SynDEx v7 Tutorial

Nicolas Dos Santos, Christophe Gensoul, Kim-Hwa Khoo Christophe Macabiau, Quentin Quadrat, Daniel de Rauglaudre, Yves Sorel, Cécile Stentzel

December 16, 2013

Contents

1 Example 1: algorithm, architecture, and adequation 8 1.1 The main algorithm 8 1.1.1 Definition of a sensor 8 1.1.2 Definition of an actuator 11 1.1.3 Definition of a function 11 1.1.4 Definition of a function 11 1.1.4 Definition of an operator 14 1.2.1 Definition of an operator 14 1.2.2 Definition of an operator 14 1.2.1 Definition of an operator 14 1.2.2 Definition of an operator 14 1.2.1 Definition of an operator 16 1.3.1 Definition of operators 16 1.3.1 Definition of a medium 17 1.3.3 Definition of the main architecture 17 1.3.4 Connections between the operators and the medium 17 1.4 An architecture with a SAM multipoint medium 16 1.5 An architecture with a RAM medium 18 1.6.1 Without constraint 19 1.6.2 With constraint 15 <	In	trodu	tion	5
1.1 The main algorithm 8 1.1.1 Definition of a sensor 8 1.1.2 Definition of a function 11 1.1.3 Definition of a function 11 1.1.4 Definition of a function 11 1.1.4 Definition of the main algorithm 11 1.1.4 Definition of the main algorithm 11 1.2.1 Definition of an operator 12 1.2.1 Definition of an operator 12 1.2.2 Definition of an exhitecture 12 1.2.1 Definition of a machitecture 12 1.3.1 Definition of operators 12 1.3.1 Definition of a medium 16 1.3.2 Definition of a medium 17 1.3.3 Definition of the main architecture 17 1.3.4 Connections between the operators and the medium 17 1.4 An architecture with a RAM medium 18 1.5 An architecture with a RAM medium 18 1.6 It with constraint 19 1.6.1 Without constraint 19 1.6.2	1	Exa	ple 1: algorithm, architecture, and adequation	8
1.1.1 Definition of a sensor		1.1	The main algorithm	8
1.1.2 Definition of an actuator 11 1.1.3 Definition of a function 11 1.1.4 Definition of the main algorithm 11 1.2 An architecture with one operator 14 1.2.1 Definition of an operator 14 1.2.2 Definition of the main architecture 16 1.3 An architecture with a SAM point-to-point comunication medium 16 1.3.1 Definition of a medium 16 1.3.2 Definition of a medium 17 1.3.3 Definition of a medium 17 1.3.4 Connections between the operators and the medium 17 1.4 An architecture with a SAM multipoint medium 16 1.5 An architecture with a RAM medium 18 1.6 The adequation 19 1.6.1 With constraint 19 1.6.2 With constraint 22 2.1 Definition of the function A 22 2.2 Definition of the function B 22 2.3 Definition of the degorithm with hierarchy 25 3 Example 3: delay in algorithm			1.1.1 Definition of a sensor	8
1.1.3 Definition of a function 11 1.1.4 Definition of the main algorithm 11 1.2 An architecture with one operator 14 1.2.1 Definition of an operator 14 1.2.2 Definition of an operator 14 1.2.1 Definition of an operator 14 1.2.2 Definition of an operator 14 1.2.1 Definition of the main architecture 16 1.3 An architecture with a SAM point-to-point comunication medium 16 1.3.1 Definition of operators 16 1.3.2 Definition of a medium 17 1.3.3 Definition of the main architecture 17 1.3.4 Connections between the operators and the medium 17 1.4 An architecture with a SAM multipoint medium 18 1.5 An architecture with a RAM medium 18 1.6 The adequation 19 1.6.1 With constraint 19 1.6.2 With constraint 22 2.1 Definition of the function A 22 2.2 Definition of the function B			1.1.2 Definition of an actuator	11
1.1.4 Definition of the main algorithm 11 1.2 An architecture with one operator 14 1.2.1 Definition of an operator 14 1.2.2 Definition of the main architecture 16 1.3 An architecture with a SAM point-to-point comunication medium 16 1.3.1 Definition of operators 16 1.3.2 Definition of a medium 17 1.3.3 Definition of the main architecture 17 1.3.3 Definition of the main architecture 17 1.3.4 Connections between the operators and the medium 17 1.4 An architecture with a SAM multipoint medium 16 1.4 An architecture with a RAM medium 18 1.5 An architecture with a RAM medium 18 1.6 The adequation 19 1.6.1 Without constraint 19 1.6.2 With constraint 22 2.1 Definition of the function A 22 2.2 Definition of the function B 22 2.3 Definition of the operations input, output, and calc 26 3.1			1.1.3 Definition of a function	11
1.2 An architecture with one operator 14 1.2.1 Definition of an operator 14 1.2.2 Definition of the main architecture 16 1.3 An architecture with a SAM point-to-point comunication medium 16 1.3.1 Definition of operators 16 1.3.2 Definition of a medium 16 1.3.3 Definition of the main architecture 17 1.3.4 Connections between the operators and the medium 17 1.3.4 Connections between the operators and the medium 16 1.4 An architecture with a SAM multipoint medium 18 1.5 An architecture with a RAM medium 18 1.6 The adequation 19 1.6.1 With constraint 19 1.6.2 With constraints 19 1.6.2 With constraints 22 2.1 Definition of the function A 22 2.2 Definition of the function B 22 2.3 Definition of the algorithm with hierarchy 22 3.4 Definition of the algorithm with delay 26 3.3 Defi			1.1.4 Definition of the main algorithm	11
 1.2.1 Definition of an operator		1.2	An architecture with one operator	14
 1.2.2 Definition of the main architecture			1.2.1 Definition of an operator	14
1.3 An architecture with a SAM point-to-point comunication medium 16 1.3.1 Definition of operators 16 1.3.2 Definition of a medium 17 1.3.3 Definition of the main architecture 17 1.3.4 Connections between the operators and the medium 17 1.4 An architecture with a SAM multipoint medium 18 1.5 An architecture with a RAM medium 18 1.6 The adequation 19 1.6.1 Without constraint 19 1.6.2 With constraints 19 1.6.2 With constraints 22 2.1 Definition of the function A 22 2.2 Definition of the function B 22 2.3 Definition of the algorithm 23 3.1 Definition of the operations input, output, and calc 26 3.2 Definition of the algorithm 26 3.3 Definition of the algorithm with delay 26 3.4 Definition of the algorithm with delay 26 3.5 Definition of the algorithm with delay 26 3.6 Definition of the algorithm with delay 26 3.1 Definition of the delay 26 3.2 Definition of the delay 26 3.3 Definition of the delay 26 </th <th></th> <th></th> <th>1.2.2 Definition of the main architecture</th> <th>16</th>			1.2.2 Definition of the main architecture	16
1.3.1 Definition of operators 16 1.3.2 Definition of a medium 17 1.3.3 Definition of the main architecture 17 1.3.3 Definition of the main architecture 17 1.3.4 Connections between the operators and the medium 17 1.4 An architecture with a SAM multipoint medium 18 1.5 An architecture with a RAM medium 18 1.6 The adequation 19 1.6.1 Without constraint 19 1.6.2 With constraints 19 1.6.2 With constraints 19 1.6.1 Without constraint 19 1.6.2 With constraints 19 2.1 Definition of the function A 23 2.2 Definition of the function B 23 2.3 Definition of the algorithm with hierarchy 25 3 Example 3: delay in algorithm 26 3.1 Definition of the delay 26 3.2 Definition of the delay 26 3.3 Definition of the algorithm with delay 26 4		1.3	An architecture with a SAM point-to-point comunication medium	16
1.3.2 Definition of a medium 17 1.3.3 Definition of the main architecture 17 1.3.4 Connections between the operators and the medium 17 1.4 An architecture with a SAM multipoint medium 18 1.5 An architecture with a RAM medium 18 1.6 The adequation 19 1.6.1 Without constraint 19 1.6.2 With constraints 19 1.6.2 With constraints 19 1.6.2 With constraints 19 1.6.2 With constraints 22 2.1 Definition of the function A 22 2.2 Definition of the function B 23 2.3 Definition of the algorithm with hierarchy 22 3 Example 3: delay in algorithm 26 3.1 Definition of the operations input, output, and calc 26 3.2 Definition of the algorithm with delay 26 3.3 Definition and library in algorithm 26 4.1 An algorithm with repetition without any library 26			1.3.1 Definition of operators	16
1.3.3 Definition of the main architecture 17 1.3.4 Connections between the operators and the medium 17 1.4 An architecture with a SAM multipoint medium 17 1.4 An architecture with a SAM multipoint medium 18 1.5 An architecture with a RAM medium 18 1.6 The adequation 16 1.6.1 Without constraint 19 1.6.2 With constraint 19 1.6.2 With constraints 19 2.1 Definition of the function A 22 2.2 Definition of the function B 23 2.3 Definition of the algorithm with hierarchy 25 3 Example 3: delay in algorithm 26 3.1 Definition of the operations input, output, and calc 26 3.2 Definition of the algorithm with delay 26 3.3 Definition of the algorithm with delay 26 4 Example 4: repetition and library in algorithm 26 4.1 An algorithm with repetition without any library 26 4.1 Definition of the optic in or in the optic in or is the optic in or is on the optic in or is the optic in or is the optic in or is on the optic			1.3.2 Definition of a medium	17
1.3.4 Connections between the operators and the medium 17 1.4 An architecture with a SAM multipoint medium 18 1.5 An architecture with a RAM medium 18 1.6 The adequation 19 1.6.1 Without constraint 19 1.6.2 With constraint 19 1.6.2 With constraints 19 1.6.2 With constraints 19 2.1 Definition of the function A 22 2.2 Definition of the function B 22 2.3 Definition of the algorithm with hierarchy 25 3 Example 3: delay in algorithm 26 3.1 Definition of the operations input, output, and calc 26 3.2 Definition of the algorithm with delay 26 3.3 Definition of the algorithm with delay 26 4 Example 4: repetition and library in algorithm 26 4.1 An algorithm with repetition without any library 26			133 Definition of the main architecture	17
1.4 An architecture with a SAM multipoint medium 18 1.5 An architecture with a RAM medium 18 1.6 The adequation 19 1.6.1 Without constraint 19 1.6.2 With constraint 19 1.6.2 With constraints 19 2.1 Definition of the function A 22 2.2 Definition of the function B 23 2.3 Definition of the algorithm 23 3 Example 3: delay in algorithm 26 3.1 Definition of the operations input, output, and calc 26 3.3 Definition of the algorithm with delay 26 4 Example 4: repetition and library in algorithm 28 4.1 Definition of the operations without any library 28			13.4 Connections between the operators and the medium	17
1.4 An architecture with a RAM medium 18 1.5 An architecture with a RAM medium 18 1.6 The adequation 19 1.6.1 Without constraint 19 1.6.2 With constraints 19 1.6.2 With constraints 19 1.6.2 With constraints 19 2.1 Definition of the function A 22 2.2 Definition of the function B 22 2.3 Definition of the algorithm with hierarchy 22 3 Example 3: delay in algorithm 26 3.1 Definition of the operations input, output, and calc 26 3.2 Definition of the algorithm with delay 26 3.3 Definition of the algorithm with delay 26 4 Example 4: repetition and library in algorithm 28 4.1 An algorithm with repetition without any library 28		14	An architecture with a SAM multipoint medium	18
1.6 The adequation 19 1.6.1 Without constraint 19 1.6.2 With constraints 19 1.6.2 With constraints 19 2.2 With constraints 19 2.3 Definition of the function B 22 2.3 Definition of the algorithm with hierarchy 25 3 Example 3: delay in algorithm 26 3.1 Definition of the operations input, output, and calc 26 3.2 Definition of the algorithm with delay 26 3.3 Definition of the algorithm with delay 26 4 Example 4: repetition and library in algorithm 28 4.1 An algorithm with repetition without any library 28		1.1	An architecture with a RAM medium	18
1.6 1.6.1 Without constraint 19 1.6.2 With constraints 19 2.6.2 With constraints 19 2.1 Definition of the function A 23 2.2 Definition of the function B 23 2.3 Definition of the algorithm with hierarchy 25 3 Example 3: delay in algorithm 26 3.1 Definition of the operations input, output, and calc 26 3.2 Definition of the algorithm with delay 26 3.3 Definition of the algorithm with delay 26 4 Example 4: repetition and library in algorithm 28 4.1 An algorithm with repetition without any library 28		1.5	The adequation	10
1.6.1 With constraints 16 1.6.2 With constraints 19 2 Example 2: parameters and hierarchy in algorithm 23 2.1 Definition of the function A 23 2.2 Definition of the function B 23 2.3 Definition of the algorithm with hierarchy 25 3 Example 3: delay in algorithm 26 3.1 Definition of the operations input, output, and calc 26 3.2 Definition of the delay 26 3.3 Definition of the algorithm with delay 26 4 Example 4: repetition and library in algorithm 26 4.1 An algorithm with repetition without any library 28		1.0	1.6.1 Without constraint	10
2 Example 2: parameters and hierarchy in algorithm 23 2.1 Definition of the function A 23 2.2 Definition of the function B 23 2.3 Definition of the algorithm with hierarchy 23 2.3 Definition of the algorithm with hierarchy 25 3 Example 3: delay in algorithm 26 3.1 Definition of the operations input, output, and calc 26 3.2 Definition of the delay 26 3.3 Definition of the algorithm with delay 26 4 Example 4: repetition and library in algorithm 26 4.1 An algorithm with repetition without any library 28			1.6.2 With constraints	10
2 Example 2: parameters and hierarchy in algorithm 23 2.1 Definition of the function A 23 2.2 Definition of the function B 23 2.3 Definition of the algorithm with hierarchy 23 2.3 Definition of the algorithm with hierarchy 25 3 Example 3: delay in algorithm 26 3.1 Definition of the operations input, output, and calc 26 3.2 Definition of the delay 26 3.3 Definition of the algorithm with delay 26 3.4 Example 4: repetition and library in algorithm 26 4.1 An algorithm with repetition without any library 28 4.1 L Definition of the angles in the angles				19
2.1 Definition of the function A 23 2.2 Definition of the function B 23 2.3 Definition of the algorithm with hierarchy 23 2.3 Definition of the algorithm with hierarchy 25 3 Example 3: delay in algorithm 26 3.1 Definition of the operations input, output, and calc 26 3.2 Definition of the delay 26 3.3 Definition of the algorithm with delay 26 3.3 Definition of the algorithm with delay 26 4 Example 4: repetition and library in algorithm 26 4.1 An algorithm with repetition without any library 28	2	Exa	pple 2: parameters and hierarchy in algorithm	23
2.2 Definition of the function B 23 2.3 Definition of the algorithm with hierarchy 25 3 Example 3: delay in algorithm 26 3.1 Definition of the operations input, output, and calc 26 3.2 Definition of the delay 26 3.3 Definition of the algorithm with delay 26 3.3 Definition of the algorithm with delay 26 4 Example 4: repetition and library in algorithm 26 4.1 Definition of the argeler in and the function and here argeler 26		2.1	Definition of the function A	23
2.3 Definition of the algorithm with hierarchy 25 3 Example 3: delay in algorithm 26 3.1 Definition of the operations input, output, and calc 26 3.2 Definition of the delay 26 3.3 Definition of the algorithm with delay 26 3.4 Example 4: repetition and library in algorithm 26 4.1 An algorithm with repetition without any library 28 4.1 L Definition of the angles in angles		2.2	Definition of the function B	23
3 Example 3: delay in algorithm 26 3.1 Definition of the operations input, output, and calc 26 3.2 Definition of the delay 26 3.3 Definition of the algorithm with delay 26 4 Example 4: repetition and library in algorithm 26 4.1 An algorithm with repetition without any library 28 4.1 L Definition of the angles in angles		2.3	Definition of the algorithm with hierarchy	25
3 Example 3: delay in algorithm 26 3.1 Definition of the operations input, output, and calc 26 3.2 Definition of the delay 26 3.3 Definition of the algorithm with delay 26 4 Example 4: repetition and library in algorithm 26 4.1 An algorithm with repetition without any library 28 4.1 L Definition of the angles is and the function and library 28		2.0		-0
3.1 Definition of the operations input, output, and calc 26 3.2 Definition of the delay 26 3.3 Definition of the algorithm with delay 26 4 Example 4: repetition and library in algorithm 28 4.1 An algorithm with repetition without any library 28 4.1 L Definition of the angles in angles in angles in angles	3	Exa	aple 3: delay in algorithm	26
3.2 Definition of the delay 26 3.3 Definition of the algorithm with delay 26 4 Example 4: repetition and library in algorithm 26 4.1 An algorithm with repetition without any library 28 4.1 L Definition of the angles in and the function and library 28		3.1	Definition of the operations input, output, and calc	26
3.3 Definition of the algorithm with delay 26 4 Example 4: repetition and library in algorithm 28 4.1 An algorithm with repetition without any library 28 4.1 L Definition of the anglest in and the function and the functio		3.2	Definition of the delay	26
4 Example 4: repetition and library in algorithm 28 4.1 An algorithm with repetition without any library 28 4.1 L Definition of the coefficient and the function and the		3.3	Definition of the algorithm with delay	26
4 Example 4: repetition and library in algorithm 28 4.1 An algorithm with repetition without any library 28 4.1 Definition of the coefficient and the function and the				
4.1 An algorithm with repetition without any library	4	Exa	ple 4: repetition and library in algorithm	28
4.1.1 Definition of the scalar is a and the function real on scalars		4.1	An algorithm with repetition without any library	28
4.1.1 Definition of the scalar fins and the function mut on scalars			4.1.1 Definition of the scalar ins and the function mul on scalars	28
4.1.2 Definition of the vectors inv and outv			4.1.2 Definition of the vectors inv and outv	28
4.1.3 Definition of the algorithm AlgorithmMain1			4.1.3 Definition of the algorithm AlgorithmMain1	29
4.2 An algorithm with repetition with the int library		4.2	An algorithm with repetition with the int library	29
4.2.1 Inclusion of the library int			4.2.1 Inclusion of the library int	30
4.2.2 Definition of the algorithm AlgorithmMain2			4.2.2 Definition of the algorithm AlgorithmMain2	30
4.3 An algorithm with repetition with the float library 31		43	An algorithm with repetition with the float library	31
4.3.1 Inclusion of the library float			4.3.1 Inclusion of the library float	31
4 3 2 Definition of the function drace 31			4.3.2 Definition of the function dpace	31
4 3 3 Definition of the function dp			4.3.3 Definition of the function dp	32

