
SynDEx v7 Tutorial

Nicolas Dos Santos, Christophe Gensoul, Kim-Hwa Khoo
Christophe Macabiau, Quentin Quadrat, Daniel de Rauglaudre,

Yves Sorel, Ćecile Stentzel

December 16, 2013



2



Contents

Introduction 5

1 Example 1: algorithm, architecture, and adequation 8
1.1 The main algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 8

1.1.1 Definition of a sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 8
1.1.2 Definition of an actuator . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 11
1.1.3 Definition of a function . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 11
1.1.4 Definition of the main algorithm . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 11

1.2 An architecture with one operator . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 14
1.2.1 Definition of an operator . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 14
1.2.2 Definition of the main architecture . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 16

1.3 An architecture with a SAM point-to-point comunicationmedium . . . . . . . . . . . . . . . . . 16
1.3.1 Definition of operators . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 16
1.3.2 Definition of a medium . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 17
1.3.3 Definition of the main architecture . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 17
1.3.4 Connections between the operators and the medium . . . .. . . . . . . . . . . . . . . . . 17

1.4 An architecture with a SAM multipoint medium . . . . . . . . . .. . . . . . . . . . . . . . . . . 18
1.5 An architecture with a RAM medium . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 18
1.6 The adequation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 19

1.6.1 Without constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 19
1.6.2 With constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 19

2 Example 2: parameters and hierarchy in algorithm 23
2.1 Definition of the functionA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Definition of the functionB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Definition of the algorithm with hierarchy . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 25

3 Example 3: delay in algorithm 26
3.1 Definition of the operationsinput , output , andcalc . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Definition of the delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 26
3.3 Definition of the algorithm with delay . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 26

4 Example 4: repetition and library in algorithm 28
4.1 An algorithm with repetition without any library . . . . . .. . . . . . . . . . . . . . . . . . . . . 28

4.1.1 Definition of the scalarins and the functionmul on scalars . . . . . . . . . . . . . . . . . 28
4.1.2 Definition of the vectorsinv andoutv . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.3 Definition of the algorithmAlgorithmMain1 . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 An algorithm with repetition with theint library . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.1 Inclusion of the libraryint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.2 Definition of the algorithmAlgorithmMain2 . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 An algorithm with repetition with thefloat library . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.1 Inclusion of the libraryfloat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.2 Definition of the functiondpacc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.3 Definition of the functiondp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3



4.3.4 Definition of the functionprodmatvec . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.5 Definition of the algorithmAlgorithmMain3 . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Example 5: condition and nested condition in algorithm 35
5.1 An algorithm with condition . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 35

5.1.1 Sensorsx andi , actuatoro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1.2 Functionswitch1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1.3 AlgorithmAlgorithmMain1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 An algorithm with nested condition . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 39
5.2.1 Sensorsx andi , actuatoro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.2 Functionswitch2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.3 AlgorithmAlgorithmMain2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Example 6: algorithm, architecture, adequation, and codegeneration 41
6.1 The main algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 41
6.2 The main architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 41
6.3 The adequation and the code generation . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 42

7 Example 7: source code associated with an operation 45
7.1 Definition of the source code into the code editor window .. . . . . . . . . . . . . . . . . . . . . 45

7.1.1 To add parameters to an already defined operation . . . . .. . . . . . . . . . . . . . . . . 45
7.1.2 To edit the code associated with an operation . . . . . . . .. . . . . . . . . . . . . . . . 46
7.1.3 To generatem4x files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

8 Example 8: a complete realistic application from adequation to execution 51
8.1 The aim of the example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 51
8.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 51
8.3 The controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 52

8.3.1 Block diagrams of controllers . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 52
8.3.2 Source code associated with the functions . . . . . . . . . .. . . . . . . . . . . . . . . . 54

8.4 The complete model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 54
8.4.1 The car dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 55
8.4.2 The cars and their controllers . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 56
8.4.3 The main algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 56
8.4.4 Source code associated with the sensor and the actuator . . . . . . . . . . . . . . . . . . . 56
8.4.5 Theexample8 sdc.m4x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.4.6 To handwrite theexample8.m4x file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8.5 Scicos simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 62
8.6 SynDEx simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 62

8.6.1 In the case of a mono-processor architecture . . . . . . . .. . . . . . . . . . . . . . . . . 62
8.6.2 In the case of a bi-processor architecture . . . . . . . . . .. . . . . . . . . . . . . . . . . 64
8.6.3 In the case of a multi-processor architecture . . . . . . .. . . . . . . . . . . . . . . . . . 65

9 Example 9: a multiperiodic application 67
9.1 The main algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 67
9.2 The main architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 67
9.3 A mono-phase schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 68

9.3.1 Durations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 68
9.3.2 Adequation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 68

9.4 A multi-phase schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 69
9.4.1 Durations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 69
9.4.2 Adequation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 69

4



Introduction

This tutorial respects some writing conventions:

• menus, buttons, etc., are written inbold
(e.g.Algorithm / New Algorithm Window , OK , Definition list );

• command lines, SynDEx files, examples, etc., are written inComputer Modern

(e.g.-libs libs , examples/tutorial , ! int o );

To create an application workspace, launch SynDEx with option -libs libs . See theSynDEx v7 User Man-
ual for more information.

The examples presented in this tutorial are located in the sub-folderexamples/tutorial . Each example is lo-
cated in its sub-folder. The example 7 is located in theexamples/tutorial/example7 , examples/tutorial/example7 mono,
andexamples/tutorial/example7 bi folders.

Example 1

Algorithm, architecture, and adequation:

• we create a sensor definition, an actuator definition, and a function definition. Then, we create an algorithm
and define it as main. Finally, we create in the main algorithmtwo references to the sensor definition,
three references to the actuator definition, and one reference to the function definition, and we create data
dependences between these references by connecting their ports;

• we create four different architectures:

– an architecture with one operator,

– an architecture with two operators and a SAM point-to-pointcommunication medium,

– an architecture with three operators and a SAM multipoint communication medium,

– an architecture with three operators and a RAM communication medium;

• we create constraints on the third architecture;

• we perform the adequation of the main algorithm onto the third architecture defined as main, without con-
straint and then with constraints.

Example 2

Hierarchy in algorithm:

• we create a function definition and a constant. Inside the function we create a reference to another function;
in that way this definition is defined by hierarchy. Then, we create a third function that references both
previous ones. Finally, we create an algorithm that references the third function and define it as main. In
that way, the main algorithm references a hierarchical function;

• we create parameters names for an operation, and assign values to these parameters.

5



Example 3

Delay in algorithm:

• we create a delay definition;

• we create a main algorithm by referencing a delay, a sensor, an actuator, and a function and by connecting
them.

Example 4

Repetition and library in algorithm:

• we create a multiplication function of a vector by a scalar byrepeating a multiplication function on scalars:

– firstly without any library,

– secondly with a library;

• we create a multiplication function of a matrix by a vector byrepeating a multiplication function on vectors.

Example 5

Condition and nested condition in algorithm:

• we create an algorithm conditioned by a data dependence, thevalue of which indicates the operation to be
executed;

• we create an algorithm conditioned by a data dependence, oneoperation of which is in turn conditioned
(nested condition) by the same data dependence.

Example 6

Algorithm, architecture, adequation, and code generation:

• we create a main algorithm by referencing a sensor, two actuators, three functions, and a constant and by
connecting them;

• we create an architecture with two operators of typeU and a communication medium of typeu/TCP ;

• we perform the adequation;

• we perform the code generation, then we create manualy theexample6.m4x file (for operations not defined
in libraries);

• we create manualy theexample6.m4m file (to define the hostname) and theroot.m4x file (for the main oper-
ator);

• we create manualy theGNUmakefile , then we execute the executives created after compilation.

Example 7

Definition of the source code into the code editor window:

• we add parameters to theconv function ofExample 6;

• we modify the code associated with this function first in caseof a generic processor then in case of an
architecture with heterogenous processors;

• we create manualy theexample7.m4m file (to define the hostname) and theroot.m4x file (for the main oper-
ator);

• we create manualy theGNUmakefile ;

6



• we perform the adequation, then we perform compilation, finally we compile the executives and launch the
executables.

Definition of the source code in separateC files:

• we define the code of a new function in a.c file,

• we define the code of a new function in a.c file and we use a.h file.

Example 8

A complete realistic application from adequation to execution:

• we build the model of a complete application for two cars;

• we perform the adequation;

• we generate the code for each processor;

• we compile and execute the code associated with each processor.

Example 9

A multiperiodic application:

• we build a basic multi-periodic application

• mono-phase schedule

• multi-phase schedule

7



Chapter 1

Example 1: algorithm, architecture, and
adequation

1.1 The main algorithm

Figure 1.1:Algorithm / New Algorithm Window

From the principal window, choose theFile / Save asoption and save your first application under a new folder
(e.g.my tutorial ) with the nameexample1 .

ChooseAlgorithm / New Algorithm Window (cf. figure 1.1). It opens the edition window for algorithm
definitions.

1.1.1 Definition of a sensor

To create aninput sensor definition:

• from the algorithm window, click on the+ green button. It opens a dialog window, checkSensor(cf. figure
1.2). Type the sensor name and optionally a list of parameters for the sensor. For example typeinput , then

8



Figure 1.2:Define Sensor

Figure 1.3: Name of the new sensor

Figure 1.4: Sensor definition window

9



Figure 1.5: Contextual menu→ Add port

Figure 1.6:Create Port

10



Figure 1.7: Sensor definition window after output port created

click OK (cf. figure 1.3). It creates the definition of theinput sensor. To open it in definition mode, double
click on input in theDefinition list (cf. figure 1.4);

• in input definition mode, right click on the background and selectAdd port (cf. figure 1.5). It opens a
dialog window for the port’s direction, type, name and optionally its size. For example type! int o , then
click OK (cf. figure 1.6). It creates the integer output porto (cf. figure 1.7) in the sensor definition window.

