Windows 2000. Please configure the resources accordingly. A restart of
computer isrequired after thedriver installation before use.

Delta Tau Driver Configuration 55

Accessory 9PTPRO

(Windows 98/M E only) There are essentially FOUR configurations available for ISA BUS and
only onefor the Serial port. For ISA BUS, they are1/O Port only, I/O Port wW/DPRAM, 1/0
Port w/DPRAM & IRQ and finally I/0O Port w/IRQ only. PMAC can be configured for only
one of these configurations depending on the DPRAM availability, 1/0 port and/or IRQ jumper
settings. Under Windows 98/ME. These resources can only be changed from Control Panel’s

device manager.

Cmraral Deices bisnsg s | Fnrchess Profes | Peramsnes |

= wisw dednes by By s T i ol R A R e TR

5 (B
Tl D A
+ e Chiak i
+- M Clinples e pisis
4 % Fappy dizk comhalisrs
4+ % Hard diak coevwralian
1 R Fayboard
i qﬁ Fefla iy
' E bl nEa
‘.: koo bean
=
i PraaC: Bavaal Po koo Caaintiol
3 "':. Pl 1
4+ B riereansk s mniees
£ Fams (Tl B LFT)
SO (== BT

F

[Frmpnns | Flubusl g |

Device manager isinvoked by Control Panel’s System menu or directly by checking the
properties of My Computer from the Desktop. An extrarestart may be required if the resources

are changed.

(Windows 2000 only) Above step is not needed under Windows 2000 where all resource

configurations are available during installation.

However, resources can be changed on al compatible operating systems, at any time by invoking

the device manager.

FhiAC A Modlon Controllor PFroparioas

Gienmmi | Dmar Fesources I

H#} Frdas FSa Motion Canhialles

™ LUes aulomalic sefngs

Sinding bmeed on Hasic canhigumion &

Fosaurce fap-s Seang
InpiilfOusput REenge 0210 -021F
LRI ACED = NI A

Canilicimg devices ket

& il els

56

Delta Tau Driver Configuration

Accessory 9PTPRO

Thisdriver has eliminated the need for MotionEXE (available in earlier implementations of Delta Tau's
32 bit driver). Once adeviceis configured successfully, it isregistered and available for use.

Parameter configuration of serial device such as, port number, baud rate, timeouts, handshake and parity
options are done at the application level. Properties of a serial device are enabled in the SelectDevice()
dialog.

After Setting Up The Device Driver

Once configured, PMAC devices are listed under device manager in the computer’s system information
page. All configured devices (plug & play as well as non-plug & play) are registered and therefore
available for use. All available devices are listed upon one simple SelectDevice() method call from
PtalkDT Pro.

Enhanced Features

® Fast serial communication. The Ring O driver has eliminated the need for secondary server
(Serserver or Comserver) hence reducing the overhead caused by these applications. This, in turn,
reduced the unnecessary overhead and therefore increased the serial port throughput tremendously. At
least five times faster serial communication is achieved with this technique. It is expected to improve
further once port timeouts are optimized.

e Rearrangement of deviceswithout restarting computer. Since the devices are configures through
Windows' device manager, and since MotionEXE is no longer needed, they can easily be rearranged
by the SelectDevice call to "PComm32" library.

® Multiple accessibility of any port. The global data memory register keeps necessary information
about the hardware, that is, PmacType, Location, Enumeration etc. All applications then get the
information from global dataregister. Global datafurther keeps track of user count and therefore
reduces overhead for reopening the device. This allows multiple access to any port for multiple
applications.

Supported Operating Systems

e \Windows 98
e Windows ME
e \Windows 2000

Delta Tau Driver Configuration 57

Accessory 9PTPRO

58

Delta Tau Driver Configuration

Accessory 9PTPRO

GLOSSARY OF TERMS

directive
Aninstruction that tells the downloader how to process this or the upcoming lines of afile.

preprocess
The act of parsing afile and executing al the downloader directivesin preparation for downloading the
fileto PMAC.

event
A function that is automatically called when a certain condition(s) occur.

property
An attribute (or variable) of an OCX control that configures, enables, or disables a certain feature of the
control.

DPRAM

This stands for dual port RAM. This hardware option of PMAC allows you to share memory between
PMAC and the host computer. DPRAM is useful for high-speed communications and data exchange
between PMAC and the host computer

upload
Thisisthe process of transferring information, usually program files and data, from the PMAC to the host
compulter.

download
Thisisthe process of sending information, usually program files and data, from the host computer to
PMAC.

methods
All featured functionsin an OCX are referred to as methods. Methods give the OCX its capabilities.

PMAC
The motion computer from Delta Tau Data Systems. PMAC stands for Programmable Multi-Axis
Controller.

MMI
This stands for Man Machine Interface. An MMI isthe software that is used by a machine user to operate
amachine. It isthe software on the host computer that the operator uses to control the machine.

