VadaTech AMC511

User's Manual

May 14, 2010 Version 1.2.0

Copyright © 2010 VadaTech Incorporated All rights reserved VadaTech and the globe image are trademarks of VadaTech Incorporated. All other product or service names mentioned in this document are the property of their respective owners.

Notice

While reasonable efforts have been made to assure the accuracy of this document, VadaTech, Inc. assumes no liability resulting from any omissions in this document or from the use of the information obtained herein. VadaTech reserves the right to revise this document and to make changes periodically and the content hereof without obligation of VadaTech to notify any person of such revision or changes.

Electronic versions of this material may be read online, downloaded for personal use, or referenced in another document as a URL to the VadaTech Incorporated Web site. The text itself may not be published commercially in print or electronic form, edited, translated, or otherwise altered without the permission of VadaTech, Inc.

It is possible that this publication may contain reference to or information about VadaTech products (machines and programs), programming, or services that are not available in your country. Such references or information must not be construed to mean that VadaTech intends to announce such products, programming, or services in your country.

Trademarks

The VadaTech, Inc name and logo are registered trademarks of VadaTech Incorporated in the U.S.A. All other product or service names mentioned in this document are the property of their respective owners.

© 2010, VadaTech Incorporated. Printed in the U.S.A., All Rights Reserved.

Revision History

Doc Rev	Description of Change	Revision Date		
1.0.0	Document Created	6/8/2009		
1.1.0	Updated with latest board and reference design information	2/10/2010		
1.1.1	Changed the reference design's PCIe width to x4 instead of x8 to more closely match the initial customer's configuration.	3/10/2010		
1.2.0	Added discussion of how to set up the reference design FPGA 5/14/201 and software code for different available VCXO / Ref Clock frequencies.			

Table of Contents

1	Ove	rview	l	8
	1.1	Арр	licable Products	8
	1.2		ument References	
	1.3	Acro	onyms Used in this Document	9
2	Hard	dwar	e Overview	10
	2.1	Bac	kplane SERDES Interfaces	11
	2.2	AMC	C Card-edge Pin-out	13
	2.3	Fror	nt Panel Interfaces	14
	2.3.	1	Front Panel Management Interfaces	15
	2.3.	2	Front Panel A/D Inputs	15
	2.3.	3	Front Panel Synchronization Interfaces	15
	2.3.	4	Front Panel Channel Status LEDs	16
	2.4	Swit	tches / Jumpers / Headers	17
3	Refe		ce FPGA Design Overview	
	3.1	PCIe	e Bridge w/ DMA Burst Engine	21
	3.2		A Burst Arbiter	
	3.3		Controller w/ DMA Burst Scheduler	21
	3.3.		Capture Stage	
	3.3.		Formatting Stage	
	3.3.		Pattern Generation Stage	
	3.3.		Half-Band FIR Low-Pass Filter Stage	
	3.3.		Decimation Stage	
	3.3.		Packing Stage	
	3.3.		FIFO Stage	
	3.3.		DMA Burst Scheduler	
	3.4		rrupt Controller	
	3.5		k Synchronizer Controller	
	3.5.		SPI Master	
	3.6		ck/Signal Router	
	3.7		Controller	
	3.8		Flash Controller	
	3.9		ty Functions	
4			ce Software Overview	
	4.1		C511 Device Driver	
	4.2		C511 Tool Application	
5	2		Performance Considerations	
	5.1		ware Optimization Tips	
6			stomization	
7			zing the VCXO / Ref Clock Configuration	
8			A: FPGA Register Specification	
	8.1		SR – Global Interrupt Mask Set Register	
	8.2	GIM	CR – Global Interrupt Mask Clear Register	40

	8.3	GISR – Global Interrupt Status Register	41
	8.4	BCSR – Bit Change Status Register	42
	8.5	CHCTRLx - Channel X Control Register	43
	8.6	CHSTATx – Channel X Status Register	44
	8.7	CHMASKx – Channel X Mask Register	45
	8.8	CHHWMx – Channel X High Water Mark Register	46
	8.9	CHLVLx – Channel X Level Register	
	8.10	CHDMACTRLx – Channel X DMA Control/Status Register	48
	8.11	CHDMACOUNTx – Channel X DMA Count Register	50
	8.12	CHDEBUGAx – Channel X Debug A Register	51
	8.13	CHDEBUGBx – Channel X Debug B Register	52
	8.14	CHDEBUGCx – Channel X Debug C Register	54
	8.15	CHFIFOx – Channel X FIFO Read Port	
	8.16	CHDMADESCx – Channel X DMA Descriptors Port	
	8.17	SYNCCTRL – Clock Synchronizer Control/Status Register	
	8.18	SYNCSPIO – Clock Synchronizer SPI Data 0 Register	
	8.19	SYNCSPI1 – Clock Synchronizer SPI Data 1 Register	
	8.20	SYNCSPI2 – Clock Synchronizer SPI Data 2 Register	
	8.21	SYNCSPI3 – Clock Synchronizer SPI Data 3 Register	
	8.22	CRSYNC, CRTCLKA/B/C/D, CRTRIGINx, CRPRIREF, CRSECREF -	Clock Routing
	Regist	ers64	
	8.23	CREN – Clock Routing Enable Register	
	8.24	GREENLEDx – Green Status LED Control Registers	
	8.25	AMBERLEDx – Amber Status LED Control Registers	
	8.26	ARBSTAT – DMA Arbiter Status Register	
	8.27	BPICTRL – BPI Flash Control Register	
	8.28	BPIADDR – BPI Flash Address Register	
	8.29	BPIDATA – BPI Flash Data Register	
	8.30	SCRATCH – Scratch Register	
	8.31	VER – Version Register	
_	8.32	SIG – Signature Register	
9		endix B: Device Driver IOCTL Specification	
	9.1	AMC511_IOC_GET_INFO	
	9.2	AMC511_IOC_GET/SET_LEDS	
	9.3	AMC511_IOC_GET/SET_CLOCK_ROUTING	
	9.4		
		AMC511_IOC_GET/SET_CLOCK_SYNC	77
	9.5	AMC511_IOC_GET/SET_CLOCK_SYNC AMC511_IOC_GET/SET_CHAN_CTRL	77 79
	9.5 9.6	AMC511_IOC_GET/SET_CLOCK_SYNC AMC511_IOC_GET/SET_CHAN_CTRL AMC511_IOC_GET_CHAN_STATUS	77 79 79
	9.5 9.6 9.7	AMC511_IOC_GET/SET_CLOCK_SYNC AMC511_IOC_GET/SET_CHAN_CTRL AMC511_IOC_GET_CHAN_STATUS AMC511_IOC_GET_CHAN_DATA	77 79 79 80
	9.5 9.6	AMC511_IOC_GET/SET_CLOCK_SYNC AMC511_IOC_GET/SET_CHAN_CTRL AMC511_IOC_GET_CHAN_STATUS	77 79 79 80 80

Figures

Figure 1: AMC511 top-side layout	10
Figure 2: AMC511 block diagram	
Figure 3: Virtex 5 GTP clock forwarding for AMC511	
Figure 4: AMC511 front panel	
Figure 5: ADC pipeline	
Figure 6: Half-band FIR filter response	

Tables

Table 1: Acronyms	9
Table 2: Possible packplane SERDES interfaces	11
Table 3: AMC card-edge pin-out	13
Table 4: AMC LED behavior	15
Table 5: STATUS LEDs power-on behavior	16
Table 6: STATUS LEDs normal run-time behavior	16
Table 7: SW2-3 JTAG routing selection	17
Table 8: SW2-4 BPI Flash write protection	17
Table 9: JP1 and JP2 optional input termination	
Table 10: J4 pin-out	18
Table 11: PCle configuration	
Table 12: Supported VCXO / Ref Clock frequencies	
Table 13: FPGA register map	
o ,	

Overview

This document describes the AMC511 board and the A/D FPGA Reference Design including the associated software tool and driver. It also describes how to go about customizing the FPGA design for customer specific needs such as adding additional DSP into the FPGA. The FPGA and software are suitable for use as-is for some customer applications or may be customized by the customer to meet their own performance and functional requirements as needed.

1.1 Applicable Products

- VadaTech AMC511
- Related product: VadaTech AMC510

1.2 Document References

- Linear Technology LTC2209 16-bit, 160Msps ADC Datasheet
- <u>Texas Instruments CDCM7005 3.3-V High Performance Clock Synchronizer and Jitter</u> <u>Cleaner Datasheet</u>
- Xilinx Virtex-5 User's Guide (UG190)
- Xilinx Solutions Guide for PCI Express User Guide (UG493)
- Xilinx LogiCORE[™] Endpoint Block Plus v1.9 for PCI Express (DS551)
- Xilinx LogiCORE™ IP Endpoint Block Plus v1.9 for PCI Express® Getting Started Guide (UG343)
- Xilinx LogiCORE™ IP Endpoint Block Plus v1.9 for PCI Express® User Guide (UG341)
- Xilinx Virtex-5 Integrated Endpoint Block for PCI Express Designs User Guide (UG197)
- <u>Xilinx Virtex-5 Embedded Tri-Mode Ethernet MAC Wrapper 1.6 (DS550)</u>
- Xilinx Virtex-5 Embedded Tri-Mode Ethernet MAC User Guide (UG194)
- PICMG® AMC.0 R2.0 Advanced Mezzanine Card Base Specification

NOTE: When reading the Linear Tech datasheet keep in mind that the AMC511 uses screened parts from Linear Tech running at 180 Msps so the stated maximum of 160 Msps in the datasheet should be read as 180 Msps. The increased clock rate does not otherwise change the performance specifications of the chips, but provides improved oversampling performance in downstream DSP algorithms.

1.3 Acronyms Used in this Document

Acronym	Description
Acronym A/D or ADC	Analog to Digital Converter
AMC	Advanced Mezzanine Card
BAR	Base Address Register
BE	Big Endian
BPI	Byte Peripheral Interface
CPU	Central Processing Unit
DMA	Direct Memory Access
DSP	Digital Signal Processing
DWORD	Double Word (32-bits)
FIFO	First-In First-Out (Memory structure)
FIR	Finite Impulse Response (Filter)
FPGA	Field Programmable Gate Array
Gbps	Giga-bits Per Second
GBps HWM	Giga-Bytes Per Second
	High Water Mark
ioctl	Input/Output/Control
IP	Intellectual Property
LE	Little Endian
LED	Light Emitting Diode
LPF	Low Pass Filter
LSB	Least Significant Byte
LVCMOS	Low-Voltage Complementary Metal Oxide Semiconductor
MAC	Media Access Controller
M-LVDS	Multi-point Low Voltage Differential Signaling
mmap	Memory Map
MMC	Module Management Controller
MSB	Most Significant Byte
Msps	Mega-Samples Per Second
MUX	Multiplexer
PCI	Peripheral Component Interconnect
PCIe	Peripheral Component Interconnect Express
PHY	Physical Layer Device
PICMG	PCI Industrial Computer Manufacturer's Group
PIO	Programmed Input/Output
PLL	Phase Locked Loop
SERDES	Serializer/Deserializer
SMB	SubMiniature version B (connector)
SPI	Serial Peripheral Interface
SRAM	Static Random Access Memory
TCLK	Telephony Clock
VCXO	Voltage Controlled Crystal Oscillator
	Table 1: Acronyms

2 Hardware Overview

The AMC511 card includes the following primary components (your ordering option may vary slightly):

- AMC MMC controller
- Xilinx Virtex-5 XC5VLX110T-1 FF1136 FPGA w/ BPI flash (Intel JS28F256P30T95)
- Texas Instruments CDCM7005 Clock Synchronizer
- Linear Tech LTC2209 180 Msps 16-bit A/D x4
- QDRII SRAM (2 x CY1515V18-250BZXC)
- Secondary Reference In, Trigger In, Sync Out
- Four channel M-LVDS clock transceiver

The top-side layout of the card is shown below:

Figure 1: AMC511 top-side layout

A simplified block diagram of the card is shown below:

Figure 2: AMC511 block diagram

2.1 Backplane SERDES Interfaces

The card is designed to support flexible system interfacing to the backplane via the reprogrammable FPGA. Interfaces such as PCIe x1/x2/x4/x8, 1000Base-X, XAUI, SRIO, Aurora, and others are realizable. The FPGA reference design demonstrates PCIe x8 and 1000Base-X interfaces. The primary interface for the reference design is PCIe x4 while the 1000Base-X base channels are simply there to show a SYNC indication to validate the hardware.

The possible backplane interfaces are shown below:

GTP Tile	AMC Port	Reference Design	XAUI Options	SRIO Options	Aurora Options	GbE Options
X0Y5	0	GbE0 (hard core) [125MHz]				
X0Y5	1	GbE1 (hard core) [125MHz]				
X0Y4	4	PCIe x4/x8 (hard core) [250MHz]	XAUI0 [156.25MHz]	SRIO0A x1-x4 [156.25MHz]	AURORA0A x1-x8 [156.25MHz]	GbE2 [125MHz]
X0Y4	5	PCIe x4/x8 (hard core) [250MHz]	XAUI0 [156.25MHz]	SRIO0B x1-x4 [156.25MHz]	AURORA0A x1-x8 [156.25MHz]	GbE3 [125MHz]
X0Y3	6	PCIe x4/x8 (hard core) [250MHz]	XAUI0 [156.25MHz]	SRIO0C x1-x4 [156.25MHz]	AURORA0A x1-x8 [156.25MHz]	GbE4 [125MHz]
X0Y3	7	PCIe x4/x8 (hard core) [250MHz]	XAUI0 [156.25MHz]	SRIO0D x1-x4 [156.25MHz]	AURORA0A x1-x8 [156.25MHz]	GbE5 [125MHz]
X0Y2	8	PCIe x8 (hard core) [250MHz]	XAUI1 [156.25MHz]	SRIO1A x1-x4 [156.25MHz]	AURORA0B x1-x8 [156.25MHz]	GbE6 [125MHz]
X0Y2	9	PCIe x8 (hard core) [250MHz]	XAUI1 [156.25MHz]	SRIO1B x1-x4 [156.25MHz]	AURORA0B x1-x8 [156.25MHz]	GbE7 [125MHz]
X0Y1	10	PCIe x8 (hard core) [250MHz]	XAUI1 [156.25MHz]	SRIO1C x1-x4 [156.25MHz]	AURORA0B x1-x8 [156.25MHz]	GbE8 [125MHz]
X0Y1	11	PCIe x8 (hard core) [250MHz]	XAUI1 [156.25MHz]	SRIO1D x1-x4 [156.25MHz]	AURORA0B x1-x8 [156.25MHz]	GbE9 [125MHz]
X0Y7	12		XAUI2 [156.25MHz]	SRIO2A x1-x4 [156.25MHz]	AURORA1 x1-x4 [156.25MHz]	GbE10 [125MHz]
X0Y7	13		XAUI2 [156.25MHz]	SRIO2B x1-x4 [156.25MHz]	AURORA1 x1-x4 [156.25MHz]	GbE11 [125MHz]
X0Y6	14		XAUI2 [156.25MHz]	SRIO2C x1-x4 [156.25MHz]	AURORA1 x1-x4 [156.25MHz]	GbE12 [125MHz]
X0Y6	15		XAUI2 [156.25MHz]	SRIO2D x1-x4 [156.25MHz]	AURORA1 x1-x4 [156.25MHz]	GbE13 [125MHz]
X0Y0	17			SRIO3 x1 [156.25MHz]	AURORA2 x1-x2 [156.25MHz]	GbE14 [125MHz]
X0Y0	18			SRIO4 x1 [156.25MHz]	AURORA2 x1-x2 [156.25MHz]	GbE15 [125MHz]

Key:	
Green =	= AMC.X standard port options (as supported for customer FPGA designs)
Purple =	= AMC.X non-standard port options (as supported for customer FPGA designs)
Yellow :	= AMC.X standard port mappings (as supported by VadaTech FPGA sample design)
	Table 2: Possible packplane SERDES interfaces

NOTES: Different protocol types can be mixed and matched within reason (pairs of lanes on the same GTX Tile must generally use the same protocol). If you change the backplane interfaces via a custom FPGA design please contact VadaTech for custom E-Keying records for the MMC so that your backplane E-Keying will match your FPGA implementation. Refer to the Virtex-5 documentation and IP documentation for limitations of the GTP tiles including clock forwarding, placement restrictions, resource granularity, etc.

The AMC511 design attempts to provide the most flexible options for GTP tile clock forwarding. The following diagram illustrates the approach that was taken to minimize the limitations of the clock forwarding in the Virtex 5 FPGA:

Figure 3: Virtex 5 GTP clock forwarding for AMC511

2.2 AMC Card-edge Pin-out

AMC Finger	Net	AMC Finger	Net	AMC Finger	Net	AMC Finger	Net	AMC Finger	Net
1	GND	35	n.c.	69	AMC/RX7-	103	AMC/TX10+	137	GND
2	AMC+12V	36	n.c.	70	GND	104	GND	138	CLKD-
3	*AMCPS1	37	GND	71	AMCSDA	105	AMC/RX11-	139	CLKD+
4	AMCMP	38	n.c.	72	AMC+12V	106	AMC/RX11+	140	GND
5	AMCGAO	39	n.c.	73	GND	107	GND	141	AMC/RX17-
6	n.c.	40	GND	74	CLKA+	108	AMC/TX11-	142	AMC/RX17+
7	GND	41	*AMCENABLE	75	CLKA-	109	AMC/TX11+	143	GND
8	n.c.	42	AMC+12V	76	GND	110	GND	144	AMC/TX17-
9	AMC+12V	43	GND	77	CLKB+	111	AMC/RX12-	145	AMC/TX17+
10	GND	44	AMC/TX4+	78	CLKB-	112	AMC/RX12+	146	GND
11	AMC/TX0+	45	AMC/TX4-	79	GND	113	GND	147	AMC/RX18-
12	AMC/TX0-	46	GND	80	PCI-E/CLK+	114	AMC/TX12-	148	AMC/RX18+
13	GND	47	AMC/RX4+	81	PCI-E/CLK-	115	AMC/TX12+	149	GND
14	AMC/RX0+	48	AMC/RX4-	82	GND	116	GND	150	AMC/TX18-
15	AMC/RX0-	49	GND	83	*AMCPS0	117	AMC/RX13-	151	AMC/TX18+
16	GND	50	AMC/TX5+	84	AMC+12V	118	AMC/RX13+	152	GND
17	AMCGA1	51	AMC/TX5-	85	GND	119	GND	153	n.c.
18	AMC+12V	52	GND	86	GND	120	AMC/TX13-	154	n.c.
19	GND	53	AMC/RX5+	87	AMC/RX8-	121	AMC/TX13+	155	GND
20	AMC/TX1+	54	AMC/RX5-	88	AMC/RX8+	122	GND	156	n.c.
21	AMC/TX1-	55	GND	89	GND	123	AMC/RX14-	157	n.c.
22	GND	56	AMCSCL	90	AMC/TX8-	124	AMC/RX14+	158	GND
23	AMC/RX1+	57	AMC+12V	91	AMC/TX8+	125	GND	159	n.c.
24	AMC/RX1-	58	GND	92	GND	126	AMC/TX14-	160	n.c.
25	GND	59	AMC/TX6+	93	AMC/RX9-	127	AMC/TX14+	161	GND
26	AMCGA2	60	AMC/TX6-	94	AMC/RX9+	128	GND	162	n.c.
27	AMC+12V	61	GND	95	GND	129	AMC/RX15-	163	n.c.
28	GND	62	AMC/RX6+	96	AMC/TX9-	130	AMC/RX15+	164	GND
29	n.c.	63	AMC/RX6-	97	AMC/TX9+	131	GND	165	AMCTCLK
30	n.c.	64	GND	98	GND	132	AMC/TX15-	166	AMCTMS
31	GND	65	AMC/TX7+	99	AMC/RX10-	133	AMC/TX15+	167	*AMCTRST
32	n.c.	66	AMC/TX7-	100	AMC/RX10+	134	GND	168	AMCTDO
33	n.c.	67	GND	101	GND	135	CLKC-	169	AMCTDI
34	GND	68	AMC/RX7+	102	AMC/TX10-	136	CLKC+	170	GND

Table 3: AMC card-edge pin-out

2.3 Front Panel Interfaces

The front panel of the AMC511 is shown below:

2.3.1 Front Panel Management Interfaces

The front panel includes the standard AMC LEDs showing hot-swap status and general card health. The LEDs behave as follows:

LED	Off	On	Blink
Blue	Card active	OK to remove	Hot-swap/power transitioning
Red	No Fault	Persistent fault	Transient fault
Green	No management power	Management power OK	Management power OK
		Payload power OK	Payload power not expected
Amber	Normal	Firmware upgrade	N/A

Table 4: AMC LED behavior

NOTE: The card should only be removed from a running carrier when the AMC Blue LED is solid ON.

