POWGI‘LOOH’I® Manual

Powerful knowledge representation and reasoning with
delivery in Common-Lisp, Java, and C++

Version: 1.48
16 October 2010

This manual describes
PowerLoom 3.2 or later.

The PowerLoom development team
Hans Chalupsky
Robert M. MacGregor
Thomas Russ
{hans,tar}@isi.edu

Copyright (© 2010 University of Southern California, Information Sciences Institute, 4676
Admiralty Way, Marina Del Rey, CA 90292, USA

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

PowerLoom is a registered trademark of the University of Southern California.

Table of Contents

1 Introduction................... 1
1.1 Powerloom Features......... ... i 1
1.2 Powerloom History........ ..o i 4
1.3 Running PowerLoom i i 4

1.3.1 Command-Line Options ..., 5

2 Conceptual Framework......................... 6
2.1 Terms and Propositionscoo i 6
2.2 Definitionso 7
2.3 Truth Values........... e 8
2.4 Modules ... 9

3 Annotated Example........................ ... 11
3.1 Using Modules. 11
3.2 COMCEPES .« ettt 11
3.3 Relations 12
3.4 Relation Hierarchies........ 13
3.5 Functions............ i 13
3.6 Defined Conceptsouiiiiii 14
3.7 Negation and Open and Closed World Semantics 15
3.8 Retractiono 17
3.9 Clipping of Values 18
3.10 Rule-based Inference..............cooiiiiiiiiii... 19
311 Explanation 20
3.12 Contexts and Modules 22
3.13 Equality Reasoningo i 23
3.14 Classification, Subsumption, 23
3.15 Truth Maintenance ..., 24
3.16 Inference Controloo i, 24
3.17 Keyword AXIOMS. . ..ot 24
3.18 Cardinality/Type Reasoning with Frame Predicates 24
3.19 Loom-to-PowerLoom.........o, 24
3.20 Deviations from KIF i, 24
3.21 Differences from Loom i i 24
3.22 Defaults . ..o 24
3.23 Sets, Lists, SETOFALL, KAPPA 24

4 Communicating with PowerLoom............ 25
4.1 Command Interpreter......... ..., 25
4.2 Persistent Knowledge Bases i i 26

5 Commands. 27

6 PowerLoom API....... 40

6.1 APIFunctionsooiiuiiiiiii i, 40
6.2 Language Specific Interface.......... o i 58
6.2.1 Lisp APL. ..o 59
6.2.1.1 Common Lisp Initialization.......................... 59
6.2.1.2 Type Declarations............... ... i, 59
6.2.1.3 NULL values............oo i, 59
6.2.1.4 Wrapped Literal Values........................... ... 59
6.2.1.5 Special Variables............... .. i 60
6.2.1.6 CLOS Objects versus Structs................coo.... 60

6.2.2 CH+ APL. .. 60
6.2.3 Java APL. 60
6.2.3.1 Initializing PowerLoom, 60
6.2.3.2 PowerLoom Java Conventions 60
6.2.3.3 Usingthe PLIClass.............coiiiiiiiiiii.. 62
6.2.3.4 Using Stella Objects......... ... 63
6.2.3.5 PowerLoom and Threads............................ 63
6.2.3.6 Setting and Restoring Global Variable Values........ 63
6.2.3.7 Java Character Mapping..............c.ooiiiiiii. .. 65
6.2.3.8 Stella Exceptions in Java............................ 66
6.2.3.9 Tterationin Java............. 66
6.2.3.10 Utility Classes for Java.............., 67

7 Built-In Relations 68
8 PowerLoom GUI.............................. 84
8.1 Invoking the GUL 84
8.1.1 Starting a PowerLoom Server............................. 85
8.2 GUI Design Goals. ..ot 86
8.3 GUI OVEIVIEW ..\t 88
8.4 GUI Featurescoouuiiiii e 90
8.4.1 Connect t0 SEIVert ee i 90
8.4.2 Edit Preferences..............c 90
8.4.3 KB Load/Save.........cooiuiiiiiiiiiiiiiiiiiiiiiii 90
8.4.4 Browsing.........ooiii i e 90
8.4.5 Editing ... 93
8.4.6 CROOSEIS . ..\ttt e 95
8.4.7 Extension Editor......... 96
8.4.8 Ask and Retrieve Queries........... 97
8.4.9 Search 98
8.4.10 ComsSOlettt 99
8.4.11 Cut/Copy/Paste/Delete...........cooiiiiiiiiiii... 100
8.5 Future Work. 100
8.5.1 Large KBs. ... 101
8.5.2 Undo ..o 101
8.5.3 Dragand Drop........c.ooiiiiiiiiiiiiii 101

8.5.4 Scrapbook 101

8.5.5 Instance Cloning.............ooiiiiiiiiiiiniieann.. 101
8.5.6 SeCUTILY . .. v ettt 101
8.5.7 Multiple USerso, 101

9 Ontosaurusoiiiiiiiineinnn.. 103
10 Imstallation.................................. 104
10.1 System Requirements.............cooiiiiiiiiiiniian.. 104
10.2 Unpacking the Sources............cooiiiiiiii i, 105
10.3 Lisp Installation ... 105
10.4 CH+ Installationo, 106
10.5 Java Installation......... i 107
10.6 Removing Unneeded Files...............o . oot 107
10.7 Installing PowerLoom Patches 108
11 Miscellaneous 109
12 Glossary ... 134
13 PowerLoom Grammar...................... 137
13.1 Alphabeto 137
13.2 GramImar. et 137
13.2.1 Constants and Typed Variables 137
13.2.2 Terms ..o 138
13.2.3 Sentences...... ... 138
13.2.4 Definitions. ... 139
Function Index 141
Variable Index................................. ... 142

Concept Index.................. 143

iii

Chapter 1: Introduction 1

1 Introduction

This document describes the PowerLoom knowledge representation and reasoning system.
PowerLoom is the successor to the Loom knowledge representation system. It provides a
language and environment for constructing intelligent, knowledge-based applications. Pow-
erLoom uses a fully expressive, logic-based representation language (a variant of KIF). It
uses a natural deduction inference engine that combines forward and backward chaining
to derive what logically follows from the facts and rules asserted in the knowledge base.
While PowerLoom is not a description logic, it does have a description classifier which uses
technology derived from the Loom classifier to classify descriptions expressed in full first
order predicate calculus. PowerLoom uses modules as a structuring device for knowledge
bases, and ultra-lightweight worlds to support hypothetical reasoning.

To implement PowerLoom we developed a new programming language called STELLA,
which is a Strongly Typed, Lisp-like LAnguage that can be translated into Lisp, Java, and
C++. STELLA tries to preserve those features of Lisp that facilitate symbolic programming
and rapid prototyping, while still allowing translation into readable as well as efficient Java
and C++ code. Because PowerLoom in written STELLA, we are able to deliver it in all
three languages.

1.1 Powerloom Features

PowerLoom is a full-function, logic-based knowledge representation and reasoning system,
that supports all aspects of knowledge-based applications. It allows the representation of
complex knowledge in a declarative, logic-based language, supports a variety of reasoning
mechanisms to make implicit knowledge explicit, has a powerful query engine to retrieve
what has been asserted and logically follows from the KB, provides file-based and RDBMS-
based storage of knowledge bases, has a context and module system to effectively partition
and organize large knowledge bases, and has an extensive API in multiple language to allow
easy and effective integration into knowledge-based applications.

PowerLoom’s focus is on expressivity of its representation language while still providing
good scalability to large ontologies and knowledge bases. In general, PowerLoom takes a
pragmatic stance where usability is more important than theoretical "neatness" and ex-
pressivity is more important than inferential completeness. From our point of view, there
is nothing magical about logic, it is just another programming language (with difficult to
understand semantics), so it should help you to solve the task at hand as best as possible
and not hinder you by forcing you to work around restrictions of the logic. Of course,
PowerLoom cannot completely escape the straight-jacket of logic, but it tries to push the
boundaries as much as possible.

e Representation language: PowerLoom uses the language of predicate logic to represent
knowledge. The syntax is KIF (the Knowledge Interchange Format) which is one of
the supported syntaxes of the upcoming Common Logic standard. PowerLoom adds
a variety of convenient definitional constructs as well as extensions beyond traditional
first-order logic such as type-level predicates, relation variables in holds sentences,
modal assertions (sentences about sentences), cross-context assertions via ist to rep-
resent lifting axioms, defaults (still experimental), and others. The goal is to provide
a highly expressive representation language, since KR failures or awkward models are
often due to "we could not express X in language L". The theoretical undecidability

Chapter 1: Introduction 2

and intractability of such an expressive language is counteracted by providing lim-
ited, "pragmatic" reasoning services that cover commonly encountered situations. For
example, reasoning with second-order sentences that quantify over relations is unde-
cidable and leads to very unfocused search; however, such sentences are very useful to
describe axiom schemata that can be cheaply run in forward direction to create regular
first-order rules (in a process not unlike macro expansion).

e Reasoning: The primary reasoning mechanism is logical deduction which infers state-
ments that logically follow from the asserted statements and rules. Such statements
can be asked about using PowerLoom’s query commands ask (for true/false questions)
and retrieve (for Wh-questions). PowerLoom uses a natural deduction system to
answer queries but also has a large number of specialized reasoning procedures to
efficiently handle concept and relation hierarchies, sets, frame predicates, search con-
trol, etc. The specialist architecture is extensible to allow users to plug-in their own
reasoners or computed predicates. PowerLoom also supports hypothetical reasoning,
equality reasoning, arithmetic and reasoning with inequalities. While PowerLoom is
not a description logic, it does have a classifier that can classify concept and relation hi-
erarchies and instances defined using the full expressive power of first-order logic. The
classifier does not provide any additional inferences, but allows PowerLoom to eagerly
pre-compute and cache subsumption relationships which can then be utilized over and
over without having to re-derive them. PowerLoom also provides some experimental
abductive and partial-match reasoning to handle incomplete knowledge bases.

e Meta-representation and reasoning: Concepts, relations, contexts, rules, queries, etc.
are all first-class citizens in the domain of discourse. Therefore, they can have assertions
made about them as well as reasoned about. This mechanism is commonly used by the
system itself, e.g., to assert that a relation is single valued or transitive, that a concept
is closed, etc.

e Explanation: PowerLoom can explain its reasoning by recording inference trees and
then rendering those into human-understandable explanations. PowerLoom also has
an experimental "WhyNot" facility to explain inference failures where no successful
proof tree was found.

e Contexts and modules: Contexts and modules provide separate name and assertion
spaces with inheritance which implement a powerful structuring mechanism for KBs.
Contexts allow encapsulation and organization of knowledge, efficient inference (by
separating irrelevant knowledge or by separating ontologies and assertion spaces from
volatile inference worlds), truth maintenance (via inference cache contexts), scenar-
ios and hypothetical reasoning, non-monotonic overrides in sub-contexts, etc. Pow-
erLoom’s context mechanism is built-in at a very low level using a very efficient and
light-weight implementation for maximum performance.

e Open and closed-world: By default, PowerLoom makes an open-world assumption
and returns unknown if it cannot prove or disprove a question. However, concepts
and relations can be selectively marked as closed to support selective closed-world
reasoning. PowerLoom also has a fail predicate (in addition to true negation via not)
to implement closed-world negation-as-failure which can be useful in certain situations.

e Knowledge base management: PowerLLoom supports incremental monotonic and non-

monotonic updates that extend or non-monotonically change the assertion base. In
PowerLoom one can effectively interleave definitions, re-definitions, assertions and re-

Chapter 1: Introduction 3

tractions with retrieval and inference without having to reload large knowledge bases
from scratch after every change. Truth maintenance of cached inference results that
might have been invalidated by updates is done via inference cache contexts. After a
knowledge base has been loaded and changed by some updates, the changed state can
be saved out to a file or an (experimental) persistent store built on top of a relational
database.

e Scalability: Despite its emphasis on expressive representation which usually has to
be paid for with intractable and expensive reasoning procedures, PowerLoom is very
scalable and comes with a variety of mechanisms to control search and handle large
ontologies and knowledge bases. For example, PowerLoom’s reasoning specialists han-
dle a wide variety of inferencing very effectively without having to go through any
rule chaining. Search control annotations can be used to help the inference engine use
rules more effectively. For example, depending on fan-out, certain rules are run more
effectively forwards than backwards (or vice versa), and a KB developer can tell the
system when that’s the case. PowerLoom has resource-bounded depth-first or iterative
deepening search which provides an any-time inference scheme for situations where
resources are limited. A "just-in-time" forward inference engine elaborates the asser-
tion neighborhood of objects touched upon by inference. This allows focused forward
inference relevant to current inference goals, without having to run forward inference
over a potentially very large KB to completion. PowerLoom has a static and dynamic
query optimizer, that, similar to optimizers used in database systems, orders conjunc-
tive goals based on relation extension sizes and rule fan-out to minimize intermediate
result sets and chaining. The dynamic optimizer does this for each conjunctive sub-
goal based on actual bindings. Given this mechanism it is possible to run PowerLoom
queries that return 100,000’s of solutions. PowerLoom also has a powerful relational
database interface that allows it to utilize the power of databases for handling large
assertion bases (soon to be released). One application of this PowerLoom/RDBMS
integration is used with ISI’s Omega ontology. It is also a crucial part of our KOJAK
Link Discovery System.

e Tools and APIs: PowerLoom has a host of associated tools and APIs (not all of which
have been released yet). It comes with an interactive command-line interface which
is useful for developing ontologies and knowledge bases, an extensive programmatic
interface called PLI with Lisp, C++ and Java bindings, and a Lisp-based Loom API to
load legacy Loom KBs. Starting with PowerLoom version 4.0 Ontosaurus and a Java-
based GUI have been released as part of PowerLoom. Ontosaurus is a Web-based KB
browser that dynamically generates HI'ML pages viewable in a standard Web browser.
The Java-based GUI provides a browse/edit/query environment for developing KBs.
The GUI uses a client/server architecture and can be used embedded or standalone
against a PowerLoom server that might be hosted - among other options - in a Web
server such as Tomcat. A soon-to-be-released Protege plug-in allows export of Protege
ontologies into PowerLoom format. OntoMorph is a translation system that supports
writing of KB translators and importers, e.g., to import ontologies written in other
languages (for example, Flogic).

e Initial Semantic Web support: Given PowerLoom’s emphasis on expressive representa-
tion, we have not yet focused much on Semantic Web languages such as OWL, which
restricts expressivity to gain decidability. OWL also has other limitations such as re-

Chapter 1: Introduction 4

striction to binary relations and lack of support for arithmetic and inequalities which
limits its usefulness for practical applications. Nevertheless, given that people are
starting to use these languages more and more, we've developed some initial import
translators for RDF/RDFS and OWL which once they mature we will release as part
of PowerLoom.

e Portability and integration: Since PowerLoom is implemented in STELLA, it is avail-
able in Lisp, C++ and Java implementations and highly portable. PowerLoom can be
run in each of these languages under Unix (such as Linux, SunOS or MacOS X) as
well as Windows 2000 and XP. Due to the availability in three main-stream languages,
it can easily be integrated programmatically with most application software without
having to use some complex integration framework. The C++ and Java libraries for
PowerLoom are also quite small and light-weight, for example, the necessary STELLA
and PowerLoom jar files of the Java implementation are less than 2.5 Meg in size.

1.2 Powerloom History

<to be written>

1.3 Running PowerLoom

The easiest way to run PowerLoom on a variety of platforms is to use the ‘powerloom’ or
‘powerloom.bat’ scripts in the top-level PowerLoom directory. If you have Java installed
on your system, these scripts should run out of the box without any further installation
requirements. If you want to use the Lisp version of PowerLoom, simply load the file 1oad-
powerloom.lisp into your Common Lisp. If you want to use the C++ version, you have
to compile it first. See the Installation section in this manual for more details on how to
install the Lisp, C++ or Java version of PowerLoom See Chapter 10 [Installation], page 104.

Under Unix or MacOS X, open a shell window somewhere to run PowerLoom. For
example,

% powerloom

Running Java version of PowerLoom...
Initializing STELLA...

Initializing PowerLoom...

Welcome to PowerLoom 4.0.0

Copyright (C) USC Information Sciences Institute, 1997-2010.
PowerLoom comes with ABSOLUTELY NO WARRANTY!

Type ‘(copyright)’ for detailed copyright information.

Type ‘(help)’ for a list of available commands.

Type ‘(demo)’ for a list of example applications.

Type ‘bye’, ‘exit’, ‘halt’, ‘quit’, or ‘stop’, to exit.

PL-USER |=

Under Windows, you can do something similar by running a Command Prompt window
and executing the ‘powerloom.bat’ script. You can also simply double click on the script
which will run PowerLoom and bring up a Command Prompt window for you.

Chapter 1: Introduction 5)

Once the |= prompt has come up you can type in PowerLoom commands and see their
results. The string preceding the prompt indicates the "current module" relative to which
commands are interpreted. For example, type the demo command to see a menu of available
demos. Step through one or more of them to get familiar with PowerLoom.

Starting with version 4.0 PowerLoom also ships with an experimental PowerLoom GUI
and the Ontosaurus browser which can additionally be used to edit and browse knowledge
bases.

1.3.1 Command-Line Options

There are a few command-line options that can be supplied to the ‘powerloom’ script.

powerloom [--c++|--java|--guil--gui-only]
[{-el--eval} STELLA-EXPRESSION]
[--batch]
[--help]
[more optioms...]

The first optional argument determines what version to run if both C++ and Java versions
are installed. If no specific version is specified, the C++ version will be run if it is installed,
otherwise, the Java version will be run (see Chapter 8 [PowerLoom GUI]|, page 84 for a
description of the GUI options).

‘-—eval STELLA-EXPRESSION’

‘~e STELLA-EXPRESSION’
Specifies a STELLA expression that should be run just before the PowerLoom
command loop gets initialized. This expression has to be a known command
(such as the various PowerLoom commands), since the STELLA evaluator can-
not (yet) evaluate arbitrary STELLA code. For example, powerloom —e ’ (demo
"equations" FALSE)’ will run a particular demo before anything else. You will
need to appropriately quote special characters interpreted by the shell or the
Command Prompt window.

‘~=batch’ Runs PowerLoom in batch mode without running an interactive command loop.
This can be useful in conjunction with the --eval option to execute a single
command or load a PowerLoom script via the 1load command.

‘-=help’ Prints a list of all currently supported command-line options.

Chapter 2: Conceptual Framework 6

2 Conceptual Framework

This chapter presents the fundamental conceptual building blocks that are used to construct
PowerLoom knowledge bases. The PowerLoom language is based on KIF, which provides a
syntax and a declarative semantics for first-order predicate calculus expressions. KIF is a
proposed ANSII standard language used by a variety of knowledge representation systems.
Practical knowledge representation systems necessarily add a procedural semantics that
defines the interpretation of knowledge structures when definitions and facts are retracted
or modified. This chapter assumes that the reader has some familiarity with the semantics
of the predicate calculus, and instead focuses on aspects of the semantics that go beyond
the traditional (KIF') semantics.

A PowerLoom knowledge base is constructed by first defining the terminology (concepts
and relations) for a domain, and then asserting additional rules and facts about that domain.
Facts can be asserted and later retracted, so the answers returned by queries may change
over time. The knowledge structures are organized into logical containers called “modules”.
The division into modules means that in general, facts are not asserted globally, but instead
hold only within a specific context. For example, a logical proposition may evaluate as true
within one module, and evaluate as false within a different one.

The discussion below uses some examples of actual PowerLoom syntax to illustrate
certain points. However, we gloss over the fine points of syntax, and instead focus on
semantic issues. The next chapter reverses that emphasis, and presents a series of examples
that illustrate the breadth of syntactic constructs implemented for the PowerLoom language.

2.1 Terms and Propositions

A knowledge base attempts to capture in abstract (machine interpretable) form a useful
representation of a physical or virtual world. The entities in that world are modeled in the
knowledge base by objects we call terms. Examples of terms are “Georgia” (denoting the
U.S., state), “BenjaminFranklin” (denoting the historical person by that name), the number
three, the string "abc", and the concept “Person”. Unlike objects in an object-oriented
programming language, the terms in a PowerLoom knowledge base usually have distinct
names (unless there are sufficiently many that naming them all becomes impractical).

Terms are categorized or related to one another by objects called relations. Examples of
relations are “has age”, “greater than”, “is married to”, “plus”. Concepts such as “Person”,
“State”, “Company”, and “Number” are considered a subcategory of relations.

A proposition is a logical sentence that has an associated truth value. Examples are
“Ben Franklin is a person”, “Bill is married to Hillary”, “T'wo plus three equals six” (which
is false). PowerLoom follows KIF in adopting a prefix notation for the predicate calculus to
represent propositions. Possible representations of the three propositions just mentioned are
(person ben-franklin), (married-to Bill Hillary), and (= (+ 2 3) 6). These three
propositions make reference to relations named person, married-to, plus, and =.

The predicate calculus constructs complex sentences out of simpler ones using the log-
ical connectives and, or, not, <=, =>, and <=>, and the quantifiers exists and forall.
Some examples are (not (crook richard)) “Richard is not a crook”, and (forall 7p (=>
(person 7p) (exists 7m (has-mother 7p 7m)))) “every person has a mother”.

Chapter 2: Conceptual Framework 7

2.2 Definitions

PowerLoom requires that relations are defined before they are used within assertions and
queries. The commands defconcept, defrelation, and deffunction are used to define
concepts, relations, and functions, respectively. The definitions

(defconcept person)
(defrelation married-to ((?pl person) (7p2 person))
(deffunction + ((?nl number) (7n2 number)) :-> (?sum number))

declare that person is a concept, that married-to is a binary relation that takes ar-
guments of type person, and that + is a function that takes arguments of type number!.
The requirement that relations be defined before they are referenced can be inconvenient
at times. For example, suppose we wish to define parent as “a person who is the parent of
another person” and we also wish to state that the first argument to the parent-of relation
has type parent:

(defconcept parent (7p)
:<=> (and (person 7p) (exists 7c (parent-of 7p 7c))))
(defrelation parent-of ((?p parent) (7c person)))

In this example, the first reference to parent-of occurs before it is defined. PowerLoom
permits circular references such as these as long as they occur within definitions. It does so
by deferring evaluation of rules that occur within definitions. Here is a specification that is
logically equivalent, but is not legal because the parent-of relation appears in an assertion
before it is defined:

(defconcept parent (7p))
(assert (forall (7p) (<=> (parent ?p)

(and (person 7p) (exists ?c (parent-of 7p 7¢))))))
(defrelation parent-of ((?p parent) (?c person)))

So when does the rule inside of the first parent definition get defined? All axioms (facts
and rules) that appear within the boundaries of a definition are evaluated just prior to
the next occurrence of a PowerLoom query. Hence, in the example above where the rule
occurred within the definition, there was no error because evaluation of that rule occured
sometime after the second definition (which defines the otherwise problematic reference to
parent-of).

One will sometimes see the command (process-definitions) appearing at intervals
within a file containing PowerLoom commands. Each such appearance forces the definitions
that preceed it to be fully-evaluated. This is done so that the interval between a definition
and its evaluation not be too great; it can get confusing if PowerLoom reports a semantic
violation long after the origin of the conflict.

PowerLoom definitions commands (those prefixed by “def”) have one other semantic
property that distinguishes them from ordinary assertions. Any axioms that appear within
a definition are tied to that definition. If a definition is modified and then reevaluated,
axioms that don’t survive the modification are retracted. For example, suppose we evaluate
the following two commands.

(defrelation parent-of ((?pl person) (?p2 person))
:=> (relative-of 7pl ?p2))

I The function + and the concept number are predefined in PowerLoom.

Chapter 2: Conceptual Framework 8

(defrelation parent-of ((?pl person) (?p2 person)))

The first definition defines person as a binary relation, and also states a rule that
“parent-of implies relative-of”. The second definitions erases that rule, i.e., the cumu-
lative effect is as if the first definition did not appear. In contrast, consider the following
commands:

(defrelation parent-of ((?pl person) (7p2 person)))
(assert (=> (parent-of ?pl 7p2) (relative-of 7pl ?p2)))
(defrelation parent-of ((?pl person) (7p2 person)))

The assertion in this latter sequence is logically equivalent to the axiom introduced by
the :=>keyword in the former sequence. However, at the end of this sequence, the “parent-
of implies relative-of” rule is still in effect, since it appeared on its own, outside of a
definition.

2.3 Truth Values

A PowerLoom proposition is tagged with a truth value that has one of five different
settings—true, false, default-true, default-false, or unknown. The most common
setting is true; when we make an assertion as in (assert (Person Bill)), the propo-
sition (Person Bill) is assigned the truth value true. To assign the value false to a
proposition, one asserts that it is not true, e.g., (assert (not (crook Richard))). The
command presume is used to assign a proposition the value default-true, as in (presume
(weather-in Los-Angeles Sunny)). Presuming a negated proposition assigns it the value
default-false.

The assignment of a truth value to a proposition via assert or presume can upgrade the
“strength” of a proposition, but it cannot downgrade it. Hence, if a proposition currently
has the value unknown, then it may be assigned any of the other four values. If the value
is default-true or default-false, an assertion that assigns the value true or false will
overwrite the existing value. However, if the truth value of a proposition is either true or
false, assigning it the value default-true or default-false will have no effect.

If a proposition is asserted to be true and subsequently is asserted to be false (or
vice-versa), a clash (or contradiction) results. When a clash is detected by PowerLoom, a
clash-exception is thrown. The system’s default behavior is for the exception to be caught
and ignored, with the result that an assertion that would otherwise cause a clash never
takes effect. Applications that execute commands slightly below the top-level (i.e., below
the clash exception catcher) can catch the exception themselves and perform a specialized
response. PowerLoom’s proof-by-contradiction specialist catches clashes to determine that
a contradiction has occurred.

If a user or application wants to assign a proposition a truth value that isn’t stronger
than the current value, it must first retract the current value. The PowerLoom retract
operator has the effect of undoing a prior assertion. For example, if we assert that Mary is
a parent of Fred, and then retract that assertion, the value of the proposition (parent-of
Mary Fred) becomes unknown. The proposition can then be assigned any other truth value.

We should note that executing a retraction does not necessarily cause a proposition to
cease being true. Consider the following sequence:

(defconcept Person)

Chapter 2: Conceptual Framework 9

(defconcept Employee (7e)
:=> (Person 7e))
(assert (Person Mary))
(assert (Employee Mary))
(retract (Person Mary))

If we now ask PowerLoom whether or not Mary is a person, the answer will be yes
(TRUE) because Mary is asserted to be an employee, and membership in employee implies
membership in person. In other words, although the direct assertion that Mary is a person
is not present in the knowledge base, a logical proof exists that the proposition “Mary is a
person” is true.

2.4 Modules

The knowledge loaded into an executing PowerLoom system is divided into logical partitions
called “modules”. The modules are arranged into a hierarchy; knowledge inherits down the
hierarchy from parents to children. A convenient way to organize knowledge is to put
definitional knowledge higher up in the module hierarchy, and factual knowledge lower
down. For example, suppose we want to build a knowledge base that defines a business
domain, and include a substantial number of facts about individual companies. We might
use one or a few modules to define terminology that relates to the business domain, and
then places the set of facts about each company in its own module. If we were querying
the knowledge base about one or a few companies, it would not be necessary to load the
modules for the remaining companies into the system.

Facts asserted within a module are not visible in sibling modules, or in ancestor modules.
Thus, if we enter into PowerLoom an assertion that“Georgia is a state”, we are not asserting
that Georgia is a state in all possible worlds, but that, from the vantage point of the current
module and those modules below, it is the case that Georgia is a state. If we want the fact
that Georgia is a state to be recognized as true in many or most other modules, then we
should make our assertion in a module that is relatively high up in the hierarchy, so that is
visible to (inherited by) the other modules.

The inheritance of facts is not monotonic—a child module can retract or override facts
inherited from its ancestors. For example, suppose we have two modules, called above
and below such that the below module is below (inherits from) the above module. Next,
suppose we make an assertion within the above module that “Joel is a duck”, and then
we shift to the below module and retract the proposition that “Joel is a duck”. From the
vantage point of the below module, if we now ask if Joel is a duck, we will get back the
value unknown. However, if we switch to the above module and ask the same question, we
get back the answer true This occurs because the effect of the retraction operation that
was applied to the below module is not “visible” to modules above it (or to any sibling
modules). Hence, when module hierarchies are involved, it is oversimplifying to state that
a retraction has the effect of erasing a prior assertion.

The PowerLoom execution process maintains a pointer to the current module, and all
asserions, queries, etc. are made relative to that module. Hence, when we talk about

Chapter 2: Conceptual Framework 10

“switching” from one module to another, we are speaking literally—a change-module com-
mand (or one of its equivalents) is invoked to switch from one module to another.?

PowerLoom comes with some modules already built-in. The module named PL-KERNEL
contains a set of general-purpose concept and relation definitions that collectively form
the foundation for constructing application-specific knowledge bases. PowerLoom attaches
specialized reasoners to many of the relations in PL-KERNEL. The command interpreter
starts up in a module named PL-USER. That module is initially empty, and is intended as
a convenient place to experiment with PowerLoom.

2 Many of the Powerloom API procedures take a module argument that causes a temporary switch to a
different module within the scope of that procedure.

Chapter 3: Annotated Example 11

3 Annotated Example

The section presents a small example of a PowerLoom knowledge base. It introduces the
fundamental PowerLoom modelling concepts and illustrates the syntax of basic PowerLoom
declarations, assertions, and commands. This section can be read stand-alone, but readers
who intend to use PowerLoom to create their own models are encouraged to load the demo
file 77?7, and run the examples “live”.

The conceptual terms introduced in this section include modules, concepts, relations,
functions, instances, propositions, assertions, queries, retraction, positive and negative facts,
clipping, rules, and contexts.

3.1 Using Modules

We begin by creating a PowerLoom “module”, which is a logical container that holds the
term definitions, rules, facts, etc. that make up all or a portion of a domain model. We
will call our module business. The defmodule command defines a new module. The
:includes option within the defmodule tells PowerLoom that the business module in-
herits all definitions and assertions present in the PL-USER module, or in ancestor modules
inherited by the PL-USER module. In particular, by inheriting PL-USER, we indirectly in-
herit the PL-KERNEL module that contains all of the built-in concepts and relations. The
in-module command tells the PowerLoom system to make BUSINESS the current module.
Until the current module is changed again, all new introductions of terms and facts will be
placed in the business module.

(defmodule "BUSINESS"
:includes ("PL-USER"))
(in-module "BUSINESS")

The basic building blocks of a model are its concepts, relations, and instances.! A concept
defines classes/categories of entities that populate the domain model. A relation defines
attributes and relationships that allow the declaration of facts about an entity. Instances
are members of concepts. They appear as arguments to propositional assertions.

3.2 Concepts

Concepts are defined using the defconcept command. Here we define the concepts company
and corporation:

(defconcept company)
(defconcept corporation (7c company))

The first definition tells the system that company is a concept (in the business module).
The second definition defines a concept corporation. The type declaration (?c company)
indicates that corporation is a subconcept of company, i.e., all instances of corporation
are also instances of company. Let us now create a couple of companies:

PowerLoom modules are case-insensitive by default. This means, for example, that a logical constant
named "Foo" may be referenced by any of the symbols 'FOQ’, 'foo’, 'foO’ etc. You may create case-
sensitive modules, but if you do so, when inside that module all PowerLoom commands and other symbols
such as AND, EXISTS, etc. will need to be referred to using uppercase names, since no automatic case-
conversion will take place.

Chapter 3: Annotated Example 12

(assert (company ACME-cleaners))
(assert (corporation megasoft))

These two assertions create two new entities denoted by the terms ACME-cleaners and
megasoft. Both of these entities are members of the concept company. megasoft is also
a member of the concept corporation. We can test this by executing some PowerLoom
queries:

(retrieve all 7x (company 7x))
=
There are 2 solutions:

#1: 7X=ACME-CLEANERS

#2: 7X=MEGASOFT

(retrieve all 7x (corporation ?7x))
=
There is 1 solutiom:

#1: 7X=MEGASOFT

3.3 Relations

So far, our two companies aren’t very interesting. In order to say more about them, we can
define some relations and functions using the declarations defrelation and deffunction:

(defrelation company-name ((?c company) (?name STRING)))

This declaration defines a binary relation company-name. The first value in a company-
name tuple must be an instance of type company, while the second value must be a string.
We can now give our companies names, using the command assert:

(assert (company-name ACME-cleaners "ACME Cleaners, LTD"))
(assert (company-name megasoft "MegaSoft, Inc."))

We can retrieve pairs of companies and their names with the following query (note that
we omitted the optional retrieval variables in which case they are determined by collecting
the free variables in the query expression):

(retrieve all (company-name 7x 7y))
=
There are 2 solutiomns:
#1: ?X=MEGASOFT, ?Y="MegaSoft, Inc."
#2: 7X=ACME-CLEANERS, 7?Y="ACME Cleaners, LTD"

Using retrieval variables is useful if we want to order the result columns in a certain way,
for example:

(retrieve all (7y 7x) (company-name ?7x ?7y))
=
There are 2 solutions:
#1: 7Y="MegaSoft, Inc.", 7X=MEGASOFT
#2: 7Y="ACME Cleaners, LTD", 7X=ACME-CLEANERS

Chapter 3: Annotated Example 13

3.4 Relation Hierarchies

PowerLoom permits the specification of hierarchies both for concepts and relations. Previ-
ously , we defined a small concept hierarchy with company on top and corporation below it.
We now define a subrelation of the relation company-name called fictitious-business-
name:

(defrelation fictitious-business-name ((?c company) (7name STRING))
:=> (company-name ?c ?name))

PowerLoom defines a subconcept/subrelation relationship between a pair of concepts
or a pair of relations by asserting an “implication” relation between them. The above
implication expands into the assertion “for all values of 7c and "name, if the fictitious-
business-name relation holds for ?c and?name, then the company-name relation also holds
for ?7c and 7name”. This is equivalent to the assertion

(forall (?c 7name) (=> (fictitious-business-name 7c 7name)
(company-name 7c ?7name)))

Since implication relationships occur very commonly, PowerLoom provides several syntactic
shortcuts for defining them. We have seen one such shortcut earlier; our definition of
corporation included the clause “(c ?company)”, which specified that corporation is
a subconcept of company. In our definition of fictitious-business-name, the keyword
:=> introduces a similar shortcut, which tells us that fictitious-business-name is a
subrelation of company-name. Let us assert a fictious business name for MegaSoft:

(assert (fictitious-business-name megasoft "MegaSoft"))

If we query for the company names of MegaSoft, we get two names, one of them asserted
directly, and one of them infered by the subrelation rule:

(retrieve all (company-name megasoft 7x))
=
There are 2 solutions:

#1: 7X="MegaSoft, Inc."

#2: 7X="MegaSoft"

3.5 Functions

This illustrates another point: A PowerLoom relation is by default “multi-valued”, which in
the case of a binary relation means that a single first value can be mapped by the relation
to more than one second value. In the present case, our model permits a company entity to
have more than one company-name. If a (binary) relation always maps its first argument to
exactly one value (i.e., if it it “single-valued”) we can specify it as a function instead of a
relation. For example, we can use a function to indicate the number of employees for a
company:
(deffunction number-of-employees ((?c company)) :-> (?n INTEGER))

When defining a function, all arguments but the last appear just as they do for a relation.
The last argument (and its type) appears by itself following the keyword :->. Defining a
single-valued relation as a function allows us to refer to it using a functional syntax within
a logical sentence, as in the following:

(assert (= (number-of-employees ACME-cleaners) 8))
(assert (= (number-of-employees megasoft) 10000))

Chapter 3: Annotated Example 14

The functional syntax often results in shorter expressions than equivalents that use
relational syntax. For example to retrieve all companies with fewer than 50 employees, we
can simply write:

(retrieve all (and (company 7x) (< (number-of-employees ?7x) 50)))
=
There is 1 solution:

#1: 7X=ACME-CLEANERS

Using the syntax for relations, the same query would require the introduction of an
existential quantifier, as in:

(retrieve all (and (company 7x)
(exists 7n
(and (number-of-employees 7x 7n)
(< 7n 50)))))
=
There is 1 solution:
#1: 7X=ACME-CLEANERS

To repeat ourselves slightly, Powerloom allows users the choice of using either relational
or functional syntax when using a function in predicate position. For example, if f is a
function, then the expressions (£ 7x ?7y) and (= (£ ?x) 7y) are equivalent.

3.6 Defined Concepts

If we find ourselves writing the same query (or subexpression) repeatedly, we may wish to
define a name for the concept embodying that expression. For example, below we define the
term small-company to represent the class of all companies with fewer than 50 employees:

(defconcept small-company ((?c company))
:<=> (and (Company ?c)
(< (number-of-employees ?c) 50)))
Notice that we have used a new keyword, :<=>. This keyword defines a bidirectional
implication called “if-and-only-if”. Formally it is equivalent to the following pair of asser-
tions:

(assert (forall ?c (=> (and (Company ?7c)
(< (number-of-employees 7c) 50))
(small-company ?c))))
(assert (forall 7c (=> (small-company ?7c)
(and (Company 7c)
(< (number-of-employees ?c) 50)))))

In other words, the : <=> keyword is a shortcut for an assertion that uses the <=> relation,
which itself is a shortcut representing the conjunction of two single arrow implications.
For example, (<=> P Q) is equivalent to (and (<=P Q) (=> P Q)), where the <= relation is
defined to be the inverse of the relation =>.

Its not necessary that we exactly specify the number of employees in a company. Below,
all we know about ZZ Productions is that they have fewer than 20 employees:

(assert (and (company zz-productions)
(< (number-of-employees zz-productions) 20)))

Chapter 3: Annotated Example 15

These facts are sufficient to classify ZZ Productions as a small business:

(retrieve all (small-company 7x))
=
There are 2 solutions:

#1: 7X=ZZ-PRODUCTIONS

#2: 7X=ACME-CLEANERS

3.7 Negation and Open and Closed World Semantics

PowerLoom implements a three-valued logic—the truth value of each proposition entered
into a PowerLoom knowledge base is recorded as being either true, false, or unknown.?
Many other systems (e.g., relational DBMSs) implement a two-valued logic, wherein if a
fact is not asserted to be true, it is assumed to be false. The PowerLoom command ask
returns one of three (five) values: true if it can prove the truth of a proposition, false if it
can easily prove the falsity of a proposition® and otherwise it returns unknown. (The values
default-true and default-false are also possible if defaults are used).

Below, PowerLoom knows nothing about a newly-introduced concept s-corporation,
so ask returns unknown to both a positive query and its negation:

(defconcept s-corporation (7c corporation))

(ask (s-corporation zz-productions))

=

UNKNOWN

(ask (not (s-corporation zz-productions)))

=

UNKNOWN

If we assert that ZZ Productions is not an S-corporation, then PowerLoom knows that

the proposition in question is false:

(assert (not (s-corporation zz-productions)))

(ask (s-corporation zz-productions))

=

FALSE

(ask (not (s-corporation zz-productions)))

=

TRUE
After asserting that ZZ Productions is not an S-corporation, a repeat of the query asking
if it is one will now return false, because the explicit assertion of the negation allows a
quick disproof of the positive query.
Note: PowerLoom uses all its effort to prove that the proposition in question is true, and
only uses some effort to prove that it is false. Therefore, only falsities that are discovered
"on the way" or with shallow inference strategies will be found (which was the case above).
If you want to check whether a proposition is false with maximum effort, simply ask the

2 Actually, PowerLoom implements a five-valued logic — the remaining two values are “default true” and
“default false”. However, the present discussion defers the subject of default truth values.

3 Because proving negations can be very difficult, PowerLoom will only conduct a very quick and shallow
search for a disproof. More extensive reasoning is used if a negation is asked about explicitly, thus
PowerLoom may return unknown if asked about P, but true if asked about (not P).

Chapter 3: Annotated Example 16

negated proposition by wrapping an explicit not arount it. The reason for this asymmetry
is that checking for truth and falsity really amounts to asking two separate and possibly
expensive queries, and the user or programmer should decide whether the effort should be
expended to ask both queries instead of just one.

PowerLoom can sometimes infer a negative fact without the necessity of a direct asser-
tion. For example:

(ask (= (number-of-employees ACME-cleaners) 8))

=

TRUE

(ask (= (number-of-employees ACME-cleaners) 10))

=

FALSE

(ask (not (= (number-of-employees ACME-cleaners) 10)))
=

TRUE

PowerLoom can infer the second and third answers because it knows that the function
number-of-employees can return only one value, and if that value is the number eight, it
cannot also be something else (in this case, ten).

Many systems, in particular, database systems and Prolog, make the assumptions that
if a proposition cannot be proved true, then it must be false. This is called the “closed
world assumption”. By default, PowerLoom makes an open-world assumption, but for
specific relations it can be instructed to assume a closed world if a user wants closed world
semantics. For example, suppose we introduce a relation works-for, and we assume that
all works-for facts have been entered in our knowledge base:

(defrelation works-for (?p (?c Company)))
(assert (works-for shirly ACME-cleaners))
(assert (works-for jerome zz-productions))

If we ask PowerLoom whether Jerome does NOT work for MegaSoft, it will return
unknown. But if we assert that the relation works-for is closed, then PowerLoom will
assume that Jerome only works for ZZ Productions:

(ask (not (works-for jerome megasoft)))
=
UNKNOWN

(assert (closed works-for))

(ask (not (works-for jerome megasoft)))

=

TRUE

The reasoning employed to achieve the above result (that Jerome does not work for

MegaSoft) is called “negation as failure”, which means that if a proof of a proposition fails,
then one may assume that the proposition is false. We can achieve a negation-as-failure
result a second way (i.e., other than by using a closed world assumption) by employing the
query operator fail. Here we retract the closure assumption for works-for and achieve
the desired result using fail:

(retract (closed works-for))

Chapter 3: Annotated Example 17

(ask (not (works-for jerome megasoft)))
=
UNKNOWN

(ask (fail (works-for jerome megasoft)))
=
TRUE

When you see the operator “not” in an SQL query or a Prolog program, it really stands
for “fail”.