OCX contral

This collection of library functionsis designed to make difficult programming tasks easy. OCX controls
are the latest addition to Microsoft’s OLE 2.0. They are sometimes referred to as reusable components.
OCX controls are improved and enhanced VBXSs.

PTalkDT
PTakDT isacommunications OCX control designed to communicate to Delta Tau's PMAC.

Glossary of Terms 59

Accessory 9PTPRO

60

Glossary of Terms

Accessory 9PTPRO

INDEX
Download Directives
FIEfINB NAIME ... e e e st e e te et e e aeeebeeebe e be e besatesaeesheesbeensesasesaeesbe e beenbeentesatesaeesaeeseas 38
#define name {CommaNd OF VAITADIE} ..o bbb 38
2 S TR 38
2 1 SRS 38
FHTAEE NAIMIE......c ettt et e e e b e be s b e e be e Rt ehe e e et e eeeebesbeebeese e e eneeseeebeseeebeeanennan 38
0T L= = T = S 38
0o 1N o LI 1= g = RS 38
GlODEA VIEW Of thE LIDIArY.....civeectiseeee s sttt st st sttt sttt se b e beseeseebeseeseebeseenenbeneas 53
1=] = RSOOSR 5
Methods
[L0V g1 aT=To |1 L= T 1,17
I D RSSO 39
(] VLY o o ORI 43
0 TSRS 1,17
€T (0ol g Lol = ool = PRSPPI 1,17,44
LT (T Yot URT SRR 2
LT I = O PSR 2
(T 1R CS 0l0] 05 T SRR 2,17, 45
L0210 8= 1] oSS 2,17
S ST 11 10 SRS 2,17
S < 010 (O 7= T TSP 2,17
S 0T 0] 0= 1Y = o[RSSO 2,17, 48
L 010> To | I\ - RSP 2,17
Properties
= o= o SRS 16
USAQE OF PCOIMIMB2...... oottt h et e e et bt bt he e he e e e st e sE e beeheeheeh e e aeemeeseeabesaeebeeheeneanbeseenbesaeareas 57

I ndex 61

	INTRODUCTION
	What is PTalkDT?
	What is an ActiveX Control?
	What Can I use PTalkDT with?
	What Can PTalkDT do for me?
	What Built in Functions Does PTalkDT Have?
	What You Will Need to use PTalkDT
	How do I Get Support?

	GETTING STARTED
	Installing PTalkDTPro
	What Was Installed?

	Setting up Communications with PMAC
	Plug & Play Device Installation
	Windows 98/ME Installation (Non Plug & Play Devices)
	Windows 2000 Installation (Non Plug & Play Devices)

	First Time PTalkDTPro Users
	Serial Port Configuration

	Uninstalling PTalkDT OCX

	HOW TO DESIGN WITH PTALKDT
	In Design Mode
	Run Time Mode
	Altering, Saving and Retrieving PTalkDT Settings at Run Time
	Communication Settings
	General Settings

	YOUR FIRST VISUAL BASIC MMI WITH PTALKDT
	Overview
	Instructions

	YOUR FIRST MICROSOFT VISUAL C++ MMI WITH PTALKDT
	Overview
	Instructions

	PTALKDT REFERENCE
	Documentation Conventions
	Overview
	PTalkDT Properties
	Enabled
	LastError
	LastErrorString
	Device Number
	DeviceNumber
	DownloadDeleteTemp
	DownloadDo
	DownloadHide
	DownloadLog
	DownloadMap
	DownloadMaxErrors
	DownloadParse
	DownloadShowErrors
	UploadAppend
	UploadHide
	UploadNoComments
	UploadShowProgress

	PTalkDT Methods
	DPRAvailable()
	DownloadFile (file name)
	DPRDouble (LSB_word, MSB_word)
	DPRFixed (LSB_word, MSB_word)
	DPRDWordBit Set/Reset and BitSet Methods
	DPRGetDWord and DPRSetDWord Methods
	DPRGetFloat and DPRSetFloat Methods
	DPRGetMem and DPRSetMem Methods
	DPRGetWord and DPRSetWord Methods
	Flush ()
	GetControlResponse (Response, Control Char)
	GetLineAck (Response)
	GetLineCR (Response)
	GetResponse (Response, Command)
	IsLineWaiting ()
	LoadSettings ()
	LockPMAC ()
	ReleasePMAC()
	SaveSettings ()
	SelectDevice()
	SendChar (Character)
	SendLine (Command)
	ShowPropertyPage () [OBSOLETE]
	UploadData (File Name, Command, Options, Expected Number of Lines)

	PTalkDT Events
	OnError
	Trouble Shooting

	Dual Ported Ram Automatic Feature Example

	DELTA TAU DRIVER CONFIGURATION
	A Global View of the Driver
	Device Configuration
	Plug & Play Ports
	Non-Plug & Play Ports
	Device Configuration

	After Setting Up The Device Driver
	Enhanced Features
	Supported Operating Systems

	GLOSSARY OF TERMS
	INDEX

