SynDEXx v7 Tutorial

Nicolas Dos Santos, Christophe Gensoul, Kim-Hwa Khoo
Christophe Macabiau, Quentin Quadrat, Daniel de Rauglaude,
Yves Sorel, (ecile Stentzel

December 16, 2013

Contents

Introduction] 5
lL__Example 1: algorithm, architecture, and adequatioh 8
(1.1 _Themainalgorithm 8
[1.1.1 Definitionof aSensor o v v v v e 8
[1.1.2 Definitionofanactualor 11
[1.1.3 Definitionofafunctidn e 11
[1.1.4 Definition of the main algorithmt 11
[L.2__Anarchitecture with one operdtor 14
[1.2.1 Definitionofanoperafor 14
[1.2.2 Definition of the main architectlire 16
(1.3 _An architecture with a SAM point-to-point comunicatio@dium 16
[1.3.1__Definition of gperatdrs 16
[1.3.2 Definitionofamediulno 17
[1.3.3 Definition of the main architectlire 17

[1.3.4 Connections between the operators and the medium 17
[1.4 An architecture with a SAM multipoint mediuim

........................... 18
[1.5__Anarchitecturewitha RAM medidm 18
[1.6 Theadequatibn 19

[1.6.1 Withoutconstralnt o oo 19
162 With constraimtS . . .« « o v v oo e e 19
[2_ Example 2: parameters and hierarchy in algorithm 23
2.1 Definition of the functiod 23
[2.2_Definition of the funClOm v v oo 23
[2.3_Definition of the algorithm with hierarchy 25
I3__Example 3: delay in algorithm 26
[3.1 Definition of the operatiorisput ,output ,andcalc | 26
[B.2_Definitionofthe deldy 26
initi ' VTR 26
4__Example 4: repetition and library in algorithm| 28
|4__’]_An_a_|,gor|thm with repetition without any I|brdry 28
14.1.1 Definition of the scalans and the functiomul onscalafs 28
[4.1.2 Definition of the vectorisy_andoutv| 28
initi i i Nl | . 29
orithm with repetition with thiat library o o 29
[4.2.1 Inclusmn of the I|brar\nt 30
......................... 30
4.3 _An algorithm with repetition with thma.r_ub_ta.gl 31
1431 Inclusionofthelibrarfioat |. 31
14.3.2__Definition of the functiodpace] 31
[4.3.3 Definition of the functiodd 32

Introduction

This tutorial respects some writing conventions:

e menus, buttons, etc., are writtenknld
(e.g.Algorithm / New Algorithm Window , OK, Definition list);

e command lines, SynDEX files, examples, etc., are writtevimputer Modern
(e.g.-libs libs , examplesitutorial 1 into);

To create an application workspace, launch SynDEx withooglibs libs . See theSynDEx v7 User Man-
ual for more information.

The examples presented in this tutorial are located in thef@lderexamplesitutorial . Each example is lo-
cated in its sub-folder. The example 7 is located iredaeples/tutorial/example? , examples/tutorial/example? _mono,
andexamples/tutorial/example? _bi folders.

Example 1

Algorithm, architecture, and adequation:

e we create a sensor definition, an actuator definition, andetifin definition. Then, we create an algorithm
and define it as main. Finally, we create in the main algorittum references to the sensor definition,
three references to the actuator definition, and one referenthe function definition, and we create data
dependences between these references by connectingahsir p

e we create four different architectures:

an architecture with one operator,

an architecture with two operators and a SAM point-to-poarhmunication medium,

an architecture with three operators and a SAM multipoimiewnication medium,

an architecture with three operators and a RAM communigatiedium;

e we create constraints on the third architecture;
o we perform the adequation of the main algorithm onto thealthnchitecture defined as main, without con-
straint and then with constraints.
Example 2

Hierarchy in algorithm:

e we create a function definition and a constant. Inside thetfon we create a reference to another function;
in that way this definition is defined by hierarchy. Then, weate a third function that references both
previous ones. Finally, we create an algorithm that refegsrthe third function and define it as main. In
that way, the main algorithm references a hierarchicaltion¢

e we create parameters names for an operation, and assigrsvalthese parameters.

Example 3
Delay in algorithm:
e we create a delay definition;

e we create a main algorithm by referencing a delay, a sens@ctaator, and a function and by connecting
them.

Example 4
Repetition and library in algorithm:
e we create a multiplication function of a vector by a scalardyyeating a multiplication function on scalars:

— firstly without any library,
— secondly with a library;

e we create a multiplication function of a matrix by a vectorrbpeating a multiplication function on vectors.

Example 5

Condition and nested condition in algorithm:

e we create an algorithm conditioned by a data dependenceathe of which indicates the operation to be
executed,;

e we create an algorithm conditioned by a data dependencepmeration of which is in turn conditioned
(nested condition) by the same data dependence.

Example 6

Algorithm, architecture, adequation, and code generation

e we create a main algorithm by referencing a sensor, two tarsahree functions, and a constant and by
connecting them;

e we create an architecture with two operators of tyed a communication medium of typ&CP;
e we perform the adequation;

e we perform the code generation, then we create manuakxéhele6.max file (for operations not defined
in libraries);

e we create manualy thexample6.m4m file (to define the hostname) and thet.max file (for the main oper-
ator);

e we create manualy th@NUmakefile , then we execute the executives created after compilation.

Example 7
Definition of the source code into the code editor window:
e we add parameters to thenv function ofExample 6

o we modify the code associated with this function first in cafa generic processor then in case of an
architecture with heterogenous processors;

e we create manualy thexample7.m4m file (to define the hostname) and thet.m4x file (for the main oper-
ator);

e we create manualy th&\NUmakefile ;

¢ we perform the adequation, then we perform compilation|lfivee compile the executives and launch the
executables.

Definition of the source code in separatfles:

o we define the code of a new function incafile,

o we define the code of a new function incafile and we use a file.

Example 8

A complete realistic application from adequation to exi&gut

¢ we build the model of a complete application for two cars;

we perform the adequation;

e we generate the code for each processor;

we compile and execute the code associated with each poocess

Example 9

A multiperiodic application:
¢ we build a basic multi-periodic application
e mono-phase schedule

e multi-phase schedule

Chapter 1

Example 1: algorithm, architecture, and
adequation

1.1 The main algorithm

File Options Algorithm | Architecture Constraints Adequation Code Help
New Algorithm Window CtH-N

Define Operation Group

Figure 1.1:Algorithm / New Algorithm Window

From the principal window, choose tRéle / Save asoption and save your first application under a new folder
(e.g.my tutorial) with the namesxamplel .

ChooseAlgorithm / New Algorithm Window (cf. figure[1.1). It opens the edition window for algorithm
definitions.

1.1.1 Definition of a sensor

To create amnput sensor definition:

o from the algorithm window, click on the green button. It opens a dialog window, ch&snsor(cf. figure
[1.2). Type the sensor name and optionally a list of pararmétdethe sensor. For example tyipput , then

Define Sensor

ayhitax helo

- Function - Delay # Sensor - Actuator - Constant

il Cancel |

Figure 1.2:Define Sensor

| Define Sensor
|input

syntax help

« Function .. Delay % Sensor .. Actuator .. Constant

[] e |

Figure 1.3: Name of the new sensor

|
[[zensor input Up In Main | Main | History
Definition list: S

Double-click to open @@

Drag and drop to reference

poput__________|BN

- i
Definition Properties:
; -
Hame input
Description
Parameters
/!