3.8 Retraction

Below, we introduce a few new terms for defining geographic information. We define a
relation called contains to assert that one geographic location (the second argument to
contains) is located within another:

(defconcept geographic-location)

(defconcept country (7?1 geographic-location))

(defconcept state (71 geographic-location))

(defconcept city (71 geographic-location))

(defrelation contains ((?11 geographic-location)
(712 geographic-location)))

Now, we can assert some facts about U.S. geography (including one deliberate mistake):

(assert (and
(country united-states)
(geographic-location eastern-us)
(contains united-states eastern-us)
(state georgia) (contains eastern-us georgia)
(city atlanta) (contains georgia atlanta)
(geographic-location southern-us)
(contains united-states southern-us)
(state texas) (contains eastern-us texas)
(city dallas) (contains texas dallas)
(city austin) (contains texas austin)))

We would like to repair the incorrect assertion (contains eastern-us texas). The
PowerLoom command retract allows us to erase assertions that should not be true:

(ask (contains eastern-us texas))
=
TRUE

(retract (contains eastern-us texas))
(assert (contains southern-us texas))

(ask (contains eastern-us texas))
=
UNKNOWN

Chapter 3: Annotated Example 18

Retraction should not be confused with assertion of negative propositions. For example,
asserting that Texas is not a state would not retract the assertion that it is (a state). Instead,
an evident logical contradiction is detected as a “clash”, and the clashing proposition is
disallowed:

(assert (not (state texas)))

=
Derived both TRUE and FALSE for the proposition °|P|(STATE TEXAS)’.
Clash occurred in module ‘‘|MDL|/PL-KERNEL-KB/business’.

(ask (not (state texas)))
=
UNKNOWN

3.9 Clipping of Values

Programmers are accustomed to changing the values of attributes for program objects just
by overwriting previous values. PowerLoom implements a similar semantics for the special
case of functions and single-valued relations. When a second value is asserted for one of
these relations the previous value is automatically retracted. We call this clipping.

To illustrate this behavior for both kinds of relations (a function is considered a kind of
relation), we will define a mapping from a company to a city that contains its headquarters
in two different ways:

(deffunction headquarters ((7c company)) :-> (7city city))
(defrelation headquartered-in ((?c company) (7city city))
raxioms (single-valued headquartered-in))

The clause ":axioms (single-valued headquartered-in)" tells PowerLoom that the
headquartered-in relation is single-valued, i.e., that it can map a company to at most
one city. This makes its behavior similar to that of the function headquarters. Here is an
example of clipping for the function headquarters:

(assert (= (headquarters zz-productions) atlanta))
(retrieve all (= ?x (headquarters zz-productions)))
=
There is 1 solution:

#1: 7X=ATLANTA

(assert (= (headquarters zz-productions) dallas))
(retrieve all (= ?x (headquarters zz-productions)))
=
There is 1 solution:
#1: 7X=DALLAS
Here is the same kind of clipping using a single-valued relation:

(assert (headquartered-in megasoft atlanta))
(retrieve all (headquartered-in megasoft 7x))
=
There is 1 solution:

#1: 7X=ATLANTA

Chapter 3: Annotated Example 19

(assert (headquartered-in megasoft dallas))
(retrieve all (headquartered-in megasoft 7x))
=
There is 1 solution:

#1: 7X=DALLAS

3.10 Rule-based Inference

Suppose that we want to retrieve all geographic locations that are contained in the Southern
US, based on the set of assertions about geography that we entered in earlier. The following
query returns only one of such location:

(retrieve all (contains southern-us 7x))
=
There is 1 solution:

#1: 7X=TEXAS

We would like the cities Austin and Dallas to be retrieved as well. To do this, we can
assert a rule that states that contains is a transitive relation:

(defrule transitive-contains
(=> (and (contains 711 712)
(contains 712 ?713))
(contains 711 ?713)))

The defrule declaration does two things—it asserts a proposition, and it associates a
name with that proposition (in the above case, the name is transitive-contains). This
name is used by the system in displaying traces of its inferencing. It also makes redefinition
of the proposition easier. If we wish to retract an unnamed proposition, it is necessary to
explicitly retract that proposition using a syntax identical to the assertion? If on the other
hand, a proposition has a name, then a new defrule declaration that uses the same name
will automatically retract any existing proposition having the same name.

Our transitive closure rule failed to include any logical quantifiers for the variables 711,
712, and ?713. When PowerLoom parses a top-level proposition, it automatically supplies
universal quantifiers for any unquantified variables. So, the above rule is equivalent to the
rule:

(defrule transitive-contains
(forall (711 712 ?713)
(=> (and (contains 711 712)
(contains 712 713))
(contains 711 ?713))))
Note: Instead of defining a transitive-contains rule, we could have achieved the same
effect by asserting that the contains relation is transitive, e.g., by stating (assert
(transitive contains)).
Now that we have told the system that our contains relation is transitive, let us rerun
our query:

4 Actually, PowerLoom isn’t quite as strict as just stated—its search for an identical proposition can acco-
modate changes in the names of variables.

Chapter 3: Annotated Example 20

(retrieve all (contains southern-us ?7x))
=
There are 3 solutions:

#1: 7X=TEXAS

#2: 7X=AUSTIN

#3: 7?X=DALLAS

3.11 Explanation

PowerLoom provides a command called why that you can use to get an explanation of the
logic behind one of its answers. The why command explains the last query entered into the
system, i.e., it should invoked after one has submitted a retrieve or an ask command.
Before asking a why command, you must enable the justifications feature:

(set-feature justifications)

Queries execute a bit more slowly with jusifications enabled, which is why it is disabled
by default. Having enabled justifications, we must (re)run a query. Here is how we can ask
why Dallas is contained in the Southern US:

(ask (contains southern-us dallas))
=
TRUE
(why)
=
1 (CONTAINS SOUTHERN-US DALLAS)
follows by Modus Ponens
and substitution {?13/DALLAS, ?12/TEXAS, ?11/SOUTHERN-US}
since 1.1 ! (forall (711 713)
(<= (CONTAINS 7?11 ?713)
(exists (712)
(and (CONTAINS 711 ?12)
(CONTAINS 712 ?13)))))
and 1.2 ' (CONTAINS SOUTHERN-US TEXAS)
and 1.3 ! (CONTAINS TEXAS DALLAS)

The above explanation tells us that a rule (our transitivity rule) was invoked during
the proof, and that two ground assertions (CONTAINS SOUTHERN-US TEXAS) and (CONTAINS
TEXAS DALLAS) were accessed to supply preconditions for the rule. These combined as-
sertions lead to the conclusion (CONTAINS SOUTHERN-US DALLAS). Within an explanation,
directly asserted propositions are indicated with the prefix ‘!’

We can also ask why after a retrieve query. However, if the query has multiple solutions,
each one has a separate explanation. In order to ask why, we need to ask for one solution
at a time. This can be done by omitting the word all from the retrieve query, and
subsequently calling (retrieve) to obtain results one-at-a-time.?

(retrieve (contains southern-us ?7x))
=
#1: ?X=DALLAS

5 The order of solutions will not necessarily be the same as shown here.

Chapter 3: Annotated Example 21

(retrieve)
=
There are 2 solutions so far:
#1: 7X=DALLAS
#2: 7X=TEXAS
(retrieve)
=
There are 3 solutions so far:
#1: 7X=DALLAS
#2: 7X=TEXAS
#3: 7?X=AUSTIN
(why)
=
1 (CONTAINS SOUTHERN-US AUSTIN)
follows by Modus Ponens
with substitution {?711/SOUTHERN-US, ?13/AUSTIN, ?712/TEXAS}
since 1.1 ! (FORALL (7?11 ?13)
(<= (CONTAINS 711 ?713)
(EXISTS (712)
(AND (CONTAINS 711 712)
(CONTAINS 7?12 ?13)))))
(CONTAINS SOUTHERN-US TEXAS)

and 2!
3 ! (CONTAINS TEXAS AUSTIN)

1.
and 1.
The following query combines a variety of relations that have been entered into the
business modules. It retrieves names of companies whose headquarters are in the southern
US. Note that query variables that do not appear in the output (i.e., variables not listed

after the all

(retrieve 7name (exists (7city 7company)
(and (contains southern-us ?city)
(headquartered-in ?company ?city)
(company-name 7company ?7name))))
=
There is 1 solution so far:
#1: 7?NAME="MegaSoft, Inc."

(why)
=
1 (and (COMPANY-NAME MEGASOFT MegaSoft, Inc.)
(HEADQUARTERED-IN MEGASOFT DALLAS)
(CONTAINS SOUTHERN-US DALLAS))
follows by And-Introduction
since 1.1 ! (COMPANY-NAME MEGASOFT MegaSoft, Inc.)
and 1.2 ! (HEADQUARTERED-IN MEGASOFT DALLAS)
and 1.3 (CONTAINS SOUTHERN-US DALLAS)

1.3 (CONTAINS SOUTHERN-US DALLAS)

Chapter 3: Annotated Example 22

follows by Modus Ponens
and substitution {?13/DALLAS, 712/TEXAS, ?11/SOUTHERN-US}
since 1.3.1 ! (forall (711 ?713)
(<= (CONTAINS 711 ?713)
(exists (712)
(and (CONTAINS 711 712)
(CONTAINS 712 713)))))
(CONTAINS SOUTHERN-US TEXAS)
(CONTAINS TEXAS DALLAS)

and

!
and !

1.3.2
1.3.3

3.12 Contexts and Modules

The final feature that we will illustrate in this section is the PowerLoom context mechanism.
PowerLoom organizes its knowledge into a hierarchy of logical containers called “contexts”.
A PowerLoom context is either a “module”, a somewhat heavyweight object that includes
its own symbol table, or a “world”, a very lightweight object designed for fast switching
from one world to another. All contexts inherit from a single root context. The most
important feature of a context is that a fact asserted into it is inherited by all contexts
below it. However, a “parent” context is unaware of any knowledge entered into one of its
descendants.

Here we concern ourselves only with modules. We first define a second module, called
alternate-business, to be a subcontext of our business module, and then we switch into
the new module:

(defmodule "ALTERNATE-BUSINESS"
:includes "BUSINESS")
(in-module "ALTERNATE-BUSINESS")

Next, within the scope of the alternate-business module, we will create a new com-
pany. And just for good measure, we will change the name of MegaSoft while we are at
it:

(assert (and (company web-phantoms)

(company-name web-phantoms "Web Phantoms, Inc.")))
(retract (company-name megasoft "MegaSoft, Inc."))
(assert (company-name megasoft "MegaZorch, Inc."))

First, here are pairs of companies and company names from the vantage point of the
Business module:

(in-module "BUSINESS")

(retrieve all (company-name ?7x 7y))

=

There are 3 solutiomns:
#1: 7X=ACME-CLEANERS, 7Y="ACME Cleaners, LTD"
#2: 7X=MEGASOFT, 7Y="MegaSoft, Inc."
#3: 7X=MEGASOFT, ?7Y="MegaSoft"

Now observe the same query executed from within the alternate Business module:

(in-module "ALTERNATE-BUSINESS")
(retrieve all (company-name ?x ?7y))

Chapter 3: Annotated Example 23

=
There are 4 solutions:
#1: 7X=ACME-CLEANERS, ?Y="ACME Cleaners, LTD"
#2: 7X=MEGASOFT, ?Y="MegaZorch, Inc."
#3: 7X=WEB-PHANTOMS, 7Y="Web Phantoms, Inc."
#4: 7X=MEGASOFT, 7Y="MegaSoft"

We see that all facts pertaining to company names have inherited down from the Business
to the Alternate Business module, except for the name for MegaSoft that we explicitly
retracted. Also, the new facts asserted within the Alternate Business module appear mixed
in with the inherited facts.

3.13 Equality Reasoning

PowerLoom makes the unique names assumption, so every two different named logic con-
stants are assumed to be different. For example:

(assert (= Fred Joe))

=

Derived both TRUE and FALSE for the proposition °|P#|FALSE’.
Clash occurred in module ‘|MDL|/PL-KERNEL-KB/PL-USER’.

(assert (= Fred Fred))
=
| P| TRUE

However, one can assert equality between skolems that represent function terms as well
as between a function term skolem and a regular constant. For example:

(deffunction age (?x ?y))
(assert (= (age Fred) (age Joe)))
(assert (= (age Fred) 10))

(retrieve (age Joe 7x))
=
There is 1 solution so far:
#1: 7X=10
So, if one needs to model named individuals where equality might be asserted (e.g., to
model a person with an alias) one has to resort to using function terms. For example:

(deffunction individual (?name 7i))
(assert (= (age (individual A)) 12))
(assert (= (individual A) (individual B)))

(retrieve (age (individual B) 7a))
=
There is 1 solution so far:

#1: 7A=12

3.14 Classification, Subsumption

Chapter 3: Annotated Example

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22

3.23

Truth Maintenance

Inference Control

Keyword Axioms

Cardinality /Type Reasoning with Frame Predicates
Loom-to-PowerLoom

Deviations from KIF

Differences from Loom

Defaults

Sets, Lists, SETOFALL, KAPPA

Chapter 4: Communicating with PowerLoom 25

4 Communicating with PowerLoom

There are a variety of modes users can choose from for interacting with the PowerLoom
system. The simplest is to use the PowerLoom command interpreter. The interpreter
supports a type-in window that allows line-at-a-time entry of commands. You can use
the interpreter to load files of PowerLoom declarations, to create and edit knowledge base
objects, to ask queries, and to modify settings in the execution environment.

A second mode of interaction involves writing an application that makes calls to the
PowerLoom API (see Chapter 6 [PowerLoom API], page 40). PowerLoom implements an
extensive list of procedures that can be called to control the logic system. These procedures
range from very specific procedures to assert or query a single fact, to general procedures
that interpret arbitrary queries. The STELLA translator offers users a choice of Common
Lisp, Java, or C++ -based versions of the PowerLoom system; users can choose whichever
is the best match for their language of choice for their applications.

Starting with PowerLoom version 4.0, an experimental Java-based GUI is available to
browse, query and edit knowledge bases (see Chapter 8 [PowerLoom GUI|, page 84). Ad-
ditionally, the Ontosaurus Web Browser offers a convenient way to view the contents of
PowerLoom knowledge bases from a standard Web browser (see Chapter 9 [Ontosaurus],
page 103).

4.1 Command Interpreter

Currently, the primary means for interacting with PowerLoom is its command interpreter.
The command interpreter can be used either interactively, or it can be invoked directly from
a program to evaluate individual commands. All PowerLoom commands (see Chapter 5
[Commands|, page 27) can be evaluated using the command interpreter.

The interactive command interpreter is invoked by calling the function powerloom with-
out any arguments. In the Java versions of PowerLoom, the interpreter in called by the main
routine in the class PowerLoom within the logic package. In the C++ versions of PowerLoom,
powerloom is also called within the main routine. In the Lisp version, (STELLA: : powerloom)
has to be called explicitly. However, in Lisp it is not really necessary to use the command
interpreter, since all commands can also be executed directly at the Lisp top level®.

The interactive command interpreter functions as a simple read/eval/print loop that
prompts for input with a |= prompt, reads a user command from standard input, evaluates
it, and prints the result to standard output. To exit the command interpreter, type quit
or stop.

To evaluate commands directly from a program, the PowerLoom API provides the fol-
lowing evaluator functions:

evaluate ((command OBJECT) (module MODULE) [Function]
(environment ENVIRONMENT)) : OBJECT

Evaluate the command command within module and return the result. Currently,

only the evaluation of (possibly nested) commands and global variables is supported.

Commands are simple to program in Common Lisp, since they are built into the

Lof you are executing within a case sensitive module, then you may see some differences in behavior between
commands evaluated by the command interpreter and commands invoked from the Lisp Listener.

Chapter 4: Communicating with PowerLoom 26

language, and relatively awkward in Java and C++. Users of either of those languages
are more likely to want to call s-evaluate.

evaluate-string ((expression STRING)) : OBJECT [Function]
Evaluate the expression represented by expression and return the result. This is
equivalent to (evaluate (unstringify expression)).

4.2 Persistent Knowledge Bases

Serious users of PowerLoom will want to construct knowledge bases that persist between
sessions. PowerLoom’s primary medium of persistence is file-based; users construct their
knowledge bases by entering PowerLoom statements into ASCII-formatted files, and then
using the load command to load them into PowerLoom. There is also a save-module
command that saves the current assertions of a module to a file. Large-scale persistence via
a backend database is currently under development and will become available in one of the
next releases.

Chapter 5: Commands 27

5 Commands

This chapter lists all available PowerLoom commands alphabetically. Each command is doc-
umented with its name, a (possibly empty) list of parameters specified as (<name> <type>)
pairs, its return type, and its category (Command). Almost all of the commands implic-
itly quote their arguments, meaning that when calling them, you don’t need to add any
quotation yourself. For example, the command all-facts-of is defined as follows:

all-facts-of ((instanceRef NAME)) : (CONS OF PROPOSITION) [Command]
Return a cons list of all definite (TRUE or FALSE) propositions that
reference the instance instanceRef.

The all-facts-of command has one parameter called instanceRef of type NAME, and
returns a STELLA LIST containing zero or more objects of type PROPOSITION as its result.
The type NAME subsumes the types SYMBOL, SURROGATE, STRING, and KEYWORD. Unless
you are in a case-sensitive module, the following four commands are equivalent:

(all-facts-of Merryweather)

(all-facts-of :MERRYWEATHER)
(all-facts-of "merryweather")
(all-facts-of @MerryWeather)

Commands can also have &rest parameters (similar to Lisp functions). These are either
used to allow a variable number of arguments, or to handle optional arguments, since
STELLA does not directly support optional arguments.

Here is a list of important parameter types used in the command specifications below:

e GENERALIZED-SYMBOL: A generalized symbol is either a plain symbol (similar to a
Lisp symbol) such as Merryweather, a keyword (similar to a Lisp keyword) such as
:KIF, or a STELLA surrogate which is a symbol starting with an at-sign, e.g., @CONS.
STELLA surrogates are used as names for objects of arbitrary types.

e NAME: Names can be either a string, or a GENERALIZED-SYMBOL (i.e., a symbol,
a keyword, or a surrogate). If a symbol is supplied, only its symbol-name is used.
Commands that take names as arguments usually coerce whatever argument is entered
into a string, but by allowing a NAME they make it a little bit more convenient to type
a name in an interactive invocation.

e PARSE-TREE: A parse tree is similar to a Lisp s-expression, i.e., it can either be an
atom such as a symbol, number, or a string, or a list of zero or more parse trees. For
example, the expression (happy Fred) is a parse tree, and so are its components happy
and Fred.

Here is the list of all available PowerLoom commands:

add-load-path ((path STRING)) : (CONS OF STRING-WRAPPER) [Command]|
Append the directories listed in the |-separated path to the end of the STELLA load
path. Return the resulting load path.

1 Lisp programmers are typically spoiled, and find it inconvenient to wrap double-quotes around their
arguments.

Chapter 5: Commands 28

all-facts-of ((instanceRef OBJECT)) : (CONS OF PROPOSITION) [N-Command]
Return a cons list of all definite (TRUE or FALSE) propositions that reference the
instance instanceRef. This includes propositions asserted to be true by default, but it
does not include propositions that are found to be TRUE only by running the query
engine. Facts inferred to be TRUE by the forward chainer will be included. Hence,
the returned list of facts may be longer in a context where the forward chainer has
been run then in one where it has not (see run-forward-rules). instanceRef can be
a regular name such as fred as well as a function term such as (father fred).

ask (&rest (proposition&options PARSE-TREE)) : TRUTH-VALUE [N-Command]
Perform inference to determine whether the proposition specified in proposi-
tion&options is true. Return the truth-value found. ask will spend most of its
effort to determine whether the proposition is true and only a little effort via
shallow inference strategies to determine whether it is false. To find out whether a
proposition is false with full inference effort ask its negation.

KIF example: (ask (happy Fred)) will return TRUE if Fred was indeed found to
be happy. Note, that for this query to run, the logic constant Fred and the relation
happy must already be defined (see assert). Use (set/unset-feature goal-trace)
to en/disable goal tracing of the inference engine.

The ask command supports the following options: : TIMEQUT is an integer or floating
point time limit, specified in seconds. For example, the command (ask (nervous
Fred) :timeout 2.0) will cease inference after two seconds if a proof has not been
found by then. If the :DONT-0PTIMIZE? is given as TRUE, it tells PowerLoom to
not optimize the order of clauses in the query before evaluating it. This is useful for
cases where a specific evaluation order of the clauses is required (or the optimizer
doesn’t do the right thing). If : THREE-VALUED? is given as TRUE, PowerLoom will
try to prove the negation of the query with full effort in case the given query returned
UNKNOWN. By default, PowerLoom uses full effort to prove the query as stated and
only a little opportunistic effort to see whether it is actually false.

assert ((proposition PARSE-TREE)) : OBJECT [N-Command]
Assert the truth of proposition. Return the asserted proposition object. KIF example:
"(assert (happy Fred))" asserts that Fred is indeed happy. Note that for this assertion
to succeed, the relation happy must already be defined. If the constant Fred has not
yet been created, it is automatically created as a side-effect of calling assert.

assert-from-query ((query cons) &rest (options OBJECT)) : (CONs [N-Command]
OF PROPOSITION)
Evaluate query, instantiate the query proposition for each generated solution and
assert the resulting propositions. The accepted syntax is as follows:

(assert-from-query <query-command>
[:relation <relation-name>]
[:pattern <description-term>]
[:module <module-name>]
[:record-justifications? TRUE|FALSE])

<query-command> has to be a strict or partial retrieval command. If a :relation op-
tion is supplied, <relation-name> is used as the relation of the resulting propositions.

Chapter 5: Commands 29

In this case the bindings of each solution will become arguments to the specified rela-
tion in the order of querys output variables (the arities have to match). The :pattern
option is a generalization of this mechanism that specifies an arbitrary proposition
pattern to be instantiated by the query’s solution. In this case <description-term>
has to be a SETOFALL or KAPPA expression whose [O-variables will be bound in
sequence to the bindings of a query solution to generate the resulting proposition. Fi-
nally, if a :module option is specified, the assertions will be generated in that module.
Note that for this to work the relations referenced in the query proposition or pattern
have to be visible in the module. Also, instances will not be copied to the target
module, therefore, the resulting propositions might reference external out-of-module
objects in case they are not visible there. If :record-justifications? is TRUE, justifi-
cations will be recorded for the query and the resulting justifications will be linked
to the asserted propositions. Here are some examples:

(assert-from-query (retrieve all (foo ?7x ?7y)))
(assert-from-query (retrieve all (?7y 7x)
(exists 7z
(and (foo 7x 7z)
(foo 7z 7y))))
:relation bar :module other)
(assert-from-query
(retrieve all (and (relation ?7x) (symmetric ?x)))
:pattern (kappa (7pred)
(forall (7x 7y)
(=> (holds ?7pred 7x 7y)
(holds 7pred ?y ?7x))))))

assert-rule ((ruleName NAME)) : PROPOSITION [N-Command]
Set the truth value of the rule named ruleName to TRUE. The proposition having
the name ruleName may be any arbitrary proposition, although we expect that it is
probably a material implication. (See retract-rule).

cc (&rest (name NAME)) : CONTEXT [N-Command]
Change the current context to the one named name. Return the value of the new
current context. If no name is supplied, return the pre-existing value of the current
context. cc is a no-op if the context reference cannot be successfully evaluated.

classify-relations ((module NAME) (local? BOOLEAN)) : [N-Command]|
Classify named relations visible in module. If local?, only classify descriptions defined
within module, i.e., don’t classify descriptions inherited from ancestor modules. If
module is NULL, classify relations in all modules.

Conceptually, the classifier operates by comparing each concept or relation with all
other concepts/relations, searching for a proof that a subsumption relation exists be-
tween each pair. Whenever a new subsumption relation is discovered, the classifier
adds an implication link between members of the pair, thereby augmenting the
structure of the concept or relation hierarchy. The implemented classification algo-
rithm is relatively efficient — it works hard at limiting the number of concepts or
relations that need to be checked for possible subsumption relationships.

Chapter 5: Commands 30

classify-instances ((module NAME) (local? BOOLEAN)) : [N-Command]
Classify instances visible in module. If local?, only classify instances that belong to
module, i.e., don’t classify instances inherited from ancestor modules. If module is
NULL, classify instances in all modules.

Conceptually, the classifier operates by comparing each instance with all concepts
in the hierarchy, searching for a proof for each pairing indicating that the instance
belongs to the concept. Whenever a new is-a relation is discovered, the classifier adds
an is-a link between the instance and the concept, thereby recording an additional
fact about the instance. The implemented classification algorithm is relatively efficient
— it works hard at limiting the number of concepts or relations that need to be checked
for possible is-a relationships.

clear-caches () : [Command]
Clear all query and memoization caches.

clear-instances (&rest (name NAME)) : [N-Command]
Destroy all instances belonging to module name or any of its children. Leave meta-
objects, e.g., concepts and relations, alone. If no name is supplied, the current module
will be cleared after confirming with the user.

clear-module (&rest (name NAME)) : [N-Command]
Destroy all objects belonging to module name or any of its children. If no name is
supplied, the current module will be cleared after confirming with the user. Important
modules such as STELLA are protected against accidental clearing.

conceive ((formula PARSE-TREE)) : OBJECT [N-Command]
Guess whether formula represents a term or a sentence/proposition. If we are not
sure, assume its a proposition. If its, a term, return its internal representation. If
a proposition, construct a proposition for formula without asserting its truth value.
Return the conceived proposition object. KIF example: "(conceive (happy Fred))"
builds the proposition expressing that Fred is happy without explictly asserting or
denying it. Note, that for this to succeed, the relation happy must already be defined
(see assert). If the logic constant Fred has not yet been created, it is automatically
created as a side-effect of calling conceive.

copyright () : [Command]|
Print detailed PowerLoom copyright information.

defconcept (&rest (args PARSE-TREE)) : NAMED-DESCRIPTION [N-Command]
Define (or redefine) a concept. The accepted syntax is:

(defconcept <conceptconst> [(<var> <parent>x*)]
[:documentation <string>]
:<= <sentence>] | [:=> <sentence>] |
:<<= <sentence>] | [:=>> <sentence>] |
:<=> <sentence>] | [:<=>> <sentence>] | [:<<=> <sentence>] |
:<<=>> <sentence>] |
:axioms {<sentence> | (<sentence>+)1}] |
<keyword-option>*)

e I e I e B s Y |

Chapter 5: Commands 31

Declaration of a concept variable <var> is optional, unless any implication (arrow)
options are supplied that need to reference it. A possibly empty list of concept names
following <var> is taken as the list of parents of <conceptconst>. Alternatively,
parents can be specified via the :=> option. If no parents are specified, the parent
of <conceptconst> is taken to be THING. <keyword-option> represents a keyword
followed by a value that states an assertion about <conceptconst>. See defrelation
for a description of <keyword-option>s.

deffunction (&rest (args PARSE-TREE)) : NAMED-DESCRIPTION [N-Command]|
Define (or redefine) a logic function. The accepted syntax is:

(deffunction <funconst> (<vardecl>+) [:-> <vardecl>]
[:documentation <string>]

:<= <sentence>] | [:=> <sentence>] |

:<<= <sentence>] | [:=>> <sentence>] |

:<=> <gsentence>] | [:<=>> <sentence>] |

:<<=> <sentence>] | [:<<=>> <sentence>] |

[:axioms {<sentence> | (<sentence>+)}]

[<keyword-option>*])

L B s I e B |

Function parameters can be typed or untyped. If the :-> option is supplied, it
specifies the output variable of the function. Otherwise, the last variable in the
parameter list is used as the output variable. See defrelation for a description of
<keyword-option>s.

definstance (&rest (args PARSE-TREE)) : LOGIC-OBJECT [N-Command]
Define (or redefine) a logic instance (definstance is an alias for defobject which
see).

defmodule ((name NAME) &rest (options OBJECT)) : [N-Command|

Define (or redefine) a module named name. The accepted syntax is:

(defmodule <module-name>
[:documentation <docstring>]

[:includes {<module-name> | (<module-name>%*)}]

[:uses {<module-name> | (<module-name>x*)}]

[:1isp-package <package-name-string>]

[: java-package <package-specification-string>]

[:cpp—namespace <namespace-name-string>]

[:java-catchall-class

[:api? {TRUE | FALSE}]

[:case-sensitive? {TRUE | FALSE}]

[:shadow (<symbol>*)]

[:java-catchall-class <class-name-string>]

[<other-options>*])

name can be a string or a symbol.

Modules include objects from other modules via two separate mechanisms: (1) they

inherit from their parents specified via the :includes option and/or a fully qualified

module name, and (2) they inherit from used modules specified via the :uses option.

The main difference between the two mechanisms is that inheritance from parents is

Chapter 5: Commands 32

transitive, while uses-links are only followed one level deep. I.e., a module A that
uses B will see all objects of B (and any of B’s parents) but not see anything from
modules used by B. Another difference is that only objects declared as public can be
inherited via uses-links (this is not yet enforced). Note that - contrary to Lisp - there
are separate name spaces for classes, functions, and variables. For example, a module
could inherit the class CONS from the STELLA module, but shadow the function of the
same name.

The above discussion of :includes and :uses semantics keyed on the inheri-
tance/visibility of symbols. The PowerLoom system makes another very important
distinction: If a module A is inherited directly or indirectly via :includes
specification(s) by a submodule B, then all definitions and facts asserted in A are
visible in B. This is not the cases for :uses; the :uses options does not impact
inheritance of propositions at all.

The list of modules specified in the :includes option plus (if supplied) the parent in
the path used for name become the new module’s parents. If no :uses option was
supplied, the new module will use the STELLA module by default, otherwise, it will
use the set of specified modules.

If :case-sensitive? is supplied as TRUE, symbols in the module will be interned
case-sensitively, otherwise (the default), they will be converted to uppercase before
they get interned. That means that any reference from inside a case-sensitive module
to a non-case-sensitive module will have to use uppercase names for symbols in the
non-case-sensitive module. The standard system modules are all NOT case sensitive.

Modules can shadow definitions of functions and classes inherited from parents or
used modules. Shadowing is done automatically, but generates a warning unless
the shadowed type or function name is listed in the :shadow option of the module
definition .

Examples:

(defmodule "PL-KERNEL/PL-USER"
:uses ("LOGIC" "STELLA")
:package "PL-USER")

(defmodule PL-USER/GENEALOGY)

The remaining options are relevant only for modules that contain STELLA code.
Modules used only to contain knowledge base definitions and assertions have no use
for them:

The keywords :1lisp-package, : java-package, and :cpp-package specify the name
of a native package or name space in which symbols of the module should be allocated
when they get translated into one of Lisp, Java, or C++. By default, Lisp symbols are
allocated in the STELLA package, and C++ names are translated without any prefixes.
The rules that the STELLA translator uses to attach translated Java objects to classes
and packages are somewhat complex. Use :java-package option to specify a list of
package names (separated by periods) that prefix the Java object in this module. Use
:java-catchall-class to specify the name of the Java class to contain all global & special
variables, parameter-less functions and functions defined on arguments that are not
classes in the current module. The default value will be the name of the module.

Chapter 5: Commands 33

When set to TRUE, the :api? option tells the PowerLoom User Manual generator
that all functions defined in this module should be included in the API section. Ad-
ditionally, the Java translator makes all API functions synchronized.

defobject (&rest (args PARSE-TREE)) : LOGIC-OBJECT [N-Command]
Define (or redefine) a logic instance. The accepted syntax is:

(defobject <constant>
[:documentation <string>]
[<keyword-option>*])

<keyword-option> represents a keyword followed by a value that states an assertion
about <constant>. See defrelation for a description of <keyword-option>s.

defobject provides a sugar-coated way to assert a collection of facts about a logic
constant, but otherwise adds nothing in terms of functionality.

defproposition (&rest (args PARSE-TREE)) : PROPOSITION [N-Command]
Define (or redefine) a named proposition. The accepted syntax is:

(defproposition <name> <sentence>
[:documentation <string>]
[:forward-only? {true | false}]
[:backward-only? {true | false}]
[:dont-optimize? {true | false}]
[:confidence-level {:strict | :default}]
[<keyword-option>*])

<sentence> can be any sentence that is legal as a top-level assertion. <name> can
be a string or symbol and will be bound to the asserted proposition represented by
<sentence>. After this definition every occurrence of <name> will be replaced by the
associated proposition.

The options :forward-only? and :backward-only? can be used to tell the inference
engine to only use the rule in forward or backward direction (this can also be achieved
by using the <<= or =>> implication arrows). :dont-optimize? tells the inference engine
to not rearrange the order of clauses in the antecedent of a rule and instead evaluate
them in their original order. :confidence-level can be used to mark a proposition as
default only.

<keyword-option> represents a keyword followed by a value that states an assertion
about the proposition <name>. See defrelation for a description of <keyword-
option>s.

defrelation (&rest (args PARSE-TREE)) : NAMED-DESCRIPTION [N-Command|
Define (or redefine) a logic relation. The accepted syntax is:

(defrelation <relconst> (<vardecl>+)
[:documentation <string>]

:<= <sentence>] | [:=> <sentence>] |

:<<= <sentence>] | [:=>> <sentence>] |

:<=> <sentence>] | [:<=>> <sentence>] |

:<<=> <sentence>] | [:<<=>> <sentence>] |

:axioms {<sentence> | (<sentence>+)1}]

L I e B e B e I |

Chapter 5: Commands 34

[<keyword-option>*])
Relation parameters can be typed or untyped. <keyword-option> represents a key-
word followed by a value that states an assertion about <relconst>. For example,
including the option :foo bar states that the proposition (foo <relconst> bar) is
true. :foo (bar fum) states that both (foo <relconst> bar) and (foo <relconst>
fum) are true. :foo true states that (foo <relconst>) is true, :foo false states
that (not (foo <relconst>)) is true.

defrule (&rest (args PARSE-TREE)) : PROPOSITION [N-Command]|
Define (or redefine) a named rule (defrule is an alias for defproposition which
see).

delete-rules ((relation NAME)) : [N-Command]

Delete the list of rules associated with relation. This function is included mainly for
debugging purposes, when a user wants to verify the behavior of different sets of rules.

demo (&rest (fileandpause OBJECT)) : [Command]
Read logic commands from a file, echo them verbatimly to standard output, and
evaluate them just as if they had been typed in interactively. When called with no
arguments, present a menu of example demos, otherwise, use the first argument as
the name of the file to demo. Pause for user confirmation after each expression has
been read but before it is evaluated. Pausing can be turned off by suppling FALSE
as the optional second argument, or by typing c at the pause prompt. Typing 7 at
the pause prompt prints a list of available commands.

deny ((proposition PARSE-TREE)) : OBJECT [N-Command]
Assert the falsity of proposition. Return the asserted proposition object. KIF exam-
ple: "(deny (happy Fred))" asserts that Fred is not happy, which could have been
done equivalently by "(assert (not (happy Fred)))". Note, that for this to succeed,
the relation happy must already be defined (see assert).

describe ((name OBJECT) &rest (mode OBJECT)) : [N-Command]
Print a description of an object in :verbose, :terse, or :source modes.

destroy ((objectSpec PARSE-TREE)) : OBJECT [N-Command]
Find an object or proposition as specified by objectSpec, and destroy all propositions
and indices that reference it. objectSpec must be a name or a parse tree that evaluates
to a proposition. Return the deleted object, or NULL if no matching object was found.

drop-load-path ((path STRING)) : (CONS OF STRING-WRAPPER) [Command]|
Remove the directories listed in the |-separated path from the PowerLoom load path.

get-load-path () : (CONS OF STRING-WRAPPER) [Command]|
Return the current STELLA load path.

get-rules ((relation NAME)) : (CONS OF PROPOSITION) [N-Command]
Return the list of rules associated with relation.

help (&rest (commands SYMBOL)) : [N-Command|
Describe specific commands, or print a list of available commands.

Chapter 5: Commands 35

in-module ((name NAME)) : MODULE [N-Command]
Change the current module to the module named name.

list-modules ((kb-only? BOOLEAN)) : (CONS OF MODULE) [Command]
Returns a cons of all modules defined in PowerLoom. If kb-only? is true, then any
modules which are code only or just namespaces are not returned.

load ((file STRING) &rest (options OBJECT)) : [Command]|
Read logic commands from file and evaluate them. By default, this will check for
each asserted proposition whether an equivalent proposition already exists and, if so,
not assert the duplicate. These duplicate checks are somewhat expensive though and
can be skipped by setting the option :check-duplicates? to false. This can save time
when loading large KBs where it is known that no duplicate assertions exist in a file.

Also, by setting the option :module, the module in which the file contents will be
loaded will be set. This will only affect files that do NOT have an in-module dec-
laration as part of the file. If this is not set, and no in-module declaration is in the
file, then an error will be signaled.

load-file ((file STRING)) : [Command]
Read STELLA commands from file and evaluate them. The file should begin with
an in-module declaration that specifies the module within which all remaining com-
mands are to be evaluated The remaining commands are evaluated one-by-one, ap-
plying the function evaluate to each of them.

pop-load-path () : STRING [Command]
Remove the first element from the STELLA load path and return the removed ele-
ment.

presume ((proposition PARSE-TREE)) : OBJECT [N-Command]|

Presume the default truth of proposition. Return the presumed proposition object.
KIF example: "(presume (happy Fred))" states that Fred is most probably happy.
Note, that for this to succeed, the relation happy must already be defined (see assert).

print-features () : [Command]
Print the currently enabled and available PowerLoom environment features.

print-rules ((relation OBJECT)) : [N-Command]|
Print the list of true rules associated with relation.

process-definitions () : [Command]|
Finish processing all definitions and assertions that have been evaluated /loaded since
that last call to process-definitions. PowerLoom defers complete processing of
definitions to make it easier to support cyclic definitions. Following finalization of
definitions, this call performs semantic validation of any assertions evaluated since the
last call to process-definitions. PowerLoom calls this function internally before
each query; the primary reason to call it explicitly is to force the production of any
diagnostic information that results from the processing and validation.

Chapter 5: Commands 36

propagate-constraints (&rest (name NAME)) : [N-Command]
Trigger constraint propagation over all propositions of module name. If no name is
supplied, the current module will be used. This also enables incremental constraint
propagation for future monotonic updates to the module. Once a non-monotonic
update is performed, i.e., a retraction or clipping of a function value, all cached
inferences will be discarded and constraint propagation will be turned off until this
function is called again.

push-load-path ((path STRING)) : (CONS OF STRING-WRAPPER) [Command]
Add the directories listed in the |-separated path to the front of the STELLA load
path. Return the resulting load path.

repropagate-constraints (&rest (name NAME)) : [N-Command]|
Force non-incremental constraint propagation over all propositions of module name.
If no name is supplied, the current module will be used. This also enables incre-
mental constraint propagation for future monotonic updates to the module similar to
propagate-constraints.

reset-features () : (LIST OF KEYWORD) [Command]
Reset the PowerLoom environment features to their default settings.

reset-powerloom () : [Command]|
Reset PowerLoom to its initial state. CAUTION: This will destroy all loaded knowl-
edge bases and might break other loaded STELLA systems if they do reference Pow-
erLoom symbols in their code.

retract ((proposition PARSE-TREE)) : OBJECT [N-Command]
Retract the truth of proposition. Return the retracted proposition object. KIF
example: "(retract (happy Fred))" retracts that Fred is happy. Note that for this
assertion to succeed, the relation happy must already be defined. If the constant
Fred has not yet been created, it is automatically created as a side-effect of calling

retract.

retract-facts-of ((instanceRef OBJECT)) : [N-Command]
Retract all definite (TRUE or FALSE) propositions that reference the instance in-
stanceRef.

retract-from-query ((query CONS) &rest (options OBJECT)) : [N-Command]

(CONS OF PROPOSITION)
Evaluate query which has to be a strict or partial retrieval command, instantiate the
query proposition for each generated solution and retract the resulting propositions.
See assert-from-query for available command options.

retract-rule ((ruleName NAME)) : PROPOSITION [N-Command]
If it is currently TRUE, set the truth value of the rule named ruleName to UN-
KNOWN This command may be used alternately with assert-rule to observe the
effects of querying with or without a particular (named) rule being asserted within the
current context. The proposition having the name ruleName may be any arbitrary
proposition, although we expect that it is probably a material implication.

Chapter 5: Commands 37

retrieve (&rest (query PARSE-TREE)) : QUERY-ITERATOR [N-Command]
Retrieve elements of a relation (tuples) that satisfy a proposition. The accepted
syntax is:

(retrieve [<integer> | alll]

[[{<vardecl> | (<vardecl>+)1}]

<proposition>])
The variables and proposition are similar to an exists sentence or kappa term without
the explicit quantifier. If variables are declared, they must match the free variables
referenced by <proposition>. Otherwise, the free variables referenced in <proposition>
will be used as the query variables. If <proposition> is omitted, the most recently
asked query will be continued.

A solution is a set of bindings for the listed variables for which <proposition> is true.
The optional first argument controls how many solutions should be generated before
control is returned. The keyword all indicates that all solutions should be generated.
By default, retrieve returns after it has found one new solution or if it cannot find
any more solutions.

retrieve returns an iterator which saves all the necessary state of a query and stores
all generated solutions. When used interactively, the returned iterator will print out
with the set of solutions collected so far. Calling retrieve without any arguments
(or only with the first argument) will generate one (or more) solutions to the most
recently asked query.