		4.3.4	Definition of the function prodmatvec
		4.3.5	Definition of the algorithm AlgorithmMain3 33
5	Exa	mple 5: c	ondition and nested condition in algorithm 35
	5.1	An algo	rithm with condition
		5.1.1	Sensors x and i. actuator \circ
		5.1.2	Function switch1 35
		513	Algorithm AlgorithmMain1
	52	An algo	rithm with nested condition
	5.2		Sensors - and - actuator
		5.2.1	$Sensors \times and 1, actuator 0 \dots $
		5.2.2	Function switch2 39 Al
		5.2.3	Algorithm AlgorithmMain2
6	Exa	mple 6: a	lgorithm, architecture, adequation, and code generation 41
	6.1	The mai	n algorithm
	6.2	The mai	n architecture
	6.3	The ade	quation and the code generation
7	Erro	mula 7. a	away and a second with an anarction 45
'	EXA.	Definition	ource code associated with an operation 45
	/.1		In of the source code into the code editor window 45 The difference of the source of the s
		/.1.1	to add parameters to an already defined operation
		7.1.2	To edit the code associated with an operation
		7.1.3	Io generate $\mathbf{m4x}$ files
8	Exa	mple 8: a	complete realistic application from adequation to execution 51
	8.1	The aim	of the example
	8.2	The mod	1el
	8.3	The con	trollers
		8.3.1	Block diagrams of controllers
		8.3.2	Source code associated with the functions
	8.4	The con	plete model
		8.4.1	The car dynamics
		8.4.2	The cars and their controllers
		8.4.3	The main algorithm 56
		844	Source code associated with the sensor and the actuator 56
		8/1.5	The examples dd_{α} m/y 60
		8/6	To bandwrite the example way file 61
	05	Science a	
	0.J 0 C	Scicos s	Innutation 60
	0.0	SynDex	
		8.0.1	In the case of a mono-processor architecture
		8.6.2	In the case of a bi-processor architecture
		8.6.3	In the case of a multi-processor architecture
9	Exa	mple 9: a	multiperiodic application 67
	9.1	The mai	n algorithm
	9.2	The mai	n architecture
	9.3	A mono	-phase schedule
		9.3.1	Durations
		9.3.2	Adequation 68
	94	A multi	phase schedule 60
	<i>у</i> .т	941	Durations
		0/2	$\Delta deguation \qquad \qquad$
		2.4.4	Huequanon

Introduction

This tutorial respects some writing conventions:

- menus, buttons, etc., are written in bold (e.g. Algorithm / New Algorithm Window, OK, Definition list);
- command lines, SynDEx files, examples, etc., are written in Computer Modern (e.g. -libs libs, examples/tutorial, ! int o);

To create an application workspace, launch SynDEx with option -libs libs. See the SynDEx v7 User Manual for more information.

The examples presented in this tutorial are located in the sub-folder examples/tutorial. Each example is located in its sub-folder. The example 7 is located in the examples/tutorial/example7, examples/tutorial/example7_mono, and examples/tutorial/example7_bi folders.

Example 1

Algorithm, architecture, and adequation:

- we create a sensor definition, an actuator definition, and a function definition. Then, we create an algorithm and define it as main. Finally, we create in the main algorithm two references to the sensor definition, three references to the actuator definition, and one reference to the function definition, and we create data dependences between these references by connecting their ports;
- we create four different architectures:
 - an architecture with one operator,
 - an architecture with two operators and a SAM point-to-point communication medium,
 - an architecture with three operators and a SAM multipoint communication medium,
 - an architecture with three operators and a RAM communication medium;
- we create constraints on the third architecture;
- we perform the adequation of the main algorithm onto the third architecture defined as main, without constraint and then with constraints.

Example 2

Hierarchy in algorithm:

- we create a function definition and a constant. Inside the function we create a reference to another function; in that way this definition is defined by hierarchy. Then, we create a third function that references both previous ones. Finally, we create an algorithm that references the third function and define it as main. In that way, the main algorithm references a hierarchical function;
- we create parameters names for an operation, and assign values to these parameters.

Example 3

Delay in algorithm:

- we create a delay definition;
- we create a main algorithm by referencing a delay, a sensor, an actuator, and a function and by connecting them.

Example 4

Repetition and library in algorithm:

- we create a multiplication function of a vector by a scalar by repeating a multiplication function on scalars:
 - firstly without any library,
 - secondly with a library;
- we create a multiplication function of a matrix by a vector by repeating a multiplication function on vectors.

Example 5

Condition and nested condition in algorithm:

- we create an algorithm conditioned by a data dependence, the value of which indicates the operation to be executed;
- we create an algorithm conditioned by a data dependence, one operation of which is in turn conditioned (nested condition) by the same data dependence.

Example 6

Algorithm, architecture, adequation, and code generation:

- we create a main algorithm by referencing a sensor, two actuators, three functions, and a constant and by connecting them;
- we create an architecture with two operators of type U and a communication medium of type u/TCP;
- we perform the adequation;
- we perform the code generation, then we create manualy the example6.m4x file (for operations not defined in libraries);
- we create manualy the example6.m4m file (to define the hostname) and the root.m4x file (for the main operator);
- we create manualy the GNUmakefile, then we execute the executives created after compilation.