1.1.2 Definition of an actuator

To create anoutput actuator definition:

• from the algorithm window, click on the+ green button→ dialog window: checkActuator then typeoutput

and clickOK ;

• double click onoutput in theDefinition list . Then right click on its background and selectAdd port →

dialog window:? int i . Click OK . It creates the integer input porti in the sensor definition window.

1.1.3 Definition of a function

To create acomputation function definition:

• from the algorithm window, click on the+ green button→ dialog window: checkFunction then type
computation and clickOK ;

• double click oncomputation in theDefinition list . Thenright click on its background and selectAdd port
→ dialog window:? int a ? int b ! int o . Click OK . It creates the integer portsa, b, ando in the
function definition window.

1.1.4 Definition of the main algorithm

To create anAlgorithmMain function definition:

11



Figure 1.8: Contextual menu→ Set As Main Definition

Figure 1.9: Drag and dropinput definition

12



Figure 1.10:Create References toinput

Figure 1.11: Main algorithm after references to sensor created

Figure 1.12: Main algorithm of theExample 1

13



• from the algorithm window, click on the+ green button→ dialog window: checkFunction then type
AlgorithmMain and clickOK ;

• double click onAlgorithmMain in theDefinition list . Then right click on its background and selectSet As
Main Definition (cf. figure 1.8);

• in its definition mode,

– to create references to the sensorinput , drag and drop the sensor definition from theDefinition list
to theAlgorithmMain definition window (cf. figure 1.9)→ dialog window: in1 in2 (cf. figure 1.10).
The main algorithm looks like the figure 1.11,

– to create references to the actuatoroutput , drag and drop the actuator definition from theDefinition
list to theAlgorithmMain definition window→ dialog window:out1 out2 out3 ,

– to create a reference to the functioncomputation , drag and drop its definition→ dialog window:calc ,

– from theAlgorithmMain definition window, to create a data dependence betweenin1 andcalc , point
the cursor on the output porto of thein1 operation, middle click, and drag to the input porta of thecalc

operation. It draws an arrow between these target ports. After creating the other data dependences, the
main algorithm looks like the figure 1.12.

1.2 An architecture with one operator

1.2.1 Definition of an operator

Figure 1.13: Operator definition window

To create anUinout operator definition:

• from the principal window, chooseArchitecture / Define Operator. It opens a dialog window, typeUinout

and clickOK . It opens the operator definition window (cf. figure 1.13);

• from theUinout definition window:

– to add a gate: clickModify gates→ dialog window:gate type 1 x ,

– to set the operator execution durations: clickModify durations → dialog window:

computation = 2
input = 1
output = 3

14



Figure 1.14:Architecture / Define Architecture

Figure 1.15:Edit / Reference Operator

Figure 1.16: Architecture with one operator

15



1.2.2 Definition of the main architecture

To create anArchiOneOperator architecture definition:

• from the principal window:Architecture / Define Architecture (cf. figure 1.14)→ dialog window: type
ArchiOneOperator then clickOK → definition window;

• from theArchiOneOperator definition window:

– to create a reference to the operatorUinout , Edit / Reference Operator (cf. figure 1.15)→ dialog
window: click user, double clickUinout → dialog window:u1,

– to define the operator as main, right click on its reference and selectSet As Main Operator.

The architecture looks like the figure 1.16.

1.3 An architecture with a SAM point-to-point comunication medium

1.3.1 Definition of operators

To createUin andUout definitions:

• from the principal window:Architecture / Define Operator→ dialog window:Uin , click OK → definition
window;

• from theUin definition window:

– click Modify gates→ dialog window:

MediumSamPointToPoint x
MediumSamMultiPoint y
MediumRam z

– click Modify durations → dialog window:

computation = 2
input = 2
output = 5

• from the principal window:Architecture / Define Operator → dialog window:Uout , click OK → defini-
tion window;

• from theUout definition window:

– click Modify gates→ dialog window:

MediumSamPointToPoint x
MediumSamMultiPoint y
MediumRam z

– click Modify durations → dialog window:

computation = 2
input = 5
output = 3

16



1.3.2 Definition of a medium

Figure 1.17: Type of a communication medium

To create aMediumSamPointToPoint medium definition:

• from the principal window:Architecture / Define Medium → dialog window: MediumSamPointToPoint ,
click OK → definition window;

• from theMediumSamPointToPoint definition window:

– click Modify type → dialog window:SAM Point to Point (cf. figure 1.17),

– click Modify durations → dialog window:

float = 2
int = 2
uchar = 1
ushort = 1

1.3.3 Definition of the main architecture

To create anArchiSamPointToPoint architecture definition:

• from the principal window:Architecture / Define Architecture (cf. figure 1.14)→ dialog window
ArchiSamPointToPoint → definition window;

• from theArchiSamPointToPoint definition window, create referencesu1 andu2 to the operatorsUin and
Uout ;

• from theArchiSamPointToPoint definition window: Edit / Reference Medium→ dialog window: click
user, selectMediumSamPointToPoint→ dialog window: typemedium sampp;

• define the operatoru1 as main.

1.3.4 Connections between the operators and the medium

Figure 1.18: Architecture with two operators and a SAM point-to-point communication medium

In the main architecture window, to create a connection between theu1 operator and themedium sampp medium,
point the cursor on the portx of the operator, middle click, and drag it to the communication medium. It draws
an edge between the operator and the communication medium. After creating the other connection, the main
architecture looks like the figure 1.18.

17



1.4 An architecture with a SAM multipoint medium

To create anArchiSamMultiPoint architecture definition:

• from the principal window:Architecture / Define Architecture (cf. figure 1.14)→ dialog window:
ArchiSamMultiPoint → ArchiSamMultiPoint definition window;

• create referencesu1 andu2 to the operatorUin and a referenceu3 to the operatorUout , like in the previous
example;

• create a medium definitionMediumSamMultiPoint of typeSAM MultiPoint with durations:

float=2
int=2
uchar=1
ushort=1

• create a referencemedium sammpto this medium in the main architecture window→ dialog window: check
No Broadcast;

• define the operatoru1 as main;

• connect the operators portsy to the medium.

The architecture looks like the figure 1.19

Figure 1.19: Architecture with three operators and a SAM multipoint communication medium

1.5 An architecture with a RAM medium

To create theArchiRam architecture definition:

• from the principal window: Architecture / Define Architecture (cf. figure 1.14)→ dialog window
ArchiRam → ArchiRam definition window;

• create a referenceu1 to the operatorUin and referencesu2 andu3 to the operatorUout ;

• create a medium definitionMediumRamof typeRAM with durations

float=2
int=2
uchar=1
ushort=1

18



and create a referencemedium ram in the main architecture;

• define the operatoru1 as main;

• connect the operators portsz to the medium.

Figure 1.20: Architecture with three operators and a RAM comunication medium

The architecture looks like the figure 1.20.

1.6 The adequation

1.6.1 Without constraint

Define the architecture with three operators and a medium of typeSAM MultiPoint (cf. 1.4) as main architecture
(Edit / Set As Main Architecture ).

From the principal window, chooseAdequation / Launch Adequation, then chooseAdequation / Display
schedule.

It opens the schedule window (cf. figure 1.21) in which you can see the schedule of the algorithmon the
architecture and the schedule of the different inter-operator communications on the medium.

Figure 1.21: Schedule

1.6.2 With constraints

To contraint theArchiSamMultiPoint architecture:

• from the principal window, to create the constraints:

19



– Algorithm / Define Operation Group (cf. figure 1.22)→ dialog window:og1 og2 og3 ,

– Constraints / Absolute Constraints→ dialog window: selectArchiSamMultiPoint It opens a dialog
window in which you can create constraints on the different operators of the architecture selected:

∗ first click on og1, thenu1, and theCreate button, to constrain the operation groupog1 on the
operatoru1,

∗ constrain the operation groupog2 on the operatoru2,

∗ constrain the operation groupog3 on the operatoru3,

∗ click onOK button (cf. figure 1.23),

Figure 1.22:Define Operation Group

Figure 1.23: Constrain operation groups on operators of thearchitecture selected

• in the main mode (Main button):

– select the operationin1 , click on theGroup button of itsReference Propertiesthen selectog1 (cf.
figure 1.24),

– attach the operationin2 to the operation groupog2 ,

– attach the operationout1 to the operation groupog1 ,

20



Figure 1.24: Attach a reference to an operation group

– attach the operationout2 to the operation groupog2 ,

– attach the operationout3 to the operation groupog3 ,

– attach the operationcalc to the operation groupog3 ;

The algorithm with constraints looks like the figure 1.25.

• from the principal window, to perform the adequation with constraints:Adequation / Launch Adequation,
thenAdequation / Display Schedule→ schedule window. The schedule looks like the figure 1.26.

From the principal window, chooseFile / Close. In the dialog window, click on theSavebutton.

21



Figure 1.25: Algorithm with constraints

Figure 1.26: Schedule with constraints

22



Chapter 2

Example 2: parameters and hierarchy in
algorithm

From the principal window, chooseFile / Save asand save your second application under your tutorial folderwith
the nameexample2 .

2.1 Definition of the function A

To create theA function definition:

• from the algorithm window:

– click on the+ green button→ dialog window: checkFunction then typeA and clickOK ,

– click on the+ green button→ dialog window: checkConstant then typeconstante<X> and clickOK .
Create an integer output porto inside;

• in theA definition window:

– create a referencecst<T> to the definitionconstante ,

– create an integer input porta, an integer output porto (Contextual menu→ Add port cf. 1.1.3);

• from the algorithm window,
create a function definitioncalcul1 , with two integer input portsa andb and an integer output porto;

• in theA definition window:

– create a referencecalc1 to the definitioncalcul1 ,

– add a parameter name (cf. figure 2.1): FieldParameters→ T.

The functionA looks like the figure 2.2.

2.2 Definition of the function B

To create theB function definition:

• from the algorithm window:+ green button→ dialog window:B<X;Y> ;

• in theB definition window:

– create referencesA1 andA2 to the definitionA (A1<X> A2<Y>),

– create two integer input portsa andb, one integer output porto, and the functioncalc1 of the definition
calcul1 ,

– add the parameters namesX andY (field Parameters).

The functionB looks like the figure 2.3.