KIF examples:
(retrieve (happy ?7x))
will try to find one happy entity and store it in the returned query iterator.
(retrieve 10 (happy 7x))
will try to find 10 happy entities.
(retrieve 10)
will try to find the next 10 happy entities..
(retrieve all (happy 7x))
will find all happy entities.
(retrieve all (7x Person) (happy 7x))

will to find all happy people. Here we used the optional retrieve variable syntax to
restrict the acceptable solutions. The above is equivalent to the following query:

(retrieve all (and (Person ?x) (happy ?x)))
Similarly,

(retrieve all (?x Person))
(retrieve all (Person 7x))
(retrieve all ?x (Person 7x))

will find all people. Note that in the first case we only specify a query variable
and its type but omit the logic sentence which defaults to TRUE. This somewhat
impoverished looking query can be paraphrased as "retrieve all 7x of type Person
such that TRUE."

Chapter 5: Commands 38

(retrieve 7x (or (happy 7x) (parent-of Fred 7x)))
will try to find a person that is happy or has Fred as a parent.
(retrieve (7y 7x) (parent-of 7x ?7y))
will try to find the one pair of parent/child and return it in the order of child/parent.

(retrieve all (7x Person)
(exists (7y Person) (parent-of 7x 7y)))

will generate the set of all parents. Note, that for these queries to run, the class
Person, the relations happy and parent-of, and the logic constant Fred must already
be defined (see assert).

Use (set/unset-feature trace-subgoals) to en/disable goal tracing of the infer-
ence engine.

save-module ((name NAME) (file STRING)) : [Command]|
Save all definitions and assertions of module name to file.

set-feature (&rest (features NAME)) : (LIST OF KEYWORD) [N-Command]
Enable the PowerLoom environment feature(s) named by features. Return the list of
enabled features. Calling set-feature without any arguments can be used to display
the currently enabled features. The following features are supported:

just-in-time-inference: Enables interleaving of forward chaining inference within
backward chaining queries.

iterative-deepening: Tells the query processor to use iterative deepening instead
of a depth-first search to find answers. This is less efficient but necessary for some
kinds of highly recursive queries.

trace-subgoals: Enables the generation of subgoaling trace information during
backchaining inference.

trace-solutions: Prints newly found solutions during retrieval right when they are
generated as opposed to when the query terminates.

trace-classifier: Tells the classifier to describe the inferences it draws.
justifications: Enables the generation of justifications during inference, which is
a prerequiste for the generation of explanations with (why).

emit-thinking-dots: Tells PowerLoom to annotate its inference progress by out-
putting characters indicating the completion of individual reasoning steps.

By default, the features emit-thinking-dots and just-in-time-inference are en-
abled, and the others are disabled.

set-load-path ((path STRING)) : (CONS OF STRING-WRAPPER) [Command]|
Set the STELLA load path to the |-separated directories listed in path. Return the
resulting load path.

time-command ((command CONS)) : OBJECT [N-Command]
Execute command, measure and report its CPU and elapsed time needed for its
execution, and then return its result.

Chapter 5: Commands 39

unset-feature (&rest (features NAME)) : (LIST OF KEYWORD) [N-Command]
Disable the PowerLoom environment feature(s) named by features. Return the list
of enabled features. Calling unset-feature without any arguments can be used to
display the currently enabled features. See set-feature for a description of supported
features.

why (&rest (args OBJECT)) : [N-Command]
Print an explanation for the result of the most recent query. Without any arguments,
why prints an explanation of the top level query proposition down to a maximum
depth of 3. (why all) prints an explanation to unlimited depth. Alternatively, a
particular depth can be specified, for example, (why 5) explains down to a depth
of 5. A proof step that was not explained explicitly (e.g., due to a depth cutoff)
can be explained by supplying the label of the step as the first argument to why,
for example, (why 1.2.3 5) prints an explanation starting at 1.2.3 down to a depth
of 5 (which is counted relative to the depth of the starting point). The keywords
brief and verbose can be used to select a particular explanation style. In brief
mode, explicitly asserted propositions are not further explained and indicated with a
I assertion marker. Additionally, relatively uninteresting proof steps such as AND-
introductions are skipped. This explanation style option is sticky and will affect future
calls to why until it gets changed again. The various options can be combined in any
way, for example, (why 1.2.3 brief 3) explains starting from step 1.2.3 down to a
depth of 3 in brief explanation mode.

Chapter 6: PowerLoom API 40

6 PowerLoom API

This chapter lists functions that collectively define the PowerLoom API. The first section
describes the API functions themselves. The signature is the basic Stella signature. In-
formation on how to translate the names of the functions and their arguments into the
programming languages Common Lisp, C++ or Java is given in the Language Specific In-
terface section.

6.1 API Functions

Many of the functions take a ‘module’ argument that causes the function to be evaluated in
the context of that module. Passing in a NULL value for the module argument means that
evaluation takes place in the current module. The module argument is frequently followed
by an ‘environment’ argument that specifies which inference environment should be assumed
during evaluation. Values for ‘environment’ are ‘ASSERTION-ENV’, ‘“TAXONOMIC-ENV’,
and ‘INFERENCE-ENV’. ‘ASSERTION-ENV’ specifies that a knowledge base query or
lookup should take into account only explicitly asserted propositions. ‘TAXONOMIC-
ENV’ specifies that a knowledge base query should take into account explicitly-asserted
propositions plus any rules that specify subsumption relationships. ‘INFERENCE-ENV’
specifies that a knowledge base query should take all relevant propositions into account,
including those generated during forward inferencing. A NULL value for the ‘environment’
argument defaults to ‘TAXONOMIC-ENV’.

Many of the functions that take PowerLoom or Stella objects as inputs also have an
analog version whose name starts with the prefix "s-" that take strings as inputs. This
is provided as a convenience so that programmers will not necessarily need to manipulate
PowerLoom objects directly.

ask ((query coNs) (module MODULE) (environment ENVIRONMENT)) : [Function]
TRUTH-VALUE
Returns a truth value for query in module and environment. query has the same syn-
tax as the PowerLoom ask command (which see) but with the ask operator omitted.
For example, here are some legal query arguments:

((happy Fred))
((happy Fred) :inference-level :assertion)
((happy Fred) :inference-level :assertion :timeout 1.0)

As a convenience, a query argument whose first element is a symbol is interpreted as
a sentence that is queried without any options. For example:

(happy Fred)

is a legal query argument. Note that for a sentence whose relation is a list itself,
e.g., ((FruitFn BananaTree) MyBanana) this shortcut is not available, that is, in
that case an extra level of list nesting is always necessary. The returned truth value
represents the logical truth of the queried sentence as determined by PowerLoom. It
can be be tested via the functions is-true, is-false and is-unknown (which see).

Chapter 6: PowerLoom API 41

assert-binary-proposition ((relation LOGIC-OBJECT) (arg OBJECT) [Function]
(value OBJECT) (module MODULE) (environment ENVIRONMENT)) :
PROPOSITION
Assert that the proposition (relation arg value) is TRUE in module. Return the
asserted proposition.

assert-nary-proposition ((relation-and-arguments OBJECT) [Function]
(module MODULE) (environment ENVIRONMENT)) : PROPOSITION
Assert that the proposition represented by the list relation-and-arguments satisfies
the relation relation.

assert-proposition ((proposition PROPOSITION) (module MODULE) [Function]
(environment ENVIRONMENT)) : PROPOSITION
Assert that the proposition proposition is true in module. Return the asserted propo-
sition.

assert-unary-proposition ((relation LOGIC-OBJECT) (arg OBJECT) [Function]
(module MODULE) (environment ENVIRONMENT)) : PROPOSITION
Assert that the proposition (relation arg) is TRUE in module. Return the asserted
proposition.

change-module ((module MODULE)) : MODULE [Function]
Set the current module to module and return it. If module is null, then no switch is
performed and the current module is returned.

clear-caches () : [Function]
Clear all query and memoization caches.

clear-module ((module MODULE)) : MODULE [Function]
Destroy the contents of the module module as well as the contents of all of its children,
recursively.

conceive ((sentence OBJECT) (module MODULE) [Function]

(environment ENVIRONMENT)) : (PL-ITERATOR OF PROPOSITION)
Create one or more proposition objects from the sentence sentence in the module
module. Return an iterator of the propositions. If any of the new propositions has the
same structure as an already existing proposition, an automatic check for duplicates
will return the pre-existing proposition. Multiple propositions may be returned for a
single sentence because of normalization of equivalences, conjunctions, etc.

Signals a Proposition-Error if PowerLoom could not conceive sentence.

cons-to-pl-iterator ((self CONS)) : PL-ITERATOR [Function]
Convert a Stella cons list into an API iterator.

create-concept ((name STRING) (parent LOGIC-OBJECT) [Function]
(module MODULE) (environment ENVIRONMENT)) : LOGIC-OBJECT
Create a concept named name in the designated module, with the designated parent
superconcept (which can be left undefined). Additional superconcepts can be added
via assertions of the subset-of relation. Note that a specified parent concept needs
to be created separately.

Chapter 6: PowerLoom API 42

Note that because names in modules that are not case-sensitive are canonicalized, the
name of the returned object may not match name exactly.

create-enumerated-list ((members CONS) (module MODULE) [Function]
(environment ENVIRONMENT)) : LOGIC-OBJECT
Create a logical term that denotes a list containing members in module using envi-
ronment. Useful for passing lists as arguments to parameterized queries.

create-enumerated-set ((members CONS) (module MODULE) [Function]
(environment ENVIRONMENT)) : LOGIC-OBJECT
Create a logical term that denotes the enumerated set containing members in module
using environment.

create-function ((name STRING) (arity INTEGER) (module MODULE) [Function]
(environment ENVIRONMENT)) : LOGIC-OBJECT
Create a function named name with arity arity in the designated module. Domain
and range information can be added via assertions of nth-domain (or domain and
range) relations.

Note that because names in modules that are not case-sensitive are canonicalized, the
name of the returned object may not match name exactly.

create-module ((name STRING) (parent MODULE) [Function]
(case-sensitive? BOOLEAN)) : MODULE
Creates a new module name as a child of parent. The flag case-sensitive? controls
whether names read in this module will be case sensitive or not.

create-object ((name STRING) (concept LOGIC-OBJECT) [Function]
(module MODULE) (environment ENVIRONMENT)) : LOGIC-OBJECT
Create an object named name of type concept in the designated module. Both name
and concept can be null. If name is null then an object will be created with a
new, non-conflicting name based on the name of concept, or system-generated if no
concept is specified. If concept is null, then the object will be of type THING. It is
an error to create an object with the same name as an existing object.

Note that the string can be a qualified name, in which case the object will be created in
the module specified, but with a name as determined by the qualified name. Vertical
bars in the name string are interpreted as Stella escape characters.

Note that because names in modules that are not case-sensitive are canonicalized, the
name of the returned object may not match name exactly.

Return the object.

create-relation ((name STRING) (arity INTEGER) (module MODULE) [Function]
(environment ENVIRONMENT)) : LOGIC-OBJECT
Create a relation named name with arity arity in the designated module. Domain
and range information can be added via assertions of nth-domain (or domain and
range) relations.

Note that because names in modules that are not case-sensitive are canonicalized, the
name of the returned object may not match name exactly.

Chapter 6: PowerLoom API 43

destroy-object ((object OBJECT)) : [Function]
Delete the object object, retracting all facts attached to it.

empty? (self) : BOOLEAN [Method on PL-ITERATOR]
Return TRUE if the iterator self has no more elements.

evaluate ((command OBJECT) (module MODULE) [Function]
(environment ENVIRONMENT)) : OBJECT
Evaluate the command command within module and return the result. Currently,
only the evaluation of (possibly nested) commands and global variables is supported.
Commands are simple to program in Common Lisp, since they are built into the
language, and relatively awkward in Java and C++. Users of either of those languages
are more likely to want to call s-evaluate.

generate-unique-name ((prefix STRING) (module MODULE) [Function]
(environment ENVIRONMENT)) : STRING
Generates a name based on prefix with a number appended that is not currently in
use in module. In a non-case-sensitive module, the returned name will be all upper
case (This latter feature may change!)

get-arity ((relation LOGIC-OBJECT)) : INTEGER [Function]
Return the arity of the relation relation.

get-binary-proposition ((relation LOGIC-OBJECT) (argl OBJECT) [Function]

(arg2 OBJECT) (module MODULE) (environment ENVIRONMENT)) :
PROPOSITION

Return a proposition such that (relation argl arg2) is true. The relation argument

must be bound to a relation. One or both of the argl and arg2 arguments may be set

to NULL, which is interpreted as a wildcard. If more than one proposition matches

the input criteria, the selection is arbitrary. This procedure is normally applied to

single-valued relations or functions.

get-binary-propositions ((relation LOGIC-OBJECT) (argl OBJECT) [Function]
(arg2 oBJECT) (module MODULE) (environment ENVIRONMENT)) :
(PL-ITERATOR OF PROPOSITION)
Return propositions such that (relation argl arg2) is true. The relation argument
must be bound to a relation. One or both of the argl and arg2 arguments may be
set to NULL, which is interpreted as a wildcard.

get-child-modules ((module MODULE)) : (PL-ITERATOR OF MODULE) [Function]
Return the modules that are immediate children of module.

get-column-count ((obj OBJECT)) : INTEGER [Function]
Return the number of columns in obj, which must be of type proposition, cons,
vector or PL-iterator. For a proposition, the number includes both the predidate and
arguments. For the PL-iterator case,the number of columns is for the current value
of the iterator.

For a null item, the column count is zero. For non sequence objects, the column count
is one.

Chapter 6: PowerLoom API 44

get-concept ((name STRING) (module MODULE) [Function]
(environment ENVIRONMENT)) : LOGIC-OBJECT
Return a class/concept named name that is local to or visible from the module mod-
ule.

get-concept-instance-matching-value ((concept LOGIC-OBJECT) [Function]
(relation LOGIC-OBJECT) (value OBJECT) (module MODULE)
(environment ENVIRONMENT)) : OBJECT
Return a member of concept concept that has an attribute matching value for the
binary relation relation, i.e., (relation <result> value) holds.

get-concept-instances ((concept LOGIC-OBJECT) (module MODULE) [Function]
(environment ENVIRONMENT)) : PL-ITERATOR
Return instances of the concept concept. Include instances of subconcepts of concept.
Depending on concept, the return values could be (wrapped) literals.

get-concept-instances-matching-value ((concept LOGIC-OBJECT) [Function]
(relation LOGIC-OBJECT) (value OBJECT) (module MODULE)
(environment ENVIRONMENT)) : PL-ITERATOR
Return members of concept concept that have an attribute matching value for the
binary relation relation, i.e., (relation <result> value) holds.

get-current-module ((environment ENVIRONMENT)) : MODULE [Function]
Return the currently set module

get-direct-concept-instances ((concept LOGIC-OBJECT) [Function]
(module MODULE) (environment ENVIRONMENT)) : PL-ITERATOR

Return instances of concept concept. Exclude instances of subconcepts of concept.
Depending on concept, the return values could be (wrapped) literals.

get-direct-subrelations ((relation LOGIC-OBJECT) (module MODULE) [Function]
(environment ENVIRONMENT)) : (PL-ITERATOR OF LOGIC-OBJECT)
Return relations that directly specialize relation. Non-reflexive.

get-direct-superrelations ((relation LOGIC-OBJECT) [Function]
(module MODULE) (environment ENVIRONMENT)) : (PL-ITERATOR OF
LOGIC-OBJECT)
Return relations that directly generalize relation. Non-reflexive.

get-direct-types ((object LOGIC-OBJECT) (module MODULE) [Function]
(environment ENVIRONMENT)) : (PL-ITERATOR OF LOGIC-OBJECT)
Return most specific concepts that object belongs to.

get-domain ((relation LOGIC-OBJECT)) : LOGIC-OBJECT [Function]
Return the type (a concept) for the first argument to the binary relation relation.

get-enumerated-collection-members ((collection OBJECT) [Function]
(module MODULE) (environment ENVIRONMENT)) : CONS
Returns the members of an enumerated collection. This works on all types of collec-
tion, i.e., sets and lists

Chapter 6: PowerLoom API 45

get-home-module ((object LOGIC-OBJECT)) : MODULE [Function]
Return the module in which object was created.

get-inferred-binary-proposition-values [Function]
((relation LOGIC-OBJECT) (arg OBJECT) (module MODULE)
(environment ENVIRONMENT)) : PL-ITERATOR
Return all values v such that (relation arg v) has been asserted or can be inferred.

get-module ((name STRING) (environment ENVIRONMENT)) : MODULE [Function]
Return a module named name.

get-modules ((kb-modules-only? BOOLEAN)) : (PL-ITERATOR OF [Function]
MODULE)

Return all modules currently loaded into PowerLoom. If kb-modules-only? is true,

then Stella modules that are used only for program code are not included in the list.

get-name ((obj OBJECT)) : STRING [Function]
Return the fully qualified name of obj, if it has one. Otherwise return null.

get-nth-domain ((relation LOGIC-OBJECT) (n INTEGER)) : LOGIC-OBJECT [Function]
Return the type (a concept) for the the nth argument of the relation relation. Count-
ing starts at zero. NOTE: if there are multiple nth-domain propositions for relation,
this arbitrarily returns one of them; it does not look for the most specific one (which
might have to be created).

get-nth-float ((sequence OBJECT) (n INTEGER) (module MODULE) [Function]
(environment ENVIRONMENT)) : FLOAT
Return the floating point value in the nth column of sequence. Counting starts at
zero. sequence must be of type proposition, cons, vector or PL-iterator. A zero
column number returns a proposition’s relational predicate. For the PL-iterator case,
the the current value pointed to by the iterator is used. If this is not a floating point
value, then an exception will be thrown.

As a special case, a column number of zero will also return the floating point value of
sequence itself if it is not one of the types enumerated above. This allows the use of
get-nth-float on PL-iterators with only a single return variable. If sequence cannot
be turned into a floating point value, an exception will be thrown.

get-nth-integer ((sequence OBJECT) (n INTEGER) (module MODULE) [Function]
(environment ENVIRONMENT)) : INTEGER
Return an integer representation of the value in the nth column of sequence. Counting
starts at zero. Unless n is zero, sequence must be of type proposition, cons, vector or
PL-iterator. A zero column number returns a proposition’s relational predicate. For
the PL-iterator case, the the current value pointed to by the iterator is used. If this
is not an integer value, then an exception will be thrown.

As a special case, a column number of zero will also return the integer value of
sequence itself if it is not one of the types enumerated above. This allows the use
of get-nth-integer on PL-iterators with only a single return variable. If sequence
cannot be turned into an integer, an exception will be thrown.

Chapter 6: PowerLoom API 46

get-nth-logic-object ((sequence OBJECT) (n INTEGER) [Function]
(module MODULE) (environment ENVIRONMENT)) : LOGIC-OBJECT

Return a logic object representation of the value in the nth column of sequence.
Counting starts at zero. Unless n is zero, sequence must be of type proposition,
cons, vector or PL-iterator. A zero column number returns a proposition’s relational
predicate. For the PL-iterator case, the the current value pointed to by the iterator
is used. A zero column number returns the proposition’s relational predicate. If the
return value is not a LOGIC-OBJECT, an exception is thrown.

As a special case, a column number of zero will also return sequence itself if it is not
one of the types enumerated above. This is done to allow the use of get-nth-value on
PL-iterators with only a single return variable. If sequence is not a LOGIC-OBJECT,
an exception is thrown.

get-nth-string ((sequence OBJECT) (n INTEGER) (module MODULE) [Function]
(environment ENVIRONMENT)) : STRING

Return a string representation of the value in the nth column of sequence. Counting
starts at zero. Unless n is zero, sequence must be of type proposition, cons, vector or
PL-iterator. A zero column number returns a proposition’s relational predicate. For
the PL-iterator case, the the current value pointed to by the iterator is used. This
will always succeed, even if the nth value is not a string object. In that case, a string
reprensentation will be returned.

As a special case, a column number of zero will also return sequence itself as a string
if it is not one of the types enumerated above. This is done to allow the use of
get-nth-string on PL-iterators with only a single return variable.

get-nth-value ((sequence OBJECT) (n INTEGER) (module MODULE) [Function]
(environment ENVIRONMENT)) : OBJECT
Return the value in the nth column of sequence. Counting starts at zero. Unless n
is zero, sequence must be of type proposition, cons, vector or PL-iterator. A zero
column number returns a proposition’s relational predicate. For the PL-iterator case,
the number of columns is for the current value of the iterator.

As a special case, a column number of zero will also return sequence itself if it is not
one of the types enumerated above. This is done to allow the use of get-nth-value
on PL-iterators with only a single return variable.

get-operator ((name STRING)) : SYMBOL [Function]
Returns the logical operator object (a Stella SYMBOL) for name. If no such operator
exists then a no-such-object exception is thrown.

get-object ((name STRING) (module MODULE) [Function]
(environment ENVIRONMENT)) : OBJECT
Look for an object named name that is local to or visible from the module module.

get-parent-modules ((module MODULE)) : (PL-ITERATOR OF MODULE) [Function]
Return the modules that are immediate parents of module.

get-predicate ((prop PROPOSITION)) : LOGIC-OBJECT [Function]
Return the concept or relation predicate for the proposition prop.

Chapter 6: PowerLoom API 47

get-proper-subrelations ((relation LOGIC-OBJECT) (module MODULE) [Function]
(environment ENVIRONMENT)) : (PL-ITERATOR OF LOGIC-OBJECT)
Return relations that specialize relation. Non-reflexive.

get-proper-superrelations ((relation LOGIC-OBJECT) [Function]
(module MODULE) (environment ENVIRONMENT)) : (PL-ITERATOR OF
LOGIC-OBJECT)
Return relations that generalize relation. Non-reflexive.

get-proposition ((relation-and-arguments OBJECT) (module MODULE) [Function]
(environment ENVIRONMENT)) : PROPOSITION

Return a proposition matching relation-and-arguments that has been asserted (or in-
ferred by forward chaining). relation-and-arguments is a sequence containing objects
and nulls. The first argument must be the name of a relation. A null value acts like
a wild card. If more than one proposition matches the input criteria, the selection
among satisficing propositions is arbitrary. This procedure is normally applied to
single-valued relations or functions.

get-propositions ((relation-and-arguments OBJECT) (module MODULE) [Function]
(environment ENVIRONMENT)) : (PL-ITERATOR OF PROPOSITION)
Return propositions matching relation-and-arguments that have been asserted (or in-
ferred by forward chaining). relation-and-arguments is a sequence containing objects
and nulls. The first argument must be the name of a relation. A null value acts like
a wild card.

get-propositions-in-module ((module MODULE) [Function]
(environment ENVIRONMENT)) : (PL-ITERATOR OF PROPOSITION)
Return propositions that have been conceived in the module module.

get-propositions-of ((object LOGIC-OBJECT) (module MODULE) [Function]
(environment ENVIRONMENT)) : (PL-ITERATOR OF PROPOSITION)
Return all propositions that have object among their arguments, and that are TRUE
in the scope of the module module.

get-range ((relation LOGIC-OBJECT)) : LOGIC-OBJECT [Function]
Return the type (a concept) for fillers of the binary relation relation.

get-relation ((name STRING) (module MODULE) [Function]
(environment ENVIRONMENT)) : LOGIC-OBJECT
Return a concept or relation named name that is local to or visible from the module
module.

get-relation-extension ((relation LOGIC-OBJECT) (module MODULE) [Function]
(environment ENVIRONMENT)) : (PL-ITERATOR OF PROPOSITION)
Return propositions that satisfy relation. Include propositions that satisfy subrela-
tions of relation.

get-rules ((relation LOGIC-OBJECT) (module MODULE) [Function]
(environment ENVIRONMENT)) : (PL-ITERATOR OF PROPOSITION)
Return rules attached to the concept/relation relation in either antecedent or conse-
quent position.

Chapter 6: PowerLoom API 48

get-types ((object LOGIC-OBJECT) (module MODULE) [Function]
(environment ENVIRONMENT)) : (PL-ITERATOR OF LOGIC-OBJECT)
Return all named concepts that object belongs to.

initialize () : [Function]
Initialize the PowerLoom logic system. This function needs to be called by all appli-
cations before using PowerLoom. If it is called more than once, every call after the
first one is a no-op.

is-a ((object OBJECT) (concept LOGIC-OBJECT) (module MODULE) [Function]
(environment ENVIRONMENT)) : BOOLEAN
Return TRUE if object is a member of the concept concept.

is-default ((tv TRUTH-VALUE)) : BOOLEAN [Function]
Tests whether tv is a default truth value.

is—enumerated-collection ((obj OBJECT)) : BOOLEAN [Function]
Test whether obj is an enumerated collection. This subsumes both sets and lists.

is-enumerated-list ((obj OBJECT)) : BOOLEAN [Function]
Test whether obj is an enumerated list

is-enumerated-set ((obj OBJECT)) : BOOLEAN [Function]
Test whether obj is an enumerated set.

is-false ((tv TRUTH-VALUE)) : BOOLEAN [Function]
Tests whether tv is a false truth value. It can be false either absolutely or by default.

is-float ((obj OBJECT)) : BOOLEAN [Function]
Test whether obj is of type FLOAT (double)

is-inconsistent ((tv TRUTH-VALUE)) : BOOLEAN [Function]
Tests whether tv is an inconsistent truth value.

is-integer ((obj OBJECT)) : BOOLEAN [Function]
Test whether obj is of type INTEGER

is-logic-object ((obj OBJECT)) : BOOLEAN [Function]
Test whether obj is of type LOGIC-OBJECT

is-number ((obj OBJECT)) : BOOLEAN [Function]
Test whether obj is of type NUMBER. This can be either an integer or a floating point
number. One key characteristic is that object-to-integer and object-to-float
will both work on it.

is-strict ((tv TRUTH-VALUE)) : BOOLEAN [Function]
Tests whether tv is a strict (non-default) truth value.

is-string ((obj OBJECT)) : BOOLEAN [Function]
Test whether obj is of type STRING

Chapter 6: PowerLoom API 49

is-subrelation ((sub LOGIC-OBJECT) (super LOGIC-OBJECT) [Function]
(module MODULE) (environment ENVIRONMENT)) : BOOLEAN
Return TRUE if sub is a subconcept/subrelation of super.

is-true ((tv TRUTH-VALUE)) : BOOLEAN [Function]
Tests whether tv is a true truth value. It can be true either absolutely or by default.

is-true-binary-proposition ((relation LOGIC-OBJECT) (arg OBJECT) [Function]
(value OBJECT) (module MODULE) (environment ENVIRONMENT)) : BOOLEAN
Return TRUE if the proposition (relation arg value) has been asserted (or inferred
by forward chaining).

is-true-proposition ((proposition PROPOSITION) (module MODULE) [Function]
(environment ENVIRONMENT)) : BOOLEAN
Return TRUE if proposition is TRUE in the module module.

is-true-unary-proposition ((relation LOGIC-OBJECT) (arg OBJECT) [Function]
(module MODULE) (environment ENVIRONMENT)) : BOOLEAN
Return TRUE if the proposition (relation arg) has been asserted (or inferred by
forward chaining).

is—unknown ((tv TRUTH-VALUE)) : BOOLEAN [Function]
Tests whether tv is an unknown truth value.

iterator-to-pl-iterator ((self ITERATOR)) : PL-ITERATOR [Function]
Convert an arbitrary Stella iterator into an API iterator.

length (self) : INTEGER [Method on PL-ITERATOR]
Number of items remaining in self. Non destructive.

list-to-pl-iterator ((self LIST)) : PL-ITERATOR [Function]
Convert a Stella list into an API iterator.

load ((filename STRING) (environment ENVIRONMENT)) : [Function]
Read logic commands from the file named filename and evaluate them. The file
should contain an in-module declaration that specifies the module within which all
remaining commands are to be evaluated. The remaining commands are evaluated
one-by-one, applying the function evaluate to each of them.

load-stream ((stream INPUT-STREAM) (environment ENVIRONMENT)) : [Function]
Read logic commands from the STELLA stream stream and evaluate them. The
stream should contain an in-module declaration that specifies the module within
which all remaining commands are to be evaluated. The remaining commands are
evaluated one-by-one, applying the function evaluate to each of them.

load-native-stream ((stream NATIVE-INPUT-STREAM) [Function]
(environment ENVIRONMENT)) :

Read logic commands from the native input stream stream and evaluate them. As-
sumes stream is a line-buffered stream which is a safe compromise but does not gener-
ate the best efficiency for block-buffered streams such as files. The stream should begin
with an in-module declaration that specifies the module within which all remaining
commands are to be evaluated The remaining commands are evaluated one-by-one,
applying the function evaluate to each of them.

Chapter 6: PowerLoom API 50

next? (self) : BOOLEAN [Method on PL-ITERATOR]
Advance the PL-Iterator self and return true if more elements are available, false
otherwise.

object-to-float ((self OBJECT)) : FLOAT [Function]

Coerce self to a float, or throw a Stella Exception if the coersion is not feasible.

object-to-integer ((self OBJECT)) : INTEGER [Function]
Coerce self to an integer, or throw a Stella Exception if the coersion is not feasible.
Floating point values will be coerced by rounding.

object-to-parsable-string ((self OBJECT)) : STRING [Function]
Return a string representing a printed representation of the object self. Like object-
to-string, but puts escaped double quotes around strings.

object-to-string ((self OBJECT)) : STRING [Function]
Return a printed representation of the term self as a string.

print-rules ((relation OBJECT)) : [N-Command]
Print the list of true rules associated with relation.

reset-powerloom () : [Function]
Reset PowerLoom to its initial state. CAUTION: This will destroy all loaded knowl-
edge bases and might break other loaded STELLA systems if they do reference Pow-
erLoom symbols in their code.

retract ((proposition PARSE-TREE)) : OBJECT [N-Command]
Retract the truth of proposition. Return the retracted proposition object. KIF
example: "(retract (happy Fred))" retracts that Fred is happy. Note that for this
assertion to succeed, the relation happy must already be defined. If the constant
Fred has not yet been created, it is automatically created as a side-effect of calling
retract.

retract-binary-proposition ((relation LOGIC-OBJECT) (arg OBJECT) [Function]
(value OBJECT) (module MODULE) (environment ENVIRONMENT)) :
PROPOSITION
Retract that the proposition (relation arg value) is TRUE in module. Return the
asserted proposition.

retract-nary-proposition ((relation-and-arguments OBJECT) [Function]
(module MODULE) (environment ENVIRONMENT)) : PROPOSITION
Retract the proposition that arguments satisfies the relation relation.

retract-proposition ((proposition PROPOSITION) (module MODULE) [Function]
(environment ENVIRONMENT)) : PROPOSITION
Retract the truth of the proposition proposition in module. Return the retracted
proposition.

retract-unary-proposition ((relation LOGIC-OBJECT) (arg OBJECT) [Function]
(module MODULE) (environment ENVIRONMENT)) : PROPOSITION
Retract that the proposition (relation arg) is TRUE in module. Return the asserted
proposition.

Chapter 6: PowerLoom API 51

retrieve ((query CONS) (module MODULE) (environment ENVIRONMENT)) [Function]
: PL-ITERATOR
Returns an iterator of variable bindings that when substituted for the open variables
in query satisfy the query proposition. The query is run in module and relative to
environment. query has the same syntax as the PowerLoom retrieve command
(which see) but with the retrieve operator omitted. For example, here are some
legal query arguments:

((happy ?x))

(10 (happy ?7x))

(all (happy 7x))

(all 7x (happy 7x))

(10 (happy 7x) :inference-level :assertion)

(10 (happy 7x) :inference-level :assertion :timeout 1.0)

If there is only a single output variable (as in all the examples above) each element
generated by the returned iterator will be a binding for that variable - unless, the
output variable was declared with a surrounding pair of parentheses. For example:

(all (7x) (happy 7x))

In that case, the generated elements will be one-element lists. If there are multiple
output variables, each element generated by the returned iterator will be a list of
variable bindings that can be accessed using the various get-nth-. .. functions. The
list of output variables does not need to be declared in which case they are taken
to be the open variables in the query proposition in the order in which they were
encountered. If order does matter or should be different from its default, it can be
forced by declaring the set of output variables.

run-forward-rules ((module OBJECT) (force? BOOLEAN)) : [Function]
Run forward inference rules in module module. If module is NULL, the current
module will be used. If forward inferencing is already up-to-date in the designated
module, no additional inferencing will occur, unless force is set to TRUE, in which
case all forward rules are run or rerun.

Calling run-forward-rules temporarily puts the module into a mode where future
assertional (monotonic) updates will trigger additional forward inference. Once a
non-monotonic update is performed, i.e., a retraction or clipping of relation value, all
cached forward inferences will be discarded and forward inferencing will be disabled
until this function is called again.

s—ask ((query STRING) (module-name STRING) [Function]
(environment ENVIRONMENT)) : TRUTH-VALUE
Returns a truth value for query in module module-name and environment. query
has the same syntax as the PowerLoom ask command (which see) but with the ask
operator omitted. Different from the PLI ask function, s-ask does not expect a
top-level pair of parentheses. For example, here are some legal query arguments:

" (happy Fred)"
"(happy Fred) :inference-level :assertion"
"(happy Fred) :inference-level :assertion :timeout 1.0"

Chapter 6: PowerLoom API 52

Names in query will be interpreted relative to module module-name. A null module-
name or the empty string refers to the current module. If no module can be found with
the name module-name, then a STELLA no-such-context-exception is thrown.
The returned truth value represents the logical truth of the queried sentence as de-
termined by PowerLoom. It can be be tested via the functions is-true, is-false
and is-unknown (which see).

s—assert-proposition ((sentence STRING) (module-name STRING) [Function]
(environment ENVIRONMENT)) : (PL-ITERATOR OF PROPOSITION)
Assert that the logical sentence sentence is true in the module named module-name.
A module name of null or the empty string refers to the current module. If no
module can be found with the name module-name, then a Stella no-such-context-
exception is thrown.

Return an iterator of the propositions resulting from sentence.

s-change-module ((name STRING) (environment ENVIRONMENT)) : [Function]
MODULE
Set the current module to the module named name. The return value is the module
named name unless name is null or the empty string. In that case, the current module
is returned. If no module named name exists, a Stella no-such-context-exception
is thrown.

s-clear-module ((name STRING) (environment ENVIRONMENT)) : [Function]
MODULE
Destroy the contents of the module named name, as well as the contents of all of its
children, recursively. If no module named name exists, a Stella no-such-context-
exception is thrown.

s—conceive ((sentence STRING) (module-name STRING) [Function]
(environment ENVIRONMENT)) : (PL-ITERATOR OF PROPOSITION)

Create one or more proposition objects from the sentence sentence in the module
named module-name. Return an iterator of the propositions. If any of the new propo-
sitions has the same structure as an already existing proposition, an automatic check
for duplicates will return the pre-existing proposition. Multiple propositions may be
returned for a single sentence because of normalization of equivalences, conjunctions,
etc.

A module name of null or the empty string refers to the current module. If no
module can be found with the name module-name, then a Stella No-Such-Context-
Exception is thrown.

Signals a Proposition-Error if PowerLoom could not conceive sentence.

s-create-concept ((name STRING) (parent-name STRING) [Function]
(module-name STRING) (environment ENVIRONMENT)) : LOGIC-OBJECT
Create a concept named name in the designated module, with with the concept named
parent-name as superconcept (which can be left undefined). Additional superconcepts
can be added via assertions of the subset-of relation. Note that a specified parent
concept needs to be created separately.

Chapter 6: PowerLoom API 53

A module name of null or the empty string refers to the current module. If no
module can be found with the name module-name, then a Stella no-such-context-
exception is thrown.

Note that because names in modules that are not case-sensitive are canonicalized, the
name of the returned object may not match name exactly.

s-create-function ((name STRING) (arity INTEGER) [Function]
(module-name STRING) (environment ENVIRONMENT)) : LOGIC-OBJECT
Create a function named name with arity arity in the designated module. Domain
and range information can be added via assertions of domain, nth-domain and range
relations.

A module name of null or the empty string refers to the current module. If no
module can be found with the name module-name, then a Stella no-such-context-
exception is thrown.

Note that because names in modules that are not case-sensitive are canonicalized, the
name of the returned object may not match name exactly.

s-create-object ((name STRING) (concept-name STRING) [Function]
(module-name STRING) (environment ENVIRONMENT)) : LOGIC-OBJECT
Create an object named name of type concept-name in the designated module. Both
name and concept-name can be null strings. If name is a null string then an object
will be created with a new, non-conflicting name based on concept-name, or system-
generated if no concept nameis specified. If concept-name is the null string, then the
object will be of type THING.

A module name of null or the empty string refers to the current module. If no
module can be found with the name module-name, then a Stella no-such-context-
exception is thrown.

Note that because names in modules that are not case-sensitive are canonicalized, the
name of the returned object may not match name exactly.

Return the object.

s-create-module ((name STRING) (parent-name STRING) [Function]
(case-sensitive? BOOLEAN) (environment ENVIRONMENT)) : MODULE

Creates a new module name as a child of parent-name. The flag case-sensitive?
controls whether names read in this module will be case sensitive or not.

s-create-relation ((name STRING) (arity INTEGER) [Function]
(module-name STRING) (environment ENVIRONMENT)) : LOGIC-OBJECT
Create a relation named name with arity arity in the designated module. Domain
and range information can be added via assertions of nth-domain (or domain and
range) relations.

A module name of null or the empty string refers to the current module. If no
module can be found with the name module-name, then a Stella no-such-context-
exception is thrown.

Note that because names in modules that are not case-sensitive are canonicalized, the
name of the returned object may not match name exactly.

Chapter 6: PowerLoom API 54

s-destroy-object ((object-name STRING) (module-name STRING) [Function]
(environment ENVIRONMENT)) :
Delete the object named object-name, retracting all facts attached to it.

A module name of null or the empty string refers to the current module. If no
module can be found with the name module-name, then a Stella no-such-context-
exception is thrown.

s—evaluate ((command STRING) (module-name STRING) [Function]
(environment ENVIRONMENT)) : OBJECT
Evaluate the command represented by the string command within module and return
the result. Currently, only the evaluation of (possibly nested) commands and global
variables is supported.

A module name of null or the empty string refers to the current module. If no
module can be found with the name module-name, then a Stella no-such-context-
exception is thrown.

s-get-arity ((relation-name STRING) (module-name STRING) [Function]
(environment ENVIRONMENT)) : INTEGER
Return the arity of the relation named relation-name.

A module name of null or the empty string refers to the current module. If no
module can be found with the name module-name, then a Stella no-such-context-
exception is thrown.

s-get-child-modules ((name STRING) (environment ENVIRONMENT)) : [Function]
(PL-ITERATOR OF MODULE)
Return the modules that are immediate children of module name. If no module named
name exists, a Stella no-such-context-exception is thrown.

s-get-concept ((name STRING) (module-name STRING) [Function]
(environment ENVIRONMENT)) : LOGIC-OBJECT
Return a class/concept named name that is local to or visible from the module
module-name. A module name of null or the empty string refers to the current
module. If no module can be found with the name module-name, then a Stella no-
such-context-exception is thrown.

s-get-concept-instances ((concept-name STRING) [Function]
(module-name STRING) (environment ENVIRONMENT)) : PL-ITERATOR
Return instances of concept concept-name. Include instances of subconcepts of
concept-name. Depending on concept-name, the return values could be (wrapped)
literals.

A module name of null or the empty string refers to the current module. If no
module can be found with the name module-name, then a Stella no-such-context-
exception is thrown.

s-get-direct-concept-instances ((concept-name STRING) [Function]
(module-name STRING) (environment ENVIRONMENT)) : PL-ITERATOR
Return instances of concept concept-name. Exclude instances of subconcepts of
concept-name. Depending on concept-name, the return values could be (wrapped)
literals.

Chapter 6: PowerLoom API 55

A module name of null or the empty string refers to the current module. If no
module can be found with the name module-name, then a Stella no-such-context-
exception is thrown.

s-get-domain ((relation-name STRING) (module-name STRING) [Function]
(environment ENVIRONMENT)) : LOGIC-OBJECT
Return the type (concept) for the first argument to the binary relation relation-name.

A module name of null or the empty string refers to the current module. If no
module can be found with the name module-name, then a Stella no-such-context-
exception is thrown.

s-get-inferred-binary-proposition-values [Function]
((relation-name STRING) (arg-name STRING) (module-name STRING)
(environment ENVIRONMENT)) : PL-ITERATOR
Return all values v such that (relation-name arg-name v) has been asserted or can
be inferred.

A module name of null or the empty string refers to the current module. If no
module can be found with the name module-name, then a Stella no-such-context-
exception is thrown.

s-get-nth-domain ((relation-name STRING) (n INTEGER) [Function]
(module-name STRING) (environment ENVIRONMENT)) : LOGIC-OBJECT
Return the type (a concept) for the nth argument of the relation named relation-name.
Counting starts at zero.

A module name of null or the empty string refers to the current module. If no
module can be found with the name module-name, then a Stella no-such-context-
exception is thrown.

s-get-object ((name STRING) (module-name STRING) [Function]
(environment ENVIRONMENT)) : OBJECT
Look for an object named name that is local to or visible from the module module-
name. A module name of null or the empty string refers to the current module. If no
module can be found with the name module-name, then a Stella no-such-context-
exception is thrown.

s-get-parent-modules ((name STRING) (environment ENVIRONMENT)) : [Function]
(PL-ITERATOR OF MODULE)
Return the modules that are immediate parents of module name. If no module named
name exists, a Stella no-such-context-exception is thrown.

s-get-parent-modules ((name STRING) (environment ENVIRONMENT)) : [Function]
(PL-ITERATOR OF MODULE)
Return the modules that are immediate parents of module name. If no module named
name exists, a Stella no-such-context-exception is thrown.

s-get-proposition ((relation-and-arguments STRING) [Function]
(module-name STRING) (environment ENVIRONMENT)) : PROPOSITION

Return a proposition matching relation-and-arguments that has been asserted (or

inferred by forward chaining). relation-and-arguments is a string that begins with

Chapter 6: PowerLoom API 56

a left parenthesis, followed by a relation name, one or more argument identifiers,
and terminated by a right parenthesis. Each argument identifier can be the name
of a logical constant, a literal reference (e.g., a number), the null identifier, or a
variable (an identifier that begins with a question mark). Each occurrence of a null
or a variable acts like a wild card. If more than one proposition matches the input
criteria, the selection among satisficing propositions is arbitrary. This procedure is
normally applied to single-valued relations or functions.