To insert the card, pull out the hot-swap handle until it stops. Insert the card into the carrier's guide rails and push on the front panel firmly until it is fully seated into the connector. If the card does not go fully in, do not force it and instead remove it and check for proper orientation or obstructions. Once fully inserted the Blue LED should go to solid ON while the Green LED should start blinking. Then push in the handle to latch the card into the carrier, the Blue LED should blink for a time and then go solid OFF while the Green LED goes solid ON.

To remove the card, pull out the hot-swap handle until it stops to unlatch the card from the carrier (but do not pull hard enough to remove the card itself yet). The Blue LED should blink for a time and then go solid ON. Once it does, pull the hot-swap handle straight out firmly to remove the card from the carrier.

2.3.2 Front Panel A/D Inputs

The four front panel A/D inputs are provided via SMB connectors which go into a low-pass filter structure, are transformer coupled, and then go into the A/D chips. Please refer to the A/D chip datasheet for signal characteristics.

2.3.3 Front Panel Synchronization Interfaces

The front panel provides REF CLK IN and TRIG IN SMB connectors which are 3.3v LVCMOS compatible (after the optional 50 ohm termination). A SYNC OUT SMB output comes from the FPGA which drives as 3.3v LVCMOS. Refer to the following sections for details on how to enable/disable the 50 ohm input terminations.

2.3.4 Front Panel Channel Status LEDs

The front panel includes one set of green and amber LEDs per analog input. These LEDs default to showing various diagnostic status indicators when the FPGA is first configured. The default power-on behavior is shown below:

LED	Indication
STATUS 0 Green	1000Base-X 0 SYNC
STATUS 0 Amber	Blinking
STATUS 1 Green	1000Base-X 1 SYNC
STATUS 1 Amber	OFF
STATUS 2 Green	PCIe link up
STATUS 2 Amber	PCIe x4 width
STATUS 3 Green	SRAM Passing
STATUS 3 Amber	SRAM Failing

Table 5: STATUS LEDs power-on behavior

NOTE: If both the SRAM Passing and SRAM Failing LEDs are lit this means that the SRAM controller is doing calibration. This calibration will never end if the AMC511 was ordered without the SRAM ordering option; and would therefore be considered a normal condition. Otherwise, with SRAM mounted the calibration should complete very quickly and then only show the SRAM Passing indication.

The reference device driver changes these LEDs to their normal run-time indications once it loads. The normal run-time behavior is shown below:

LED	Indication
STATUS 0 Green	A/D Channel O Running
STATUS 0 Amber	A/D Channel O Fault
STATUS 1 Green	A/D Channel 1 Running
STATUS 1 Amber	A/D Channel 1 Fault
STATUS 2 Green	A/D Channel 2 Running
STATUS 2 Amber	A/D Channel 2 Fault
STATUS 3 Green	A/D Channel 3 Running
STATUS 3 Amber	A/D Channel 3 Fault
Table 6: STATUS E	De normal run time habaviar

Table 6: STATUS LEDs normal run-time behavior

The run-time behavior can be changed via software if desired. Please refer to the register specification later in this document.

NOTE: The 'Fault' indication is a combination of various statuses from the channel such as A/D conversion overflow, FIFO overflow/underflow, etc. Please refer to the register specification later in the document for details.

2.4 Switches / Jumpers / Headers

The card includes a JTAG header at P2. This header is for programming the FPGA and/or BPI flash and is compatible with the Xilinx Platform Cable USB II.

The card includes a set of DIP switches at SW2. The first two switches on SW2 (1 and 2) are for factory use only and should be set to the OFF position for normal operation. SW2-3 controls the routing of the JTAG lines to the FPGA as follows:

SW2-3	Description		
OFF	Connect the JTAG header (P2) to the FPGA's JTAG port		
ON Connect the AMC fingers to the FPGA's JTAG port			
Table 7: SW2-3 JTAG routing selection			

SW2-4 controls the write protection for the BPI Flash chip as follows:

SW2-4	Description			
OFF	Do not write protect the BPI Flash			
ON	Write protect the BPI Flash			
Table 8: SW2-4 BPI Flash write protection				

Table 8: SW2-4 BPI Flash write protection

JP1 and JP2 select the 50 ohm termination for the TRIG IN and REF CLK IN inputs respectively as follows:

	JP1/JP2	Description	
	OPEN	No input termination for TRIG IN/REF CLK IN	
SHUNT 50 ohm input termination for TRIG IN/REF CLK			
		Table 9: JP1 and JP2 optional input termination	

NOTE: The board expects a 3.3V compatible resulting signal AFTER the optional input termination. That means that if you use the input termination you may need to use a higher voltage so that the result after termination is 3.3V compatible.

The card includes an expansion/debug header at J4. This header provides expansion/debug ports for the FPGA. The header is a Tyco Mictor 38-pin receptacle (part number 2-767004-2). All of the pins use 2.5v LVCMOS signaling. The header is pinned out as follows (with the center blades also as Ground):

Pin	Signal	Pin	Signal
1	(open)	2	(open)
3	Ground	4	(open)
5	CLKE	6	CLKO
7	D15E	8	D150
9	D14E	10	D140
11	D13E	12	D130
13	D12E	14	D120
15	D11E	16	D110
17	D10E	18	D100
19	D09E	20	D090
21	D08E	22	D080
23	D07E	24	D070
25	D06E	26	D060
27	D05E	28	D050
29	D04E	30	D040
31	D03E	32	D030
33	D02E	34	D020
35	D01E	36	D010
37	DOOE	38	D000

Table 10: J4 pin-out

3 Reference FPGA Design Overview

The FPGA is fully customizable and it is expected that customers will want to provide their own custom DSP solution. However, a reference design is also provided to demonstrate the basic board functionality and to provide a complete solution which may be sufficient for some customer's needs. The remainder of this manual discusses the reference design and culminates in a discussion of how the customer may either customize or replace the reference design to add new DSP functionality.

The reference design provides four A/D channels running at 180 Msps under the control of an external host CPU via a PCIe x4 interface. It also provides two 1000Base-X base channel ports which are only present in the reference design to verify the hardware by attaining SYNC. There is no reference application logic attached to the 1000Base-X port. Finally, the reference design includes an SRAM controller with BIST. Again this controller is only in the reference design to validate the hardware and provide a pass/fail indication. The reference design does not make use of the SRAM directly.

ltem	Value
Vendor ID	OxABCD (VadaTech Incorporated)
Device ID	0x4511 (AMC511)
Subsystem Vendor ID	OxABCD (VadaTech Incorporated)
Subsystem Device ID	0x4511 (AMC511)
BAR 0	64KB (32-bit memory mapped, non-prefetchable)
Max Payload	512 bytes

The PCIe configuration space information is as follows:

Table 11: PCle configuration

The design supports a control/status register interface via 32-bit PCIe PIO as well as a four channel DMA controller which uses PCIe posted writes with burst length based on the negotiated largest burst size. The DMA channels are arbitrated by a round-robin arbiter to ensure fairness. The design includes an interrupt controller which signals interrupts using either Legacy INTA or an MSI vector whichever is supported by the system.

The clock synchronizer chip is controlled via a SPI master in the FPGA and its status is monitored with interrupt notification of changes. A flexible clock/signal router allows many different signals to be passed out the front panel output or the backplane M-LVDS outputs. An LED controller is provided which allows for various statuses to be monitored visually on the front panel.

Each A/D chip's output data is pushed through a pipeline in the FPGA which includes the following stages (many of them optional):

- Capture (clocks in the data as close to the pins as possible)
- Optional Formatting (removes effects of the A/D chip's RAND function)
- Optional Pattern Generation (for debugging)
- Optional Half-Band FIR low-pass filter (reduces the data rate by a factor of 2)
- Optional Decimation (reduces the data rate by a factor of 2 to 256 without filtering)
- Packing (Positions four 16-bit samples into one 64-bit FIFO entry)
- 64KB FIFO (Gets data from A/D clock domain to PCIe clock domain/buffers the data)

The pipeline is structured as shown in the following diagram:

Figure 5: ADC pipeline

Each pipeline stage signals the next when it has data available, so that the data reaching the user application only contains valid samples.

Note that when the Half-band filter is used the data rate is already decimated by a factor of 2 prior to hitting the Decimation stage. The Decimation stage should only be used to evaluate system throughput/loading or if the input signal is already appropriately band-limited prior to entry to the board, otherwise aliasing may occur. In the latter case, a high-quality external low-pass filter with a cut-off at half the decimated sample rate is strongly recommended.

3.1 PCIe Bridge w/ DMA Burst Engine

The PCIe Bridge implements a state machine which converts PCIe Transaction layer packets into internal local bus transactions. It supports up to 32-bit PIO reads and up to 32-bit PIO writes. It also generates out-bound DMA bursts as requested by the DMA Burst Arbiter. The PIO Reads/Writes take priority over the DMA bursts so that the host CPU does not stall needlessly.

3.2 DMA Burst Arbiter

The DMA Burst Arbiter supports four ADC clients and arbitrates between them on a roundrobin basis to ensure fair access to the DMA Burst Engine.

3.3 ADC Controller w/ DMA Burst Scheduler

Each ADC controller implements control/status registers, a data pipeline, and a DMA Burst Scheduler. The control/status registers enable control over the A/D chip as well as the processing pipeline and DMA. Data can be gathered from the end of the pipeline either by PIO or DMA accesses; however, DMA access is strongly advised due to the extremely high data rates involved. The A/D chip is automatically put into power-saving mode when the channel is not enabled to reduce power usage and heat generation.

3.3.1 Capture Stage

The capture stage simply clocks the data into the FPGA. This stage exists solely to ensure that the flip-flops involved can be placed directly at the input pad to minimize timing skew. The data from the chips is 16-bit signed (two's compliment) sample data plus one bit of overflow indication. The overflow indication is stripped off after this stage and is captured by a status register instead of following the remaining data flow. This maximizes the bandwidth utilization of the PCIe bus since 17-bit data doesn't pack very efficiently.

3.3.2 Formatting Stage

The formatting stage will automatically remove the XOR randomization that is applied by the A/D chip when the RAND feature is used. It is recommended that the RAND feature always be used to spread the spectrum of the noise caused by the A/D chip outputs.

3.3.3 Pattern Generation Stage

A pattern generator can be switched in as the data source for the decimation stage rather than the formatted A/D data or FIR data. The pattern generator is useful in verifying the dataflow through the hardware and software to the end-user application. It is capable of generating the following patterns:

- All zero bits
- All one bits
- Most negative signed 16-bit value
- Most positive signed 16-bit value
- Repeating ramp from most negative to most positive 16-bit values

3.3.4 Half-Band FIR Low-Pass Filter Stage

The FIR filter stage implements an 83-tap half-band low-pass filter with decimation by 2. It utilizes Distributed Arithmetic architecture to allow it to operate at the full incoming sample rate. Samples go into the filter at 180 Msps and come out at 90 Msps. The FIR filter takes care of band-limiting the data prior to decimation to avoid aliasing. Note that this decimation is fixed and independent of the Decimation Stage as described in the next section. The FIR filter has approximately 80dB stop-band attenuation as shown on the next page:

3.3.5 Decimation Stage

The Decimation Stage optionally drops samples (without low-pass filtering). It can reduce the sample rate by a factor of 2 to 256. A setting of 0 performs no decimation (equivalent to decimation by a factor of 1), while a setting of 1 performs decimation by a factor of 2, etc.

3.3.6 Packing Stage

The A/D chips and the data pipeline are 16-bit and the PCIe core is 64-bit, so this stage simply packs four samples into one FIFO entry.

3.3.7 FIFO Stage

After the samples are packed they are pushed into a 64KB FIFO structure. This structure serves two purposes. First it enables seamless crossing from the A/D clock domain into the PCIe clock domain. Second it absorbs the latencies which occur while buffering up a DMA burst, waiting for other bus activity to complete, software latencies, etc. The pipeline design ensures that by the time the samples are taken out of the FIFO the host software will know if there was any A/D converter overflow, FIR overflow, or FIFO overflow/underflow so that a high degree of confidence can be established in the captured data.

3.3.8 DMA Burst Scheduler

Each ADC channel has its own DMA Burst Scheduler. The scheduler uses two scatter-gather DMA descriptor chains to facilitate very low-overhead streaming transfers to the main system memory. It reads the DMA descriptors and schedules burst transfers to complete the chunks described there. It waits for the FIFO to fill enough to satisfy a burst then it requests service from the DMA Burst Arbiter. The DMA Burst Arbiter forwards the request to the DMA Burst Engine which will then complete the burst by reading the FIFO using special 64-bit internal reads and writing the data out across the PCIe bus into system memory as instructed. The DMA Burst Scheduler notifies the software whenever a chain completes via a status register/interrupt. Each descriptor can point to up to 512KB of physically contiguous memory with a size/alignment granularity of 4KB. There are 128 descriptors per chain.

The DMA Burst Scheduler has a special mode which can be used for sourcing point-to-point (card-to-card) PCle DMA transfers rather than doing card-to-memory transfers. This mode may be used for example if the AMC511 card is designated for capturing data while a second card is designated for doing additional DSP of the data. The software reference design doesn't support this mode of operation. However, it is provided in the FPGA as a starting point of what could be done in more sophisticated configurations designed to fully exploit the point-to-point architecture of PCle (where data does not always need to flow through the memory/CPU).

3.4 Interrupt Controller

The central interrupt controller consolidates the interrupt lines coming from the four ADC cores and the Clock Synchronizer core to provide one single master interrupt line to the PCIe Bridge. The interrupt controller also supports a Bit Change Interrupt mechanism which is used for alerting the software any time the Clock Synchronizer status lines change.

3.5 Clock Synchronizer Controller

The Clock Synchronizer Controller implements a control/status register for basic control of the TI Clock Synchronizer chip. It also implements a SPI Master which can be used to set all of the registers within the TI chip using a serial protocol. The SPI Master handshakes with the host software to ensure that it remains synchronized with the serial data transfer so the software can know when the transfer is complete.

3.5.1 SPI Master

The TI chip includes four 32-bit control registers which are set via a SPI bus interface. The SPI Master function in the Clock Synchronizer Controller provides four shadow registers

which are available via PCIe PIO read/write which it shifts out to the TI chip on command from the host software.

Each time the host software instructs the SPI Master to start; it shifts all four data words to the chip using a 500 kHz clock and then indicates completion to the software via a status register/interrupt.

The SPI Master's default register values are customized to match the AMC511 hardware and differ from the TI chip defaults. These new defaults are shifted out immediately upon FPGA configuration without software intervention. The SPI Master enforces read-only semantics on some of the control fields that are otherwise read/write for the TI chip so that parameters specific to the AMC511 circuits are not violated inadvertently.

3.6 Clock/Signal Router

The Clock/Signal Router enables flexible routing of off-board and on-board signals such as clocks and status indicators, etc. It also enables/disables various input/output buffers. See the register specification that follows for details of routing sources and targets.

3.7 LED Controller

The LED Controller allows various statuses to be reflected onto the front panel User LEDs. See the register specification for details on the available LED sources.

3.8 BPI Flash Controller

The FPGA reference design includes a BPI Flash Controller which enables the FPGA's BPI Flash to be reprogrammed via PCIe in the field and then trigger the FPGA reconfiguration. This mechanism can be used in place of a JTAG probe for FPGA upgrades.

3.9 Utility Functions

The FPGA includes various utility functions such as reporting its version number and signature, as well as providing a scratch register for bus testing.

4 Reference Software Overview

The software provided with the FPGA reference design targets the Linux operating system with Linux Kernel 2.6. It includes the following:

- amc511.ko: Device driver module for Linux 2.6 kernel
- amc511tool: Tool for controlling the driver/card
- **fcf2coe**: Filter coefficient conversion utility

The device driver's makefile should be customized to point at the kernel sources on the build machine prior to building it. The other tools should build without customization; however the amc511tool does require that development support for 'pcilib' be present. This dependency can be stripped out if support for the debugging commands is not needed.

The coefficient conversion utility aids in designing new filters for inclusion in a customized FPGA image. It converts Matlab FCF file format (single/double precision floating point) to Xilinx FIR Filter Compiler COE file format (floating point decimal). It can be helpful if Matlab was purchased with the Signal Processing/Filter Design toolkits but not the Fixed Point toolkit (which includes a COE export functionality). The Xilinx FIR Filter Compiler can automatically quantize floating point decimal COE files.

4.1 AMC511 Device Driver

The device driver is capable of supporting AMC511 cards attached to the PCIe bus of the host CPU. Each card will be assigned four minor device numbers in the order of probing. These minor device numbers represent A/D channels on the card. The global functionality of the card is accessible via any of the four channels and it is the responsibility of the application to ensure that the global settings are suitable for all four channels. The global settings include the Clock Synchronizer, Clock Routing, and LEDs.

The device driver supports PIO and DMA transfer of data. DMA is the default and recommended method since it is dramatically more efficent, but PIO can be used for low data rate applications or for debugging. A module parameter is available to force PIO mode. For example:

insmod amc511.ko force_pio=1

In order to reduce the system load as much as possible during data transfer, the device driver pre-allocates the DMA/PIO buffer chains when each card is probed and re-uses the descriptors/buffers over and over again. The allocation is done using single pages (scatter/gather) to reduce pressure on the kernel memory allocator.

The number of pages to use for each transfer can be specified using a module parameter. Examples:

insmod amc511.ko xfer_pages=128
insmod amc511.ko force_pio=1 xfer_pages=15

The maximum number of pages per transfer for DMA is 128 (512KB) while the maximum for PIO is 15 (60KB). Since the driver and card perform streaming using two descriptor chains (i.e. the card can be writing to memory in one chain while the application is reading from memory in the other chain), twice the specified amount of memory is allocated by the driver. So for the DMA case up to 1MB of memory can be dedicated to each A/D channel.

Generally the larger the value of xfer_pages, the higher the latency of the samples from A/D to application but the lower the system load. Conversely specifying a smaller value for xfer_pages reduces the latency but increases the system load. It is up to the end-user application requirements to determine the best trade-off.

The device driver optimizes data transfer to the user application by allowing the application to memory map the driver's buffer chains directly into the application's virtual memory map. Once this is done the two buffer chains appear as one contiguous region of application virtual memory. When used with DMA, this makes the transfer of A/D data from the card all the way into the user application a zero-copy operation from the CPU's point of view and results in extremely low CPU overhead. This leaves almost all of the CPU's time available for user application processing of the A/D data or other application behavior.

