

^1 USER MANUAL

^2 Accessory 9PTPRO

^3 PTalkDTProOCX – ActiveX/Component/OCX

^4 3Ax-OPTALK-xUxx

^5 October 30, 2003

Single Source Machine Control Power // Flexibility // Ease of Use
21314 Lassen Street Chatsworth, CA 91311 // Tel. (818) 998-2095 Fax. (818) 998-7807 // www.deltatau.com

Version 3.x

Copyright Information
© 2003 Delta Tau Data Systems, Inc. All rights reserved.

This document is furnished for the customers of Delta Tau Data Systems, Inc. Other uses are
unauthorized without written permission of Delta Tau Data Systems, Inc. Information contained in
this manual may be updated from time-to-time due to product improvements, etc., and may not
conform in every respect to former issues.

To report errors or inconsistencies, call or email:

Delta Tau Data Systems, Inc. Technical Support
Phone: (818) 717-5656
Fax: (818) 998-7807
Email: support@deltatau.com
Website: http://www.deltatau.com

Operating Conditions
All Delta Tau Data Systems, Inc. motion controller products, accessories, and amplifiers contain
static sensitive components that can be damaged by incorrect handling. When installing or handling
Delta Tau Data Systems, Inc. products, avoid contact with highly insulated materials. Only
qualified personnel should be allowed to handle this equipment.

In the case of industrial applications, we expect our products to be protected from hazardous or conductive materials and/or
environments that could cause harm to the controller by damaging components or causing electrical shorts. When our products are
used in an industrial environment, install them into an industrial electrical cabinet or industrial PC to protect them from excessive or
corrosive moisture, abnormal ambient temperatures, and conductive materials. If Delta Tau Data Systems, Inc. products are directly
exposed to hazardous or conductive materials and/or environments, we cannot guarantee their operation.

mailto:support@deltatau.com
http://www.deltatau.com/

Accessory 9PTPRO

Table of Contents i

Table of Contents
INTRODUCTION ...1

What is PTalkDT?...1
What is an ActiveX Control? ..1
What Can I use PTalkDT with?...1
What Can PTalkDT do for me?...1
What Built in Functions Does PTalkDT Have? ..1
What You Will Need to use PTalkDT...2
How do I Get Support?..3

GETTING STARTED...5
Installing PTalkDTPro ..5

What Was Installed? ...5
Setting up Communications with PMAC ..6

Plug & Play Device Installation...6
Windows 98/ME Installation (Non Plug & Play Devices)..6
Windows 2000 Installation (Non Plug & Play Devices)...9

First Time PTalkDTPro Users...11
Serial Port Configuration ...12

Uninstalling PTalkDT OCX..13
HOW TO DESIGN WITH PTALKDT ...15

In Design Mode...15
Run Time Mode ..16
Altering, Saving and Retrieving PTalkDT Settings at Run Time..18

Communication Settings ...18
General Settings..18

YOUR FIRST VISUAL BASIC MMI WITH PTALKDT ...19
Overview ...19

Instructions ...19
YOUR FIRST MICROSOFT VISUAL C++ MMI WITH PTALKDT ..23

Overview ...23
Instructions ...23

PTALKDT REFERENCE ..33
Documentation Conventions ...33
Overview ...33
PTalkDT Properties...33

Enabled...33
LastError ..33
LastErrorString...33
Device Number ...34
DeviceNumber ..34
DownloadDeleteTemp ..34
DownloadDo...34
DownloadHide..35
DownloadLog ...35
DownloadMap ..35
DownloadMaxErrors..35
DownloadParse ..35
DownloadShowErrors ..36
UploadAppend ..36
UploadHide ..36
UploadNoComments...36
UploadShowProgress ...36

PTalkDT Methods ...37

 Accessory 9PTPRO

ii Table of Contents

DPRAvailable()...37
DownloadFile (file name)...37
DPRDouble (LSB_word, MSB_word) ..39
DPRFixed (LSB_word, MSB_word) ...39
DPRDWordBit Set/Reset and BitSet Methods ..40
DPRGetDWord and DPRSetDWord Methods ..40
DPRGetFloat and DPRSetFloat Methods ..41
DPRGetMem and DPRSetMem Methods..41
DPRGetWord and DPRSetWord Methods..42
Flush () ..43
GetControlResponse (Response, Control Char)...43
GetLineAck (Response)...44
GetLineCR (Response)..44
GetResponse (Response, Command) ..44
IsLineWaiting () ...45
LoadSettings ()...45
LockPMAC () ...46
ReleasePMAC() ...46
SaveSettings () ...46
SelectDevice() ..47
SendChar (Character) ..47
SendLine (Command) ...47
ShowPropertyPage () [OBSOLETE] ...48
UploadData (File Name, Command, Options, Expected Number of Lines) ...48

PTalkDT Events ..49
OnError ..49
Trouble Shooting ..49

Dual Ported Ram Automatic Feature Example ...50
DELTA TAU DRIVER CONFIGURATION..53

A Global View of the Driver ...53
Device Configuration ..53

Plug & Play Ports...53
Non-Plug & Play Ports...53
Device Configuration..53

After Setting Up The Device Driver ...57
Enhanced Features...57
Supported Operating Systems ...57

GLOSSARY OF TERMS ...59
INDEX ..61

Accessory 9PTPRO

Introduction 1

INTRODUCTION
What is PTalkDT?
PTalkDT is a user-friendly interface to Delta Tau’s 32-bit driver, PComm32. It is designed to provide
robust and efficient communication to PMAC, Delta Tau’s Motion Computer. Since PComm32 will
continually evolve to include additional capabilities (i.e. VME PC’s, PCI etc), PTalkDT has been
designed so that your applications code will not be affected. Using PTalkDT ensures that your
application will work for many future releases of Delta Tau’s 32-bit driver (and as a result many future
capabilities and versions of PMAC).

Unlike previous versions of communication libraries, PTalkDT is in the form of an ActiveX Control, a
new and upcoming form of library that is taking Windows programming by storm. PTalkDT relieves you
of the often-cumbersome task of writing your own communication routines. Experienced programmers
know that communication functions play a critical role in creating reliable application software. We have
taken all the pain out of writing communications software, and have provided what we feel is the best
approach to creating a PMAC “MMI” (Man Machine Interface).

What is an ActiveX Control?
ActiveX controls are the latest addition to Microsoft’s OLE (Object Linking and Embedding) family,
providing unprecedented compatibility to almost any development geared application software. ActiveX
controls, sometimes referred to as reusable components, give you, the programmer, the easiest way to
incorporate advanced functionality into your applications with little or no programming. For those of you
familiar with OCXs, ActiveX controls are the next generation; they have an added array of functions for
networking ability.

What Can I use PTalkDT with?
PTalkDT can be used with the 32-bit version of Visual Basic, Visual C++ (4.x and beyond), 32-bit
Delphi or C++ Builder, and just about any development package that supports ActiveX controls. In this
manual, most of the examples and descriptions will pertain to Visual Basic (version 5.0) and Delphi
(version 2.0).

What Can PTalkDT do for me?
PTalkDT provides you with a very stable and high-speed communications link to PMAC. Our intent is to
allow you to focus on the functionality of your MMI (Man Machine Interface) by removing the burden of
writing communication software to “talk” to Delta Tau’s PMAC (hence, the name PTalkDT). PTalkDT
gives your application instant communication capability to PMAC over the PC-bus, Dual Ported Ram or
serial port with you writing little or no code. Furthermore, PTalkDT has been designed to quickly trap
bugs in your code by centralizing the error handling (via an Event, discussed later on).

What Built in Functions Does PTalkDT Have?
Two classes of functions (or, more technically speaking, methods) are included, “Basic Communication”
and “Extended” Functions. This manual only covers the Basic Communication methods, among them:

DownloadFile This allows you to download a text file or multiple text files to PMAC. A
powerful string substitution preprocessor is included.

Flush A useful method to clear out PMAC’s output string buffer before sending a
new command.

GetControlRes
ponse

Sends a single control character to PMAC and retrieves any pending string
response from PMAC.

GetLineACK Retrieves a string response from PMAC, stopping after receiving an ACK
character (ASCII value of 6)

GetLineCR Retrieves a response from PMAC, stopping after receiving a CR character

 Accessory 9PTPRO

2 Introduction

(ASCII value of 13)
GetResponse This allows you send commands to and receive string responses from PMAC

in one convenient method.
LoadSettings Retrieves the last saved communication settings.
SendChar Send a single character to PMAC.
SelectDevice Shows PTalkDT’s Select Device dialog to allow end users to select, add, and

configure PMAC devices.
SaveSettings Stores PTalkDT communications settings to disk.
UploadData This allows you to upload a series of string responses from PMAC—

commonly used to obtain variables, motion, and PLC programs from PMAC.
DPR Read-
Write

Numeric Read/Write. Enable use of DPR Automatic Features

All extended methods are prefixed with an “x” (i.e. xDPRRotBuf ()) and are detailed in Delta Tau’s 32-
bit driver manual (PComm32.DOC see Delta Tau’s BBS or Web site WWW.DeltaTau.COM). Extended
functions are rarely used.

What You Will Need to use PTalkDT
The minimum hardware and software requirements to install and support the use of PTalkDT are:

• IBM or compatible PC/AT (486, Pentium or higher CPU) with 8 MB of memory, one 3.25” floppy
disk drive, and one hard disk drive with 3 MB of space

• VGA or SVGA display adapter
• Microsoft Windows 98, Windows NT, Windows 2000
• Development environment supporting 32-bit OCX controls such as Microsoft’s Visual Basic (4.x or

greater), Visual C++ (4.x or greater), or Delphi (2.x or greater).

Accessory 9PTPRO

Introduction 3

How do I Get Support?
If you encounter problems your first troubleshooting steps should be to:

1. Review this manual and the Troubleshooting Guide in the Appendix of this manual-- doing this can
save you time and money.

2. Get your Serial/Registration number from your diskettes or the back of your manual Contact our
technical support for PTalkDT by faxing, sending E-mail or calling the following numbers (include
serial number):

 Fax: (818) 998-7807
Web Page WWW.DeltaTau.COM

E-mail: Support@DeltaTau.COM
Voice Calls: (818) 998 2095

We hope that PTalkDT’s ease of use and this manual will provide all the help you need. (Hint: E-mail is
the quickest. Include your Registration Number.).

http://www.deltatau.com/

 Accessory 9PTPRO

4 Introduction

Accessory 9PTPRO

Getting Started 5

GETTING STARTED
Installing PTalkDTPro
Before installing PTalkDTPro, read the license agreement included in this manual (behind title page).
Also, please see the README.TXT file on the first installation disk. If there are corrections or additions
to this manual, they will be listed in a file called README.TXT. This file can be displayed directly from
the installation diskette using the Windows NOTEPAD utility. After the installation, this file can be read
by double-clicking the PTalkDT README icon in the newly created program group.

Note:

Visual Basic users should install Visual Basic before PTalkDT.

To install PTalkDTPro from the Delta Tau Software CD, insert the CD into the CD drive. Auto install
menu will popup. Click on the Pewin32 from the Suite to launch PTalkDTPro installation. To install
PTalkDTPro from the floppy disks, put the PTalkDTPro distribution disk labeled “Disk #1” into a floppy
drive and choose File | Run from the Program Manager. Enter A:\SETUP.EXE or substitute ‘A’ for the
letter of your floppy drive.