A module name of null or the empty string refers to the current module. If no
module can be found with the name module-name, then a Stella no-such-context-
exception is thrown.

s-get-propositions ((relation-and-arguments STRING) [Function]
(module-name STRING) (environment ENVIRONMENT)) : (PL-ITERATOR OF
PROPOSITION)

Return propositions matching relation-and-arguments that have been asserted (or
inferred by forward chaining). relation-and-arguments is a string that begins with a
left parenthesis, followed by a relation name, one or more argument identifiers, and
terminated by a right parenthesis. Each argument identifier can be the name of a
logical constant, a literal reference (e.g., a number), the null identifier, or a variable
(an identifier that begins with a question mark). Each occurrence of a null or a
variable acts like a wild card.

A module name of null or the empty string refers to the current module. If no
module can be found with the name module-name, then a Stella no-such-context-
exception is thrown.

s-get-propositions-of ((object-name STRING) (module-name STRING) [Function]
(environment ENVIRONMENT)) : (PL-ITERATOR OF PROPOSITION)

Return all propositions that have the object named object-name among their argu-

ments, and that are TRUE in the scope of the module module-name. A module name

of null or the empty string refers to the current module. If no module can be found

with the name module-name, then a Stella no-such-context-exception is thrown.

s-get-range ((relation-name STRING) (module-name STRING) [Function]
(environment ENVIRONMENT)) : LOGIC-OBJECT
Return the type (a concept) for fillers of the binary relation relation-name.

A module name of null or the empty string refers to the current module. If no
module can be found with the name module-name, then a Stella no-such-context-
exception is thrown.

s-get-relation ((name STRING) (module-name STRING) [Function]
(environment ENVIRONMENT)) : LOGIC-OBJECT
Return a concept or relation named name that is local to or visible from the module
module-name. A module name of null or the empty string refers to the current
module. If no module can be found with the name module-name, then a Stella no-
such-context-exception is thrown.

Chapter 6: PowerLoom API 57

s-get-relation-extension ((relation-name STRING) (module MODULE) [Function]
(environment ENVIRONMENT)) : (PL-ITERATOR OF PROPOSITION)
Return propositions that satisfy the relation named relation-name. Include proposi-
tions that satisfy subrelations of the relation.

s-get-rules ((relation-name STRING) (module-name STRING) [Function]
(environment ENVIRONMENT)) : (PL-ITERATOR OF PROPOSITION)
Return rules attached to the concept/relation named relation-name found in the
module named module-name.

A module name of null or the empty string refers to the current module. If no
module can be found with the name module-name, then a Stella No-Such-Context-
Exception is thrown.

s-is-true-proposition ((relation-and-arguments STRING) [Function]
(module-name STRING) (environment ENVIRONMENT)) : BOOLEAN
Return TRUE if a proposition that prints as the string relation-and-arguments is
true in the module named module-name. A module name of null or the empty string
refers to the current module. If no module can be found with the name module-name,
then a Stella no-such-context-exception is thrown.

s-print-rules ((name STRING) (stream OUTPUT-STREAM) [Function]
(module-name STRING) (environment ENVIRONMENT)) :
Print rules attached to the concept/relation named name.

A module name of null or the empty string refers to the current module. If no
module can be found with the name module-name, then a Stella no-such-context-
exception is thrown.

s-retract-proposition ((sentence STRING) (module-name STRING) [Function]
(environment ENVIRONMENT)) : (PL-ITERATOR OF PROPOSITION)
Retract the truth of the logical sentence sentence in the module named module-name.
A module name of null or the empty string refers to the current module. If no
module can be found with the name module-name, then a Stella no-such-context-
exception is thrown.

Return an iterator of the retracted propositions resulting from sentence.

s-retrieve ((query STRING) (module-name STRING) [Function]
(environment ENVIRONMENT)) : PL-ITERATOR

Returns an iterator of variable bindings that when substituted for the open variables
in query satisfy the query proposition. The query is run in module and relative
to environment. query has the same syntax as the PowerLoom retrieve command
(which see) but with the retrieve operator omitted. Different from the PLI retrieve
function, s-retrieve does not expect a top-level pair of parentheses. For example,
here are some legal query arguments:

"(happy 7x)"

"10 (happy 7x)"

"all (happy 7x)"

"all ?x (happy ?x)"

"10 (happy 7x) :inference-level :assertion"

Chapter 6: PowerLoom API 58

"10 (happy 7x) :inference-level :assertion :timeout 1.0"
If there is only a single output variable (as in all the examples above) each element
generated by the returned iterator will be a binding for that variable - unless, the
output variable was declared with a surrounding pair of parentheses. For example:
"all (?x) (happy ?x)"
In that case, the generated elements will be one-element lists. If there are multiple
output variables, each element generated by the returned iterator will be a list of
variable bindings that can be accessed using the various get-nth-. .. functions. The
list of output variables does not need to be declared in which case they are taken
to be the open variables in the query proposition in the order in which they were
encountered. If order does matter or should be different from its default, it can be
forced by declaring the set of output variables.

Names in query will be interpreted relative to module module-name. A null module-
name or the empty string refers to the current module. If no module can be found with
the name module-name, then a STELLA no-such-context-exception is thrown.

s-save-module ((module-name STRING) (filename STRING) [Function]
(ifexists STRING) (environment ENVIRONMENT)) :
Save the contents of the module module-name into a file named filename. 1If a file
named filename already exists, then the action taken depends on the value of ifexists.
Possible values are "ASK", "REPLACE", "WARN" and "ERROR":

REPLACE => Means overwrite without warning. WARN => Means overwrite with
a warning. ERROR => Means don’t overwrite, signal an error instead. ASK => Ask
the user whether to overwrite or not. If not overwritten, an exception is thrown.

A module name of null or the empty string refers to the current module. If no
module can be found with the name module-name, then a Stella no-such-context-
exception is thrown.

save-module ((module MODULE) (filename STRING) (ifexists STRING) [Function]
(environment ENVIRONMENT)) :
Save the contents of the module mod into a file named filename. If a file named filename

already exists, then the action taken depends on the value of ifexists. Possible values
are "ASK", "REPLACE", "WARN" and "ERROR":

REPLACE => Means overwrite without warning. WARN => Means overwrite with
a warning. ERROR => Means don’t overwrite, signal an error instead. ASK => Ask
the user whether to overwrite or not. If not overwritten, an exception is thrown.

string-to-object ((string STRING) (type LOGIC-OBJECT) [Function]
(module MODULE) (environment ENVIRONMENT)) : OBJECT
Evaluate string with respect to module and environment and return the corresponding
logical term. type is a concept used to assist the correct interpretation of string.

Currently type only has an effect on the interpretation of literal types.

6.2 Language Specific Interface

This section contains the description of the programming language specific aspects of using
the PowerLoom API. Each section describes the naming conventions and namespace issues
related to calling the API functions from that programming language.

Chapter 6: PowerLoom API 59

6.2.1 Lisp API

This section tells how to call the API functions in PowerLoom’s Common Lisp implemen-
tation from a Lisp program. The function names are identical to the Stella names in the
PowerLoom APT description See Chapter 6 [PowerLoom API], page 40. They are exported
from the PLI package. Other Stella symbols and names are in the STELLA package, but
currently none of the Stella symbols are exported!.

PowerLoom can be used from Allegro Common Lisp, CMU Common Lisp, LispWorks
Common Lisp and Macintosh Common Lisp. It may be possible to use the system from
other Common Lisp systems, but they have not been tested.

6.2.1.1 Common Lisp Initialization

Loading the Common Lisp version of PowerLoom will normally initialize the system as
part of the loading process. The Common Lisp version can be loaded by loading the
file ‘load-powerloom.lisp’ from the top-level ‘powerloom’ directory. This will make the
system available for use.

6.2.1.2 Type Declarations

Stella is a typed language, and the Common Lisp translation uses the type information for
Common Lisp type declarations. That means that values specified as being of type INTE-
GER, STRING and FLOAT must have the correct type. In particular, integer values will
not be coerced to floating point values by the code. The following native type assignments
are made:

Stella Common Lisp
INTEGER FIXNUM

FLOAT DOUBLE-FLOAT
STRING SIMPLE-STRING

For convenience, loading PowerLoom will set the default format for reading floating
point numbers in Common Lisp to be double-float.

Stella CONS objects are implmented as native Lisp conses. Boolean values can take on
the values stella: :true or stella::false.

6.2.1.3 NULL values
One additional consequence of the strong typing of the language is that there are specialized
NULL values for numeric and string parameters.

Stella Type Null Value

INTEGER stella::null-integer
FLOAT stella::null-float
STRING stella: :null-string

6.2.1.4 Wrapped Literal Values

Literal values (integers, floats, strings, etc.) that are used in PowerLoom appear as wrapped
values. The PowerLoom API functions object-to-... can be used to coerce the values
into the appropriate return type.

Chapter 6: PowerLoom API 60

<to be written: wrapping values>

6.2.1.5 Special Variables

All Stella special variables are implemented as Common Lisp special variables. Binding of
the values can be used normally.

6.2.1.6 CLOS Objects versus Structs

PowerLoom can be translated in one of two ways for Common Lisp. One method uses
CLOS objects as the basis for all Stella and PowerLoom objects. For faster execution, it is
also possible to use a version in which Stella and PowerLoom objects are implemented using
Common Lisp structs instead. This is controlled by the special variable cl1-user: :*load-
cl-struct-stella?*. If this is set to cl:t, then the struct version will be loaded. This
needs to be set before loading the ‘load-powerloom.lisp’ file.

6.2.2 C++ API

<to be written>

6.2.3 Java API

This section tells how to call the API functions in PowerLoom’s Java implementation from
a Java program. The Java translation is written for Java version 1.2. All of the PowerLoom
Interface functions appear as static methods of the class edu.isi.powerloom.PLI.

6.2.3.1 Initializing PowerLoom

PowerLoom needs to run initialization functions to set up its environment for proper op-
eration when it starts up. The simplest method for initializing PowerLoom is to use the
static method call:

PLI.initialize()

This must be called before using any PowerLoom features and before loading any Pow-
erLoom knowledge bases. It may be called more than once without ill effect.

6.2.3.2 PowerLoom Java Conventions

PowerLoom’s Java code is automatically generated by a translator from underlying Stella
code. The character set for legal Stella names is larger than the character set for legal Java
identifiers, so there is some mapping involved.

PowerLoom names are words separated by hyphen (-) characters. For Java, we have
attempted to closely follow the Java conventions:
e (Class names begin with a capital letter and each word is capitalized. The hyphens from
the PowerLoom names are removed. Example:
string-wrapper => StringWrapper
Exceptions are made for class names that would otherwise conflict with normal Java
Classes. In that case, the prefix "Stella_" is added to each class name. At the moment
this applies only to the following exceptions:
object => Stella_0Object
class => Stella_Class

Chapter 6: PowerLoom API 61

e Method and Function names begin with a lower case letter but each subsequent word
is capitalized. The hyphens from PowerLoom names are removed. Example:

wrapper-value => wrapperValue
e Storage slots are implemented as Java fields. The names begin with a lower case letter
but each subsequent word is capitalized. The hyphens from PowerLoom names are
removed. Example:
dynamic-slots => dynamicSlots
e Global and Special variable names are written in all uppercase. The hyphens from
PowerLoom are replaced by underscore (_) characters. By convention, special variables

are written in PowerLoom with surrounding asterisk (*) characters. The asterisks are
replaced by dollar signs ($). Example:

xhtml-quoted-characters* => $HTML_QUOTED_CHARACTERS$

The most common non-alphanumeric characters are mapped as follows. A full set of
mappings is in section Section 6.2.3.7 [Java Character Mapping], page 65.

? => P (for Predicate)
o= X (eXclamation)
$ => B (Buck)
% => R (peRcent)
= A (Ampersand)
* = $ Special variable marker.

The character mappings use uppercase characters if the basic identifier uses mixed or
lower case. The mappings use lowercase characters if the basic identifier uses upper case.

Stella modules are mapped to Java packages. The basic system distribution includes the
following package hierarchy:

edu
isi

stella
javalib

powerloom
logic
pl_kernel_kb

loom_api

Basic system functionality and data structures such as Cons and List objects are defined
in stella. PowerLoom’s logic (concepts, relations, rules, etc.) are defined in the logic package.
There is a set of interface functions in the PLI class in the powerloom package. They are
described in their own section below.

We recommend the following import statements in Java files that use PowerLoom:

import edu.isi.stella.x*;

import edu.isi.stella.javalib.x*;
import edu.isi.powerloom.PLI;
import edu.isi.powerloom.logic.*;

Functions (in Java terms, static Methods) are translated as static methods on the class
of their first argument (as long as that argument is not a primitive type and is in the

Chapter 6: PowerLoom API 62

same Stella module). Functions which take no arguments, those whose first argument is a
primitive type, and those whose first argument is a class not defined in the same module
are all placed into a class with the same name as the Stella module in which it appers. It
will be in the package corresponding to that Stella module. Java constructors should not
be called directly. Instead, there will be a static method new<ClassName> (with the class
name in mixed case!) that should be used instead.

Most of the functions of interest will be in the edu.isi.stella.Stella, edu.isi.powerloom.PLI
or edu.isi.powerloom.logic.Logic classes.

Methods typically refer to their first argument as "self".

Methods which return more than one return value will take a final argument which is
an array of Stella_0bject, which will be used to return the additional arguments.

Primitive types in Stella have the following mapping in Java:

Stella Java
INTEGER int
FLOAT double
NUMBER double
CHARACTER char
BOOLEAN boolean
STRING String

MUTABLE-STRING StringBuffer

NATIVE-OUTPUT-STREAM java.io.PrintStream
NATIVE-INPUT-STREAM java.io.PushbackInputStream (May change!!!)

Inside Stella/PowerLoom objects and collections, primitive types are wrapped using
Stella wrappers instead of Java’s primitive classes. So integers will be wrapped as
edu.isi.stella.IntegerWrapper rather than java.lang.Integer. Wrappers have a field called
wrapperValue which accesses the internal value. Example of use:

import edu.isi.stella.*;
import edu.isi.stella.javalib.x*;

IntegerWrapper iWrap = IntegerWrapper.wrapInteger(42);

int answer = iWrap.wrapperValue;

6.2.3.3 Using the PLI Class

To make interoperability between PowerLoom and Java a little simpler, we are providing a
(PowerLoom Interface class named PLI which handles synchronization issues, setting and
restoring the reasoning context, and the a more convenient use of some Java-native objects
rather than Stella objects. Generally that means that strings are used for PowerLoom
expressions and return values rather than Stella Cons objects.

Details about the methods can be found in the section Chapter 6 [PowerLoom API],
page 40. The names of functions in that section will need to be converted to their Java

Chapter 6: PowerLoom API 63

equivalents using the conventions described in Section 6.2.3.2 [PowerLoom Java Conven-
tions], page 60. We also provide javadoc documentation for the edu.isi.powerloom.PLI
class. We recommend using this method for accessing PowerLoom functionality. We expect
to expand the range of PowerLoom interface functions that have an analog in the PLI class
over time.

6.2.3.4 Using Stella Objects

Stella objects can also be used directly. The most common ones used by PowerLoom users
are Module and LogicObject. Other potentially useful Stella objects are Cons, Symbol,
Keyword and List. Except for LogicObject, these are in the edu.isi.stella package.
LogicObject is in the edu.isi.powerloom.logic package.

If one wishes to construct Cons objects (for example to create objects to pass to
interface functions, one would begin by building items up using Stella_0Object.cons
static method, which takes a stella object and a cons. The empty cons is kept in the
edu.isi.stella.Stella.NIL static variable. Another way to create stella objects is to
use edu.isi.stella.Stella.unstringify static method. This method takes a string
representation of a stella object and returns the object. If passed a list, an object of type
Cons will be returned.

As an alternative, one can also convert one and two dimensional arrays of Stella_0bject
into Cons objects using the overloaded function edu.isi.stella.javalib.arrayToCons.
These functions will return Cons objects constructed from the input arrays.

Keywords and symbols are objects that are stored in global static variables. The variable
names are all in upper case and are constructed by concatenating the tag SYM with the
module name and the name of the symbol or concatenating the tag KWD with the name of
the keyword. For example, the symbol BACKWARD in the logic module would be stored
in

edu.isi.powerloom.logic.Logic.SYM_LOGIC_BACKWARD
whereas the keyword :ERROR in the stella module would be in
edu.isi.stella.Stella.KWD_ERROR

6.2.3.5 PowerLoom and Threads

The most important consideration when using PowerLoom in a threaded environment is
that the core of PowerLoom must not execute in concurrently running threads. The PLI
class takes care of this for interface functions that run through that class. Other PowerLoom
functions that are called need to synchronize on a lock object

edu.isi.powerloom.logic.Logic.$POWERLOOM_LOCK$

for proper operation. This is not needed for setting Special Variables, since they are
implemented on a per-thread basis. The most important special variable is the reasoning
context. See Section 6.2.3.6 [Setting and Restoring Global Variable Values|, page 63.

6.2.3.6 Setting and Restoring Global Variable Values

As noted above, special variables in Stella are implemented as static fields in a catchall
class named the same as the Stella module. It will be in the java package corresponding to
that Stella module. The values of Special variables are stored in Java objects of the type
StellaSpecialVariable, a subclass of Java’s InheritableThreadLocal. Any changes

Chapter 6: PowerLoom API 64

made to the values will not affect any other running threads. This means that the changes
don’t need to be synchronized. Note that global (as opposed to special) variables don’t use
these objects.

Numbers and boolean values are stored in special variables using the corresponding Java
classes Integer, Double, Boolean, etc. The naming convention is to have all upper case
letters with a dollar sign ($) at the beginning and end of the name.

To temporarily change the value of one of these variables, users will need to be responsible
for saving and restoring the old values. Use of the "try ... finally ..." construct is very
useful for this, since it guarantees that the restore of values will be done. An example follows
of how to safely change modules. Contexts should be changed using the functions, although
other global variables can be changed by using the set method. Note that we use variables
of type Object to hold the values, since that avoids the need to cast when extracting the
current value, since the only operation we do with the current value is save it to restore it
later.

import edu.isi.stella.x*;

// CONTEXT CHANGE.
Object savedModule = Stella.$MODULE$.get();
Module newModule

= Stella.getStellaModule(contextName, true);
if (newModule == null) { // Handle missing module
}
try {

Module.changeCurrentModule (newModule)

// Code that uses the newModule

} finally {
Module.changeCurrentModule (savedModule) ;
b

// INTEGER VALUE CHANGE:
Object savedValue = Stella.$SAFETY$.get();
try {

Stella.$SAFETY$.set(new Integer(3));

// Code that uses the newModule

} finally {
Stella.$SAFETY$.set (savedValue) ;
}

// BOOLEAN VALUE CHANGE:
Object savedValue = Stella.$PRINTREADABLY$.get();
try {

Stella.$PRINTREADABLY$.set (Boolean.TRUE) ;

Chapter 6: PowerLoom API 65

// Code that uses the newModule

} finally {
Stella.$PRINTREADABLY$.set (savedValue) ;
}
The need to change the module using this type of code can be largely avoided by using

the functions in the PLI interface package. They take a module argument and can handle
the binding and restoration of the module value themselves.

6.2.3.7 Java Character Mapping

The full Stella to Java character mapping is the following. The character mappings use
uppercase characters if the basic identifier uses mixed or lower case. The mappings use
lowercase characters if the basic identifier uses upper case.

Stella Java Mnemonic

! => X (eXclamation)
] =
=> H (Hash)
$ => B (Buck)
h => R (peRcent)
& => A (Ampersand)
) = q (Quote)
«C = _
) = _
* = $
+ = I (Increase)
s => -
- => _

= D (Dot)
/ => S (Slash)

= C (Colomn)
) => -
< = L (Less than)
= => E (Equal)
> = G (Greater than)
? => P (Predicate)
e => M (Monkey tail)
[= J (Arbitrary (array index?))
N\ o=
] = K (Arbitrary (array index?)
S = U (Up arrow)
¢ =
{ =Y (Arbitrary (adjacent free letter))
| = V (Vertical bar)
} = zZ (Arbitrary (adjacent free letter))
~ = T (Tilde)

Chapter 6: PowerLoom API 66

<space> =>

6.2.3.8 Stella Exceptions in Java

Stella exceptions are implemented as a subtype of java.lang.Exception (actually
RunTimeException) and may be caught normally. All Stella Exceptions belong to the
edu.isi.stella.StellaException class or one of its subclasses. The more specfic
PowerLoom exceptions belong to the edu.isi.powerloom.logic.LogicException class
or one of its subclasses.

Exceptions thrown during I/O operations will not use the standard Java excep-
tions. Instead, they will descend from edu.isi.stella.InputOutputException.
The most wuseful descendents are edu.isi.stella.NoSuchFileException and
edu.isi.stella.EndOfFileException.

6.2.3.9 Iteration in Java

Iteration in Stella (and by extension) PowerLoom is organized a little bit differently than in
Java. You can either use the Stella iterators directly, or else use one of the wrapper classes
described in the section Section 6.2.3.10 [Utility Classes for Javal, page 67. It will present
a more familiar Java interface. Since the iteration models are a bit different, it would be
unwise to mix accesses between the iteration models.

Stella iterators do not compute any values until the next? method (in Java: nextP) is
called. This method will try to compute the next value of the iterator and it will return a
boolean value which is true if more values are present. Each time it is called, the iteration
advances. Values can be read out of the value field of the iterator, which will have type
Stella_Object. Some iterators will also have a key field which can be read.

The way one would normally use a Stella iterator is as follows, with possible casting of
the value field:

Stella.Iterator iter = ...;

while (iter.nextP()) {
processValue(iter.value);

}

The PLI class also contains a number of functions for simplifying the interaction with
PlIterator objects that are returned by various API functions. These are the getNth. ..
functions. They work on sequences and sequence-like objects such as Proposition and and
the value slot of P1Iterator objects. Note that they do not return sequential elements of
the iterator, but rather elements of the implicit sequence that is the value of iterators that
have more than one return variable. For convenience, they also work (with index = 0) on
the value of P1Iterator objects that have only a single return variable. For example:

// Get values of (object name age) in the iterator and then
// print out a message with the name and age (position 1 & 2).
// This skips the PowerLoom object bound to ?X in position O.
PlIterator iter =
PLI.sRetrieve("all (and (name ?x 7name) (age ?x 7age))",
null,
null);

Chapter 6: PowerLoom API 67

while (iter.nextP()) {
System.out.println(PLI.getNthString(iter, 1, null, null) + " is " +
PLI.getNthInteger(iter, 2, null, null) + " years old.");
}

6.2.3.10 Utility Classes for Java

To make interoperation of Stella and Java easier, there are several convenience classes for
wrapping Stella iterators and having them behave like Java enumerations or iterators. These
convenience classes are in the edu.isi.stella. javalib package:

ConsEnumeration. java Enumeration class for Cons objects
ConsIterator. java Iterator class for Cons objects
StellaEnumeration. java Enumeration interface to Stella’s Iterator
Stellalterator. java Iterator interface to Stella’s Iterator

All of the iterators and enumerators return objects that are actually of type Stella_
Object, but the signature specifies java.lang.0bject as required for compatibility with
the standard Java signature. The Cons. .. classes take a Cons in their constructor. The
Stella... classes take a edu.isi.stella.Iterator object in their constructor.

Chapter 7: Built-In Relations 68

7 Built-In Relations

This chapter lists relations that come predefined in PowerLoom. They are defined in the
module PL-KERNEL; users can access them by including or using the PL-KERNEL module
within the declarations of their own modules.

* ((7x NUMBER) (7y NUMBER)) :-> (72 NUMBER) [Function]
Function that multiplies two numbers.

+ ((”x NUMBER) (7y NUMBER)) :-> (72 NUMBER) [Function]
Function that adds two numbers.

- ((?x NUMBER) (7y NUMBER)) :-> (7z NUMBER) [Function]
Function that subtracts two numbers.

/ ((?x NUMBER) (7y NUMBER)) :-> (72 NUMBER) [Function]
Function that divides two numbers.

< ((?x THING) (7y THING)) [Relation]
True if 7x < ?y.

=< ((7x THING) (75 THING)) Relation)
True if 7x <= 7y.

> ((?x THING) (?y THING)) [Relation]
True if 7x > ?y.

>= ((7x THING) (?y THING)) [Relation]
True if 7x >= 7y.

ABSTRACT ((7r RELATION)) [Relation]
True if there are no direct assertions made to the relation 7r.

AGGREGATE ((7a AGGRECATE)) [Concept]
7a is an aggregate

ANTISYMMETRIC ((7r RELATION)) [Relation]
A binary relation 7r is antisymmetric if whenever (7r 7x ?y) is true (7r 7y 7x) is false
unless 7x equals 7y.

ARITY ((?r RELATION)) :-> (7arity INTEGER) [Function]
The number of arguments/domains of the relation 7r.

ASSERTION-QUERY ((”prop PROPOSITION)) [Relation]
Query 7prop with :inference-level set to :assertion. Equivalent to (query 7prop
:inference-level :assertion) but more efficient.

BACKTRACKING-QUERY ((7prop PROPOSITION)) [Relation]
Query ?prop with :inference-level set to :backtracking. Equivalent to (query ?prop
:inference-level :backtracking) but more efficient.

Chapter 7: Built-In Relations 69

BINARY-RELATION ((’r RELATION)) [Concept]
The class of binary relations.

BOUND-VARIABLES ((?arguments THING)) [Relation]
True if all arguments are bound. The bound-variables predicate is used as a per-
formance enhancer, to prevent other predicates from backchaining excessively while
searching for bindings of certain of their arguments. Purists will shun the use of this
predicate, but some rules are inherently inefficient without the addition of some kind
of control logic. Because evaluation of the bound-variables predicate evaluation
of predicates being guarded, using this predicate has the side-effect of locally dis-
abling query optimization. (See collect-into-set for an example that uses bound-
variables.

CARDINALITY ((”c SET)) :-> (7card INTEGER) [Function]
Function that returns the cardinality of a set.

CLOSED ((7c COLLECTION)) [Relation]
The collection ?c¢ is closed if all of its members are known. Asserting that a re-
lation is closed makes certain computations easier. For example, suppose that the
relation happy is closed, implying that all things that are happy will be asserted as
such. To prove (not (happy Fred)), PowerLoom can use a negation-as-failure proof
strategy which returns TRUE if Fred cannot be proved to be happy. Also, if the re-
lation children is closed, then a value for the expression (range-max-cardinality
children Fred) can be inferred merely by counting the number of fillers of the
children role on Fred.

COLLECT-INTO-ASCENDING-SET ((”c COLLECTION) (7sortby RELATION)) [Function]
:-> (7orderedset LIST)

Collect elements of 7c into an ascending 7orderedSet where the position of each ele-
ment is determined by the value computed for it by the ?sortBy relation. Ordering is
done via sorting (as opposed to using a comparison relation) similar to the :sort-by
option to the retrieve command. If 7sortBy is not single-valued, the position of
an element is determined by its largest 7sortBy value. Note that, similar to other
collect-into-... functions, 7c can be a named concept, a setofall or an enumer-
ated collection, and ?sortBy can be a named relation or a kappa.

COLLECT-INTO-DESCENDING-SET ((?c COLLECTION) (7sortby RELATION)) [Function]
-> (7orderedset LIST)

Collect elements of 7c into a descending ?orderedSet where the position of each ele-
ment is determined by the value computed for it by the 7sortBy relation. Ordering is
done via sorting (as opposed to using a comparison relation) similar to the :sort-by
option to the retrieve command. If 7sortBy is not single-valued, the position of
an element is determined by its largest 7sortBy value. Note that, similar to other
collect-into-... functions, 7c can be a named concept, a setofall or an enumer-
ated collection, and ?sortBy can be a named relation or a kappa.

COLLECT-INTO-LIST ((7c COLLECTION)) :-> (7] LIST) [Function]
Infer as many members of 7c as possible and collect them into a list 71. This is similar
to collect-into-set but collects members in the order they are encountered. If a

Chapter 7: Built-In Relations 70

member is derived multiple times, all occurrences are kept. This is useful, for example,
to collect and then sum up number-valued attributes of objects.

COLLECT-INTO-ORDERED-SET ((7c COLLECTION)) :-> (7] LIST) [Function]
This is similar to collect-into-list, but if a member is derived multiple times,
only the first occurrence is kept - hence, the name, even though ordered sets are
represented as lists.

COLLECT-INTO-SET ((7c COLLECTION)) :-> (7] SET) [Function]
Infer as many members of ?c as possible and collect them into a set ?1. For example,
here is a rule used to compute bindings for the fillers predicate:

(<= (fillers ?r 7i 7members)
(and (bound-variables ?r 7i)
(collect-into-set (setofall ?v (holds ?r ?i ?v)) 7?members)))

When ?r and 7i are bound, the term (setofall ?v (holds ?r 7i ?v)) evaluates to
a unary relation satisfied for each filler of the relation in ?r applied to the instance
in 7i. collect-into-set causes the extension of this (dynamically-defined) unary
relation to be computed. Note the use of bound-variables to screen out unbound
variables before they are passed to the setofall term.

COLLECTION : ABSTRACT-COLLECTION [Class]
Not documented.

any-value : OBJECT [Class Parameter of |
Not documented.

COLLECTIONOF ((?m THING)) :-> (7c COLLECTION) [Function]
Abstract function existing to subsume SETOF and LISTOF.

COMMENT ((7x THING) (7s STRING)) [Relation]
7s is a comment attached to 7x. Comments are a generalization of other annotations
such as documentation and issue strings.

COMMUTATIVE ((’r RELATION)) [Relation]
A relation 7r is commutative if its truth value is invariant with any permutation of
its arguments.

CONCEPT ((7x RELATION)) [Concept]
The class of reified unary relations. The Powerloom notion of concept corresponds to
the object-oriented notion of class. From a logic standpoint, the notion of a concept
is hard to distinguish from the notion of unary relation. The conceptual distinction
is best illustrated in the domain of linguistics, where concepts are identified with
collective nouns while unary relations are identified with adjectives. For example,
Rock is a concept, while rocky is a unary relation.

CONCEPT-PROTOTYPE ((7c CONCEPT)) :-> (7i THING) [Function]
Function that, given a concept, returns a prototypical instance that inherits all con-
straints that apply to any concept member, and has no additional constraints.

Chapter 7: Built-In Relations 71

CONTEXT : THING [Class|
Not documented.

child-contexts : (LIST OF CONTEXT) [Slot of |
Not documented.

base-module : MODULE [Slot of |
Not documented.

all-super-contexts : (CONS OF CONTEXT) [Slot of |
Not documented.

context-number : INTEGER [Slot of |
Not documented.

#3(util/texinfo-insert-doc /PL-KERNEL/context-of)

COVERING ((?c COLLECTION) (?cover SET)) [Relation]
True if 7c is a subset of the union of all collections in the set ?cover (see disjoint-
covering).

CUT ((?arguments THING)) [Relation]

Prolog-like CUT. Succeeds the first time and then fails. Side-effect: Locally disables
query optimization.

DIRECT-SUBRELATION ((7r RELATION) (7sub RELATION)) [Relation]
True iff 7sub is a direct subrelation of 7r; written in set notation, ?sub < ?r, and there
is no 7s such that 7sub < 7s < 7r. This relation will generate bindings for at most one
unbound argument.

DIRECT-SUPERRELATION ((”r RELATION) (7super RELATION)) [Relation]
True iff ?super is a direct superrelation of 7r; in set notation, ?super > 7r, and there
is no ?7s such that 7super > 7s > 7r. This relation will generate bindings for at most
one unbound argument.

DISJOINT ((7cI COLLECTION) (7c2 COLLECTION)) [Relation]
True if the intersection of 7cl and 7c2 is empty.

DISJOINT-COVERING ((7c COLLECTION) (?disjointcover SET)) [Relation]
True if 7c is covered by the collections in 7disjointCover and if the member sets
in 7disjointCover are mutually-disjoint. For example the concepts Igneous-Rock,
Metamorphic-Rock, and Sedimentary-Rock together form a disjoint covering of the
concept Rock.

DOCUMENTATION ((7x THING) (”s STRING)) [Relation]
7s is a documentation string attached to 7x. Some of the PowerLoom text processing
tools look for documentation strings and import them into documents.

DOMAIN ((?r RELATION) (?d COLLECTION)) [Relation]
True if for any tuple T that satifies 7r, the first argument of T necessarily belongs
to the concept 7d. domain exists for convenience only and is defined in terms of
nth-domain. domain assertions should be avoided, since they create redundant nth-
domain propositions (use nth-domain directly).

Chapter 7: Built-In Relations 72

DUPLICATE-FREE ((”7c COLLECTION)) [Relation]
?c is duplicate-free if no two members denote the same object.

DUPLICATE-FREE-COLLECTION ((?c COLLECTION)) [Concept]
?c is free of duplicates

EMPTY ((7c COLLECTION)) [Relation]
The collection 7c is empty if it has no members. Note that for collections possessing
open-world semantics, (e.g., most concepts) the fact that the collection has no known
members does not necessarily imply that it is empty.

EQUIVALENT-RELATION ((7r RELATION) (’equiv RELATION)) [Relation]
True if 7r is equivalent to 7equiv; written in set notation, ?7r = 7equiv. This relation
will generate bindings for at most one unbound argument.

EXAMPLE ((7r RELATION) (7e THING)) [Relation]
e is an example of (the use of) 7r.

FIFTH-ELEMENT ((7] COLLECTION)) :-> (e THING) [Function]
Return the fifth element 7e of 71.

FILLERS ((7r RELATION) (7i THING)) :-> (?members SET) [Function]
Given a relation 7r and instance ?7i, returns a set of known fillers of 7r applied to
7. IMPORTANT: this also collects intensional fillers such as skolems that might be
identical extensionally.

FIRST-ELEMENT ((7I COLLECTION)) :-> (e THING) [Function]
Return the first element 7e of ?1.

FORK ((?test PROPOSITION) (7then PROPOSITION) (7else PROPOSITION)) [Relation]
Fail-based conditional. If 7test succeeds, evaluates 7then; otherwise evaluates 7else.

FOURTH-ELEMENT ((7! COLLECTION)) :-> (7e THING) [Function]
Return the fourth element 7e of 71.

FRAME-PREDICATE ((”c RELATION)) [Concept]
A frame predicate is a second-order relation that is used to describe constraints on
the set of fillers for a binary relation applied to an instance. Examples of frame
predicates are range-cardinality, range-type, and numeric-inclusive-minimum.

Frame predicates are typically used to capture the kinds of relations manipulated by
description logics such as USC/ISI’s Loom and W3C’s OWL.

METHOD-SLOT : SLOT [Class]
Not documented.

method-setter? : BOOLEAN [Slot of |
Not documented.

method-parameter-names : (LIST OF SYMBOL) [Slot of |
Not documented.

Chapter 7: Built-In Relations 73

method-parameter-type-specifiers : (LIST OF TYPE-SPEC) [Slot of |
Not documented.

method-return-type-specifiers : (LIST OF TYPE-SPEC) [Slot of |
Not documented.

method-stringified-source : STRING [Slot of |
Not documented.

method-code : METHOD-CODE [Slot of |
Not documented.

function-code : FUNCTION-CODE [Slot of |
Not documented.

method-function? : BOOLEAN [Slot of |
Not documented.

GOES-FALSE-DEMON ((7r RELATION) [Relation]
(?computation COMPUTED-PROCEDURE))
Names a computation (a function) that is attached (logically) to 7r Each time a
proposition with predicate ?r becomes false, the function is applied to that proposi-
tion.

GOES-TRUE-DEMON ((?r RELATION) [Relation]
(?computation COMPUTED-PROCEDURE))

Names a computation (a function) that is attached (logically) to ?r Each time a

proposition with predicate 7r becomes true, the function is applied to that proposition.

GOES-UNKNOWN-DEMON ((7r RELATION) [Relation]
(?computation COMPUTED-PROCEDURE))
Names a computation (a function) that is attached (logically) to ?r Each time a
proposition with predicate ?r becomes unknown, the function is applied to that propo-
sition.

HOLDS ((7relation RELATION) (?arguments THING)) [Relation]
True if the tuple Yarguments is a member of the relation ?relation. holds is a variable
arity predicate that takes a relation as its first argument, and zero or more additional
arguments. It returns values equivalent to a subgoal that has the first argument as
a predicate and the remaining arguments shifted one place to the left. For holds to
succeed, the (first) relation argument must be bound — PowerLoom will NOT cycle
through all relations searching for ones that permit the proof to succeed. However,
users can obtain the same effect if they choose by using other second-order predicates
to generate relation bindings. For example, the query

(retrieve all ?x (and (Relation 7r)
(holds ?r Fred 7x)))

retrieves all constants for which there is some binary relation that relates Fred to
that relation.

Chapter 7: Built-In Relations 74

IMAGE-URL ((7x THING) (?url STRING)) [Relation]
?url is a URL pointing to an image illustrating ?x. The Ontosaurus browser looks for
image-url values attached to objects it is presenting, and displays them prominently,
thereby spiffing up its displays.

INEQUALITY ((7x THING) (7y THING)) [Relation]
Abstract superrelation of inequality relations.

INSERT-ELEMENT ((7I LIST) (7n INTEGER) (7e THING)) :-> (7r LIST) [Function]
Add 7e at position ?n (zero-based) to 71 to construct ?r (shifts the remaining elements
right). Count from end of the list and shift left if ?n is negative such that -1 inserts
at the end of the list, -2 second to last, etc.

INSTANCE-OF ((?x THING) (7c COLLECTION)) [Relation]
True if 7x is an instance of 7c. Can be used to generate concept values of 7c, given
an instance 7x.

INVERSE ((7r BINARY-RELATION)) :-> (7inverserelation THING) [Function]
Function that returns the inverse relation for 7r. PERFORMANCE NOTE: for best
results there should be only one (inverse R I) assertion per relation pair R and I.
In that case R is viewed as the canonical relation and I simply provides a different
access mechanism to the canonical relation. In a logic-based KR paradigm inverse
relations are redundant and do not add anything that couldn’t be represented or
queried without them, however, sometimes they can provide some extra convenience
for users. Asserting (inverse I R) also will not cause an error but can degrade
backward inference performance due to the extra redundant rule that gets generated.
If domain rules will be written in terms of both R and I (as opposed to only R),
(inverse I R) should be asserted also to get full inferential connectivity between the
two relations.

IRREFLEXIVE ((7r RELATION)) [Relation]
A binary relation ?r is irreflexive if it is false when both of its arguments are identical.

ISSUE ((7x THING) (7s STRING)) [Relation]
7s is an issue attached to 7x. An issue string normally comments on a topic that has
not been resolved to everyone’s satisfaction.

IST ((7context CONTEXT) (7p PROPOSITION)) [Relation]
True if proposition ?p is true in context ?context. The IST (is true) relation allows
one to evaluate a query or rule in more than one context. A common use of IST is
in defining 1ifting axioms that import knowledge from one context to another. For
example, below is a rule that accesses a patient-record relation in a module called
Medical-Kb, lifts-out the age column, and imports it into a has-age relation in
the current context.

(<= (has-age 7person 7age)
(and (has-ssn ?person 7ssn)
(exists (71 72 73 74)
(ist Medical-Kb (patient-record 7ssn 71 72 7age 73 74)))))

Chapter 7: Built-In Relations 75

LENGTH ((7x THING)) :-> (?z INTEGER) [Function]
Function that returns the length of a string or a logical list. NOT YET IMPLE-
MENTED FOR LISTS.

LENGTH-OF-LIST ((?] COLLECTION) (7length INTEGER)) [Relation]
Computes the length of the list or set 7I.

LEXEME ((7r THING) (7s STRING)) [Relation]
?s is a lexeme for the relation or individual ?r. A relation or individual ?r can have
zero or more lexemes, words that are natural langage equivalents of a logical constant.
The same lexeme may be attached to more than one constant.

LIST : SEQUENCE [Class]
Not documented.

any-value : OBJECT [Class Parameter of |
Not documented.

the-cons-1ist : (CONS OF (LIKE (ANY-VALUE SELF))) [Slot of |
Not documented.

LIST-CONCATENATE ((”x COLLECTION) (7y COLLECTION)) :-> (7r LIST) [Function]
Concatenate lists 7x and 7y into ?r. If ?x and/or ?y are not lists but sets or more
general collections, the order of the elements in the result list ?r will be arbitrary.

LISTOF ((?m THING)) :-> (7c LIST) [Function]
Term-forming function that defines an ordered list consisting of all function argu-
ments. Within logical expressions listof is most commonly used in conjunction
with the member-of predicate. For example the query

(retrieve 7x (member-of ?x (listof a b c)))

returns the constants a, b, and c on successive iterations.

MAXIMUM-ELEMENT ((”7c COLLECTION) (7sortby RELATION) [Relation]
(7element THING))
Find those ?element(s) of 7¢ with the maximum 7sortBy value, for example,
(retrieve (maximum-element relation arity ?x)) (see also collect-into-
descending-set).

MAXIMUM-VALUE ((7I COLLECTION) (7max NUMBER)) [Relation]
Binds ?max to the maximum of the numbers in the list 71.

MEAN-VALUE ((?] COLLECTION) (?mean NUMBER)) [Relation]
Binds ?mean to the mean of the numbers in 71.

MEDIAN-VALUE ((7I COLLECTION) (?median NUMBER)) [Relation]
Binds ?median to the median of the numbers in ?I.

MEMBER-OF ((”x THING) (7c COLLECTION)) [Relation]
TRUE if 7x is a member of collection 7c. A common use of member-of is for binding
a variable to successive members in a list or set (see listof and setof).