The device driver supports open, close, mmap, poll/select, and ioctl operations from the application. Generally the application should open() one or more channels as desired, then make an ioctl call to get information about the channel. This information includes the size of the mmap region to be used. Once the information is obtained, the application should mmap() the buffer region and then proceed to enable the A/D channel.

After the channel is enabled the application can call the poll() or select() system call to wait for data or status to become available. The application can use POLLPRI for status changes and/or POLLIN for new A/D data. If the driver indicates that the status changed then the application should read the status using the appropriate ioctl. If the driver indicates that data is available then the application should get information about the data using the appropriate ioctl. As mentioned before, the data is actually already in the application's virtual memory space, so this ioctl simply provides an offset and length within the mmaped region so that the application knows where to find it.

After this call is made, the indicated buffer memory is marked as reserved for application use by the driver and neither the driver nor the card will touch it. Once the application has read or processed the data, the buffer space must be returned to the driver using the appropriate ioctl. This once again makes the buffer space accessible by the card for the next transfer. Keep in mind that there are two descriptor chains, so the driver/card will be transferring data into the next chain while the application is reading the current chain, so the application should not access the buffer memory after the memory has been returned to

the driver. Depending on the host CPU type, if the application accesses the data buffers at the wrong time (even if it is only reading them) cache coherency may be lost resulting in data corruption.

The application should return buffer memory to the driver as soon as possible to avoid stalling the streaming transfer and risking overflow of the channel's FIFO. This is another tradeoff however, in that it is probably more efficient overall to process the data directly in the memory buffer and then return it to the driver rather than making a copy of it prior to processing. But each application is different and some experimentation may be necessary to tune the overall system performance. In either case, the card/driver provides all of the necessary status information to let the application know when/if the FIFO overflows so that performance tuning can be accomplished.

Once the capture is complete the application should disable the channel and/or close() the file handle. The driver will automatically disable the channel when the file handle is closed if it was not already disabled.

The ioctl() interfaces available for the device driver are documented in an appendix at the end of this document.

4.2 AMC511 Tool Application

The amc511tool provides basic support for controlling the card and gathering status as well as capturing A/D data. It can capture data to memory and discard it (to test the PCIe and memory bandwidth of the system) or it can capture it to a file.

The tool supports two distinct modes of operation. One mode uses the device driver interfaces (as would be recommended during typical activities). The other mode bypasses the device driver by mapping the PCIe BAR into user-space using 'pcilib' and reading/writing registers directly. This mode is for debugging only as it can potentially interfere with the device driver.

The usage information for the tool is shown below:

```
usage: amc511tool <cmd> [<opts>]
NORMAL CMDs: (use device driver)
                                                  - Detect driver/card and report version info
        detect <dev>
        leds <dev> [<green0> <green1> <green2> <green3>
                    <amber0> <amber1> <amber2> <amber3>1 - Show/set LED selectors
        routing <dev> [<sync_out> <tclka_out> <tclkb_out> <tclkc_out> <tclkd_out>
                 <adc0_trigin> <adc1_trigin> <adc2_trigin> <adc3_trigin>
                 <pri_ref> <sec_ref> <sync_out_en> <trig_in_en> <ref_clk_in_en>
                 <tclkx_in_en> <tclka_out_en> <tclkb_out_en>
                 <tclkc_out_en> <tclkd_out_en>] - Show/set clock routing
        clksync <dev> [primary|secondary] - Show/set clock synchronizer settings
status <dev> [monitor] - Show/monitor channel status flags
        capture <dev> <decm> <pat> <src> <pga> <rand> <dith>
                imit> [<file>] - Capture ADC data from channel
        DEBUG CMDs: (direct memory mapping of device/bypass device driver)
        adc <0-3> <decm> <pat> <src> [file] - Start/Dump ADC channel 0-3 FIFO data
        ovrflw <0-3> <pga>- Monitor ADC channeldump [all|desc]- Dump the register contewrite <addr> <val>- Write value at addressprofile [read|write]- Test PIO read/write spetest [scratch|sig]- Repeated Read/Write or
                                                  - Monitor ADC channel 0-3 OVRFLW status
                                                 - Dump the register contents
                                              - Test PIO read/write speed
                                                  - Repeated Read/Write or Read tests
```

The options for the tool generally follow the field definitions in the register specification. So for instance the values which can be provided for **pat** match what is described in the CHCTRLx register's PAT field.

Note that the ADC channels always have their trigger logic enabled and will not start capturing data after the channel is enabled until they see a logical '1' on their internal trigger input. Therefore, if an external trigger signal is not being used, the adcx_trigin options for the routing command should be set to '1' to create an auto-trigger functionality.

The amc511tool source code can be used as a reference for the development of end-user applications.

5 System Performance Considerations

Capturing A/D data is a continuous real-time streaming operation that involves many aspects of the system and not just the AMC511 card. The AMC511 FPGA can actually process data rates faster than the rest of the system can handle. Four channel signal acquisition at 180 Msps produces about 1.44 GB/s worth of data in addition to necessary status/control register reads/writes.

Factors such as FPGA overhead, memory bandwidth, CPU speed/loading, data path, and application behavior will impact the sustainable streaming throughput. As an example it may be possible to write full rate data to a file if the capture is limited to a few megabytes, but if unconstrained the streaming will quickly stall and overflow the FIFO when the filesystem buffers and hard drive cache fill up due to the inability of the hard drive platters to sustain that rate. Therefore it is important to understand the performance characteristics of every piece of hardware/software in the complete data path to see where a bottleneck might be occurring. It is also important to keep in mind that sometimes the effects of the bottleneck might not be immediately apparent and will only show up after some amount of time such as the hard drive cache effect mentioned here.

For high sample rate applications the best approach is to customize the FPGA to do the DSP operations in an environment where cycle-accurate, real-time performance can be guaranteed and then transfer the resulting data at a greatly reduced data rate to the host memory/CPU via PCIe or other link. The reference design may not be fully optimized for your particular application; it is simply provided as a working example from which to branch off from with your own development.

5.1 Software Optimization Tips

The application should strive to put the data buffer back to the driver before it is actually needed by the card for the next DMA transfer. The driver/card will deal with either case seamlessly as long as the FIFO does not overflow as a result of the stall. The driver will post both buffer chains to the card whenever possible so that the DMA Burst Scheduler on the card does not stall. Whenever the DMA Burst Scheduler sees that the next chain is available upon completion of the current one it proceeds to process the next chain without direct software intervention. This greatly helps to avoid the cumulative and variable effects of software/interrupt latency on the on-going streaming transfer.

It is possible to route the FPGA's internal interrupt request line out to the front panel Sync output and view it on an oscilloscope or send it to a frequency counter. This technique works best for single channel acquisition but it can also be used under full load to get a feeling for the overall interrupt frequency. When the line is low the card is not requesting interrupt service and when it is high it is requesting interrupt service. By watching this line it is possible to interpret how well the system is responding to the card's needs.

By observing the width of the low-period while the tool application is acquiring and discarding data is it is possible to see how much time the user's own application can be afforded between transfers to process the data. This single-channel information can then be scaled according to how many channels the user's own application will actually be processing.

If the user's own application starts overflowing the FIFO then the extended low-period of the interrupt request line should be detectable as a result of the delay caused when the application didn't put the data buffer back in time to prevent a stall of the DMA engine. The difference between this and the previously established baseline should reveal how much the application is exceeding its allocated time to process the data.

By observing the width of the high-period it is possible to see if other device drivers or kernel activities are contributing to interrupt latency (by locking out interrupts). If the high-period shows a lot of variability or occasional very long high pulses this can have an adverse effect on the streaming since it will delay the notification of new data availability from the driver to the application and therefore reduce the amount of time the application has to process the data before the card needs that buffer back again. If undesirable interrupt latency is occurring, the solution is not to look at the amc511.ko driver (which has a fairly consistent interrupt processing and lockout time), but instead to look to other sources of interrupt latency which would actually be in the kernel-layer but could possibly be stimulated by user-space activity. Typical sources might be hard drive access, networking drivers, USB, serial ports, etc. Try to eliminate these sources of latency by either disabling the devices or not using them during signal acquisition to see if the interrupt latency shown by the AMC511 card is improved.

By customizing the FPGA it is also possible to add performance counters to measure such things as bus utilization, stall time, idle time, etc in a more direct manner.

6 FPGA Customization

The reference FPGA design combines IP cores from Xilinx with VadaTech custom VHDL code. This design can be customized or replaced by the customer to allow for high-end custom DSP solutions that are tailor-made to take full advantage of the considerable signal processing capabilities of the Xilinx Virtex-5 FPGA. In order to ease this effort, this section of the document describes some of the building blocks used in the FPGA reference design as well as some development techniques particular to the AMC511 board.

Having the VHDL sources available while reading this section is recommended to see the correspondence of various files or instances of cores mentioned here.

The following cores from Xilinx are used:

- PCIe x4 Endpoint Plus (ep)
 - Wraps the Virtex 5 embedded PCIe core
 - o Provides the basic control/status/data interface for the reference design
- Tri-mode Ethernet Core in 1000Base-X mode (dual_enet_block)
 - Wraps the Virtex 5 embedded MAC core
 - o Simply tests link establishment in the reference design
- Rocket I/O GTP Core (GTP_DUAL_1000X_inst)
 - Wraps the Virtex 5 GTP tile
 - Used as the 1000Base-X SERDES PHY in the reference design
- Block Memory Generator (chain0/1_ram)
 - Used for holding the ADC DMA descriptors
- FIFO Generator (adc_dcfifo_inst, main_to_adc_mailbox)
 - Used for holding the ADC sample data (clock-domain crossing/buffering)
 - Used for the ADC control mailbox (clock-domain crossing)
- FIR Compiler (fir_halfband_inst)
 - o Used for the ADC half-band low-pass decimating filter
- Memory Interface Generator (sram_ctrl)
 - Used to generate the SRAM controller

It is expected that if the customer wishes to synthesize a new FPGA image, that they will have access to both the Xilinx ISE tool v11.3 or later (full version required to support the Virtex-5 chip on the board) as well as the necessary IP cores. Most of the IP cores are generic or else they are wrappers for Virtex-5 embedded blocks and therefore are included

with the ISE license at no extra charge from Xilinx. The Xilinx ISE tool license is not included as part of the purchase of the AMC511 card.

Refer to the applicable datasheets, user guides, and app notes from Xilinx for more details.

The VadaTech custom cores used in the reference design include:

- Top level wrapper (amc511_fpga.vhd)
 - Glues everything together at the top level
- ADC Controller/Pipeline w/ DMA Burst Scheduler (adc_core.vhd)
 - Controls each ADC and processes the dataflow from it
- PCIe to Local Bridge w/ DMA Burst Engine (pcie_local_bridge.vhd)
 Provides PIO Read/Write and DMA Write capabilities
- DMA Burst Arbiter (dma_burst_arbiter.vhd)
 o Round-robin arbitration of the DMA Burst Engine between the four ADCs
- Clock Synchronizer Controller (clksync_core.vhd)
 Controls the synchronizer chip via SPI and reports status
- Clock/Signal Router (clkrouter_core.vhd)
 - Flexibly routes clock/status/debug signals between places in the design
- LED Controller (led_core.vhd)

 Controls the user LEDs
- BPI Flash Controller (bpi_flash.vhd)
 - o Provides a simple interface to the BPI Flash bus for reprogramming
- General Purpose Utility Core (vt_utility_x32.vhd)
 - Provides version information and general utility functionality
- General Purpose Arbitrary Clock Enable Divider (vt_clocken_div_arbitrary.vhd)
 - Provides a re-usable way to slow down portions of the design while still using the same clock
- General Purpose Interrupt Controller (vt_interrupt_controller_x32.vhd)
 - o Provides a re-usable way to implement an interrupt controller for the design
- General Purpose Reset Synchronizer (vt_reset_sync.vhd)
 - Provides a re-usable asynchronous assertion/synchronous de-assertion reset

- General Purpose Clock Synchronizer (vt_multi_sync.vhd)
 - Provides a re-usable way to get individual signals from one clock domain to another to mitigate meta-stability

LEGAL NOTICE: The VadaTech custom VHDL code included in this reference design is the intellectual property of VadaTech Incorporated. Permission is granted to use the VadaTech custom VHDL code royalty-free in customer designs targeting the VadaTech AMC511 card only. Redistribution to third parties or use of this code for any other purpose is strictly prohibited.

It is possible to make slight changes to the design such as replacing the provided half-band FIR filter with your own custom FIR filter, etc or to completely replace the design. At a minimum the UCF file will be a useful starting point since it captures the pin-out of the FPGA chip on the AMC511 card. The provided source files were used to create the flash image that is shipped on the board from VadaTech. The MCS file used is also included so that the original BPI flash contents can be replaced after experimentation to restore the original board functionality.

A Xilinx Platform Cable USB II (or other compatible JTAG probe) is required to program the FPGA and/or BPI flash. During development it is possible to save time by only programming the FPGA. However, with a PCIe-based design it is required to soft-reset the system in order for the PCIe core to get re-initialized by the CPU. Doing a hard-reset will load the contents of the BPI flash and will wipe out any previous FPGA configuration that may have been done via JTAG. There is no special switch to select BPI vs. JTAG mode, the board is always in BPI mode but the JTAG can reconfigure the FPGA at any time. So the usual development sequences would be:

Developing using BPI Flash to load the FPGA:

- 1) Power the system (FPGA will load whatever is already in BPI flash)
- 2) Program the BPI flash with the MCS file
- 3) Power-cycle the system

Developing using FPGA only:

- 1) Power the system (FPGA will load whatever is already in BPI flash)
- 2) Program the FPGA with the BIT file (previous configuration will be overwritten for current power-cycle only)
- 3) Soft-reset the system (i.e. CTRL-ALT-DELETE or 'reboot' Linux command) to cause the PCIe BARs to be re-detected/re-initialized.

VadaTech is not responsible for damage or loss caused by reprogramming of the FPGA or BPI Flash by the customer. Use caution when changing the reference design or creating your own design as it is possible to damage the board or components.

Customizing the VCXO / Ref Clock Configuration

The AMC511 reference design code ships out with a default VCXO (A/D sample clock) rate of 180 MHz and a default Ref Clock rate of 10 MHz. However, these parts (Y4 and Y3 respectively on the schematic) may be changed out by Vadatech at the customer's request to better suit their target application.

To help facilitate this board-level change there are conditional compile options in both the reference FPGA code and the device driver code. These conditional compile options change the N/M divider configuration in the clock synchronizer PLL (refer to the **SYNCSPIO** register in the following section). Using incorrect settings will prevent the PLL from locking and may result in an unstable A/D sample clock.

The following configurations are currently supported by the reference design. If your application requires a different combination of oscillators please contact VadaTech Sales.

VCXO (Y4)	Ref Clock (Y3)	N Divider	M Divider
180 MHz	10 MHz	990	55
107.52 MHz	10 MHz	1344	125

Table 12: Supported VCXO / Ref Clock frequencies

To change the hardware default N/M configuration which the FPGA applies immediately upon configuration, look for the following compile options in the FPGA VHDL reference design's **clksync_core.vhd** file and set exactly one of them to 1 and the other to 0 and then re-generate the programming file:

constant VCXO180_REF10	:	<pre>integer range 0 to 1 := 1;</pre>	
constant VCXO107_52_REF10		<pre>integer range 0 to 1 := 0;</pre>	

To change the device driver's card initialization values, edit the device driver's **amc511.c** file and look for the following compile options and set exactly one of them to 1 and the other to 0 then rebuild the driver:

#define	VCXO180_REF10	1
#define	VCX0107_52_REF10	0

It is recommended that both the FPGA and device driver defaults be changed to match the oscillator configuration of your particular board. However, if changing the FPGA is not practical then just changing the device driver should be sufficient since it overrides the FPGA defaults prior to any actual data acquisition.

8 Appendix A: FPGA Register Specification

The AMC511 Reference Design FPGA's registers are available via a PCIe 64KB nonprefetchable memory-mapped region (BAR 0). This region responds to byte-enabled 32-bit memory reads and writes; meaning that BYTE, WORD, and DWORD accesses are permitted. The layout of this region is shown below:

Core	BAR Offset	Mnemonic	Description
Interrupt Controller	0x0000	GIMSR	Global Interrupt Mask Set Register
	0x0004	GIMCR	Global Interrupt Mask Clear Register
	0x0008	GISR	Global Interrupt Status Register
	0x000C	BCSR	Bit-Change Status Register
	0x0010 - 0x0FFF	N/A	Reserved
A/D Channel 0	0x1000	CHCTRLO	Channel O Control Register
	0x1004	CHSTATO	Channel O Status Register
	0x1008	CHMASKO	Channel O Mask Register
	0x100C	CHHWMO	Channel O High Water Mark Register
	0x1010	CHLVLO	Channel O Level Register
	0x1014	CHDMACTRLO	Channel O DMA Control/Status Register
	0x1018	CHDMACOUNTO	Channel O DMA Count Register
	0x101C	CHDEBUGAO	Channel O Debug Register A
	0x1020	CHDEBUGBO	Channel O Debug Register B
	0x1024	CHDEBUGCO	Channel O Debug Register C
	0x1028 - 0x13FF	N/A	Reserved
	0x1400 - 0x17FF	CHFIFOO	Channel O FIFO Read Port
	0x1800 - 0x1FFF	CHDMADESCO	Channel 0 DMA Descriptors Port

(continued)