PComm32 drivers were rewritten when PCI, USB and Ethernet communication modes were added. It is
therefore important to uninstall all old Delta Tau software products before installing Pewin32RPO.

The installation program will suggest a directory path where the program files should be copied. Use the
suggested directory location for the installation for the purposes of uniformity among all PTalkDTPro
users (and trouble shooting if need be).

Read the “readme.txt” file for last minute additions to this manual.

You will want to setup communication before running PTalkDTPro for the first time. For details on
setting up communications see "Setting up Communications with PMAC".

What Was Installed?
The installation will create a new program group called PTalkDT. This group contains a README.TXT,
and DIFFERENCES.TXT icons, three Visual Basic project, and one Visual C++ demo project icons.

The DIFFERENCES.TXT file shows the changes between one release and the next and will be useful for
those upgrading to a new version of PTalkDT.

Be sure to see the “Setting up Communications with PMAC” section of this manual to “hook up” your
operating system with the PMAC devices installed on your system. No communication to PMAC will
occur before this is done.

We encourage you to run the Visual Basic and/or Visual C++ example projects. Please note that these
will only work if you have the corresponding development environment.

After you have tried the example projects, try to make a simple application of your own by following the
steps described in the section “Your First Visual Basic MMI with PTalkDT”. Then you might want to
look at the example program code that is provided.

Note

When these example programs were written, less than 5% of the development time
was used for PMAC communications! Most of the effort went into making the
various screens for these programs.

 Accessory 9PTPRO

6 Getting Started

Setting up Communications with PMAC
No applications, including those created with PTalkDTPro, will be used to add, remove or configure
PMAC devices in your system. Rather, communication settings have been centralized in your operating
system, making the set up of each PMAC much like other devices in your computer (i.e. video card,
sound card etc.) All setup is done through the Control Panels Add New Hardware Wizard. Following
steps will help installing and registering the newly installed devices. Before using this application it is
important that all applications that use PComm32 (the Delta Tau 32-bit communication driver) be shut
down. This includes Pewin32Pro, NC for Windows, and any applications developed with PComm32 or
PTalkDT.

Plug & Play Device Installation
Plug & Play are configured automatically at boot time or whenever plugged in (USB device). Devices
can be reconfigured at any time for updated drivers as well.

1. Uninstall all old Delta Tau software packages
2. Install PTalkDTPro
3. Shutdown computer
4. Install PMAC-PCI hardware (USB UMAC can be plugged in at any time. Once computer restarts

after PTalkDTPro installation, computer will detect a USB UMAC and install the driver
automatically.

5. Restart computer.
6. Computer will recognize new hardware and configure the hardware. If prompted give the path of

driver file(s). These file(s), depending on the operating systems, are in the following folders:
a. Windows 98/ME c:\windows\system32\drivers
b. Windows 2000 c:\winnt\system32\drivers

At this stage the Plug & play PMAC devices are configured and ready for use. Please see the First Time
Pewin32 Users section for instructions on how to register the newly added devices.

Non-plug & play devices are configured through windows standard "hardware wizard.” The steps
involved in the installation of PComm32 driver under Windows 98/ME and Windows 2000 are slightly
different. Next two sections describe all the necessary steps involved.

Windows 98/ME Installation (Non Plug & Play Devices)
1. Run Add new hardware from the control panel.

Accessory 9PTPRO

Getting Started 7

2. Continue through the auto plug and play device search wizard.

3. Continue until the following screen appears. Select No from the Windows auto search option.

In the following screen select other devices from the hardware types (Needs to be done first time
only.) Once device database is modified then Motion will be listed in the hardware types list and you
will select the Motion type for future device additions.

4. Once device database is compiled Delta Tau Data Systems Inc. will be added to the manufacturers

list. Scroll through the manufacturer list and select Delta Tau Data Systems Inc.

 Accessory 9PTPRO

8 Getting Started

5. Select the Model from the available list (PMAC ISA or PMAC Serial Port) controller. Base address,
Memory configuration and/or IRQ assignments are re-configurable. Serial Port configurations are
done at the application level.

6. Select model specifies the required driver file(s) PMACISA.SYS or PMACSER.SYS for ISA or

Serial configuration(s) respectively. If asked, specify the path of driver file(s). The required files are
already in the Windows\System32\Drivers folder.

At this stage the driver is installed on your computer. A restart of computer is required after the driver
installation before use.

Above steps are necessary for addition of a new device. Step (6) is different under Windows 98/ME as
compared to Windows 2000. Therefore, following steps are necessary to assign appropriate resources to
PMAC ISA configuration. Steps for resource reconfiguration are as follows:

1. There are essentially FOUR configurations available for ISA BUS. They are I/O Port only, I/O Port
w/DPRAM, I/O Port w/DPRAM & IRQ and finally I/O Port w/IRQ only. One PMAC can be
configured for only one of these configurations at a given time. Under Windows 98/ME. These
resources can only be changed from Control Panel’s device manager. Device manager can be
launched from the Control Panel’s System menu or directly by checking the properties of My
Computer from the Desktop.

Accessory 9PTPRO

Getting Started 9

2. From the properties of PMAC ISA Motion Controller select the desired configuration and change the
resources according to Jumper setting and available computer resources and respective jumper
settings on PMAC controller. A computer restart may be required one the resources are altered. Once
a device is configured successfully it is registered and available for use.

Serial Port Configuration such as, port number, baud rate, timeouts, handshake and parity options are
done at the application level. Properties of a Serial Device are enabled in the PmacSelect dialog, which
allows the selection of different options.

Windows 2000 Installation (Non Plug & Play Devices)
1. Run Add New Hardware from the control panel.

2. From choose a hardware task select Add/Troubleshoot a device

3. From choose a hardware device select add a new device.

 Accessory 9PTPRO

10 Getting Started

4. From find new hardware select No and continue.

5. From hardware types select other devices from the hardware types (Needs to be done first time only).

Once device database is modified then Motion Controllers will be listed in the hardware types list and
you will select the Motion Controllers type for future device additions.

6. Once device database is compiled Delta Tau Data Systems Inc. will be added to the manufacturers

list. Scroll through the manufacturers list and select Delta Tau Data Systems Inc.

7. Select the Model from the available list (PMAC ISA or PMAC Serial Port) controller. Windows 2000

allows the resource configuration during installation. Therefore, at this stage, Base address, Memory
configuration and/or IRQ assignments are configured. Select the appropriate configuration and after
highlighting the resource press change settings to set the desired values. Confirm the “Create a forced
configuration” message.

Accessory 9PTPRO

Getting Started 11

8. At this stage once you need to provide the path of driver file(s).

9. Select Model specifies driver file(s) PMACISA.SYS or PMACSER.SYS for ISA or the Serial

configuration(s) respectively. If asked, specify the path of the driver file(s). The required files are
located in the Winnt\System32\Drivers folder.

10. Finish the installation and restart your computer. You can review and reconfigure the resources before

restarting the computer as well. These resources, however, can be changed any time by launching the
device manager.

At this stage the driver is installed on your computer. A restart of computer is required after the driver
installation before use.

Also at this stage your Non-Plug & play PMAC devices are configured and ready for use. Please see the
First Time Pewin32 Users section for instructions on how to register the newly added devices.

First Time PTalkDTPro Users
Following steps are necessary to ensure proper startup of applications.

1. Once devices are configured, run PTalkDTPro. From the Setup menu, choose General Setup and
Options.

2. If it’s the first time no device will be listed in the registered device list. Press insert to register the
available device(s).

 Accessory 9PTPRO

12 Getting Started

3. All configured devices are listed in the available PMAC devices list. Select the desired device to
register. Repeat this procedure to register all available devices.

4. Once a device is registered, it can be selected to initiate communication.

5. Once a PMAC is listed in the PMAC Select window, it is registered and can be communicated with.

It is highly recommended to test a device upon registering. At this time you should see a familiar
screen and are ready to launch any window.

Serial Port Configuration
Serial port configurations are available at the application level. Properties button in the PmacSelect list
allows the user to select the Port number, set the baud rate, set timeouts, handshake options and other
selections as Odd/Even Parity checks.

The next time the program is executed, it will start with the arrangement it had upon exiting.

Accessory 9PTPRO

Getting Started 13

Uninstalling PTalkDT OCX
It is highly suggested that you uninstall PTalkDT before upgrading to a newer version of the product.

To uninstall PTalkDT, from Windows click the Start button from the taskbar and select Settings then
Control Panel.

Within the control panel, select the Add/Remove Programs icon. Double click on the PTalkDT entry in
the list box or push the Add/Remove button to uninstall.

All files copied during the installation will be removed (only if other programs are not currently
dependent on them). Furthermore, if files have been added to the installation directory (i.e. program files
you created) then the uninstall wizard will report that not all directories could be deleted. You will have
to manually remove these files.

 Accessory 9PTPRO

14 Getting Started

Accessory 9PTPRO

How to Design with PTalkDT 15

HOW TO DESIGN WITH PTALKDT
In Design Mode
First, configure your PMAC(s) in your system. See the Setting up Communications with PMAC section
of this manual to “hook up” your operating system with the PMAC devices installed on your system. No
communication to PMAC will occur before this is done.

For most of the remainder of this manual, all examples will be described assuming you are using
something similar to Visual Basic. If you are using a different development environment, the procedures
described here will be analogous.

 First add the PTalkDT control to your development environments toolbox. This is usually done by
going to the “Tool” menu, and then selecting “Components”. Now place a PTalkDT within the form that
you are currently designing (Usually the main form of the application).

Note

PTalkDT uses Delta Tau’s time tested 32-bit driver, PComm32 Pro.

The next thing most folks will want to do is configure the many properties of PTalkDT. This can be done
by viewing the custom property page for a newly inserted PTalkDT. The custom property page can be
viewed by double clicking on the “Custom” property (in other development environments you may
double click the PTalkDT icon within the form).

The custom property page is shown below:

 Accessory 9PTPRO

16 How to Design with PTalkDT

If you are developing without a PMAC be sure to set the Simulate Communication property to TRUE
(check the box) and skip the next paragraph.

To choose from all functioning PMACs in your system, press the “Select PMAC Device Number button”.

 Each PTalkDT control you add to your project is intended to talk to a single PMAC. If your application
is going to communicate with more than one PMAC, you will need to add a separate PTalkDT control for
each PMAC. Within a single application, you are allowed to have a maximum of 8 PTalkDT controls. In
general, it is a very good idea to use only one PTalkDT control per PMAC in your application's code.

 Although the PTalkDT control has many important properties, here are a couple you should be familiar
with to begin with:

Properties

Description

Enabled Sets and returns an internal PTalkDT variable which enables or
disables communications to the PMAC. Resets itself back to
FALSE if communication can’t be established. If the Enabled
property resets itself back to FALSE, see the LastErrorString
property for info and also see the CONTROL PANEL’s
MOTION applet.

Simulate Communication Set to TRUE if developing without a PMAC in the system (DRY
RUN)

Run Time Mode
Note

Communications can only be attempted during run time if the Simulate
Communication property is set to FALSE AND the Enabled property has been
successfully set to TRUE.