Chapter 7: Built-In Relations 76

MINIMUM-ELEMENT ((7c COLLECTION) (?sortby RELATION) [Relation]
(7element THING))

Find those 7element(s) of 7c with the minimum ?sortBy value, for example, (retrieve

(minimum-element relation arity 7x)) (see also collect-into-ascending-set).

MINIMUM-VALUE ((?I COLLECTION) (7min NUMBER)) [Relation]
Binds ?min to the minimum of the numbers in the list 71.

MUTUALLY-DISJOINT-COLLECTION ((7s SET)) [Relation]
True if the members of 7s are pair-wise disjoint. Used most often to expresse disjoint-
ness constraints between concepts. For example

(mutually-disjoint-collection (setof MAN WOMAN))
states that the concepts MAN and WOMAN are disjoint.

NAME-TO-0BJECT ((”n THING)) :-> (70 THING) [Function]
Find or create the PowerLoom logic object 7o named by the name 7n in the current
module. We are interpreting the name 7n literally here, i.e., it is not a print name as
assumed by PLI functions and an object with exactly that name will be looked up or
created. If 7n is not a string, this will coerce it to a string first. We are intentionally
using a separate function here (instead of folding this into object-name), since we
might want to be able to look for an object with a certain name but not create one
if it doesn’t exist.

NORMAL-QUERY ((7prop PROPOSITION)) [Relation]
Query 7prop with :inference-level set to :mormal. Equivalent to (query 7prop
:inference-level :normal) but more efficient.

NTH-DOMAIN ((7r RELATION) (7i INTEGER) (?d COLLECTION)) [Relation]
True if the nth value for a tuple T satisfying 7r must belong to the concept 7d.
Argument counting starts at zero.

NTH-ELEMENT ((7I COLLECTION) (?n INTEGER)) :-> (7e THING) [Function]
Return the ?n-th element ?e of 71 (zero-based). Count from end of the list if ?n is
negative. If 7n is unbound and ?e is bound, this computes the position of 7e. If both
are unbound, collection elements and their respective positions will be enumerated.

NTH-HEAD ((7I L1ST) (7n INTEGER)) :-> (7h LIST) [Function]
Return the 7n head elements 7h of 71. Count from end of the list if 7n is negative.

NTH-REST ((7I L1ST) (7n INTEGER)) :-> (7r LIST) [Function]
Return the ?n-th rest ?r of 71 (zero-based). Count from end of the list if ?n is negative.

NUMERIC-MAXIMUM ((7r RELATION) (7i THING) (7n NUMBER)) [Relation]
Relation that specifies an upper bound ?n on any numeric value that can belong to
the set of fillers of the relation 7r applied to 7i.

NUMERIC-MINIMUM ((?r RELATION) (7i THING) (7n NUMBER)) [Relation]
Relation that specifies a lower bound ”n on any numeric value that can belong to the
set of fillers of the relation 7r applied to 7i.

Chapter 7: Built-In Relations 77

NUMERIC-SET ((”s COLLECTION)) [Concept]
75 is a set of numbers

OBJECT-NAME ((7x THING)) :-> (?c STRING) [Function]
The name of the object 7X as a string. This is just the name, with module prefixes
NOT included.

ORDERED ((?c COLLECTION)) [Relation]
?c is ordered if the ordering of its members is significant. Lists are ordered, while sets
are not.

PHRASE ((?r THING) (7s STRING)) [Relation]

A phrase is a variablized sentence, a template, that is used to express individual ax-
iomatic facts as natural language sentences. By convention, a phrase contains one
or more occurrences of each variable in a relation or concept definition, it does not
begin with a capital letter, and it has no concluding period. Systematic attachment
of phrases to relations can be leveraged by tools that generate natural language para-
phrases of logic sentences.

PROJECT-COLUMN ((7i INTEGER) (7c COLLECTION)) :-> (7] LIST) [Function]
Project elements in column ?i (zero-based) of the tuples of 7c and collect them into
a list 7L

PROPER-SUBRELATION ((7r RELATION) (?sub RELATION)) [Relation]

True iff ?sub is a proper subrelation of ?r; written in set notation, ?sub < 7r. This
relation will generate bindings for at most one unbound argument.

PROPER-SUPERRELATION ((7r RELATION) (7super RELATION)) [Relation]
True iff 7super is a proper superrelation of 7r; written in set notation, 7super > 7r.
This relation will generate bindings for at most one unbound argument.

PROPOSITION : CONTEXT-SENSITIVE-OBJECT, DYNAMIC-SLOTS-MIXIN, [Class]
BACKLINKS-MIXIN

home-context : CONTEXT [Slot of |
Not documented.

kind : KEYWORD [Slot of]
Not documented.

truth-value : TRUTH-VALUE [Slot of |
Not documented.

arguments : VECTOR [Slot of |
Not documented.

operator : GENERALIZED-SYMBOL [Slot of |
Not documented.

dependent-propositions : (NON-PAGING-INDEX OF PROPOSITION) [Slot of |
Not documented.

Chapter 7: Built-In Relations 78

PROPOSITION-ARGUMENT ((7p PROPOSITION) (7i INTEGER)) :-> [Function]
(7arg THING)
Return the 7i-th 7arg of ?p (zero-based).

PROPOSITION-ARGUMENTS ((7p PROPOSITION)) :-> (7args LIST) [Function]
Return all arguments of 7p as a list 7args.

PROPOSITION-ARITY ((7p PROPOSITION)) :-> (?arity INTEGER) [Function]
Return the number of arguments in 7p.

PROPOSITION-RELATION ((7p PROPOSITION)) :-> (70p RELATION) [Function]
Return the predicate operator Top of 7p.

QUERY ((7prop PROPOSITION) (7options THING)) [Relation]
Search-control relation that allows one to prove or retrieve bindings for ?prop with
modified search control 7options. The list of accepted ?options is currently the same
as are legal for a top-level ask or retrieve query. The special option value :IN-
HERIT inherits the option value from the parent or top-level query. The option pair
INHERIT :ALL inherits all parent options which can then be further modified by
additional individual option specifications. At most how many solutions will be gen-
erated is controlled by the :HOW-MANY option (just like in the top level retrieve).
The default is 1 which is again the same as for retrieve but different from how nor-
mal subgoals behave (those behave in a lazy all solutions mode). The reason for this
is that for partial match subqueries, solutions need to be generated eagerly, therefore,
a default of generating all solutions is not desirable.

RANGE ((7r RELATION) (7rng COLLECTION)) [Relation]
True if for any tuple T that satifies 7r, the last argument of T necessarily belongs to
the concept 7rng. range exists for convenience only and is defined in terms of nth-
domain. range assertions should be avoided, since they create redundant nth-domain
propositions (use nth-domain directly).

RANGE-CARDINALITY ((7r RELATION) (7i THING)) :-> (7card INTEGER) [Function]
Function that returns the cardinality of the set of fillers of the relation ?r applied
to 7i. The cardinality function returns a value only when the relations range-min-
cardinality and range-max-cardinality compute identical values, i.e., when the
best lower and upper bounds on the cardinality are equal. Each of these bounding
functions employs a variety of rules to try and compute a tight bound.

RANGE-CARDINALITY-LOWER-BOUND ((?r RELATION) (7i THING) [Relation]
(7Ib INTEGER))
Relation that specifies a lower bound on the cardinality of the set of fillers of the
relation ?r applied to 7i. The difference between range-cardinality-lower-bound
and range-min-cardinality is subtle but significant. Suppose we state that nine is
a lower bound on the number of planets in the solar system, and then ask if eight is
(also) a lower bound:

(assert (range-cardinality-lower-bound hasPlanets SolarSystem 9))
(ask (range-cardinality-lower-bound hasPlanets SolarSystem 8)) ==> TRUE

PowerLoom will return TRUE. However if we ask if the minimum cardinality of the
solar system’s planets is eight, we get back UNKNOWN

Chapter 7: Built-In Relations 79

(ask (range-min-cardinality hasPlanets SolarSystem 8)) ==> UNKNOWN
because eight is not the tightest lower bound.

RANGE-CARDINALITY-UPPER-BOUND ((7r RELATION) (7i THING) [Relation]
(7ub INTEGER))

Relation that specifies an upper bound on the cardinality of the set of fillers of the

relation ?r applied to 7i. (see the discussion for range-cardinality-lower-bound).

RANGE-MAX-CARDINALITY ((7r RELATION) (7i THING)) :-> [Function]
(?maxcard INTEGER)
Returns the strictest computable upper bound on the cardinality of the set of fillers
of the relation 7r applied to 7i. (see the discussion for range-cardinality-lower-
bound).

RANGE-MIN-CARDINALITY ((7r RELATION) (7i THING)) :-> [Function]
(?mincard INTEGER)
Returns the strictest computable lower bound on the cardinality of the set of fillers
of the relation 7r applied to 7i. (see the discussion for range-cardinality-lower-
bound).

RANGE-TYPE ((”r RELATION) (7i THING) (7type COLLECTION)) [Relation]
Relation that specifies a type/range of the relation 7r applied to 7i. Multiple range
types may be asserted for a single pair <7r,?i>. Technically, a retrieval of types for a
given pair should include all supertypes (superconcepts) of any type that is produced,
but for utility’s sake, only asserted or directly inferrable types are returned.

REFLEXIVE ((?r RELATION)) [Relation]
A binary relation ?r is reflexive if it is always true when both of its arguments are
identical.

REFUTATION-QUERY ((?prop PROPOSITION)) [Relation]

Query 7prop with :inference-level set to :refutation. KEquivalent to (query 7prop
:inference-level :refutation) but more efficient.

RELATION : MAPPABLE-OBJECT [Class]
Not documented.

abstract? : BOOLEAN [Slot of |
Not documented.

RELATION-COMPUTATION ((?r RELATION) [Relation]
(7computation COMPUTED-PROCEDURE))
Names a computation (a function) that evaluates an (atomic) relation proposition
during query processing. The function is passed a proposition for evaluation for
which all arguments are bound. The function returns a BOOLEAN if it represents a
predicate, or some sort of value if it is a function.

RELATION-CONSTRAINT ((?r RELATION) [Relation]
(?computation COMPUTED-PROCEDURE))

Names a computation (a function) that evaluates an (atomic) relation proposition

during query processing. The function is passed a proposition for evaluation for which

Chapter 7: Built-In Relations 80

at most one argument is unbound. The function returns a BOOLEAN if it represents
a predicate, or some sort of value if it is a function. If all arguments are bound the
function computes whether the constraint holds. If all but one argument is bound
and the unbound argument is a pattern variable then the missing value is computed.

RELATION-EVALUATOR ((?r RELATION) (7ev COMPUTED-PROCEDURE)) [Relation]
Names an evaluator (a function) that evaluates an (atomic) relation proposition
during constraint propagation. This defines an extensible means for computing using
auxiliary data structures. The function is passed a proposition for evaluation which
might update the proposition, generate additional assertions or trigger further eval-
uations. Evaluators have to check the truth-value of the passed-in proposition and
perform their actions accordingly. An evaluated proposition might be true, false or
even unknown in case the propositon was just newly constructed.

RELATION-SPECIALIST ((”r RELATION) (7sp COMPUTED-PROCEDURE)) [Relation]
Names a specialist (a function) that evaluates an (atomic) relation proposition dur-
ing query processing. This defines an extensible means for computing with the control
stack. The function is passed a CONTROL-FRAME that contains the proposition,
and returns a keyword :FINAL-SUCCESS, :CONTINUING-SUCCESS, :FAILURE,
or :TERMINAL-FAILURE that controls the result of the computation.

SCALAR ((7x SCALAR)) [Concept]
The class of scalar quantities.

SCALAR-INTERVAL ((7x SCALAR)) [Concept]
An interval of scalar quantities.

SECOND-ELEMENT ((7I COLLECTION)) :-> (7e THING) [Function]
Return the second element 7e of ?1.

SET : LIST, SET-MIXIN [Class]
Not documented.

any-value : OBJECT [Class Parameter of |
Not documented.

SETOF ((7m THING)) :-> (7c SET) [Function]
Term-forming function that defines an enumerated set consisting of all function ar-
guments. setof is like 1istof except that it removes duplicate values.

SHALLOW-QUERY ((?prop PROPOSITION)) [Relation]
Query 7prop with :inference-level set to :shallow. Equivalent to (query 7prop
:inference-level :shallow) but more efficient.

SINGLE-VALUED ((7c RELATION)) [Relation]
The relation 7c is single-valued if the value of its last argument is a function of all
other arguments. All functions are single-valued (see function).

SQUARE-ROOT ((”x NUMBER) (”y NUMBER)) [Relation]
Relation that returns the positive and negative square roots: ?y = sqrt(?x). For
positive roots only see function SQRT.

Chapter 7: Built-In Relations 81

STANDARD-DEVIATION ((?] COLLECTION) (?sd NUMBER)) [Relation]
Binds ?7sd to the standard deviation of the numbers in 71.

STRING-CONCATENATE ((”x THING) (7y THING)) :-> (7z STRING) [Function]
Concatenate 7x and zero or more strings 7y (variable arity) and bind ?z to the result.
Coerces any type argument to a string if necessary.

STRING-MATCH ((7pattern STRING) (7object THING) (7start INTEGER) [Function]
(7end INTEGER)) :-> (?match-position INTEGER)
Match 7pattern against 7object between ?start and ?end (zero-based), and return the
position of the first match or fail if no match exists. Supplying -1 for 7end indicates
the end of 7object. 7object can be a named logic object or a string. 7pattern will
eventually allow support regular expressions, currently it only handles string literals.
Apart from doing to-string coercion on 7object this is somewhat redundant, since
substring can generate 7start/7end pairs if its string and substring arguments are

bound.

STRING-MATCH-IGNORE-CASE ((?pattern STRING) (7object THING) [Function]
(7start INTEGER) (”end INTEGER)) :-> (?match-position INTEGER)
Match 7pattern against 7object between ?start and ?end (zero-based), and return the
position of the first match or fail if no match exists. Supplying -1 for 7end indicates
the end of 7object. 7object can be a named logic object or a string. This match
compares the strings ignoring differences in letter case.

SUBRELATION ((7r RELATION) (7sub RELATION)) [Relation]
True iff 7sub is a subrelation of 7r; written in set notation, 7sub =< ?r. This relation
will generate bindings for at most one unbound argument.

SUBSET-0F ((?sub COLLECTION) (7super COLLECTION)) [Relation]
True if ?sub is a subset of ?super. For performance reasons, the subset-of predicate
refuses to search for bindings if both of its variables are unbound. Implementation
note: subset-of is treated specially internally to PowerLoom, and hence Powerloom
does not permit the augmentation of subset-of with additional inference rules. In
otherwords, subset-of behaves semantically like an operator instead of a relation.

SUBSTRING ((7s STRING) (7start INTEGER) (’end INTEGER)) :-> [Function]
(7sub STRING)

Generate the substring of 7s starting at position 7start (zero-based), ending just
before position 7end and bind 7sub to the result. This is the PowerLoom equivalent
to the STELLA method subsequence. In addition, this function can be used to
locate substrings in strings by supplying values for 7s and ?sub and allowing 7start
and 7end to be bound by the function specialist. In other words, (retrieve all (?start
?end) (substring "foo" ?start 7end "o")) ==> 7start = 1, ?end = 2, ?start = 2, 7end
=3.

SUBSUMPTION-QUERY ((?prop PROPOSITION)) [Relation]
Query ?prop with :inference-level set to :subsumption. Equivalent to (query ?prop
:inference-level :subsumption) but more efficient.

Chapter 7: Built-In Relations 82

SUM ((7I COLLECTION) (7sum NUMBER)) [Relation]
Binds 7sum to the sum of the numbers in the list 71.

SUPERRELATION ((7r RELATION) (7super RELATION)) [Relation]
True iff 7super is a superrelation of 7r; written in set notation, ?super >= 7r. This
relation will generate bindings for at most one unbound argument.

SYMMETRIC ((”r RELATION)) [Relation]
A binary relation 7r is symmetric if it is commutative.

SYNONYM ((?term THING) (7synonym THING)) [Relation]
Assert that ?synonym is a synonym of ?term. This causes all references to ?synonym
to be interpreted as references to “term. Retraction eliminates a synonym relation.

THING : STANDARD-OBJECT, DYNAMIC-SLOTS-MIXIN [Class]
Defines a class that must be inherited by any class that participates in the PowerLoom
side of things.

surrogate-value-inverse : SURROGATE [Slot of |
Not documented.

THIRD-ELEMENT ((?] COLLECTION)) :-> (7e THING) [Function]
Return the third element ?e of ?I.

TOTAL ((?r FUNCTION)) [Relation]
True if the function ?r is defined for all combinations of inputs. By default, functions
are not assumed to be total (unlike Prolog, which does make such an assumption.
For example, if we define a two-argument function foo and then retrieve its value
applied to some random instances a and b, we get nothing back:

(deffunction foo (7x ?7y) :-> 7z)

(retrieve 7x (= 7x (foo a b)))
However, if we assert that foo is total, then we get a skolem back when we execute
the same retrieve:

(assert (total foo))
(retrieve 7x (= 7x (foo a b)))

TRANSITIVE ((7r RELATION)) [Relation]
A binary relation ?r is transitive if (?r ?x ?y) and (?r 7y 7z) implies that (?r 7x 7z).
Note that functions cannot be transitive, since their single-valuedness would not allow
multiple different values such as (?r 7x 7y) and (7r ?x ?z) due to the Unique Names
Assumption made by PowerLoom.

TYPE-OF ((”c COLLECTION) (7x THING)) [Relation]
True if 7x is a member of the concept 7c.

VALUE ((?function FUNCTION) (7arguments THING)) :-> (7value THING) [Function]
True if applying 7function to 7arguments yields the value ?value. The value predi-
cate is the analog of holds, except that it applies to functions instead of relations.

VARIABLE-ARITY ((”r RELATION)) [Relation]
Asserts that the relation 7r can take a variable number of arguments.

Chapter 7: Built-In Relations

VARIANCE ((7I COLLECTION) (?variance NUMBER))
Binds ?variance to the variance of the numbers in 71.

83

[Relation]

Chapter 8: PowerLoom GUI 84

8 PowerLoom GUI

The PowerLoom GUI (or knowledge editor) is a Java-based graphical client for PowerLoom.
The GUI is implemented as a Swing-based Java application which communicates with an
embedded or remote PowerLoom server using a SOAP communication layer over HTTP.

The architecture of the PowerLoom GUI most closely resembles the traditional two-tier
client /server model. Since the GUI does not contain a great deal of business logic (e.g., it
does not know how to do inferencing), it does not directly map onto the traditional notion
of a smart client. Similarly, since PowerLoom is much “smarter” than a typical DBMS, it
does not cleanly map onto a traditional backend server. However, since the GUI contains
the presentation logic, it is more similar to a 2-tier model than a 3-tier model where the
presentation logic resides in a middle tier.

Communication between the GUI and PowerLoom is done via the XML-based SOAP pro-
tocol. In order to effectively communication via SOAP, a Web service layer was built on top
of PowerLoom. This layer provides support for marshaling and unmarshaling of PowerLoom
objects to/from XML, and also provides a PowerLoom API that is accessible as a web ser-
vice. The Java client uses JAXM and the Castor framework (see http://www.castor.org)
to support SOAP communication.

8.1 Invoking the GUI

The PowerLoom GUI can be started in a variety of ways. The easiest way is to use the
top-level powerloom script (see Section 1.3 [Running PowerLoom], page 4) and supply the
--gui option. This will start the Java version of PowerLoom, start a standalone embedded
PowerLoom Web server, launch the GUI application and connect from it to the PowerLoom
server (using port 9090 by default):

% powerloom --gui

Running Java version of PowerLoom...
Initializing STELLA...

Initializing PowerLoom. ..

Loading required system webtools
Loading required system ontosaurus

Welcome to PowerLoom 4.0.0

Copyright (C) USC Information Sciences Institute, 1997-2010.
PowerLoom is a trademark of the University of Southern California.
PowerLoom comes with ABSOLUTELY NO WARRANTY!

Type ‘(copyright)’ for detailed copyright information.

Type ¢(help)’ for a list of available commands.

Type ‘(demo)’ for a list of example applications.

Type ‘bye’, ‘exit’, ‘halt’, ‘quit’, or ‘stop’, to exit.

PL-USER |=

Alternatively, PowerLoom can be started in its standard command loop mode and then
the GUI can be started with the start-powerloom-gui command. This is useful if the

http://www.castor.org

Chapter 8: PowerLoom GUI 85

GUI becomes necessary at some point during development or if a different port should be
used. For example:

% powerloom
Initializing STELLA...
Initializing PowerLoom...

Welcome to PowerLoom 3.2.52

Copyright (C) USC Information Sciences Institute, 1997-2010.
PowerLoom is a trademark of the University of Southern California.
PowerLoom comes with ABSOLUTELY NO WARRANTY!

Type ¢(copyright)’ for detailed copyright information.

Type ‘(help)’ for a list of available commands.

Type ‘(demo)’ for a list of example applications.

Type ‘bye’, ‘exit’, ‘halt’, ‘quit’, or ‘stop’, to exit.

PL-USER |= (start-powerloom-gui :port 9092)

Loading required system webtools
Loading required system ontosaurus

PL-USER |=

When the GUI is run against an embedded server as in the examples above, it is run
asynchronously and commands can be executed at the PowerLoom command loop at any
time. Moreover, when the GUI is exited, the command loop stays active until it is exited
explicitly as well.

The GUI can also be run standalone in which case the user needs to connect to a running
PowerLoom server. For example:

% powerloom —-gui-only
Running standalone PowerLoom GUI...

Once the GUI is initialized, the user can connect to a server via the File -> Connect
to Server menu item. After the first connection, the host and port of the last used server
will be remembered for the next startup. If during the next startup that server is not active
anymore, an error will be signaled and the user can connect to a different server instead.

8.1.1 Starting a PowerLoom Server

The GUI always connects to a PowerLoom server which can be embedded in the same Java
process (as in the examples above), or can be run in a separate Lisp or Java process or as part
of a Tomcat server (a C++ Web server is not currently supported). To start a PowerLoom
server do the following. Start the Java version of PowerLoom via the powerloom script or
start a Lisp version of PowerLoom that supports a Web server such as Allegro CL or a Lisp
that supports Portable AServe. Once PowerLoom is up and running, issue the following
command:

PL-USER |= (start-powerloom-server)

Chapter 8: PowerLoom GUI 86

Loading required system webtools
Loading required system ontosaurus

PL-USER |=
The command also accepts a :port option to make the server listen to a different port.
Alternatively, the PowerLoom Web Archive available in
powerloom-x.y.z/native/java/lib/ploom.war

can be deployed in an Apache Tomcat server by copying it into the server installation’s
‘webapps’ directory. The GUI can then connect to it at the server port used by Tomcat.

8.2 GUI Design Goals

The choice of technology was driven by a number of design goals which are summarized
below. Note that the most of the GUI code was developed back in 2002 and is therefore
somewhat outdated with respect to today’s Java and Web-based human interface technolo-
gies.

Visibility: Knowledge Bases are complex and loosely structured entities. It is often
desirable to simultaneously maintain multiple views of a KB, and to simultaneously perform
multiple complementary task such as browsing, editing, querying, and searching a KB. With
Swing’s MDI (Multiple Document Interface) mode, many internal frames can be open at the
same time within a single “desktop” frame. Swing also offers a very rich set of components
and Ul mechanisms which facilitate efficient use of screen real estate.

We designed the GUI to take advantage of Swing’s presentation strengths. We used
the MDI mode, so browsers, editors, etc. can coexist on the same desktop. Additionally,
multiple knowledge browsers can be open at the same time to present different views of a
KB. The Knowledge Browser itself consists of multiple collapsible and resizable subpanes,
which in turn are composed of scrollable lists and trees. This allows a “birds-eye” view of
a Powerloom KB, in which many modules, concepts, relations, instances, propositions, and
rules can be displayed at the same time.

Navigability: When exploring a KB, it is imperative that a user interface allows easy
navigation between related objects. The PowerLoom GUI has extensive navigation capabil-
ities, which are as good or better than browser based applications. For example, a user may
click on a query result to instantly update the Knowledge Browser to display the selected
object. Also, a user can right-click on a relation or argument in a proposition, and navigate
to the clicked-on object.

Responsiveness: For the best possible user experience, a user interface should be highly
responsive to a user’s input gestures. For example, (1) after initiating a gesture such as
a mouse click or keypress, there should be a minimal delay before the appliction performs
the intended action, and (2) “Power Users” should be able to perform complex tasks with
a minimum number of mouse clicks, key presses, etc.

The PowerLoom GUI attempts to minimize network round-trips by caching large
amounts of data. For example, when a user points the Knowledge Browser to a module,
a large chunk of the module is retrieved from the server and cached in the client. Hence,
when the user expands a tree in the browser, the GUI will not need to retrieve more

Chapter 8: PowerLoom GUI 87

data from the server. Also, the GUI takes full advantage of Swing’s ability to control the
application via keyboard input. For example, to create a new instance named newName, a
user needs to simply type the key sequence Ctrl-I newName RET.

Context Sensitivity: For any given object that is displayed in a user interface, there is
a set of actions that can be performed on that object. Additionally, the actions that can
be performed on an object depend on where the object is displayed. Therefore, the GUI
pervasively supports context-sensitive popup menus. When users right-click on an object, a
list of appropriate actions will be presented in a menu. For example, when a user right-clicks
on a concept in the Knowledge Browser, the list of possible actions shown in Figure 8.1 is
presented.

: Concepts for AIRCRAFT-KE |E| : Relations for AIRCRAFT-KE
| CONCEPT-ROGT -] I3 rELETION-ROOT
g C ACTHWE-CUIDAMCE-TYPE §§ R ATTACKED-BY
e C FMTITY 3 Al IRFR
i o © PHYSICAL-EMTITY : P CARRIED-BY
% © EMGIME : CEILIMNG
¢ DIESEL EMGCIME : COsT
C GAS-TURDIMC-CHGIME A CROW-ROLES
[: GASOLINE_E | il N N = g T TITPE
o= | |ET-EMGCIMNE € Edit GASOLIMNE-EMGIME Ctrl-C
@= [FHUOPELLEEA Add subconcept of GASOLINE-ENGINE
E gggﬁﬁéﬁﬁ Create instance of GASOLINE-ENGINE
C FUEL-TAME, EdiLl ExLensiun Mor GASOLINE-ENGINE
o~ I MOWING-OBJEC) 4 Cut crrl-
CMAWAl ZIMIT)
> ¢ POD By cupy Clrl-C
o ¢ WEAPCHM a Paste Cirl-1
.......... om—e—sOrlal BRI [] Delete Delete [—

Figure 8.1: Context-specific menu of possible actions on a concept

Editability: Applications that support text editing often need capabilities above and
beyond the baseline copy, cut and paste capabilities that all text widgets support. In
particular, applications that allow editing of text with a regular structure such as source
code or Lisp expressions may take advantage of special key bindings which augment basic
navigation and editing capabilities.

The PowerLoom GUI makes use of Swing’s powerful text components by implementing a
full set of Emacs-style keybindings. These keybindings allow a user to perform such opera-
tions as navigating up and down a subexpression hierarchy, selecting entire subexpressions,
and completing incomplete symbols. In addition, matching parenthesis are automatically
highlighted in the GUI’s text components.

Extensibility: While it is not easy to claim that Swing applications are inherently more
extensible than Web applications, Swing’s MDI architecture and pull-down menu framework
allows new features to be added with little disruption to the rest of the application. In
particular, using modern GUI design tools that are part of IDE’s such as Netbeans or
Eclipse, it is fairly easy to add new components and functionality to the PowerLoom GUI.
It is also conceivable that the GUI code could be used as the basis for a more specific

Chapter 8: PowerLoo

m GUI

88

application which would have its own application-specific menus and windows, but would
retain the general-purpose browsing, querying, and editing tools for direct manipulation of

the knowledge base.

8.3 GUI Overview

An example screen shot of the PowerLoom GUI is shown in Figure 8.2. The main application
frame consists of pull-down menus, a toolbar, and a status bar.

KE Edit Objects Query View Navigate Window Help

CBEEE s

il ™ Browsing Knowledge Base@hlacke:

aLisi.edu:8000

&

Modules

EIaH

Concepts for AIRCRAFT-KB

Relations for AIRCRAFT- KB

Instances for AIRCRAF...

H ROOT-MODULE
M POWERLOOM-SERVER.

% M PL-KERMNEL-KB
M CYC-FRAME-ONTOLQ |
H KIF-FRAME-ONTOLO!
H LOOM-AP| .
¢ M PL-USER

&
@&

T CONCEPT-ROOT
| € ACTIVE-GUIDAMCE-TYPE
1% c ENTITY

€ CROUMD-UNIT
€ _CUIDANCE-TYPE

€ PHYSICAL-ENTITY
L SOCIAL-ENTITY

[T REL&TION-ROOT

ATTACKED-BY
CALIBER
CARRIED-BY

R

CEILING

F
R

H AIRCRAFT-KE

[7] Query.

C
C
C

Propositions for F-15

P (ALL-WEATHER F-15}

P {CARRIED-BY 20MM-WULCAMN F-15)
P (CARRIED-BY 600G-TANK F-15)

P (CARRIED-BY Al -120 F-15)

P (CARRIED-BY Al -FM F-15)

Ihd-am F-_15%

‘Rules

frreroT=oe=T
J1ra11
1F-117
1 F-118-GE-100
|1r1s
IF-16
| 1 Fr00-PW-100
| 1F110-GE-200

E]
[&

Query:

fwingspan 7K 71

Editing Instance F-15

Name T!"D!S_‘
[F-15 NeE
Documentation C ALL-WEATHER

Module: | AIRCRAFT-KB

The F-15 Eagle is an all-weather,
extrernely maneuverable, tactical fighter

C FIXED-WING-AIRCRAFT

Results: designed to gain and maintain air
e A |superiority in aerial combat.

10 575

e 532

AGM-130 5

AGM-84 3 ;

i o Module: | AIRCRAFT-KE

LAM-120 17

AIM -7 2.3 Propositions

4 (B[S

Saved Queries |

’E Save Current Que

P (ALL-WEATHER. F-15}
P {CARRIED-BY 20MM-WULCAN F-15)
P {CARRIED-BY 600G-TANK F-15)

Query Optiens |

(® Retrieve all results () Retrigve

Timeout
Inference Level | noRmMAL

‘Show Advanced Option

MDVEDUU

| Execute ‘ | Continue | I:

ICurrent Module: AIRCRAFT-KE | (NTH-DOMAIN GUIDANCE 1 GUIDANCE-TYPB will be copied if you do a paste command.

Figure 8.2: The PowerLoom GUI

The menu bar contains the following menus:

e KB - menu items for connecting to a server, loading, saving, and clearing KBs, and

opening browser

and console windows.

e Edit - menu items for cutting, copying, pasting, and deleting, and also an item which
opens a preferences dialog.

e Objects - menu items for opening editors on various KB objects, including modules,
concepts, relations, instances, and propositions. This menu also contains an item to
edit the currently selected object.

Chapter 8: PowerLoom GUI 89

e Query - menu items for querying the KB, searching the KB, and editing a relation’s
extension.

e View - this menu contains various items for updating the appearance of the application,
including a refresh item to bring the GUI up-to-date with the state of the KB on the
server, and menu items for showing/hiding the application’s toolbar and status bar.
This menu also contains items for changing the application’s font, for example, the
Demo Theme changes all fonts to a large bold font suitable for demo presentations.

e Navigate - contains menu items for navigating backward and forward in a browser’s
selection history.

e Window - contains a list of the currently open windows on the desktop. Selecting
a window brings the window to the top of the window stack, and if the window is
iconified, it is de-iconified.

e Help - contains an item to open an HTML help browser, and an item to open an About
box which contains information about the PowerLoom GUI.

Most menu items have accelerator keys that allow an item to be executed by a combina-
tion of keystrokes. The toolbar contains several buttons which provide shortcuts to menu
items. There are currently toolbar buttons for cutting, copying, pasting, deleting, editing
an object, and opening a query dialog. The toolbar may be undocked from its default
position by dragging it anywhere on the desktop. It may also be hidden and unhidden by
selecting the View -> Toolbar menu item.

The status bar at the bottom of the application contains information on the current
status of the application. The status bar is divided into two sections. The leftmost section
displays the last module that was selected by a user. The application keeps track of the
current module in order to provide continuity between operations. For example, if a user
opens a browser and browses the AIRCRAFT-KB, and then opens a query dialog, it makes
sense for the query dialog to use the AIRCRAFT-KB module instead of some other module.

The rightmost section of the status bar contains messages that pertain to the current
state of the application. For example, if a user selects a concept and then clicks the cut
toolbar button, a message will appear in the rightmost status bar prompting the user to
select another concept and perform a paste action. The status bar may be hidden and
unhidden by selecting the View -> Statusbar menu item.

Figure 8.2 shows a few internal frames that are open. The function of each frame is
identified in the frame’s title bar, and each type of frame has a unique icon in it’s upper
left-hand corner. In this example, the three open frames are used to browse the KB, query
the KB, and edit an instance.

A user typically follows a workflow cycle similar to the following sequence:

1. The user launches the GUI by executing the powerloom script, clicking on a desktop
icon or on a hyperlink in a browser.

2. The GUI is loaded on the user’s machine. If the GUI was launched via Java Web Start
(not yet fully supported), the entire application may need to be downloaded or updated
before execution begins.

3. The GUI reads a preferences file stored in a default location on the user’s local machine.
If this is the first time the application is being executed, a default preferences file is

Chapter 8: PowerLoom GUI 90

used. The preferences file includes among other things the PowerLoom server that was
last accessed.

4. If the preferences file contains the last-accessed server, the GUI attempts to connect
to the server and query the server for a description of the server’s capabilities. If
connection is successful, a browser window will open displaying the modules that are
currently loaded in the server instance.

5. The user selects any KB files (s)he wishes to load, and instructs the server to load the
files.

6. The user performs some browsing, querying, and editing of the loaded KB.
7. If any changes were made, the user saves the KB to a new or existing file.

8. The user repeats steps 5-7 as needed, and then exits the application.

8.4 GUI Features

This section provides a detailed description of the features that are available in the GUI
application. We describe general application-wide functionality as well as the functionality
of specific components.

8.4.1 Connect to Server

The first time the GUI is started, it will not attempt to connect to any server. To establish a
server connection, the user must select the KB => Connect to Server menu item. This will
open a dialog prompting for a host name and port. After the user enters this information,
a connection will be attempted. If the connection is successful, the server information will
be stored in the preferences file and used next time the application starts up.

8.4.2 Edit Preferences

A preferences dialog can be opened by selecting the Edit -> Edit Preferences menu item.
Currently, the only preference that a user can edit is whether or not to open a browser
when the application is started. The dialog contains a checkbox asking whether or not the
preferences should be saved. If the checkbox is not checked, the preferences will remain in
effect for the duration of the current session, but will not be in effect when the application
is restarted.

8.4.3 KB Load/Save

In its standard configuration, PowerLoom stores knowledge bases via flat files. The user
can load one or more KB files from the local file system which will be transferred across the
network and loaded into the server instance via PowerLoom’s 1load command. Conversely,
a modified knowledge base can be saved to a local file on a per-module basis (using a version
of PowerLoom’s save-module command). Future versions of PowerLoom will support more
sophisticated persistence that will go directly to a database or other persistent store.

8.4.4 Browsing

The knowledge browser window, shown in Figure 8.3, can be opened by selecting the KB
-> Browse menu item or typing Ctrl-b. The browser provides a visual overview of all
knowledge in the KB, and is capable of launching specialized tools such as editors, search
dialogs, etc.

Chapter 8: PowerLoom GUI

91

[Erowsing Knowledge Base@blackcatisi.edw 8000 © :
Modules [%] | concepts for AIRCRAFT-KE Relations for AIRCRAFT-KE Instances for AIRCRAF.. [H] [&]
H ROOT-MODLULE ‘|3 CONCEPT-ROOT | rRELATION-ROOT : B
H POWERLOOM-SERVER |if ¢ ACTIWE-GUIDANCE-TYPE | R ATTACKED-BY LF-111
@ H PL-KERMEL-KE de ¢ ENTITY CALIBER IF-117
H CYC-FRAME-ONTOLOZ @ ¢ PHYSICAL-ENTITY R CARRIED-BY IF-118-GE-100
H KIF-FRAME-ONTOLOY 5| @ ¢ SOCIAL-ENTITY CEILING LFo15
H LOOM-API i € GROUND-UNIT cosT
% H PL-LSER € GUIDANCE-TYPE CREW-ROLES LF-16
H AIRCRAFT-KB |ie ¢ mMission CREW-SIZE T F100-PW-100
| - © PASSIVE-GUIDAMCE-TYPE DESIGMNATION | rF110-0E-200
% © TECHNOLOGY DIAMETER :
H C ALL-WEATHER EMGIMNE-COUNT H LFL17-FW-100
: [STEALTH-TECHMOLOGY R EMGINE-TYPE o TF404
C SWING-WING R EMGINE-USED-BY :| T FAIRCHILD-REPUBLIC
€ WIDTH-RELATICN FLEET-SIZE A 1 capreTT
FUEL-CAPACITY 11 ce
R GUIDANCE i
B HAS-MISSION %) T GEMERAL-DYRAMICS -
LIELCHT > T Ok Akl x

Propositions for F-13

P {ALL-WEATHER F-15)

P (CARRIED-BY 2 OMM-%ULCAN F-15)
P {CARRIED-BY 600C-TAMNK F-15)

P (CARRIED-BY AlIM-120 F-15)

View From Module: | AIRCRAFT-KE ¥
-

P {CARRIED-BY AIM-7M F-15)

Ll

View From Module: |AIRCRAFT-KE ~

Figure 8.3: Knowledge Browser

The browser consists of several subpanes which we refer to as navigation panes. Each
navigation pane consists of a title pane, a toolbar, and a content pane. The title pane
contains a title indicating what is displayed in the content pane. The toolbar consists of
zero or more buttons which perform actions relevant to the navigation pane. Currently, two
toolbar buttons are present: "Add" and "Search". "Add" (indicated by a +-sign icon) adds
an object associated with the type of navigation pane. "Search" (indicated by a flashlight
icon) searches for objects associated with the type of navigation pane. The content pane
contains the actual knowledge to be displayed, such as a list of instances or propositions.

There is one navigation pane for each type of KB object: Modules, Concepts, Relations,
Instances, Rules, and Propositions. Each internal pane is resizable by dragging the movable
divider between the panes. Panes may be hidden completely by clicking the "Collapse"
arrow on the adjacent divider. Clicking the "Expand" arrow will unhide the pane.

Visual Cues: Navigation panes employ several visual cues to enhance the identifiability
of object attributes. Object types are indicated by an icon to the left of the object’s
name. For example, modules are represented by a blue M, concepts by a red C, etc. The
status of propositions is also indicated visually. An italicized proposition indicates that the
proposition was derived instead of asserted. Grey propositions indicate that their truth
value is a default value instead of a strict value.

Chapter 8: PowerLoom GUI 92

The main method for filling the contents of a navigation pane is to select some object in a
navigation pane that is to the left or above it. This is discussed in more detail in the section
below. However, in some cases, it is possible to modify the contents of a navigation pane
without performing a selection. For example, in the instance navigation pane, it is possible
to show derived or inherited instances by right-clicking on the instance list and selecting an
appropriate menu item. Similarly, the relation navigation pane can toggle between direct or
inherited relations. Propositions and rules are by default displayed according to the module
that is currently selected. However, the contents of the proposition or rule navigation pane
can be updated by selecting a more specific module in the View From Module combobox
contained in the navigation pane’s title bar.

Selection: When the browser is initially opened, a tree of modules is displayed in the
module navigation pane, and all other navigation panes are empty. When a module is
selected, the remaining subpanes are populated with knowledge that is contained in that
module. Similarly, selecting a concept in the concept navigation pane populates the relation,
proposition, and instance panes with knowledge that is relevant to the selected concept. In
general, selecting an object in a given navigation pane may affect the contents of navigation
panes to the right and/or below it. More specifically, the rules for object selection are as
follows:

e Selecting a module populates the concept, relation, and instance subpanes with knowl-
edge contained in the module.

e Seclecting a concept populates the relation subpane with relations that use the concept
as a domain type, and populates the instance subpane with the concept’s extension.
The proposition and rule subpanes are populated with propositions and rules associated
with the concept.

e Selecting a relation populates the proposition and rule subpanes with propositions and
rules associated with the relation.

e Selecting an instance with no selected relation populates the proposition subpane with
propositions that refer to the selected instance.

e Selecting an instance and a relation populates the proposition subpane with proposi-
tions that contain the relation as a predicate, and the instance as an argument.

e De-selecting an object will update the state of the browser appropriately. For example,
after selecting a module and a concept, deselecting the concept will refresh the concept,
relation, instance, proposition and rule subpanes to display the knowledge contained
in the selected module.

The title pane in each navigation pane displays a description of the source of the sub-
pane’s contents. For example, if both the relation WINGSPAN and the instance AGM-130 were
selected, the proposition subpane would contain the title “Propositions for WINGSPAN
and AGM-130".

Each selection event is recorded in a selection history which can be rolled back and
forward. For example, assume the user selects the ATRCRAFT-KB module and then selects
the GUIDANCE-TYPE concept. If the user then selects the Navigate -> Back menu item, the
selection history will be rolled back so that only ATRCRAFT-KB is selected. If the user then
selects Navigate —> Forward, the selection history will be rolled forward to its original state
so that both ATRCRAFT-KB and GUIDANCE-TYPE are selected.