Example 7

Definition of the source code into the code editor window:

- we add parameters to the conv function of **Example 6**;
- we modify the code associated with this function first in case of a generic processor then in case of an architecture with heterogenous processors;
- we create manualy the example7.m4m file (to define the hostname) and the root.m4x file (for the main operator);
- we create manualy the GNUmakefile;

• we perform the adequation, then we perform compilation, finally we compile the executives and launch the executables.

Definition of the source code in separate c files:

- we define the code of a new function in a .c file,
- we define the code of a new function in a .c file and we use a .h file.

Example 8

A complete realistic application from adequation to execution:

- we build the model of a complete application for two cars;
- we perform the adequation;
- we generate the code for each processor;
- we compile and execute the code associated with each processor.

Example 9

A multiperiodic application:

- we build a basic multi-periodic application
- mono-phase schedule
- multi-phase schedule

Chapter 1

Example 1: algorithm, architecture, and adequation

1.1 The main algorithm

Figure 1.1: Algorithm / New Algorithm Window

From the principal window, choose the **File / Save as** option and save your first application under a new folder (e.g. my_tutorial) with the name example1.

Choose Algorithm / New Algorithm Window (cf. figure 1.1). It opens the edition window for algorithm definitions.

1.1.1 Definition of a sensor

To create an input sensor definition:

• from the algorithm window, click on the + green button. It opens a dialog window, check **Sensor** (*cf.* figure 1.2). Type the sensor name and optionally a list of parameters for the sensor. For example type input, then

Figure 1.2: Define Sensor

Define Sensor								
input								
				syntax help				
💠 Function	🔶 Delay	🔶 Sensor	\diamond Actuator	💠 Constant				
	ок		Cancel					

Figure 1.3: Name of the new sensor

[Sensor] input	Up In Main	Main	History
Definition list: Double-click to open Drag and drop to reference			2
Ānput			
Definition Properties:	2		
Name input Description Parameters			2

Figure 1.4: Sensor definition window

[Sensor] input	Up In Mai	in Main Histor
Definition list:		
Double-click to open 🔁 🗢 Drag and drop to reference	Undo "Add definitions"	Ctrl-Z
input 🔼	Redo	Ctrl-Shift-Z
	Сору	Ctrl-C
	Cut	Ctrl-X
	Paste	Ctrl-V
	Delete	Delete
	Extract as superblock	
	Activate Info Bubbles	
	Postscript	
	Create Condition	
	Delete Condition	
	Add dependence	
	Add port	
	Add reference	
	Set As Main Definition	
Name input	Ports Order	
Description	Description	
Parameters	Durations	
	Edit code phases	
	Edition of the associated source of	code

Figure 1.5: Contextual menu \rightarrow Add port

Create Port:									
l int o									
				syntax help					
	ок		Cancel						

Figure 1.6: Create Port

Figure 1.7: Sensor definition window after output port created

click **OK** (*cf.* figure 1.3). It creates the definition of the input sensor. To open it in definition mode, double click on input in the **Definition list** (*cf.* figure 1.4);

• in input definition mode, right click on the background and select **Add port** (*cf.* figure 1.5). It opens a dialog window for the port's direction, type, name and optionally its size. For example type ! int o, then click **OK** (*cf.* figure 1.6). It creates the integer output port o (*cf.* figure 1.7) in the sensor definition window.

1.1.2 Definition of an actuator

To create an output actuator definition:

- from the algorithm window, click on the + green button \rightarrow dialog window: check Actuator then type output and click OK;
- double click on output in the Definition list. Then right click on its background and select Add port → dialog window: ? int i. Click OK. It creates the integer input port i in the sensor definition window.

1.1.3 Definition of a function

To create a computation function definition:

- from the algorithm window, click on the + green button \rightarrow dialog window: check Function then type computation and click OK;
- double click on computation in the Definition list. Thenright click on its background and select Add port
 → dialog window: ? int a ? int b ! int o. Click OK. It creates the integer ports a, b, and o in the
 function definition window.

1.1.4 Definition of the main algorithm

To create an AlgorithmMain function definition:

[Function] AlgorithmMain		Up In Main	Main	History
Definition list: Double-click to open	Undo "Add definitions"	Ctrl-Z	1	
Drag and drop to reference	Redo	Ctrl-Shift-Z		
/computation	Сору	Ctrl-C		
/output	Cut	Ctrl-X		
	Paste	Ctrl-V		
	Delete	Delete		
	Extract as superblock			
	Activate Info Bubbles			
	Postscript			
	Create Condition			
	Delete Condition			
	Add dependence			
	Add port			
	Add reference			
	Set As Main Definition			
Definition Properties:			1	
Name AlgorithmMa	Ports Order			
Description	Description			
Parameters	Durations Edit and a shares			- 4
	Edition of the ecoecisted ecures	oodo		
	Euron of the associated source	LUUE		
				k

Figure 1.8: Contextual menu \rightarrow Set As Main Definition

[Function] AlgorithmMain		Up In Main	Main	History
Definition list: Double-click to open Drag and drop to reference				
/AlgorithmMain /computation /input /output	input			
Definition Properties: Name AlgorithmMa				V
Description Parameters Values	⊲			

Figure 1.9: Drag and drop input definition

	Create Reference to input at [Function] AlgorithmMain								
in1 in2									
		syntax help							
	ок	Cancel							

Figure 1.10: Create References to input

Figure 1.11: Main algorithm after references to sensor created

Figure 1.12: Main algorithm of the **Example 1**

- from the algorithm window, click on the + green button \rightarrow dialog window: check Function then type AlgorithmMain and click OK;
- double click on AlgorithmMain in the **Definition list**. Then right click on its background and select **Set As Main Definition** (*cf.* figure 1.8);
- in its definition mode,
 - to create references to the sensor input, drag and drop the sensor definition from the **Definition list** to the AlgorithmMain definition window (*cf.* figure 1.9) → dialog window: in1 in2 (*cf.* figure 1.10). The main algorithm looks like the figure 1.11,
 - to create references to the actuator output, drag and drop the actuator definition from the Definition list to the AlgorithmMain definition window → dialog window: out1 out2 out3,
 - to create a reference to the function computation, drag and drop its definition \rightarrow dialog window: calc,
 - from the AlgorithmMain definition window, to create a data dependence between in1 and calc, point the cursor on the output port o of the in1 operation, middle click, and drag to the input port a of the calc operation. It draws an arrow between these target ports. After creating the other data dependences, the main algorithm looks like the figure 1.12.

1.2 An architecture with one operator

1.2.1 Definition of an operator

Figure 1.13: Operator definition window

To create an Uinout operator definition:

- from the principal window, choose **Architecture / Define Operator**. It opens a dialog window, type Uinout and click **OK**. It opens the operator definition window (*cf.* figure 1.13);
- from the Uinout definition window:
 - to add a gate: click **Modify gates** \rightarrow dialog window: gate_type_1 x,
 - to set the operator execution durations: click **Modify durations** \rightarrow dialog window:

```
computation = 2
input = 1
output = 3
```


Figure 1.14: Architecture / Define Architecture

Figure 1.15: Edit / Reference Operator

Figure 1.16: Architecture with one operator

1.2.2 Definition of the main architecture

To create an ArchiOneOperator architecture definition:

- from the principal window: Architecture / Define Architecture (*cf.* figure 1.14) → dialog window: type Archi0ne0perator then click **OK** → definition window;
- from the ArchiOneOperator definition window:
 - to create a reference to the operator Uinout, Edit / Reference Operator (cf. figure 1.15) → dialog window: click user, double click Uinout → dialog window: u1,
 - to define the operator as main, right click on its reference and select Set As Main Operator.

The architecture looks like the figure 1.16.

1.3 An architecture with a SAM point-to-point comunication medium

1.3.1 Definition of operators

To create Uin and Uout definitions:

- from the principal window: Architecture / Define Operator \rightarrow dialog window: Uin, click $OK \rightarrow$ definition window;
- from the Uin definition window:
 - click **Modify gates** \rightarrow dialog window:

– click **Modify durations** \rightarrow dialog window:

```
computation = 2
input = 2
output = 5
```

- from the principal window: Architecture / Define Operator \rightarrow dialog window: Uout, click $OK \rightarrow$ definition window;
- from the Uout definition window:
 - click **Modify gates** \rightarrow dialog window:

```
MediumSamPointToPoint x
MediumSamMultiPoint y
MediumRam z
```

– click **Modify durations** \rightarrow dialog window:

```
computation = 2
input = 5
output = 3
```

1.3.2 Definition of a medium

Bus Type						
🚸 SAM Point to Point						
💠 SAM MultiPoint						
💠 RAM						
ок	Cancel					

Figure 1.17: Type of a communication medium

To create a MediumSamPointToPoint medium definition:

- from the principal window: Architecture / Define Medium \rightarrow dialog window: MediumSamPointToPoint, click $OK \rightarrow$ definition window;
- from the MediumSamPointToPoint definition window:
 - click **Modify type** \rightarrow dialog window: **SAM Point to Point** (*cf.* figure 1.17),
 - click **Modify durations** \rightarrow dialog window:

```
float = 2
int = 2
uchar = 1
ushort = 1
```

1.3.3 Definition of the main architecture

To create an ArchiSamPointToPoint architecture definition:

- from the principal window: Architecture / Define Architecture (*cf.* figure 1.14) → dialog window ArchiSamPointToPoint → definition window;
- from the ArchiSamPointToPoint definition window, create references u1 and u2 to the operators Uin and Uout;
- from the ArchiSamPointToPoint definition window: Edit / Reference Medium → dialog window: click user, select MediumSamPointToPoint → dialog window: type medium_sampp;
- define the operator u1 as main.

1.3.4 Connections between the operators and the medium

Figure 1.18: Architecture with two operators and a SAM point-to-point communication medium

In the main architecture window, to create a connection between the ul operator and the medium_sampp medium, point the cursor on the port x of the operator, middle click, and drag it to the communication medium. It draws an edge between the operator and the communication medium. After creating the other connection, the main architecture looks like the figure 1.18.

1.4 An architecture with a SAM multipoint medium

To create an ArchiSamMultiPoint architecture definition:

- from the principal window: Architecture / Define Architecture (cf. figure 1.14) → dialog window: ArchiSamMultiPoint → ArchiSamMultiPoint definition window;
- create references u1 and u2 to the operator Uin and a reference u3 to the operator Uout, like in the previous example;
- create a medium definition MediumSamMultiPoint of type SAM MultiPoint with durations:

```
float=2
int=2
uchar=1
ushort=1
```

- create a reference medium_sammp to this medium in the main architecture window → dialog window: check No Broadcast;
- define the operator u1 as main;
- connect the operators ports y to the medium.

The architecture looks like the figure 1.19

Figure 1.19: Architecture with three operators and a SAM multipoint communication medium

1.5 An architecture with a RAM medium

To create the ArchiRam architecture definition:

- from the principal window: Architecture / Define Architecture (cf. figure 1.14) \rightarrow dialog window ArchiRam \rightarrow ArchiRam definition window;
- create a reference u1 to the operator Uin and references u2 and u3 to the operator Uout;
- create a medium definition MediumRam of type RAM with durations

```
float=2
int=2
uchar=1
ushort=1
```

and create a reference medium_ram in the main architecture;

- define the operator u1 as main;
- connect the operators ports z to the medium.

Figure 1.20: Architecture with three operators and a RAM comunication medium

The architecture looks like the figure 1.20.

1.6 The adequation

1.6.1 Without constraint

Define the architecture with three operators and a medium of type **SAM MultiPoint** (*cf.* 1.4) as main architecture (**Edit / Set As Main Architecture**).