Upon executing your application, communications will be initialized when the Enabled property is or has
been set to “True”. This is not automatically done—you must set Enabled yourself (either in design
mode or in your code).

Note

During run time, the PTalkDT control icon is not visible.

Accessory 9PTPRO

How to Design with PTalkDT 17

The PTalkDT methods in the table below are typically used for communication. Again, if the Enabled
property is FALSE or Simulate Communication is “TRUE”, no communications to PMAC will actually
take place, and these methods will do nothing.

Methods Description
 DownLoadFile() Download a file to PMAC.
Flush() Empty out PMAC’s input/output buffer.
GetControlResponse() Send PMAC a control character and retrieve any pending

response from PMAC.
GetResponse() Send PMAC a command, and retrieve the subsequent

response.
LoadSettings() Restore the last stored communications configuration from

disk.
SendChar() Send a single character to PMAC.
SelectDevice() Shows PTalkDT’s Select Device dialog to allow end users to

select, add, and configure PMAC devices.
SaveSettings() Store PTalkDT’s communications configuration to disk.
UploadData() Upload a series of string responses to a file.
DPR Read-Write routines Numeric Read/Write. Enable use of DPR Automatic

Features

The following simple Visual Basic example shows how to establish basic PMAC communications via the
PC Bus:

Private Sub Form_Load ()
 Dim response As String
 Dim return_value As Long

 PTalkDT1.Enabled = True
 ‘ test communications by a query of motor status
 return_value = PTalkDT1.GetResponse(response, “?”)
 if return_value = 0 then ‘ if communications failed…
 ‘ An error occurred--, either handle here using use the
‘ LastError and LastErrorString properties of PTalkDT or
‘ have the OnError event handle this.
 endif
End Sub

Debugging
The OnError event is used for trouble shooting and debugging. If you can’t establish communications,
or if you are timing out, or if a PMAC error was generated, then this event will be called. As a
suggestion, your code associated with OnError may simply display the error message to you (while
developing), or perhaps act on the error without the user ever knowing a problem occurred (good for
release versions of your application). See the OnError event description for more details.

 Accessory 9PTPRO

18 How to Design with PTalkDT

Altering, Saving and Retrieving PTalkDT Settings at Run Time
Communication Settings
After you’ve added PMAC devices to your operating system (see “Device Configuration” section of this
manual) the communication settings are saved in the registry.
\HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\PMAC\DEVICE0
 for PMAC device 0 and
 \HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\PMAC\DEVICE1
 for PMAC device 1 and so on….

Three communication properties that aren’t stored in the registry but rather in an initialization file are the
Enabled, Simulate Communications and DeviceNumber properties. You may ensure that the state of
these properties will persist by calling PTalkDT’s LoadSettings() at the beginning of your application
and SaveSettings() at the termination of your program.

General Settings
In addition to SimulateCommunication and DeviceNumber, the following properties may be
saved/restored in PTalkDT’s initialization file (via the SaveSettings()/LoadSettings() methods):

 DownloadDo
 DownloadParse
 DownloadLog
 DownloadMap
 DownloadDeleteTemp
 DownloadHide
 DownloadShowErrors
 DownloadMaxErrors
 UploadHide
 UploadShowProgress
 UploadNoComments
 UploadAppend

Accessory 9PTPRO

Your First Visual Basic MMI with PTalkDT 19

YOUR FIRST VISUAL BASIC MMI WITH PTALKDT
Overview
This section will guide you through building a simple Visual Basic 5.0 MMI (man-machine interface)
application using PTalkDT. The resulting application displays the value of PMAC’s constantly changing
servo counter register. The code generated here can be similarly constructed with other development
environments.

Instructions
1. Start Visual Basic 6.0 and choose “Standard EXE” for project type.

2. Choose Project from the top menu bar and select Components. Select the “PTalkDT Control” module
and then select the OK button.

The PTalkDT icon should appear at the bottom of your tool palette:

3. Click on the PTalkDT icon and place it anywhere on a blank Visual Basic form.

4. With the PTalkDT icon on the form selected, press F4 to view the Visual Basic PTalkDT property
window.

 Accessory 9PTPRO

20 Your First Visual Basic MMI with PTalkDT

5. Now we will begin to form the user interface. To allow the user to select a PMAC in their system,

and modify PTalkDT’s properties, place a button on the form and set the caption property to “Setup
PTalkDT”.

6. Double click on the Setup PTalkDT button to associate code with the pressing of the button. Enter

the following code
Private Sub Command1_Click()
 PTalkDT1.SelectDevice
 PTalkDT1.SaveSettings
End Sub

This code will call PTalkDT’s SelectDevice() and SaveSetings() methods when the Configure button is
pressed giving the user the ability to configure the appropriate communication settings at run time and
making them persistent. SaveSettings() combined with the use of LoadSettings() ensures that the end
users won’t have to reconfigure PTalkDT settings every time the user runs the program.

Setting the Enabled property to TRUE will reinitialize communication if required.

Now put the LoadSettings() method in the Form_Load() method of the form by double clicking on any
“free” spot within the form. The routine should look like so when done:
Private Sub Form_Load()
 PTalkDT1.LoadSettings
 PTalkDT1.Enabled = True
End Sub

Accessory 9PTPRO

Your First Visual Basic MMI with PTalkDT 21

Setting the Enabled property to TRUE will guarantee that PTalkDT will at least attempt to establish
communication with the PMAC DeviceNumber selected.

7. Next lets add real time display of PMAC’s servo clock. Add a text control and a timer control to the
form.

8. Press F4 to view the timer’s property window.

9. Set the timer’s property Interval to 10.

11. Double click on the timer and add the following code (shown below in bold):

Private Sub Timer1_Timer()
Static Response As String
Static return_value as Long

return_value =PTalkDT1.GetResponse(Response,“RX0”)
Text1.Text = Response

End Sub

12. Press F5 to run your application. If all is well the servo clock is very quickly being updated in your
newly created PTalkDT application. Try pressing the “Setup PTalkDT” button to setup. If you do
have a PMAC be sure to uncheck the “SimulateCommunication” check box within the property page
window. Notice that the PTalkDT icon is not visible during run time (neither is the timer control’s
icon).

13. For further examples, see the installation group box in your desktop’s “Start\Programs” menu. Also
check out Delta Tau’s BBS/Website. Study the code and feel free to use it in your own applications.

 Accessory 9PTPRO

22 Your First Visual Basic MMI with PTalkDT

Accessory 9PTPRO

Your First Microsoft Visual C++ MMI with PTalkDT 23

YOUR FIRST MICROSOFT VISUAL C++ MMI WITH PTALKDT
Overview
This section will guide you through building a simple Microsoft Visual C++ MMI (man-machine
interface) application using PTalkDT. The resulting application displays the value of PMAC’s constantly
changing servo counter register. The code generated here can be similarly constructed with other
development environments.

Instructions
1. Start Visual C++.

2. Choose FILE from the top menu bar and select New. Highlight Project Workspace from the list box
and then select the OK button.

3. In the next dialog box, select MFC AppWizard (exe) from the list box, type in a project name (such as

ExPTalk), and click on Create:

 Accessory 9PTPRO

24 Your First Microsoft Visual C++ MMI with PTalkDT

4. On the next dialog box, select the Dialog Based radio button and click on Next >:

5. On the last dialog box, place a check mark for 3D controls, OLE automation, and OLE controls and

click on Finish:

At this point, a set of C++ files have been generated in a directory with the same name as the project
name you selected. Go ahead and compile this newly created project and run it to verify it works
correctly. When you execute this program, a blank dialog box with an OK and Cancel button should
appear:

Now, let us go back and add the PTalkDT control to this dialog box.

Accessory 9PTPRO

Your First Microsoft Visual C++ MMI with PTalkDT 25

From within the Visual C++ workspace environment, select to view the existing resources (which were
created by the AppWizard in the previous steps) and click on the Dialog resource. Your screen should
look like this:

6. With your mouse pointing to the dialog box (on the right, called “ExPTalk”), click the right mouse

button to expose the following pop-up menu and select Insert OLE Control.

 Accessory 9PTPRO

26 Your First Microsoft Visual C++ MMI with PTalkDT

7. A new dialog box will appear containing a list of available controls. Scroll down and choose the
control called PTalkDT Control and then click OK:

The PTalkDT control should now be visible in your dialog box:

8. Our next step is to use the MFC Class Wizard within Visual C++ to generate code that will create a

control class for this newly added PTalkDT control. To do this, select the View menu and then Class
Wizard. The MFC Class Wizard dialog box will appear. Select the Member Variables tab. Your
screen should look like this:

Accessory 9PTPRO

Your First Microsoft Visual C++ MMI with PTalkDT 27

Highlight IDC_PTALKCTRL1 and press Add Variable. When you do this, the following dialog box will
appear:

9. Select OK. On the next dialog box, select OK again.

10. The next dialog box will ask you to type in a name for the variable that will be used to access all of
PTalkDT’s properties and methods in your C++ code. Use the name shown on below and click on
OK:

 Accessory 9PTPRO

28 Your First Microsoft Visual C++ MMI with PTalkDT

Click on OK again. At this point, the MFC Class Wizard has generated a new C++ file and header file,
which contains the code to allow you’re to access all the functionality of PTalkDT! For each property, a
specific function has been created, making it easy to read or set the various PTalkDT properties. To see
these new functions created, select to view the classes in your project. When you do this, your screen
should look like this:

Accessory 9PTPRO

Your First Microsoft Visual C++ MMI with PTalkDT 29

11. We will now add a timer function to our dialog box, which will use PTalkDT to continuously query
PMAC for information. We will use the MFC Class Wizard again to do this. Select the View menu
and then Class Wizard. The MFC Class Wizard dialog box will appear. Select the Message Maps
tab, locate, and highlight the item called WM_TIMER in the Messages list box. Click on Add
Function and then OK.

A new function for the timer is has now been created. We will add code to this function later on.

12. We must now change the name of the static text that was automatically placed there by the
AppWizard when the project was first created. We will be using this text to display the response
from PMAC in our dialog box. Bring up the dialog box in the resource editor, double -click on the
static text and modify its variable name as shown on the next page. The name used here is
IDC_TEXT.

 Accessory 9PTPRO

30 Your First Microsoft Visual C++ MMI with PTalkDT

Now bring up the Class Wizard again to create a usable variable so that we may access this static text in
our code. Select the View menu and then Class Wizard. The MFC Class Wizard dialog box will appear.
Select the Member Variables tab, locate, and highlight the item called IDC_TEXT in the Control ID list
box. Click on Add Variable type in m_Text for the variable name and then OK twice to back out of all
the dialog boxes.