Chapter 8: PowerLoom GUI 93

Navigation: Knowledge can be explored by expanding and collapsing nodes in hierar-
chical navigation panes such as the concept and module navigation panes. If a tree or list
is not fully visible, the user may use the scrollbar on the navigation pane’s right-hand side
to scroll through the contents of the pane. Detailed views of objects such as concepts and
relations can be obtained by right-clicking the object and selecting the Edit menu item.
To navigate to a constituent of a proposition, the user can right-click the constituent and
then select the Navigate to... menu item. For example, right-clicking on the GUIDANCE
argument in the proposition (NTH-DOMAIN GUIDANCE 1 GUIDANCE-TYPE) presents a popup
menu which displays (among other items) the item Navigate to GUIDANCE. Selecting this
menu item will cause the browser to display and select the GUIDANCE relation.

Actions external to the browser may also update the browser’s contents. For example,
clicking on an instance in a list of query results will cause the browser to navigate to the
selected instance.

Actions: Right-clicking inside the browser will present a menu of actions that is relevant
to the subpane that contains the mouse pointer. The list of items will depend on whether
the mouse is over a specific item or if it is over the background of the subpane’s list or
tree. For example, when the mouse is over a specific concept, the menu will contain items
for cutting, pasting, instantiating, etc., but when the mouse is over the background of the
concept tree, the only menu item presented will be to add a new concept.

The set of actions available for each subpane are as follows:
e Module - Add Module, Edit Module, Load Module, Save Module, Clear Module, Copy.

e Concept - Add Concept, Edit Concept, Edit Extension, Instantiate, Cut, Copy,
Paste, Delete. If multiple concepts are selected, selecting Create New Concept from
the background menu will create a concept that contains the selected concepts as
parents.

e Relation - Add Relation, Edit Relation, Edit Extension, Copy, Delete, Show
Inherited/Direct Relations.

e Instance - Add Instance, Edit Instance, Copy, Delete, Show Direct/Derived
Instances.

e Propositions - Add Proposition, Edit Proposition, Copy, Delete, Navigate to
Constituent, Edit Constituent.

e Rules - Add Rule, Edit Rule, Copy, Delete, Navigate to Constituent, Edit
Constituent.

8.4.5 Editing

Objects may be edited by right-clicking them and selecting the Edit... menu item in the
popup menu. Alternatively, an object may be selected, and then the Objects -> Edit
Object menu item or the the edit toolbar button can be pressed. Object editors do double-
duty as object viewers, since all relevant object information is present in each editor.

There are several common user actions that are available in edit dialogs. For example,
hitting RET while the cursor is positioned in the name field of the editor commits the concept.
Most editors have 0K and Cancel buttons at the bottom to commit or abort edits. Lists of
items commonly have + and -- buttons at the top that allow one to add a new item or delete
the selected item. When the + button is pressed, either a chooser dialog (see Section 8.4.6

Chapter 8: PowerLoom GUI 94

[Choosers|, page 95) or a specialized editor will be opened. Similar to the browser, list items
can be right-clicked to display a list of possible actions. For example, a superconcept can
be clicked in a concept editor to immediately edit the concept’s parent.

[I] Editing Instance F-1 i B
Mame Types

B EE

Documentation C ALL-WEATHER.

The F-15 Eagle is an all-weather, C FIXED-WINGC-ARCRAFT

extremely maneuverable, tactical fighter
designed to gain and rmaintain air
superiority in aerial combat.

Module: | AIRCRAFT-KE v

Propositions

HE

P (ALL-WEATHER F-15)

P (CARRIED-BY 20MM - ILCAN F-15)
P (CARRIED-BY 600G-TAMNK F-15)

| oK || Cancel |

Figure 8.4: Instance Editor

Each type of object has a specialized editor. For example, an instance editor is shown
in Figure 8.4. There are separate editors for modules, concepts, relations, instances, and
propositions/rules, which are described below.

Module Editor: The module editor contains a number of fields and components used to
enter information relevant for a new or existing module. Examples of values that can be
edited are a module’s name, its documentation and its includes (or supermodules) list.

Concept Editor: The concept editor allows editing of concept attributes such as a con-
cept’s supertypes, its name, its associated propositions, etc. In addition to the inherent
attributes of a concept, all relations which have the concept as a domain type are displayed
and may be edited. Clicking the + button above the relation list opens a new relation editor
with default values filled in. Similarly, clicking the + button above the proposition list opens
a proposition editor.

Chapter 8: PowerLoom GUI 95

Relation Editor: The relation editor allows the user to enter a list of variables and
types for the relation’s arguments, and allows the setting of various relation attributes, e.g.,
whether the relation is closed, functional, etc. Similar to the concept editor, propositions
and rules associated with a relation can be edited.

Instance Editor: The instance editor allows the user to input an instance’s name, doc-
umentation, and associated propositions. If a proposition uses the relation image-url, an
image will be retrieved from the server and presented in the editor window.

Proposition editor: The proposition editor, shown in Figure 8.5, consists of a text field for
entering the proposition, and a set of buttons for performing actions on the proposition. The
buttons allow a user to assert, deny, or retract the typed proposition. There are several text-
based facilities which support efficient editing of propositions. First, the editor supports
many Emacs-style keybindings which facilitate editing of Lisp-like expressions, including
selecting entire parenthesis-delimited subexpressions, jumping backward and forward over
subexpressions, and navigating up and down expression trees.

[P] Edit Proposition

(FORALL [Tw Te)
<= (MOT (EMGCIME-TYPE 7Tw Tel)
CoMD (UNPOWERED-VEHICLE 7wl
(NOT (= (ENGINE-COUNT Twld 0333720

Module: |AIRCRAFI’—KE -
Cancel

Figure 8.5: Proposition Editor

In addition to Emacs keybindings, the proposition editor has a matching parenthesis
highlighter. When the cursor is placed before a left parenthesis, the matching right paren-
thesis is highlighted, and when the cursor is placed after a right parenthesis, the matching
left parenthesis is highlighted.

The proposition editor also supports symbol completion. The GUI uses a predictive
backtracking parser to analyze partial input of propositions. Based on the analysis, the
parser is able to recommend appropriate completions. For example, if the user types (f
and then selects the completion action by typing Ctrl-right, the parser will recommend a
list of completions including the forall symbol and all concepts and relations that begin
with the letter f.

8.4.6 Choosers

In a number of situations, an object of a specific type must be selected. For example, when
selecting a superconcept in a concept editor, the user should be presented with a list of

Chapter 8: PowerLoom GUI 96

existing concepts. In these cases, a chooser dialog is presented to the user which displays a
filterable list of candidate objects. As the user types a name of the object in the name text
field, the list of objects is filtered so that only objects which begin with the typed prefix are
displayed. Choosers are available for modules, concept, instances, and relations. A variable
chooser allows the user to type a variable name and select a type from a concept from a
list.

[E] Edit Extension
Relation:
‘Wingspan |
| Module: | AIRCRAFT-KB -
Results:
7E | M
A 100 57.5
) 53
AGM-120 5
ALM-84 2
ACM-88 3.7
Al =120 1.7
At -7 3.3
At -G 2
B-1 137
B-2 172
B-52 185 |
—1320 132 il
1] | »
Refresh | | Commit ‘ ‘ Cancel

Figure 8.6: Extension Editor

8.4.7 Extension Editor

The extension editor, shown in Figure 8.6, allows editing of a concept or relation’s extension.
It can be opened by right-clicking on a concept or relation in the browser or by selecting the
Query -> Edit Extension menu item. The extension editor presents a relation’s extension
as a list of tuples in table format. The user may add new tuples by typing names of instances
at the bottom of the table, and may alter existing tuples by double-clicking on a table cell
and typing in a new value. Instance name completion is available while typing instance
names by typing Ctrl-right. A user may choose to abort the edited extension by clicking
the Cancel button. If the user clicks the Commit button, the relation’s extension will be
updated by asserting and retracting appropriate propositions.

Chapter 8: PowerLoom GUI

8.4.8 Ask and Retrieve Queries

Query

Query:

fwingspan 7 71

Module: | AIRCRAFT-KB -

Results:
X | 7

A-10 575 -
AG 53
AGM-130 5
AGM-84 3
AGM-EE 37 =

|

~“Saved Queries

| v|| Save Current Query ‘

~Query Options

i) Retrieve

Minimum

haximu

all results i) Retrieve results

Timeout: Moveout:

nference Level: |NORMAL v|

Match Mode: |gTRICT
ScCore: [C] Maximize Score

m Unknowns: [[] Don't Optimize

| Hide Advanced Options |

| Execute H Continue || Cancel |

Figure 8.7: Query Dialog

97

The Query dialog, shown in Figure 8.7, can be opened by selecting the Query -> Query
menu item, by typing Ctrl-@ or by pressing the query toolbar button. The Query dialog
consists of a text area for typing the query, a results table for displaying the results of the
query, a query list for saving and selecting pre-saved queries, and an options subpane for
configuring various query parameters.

The query input pane supports features similar to that of the proposition editor, includ-
ing Emacs key bindings, parenthesis matching and completion. Queries can be executed

Chapter 8: PowerLoom GUI 98

by typing Ctrl-RET or by clicking on the Execute button at the bottom of the dialog.
After a query has executed, results will be displayed in the results table or a “No results
found” indicator will flash. The column headers for the results will display the correspond-
ing free variables in the query. Results may be sorted by clicking on a column header.
Doing so will sort the results by using the clicked column as an index. Users may toggle
ascending/descending sort order by clicking the header multiple times.

If the query contains no free variables, it is effectively a true/false ASK operation as
opposed to a RETRIEVE. In this case, the result will be a truth value, and the column header
will be labeled TRUTH-VALUE. If the query is the result of a partial retrieve operation, an
additional column containing the match score will be displayed.

If the user clicks on a cell in the results table, the topmost browser will be updated to
display the selected item. Right-clicking on a query result brings up a context menu which
currently only contains an Explain result menu item. Selecting this will present an HTML
explanation in a separate window. The displayed explanation may contain hyperlinked
objects. Clicking on a hyperlinked object will update the topmost browser to display the
object.

Users may save frequently-executed queries in a query list by clicking the Save button
at the top of the options panel which will prompt them for a query name. Saved queries
will be stored in the preferences file using an XML representation. Saved queries are stored
in the combobox to the left of the save button. Selection of a saved query will prefill the
query dialog with the query and all saved parameters.

Most important PowerLLoom query options are controllable in the options dialog, such
as number of results to retrieve, inference control options such as inference level, timeout,
moveout and various others.

8.4.9 Search

Users may search for objects in the KB by entering strings which match the name of the
object. A search dialog as shown in Figure 8.8 can be opened by selecting the Query ->
Search menu item, by typing Ctrl-f, or by pushing a search toolbar button (marked by
a flashlight icon) inside the browser. If the user activates a search toolbar button inside a
navigation pane, the search dialog will be configured to search for objects associated with
the type of object displayed in that pane. For example pushing the search button inside the
concept navigation pane will configure the search dialog to look for concept objects only.

Searches may be constrained in several ways. First, the module may be specified or
the user may specify that the search should be across all modules. Second, the types of
objects to be searched is configurable. For example, users may search for concepts and
instances, instances only, etc. Finally, users may specify that an object’s name must match
the beginning or end of the search string, or match the search string exactly.

Chapter 8: PowerLoom GUI 99

% Search

Search String: |co |

Module: | AIRCRAFT- KB - |
® Contains
[Vl Concepts)
(1 Starts With
[¥| Relations . [Case Sensitive
) Ends With
[¥| Instances
' Exactly Matches
Object | Module | Type []
COMBAT -AIRCEAFT AlRCEAFT-KB COMCEPT -
COMBAT =M IS510M AIRCEAFT -KEB COMCEPT
COMBAT-YEHICLE AlRCEAFT-KB COMCEPT
COmMMAND AlRCEAFT-KB COMCEPT
COST AlRCEAFT-KB FELATION
EMCIME-COUMT AlRCEAFT-KB FELATIOMN
HELICOPTER. AIRCEAFT -KEB IMSTANCE
HELICOPTER-MAMUF. .. | AIRCEAFT -KB COMCEPT
LYCOMIMNG AlRCEAFT-KB INSTAMCE -
h1||‘-l\h| kA AT kAT AT AT L0 b LT 0T | ’
| Ok | | Cancel

Figure 8.8: Search Dialog

When the user executes the search by hitting RET or selecting the OK button, a list of
results is presented. These results are provided in a table format where one column is the
name of the retrieved object, another column contains the module that the object resides
in, and the final column specifies the type of the object (i.e., concept, instance, etc). As is
the case with query results, clicking on a search result item will update the topmost browser
to display the selected object.

8.4.10 Console

The console window, as shown in Figure 8.9, can be opened by selecting the KB -> Open
PowerLoom Console menu item or by typing Ctrl-p. This opens an internal window, which
allows PowerLoom commands to be typed directly and sent to the PowerLoom server. The
response generated by PowerLoom is sent back to the GUI and printed below the prompt.
This functionality is similar to that of a LISP listener.

Chapter 8: PowerLoom GUI 100

Powerloom Console

= {retrieve (fx WA dwingspan 7y ™A

((F-16 23

= (retrieve all (#x S dwingspan 7 B

(F-16 230 (F-1% 423 (F-117 43 4 (F-111 &2y (EF-111 &3)
(E-2 1213 (CF-18 40.4) (C-2 93% (-5 223) (C-22 108) (C-21
4 (C-20 FEY(C-17 171 (C-141 160y {(Z-120 1323 (B-52
185y (B-2 1720 (B-1 127 (AlM-9h 23 (AlM-7M 230 (AM-120
177 (AGM-88 3.7 (A0M-54 37 (AGM-120 5) (A-& 53) (A-10
5750

-

AIRCRAFT-KE

Cancel

Figure 8.9: PowerLoom Console

8.4.11 Cut/Copy/Paste/Delete

The PowerLoom GUI supports cut, copy, paste, and delete operations. These operations
can be used to edit text, and in some cases they can be used to edit objects in lists or trees.
For example, the concept hierarchy can be edited within the browser by selecting a con-
cept, executing a cut operation, selecting another concept, and then executing paste. This
sequence of operations will delete the concept from it’s original position in the hierarchy,
and make it a subconcept of the concept that was selected when the paste operation was
performed.

The GUI implements a robust data transfer framework that is capable of recognizing
the types of objects that are being transferred, and the types of potential transfer sources
and destinations. This allows the application to prohibit nonsensical data transfers such as
cutting a concept in a concept navigation pane and then trying to paste it into a module
pane. It also allows data transfer operations to be context sensitive. For example, cutting a
concept in a concept navigation pane means that a move operation is being initiated, while
cutting a concept in a concept editor’s superconcept list means that the concept should be
removed from the list. Additionally, copying an object such as a concept, then executing a
paste inside a text window will paste the name of the object.

As one would expect, text may be cut, copied and pasted between the GUI and outside
applications.

8.5 Future Work

There are many areas where further development and improvement is needed, including:

Chapter 8: PowerLoom GUI 101

8.5.1 Large KBs

Currently, when a module is selected, the GUI attempts to retrieve all concepts, relations,
and instances that are contained in that module. For large knowledge bases that might
contain millions of objects and assertions, this is clearly infeasible. To handle such situations
we need to develop more sophisticated retrieval and caching strategies to only materialize
partial views of a KB in the GUI. Scrolling down a list, for example, might then trigger
the retrieval and display of additional objects on demand, while older, inactive objects are
being flushed from the cache.

8.5.2 Undo

There is currently no undo facility and changes to the KB are written through to the server
as soon as a user clicks OK in an editing dialog. To support this properly, we would need a
snapshot mechanism that would allow rollback to earlier states of the KB.

8.5.3 Drag and Drop

Adding a drag and drop capability would make ontology editing easier than is currently
possible. For example, one concept could be dragged on top of another to move the object
from its current position. We believe that the existing data transfer framework could be
leveraged to implement a robust drag and drop facility.

8.5.4 Scrapbook

In creating and editing ontologies, it is sometimes desirable to maintain heterogeneous
scraps of information. We envision a scrapbook feature where text and objects of various
types could be dragged to and organized visually for later use.

8.5.5 Instance Cloning

It is often useful to create new instances that are similar to existing instances. We would like
to implement a cloning facility in which a wizard-like series of dialogs would step the user
through the process of copying information from one object to a new object. For example,
the dialogs would prompt the user for propositions to transfer from the old instance to the
new instance, and allow the user to modify the propositions in the process of transferring
them.

8.5.6 Security

There is currently no authentication and access control mechanisms in the PowerLoom GUI.
The GUI client assumes that is communicating with a trusted host over a secure network.
Similarly, the PowerLoom server assumes that it is communicating with a friendly client
that has full access to the server. In the future, we need to add security mechanisms which
allow clients to be authenticated, and resources on the server to be made accessible to
authorized users only. In addition, we need to implement encryption mechanisms so that
clear text is not sent over insecure networks, potentially compromising sensitive data.

8.5.7 Multiple Users

Although the client /server model allows multiple GUI clients to concurrently share the same
server, there is only very weak support for synchronizing clients and ensuring that users
don’t accidentally step on each other. We need to improve our infrastructure to handle

Chapter 8: PowerLoom GUI 102

notification of KB updates, add support for transactions and KB locking, and improve our
caching mechanisms to detect when the GUI state is out of sync with respect to the server.

Chapter 9: Ontosaurus 103

9 Ontosaurus

Ontosaurus is a Web-based KB browser that offers a convenient way to view the contents of
PowerLoom knowledge bases from a standard Web browser. Whenever a user searches for an
object or clicks on a hyperlink, Ontosaurus dynamically generates HT ML pages describing
the requested object and related information. The description will itself contain links to
other relevant objects which the user can click on to quickly "surf" through a knowledge
base.

Similar to the PowerLoom GUI (see Chapter 8 [PowerLoom GUI], page 84), Ontosaurus
relies on a PowerLoom server that can handle HTTP requests. For this reason, it is currently
only supported in the Java version of PowerLoom or in Lisp version that supports a Web
server such as AServe or Portable AServe (e.g., Allegro CL).

To use Ontosaurus, do the following. Start PowerLoom in Java or a qualifying Lisp
version. Once PowerLoom is up and running, issue the following command:

PL-USER |= (start-ontosaurus)

Loading required system webtools
Loading required system ontosaurus

PL-USER |=

The command also accepts a :port option to make the server listen to a different port.
Once the Ontosaurus server is running, go to your Web browser and enter the following URL:
http://localhost:9090/ploom/ontosaurus/ Substitute a fully qualified host name and
different port if necessary. Ontosaurus comes with a short online help page and is otherwise
self-explanatory.

Alternatively, the PowerLoom Web Archive available in
powerloom-x.y.z/native/java/lib/ploom.war

can be deployed in an Apache Tomcat server by copying it into the server installation’s
‘webapps’ directory. Ontosaurus can then connect to it at the above URL at the server port

used by Tomcat.

http://localhost:9090/ploom/ontosaurus/

Chapter 10: Installation 104

10 Installation

10.1 System Requirements

To install and use PowerLoom, you’ll approximately need the following amounts of disk
space:

e 16 MB for the tarred or zipped archive file

e 70 MB for the untarred sources, tanslations, compiled Java files, and documentation
e 16 MB to compile a Lisp version

e 16 MB to compile the C++ version (without -g)

e 5 MB to compile the Java version (already included)

This means that you will need approximately 100 MB to work with one Lisp, one C++
and one Java version of PowerLoom in parallel. If you also want to experiment with the Lisp
translation variant that uses structures instead of CLOS instances to implement STELLA
objects, then you will need an extra 16 MB to compile that.

The full PowerLoom development tree is quite large, since for every STELLA source file
there are three to four translated versions and as many or more compiled versions thereof.
The actual PowerLoom libraries that you have to ship with an application, however, are
quite small. For example, the Java jar files ‘powerloom.jar’ and ‘stella.jar’ are only
2.3 MB total (4 MB including Java sources). The dynamic C++ libraries ‘libstella.so’
and ‘liblogic.so’ compiled on a Linux platform, are about 8 MB total. Additionally,
if you don’t need all the different translations of PowerLoom, you can delete some of the
versions to keep your development tree smaller See Section 10.6 [Removing Unneeded Files],
page 107.

To run the Lisp version of PowerLoom, you will need an ANSI Common-Lisp (or at least
one that supports CLOS and logical pathnames). We have successfully tested PowerLoom
with Allegro-CL 4.2, 4.3, 5.0, 6.0 and 7.0, Macintosh MCL 3.0, 4.0 and 5.1, OpenMCL 1.0,
SBCL 0.9.4, CMUCL 19¢, LispWorks 4.4.6, CLisp 2.37, Lucid CL 4.1 (plus the necessary
ANSTI extensions and Mark Kantrowitz’s logical pathnames implementation), and various
others. Our main development platform is Allegro CL running under Sun Solaris and Linux.
The closer your environment is to ours, the higher are the chances that everything will work
right out of the box. Lisp development under Windows should also be no problem.

To run the C++ version of PowerLoom, you will need a C++ compiler (such as g++)
that supports templates and exception handling. We have successfully compiled and run
PowerLoom with g++ 3.2 and later under Linux Redhat 8.0 & 9.0, SunOS and MacOS X,
and with CygWin 5.0 and MinGW 5.0 under Windows 2000 and XP. Both CygWin and
MinGW provide a GNU Unix environment, but MinGW can generate Windows executables
that are fully standalone. We’ve also managed to compile PowerLoom under MS Visual
C++, however, we never got the Boehm garbage collector to work. The GC claims to be
very portable, so this should be solvable for somebody with good knowledge of MS Visual
C++.

For the Java version, you will need Java JDK 1.2 or later. To get reasonable performance,
you should use J2SDK 1.4 or 1.5. We’ve run the Java version of PowerLoom on a variety
of platforms without any problems.

Chapter 10: Installation 105

Any one of the Lisp, C++, or Java implementations of PowerLoom can be used to develop
your own PowerLoom-based applications. Which one you choose is primarily a matter of
your application and programming environment. The Lisp and Java versions are comparable
in speed, the C++ version is usually a factor of 2-3 faster than Lisp or Java.

10.2 Unpacking the Sources

Uncompress and untar the file ‘powerloom-X.Y.Z.tar.gz' (or unzip the file
‘powerloom-X.Y.Z.zip’) in the parent directory of where you want to install PowerLoom
(‘X.Y.Z’ are place holders for the actual version numbers). This will create the PowerLoom
tree in the directory ‘powerloom-X.Y.Z/’ (we will use Unix syntax for pathnames). All
pathnames mentioned below will be relative to that directory which we will usually refer
to as the "PowerLoom directory".

10.3 Lisp Installation

To install the Lisp version of PowerLoom, startup Lisp and load the file
‘load-powerloom.lisp’ with:

(CL:1load "load-powerloom.lisp")

The first time around, this will compile all Lisp-translated STELLA files before they are
loaded. During subsequent sessions, the compiled files will be loaded right away.

By default, PowerLoom now uses the version that uses Lisp structs instead of CLOS
objects to implement STELLA objects. If you do want to use the CLOS-based version
instead do the following:

(CL:setq cl-user::*load-cl-struct-stella?* CL:nil)
(CL:load "load-powerloom.lisp")

Alternatively, you can edit the initial value of the variable *1oad-cl-struct-stella?*
in the file ‘load-powerloom.1lisp’. Using structs instead of CLOS objects greatly improves
slot access speed, however, it may cause problems with incremental re-definition of STELLA
classes (this is only an issue if you are developing your application code in the STELLA
language. In that case, it is recommended to only use the struct option for systems that
are in or near the production stage).

Once all the files are loaded, you should see a message similar to this:

PowerLoom 3.2.0 loaded.
Type ¢ (powerloom)’ to get started.
Type ‘(in-package "STELLA")’ to run PowerLoom commands directly
from the Lisp top level.
USER(2) :
To reduce startup time, you might want to create a Lisp image that has all of PowerLoom
preloaded.

Now type
(in-package "STELLA")

to enter the STELLA Lisp package where all the PowerLoom code resides. Alternatively,
you can type

Chapter 10: Installation 106

(powerloom)

which will bring up a PowerLoom listener that will allow you to execute PowerLoom
commands.

IMPORTANT: All unqualified Lisp symbols in this document are assumed to be in the
STELLA Lisp package. Moreover, the STELLA package does NOT inherit anything from the
COMMON-LISP package (see the file ‘sources/stella/cl-1ib/cl-setup.lisp’ for the few
exceptions). Hence, you have to explicitly qualify every Lisp symbol you want to use with
CL:. For example, to get the result of the previous evaluation, you have to type CL: * instead
of *.

10.4 C++ Installation

To compile the C++ version of PowerLoom, change to the native C++ directory of Power-
Loom and run make like this:

% cd native/cpp/powerloom
% make
This will compile all PowerLoom and STELLA files as well as the C++ garbage collector.

It will then generate static or dynamic ‘libstella’, ‘1iblogic’ and other library files in the
directory ‘native/cpp/1ib’ which can be linked with your own C++-translated PowerLoom
(or other) code. To test whether the compilation was successful, you can run PowerLoom
from the top-level PowerLoom directory using the ‘powerloom’ script (or powerloom.bat
under a Windows command prompt):

% powerloom c++

Running C++ version of PowerLoom...

Initializing STELLA...

Initializing PowerLoom...

Welcome to PowerLoom 4.0.0

Copyright (C) USC Information Sciences Institute, 1997-2010.
PowerLoom comes with ABSOLUTELY NO WARRANTY!

Type ‘(copyright)’ for detailed copyright information.

Type ‘(help)’ for a list of available commands.

Type ‘(demo)’ for a list of example applications.

Type ‘bye’, ‘exit’, ‘halt’, ‘quit’, or ‘stop’, to exit.

PL-USER |=
This will run various PowerLoom startup code and then bring up a PowerLoom command
loop where you can execute commands. The c++ argument tells the script to run the
C++ version of PowerLoom (which is also run by default as long as the C++ version was
compiled). If the C++ version was not compiled or the java argument was given instead,
the Java version of PowerLoom will be run.

Type
(demo)
to bring up a menu of available demos, type

Chapter 10: Installation 107

(run-powerloom-tests)
to run the PowerLoom test suite, or type
exit

to exit PowerLoom.

10.5 Java Installation

Nothing needs to be done to install the Java version. Because Java class files are platform
independent, they are already shipped with the PowerLoom distribution and can be found in
the directory ‘native/java’ and its subdirectories. Additionally, they have been collected
into the file ‘native/java/lib/powerloom.jar’ in the PowerLoom directory. To try out
the Java version of PowerLoom, you can run PowerLoom from the top-level PowerLoom
directory using the ‘powerloom’ script (or powerloom.bat under a Windows command
prompt):

% powerloom java

Running Java version of PowerLoom...

Initializing STELLA...

Initializing PowerLoom...

Welcome to PowerLoom 4.0.0

Copyright (C) USC Information Sciences Institute, 1997-2010.
PowerLoom comes with ABSOLUTELY NO WARRANTY!

Type ‘(copyright)’ for detailed copyright information.

Type (help)’ for a list of available commands.

Type ‘(demo)’ for a list of example applications.

Type ‘bye’, ‘exit’, ‘halt’, ‘quit’, or ‘stop’, to exit.

PL-USER |=

Similar to the C++ executable, this will run various PowerLoom startup code and then
bring up a PowerLoom command loop where you can execute commands. Type

(demo)

to bring up a menu of available demos, type
(run-powerloom-tests)

to run the PowerLoom test suite, or type
exit

to exit PowerLoom.

10.6 Removing Unneeded Files

To save disk space, you can remove files that you don’t need. For example, if you are not
interested in the C++ version of PowerLoom, you can delete the directory ‘native/cpp’.
Similarly, you can remove ‘native/java’ to eliminate all Java-related files. You could do the
same thing for the Lisp directory ‘native/lisp’, but (in our opinion) that would make it less

Chapter 10: Installation 108

convenient for you to develop new PowerLoom code that is written in STELLA. Finally, if
you don’t need any of the STELLA sources, you can delete the directory ‘sources/stella’.
If you don’t need local copies of the STELLA and PowerLoom documentation, you can delete
parts or all of the directories ‘sources/stella/doc’ and ‘sources/logic/doc’.

10.7 Installing PowerLoom Patches

If you already have an older version of PowerLoom installed, you can upgrade to the latest
patch level by downloading incremental sets of patches instead of downloading the complete
release. Patch files are usually significantly smaller than the complete release and patch-
ing an existing installation can also preserve local additions, deletions, or modifications.
PowerLoom patch files are available from the same location as the full PowerLoom release.

Patches are currently only available in Unix diff format which requires the Unix patch
utility to install them (the patch program should be readily available on most Unix systems,
otherwise, you can get it for free from the Free Software Foundation).

Patch files follow the following naming convention: Suppose the current version of
PowerLoom is 3.0.0. Then the patch file to update to the next patch level is called
‘powerloom-3.0.0-3.0.1.diff.gz’.

Important: Patch files are strictly incremental. Thus, to upgrade from version 3.0.0 to
3.0.2, you will need two patch files: one to go to version 3.0.1 and one to go from that to
version 3.0.2; you will have to apply them in that sequence.

To find out the current version of your PowerLoom installation, look at the version string
displayed when the powerloom function is called in Lisp, or when the C++ or Java program
starts up.

Important: Before you apply any patches, you should always make a backup copy of
your current PowerLoom installation to preserve any local modifications you made, in case
something goes wrong.

To apply patches, copy the appropriate patch file to the top level of your PowerLoom
installation directory. Suppose the patch file is called ‘powerloom-3.0.0-3.0.1.diff.gz’.
You can apply the patches using the following command:

gunzip -qc powerloom-3.0.0-3.0.1.diff.gz | patch -pl

If you deleted some native PowerLoom files to save space, you can use the -f option to
force patch to proceed even if files it needs to patch do not exist anymore (this is somewhat
dangerous in case patch encounters some more serious problems). For example:

gunzip -qc powerloom-3.0.0-3.0.1.diff.gz | patch -pl -f

To keep patch files small, PowerLoom patch files do not contain updated binary files
that ship with the full release (such as Java class files, jar files and PDF documents). Those
have to be regenerated either manually or with help of available ‘Makefile’s. The Lisp
version of PowerLoom will automatically recompile the first time the updated system is
loaded. To recompile the C++ installation follow the installation instructions given above.
The Java version will need to be recompiled manually (better patch recompilation support
might become available in the future).

Chapter 11: Miscellaneous 109

11 Miscellaneous

This is a catch-all section for documented functions, methods and relations that haven’t
been categorized yet into any of the previous sections. They are in random order and many
of them will never be part of the official PowerLoom interface. So beware!

2_d_element (array (row INTEGER) (column INTEGER)) : [Method on 2_D_ARRAY]|
(LIKE (ANY-VALUE SELF))
Return the element of array at position [row, column].

2_d_element (array (row INTEGER) [Method on 2_D_FLOAT-ARRAY]
(column INTEGER)) : FLOAT
Return the element of array at position [row, column).

2_d_element-setter (array (value OBJECT) [Method on 2_D_ARRAY]|
(row INTEGER) (column INTEGER)) : (LIKE (ANY-VALUE SELF))
Set the element of array at position [row, column] to value and return the result.

2_d_element-setter (array (value FLOAT) [Method on 2_D_FLOAT-ARRAY]
(row INTEGER) (column INTEGER)) : (LIKE (ANY-VALUE SELF))
Set the element of array at position [row, column| to value and return the result.

add-testing-example ((form CONS) (score PARTIAL-MATCH-SCORE)) [N-Command]

Add a query and score pair to the master list of testing examples

add-training-example ((form CONS) [N-Command]
(score PARTIAL-MATCH-SCORE)) :
Add a query and score pair to the master list of training examples

all-asserted-types ((self OBJECT)) : (CONS OF NAMED-DESCRIPTION) [Function]
Return a set of all of the types that are asserted to be satisfied by self.

all-class-instances ((type SURROGATE)) : CONS [Function]
Return a set of instances that belong to the class type.

all-cycles ((module MODULE) (local? BOOLEAN)) : (CONS OF CONS) [Function]
Return a list of lists of descriptions that are provably co-extensional.

all-direct-subrelations ((relation NAMED-DESCRIPTION) [Function]
(removeEquivalents? BOOLEAN)) : (CONS OF NAMED-DESCRIPTION)
Return a set of relations that immediately specialize relation. If removeEquivalents?
(recommended), don’t include any relations equivalent to relation.

all-direct-superrelations ((relation NAMED-DESCRIPTION) [Function]
(removeEquivalents? BOOLEAN)) : (CONS OF NAMED-DESCRIPTION)
Return a set of relations that immediately subsume relation. If removeEquivalents?
(recommended), don’t include any relations equivalent to relation.

all-direct-types ((self OBJECT)) : (CONS OF LOGIC-OBJECT) [Function]
Return a set of most specific types that are satisfied by self.

Chapter 11: Miscellaneous 110

all-equivalent-relations ((relation NAMED-DESCRIPTION) [Function]
(reflexive? BOOLEAN)) : (CONS OF NAMED-DESCRIPTION)
Return a list of all relations equivalent to relation. If reflexive?, include relation in
the list.

all-facts-of-instance ((self OBJECT) [Function]
(includeunknownfacts? BOOLEAN) (elaborate? BOOLEAN)) : (LIST OF
PROPOSITION)
Return a list of all definite (TRUE or FALSE) propositions attached to self.

all-facts-of-n ((n INTEGER) &rest (instanceRefs NAME)) : (CONS [N-Command|
OF PROPOSITION)

This is a generalization of all-facts-of (which see). With n = 0 and only one
instance this command behaves just like all-facts-of. Otherwise, returns a cons
list of all definite (TRUE or FALSE) propositions that reference any of the instances
listed in instanceRefs, plus if n >= 1 all propositions that reference any instances that
are arguments of propositions collected in the previous step, plus if n >= 2... and so
on. That is, if we only consider binary propositions, this can be viewed as growing
a graph with instances as its nodes and predicates as its arcs starting from the set
of seed instanceRefs to depth n-1. Caution: with a fully connected KB and large
enough n this could return the whole knowledge base.
The returned propositions include those asserted to be true or false by default, but
it does not include propositions that are found to be true only by running the query
engine. Facts inferred to be true by the forward chainer will be included. Hence, the
returned list of facts may be longer in a context where the forward chainer has been
run then in one where it has not (see run-forward-rules).

all-inconsistent-propositions ((module MODULE) [Function]
(Iocal? BOOLEAN)) : (ITERATOR OF PROPOSITION)
Iterate over all conceived propositions visible from module that have an inconsis-
tent truth value. If local?, only return inconsistent propositions conceived locally in
module.

all-instances ((module MODULE) (local? BOOLEAN)) : (ITERATOR OF [Function]
LOGIC-OBJECT)
Iterate over all instances (or individuals) visible from module. Only instances that
haven’t been deleted will be considered. If local?, only return instances created locally
in module.

all-named-descriptions ((module MODULE) (local? BOOLEAN)) : [Function]
(ITERATOR OF NAMED-DESCRIPTION)
Iterate over all named descriptions visible from module. If local?, return only named
descriptions interned in module. If module is null, return all named descriptions
interned everywhere.

all-named-instances ((module MODULE) (local? BOOLEAN)) : [Function]
(ITERATOR OF LOGIC-OBJECT)
Iterate over all named instances (or individuals) visible from module. Only instances
that haven’t been deleted will be considered. If local?, only return instances created
locally in module.

Chapter 11: Miscellaneous 111

all-named-terms ((module MODULE) (local? BOOLEAN)) : (ITERATOR OF [Function]
OBJECT)
Iterate over all named terms visible from module. A term can be an instance (or
individual) as well as a description. Only terms that haven’t been deleted will be
considered. If local?, only return terms created locally in module.

all-propositions ((module MODULE) (local? BOOLEAN)) : (ITERATOR [Function]
OF PROPOSITION)
Iterate over all conceived propositions visible from module. Only propositions that
haven’t been deleted will be considered. If local?, only return propositions conceived
locally in module.

all-relation-values ((relation SURROGATE) [Function]
(nMinusOneArguments CONS)) : CONS
Return a set of values that satisfy the relation relation (a surrogate) applied to nMi-
nusOneArguments plus that last value.

all-sentences-of ((instanceRef OBJECT)) : (CONS OF [Command]
STRING-WRAPPER)
Return a list of sentences describing facts about instanceRef.

all-slot-value-types ((self LOGIC-OBJECT) (relation SURROGATE)) : [Function]
(CONS OF NAMED-DESCRIPTION)
Return a set of the most specific types for fillers of the slot relation applied to self.

all-slot-values ((self LOGIC-OBJECT) (relation SURROGATE)) : CONS [Function]
Return a set of values for the slot relation (a surrogate) applied to self (an object).

all-subrelations ((relation NAMED-DESCRIPTION) [Function]
(removeequivalents? BOOLEAN)) : (CONS OF NAMED-DESCRIPTION)
Return a set of all (named) relations that specialize relation.

all-superrelations ((relation NAMED-DESCRIPTION) [Function]
(removeequivalents? BOOLEAN)) : (CONS OF NAMED-DESCRIPTION)
Return a set of all relations that subsume relation.

all-taxonomic-types ((self OBJECT)) : (CONS OF NAMED-DESCRIPTION) [Function]
Return a set of all of the types that are satisfied by self, using only assertions and
upward taxonomic reasoning.

all-terms ((module MODULE) (local? BOOLEAN)) : (ITERATOR OF [Function]
OBJECT)
Return a list of all terms visible from module. A term can be an instance (or individ-
ual) as well as a description. Only terms that haven’t been deleted will be considered.
If local?; only return terms created locally in module.

all-types ((self OBJECT)) : (CONS OF NAMED-DESCRIPTION) [Function]
Return a set of all of the types that are satisfied by self.

Chapter 11: Miscellaneous 112

all-unnamed-terms ((module MODULE) (local? BOOLEAN)) : ITERATOR [Function]
Iterate over all unnamed terms visible from module. A term can be an instance (or
individual) as well as a description. Only terms that haven’t been deleted will be
considered. If local?, only return terms created locally in module.

allocate-supported-closure-iterator ((startnode CONS) [Function]

(allocateadjacencyiterator FUNCTION-CODE) (filterfunction FUNCTION-CODE)) :
SUPPORTED-CLOSURE-ITERATOR

Similar to allocate-transitive-closure-iterator (which see), but return a

SUPPORTED-CLOSURE-ITERATOR instead.

allocate-transitive-closure-iterator ((startNode OBJECT) [Function]
(allocateAdjacencylterator FUNCTION-CODE) (filterFunction FUNCTION-CODE))
: ITERATOR

Return an iterator that generates the transitive closure of applying iterators gener-
ated by allocateAdjacencylterator to startNode. If filterFunction is non-null, that
function is applied as a filter to each node generated (nodes filtered out still generate
descendants, but they don’t get returned).

apply-ask (&body (body CONS)) : OBJECT [Macro]
Execute a yes/no query composed of input-variables inputVariables and body
queryBody. Before executing, bind variables to inputBindings (in sequence).
(apply-ask inputVariables queryBody inputBindings)

apply-kappa? ((description DESCRIPTION) (vector VECTOR)) : BOOLEAN [Function]
Apply (inherit) the description description to members of the vector vector. Return
TRUE if no clash was detected. Constraint propagation happens only if it is enabled
prior to calling apply-kappa?.

apply-retrieve (&body (body CONS)) : OBJECT [Macro]
Execute a query composed of io-variables variables and body queryBody. Before
executing, bind variables to inputBindings (in sequence). If one variable is left
unbound, returns a cons list of bindings of that variable. If two or more are unbound,
returns a cons list of cons lists of bindings. Setting the option :singletons? to FALSE
always returns a list of lists. Example call: (apply-retrieve variables queryBody
inputBindings)

ask-partial (&rest (proposition&options PARSE-TREE)) : FLOAT [N-Command]
Similar to ask (which see), but return the highest partial match score for the supplied
proposition instead of a truth value. If the option :MAXIMIZE-SCORE? is set to
FALSE, return after the first partial match score has been generated.

bottom? ((self OBJECT)) : BOOLEAN [Function]
Return TRUE if self is the undefined individual BOTTOM.

call-all-facts-of ((instanceRef OBJECT)) : (LIST OF PROPOSITION) [Command]
Return a list of all definite (TRUE or FALSE) propositions that reference the instance
instanceRef.

Chapter 11: Miscellaneous 113

call-ask ((query OBJECT)) : TRUTH-VALUE [Function]
Callable version of ask (which see). Accepts queries specified by a query iterator,
or specified as a CONS-list of arguments as they would be supplied to ask. Raises
LOGIC-EXCEPTIONS in case of illegal queries and logical expressions.

call-defconcept ((arguments CONS)) : NAMED-DESCRIPTION [Function]
Callable version of the defconcept command (which see). Expects the same argu-
ments as defconcept but supplied as a list.

call-deffunction ((arguments CONS)) : NAMED-DESCRIPTION [Function]
Callable version of the deffunction command (which see). Expects the same argu-
ments as deffunction but supplied as a list.

call-defobject ((arguments CONS)) : LOGIC-OBJECT [Function]
Callable version of the defobject command (which see). Expects the same arguments
as defobject but supplied as a list.

call-defproposition ((arguments CONS)) : PROPOSITION [Function]
Callable version of the defproposition command (which see). Expects the same
arguments as defproposition but supplied as a list.

call-defrelation ((arguments CONS)) : NAMED-DESCRIPTION [Function]
Callable version of the defrelation command (which see). Expects the same argu-
ments as defrelation but supplied as a list.

call-list-undefined-relations ((module MODULE) [Function]
(Iocal? BOOLEAN)) : CONS
Callable version of list-undefined-relations (which see).

call-propagate-constraints ((context CONTEXT)) : [Function]
Trigger constraint propagation over all propositions in the module or world context.

call-retrieve ((query OBJECT)) : QUERY-ITERATOR [Function]
Callable version of retrieve (which see). Accepts queries specified by a query itera-
tor, or specified as a CONS-list of arguments as they would be supplied to retrieve.
Raises LOGIC-EXCEPTIONS in case of illegal queries and logical expressions.

call-retrieve-partial ((query OBJECT)) : QUERY-ITERATOR [Function]
Callable version of retrieve-partial (which see). Accepts queries specified by a
query iterator, or specified as a CONS-list of arguments as they would be supplied
to retrieve-partial. Raises LOGIC-EXCEPTIONSs in case of illegal queries and
logical expressions.

call-run-forward-rules ((module MODULE) (force? BOOLEAN)) : [Function]
Run forward inference rules in module module. If module is NULL, the current
module will be used. If forward inferencing is already up-to-date in the designated
module, no additional inferencing will occur, unless force? is set to TRUE, in which
case all forward rules are run or rerun.