CoreBAR OffsetMnemonicDescriptionA/D Channel 10x2000CHCTRL1Channel 1 Control Register0x2004CHSTAT1Channel 1 Status Register0x2008CHMASK1Channel 1 Mask Register0x2000CHLVL1Channel 1 High Water Mark Register0x2010CHLVL1Channel 1 DMA Control/Status R0x2010CHLVL1Channel 1 DMA Count Register0x2012CHDMACOUNT1Channel 1 DMA Count Register0x2013CHDMACOUNT1Channel 1 Debug Register A0x2020CHDEBUGA1Channel 1 Debug Register B0x2024CHDEBUGC1Channel 1 Debug Register C0x20280x2247CHDEBUGC10x20280x227FCHFIFO10x20000x227FCHFIFO10x20000x227FCHFIFO10x20000x27FFCHFIFO10x3000CHCTRL2Channel 1 DMA Descriptors Port0x3004CHSTAT2Channel 2 Control Register0x3008CHMASK2Channel 2 Mask Register0x3010CHLVL2Channel 2 Mask Register0x3010CHLVL2Channel 2 DMA Control/Status Register0x3014CHDMACOUNT2Channel 2 Debug Register A0x3024CHDEBUGA2Channel 2 Debug Register A0x3024CHDEBUG22Channel 2 Debug Register A0x3024CHDEBUG22Channel 2 Debug Register B0x3024CHDEBUG22Channel 3 Control Register0x4000CHCTRL3Channel 3 Mask Register0x4000CHCTRL3Channel 3	
Ox2004CHSTAT1Channel 1 Status Register0x2008CHMASK1Channel 1 Mask Register0x200CCHHWM1Channel 1 High Water Mark Regis0x2010CHLVL1Channel 1 Level Register0x2014CHDMACTRL1Channel 1 DMA Count Register0x2015CHDMACOUNT1Channel 1 DMA Count Register0x2016CHDEBUGA1Channel 1 Debug Register A0x2020CHDEBUGB1Channel 1 Debug Register B0x2024CHDEBUGC1Channel 1 Debug Register C0x2028 - 0x23FFN/AReserved0x2800 - 0x27FFCHFIFO1Channel 1 DMA Descriptors Port0x3004CHCTRL2Channel 2 DMA Descriptors Port0x3004CHSTAT2Channel 2 Mask Register0x3005CHHWM2Channel 2 High Water Mark Register0x3010CHLVL2Channel 2 High Water Mark Register0x3014CHDMACTRL2Channel 2 DMA Countol/Status R0x3012CHDEBUGA2Channel 2 Debug Register A0x3024CHDEBUGA2Channel 2 Debug Register A0x3024CHDEBUGA2Channel 2 Debug Register A0x3024CHDEBUGA2Channel 2 Debug Register C0x3024CHDEBUGA2Channel 2 Debug Register C0x3004CHTRL3Channel 2 DMA Count Register0x3024CHDEBUGA2Channel 2 Debug Register A0x3024CHDEBUGA2Channel 2 Debug Register C0x3004CHTRL3Channel 3 Data Register0x4000CHCTRL3Channel 3 Control Register0x4000CHCTRL3Ch	
Ox2008CHMASK1Channel 1 Mask Register0x200CCHHWM1Channel 1 High Water Mark Register0x2010CHLVL1Channel 1 Level Register0x2014CHDMACTRL1Channel 1 DMA Control/Status R0x2018CHDMACOUNT1Channel 1 DMA count Register0x2010CHDEBUGA1Channel 1 Debug Register A0x2012CHDEBUGB1Channel 1 Debug Register B0x2024CHDEBUGC1Channel 1 Debug Register C0x20280x23FFN/AReserved0x24000x27FFCHFIF01Channel 1 FIFO Read Port0x28000x2400CHCTRL2Channel 1 DMA Descriptors Port0x3004CHCTRL2Channel 2 Status Register0x3004CHSTAT2Channel 2 Mask Register0x3005CHHWN2Channel 2 Mask Register0x3010CHLVL2Channel 2 Mask Register0x3014CHDMACOUNT2Channel 2 DMA Control/Status R0x3015CHDMACOUNT2Channel 2 Debug Register A0x3020CHDEBUGA2Channel 2 Debug Register A0x3024CHDEBUGA2Channel 2 Debug Register A0x3024CHDEBUGC2Channel 2 Debug Register C0x3024CHDEBUGC2Channel 2 Debug Register C0x3000CHCTRL3Channel 3 Status Register0x4000CHCTRL3Channel 3 Status Register0x4000CHCTRL3Channel 3 Mask Register0x4000CHHWM3Channel 3 High Water Mark Register0x4000CHHWM3Channel 3 High Water Mark Register0x4000CHH	
Ox200CCHHWM1Channel 1 High Water Mark Regis0x2010CHLVL1Channel 1 Level Register0x2014CHDMACTRL1Channel 1 DMA Control/Status R0x2018CHDMACOUNT1Channel 1 DMA Count Register0x2010CHDEBUGA1Channel 1 Debug Register A0x2010CHDEBUGA1Channel 1 Debug Register B0x2020CHDEBUGB1Channel 1 Debug Register C0x2024CHDEBUGC1Channel 1 Debug Register C0x2028 - 0x23FFN/AReserved0x2800 - 0x2FFFCHFIF01Channel 1 DMA Descriptors PortA/D Channel 20x3000CHCTRL2Channel 2 Control Register0x3004CHSTAT2Channel 2 Mask Register0x3005CHMASK2Channel 2 Mask Register0x3010CHLVL2Channel 2 DMA Control/Status R0x3014CHDMACOUNT2Channel 2 DMA Control/Status R0x3018CHDMACOUNT2Channel 2 Debug Register A0x3020CHDEBUGA2Channel 2 Debug Register A0x3024CHDEBUGA2Channel 2 Debug Register A0x3024CHDEBUGA2Channel 2 Debug Register B0x3024CHDEBUGC2Channel 2 Debug Register C0x3024CHDEBUGC2Channel 2 DMA Descriptors PortA/D Channel 3Ox4000CHCTRL30x4000CHCTRL3Channel 3 Control Register0x4004CHSTAT3Channel 3 Control Register0x4008CHMASK3Channel 3 Level Register0x4000CHCTRL3Channel 3 Mask Register0x4008CHMASK3	
Ox2010CHLVL1Channel 1 Level Register0x2014CHDMACTRL1Channel 1 DMA Countrol/Status R0x2018CHDMACOUNT1Channel 1 DMA Count Register0x201CCHDEBUGA1Channel 1 Debug Register A0x2020CHDEBUGB1Channel 1 Debug Register B0x2024CHDEBUGC1Channel 1 Debug Register C0x2028 - 0x23FFN/AReserved0x2000CHCTRL2Channel 1 DHA Descriptors Port0x20000x2400 - 0x27FFCHFIFO1Channel 1 DMA Descriptors Port0x20000x2800 - 0x2FFFCHDMADESC1Channel 2 DMA Descriptors PortA/D Channel 20x3000CHCTRL2Channel 2 Control Register0x3004CHSTAT2Channel 2 Status Register0x3005CHHWM2Channel 2 High Water Mark Register0x3010CHLVL2Channel 2 DMA Countrol/Status R0x3014CHDMACTRL2Channel 2 DMA Countrol/Status R0x3015CHDEBUGA2Channel 2 Debug Register A0x3024CHDEBUGA2Channel 2 Debug Register A0x3024CHDEBUGC2Channel 2 Debug Register B0x3024CHDEBUGC2Channel 2 Debug Register C0x3028 - 0x33FFN/AReserved0x3000CHCTRL3Channel 3 Control Register0x4000CHCTRL3Channel 3 Control Register0x4004CHSTAT3Channel 3 Status Register0x4004CHSTAT3Channel 3 High Water Mark Register0x4000CHCTRL3Channel 3 High Water Mark Register0x4000CHHWM3Channel	ter
Ox2014CHDMACTRL1Channel 1 DMA Control/Status R 0x2018Ox2018CHDMACOUNT1Channel 1 DAA Count RegisterOx201CCHDEBUGA1Channel 1 Debug Register AOx2020CHDEBUGB1Channel 1 Debug Register BOx2024CHDEBUGC1Channel 1 Debug Register COx2028 - 0x23FFN/AReservedOx2400 - 0x27FFCHFIFO1Channel 1 FIFO Read PortOx2800 - 0x2FFFCHDMADESC1Channel 1 DMA Descriptors PortA/D Channel 2Ox3000CHCTRL2Channel 2 Control RegisterOx3004CHSTAT2Channel 2 Mask RegisterOx3005CHMASK2Channel 2 High Water Mark RegisterOx3010CHLVL2Channel 2 DMA Control/Status ROx3010CHLVL2Channel 2 DMA Control/Status ROx3012CHDBUGA2Channel 2 DMA Control/Status ROx3014CHDMACUNT2Channel 2 DMA Control/Status ROx3015CHDEBUGA2Channel 2 Debug Register AOx3020CHDEBUGB2Channel 2 Debug Register BOx3024CHDEBUGC2Channel 2 Debug Register BOx3028 - 0x33FFN/AReservedOx3000CHCTRL3Channel 2 DMA Descriptors PortA/D Channel 3Ox4000CHCTRL3Ox4004CHSTAT3Channel 3 Status RegisterOx4005CHMASK3Channel 3 High Water Mark RegisterOx4006CHHW3Channel 3 High Water Mark RegisterOx4000CHLVL3Channel 3 Level Register	
0x2018CHDMACOUNT1Channel 1 DMA Count Register0x201CCHDEBUGA1Channel 1 Debug Register A0x2020CHDEBUGB1Channel 1 Debug Register B0x2024CHDEBUGC1Channel 1 Debug Register C0x2028 - 0x23FFN/AReserved0x2400 - 0x27FFCHFIF01Channel 1 FIFO Read Port0x2800 - 0x2FFFCHDMADESC1Channel 1 DMA Descriptors PortA/D Channel 20x3000CHCTRL2Channel 2 Control Register0x3004CHSTAT2Channel 2 Status Register0x3005CHLWL2Channel 2 Mask Register0x3010CHLVL2Channel 2 Level Register0x3014CHDMACTRL2Channel 2 DMA Control/Status R0x3015CHDEBUGA2Channel 2 Debug Register A0x3016CHDEBUGA2Channel 2 Debug Register A0x3024CHDEBUGA2Channel 2 Debug Register A0x3024CHDEBUGC2Channel 2 Debug Register C0x3028 - 0x33FFN/AReserved0x3000CHCTRL3Channel 3 Control Register0x4000CHCTRL3Channel 3 Control Register0x4000CHCTRL3Channel 3 High Water Mark Regis0x4000CHCTRL3Channel 3 High Water Mark Regis0x4000CHCTRL3Channel 3 High Water Mark Register0x4000CHCTRL3Channel 3 High Water Mark Register0x4000CHCTRL3Channel 3 High Water Mark Register0x4000CHCTRL3Channel 3 High Water Mark Register0x4000CHLVL3Channel 3 Level Register <td>odister</td>	odister
Ox201CCHDEBUGA1Channel 1 Debug Register AOx2020CHDEBUGB1Channel 1 Debug Register BOx2024CHDEBUGC1Channel 1 Debug Register COx2028 - 0x23FFN/AReservedOx2400 - 0x27FFCHFIFO1Channel 1 FIFO Read PortOx2800 - 0x2FFFCHDMADESC1Channel 1 DMA Descriptors PortA/D Channel 2Ox3000CHCTRL2Channel 2 Control RegisterOx3004CHSTAT2Channel 2 Status RegisterOx3005CHHWM2Channel 2 High Water Mark RegisterOx3010CHLVL2Channel 2 Level RegisterOx3014CHDMACTRL2Channel 2 DMA Control/Status R Ox3014Ox3018CHDMACOUNT2Channel 2 Debug Register AOx3020CHDEBUGA2Channel 2 Debug Register AOx3024CHDEBUGA2Channel 2 Debug Register BOx3024CHDEBUGC2Channel 2 Debug Register BOx3024CHDEBUGC2Channel 2 FIFO Read PortOx3028 - Ox33FFN/AReservedOx3000CHCTRL3Channel 3 Control RegisterA/D Channel 3Ox4004CHSTAT3Ox4004CHSTAT3Channel 3 Mask RegisterOx4008CHMASK3Channel 3 High Water Mark RegisterOx4000CHCTRL3Channel 3 High Water Mark RegisterOx4000CHTVL3Channel 3 High Water Mark RegisterOx4000CHTRL3Channel 3 High Water Mark RegisterOx4000CHTVL3Channel 3 High Water Mark RegisterOx4000CHTVL3Channel 3 High Water Mark Register <td>5610101</td>	5610101
Ox2020CHDEBUGB1Channel 1 Debug Register BOx2024CHDEBUGC1Channel 1 Debug Register COx2028 - 0x23FFN/AReservedOx2400 - 0x27FFCHFIFO1Channel 1 FIFO Read PortOx2800 - 0x2FFFCHDMADESC1Channel 1 DMA Descriptors PortA/D Channel 2Ox3000CHCTRL2Channel 2 Control RegisterOx3004CHSTAT2Channel 2 Mask RegisterOx3005CHUWM2Channel 2 Mask RegisterOx3006CHUVL2Channel 2 High Water Mark RegisOx3010CHLVL2Channel 2 DMA Control/Status ROx3014CHDMACCUNT2Channel 2 DMA Control/Status ROx3016CHDEBUGA2Channel 2 Debug Register AOx3020CHDEBUGA2Channel 2 Debug Register COx3012CHDEBUGA2Channel 2 Debug Register COx3024CHDEBUGC2Channel 2 Debug Register COx3024CHDEBUGC2Channel 2 Debug Register COx3024CHDEBUGC2Channel 2 DMA Descriptors PortOx3024CHDEBUGC2Channel 2 Debug Register COx3025Ox33FFN/AReservedOx3400 - Ox37FFCHFIFO2Channel 2 DMA Descriptors PortA/D Channel 3Ox4000CHCTRL3Channel 3 Control RegisterOx4004CHSTAT3Channel 3 Mask RegisterOx4006CHMASK3Channel 3 Mask RegisterOx4007CHIMM3Channel 3 High Water Mark RegisOx4000CHCTRL3Channel 3 High Water Mark RegisOx4000CHLVL3Channel 3 High Water Mark Regis<	
Ox2024CHDEBUGC1Channel 1 Debug Register C0x2028 - 0x23FFN/AReserved0x2400 - 0x27FFCHFIF01Channel 1 FIF0 Read Port0x2800 - 0x2FFFCHDMADESC1Channel 1 DMA Descriptors PortA/D Channel 20x3000CHCTRL2Channel 2 Control Register0x3004CHSTAT2Channel 2 Status Register0x3008CHMASK2Channel 2 Mask Register0x3000CHLVL2Channel 2 High Water Mark Regis0x3010CHLVL2Channel 2 Level Register0x3014CHDMACTRL2Channel 2 DMA Control/Status R0x3012CHDEBUGA2Channel 2 Debug Register A0x3012CHDEBUGA2Channel 2 Debug Register B0x3020CHDEBUGA2Channel 2 Debug Register C0x3024CHDEBUGC2Channel 2 Debug Register C0x3028 - 0x33FFN/AReserved0x3000CHCTRL3Channel 2 DMA Descriptors PortA/D Channel 30x4000CHCTRL3Channel 3 Control Register0x4004CHSTAT3Channel 3 Mask Register0x4004CHSTAT3Channel 3 Mask Register0x4005CHMASK3Channel 3 High Water Mark Regis0x4000CHCTRL3Channel 3 High Water Mark Regis	
Ox2028 - 0x23FFN/AReserved0x2400 - 0x27FFCHFIFO1Channel 1 FIFO Read Port0x2800 - 0x2FFFCHDMADESC1Channel 1 DMA Descriptors PortA/D Channel 20x3000CHCTRL2Channel 2 Control Register0x3004CHSTAT2Channel 2 Status Register0x3005CHMASK2Channel 2 Mask Register0x3006CHLVL2Channel 2 High Water Mark Regis0x3010CHLVL2Channel 2 Level Register0x3014CHDMACTRL2Channel 2 DMA Control/Status R0x3018CHDMACOUNT2Channel 2 Debug Register A0x3010CHDEBUGA2Channel 2 Debug Register A0x3012CHDEBUGA2Channel 2 Debug Register B0x3014CHDEBUGA2Channel 2 Debug Register C0x3016CHDEBUGA2Channel 2 Debug Register C0x3020CHDEBUGA2Channel 2 Debug Register C0x3024CHDEBUGC2Channel 2 Debug Register C0x30050x337FFCHFIFO2Channel 2 DMA Descriptors PortA/D Channel 30x4000CHCTRL3Channel 3 Control Register0x4004CHSTAT3Channel 3 Status Register0x4004CHSTAT3Channel 3 Mask Register0x4006CHMASK3Channel 3 High Water Mark Register0x4000CHLVL3Channel 3 High Water Mark Register	
Ox2400 - 0x27FFCHFIFO1Channel 1 FIFO Read Port0x2800 - 0x2FFFCHDMADESC1Channel 1 DMA Descriptors PortA/D Channel 20x3000CHCTRL2Channel 2 Control Register0x3004CHSTAT2Channel 2 Status Register0x3008CHMASK2Channel 2 Mask Register0x3010CHLVL2Channel 2 Level Register0x3014CHDMACTRL2Channel 2 DMA Control/Status R0x3018CHDMACOUNT2Channel 2 DMA Count Register0x3010CHDEBUGA2Channel 2 Debug Register A0x3012CHDEBUGA2Channel 2 Debug Register B0x3014CHDEBUGA2Channel 2 Debug Register C0x3015CHDEBUGA2Channel 2 Debug Register B0x3020CHDEBUGB2Channel 2 Debug Register C0x3024CHDEBUGC2Channel 2 Debug Register C0x30050x37FFCHFIFO2Channel 2 DMA Descriptors PortA/D Channel 30x4000CHCTRL3Channel 3 Control Register0x4004CHSTAT3Channel 3 Mask Register0x4008CHMASK3Channel 3 Mask Register0x4000CHLVL3Channel 3 High Water Mark Register0x4010CHLVL3Channel 3 Level Register	
Ox2800 - 0x2FFFCHDMADESC1Channel 1 DMA Descriptors PortA/D Channel 20x3000CHCTRL2Channel 2 Control Register0x3004CHSTAT2Channel 2 Status Register0x3008CHMASK2Channel 2 Mask Register0x3000CHLWM2Channel 2 High Water Mark Regis0x3010CHLVL2Channel 2 Level Register0x3014CHDMACTRL2Channel 2 DMA Control/Status R0x3018CHDMACOUNT2Channel 2 DMA Count Register0x3010CHDEBUGA2Channel 2 Debug Register A0x3012CHDEBUGB2Channel 2 Debug Register B0x3012CHDEBUGB2Channel 2 Debug Register C0x3024CHDEBUGC2Channel 2 Debug Register C0x3000 - 0x37FFCHFIFO2Channel 2 DHA Descriptors PortA/D Channel 30x4000CHCTRL3Channel 3 Control Register0x4004CHSTAT3Channel 3 Status Register0x4008CHMASK3Channel 3 Mask Register0x4000CHLVL3Channel 3 High Water Mark Regis0x4010CHLVL3Channel 3 Level Register	
A/D Channel 20x3000CHCTRL2Channel 2 Control Register0x3004CHSTAT2Channel 2 Status Register0x3008CHMASK2Channel 2 Mask Register0x3000CHLVL2Channel 2 High Water Mark Register0x3010CHLVL2Channel 2 Level Register0x3014CHDMACTRL2Channel 2 DMA Control/Status R0x3018CHDMACOUNT2Channel 2 Debug Register A0x3020CHDEBUGA2Channel 2 Debug Register B0x3024CHDEBUGB2Channel 2 Debug Register C0x3028 - 0x33FFN/AReserved0x3000CHCTRL3Channel 2 DMA Descriptors PortA/D Channel 30x4000CHCTRL3Channel 3 Status Register0x4004CHSTAT3Channel 3 Mask Register0x4005CHMASK3Channel 3 High Water Mark Register0x4006CHMASK3Channel 3 High Water Mark Register0x4010CHLVL3Channel 3 Level Register	
0x3004CHSTAT2Channel 2 Status Register0x3008CHMASK2Channel 2 Mask Register0x300CCHHWM2Channel 2 High Water Mark Register0x3010CHLVL2Channel 2 Level Register0x3014CHDMACTRL2Channel 2 DMA Control/Status R0x3018CHDMACOUNT2Channel 2 DMA Count Register0x3010CHDEBUGA2Channel 2 Debug Register A0x3012CHDEBUGA2Channel 2 Debug Register A0x3020CHDEBUGB2Channel 2 Debug Register B0x3024CHDEBUGC2Channel 2 Debug Register C0x3028 - 0x33FFN/AReserved0x3000 - 0x3FFFCHDMADESC2Channel 2 DMA Descriptors PortA/D Channel 30x4000CHCTRL3Channel 3 Status Register0x4004CHSTAT3Channel 3 Mask Register0x4005CHHWM3Channel 3 High Water Mark Register0x4000CHLVL3Channel 3 Level Register	
Ox3008CHMASK2Channel 2 Mask RegisterOx300CCHHWM2Channel 2 High Water Mark RegisterOx3010CHLVL2Channel 2 Level RegisterOx3014CHDMACTRL2Channel 2 DMA Control/Status ROx3018CHDMACOUNT2Channel 2 DMA Count RegisterOx301CCHDEBUGA2Channel 2 Debug Register AOx3020CHDEBUGB2Channel 2 Debug Register BOx3024CHDEBUGC2Channel 2 Debug Register COx3028 - 0x33FFN/AReservedOx3000CHCTRL3Channel 2 DMA Descriptors PortA/D Channel 3Ox4000CHCTRL3Channel 3 Status RegisterOx4008CHMASK3Channel 3 Mask RegisterOx400CCHHWM3Channel 3 High Water Mark RegistorOx4010CHLVL3Channel 3 Level Register	
Ox300CCHHWM2Channel 2 High Water Mark RegistOx3010CHLVL2Channel 2 Level RegisterOx3014CHDMACTRL2Channel 2 DMA Control/Status ROx3018CHDMACOUNT2Channel 2 DMA Count RegisterOx301CCHDEBUGA2Channel 2 Debug Register AOx3020CHDEBUGB2Channel 2 Debug Register BOx3024CHDEBUGC2Channel 2 Debug Register COx3028 - 0x33FFN/AReservedOx3000 - 0x37FFCHFIFO2Channel 2 FIFO Read PortOx3800 - 0x3FFFCHDMADESC2Channel 3 Control RegisterA/D Channel 3Ox4000CHCTRL3Channel 3 Control RegisterOx4004CHSTAT3Channel 3 Mask RegisterOx400CCHHWM3Channel 3 High Water Mark RegisterOx4010CHLVL3Channel 3 Level Register	
0x3010CHLVL2Channel 2 Level Register0x3014CHDMACTRL2Channel 2 DMA Control/Status R0x3018CHDMACOUNT2Channel 2 DMA Count Register0x301CCHDEBUGA2Channel 2 Debug Register A0x3020CHDEBUGB2Channel 2 Debug Register B0x3024CHDEBUGC2Channel 2 Debug Register C0x3028 - 0x33FFN/AReserved0x3000 - 0x37FFCHFIFO2Channel 2 FIFO Read Port0x3800 - 0x3FFFCHDMADESC2Channel 2 DMA Descriptors PortA/D Channel 30x4000CHCTRL3Channel 3 Control Register0x4004CHSTAT3Channel 3 Mask Register0x400CCHHWM3Channel 3 High Water Mark Register0x4010CHLVL3Channel 3 Level Register	tor
0x3014CHDMACTRL2Channel 2 DMA Control/Status R0x3018CHDMACOUNT2Channel 2 DMA Count Register0x301CCHDEBUGA2Channel 2 Debug Register A0x3020CHDEBUGB2Channel 2 Debug Register B0x3024CHDEBUGC2Channel 2 Debug Register C0x3028 - 0x33FFN/AReserved0x3400 - 0x37FFCHFIFO2Channel 2 FIFO Read Port0x3800 - 0x3FFFCHDMADESC2Channel 2 DMA Descriptors PortA/D Channel 30x4000CHCTRL3Channel 3 Control Register0x4008CHMASK3Channel 3 Mask Register0x400CCHHWM3Channel 3 High Water Mark Register0x4010CHLVL3Channel 3 Level Register	ster
0x3018CHDMACOUNT2Channel 2 DMA Count Register0x301CCHDEBUGA2Channel 2 Debug Register A0x3020CHDEBUGB2Channel 2 Debug Register B0x3024CHDEBUGC2Channel 2 Debug Register C0x3028 - 0x33FFN/AReserved0x3400 - 0x37FFCHFIF02Channel 2 FIFO Read Port0x3800 - 0x3FFFCHDMADESC2Channel 2 DMA Descriptors PortA/D Channel 30x4000CHCTRL3Channel 3 Control Register0x4004CHSTAT3Channel 3 Status Register0x4008CHMASK3Channel 3 Mask Register0x4010CHLVL3Channel 3 Level Register	adiator
Ox301CCHDEBUGA2Channel 2 Debug Register AOx3020CHDEBUGB2Channel 2 Debug Register BOx3024CHDEBUGC2Channel 2 Debug Register COx3028 - 0x33FFN/AReservedOx3400 - 0x37FFCHFIFO2Channel 2 FIFO Read PortOx3800 - 0x3FFFCHDMADESC2Channel 2 DMA Descriptors PortA/D Channel 3Ox4000CHCTRL3Channel 3 Control RegisterOx4004CHSTAT3Channel 3 Status RegisterOx4008CHMASK3Channel 3 Mask RegisterOx4010CHLVL3Channel 3 Level Register	egister
Ox3020CHDEBUGB2Channel 2 Debug Register BOx3024CHDEBUGC2Channel 2 Debug Register COx3028 - 0x33FFN/AReservedOx3400 - 0x37FFCHFIFO2Channel 2 FIFO Read PortOx3800 - 0x3FFFCHDMADESC2Channel 2 DMA Descriptors PortA/D Channel 3Ox4000CHCTRL3Channel 3 Control RegisterOx4004CHSTAT3Channel 3 Status RegisterOx4008CHMASK3Channel 3 Mask RegisterOx4010CHLVL3Channel 3 Level Register	
Ox3024CHDEBUGC2Channel 2 Debug Register COx3028 - 0x33FFN/AReservedOx3400 - 0x37FFCHFIFO2Channel 2 FIFO Read PortOx3800 - 0x3FFFCHDMADESC2Channel 2 DMA Descriptors PortA/D Channel 3Ox4000CHCTRL3Channel 3 Control RegisterOx4004CHSTAT3Channel 3 Status RegisterOx4008CHMASK3Channel 3 Mask RegisterOx400CCHHWM3Channel 3 High Water Mark RegisterOx4010CHLVL3Channel 3 Level Register	
0x3028 - 0x33FFN/AReserved0x3400 - 0x37FFCHFIFO2Channel 2 FIFO Read Port0x3800 - 0x3FFFCHDMADESC2Channel 2 DMA Descriptors PortA/D Channel 30x4000CHCTRL3Channel 3 Control Register0x4004CHSTAT3Channel 3 Status Register0x4008CHMASK3Channel 3 Mask Register0x400CCHHWM3Channel 3 High Water Mark Register0x4010CHLVL3Channel 3 Level Register	
0x3400 - 0x37FFCHFIF02Channel 2 FIFO Read Port0x3800 - 0x3FFFCHDMADESC2Channel 2 DMA Descriptors PortA/D Channel 30x4000CHCTRL3Channel 3 Control Register0x4004CHSTAT3Channel 3 Status Register0x4008CHMASK3Channel 3 Mask Register0x400CCHHWM3Channel 3 High Water Mark Register0x4010CHLVL3Channel 3 Level Register	
Ox3800 - Ox3FFF CHDMADESC2 Channel 2 DMA Descriptors Port A/D Channel 3 Ox4000 CHCTRL3 Channel 3 Control Register Ox4004 CHSTAT3 Channel 3 Status Register Ox4008 CHMASK3 Channel 3 Mask Register Ox400C CHHWM3 Channel 3 High Water Mark Register Ox4010 CHLVL3 Channel 3 Level Register	
A/D Channel 30x4000CHCTRL3Channel 3 Control Register0x4004CHSTAT3Channel 3 Status Register0x4008CHMASK3Channel 3 Mask Register0x400CCHHWM3Channel 3 High Water Mark Register0x4010CHLVL3Channel 3 Level Register	
0x4004CHSTAT3Channel 3 Status Register0x4008CHMASK3Channel 3 Mask Register0x400CCHHWM3Channel 3 High Water Mark Register0x4010CHLVL3Channel 3 Level Register	
0x4008CHMASK3Channel 3 Mask Register0x400CCHHWM3Channel 3 High Water Mark Register0x4010CHLVL3Channel 3 Level Register	
Ox400CCHHWM3Channel 3 High Water Mark RegisOx4010CHLVL3Channel 3 Level Register	
0x4010 CHLVL3 Channel 3 Level Register	
	ster
Ox4014 CHDMACTRL3 Channel 3 DMA Control/Status R	
	egister
0x4018 CHDMACOUNT3 Channel 3 DMA Count Register	
0x401C CHDEBUGA3 Channel 3 Debug Register A	
0x4020 CHDEBUGB3 Channel 3 Debug Register B	
Ox4024 CHDEBUGC3 Channel 3 Debug Register C	
0x4028 – 0x43FF N/A Reserved	
0x4400 – 0x47FF CHFIFO3 Channel 3 FIFO Read Port	
0x4800 – 0x4FFF CHDMADESC3 Channel 3 DMA Descriptors Port	
Clock Synchronizer 0x5000 SYNCCTRL Synchronizer Control Register	
0x5004 SYNCSPI0 Synchronizer SPI Data 0	
0x5008 SYNCSPI1 Synchronizer SPI Data 1	
Ox500C SYNCSPI2 Synchronizer SPI Data 2	
Ox5010 SYNCSPI3 Synchronizer SPI Data 3	
0x5014 – 0x5FFF N/A Reserved	