13. We now need to add code to setup the properties of PTalkDT to correspond to how you will be

communicating with PMAC. In the file ExPTalkDlg.CPP, locate the function
CExPTalkDlg::OnInitDialog and add the following code shown in bold:

 BOOL CExPTalkDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 m_PTalkDT.SetEnabled(TRUE);
 SetTimer(1, 50, NULL);
 return TRUE
}

14. Now locate the code for the CExPTalkDlg::OnTimer function. This function will be called on a
repeated basis about every 50 milliseconds. In this function we will place the code to query PMAC
for the contents of its servo clock register and copy this number to the static text variable m_Text.
Add the code shown in bold:

 void CExPTalkDlg::OnTimer(UINT nIDEvent)
{
 // TODO: Add your message handler code here
 TCHAR buf[255];
 BSTR response = SysAllocString(L"");

Accessory 9PTPRO

Your First Microsoft Visual C++ MMI with PTalkDT 31

 m_PTalkDT.GetResponse(&response,"RX0");
 USES_CONVERSION;
 strcpy(buf,OLE2T(response));
 m_Text = buf;
 UpdateData (FALSE);
 SysFreeString(response);

 CDialog::OnTimer(nIDEvent);

}

 Also, add this #include statement after the
#include <afxpriv.h>

It should look like this after:
#include "stdafx.h"
#include "ExPtalk.h"
#include "ExPtalkDlg.h"
#include <afxpriv.h>

15. We must use the MFC Class Wizard one last time to created one last function. Select the View menu
and then Class Wizard. The MFC Class Wizard dialog box will appear. Select the Message Maps tab
and locate and highlight the item called DestroyWindow in the Messages list box. Click on Add
Function and then OK.

Locate this newly added function CExPTalkDlg::DestroyWindow and add the code shown in bold:

BOOL CExPTalkDlg::DestroyWindow()
{

 KillTimer (1);

 return CDialog::DestroyWindow();
}

 Accessory 9PTPRO

32 Your First Microsoft Visual C++ MMI with PTalkDT

You are now ready to run your program. Press F5 to run the program. If your PMAC has been
configured appropriately in the CONTROL PANELs MOTION applet, you should see a number in the
label which is continually counting upwards. Notice that the PTalkDT icon is not visible during run time.

Accessory 9PTPRO

PTalkDT Reference 33

PTALKDT REFERENCE
Documentation Conventions
This manual uses the following notational conventions:
 Source code and data structures are displayed in a monospaced
typeface.

 Note

Warnings or important information are bounded on top and bottom with single
lines.

Overview
As mentioned before, PTalkDT is a 32-bit ActiveX control designed to handle all communications
between your application and Delta Tau’s PMAC. It is meant to be used as a PMAC application
development tool. You may use PTalkDT in any 32-bit OLE container application such as Visual Basic,
Delphi , etc. PTalkDT’s built-in features make most communications tasks as easy as calling a simple
method (function).

Note

PTalkDT will force PMAC’s I-variable I3=2 at all times to ensure high speed and
efficient communications.

PTalkDT Properties
Enabled
Data Type Boolean or Long Integer
Default Value Zero (for "False")
Description Enables or disables PtalkDT from communicating with PMAC.
Remarks Used to specify or determin is PtalkDT is allowed to communicate with PMAC. You

must set this property to "True" and SimulateCommunication to "False to allow
PtalkDT to communicate to PMAC.

Note

At end of the SelectDevice() method the Enabled property is set to True
internally. If communication was successful, the Enabled property retains the True
value.

LastError
Data Type Long Integer
Default Value 0
Description Used in the debugging of an application using PTalkDT
Remarks Used to read the state of PtalkDT's most recent communications error. This property is

usually used in the debugging of an application. You may want to set this property to 0
just before calling a PtalkDT method. Then recheck LastError for a non-zero code. The
error may be due to a PMAC reported error (i.e. invalid command) or bad parameters
passed to a PtalkDT method.

See Also LastErrorString, OnError

LastErrorString
Data Type String
Default Value NULL

 Accessory 9PTPRO

34 PTalkDT Reference

Description Used in the debugging of an application using PTalkDT.
Remarks Returns the last error string generated. The error may be due to a PMAC reported error

(i.e. invalid command) or bad parameters passed to a PTalkDT method. See also the
OnError() event..

See Also LastError, OnError

Device Number
Data Type Long Integer
Default Value 0
Description Used to uniquely identify which PMAC device the PtalkDT will use to communicate to.
Remarks The CONTROL PANEL'S "MOTION" applet may be used to add/remove or set up

PMAC's in your operating system. A device number (starting from 0) will be associated
with each PMAC you add. Use this same device number when specifying which PMAC
you want your PtalkDT Active X control to communicate to.

See Also Enabled, SimulateCommunication

DeviceNumber
Data Type Long Integer
Default Value 0
Description Used to uniquely identify which PMAC device the PTalkDT will use to communicate to.
Remarks The CONTROL PANEL’s “MOTION” applet may be used to add/remove or setup

PMAC’s in your operating system. A device number (starting from 0) will be associated
with each PMAC you add. Use this same device number when specifying which PMAC
you want your PTalkDT ActiveX control to communicate to.

See Also Enabled, SimulateCommunication

DownloadDeleteTemp
Data Type Boolean or Long Integer
Default Value >0 True
Description For use with the DownloadFile() method. To eliminate any intermediary files that are

created after downloading, set this property to True.
Remarks Intermediary files will be created if the DownloadParse method is set to true. The files

created will have the same name as the original argument to DownloadFile(), but the
extensions will be “PMA”, “LOG”, and “56K”.

See Also DownloadDo, DownloadHide, DownloadLog, DownloadParse, DownloadMap,
DownloadShowErrors, DownloadMaxErrors

DownloadDo
Data Type Boolean or Long Integer
Default Value >0 True
Description Used when the DownloadFile() method is called. To only to Macro parsing and

compiling of PLCC’s set this property to False and the end resulting file (*.56K) will not
get downloaded to PMAC.

Remarks Rarely used
See Also DownloadDeleteTemp, DownloadHide, DownloadLog, DownloadParse,
DownloadMap, DownloadShowErrors, DownloadMaxErrors

Accessory 9PTPRO

PTalkDT Reference 35

DownloadHide
Data Type Boolean or Long Integer
Default Value True
Description Used when the DownloadFile() method is called. To hide the DownloadFile() dialog set

this value to True.
Remarks Can be set in the property page.
See Also DownloadDeleteTemp,DownloadDo, DownloadLog, DownloadParse,

DownloadMap, DownloadShowErrors, DownloadMaxErrors

DownloadLog
Data Type Boolean or Long Integer
Default Value False
Description Used when the DownloadFile() method is called. To have the event log of the

DowloadFile() method recorded, set this property to True. The file created will have the
same name as the argument to DownloadFile() method but have the “LOG” file
extension (i.e. “MYFILE.LOG”).

Remarks Can be set in the property page.
See Also DownloadDeleteTemp, DownloadDo, DownloadHide, DownloadParse,

DownloadMap, DownloadShowErrors, DownloadMaxErrors

DownloadMap
Data Type Boolean or Long Integer
Default Value False
Description Used when the DownloadFile() method is called. To create a cross referencing of

MACROS used set this property to True. The file created will have the same name as the
argument to DownloadFile() but with the “MAP” extension.

Remarks To be of any use, the DownloadParse property must be set to True.
See Also DownloadDeleteTemp,DownloadDo, DownloadHide, DownloadLog,

DownloadParse,, DownloadShowErrors, DownloadMaxErrors

DownloadMaxErrors
Data Type Long Integer
Default Value 10
Description Used when the DownloadFile() method is called. This property limits the number of

errors before the DownloadFile() method aborts.
Remarks Can be set in the property page.
See Also DownloadDeleteTemp, DownloadDo, DownloadHide, DownloadLog,

DownloadParse, DownloadMap, DownloadShowErrors

DownloadParse
Data Type Boolean or Long Integer
Default Value True
Desctription Used when the DownloadFile() method is called. If the file you are downloading has

PLCC’s or macro definitions, then you’ll want to set this property to True. Otherwise, if
the file is strictly PMAC native code with no PLCC’s feel free to set DownloadParse to
False.

Remarks Can be set in the property page.
See Also DownloadDeleteTemp, DownloadDo, DownloadHide, DownloadLog,

DownloadMap, DownloadShowErrors, DownloadMaxErrors

 Accessory 9PTPRO

36 PTalkDT Reference

DownloadShowErrors
Data Type Boolean or Long Integer
Default Value False
Description Used when the DownloadFile() method is called. If errors occurred in the downloading

of a file and this property is set to True, the log file that was created will be shown in
NotePad.EXE.

Remarks If the DownloadLog property is False no Errors will be shown.
See Also DownloadDeleteTemp, DownloadDo, DownloadHide, DownloadLog,

DownloadParse, DownloadMap, DownloadMaxErrors

UploadAppend
Data Type Boolean or Long Integer
Default Value False
Description Used in the UploadData() method. When uploading data to a file, you have the option of

overwriting the existing file (UploadAppend = False) or appending to the existing one
(UploadAppend = True)

Remarks Can be set in the Property Page
See Also UploadHide, UploadNoComments, UploadShowProgress

UploadHide
Data Type Boolean or Long Integer
Default Value True
Description Used in the UploadData() method. To have the UploadData() methods dialog box hide

itself, set this property to True.
Remarks Can be set in the Property Page
See Also UploadAppend, UploadNoComments, UploadShowProgress

UploadNoComments
Data Type Boolean or Long Integer

Default Value False

Description Used in the UploadData() method. The specified file that will be created (or appended
to—see the other options), will contain no comments, i.e. only the actual uploaded
responses will be written into the file.

Remarks Can be set in the Property Page

See Also UploadAppend, UploadHide, UploadShowProgress

UploadShowProgress
Data Type Boolean or Long Integer
Default Value True
Description During the upload process (if the dialog box is not hidden), a progress bar will be shown,

indicating the upload status if this property is set to True. To use this option correctly,
you must specify a positive value for num_lines argument to the UploadData() method.
Also, num_lines should be as close as possible to the expected number of responses to be
received.

Remarks Can be set in the Property Page
See Also UploadAppend, UploadHide, UploadNoComments

Accessory 9PTPRO

PTalkDT Reference 37

PTalkDT Methods
DPRAvailable()
Description Used to check to see that Dual Ported Ram is available for use with PTalkDT.
Return Value A Boolean value indicating whether or not PTalkDT was able to access PMAC’s

Dual Ported Ram.
Visual Basic & Delphi [form].controlname.ConfigureDriver
 value = Mainform.PTalk1.ConfigureDriver
C++ BOOL controlname->ConfigureDriver()
 value = PTalkDT->ConfigureDriver()
Remarks This method is useful for those applications that will use PMAC’s Dual Ported

Ram. You may disable that portion of your application that uses DPR if this
function returns False.

DownloadFile (file name)
Description Downloads a text file (or a series of files) to PMAC and checks for errors.
Return Value Non-zero if successful, zero when a failure occurred.
Visual Basic & Delphi [form].ctrlname.DownloadFile (filename$, options As Long)
 Mainform.PTalkDT1.Downloadfile (“c:\files\main.pmc”)
C++ BOOL controlname->DownloadFile (char *filename,long

options)
PTalkDT1->Downloadfile (“c:\\files\\main.pmc”)

Remarks This method is useful for downloading commands and programs to PMAC. A
full preprocessor is built in and is invoked if the DownloadParse property has
been set to TRUE. The only parameter filename is a string containing the full
path of any valid ASCII text file that contains preprocessor or PMAC compatible
code. The following properties should be set up before this method is called:

Property What it does
DownloadDo Used when the DownloadFile() method is called. To only

to Macro parsing and compiling of PLCC’s set this property
to False and the end resulting file (*.56K) will not get
downloaded to PMAC.

DownloadDeleteTemp Intermediary files will be created if the DownloadParse
method is set to true. The files created will have the same
name as the original argument to DownloadFile(), but the
extensions will be “PMA”, “LOG”, and “56K”.