From the principal window, choose Adequation / Launch Adequation, then choose Adequation / Display schedule.

It opens the schedule window (*cf.* figure 1.21) in which you can see the schedule of the algorithm on the architecture and the schedule of the different inter-operator communications on the medium.

Figure 1.21: Schedule

1.6.2 With constraints

To contraint the ArchiSamMultiPoint architecture:

• from the principal window, to create the constraints:

- Algorithm / Define Operation Group (cf. figure 1.22) \rightarrow dialog window: og1 og2 og3,
- Constraints / Absolute Constraints → dialog window: select ArchiSamMultiPoint It opens a dialog
 window in which you can create constraints on the different operators of the architecture selected:
 - * first click on **og1**, then **u1**, and the **Create** button, to constrain the operation group og1 on the operator u1,
 - * constrain the operation group og2 on the operator u2,
 - * constrain the operation group og3 on the operator u3,
 - * click on **OK** button (cf. figure 1.23),

Figure 1.22: Define Operation Group

Absolute Constraints								
og1 og2		og3 u3 🛆 og2 u2						
og3	□ u2	og1 u1						
	Create							
	Remove							
	DK	Cancel						

Figure 1.23: Constrain operation groups on operators of the architecture selected

- in the main mode (Main button):
 - select the operation in1, click on the **Group** button of its **Reference Properties** then select **og1** (*cf.* figure 1.24),
 - attach the operation in2 to the operation group og2,
 - attach the operation out1 to the operation group og1,

Figure 1.24: Attach a reference to an operation group

- attach the operation out 2 to the operation group og2,
- attach the operation out3 to the operation group og3,
- attach the operation calc to the operation group og3;

The algorithm with constraints looks like the figure 1.25.

• from the principal window, to perform the adequation with constraints: Adequation / Launch Adequation, then Adequation / Display Schedule → schedule window. The schedule looks like the figure 1.26.

From the principal window, choose File / Close. In the dialog window, click on the Save button.

Figure 1.25: Algorithm with constraints

٧	Vindow Edit									
	medium_sammp	u3		u2			u1			A
				0 in2	2	0	in1		٦	
	² Send_u2_u3(in2.o) 4			2	٤	2				
	⁴ Send_u1_u3(in1.o) 6	4 out3		out2						
	6	7	7		7		Wait			
	Wait 9	7 calc 9	9							
	⁹ Send_u3_u1(calc.o) ₁₁							1.		
						11				
							out1			
								16		H
	4								_	V
R	1									Þ

Figure 1.26: Schedule with constraints

Chapter 2

Example 2: parameters and hierarchy in algorithm

From the principal window, choose **File / Save as** and save your second application under your tutorial folder with the name example2.

2.1 Definition of the function A

To create the A function definition:

- from the algorithm window:
 - click on the + green button \rightarrow dialog window: check **Function** then type A and click **OK**,
 - click on the + green button → dialog window: check Constant then type constante<X> and click OK.
 Create an integer output port o inside;
- in the A definition window:
 - create a reference cst<T> to the definition constante,
 - create an integer input port a, an integer output port \circ (Contextual menu \rightarrow Add port *cf.* 1.1.3);
- from the algorithm window, create a function definition calcul1, with two integer input ports a and b and an integer output port o;
- in the A definition window:
 - create a reference calc1 to the definition calcul1,
 - add a parameter name (*cf.* figure 2.1): Field **Parameters** \rightarrow T.

The function A looks like the figure 2.2.

2.2 Definition of the function B

To create the B function definition:

- from the algorithm window: + green button \rightarrow dialog window: B<X;Y>;
- in the B definition window:
 - create references A1 and A2 to the definition A (A1<X> A2<Y>),
 - create two integer input ports a and b, one integer output port o, and the function calc1 of the definition calcul1,
 - add the parameters names x and Y (field **Parameters**).

The function B looks like the figure 2.3.

Figure 2.1: Parameters

Figure 2.2: Function A

Figure 2.3: Function B

2.3 Definition of the algorithm with hierarchy

To create the Main algorithm:

- from the algorithm window: + green button \rightarrow dialog window: Main;
- from the definition window, define it as main;
- create a sensor input with an integer output port o and an actuator output with an integer input port i;
- in the Main algorithm window, create a reference B<1; 2> to the definition B, a reference i1 i2 to the definition input, and a reference out to the definition output;
- create dependences between the references.

The algorithm looks like the figure 2.4.

Figure 2.4: Algorithm of the Example 2

From the principal window, choose File / Close. In the dialog window, click on the Save button.

Chapter 3

Example 3: delay in algorithm

From the principal window, choose **File / Save as** and save your third application under your tutorial folder with the name example3.

3.1 Definition of the operations input, output, and calc

Create a sensor input, an actuator output, and the function calc, like in the **Examples 1** and **2**. (*cf.* 1.1.3 and calcull in 2.1)

3.2 Definition of the delay

To create the calcPrec delay:

- from the algorithm window, click on the + green button → dialog window: check Delay then type calcPrec<init;size> and click OK; The parameter init will be used to specify the initial value of the delay, and size the number of delays;
- in the definition window, create one input port and one output port. Enter: ? int i ! int o.

3.3 Definition of the algorithm with delay

Create an algorithm algorithmMain. Create a reference in1 to the definition input, a reference calc to the definition calc, a reference out1 to the definition output, and a reference calcPrec<0;1> to the definition calcPrec. Create dependences between the references.

The algorithm looks like the figure 3.1.

From the principal window, choose File / Close. In the dialog window, click on the Save button.

Figure 3.1: Algorithm of the **Example 3**

Chapter 4

Example 4: repetition and library in algorithm

From the principal window, choose **File / Save as** and save your fourth application under your tutorial folder with the name example4.

4.1 An algorithm with repetition without any library

In this section, we create a multiplication function of a N elements vector by a scalar by repeating N times a multiplication function on scalars.

4.1.1 Definition of the scalar ins and the function mul on scalars

In a new algorithm window:

- create a new sensor definition named ins with an integer output port o;
- create a new function definition named mul with two integer input ports a and b and an integer ouput port o).

4.1.2 Definition of the vectors inv and outv

To create the vectors:

- to create the definition inv:
 - from the algorithm window, create a new sensor definition named inv,
 - from the inv definition window, type N in the Parameters textfield of its Definition Properties (it has N elements),
 - create its integer output port named o with length N: ! int[N] o;
- to create the definition outv:
 - from the algorithm window, create a new actuator definition outv,
 - in outv definition window, type N in the **Parameters** textfield of its **Definition Properties** (it has N elements),
 - create its integer input port named i with length N: ? int[N] i.

4.1.3 Definition of the algorithm AlgorithmMain1

To create the AlgorithmMain1 algorithm:

- from the algorithm window, create a new function definition named AlgorithmMain1 and from its definition window, define it as main;
- in the AlgorithmMain1 definition mode:
 - create a reference s_input to the scalar ins,
 - create a reference v_input<N> to the vector inv,
 - create a reference mul to the function mul and type N in the **Repeat** textfield of its **Reference Properties** (it is repeated N times),
 - create a reference v_output<N> to the vector outv;
- create dependences between the references, in order to obtain the main algorithm (cf. figure 4.2);
- type N in the **Parameters** textfield of the **Definition Properties** of the main algorithm and 3 in the **Values** textfield (*cf.* figure 4.1). Notice that this value is keeped as long as the algorithm remains the main one.

Definition Properties:				
Name	AlgorithmMa			
Description	First algorith			
Parameters	N			
Values	3			

Figure 4.1: Parameters Values

The repetition consists in multiplying each of the 3 elements of the v_input vector with the s_input scalar and placing the result in the 3 elements v_output vector.

The parameter N is here the repetition factor of the mul function.

Figure 4.2: AlgorithmMain1 of the Example 4

4.2 An algorithm with repetition with the int library

In this section, we create a multiplication function of a vector by a scalar by using the int library.

4.2.1 Inclusion of the library int

From the principal window choose **File / Specify Library Directories** and add the SYNDEXPATH/libs where SYNDEXPATH is the absolute path of the SynDEx distribution.

From the principal window, choose File / Included Libraries / int (cf. figure 4.3).

File Options Algorithm A	rchitecture	e Constraints	Adequation	Code	Help	
Open Save Save as Close Included Libraries Specify Library Directories Quit	Ctrl-O Ctrl-S	bool c40 file float int transtech u				

Figure 4.3: File / Included Libraries / int

4.2.2 Definition of the algorithm AlgorithmMain2

Notice that this library contains input, mul, and output definitions parameterized with length. We will need to set it to 1 for the scalar and the multiplication function, and to N for the vectors:

- from the algorithm window, create the function definition AlgorithmMain2 and define it as main;
- in AlgorithmMain2 definition mode:
 - drag and drop the sensor definition int/input from the Definition list to the AlgorithmMain2 window
 → dialog window: s_input<1> (cf. figure 4.4) (it is a scalar),

Create Reference to input at [Function] AlgorithmMain2					
s_input<1>					
				syntax help	
	ОК	J	Cancel		

Figure 4.4: Create Reference to int/input

- drag and drop the sensor definition int/input \rightarrow dialog window: v_input<N> (it has N elements),
- drag and drop the function definition int/Arit_mul → dialog window: mul<1> then type N in the Repeat textfield of its Reference Properties, (it is a multiplication on scalars, repeated N times),
- drag and drop the actuator definition int/output \rightarrow dialog window: v_output <N> (it has N elements);

- create dependences between the references in order to obtain the main algorithm (cf. figure 4.5);
- type N in the Parameters textfield of the Definition Properties, and 3 in the Values textfield.

Notice the difference of the mul reference when it is seen from the AlgorithmMain2 definition mode or from the main mode (**Main** button).

Figure 4.5: AlgorithmMain2 of the Example 4

4.3 An algorithm with repetition with the float library

In this section, we create a multiplication function of a N*M matrix by a M elements vector by repeating N times a multiplication function on vectors.

4.3.1 Inclusion of the library float

Include the library float (File / Included Libraries / Float).

4.3.2 Definition of the function dpace

This function is a multiplication function on scalars with an accumulator:

- create a new function definition named dpace;
- create a reference mul<1> to the function float/Arit_mul (the reference works on scalars);
- create a reference add<1> to the function float/Arit_add (the reference works on scalars);
- add it three input ports and one output port: ? float s1 ? float s2 ? float acc ! float acc;
- then create dependences to obtain an algorithm (cf. figure 4.6).

Notice that acc is an input port and an output port of the function. It will be used as an accumulator to store the partial sum.

Figure 4.6: Algorithm of the function dpace

4.3.3 Definition of the function dp

This function is a multiplication function on vectors with an accumulator:

- create a new function definition named dp;
- add it a parameter dpacen;
- create a reference zero<{0}> to the constant **float/cst** (it is the {0} scalar);
- create a reference dpace to the function dpace then type dpacen in the **Repeat** textfield of its **Reference Properties** (it is repeated dpacen times);
- add it two input ports: ? float[dpaccn] v1 ? float[dpaccn] v2 and one output port: ! float dp (vectors have dpaccn elements);
- create dependences to obtain an algorithm (*cf.* figure 4.7). To build the dependence between the output port acc of dpace and its input port acc, choose **Iterate** on the dialog window (it is the connection between two successive calls of the function).

Figure 4.7: Algorithm of the function dp

The repetition consists in multiplying two *dpaccn* elements vectors by calling *dpaccn* times the dpacc multiplication function on scalars with accumulator. The initial value of its accumulator is given by the zero constant and the following are given by the accumulator itself.