23



Figure 2.1:Parameters

Figure 2.2: FunctionA

24



Figure 2.3: FunctionB

2.3 Definition of the algorithm with hierarchy

To create theMain algorithm:

• from the algorithm window:+ green button→ dialog window:Main ;

• from the definition window, define it as main;

• create a sensorinput with an integer output porto and an actuatoroutput with an integer input porti ;

• in theMain algorithm window, create a referenceB<1;2> to the definitionB, a referencei1 i2 to the definition
input , and a referenceout to the definitionoutput ;

• create dependences between the references.

The algorithm looks like the figure 2.4.

Figure 2.4: Algorithm of theExample 2

From the principal window, chooseFile / Close. In the dialog window, click on theSavebutton.

25



Chapter 3

Example 3: delay in algorithm

From the principal window, chooseFile / Save asand save your third application under your tutorial folder with
the nameexample3 .

3.1 Definition of the operationsinput, output, and calc

Create a sensorinput , an actuatoroutput , and the functioncalc , like in theExamples 1and2. (cf. 1.1.3 and
calcul1 in 2.1)

3.2 Definition of the delay

To create thecalcPrec delay:

• from the algorithm window, click on the+ green button→ dialog window: checkDelaythen typecalcPrec<init;size>

and clickOK ; The parameterinit will be used to specify the initial value of the delay, andsize the number
of delays;

• in the definition window, create one input port and one outputport. Enter:? int i ! int o .

3.3 Definition of the algorithm with delay

Create an algorithmalgorithmMain . Create a referencein1 to the definitioninput , a referencecalc to the defi-
nition calc , a referenceout1 to the definitionoutput , and a referencecalcPrec<0;1> to the definitioncalcPrec .
Create dependences between the references.

The algorithm looks like the figure 3.1.
From the principal window, chooseFile / Close. In the dialog window, click on theSavebutton.

26



Figure 3.1: Algorithm of theExample 3

27



Chapter 4

Example 4: repetition and library in
algorithm

From the principal window, chooseFile / Save asand save your fourth application under your tutorial folderwith
the nameexample4 .

4.1 An algorithm with repetition without any library

In this section, we create a multiplication function of aN elements vector by a scalar by repeatingN times a
multiplication function on scalars.

4.1.1 Definition of the scalarins and the function mul on scalars

In a new algorithm window:

• create a new sensor definition namedins with an integer output porto;

• create a new function definition namedmul with two integer input portsa andb and an integer ouput porto).

4.1.2 Definition of the vectorsinv and outv

To create the vectors:

• to create the definitioninv :

– from the algorithm window, create a new sensor definition named inv ,

– from theinv definition window, typeN in theParameterstextfield of itsDefinition Properties (it has
N elements),

– create its integer output port namedo with lengthN: ! int[N] o ;

• to create the definitionoutv :

– from the algorithm window, create a new actuator definitionoutv ,

– in outv definition window, typeN in the Parameterstextfield of itsDefinition Properties (it hasN
elements),

– create its integer input port namedi with lengthN: ? int[N] i .

28



4.1.3 Definition of the algorithmAlgorithmMain1

To create theAlgorithmMain1 algorithm:

• from the algorithm window, create a new function definition namedAlgorithmMain1 and from its definition
window, define it as main;

• in theAlgorithmMain1 definition mode:

– create a references input to the scalarins ,

– create a referencev input<N> to the vectorinv ,

– create a referencemul to the functionmul and typeN in theRepeattextfield of itsReference Properties
(it is repeatedN times),

– create a referencev output<N> to the vectoroutv ;

• create dependences between the references, in order to obtain the main algorithm (cf. figure 4.2);

• typeN in theParameterstextfield of theDefinition Properties of the main algorithm and3 in theValues
textfield (cf. figure 4.1). Notice that this value is keeped as long as the algorithm remains the main one.

Figure 4.1:Parameters Values

The repetition consists in multiplying each of the3 elements of thev input vector with thes input scalar and
placing the result in the3 elementsv output vector.

The parameterN is here the repetition factor of themul function.

Figure 4.2:AlgorithmMain1 of theExample 4

4.2 An algorithm with repetition with the int library

In this section, we create a multiplication function of a vector by a scalar by using theint library.

29



4.2.1 Inclusion of the library int

From the principal window chooseFile / Specify Library Directories and add theSYNDEXPATH/libs where
SYNDEXPATHis the absolute path of the SynDEx distribution.

From the principal window, chooseFile / Included Libraries / int (cf. figure 4.3).

Figure 4.3:File / Included Libraries / int

4.2.2 Definition of the algorithmAlgorithmMain2

Notice that this library containsinput , mul , andoutput definitions parameterized withlength .
We will need to set it to1 for the scalar and the multiplication function, and toN for the vectors:

• from the algorithm window, create the function definitionAlgorithmMain2 and define it as main;

• in AlgorithmMain2 definition mode:

– drag and drop the sensor definitionint/input from theDefinition list to theAlgorithmMain2 window
→ dialog window:s input<1> (cf. figure 4.4) (it is a scalar),

Figure 4.4:Create Reference toint/input

– drag and drop the sensor definitionint/input → dialog window:v input<N> (it hasN elements),

– drag and drop the function definitionint/Arit mul → dialog window:mul<1> then typeN in theRepeat
textfield of itsReference Properties, (it is a multiplication on scalars, repeatedN times),

– drag and drop the actuator definitionint/output → dialog window:v output<N> (it hasN elements);

30



• create dependences between the references in order to obtain the main algorithm (cf. figure 4.5);

• typeN in theParameterstextfield of theDefinition Properties, and3 in theValuestextfield.

Notice the difference of themul reference when it is seen from theAlgorithmMain2 definition mode or from
the main mode (Main button).

Figure 4.5:AlgorithmMain2 of theExample 4

4.3 An algorithm with repetition with the float library

In this section, we create a multiplication function of aN*M matrix by aM elements vector by repeatingN times
a multiplication function on vectors.

4.3.1 Inclusion of the library float

Include the libraryfloat (File / Included Libraries / Float ).

4.3.2 Definition of the functiondpacc

This function is a multiplication function on scalars with an accumulator:

• create a new function definition nameddpacc ;

• create a referencemul<1> to the functionfloat/Arit mul (the reference works on scalars);

• create a referenceadd<1> to the functionfloat/Arit add (the reference works on scalars);

• add it three input ports and one output port:? float s1 ? float s2 ? float acc ! float acc ;

• then create dependences to obtain an algorithm (cf. figure 4.6).

Notice thatacc is an input port and an output port of the function. It will be used as an accumulator to store
the partial sum.

31



Figure 4.6: Algorithm of the functiondpacc

4.3.3 Definition of the functiondp

This function is a multiplication function on vectors with an accumulator:

• create a new function definition nameddp;

• add it a parameterdpaccn ;

• create a referencezero< {0}> to the constantfloat/cst (it is the{0} scalar);

• create a referencedpacc to the functiondpacc then typedpaccn in the Repeat textfield of itsReference
Properties (it is repeateddpaccn times);

• add it two input ports:? float[dpaccn] v1 ? float[dpaccn] v2 and one output port:! float dp (vec-
tors havedpaccn elements);

• create dependences to obtain an algorithm (cf. figure 4.7). To build the dependence between the output port
acc of dpacc and its input portacc , chooseIterate on the dialog window (it is the connection between two
successive calls of the function).

Figure 4.7: Algorithm of the functiondp

32



The repetition consists in multiplying twodpaccn elements vectors by callingdpaccn times thedpacc multi-
plication function on scalars with accumulator. The initial value of its accumulator is given by thezero constant
and the following are given by the accumulator itself.

4.3.4 Definition of the functionprodmatvec

This function is a multiplication function of a matrix by a vector:

• create a new function definition namedprodmatvec ;

• typea;b in theParameterstextfield of itsDefinition Properties;

• create a referencedotprod<b> to the functiondp (input vectors haveb elements) and typea in theRepeat
textfield of itsReference Properties(it is repeateda times);

• add it two input ports:? float[a*b] inm ? float[b] inv and one output port:! float[a] outv ;

• then create dependences to obtain an algorithm (cf. figure 4.8).

Figure 4.8: Algorithm of the functionprodmatvec

The repetition consists in multiplying aa*b matrix by ab elements vector by callinga times thedp multipli-
cation function on vectors.

4.3.5 Definition of the algorithmAlgorithmMain3

To create theAlgorithmMain3 algorithm:

• create the definition of the sensorinm , with two parameters namesNandM, and with an output port:! float

[N*M] o ;

• create a new function definition namedAlgorithmMain3 and define it as main;

• add it two parameters:N;M with values3;4 ;

• create a referencem1<N;M> to the matrixinm;

• create a referenceinv<N> to the vectorfloat/input ;

• create a referencematprodvec<N;M> to the functionprodmatvec;

• create a referenceoutv<M> to the vectorfloat/output;

• then create dependences to obtain an algorithm (cf. figure 4.9).

From the principal window, chooseFile / Close. In the dialog window, click on theSavebutton.

33



Figure 4.9:AlgorithmMain3 of theExample 4

34



Chapter 5

Example 5: condition and nested
condition in algorithm

From the principal window, chooseFile / Save asand save your fifth application under your tutorial folder with
the nameexample5 .

5.1 An algorithm with condition

5.1.1 Sensorsx and i, actuator o

To create the sensors and the actuator:

• from the algorithm window:+ green button→ dialog window:Sensorx;

• from the algorithm window:+ green button→ dialog window:Sensori ;

• from the algorithm window:+ green button→ dialog window:Actuator o.

5.1.2 Functionswitch1

To create theswitch1 function:

• from the algorithm window:+ green button→ dialog window:switch1 ;

• in theswitch1 definition window:

– contextual menu→ Add port → dialog window:? int x ? int i ! int o ,

– contextual menu→ Create Condition→ dialog window:x=1 x=2 x=3 x=4 (cf. figure 5.1):

∗ click on the conditionx=1 (cf. figure 5.2) and create a referencediv1<1> to the definition
int/Arit div ,

∗ click on the conditionx=2 (cf. figure 5.3) and create a referencediv2<1> to the definition
int/Arit div ,

∗ click on the conditionx=3 (cf. figure 5.4) and connect the porti to the porto,

∗ click on the conditionx=4 (cf. figure 5.5) and create a referencemul4<1> to the definition
int/Arit mul ;

– create dependences between the references.