Chapter 11: Miscellaneous 114

call-set-inference-level ((levelKeyword KEYWORD) [Function]
(module MODULE)) : KEYWORD
Set the inference level of module to the level specified by levelKeyword. If module is
NULL and we are inside a query, set the level of the current query iterator. Otherwise,
set the level globally.

class? ((objectRef OBJECT)) : BOOLEAN [Function]
Return TRUE if objectRef denotes a class.

coerce-to-instance ((self OBJECT) (original OBJECT)) : LOGIC-OBJECT [Function]
Return the logic instance referred to by self.

coerce-to-instance-or-literal ((self OBJECT) (original OBJECT)) : [Function]
OBJECT
Return the logic instance referred to by self, or self if it is a literal (e.g., string or
number) that can’t be coerced.

coerce-to-vector ((self OBJECT)) : VECTOR [Function]
Return a vector containing the elements in self. Coerce each element of self to be a
logic object or literal.

collection? ((objectRef OBJECT)) : BOOLEAN [Function]
Return TRUE if objectRef denotes a relation or a class.

conceive-term ((tree OBJECT)) : OBJECT [Command]|
tree is a term expression (a string or an s-expression), or is a class reference (a symbol
or surrogate). Return a (possibly newly-conceived) term representing the internalized
representation of that term.

conjoin-truth-values ((tvl TRUTH-VALUE) (tv2 TRUTH-VALUE)) : [Function]
TRUTH-VALUE
Return the logical conjunction of truth values tvl and tv2.

consify (self) : CONs [Method on JUSTIFICATION]
Return a CONS tree representation of the proof self. Each proof step is represented
as a CONS tree of the form (<proposition> (<key> <value>...) <antecedent>...) where
each <antecedent> is a CONS tree representing a subproof. The consification follows
the original proof structure literally, i.e., no uninteresting nodes such as patterns or
AND-introductions are suppressed.

consify (self) : CONS [Method on QUERY-ITERATOR]
Generate all solutions for the query self, and collect them into a cons list of result
tuples. If :SINGLETONS? TRUE, collect a list of atoms rather than a list of lists for
tuples of arity=1.

consify (self) : CONS [Method on QUERY-SOLUTION-TABLE]
Collect all solutions of self into a cons list and return the result.

consify-current-solutions (self) : CONS [Method on QUERY-ITERATOR]
Collect the current solutions of self into a cons list of result tuples. If : SINGLETONS?
TRUE, collect a list of atoms rather than a list of lists for tuples of arity=1.

Chapter 11: Miscellaneous 115

consify-justification ((self JUSTIFICATION) (style KEYWORD)) : [Function]
CONS
Return a CONS tree representation of the proof self. Each proof step is represented
as a CONS tree of the form (<proposition> (<key> <value>...) <antecedent>...) where
each <antecedent> is a CONS tree representing a subproof. style indicates what nodes
in the proof tree should be suppressed. :RAW preserves the original structure literally,
:VERBOSE keeps AND- introductions but suppresses all auxiliary (non-logical) nodes
such as pattern nodes, and :BRIEF additionally suppresses AND-introduction nodes.

constant? ((objectRef OBJECT)) : BOOLEAN [Function]
Return TRUE if objectRef denotes a literal or scalar.

copy (self) : (LIKE SELF) [Method on JUSTIFICATION]
Return a copy of the proof starting at self. Allocates all new justification objects, but
structure-shares other information such as propositions and substitutions.

create ((name GENERALIZED-SYMBOL) [N-Command]
&rest (type GENERALIZED-SYMBOL)) : OBJECT
Create a logic object with name name and return it. If type is also supplied, assert
that the object belongs to that type.

create-2_d_array ((nof-rows INTEGER) (nof-columns INTEGER) [Function]
&rest (values OBJECT)) : 2_D_ARRAY
Create a two-dimensional array with nof-rows rows and nof-columns columns, and
initialize it in row-major-order from values. Missing values will be padded with NULL,
extraneous values will be ignored.

create-2_d_float-array ((nof-rows INTEGER) (nof-columns INTEGER) [Function]
&rest (values FLOAT)) : 2_D_FLOAT-ARRAY
Create a two-dimensional array with nof-rows rows and nof-columns columns, and
initialize it in row-major-order from values. Missing values will be padded with NULL,
extraneous values will be ignored.

create-float-vector (&rest (values FLOAT)) : FLOAT-VECTOR [Function]
Return a vector containing values, in order.

create-marker-storage ((supportRecall? BOOLEAN)) : MARKER-TABLE [Function]
Return a new marker storage object, used to remember with objects have been
marked. If supportRecall? is set, then the iterator recall-marked-objects can
be invoked on the new marker storage object.

create-vector (&rest (values OBJECT)) : VECTOR [Function]
Return a vector containing values, in order.

current-inference-level () : NORMAL-INFERENCE-LEVEL [Command]
Return the current inference level that is active in the current query, the current
module, or, otherwise, globally.

default-false? ((self PROPOSITION)) : BOOLEAN [Function]
Return true if self is default false.

Chapter 11: Miscellaneous 116

default-true? ((self PROPOSITION)) : BOOLEAN [Function]
Return true if self is default true.

default-truth-value? ((self TRUTH-VALUE)) : BOOLEAN [Function]
Return TRUE if self is a default truth value.

define-arithmetic-operation-on-wrappers ((name SYMBOL) [Macro]
(operation-name SYMBOL)) : OBJECT
Defines name as an arithmetic comparision operation using the test test-name. It will
take two wrapped number parameters and return a wrapped number. The code will
use the appropriate test for the specific subtype of wrapped number actually passed
in, and return the appropriate subtype of wrapped number based on the normal
arithmetic contagion rules.

For example, if both input parameters are wrapped integers then the output will be
a wrapped integer. If the inputs are a wrapped integer and a wrapped float then the
output will be a wrapped float, etc.

define-arithmetic-test-on-wrappers ((name SYMBOL) [Macro]
(test-name SYMBOL)) : OBJECT
Defines name as an arithmetic comparision operation using the test test-name. It will
take two wrapped number parameters and return a boolean. The code will use the
appropriate test for the specific subtype of wrapped number actually passed in.

define-computed-constraint ((name SYMBOL) (var-list CONS) [Macro]
(constraint-test CONS) &body (position-computations CONS)) : OBJECT

Defines name to be a constraint computation which uses constraint-test to deter-
mine if a fully bound set of variables satisfies the constraint. The forms in position-
computations are used to compute the value for each of the positions. All such
computations must set the variable value to be the result computed for the missing
position. Setting value to null for any such computation means that that particular
argument cannot be computed from the others. The input variables in var-list will
be bound to the N arguments to the constraint. The generated function will return
a Stella Object and take as inputs the values of the N arguments to the constraint.
A value of null means that the value is not available. If all arguments are not null,
then the return value will be a Stella wrapped boolean indicating whether the con-
straint is satisified or not. If more than one input value is null, then this constraint
code will not be called.

deobjectify-tree ((self OBJECT)) : OBJECT [Function]
Return a copy of self where all logic objects are replaced by their generated parse-
tree version. This is useful to convert the result of a retrieval query into a regular
parse tree.

describe-object (self (stream OUTPUT-STREAM) [Method on NAMED-DESCRIPTION]
(mode KEYWORD)) :
Prints a description of self to stream stream. mode can be :terse, :verbose, or :source.
Used by describe.

description-name (self) : SYMBOL [Method on NAMED-DESCRIPTION]
Return the name of the description self.

Chapter 11: Miscellaneous 117

description-name (self) : SYMBOL [Method on DESCRIPTION]
Return the name of the description self, if it has one.

destroy-instance ((self OBJECT)) : [Function]
Destroy all propositions that reference self, and mark it as deleted?, thereby making
it invisible within class extensions.

destroy-object ((self OBJECT)) : [Function]
Destroy self which can be a term or a proposition. Destroy all propositions that
reference self and mark it as deleted? (thereby making it invisible within class
extensions).

destroy-proposition ((proposition PROPOSITION)) : PROPOSITION [Function]
Retract and destroy the proposition proposition. Recursively destroy all propositions
that reference proposition. Also, destroy all satellite propositions of proposition.

destroy-term ((self LOGIC-OBJECT)) : [Function]
Destroy all propositions that reference self, and mark it as deleted?, thereby making
it invisible within class extensions. Unlink descriptions from native relations.

direct-superrelations ((self RELATION)) : (ITERATOR OF (LIKE SELF)) [Function]
Return direct super classes/slots of self.

disabled-powerloom-feature? ((feature KEYWORD)) : BOOLEAN [Function]
Return true if the STELLA feature is currently disabled.

disjoin-truth-values ((tvl TRUTH-VALUE) (tv2 TRUTH-VALUE)) : [Function]
TRUTH-VALUE
Return the logical disjunction of truth values tvl and tvZ2.

disjoint-terms? ((dl DESCRIPTION) (d2 DESCRIPTION)) : BOOLEAN [Function]
Return TRUE if d1 and d2 belong to disjoint partitions.

do-clear-instances ((module MODULE)) : [Function]
Function version of clear-instances that evaluates its argument.

do-save-module ((module MODULE) (store OBJECT)) : [Function]
Save module to the persistent store store which can either be an output stream or a
persistent OBJECT-STORE.

empty? (self) : BOOLEAN [Method on QUERY-SOLUTION-TABLE]
Return TRUE if self has zero entries.

empty? (self) : BOOLEAN [Method on FLOAT-VECTOR|
Return TRUE if self has length 0.

enabled-powerloom-feature? ((feature KEYWORD)) : BOOLEAN [Function]
Return true if the STELLA feature is currently enabled.

estimated-length (self) : INTEGER [Method on PAGING-INDEX]
Return the estimated length of the sequences in self, which could be too large if some
of the members have been deleted.

Chapter 11: Miscellaneous 118

evaluate-proposition ((self PROPOSITION)) : [Function]
Evaluate self against its arguments, possibly resulting in the setting or changing of
its truth value.

evaluation-state ((proposition PROPOSITION)) : KEYWORD [Function]
Return :POSTED if proposition is on the evaluation queue for *context*, :EVALU-
ATED if has been evaluated, or NULL if it has never been evaluated.

evaluation-state-setter ((proposition PROPOSITION) [Function]
(state KEYWORD)) :
Record the evaluation state of proposition.

explain-why ((label STRING) (style KEYWORD) (maxdepth INTEGER) [Function]
(stream OUTPUT-STREAM)) :
Programmer’s interface to WHY function.

explain-whynot ((label STRING) (style KEYWORD) (maxdepth INTEGER) [Function]
(summary? BOOLEAN) (stream OUTPUT-STREAM)) :
Programmer’s interface to the WHYNOT function.

false-truth-value? ((self TRUTH-VALUE)) : BOOLEAN [Function]
Return TRUE if self represents some form of falsehood.

false? ((self PROPOSITION)) : BOOLEAN [Function]
Return true if self is false (or default-false if we are considering default assertions).

fetch-instance (store (name OBJECT)) : OBJECT [Method on OBJECT-STORE]
Fetch the instance identified by name (a string or symbol) from store and return it
as an appropriate logic object. This needs to be appropriately specialized on actual
OBJECT-STORE implementations.

fetch-relation (store (name OBJECT)) : [Method on OBJECT-STORE]
NAMED-DESCRIPTION

Fetch the relation identified by name (a string or symbol) from store and return it as

a named description. This needs to be appropriately specialized on actual OBJECT-
STORE implementations.

fill-array (self &rest (values OBJECT)) : [Method on 2_D_ARRAY]|
Fill the two-dimensional array self in row-major-order from values. Missing values
will retain their old values, extraneous values will be ignored.

fill-array (self &rest (values FLOAT)) : [Method on 2_D_FLOAT-ARRAY]
Fill the two-dimensional array self in row-major-order from values. Missing values
will retain their old values, extraneous values will be ignored.

finalize-objects () : [Function]
Finalize all currently unfinalized objects. The user-level entry point for this is
(process-definitions).

Chapter 11: Miscellaneous 119

find-direct-supers-and-subs ((self DESCRIPTION) [Function]
(onlysupers? BOOLEAN)) : (CONS OF DESCRIPTION) (CONS OF DESCRIPTION)
(CONS OF DESCRIPTION)
Classify self and return three values, its direct supers, direct subs, and a list of equiv-
alent descriptions. Setting supersOnly? may speed up the computation (perhaps by
a lot). If description is nameless and has no dependent propositions, then it is
automatically removed from the hierarchy after classification.

find-direct-supers-of-instance ((self OBJECT)) : (CONS OF [Function]
LOGIC-OBJECT)
Classify self and return a list of most specific named descriptions among all descrip-
tions that it satisfies.

find-instance ((instanceRef OBJECT)) : OBJECT [N-Command]
Return the nearest instance with name instanceRef visible from the current module.
instanceRef can be a string, symbol, or surrogate. If instanceRef is a surrogate, the
search originates in the module the surrogate was interned in.

find-rule ((ruleName NAME)) : PROPOSITION [N-Command]
Search for a rule named ruleName. Like get-rule, but find-rule implicity quotes
its input argument.

function? ((relationRef OBJECT)) : BOOLEAN [Function]
Return TRUE if relationRef references a function.

generate-expression ((self LOGIC-OBJECT) [Function]
(canonicalizevariablenames? BOOLEAN)) : OBJECT
Return an s-expression representing the source expression for self.

generate-specialized-term (self) : OBJECT [Method on LOGIC-THING]
Method to generate a specialized term for self. This is designed to allow for exten-
sion of the term generation code to cover other types of objects for the logic. This
particular method will signal an error unless there is a surrogate-value-inverse link
set.

get—-class ((instanceRef OBJECT)) : LOGIC-OBJECT [Function]
Return the nearest class with name instanceRef visible from the current module.
instanceRef can be a string, symbol, or surrogate. If instanceRef is a surrogate, the
search originates in the module the surrogate was interned in.

get—-forward-justifications ((proposition PROPOSITION)) : (LIST OF [Function]
JUSTIFICATION)
Return propositions forward justifications.

get-instance ((instanceRef OBJECT)) : OBJECT [Function]
Return the nearest instance with name instanceRef visible from the current module.
instanceRef can be a string, symbol, or surrogate. If instanceRef is a surrogate, the
search originates in the module the surrogate was interned in.

get-module ((moduleRef OBJECT)) : MODULE [Function]
Return a module named moduleRef.

Chapter 11: Miscellaneous 120

get-relation ((instanceRef OBJECT)) : LOGIC-OBJECT [Function]
Return the nearest relation with name instanceRef visible from the current module.
instanceRef can be a string, symbol, or surrogate. If instanceRef is a surrogate, the
search originates in the module the surrogate was interned in.

get-self-or-prototype ((instanceRef OBJECT)) : LOGIC-OBJECT [Function]
Used to convert a computation to reference so-called template slots rather than own
slots: If instanceRef denotes a class, return a prototype of that class. Otherwise,
return instanceRef.

get-slot-maximum-cardinality ((self LOGIC-OBJECT) [Function]
(relation SURROGATE)) : INTEGER

Return a maximum value for the number of fillers of relation relation (a surrogate)
applied to the instance self (an object).

get-slot-minimum-cardinality ((self LOGIC-OBJECT) [Function]
(relation SURROGATE)) : INTEGER

Return a minimum value for the number of fillers of relation relation (a surrogate)
applied to the instance self (an object).

get-slot-value ((self LOGIC-OBJECT) (relation SURROGATE)) : OBJECT [Function]
Return a single value for the slot relation (a surrogate) applied to self (an object).

get-slot-value-type ((self LOGIC-OBJECT) (relation SURROGATE)) : [Function]
NAMED-DESCRIPTION
Return a most specific type for fillers of the slot relation (a surrogate) applied to self.
If there is more than one, pick one.

get-why-justification ((label STRING)) : JUSTIFICATION [Function]
Returns the current WHY justification. May also throw one of the following subtypes
of EXPLAIN-EXCEPTION: EXPLAIN-NO-QUERY-EXCEPTION EXPLAIN-
NO-SOLUTION-EXCEPTION EXPLAIN-NO-MORE-SOLUTIONS-EXCEPTION
EXPLAIN-NOT-ENABLED-EXCEPTION EXPLAIN-NO-SUCH-LABEL-
EXCEPTION EXPLAIN-QUERY-TRUE-EXCEPTION

get-whynot-justifications ((query QUERY-ITERATOR) (label STRING) [Function]
(mapping EXPLANATION-MAPPING)) : (LIST OF JUSTIFICATION)
Programmer’s interface to WHYNOT function. Derive justifications why query failed,
or, if label was supplied as non-NULL, lookup its justification relative to mapping
and return the result.

has-forward-justifications? ((proposition PROPOSITION)) : [Function]
BOOLEAN
Return TRUE if proposition has any forward justifications.

help-print-outline (top [Method on NAMED-DESCRIPTION]
(stream OUTPUT-STREAM) (current-depth INTEGER) (depth INTEGER)
(named? BOOLEAN)) :
Helper function for print-concept-outline

Chapter 11: Miscellaneous 121

help-print-outline (top (stream OUTPUT-STREAM) [Method on DESCRIPTION]
(current-depth INTEGER) (depth INTEGER) (named? BOOLEAN)) :
Helper function for print-concept-outline

in-dialect ((dialect NAME)) : KEYWORD [N-Command]
Change the current logic dialect to dialect. Currently supported dialects are KIF,
STELLA, and PREFIX-STELLA. The STELLA dialects are not recommended for the
construction of knowledge bases, they are mainly used internally by PowerLoom.

inconsistent-truth-value? ((self TRUTH-VALUE)) : BOOLEAN [Function]
Return TRUE if self represents INCONSISTENT.

inconsistent? ((self PROPOSITION)) : BOOLEAN [Function]
Return true if self is inconsistent (true and false).

insert-at (self (key (LIKE (ANY-KEY SELF))) [Method on QUERY-SOLUTION-TABLE]
(value (LIKE (ANY-VALUE SELF)))) :
Insert value identified by key into self. If a solution with that key already exists,
destructively modify it with the slot values of value. This is necessary to preserve the
order of solutions in self.

invert-truth-value ((self TRUTH-VALUE)) : TRUTH-VALUE [Function]
Return the logical negation of self.

known-truth-value? ((self TRUTH-VALUE)) : BOOLEAN [Function]
Return TRUE if self is a known truth value, that is either TRUE or FALSE, but not
UNKNOWN, INCONSISTENT, etc.

length (self) : INTEGER [Method on QUERY-SOLUTION-TABLE]
Return the number of entries in self.

list-features () : LIST [Command]|
Return a list containing two lists, a list of currently enabled PowerLoom features, and
a list of all available PowerLoom features.

list-unclassified-instances ((module NAME) [N-Command]
(Iocal? BOOLEAN)) : (CONS OF LOGIC-OBJECT)

Collect all instances in module (or in any module if module is NULL) that were not

(or will not be) classified due to their lack of non-inferable/primitive type assertions.

list-unclassified-relations ((module NAME) [N-Command]|
(Iocal? BOOLEAN)) : (CONS OF NAMED-DESCRIPTION)
Collect all named description in module (or in any module if module is NULL) that
were not (or will not be) classified due to their lack of non-inferable/primitive ancestor
relations.

list-undefined-relations ((module NAME) (local? BOOLEAN)) : [N-Command]
(CONS OF NAMED-DESCRIPTION)
Return a list of as yet undefined concepts and relations in module. These relations
were defined by the system, since they were referenced but have not yet been defined
by the user. If module is NULL look in the current module. If local? only look in
module but not in any modules it inherits.

Chapter 11: Miscellaneous 122

listify (self) : LIST [Method on QUERY-ITERATOR]
Just like QUERY-ITERATOR. consify but return a LIST instead.

load-cmd-line-files () : [Command]
Loads all PowerLoom files specified on the command line. If directories are listed, all
PowerLoom files in those directories are loaded. Since when this is called we might
still have unprocessed command line args, this only looks at files which are to the
right of the last argument that starts with a - character.

load-directory ((directory STRING)) : [Command]|
Load all PowerLoom files (*.plm) in directory in alphabetic sort order.

load-stream ((stream INPUT-STREAM)) : [Function]
Read logic commands from stream and evaluate them.

load-stream-in-module ((stream INPUT-STREAM) [Function]
(default-module MODULE)) :
Read logic commands from stream and evaluate them. If default-module is not null,
then any commands will be read into that module unless an in-module declaration is
encountered which will over-ride the default value. If noe default-module is specified,
and the input stream does not have an in-module form, an error is signaled.

logic-class? ((self CLASS)) : BOOLEAN [Function]
Return TRUE if the class self or one of its supers supports indices that record ex-
tensions referenced by the logic system. Also return true for literal classes.

logic-form-less? ((ol OBJECT) (02 OBJECT)) : BOOLEAN [Function]
A sorting predicate for objects ol and 02 that can appear in logical forms. Performs
a combined numeric and lexocographic sort that accounts for lists, collections and
propositions. Numbers precede all other values, null follows all other values.

logic-module? ((self MODULE)) : BOOLEAN [Function]
Return TRUE if self is a logic module, implying that relations defined within it define
a knowledge base. A module is a logic module iff it inherits the module PL-KERNEL.

lookup (self (key (LIKE (ANY-KEY SELF)))) : [Method on QUERY-SOLUTION-TABLE]
(LIKE (ANY-VALUE SELF))
Lookup the solution identified by key in self and return its value, or NULL if no such
solution exists.

lookup-native-computation ((native-name STRING) (arity INTEGER)) : [Function]
FUNCTION-CODE
Returns the native funtion code for native-name if it exists and the underlying pro-
gramming languages supports such lookups. It is looked up using the signature of a
computation function supported by the computation specialist.

lookup-native-specialist ((native-name STRING)) : FUNCTION-CODE [Function]
Returns the native funtion code for native-name if it exists and the underlying pro-
gramming languages supports such lookups. Uses the signature of a specialist func-
tion.

Chapter 11: Miscellaneous 123

named-description? ((self DESCRIPTION)) : BOOLEAN [Function]
Return TRUE if self is the description of a named class or relation.

natural-deduction-mode? () : BOOLEAN [Function]
True if normalization is governed by natural deduction semantics.

non-empty? (self) : BOOLEAN [Method on QUERY-SOLUTION-TABLE]
Return TRUE if self has at least 1 entry.

non-empty? (self) : BOOLEAN [Method on FLOAT-VECTOR]
Return TRUE if self has length > 0.

nth (self (position INTEGER)) : (LIKE [Method on QUERY-SOLUTION-TABLE]
(ANY-VALUE SELF))
Return the nth solution in self, or NULL if it is empty.

object-name ((self OBJECT)) : SYMBOL [Function]
Return the name symbol for the logic object self.

object-name-string ((self OBJECT)) : STRING [Function]
Return the name string for the logic object self.

object-surrogate ((self OBJECT)) : SURROGATE [Function]
Return the surrogate naming the object self, which may be a Stella class that is used
in PowerLoom as well as a more normal powerloom object.

object-surrogate-setter ((self OBJECT) (name SURROGATE)) : [Function]
SURROGATE
Return the name of the logic object self to name.

pop (self) : (LIKE (ANY-VALUE SELF)) [Method on QUERY-SOLUTION-TABLE]
Remove and return the first solution of self or NULL if the table is empty.

post-for-evaluation ((self PROPOSITION) (world CONTEXT)) : [Function]
Push self onto the evaluation queue (unless it’s already there).

powerloom () : [Function]
Run the PowerLoom listener. Read logic commands from the standard input, evaluate
them, and print their results. Exit if the user entered bye, exit, halt, quit, or stop.

powerloom-gui-exit-hook ((ignore OBJECT)) : [Function]
Exit hook to stop the PowerLoom GUI if it is running.

powerloom-information () : STRING [Command]
Returns information about the current PowerLoom implementation. Useful when
reporting problems.

pretty-print-logical-form ((form OBJECT) [Function]
(stream OUTPUT-STREAM)) :
Pretty-print the logical form form to stream according to the current setting of
logic-dialectx.

Chapter 11: Miscellaneous 124

print-array (self (stream NATIVE-OUTPUT-STREAM)) : [Method on 2_D_ARRAY]|
Print the array self to stream.

print-array (self [Method on 2_D_FLOAT-ARRAY]
(stream NATIVE-OUTPUT-STREAM)) :
Print the array self to stream.

print-extension-sizes ((module MODULE) (sizeCutoff INTEGER)) : [Function]
Print the extension sizes of concepts visible in module. If module is NULL the current
module is used. Do not report extensions with size less than sizeCutoff (default is

10).

print-facts ((instanceref OBJECT)) : [N-Command]
Like ALL-FACTS-OF, but prints each fact on a separate line on the standard output
stream.

print-goal-stack ((frame CONTROL-FRAME) (verbose? BOOLEAN)) : [Function]

Print stack of goals. Assumes that query has been interrupted with a full stack of
control frames.

print-logical-form ((form OBJECT) (stream OUTPUT-STREAM)) : [Function]
Print the logical form form to stream according to the current setting of
xlogic-dialectx*. Pretty-printing is controlled by the current setting of

prettyPrintLogicalForms?x.

print-logical-form-in-dialect ((self OBJECT) (dialect KEYWORD) [Function]
(stream OUTPUT-STREAM)) :

Produce a stringified version of a logical representation of self and write it to the

stream stream. Use the dialect dialect, or use the current dialect if dialect is NULL.

print-unformatted-logical-form ((form OBJECT) [Function]
(stream OUTPUT-STREAM)) :
Print the logical form form to stream according to the current setting of *logic-
dialect*. Pretty-printing is explicitly forced to be turned off.

print-whynot-justification ((justification JUSTIFICATION) [Function]
(stream OUTPUT-STREAM) (maxDepth INTEGER) (style KEYWORD)
(summary? BOOLEAN)) :
Print a WHYNOT justification to stream according to maxDepth and style. Print a
summary only if summary? is TRUE.

random-float ((n FLOAT)) : FLOAT [Function]
Generate a random integer in the interval [0..n-1]. n must be <= 2°15.

recall-marked-objects (self) : LIST-ITERATOR [Method on MARKER-TABLE]
Return an iterator that generates all marked objects recorded in self.

record-justifications? () : BOOLEAN [Function]
Return TRUE if every query records justifications to enable the explanation of con-
cluded results.

Chapter 11: Miscellaneous 125

register-computation-function ((name STRING) [Function]
(code FUNCTION-CODE) (arity INTEGER)) :
Creates a registration entry for name as a computation which executes code. Essen-
tially just builds the Stella meta-information tructure needed to funcall name as a
computation function by the computation specialist. The function definition in code
needs to accept ARITY Stella OBJECTS as arguments and return a Stella OBJECT
suitable for PowerLoom use. (These are generally LOGIC-OBJECTSs and the literal
wrappers FLOAT-WRAPPER, INTEGER-WRAPPER and STRING-WRAPPER.)

register-computation-function-name ((stella-name STRING) [Command]|
(native-name STRING) (arity INTEGER)) :
registers a computation function stella-name based on the native-name for the par-
ticular programming language in question. Use of this command makes the resulting
code or knowledge bases non-portable to other target languages.

register-logic-dialect-print-function ((dialect KEYWORD) [Function]
(fn FUNCTION-CODE-WRAPPER)) :
Register fn as a logic-object print function for dialect. Each function should have
the signature ((self OBJECT) (stream OUTPUT-STREAM)). Any return values will be
ignored.

register-specialist-function ((name STRING) [Function]
(code FUNCTION-CODE)) :
Creates a registration entry for name as a specialist which executes code. Essentially
just builds the Stella meta-information tructure needed to funcall name as a spe-
cialist. The function definition in code needs to accept a CONTROL-FRAME and
KEYWORD as arguments and return a KEYWORD. Side effects on elements of the
proposition in the control frame can be used to bind and thus return values.

register-specialist-function-name ((stella-name STRING) [Command]|
(native-name STRING)) :
registers a specialist function stella-name based on the native-name for the particular
programming language in question. Use of this command makes the resulting code
or knowledge bases non-portable to other target languages.

relation-name ((self NAMED-DESCRIPTION)) : STRING [Function]
Given a relation object, return it’s name.

relation? ((objectRef OBJECT)) : BOOLEAN [Function]
Return TRUE if objectRef denotes a relation or a class.

remove-at (self (key (LIKE (ANY-KEY SELF)))) [Method on QUERY-SOLUTION-TABLE]

Remove the solution identified by key from self. To preserve the solution ordering
chain, the solution is marked as deleted and will be completely removed upon the
next iteration through self.

remove-deleted-members (self) : (LIKE SELF) [Method on PAGING-INDEX]
Destructively remove all deleted members of self.

Chapter 11: Miscellaneous 126

reset-query-caches () : [Function]
Zero out all caches managed by the query optimizer, so that it will reoptimize subgoal
queries upon next invocation.

retract-facts-of-instance ((self LOGIC-OBJECT)) : [Function]
Retract all definite (TRUE or FALSE) propositions attached to self.

retrieve-partial (&rest (tree PARSE-TREE)) : QUERY-ITERATOR [N-Command]
Partial-match version of retrieve (which see) that generates scored partial solutions
based on the current partial match strategy. By supplying BEST instead of ALL, or by
adding the option :SORT-BY :SCORE, the generated solutions will be sorted so that
solutions with higher scores come first. Use the :MATCH-MODE option to override the
global default setting established by set-partial-match-mode, e.g., use :MATCH-
MODE :NN to use the neural net partial match mode. The :MINIMUM-SCORE option can
be used to only retrieve solutions that have at least the specified minimum match
score. By default, retrieve-partial does not maximize the match scores of its
returned bindings. To only get maximal scores use :MAXIMIZE-SCORE? TRUE (this is
not yet implemented - you can use ask-partial to maximize scores for individual
solutions by hand).

run-forward-rules ((moduleRef NAME) &rest (force KEYWORD)) : [N-Command]
Run forward inference rules in module moduleRef. If moduleRef is NULL, the current
module will be used. If forward inferencing is already up-to-date in the designated
module, no additional inferencing will occur, unless the optional keyword :force is
included, in which case all forward rules are run or rerun.

Calling run-forward-rules temporarily puts the module into a mode where future
assertional (monotonic) updates will trigger additional forward inference. Once a
non-monotonic update is performed, i.e., a retraction or clipping of relation value, all
cached forward inferences will be discarded and forward inferencing will be disabled
until this function is called again.

run-powerloom-tests () : [Command]
Run the PowerLoom test suite. Currently this simply runs all demos and echos
commands and their results to standard output. The output can then be diffed with
previously validated runs to find deviations.

satisfies? ((instanceOrTuple OBJECT) (relationRef OBJECT)) : [Function]
TRUTH-VALUE
Try to prove whether instanceOrTuple satisfies the definition of the relation relation-
Ref and return the result truth value of the query. instanceOrTuple can be a single
object, the name or surrogate of an object, or a collection (a list or vector) of objects.
relationRef can be a relation, description, surrogate or relation name.

save-all-neural-networks ((file STRING)) : [Command]
Save all neural networks to file (if file is non-NULL). If networks are saved periodically
(see set-save-network-cycle) this file name will be used to perform periodic saves.

Chapter 11: Miscellaneous 127

select-proof-result ((success? BOOLEAN) (continuing? BOOLEAN) [Function]
(terminal? BOOLEAN)) : KEYWORD
Helping function for specialists. Return the appropriate keyword indicating success
or failure of a proof.

select-test-result ((success? BOOLEAN) (terminal? BOOLEAN) [Function]
(frame CONTROL-FRAME)) : KEYWORD
Helping function for specialists testing the validity of a fully bound inference frame.
Based on the test result success? and reversePolarity?#, set the truth value of
frame and return an appropriate keyword. The keyword will be either :final-
success :terminal-failure if terminal? is true. Otherwise it will be :final-
success or :failure.

set-error-print-cycle ((i INTEGER)) : [Command]|
Set number of cycles between which error rates are saved to the file established by the
last call to save-all-neural-networks appended with extension .err. A number
<=0 (or NULL) turns off periodic saving.

set-inference-level ((level NAME) (module NAME)) : KEYWORD [N-Command]
Set the inference level of module to the level specified by levelKeyword. If module
is NULL, set the level globally.

set-marker (self (object OBJECT)) : [Method on MARKER-TABLE]
Record membership of object in the marker storage object self.

set-num-neighbors ((d INTEGER)) : [Command]|
Sets the number of nearest neighbors to predict from.

set-num-training-per-case ((d INTEGER)) : [Command]
Sets the number of training examples for each case in the training set.

set-powerloom-feature ((feature KEYWORD)) : [Function]
Enable the PowerLoom environment feature feature.

set-save-network-cycle ((i INTEGER)) : [Command]|
Set number of cycles between which networks are saved to the file established by the
last call to save-all-neural-networks. A number <= 0 or a NULL number turns
off periodic saving.

sort (self (predicate FUNCTION-CODE)) : (LIKE [Method on QUERY-SOLUTION-TABLE]
SELF)
Perform a stable, destructive sort of self according to predicate, and return the result.
If predicate has a < semantics, the result will be in ascending order.

specializes? ((subObject OBJECT) (superObject OBJECT)) : [Function]
TRUTH-VALUE
Try to prove if the description associated with subObject specializes the description
for superObject and return the result truth value of the query.

start-ontosaurus (&rest (options OBJECT)) : [Command]
Start the PowerLoom HTTP server at :port (defaults to 9090). Loads the required
support systems in Lisp and Java if necessary (C++ is not yet supported).

Chapter 11: Miscellaneous 128

start-powerloom-gui (&rest (options OBJECT)) : [Command]
Start the PowerLoom server at :port (defaults to 9090) and launches the GUI which
will communicate with the server at that port. If :host is specified, the GUI will
try to communicate with a server at host:port instead of the local embedded server
(note, you can always point the GUI manually to a different server from its Connect
to Server menu item). Loads the required support systems if necessary. Embedded
calls to the GUI are currently only supported in Java; however, when the GUI is
run in standalone mode, it can communicate with any PowerLoom installation that
supports an HTTP server (currently Lisp and Java).

start-powerloom-server (&rest (options OBJECT)) : [Command]
Start the PowerLoom HTTP server at :port (defaults to 9090). Loads the required
support systems in Lisp and Java if necessary (C++ is not yet supported).

stop-ontosaurus () : [Command]|
Stop the PowerLoom HTTP server and free up any bound ports. This is a no-op if
no server is running or the server is not supported.

stop-powerloom-gui () : [Command]|
Closes the PowerLoom GUI application if it is currently visible. This is a no-op if the
GUI is not running or if it is not supported.

stop-powerloom-server () : [Command]|
Stop the PowerLoom HTTP server and free up any bound ports. This is a no-op if
no server is running or the server is not supported.

strengthen-truth-value ((tvl TRUTH-VALUE) (tv2 TRUTH-VALUE)) : [Function]
TRUTH-VALUE
If tv2 has greater strength than tvl, adapt the strength of tvl (not its value!) and
return the result. Otherwise, return tvl unmodified.

strict-truth-value? ((self TRUTH-VALUE)) : BOOLEAN [Function]
Return TRUE if self is a strict truth value.

termify ((self OBJECT)) : OBJECT [Function]
Convert self into an equivalent PowerLoom object that can be passed as an argument
wherever an instance is expected.

test-closed-slot? ((relation SURROGATE)) : BOOLEAN [Function]
Return TRUE if relation (a surrogate) is asserted to be closed or if the current module
closes all relations.

test-function-slot? ((relation SURROGATE)) : BOOLEAN [Function]
Return TRUE if relation (a surrogate) is a function.

test-marker? (self (object OBJECT)) : BOOLEAN [Method on MARKER-TABLE]
Return TRUE if object is stored (marked) in self.

test-relation-on-arguments? ((relation SURROGATE) [Function]
(arguments CONS)) : BOOLEAN
Return TRUE if relation (a surrogate) is TRUE when applied to arguments.

Chapter 11: Miscellaneous 129

test-slot-value? ((self LOGIC-OBJECT) (relation SURROGATE) [Function]
(filler OBJECT)) : BOOLEAN
Return TRUE if the proposition (<relation> <self> <filler>) is true.

test-special-marker—table? ((self OBJECT)) : BOOLEAN [Function]
Return TRUE if the object self is stored (marked) in the table pointed at by the
special variable *specialMarkerTable*. Designed for use by remove-if.

test-subrelation? ((subrelation SURROGATE) [Function]
(superrelation SURROGATE)) : BOOLEAN
Return TRUE if subrelation specializes superrelation.

test-type-on-instance? ((self OBJECT) (type SURROGATE)) : BOOLEAN [Function]
Return TRUE if self satisfies type.

translate-loom-file ((input FILE-NAME) (output FILE-NAME)) : [Command]
Translate the Loom file input to PowerLoom and write the translation to the file
output. Note that this will only work for fairly vanilla Loom files that do not contain
any Lisp-isms. It might require to clean the Loom file manually before this translation
will work.

true-truth-value? ((self TRUTH-VALUE)) : BOOLEAN [Function]
Return TRUE if self represents some form of truth.

true? ((self PROPOSITION)) : BOOLEAN [Function]
Return true if self is true (or default-true if we are considering default assertions).

unassert ((proposition PARSE-TREE)) : OBJECT [N-Command]
Retract the truth, falsity or inconsistency of proposition. This is a more general
version of retract that also handles falsity. For example, if we assert the proposition
"(not (sad Fred))", and then execute the statement "(unassert (sad Fred))", the
truth value of the proposition "(sad Fred)" will be set to UNKNOWN. If we had
called retract in place of unassert, the proposition "(sad Fred)" would remain set
to FALSE. Note that for this unassertion to succeed, the logic constant Fred and the
relation sad must already be defined.

unassert-proposition ((self PROPOSITION)) : [Function]
Retract the truth, falsity or inconsistency of the proposition self.

unknown-truth-value? ((self TRUTH-VALUE)) : BOOLEAN [Function]
Return TRUE if self represents UNKNOWN.

unknown? ((self PROPOSITION)) : BOOLEAN [Function]
Return true if the truth of self is unknown.

unset-powerloom-feature ((feature KEYWORD)) : [Function]
Disable the PowerLoom environment feature feature.

upclassify-all-descriptions () : [Function]
Classify all named descriptions.

Chapter 11: Miscellaneous 130

upclassify-all-instances () : [Function]
Classify all named instances.

upclassify-instances ((module MODULE) (local? BOOLEAN)) : [Function]
Classify instances local to module and inherited by module. If local?, don’t classify
inherited descriptions. If module is NULL, classify descriptions in all modules.

upclassify-named-descriptions ((module MODULE) [Function]
(Iocal? BOOLEAN)) :

Classify named descriptions local to module and inherited by module. If local?, don’t

classify inherited descriptions. If module is NULL, classify descriptions in all modules.

update-proposition-in-store (store [Method on OBJECT-STORE]
(proposition PROPOSITION) (update-mode KEYWORD)) :
A module with store has had the truth value of proposition change according to
update-mode. The default method does nothing.

update-tuple ((relation SURROGATE) (arguments (CONS OF OBJECT)) [Function]
(updatemode KEYWORD)) : PROPOSITION
Assert or retract a proposition that applies relation to arguments.

weaken-truth-value ((tvl TRUTH-VALUE) (tv2 TRUTH-VALUE)) : [Function]
TRUTH-VALUE
If tv2 has lesser strength than tvl, adapt the strength of tvl (not its value!) and
return the result. Otherwise, return tvl unmodified.

with-logic-environment ((moduleForm OBJECT) (environment OBJECT) [Macro]
&body (body CONS)) : OBJECT
Execute body within the module resulting from moduleForm. *module* is an ac-
ceptable moduleForm. It will locally rebind *module* and *context* and shield the
outer bindings from changes.

within-classification-session ((descriptionorinstance KEYWORD) [Macro]
&body (body CONS)) : OBJECT
Used during classification. Execute body within the indicated classification session
and inference world.

within-meta-cache (&body (body CONS)) : OBJECT [Macro]
Execute body within the meta cache of the current module. Set appropriate special
variables.

create-keyword ((name STRING)) : KEYWORD [Function]

Returns the Stella keyword name, creating it if necessary. name is treated case-
sensitively. This should generally not be necessary to do.

create-symbol ((name STRING) (module MODULE) [Function]
(environment ENVIRONMENT)) : SYMBOL
Returns the Stella symbol name visible in module, creating it if necessary. name
is ALWAYS treated case-sensitively, even if module is case insensitive. This should
generally not be necessary to do.