(continued)

Core	BAR Offset	Mnemonic	Description
Clock Router	0x6000	CRSYNC	Clock Router Sync Out Source Register
	0x6004	CRTCLKA	Clock Router TCLKA Source Register
	0x6008	CRTCLKB	Clock Router TCLKB Source Register
	0x600C	CRTCLKC	Clock Router TCLKC Source Register
	0x6010	CRTCLKD	Clock Router TCLKD Source Register
	0x6014	CRTRIGIN1	Clock Router ADC 0 Trig Input Source Register
	0x6018	CRTRIGIN2	Clock Router ADC 1 Trig Input Source Register
	0x601C	CRTRIGIN3	Clock Router ADC 2 Trig Input Source Register
	0x6020	CRTRIGIN4	Clock Router ADC 3 Trig Input Source Register
	0x6024	CRPRIREF	Clock Router Primary Reference Source Register
	0x6028	CRSECREF	Clock Router Secondary Reference Source Register
	0x602C	CREN	Clock Router Enables Register
	0x6030 - 0x6FFF	N/A	Reserved
LED	0x7000	GREENLEDO	Channel 0 Green Status LED Register
	0x7004	GREENLED1	Channel 1 Green Status LED Register
-	0x7008	GREENLED2	Channel 2 Green Status LED Register
	0x700C	GREENLED3	Channel 3 Green Status LED Register
	0x7010	AMBERLEDO	Channel O Amber Status LED Register
	0x7014	AMBERLED1	Channel 1 Amber Status LED Register
	0x7018	AMBERLED2	Channel 2 Amber Status LED Register
	0x701C	AMBERLED3	Channel 3 Amber Status LED Register
	0x7020 - 0x7FFF	N/A	Reserved
DMA Arbiter	0x8000	ARBSTAT	DMA Arbiter Status Register
	0x8004 - 0x8FFF	N/A	Reserved
BPI Flash	0x9000	BPICTRL	BPI Flash Control Register
	0x9004	BPIADDR	BPI Flash Address Register
	0x9008	BPIDATA	BPI Flash Data Register
	0x900C - 0x9FFF	N/A	Reserved
N/A	0xA000 – 0xEFFF	N/A	Reserved
Utility	0xF000 - 0xFFF3	N/A	Reserved
	0xFFF4	SCRATCH	Scratch Register
	0xFFF8	VER	Version Register
	OxFFFC	SIG	Signature Register
		Table 13: FPG	GA register map

The following pages describe the registers in detail. In these register descriptions certain field behavior tags are used. The following is a list of those behaviors:

RO	-	Read Only
R/W	-	Read/Write
R/W1C	-	Read/Write 1 to Clear
R/W1S	-	Read/Write 1 to Set
R/W1SC	-	Read/Write 1 Self-Clearing

8.1 GIMSR – Global Interrupt Mask Set Register

	31	30	29	28	27	26	25	24
Field	BCI	CSI			Rs	vd		
Access	R/W1S	R/W1S			R	0		
Reset	0	0			>	(
	23	22	21	20	19	18	17	16
Field		Rsvd						
Access					20			
Reset					Х			
-								
	15	14	13	12	11	10	9	8
Field	Rsvd							
Access		RO						
Reset					Х			

	7	6	5	4	3	2	1	0
Field		Rs	vd		ADC3	ADC2	ADC1	ADCO
Access		R	0		R/W1S	R/W1S	R/W1S	R/W1S
Reset)	(0	0	0	0

Bit(s)	Field	Description
31	BCI	Read: Bit Change Interrupt is enabled when '1' else it is disabled.
		Write: Writing '1' sets the Bit Change Interrupt enabled. Writing '0' has no effect.
30	CSI	Read: Clock Synchronizer Interrupt (SPI_DONE=1) is enabled when '1' else it is disabled. Write: Writing '1' sets the Clock Synchronizer Interrupt Enabled. Writing '0' has no
		effect.
3	ADC3	Read: ADC3 Interrupt is enabled when '1' else it is disabled.
		Write: Writing '1' sets the ADC3 Interrupt enabled. Writing '0' has no effect.
2	ADC2	Read: ADC2 Interrupt is enabled when '1' else it is disabled.
		Write: Writing '1' sets the ADC2 Interrupt enabled. Writing '0' has no effect.
1	ADC1	Read: ADC1 Interrupt is enabled when '1' else it is disabled.
		Write: Writing '1' sets the ADC1 Interrupt enabled. Writing '0' has no effect.
0	ADC0	Read: ADCO Interrupt is enabled when '1' else it is disabled.
		Write: Writing '1' sets the ADCO Interrupt enabled. Writing '0' has no effect.

8.2 GIMCR – Global Interrupt Mask Clear Register

	31	30	29	28	27	26	25	24		
Field	BCI	CSI			R	svd				
Access	R/W1C	R/W1C			F	80				
Reset	0	0				Х				
	23	22	21	20	19	18	17	16		
Field				Rsvd						
Access					RO					
Reset					Х					
<u>.</u>										
	15	14	13	12	11	10	9	8		
Field		Rsvd								
Access			RO							
Reset					Х					

	7	6	5	4	3	2	1	0
Field		Rs	vd		ADC3	ADC2	ADC1	ADCO
Access		R	0		R/W1C	R/W1C	R/W1C	R/W1C
Reset)	(0	0	0	0

Bit(s)	Field	Description
31	BCI	Read: Bit Change Interrupt is enabled when '1' else it is disabled.
		Write: Writing '1' disables the Bit Change Interrupt. Writing '0' has no effect.
30	CSI	Read: Clock Synchronizer Interrupt (SPI_DONE=1) is enabled when '1' else it is
		disabled.
		Write: Writing '1' disables the Clock Synchronizer Interrupt. Writing '0' has no effect.
3	ADC3	Read: ADC3 Interrupt is enabled when '1' else it is disabled.
		Write: Writing '1' disables the ADC3 Interrupt. Writing '0' has no effect.
2	ADC2	Read: ADC2 Interrupt is enabled when '1' else it is disabled.
		Write: Writing '1' disables the ADC2 Interrupt. Writing '0' has no effect.
1	ADC1	Read: ADC1 Interrupt is enabled when '1' else it is disabled.
		Write: Writing '1' disables the ADC1 Interrupt. Writing '0' has no effect.
0	ADCO	Read: ADC0 Interrupt is enabled when '1' else it is disabled.
		Write: Writing '1' disables the ADCO Interrupt. Writing '0' has no effect.

8.3 GISR – Global Interrupt Status Register

	31	30	29	28	27	26	25	24		
Field	BCI	CSI			Rsv	/d				
Access	RO	RO			R)				
Reset	0	0			Х					
	23	22	21	20	19	18	17	16		
Field		•		Rsvd						
Access				F	80					
Reset					Х					
	15	14	13	12	11	10	9	8		
Field	Rsvd									
Access				RO						
Reset					Х					

	7	6	5	4	3	2	1	0
Field		Rs	svd		ADC3	ADC2	ADC1	ADCO
Access		R	0		RO	RO	RO	RO
Reset		2	K		0	0	0	0

Bit(s)	Field	Description
31	BCI	Bit Change Interrupt is pending when '1', and is therefore interrupting the CPU. This
		bit will clear automatically when the BCI is no longer asserted by the BCSR register.
30	CSI	Clock Synchronizer Interrupt (SPI_DONE=1) is pending when '1', and is therefore
		interrupting the CPU. This bit will clear automatically when the CSI is no longer
		asserted by the Clock Synchronizer core.
3	ADC3	ADC3 Interrupt is pending when '1', and is therefore interrupting the CPU. This bit will
		clear automatically when the ADC3 Interrupt is no longer asserted by the A/D 3 core.
2	ADC2	ADC2 Interrupt is pending when '1', and is therefore interrupting the CPU. This bit will
		clear automatically when the ADC2 Interrupt is no longer asserted by the A/D 2 core.
1	ADC1	ADC1 Interrupt is pending when '1', and is therefore interrupting the CPU. This bit will
	7	clear automatically when the ADC1 Interrupt is no longer asserted by the A/D 1 core.
0	ADCO	ADCO Interrupt is pending when '1', and is therefore interrupting the CPU. This bit will
		clear automatically when the ADCO Interrupt is no longer asserted by the A/D 0 core.

8.4 BCSR – Bit Change Status Register

Address: 0x000C

	31	30	29	28	27	26	25	24
Field	Rsvd							
Access	RO							
Reset	X							
Resel				Х				
Resel				X				
Reset	23	22	21	20 X	19	18	17	16
Field	23	22	21			18	17	16
	23	22	21	20	/d	18	17	16

	15	15 14 13 12 11 10 9 8								
Field		Rsvd								
Access		RO								
Reset		X								

	7	6	5	4	3	2	1	0
Field			Rsvd	PLL_LOCK	STA_VCXO	STA_REF		
Access	RO					R/W1C	R/W1C	R/W1C
Reset			Х	0	0	0		

Bit(s)	Field	Description
2	PLL_LOCK	
		is '1', else it did not change state.
		Write: Writing '1' clears this bit. Writing '0' has no effect.
1	STA_VCXO	Read: The Clock Synchronizer's STA_VCXO indication changed state when this bit
		is '1', else it did not change state.
		Write: Writing '1' clears this bit. Writing '0' has no effect.
0	STA_REF	Read: The Clock Synchronizer's STA_REF indication changed state when this bit is
		'1', else it did not change state.
		Write: Writing '1' clears this bit. Writing '0' has no effect.

8.5 CHCTRLx – Channel X Control Register

Addresses: 0x1000, 0x2000, 0x3000, 0x4000

Field Rsvd PAT Access RO R/W Reset X 0		31	30	29	28	27	26	25	24
	Field			Rsvd	PAT				
Reset X 0	Access			RO	R/W				
	Reset			Х	0				

	23 22 21 20 19 18 17 16								
Field		Rsvd							
Access	RO								
Reset	X								
-									

	15	14	13	12	11	10	9	8
Field		DECM						
Access		R/W						
Reset		0						

	7	6	5	4	3	2	1	0
Field	Rs	vd	SI	RC	PGA	RAND	DITH	ENABLE
Access	R	0	R/	/W	R/W	R/W	R/W	R/W
Reset	X	[0		0	1	1	0

Bit(s)	Field	Description
26-24	PAT	Specifies the pattern generator's output pattern from the following list: 0x0 - Generate all '0' bits. 0x1 - Generate all '1' bits. 0x2 - Generate most negative signed 16-bit value. 0x3 - Generate most positive signed 16-bit value. 0x4 - Generate repeating ramp from most negative signed 16-bit value to most positive signed 16-bit value, incrementing by one. If the decimator is turned on the ramp will appear to increment by DECM+1 due to the decimation. 0x5-0x7 - Reserved
15-8	DECM	Specifies the decimation 'M-1' value. A value of 0x00 in this field decimates by a factor of 1 (no decimation), while a value of 0xFF decimates by a factor of 256.
5-4	SRC	Specifies the source of data for the channel FIFO from the following list: 0x0 - Raw A/D samples 0x1 - FIR filtered A/D samples 0x2 - Pattern Generator samples 0x3 - Reserved
3	PGA	When set to '1' turns on the A/D chip's Programmable Gain Amplifier $(1.5x Gain)$, else keeps it off.
2	RAND	When set to '1' turns on the A/D chip's Randomizer function which can reduce EMI emissions. This also turns on the FPGA's De-randomizer pipeline stage so that the effect is transparent to the data set.
1	DITH	When set to '1' turns on the A/D chip's Dither function.
0	ENABLE	When set to '1' enables the A/D chip as well as the FPGA's A/D pipeline for this channel, else it is disabled which can save power.