5.1.3 Algorithm AlgorithmMain1

The algorithm looks like the figure 5.6.

35



Figure 5.1:Create Condition

Figure 5.2: Condition x=1

36



Figure 5.3: Condition x=2

Figure 5.4: Condition x=3

37



Figure 5.5: Condition x=4

Figure 5.6: AlgorithmMain1 of theExample 5

38



5.2 An algorithm with nested condition

5.2.1 Sensorsx and i, actuator o

Use previous definitions (cf. 5.1.1).

5.2.2 Functionswitch2

To create theswitch2 function:

• from the algorithm window:+ green button→ dialog window:switch2 ;

• in its definition window:

– contextual menu→ Add port → dialog window:? int x ? int y ! int o ,

– contextual menu→ Create Condition→ dialog window:y=1 y=2 ,

– click on the conditiony=1 (cf. figure 5.7) and create the functionmul1<1> of the definitionArit mul
from int library,

Figure 5.7: Condition y=1

– click on the conditiony=2 (cf. figure 5.8) and create a referenceswitch1 to the definitionswitch1;

• create dependences between the references.

5.2.3 Algorithm AlgorithmMain2

The algorithm looks like the figure 5.9.
From the principal window, chooseFile / Close. In the dialog window, click on theSavebutton.

39



Figure 5.8: Condition y=2

Figure 5.9: AlgorithmMain2 of theExample 5

40



Chapter 6

Example 6: algorithm, architecture,
adequation, and code generation

From the principal window, chooseFile / Save asand save your sixth application under a new folder of your
tutorial folder (e.g.my example6 ) with the nameexample6 .

6.1 The main algorithm

Create the main algorithmalgo (cf. figure 6.1) using the libraryint for the operationsIn<1> (input ), cste2< {2}>

(cst), add<1> (Arit add), mul<1> (Arit mul), visuadd<1> , andvisumul<1> (output). For the operationconv , create
a function definitionconv , create a reference to this definition, and give it a duration. Create the dependences
between the references. Set it as main.

Figure 6.1: Main algorithm of theExample 6

Warning : it is necessary that the sensor “in” should be distributed onto the processor “root”, i.e. on the local
machine, in order that it operates properly.

6.2 The main architecture

To define and constraint themain architecture:

• include the libraryu,

41



• from the principal window, chooseArchitecture / Edit Architecture Definition and open the architecture
biProc ,

• define it as main,

• create the operation groupsog1 andog2 then create the absolute constraints on the operators:og1 on root ,
og2 onP1. Attach references to operation groups:In , add , andvisumul → og1 , mul , andvisuadd → og2 .

6.3 The adequation and the code generation

To perform the adequation and to generate the code:

• before performing the code generation, you have to perform the adequation. Set the possibly missing
durations, then from the principal window:Adequation / Launch Adequation;

• from the principal window:Code / Generate Executive(s). It generates for each operator of the main
architecture the code in a file (filesroot.m4 andP1.m4) and an architecture description (fileexample6.m4 ).
These files are generated in the same folder as the application. The files generated for each processor may
be viewed:Code / Display Executive(s);

• the macros corresponding to the operations, included in thelibraries of SynDEx, are already defined under
the foldermacros (files int.m4x , U.m4x , andTCP.m4x);

• in the same folder as the SynDEx application of theExample 6, create a new fileexample6.m4x in which
you define the macro corresponding to the operationconv which is the only one not defined in the library,
and the number of iterations. The file looks like:

dnl (c)INRIA 2001-2009
dnl SynDEx v7 executive macros specific to application tuto rial/example6/example6
divert(-1)

define(‘NOTRACEDEF’)
define(‘NBITERATIONS’,3)
define(‘BINPWD’, ‘pwd’)
define(‘RSHELL’, ‘ssh’)

define(‘conv’,‘ifelse(
MGC,‘INIT’,‘dnl’,
MGC,‘LOOP’,‘$2[0] = $1[0] + 1;’,
MGC,‘END’,‘dnl’)’)

divert
divert(-1)
divert‘’dnl---------------- end of file --------------- ---

• create a new fileexample6.m4m , in which you set for each operator, except the main operator, the name of a
workstation corresponding to this operator. The file looks like:

dnl (c)INRIA 2001-2009
define(‘P1 hostname ’, HOSTNAME)dnl

whereHOSTNAMEis the name of the remote workstation, as indicated in theReadme file under
syndex/examples/tutorial/example6 ;

42



Warning : the characters‘ and’ are different.
Warning : if you increase the number of processors in your architecture, you must add otherdefine state-
ments with the corresponding “processor name”, “remote worksation name” association.

• create a new fileroot.m4x for the main operator including the fileexample6.m4m :

dnl (c)INRIA 2001-2009
include(example6.m4m)

• create a new fileGNUmakefile which allows the compilation and the substitution of the macros from the code
generation by the executable code. The file looks like:

# (c)INRIA 2001-2009
A = example6
M4 = m4

export SynDEx_Path = SYNDEXPATH
export Algo Macros Path = $(SynDEx Path)/macros/algo libraries
export Archi Macros Path = $(SynDEx Path)/macros/archi libraries
export M4PATH = $(Algo Macros Path):$(Archi Macros Path)

CFLAGS = -DDEBUG
VPATH = $(M4PATH)

.PHONY: all clean
all : $(A).mk $(A).run
clean ::
$(RM) $(A).mk

$(A).mk : $(A).m4 syndex.m4m U.m4m $(A).m4m
$(M4) $< >$@

root.libs =
P1.libs =

include $(A).mk

whereSYNDEXPATHis the absolute path of the SynDEx distribution.
Warning : in the previous makefile the statements$(RM) $(A).mk and$(M4) $< >$@ must begin with a tab char-
acter.

The folder of theExample 6must contain the following files:

• example6.m4

• example6.m4m

• example6.m4x

• example6.sdc

• example6.sdx

• GNUmakefile

43



• p1.m4

• root.m4

• root.m4x

To launch the execution, type the commandmake in the folder of theExample 6. To delete the file created
during the compilation, type the commandgmake clean .

From the principal window, chooseFile / Close. In the dialog window, click on theSavebutton.

44



Chapter 7

Example 7: source code associated with an
operation

7.1 Definition of the source code into the code editor window

In the previousExample 6, we have learnt that am4 file, called with the name of the application plus them4x
extension, must be manually written. It contains all the source code associated with all operations present in a
SynDEx application. For example, in theexample6 application, theconv function increments of one the value of
the input and stores the result in the output. Thusexample6.m4x file contains:

define(‘conv’,‘ifelse(
MGC,‘INIT’,‘dnl’,
MGC,‘LOOP’,‘$2[0] = $1[0] + 1;’,
MGC,‘END’,‘dnl’)’)

where$1 and$2 correspond respectively to the input port namedi and the output port namedo of theconv function.
You may read the comments written in theexample6.m4x .
Handwriting this kind of code is not very easy, for several reasons:

• the port number may change by inserting or removing a port or parameter, following the SynDEx’s rule of
port numeration. For example, after inserting a parameterP in the functionconv , $1 will not refer to the
input port i but it will refer to the new added parameterP. All numbers are now brought, thus we must
modify the code and replace the arguments$1 by $2 and$2 by $3;

• this task is quite repetitive when an application contains many operations;

• it is easy to make a mistake in them4 syntax. Great knowledges inm4 syntax (two different kind of quotes,
ifelse ...) and SynDExm4 macros (MGC) are required.

It should be more convenient to write@OUT(o)[0] = @IN(i)[0] + @PARAM(P) and let SynDEx interpret it and
generate the associatedm4x file than to write the specification with them4 syntax. SynDEx (version≥ 7.0.0)
is able to do that thanks thecode editor which is a tool integrated in the graphical user interface (GUI). In the
following example, we will show how to use this tool.

7.1.1 To add parameters to an already defined operation

In this example, we show how to modify some functions by adding parameters in order to expand parameters into
m4 arguments.

Open theexample6.sdx application:

• from the principal window; chooseFile / Open→ Open theexample6.sdx file;

• save it asexample7.sdx under a new folder of your tutorial folder (e.g.my example7 ).

45



Add parameters to theconv function:

• open theconv definition and add parameter namesP;T in theParametersfield,

• open the main algorithm definition, select theconv reference, add parameters values2;3 in theParameters
field and modify the name reference fromconv to conv ref in theNamefield.

Verify that the parameters have been stored in the function

We have two solutions:

• from the algorithm window on the main algorithm: put the mouse on theconv box → Read the printed
informations in the principal window;

• or right click on the algorithm window background and selectActivate Info Bubbles → Point the mouse
cursor on theconv operation box.

7.1.2 To edit the code associated with an operation

In the case of a generic processor

• Open the code editor

We need to launch the code editor of the selected operation. Let us consider the case of theconv ref

function. We have to do the following operations:

– in the main algorithm: double left click on theconv ref blue box. It opens theconv definition window.
In its contextual menu, selectEdition of the associated source code. It opens the code editor. It looks
like a window with three push-buttons and an editable text area. Each push-button corresponds to one
specific phase of three (init , loop, andendphases). When one of the three buttons is pressed, the text
area shows the associated source code;

– in the conv definition window, right click on the background and selectEdit code phases→ Select
init andend→ OK ;

– in the code editor window:init phase → write in the text area (which is empty) the followingC
language code. This code is understood as a generic code:

printf("Init phase of function $0 for default processor. \n");

– do the same thing for theloop phase1:

@OUT(o)[0]=@IN(i)[0]*@PARAM(T)+@PARAM(P);
printf("Loop phase of function $0 for default processor = %i . \n", @OUT(o)[0]);

– and for theend phase:

printf("End phase of function $0 for default processor. \n");

– in the code editor window:Edit / Apply changes to all phases. It saves all buffers of all edited phases;

– in the code editor window:OK (it also saves all buffers).