DownloadHide Used when the DownloadFile() method is called. To hide
the DownloadFile() dialog set this value to True.

DownloadLog Used when the DownloadFile() method is called. To have
the event log of the DowloadFile() method recorded, set
this property to True. The file created will have the same
name as the argument to DownloadFile() method but have
the “LOG” file extension (i.e. “MYFILE.LOG”).

DownloadMap Used when the DownloadFile() method is called. To create
a cross referencing of MACROS used set this property to
True. The file created will have the same name as the
argument to DownloadFile() but with the “MAP”
extension.

DownloadMaxErrors Used when the DownloadFile() method is called. This
property limits the number of errors before the
DownloadFile() method aborts.

DownloadParse Used when the DownloadFile() method is called. If the file
you are downloading has PLCC’s or macro definitions, then

 Accessory 9PTPRO

38 PTalkDT Reference

you’ll want to set this property to True. Otherwise, if the
file is strictly PMAC native code with no PLCC’s feel free
to set DownloadParse to False.

DownloadShowErrors Used when the DownloadFile() method is called. If errors
occurred in the downloading of a file and this property is
set to True, the log file that was created will be shown in
NotePad.EXE.

About the preprocessor The preprocessor provides the ability to use #include file statements and
macro string substitution in your code just like in the C and C++ languages.
Delta Tau’s PMAC Executive Program supports this same use of #include file
and macro string substitution.

Directive Example Description
#define name {command or variable} #define COUNTER P1 Declares the name of a macro

string substitution. For every
occurrence of name, the
preprocessor will substitute in
{command or variable}.

#define name #define DEBUG_MODE Declares a variable name that
can be used for compiler
directives.

#include “filename” #include “macros.txt”
#include
“C:\\PE\\macros.txt”

Preprocess and download the
specified file from the current
directory or given path. This is
useful for including multiple
files as part of the download.

#ifdef name #ifdef DEBUG_MODE
…
#else
…; (this code
ignored)
#endif

Tests to see if name has been
previously declared. If so, the
subsequent lines of code are
included in the download.

#ifndef name #ifndef DEBUG_MODE
…
#else
…; (this code
ignored)
#endif

Tests to see if name has NOT
been previously declared. If
name has NOT been declared,
the subsequent lines of code
(until the next #else or #endif)
are included in the download.

#else #ifdef DEBUG_MODE
…
#else
…
#endif

In the example, if
DEBUG_MODE has not been
declared, the lines of code
following the #else are included
in the download. This directive
provides a means to alternate
lines of code when the #ifdef or
#ifndef conditions are false.

#endif #ifdef DEBUG_MODE
…
#else
…
#endif

For every #ifdef or #ifndef, you
must include a matching #endif.

Accessory 9PTPRO

PTalkDT Reference 39

DPRDouble (LSB_word, MSB_word)
Description Converts a PMAC 48 bit floating point data value (as found in PMAC’s Dual

Port RAM) to a 64 bit floating point value compatible with Visual Basic, C++,
Delphi, etc.

Return Value A 64-bit floating-point value (of type double) converted from the passed in
parameters.

Visual Basic & Delphi [form].controlname.DPRDouble (lo_val as Long,hi_val As
Long)
value = Mainform.PTalk1.DPRDouble (lo_val,hi_val)

C++ double controlname->DPRDouble (long lo_val,long hi_val)
value = PTalkDT->DPRDouble (lo_val,hi_val)

Remarks Floating-point values within PMAC’s internal memory are stored as 48-bit
numbers. Floating-point values in your PC’s memory are typically stored as 32-
bit values (float or single) and 64-bit values (double). These formats are not
directly compatible. When accessing various floating point registers in PMAC’s
Dual Port RAM, they can be accessed by reading two 32-bit integers (or
“words”) and combining them to form a PC-compatible 64-bit number. For this
function, the first word, LSB_word, specified in the parameters is treated as the
least significant word. And the second word, MSB_word, is the most significant
word. This function will prove very useful when reading the many floating point
registers in the Real Time Buffer section of PMAC’s Dual Port RAM.

DPRFixed (LSB_word, MSB_word)
Description Converts a PMAC 48 bit integer data value (as found in PMAC’s Dual Port

RAM) to a 64 bit floating point value compatible with Visual Basic, C++,
Delphi, etc.

Return Value A 64-bit floating-point value (of type double) converted from the passed in
parameters.

Visual Basic & Delphi [form].controlname.DPRFixed (lo_val as Long,hi_val As Long)
 value = Mainform.PTalk1.DPRFixed (lo_val,hi_val)
C++ double controlname->DPRFixed (long lo_val,long hi_val)
 value = PTalkDT->DPRFixed (lo_val,hi_val)
Remarks Integer values within PMAC’s internal memory are stored as 48-bit numbers.

Floating-point values in your PC’s memory are typically stored as 32-bit values
(float or single) and 64-bit values (double). These formats are not directly
compatible. When accessing various integer based registers in PMAC’s Dual
Port RAM, they can be accessed by reading two 32-bit integers (or “words”) and
combining them to form a PC-compatible 64-bit number. For this function, the
first word, LSB_word, specified in the parameters is treated as the least
significant word. And the second word, MSB_word, is the most significant word.
This function will prove very useful when reading the many integer based
registers in the Real Time Buffer section of PMAC’s Dual Port RAM such as
motor position.

 Accessory 9PTPRO

40 PTalkDT Reference

DPRDWordBit Set/Reset and BitSet Methods
DPRDWordSetBit (offset, bit_position)
DPRDWordResetBit (offset, bit_position)
DPRDWordBitSet (offset, bit_position)

Description These functions can be used to set (assign a bit value of 1), reset (assign a bit
value of 0), or query, respectively, the state of an individual bit within a 32 bit
integer located in the address space of PMAC's Dual Ported Ram.

Return Value DPRDWordSetBit and DPRDWordResetBit return “True” if successful,
otherwise “False”. DPRDWordBitSet returns the value of the bit being queried,
either a 1 or 0.

Visual Basic & Delphi [form].ctrlname.DPRDWordSetBit (offset as long, bit As long)
 [form].ctrlname.DPRDWordResetBit (offset As long, bit As long)
 [form].ctrlname.DPRDWordBitSet (offset As long, bit As long)
 Call Mainform.PTalk1.DPRWordSetBit (&H0800&,2)
C++ BOOL controlname-> DPRDWordSetBit (long offset, long bit)
 BOOL controlname-> DPRDWordResetBit (long offset, long bit)
 BOOL controlname-> DPRDWordBitSet (long offset, long bit)
 PTalkDT->DPRFixed (0x800,2)
Remarks The offset parameter is the number of PMAC addresses from the base address of

the DPR within the PMAC address space. PMAC's Dual Ported Ram base
address is always $D000 (the last DPR address is $DFFF). For example to
specify address $D200 in the DPR use a value of $200 (that is hex 200, or 512
decimal)

 The bit parameter specifies the bit within the double word. Valid ranges for bit
are from 0 to 31.

DPRGetDWord and DPRSetDWord Methods
DPRGetDWord (base_address_offset)
DPRSetDWord (base_address_offset, value)

Description These functions can be used to read and write 32 bit integers from and to PMAC's Dual
Ported RAM.

Return Value DPRGetDWord returns the 32-bit integer read from PMAC's Dual Ported Ram.
DPRSetDWord returns “True” if successful, “False” if a failure occurred.

Visual Basic & Delphi [form].ctrlname.DPRDGetDWord (offset As long) As long
 [form].ctrlname.DPRDSetDWord (offset As long,value As long)
 value = Mainform.PTalk1.DPRGetWord (&H0800&)
C++ long controlname-> DPRDGetDWord (long offset)
 BOOL controlname-> DPRDSetDWord (long offset, long value)
 value = PTalkDT->DPRGetWord (0x800)

Remarks The base_addr_offset parameter is the number of PMAC addresses from the base address

of the DPR within the PMAC address space. PMAC's Dual Ported Ram base address is
always $D000 (the last DPR address is $DFFF). For example to specify address $D200
in the DPR use a value of $200 (that is hex 200, or 512 decimal)

Example Var
 aBool : Bool;

aLong : LongInt;
offset : LongInt ;
aString: string[11];

begin
// Assign offset of 512 from DPR Base Address (PMAC
Address $D200)

Accessory 9PTPRO

PTalkDT Reference 41

 offset := 512;
 aLong := Form1.PTalkCtrl1.DPRGetDWord(offset);
 Str(aShort, aString); // Convert to a string
 Edit8.Text := aString; // Write to an edit box
// Write to first 4 bytes of DPR
 aBool := Form1.PTalkCtrl1.DPRSetDWord(0,aShort);
end;

DPRGetFloat and DPRSetFloat Methods
DPRGetFloat (offset)
DPRSetFloat (offset, value)
Description These functions can be used to read and write 32 floating-point values from and

to PMAC's Dual Ported Ram.
Return Value DPRGetFloat returns the 32-bit floating-point value read from PMAC's Dual

Ported RAM. DPRSetFloat returns “True” if successful, “False” if a failure
occurred.

Visual Basic & Delphi [form].ctrlname.DPRDGetFloat (offset As long) As long
 [form].ctrlname.DPRDSetFloat (offset As long,value As Single)
 value = Mainform.PTalk1.DPRGetFloat (&H0800&)
C++ float controlname-> DPRDGetFLoat (long offset)
 BOOL controlname-> DPRDSetFloat (long offset, float value)
 value = PTalkDT->DPRGetFloat (0x800);
Remarks The offset parameter is the number of PMAC addresses from the base address of

the DPR within the PMAC address space. PMAC's Dual Ported Ram base
address is always $D000 (the last DPR address is $DFFF). For example to
specify address $D200 in the DPR use a value of $200 (that is hex 200, or 512
decimal)
PMAC's special m-variable format "F" may be used to easily assign 32 bit
floating-point values to Dual Ported RAM.

Example Var
 aBool : Bool;
 aFloat : Single;
 offset : LongInt ;
begin
 offset := 100; // Assign offset from PMAC's base address
 aFloat := 1.2345; // Assign float
 aBool := Form1.PTalkCtrl1.DPRSetFloat(offset,aFloat);
 aFloat := Form1.PTalkCtrl1.DPRGetFloat(offset);
end;

DPRGetMem and DPRSetMem Methods
DPRGetMem
DPRSetMem (long Offset, long NumLongWords, long FAR* LongArray)

Description These functions can be used to read and write a user defined number of 32 bit
integers from and to PMAC's Dual Ported RAM.