8.6 CHSTATx – Channel X Status Register

Addresses: 0x1004, 0x2004, 0x3004, 0x4004

	31	30	29	28	27	26	25	24
Field		•		•	Rsvd		•	
Access					RO			
Reset		X						
	23	22	21	20	19	18	17	16
Field		•	-		Rsvd			
Access					RO			
Reset					Х			
-								
	15	14	13	12	11	10	9	8
Field		•	R	Rsvd		•	DMA1DONE	DMAODONE
Access				RO			R/W1C	R/W1C
Reset				Х			0	0

	7	6	5	4	3	2	1	0
Field	Rsvd		FIROVR	AOVR	FOVR	FUND	FHWM	RUNNING
Access	RO		R/W1C	R/W1C	R/W1C	R/W1C	RO	RO
Reset	Х		0	0	0	0	0	0

Field	Description
DMA1DONE	Read: The DMA controller has finished transferring chain 1.
	Write: Writing '1' clears this bit. Writing '0' has no effect.
DMAODONE	Read: The DMA controller has finished transferring chain 0.
	Write: Writing '1' clears this bit. Writing '0' has no effect.
FIROVR	Read: FIR filter overflow occurred when '1' else it didn't occur.
	Write: Writing '1' clears this bit. Writing '0' has no effect.
AOVR	Read: A/D Chip OVRFLW occurred when '1' else it didn't occur.
	Write: Writing '1' clears this bit. Writing '0' has no effect.
FOVR	Read: FIFO overflow occurred when '1' else it didn't occur. FIFO overflow occurs
	when the A/D pipeline drops one or more samples because the FIFO was already
	full.
	Write: Writing '1' clears this bit. Writing '0' has no effect.
FUND	Read: FIFO underflow occurred when '1' else it didn't occur. FIFO underflow
	occurs when the host or DMA engine reads the FIFO when it is already empty.
	Write: Writing '1' clears this bit. Writing '0' has no effect.
FHWM	The FIFO High Water Mark indication is asserted when '1' else it is not.
RUNNING	The A/D pipeline is processing data when '1' else it is not.
	DMA1DONE DMAODONE FIROVR AOVR FOVR FUND

NOTE: An ADC core interrupt is asserted to the GISR register whenever any bit is set in this register that is also set in the CHMASK register.

A channel 'fault' output is created internally for use by the LED controller which is the logical 'or' of FIROVR, AOVR, FOVR, and FUND. The LED controller stretches this signal to ensure that it is always visible for a minimum period of time to the human eye.

8.7 CHMASKx – Channel X Mask Register

Addresses: 0x1008, 0x2008, 0x3008, 0x4008

	31	30	29	28	27	26	25	24
Field	01	00	23	-	svd	20	20	27
Access	RO							
Reset					Х			
	23	22	21	20	19	18	17	16
Field	Rsvd							
Access				F	90			
Reset					Х			
-								
	15	14	13	12	11	10	9	8
Field	Rsvd						DMA1DONE	DMAODONE
Access		RO R/W R/W						
Reset				Х			0	0

	7	6	5	4	3	2	1	0
Field	Rsvd		FIROVR	AOVR	FOVR	FUND	FHWM	RUNNING
Access	RO		R/W	R/W	R/W	R/W	R/W	R/W
Reset	Х		0	0	0	0	0	0

Bit(s)	Field	Description
9	DMA1DONE	When set to '1' allows the DMA1DONE status bit to assert an interrupt to the
		GISR register, else the interrupt is blocked.
8	DMAODONE	When set to '1' allows the DMAODONE status bit to assert an interrupt to the
		GISR register, else the interrupt is blocked.
4	FIROVR	When set to '1' allows the FIROVR status bit to assert an interrupt to the GISR
		register, else the interrupt is blocked.
4	AOVR	When set to '1' allows the AOVR status bit to assert an interrupt to the GISR
		register, else the interrupt is blocked.
3	FOVR	When set to '1' allows the FOVR status bit to assert an interrupt to the GISR
		register, else the interrupt is blocked.
2	FUND	When set to '1' allows the FUND status bit to assert an interrupt to the GISR
		register, else the interrupt is blocked.
1	FHWM	When set to '1' allows the FHWM status bit to assert an interrupt to the GISR
		register, else the interrupt is blocked.
0	RUNNING	When set to '1' allows the RUNNING status bit to assert an interrupt to the GISR
		register, else the interrupt is blocked.

8.8 CHHWMx – Channel X High Water Mark Register

Addresses: 0x100C, 0x200C, 0x300C, 0x400C

	31	30	29	28	27	26	25	24
Field	Rsvd							
Access	RO							
Reset	X							
	23	22	21	20	19	18	17	16
Field				Rsv	vd		•	
Access	RO							
Reset				Х				
	15	14	13	12	11	10	9	8
Field	Rsvd					HWM[12:8]		
Access	RO					R/W		
Reset	Х					(see below)		
	7	6	5	4	3	2	1	0
Field				HWM	[7:0]			
Access				R/'	W			
Reset				0x2	00			

Bit(s)	Field	Description
12-0	HWM	Sets the level above which the FIFO High Water Mark indication should be asserted in the range $0x000 - 0x1$ FFF.

8.9 CHLVLx – Channel X Level Register

Addresses: 0x1010, 0x2010, 0x3010, 0x4010

	31	30	29	28	27	26	25	24	
Field	Rsvd								
Access	RO								
Reset	X								
	23	22	21	20	19	18	17	16	
Field	Rsvd								
Access	RO								
Reset				X					
			_						
	15	14	13	12	11	10	9	8	
Field	Rsvd				LEVEL				
Access	RO				R				
Reset	X				(see b				
nooot	~				(000 %				
	7		-		0	0			
_	Γ	6	5	4	3	2	1	0	
Field				LEVEL[
Access				RO					
Reset				0x00	00				

Bit(s)	Field	Description
13-0	LEVEL	Shows the current level of the FIFO (each FIFO entry contains 4 samples) in the range of 0x0000-0x2001.

8.10 CHDMACTRLx – Channel X DMA Control/Status Register

Addresses: 0x1014, 0x2014, 0x3014, 0x4014

	31	30	29	28	27	26	25	24
Field	DMAPTP	Rsvd	STATE		Rsvd		BURST_LEN[9:8]	
Access	R/W	RO	R	0	F	80	RO	
Reset	0	Х	0x0		Х		Х	
	23	22	21	20	19	18	17	16

Field		BURST_LEN[7:0]							
Access		RO							
Reset		X							
-									
	15	11	12	12	11	10	0	•	

	15	14	13	12	11	10	9	8		
Field	CURCHAIN		CURDESC							
Access	RO		RO							
Reset	0		0x00							

	7	1	0					
Field		CHAIN1RDY	CHAINORDY					
Access	RO R/W1SC							
Reset	X 0							0

Bit(s)	Field	Description
31	DMAPTP	Specifies whether Point-To-Point DMA mode should be enabled. When this bit is '1' the DMA controller will assume that it is pushing samples to another PCle card and not memory. It will therefore not clear the CHAINxRDY bits and will continue to cycle through both chains endlessly. Otherwise when this bit is '0' it performs normal DMA to memory behavior where the CHAINxRDY bits are cleared so that ownership of the buffer chain transfers back to the device driver after the DMA completes.
29-28	STATE	Shows the current DMA Burst Scheduler state for diagnostic purposes as follows: Ox0: Idle Ox1: Descriptor Fetch Ox2: Descriptor Processing Ox3: Waiting for end of chain burst completion
25-16	BURST_LEN	Shows the number of bytes that will be transferred in each DMA burst for diagnostic purposes. This value is decoded from the PCIe Configuration Device Control Register's Max Payload Size field. The possible values are 128, 256, or 512.
15	CURCHAIN	Shows whether chain 0 or chain 1 is the current chain that the DMA engine will process. This bit resets back to '0' whenever the channel is disabled.
14-8	CURDESC	Shows the current descriptor within the current chain that the DMA engine will process. This field resets back to 0x00 whenever the channel is disabled.

1	CHAIN1RDY	A '1' bit is written to this field whenever the device driver wants to enable the DMA channel to process chain 1. Effectively it passes ownership from the software to the hardware for the given chain. The DMA engine will process it immediately only if it is also the CURCHAIN, otherwise it will wait in a ready state until the CURCHAIN is done. In normal DMA mode the controller will clear this bit when the chain has been transferred, but in point-to-point DMA mode the controller will not clear this bit and will continue to re-use the chains. In either case, the DMA1DONE bit in the status register will be set upon transfer completion. Writing a '0' to this field has no effect. This bit resets back to '0' whenever the channel is disabled.
0	CHAINORDY	A '1' bit is written to this field whenever the device driver wants to enable the DMA channel to process chain 0. Effectively it passes ownership from the software to the hardware for the given chain. The DMA engine will process it immediately only if it is also the CURCHAIN, otherwise it will wait in a ready state until the CURCHAIN is done. In normal DMA mode the controller will clear this bit when the chain has been transferred, but in point-to-point DMA mode the controller will not clear this bit and will continue to re-use the chains. In either case, the DMAODONE bit in the status register will be set upon transfer completion. Writing a '0' to this field has no effect. This bit resets back to '0' whenever the channel is disabled.

Reset

8.11 CHDMACOUNTx – Channel X DMA Count Register

Addresses: 0x1018, 0x2018, 0x3018, 0x4018

	31	30	29	28	27	26	25	24
Field	01	00	23	BURSTS		20	20	<u> </u>
Access				R				
Reset				(see b	elow)			
				,	,			
	23	22	21	20	19	18	17	16
Field		BURST	S[3:0]			BYTES[2	19:16]	
Access		R	C			RC)	
Reset		0x0	00			(see b	elow)	
	15	14	13	12	11	10	9	8
Field				BYTES[[15:8]			
Access		/		RC				
Reset				(see be	elow)			
	7	6	5	4	3	2	1	0
Field		1		BYTES	5[7:0]			
Access				RC				

Bit(s)	Field	Description
31-20	BURSTS	This field shows the total number of burst transfers (128, 256, or 512 bytes) completed by the DMA engine while processing the current descriptor in the
		range of 0x000 – 0xFFF. It is for diagnostic use only.
19-0	BYTES	This field shows the total number of bytes transferred by the DMA engine while processing the current descriptor in the range of 0x00000 – 0x80000. It is for diagnostic use only.

0x00000

Acce

8.12 CHDEBUGAx – Channel X Debug A Register

Addresses: 0x101C, 0x201C, 0x301C, 0x401C

	31	30	29	28	27	26	25	24
Field			Rsvd				PAT_A	
Access			RO				RO	
Reset			Х				0	
	23	22	21	20	19	18	17	16
Field		•	•	Rs	svd			

Nesei				~						
-										
	15	14	13	12	11	10	9	8		
Field				DECI	M_A					
Access		RO								
Reset				C						

RO

	7	6	5	4	3	2	1	0
Field	Rs	vd	SR	SRC_A		RAND_A	DITH_A	RUNNING_A
Access	R	0	R	RO		RO	RO	RO
Reset	>	K		C	0	1	1	0

Bit(s)	Field	Description
26-24	PAT_A	Shows the value of PAT in the A/D clock domain for diagnostic purpose.
		(Async)
15-8	DECM_A	Shows the value of DECM in the A/D clock domain for diagnostic purpose.
		(Async)
5-4	SRC_A	Shows the value of SRC in the A/D clock domain for diagnostic purpose.
		(Async)
3	PGA_A	Shows the value of PGA in the A/D clock domain for diagnostic purpose.
		(Async)
2	RAND_A	Shows the value of RAND in the A/D clock domain for diagnostic purpose.
		(Async)
1	DITH_A	Shows the value of DITH in the A/D clock domain for diagnostic purpose.
		(Async)
0	RUNNING_A	Shows the value of RUNNING in the A/D clock domain for diagnostic purpose.
		(Async)

NOTE: Debug fields flagged as 'Async' may display meta-stability effects resulting in unpredictable read values. They are mostly of use during debugging of possible stall conditions where meta-stability isn't a factor since the values would not be changing asynchronously. They should be viewed with a very skeptical eye if the pipeline is actively running and the values are changing rapidly.

8.13 CHDEBUGBx – Channel X Debug B Register

Addresses: 0x1020, 0x2020, 0x3020, 0x4020

	31	30	29	28	27	26	25	24	
Field	PIPERST	SHDN	Rsvd	MBOX_FULL	Rs	vd	FIR_RFD	FIR_RDY	
Access	RO	RO	RO	RO	R	0	RO	RO	
Reset	1	1	Х	0	>	Κ	0	0	
	23	22	21	20	19	18	17	16	
Field	PIPERST_A	MBOXRST	RSTSYNCRST	MBOX_EMPTY	CAPRDY	FMTRDY	SRCRDY	CHCLK	
Access	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	1	1	1	1	0	0	0	Х	
	15	14	13	12	11	10	9	8	
Field	OVRFLW	PACK	LANE			HWM_A[12:8]			
Access	RO	R	0			RO			
Reset	0	(C			(see below)			
	7	6	5	4	3	2	1	0	
Field				HWM_A	[12:8]				
Access				RC)				
Reset				0x2	00				

Bit(s)	Field	Description
31	PIPERST	Shows the value of the pipeline reset line in the Main clock domain for
		diagnostic purpose.
30	SHDN	Shows the value of the SHDN line for diagnostic purpose.
28	MBOX_FULL	Shows the value of the mailbox full line for diagnostic purpose.
25	FIR_RFD	Shows the value of the FIR filter's Ready For Data line for diagnostic purpose. <i>(Async)</i>
24	FIR_RDY	Shows the value of the FIR filter's output data Ready line for diagnostic purpose. (Async)
23	PIPERST_A	Shows the value of the pipeline reset line in the A/D clock domain for diagnostic purpose. (Async)
22	MBOXRST	Shows the value of the mailbox reset line for diagnostic purpose. (Async)
21	RSTSYNCRST	Shows the value of the reset synchronizer reset (effectively holds mailbox/pipeline in reset until DCM is locked to A/D channel clock) for diagnostic purpose. (Async)
20	MBOX_EMPTY	Shows the value of the mailbox empty line for diagnostic purpose. (Async)
19	CAPRDY	Shows the value of the pipeline Captured stage ready line for diagnostic purpose. (Async)
18	FMTRDY	Shows the value of the pipeline Formatted stage ready line for diagnostic purpose. (Async)
17	SRCRDY	Shows the value of the pipeline Sourced stage ready line for diagnostic purpose. (Async)
16	CHCLK	Shows the value of the channel clock line for diagnostic purpose. (Async)
15	OVRFLW	Shows the value of the captured overflow line for diagnostic purpose. (Async)
14-13	PACKLANE	Shows the value of the pipeline Packed stage lane selector for diagnostic purpose. (Async)
12-0	HWM_A	Shows the value of HWM in the A/D clock domain for diagnostic purpose. (Async)

NOTE: Debug fields flagged as '*Async*' may display meta-stability effects resulting in unpredictable read values. They are mostly of use during debugging of possible stall conditions where meta-stability isn't a factor since the values would not be changing asynchronously. They should be viewed with a very skeptical eye if the pipeline is actively running and the values are changing rapidly.

Reset

8.14 CHDEBUGCx – Channel X Debug C Register

Addresses: 0x1024, 0x2024, 0x3024, 0x4024

	24	20	20	20	07	20	05	24	
Field	31	30	29	28	27	26	25	24	
	CH_DATA[15:8]								
Access				RC					
Reset				(see b	elow)				
	23	22	21	20	19	18	17	16	
Field				CH_DAT	A[7:0]				
Access				RC)				
Reset				0x00	000				
	15	14	13	12	11	10	9	8	
Field				PAT_DAT	A[15:8]				
Access		/		RC					
Reset				(see be					
110301				(500 50	(10W)				
	_		-						
	7	6	5	4	3	2	1	0	
Field				PAT_DAT					
Access				RC)				

Bit(s)	Field	Description
31-16	CH_DATA	Shows the value of the captured A/D data lines for diagnostic purpose. Note that this is before the Formatted stage so the data will be randomized if the RAND bit is '1'. (<i>Async</i>)
15-0	PAT_DATA	Shows the value of the pattern generator data for diagnostic purpose. (Async)

0x0000

NOTE: Debug fields flagged as '*Async*' may display meta-stability effects resulting in unpredictable read values. They are mostly of use during debugging of possible stall conditions where meta-stability isn't a factor since the values would not be changing asynchronously. They should be viewed with a very skeptical eye if the pipeline is actively running and the values are changing rapidly.

8.15 CHFIFOx – Channel X FIFO Read Port

Addresses: 0x1400-17FF, 0x2400-27FF, 0x3400-37FF, 0x4400-47FF

	63	62	61	60	59	58	57	56
Field				SAMPLE:				
Access Reset				RC X				
Neoot				×				
	55	54	53	52	51	50	49	48
Field				SAMPLE				
Access Reset				RC X)			
Resel			-	^				
	47	46	45	44	43	42	41	40
Field				SAMPLE	D[15:8]			
Access				RC				
Reset				Х				
	39	38	37	36	35	34	33	32
Field			0.	SAMPLE				0_
Access				RC				
Reset				Х				
	31	30	29	28	27	26	25	24
Field	31	30	29	SAMPLE		20	23	24
Access				RC)			
Reset				Х				
			~	00	- 10	40	17	
Field	23	22	21	20 SAMPLE	19	18	17	16
Access				RC				
Reset				Х				
								_
Field	15	14	13	12 SAMPLE	11 2[15·8]	10	9	8
Access	_			RC				
Reset				Х				
	(/							
Field -	7	6	5	4	3	2	1	0
Field Access				SAMPLE RO <mark>[SIDE</mark> -	EFFFCT1			
Reset				X				

Bit(s)	Field	Description
63-48	SAMPLE1	Sample index 2 within the current FIFO entry.
47-32	SAMPLEO	Sample index 2 within the current FIFO entry.
31-16	SAMPLE3	Sample index 3 within the current FIFO entry.
15-0	SAMPLE2	Sample index 2 within the current FIFO entry. Reading the least significant byte of this sample has the side-effect of popping the FIFO so that the next FIFO entry is reflected in this register.

FIFO READ PORT NOTES:

- The FIFO read port is 64-bits wide unlike the other registers which are 32-bits wide. This is so that the DMA engine can process the sample data at the full bandwidth of the 64-bit PCIe core in the FPGA.
- The FIFO read port register is mirrored multiple times over the specified range. This allows for optimized memcpy style access from the CPU (the internal DMA engine also bursts from the FIFO using this technique).
- PIO reads can only read 32-bits of this port at a time.
- Even DWORD addresses read the upper 32-bits while odd DWORD addresses read the lower 32-bits.
- Reading the LSB of an odd DWORD causes the FIFO to de-queue and present the next entry. Therefore the expected read pattern is to read the even word then the odd word [FIFO then presents the next entry], then read the next even word and next odd word, etc.
- The DMA engine reads this port 64-bits at a time.

The samples are positioned into the FIFO entry such that by the time they reach the CPU's main memory they are in Little-endian 16-bit byte order. This occurs as follows:

- 1) The samples are staged into the entry as shown in the register description above.
- 2) The PCIe bus bridging logic converts the BE32 representation in the FPGA to LE32 representation.
- 3) The CPU interprets the data as LE16 (signed short) samples.