4.3.4 Definition of the function prodmatvec

This function is a multiplication function of a matrix by a vector:

- create a new function definition named prodmatvec;
- type a; b in the Parameters textfield of its Definition Properties;
- create a reference dotprod to the function dp (input vectors have b elements) and type a in the **Repeat** textfield of its **Reference Properties** (it is repeated a times);
- add it two input ports: ? float[a*b] inm ? float[b] inv and one output port: ! float[a] outv;
- then create dependences to obtain an algorithm (cf. figure 4.8).

Figure 4.8: Algorithm of the function prodmatvec

The repetition consists in multiplying a a*b matrix by a b elements vector by calling a times the dp multiplication function on vectors.

4.3.5 Definition of the algorithm AlgorithmMain3

To create the AlgorithmMain3 algorithm:

- create the definition of the sensor inm, with two parameters names N and M, and with an output port: ! float [N*M] o;
- create a new function definition named AlgorithmMain3 and define it as main;
- add it two parameters:N;M with values 3;4;
- create a reference m1<N;M> to the matrix **inm**;
- create a reference inv<N> to the vector float/input;
- create a reference matprodvec<N;M> to the function prodmatvec;
- create a reference outv<M> to the vector **float/output**;
- then create dependences to obtain an algorithm (cf. figure 4.9).

From the principal window, choose File / Close. In the dialog window, click on the Save button.

Figure 4.9: AlgorithmMain3 of the Example 4

Chapter 5

Example 5: condition and nested condition in algorithm

From the principal window, choose **File / Save as** and save your fifth application under your tutorial folder with the name example5.

5.1 An algorithm with condition

5.1.1 Sensors x and i, actuator o

To create the sensors and the actuator:

- from the algorithm window: + green button \rightarrow dialog window: Sensor x;
- from the algorithm window: + green button \rightarrow dialog window: Sensor i;
- from the algorithm window: + green button \rightarrow dialog window: Actuator \circ .

5.1.2 Function switch1

To create the switch1 function:

- from the algorithm window: + green button \rightarrow dialog window: switch1;
- in the switch1 definition window:
 - contextual menu \rightarrow Add port \rightarrow dialog window: ? int x ? int i ! int o,
 - contextual menu \rightarrow Create Condition \rightarrow dialog window: x=1 x=2 x=3 x=4 (*cf.* figure 5.1):
 - * click on the condition x=1 (cf. figure 5.2) and create a reference div1<1> to the definition
 int/Arit_div,
 - * click on the condition x=2 (cf. figure 5.3) and create a reference div2<1> to the definition
 int/Arit_div,
 - * click on the condition x=3 (cf. figure 5.4) and connect the port i to the port o,
 - * click on the condition x=4 (cf. figure 5.5) and create a reference mul4<1> to the definition
 int/Arit_mul;

- create dependences between the references.

5.1.3 Algorithm AlgorithmMain1

The algorithm looks like the figure 5.6.

Figure 5.1: Create Condition

Figure 5.2: Condition x=1

Figure 5.3: Condition x=2

Figure 5.4: Condition x=3

Figure 5.5: Condition x=4

Figure 5.6: AlgorithmMain1 of the Example 5

5.2 An algorithm with nested condition

5.2.1 Sensors x and i, actuator o

Use previous definitions (cf. 5.1.1).

5.2.2 Function switch2

To create the switch2 function:

- from the algorithm window: + green button \rightarrow dialog window: switch2;
- in its definition window:
 - contextual menu \rightarrow Add port \rightarrow dialog window: ? int x ? int y ! int o,
 - contextual menu \rightarrow **Create Condition** \rightarrow dialog window: y=1 y=2,
 - click on the condition y=1 (cf. figure 5.7) and create the function mull<1> of the definition Arit_mul from int library,

Figure 5.7: Condition y=1

- click on the condition y=2 (cf. figure 5.8) and create a reference switch1 to the definition switch1;

• create dependences between the references.

5.2.3 Algorithm AlgorithmMain2

The algorithm looks like the figure 5.9.

From the principal window, choose File / Close. In the dialog window, click on the Save button.

Figure 5.8: Condition y=2

Figure 5.9: AlgorithmMain2 of the **Example 5**

Chapter 6

Example 6: algorithm, architecture, adequation, and code generation

From the principal window, choose **File / Save as** and save your sixth application under a new folder of your tutorial folder (e.g. my_example6) with the name example6.

6.1 The main algorithm

Create the main algorithm algo (*cf.* figure 6.1) using the library **int** for the operations In<1> (**input**), cste2<{2}> (**cst**), add<1> (**Arit_add**), mul<1> (**Arit_mul**), visuadd<1>, and visumul<1> (**output**). For the operation conv, create a function definition conv, create a reference to this definition, and give it a duration. Create the dependences between the references. Set it as main.

Figure 6.1: Main algorithm of the **Example 6**

Warning: it is necessary that the sensor "in" should be distributed onto the processor "root", i.e. on the local machine, in order that it operates properly.

6.2 The main architecture

To define and constraint the main architecture:

• include the library u,

- from the principal window, choose Architecture / Edit Architecture Definition and open the architecture biProc,
- define it as main,
- create the operation groups og1 and og2 then create the absolute constraints on the operators: og1 on root, og2 on P1. Attach references to operation groups: In, add, and visumul → og1, mul, and visuadd → og2.

6.3 The adequation and the code generation

To perform the adequation and to generate the code:

- before performing the code generation, you have to perform the adequation. Set the possibly missing durations, then from the principal window: Adequation / Launch Adequation;
- from the principal window: Code / Generate Executive(s). It generates for each operator of the main architecture the code in a file (files root.m4 and P1.m4) and an architecture description (file example6.m4). These files are generated in the same folder as the application. The files generated for each processor may be viewed: Code / Display Executive(s);
- the macros corresponding to the operations, included in the libraries of SynDEx, are already defined under the folder macros (files int.m4x, U.m4x, and TCP.m4x);
- in the same folder as the SynDEx application of the **Example 6**, create a new file example6.m4x in which you define the macro corresponding to the operation conv which is the only one not defined in the library, and the number of iterations. The file looks like:

• create a new file example6.m4m, in which you set for each operator, except the main operator, the name of a workstation corresponding to this operator. The file looks like:

dnl (c)INRIA 2001-2009
define(`P1_hostname_', HOSTNAME)dnl

where HOSTNAME is the name of the remote workstation, as indicated in the Readme file under syndex/examples/tutorial/example6;

Warning: the characters ' and ' are different.

Warning: if you increase the number of processors in your architecture, you must add other define statements with the corresponding "processor name", "remote worksation name" association.

• create a new file root.m4x for the main operator including the file example6.m4m:

```
dnl (c)INRIA 2001-2009
include(example6.m4m)
```

• create a new file GNUmakefile which allows the compilation and the substitution of the macros from the code generation by the executable code. The file looks like:

```
# (c)INRIA 2001-2009
A = example6
M4 = m4
export SynDEx_Path = SYNDEXPATH
export Algo_Macros_Path = $(SynDEx_Path)/macros/algo_libraries
export Archi_Macros_Path = $(SynDEx_Path)/macros/archi_libraries
export M4PATH = $(Algo_Macros_Path):$(Archi_Macros_Path)
CFLAGS = -DDEBUG
VPATH = $(M4PATH)
.PHONY: all clean
all : $(A).mk $(A).run
clean ::
$(RM) $(A).mk
$(A).mk : $(A).m4 syndex.m4m U.m4m $(A).m4m
$(M4) $< >$@
root.libs =
Pl.libs =
include $(A).mk
```

where SYNDEXPATH is the absolute path of the SynDEx distribution. Warning: in the previous makefile the statements $(RM) \ (A) \ Mk$ and $(M4) \ < >$ where M4 is the statement of the stateme

The folder of the **Example 6** must contain the following files:

- example6.m4
- example6.m4m
- example6.m4x
- example6.sdc
- example6.sdx
- GNUmakefile

- p1.m4
- root.m4
- root.m4x

To launch the execution, type the command make in the folder of the **Example 6**. To delete the file created during the compilation, type the command gmake clean.

From the principal window, choose File / Close. In the dialog window, click on the Save button.

Chapter 7

Example 7: source code associated with an operation

7.1 Definition of the source code into the code editor window

In the previous **Example 6**, we have learnt that a **m4** file, called with the name of the application plus the **m4x** extension, must be manually written. It contains all the source code associated with all operations present in a SynDEx application. For example, in the example6 application, the conv function increments of one the value of the input and stores the result in the output. Thus example6.m4x file contains:

```
define(`conv',`ifelse(
    MGC,`INIT',`dnl',
    MGC,`LOOP',`$2[0] = $1[0] + 1;',
    MGC,`END',`dnl')')
```

where \$1 and \$2 correspond respectively to the input port named i and the output port named o of the conv function. You may read the comments written in the example6.m4x.

Handwriting this kind of code is not very easy, for several reasons:

- the port number may change by inserting or removing a port or parameter, following the SynDEx's rule of port numeration. For example, after inserting a parameter P in the function conv, \$1 will not refer to the input port i but it will refer to the new added parameter P. All numbers are now brought, thus we must modify the code and replace the arguments \$1 by \$2 and \$2 by \$3;
- this task is quite repetitive when an application contains many operations;
- it is easy to make a mistake in the **m4** syntax. Great knowledges in **m4** syntax (two different kind of quotes, ifelse ...) and SynDEx **m4** macros (MGC) are required.

It should be more convenient to write @OUT(o)[0] = @IN(i)[0] + @PARAM(P) and let SynDEx interpret it and generate the associated **m4x** file than to write the specification with the **m4** syntax. SynDEx (version $\ge 7.0.0$) is able to do that thanks the *code editor* which is a tool integrated in the graphical user interface (GUI). In the following example, we will show how to use this tool.

7.1.1 To add parameters to an already defined operation

In this example, we show how to modify some functions by adding parameters in order to expand parameters into **m4** arguments.

Open the example6.sdx application:

- from the principal window; choose File / Open \rightarrow Open the example6.sdx file;
- save it as example7.sdx under a new folder of your tutorial folder (e.g. my_example7).

Add parameters to the conv function:

- open the conv definition and add parameter names P;T in the Parameters field,
- open the main algorithm definition, select the conv reference, add parameters values 2;3 in the **Parameters** field and modify the name reference from conv to conv_ref in the **Name** field.

Verify that the parameters have been stored in the function

We have two solutions:

- from the algorithm window on the main algorithm: put the mouse on the conv box → Read the printed informations in the principal window;
- or right click on the algorithm window background and select Activate Info Bubbles → Point the mouse cursor on the conv operation box.

7.1.2 To edit the code associated with an operation

In the case of a generic processor

• Open the code editor

We need to launch the code editor of the selected operation. Let us consider the case of the conv_ref function. We have to do the following operations:

- in the main algorithm: double left click on the conv_ref blue box. It opens the conv definition window. In its contextual menu, select Edition of the associated source code. It opens the code editor. It looks like a window with three push-buttons and an editable text area. Each push-button corresponds to one specific phase of three (init, loop, and end phases). When one of the three buttons is pressed, the text area shows the associated source code;
- in the conv definition window, right click on the background and select Edit code phases \rightarrow Select init and end \rightarrow OK;
- in the code editor window: **init phase** \rightarrow write in the text area (which is empty) the following C language code. This code is understood as a generic code:

printf("Init phase of function \$0 for default processor.n");

- do the same thing for the **loop phase** 1 :

```
@OUT(o)[0]=@IN(i)[0]*@PARAM(T)+@PARAM(P);
printf("Loop phase of function $0 for default processor = %i.\n", @OUT(o)[0]);
```

- and for the end phase:

```
printf("End phase of function $0 for default processor.\n");
```

- in the code editor window: Edit / Apply changes to all phases. It saves all buffers of all edited phases;
- in the code editor window: **OK** (it also saves all buffers).

Notice the following points:

¹ Macros of the code editor as @IN, @OUT, @PARAM, ... are explained in the User Manual.