Chapter 11: Miscellaneous 131

get-keyword ((name STRING)) : KEYWORD [Function]
Returns the Stella KEYWORD name if it exists. Case sensitive.

get-name-in-module ((obj OBJECT) (module MODULE) [Function]
(environment ENVIRONMENT)) : STRING

Return the name, qualified as necessary, so that obj can be found from module. If
there is no name for the object return null.

get-short-name ((obj OBJECT)) : STRING [Function]
Return the short name of obj, if it has one. Otherwise return null.

get-symbol ((name STRING) (module MODULE) [Function]
(environment ENVIRONMENT)) : SYMBOL
Returns the Stella SYMBOL name visible in module if it exists. name is ALWAY'S
treated case sensitively.

is-known ((tv TRUTH-VALUE)) : BOOLEAN [Function]
Tests whether tv is a known truth value (i.e., true or false).

is-true-propositionl ((relation-and-arguments OBJECT) [Function]
(module MODULE) (environment ENVIRONMENT)) : BOOLEAN
Return TRUE if a proposition (relation args) has been asserted (or inferred by
forward chaining).

load-in-module ((filename STRING) (module MODULE) [Function]
(environment ENVIRONMENT)) :

Read logic commands from the file named filename and evaluate them. If the file
does not have an in-module declaration that specifies the module within which all
remaining commands are to be evaluated, it will be loaded in the module specified.
If no module is specified and the file does not contain an in-module declaration, an
error will be signaled. The remaining commands are evaluated one-by-one, applying
the function evaluate to each of them.

load-native-stream-in-module ((stream NATIVE-INPUT-STREAM) [Function]
(module MODULE) (environment ENVIRONMENT)) :

Read logic commands from the native input stream stream and evaluate them. As-
sumes stream is a line-buffered stream which is a safe compromise but does not
generate the best efficiency for block-buffered streams such as files. If the stream
does not supply an in-module declaration that specifies the module within which all
remaining commands are to be evaluated, it will be loaded in the module specified.
If no module is specified and the file does not supply an in-module declaration, an
error will be signaled. The remaining commands are evaluated one-by-one, applying
the function evaluate to each of them.

load-stream-in-module ((stream INPUT-STREAM) (module MODULE) [Function]
(environment ENVIRONMENT)) :

Read logic commands from the STELLA stream stream and evaluate them. If the

stream does not supply an in-module declaration that specifies the module within

which all remaining commands are to be evaluated, it will be loaded in the module

Chapter 11: Miscellaneous 132

specified. If no module is specified and the file does not supply an in-module decla-
ration, an error will be signaled. The remaining commands are evaluated one-by-one,
applying the function evaluate to each of them.

main () : [Function]
Main PowerLoom entry point for your code in C++ and Java.

register-computation-function ((name STRING) [Function]
(function-reference FUNCTION-CODE) (arity INTEGER) (module MODULE)
(environment ENVIRONMENT)) :
Register name as a function name in module which will invoke the native code pro-
cedure described by function-reference. The name is a fully-qualified name which
will be interpreted by the normal rules for reading names in PowerLoom. The function
must conform to the signature for computation functions used by the computation
specialist. Arity specifies the number of arguments the computation accepts.

The exact form of function-reference depends on the underlying programming lan-
guage. The following type mappings are used: C++: cpp_function_code (a pointer
to the function code) Common Lisp: FUNCTION (result of #’ or (FUNCTION ...))
Java: java.lang.reflect.Method

register-specialist-function ((name STRING) [Function]
(function-reference FUNCTION-CODE) (module MODULE)
(environment ENVIRONMENT)) :
Register name as a function name in module which will invoke the native code pro-
cedure described by function-reference. The name is a fully-qualified name which
will be interpreted by the normal rules for reading names in PowerLoom. The function
must conform to the signature for specialist functions.

The exact form of function-reference depends on the underlying programming lan-
guage. The following type mappings are used: C++: Common Lisp: FUNCTION
(result of #’ or (FUNCTION ...)) Java: java.lang.reflect.Method

s-register-computation-function ((name STRING) [Function]
(native-name STRING) (arity INTEGER) (module-name STRING)
(environment ENVIRONMENT)) :
Register name as a function name in the module named module-name. This function
will the native code named native-name. The name is a fully-qualified name which
will be interpreted by the normal rules for reading names in PowerLoom. The native-
name will be processed in a manner that depends on the underlying programming
language. The following type mappings are used: C++: Not available. Error signaled.
Common Lisp: The native-name is read by READ-FROM-STRING and then the
SYMBOL-FUNCTION is taken. Java: A fully package-qualified name is required.
It is looked up using the Reflection tools. The function found must conform to the
signature for computation functions. Arity specifies the number of arguments the
computation accepts.

s-register-specialist-function ((name STRING) [Function]
(native-name STRING) (module-name STRING) (environment ENVIRONMENT)) :

Register name as a function name in the module named module-name. This function

will the native code named native-name. The name is a fully-qualified name which

Chapter 11: Miscellaneous 133

will be interpreted by the normal rules for reading names in PowerLoom. The native-
name will be processed in a manner that depends on the underlying programming
language. The following type mappings are used: C++: Not available. Error signaled.
Common Lisp: The native-name is read by READ-FROM-STRING and then the
SYMBOL-FUNCTION is taken. Java: A fully package-qualified name is required.
It is looked up using the Reflection tools. The function found must conform to the
signature for specialist functions.

test-environment-level? ((env ENVIRONMENT) (level STRING)) : [Function]
BOOLEAN
Test if env has level set to level

consify (self) : CONS [Method on PL-ITERATOR]
Convert self into a Stella CONS.

listify (self) : LIST [Method on PL-ITERATOR]
Convert self into a Stella LIST.

initialize-kernel-kb () : [Command]|
Bootstrap the PowerLoom built-in kernel KB.

Chapter 12: Glossary 134

12 Glossary

This glossary contains brief definitions for terms used in the PowerLoom User’s Manual
and/or used by the knowledge representation community. It is impractical to give a logically
precise definition for many of these terms, because their interpretation varies quite a bit. In
this case, the glossary attempts to indicate a range of interpretations consistent with their
use in PowerLoom.

Assertion: An assertion states that a particular proposition is True or False.
Backward and Forward Inference: 777
BACKWARD RULE: 7?7

Binary Relation: A relation having two arguments (arity equals two), often as a mapping
from one concept domain to another. This is by far the most common form of relation.

Classifier: A classifier is a type of an inference engine that implements efficient strategies for
computing subsumption relations between pairs of concepts, or for computing instance-of
relations between a concept an a set of instances. PowerLoom implements a classifier that
can be explicitly invoked by an application program.

Clipping: If a function or single-valued binary relation maps an instance to two or more
other instances, a logical contradiction (a clash) exists. If clipping is enabled, PowerLoom
will automatically retract all assertions but the last that lead to a clash. Clipping can be
toggled on or off; it is enabled by default.

Closed-World Semantics: Under closed-world semantics it is assumed that “if proposition
P cannot be proved True, then assume that P is False.” PowerLoom gives programmers
the option to explicitly declare that concept or a relation operates under the assumption of
closed-world semantics (See also Open-World Semantics).

Concept: A concept defines a category or class of individuals. PowerLoom categorizes a
concept as a special kind of relation. The distinction between a concept and a unary relation
is subtle (some logicians do not believe that there is any distinction'). In linguistics, the
distinction is that between a noun and an adjective. In logic, the test we favor is whether or
not the relation has a domain — a unary relation has a domain, while a concept does not.
For example, the relation ‘married’ has domain ‘person’, while the concept ‘married-person’
does not have a domain (or is its own domain).

Constraint: “Constraint” at its most general is a synonym for “rule”. Often a constraint is
conceptualized as a rule that restricts the types of the arguments that can appear within a
tuple.

Context: ?7?

Default Rule: A default rule expresses an conditional implication that applies only when
its consequent is consistent with current state of the knowledge base. In other words, the
rule applies only when it will not lead to a contradition.

Definition: A definition binds a name to a logical expression. PowerLoom syntax defines
several operators with names of the form defxxx (e.g., defconcept and defrule) that
declare definitions for various types of entities.

! but they are mistaken :).

Chapter 12: Glossary 135

Description: A “description” is an expression that defines a particular logical relation (e.g.,
the class of all three-legged black cats). In PowerLoom, the terms “concept” and “relation”
generally refer to named relations, while a description may or may not have a name. The
KIF operators kappa and setofall are used to define unnamed descriptions.

Description Logic: The term “description logic” refers to a logic that focuses on descrip-
tions as its principal means for expressing logical expressions. A description logic system
emphasises the use of classification and subsumption reasoning as its primary mode of in-
ference. Loom and Classic were two early examples of knowledge representation systems
that implement description logics.

Domain Model: A collection of definitions, rules, and facts that characterizes the possible
states of some real or imagined world. The domain model specifies a terminology (of
concepts and relations) that is useful for describing objects in that world. Often “domain
model” refers to that portion of a world’s representation that does not change over time.

Extension: Given a relation R with arity N, the extension of R is the set of ground propositions
of the form (R x1 ... xN) whose truth value is true. If R is a concept, then its extension
of often considered to be, not a set of unary tuples, but the set of argument fillers of those
tuples, i.e., the set of instances that belong to the concept.

Fact: A fact is a proposition that has been asserted to be either True or False. The term
“fact” usually refers to a “ground proposition”, i.e., a proposition that can be represented
as a predicate applied to a sequence of instances or literals.

Filler: The second argument to a binary tuple is often refered to as its “filler”. When a
multiple-valued binary relation maps an instance to a set of values, these values are also

called “fillers”.
Forward Rule: 77?7

Function: Formally, a function is a relation such that the value of the last (nth) argument of a
relational tuple is a function of the values of the first n-1 arguments. This definition coincides
with the notion of a “single-valued relation”. PowerLoom (and KIF) support specialized
syntax that allows functions that have been defined using the operator deffunction to
appear in term expressions (e.g., (= (f 7x) 42))).

Instance: An instance denotes an entity within a domain model, a member of the concept
Thing. Depending on ones interpretation, this could include almost everything. Often the
term “instance” is used more narrowly, to exclude literals and other objects whose properties
do not change over time. PowerLoom assumes that concepts and relations are instances.

KIF: Short for “Knowledge Interchange Format”, KIF is a language that defines a Lisp-like
syntax for the predicate calculus. There is an ANSII-standard that defines the KIF syntax
and semantics. PowerLoom adopts KIF as its representation language, and adds a few
extensions.

Knowledge Base: A knowledge base attempts to capture in abstract (machine interpretable)
form a useful representation of a physical or virtual world. The entities in that world are
modeled in the knowledge base by objects we call terms. Examples of terms are “Georgia”
(denoting the U.S., state), “BenjaminFranklin” (denoting the historical person by that
name), the number three, the string "abc", and the concept “Person”.

Literal: A logically static constant. Examples are numbers, strings, quantities, and truth
values.

Chapter 12: Glossary 136

Module: ?7?

Open-World Semantics: PowerLoom assumes an open-world semantics, unless a user ex-
plicitly specifies that it use closed-world semantics. Under this assumption, if PowerLoom
cannot prove or disprove a proposition, then it assigns that proposition the value Unknown
(See also Closed-World Semantics).

Predicate:. The term predicate is a syntactic notion that refers to the zeroth arguments of
a proposition. Predicates denote relations and properties, i.e., sets.

Proposition:. A logical sentence whose truth value can be evaluated with respect to some
context. Each PowerLoom assertion assigns the value True or False to some proposition.

Primitive Relation: P is a primitive concept or relation if and only if a proof that (P x1 ...
xn) is true exists only for the case that there exists an explicit assertion of a proposition (Q
x1 ... xn) and either Q equals P or Q is a proper subrelation of P. In otherwords, the only
rules that imply membership in P are those that relate P to one of its (proper) subconcepts
or subrelations.

Query: A query probes the informational state of a knowledge base. An ask query test
the truth of its propositional argument. A retrieve asks for sets of constants (bindings)
that make its propositional argument true when the constants are substituted in place of
its variables. The propositional argument to ask and retrieve arbitrary expression in the
first-order predicate calculus. Because of constraints imposed either by resource limitations
or inherent undecidability, PowerLoom cannot guarantee the completeness of its inferences.

Relation: 7?7

Retraction: A retraction changes the truth value of a proposition from either True or False
to the value Unknown. Retraction is a procedural (non-declarative) operation.

Rule: A “rule” is any universally-quantified proposition, i.e., a proposition of the form
(forall (?x1 ... ?xn) <logical sentence with free variables 7x1 ... ?xn). Power-
Loom supports several different syntactic constructs for defining rules. (See also Forward

Rule and Backward Rule).

Subsumption: A subsumption relation specifies the relative generality of two concepts. A
concept A subsumes a concept B if the definitions of A and B logically imply that members
of B must also be members of A.

Truth-Maintenance: ?7?
Type: Often used a synonym for the term concept. The phrase “a type of an instance”

generally refers to (one of) the concepts that the instance belongs to. The phrase “nth
domain type” refers to a concept that contains all instances of the nth column of a relation.

World: 7?7

Chapter 13: PowerLoom Grammar 137

13 PowerLoom Grammar

The syntax of PowerLoom is described below using a modified BNF notation adapted from
the KIF specification.

13.1 Alphabet

We distinguish between terminals, which are part of the language, and nonterminals. All
nonterminals are bracketed as follows <nonterminal>. Squared brackets means zero or
one instances of the enclosed expression; <nonterminal>* means zero or more occurrences
and <nonterminal>+ means one or more occurrences of <nonterminal>. The notation
<nonterminall> - <nonterminal2> refers to all of the members of <nonterminall> except
for those in <nonterminal2>.

A word is a contiguous sequence of characters, which include all upper case letters, lower
case letters, digits and alpha characters (ASCII character set from 93 to 128) excluding some
special characters like white spaces, single and double quotes and brackets.

<word> ::= a primitive syntactic object
Special words are those who refer to a variable. All variables are preceded by a question
mark.

<indvar> ::= a word beginning with the character ?

A string <string> is a character sequence including words plus all special charcters
(except double quotes) enclosed in double quotes. A double quote can be included in a
string if it is preceeded by the escape character '\’.

13.2 Grammar

Legal expressions in PowerLoom are forms, which are either a statement or a definition,
described in more detail below.

<form> ::= <statement> | <definition>

13.2.1 Constants and Typed Variables

The language consists of several groups of operators, defined as follows:

<termop> ::= listof | setof | the | setofall | kappa
<sentop> ::==| /= | not | and | or | forall | exists
| <= | => | <= <= | =>>| <" | > | <~ | ™>>
<defop> ::= defconcept | deffunction | defrelation | defrule |
:documentation | :-> |
<= => | =] = |
1<=> | 1<E>> k=D | ikk=>> | = |
raxioms
<operator> ::= <termop> | <sentop> | <defop>

All other words are constants (words which are not operators or variables):
<constant> ::= <word> - <indvar> - <operator>

Semantically, there are different categories of constants — Concept constants
<conceptconst>, Function constants <funconst>, Relation constants <relconst>, Rule

Chapter 13: PowerLoom Grammar 138

constants <ruleconst> and Logical constants <logconst>. The differences between
these categories are entirely semantic. However, some operators will only accept specific
constants.

In contrast to the specification of KIF3.0, PowerLoom supports a typed syntax. There-
fore, variables in quantified terms and sentences can appear either typed or untyped, as
follows:

<vardecl> ::= (<indvar> <constant>) | <indvar>

13.2.2 Terms

Terms are used to denote objects in the world being described:

<term> ::= <indvar> | <constant> | <funterm> | <listterm> | <setterm> |
<quanterm>

<listterm> ::= (listof <term>*)

<setterm> ::= (setof <term>*)

<funterm> ::= (<funconst> <term>+)

Note: Zero arguments are allowed for <funterm> in KIF3.0: <term>*

<quanterm> ::= (the <vardecl> <sentence>) |
(setofall <vardecl> <sentence>) |
(kappa {<vardecl> | (<vardecl>+)} <sentence>) |
(lambda {<vardecl> | (<vardecl>+)} <term>)

Note: KIF3.0 allows <term> instead of <vardecl> for setofall. No <quanterm> as well
as no <setterm> in core of KIF as a result of descision 95-3 (March 1995).

13.2.3 Sentences

Sentences are used to express propositions about the world:

<sentence> ::= <constant> | <equation> | <inequality> |
<relsent> | <logsent> | <quantsent>

<equation> ::= (= <term> <term>)

<inequality> ::= (/= <term> <term>)

<relsent> ::= (<constant> <term>+)

Note: Zero arguments allowed in KIF3.0 for <relsent> (<term>*). <funconst> is
currently not allowed in PowerLoom (use (= <funterm> <term>) instead).

<logsent> ::= (not <sentence>) |
(and <sentence>*) |
(or <sentence>*) |
(=> <sentence>* <sentence>) | (=>> <sentence>* <sentence>) |
(<= <sentence> <sentence>*) | (<<= <sentence> <sentence>*) |
(7> <sentence>* <sentence>) | (7>> <sentence>* <sentence>) |
(<™ <sentence> <sentence>*) | (<<~ <sentence> <sentence>*)

<quantsent> ::= (forall {<vardecl> | (<vardecl>+)} <sentence>) |
(forall {<vardecl> | (<vardecl>+)} <sentence> <sentence>)

(exists {<vardecl> | (<vardecl>+)} <sentence>)

Chapter 13: PowerLoom Grammar 139

13.2.4 Definitions

PowerLoom supports two distinct categories of definitions — relation definitions (including
concept and function definitions) and rule definitions. A relation definition introduces a
new logical constant, and states some facts about that constant (e.g., who its parents are in
a subsumption taxonomy). A rule definitions binds a new constant to a proposition (so that
the constant denotes the proposition) and asserts the truth of that proposition. Usually, the
proposition asserted by a defrule is an implication. The assertional truth of a proposition
defined by a rule can be altered by asserting or retracting the constant that denotes the
proposition.

<keyword-option> ::= <keyword> <word>
<definition> ::= <reldefinition> | <objdefinition> | <ruledefinition>
<reldefinition> ::=

(defconcept <conceptconst> <vardecl>
[:documentation <string>]

:<= <sentence>] | [:=> <sentence>] |
:<<= <sentence>] | [:=>> <sentence>] |
:<=> <sentence>] | [:<=>> <sentence>] | [:<<=> <sentence>] |

:<<=>> <sentence>] |
:axioms {<sentence> | (<sentence>+)}] |
<keyword-option>*])

L T s B e N s I e B |

|

(deffunction <funconst> (<vardecl>+)
[:documentation <string>]
[:=> <vardecl>]
[:<= <sentence>] | [:=> <sentence>] |
[:<<= <sentence>] | [:=>> <sentence>] |
[:<=> <sentence>] | [:<=>> <sentence>] | [:<<=> <sentence>] |
[:<<=>> <sentence>] |
[:axioms {<sentence> | (<sentence>+)3}]
[<keyword-option>*])

|

(defrelation <relconst> (<vardecl>+)
[:documentation <string>]

:<= <sentence>] | [:=> <sentence>] |
:<<= <sentence>] | [:=>> <sentence>] |
:<=> <gentence>] | [:<=>> <sentence>] | [:<<=> <sentence>] |

:<<=>> <sentence>] |
:axioms {<sentence> | (<sentence>+)}]
<keyword-option>x])

L I s O e B s I o B |

<objdefinition> ::= (defobject <constant>
[:documentation <string>]
[<keyword-option>*])

<ruledefinition> ::= (defrule <constant> <sentence>

Chapter 13: PowerLoom Grammar 140

[:documentation <string>]
[<keyword-option>*])

<ruledefinition> ::= (defrule <ruleconst> <sentence>)

Function Index

Function Index

b S

K e e e 68
+

o 68
E 68
/2P 68
<

£SO P 68
S 68
>

D 68
D e 68
2

2_d_element on 2_.D_ARRAYcvvuueun.. 109
2_d_element on 2_D_FLOAT-ARRAY 109
2_d_element-setter on 2_.D_ARRAY 109
2_d_element-setter on 2_D_FLOAT-ARRAY ... 109

ABSTRACT ... 68
add-load-path...............oooiiiiiiiiiit, 27
add-testing-examplel 109
add-training-example....................... 109
AGGREGATE. 68
all-asserted-types 109
all-class-instances................couuunn. 109
all-cycles ... 109
all-direct-subrelations 109
all-direct-superrelations................. 109
all-direct-types...................... 109
all-equivalent-relations.................. 110
all-facts-of.........l 27, 28
all-facts-of-instance...................... 110
all-facts-of-n.............. ...l 110
all-inconsistent-propositions............. 110

all-instances............iiiiiiiiiii 110

141
all-named-descriptions..................... 110
all-named-instances.................... ... 110
all-named-terms.................. 111
all-propositions................, 111
all-relation-values........................ 111
all-sentences-of..................... 111
all-slot-value-types................cooouun. 111
all-slot-values..........cooviiiinunneninnnn. 111
all-subrelations............................ 111
all-superrelationsccoevviiiinnn. 111
all-taxonomic-types................ouunnn. 111
all-terms...... ...ttt 111
All-tYPeS . 111
all-unnamed-termsooi.nn. 112
allocate-supported-closure-iterator...... 112
allocate-transitive-closure-iterator..... 112
ANTISYMMETRIC..........oiiiiiiiiiiin 68
apply-ask.............l 112
apply-kappa? ... 112
apply-retrieve.............iiiiiiiii 112
ARITY .o 68
ASK 28, 40
ask-partial it 112
ASSErt ..ot 28
assert-binary-proposition.................. 41
assert-from-query....................oii.a 28
assert-nary-proposition..................... 41
assert-proposition...............l 41
assert-ruleiii 29
assert-unary-proposition 41
ASSERTION-QUERYoiniiieeeieeeannn.. 68
B
BACKTRACKING-QUERY oo, 68
BINARY-RELATION....... ..., 69
bottom?........ 112
BOUND-VARIABLES...... ...t 69
C
call-all-facts-of, 112
call-ask.......oooiiiiiiiiiiiii 113
call-defconcept........coovuiiiiiiiiiinnnnn. 113
call-deffunction............................ 113
call-defobject............ 113
call-defproposition.................ooon. 113
call-defrelation............... ..o, 113
call-list-undefined-relations............. 113
call-propagate-constraints................ 113
call-retrieve...........ooiiiiiiiiiiinnnn, 113
call-retrieve-partial...................... 113
call-run-forward-rules..................... 113
call-set-inference-level 114
CARDINALITY ... 69

Function Index

G ittt 29
change-moduleo 41
CLlaSS T 114
classify-instances 30
classify-relations 29
clear-caches............cooiiiiiiiiii. 30, 41
clear-instances............ il 30
clear-module...........cooiiiiiiiiin.. 30, 41
CLOSED ..ot teeeee 69
coerce-to-instance.................. 114
coerce-to-instance-or-literal............. 114
coerce-to-vector............. ..., 114
COLLECT-INTO-ASCENDING-SET 69
COLLECT-INTO-DESCENDING-SET................ 69
COLLECT-INTO-LIST.....ooniriiiieaenen.. 69
COLLECT-INTO-ORDERED-SET 70
COLLECT-INTO-SET.ottt 70
collection? ... 114
COLLECTIONOFc.iiiiiiiii i 70
COMMENT . .ot e 70
COMMUTATIVE . ..o e 70
CONCEIVE ...ttt 30, 41
conceive—term........... ..., 114
CONCEPT . .ot e e e 70
CONCEPT-PROTOTYPE.t 70
conjoin-truth-values....................... 114
cons-to-pl-iterator 41
consify on JUSTIFICATION.................... 114
consify on PL-ITERATOR 133
consify on QUERY-ITERATOR 114
consify on QUERY-SOLUTION-TABLE 114
consify-current-solutions on QUERY-ITERATOR

... 114
consify-justification...................... 115
constant?. 115
copy on JUSTIFICATIONc.oonnn. 115
copyright............. ... 30
COVERING.ttt e 71
Createt 115
create-2_d_array.................iiiia.. 115
create-2_d_float-array..................... 115
Create—Conceptvvuiiiiiiiiii 41
create-enumerated-list...................... 42
create-enumerated-set....................... 42
create-float-vector........................ 115
create-function.............. ... 42
create-keyword............... 130
create-marker-storage...................... 115
create-module 42
create-objectl 42
create-relation..............ooiuiiiiiiiia... 42
create-symbol............... ...l 130
create-veCtoro 115
current-inference-level 115
CUT . 71

142
D
default-false?....... ..., 115
default-true?..........l 116
default-truth-value?....................... 116
defconcept.........ooiiiiiiii 30
deffunction i 31
define-arithmetic-operation-on-wrappers
... 116
define-arithmetic-test-on-wrappers....... 116
define-computed-constraint................ 116
definstanceol 31
defmodule........ ...t 31
defobject........ ... 33
defproposition..............l 33
defrelationooiiiiiiiiiiL. 33
defrule........ ... 34
delete-rules ..., 34
demo ...t 34
AOIY .« v 34
deobjectify-tree..........................L. 116
describe.............. ..o 34
describe-object on NAMED-DESCRIPTION 116
description-name on DESCRIPTION........... 117
description-name on NAMED-DESCRIPTION ... 116
AeSTLOY . vttt 34
destroy-instance................c..iiiiii..n. 117
destroy-object 43, 117
destroy-proposition........................ 117
destroy-term................ 117
DIRECT-SUBRELATIONcooviinn.... 71
DIRECT-SUPERRELATION 71
direct-superrelations...................... 117
disabled-powerloom-feature?............... 117
disjoin-truth-values....................... 117
DISJOINT ...t e 71
DISJOINT-COVERING............cooviiiinniinn.. 71
disjoint-terms?................l 117
do-clear-instances 117
do-save-module.............ciiiiiiiiiii, 117
DOCUMENTATION ...ttt 71
DOMAIN ..o 71
drop-load-path.........coviiiiiiiiiiinnnn... 34
DUPLICATE-FREE.......... oo 72
DUPLICATE-FREE-COLLECTION 72
E
EMPTY ..o 72
empty? on FLOAT-VECTOR 117
empty? on PL-ITERATORoouu.... 43
empty? on QUERY-SOLUTION-TABLE 117
enabled-powerloom-feature?................ 117
EQUIVALENT-RELATIONot 72
estimated-length on PAGING-INDEX.......... 117
evaluate ... 25, 43
evaluate-proposition....................... 118
evaluate-string............... 26

evaluation-state............ ..., 118

Function Index

evaluation-state-setter 118
EXAMPLE e 72
explain-why 118
explain-whynot.............................. 118

F

false-truth-value?................covvinn. 118
false? . 118
fetch-instance on OBJECT-STORE............ 118
fetch-relation on OBJECT-STORE............ 118
FIFTH-ELEMENT 72
fill-array on 2_.D_ARRAY 118
fill-array on 2_D_FLOAT-ARRAY 118
FILLERS ... o e 72
finalize-objects.............. 118
find-direct-supers-and-subs............... 119
find-direct-supers-of-instance 119
find-instance............... 119
find-rule........ 119
FIRST-ELEMENTt 72
FORK ... 72
FOURTH-ELEMENToooiiion. 72
FRAME-PREDICATE.............oo... 72
function?..... 119
G
generate-expression........................ 119
generate-specialized-term on LOGIC-THING
... 119
generate-unique-name 43
get-arity.. ... 43
get-binary-proposition...................... 43
get-binary-propositions..................... 43
get-child-modules............................ 43
get-class................ L 119
get-column-count............. ..ol 43
get-concept 44
get-concept-instance-matching-value....... 44
get-concept-instances....................... 44
get-concept-instances-matching-value...... 44
get-current-module 44
get-direct-concept-instances............... 44
get-direct-subrelations..................... 44
get-direct-superrelations 44
get-direct-types..........coiiiiiiiiiiiiiian. 44
get-domain.............. ... 44
get-enumerated-collection-members......... 44
get-forward-justifications................ 119
get-home-module.............................. 45
get-inferred-binary-proposition-values ... 45
get-instance ...l 119
get-keyword i 131
get-load-path........................... ... 34
get-module................ ...l 45, 119
get-modulesl 45

143

get-name-in-module 131
get-nth-domain................o, 45
get-nth-float ... 45
get-nth-integer................. 45
get-nth-logic-object 46
get-nth-string.............. 46
get-nth-value................................ 46
get-object. ... 46
get-operator i, 46
get-parent-modules 46
get-predicate............... ...l 46
get-proper-subrelations..................... 47
get-proper-superrelations 47
get-proposition........... il 47
get-propositions............ ... 47
get-propositions-in-module................. 47
get-propositions-of L 47
get-range................. . 47
get-relation.................... 47, 120
get-relation-extension...................... 47
get-rules........ ...l 34, 47
get-self-or-prototype...................... 120
get-short-name.......................... ... 131
get-slot-maximum-cardinality.............. 120
get-slot-minimum-cardinality.............. 120
get-slot-value...............ooiiiiiinnnn. 120
get-slot-value-type........................ 120
get-symbol L 131
get—typesS. ... 48
get-why-justification............... 120
get-whynot-justifications................. 120
GOES-FALSE-DEMON................ooiiiinn... 73
GOES-TRUE-DEMON............cooiiiiiiiiinnn.. 73
GOES-UNKNOWN-DEMONcoviiiiiinn... 73
H
has-forward-justifications?............... 120
help ..o 34
help-print-outline on DESCRIPTION......... 121
help-print-outline on NAMED-DESCRIPTION

... 120
HOLDS ..o 73
I
IMAGE-URL..... ..o i 74
in-dialect i 121
in-module.......... i 35
inconsistent-truth-value?................. 121
inconsistent?............ ... oo 121
INEQUALITY. ... 74
initialize.......oooiiiiiiiiii 48
initialize-kernel-kb....................... 133
insert-at on QUERY-SOLUTION-TABLE........ 121
INSERT-ELEMENT 74
INSTANCE-OFo i 74
INVERSEo s 74

Function Index

invert-truth-value............... 121
IRREFLEXIVE e 74
I8 it 48
is=default........c.ooiiiiiiii 48
is-enumerated-collection 48
is-enumerated-list, 48
is-enumerated-set........... ..., 48
18=FalS@ .ottt 48
is=float ... 48
is-inconsistent............ i 48
is-integer....... ... 48
IS=RIOWI . o vttt et e et 131
is-logic-object..........oiiiiiiiiii.. 48
IS=AUMDET . ..ottt 48
IS=Strict.. oot 48
is=String..... ..o 48
is-subrelation................oiiiiiiiii... 49
IS=trUe . oot 49
is-true-binary-proposition................. 49
is-true-proposition............. 49
is-true-propositionl....................... 131
is-true-unary-proposition.................. 49
IS=UNKIOWIL. .o\ttt ettt ee e et iee e e e 49
ISSUE .ttt 74
S 1 A 74
iterator-to-pl-iterator..................... 49

K

known-truth-value? 121

L

LENGTHo e e e 75
length on PL-ITERATORvvvviviiinnnnnnn.. 49
length on QUERY-SOLUTION-TABLE 121
LENGTH-OF-LISTttt 75
LEXEME ..o e 75
LIST-CONCATENATE.ot 75
list-features...........cuviiiiiinennnnnnnn. 121
list-modulesciiiiiini i 35
list-to-pl-iterator......................... 49
list-unclassified-instances............... 121
list-unclassified-relations............... 121
list-undefined-relations 121
listify on PL-ITERATORvvvivvnnnnnnnnn. 133
listify on QUERY-ITERATOR 122
LISTOF .ottt e e e e e 75
load....oviiii 35, 49
load-cmd-line-files.............ccuvuunn.. 122
load-directory.......ccovviiiiiiiiiinnnnnnnnn 122
load-file. ... 35
load-in-module..............ciiiiininnnnnn. 131
load-native-stream................ ... 49
load-native-stream-in-module.............. 131
load-stream..............ooiiiiiiii.. 49, 122
load-stream-in-module................. 122, 131

logic—class?ottt 122

144
logic—form-less?.............. ... 122
logic-module?............................... 122
lookup on QUERY-SOLUTION-TABLE 122
lookup-native-computation................. 122
lookup-native-specialist 122
M
main ... 132
MAXIMUM-ELEMENT, 75
MAXIMUM-VALUE i 75
MEAN-VALUE. 75
MEDIAN-VALUE i 75
MEMBER-OF 75
MINIMUM-ELEMENT......... 76
MINIMUM-VALUE it 76
MUTUALLY-DISJOINT-COLLECTION............... 76
N
NAME-TO-OBJECTt 76
named-description?........... 123
natural-deduction-mode? 123
next? on PL-ITERATOR.............coooiiinn.. 50
non-empty? on FLOAT-VECTOR................ 123
non-empty? on QUERY-SOLUTION-TABLE....... 123
NORMAL-QUERY 76
nth on QUERY-SOLUTION-TABLE 123
NTH-DOMAIN. ... s 76
NTH-ELEMENT 76
NTH-HEAD 76
NTH-REST 76
NUMERIC-MAXIMUM........ 76
NUMERIC-MINIMUM.......... ..ot . 76
NUMERIC-SETo 7
@)
object-namel 123
OBJECT-NAME 77
object-name-string 123
object-surrogate............... ... 123
object-surrogate-setter 123
object-to-float....................... 50
object-to-integer................ 50
object-to-parsable-string.................. 50
object-to-string................ ... 50
ORDEREDottt 7
P
PHRASE o 7
pop on QUERY-SOLUTION-TABLE............... 123
pop-load-path..................aa 35
post-for-evaluation........................ 123
POWETLOOM. .\ttt 123
powerloom-gui-exit-hook 123
powerloom-information...................... 123

Function Index

PreSUMEttt 35
pretty-print-logical-form................. 123
print-array on 2_.D_ARRAY 124
print-array on 2_D_FLOAT-ARRAY 124
print-extension-sizes...................... 124
print-factso 124
print-features................. 35
print-goal-stack.............ooiiiiiiii, 124
print-logical-form......................... 124
print-logical-form-in-dialect............. 124
print-rules........ ...t 35, 50
print-unformatted-logical-form........... 124
print-whynot-justification................ 124
process-definitions 35
PROJECT-COLUMNt 77
propagate-constraints.............. 36
PROPER-SUBRELATION, 77
PROPER-SUPERRELATION 7T
PROPOSITION-ARGUMENT 78
PROPOSITION-ARGUMENTS 78
PROPOSITION-ARITY.......... ..., 78
PROPOSITION-RELATION........................ 78
push-load-path............................... 36
Q

QUERY 78

random-float 124
RANGE 78
RANGE-CARDINALITY........ ..., 78
RANGE-CARDINALITY-LOWER-BOUND.............. 78
RANGE-CARDINALITY-UPPER-BOUND.............. 79
RANGE-MAX-CARDINALITY........ ... 79
RANGE-MIN-CARDINALITY............ 79
RANGE-TYPE. i 79
recall-marked-objects on MARKER-TABLE... 124
record-justifications?..................... 124
REFLEXIVE. 79
REFUTATION-QUERY.........., 79
register-computation-function........ 125, 132
register-computation-function-name....... 125
register-logic-dialect-print-function ... 125
register-specialist-function......... 125, 132
register-specialist-function-name........ 125
RELATION-COMPUTATION..............cnnn... 79
RELATION-CONSTRAINT, 79
RELATION-EVALUATOR, 80
relation-name................ 125
RELATION-SPECIALIST, 80
relation?........ ... i 125
remove-at on QUERY-SOLUTION-TABLE........ 125
remove-deleted-members on PAGING-INDEX... 125
repropagate-constraints..................... 36
reset-features.................... 36

reset-powerloom.......................... 36, 50

145
reset-query-caches 126
retract 36, 50
retract-binary-proposition................. 50
retract-facts-of...........l 36
retract-facts-of-instance................. 126
retract-from-query 36
retract-nary-proposition................... 50
retract-proposition............... 50
retract-rule il 36
retract-unary-proposition.................. 50
retrieve il 37, 51
retrieve-partial................ 126
run-forward-rules....................... 51, 126
run-powerloom-tests........................ 126
S
S=ASK 51
s-assert-proposition.............., 52
s-change-module........................... ... 52
s-clear-module.............., 52
S=CONCEIVE. ...ttt 52
s-create-concept................ ... 52
s-create-function........... 53
s-create-module........... il 53
s-create-object..............l 53
s-create-relation................. 53
s-destroy-object............l 54
s—evaluate...... ..o 54
s-get-arity 54
s-get-child-modules 54
s-get-concept il 54
s-get-concept-instances..................... 54
s-get-direct-concept-instances............. 54
s-get-domainol 55
s-get-inferred-binary-proposition-values
... 55
s-get-nth-domain................... 55
s-get-objectl 55
s-get-parent-modules 55
s-get-proposition............l 55
s-get-propositionsol 56
s—-get-propositions-of............. 56
s-get-range il 56
s-get-relation............ ..o 56
s-get-relation-extension 57
S—get-rules ... 57
s-is-true-proposition.............. 57
S—print-rules ... 57
s-register-computation-function.......... 132
s-register-specialist-function........... 132
s-retract-proposition.................. ... o7
s-retrieve........ ... i o7
s-save-module..............................L. 58
satisfies? 126
save-all-neural-networks 126
save-module..............o 38, 58
SCALAR ..o 80

Function Index

SCALAR-INTERVAL........ 80
SECOND-ELEMENTot 80
select-proof-result........................ 127
select-test-result 127
set-error-print-cycle...................... 127
set-featurel 38
set-inference-level 127
set-load-path..................... 38
set-marker on MARKER-TABLE 127
set-num-neighbors 127
set-num-training-per-case................. 127
set-powerloom-feature...................... 127
set-save-network-cycle..................... 127
SETOF ..o 80
SHALLOW-QUERY 80
SINGLE-VALUEDcoiiiiiiiiiiiiinn, 80
sort on QUERY-SOLUTION-TABLE.............. 127
Specializes? ... 127
SQUARE-ROOTot 80
STANDARD-DEVIATION, 81
start-ontosaurus............................ 127
start-powerloom-gui........................ 128
start-powerloom-server..................... 128
stop-ontosaurus........ ...ttt 128
stop-powerloom-gui 128
stop-powerloom-server...................... 128
strengthen-truth-value..................... 128
strict-truth-value?........................ 128
STRING-CONCATENATE ...t 81
STRING-MATCH i 81
STRING-MATCH-IGNORE-CASE 81
string-to-object...........l 58
SUBRELATIONt 81
SUBSET-0F 81
SUBSTRING.......coiiii i 81
SUBSUMPTION-QUERY................ ..., 81
SUM. o 82
SUPERRELATIONo 82
SYMMETRIC. 82
SYNONYM ... 82

T

termify........ ... 128
test-closed-slot?, 128
test-environment-level? 133

146
test-function-slot?........................ 128
test-marker? on MARKER-TABLE 128
test-relation-on-arguments?............... 128
test-slot-value?............oooiiiiiiii., 129
test-special-marker-table?................ 129
test-subrelation? 129
test-type-on-instance?..................... 129
THIRD-ELEMENT 82
time-commandol 38
TOTAL .. 82
TRANSITIVE. ... it 82
translate-loom-file........................ 129
true-truth-value? 129
BrUE? L 129
TYPE=OF ..ottt et 82
U
UNASSETT .ottt ittt 129
unassert-proposition............... 129
unknown-truth-value?....................... 129
URKNOWN? . ..ttt 129
unset-feature............. L 39
unset-powerloom-feature 129
upclassify-all-descriptions............... 129
upclassify-all-instances 130
upclassify-instances....................... 130
upclassify-named-descriptions............. 130
update-proposition-in-store on OBJECT-STORE
... 130
update-tuple.............l 130
\%
VALUE 82
VARIABLE-ARITYt 82
VARIANCE 83
%%
weaken-truth-value 130
WOy . 39
with-logic-environment..................... 130
within-classification-session............. 130
within-meta-cache 130

Variable Index

Variable Index

A

abstract? ofol 79
all-super-contexts of 71
any-value of 70, 75, 80
arguments of o ool 7

B

base-module of iiiiiii 71

C

child-contexts of 71
context-number of 71

D

dependent-propositions of 7

F

function-code of 73

H

home-context of 7

147
kindof 7
method-code ofl 73
method-function? of 73
method-parameter-names of 72
method-parameter-type-specifiers of 73
method-return-type-specifiers of 73
method-setter? of 72
method-stringified-source of 73
operator of i 7
surrogate-value-inverse of 82

T

the-cons-list of 75
truth-value of 77

Concept Index 148

Concept Index

(Index is nonexistent)

	Introduction
	Powerloom Features
	Powerloom History
	Running PowerLoom
	Command-Line Options

	Conceptual Framework
	Terms and Propositions
	Definitions
	Truth Values
	Modules

	Annotated Example
	Using Modules
	Concepts
	Relations
	Relation Hierarchies
	Functions
	Defined Concepts
	Negation and Open and Closed World Semantics
	Retraction
	Clipping of Values
	Rule-based Inference
	Explanation
	Contexts and Modules
	Equality Reasoning
	Classification, Subsumption
	Truth Maintenance
	Inference Control
	Keyword Axioms
	Cardinality/Type Reasoning with Frame Predicates
	Loom-to-PowerLoom
	Deviations from KIF
	Differences from Loom
	Defaults
	Sets, Lists, SETOFALL, KAPPA

	Communicating with PowerLoom
	Command Interpreter
	Persistent Knowledge Bases

	Commands
	PowerLoom API
	API Functions
	Language Specific Interface
	Lisp API
	Common Lisp Initialization
	Type Declarations
	NULL values
	Wrapped Literal Values
	Special Variables
	CLOS Objects versus Structs

	C++ API
	Java API
	Initializing PowerLoom
	PowerLoom Java Conventions
	Using the PLI Class
	Using Stella Objects
	PowerLoom and Threads
	Setting and Restoring Global Variable Values
	Java Character Mapping
	Stella Exceptions in Java
	Iteration in Java
	Utility Classes for Java

	Built-In Relations
	PowerLoom GUI
	Invoking the GUI
	Starting a PowerLoom Server

	GUI Design Goals
	GUI Overview
	GUI Features
	Connect to Server
	Edit Preferences
	KB Load/Save
	Browsing
	Editing
	Choosers
	Extension Editor
	Ask and Retrieve Queries
	Search
	Console
	Cut/Copy/Paste/Delete

	Future Work
	Large KBs
	Undo
	Drag and Drop
	Scrapbook
	Instance Cloning
	Security
	Multiple Users

	Ontosaurus
	Installation
	System Requirements
	Unpacking the Sources
	Lisp Installation
	C++ Installation
	Java Installation
	Removing Unneeded Files
	Installing PowerLoom Patches

	Miscellaneous
	Glossary
	PowerLoom Grammar
	Alphabet
	Grammar
	Constants and Typed Variables
	Terms
	Sentences
	Definitions

	Function Index
	Variable Index
	Concept Index