The following table shows the sample/byte order transformations that occur as data flows from the FPGA to the CPU:

Sample/Byte Order	0	1	2	3	4	5	6	7
FIFO order (native 64)	1A	1B	OA	OB	ЗA	3B	2A	2B
Bridge order (LE32)	OB	OA	1B	1A	2B	2A	3B	ЗA
CPU (native 16)	OA	OB	1A	1B	2A	2B	ЗA	3B

8.16 CHDMADESCx – Channel X DMA Descriptors Port

Addresses: 0x1800-1FFF, 0x2800-2FFF, 0x3800-3FFF, 0x4800-4FFF

Field	63	62	61	60 ADDR[32	59 1·241	58	57	56
Access				R/W				
Reset				(see be				
				(*****	,			
	55	54	53	52	51	50	49	48
Field			_ 00	ADDR[23		_ 00 _		
Access				R/W				
Reset				(see be				
					· ·			
	47	46	45	44	43	42	41	40
Field			_	ADDR[15:9]				Rsvd
Access				R/W				RO
Reset				0x000000				Х
	39	38	37	36	35	34	33	32
Field				Rsvo	1			
Access _				RO				
Reset				Х				
	31	30	29	28	27	26	25	24
Field				Rsvo	ł			
Access				RO				
Reset				X				
_	_			_		_		_
	23	22	21	20	19	18	17	16
Field	_	Rs				LENGTH		
Access		R				,	/W	
Reset	_	>	`			(See L	Jeiuw)	
	15	14	13	12	11	10	9	8
Field	15	14	15	LENGTH[15:9]		10	9	Rsvd
Access				R/W				RO
Reset				0x000				X
	7	6	5	4	3	2	1	0
Field				Rsvd				LAST
Access				RO				R/W
Reset				Х				X
								•
			_		•			
Bit(s)	Field			D destination bus	escription			
	ADDR							

19-9	LENGTH	The upper bits of the length in bytes for the descriptor. This length must be a multiple of 512 bytes (since this is the largest possible burst size) and non-zero. The actual burst size is determined by the PCIe Configuration: Max Payload as set but he hast and mark to 200 an 510 butst.
		by the host and may be 128, 256, or 512 bytes.
0	LAST	When this flag is set to '1' it indicates to the DMA engine that this is the last descriptor in the chain. It should be cleared to '0' on any descriptors leading up to the last one. This flag must be set on the last entry in each chain in order for the DMA engine to operate properly.

DMA DESCRIPTOR PORT NOTES:

- The DMA descriptor is 64-bits wide unlike the other registers which are 32-bits wide. This is simply to group the related fields together into a structure.
- PIO reads/writes can only read 32-bits of this port at a time.
- Even DWORD addresses read/write the upper 32-bits while odd DWORD addresses read/write the lower 32-bits.
- There are 128 64-bit descriptors for each chain with 256 descriptors total. Chain 0 uses the first 128 and chain 1 uses the second 128.
- Not all descriptors in a chain have to be used by the software, but the last valid descriptor in a chain MUST have the LAST bit set.
- The initial contents of the descriptors are undefined.
- The content of the descriptors is persistent and may be re-used on multiple transfers if desired for improved efficiency.
- The descriptors of a given chain should not be written to while a DMA operation on that chain is currently in progress.

8.17 SYNCCTRL – Clock Synchronizer Control/Status Register

	31	30	29	28	27	26	25	24		
Field	PLL_LOCK	STA_VCXO	STA_REF			Rsvd				
Access	RO	RO	RO		RO					
Reset	0	0	0	Х						
	23	22	21	20	19	18	17	16		
	Rsvd									
Field				Rsv	d					
Field Access		·		Rsv RC						

	15	14	13	12	11	10	9	8	
Field	Rsvd								
Access				RO				R/W	
Reset				Х				1	

	7	6	5	4	3	2	1	0
Field			SPI_DONE	SPI_START				
Access			F	80			RO	R/W1SC
Reset				Х			1	1

Bit(s)	Field	Description
31	PLL_LOCK	This bit reflects the current state of the Clock Synchronizer chip's PLL_LOCK line. When this bit is '1' the PLL is locked, otherwise it is not. This bit is monitored for changes and changes are reported in the BCSR register which can cause a CPU interrupt when enabled.
30	STA_VCXO	This bit reflects the current state of the Clock Synchronizer chip's STA_VCXO line. This line can mean different things depending on the SPI Data configuration. Please refer to the chip's datasheet. This bit is monitored for changes and changes are reported in the BCSR register which can cause a CPU interrupt when enabled.
29	STA_REF	This bit reflects the current state of the Clock Synchronizer chip's STA_REF line. This line can mean different things depending on the SPI Data configuration. Please refer to the chip's datasheet. This bit is monitored for changes and changes are reported in the BCSR register which can cause a CPU interrupt when enabled.
8	REF_SEL	Selects the primary reference of the Clock Synchronizer chip (10MHz on-board oscillator) when set to '1' else the secondary reference (front panel input).
1	SPI_DONE	The SPI Master controller is done (idle) when this bit is '1', else it is currently busy shifting data out of the SPI Data registers into the Clock Synchronizer chip.
0	SPI_START	Writing a '1' to this bit starts the SPI Master controller which will drive the values of the SYNCSPIO-3 registers out to the Clock Synchronizer chip. The values in these registers do not control the Clock Synchronizer chip until this bit is set to '1 and then the SPI_DONE bit transitions to '0' and then back to '1' indicating that the SPI transfer is complete. This bit defaults to '1' so that the FPGA's power-on default values specific to the AMC511 will be automatically transferred to the chip to override its more generic defaults.

8.18 SYNCSPI0 – Clock Synchronizer SPI Data 0 Register

Address: 0x5004

	31	30	29	28	27	26	25	24	
_ Field _	REFDEC	MANAUT		DLYN			DLYM		
Access	R/W	R/W		R/W			R/W		
Reset	0	0		0			0		
						•			
	23	22	21	20	19	18	17	16	
Field				N[1	1:4]				
Access				R,	/W				
Reset				(see l	celow)				
•					· · ·				
	15	14	13	12	11	10	9	8	
Field		N[3	3:0]			M[[9:6]		
Access		/R/	W W		R/W				
Reset		98	9*			(see	below)		
	7	6	5	4	3	2	1	0	
Field			M	[5:0]			0	;	
Access				R/W			R	0	
Reset				4 *			Ox	(0	

Please refer to the CDCM7005 datasheet for the meaning of these fields. Some of the power-on defaults have been changed in the FPGA design compared to the chip defaults in order to better suit the AMC511 design. Also, for purposes of preventing mis-operation within the AMC511 design, some fields may be designated read-only in the FPGA design that were originally read/write in the chip design.

* NOTE: The N/M divider register defaults may be configured using conditional compile options in the FPGA reference design code to adapt them to different available VCXO / Ref Clock combinations. The default configuration is for a 180 MHz VCXO and 10 MHz Ref Clock. Refer to the section entitled Customizing the VCXO / Ref Clock Configuration. Also note that the M and N values in this register are specified as the desired value minus one. See the CDCM7005 datasheet.

8.19 SYNCSPI1 – Clock Synchronizer SPI Data 1 Register

Address: 0x5008

	31	30	29	28	27	26	25	24
Field	90DIV8	90DIV4	ADLOCK	SXIOREF	SREF	OU [.]	T4B	OUT4A[1]
Access	R/W	R/W	RO	R/W	R/W	R	0	RO
Reset	0	0	0	0	0	0x0		(see below)
	23	22	21	20	19	18	17	16
Field	OUT4A[0]	OUT3B		OU	ТЗА	00	Г2В	OUT2A[1]
Access	RO	R	0	R	0	R	0	RO
Reset	0x0	0	x0	0	кO	0>	<0	(see below)
-								
	15	14	13	12	11	10	9	8
Field	OUT2A[0]	OU ⁻	T1B	OUT1A		OUTOB		OUTOA[1]
Access	RO	R	0	R	RO		0	RO
Reset	0x0	0:	кO	02	0x0		<0	(see below)
	7	6	5	4	3	2	1	0
Field	OUTOA[0]	OUTSEL4	OUTSEL3	OUTSEL2	OUTSEL1	OUTSELO		Ċ
Access	RO	RO	RO	RO	RO	RO		RO
Reset	0x0	1	1	1	1	1		0x1

Please refer to the CDCM7005 datasheet for the meaning of these fields. Some of the power-on defaults have been changed in the FPGA design compared to the chip defaults in order to better suit the AMC511 design. Also, for purposes of preventing mis-operation within the AMC511 design, some fields may be designated read-only in the FPGA design that were originally read/write in the chip design.

8.20 SYNCSPI2 – Clock Synchronizer SPI Data 2 Register

Address: 0x500C

	31	30	29	28	27	26	25	24	
Field	NHOLD	NRESET	RESHOL	NPD		Y4MUX		Y3MUX[2]	
Access	R/W	R/W	RO	R/W		R/W		R/W	
Reset	1	1	0	1		0x0		(see below)	
	23	22	21	20	19	18	17	16	
Field	Y3MU	IX[1:0]		Y2MUX			Y1MUX		
Access	R/	/W		R/W			R/W	R/W	
Reset	02	x0		0x0	0x0				
-								-	
	15	14	13	12		10	9	8	
Field		YOMUX			FBMUX	PFD			
Access		R/W			R/W	R/W			
Reset		0x0			0x0		0)xO	
	7	6	5	4	3	2	1	0	
Field		C	P		PRECP	CP_DIR		C	
Access		R/	Ŵ		R/W	RO		RO	
Reset		0>	κA		0	0	(Dx2	

Please refer to the CDCM7005 datasheet for the meaning of these fields. Some of the power-on defaults have been changed in the FPGA design compared to the chip defaults in order to better suit the AMC511 design. Also, for purposes of preventing mis-operation within the AMC511 design, some fields may be designated read-only in the FPGA design that were originally read/write in the chip design.

8.21 SYNCSPI3 – Clock Synchronizer SPI Data 3 Register

Address: 0x5010

Field	31	30	29	28	27	26	25	24
Field Access					Rovd			
Reset					0			
nosoc					•			
	23	22	21	20	19	18	17	16
Field					svd		L	
Access					RO			
Reset					0			
	15	14	13	12	11	10	9	8
Field		Rs	vd		HOLDTR	Rsvd	HOLDF	Rsvd
Access		R	0		R/W	RO	R/W	RO
Reset		()		0	0	0	0
	7	6	5	4	3	2	1	0
Field	7 Rsvd	6 CSLIP	-	4 0CKC	3 LOC		1	
			L			KW	1 (;
Field	Rsvd	CSLIP	L	оскс	LOC	KW W		0

Please refer to the CDCM7005 datasheet for the meaning of these fields. Some of the power-on defaults have been changed in the FPGA design compared to the chip defaults in order to better suit the AMC511 design. Also, for purposes of preventing mis-operation within the AMC511 design, some fields may be designated read-only in the FPGA design that were originally read/write in the chip design.

Reset

8.22 CRSYNC, CRTCLKA/B/C/D, CRTRIGINx, CRPRIREF,

CRSECREF – Clock Routing Registers

Х

Addresses: 0x6000 (CRSYNC), 0x6004 (CRTCLKA), 0x6008 (CRTCLKB), 0x600C (CRTCLKC), 0x6010 (CRTCLKD), 0x6014 (CRTRIGIN0), 0x6018 (CRTRIGIN1), 0x601C (CRTRIGIN2), 0x6020 (CRTRIGIN3), 0x6024 (CRPRIREF), 0x6028 (CRSECREF)

	31	30	29	28	27	26	25	24		
Field				Rs	vd					
Access				R	0					
Reset				>	(
	23	22	21	20	19	18	17	16		
Field				Rs	vd					
Access	RO									
Reset	X									
-										
	15	14	13	12	11	10	9	8		
Field				Rs	vd	- !				
Access				R	0					
Reset				Х	(
	7	6	5	4	3	2	1	0		
Field		Rsvd				SOURCE				
Access		RO				R/W				

(see description on next page)

Bit(s)	Field	Description
4-0	SOURCE	This field selects the source signal to drive to the destination as follows: 0x00 - Fixed logic '1' value 0x01 - Fixed logic '1' value 0x02 - Front panel RIG IN 0x03 - Front panel REF CLK IN 0x04 - Backplane TCLKA input 0x05 - Backplane TCLKB input 0x06 - Backplane TCLKD input 0x07 - Backplane TCLKD input 0x08 - A/D channel 1's trigger out (RUNNING bit) 0x09 - A/D channel 1's trigger out (RUNNING bit) 0x00 - A/D channel 1's trigger out (RUNNING bit) 0x00 - A/D channel 1's trigger out (RUNNING bit) 0x00 - STA_REF from Clock Synchronizer chip 0x00 - STA_VCX0 from Clock Synchronizer chip 0x00 - STA_VCX0 from Clock Synchronizer chip 0x00 - STA_VCX0 from Clock Synchronizer chip 0x00 - A/D sample clock as driven by A/D chip for channel 0 (CHCLK1) 0x10 - A/D sample clock as driven by A/D chip for channel 1 (CHCLK1) 0x12 - A/D sample clock as driven by A/D chip for channel 3 (CHCLK3) 0x14 - 10MHZ on-board clock 0x15 - PCIE_CLK1 on-board clock 0x15 - PCIE_CLK1 on-board clock 0x17 - CLK125MHZ2 on-board clock 0x18 - A/D channel 1 sign bit (simple comparator function) 0x19 - A/D channel 1 sign bit (simple comparator function) 0x14 - A/D channel 1 sign bit (simple comparator function) 0x14 - A/D channel 1 sign bit (simple comparator function) 0x14 - A/D channel 1 sign bit (simple comparator function) 0x14 - A/D channel 1 sign bit (simple comparator function) 0x14 - A/D channel 3 sign bit (simple comparator function) 0x14 - A/D channel 3 sign bit (simple comparator function) 0x14 - A/D channel 3 sign bit (simple comparator function) 0x14 - A/D channel 3 sign bit (simple comparator function) 0x14 - A/D channel 3 sign bit (simple comparator function) 0x16 - Master interrupt signal

The Clock Routing Registers all follow the same layout. The registers correspond to MUX selectors in the FPGA and select the source signal for a given signal path. The target paths are as follows:

Register	Target signal path	Default	Meaning
CRSYNC (0x6000)	Front panel SYNC output	0x00	Off
CRTCLKA (0x6004)	Backplane TCLKA output	0x00	Off
CRTCLKB (0x6008)	Backplane TCLKB output	0x00	Off
CRTCLKC (0x600C)	Backplane TCLKC output	0x00	Off
CRTCLKD (0x6010)	Backplane TCLKD output	0x00	Off
CRTRIGINO (0x6014)	Trigger input for A/D channel 0	0x01	On
CRTRIGIN1 (0x6018)	Trigger input for A/D channel 1	0x01	On
CRTRIGIN2 (0x601C)	Trigger input for A/D channel 2	0x01	On
CRTRIGIN3 (0x6020)	Trigger input for A/D channel 3	0x01	On
CRPRIREF (0x6024)	Clock Synchronizer Primary Reference	0x03	Front REF CLK IN
CRSECREF (0x6028)	Clock Synchronizer Secondary Reference	0x14	On-board 10MHz

The CRTRIGINx registers default to 1 because the trigger logic in the ADC channels is always active which means that the routed trigger has to be forced to a logic '1' in order for an automatic trigger to occur when the channel is enabled. If something other than an automatic trigger is desired, then the value can be changed as desired.

8.23 CREN – Clock Routing Enable Register

Address: 0x602C

	31	30	29	28	27	26	25	24		
Field	Rsvd									
Access	RO									
Reset	X									
	23	22	21	20	19	18	17	16		

Field					Rsvd				
Access					RO				
Reset					Х				
-									
	15	11	2	40		44	 <u>م</u>	0	 •

	15	14	13	12	11	10	9	8	
Field				Rs	vd				
Access		RO							
Reset)	K				

	7	6	5	4	3	2	1	0
Field	TCLKD_OUT	TCLKC_OUT	TCLKB_OUT	TCLKA_OUT	TCLKX_IN	REF_CLK_IN	TRIG_IN	SYNC_OUT
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	1	0	0

Bit(s)	Field	Description
0	SYNC_OUT	Enable the front panel SYNC OUT output when '1' else disable it.
1	TRIG_IN	Enable the front panel TRIG IN input when '1' else disable it.
2	REF_CLK_IN	Enable the front panel REF CLK IN input when '1' else disable it.
3	TCLKX_IN	Enable the backplane M-LVDS receivers when '1' else disable them.
4	TCLKA_OUT	Enable the TCLKA M-LVDS transmitter when '1' else disable it.
5	TCLKB_OUT	Enable the TCLKB M-LVDS transmitter when '1' else disable it.
6	TCLKC_OUT	Enable the TCLKC M-LVDS transmitter when '1' else disable it.
7	TCLKD_OUT	Enable the TCLKD M-LVDS transmitter when '1' else disable it.

8.24 GREENLEDx – Green Status LED Control Registers

Address: 0x7000, 0x7004, 0x7008, 0x700C

Field Rsvd Access RO Reset X 23 22 21 20 19 18 17 Field Rsvd Access Ro Reset X	24 16									
Reset X 23 22 21 20 19 18 17 Field Rsvd Rsvd Rsvd 18 17 Access RO Ro 10	16									
23 22 21 20 19 18 17 Field Rsvd Rsvd	16									
Field Rsvd Access RO Reset X	16									
Field Rsvd Access RO Reset X	16									
Access RO Reset X										
Reset X	Rsvd									
	RO									
	8									
Field Rsvd										
Access RO										
Reset X										
7 6 5 4 3 2 1										

	7	6	5	4	3	2 1 0				
Field		Rsvd LEDSEL								
Access			RO	R/W						
Reset			Х	0x4						

Bit(s)	Field	Description
2-0	LEDSEL	Selects the source to drive to the User LED 0 output. The LED will be ON when the signal is '1' and off when the signal is '0'. The LED signal can be sourced from the following list: 0x0 - Off 0x1 - On 0x2 - Blink
		0x2 - Dink 0x3 - Corresponding A/D channel's trigger out (RUNNING bit) 0x4 - Power-on indication GREENLEDD: 1000Base-X 0 SYNC GREENLED1: 1000Base-X 1 SYNC GREENLED2: PCle link up GREENLED3: SRAM Passing 0x5 - STA_REF from Clock Synchronizer chip 0x6 - STA_VCX0 from Clock Synchronizer chip 0x7 - PLL_LOCK from Clock Synchronizer chip

8.25 AMBERLEDx – Amber Status LED Control Registers

Address: 0x7010, 0x7014, 0x7018, 0x701C

	31	30	29	28	27	26	25	24		
Field	Rsvd									
Access	RO									
Reset	X									
	23	22	21	20	19	18	17	16		
Field	Rsvd									
Access	RO									
Reset					Х					
	15	14	13	12	11	10	9	8		
Field			•	Rs	svd	•				
Access				R	80					
Reset					Х					

	7	6	5	4	3	2	1	0
Field			Rsvd		LEDSEL			
Access			RO	R/W				
Reset			Х	(see description)				

Bit(s)	Field	Description
2-0	LEDSEL	Selects the source to drive to the User LED 1 output. The LED will be ON when the signal is '1' and off when the signal is '0'. The LED signal can be sourced from the following list: 0x00 - Off 0x01 - On 0x02 - Blink (AMBERLEDO's default register value) 0x03 - Corresponding A/D channel's fault indication 0x04 - Power-on indication (AMBERLED1/2/3's default register value)
		AMBERLEDO: Off (unused) AMBERLED1: PCIe x8 width AMBERLED2: PCIe x4 width AMBERLED3: SRAM Failing 0x05 – STA_REF from Clock Synchronizer chip 0x06 – STA_VCX0 from Clock Synchronizer chip 0x07 – PLL_LOCK from Clock Synchronizer chip

8.26 ARBSTAT – DMA Arbiter Status Register

Address: 0x8000

	31	30	29	28	27	26	25	24		
Field	STATE	REQM	DONEM	ACKM	REQ3	REQ2	REQ1	REQO		
Access	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	Х	Х	Х	Х	Х	Х	Х	Х		
	23	22	21	20	19	18	17	16		
Field	DONE3	DONE2	DONE1	DONEO	ACK3	ACK2	ACK1	ACKO		
Access	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	Х	Х	Х	Х	Х	Х	Х	Х		
	15	14	13	12	11	10	9	8		
Field		•	Rs	vd			NE	XT		
Access			R	0			R	0		
Reset		X								
	7	6	5	4	3	2	1	0		
					_					

	7	6	5	4	3	2	1	0
Field	Rsvd		PREV		Rsvd		CURR	
Access	RO		RO		RO		RO	
Reset	Х		0x0		Х		0x0	

Bit(s)	Field	Description
31	STATE	This field shows the current state of the DMA Arbiter as follows:
		'0': Waiting for REQ from currently selected ADC core
		'1': Waiting for ACK from DMA Burst Engine
30	REQM	This field shows the current state of the master request line to the DMA Burst
		Engine.
29	DONEM	This field shows the current state of the master DONE line from the DMA Burst
		Engine.
28	ACKM	This field shows the current state of the master ACK line from the DMA Burst
		Engine.
27-24	REQx	These fields show the current state of the REQ lines from the ADC cores.
23-20	DONEx	These fields show the current state of the DONE lines to the ADC cores.
19-16	ACKx	These fields show the current state of the ACK lines to the ADC cores.
9-8	NEXT	This field shows which ADC core would be next to DMA if the master ACK line
		would have been pulsed at the instant of the read.
5-4	PREV	This field shows which ADC core will be the recipient of the next DONE pulse from
		the DMA Burst Engine.
1-0	CURR	This field shows which ADC core is currently allowed to post a request to the DMA
		Burst Engine.