Figure 1.4: Sensor definition window

|[Bensor] input

Definition list:
Double-click to open

Drag and drop to reference

foput________| K

Up In Main | Main | Histo

ry

EE

Hame input

Definition Properties:

&Y

Undo "Add definitions" Cir-2
Redo Cirl-Shift-2
Copy CtH-C
Cut Ctr-X
Paste Cir-v
Delete Delete

Extract as superblock

Activate Info Bubbles
Postscript

Create Condition
Delete Condition

Add dependence
Add port

Add reference

Set As Main Definition

Forts Order

Description

Description

Parameters

Durations
Edit code phases
Edition of the associated source code

|l ||

=~

Figure 1.5: Contextual menw Add port

Create Port:
Jlint o
ayhitax help
oK Cancel |
Figure 1.6:Create Port

10

[Sensor] input Up In Main Main | History

Definition list:
Double-click to open -]
Drag and drop to reference

Definition Properties:
Hame input
Description
Parameters

Figure 1.7: Sensor definition window after output port ceelat

click OK (cf. figure[1.3). It creates the definition of timput sensor. To open it in definition mode, double
click oninput in the Definition list (cf. figure[1.4);

e ininput definition mode, right click on the background and sekdd port (cf. figure[I.5). It opens a
dialog window for the port’s direction, type, name and opélly its size. For example type int o , then
click OK (cf. figure[1.6). It creates the integer output poftf. figure[1.T) in the sensor definition window.

1.1.2 Definition of an actuator

To create anutput actuator definition:

o from the algorithm window, click on the green buttor- dialog window: checlctuator then typeoutput
and clickOK;

e double click onoutput in the Definition list. Then right click on its background and seléatd port —

dialog window:? int i . Click OK. It creates the integer input porin the sensor definition window.

1.1.3 Definition of a function

To create aomputation function definition:

e from the algorithm window, click on the green button— dialog window: checlk~unction then type
computation and clickOK;

e double click oncomputation in the Definition list. Thenright click on its background and seléaid port
— dialog window:? inta? intbh! into . Click OK. It creates the integer porisb, ando in the
function definition window.

1.1.4 Definition of the main algorithm

To create amlgorithmMain function definition:

11

[IFunction] Algorithrihdain

Up In Main | Main | History

Definition list: [A]
Double-click to open @@ Undo "Add definitions" Ctr-Z
Drag and drop to reference - LIS
edo -Shift-
| ‘Algorithim Main S
fcomputat co cti-c
fAnput Cury Ctr-X
foutput :
Paste Ctr-v
Delete Delete
Extract as superblock
Activate Info Bubbles
Postscript
Create Condition
Delete Condition
Add dependence
Add port
- Audd reference
/
- Set As Main Definition
Definition Properties: -
Name Algarithmbda (RIS COiE vi
Description — DT
Durations
Parameters
Edit code phases
Edition of the associated source code
/

Figure 1.8: Contextual menw Set As Main Definition

|Function] Algorithmbain
Definition list:

Double-click to open @
Drag and drop to reference

Up In Main | Main | History

(o]

ImlgurithmMain

I input

foutput

A

4

Definition Properties:
Hame Algarithmhda
Description

A

Y=l

Parameters
Values

=~

Figure 1.9: Drag and drapput definition

12

| Create Reference to input at [Function] AlgorithmMain
lin inz

ayhitax help

[| | e |

Figure 1.10Create References tanput

Figure 1.11: Main algorithm after references to sensortetta

R H =
=
=

Figure 1.12: Main algorithm of thExample 1

13

e from the algorithm window, click on the green button— dialog window: check~unction then type
AlgorithmMain ~ and clickOK;

e double click onalgorithmMain in the Definition list. Then right click on its background and sel&ett As
Main Definition (cf. figure[1.8);

e in its definition mode,

— to create references to the sensput , drag and drop the sensor definition from efinition list
to theAlgorithmMain definition window €f. figure[1.9)— dialog window:in1 in2 (cf. figure[1.10).
The main algorithm looks like the figure 1111,

— to create references to the actuataput , drag and drop the actuator definition from efinition
list to theAlgorithmMain definition window—> dialog window:outl out2 out3

— to create a reference to the functimmputation , drag and drop its definition> dialog window:calc ,
— from theAlgorithmMain definition window, to create a data dependence betwaeandcalc , point
the cursor on the output parbf theinl operation, middle click, and drag to the input podf thecalc
operation. It draws an arrow between these target porter Afeating the other data dependences, the
main algorithm looks like the figute T.12.
1.2 An architecture with one operator

1.2.1 Definition of an operator

Modify gates | Modify durations | Modify code generation phases

Figure 1.13: Operator definition window
To create atvinout operator definition:

o from the principal window, choos&rchitecture / Define Operator. It opens a dialog window, typginout
and clickOK. It opens the operator definition windoef (figure[1.13B);

e from theUinout definition window:

— to add a gate: clicModify gates — dialog window:gate _type _1 X,

— to set the operator execution durations: ché&dify durations — dialog window:

computation = 2
input = 1
output = 3

14

File Options Algorithm Architecture | Constraints Adequation Code Help

Define Operator
Edit Operator Definition
Delete Operator -

Define Medium
Edit Medium Definition
Delete Medium -

Define Architecture

Edit Architecture Definition

Edit Main Architecture Ctrl-Shift-A
Delete Architecture -

=~

Figure 1.14:Architecture / Define Architecture

| Window ﬂl |

Copy cii-c
Cut CtH-X
Paste cii-v
Delete Delete
Postscript File

Jpeq File

Options -

Reference Operator

I]— Reference Medium

Find Operator Reference
Find Medium Reference

3et As Main Architecture CtH-M

Figure 1.15Edit / Reference Operator

ul (Uinout) {mairn)

Figure 1.16: Architecture with one operator

15

=~

1.2.2 Definition of the main architecture

To create arrchiOneOperator architecture definition:

e from the principal windowArchitecture / Define Architecture (cf. figure[I.1#)— dialog window: type
ArchiOneOperator then clickOK — definition window;

e from theArchiOneOperator definition window:

— to create a reference to the operatoout , Edit / Reference Operator (cf. figure[1.15)— dialog
window: click user, double clickUinout — dialog window:ul,

— to define the operator as main, right click on its referencksatectSet As Main Operator.

The architecture looks like the figure 1116.