- you can not launch the code editor from a main algorithm or a read-only operation (definition coming from libraries);
- you can write a code associated with a herarchical operation meanwhile it will not be present in the applicationName_sdc.m4x file (the background color of the text area of the code editor is grey);
- it is important to recall that the code is common to all the references of the same operator. Only the
 values of parameters are specific of each instance.
- · Verify that code is common to all references

We create a new reference to the conv function:

- in the main algorithm: create a reference conv_ref_bis<8;9> to the definition conv;
- in the main algorithm: first remove the link between the conv_ref and mul boxes. Second, link the conv_ref_bis output to the conv_ref_bis input. Third, link the conv_ref_bis output to the mul b input;
- in the algorithm window left click on the **Auto-position** button and write 120 in the two entry texts \rightarrow **OK**,
- open the code editor of this new box: the code is the same. To show that values of parameters are specific to the reference (and not to the definition), we must generate the m4 code like shown in the previous example (Menu Adequation / Launch Adequation then Code / Generate Executive(s)) and look in P1.m4 (Menu Code / Display Executive(s)). The file contains

conv(2,3,_algo_cste2_Pl_o,_algo_conv_ref_o)
conv(8,9,_algo_conv_ref_o,_algo_conv_ref_bis_o)

In the case of an architecture with heterogeneous processors

Sometimes it is interesting for an operation to have different source codes depending on the type of processor. For example, a given processor type x may only offer assembly language as a programming interface. In such case, we must be able to provide (for example) c code for processors that support it, and assembly language for the x processor type. To support heterogeneous architecture, the code editor associates code to a triplet (phase, processor, operation). A special processor type **Default** is provided for processors that have not been associated with dedicated code. Its use allows to share a code between different processor types.

• Include a new processor type

From the principal window, choose File / Included Libraries \rightarrow Select c40

- Define an new architecture:
 - from the principal window, choose Architecture / Define Architecture (*cf.* figure 1.14) \rightarrow In the entry text, write archi2. \rightarrow OK;
 - in the archi2 window: create a reference root to the operator C40 and define it as the main operator.
- Replace the conv_ref_bis box by a reference to bar_ref:
 - create a new function definition named bar with one input port called in and one output port called out;
 - in the algo definition select all the references using the mouse and copy them (right click \rightarrow **Copy**),
 - create a new main algorithm named algo2;
 - paste in the algo2 definition window;
 - in the algo2 definition window: first delete the conv_ref_bis reference, then create a reference bar_ref box to the definition bar, finally create the missing dependences.
- Insert code for C40 processor type to the bar function:

- in the algo2 definition window: double left click on the bar_ref blue box. It opens the bar definition window. In its contextual menu, select Edition of the associated source code. It opens the code editor;
- in the bar definition window, right click on the background and select Edit code phases \rightarrow Select init and end \rightarrow OK;
- in the code editor window: Type of Processor: Select C40;
- in the code editor window: click on the **init phase** button and write in the text area the following code:

/* Hi, I am \$0 function, in init phase for C40 processor */

- in the code editor window: click on the **loop phase** button and write in the text area the following code:

@OUT(out)[0] = @IN(in)[0];
/* Hi, I am \$0 function, in loop phase for C40 processor */

- in the code editor window: click on the end phase button and write in the text area the following code:

/* Bye, I am 0 function, in end phase for C40 processor */

- Insert code for U processor type to the bar function:
 - in the code editor window: **Type of Processor**: Select **U**;
 - in the code editor window: click on the init phase button and write in the text area the following code:

/* Hi, I am 0 function, in init phase for U processor */

- in the code editor window: click on the **loop phase** button and write in the text area the following code:

@OUT(out)[0] = @IN(in)[0] * 42; /* Hi, I am \$0 function, in loop phase for U processor */

- in the code editor window: click on the end phase button and write in the text area the following code:

/* Bye, I am 0 function, in end phase for U processor */

• Modify the durations

Add c40/C40 = 1 at the end of the **Durations** text area for each definition referenced in algo2

Learn the macros of the code editor

The code editor comes with a set of predefined macros that alleviate the user from knowing the black magic of **m4** processing.

The more useful ones are names translation macros. These macros translate port and parameter names to their internal representation as **m4** parameters. We have already encountered such macros in what we have just done: @IN, @OUT and @INOUT are port name translation macros, and @PARAM is the parameter name translation macro. As a rule of thumb, you should use @PARAM(x) when you want to refer to a parameter x and @IN(i) (*resp.*@OUT(o) / @INOUT(io)) when you refer to an input port i (*resp.*output port o / input-output port io).

The code editor recognizes three more macros: @NAME, @QUOTE and @TEXT. These advanced macros are not used in this tutorial and the reader is referred to SynDEx user manual to learn more about it.

7.1.3 To generate m4x files

Before performing the code generation we have to perform the adequation:

- from the principal window, choose Adequation / Launch Adequation;
- from the principal window, choose Code: Select Generate m4x Files;
- from the principal window, choose Code / Generate Executive(s);
- from the principal window, choose Code / Display Executive(s).

Two cases are possible:

- the check box Generate m4x Files has not been checked. For each operator of the main architecture a *processor_name*.m4 file containing **m4** macro-code is produced. As previously explained an architecture description file (named example7.m4) is also produced;
- the check box Generate m4x Files has been checked. Then, two new files (example7.m4x and example7_sdc.m4x) are generated in the same folder as the application.

These two files constitute the Applicative kernel:

- the MyApplication_sdc.m4x file contains all **m4** macro code associated with operations used in the SynDEx application. Each time code generation is triggered, this file is overwritten;
- the MyApplication.m4x file is an user editable file whose goal is to allow the user to complete the applicative kernel if needed. At code generation time, if this file does not exist then SynDEx creates a generic file (including the MyApplication_sdc.m4x file plus some other features), otherwise the existing file is kept.

The example7_sdc.m4x file contains the following code:

```
divert(-1)
# (c)INRIA 2001-2009
divert(0)

define('example7_bar','bar')
define('bar','ifelse(
    processorType_,'C40','ifelse(
    MGC,'INIT', ''/* Hi, I am $0 function, in init phase for C40 processor */'',
    MGC,'LOOP','`$2[0] = $1[0]; /* Hi, I am $0 function, in loop phase for C40 processor */'',
    MGC,'END', ''/* Bye, I am $0 function, in end phase for C40 processor */'')
processorType_,'U','ifelse(
    MGC,'INIT',''* Hi, I am $0 function, in init phase for U processor */'',
    MGC,'LOOP',''$2[0] = $1[0] * 42; /* Hi, I am $0 function, in loop phase for U processor */'',
    MGC,'END', ''/* Bye, I am $0 function, in end phase for U processor */'',
    MGC,'END', ''/* Bye, I am $0 function, in end phase for U processor */'',
    MGC,'END', ''/* Bye, I am $0 function, in end phase for U processor */'',
```

```
define(`example7_conv',`conv')
```

```
define(`conv',`ifelse(
    processorType_,processorType_,`ifelse(
    MGC,`INIT',``printf("Init phase of function $0 for default processor.\n");'',
    MGC,`LOOP',``$5[0]=$3[0]*$2+$1;
    printf("Loop phase of function $0 for default processor =%i.\n", $4[0]);'',
    MGC,`END',``printf("End phase of function $0 for default processor.\n");'')')
```

If the example7.m4x file did not exist at code generation time then it will contain the following code:

```
divert(-1)
# (c)INRIA 2001-2009
divert(0)

define(`dnldnl',``// '')
define(`NOTRACEDEF')
define(`NBITERATIONS',``5'')

include(`example7_sdc.m4x')
divert
#include <stdio.h> /* for printf */
divert(-1)
divert`'dnl
```

Deeper insights about the m4 macro language can be found in SynDEx user manual and GNU M4 manual.

- See the difference between executable codes:
 - create the example7.m4m file (cf. 6.3);
 - create the root.m4x file (cf. 6.3);
 - create the GNUmakefile (cf. 6.3), containing:

```
$(A).mk : $(A).m4 syndex.m4m U.m4m C40.m4m $(A).m4m $(M4) $< >$@
```

- define algo2 as main algorithm;
- define archi as main architecture, perform the adequation, generate the code, and run the GNUmakefile compilation You obtain a root.c file containing U code only (no C40 code);
- define archi2 as main architecture, perform the adequation, generate the code, and compile again. This time, only C40 code is present in the root.c file.

Notice that:

- adequation modifies original files example7.sdx and example7.sdc;
- code generation produces these files: example7.m4, root.m4, pcl.m4 (if archi is defined as main), example7_sdc.m4x (if Generate m4x files is set) and example7.m4x (if Generate m4x files is set and the file did not exist before);
- compilation produces these files: example7.mk, root, root.c, and root.root.o, and (if archi is defined as main) pcl, pcl.c, and pcl.pcl.o.

From the principal window, choose File / Close. In the dialog window, click on the Save button.

Chapter 8

Example 8: a complete realistic application from adequation to execution

From the principal window, choose **File / Save as** and save your eighth application under a new folder of yout tutorial folder (e.g. my_example8) with the name example8.

8.1 The aim of the example

In the seven previous examples we have learnt how to use SynDEx's GUI to create architectures, algorithms, launch adequation, obtain executive files... Now, we have sufficient knowledge to perform a simple automatic control application that will be executed on a multiprocessor architecture.

First the application is described and the system is defined in Scicos (the block diagram editor of the Scilab software¹). Second the corresponding SynDEx application is created (using the **Example 1** to **3** of the tutorial). This needs the generation of some c code following the method discussed in **Example 7**. Finally, we compile the application to obtain executable for several processors as it has been shown in **Examples 6** and **7**. SynDEx generates the code necessary to the communication between the processors.

8.2 The model

We consider a system of two cars. The second car C_2 follows the car C_1 trying to maintain the distance l while the acceleration and the deceleration of C_1 . We call: $x_1(t)$ the position of the first car; $x_2(t)$ the position of the second car plus l; $\dot{x}_1(t)$ and $\dot{x}_2(t)$ the speeds of two cars. We denote k_1 and k_2 the inverse of the car masses. We call r(t) the reference speed chosen by the first driver. We suppose that we are able to observe the speed of the first car and the distance between the cars.

We have the following fourth order (four degrees of liberty) system:

We will decompose the system into mono-input mono-output system $S_1(u_1, y_1)$ and $S_2(u_2, y_2)$. Denoting by uppercase letter the Laplace transform of the variables, we have $Y_1 = k_1U_1/s$ and $Y_2 = (k_1U_1 - k_2U_2)/s^2$ where U_1 is seen as a perturbation that we want reject in the second system.

A first proportional feedback $U_1 = \rho_1(R - Y_1)$ will insure the first car to follow the reference speed. The second controller will be proportional derivative $U_2 = \rho_2 Y_2 + \rho_3 s Y_2$ (in fact we will suppose in the following diagram that the derivative of y_2 is also observed). The coefficient ρ_1 is obtained by placing the pole of the first loop:

$$Y_1 = \rho_1 k_1 R / (s + \rho_1 k_1).$$

¹ http://www.scilab.org

The coefficient ρ_2 and ρ_3 are obtained by placing the pole of the transfer from U_1 to Y_2 in the closed loop system which is given by:

$$Y_2 = U_1 k_1 / (s^2 + k_2 \rho_3 s + k_2 \rho_2).$$

8.3 The controllers

The purpose of the controller of the C_1 car is to follow the reference in speed given the first driver. It stabilizes the C_1 speed around its reference speed by using pole placement. For example, gains are respectively: (0, -5, 0, 0, -5). The controller of second car stabilizes the distance between the two cars. It stabilizes y_2 around 0 by pole placement. For example, gains are respectively: (4, 4, -4, -4).

The controler of C_2 knows these informations and sends them electronically to C_1 . This remark is available for C_1 .