Notice the following points:

1 Macros of the code editor as @IN, @OUT, @PARAM,. . . are explained in the User Manual.

46



– you can not launch the code editor from a main algorithm or a read-only operation (definition coming
from libraries);

– you can write a code associated with a herarchical operationmeanwhile it will not be present in the
applicationName sdc.m4x file (the background color of the text area of the code editor is grey);

– it is important to recall that the code is common to all the references of the same operator. Only the
values of parameters are specific of each instance.

• Verify that code is common to all references

We create a new reference to theconv function:

– in the main algorithm: create a referenceconv ref bis<8;9> to the definitionconv ;

– in the main algorithm: first remove the link between theconv ref andmul boxes. Second, link the
conv ref output to theconv ref bis input. Third, link theconv ref bis output to themul b input;

– in the algorithm window left click on theAuto-position button and write 120 in the two entry texts→
OK ,

– open the code editor of this new box: the code is the same. To show that values of parameters are
specific to the reference (and not to the definition), we must generate them4 code like shown in the
previous example (MenuAdequation / Launch Adequation thenCode / Generate Executive(s))
and look inP1.m4 (MenuCode / Display Executive(s)). The file contains

conv(2,3, algo cste2 P1 o, algo conv ref o)
conv(8,9, algo conv ref o, algo conv ref bis o)

In the case of an architecture with heterogeneous processors

Sometimes it is interesting for an operation to have different source codes depending on the type of processor.
For example, a given processor typeX may only offer assembly language as a programming interface. In such
case, we must be able to provide (for example)C code for processors that support it, and assembly language for
the X processor type. To support heterogeneous architecture, the code editor associates code to a triplet (phase,
processor, operation). A special processor typeDefault is provided for processors that have not been associated
with dedicated code. Its use allows to share a code between different processor types.

• Include a new processor type

From the principal window, chooseFile / Included Libraries → Selectc40

• Define an new architecture:

– from the principal window, chooseArchitecture / Define Architecture (cf. figure 1.14)→ In the
entry text, writearchi2 . → OK ;

– in thearchi2 window: create a referenceroot to the operatorC40 and define it as the main operator.

• Replace theconv ref bis box by a reference tobar ref :

– create a new function definition namedbar with one input port calledin and one output port called
out ;

– in thealgo definition select all the references using the mouse and copythem (right click→ Copy),

– create a new main algorithm namedalgo2 ;

– paste in thealgo2 definition window;

– in thealgo2 definition window: first delete theconv ref bis reference, then create a referencebar ref

box to the definitionbar , finally create the missing dependences.

• Insert code forC40 processor type to thebar function:

47



– in thealgo2 definition window: double left click on thebar ref blue box. It opens thebar definition
window. In its contextual menu, selectEdition of the associated source code. It opens the code
editor;

– in thebar definition window, right click on the background and selectEdit code phases→ Selectinit
andend→ OK ;

– in the code editor window:Type of Processor: SelectC40;

– in the code editor window: click on theinit phasebutton and write in the text area the following code:

/* Hi, I am $0 function, in init phase for C40 processor */

– in the code editor window: click on theloop phasebutton and write in the text area the following
code:

@OUT(out)[0] = @IN(in)[0];
/* Hi, I am $0 function, in loop phase for C40 processor */

– in the code editor window: click on theend phasebutton and write in the text area the following code:

/* Bye, I am $0 function, in end phase for C40 processor */

• Insert code forU processor type to thebar function:

– in the code editor window:Type of Processor: SelectU;

– in the code editor window: click on theinit phasebutton and write in the text area the following code:

/* Hi, I am $0 function, in init phase for U processor */

– in the code editor window: click on theloop phasebutton and write in the text area the following
code:

@OUT(out)[0] = @IN(in)[0] * 42;
/* Hi, I am $0 function, in loop phase for U processor */

– in the code editor window: click on theend phasebutton and write in the text area the following code:

/* Bye, I am $0 function, in end phase for U processor */

• Modify the durations

Add c40/C40 = 1 at the end of theDurations text area for each definition referenced inalgo2

48



Learn the macros of the code editor

The code editor comes with a set of predefined macros that alleviate the user from knowing the black magic ofm4
processing.

The more useful ones are names translation macros. These macros translate port and parameter names to their
internal representation asm4 parameters. We have already encountered such macros in whatwe have just done:
@IN, @OUTand@INOUTare port name translation macros, and@PARAMis the parameter name translation macro. As
a rule of thumb, you should use@PARAM(x)when you want to refer to a parameterx and@IN(i) (resp. @OUT(o)
/ @INOUT(io) ) when you refer to an input porti (resp. output porto / input-output portio ).

The code editor recognizes three more macros:@NAME, @QUOTEand@TEXT. These advanced macros are not
used in this tutorial and the reader is refered to SynDEx usermanual to learn more about it.

7.1.3 To generate m4x files

Before performing the code generation we have to perform theadequation:

• from the principal window, chooseAdequation / Launch Adequation;

• from the principal window, chooseCode: SelectGenerate m4x Files;

• from the principal window, chooseCode / Generate Executive(s);

• from the principal window, chooseCode / Display Executive(s).

Two cases are possible:

• the check boxGenerate m4x Files has not been checked. For each operator of the main architecture a
processor name.m4 file containingm4 macro-code is produced. As previously explained an architecture
description file (namedexample7.m4 ) is also produced;

• the check boxGenerate m4x Files has been checked. Then, two new files (example7.m4x andexample7 sdc.m4x )
are generated in the same folder as the application.

These two files constitute theApplicative kernel:

• theMyApplication sdc.m4x file contains allm4 macro code associated with operations used in the SynDEx
application. Each time code generation is triggered, this file is overwritten;

• theMyApplication.m4x file is an user editable file whose goal is to allow the user to complete the applicative
kernel if needed. At code generation time, if this file does not exist then SynDEx creates a generic file
(including theMyApplication sdc.m4x file plus some other features), otherwise the existing file iskept.

Theexample7 sdc.m4x file contains the following code:

divert(-1)
# (c)INRIA 2001-2009
divert(0)

define(‘example7 bar’,‘bar’)
define(‘bar’,‘ifelse(
processorType ,‘C40’,‘ifelse(
MGC,‘INIT’, ‘‘/* Hi, I am $0 function, in init phase for C40 pr ocessor */’’,
MGC,‘LOOP’,‘‘$2[0] = $1[0]; /* Hi, I am $0 function, in loop p hase for C40 processor */’’,
MGC,‘END’, ‘‘/* Bye, I am $0 function, in end phase for C40 pro cessor */’’)’)’)

processorType ,‘U’,‘ifelse(
MGC,‘INIT’,‘‘/* Hi, I am $0 function, in init phase for U proc essor */’’,
MGC,‘LOOP’,‘‘$2[0] = $1[0] * 42; /* Hi, I am $0 function, in lo op phase for U processor */’’,
MGC,‘END’, ‘‘/* Bye, I am $0 function, in end phase for U proce ssor */’’)’,

define(‘example7 conv’,‘conv’)

49



define(‘conv’,‘ifelse(
processorType ,processorType ,‘ifelse(
MGC,‘INIT’,‘‘printf("Init phase of function $0 for defaul t processor. \n");’’,
MGC,‘LOOP’,‘‘$5[0]=$3[0]*$2+$1;
printf("Loop phase of function $0 for default processor =%i . \n", $4[0]);’’,

MGC,‘END’,‘‘printf("End phase of function $0 for default p rocessor. \n");’’)’)’)

If the example7.m4x file did not exist at code generation time then it will containthe following code:

divert(-1)
# (c)INRIA 2001-2009
divert(0)

define(‘dnldnl’,‘‘// ’’)
define(‘NOTRACEDEF’)
define(‘NBITERATIONS’,‘‘5’’)

include(‘example7 sdc.m4x’)

divert
#include <stdio.h> /* for printf */
divert(-1)
divert‘’dnl

Deeper insights about them4 macro language can be found in SynDEx user manual and GNU M4 manual.

• See the difference between executable codes:

– create theexample7.m4m file (cf. 6.3);

– create theroot.m4x file (cf. 6.3);

– create theGNUmakefile (cf. 6.3), containing:

$(A).mk : $(A).m4 syndex.m4m U.m4m C40.m4m $(A).m4m
$(M4) $< >$@

– definealgo2 as main algorithm;

– definearchi as main architecture, perform the adequation, generate thecode, and run theGNUmakefile

compilation You obtain aroot.c file containingU code only (noC40 code);

– definearchi2 as main architecture, perform the adequation, generate thecode, and compile again.
This time, onlyC40 code is present in theroot.c file.

Notice that:

• adequation modifies original filesexample7.sdx andexample7.sdc ;

• code generation produces these files:example7.m4 , root.m4 , pc1.m4 (if archi is defined as main),example7 sdc.m4x

(if Generate m4x filesis set) andexample7.m4x (if Generate m4x filesis set and the file did not exist be-
fore);

• compilation produces these files:example7.mk , root , root.c , androot.root.o , and (if archi is defined as
main)pc1 , pc1.c , andpc1.pc1.o .

From the principal window, chooseFile / Close. In the dialog window, click on theSavebutton.

50



Chapter 8

Example 8: a complete realistic
application from adequation to execution

From the principal window, chooseFile / Save asand save your eighth application under a new folder of yout
tutorial folder (e.g.my example8 ) with the nameexample8 .

8.1 The aim of the example

In the seven previous examples we have learnt how to use SynDEx’s GUI to create architectures, algorithms,
launch adequation, obtain executive files... Now, we have sufficient knowledge to perform a simple automatic
control application that will be executed on a multiprocessor architecture.

First the application is described and the system is defined in Scicos (the block diagram editor of the Scilab
software1). Second the corresponding SynDEx application is created (using theExample 1 to 3 of the tutorial).
This needs the generation of someC code following the method discussed inExample 7. Finally, we compile
the application to obtain executable for several processors as it has been shown inExamples 6and7. SynDEx
generates the code necessary to the communication between the processors.