1.3 An architecture with a SAM point-to-point comunication medium

1.3.1 Definition of operators
To createlin andUout definitions:

o from the principal windowArchitecture / Define Operator — dialog window:Uin , click OK — definition
window;

e from theUin definition window:
— click Modify gates — dialog window:
MediumSamPointToPoint x

MediumSamMultiPoint y
MediumRam z

— click Modify durations — dialog window:

computation = 2
input = 2
output = 5

o from the principal windowArchitecture / Define Operator — dialog window:Uout , click OK — defini-
tion window;

o from theUout definition window:
— click Modify gates — dialog window:
MediumSamPointToPoint x

MediumSamMultiPoint 'y
MediumRam z

— click Modify durations — dialog window:

computation = 2
input = 5
output = 3

16

1.3.2 Definition of a medium

Bus Type
5AM Point to Point
SAM MultiFoint
RAM

0K Cancel

Figure 1.17: Type of a communication medium

To create aediumSamPointToPoint medium definition:

e from the principal window:Architecture / Define Medium — dialog window: MediumSamPointToPoint
click OK — definition window;

o from theMediumSamPointToPoint definition window:

— click Modify type — dialog window:SAM Point to Point (cf. figure[1.17),
— click Modify durations — dialog window:

float = 2
int = 2
uchar = 1
ushort = 1

1.3.3 Definition of the main architecture
To create arrchiSamPointToPoint architecture definition:

o from the principal windowArchitecture / Define Architecture (cf. figure[I.1%)— dialog window
ArchiSamPointToPoint — definition window;

e from the ArchiSamPointToPoint definition window, create references andu2 to the operatorgin and
Uout ;

e from theArchiSamPointToPoint ~ definition window: Edit / Reference Medium — dialog window: click
user, selectMediumSamPointToPoint — dialog window: typemedium_sampp;

o define the operatarl as main.

1.3.4 Connections between the operators and the medium

[medium_sampp (MediumSamPointTaPoing |

ul (Uin

(mair) Uz (Uouty
x

¥
z

LSRN

Figure 1.18: Architecture with two operators and a SAM paaipoint communication medium

In the main architecture window, to create a connection betvtheul operator and theedium_sampp medium,
point the cursor on the poxtof the operator, middle click, and drag it to the communi@atinedium. It draws
an edge between the operator and the communication medidter éeating the other connection, the main
architecture looks like the figufe 1]18.

17

1.4 An architecture with a SAM multipoint medium
To create arrchiSamMultiPoint architecture definition:

e from the principal window: Architecture / Define Architecture (cf. figure[1.1#)— dialog window:
ArchiSamMultiPoint — ArchiSamMultiPoint definition window;

e create referenced andu? to the operatotin and a references to the operatotout, like in the previous
example;

e create a medium definitiavediumSamMultiPoint of type SAM MultiPoint with durations:

float=2
int=2
uchar=1
ushort=1

e create a referenasedium_sammpto this medium in the main architecture windew dialog window: check
No Broadcast

e define the operatan as main;

e connect the operators postso the medium.

The architecture looks like the figure 1119

[medium_sammp (MediumSamultiPoing]

U1 (Uin) (main)
- / u3 {outy
y w2 (Uin) *

x z
Y
z

Figure 1.19: Architecture with three operators and a SAMtipaint communication medium

1.5 An architecture with a RAM medium
To create therchiRam architecture definition:

e from the principal window: Architecture / Define Architecture (cf. figure[1.14)— dialog window
ArchiRam — ArchiRam definition window;

e create a referenaa to the operatovin and reference® andu3 to the operatouout ;

e create a medium definitiaviediumRamof type RAM with durations

float=2
int=2
uchar=1
ushort=1

18

and create a referenaedium_ram in the main architecture;
o define the operatan as main;

e connect the operators port$o the medium.

|medium_ram (MediumRam)|

ud (Uout)

by

¥

u1 {Uin} {main) z
* uzZ {Uout)

Y %

: ¥

z

Figure 1.20: Architecture with three operators and a RAM goitation medium

The architecture looks like the figure 11 20.

1.6 The adequation

1.6.1 Without constraint

Define the architecture with three operators and a mediuypef3AM MultiPoint (cf.[1.4) as main architecture
(Edit / Set As Main Architecture).

From the principal window, choosgdequation / Launch Adequation, then choosé\dequation / Display
schedule

It opens the schedule windowf(figure[1.21) in which you can see the schedule of the algorithnthe
architecture and the schedule of the different inter-dpe@mmunications on the medium.

Window Edit
medium_sammp || u3 I uz I ul
0 1]
in inl
Z &
Z Z Z
Send_uz_ui{inZ.o)
4
Wait
4 4 outz
Send_uz_ul(inZ.o)
3] outd]
7 7|fB

calc

autl

Figure 1.21: Schedule

1.6.2 W.ith constraints

To contraint the\rchiSamMultiPoint architecture:

e from the principal window, to create the constraints:

19

— Algorithm / Define Operation Group (cf. figure[1.22)— dialog window:ogl 0g2 og3 ,
— Constraints / Absolute Constraints— dialog window: selecArchiSamMultiPoint It opens a dialog
window in which you can create constraints on the differgrarators of the architecture selected:

x first click onogl, thenul, and theCreate button, to constrain the operation grooagd on the
operatomul,

* constrain the operation growp2 on the operatou?,

* constrain the operation growp3 on the operatou3,
* click onOK button ¢f. figure[1.28),

File Options Algorithm | Architecture Constraints Adequation Code Help
Hew Algorithm Window CiH-N

Define Operation Group
Delete Operation Group -

|

=~

Figure 1.22:Define Operation Group

Ahsolute Constraints

g1 _w 0g3 u3
092 uz 0g2 u2

3 1 ul
og s ogl u

Create |
Remove |

il . Cancel |

Figure 1.23: Constrain operation groups on operators cditbieitecture selected
e in the main modeMain button):
— select the operatioinl , click on theGroup button of itsReference Propertieghen selecbgl (cf.
figure[1.24),

— attach the operatioin2 to the operation grougm?,
— attach the operationutl to the operation grougy1,

20

[#igorithmivain (main) Up In Main | Main | History
Definition list: K

Double-click to open @@

Drag and drop to reference
| AlgorithmMain I

I
finput

foutput
0 {2 |0 i

Py
Reference Properties: k%
Name in =
Parameters
Repeat 1
Period 1) J
Group ml 7

Hone

ogl
o092
og3

Figure 1.24: Attach a reference to an operation group

— attach the operatiosut2 to the operation grougy?,
— attach the operationut3 to the operation grougs3,
— attach the operatiogalc to the operation grougs3;

The algorithm with constraints looks like the figlire 1.25.

¢ from the principal window, to perform the adequation witmstraints:Adequation / Launch Adequation,
thenAdequation / Display Schedule— schedule window. The schedule looks like the fidurell.26.

From the principal window, chooggle / Close In the dialog window, click on th&avebutton.

21

Figure 1.25: Algorithm with constraints

|W'indow Edit |
‘ medium_sammp || U3 || uz || ul 3 -S
0 . 1}
in2 in1
Z #
e Send_uz_ui(inz.o) e e
4 X 4 out2
Send_ul_ud{inl.o) B outs
5 7 7 wait
Wait 7 cale
9 9
8Sen[:l u3_uticalc.o)
- 11 i
11
outl
1t —
1 /]
~ =

Figure 1.26: Schedule with constraints

22

Chapter 2

Example 2: parameters and hierarchy in
algorithm

From the principal window, choogéle / Save asand save your second application under your tutorial foldtr
the namexample2 .

2.1 Definition of the function a

To create the function definition:

¢ from the algorithm window:

— click on the+ green button— dialog window: checlunction then typeA and clickOK,

— click on the+ green button— dialog window: checlConstantthen typeconstante<x> and clickOK.
Create an integer output partnside;

e in theA definition window:

— create a referenast<T> to the definitiorconstante
— create an integer input part an integer output pont (Contextual menus Add port cf. [L.1.3);

o from the algorithm window,
create a function definitioealcull , with two integer input porta andb and an integer output post

e in theA definition window:

— create a referenaelcl to the definitiorcalcull
— add a parameter namef.(figure[2.1): FieldParameters— T.