Return Value Both these functions return TRUE if successful, otherwise FALSE (0).
Visual Basic & Delphi [form].ctrlname.DPRGetMem(Offset As Long, NumLongWords As

long,LongArray as Long) As long
 [form].ctrlname.DPRSetMem(Offset As Long, NumLongWords As

long,LongArray as Long) As long
 Private Sub cmdDPRGetMem_Click()
 Dim mylongarray(0 To 9) As Long

 Accessory 9PTPRO

42 PTalkDT Reference

 ' BOOL DPRGetMem(long Offset, long NumLongWords, long FAR*
LongArray)

 ' Note OFFSET is in PMAC Words
If (PTalkDT1.DPRGetMem(0, 10, mylongarray(0))) Then
 MsgBox ("Cool")
Els eMsgBox ("Un cool")
End If
End Sub
Private Sub cmdSetMemTest_Click()
Dim mylongarray(0 To 9) As Long
 mylongarray(0) = 1
 mylongarray(1) = 2
 mylongarray(2) = 3
 mylongarray(3) = 4
 mylongarray(4) = 5
 mylongarray(5) = 6
 mylongarray(6) = 7
 mylongarray(7) = 8
 mylongarray(8) = 9
 mylongarray(9) = 10
 ' BOOL DPRSetMem(long Offset, long NumLongWords, long
FAR* LongArray)
 ' Note OFFSET is in PMAC Words
 If (PTalkDT1.DPRSetMem(0, 10, mylongarray(0))) Then
 MsgBox ("Cool")
 Else
 MsgBox ("Un cool")
 End If
End Sub

C++ long controlname-> DPRDGetWord (long Offset, long NumLongWords,
long FAR* LongArray);
BOOL controlname-> DPRDSetWord (long Offset, long NumLongWords,
long FAR* LongArray);
value = PTalkDT->DPRGetWord (0,10,LongArray[0]);

Remarks The offset parameter is the number of PMAC addresses from the base address of
the DPR within the PMAC address space. PMAC's Dual Ported Ram base
address is always $D000 ($60000 for Turbo). For example to specify address
$D200 in the DPR use a value of $200 (that is hex 200, or 512 decimal).
The NumLongWords parameter should be the size of the array passed in.

DPRGetWord and DPRSetWord Methods
 DPRGetWord(bank, offset)
 DPRSetWord(bank, offset, value)
Description These functions can be used to read and write 16 bit integers from and to

PMAC's Dual Ported RAM.
Return Value DPRGetWord returns the 16-bit integer read from PMAC's Dual Ported

am. DPRSetWord returns “True” if successful, “False” if a failure
occurred.

Visual Basic & Delphi [form].ctrlname.DPRGetWord (bank As Long,offset As
long) As long
[form].ctrlname.DPRSetWord (bank As Long,offset As
Long,value As integer)

 Visual Basic
value = Mainform.PTalk1.DPRGetWord ('X',&H0800&)

Accessory 9PTPRO

PTalkDT Reference 43

Delphi
// 88 = 'X' in ASCII
value = Mainform.PTalk1.DPRGetWord (88,&H0800&)

C++ long controlname-> DPRDGetWord (long bank,long offset)
BOOL controlname-> DPRDSetWord (long bank,long offset, int
value)
value = PTalkDT->DPRGetWord ('X',0x800);

Remarks The bank parameter specifies PMAC's X or Y address space. Use a
value of 24 for X or 25 for Y (or more intuitively an ASCII character
''x", "X", or "y", "Y").

 The offset parameter is the number of PMAC addresses from the base
address of the DPR within the PMAC address space. PMAC's Dual
Ported Ram base address is always $D000 (the last DPR address is
$DFFF). For example to specify address $D200 in the DPR use a value
of $200 (that is hex 200, or 512 decimal).

 PMAC's m-variable formats "X" and “Y” may be used to
easily assign 16 bit integers to Dual Ported RAM
(i.e. m1->X:$D200,0,16,s).

Example Var
 aBool : Bool;
 aShort : short;
 offset : LongInt ;
 aString: string[100];
begin
// Read from PMAC DPR Address X$D200
 offset := 512;
 aShort := Form1.PTalkCtrl1.DPRGetWord('X',offset);
 Str(aShort, aString); // Convert to a string
 Edit8.Text := aString; // Write to an edit box
// Write to first two bytes of DPR
aBool:=Form1.PTalkCtrl1.DPRSetWord('X',offset,aShort);
end;

Flush ()
Description Empties PMAC’s response buffer and character I/O port.
Return Value “True” for success else “False”
Visual Basic & Delphi [form].controlname.Flush
 Call Mainform.PTalk1.Flush
C++ BOOL controlname->Flush ();
 PTalkDT->Flush();
Remarks Empties the contents of PMAC’s output buffer queue and strips out any

remaining characters in PMAC’s ASCII queue. The characters that get
“Flushed” cannot be read. Note that this method has no parameters.

GetControlResponse (Response, Control Char)
Description Sends a control character to PMAC and waits for PMAC’s response.
Return Value Non-zero if successful, zero when a failure occurred.
Visual Basic & Delphi [form].ctrlname.GetControlResponse (Response As String,
 controlChar As Integer)
 Mainform.PTalk1.GetControlResponse (Response, 16)

 Accessory 9PTPRO

44 PTalkDT Reference

C++ BOOL controlname->GetControlResponse (char *response,
 char control);
 result = PTalkDT->GetControlResponse (response,’P’);
Remarks Sends a control character to PMAC and waits up to Timeout iterations for

PMAC’s response.

Note

This function will not send control-T. This is to avoid putting PMAC in a full-
duplex mode. Doing so will keep PTalkDT from re-establishing communications
the next time the application is run.

GetLineAck (Response)
Description Gets a string from PMAC up to the terminating <ACK> character.
Return Value Number of characters retrieved.
Visual Basic & Delphi [form].controlname.GetLineAck (Response As String)
 Mainform.PTalk1.GetLineAck (Response)
C++ long controlname->GetLineAck (char *response);
 result = PTalkDT->GetLineAck (response);
Remarks Communications routine for receiving a response from PMAC. Certain

commands can cause PMAC’s response to contain multiple <CR> characters.
This will receive the entire response up to the terminating <ACK> character or
timeout condition. This response string can be as large as 16000 characters.

 For most applications the GetResponse method should be used instead of
GetLineAck. Exceptions would be when you want to receive something from
PMAC without sending a command as in a terminal program.

GetLineCR (Response)
Description Gets a string from PMAC up to the terminating <CR> character.
Return Value Number of characters retrieved
Visual Basic & Delphi [form].controlname.GetLineCr (Response As String)
 Mainform.PTalk1.GetLineAck (Response)
C++ long controlname->GetLineAck (char *response);
 result = PTalkDT->GetLineAck (response);
Remarks Communications routine for receiving a response from PMAC. This routine will

read a pending response up to the next <CR> or <ACK> character.
 Although PMAC will respond to commands with a terminating <ACK>

character, sometimes only the part of PMAC’s response up to the next <CR> is
desired at the moment. In this situation the GetLineCR method can be used.

 For most applications the GetResponse method should be used instead of
GetLineCR. Exceptions would be when you want to receive something from
PMAC without sending a command as in a terminal program.

 Response: Response string will never be greater than 255 characters.

GetResponse (Response, Command)
Description Sends a string to PMAC and waits for PMAC’s response.
Return Value Non-zero if successful, zero when a failure occurred.
Visual Basic & Delphi [form].controlname.GetResponse (Response As String,

command As String)
Mainform.PTalk1.GetResponse (Response,”#1P”)

C++ BOOL controlname->GetResponse (char *response,char
*command);

 result = PTalkDT->GetResponse (response,”#1P”);

Accessory 9PTPRO

PTalkDT Reference 45

Remarks General-purpose communications routine for sending a command, and receiving
a consequential response from PMAC. Response will never be greater than
16,000 characters. Command should not be greater than 250 characters if using
Bus or Serial Port, and should not exceed 150 characters if using the Dual Ported
Ram.

IsLineWaiting ()
Description Used to determine if PMAC is waiting to say something to the host.
Return Value non-zero : PMAC has an ASCII response pending for the host
 zero : PMAC does not have an ASCII response pending for host
Visual Basic & Delphi [form].controlname.IsLineWaiting
 result = Mainform.PTalk1.IsLineWaiting
C++ BOOL controlname->IsLineWaiting ();
 result = PTalkDT->IsLineWaiting();
Remarks This method is excellent for creating applications which will periodically check

to see if PMAC has an ASCII response for the Host computer. Instead of calling
GetResponse to see if a response is pending use IsLineWaiting instead.
IsLineWaiting will not remove any contents of PMAC’s output buffer, and will
not timeout. Note that this method does not have parameters.

LoadSettings ()
Description Loads the last stored PTalkDT settings.
Return Value Non-zero if successful, zero when a failure occurred.
Visual Basic & Delphi [form].controlname. LoadSettings
 result = Mainform.PTalk1. LoadSettings
C++ BOOL controlname-> LoadSettings();
 result = PTalkDT-> LoadSettings();
Remarks Loads the last stored parameters via the SaveSettings method. If the Enabled

property is set to TRUE before this method is called, communication will be re-
attempted after the settings have been loaded.

 Settings include the following properties:

DeviceNumber
SimulateCommunication
DownloadDo
DownloadParse
DownloadLog
DownloadMap
DownloadDeleteTemp
DownloadHide
DownloadShowErrors
DownloadMaxErrors
UploadHide
UploadShowProgress
UploadNoComments
UploadAppend

 Accessory 9PTPRO

46 PTalkDT Reference

LockPMAC ()
Description Locks the PMAC resource from other threads and processes.
Return Value None
Visual Basic & Delphi [form].controlname. LockPMAC
 Mainform.PTalk1.LockPMAC
C++ void controlname-> LockPMAC();
 PTalkDT-> LockPMAC();
Remarks To be used in conjunction with ReleasePMAC(). These two methods lock and

release the PMAC resource respectively. This should only be used very
sparingly to ensure that no cross talk occurs when using the SendChar(),
SendLine() and any GetLine() methods. All other communication methods are
thread safe.

For Example:
 LockPmac() // Hold off any other processes or threads
 SendLine(“?”) // Send the line
 GetLineACK(response) // Get the response
 ReleasePMAC() //Let other threads have access to PMAC

ReleasePMAC()
Description Releases the PMAC resource for other threads and processes
Return Value None
Visual Basic & Delphi [form].controlname.ReleasePMAC
 Mainform.PTalk1.ReleasePMAC
C++ void controlname-> ReleasePMAC();
 PTalkDT->ReleasePMAC();
Remarks To be used in conjunction with LockPMAC(). These two methods lock and

release the PMAC resource. This should only be used very sparingly to ensure
that no cross talk occurs when using the SendChar(), SendLine() and any
GetLine() methods. All other communication methods are thread safe.

For Example:
 LockPmac() // Hold off any other processes or threads
 SendLine(“?”) // Send the line
 GetLineACK(response) // Get the response
 ReleasePMAC() //Let other threads have access to PMAC

SaveSettings ()
Description Saves the current communications settings.
Return Value Non-zero if successful, zero when a failure occurred.
Visual Basic & Delphi [form].controlname.SaveSettings
 Mainform.PTalk1. SaveSettings
C++ BOOL controlname->SaveSettings();
 result = PTalkDT->SaveSettings();
Remarks Stores the following properties to an initialization file whose name is the same as

PTalkDT’s name property (i.e. PTalkDT1.ini)

DeviceNumber
SimulateCommunication
DownloadDo
DownloadParse
DownloadLog
DownloadMap

Accessory 9PTPRO

PTalkDT Reference 47

DownloadDeleteTemp
DownloadHide
DownloadShowErrors
DownloadMaxErrors
UploadHide
UploadShowProgress
UploadNoComments

SelectDevice()
Description Shows PTalkDT’s Select Device dialog to allow end users to select, add, and

configure PMAC devices.
Return Value Non-zero if successful, zero when a failure occurred.
Visual Basic & Delphi [form].controlname.SelectDevice()
 result = Mainform.PTalk1.SelectDevice
C++ BOOL controlname->SelectDevice();

result = PTalkDT->SelectDevice();
Remarks Calling this function will give your end users the ability to remove, add, and

reconfigure PMAC devices. Consider your end users capability before calling
this routine.