8.2 The model

We consider a system of two cars. The second carC2 follows the carC1 trying to maintain the distancel while the
acceleration and the deceleration ofC1. We call:x1(t) the position of the first car;x2(t) the position of the second
car plusl; ẋ1(t) and ˙x2(t) the speeds of two cars. We denotek1 andk2 the inverse of the car masses. We callr(t)
the reference speed chosen by the first driver. We suppose that we are able to observe the speed of the first car and
the distance between the cars.

We have the following fourth order (four degrees of liberty)system:

ẍ1 = k1u1

ẍ2 = k2u2

y1 = ẋ1

y2 = x1− x2

(8.1)

We will decompose the system into mono-input mono-output systemS1(u1,y1) andS2(u2,y2). Denoting by
uppercase letter the Laplace transform of the variables, wehaveY1 = k1U1/s andY2 = (k1U1−k2U2)/s2 whereU1

is seen as a perturbation that we want reject in the second system.
A first proportional feedbackU1 = ρ1(R−Y1) will insure the first car to follow the reference speed. The second

controller will be proportional derivativeU2 = ρ2Y2+ρ3sY2 (in fact we will suppose in the following diagram that
the derivative ofy2 is also observed). The coefficientρ1 is obtained by placing the pole of the first loop:

Y1 = ρ1k1R/(s+ρ1k1).

1 http://www.scilab.org

51

http://www.scilab.org


The coefficientρ2 andρ3 are obtained by placing the pole of the transfer fromU1 to Y2 in the closed loop system
which is given by:

Y2 =U1k1/(s
2+ k2ρ3s+ k2ρ2).

8.3 The controllers

The purpose of the controller of theC1 car is to follow the reference in speed given the first driver.It stabilizes the
C1 speed around its reference speed by using pole placement. For example, gains are respectively:(0, -5, 0, 0,

-5) . The controller of second car stabilizes the distance between the two cars. It stabilizesy2 around 0 by pole
placement. For example, gains are respectively:(4, 4,-4,-4) .

The controler ofC2 knows these informations and sends them electronically toC1. This remark is available
for C1.

8.3.1 Block diagrams of controllers

+
+
+
+
+

+
+
+
+
+

00

−5−5

00

00

x2

v2

v1

x1

11

11

22

33

44

55ref. vit

22

33

55

Figure 8.1: Scicos controller of the first car

Figure 8.2: SynDEx controller of the first car

Our controllers are simple. They are represented in figures 8.1 and 8.3 in Scicos and figures 8.2 and 8.4 in
SynDEx:

52



+
+
+
+

+
+
+
+

44

44

−4−4

−4−4

x1

v1

x2

v2

11

11

22

33

44

22

33

Figure 8.3: Scicos controller of the second car

Figure 8.4: SynDEx controller of the second car

53



• create again def function with one input portin 1, one output portout 1 and a parameter namedvalue .
Notice that all ports will be of typefloat ;

• then createsommateur2 def , sommateur4 def , and sommateur5 def functions, respectively with two input
ports (in 1 andin 2), four input ports (fromin 1 to in 4), and five input ports (fromin 1 to in 5). Each of
these three functions is created with only one output portout 1;

• finally create both algorithmscontroleur1 sup andcontroleur2 sup (cf. figures 8.2 and 8.4), setting their
gain parameters respectively to0, -5, 0, 0, 5 and4, 4 ,-4 , -4 .

8.3.2 Source code associated with the functions

We associateC source code to each function definition: gain and nary-sums.The code is inserted for the default
processor.

Gain

A gain is a function that multiplies its input by a coefficientgiven as a parameter, namedGAIN. After adding this
parameter, open the code editor of the gain definition and write the following code in the loop phase of the default
processor:

@OUT(out 1)[0] = @IN(in 1)[0] * @PARAM(GAIN);

Sum

We have three different forms of sum depending of its arity: two, four or five input ports:

• open the code editor of the sum function with two input ports and write the following code in the loop phase
of the default processor:

@OUT(out 1)[0] = @IN(in 1)[0] + @IN(in 2)[0];

• open the code editor of the sum function with the four input ports and write the following code in the loop
phase of the default processor:

@OUT(out 1)[0] = @IN(in 1)[0] + @IN(in 2)[0] +
@IN(in 3)[0] + @IN(in 4)[0];

• open the code editor of the sum function with the five input ports and write the following code in the loop
phase of the default processor:

@OUT(out 1)[0] = @IN(in 1)[0] + @IN(in 2)[0] +
@IN(in 3)[0] + @IN(in 4)[0] + @IN(in 5)[0];

8.4 The complete model

In a real application, our job stops with the SynDEx’s adequation of the two controllers on their associated archi-
tectures. Nevertheless, for pedagogic reasons, we will simulate the whole system (with the dynamics of the cars)
in the aim to verify that our application does the same job that Scicos.

54



8.4.1 The car dynamics

SynDEx is only used in discrete time model (not continuous time) and is not able to manage implicit algebraic
loop. That is, in SynDEx, any loop contains at least a delay 1/z. Therefore, our application which is a continuous
time dynamic system described in Scicos, must be discretized in time to be used in SynDEx.

The differential equation ˙x = u is discretized using the simplest way: the Euler scheme. Letus denote byh the
step of the discretization andx0 an arbitrary initial value, the discretized system can be written as:

xn+1− xn = uh (8.2)

Finally, the system is given in Scicos in the figure 8.5 and 8.2is given in SynDEx in the figure 8.6. Notice
that the variableh is stored in the Scicos context, and used in the input of the gain and the clock definition. In
SynDEx,h is defined as parameter in the definition of a gain and the clockdefinition is directly used in the source
code associated with operations.

hh +

+

+

+
1/z1/z

Pas de discretisation

Horloge

u 11

11

11

n−1
x

nx

Figure 8.5: An integral discretized in Scicos

Figure 8.6: An integral discretized in SynDEx

Create theintegrale discrete sup algorithm (cf. figure 8.6). Notice thatpas is of typegain def with param-
eterGAIN equal to0.001 , sommateur is of typesommateur2 def , andretard is of typefloat/delay< {0};1> .

The car dynamics are given with Scicos block diagrams in the figure 8.7 and with SynDEx operations in the
figure 8.8, where the input1 (ref ) is the acceleration of the car. The first integral gives the speed of the car and
the second its position.

Create themecanique sup algorithm (cf. figure 8.8). Notice thatpuissancemoteur is of typegain def with
parameterGAIN equal to1 whereasintegrale1 andintegrale2 are of typeintegrale discrete sup .

55



11

Vitesse

Position

11 11

22

Puissance moteur

1/s 1/s

Figure 8.7: Car dynamics with Scicos block diagrams (continous time)

Figure 8.8: Car dynamics with SynDEx operations

8.4.2 The cars and their controllers

In the following diagrams (from 8.9 to 8.12), the blocks (operations) denoted bymeca are the car dynamics. Let
us get the controllers of the two cars.

Create thevoiture1 sup and voiture2 sup algorithms (cf. figures 8.10 and 8.12). Notice thatmeca1 and
meca2 are references tomecanique sup whereascontrol1 (resp. control2 ) is a reference tocontroleur1 sup (resp.
controleur2 sup ).

8.4.3 The main algorithm

Create the following definitions (definitionName<PARAM> ):

• senseur def<POSI ARRAY>with one output portout 1,

• vitesse def<POSI ARRAY>with one input portin 1,

• scope def<POSI ARRAY>with two input portsin 1 andin 2.

Then createalgomain . Create the reference speedref vit of definitionsenseur def<0> , the referencevitesse

ẋ1 of definition vitesse def<1> , the referencedistance between the two cars of definitionscope def<2> , the
referencevehicule1 of definitionvoiture1 sup and the referencevehicule2 of definitionvoiture2 sup , connect
them according to the figure 8.13.

8.4.4 Source code associated with the sensor and the actuator

We associateC source code to each function definition: input and two kinds of output.

56



Mecanique1
Controleur1

11

11

22

33

11

22

ref vit

v2

x2

x1

v1

Figure 8.9: ScicosC1 car dynamics and its controller

Figure 8.10: SynDExvoiture1 sup car dynamics and its controller

Mecanique2
Controleur2

11

11

22

11

22

x1

v1

x2

v2

Figure 8.11: ScicosC2 car dynamics and its controller

57



Figure 8.12: SynDExvoiture2 sup car dynamics and its controller

Figure 8.13: Main algorithm

58



Input

In our Scicos application an input is a square wave generator. As a rule, we will simulate a square wave generator
by reading values in a text file (namedref vitesse.txt ). We will use thefopen , the fclose and thefscanf

functions (stdio.h library). We will also use assertions (assert.h library) to ensure that the opening of a file has
been successful.

For the moment, let suppose that it exists an array ofFILE* (the structure returned by thefopen function) called
fd array and a variable calledtimer to simulate a pseudo-timer. Our sensor has a parameter called POSI ARRAYto
remember the position of theFILE* structure in the array.

Now, open the code editor of thesenseur def sensor and write the following code in the init phase of the
default processor:

timer = 0;
fd array[@PARAM(POSI ARRAY)] = fopen("ref vitesse.txt", "r");
assert(fd array[@PARAM(POSI ARRAY)] != NULL);

In the Scicos application, we have defined the clock period ofthe square wave generator to the value 5 and the
step of discretizationh to the value 0.001. Thus we need, in the SynDEx application, to send 5000 times the same
value. To count, we use the variabletimer . All the 5000-th times, we read a new value in the file.