The functiona looks like the figuré 2]2.

2.2 Definition of the functions

To create the function definition:
¢ from the algorithm window: green button— dialog window:B<X;Y>;
¢ in theB definition window:

— create referenced andA2 to the definitiorA (Al<X> A2<Y>),

— create two integer input porésandb, one integer output post and the functiomalcl of the definition
calcull

— add the parameters nameandy (field Parameters.

The functionB looks like the figuré 2]3.

23

|[Function] &

B
fMain
fcalcull

finput
foutput

Definition list:
Double-click to open
Drag and drop to reference

n |\

B

Hame
Description
Parameters

Definition Properties:

I

Up In Main | Main | History

A

Y=l

=~

Figure 2.1:Parameters

Figure 2.2: Function

24

A1

g———on

[l —

Figure 2.3: FunctioB

2.3 Definition of the algorithm with hierarchy
To create théain algorithm:
e from the algorithm window: green button— dialog window:Main ;
¢ from the definition window, define it as main;
e create a sensdmput with an integer output port and an actuatawtput with an integer input poirit;

¢ intheMain algorithm window, create a refereret;2> to the definitior, a referencé i2 to the definition
input , and a referencaut to the definitioroutput ;

e create dependences between the references.

The algorithm looks like the figufe 2.4.

- -
R L

Figure 2.4: Algorithm of thé&Example 2

From the principal window, choodgle / Close In the dialog window, click on th&8avebutton.

25

Chapter 3

Example 3: delay in algorithm

From the principal window, choodéle / Save asand save your third application under your tutorial foldéthw
the namexample3 .

3.1 Definition of the operationsi nput, out put, aNd cal ¢

Create a sensamput , an actuatooutput , and the functionalc , like in the Examples 1and2. (cf. [1.1.3 and
calcull in[2.7)

3.2 Definition of the delay
To create thealcPrec delay:

o fromthe algorithm window, click on the green buttor- dialog window: checlPelaythen typealcPrec<init;size>
and clickOK; The parametenit will be used to specify the initial value of the delay, aird the number
of delays;

¢ in the definition window, create one input port and one oupmut. Enter:? int i ! int o

3.3 Definition of the algorithm with delay

Create an algorithralgorithmMain . Create a referendel to the definitioninput , a referencealc to the defi-
nition calc , a referenceutl to the definitionoutput , and a referencealcPrec<0;1> to the definitioncalcPrec .
Create dependences between the references.

The algorithm looks like the figufe3.1.

From the principal window, choodgle / Close In the dialog window, click on th&8avebutton.

26

Figure 3.1: Algorithm of th&axample 3

27

Chapter 4

Example 4: repetition and library in
algorithm

From the principal window, chood€le / Save asand save your fourth application under your tutorial folekth
the namexample4 .

4.1 An algorithm with repetition without any library

In this section, we create a multiplication function oNaelements vector by a scalar by repeathdimes a
multiplication function on scalars.

4.1.1 Definition of the scalarn ns and the function nul on scalars

In a new algorithm window:

e create a new sensor definition nanmmed with an integer output pott;

e create a new function definition named with two integer input porta andb and an integer ouput pas}.

4.1.2 Definition of the vectors nv and out v

To create the vectors:
e to create the definitioinv :

— from the algorithm window, create a new sensor definition edinv ,

— from theinv definition window, typeN in the Parameterstextfield of itsDefinition Properties (it has
N elements),

— create its integer output port namedith lengthN: | intN] o ;
e to create the definitiooutv :

— from the algorithm window, create a new actuator definitiam ,

— in outv definition window, typeN in the Parameterstextfield of its Definition Properties (it hasN
elements),

— create its integer input port nameavith lengthN: 2 int[N] i

28

4.1.3 Definition of the algorithm Al gori t hmvai n1

To create thelgorithmMainl algorithm:

o from the algorithm window, create a new function definiti@medAlgorithmMainl and from its definition
window, define it as main;

e in theAlgorithmMainl definition mode:

— create a referenceinput to the scalains ,
— create a referenaeinput<N> to the vectoinv ,

— create areferenaaul to the functiormul and typeNin theRepeattextfield of itsReference Properties
(it is repeatedN times),

— create a referenceoutput<N> to the vectonutv ;

e create dependences between the references, in order to thigtanain algorithmdf. figure[4.2);

e typeNin the Parameterstextfield of theDefinition Properties of the main algorithm and in the Values
textfield f. figure[4.1). Notice that this value is keeped as long as thariéhgn remains the main one.

Definition Properties:
Hame Algorithmbda
Description |First algorithi
Parameters M

Values 3

Figure 4.1:Parameters Values

The repetition consists in multiplying each of tBelements of the_input vector with thes_input scalar and
placing the result in th8 elements _output vector.
The parametelis here the repetition factor of tmail function.

5_input

[o

v_nput/
[o

b

mul(*3)
al ‘0 =

Figure 4.2:AlgorithmMainl of the Example 4

4.2 An algorithm with repetition with the int library

In this section, we create a multiplication function of ateedy a scalar by using thet library.

29

4.2.1 Inclusion of the library i nt

From the principal window choosEile / Specify Library Directories and add theSYNDEXPATH/libs where
SYNDEXPATHS the absolute path of the SynDEXx distribution.
From the principal window, chooggle / Included Libraries / int (cf. figure[4.3).

File | Options Algorithm Architecture Constrainis Adequation Code Help

Open Cir-0
Save CtH-5
Save as

Close

Included Libraries bool

Specify Library Directories c40
Quit cna | e
float
N int
transtech

Figure 4.3:File / Included Libraries / int

4.2.2 Definition of the algorithm Al gori t hmvai n2

Notice that this library contairisput , mul, andoutput definitions parameterized witéngth .
We will need to set it td for the scalar and the multiplication function, andhtfor the vectors:

o from the algorithm window, create the function definitiigorithmMain2 ~ and define it as main;

e in AlgorithmMain2 definition mode:

— drag and drop the sensor definitiow/input from theDefinition list to theAlgorithmMain2 ~ window
— dialog window:s_input<1> (cf. figure[4.4) (it is a scalar),

Create Reference to input at [Function] AlgorithmMain2
s_input<1=

syntax help

ﬂ Cancel

Figure 4.4:Create Reference tant/input

— drag and drop the sensor definitimt/input — dialog window:v_input<N> (it hasN elements),

— drag and drop the function definitiamt/Arit _-mul — dialog window:mul<1> then typeNin theRepeat
textfield of itsReference Properties(it is a multiplication on scalars, repeatsddimes),

— drag and drop the actuator definitiort/output — dialog window:v _output<N> (it hasN elements);

30

e create dependences between the references in order to ti#anain algorithmdf. figure[4.5);

o typeNin the Parameterstextfield of theDefinition Properties, and3 in the Valuestextfield.

Notice the difference of thewl reference when it is seen from thAgorithmMain2 definition mode or from
the main modeNlain button).