SendChar (Character)
Description Sends a single ASCII character, aChar, to PMAC.
Return Value Non-zero if successful, zero when a failure occurred.
Visual Basic & Delphi [form].controlname.SendChar (character As Long)
 Mainform.PTalk1. SendChar(Asc(“P”))
C++ BOOL controlname-> SendChar(long character);
 result = PTalkDT->SendChar(‘P’);
Remarks Sends a single ASCII character to PMAC without waiting for PMAC to respond.

This will come in handy when you need to send characters one at a time either in
a terminal or when sending control characters.

SendLine (Command)
Description Sends a string to PMAC.
Return Value Non-zero if successful, zero when a failure occurred.
Visual Basic & Delphi [form].controlname.SendLine (command As String)
 Mainform.PTalk1.GetResponse (”ListProg1”)
C++ BOOL controlname->SendLine (char *command);
 result = PTalkDT->GetResponse (”ListProg1”);
Remarks This function is here only for backward compatibility. Use GetResponse()

instead. If you find that you have to use this function follow these instructions
very carefully.

 SendLine() sends PMAC a command string. PMAC WILL HAVE A
RESPONSE TO THE SENT COMMAND. If PMAC has two or more pending
responses for the host computer, the PMAC will suspend the running of all
PLC’s and motion programs, as well as any incoming ASCII commands.
Therefore, always call GetLineACK() after using SendLine() to purge any
pending response from PMAC.

One last very important thing. Use the LockPMAC() method before the SendLine() and the
ReleasePMAC() method after the GetResponse() call to ensure that your program won’t
cause any “CROSS TALK” amongst other threads or processes that are using Delta Tau’s
32 bit driver, PComm32.

 Accessory 9PTPRO

48 PTalkDT Reference

For Example:
 LockPmac() // Hold off any other processes or threads
 SendLine(“?”) // Send the line
 GetLineACK(response) // Get the response
 ReleasePMAC() //Let other threads have access to PMAC

ShowPropertyPage () [OBSOLETE]
Description This method is available for backward compatibility only. Use the new

SelectDevice() method instead. Both ShowPropertyPage() and SelectDevice() do
the same thing.

 Shows PTalkDT’s Select Device dialog to allow end users to select, add, and
configure PMAC devices.

Return Value Non-zero if successful, zero when a failure occurred.
Visual Basic & Delphi [form].controlname.ShowPropertyPage
 result = Mainform.PTalk1.ShowPropertyPage
C++ BOOL controlname->ShowPropertyPage();
 result = PTalkDT->ShowPropertyPage();
Remarks Calling this function will give your end users the ability to remove, add, and

reconfigure PMAC devices. Consider your end users capability before calling
this routine.

UploadData (File Name, Command, Options, Expected Number of Lines)
Description Uploads a series of responses from a PMAC command to a text file.
Return Value Non-zero if successful, zero when a failure occurred.
Visual Basic & Delphi [form].ctrlname.UploadData (filename As String, command As

String, number_of_lines As Long)
 Mainform.PTalkDT1.UploadData

(“c:\files\main.pmc”,”i0..1023”,1023)
 Mainform.PTalkDT1.UploadData (“c:\files\plc1.pmc”,”list plc

1”,0)
C++ BOOL controlname->UploadData (char *filename,char

*command,long number_of_lines)
 result = PTalk1->UploadData

(“c:\\files\\main.pmc”,”i0..1023”,1023)
Remarks This method is useful for receiving a series of responses from PMAC and writing

them to a file. With this method you can upload items such as motion and PLC
programs, I-, P-, Q- and M- variables, and gathered data to a data file. By
default, helpful comments are also written into the file, including a time and date
stamp. The first parameter filename is the full path of any valid ASCII text file
that will contain the upload data. The second parameter command is the actual
command string that will be sent to PMAC to generate the upload data. The third
parameter number_of_lines specifies the number of expected lines so that the
optional progress bar can show the correct progress status during the upload. For
example, if the command was I0..1023 (which uploads the values of I-
variables I0 through I1023), you expect to receive 1024 responses and you would
set number_of_lines equal to 1024. The following PTalkDT properties
summarizes the available options:

Accessory 9PTPRO

PTalkDT Reference 49

Name of Option Description
UploadNoComments The specified file that will be created (or appended

to—see the other options), will contain no comments,
i.e. only the actual uploaded responses will be written
into the file.

UploadHide The usual dialog box that appears showing the
progress of the upload is not shown. As a result, you
will not be able to cancel the upload process before it
completes.

UploadAppend If the specified file already exists, the newly uploaded
data will be appended to the end of the specified file.
If the specified file does not exist, it will be created.

UploadShowProgress During the upload process (if the dialog box is not
hidden), a progress bar will be shown, indicating the
upload status. To use this option correctly, you must
specify a positive value for number_of_lines. In
addition, this value should be as close as possible to
the expected number of responses to be received.

PTalkDT Events
OnError
Description Signals when a PTalkDT initialization or communications error has occurred.
Visual Basic Private Sub PTalk1_OnError(ByVal ErrorNumber As Long, ErrorString

As String)
 FormDebug.Text1.Text = Str(ErrorNumber)
 FormDebug.Text2.Text = ErrorString
 ErrorCount = ErrorCount + 1
 FormDebug.Text3 = Val(ErrorCount)
 End Sub
Remarks The OnError event was meant to be used for troubleshooting. If you can’t establish

communications, if you are timing out, if a PMAC error was generated etc. then this
event will notify you. Your code in this routine may simply display the message,
ErrorString, to the user (good for developing), or perhaps act on the ErrorCode without
the end user ever knowing a problem occurred (good for releases). The ErrorCode and
ErrorString parameters passed in this event represent the LastError and
LastErrorString properties just modified state.

See Also PMAC Software Reference Manual \ On line commands \ I6 for an explanation of PMAC
Errors.

Trouble Shooting
To see if the problem you are encountering is communications related, try disabling the communications
via the SimulateCommunication property.

Symptom PTalkDT can't seem to load or fails unpredictably.
Cause Visual Basic users should be sure to install Visual Basic first then PTalkDT second.

Symptom You can't establish serial communications but everything works O.K. once you run the
PMAC Executive Program.

Cause Some PMAC firmware versions (before 1.16A) set the hardware handshaking lines
incorrectly on power up or reset. To get around this problem short pins 4 & 5 (CTS &
RTS, clear to send and request to send) on the PC's serial port connector.

Symptom You can't establish serial communications period.

 Accessory 9PTPRO

50 PTalkDT Reference

Cause Are you using a known working serial cable? You may just want to see exactly what
your PMAC's baud rate is and use that.

 If your PMAC has been put in full-duplex mode (by sending it a control-t)
communications with PTalkDT will not occur. Putting a jumper on the board to put it in
a factory default state (E51 on PMAC1, E3 on PMAC2) should eliminate this problem.

Look at the port setup from the operating systems control panel . Also, try the supplied
“HyperTerminal” application.

Symptom Serial communications is losing characters.
Cause Setup your COM port from the Control Panel of the operating system. Make sure that

you are NOT using a FIFO, and that HARDWARE FLOW CONTROL is being used.

Symptom In Microsoft Visual C++ after inserting a PTalkDT control, you can't see any of the
member variables displayed in the class wizard.

Cause The problem may be that the operating system's language may not be set to English(US).
Try switching to this.

Symptom Communications routines return “True”, but don’t really work.
Cause SimulateCommunications may be set to “True”

Symptom Unable to register PTALKDT.OCX.
Cause PTALKDT.OCX cannot access some DLL’s or DLL’s of the correct version.

a. Make sure PMAC.DLL is in the SYSTEM directory
b. Look at the supplied installation script, and check it’s accuracy

Dual Ported Ram Automatic Feature Example
The example below illustrates how to make use of PMAC's automatic Dual Ported Ram features. In this
case were using the "Fixed Real Time Data Buffer" which has motor specific information. All 8 motor
actual positions are being displayed using a timer procedure. The example was done in Delphi.

 procedure TForm1.Timer2Timer(Sender: TObject);
var
 aBool : Bool;
 aShort : short;
 aString: string[100];
 LongLow: LongInt;
 LongHigh: LongInt;
 position: double;
begin
 // Tell PMAC we are busy reading, Y:$D009, 89 = "Y" in ASCII
 aBool := Form1.PTalkDTCtrl1.DPRSetWord(89,9,1);
 // Read in servo timer, X:$D009, 88 = "X" in ASCII
 aShort := Form1.PTalkDTCtrl1.DPRGetWord(88,9);
 aShort := aShort and $7FFF;// Bit 15 is a handshake bit, mask off
 Str(aShort, aString);
 Edit13.Text := aString;
 // Read in Motor Actual Positions, 2 long words that need to be
 // converted to a float via a special method
 LongLow := Form1.PTalkDTCtrl1.DPRGetDWord(20);
 LongHigh := Form1.PTalkDTCtrl1.DPRGetDWord(21);
 position := Form1.PTalkDTCtrl1.DPRFixed(LongLow,LongHigh);
 position := position/(32*96); // Ix08 *32 scale factor
 eM1.Text := FloatToStr(position);

Accessory 9PTPRO

PTalkDT Reference 51

 LongLow := Form1.PTalkDTCtrl1.DPRGetDWord(35);
 LongHigh := Form1.PTalkDTCtrl1.DPRGetDWord(36);
 position := Form1.PTalkDTCtrl1.DPRFixed(LongLow,LongHigh);
 position := position/(32*96); // Ix08 *32 scale factor
 eM2.Text := FloatToStr(position);
 LongLow := Form1.PTalkDTCtrl1.DPRGetDWord(50);
 LongHigh := Form1.PTalkDTCtrl1.DPRGetDWord(51);
 position := Form1.PTalkDTCtrl1.DPRFixed(LongLow,LongHigh);
 position := position/(32*96); // Ix08 *32 scale factor
 eM3.Text := FloatToStr(position);
 LongLow := Form1.PTalkDTCtrl1.DPRGetDWord(65);
 LongHigh := Form1.PTalkDTCtrl1.DPRGetDWord(66);
 position := Form1.PTalkDTCtrl1.DPRFixed(LongLow,LongHigh);
 position := position/(32*96); // Ix08 *32 scale factor
 eM4.Text := FloatToStr(position);
 LongLow := Form1.PTalkDTCtrl1.DPRGetDWord(80);
 LongHigh := Form1.PTalkDTCtrl1.DPRGetDWord(81);
 position := Form1.PTalkDTCtrl1.DPRFixed(LongLow,LongHigh);
 position := position/(32*96); // Ix08 *32 scale factor
 eM5.Text := FloatToStr(position);
 LongLow := Form1.PTalkDTCtrl1.DPRGetDWord(95);
 LongHigh := Form1.PTalkDTCtrl1.DPRGetDWord(96);
 position := Form1.PTalkDTCtrl1.DPRFixed(LongLow,LongHigh);
 position := position/(32*96); // Ix08 *32 scale factor
 eM6.Text := FloatToStr(position);
 LongLow := Form1.PTalkDTCtrl1.DPRGetDWord(110);
 LongHigh := Form1.PTalkDTCtrl1.DPRGetDWord(111);
 position := Form1.PTalkDTCtrl1.DPRFixed(LongLow,LongHigh);
 position := position/(32*96); // Ix08 *32 scale factor
 eM7.Text := FloatToStr(position);
 LongLow := Form1.PTalkDTCtrl1.DPRGetDWord(125);
 LongHigh := Form1.PTalkDTCtrl1.DPRGetDWord(126);
 position := Form1.PTalkDTCtrl1.DPRFixed(LongLow,LongHigh);
 position := position/(32*96); // Ix08 *32 scale factor
 eM8.Text := FloatToStr(position);

 // Tell PMAC we are not busy anymore
 aBool := Form1.PTalkDTCtrl1.DPRSetWord(89,9,0);
end;

 Accessory 9PTPRO

52 PTalkDT Reference

Accessory 9PTPRO

Delta Tau Driver Configuration 53

DELTA TAU DRIVER CONFIGURATION
A Global View of the Driver
Delta Tau’s 32-bit hardware driver itself consists of three files.
• PCOMM32.DLL - A 32-bit DLL.
• PMACISA(SER, PCI, or USB).SYS – Windows 98/ME or NT 2000 kernel drivers.
• PMACISA(SER, PCI, or USB).INF - Windows Setup Information files.