Write the following code in the loop phase of the default processor:

timer = (timer + 1) % 5000;
if (timer == 1)
fscanf(fd array[@PARAM(POSI ARRAY)], "%f \n", &data);
@OUT(out 1)[0] = data;

We need to free memory by closing the file. Write the followingcode in the end phase of the default processor:

fclose(fd array[@PARAM(POSI ARRAY)]);

Speed output

An output saves in a file the values of the system states. Thus,an output has a parameter calledPOSI ARRAYto
remember the position of the array where the stream has been saved. Open the code editor of thevitesse def

actuator and write the following code in the init phase of thedefault processor:

fd array[@PARAM(POSI ARRAY)] = fopen("actuator @TEXT(@PARAM(POSIARRAY))", "w");
assert(fd array[@PARAM(POSI ARRAY)] != NULL);

The loop phase, allows to save the values:

fprintf(fd array[@PARAM(POSI ARRAY)], "%E \n", @IN(in 1)[0]);

We need to free the memory by closing the file. Write the following code in the end phase:

fclose(fd array[@PARAM(POSI ARRAY)]);

59



Distance output

Contrary to the first type of output, this output has two inputports but theinit andend source codes are identical.
The loop phase differs. Open the code editor of thescope def actuator and write the following code in the init
phase of the default processor:

fprintf(fd array[@PARAM(POSI ARRAY)], "%E \n", (@IN(in 1)[0] - @IN(in 2)[0]));

8.4.5 Theexample8 sdc.m4x

SynDEx’s code generation will create theexample8 sdc.m4x file (as explained inExample 7):

define(‘example8 algomain’,‘algomain’)
define(‘algomain’,‘ifelse(
processorType ,processorType ,‘ifelse(
MGC,‘INIT’,‘‘’’,
MGC,‘LOOP’,‘‘WARNING: empty code for macro $0 in loop phase ’’,
MGC,‘END’,‘‘’’)’)’)

define(‘example8 controleur1 sup’,‘controleur1 sup’)
define(‘controleur1 sup’,‘ifelse(
processorType ,processorType ,‘ifelse(
MGC,‘INIT’,‘‘’’,
MGC,‘LOOP’,‘‘WARNING: empty code for macro $0 in loop phase ’’,
MGC,‘END’,‘‘’’)’)’)

define(‘example8 controleur2 sup’,‘controleur2 sup’)
define(‘controleur2 sup’,‘ifelse(
processorType ,processorType ,‘ifelse(
MGC,‘INIT’,‘‘’’,
MGC,‘LOOP’,‘‘WARNING: empty code for macro $0 in loop phase ’’,
MGC,‘END’,‘‘’’)’)’)

define(‘example8 gain def’,‘gain def’)
define(‘gain def’,‘ifelse(
processorType ,processorType ,‘ifelse(
MGC,‘INIT’,‘‘’’,
MGC,‘LOOP’,‘‘WARNING: empty code for macro $0 in loop phase ’’,
MGC,‘END’,‘‘’’)’)’)

define(‘example8 integrale discrete sup’,‘integrale discrete sup’)
define(‘integrale discrete sup’,‘ifelse(
processorType ,processorType ,‘ifelse(
MGC,‘INIT’,‘‘’’,
MGC,‘LOOP’,‘‘WARNING: empty code for macro $0 in loop phase ’’,
MGC,‘END’,‘‘’’)’)’)

define(‘example8 scope def’,‘scope def’)
define(‘scope def’,‘ifelse(
processorType ,processorType ,‘ifelse(
MGC,‘INIT’,‘‘’’,
MGC,‘LOOP’,‘‘WARNING: empty code for macro $0 in loop phase ’’,
MGC,‘END’,‘‘’’)’)’)

define(‘example8 senseur def’,‘senseur def’)
define(‘senseur def’,‘ifelse(
processorType ,processorType ,‘ifelse(
MGC,‘INIT’,‘‘’’,

60



MGC,‘LOOP’,‘‘WARNING: empty code for macro $0 in loop phase ’’,
MGC,‘END’,‘‘’’)’)’)

define(‘example8 sommateur2 def’,‘sommateur2 def’)
define(‘sommateur2 def’,‘ifelse(
processorType ,processorType ,‘ifelse(
MGC,‘INIT’,‘‘’’,
MGC,‘LOOP’,‘‘WARNING: empty code for macro $0 in loop phase ’’,
MGC,‘END’,‘‘’’)’)’)

define(‘example8 sommateur4 def’,‘sommateur4 def’)
define(‘sommateur4 def’,‘ifelse(
processorType ,processorType ,‘ifelse(
MGC,‘INIT’,‘‘’’,
MGC,‘LOOP’,‘‘WARNING: empty code for macro $0 in loop phase ’’,
MGC,‘END’,‘‘’’)’)’)

define(‘example8 sommateur5 def’,‘sommateur5 def’)
define(‘sommateur5 def’,‘ifelse(
processorType ,processorType ,‘ifelse(
MGC,‘INIT’,‘‘’’,
MGC,‘LOOP’,‘‘WARNING: empty code for macro $0 in loop phase ’’,
MGC,‘END’,‘‘’’)’)’)

define(‘example8 vitesse def’,‘vitesse def’)
define(‘vitesse def’,‘ifelse(
processorType ,processorType ,‘ifelse(
MGC,‘INIT’,‘‘’’,
MGC,‘LOOP’,‘‘WARNING: empty code for macro $0 in loop phase ’’,
MGC,‘END’,‘‘’’)’)’)

define(‘example8 voiture1 sup’,‘voiture1 sup’)
define(‘voiture1 sup’,‘ifelse(
processorType ,processorType ,‘ifelse(
MGC,‘INIT’,‘‘’’,
MGC,‘LOOP’,‘‘WARNING: empty code for macro $0 in loop phase ’’,
MGC,‘END’,‘‘’’)’)’)

define(‘example8 voiture2 sup’,‘voiture2 sup’)
define(‘voiture2 sup’,‘ifelse(
processorType ,processorType ,‘ifelse(
MGC,‘INIT’,‘‘’’,
MGC,‘LOOP’,‘‘WARNING: empty code for macro $0 in loop phase ’’,
MGC,‘END’,‘‘’’)’)’)

8.4.6 To handwrite theexample8.m4x file

You will not can use directly the SynDEx’s generatedexample8.m4x generic file because both the creation of local
variable and the call of libraries is missing. After the codegeneration, you will must handwrite it to obtain the
following code:

define(‘dnldnl’,‘‘// ’’)
define(‘NOTRACEDEF’)
define(‘NBITERATIONS’,‘‘20000’’)

define(‘BINPWD’, ‘pwd’)
define(‘RSHELL’, ‘ssh’)

define(‘proc init ’,‘

61



FILE *fd array[10];
float data;
int timer;’)

include(‘example8 sdc.m4x’)

divert
divert(-1)
divert‘’dnl

Where the macroproc init allows the local variable declaration to be declared because it inserts its source
code between the main function and the operations initialization. Notice that the main loop of the program is
defined generically with a loop ofNBITERATIONS whereNBITERATIONS is initialized with the size of the input file
(ref vitesse.txt ). Finally, the call of libraries is inserted after the include of theexample8 sdc.m4x file.

8.5 Scicos simulation

Scicos software allows to simulate models in a window (cf. figure 8.14), where the values of three states are
plotted (ordinate axle) according to the time (abscissa axle). We have:

• the square wave generator drawn at the bottom (red);

• the speed of the first car at the top (black);

• the distance between the two cars seen in the middle of the figure (green).

Thanks the diagram, the system is stable (plots do not grow exponentially) and so it works. We do not continue
to ameliorate the controllers job.

Figure 8.14: Scope window obtained with the values 0; -5; 0; 0; -5 for gains of theC1 controller and 4; 4; -4; -4
for theC2 controller.

8.6 SynDEx simulation

8.6.1 In the case of a mono-processor architecture

The architecture

In this subsection, we suppose that the architecture is constituted of an only operator namedroot :

62



• create theU operator:

– set the durations with

float/delay = 1
gain def = 1
scope def = 1
senseur def = 2
sommateur2 def = 2
sommateur4 def = 1
sommateur5 def = 2
vitesse def = 1

– chooseinit as code generation phase in which to generate code;

• create themono architecture:

– add oneU operator namedroot and define it as main operator,

– define themono architecture as main.

The adequation and the code generation

First, launch the adequation. It modifiesexample8.sdc andexample8.sdx files.
Then, generate the executive and applicative files (settingCode / Generate m4x Files). It createsexample8.m4 ,

example8.m4x , example8 sdc.m4x , androot.m4 files.
Finally, handwrite theexample8.m4x file as explained in 8.4.6.

The compilation

First, generate manually aGNUmakefile containing:

A = example8
M4 = gm4

export ArchiMacros Path = ../../../macros/archi libraries
export AlgoMacros Path = ../../../macros/algo libraries
export M4PATH = $(ArchiMacros Path):$(AlgoMacros Path)

CFLAGS = -DDEBUG
VPATH = $(M4PATH)

.PHONY: all clean
all : $(A).mk $(A).run
clean ::
$(RM) $(A).mk *˜ *.o *.a *.c actuator *

$(A).mk : $(A).m4 syndex.m4m U.m4m
$(M4) $< >$@

root.libs =
P1.libs =

include $(A).mk

Where:

63



• A is set with the name of your application (hereexample8 );

• the path about the generic *.m4? macro-files are stored in theexported shell variablesArchiMacros Path

andAlgoMacros Path then grouped into a new exported shell variable namedM4PATH. The separator: means
that am4 macro-file will be search first inArchiMacros Path and then inAlgoMacros Path if is not found;

• a mix of this makefile and the informations stored in file namedexample8.m4m will create another makefile
calledexample8.mk during the compilation.

Then, copy-paste theref vitesse.txt file from theExample 8folder to yours.
Then, type the commandgmake in a shell commands interpreter. It createsactuator 1, actuator 2, example8.mk ,

root , root.c , androot.root.o files:

• theactuator 1 file contains the speed of the first car;

• theactuator 2 file contains the distance between the cars.

8.6.2 In the case of a bi-processor architecture

The architecture

In this subsection, we suppose that the architecture is constituted of two operators namedroot andpc1 , of typeU

and linked with a mediumtcp1 of typeTCP:

• create theTCPmedium:

– set the type withSAM MultiPoint ,

– set the durations withfloat = 1 ;

• modify theU operator: set the gates withTCP x andTCP y;

• create thebiProc architecture:

– add oneU operator namedroot and define it as main operator,

– add oneU operator namedpc1 ,

– add oneTCPmedium namedtcp1 and choose theBroadcast option,

– links the medium to thex gates of the operators,

– define thebiProc architecture as main.