3_input

[o

v_mput/ b
[o

Figure 4.5:AlgorithmMain2 of the Example 4

4.3 An algorithm with repetition with the 11 oat library

In this section, we create a multiplication function dffaM matrix by aM elements vector by repeatifgtimes
a multiplication function on vectors.

4.3.1 Inclusion of the library f 1 oat

Include the libraryloat (File / Included Libraries / Float).

4.3.2 Definition of the functiondpacc

This function is a multiplication function on scalars with accumulator:

e create a new function definition namégcc ;

create a referencrul<1> to the functiorfloat/Arit _mul (the reference works on scalars);

create a referencgld<1> to the functiorfloat/Arit _add (the reference works on scalars);

add it three input ports and one output part:float s1 ? float s2 ? float acc ! float acc ;

then create dependences to obtain an algoriginfigure[4.6).

Notice thatacc is an input port and an output port of the function. It will bged as an accumulator to store
the partial sum.

31

acc

Figure 4.6: Algorithm of the functiodpacc

4.3.3 Definition of the functiondp
This function is a multiplication function on vectors with accumulator:
e create a new function definition named
e add it a parameteipaccn ;
e create a referencero< {0}> to the constarfloat/cst (it is the {0} scalar);

e create a referenadpacc to the functiondpacc then typedpacen in the Repeattextfield of its Reference
Properties (it is repeatedipaccn times);

e add it two input ports? float[dpaccn] v1 ? float[dpaccn] v2 and one output port: float dp (vec-
tors havelpaccn elements);

e create dependences to obtain an algorithirfigure[4.T). To build the dependence between the output port
acc of dpacc and its input portcc, choosdterate on the dialog window (it is the connection between two
successive calls of the function).

dpacc{dp..)

=

Figure 4.7: Algorithm of the functiodp

32

The repetition consists in multiplying twdpaccn elements vectors by callindpaccn times thedpacc multi-
plication function on scalars with accumulator. The initialue of its accumulator is given by thero constant
and the following are given by the accumulator itself.

4.3.4 Definition of the functionpr odmat vec
This function is a multiplication function of a matrix by aater:
e create a new function definition namgddmatvec ;
e typeab in theParameterstextfield of itsDefinition Properties;

e create a referenatprod to the functiondp (input vectors havé elements) and type in the Repeat
textfield of itsReference Propertieqit is repeated times);

e add it two input ports? floatfa*b] inm ? float[b] inv and one output port: float[a] outv ;

e then create dependences to obtain an algoritiniigure[4.8).

dotprod(*a)
vl |dp 4)-
Ve

Figure 4.8: Algorithm of the functioprodmatvec

The repetition consists in multiplyingat b matrix by ab elements vector by calling times thedp multipli-
cation function on vectors.

4.3.5 Definition of the algorithmal gori t hmvai n3
To create thelgorithmMain3 algorithm:

e create the definition of the sengan, with two parameters nam&sndM and with an output port: float
IN*M] 0 ;

e create a new function definition namaidorithmMain3 and define it as main;
e add it two parameters;M with valuess;4 ;

e create a referengel<N;M>to the matrixinm;

e create a referende<N> to the vectoffloat/input;

e create a referenceatprodvec<N;M> to the functiorprodmatvec;

e create a referenaatv<M> to the vectoffloat/output;

e then create dependences to obtain an algoritiniigure[4.9).

From the principal window, choodgle / Close In the dialog window, click on th&8avebutton.

33

Figure 4.9:AlgorithmMain3 of the Example 4

34

Chapter 5

Example 5: condition and nested
condition in algorithm

From the principal window, choodgle / Save asand save your fifth application under your tutorial foldethwi
the namexamples .

5.1 An algorithm with condition

5.1.1 Sensors andi, actuator o

To create the sensors and the actuator:
o from the algorithm window: green button— dialog window:Sensorx;
o from the algorithm window: green button— dialog window:Sensori ;

e from the algorithm window: green buttor— dialog window:Actuator o.

5.1.2 Functionswi t chl
To create thawitchl function:
e from the algorithm window: green button— dialog window:switchl ;
e in theswitchl definition window:
— contextual menu» Add port — dialog window:? int x ? inti! int o ,

— contextual menu~ Create Condition — dialog window:x=1 x=2 x=3 x=4 (cf. figure[5.1):

* click on the conditionx=1 (cf. figure[5.2) and create a referendiel<1> to the definition

int/Arit ~ _div ,
* click on the conditionx=2 (cf. figure[5.3) and create a referendi@<1> to the definition
int/Arit ~ _div ,

* click on the conditiorx=3 (cf. figure[5.4) and connect the parto the porto,

x click on the conditionx=4 (cf. figure[55) and create a referencel4<1> to the definition
int/Arit -~ _mul;

— create dependences between the references.

5.1.3 Algorithm Al gori t hmvai n1
The algorithm looks like the figute 5.6.

35

Undo "Add ports" Ctn-Z2

Activate Info Bubbles
Postscript

Create Condition

Add dependence
Add port
Add reference

Set As Main Definition

Forts Order

Description

Durations

Edit code phases

Edition of the associated source code

Figure 5.1:Create Condition

o]

V=l

Figure 5.2: Condition x=1

36

divZ

g
i

Y
Figure 5.3: Condition x=2
®=3
[N
.
I

Figure 5.4: Condition x=3

37

Figure 5.5: Condition x=4

g\‘ sikitchi
x|o =

Figure 5.6: AlgorithmMainl of th&xample 5

38

x=1 A WA A Wi
&
- i e
. i

5.2 An algorithm with nested condition

5.2.1 Sensors andi, actuator o
Use previous definitionf. 5.1.1).

5.2.2 Functionswi t ch2

To create thawitch2 function:
e from the algorithm window: green button— dialog window:switch2 ;
e in its definition window:

— contextual menu> Add port — dialog window:? int x ? inty! into ,
— contextual menu Create Condition — dialog window:y=1 y=2,

— click on the conditiory=1 (cf. figure[5.T) and create the functionll<1> of the definitionArit _mul
fromint library,

Figure 5.7: Condition y=1
— click on the conditiory=2 (cf. figure[5.8) and create a referersadtchl to the definitionswitchl;

e create dependences between the references.

5.2.3 Algorithm Al gori t hmvai n2

The algorithm looks like the figufe 8.9.
From the principal window, choogsgle / Close In the dialog window, click on th&avebutton.

39

/

switch1 o]
I |EI /

V=l

Figure 5.8: Condition y=2

switch2
" |D 5

&\y
M

Figure 5.9: AlgorithmMain2 of th&xample 5

40

Chapter 6

Example 6: algorithm, architecture,
adequation, and code generation

From the principal window, choodgile / Save asand save your sixth application under a new folder of your
tutorial folder (e.gmy_example6) with the namesxample6 .

6.1 The main algorithm

Create the main algorithmigo (cf. figure[6.1) using the librarint for the operations<1> (input), cste2< {2}>
(cst), add<1> (Arit _add), mul<1> (Arit _mul), visuadd<1> , andvisumul<1> (output). For the operatiotonv , create

a function definitionconv, create a reference to this definition, and give it a duratiGreate the dependences
between the references. Set it as main.

add
0 ca [

Figure 6.1: Main algorithm of thExample 6

Warning: it is necessary that the sensor “in” should be distributeit the processor “root”, i.e. on the local
machine, in order that it operates properly.