The illustration below shows how these modules are related.

PtalkDT Wraps (PCOMM32.DLL)

Windows 998/ME/NT2000Ring 0

32-Bit APPLICATIONS

PMACHardware

PCI BUS USB PortEthernetSerial PortISA BUS

Ring 3

Figure 1-1. PComm32 Driver Structure

Device Configuration
Plug & Play Ports
• PCI BUS PMAC
• USB Port PMAC

Non-Plug & Play Ports
• ISA Bus PMAC
• Serial Port PMAC
• Ethernet port PMAC (expected in 2nd trimester of 2001)

Device Configuration
• Plug & play devices are configured automatically at boot time or whenever plugged in (USB device.)

Devices can be reconfigured at any time for updated drivers as well.
• Non-plug & play devices are configured through windows standard "hardware wizard" as follows:

 Accessory 9PTPRO

54 Delta Tau Driver Configuration

• In Windows 98/ME/2000, run Add new hardware from the control panel. Hardware wizard in
listed under System in Windows 2000.

• Continue for a couple of screens until following screen appears. Select No from the Windows

auto search option.

• In the following screen, select other devices from the hardware types (First time only.) Next

time, Motion (Motion Controllers under Windows 2000) will be listed in the hardware types list.

Accessory 9PTPRO

Delta Tau Driver Configuration 55

• Select have disk from the following wizard and specify the path of Setup information file(s)
PMACISA.Inf or PMACSER.Inf depending upon the desired configuration, ISA bus or Serial
respectively. Setup information file(s) are located in Windows\INF folder (Winnt\INF folder
under Windows 2000.)

Once hardware is identified from the setup information file(s) select the appropriate model from
PMAC ISA or PMAC Serial Port controller.

• Setup information file(s) specify the required driver file(s) PMACISA.SYS or PMACSER.SYS

for Bus and Serial configuration(s) respectively. In the following wizard specify the path of driver
files. Pcomm32 installation copies these files in Windows\System32\Drivers folder
(Winnt\system32\Drivers folder under Windows 2000.)

At this stage the driver is installed on your computer. Following step is different on Windows
98/ME than Windows 2000. Please configure the resources accordingly. A restart of
computer is required after the driver installation before use.

 Accessory 9PTPRO

56 Delta Tau Driver Configuration

• (Windows 98/ME only) There are essentially FOUR configurations available for ISA BUS and
only one for the Serial port. For ISA BUS, they are I/O Port only, I/O Port w/DPRAM, I/O
Port w/DPRAM & IRQ and finally I/O Port w/IRQ only. PMAC can be configured for only
one of these configurations depending on the DPRAM availability, I/O port and/or IRQ jumper
settings. Under Windows 98/ME. These resources can only be changed from Control Panel’s
device manager.

Device manager is invoked by Control Panel’s System menu or directly by checking the
properties of My Computer from the Desktop. An extra restart may be required if the resources
are changed.

• (Windows 2000 only) Above step is not needed under Windows 2000 where all resource
configurations are available during installation.

• However, resources can be changed on all compatible operating systems, at any time by invoking
the device manager.

Accessory 9PTPRO

Delta Tau Driver Configuration 57

This driver has eliminated the need for MotionEXE (available in earlier implementations of Delta Tau’s
32 bit driver). Once a device is configured successfully, it is registered and available for use.

Parameter configuration of serial device such as, port number, baud rate, timeouts, handshake and parity
options are done at the application level. Properties of a serial device are enabled in the SelectDevice()
dialog.

After Setting Up The Device Driver
Once configured, PMAC devices are listed under device manager in the computer’s system information
page. All configured devices (plug & play as well as non-plug & play) are registered and therefore
available for use. All available devices are listed upon one simple SelectDevice() method call from
PtalkDT Pro.

Enhanced Features
• Fast serial communication. The Ring 0 driver has eliminated the need for secondary server

(Serserver or Comserver) hence reducing the overhead caused by these applications. This, in turn,
reduced the unnecessary overhead and therefore increased the serial port throughput tremendously. At
least five times faster serial communication is achieved with this technique. It is expected to improve
further once port timeouts are optimized.

• Rearrangement of devices without restarting computer. Since the devices are configures through
Windows' device manager, and since MotionEXE is no longer needed, they can easily be rearranged
by the SelectDevice call to "PComm32" library.

• Multiple accessibility of any port. The global data memory register keeps necessary information
about the hardware, that is, PmacType, Location, Enumeration etc. All applications then get the
information from global data register. Global data further keeps track of user count and therefore
reduces overhead for reopening the device. This allows multiple access to any port for multiple
applications.

Supported Operating Systems
• Windows 98
• Windows ME
• Windows 2000

 Accessory 9PTPRO

58 Delta Tau Driver Configuration

Accessory 9PTPRO

Glossary of Terms 59

GLOSSARY OF TERMS
directive
An instruction that tells the downloader how to process this or the upcoming lines of a file.

preprocess
The act of parsing a file and executing all the downloader directives in preparation for downloading the
file to PMAC.

event
A function that is automatically called when a certain condition(s) occur.

property
An attribute (or variable) of an OCX control that configures, enables, or disables a certain feature of the
control.

DPRAM
This stands for dual port RAM. This hardware option of PMAC allows you to share memory between
PMAC and the host computer. DPRAM is useful for high-speed communications and data exchange
between PMAC and the host computer

upload
This is the process of transferring information, usually program files and data, from the PMAC to the host
computer.

download
This is the process of sending information, usually program files and data, from the host computer to
PMAC.

methods
All featured functions in an OCX are referred to as methods. Methods give the OCX its capabilities.

PMAC
The motion computer from Delta Tau Data Systems. PMAC stands for Programmable Multi-Axis
Controller.

MMI
This stands for Man Machine Interface. An MMI is the software that is used by a machine user to operate
a machine. It is the software on the host computer that the operator uses to control the machine.

OCX control
This collection of library functions is designed to make difficult programming tasks easy. OCX controls
are the latest addition to Microsoft’s OLE 2.0. They are sometimes referred to as reusable components.
OCX controls are improved and enhanced VBXs.

PTalkDT
PTalkDT is a communications OCX control designed to communicate to Delta Tau’s PMAC.

 Accessory 9PTPRO

60 Glossary of Terms

Accessory 9PTPRO

Index 61

INDEX
Download Directives

#define name ...38
#define name {command or variable} ...38
#else...38
#endif...38
#ifdef name ..38
#ifndef name ..38
#include "filename" ...38

Global View of the Library..53

installation ...5

Methods
DownloadFile..1, 17
DPRFixed..39
DPRWord ..43
Flush..1, 17
GetControlResponse..1, 17, 44
GetLineAck..2
GetLineCR...2
GetResponse..2, 17, 45
LoadSettings ..2, 17
SaveSettings...2, 17
SendChar...2, 17
ShowPropertyPage..2, 17, 48
UploadData...2, 17

Properties
Enabled ...16

Usage of PComm32...57

	INTRODUCTION
	What is PTalkDT?
	What is an ActiveX Control?
	What Can I use PTalkDT with?
	What Can PTalkDT do for me?
	What Built in Functions Does PTalkDT Have?
	What You Will Need to use PTalkDT
	How do I Get Support?

	GETTING STARTED
	Installing PTalkDTPro
	What Was Installed?

	Setting up Communications with PMAC
	Plug & Play Device Installation
	Windows 98/ME Installation (Non Plug & Play Devices)
	Windows 2000 Installation (Non Plug & Play Devices)

	First Time PTalkDTPro Users
	Serial Port Configuration

	Uninstalling PTalkDT OCX

	HOW TO DESIGN WITH PTALKDT
	In Design Mode
	Run Time Mode
	Altering, Saving and Retrieving PTalkDT Settings at Run Time
	Communication Settings
	General Settings

	YOUR FIRST VISUAL BASIC MMI WITH PTALKDT
	Overview
	Instructions

	YOUR FIRST MICROSOFT VISUAL C++ MMI WITH PTALKDT
	Overview
	Instructions

	PTALKDT REFERENCE
	Documentation Conventions
	Overview
	PTalkDT Properties
	Enabled
	LastError
	LastErrorString
	Device Number
	DeviceNumber
	DownloadDeleteTemp
	DownloadDo
	DownloadHide
	DownloadLog
	DownloadMap
	DownloadMaxErrors
	DownloadParse
	DownloadShowErrors
	UploadAppend
	UploadHide
	UploadNoComments
	UploadShowProgress

	PTalkDT Methods
	DPRAvailable()
	DownloadFile (file name)
	DPRDouble (LSB_word, MSB_word)
	DPRFixed (LSB_word, MSB_word)
	DPRDWordBit Set/Reset and BitSet Methods
	DPRGetDWord and DPRSetDWord Methods
	DPRGetFloat and DPRSetFloat Methods
	DPRGetMem and DPRSetMem Methods
	DPRGetWord and DPRSetWord Methods
	Flush ()
	GetControlResponse (Response, Control Char)
	GetLineAck (Response)
	GetLineCR (Response)
	GetResponse (Response, Command)
	IsLineWaiting ()
	LoadSettings ()
	LockPMAC ()
	ReleasePMAC()
	SaveSettings ()
	SelectDevice()
	SendChar (Character)
	SendLine (Command)
	ShowPropertyPage () [OBSOLETE]
	UploadData (File Name, Command, Options, Expected Number of Lines)

	PTalkDT Events
	OnError
	Trouble Shooting

	Dual Ported Ram Automatic Feature Example

	DELTA TAU DRIVER CONFIGURATION
	A Global View of the Driver
	Device Configuration
	Plug & Play Ports
	Non-Plug & Play Ports
	Device Configuration

	After Setting Up The Device Driver
	Enhanced Features
	Supported Operating Systems

	GLOSSARY OF TERMS
	INDEX