NOTE: All of these fields are for diagnostic use only (i.e. to help debug the hardware in the event of a DMA stall, etc).

BPICTRL – BPI Flash Control Register 8.27

Address: 0x9000

Acce

	31	30	29	28	27	26	25	24			
Field	BUSY		Rsvd								
Access	RO		RO								
Reset	0		X								
	23	22	21	20	19	18	17	16			
Field		Rsvd									

Reset				Х					
	15	14	13	12	11	10	9	8	
Field				Rsvo	1				
Access	RO								
Reset				Х					

RO

	7	6	5	4	3	2	1	0
Field			Rsvd	RECONFIG	WRITE	EXEC		
Access		RO					R/W	R/W1SC
Reset	Х					0	0	0

Bit(s)	Field	Description
31	BUSY	This bit indicates when the BPI Flash controller is busy performing a read or a write transaction on the flash bus. The host CPU should poll this bit to know when to proceed with the next operation.
2	RECONFIG	When this bit is set to '1' the FPGA will initiate a reconfiguration of itself by resetting and loading the contents of the BPI Flash as if a power-cycle occurred. NOTE: The PCIe bus link will go down for a short time as a result of this action.
1	WRITE	When this bit is set to '1' it indicates that a write operation should be performed when the EXEC bit is set to '1'. Otherwise a '0' in this field indicates that a write operation should be performed.
0	EXEC	When this bet is set to '1' the flash controller performs either a read or a write operation to the BPI Flash as determined by the current state of the WRITE bit. The BPIADDR and BPIDATA registers are used/updated accordingly and the BUSY bit indicates the status of the operation.

8.28 BPIADDR – BPI Flash Address Register

Address: 0x9004

	31	30	29	28	27	26	25	24
Field				Rsvd				ADDR[24]
Access				RO				R/W
Reset				Х				[see below]
_	23	22	21	20	19	18	17	16

Field				ADDR[2	23:16]							
Access				R/	W							
Reset	[see below]											
<u>.</u>												
	15	15 14 13 12 11 10 9 8										
Field				ADDR[15:8]							
Access	R/W											
Reset				[see b	elow]							

	7	6	5	4	3	2	1	0		
Field	ADDR[7:0]									
Access	R/W									
Reset	0x0000000									

Bit(s)	Field	Description
24-0	ADDR	This field contains the BPI Flash address to read from/write to.

8.29 BPIDATA – BPI Flash Data Register

	31	30	29	28	27	26	25	24	
Field	31		29			20	23	24	
		READ_DATA[15:8] RO							
Access									
Reset				[see b	pelow]				
	23	22	21	20	19	18	17	16	
Field				READ_D	ATA[7:0]				
Access					0				
Reset				0x0	000				
	15	14	13	12	11	10	9	8	
Field	15	14	15	WRITE_D/		10	9	0	
Access				R/					
Reset				lsee b	pelow]				
	7	6	5	4	3	2	1	0	
Field				WRITE_D	ATA[7:0]				
Access				R/					
Reset	0x0000								
110001				0,10					

Bit(s)	Field	Description
31-16	READ_DATA	This field contains the data read from the BPI Flash at the end of a read cycle.
15-0	WRITE_DATA	This field should be filled in with the data to write to the BPI Flash prior to a write cycle.

8.30 SCRATCH – Scratch Register

Address: 0xFFF4

	31	30	29	28	27	26	25	24	
Field	SCRATCH[31:24]								
Access				R,	/W				
Reset				(see	below)				
	23	22	21	20	19	18	17	16	
Field				SCRATC	H[23:16]				
Access				R	/W				
Reset				(see	below)				
-									
	15	14	13	12	11	10	9	8	
Field				SCRATO	H[15:8]				
Access			_	R,	/W				
Reset		/		(see l	below)				
	7	6	5	4	3	2	1	0	
Field				SCRAT	CH[7:0]				
Access				R,	/W				
Reset	0x0000000								

Bit(s)	Field	Description	
31-0	SCRATCH	Scratchpad area for PCIe bus testing or free for other software use.	

8.31 VER – Version Register

Address: 0xFFF8

	31	30	29	28	27	26	25	24	
Field	MAJOR								
Access					RO				
Reset				(varies based	on FPGA release)				
	23	22	21	20	19	18	17	16	
Field				М	INOR				
Access					RO				
Reset				(varies based	on FPGA release)				
	15	14	13	12	11	10	9	8	
Field				PA	ATCH				
Access					RO				
Reset				(varies based	on FPGA release)				

	7	6	5	4	3	2	1	0	
Field	REV								
Access	RO								
Reset	(varies based on FPGA release)								

Bit(s)	Field	Description
31-24	MAJOR	Major release number of the FPGA image.
23-16	MINOR	Minor release number of the FPGA image.
15-8	PATCH	Patch release number of the FPGA image.
7-0	REV	Revision release number of the FPGA image.

8.32 SIG – Signature Register

Address: 0xFFFC

	31	30	29	28	27	26	25	24
Field				Rsvo	ł			
Access				RO				
Reset				Х				
	23	22	21	20	19	18	17	16
Field				Rsvo	t			
Access				RO				
Reset				Х				
e								
	15	14	13	12	11	10	9	8
Field				Rsvo	i		·	
Access				RO				
Reset				Х				
	7	6	5	4	3	2	1	0
Field				SIG				
Access				RO				
Reset				OxAD)			

Bit(s)	Field		Description										
7-0	SIG	Unchanging	value	which	helps	to	verify	that	the	proper	FPGA	image	is
		programmed	into th	e part.									

9 Appendix B: Device Driver IOCTL Specification

The interfaces to the driver are exported in the amc511.h header file which should be included in any user application that uses the driver.

9.1 AMC511_IOC_GET_INFO

```
typedef struct {
        unsigned char major;
        unsigned char minor;
        unsigned char patch;
        unsigned char rev;
} amc511_version_t;
#define AMC511_CHAN_NAME_LEN
                                24
                                         /* amc511-BB.DD.F-C\0 */
typedef struct {
        char
                                chan_name[AMC511_CHAN_NAME_LEN];
        unsigned int
                                mmap_size;
        amc511_version_t
                                driver_version;
        amc511_version_t
                                fpga_version;
        unsigned
                                fpga_configured : 1;
} amc511_info_t;
```

```
Usage:
```

```
int fd;
amc511_info_t info;
ioctl( fd, AMC511_IOC_GET_INFO, &info );
```

This call returns information about a channel and the driver/FPGA. It also informs the application about the size of the memory map region to use for the mmap() call.

9.2 AMC511_IOC_GET/SET_LEDS

#define	AMC511_LEDSEL_O	FF		0x0
#define	AMC511_LEDSEL_O	N		0x1
#define	AMC511_LEDSEL_B	LINK		0x2
#define	AMC511_LEDSEL_A	2D_STATUS		0x3
#define	AMC511_LEDSEL_P	OWERON_STAT	rus	0x4
#define	AMC511_LEDSEL_S	TA_REF		0x5
#define	AMC511_LEDSEL_S	TA_VCXO		0x6
#define	AMC511_LEDSEL_P	LL_LOCK		0x7
typedef	struct { unsigned unsigned unsigned	greenled0 greenled1 greenled2	: 3;	

VadaTech AMC511 User's Manual

```
unsigned greenled3 : 3;
unsigned amberled0 : 3;
unsigned amberled1 : 3;
unsigned amberled2 : 3;
unsigned amberled3 : 3;
} amc511_ledsel_t;
```

Usage:

```
int fd;
amc511_ledsel_t ledsel;
ioctl( fd, AMC511_IOC_GET_LEDS, &ledsel );
ioctl( fd, AMC511_IOC_SET_LEDS, &ledsel );
```

These calls get or set the LED Controller registers. Refer to the register specification for additional details on A/D controller statuses and power-on statuses.

9.3 AMC511_IOC_GET/SET_CLOCK_ROUTING

#define	AMC511_SOURCE_ZERO	0×00
	AMC511_SOURCE_ONE	0x01
#define	AMC511_SOURCE_TRIG_IN	0x02
	AMC511_SOURCE_REF_CLK_IN	0x03
#define	AMC511_SOURCE_TCLKA_IN	0x04
#define	AMC511_SOURCE_TCLKB_IN	0x05
#define	AMC511_SOURCE_TCLKC_IN	0x06
	AMC511_SOURCE_TCLKD_IN	0×07
	AMC511_SOURCE_ADC0_TRIGOUT	0x08
#define	AMC511_SOURCE_ADC1_TRIGOUT	0x09
	AMC511_SOURCE_ADC2_TRIGOUT	0x0A
	AMC511_SOURCE_ADC3_TRIGOUT	0x0B
	AMC511_SOURCE_STA_REF	$0 \times 0 C$
	AMC511_SOURCE_STA_VCXO	$0 \times 0 D$
	AMC511_SOURCE_PLL_LOCK	0x0E
	AMC511_SOURCE_REFCLK1	0x0F
	AMC511_SOURCE_SMPCLK0	0x10
	AMC511_SOURCE_SMPCLK1	0x11
#define	AMC511_SOURCE_SMPCLK2	0x12
#define	AMC511_SOURCE_SMPCLK3	0x13
	AMC511_SOURCE_10MHZ	0x14
	AMC511_SOURCE_PCIE_CLK1	0x15
#define	AMC511_SOURCE_CLK125MHZ2	0x16
#define	AMC511_SOURCE_CLK156_25MHZ0	0x17
#define	AMC511_SOURCE_ADC0_COMP	0x18
#define	AMC511_SOURCE_ADC1_COMP	0x19
	AMC511_SOURCE_ADC2_COMP	0x1A
#define	AMC511_SOURCE_ADC3_COMP	0x1B
#define	AMC511_SOURCE_INTERRUPT	0x1C
#define	AMC511_PATH_ENABLED	1
#define	AMC511_PATH_DISABLED	0
typedef	struct {	
	/* clock routes */	
	unsigned sync_out	: 5;

unsigned	tclka_out	:	5;
unsigned	tclkb_out	:	5;
unsigned	tclkc_out	:	5;
unsigned	tclkd_out	:	5;
unsigned	adc0_trigin	:	5;
unsigned	adc1_trigin	:	5;
unsigned	adc2_trigin	:	5;
unsigned	adc3_trigin	:	5;
unsigned	pri_ref	:	5;
unsigned	sec_ref	:	5;
<pre>/* path enables</pre>	*/		
unsigned	sync_out_en	:	1;
unsigned	trig_in_en	:	1;
unsigned	ref_clk_in_en	:	1;
unsigned	tclkx_in_en	:	1;
unsigned	tclka_out_en	:	1;
unsigned	tclkb_out_en	:	1;
unsigned	tclkc_out_en	:	1;
unsigned	tclkd_out_en	:	1;
<pre>} amc511_clock_routing_f</pre>	t;		

Usage:

```
int fd;
amc511_clock_routing_t routing;
ioctl( fd, AMC511_IOC_GET_CLOCK_ROUTING, &routing );
ioctl( fd, AMC511_IOC_SET_CLOCK_ROUTING, &routing );
```

These calls get/set the Clock Router registers.

9.4 AMC511_IOC_GET/SET_CLOCK_SYNC

#define	AMC511_CS_REF_SI	EL_SECONDARY	0			
#define	AMC511_CS_REF_SI	EL_PRIMARY	1			
typedef	struct { /* Control */					
	unsigned	ref_sel	:	1;		
	/* SPI Word 0 *,	1				
	unsigned	refdec	:	1;		
	unsigned	manaut	:	1;		
	unsigned	dlyn	:	3;		
	unsigned	dlym	:	3;		
	unsigned	n	:	12;		
	unsigned	m	:	10;		
	/* SPI Word 1 */					
	unsigned	_90div8	:	1;		
	unsigned	_90div4	:	1;		
	unsigned	adlock	:	1;	11	Read-Only
		sxioref	:	1;		
		sref	:	1;		
	unsigned	out4b	:	2;	//	Read-Only

unsigned	out4a	:	2;	// Read	l-Only		
unsigned	out3b	:	2;	// Read	l-Only		
unsigned	out3a	:	2;	// Read	l-Only		
unsigned	out2b	:	2;	// Read	l-Only		
unsigned	out2a	:	2;	// Read	l-Only		
unsigned	out1b	:	2;	// Read	l-Only		
unsigned	outla	:	2;	// Read	l-Only		
unsigned	out0b	:	2;	// Read	l-Only		
unsigned	out0a	:	2;	// Read	l-Only		
unsigned	outsel4	:	1;	// Read	l-Only		
unsigned	outsel3	:	1;	// Read	l-Only		
unsigned	outsel2	:	1;	// Read	l-Only		
unsigned	outsel1	:	1;	// Read	l-Only		
unsigned	outsel0	:	1;	// Read	l-Only		
/* SPI Word 2 *	/						
unsigned	nhold	:	1;				
unsigned	nreset	:	1;				
unsigned	reshol	:	1;	// Read	l-Only		
unsigned	npd	:	1;				
unsigned	y4mux	:	3;				
unsigned	y3mux	:	3;				
unsigned	y2mux	:	3;				
unsigned	- y1mux	:	3;				
unsigned	y0mux		3;				
unsigned	fbmux		3;				
unsigned	pfd	:	2;				
unsigned	cp	:	4;				
unsigned	precp		1;				
unsigned	cp_dir		1;	// Read	l-Only		
			-,	,,			
/* SPI Word 3 */							
unsigned	holdtr	:	1;				
unsigned	holdf	:	1;				
unsigned	cslip	:	1;				
unsigned	lockc	:	2;				
unsigned	lockw	:	2;				
<pre>} amc511_clock_sync_t;</pre>							
Usage:							
int fd;							
amc511_clock_sync_t clksync;							
ioctl(fd, AMC511_IOC_GET_CLOCK_SYNC, &clksync);							
<pre>ioctl(fd, AMC511_IOC_SET_CLOCK_SYNC, &clksync);</pre>							

These calls get/set the Clock Synchronizer registers. The driver will automatically trigger the SPI Master to transfer the new settings for the set command and wait for completion so that the application can be assured that the new settings have taken effect in the TI Clock Synchronizer chip prior to the calls return. Refer to the register specifications for further details.

The status of the clock synchronizer chip is available via the channel status ioctl to simplify status polling.

9.5 AMC511_IOC_GET/SET_CHAN_CTRL

typedef struct {						
unsigned	decm	: 8;				
unsigned	pat	: 3;				
unsigned	src	: 2;				
unsigned	pga	: 1;				
unsigned	rand	: 1;				
unsigned	dith	: 1;				
unsigned	enable	: 1;				
<pre>} amc511_channel_control_t;</pre>						
Usage:						
int fd;						
amc511 channel control t chanctrl.						

amc511_channel_control_t chanctrl; ioctl(fd, AMC511_IOC_GET_CHAN_CTRL, &chanctrl); ioctl(fd, AMC511_IOC_SET_CHAN_CTRL, &chanctrl);

These calls get/set the channel control register in the ADC channel. The set call also controls the device driver's data acquisition behavior. Refer to the register specifications for further details.

9.6 AMC511_IOC_GET_CHAN_STATUS

typedef	<pre>struct { // Current cha</pre>	nnel status f	lags		
	unsigned	running	: 1;		
} amc51	// Current clo unsigned unsigned unsigned .1_channel_statu	pll_lock sta_vcxo sta_ref	: 1;	flags	
Usage:					
	.nt fd; mc511_channel_s	tatus_t chans	tat;		
i	octl(fd, AMC51	1_IOC_GET_CHA	N_STATUS,	&chanstat);

This call gets the current channel status. The application can use the poll(POLLPRI) call to detect changes to these status fields.

9.7 AMC511_IOC_GET_CHAN_DATA

```
typedef struct {
       unsigned
                       fir overflow
                                       : 1;
       unsigned
                       adc overflow
                                       : 1;
                       fifo_overflow
       unsigned
                                       : 1;
       unsigned
                       fifo underflow : 1;
        // Data
       unsigned int
                       length;
                                       // Length in bytes
       unsigned long
                       offset;
                                       // Offset within mmapped region
} amc511_channel_data_t;
Usage:
      int fd;
     amc511_channel_data_t data;
     ioctl( fd, AMC511_IOC_GET_CHAN_DATA, &data );
```

This call provides information about the streaming status of the A/D pipeline as well as information about where to find the new data within the memory mapped buffer region. The status flags in the card are reset at the start of each transfer and any overflow/underflow that occurs during the transfer will be captured along with the data buffers and forwarded to the application.

The application should wait for new data to become available by using the **poll(POLLIN**) call.

The application must not access the buffer space without first gaining access via this call. The application should put the buffer back to the driver as soon as possible to prevent stalling the data streaming.

9.8 AMC511_IOC_PUT_CHAN_DATA

Usage:

int fd; ioctl(fd, AMC511_IOC_PUT_CHAN_DATA, 0);

This call puts the last data buffer back to the driver so that it can be reused for the next streaming transfer. This should be done as soon as possible to prevent stalling the data streaming. However, once the buffer is put back to the driver the application must not access it again.

9.9 AMC511_IOC_FLASH_OP

```
typedef enum {
     AMC511_FLASH_READ = 0,
     AMC511_FLASH_WRITE,
     AMC511_FLASH_RECONFIG
} amc511_flash_action_t;
typedef struct {
       unsigned int
                            address;
       unsigned short
                            data;
       amc511_flash_action_t action;
} amc511_flash_op_t;
Usage:
      int fd;
      amc511_flash_op_t op;
      ioctl( fd, AMC511_IOC_FLASH_OP, &op );
```

This call performs a read/write or reconfiguration using the BPI Flash attached to the FPGA.