6.2 The main architecture
To define and constraint thmeain architecture:

e include the library,

41

o from the principal window, choosgrchitecture / Edit Architecture Definition and open the architecture
biProc ,

o define it as main,

e create the operation groupgl andog2 then create the absolute constraints on the operatgiron root
092 onP1. Attach references to operation groups; add, andvisumul — ogl, mul, andvisuadd — og2.

6.3 The adequation and the code generation
To perform the adequation and to generate the code:

e before performing the code generation, you have to perféwenatdequation. Set the possibly missing
durations, then from the principal windowdequation / Launch Adequation;

e from the principal window:Code / Generate Executive(s) It generates for each operator of the main
architecture the code in a file (filemtm4 andP1.m4) and an architecture description (fidgample6.m4).
These files are generated in the same folder as the appficdtie files generated for each processor may
be viewed:Code / Display Executive(s)

e the macros corresponding to the operations, included ititireries of SynDEX, are already defined under
the foldermacros (filesintm4x , U.mdx, andTCP.m4x);

¢ in the same folder as the SynDEXx application of EM@ample 6, create a new filexample6.mdx in which
you define the macro corresponding to the operation which is the only one not defined in the library,
and the number of iterations. The file looks like:

dnl (c)INRIA 2001-2009
dnl SynDEx v7 executive macros specific to application tuto rial/example6/example6
divert(-1)

define(NOTRACEDEF)
define('NBITERATIONS’,3)
define('BINPWD’, ‘pwd’)
define('RSHELL’, ‘ssh’)
define(‘conv',‘ifelse(
MGC,'INIT",‘dnl’,
MGC,'LOOP’,'$2[0] = $1[0] + 1},
MGC,'END’,'dnl’)’)

divert

divert(-1)
divert”dnl---------------- end of file -------emeeeeen

e create a new filexample6.mdm , in which you set for each operator, except the main operétemname of a
workstation corresponding to this operator. The file lodlkes: |

dnl (c)INRIA 2001-2009
define('P1 _hostname _', HOSTNAME)dnl

whereHOSTNAMES the name of the remote workstation, as indicated irkRtadgmefile under
syndex/examples/tutorial/example6 ;

42

Warning: the characters and’ are different.
Warning: if you increase the number of processors in your architectou must add otheiefine state-
ments with the corresponding “processor name”, “remotekaation name” association.

e create a new fileoot.m4x for the main operator including the fitzample6.mam :

dnl (c)INRIA 2001-2009
include(example6.m4m)

e create a new fil&NUmakefile which allows the compilation and the substitution of the rnadrom the code
generation by the executable code. The file looks like:

(c)INRIA 2001-2009
A = example6
M4 = m4

export SynDEx_Path = SYNDEXPATH

export Algo _Macros _Path = $(SynDEx _Path)/macros/algo _libraries
export Archi _Macros _Path = $(SynDEx _Path)/macros/archi _libraries
export M4PATH = $(Algo _Macros _Path):$(Archi _Macros _Path)

CFLAGS = -DDEBUG
VPATH = $(M4PATH)

.PHONY: all clean
all : $(A).mk $(A).run
clean :

$(RM) $(A).mk

$(A).mk : $(A).m4 syndex.md4m U.m4m $(A).m4m
$(M4) $< >$@

root.libs =
Pl.libs =

include $(A).mk

whereSYNDEXPATHs the absolute path of the SynDEX distribution.

Warning: in the previous makefile the stateme$@\V) $(A).mk and$(M4) $< >$@ must begin with a tab char-
acter.

The folder of theExample 6 must contain the following files:
e example6.m4
e example6.m4m
e example6.m4x
e example6.sdc
e example6.sdx

o GNUmakefile

43

e pl.m4
e root.m4

e root.m4x

To launch the execution, type the commatte in the folder of theExample 6. To delete the file created
during the compilation, type the commagrabke clean .
From the principal window, chooggle / Close In the dialog window, click on th&8avebutton.

44

Chapter 7

Example 7: source code associated with an
operation

7.1 Definition of the source code into the code editor window

In the previouExample 6, we have learnt that a4 file, called with the name of the application plus tindx
extension, must be manually written. It contains all thersewcode associated with all operations present in a
SynDEXx application. For example, in theample6 application, theonv function increments of one the value of
the input and stores the result in the output. Téxasiple6.m4x file contains:

define(‘conv’,‘ifelse(
MGC,'INIT","dnl’,
MGC,'LOOP’,'$2[0] = $1[0] + 1},
MGC,'END’,‘dnl")’)

where$l and$2 correspond respectively to the input port naread the output port namedf theconv function.
You may read the comments written in th@mple6.m4x .
Handwriting this kind of code is not very easy, for severalkans:

¢ the port number may change by inserting or removing a poracarpeter, following the SynDEX’s rule of
port numeration. For example, after inserting a paranteterthe functionconv, $1 will not refer to the
input porti but it will refer to the new added parameterAll numbers are now brought, thus we must
modify the code and replace the argumentby $2 ands$2 by $3;

e this task is quite repetitive when an application contaimsynoperations;

e itis easy to make a mistake in th@4 syntax. Great knowledges im4 syntax (two different kind of quotes,
ifelse ...) and SynDExm4 macros KIG§ are required.

It should be more convenient to wrig@oUT(0)[0] = @IN()[0] + @PARAM(P) and let SynDEX interpret it and
generate the associatewx file than to write the specification with thre4 syntax. SynDEXx (versiog» 7.0.0)
is able to do that thanks ttemde editor which is a tool integrated in the graphical user interfac&l(GIn the
following example, we will show how to use this tool.

7.1.1 To add parameters to an already defined operation
In this example, we show how to modify some functions by adgiarameters in order to expand parameters into
m4 arguments.
Open theexanpl e6. sdx application:
o from the principal window; choodggile / Open — Open theexample6.sdx file;

e save it azxample7.sdx under a new folder of your tutorial folder (e gy_example7).

45

Add parameters to theconv function:
e open theconv definition and add parameter nankek in the Parametersfield,

e open the main algorithm definition, select thhev reference, add parameters valagsin the Parameters
field and modify the name reference fraonv to conv _ref in the Namefield.

Verify that the parameters have been stored in the function

We have two solutions:

e from the algorithm window on the main algorithm: put the meuas theconv box — Read the printed
informations in the principal window;

e or right click on the algorithm window background and sel&ctivate Info Bubbles — Point the mouse
cursor on theonv operation box.

7.1.2 To edit the code associated with an operation
In the case of a generic processor

e Open the code editor

We need to launch the code editor of the selected operati@t.us consider the case of thew _ref
function. We have to do the following operations:

— in the main algorithm: double left click on thenv _ref blue box. It opens theonv definition window.
In its contextual menu, selekdition of the associated source coddt opens the code editor. It looks
like a window with three push-buttons and an editable texaEach push-button corresponds to one
specific phase of thrednft, loop, andend phases). When one of the three buttons is pressed, the text
area shows the associated source code;

— in theconv definition window, right click on the background and selEdit code phases— Select
init andend — OK;

— in the code editor windowinit phase — write in the text area (which is empty) the followirg
language code. This code is understood as a generic code:

printf("Init phase of function $0 for default processor. \n");

do the same thing for theop phase:

@OUT(0)[0]=@IN()[0]*@PARAM(T)+@PARAM(P);
printf("Loop phase of function $0 for default processor = %i .\n", @OUT(0)[0));

and for theend phase

printf("End phase of function $0 for default processor. \n");

in the code editor windowEdit / Apply changes to all phasesit saves all buffers of all edited phases;

in the code editor windowOK (it also saves all buffers).