8.3.1 Block diagrams of controllers

Figure 8.1: Scicos controller of the first car

Figure 8.2: SynDEx controller of the first car

Our controllers are simple. They are represented in figures 8.1 and 8.3 in Scicos and figures 8.2 and 8.4 in SynDEx:

Figure 8.3: Scicos controller of the second car

Figure 8.4: SynDEx controller of the second car

- create a gain_def function with one input port in_1, one output port out_1 and a parameter named value. Notice that all ports will be of type float;
- then create sommateur2_def, sommateur4_def, and sommateur5_def functions, respectively with two input ports (in_1 and in_2), four input ports (from in_1 to in_4), and five input ports (from in_1 to in_5). Each of these three functions is created with only one output port out_1;
- finally create both algorithms controleur1_sup and controleur2_sup (*cf.* figures 8.2 and 8.4), setting their gain parameters respectively to 0, -5, 0, 0, 5 and 4, 4, -4, -4.

8.3.2 Source code associated with the functions

We associate C source code to each function definition: gain and nary-sums. The code is inserted for the default processor.

Gain

A gain is a function that multiplies its input by a coefficient given as a parameter, named GAIN. After adding this parameter, open the code editor of the gain definition and write the following code in the loop phase of the default processor:

```
@OUT(out_1)[0] = @IN(in_1)[0] * @PARAM(GAIN);
```

Sum

We have three different forms of sum depending of its arity: two, four or five input ports:

• open the code editor of the sum function with two input ports and write the following code in the loop phase of the default processor:

@OUT(out_1)[0] = @IN(in_1)[0] + @IN(in_2)[0];

• open the code editor of the sum function with the four input ports and write the following code in the loop phase of the default processor:

```
@OUT(out_1)[0] = @IN(in_1)[0] + @IN(in_2)[0] +
@IN(in_3)[0] + @IN(in_4)[0];
```

• open the code editor of the sum function with the five input ports and write the following code in the loop phase of the default processor:

```
@OUT(out_1)[0] = @IN(in_1)[0] + @IN(in_2)[0] +
@IN(in_3)[0] + @IN(in_4)[0] + @IN(in_5)[0];
```

8.4 The complete model

In a real application, our job stops with the SynDEx's adequation of the two controllers on their associated architectures. Nevertheless, for pedagogic reasons, we will simulate the whole system (with the dynamics of the cars) in the aim to verify that our application does the same job that Scicos.

8.4.1 The car dynamics

SynDEx is only used in discrete time model (not continuous time) and is not able to manage implicit algebraic loop. That is, in SynDEx, any loop contains at least a delay 1/z. Therefore, our application which is a continuous time dynamic system described in Scicos, must be discretized in time to be used in SynDEx.

The differential equation $\dot{x} = u$ is discretized using the simplest way: the Euler scheme. Let us denote by *h* the step of the discretization and x_0 an arbitrary initial value, the discretized system can be written as:

$$x_{n+1} - x_n = uh \tag{8.2}$$

Finally, the system is given in Scicos in the figure 8.5 and 8.2 is given in SynDEx in the figure 8.6. Notice that the variable h is stored in the Scicos context, and used in the input of the gain and the clock definition. In SynDEx, h is defined as parameter in the definition of a gain and the clock definition is directly used in the source code associated with operations.

Figure 8.5: An integral discretized in Scicos

Figure 8.6: An integral discretized in SynDEx

Create the integrale_discrete_sup algorithm (*cf.* figure 8.6). Notice that pas is of type gain_def with parameter GAIN equal to 0.001, sommateur is of type sommateur2_def, and retard is of type float/delay<{0};1>.

The car dynamics are given with Scicos block diagrams in the figure 8.7 and with SynDEx operations in the figure 8.8, where the input 1 (ref) is the acceleration of the car. The first integral gives the speed of the car and the second its position.

Create the mecanique_sup algorithm (*cf.* figure 8.8). Notice that puissancemoteur is of type gain_def with parameter GAIN equal to 1 whereas integrale1 and integrale2 are of type integrale_discrete_sup.

Figure 8.7: Car dynamics with Scicos block diagrams (continous time)

Figure 8.8: Car dynamics with SynDEx operations

8.4.2 The cars and their controllers

In the following diagrams (from 8.9 to 8.12), the blocks (operations) denoted by meca are the car dynamics. Let us get the controllers of the two cars.

Create the voiture1_sup and voiture2_sup algorithms (*cf.* figures 8.10 and 8.12). Notice that meca1 and meca2 are references to mecanique_sup whereas control1 (*resp.* control2) is a reference to controleur1_sup (*resp.* controleur2_sup).

8.4.3 The main algorithm

Create the following definitions (definitionName<PARAM>):

- senseur_def<POSI_ARRAY> with one output port out_1,
- vitesse_def<POSI_ARRAY> with one input port in_1,
- scope_def<POSI_ARRAY> with two input ports in_1 and in_2.

Then create algomain. Create the reference speed ref_vit of definition senseur_def<0>, the reference vitesse $\dot{x_1}$ of definition vitesse_def<1>, the reference distance between the two cars of definition scope_def<2>, the reference vehicule1 of definition voiture1_sup and the reference vehicule2 of definition voiture2_sup, connect them according to the figure 8.13.

8.4.4 Source code associated with the sensor and the actuator

We associate c source code to each function definition: input and two kinds of output.

Figure 8.9: Scicos C_1 car dynamics and its controller

Figure 8.10: SynDEx voiture1_sup car dynamics and its controller

Figure 8.11: Scicos C_2 car dynamics and its controller

Figure 8.12: SynDEx voiture2_sup car dynamics and its controller

Figure 8.13: Main algorithm

Input

In our Scicos application an input is a square wave generator. As a rule, we will simulate a square wave generator by reading values in a text file (named ref_vitesse.txt). We will use the fopen, the fclose and the fscanf functions (stdio.h library). We will also use assertions (assert.h library) to ensure that the opening of a file has been successful.

For the moment, let suppose that it exists an array of FILE* (the structure returned by the fopen function) called fd_array and a variable called timer to simulate a pseudo-timer. Our sensor has a parameter called POSI_ARRAY to remember the position of the FILE* structure in the array.

Now, open the code editor of the senseur_def sensor and write the following code in the init phase of the default processor:

```
timer = 0;
fd_array[@PARAM(POSI_ARRAY)] = fopen("ref_vitesse.txt", "r");
assert(fd_array[@PARAM(POSI_ARRAY)] != NULL);
```

In the Scicos application, we have defined the clock period of the square wave generator to the value 5 and the step of discretization h to the value 0.001. Thus we need, in the SynDEx application, to send 5000 times the same value. To count, we use the variable timer. All the 5000-th times, we read a new value in the file.

Write the following code in the loop phase of the default processor:

```
timer = (timer + 1) % 5000;
if (timer == 1)
fscanf(fd_array[@PARAM(POSI_ARRAY)], "%f\n", &data);
@OUT(out_1)[0] = data;
```

We need to free memory by closing the file. Write the following code in the end phase of the default processor:

```
fclose(fd_array[@PARAM(POSI_ARRAY)]);
```

Speed output

An output saves in a file the values of the system states. Thus, an output has a parameter called POSI_ARRAY to remember the position of the array where the stream has been saved. Open the code editor of the vitesse_def actuator and write the following code in the init phase of the default processor:

fd_array[@PARAM(POSI_ARRAY)] = fopen("actuator_@TEXT(@PARAM(POSI_ARRAY))", "w"); assert(fd_array[@PARAM(POSI_ARRAY)] != NULL);

The loop phase, allows to save the values:

fprintf(fd_array[@PARAM(POSI_ARRAY)], "%E\n", @IN(in_1)[0]);

We need to free the memory by closing the file. Write the following code in the end phase:

```
fclose(fd_array[@PARAM(POSI_ARRAY)]);
```

Distance output

Contrary to the first type of output, this output has two input ports but the init and end source codes are identical. The loop phase differs. Open the code editor of the scope_def actuator and write the following code in the init phase of the default processor:

```
fprintf(fd_array[@PARAM(POSI_ARRAY)], "%E\n", (@IN(in_1)[0] - @IN(in_2)[0]));
```

8.4.5 The example8_sdc.m4x

SynDEx's code generation will create the example8_sdc.m4x file (as explained in Example 7):

```
define('example8_algomain', 'algomain')
define(`algomain',`ifelse(
processorType_,processorType_,`ifelse(
MGC, 'INIT', '''',
MGC, 'LOOP', ''WARNING: empty code for macro $0 in loop phase'',
MGC, 'END', '`'')')')
define(`example8_controleur1_sup',`controleur1_sup')
define(`controleur1_sup',`ifelse(
processorType_,processorType_,`ifelse(
MGC, 'INIT', '''',
MGC, 'LOOP', ''WARNING: empty code for macro $0 in loop phase'',
MGC, 'END', '`'')')')
define(`example8_controleur2_sup',`controleur2_sup')
define(`controleur2_sup',`ifelse(
processorType_,processorType_,`ifelse(
MGC, 'INIT', ''',
MGC, <code>`LOOP',``WARNING:</code> empty code for macro 0 in loop phase'',
MGC, 'END', '`'')')
define(`example8_gain_def',`gain_def')
define(`gain_def',`ifelse(
processorType_,processorType_,`ifelse(
MGC, 'INIT', '`'',
MGC, 'LOOP', ''WARNING: empty code for macro $0 in loop phase'',
MGC, 'END', '`'')')')
define(`example8_integrale_discrete_sup',`integrale_discrete_sup')
define(`integrale_discrete_sup',`ifelse(
processorType_,processorType_,`ifelse(
MGC, 'INIT', ''',
 MGC, 'LOOP', ''WARNING: empty code for macro $0 in loop phase'',
 MGC, 'END', ''')')')
define('example8_scope_def','scope_def')
define(`scope_def',`ifelse(
processorType_,processorType_,`ifelse(
 MGC, 'INIT', '`'',
MGC, <code>`LOOP',``WARNING:</code> empty code for macro 0 in loop phase'',
MGC, 'END', '`'')')
define(`example8_senseur_def',`senseur_def')
define(`senseur_def',`ifelse(
processorType_,processorType_,`ifelse(
MGC, 'INIT', '`'',
```

```
MGC, 'LOOP', ''WARNING: empty code for macro $0 in loop phase'',
 MGC, 'END', ''')')
define('example8_sommateur2_def','sommateur2_def')
define(`sommateur2_def',`ifelse(
processorType_,processorType_,`ifelse(
 MGC, 'INIT', ''',
 MGC, 'LOOP', ''WARNING: empty code for macro $0 in loop phase'',
 MGC, 'END', ''')')')
define('example8_sommateur4_def','sommateur4_def')
define(`sommateur4_def',`ifelse(
processorType_,processorType_,`ifelse(
MGC, 'INIT', '''',
 MGC, 'LOOP', ''WARNING: empty code for macro $0 in loop phase'',
 MGC, 'END', ''')')')
define(`example8_sommateur5_def',`sommateur5_def')
define(`sommateur5_def',`ifelse(
processorType_,processorType_,`ifelse(
MGC, 'INIT', '`'',
MGC, 'LOOP', ''WARNING: empty code for macro $0 in loop phase'',
MGC, 'END', '`'')')
define('example8_vitesse_def','vitesse_def')
define('vitesse_def','ifelse(
processorType_,processorType_,`ifelse(
MGC, 'INIT', '''',
MGC, 'LOOP', ''WARNING: empty code for macro $0 in loop phase'',
MGC, 'END', ''')')')
define('example8_voiture1_sup','voiture1_sup')
define(`voiture1_sup',`ifelse(
processorType_,processorType_,`ifelse(
MGC,`INIT',``'',
MGC, 'LOOP', ''WARNING: empty code for macro $0 in loop phase'',
MGC, 'END', '`'')')')
define(`example8_voiture2_sup',`voiture2_sup')
define(`voiture2_sup',`ifelse(
processorType_,processorType_,`ifelse(
MGC,`INIT',``'',
 MGC, 'LOOP', ''WARNING: empty code for macro $0 in loop phase'',
 MGC, 'END', ''')')')
```

8.4.6 To handwrite the example8.m4x file

You will not can use directly the SynDEx's generated example8.m4x generic file because both the creation of local variable and the call of libraries is missing. After the code generation, you will must handwrite it to obtain the following code:

```
define(`dnldnl',``// '')
define(`NOTRACEDEF')
define(`NBITERATIONS',``20000'')
define(`BINPWD', `pwd')
define(`RSHELL', `ssh')
define(`proc_init_',`
```

```
FILE *fd_array[10];
float data;
int timer;')
include('example8_sdc.m4x')
divert
divert(-1)
divert''dnl
```

Where the macro proc_init_ allows the local variable declaration to be declared because it inserts its source code between the main function and the operations initialization. Notice that the main loop of the program is defined generically with a loop of NBITERATIONS where NBITERATIONS is initialized with the size of the input file (ref_vitesse.txt). Finally, the call of libraries is inserted after the include of the example8_sdc.m4x file.