The adequation and the code generation

First, launch the adequation. It modifiesexample8.sdc andexample8.sdx files.
Then, generate the executive and applicative files (settingCode / Generate m4x Files). It createsexample8.m4 ,

example8.m4x , example8 sdc.m4x , root.m4 , andpc1.m4 files.
Finally, handwrite theexample8.m4x file as explained in 8.4.6.

The compilation

First, generate manually theGNUmakefile , theexample8.m4m , and theroot.m4x files:

• theGNUmakefile has to be created as explained in 8.6.1. Upgrade it so that theline:

$(A).mk : $(A).m4 syndex.m4m U.m4m

is changed by:

64



$(A).mk : $(A).m4 syndex.m4m U.m4m $(A).m4m

• create theexample8.m4m file with this line:define(‘pc1 hostname ’, HOSTNAME)dnl whereHOSTNAMEis sub-
stituted with the name of your remote station;

• create theroot.m4x file with this line: include(example8.m4m) .

Then, copy-paste theref vitesse.txt file from theExample 8folder to yours.
Then, type the commandgmake in a shell commands interpreter. It createsactuator 1, actuator 2, example8.mk ,

root , root.c , root.root.o , pc1 , pc1.c , andpc1.pc1.o files:

• theactuator 1 file contains the speed of the first car;

• theactuator 2 file contains the distance between the cars.

8.6.3 In the case of a multi-processor architecture

The architecture

Figure 8.15: The architecture with 5 operators.

In this subsection, we suppose that the architecture is constituted of five operators namedroot ,cont1 , cont2 ,
dyna1 , anddyna2 , of typeU and linked with a mediumbus of typeTCP:

• create themulti architecture (cf. figure 8.15):

– add oneU operator namedroot and define it as main operator,

– add oneU operator namedcont1 ,

– add oneU operator namedcont2 ,

– add oneU operator nameddyna1 ,

– add oneU operator nameddyna2 ,

– add oneTCPmedium namedbus and choose theBroadcast option,

– links the medium to thex gates of the operators, except for theroot one, linked with itsy gate to the
medium,

– define themulti architecture as main;

• create operation groups:

– create theog root operation group, attachref vit , vitesse , anddistance to it,

– create theog dyna1 operation group, from the main mode, in thevehicule1 reference attachmeca1 to
it,

– create theog cont1 operation group, from the main mode, in thevehicule1 reference attachcontrol1

to it,

65



– create theog dyna2 operation group, from the main mode in thevehicule2 reference attachmeca2 to
it,

– create theog cont2 operation group, from the main mode, in thevehicule2 reference attachcontrol2

to it;

• create absolute constraints:

– constrainog root on root ,

– constrainog cont1 on cont1 ,

– constrainog cont2 on cont2 ,

– constrainog dyna1 ondyna1 ,

– constrainog dyna2 ondyna2 .

The adequation and the code generation

First, launch the adequation. It modifiesexample8.sdc andexample8.sdx files.
Then, generate the executive and applicative files (settingCode / Generate m4x Files). It createsexample8.m4 ,

example8.m4x , example8 sdc.m4x , root.m4 , cont1.m4 , cont2.m4 , dyna1.m4 , anddyna2.m4 files.
Finally, handwrite theexample8.m4x file as explained in 8.4.6.

The compilation

First, generate manually theMakefile.ocaml , theexample8.m4m , theroot.m4x , thecont1.m4x , thecont2.m4x , the
dyna1.m4x , and thedyna2.m4x files:

• copy-paste theMakefile.ocaml from theExample 8 folder to yours;

• create theexample8.m4m file with these lines:

define(‘cont1 hostname ’, HOSTNAME)dnl
define(‘cont2 hostname ’, HOSTNAME)dnl
define(‘dyna1 hostname ’, HOSTNAME)dnl
define(‘dyna2 hostname ’, HOSTNAME)dnl

whereHOSTNAMEis substituted with the name of your remote station;

• create theroot.m4x , cont1.m4x , cont2.m4x , dyna1.m4x , anddyna2.m4x files with this line:include(example8.m4m) .

Then, copy-paste some files from theExample 8folder to yours:

• copy-paste theexample8.ml file.

• copy-paste thepa example8.ml file.

• copy-paste theroot.sh , cont1.sh , cont2.sh , dyna1.sh , anddyna2.sh files;

• copy-paste theref vitesse.txt file.

You will probably need to install camlp5 (see athttp://pauillac.inria.fr/ ˜ ddr/camlp5/ ).
Then, type the commandmake -f Makefile.ocaml in a shell commands interpreter. It createsexample8.cmi ,

example8.o , pa example8.cmi , and<processor>.cmi , <processor>.cmx , <processor>.o , <processor>.opt for each
processor.

Finally, launch separatly the five script files. At the end of their execution, theactuator 1 andactuator 2 files
are created:

• theactuator 1 file contains the speed of the first car;

• theactuator 2 file contains the distance between the cars.

From the principal window, chooseFile / Close. In the dialog window, click on theSavebutton.

66

http://pauillac.inria.fr/~ddr/camlp5/


Chapter 9

Example 9: a multiperiodic application

From the principal window, chooseFile / Save asand save your ninth application under a new folder of yout
tutorial folder (e.g.my example9 ) with the nameexample9 .

9.1 The main algorithm

Figure 9.1: Main algorithm of theExample 9

Create the main algorithmbasicAlgorithm (cf. figure 9.1) using the libraryint for the operationsinput<1>

(int/input ) andoutput<1> (int/output ). For the operationcompute , create a function definitioncompute and
create a reference to this definition. Create the dependences between the references. Set the periods to 4 forinput ,
8 for compute , and 8 foroutput by selecting each reference and filling thePeriod field.

9.2 The main architecture

Open the architecturemonoProc from the libraryu. Define it as main. The durations for theU operator are by
default:

int/input = 3
Implode int = 1
compute = 1
int/output = 3

67



Implode int is an internal operation automatically generated by SynDExto collect the different data produced
by the different occurences of theint/input operation.

In this case, the system is not schedulable.

9.3 A mono-phase schedule

9.3.1 Durations

Modify the durations for theU operator:

int/input = 1
Implode int = 1
compute = 1
int/output = 1

9.3.2 Adequation

Figure 9.2: A mono-phase schedule

Launch the adequation (Adequation / Launch Adequation). Display the schedule (Adequation / Display
Schedule) (cf. figure 9.2).

Wait operation

Notice the new operation added by SynDEx (Wait ) to respect the period of theinput operations.

Multiple occurrences

Notice that because of the periods, during a cycle twoinput operations are executed (input#1 and input#2 )
whereas only onecompute and oneoutput operations are executed.

Implode operation

Notice the new operation added by SynDEx (Implode compute ) to provide the data from theinput operations to
thecompute one.

68



9.4 A multi-phase schedule

9.4.1 Durations

Modify the durations for theU operator:

int/input = 1
Implode int = 1
compute = 2
int/output = 1

9.4.2 Adequation

Figure 9.3: A multi-phase schedule

Launch the adequation (Adequation / Launch Adequation). Display the schedule (Adequation / Display
Schedule). The computed schedule has two phases: a transitory phase (red) and a permanent phase (green) (cf.
figure 9.3).

Transitory phase

The transitory phase is executed only once. It contains the first occurrence of theinput#1 operation, the first
occurrence of theinput#2 operation, the first occurrence of theImplode compute operation, and the first occurrence
of thecompute operation. Thecompute operation provide data consumed by theoutput operation schedule at time
9 in the permanent phase.

Permanent phase

The permanent phase is the one that is executed infinitely. Itcontains the second occurrence of theinput#1

operation (and its following occurrences). It contains thefirst occurrence of theoutput operation (and its following
occurrences).

69


	Introduction
	Example 1: algorithm, architecture, and adequation
	The main algorithm
	Definition of a sensor
	Definition of an actuator
	Definition of a function
	Definition of the main algorithm

	An architecture with one operator
	Definition of an operator
	Definition of the main architecture

	An architecture with a SAM point-to-point comunication medium
	Definition of operators
	Definition of a medium
	Definition of the main architecture
	Connections between the operators and the medium

	An architecture with a SAM multipoint medium
	An architecture with a RAM medium
	The adequation
	Without constraint
	With constraints


	Example 2: parameters and hierarchy in algorithm
	Definition of the function A
	Definition of the function B
	Definition of the algorithm with hierarchy

	Example 3: delay in algorithm
	Definition of the operations input, output, and calc
	Definition of the delay
	Definition of the algorithm with delay

	Example 4: repetition and library in algorithm
	An algorithm with repetition without any library
	Definition of the scalar ins and the function mul on scalars
	Definition of the vectors inv and outv
	Definition of the algorithm AlgorithmMain1

	An algorithm with repetition with the int library
	Inclusion of the library int
	Definition of the algorithm AlgorithmMain2

	An algorithm with repetition with the float library
	Inclusion of the library float
	Definition of the function dpacc
	Definition of the function dp
	Definition of the function prodmatvec
	Definition of the algorithm AlgorithmMain3


	Example 5: condition and nested condition in algorithm
	An algorithm with condition
	Sensors x and i, actuator o
	Function switch1
	Algorithm AlgorithmMain1

	An algorithm with nested condition
	Sensors x and i, actuator o
	Function switch2
	Algorithm AlgorithmMain2


	Example 6: algorithm, architecture, adequation, and code generation
	The main algorithm
	The main architecture
	The adequation and the code generation

	Example 7: source code associated with an operation
	Definition of the source code into the code editor window
	To add parameters to an already defined operation
	To edit the code associated with an operation
	To generate m4x files


	Example 8: a complete realistic application from adequation to execution
	The aim of the example
	The model
	The controllers
	Block diagrams of controllers
	Source code associated with the functions

	The complete model
	The car dynamics
	The cars and their controllers
	The main algorithm
	Source code associated with the sensor and the actuator
	The example8_sdc.m4x
	To handwrite the example8.m4x file

	Scicos simulation
	SynDEx simulation
	In the case of a mono-processor architecture
	In the case of a bi-processor architecture
	In the case of a multi-processor architecture


	Example 9: a multiperiodic application
	The main algorithm
	The main architecture
	A mono-phase schedule
	Durations
	Adequation

	A multi-phase schedule
	Durations
	Adequation