Notice the following points:

1 Macros of the code editor as @IN, @OUT, @PARAM, are explained in the User Manual.

46

— you can not launch the code editor from a main algorithm oad+@nly operation (definition coming
from libraries);

— you can write a code associated with a herarchical operateemwhile it will not be present in the
applicationName _sdc.m4x file (the background color of the text area of the code edggrey);

— it is important to recall that the code is common to all theerefices of the same operator. Only the
values of parameters are specific of each instance.

o Verify that code is common to all references
We create a new reference to ttoav function:

— in the main algorithm: create a refererwoay _ref _bis<8;9> to the definitiorconv ;

— in the main algorithm: first remove the link between tev ref andmul boxes. Second, link the
conv _ref output to theconv _ref _bis input. Third, link theconv _ref _bis output to thenul b input;

— in the algorithm window left click on th&uto-position button and write 120 in the two entry texts
OK,

— open the code editor of this new box: the code is the same. dw #hat values of parameters are
specific to the reference (and not to the definition), we masegate then4 code like shown in the
previous example (MenAdequation / Launch Adequation thenCode / Generate Executive(3)
and look inP1.m4 (MenuCode / Display Executive(s). The file contains

conv(2,3, _algo _cste2 _P1.o, _algo _conv _ref _0)
conv(8,9, _algo _conv _ref _o, _algo _conv _ref _bis _o)

In the case of an architecture with heterogeneous processor

Sometimes it is interesting for an operation to have difiesmurce codes depending on the type of processor.
For example, a given processor typenay only offer assembly language as a programming interfecsuch
case, we must be able to provide (for examlepde for processors that support it, and assembly langwage f
the X processor type. To support heterogeneous architectieedttie editor associates code to a triplet (phase,
processor, operation). A special processor tpéault is provided for processors that have not been associated
with dedicated code. Its use allows to share a code betwéenedit processor types.

e Include a new processor type
From the principal window, chood€le / Included Libraries — Selectc40

e Define an new architecture:

— from the principal window, choosArchitecture / Define Architecture (cf. figure[IT.I#)— In the
entry text, writearchi2 . — OK;

— inthearchi2 window: create a referenest to the operato€40 and define it as the main operator.

e Replace theonv ref _bis box by a reference tioar _ref :

create a new function definition nameat with one input port callech and one output port called
out ;

in thealgo definition select all the references using the mouse and @y (right click— Copy),
create a new main algorithm namagb? ;
paste in thalgo2 definition window;

— inthealgo2 definition window: first delete theonv _ref _bis reference, then create a referenaeref
box to the definitiorbar , finally create the missing dependences.

e Insert code forC40 processor type to ther function:

47

in thealgo2 definition window: double left click on thiar _ref blue box. It opens thbar definition
window. In its contextual menu, seleEtdition of the associated source codelt opens the code
editor;

in thebar definition window, right click on the background and seledtt code phases— Selectinit
andend — OK;

in the code editor windowType of Processor SelectC40;

in the code editor window: click on thait phase button and write in the text area the following code:

/* Hi, 1 am $0 function, in init phase for C40 processor */

in the code editor window: click on thieop phasebutton and write in the text area the following
code:

@OUT(out)[0] = @IN(in)[0];
/¥ Hi, 1 am $0 function, in loop phase for C40 processor */

in the code editor window: click on trend phasebutton and write in the text area the following code:

* Bye, | am $0 function, in end phase for C40 processor */

¢ Insert code fot) processor type to ther function:

in the code editor windowType of Processor SelectU;

in the code editor window: click on theit phase button and write in the text area the following code:

/¥ Hi, 1 am $0 function, in init phase for U processor */

in the code editor window: click on thieop phasebutton and write in the text area the following
code:

@OUT(out)[0] = @IN(in)[0] * 42;
[* Hi, I am $0 function, in loop phase for U processor */

in the code editor window: click on trend phasebutton and write in the text area the following code:

[* Bye, | am $0 function, in end phase for U processor */

e Modify the durations

Add c40/C40 = 1 at the end of th®urations text area for each definition referencedigo2

48

Learn the macros of the code editor

The code editor comes with a set of predefined macros thatatlehe user from knowing the black magico#
processing.

The more useful ones are names translation macros. Theseswanslate port and parameter names to their
internal representation a4 parameters. We have already encountered such macros inghave just done:
@IN @OUBNd@INOUTare port name translation macros, @BARAN the parameter name translation macro. As
a rule of thumb, you should ug@PARAM(x)when you want to refer to a parameteand@IN(i) (resp. @OUT(0)

/ @INOUT(io)) when you refer to an input poirt(resp. output porto / input-output porto).

The code editor recognizes three more mac@NAMEQQUOTENd @TEXT These advanced macros are not

used in this tutorial and the reader is refered to SynDEXx nsarual to learn more about it.

7.1.3 To generate m4x files

Before performing the code generation we have to perfornatieguation:

e from the principal window, choos&dequation / Launch Adequation;

from the principal window, choosBode SelectGenerate m4x Files

from the principal window, choosgode / Generate Executive(s)

from the principal window, choosgode / Display Executive(s)
Two cases are possible:

e the check boxGenerate m4x Files has not been checked. For each operator of the main archizeat
processor_name.m4 file containingm4 macro-code is produced. As previously explained an arctoite
description file (hameekample7.m4) is also produced;

e the check boxenerate m4x Files has been checked. Then, two new fileafiple7.mdx andexample7 _sdc.mdx)
are generated in the same folder as the application.

These two files constitute thgpplicative kernel:

e theMyApplication _sdc.m4x file contains alim4 macro code associated with operations used in the SynDEx
application. Each time code generation is triggered, tlasdioverwritten;

o theMyApplication.m4x file is an user editable file whose goal is to allow the user tofgete the applicative
kernel if needed. At code generation time, if this file doeseadst then SynDEX creates a generic file
(including themyApplication _sdc.m4x file plus some other features), otherwise the existing filefs.