8.5 Scicos simulation

Scicos software allows to simulate models in a window (*cf.* figure 8.14), where the values of three states are plotted (ordinate axle) according to the time (abscissa axle). We have:

- the square wave generator drawn at the bottom (red);
- the speed of the first car at the top (black);
- the distance between the two cars seen in the middle of the figure (green).

Thanks the diagram, the system is stable (plots do not grow exponentially) and so it works. We do not continue to ameliorate the controllers job.

Figure 8.14: Scope window obtained with the values 0; -5; 0; 0; -5 for gains of the C_1 controller and 4; 4; -4; -4 for the C_2 controller.

8.6 SynDEx simulation

8.6.1 In the case of a mono-processor architecture

The architecture

In this subsection, we suppose that the architecture is constituted of an only operator named root:

- create the U operator:
 - set the durations with

```
float/delay = 1
gain_def = 1
scope_def = 1
senseur_def = 2
sommateur2_def = 2
sommateur4_def = 1
sommateur5_def = 2
vitesse_def = 1
```

- choose **init** as code generation phase in which to generate code;
- create the mono architecture:
 - add one U operator named root and define it as main operator,
 - define the mono architecture as main.

The adequation and the code generation

First, launch the adequation. It modifies example8.sdc and example8.sdx files.

Then, generate the executive and applicative files (setting Code / Generate m4x Files). It creates example8.m4, example8.m4x, example8.m4x, and root.m4 files.

Finally, handwrite the example8.m4x file as explained in 8.4.6.

The compilation

First, generate manually a GNUmakefile containing:

```
A = example8
M4 = gm4
export ArchiMacros_Path = ../../macros/archi_libraries
export AlgoMacros_Path = ../../macros/algo_libraries
export M4PATH = $(ArchiMacros_Path):$(AlgoMacros_Path)
CFLAGS = -DDEBUG
VPATH = $(M4PATH)
.PHONY: all clean
all : $(A).mk $(A).run
clean ::
$(RM) $(A).mk *~ *.o *.a *.c actuator_*
$(A).mk : $(A).m4 syndex.m4m U.m4m
$(M4) $< >$@
root.libs =
P1.libs =
include $(A).mk
```

Where:

- A is set with the name of your application (here example8);
- the path about the generic *.m4? macro-files are stored in the exported shell variables ArchiMacros_Path and AlgoMacros_Path then grouped into a new exported shell variable named M4PATH. The separator : means that a *m4* macro-file will be search first in ArchiMacros_Path and then in AlgoMacros_Path if is not found;
- a mix of this makefile and the informations stored in file named example8.m4m will create another makefile called example8.mk during the compilation.

Then, copy-paste the ref_vitesse.txt file from the **Example 8** folder to yours.

Then, type the command gmake in a shell commands interpreter. It creates actuator_1, actuator_2, example8.mk, root, root.c, and root.root.o files:

- the actuator_1 file contains the speed of the first car;
- the actuator_2 file contains the distance between the cars.

8.6.2 In the case of a bi-processor architecture

The architecture

In this subsection, we suppose that the architecture is constituted of two operators named root and pc1, of type U and linked with a medium tcp1 of type TCP:

- create the TCP medium:
 - set the type with **SAM MultiPoint**,
 - set the durations with float = 1;
- modify the U operator: set the gates with TCP x and TCP y;
- create the biProc architecture:
 - add one U operator named root and define it as main operator,
 - add one U operator named pc1,
 - add one TCP medium named tcp1 and choose the Broadcast option,
 - links the medium to the x gates of the operators,
 - define the biProc architecture as main.

The adequation and the code generation

First, launch the adequation. It modifies example8.sdc and example8.sdx files.

Then, generate the executive and applicative files (setting Code / Generate m4x Files). It creates example8.m4,

example8.m4x, example8_sdc.m4x, root.m4, and pc1.m4 files.

Finally, handwrite the example8.m4x file as explained in 8.4.6.

The compilation

First, generate manually the GNUmakefile, the example8.m4m, and the root.m4x files:

• the GNUmakefile has to be created as explained in 8.6.1. Upgrade it so that the line:

\$(A).mk : \$(A).m4 syndex.m4m U.m4m

is changed by:

- create the example8.m4m file with this line: define('pc1_hostname_', HOSTNAME)dnl where HOSTNAME is substituted with the name of your remote station;
- create the root.m4x file with this line: include(example8.m4m).

Then, copy-paste the ref_vitesse.txt file from the **Example 8** folder to yours.

Then, type the command gmake in a shell commands interpreter. It creates actuator_1, actuator_2, example8.mk, root, root.c, root.root.o, pc1, pc1.c, and pc1.pc1.o files:

- the actuator_1 file contains the speed of the first car;
- the actuator_2 file contains the distance between the cars.

8.6.3 In the case of a multi-processor architecture

The architecture

Figure 8.15: The architecture with 5 operators.

In this subsection, we suppose that the architecture is constituted of five operators named root,cont1, cont2, dyna1, and dyna2, of type U and linked with a medium bus of type TCP:

- create the multi architecture (cf. figure 8.15):
 - add one U operator named root and define it as main operator,
 - add one U operator named cont1,
 - add one U operator named cont2,
 - add one U operator named dyna1,
 - add one U operator named dyna2,
 - add one TCP medium named bus and choose the Broadcast option,
 - links the medium to the x gates of the operators, except for the root one, linked with its y gate to the medium,
 - define the multi architecture as main;
- create operation groups:
 - create the og_root operation group, attach ref_vit, vitesse, and distance to it,
 - create the og_dynal operation group, from the main mode, in the vehicule1 reference attach mecal to
 it,
 - create the og_cont1 operation group, from the main mode, in the vehicule1 reference attach control1 to it,

- create the og_dyna2 operation group, from the main mode in the vehicule2 reference attach meca2 to it,
- create the og_cont2 operation group, from the main mode, in the vehicule2 reference attach control2 to it;
- create absolute constraints:
 - constrain og_root on root,
 - constrain og_cont1 on cont1,
 - constrain og_cont2 on cont2,
 - constrain og_dyna1 on dyna1,
 - constrain og_dyna2 on dyna2.

The adequation and the code generation

First, launch the adequation. It modifies example8.sdc and example8.sdx files.

Then, generate the executive and applicative files (setting Code / Generate m4x Files). It creates example8.m4, example8.m4x, example8.m4x, root.m4, cont1.m4, cont2.m4, dyna1.m4, and dyna2.m4 files.

Finally, handwrite the example8.m4x file as explained in 8.4.6.

The compilation

First, generate manually the Makefile.ocaml, the example8.m4m, the root.m4x, the cont1.m4x, the cont2.m4x, the dyna1.m4x, and the dyna2.m4x files:

- copy-paste the Makefile.ocaml from the **Example 8** folder to yours;
- create the example8.m4m file with these lines:

<pre>define(`cont1_hostname_',</pre>	HOSTNAME)dnl
<pre>define(`cont2_hostname_',</pre>	HOSTNAME)dnl
<pre>define(`dynal_hostname_',</pre>	HOSTNAME)dnl
<pre>define(`dyna2_hostname_',</pre>	HOSTNAME)dnl

where HOSTNAME is substituted with the name of your remote station;

• create the root.m4x, cont1.m4x, cont2.m4x, dyna1.m4x, and dyna2.m4x files with this line: include(example8.m4m).

Then, copy-paste some files from the **Example 8** folder to yours:

- copy-paste the example8.ml file.
- copy-paste the pa_example8.ml file.
- copy-paste the root.sh, cont1.sh, cont2.sh, dyna1.sh, and dyna2.sh files;
- copy-paste the ref_vitesse.txt file.

You will probably need to install camlp5 (see at http://pauillac.inria.fr/~ddr/camlp5/).

Then, type the command make -f Makefile.ocaml in a shell commands interpreter. It creates example8.cmi, example8.o, pa_example8.cmi, and <processor>.cmi, <processor>.cmx, <processor>.o, <processor>.opt for each processor.

Finally, launch separatly the five script files. At the end of their execution, the actuator_1 and actuator_2 files are created:

- the actuator_1 file contains the speed of the first car;
- the actuator_2 file contains the distance between the cars.

From the principal window, choose File / Close. In the dialog window, click on the Save button.

Chapter 9

Example 9: a multiperiodic application

From the principal window, choose **File / Save as** and save your ninth application under a new folder of yout tutorial folder (e.g. my_example9) with the name example9.

9.1 The main algorithm

Figure 9.1: Main algorithm of the Example 9

Create the main algorithm basicAlgorithm (*cf.* figure 9.1) using the library int for the operations input<1> (int/input) and output<1> (int/output). For the operation compute, create a function definition compute and create a reference to this definition. Create the dependences between the references. Set the periods to 4 for input, 8 for compute, and 8 for output by selecting each reference and filling the **Period** field.

9.2 The main architecture

Open the architecture monoProc from the library u. Define it as main. The durations for the U operator are by default:

```
int/input = 3
Implode_int = 1
compute = 1
int/output = 3
```

Implode_int is an internal operation automatically generated by SynDEx to collect the different data produced by the different occurences of the int/input operation.

In this case, the system is not schedulable.

9.3 A mono-phase schedule

9.3.1 Durations

Modify the durations for the U operator:

```
int/input = 1
Implode_int = 1
compute = 1
int/output = 1
```

9.3.2 Adequation

Launch the adequation (Adequation / Launch Adequation). Display the schedule (Adequation / Display Schedule) (*cf.* figure 9.2).

Wait operation

Notice the new operation added by SynDEx (Wait) to respect the period of the input operations.

Multiple occurrences

Notice that because of the periods, during a cycle two input operations are executed (input#1 and input#2) whereas only one compute and one output operations are executed.

Implode operation

Notice the new operation added by SynDEx (Implode_compute) to provide the data from the input operations to the compute one.

9.4 A multi-phase schedule

9.4.1 Durations

Modify the durations for the U operator:

```
int/input = 1
Implode_int = 1
compute = 2
int/output = 1
```

9.4.2 Adequation

Launch the adequation (Adequation / Launch Adequation). Display the schedule (Adequation / Display Schedule). The computed schedule has two phases: a transitory phase (red) and a permanent phase (green) (*cf.* figure 9.3).

Transitory phase

The transitory phase is executed only once. It contains the first occurrence of the input#1 operation, the first occurrence of the input#2 operation, the first occurrence of the Implode_compute operation, and the first occurrence of the compute operation. The compute operation provide data consumed by the output operation schedule at time 9 in the permanent phase.

Permanent phase

The permanent phase is the one that is executed infinitely. It contains the second occurrence of the input#1 operation (and its following occurrences). It contains the first occurrence of the output operation (and its following occurrences).