Theexample7 _sdc.m4x file contains the following code:

divert(-1)
(c)INRIA 2001-2009
divert(0)

define(‘example7 _bar’,'bar’)
define(‘bar’,‘ifelse(
processorType _,'C40','ifelse(

MGC, INIT’, “/* Hi, | am $0 function, in init phase for C40 pr ocessor */",
MGC,'LOOP',“$2[0] = $1[0]; /* Hi, | am $0 function, in loop p hase for C40 processor */",
MGC,'END’, “/* Bye, | am $0 function, in end phase for C40 pro cessor */")Y)

processorType _,‘'U’‘ifelse(

MGC,INIT",“/* Hi, | am $0 function, in init phase for U proc essor */",

MGC,'LOOP',“$2[0] = $1[0] * 42; /* Hi, | am $0 function, in lo op phase for U processor */",
MGC,'END’, “/* Bye, | am $0 function, in end phase for U proce ssor */Y,

define('example7 ~ _conv',‘conv’)

49

define(‘conv',‘ifelse(
processorType _processorType _‘ifelse(

MGC,INIT",“printf("Init phase of function $0 for defaul t processor. \n");",
MGC,'LOOP’,“$5[0]=$3[0]*$2+$1;

printf("Loop phase of function $0 for default processor =%i S\n", $4[0]);”,
MGC,'END’,"printf("End phase of function $0 for default p rocessor. \n");")))

If the example7.m4x file did not exist at code generation time then it will conttie following code:

divert(-1)
(c)INRIA 2001-2009
divert(0)

define(‘dnldnl’,"// ™)
define(NOTRACEDEF)
define('NBITERATIONS',"5")

include(‘'example? _sdc.m4x’)
divert

#include <stdio.h> /* for printf */
divert(-1)

divert’dnl

Deeper insights about the4 macro language can be found in SynDEx user manual and GNU Niaha
¢ See the difference between executable codes:

— create thexample7.m4m file (cf.[6.3);
— create theootm4x file (cf. [6.3);
— create thesNUmakefile (cf.[6.3), containing:

$(A).mk : $(A).m4 syndex.m4m U.m4m C40.m4m $(A).m4m
$(M4) $< >$@

— definealgo2 as main algorithm;

— definearchi as main architecture, perform the adequation, generatmties and run theNUmakefile
compilation You obtain @ot.c file containingu code only (naC40 code);

— definearchi2 as main architecture, perform the adequation, generatedtie, and compile again.
This time, onlyC40 code is present in theotc file.

Notice that:

e adequation modifies original filegample7.sdx andexample7.sdc ;

e code generation produces these filxample7.m4 , rootm4 , pcl.m4 (if archi is defined as maingxample7 _sdc.mdx
(if Generate m4x filesis set) andkxample7.m4x (if Generate m4x filesis set and the file did not exist be-
fore);

e compilation produces these filesxample7.mk , root , root.c , androotrooto , and (ifarchi is defined as
main)pcl, pcl.c , andpcl.pcl.o

From the principal window, choodgle / Close In the dialog window, click on th&8avebutton.

50

Chapter 8

Example 8: a complete realistic
application from adequation to execution

From the principal window, choodéle / Save asand save your eighth application under a new folder of yout
tutorial folder (e.gmy_example8) with the namexample8 .

8.1 The aim of the example

In the seven previous examples we have learnt how to use Sys#J| to create architectures, algorithms,
launch adequation, obtain executive files... Now, we haffcgnt knowledge to perform a simple automatic
control application that will be executed on a multiprocesschitecture.

First the application is described and the system is definéticos (the block diagram editor of the Scilab
softwar@). Second the corresponding SynDEXx application is createhg theExample 1to 3 of the tutorial).
This needs the generation of someode following the method discussedBxample 7. Finally, we compile
the application to obtain executable for several procasasiit has been shown Examples 6and7. SynDEx
generates the code necessary to the communication betheprotcessors.

8.2 The model

We consider a system of two cars. The secondgdollows the car(y trying to maintain the distandewhile the
acceleration and the deceleration@f We call: x1(t) the position of the first cax(t) the position of the second
car plusl; X1 (t) andxx(t) the speeds of two cars. We den&teandk, the inverse of the car masses. We c#l)
the reference speed chosen by the first driver. We suppaseétere able to observe the speed of the first car and
the distance between the cars.

We have the following fourth order (four degrees of libegyytem:

X1 = kyug

Xo = kou

2 .2 2 (8.1)
y1=X1

Y2=X1—X2

We will decompose the system into mono-input mono-outpstesyS; (us,y1) andS(u2,y2). Denoting by
uppercase letter the Laplace transform of the variablesiaveY; = kyU; /sandYz = (kyU; — koU,) /s? whereU;
is seen as a perturbation that we want reject in the seconbelsys

Afirst proportional feedbadld; = p1(R— Y1) will insure the first car to follow the reference speed. Thesel
controller will be proportional derivatiid, = p2Y» + p3sY- (in fact we will suppose in the following diagram that
the derivative ofy, is also observed). The coefficignt is obtained by placing the pole of the first loop:

Y= plklR/(S+ plkl).

1 Ihttp:/iwww.scilab.org

51

http://www.scilab.org

The coefficienpz andps are obtained by placing the pole of the transfer fidirto Y, in the closed loop system
which is given by:

Yo = U1k1/(52 + k2p3S+ kzpz).
8.3 The controllers
The purpose of the controller of th@ car is to follow the reference in speed given the first driltestabilizes the
(1 speed around its reference speed by using pole placemergx&mple, gains are respectivefy;: -5, 0, 0,
-5) . The controller of second car stabilizes the distance betviige two cars. It stabilizes around 0 by pole
placement. For example, gains are respectiv@lys,-4,-4)

The controler of(; knows these informations and sends them electronically; toThis remark is available
for (1.

8.3.1 Block diagrams of controllers
oD >
vi @H’>’q

. @\.>
v2 [4)—— » —

ref. vit B »

Figure 8.1: Scicos controller of the first car

) —D

+++++

gainl

inx1 ||: »{in_1]out_1
S

gaing

inw1 %\ >{in_1 [out_1 sommateur

inxz ||: e oI — . in_3

gaing

E

=

ra
¥

in_1Jout_1

gaing

refuit % in_1Jout_1

Figure 8.2: SynDEXx controller of the first car

Our controllers are simple. They are represented in figurBs8d 8.8 in Scicos and figures 8.2 8.41in
SynDEXx:

52

E)

Figure 8.3: Scicos controller of the second car

gain1
{in_1 oui_1
gainz
sommateur
{in_1 Joui_1
\ in_1lout_1 l——)-
gaind in_z
in_3
o T i a
gaind
{in_1 [out_1

Figure 8.4: SynDEXx controller of the second car

53

e create ajain _def function with one input porih _1, one output porbut 1 and a parameter namealue .
Notice that all ports will be of typéoat ;

e then createsommateur2 _def , sommateur4 _def , and sommateur5 _def functions, respectively with two input
ports (n -1 andin _2), four input ports (fromin _1 to in _4), and five input ports (fronm _1 toin _5). Each of
these three functions is created with only one output @orti;

e finally create both algorithmsntroleurl _sup andcontroleur2 _sup (cf. figured 8.2 anf 8l4), setting their
gain parameters respectively®o-5, 0, 0, 5 and4, 4 -4 , -4
8.3.2 Source code associated with the functions
We associat€ source code to each function definition: gain and nary-surhs.code is inserted for the default
processor.
Gain

A gain is a function that multiplies its input by a coefficiggiten as a parameter, nameaN. After adding this
parameter, open the code editor of the gain definition anwhre following code in the loop phase of the default
processor:

@OUT(out-1)[0] = @IN(in _1)[0] * @PARAM(GAIN);

Sum
We have three different forms of sum depending of its arityo,tfour or five input ports:

e open the code editor of the sum function with two input pond arite the following code in the loop phase
of the default processor:

@OUT(out)[0] = @IN(n _1)[0] + @IN(n _2)[0];

e open the code editor of the sum function with the four inputpand write the following code in the loop
phase of the default processor:

@OUT(out_1)[0] = @IN(in _1)[0] + @IN(in _2)[0] +
@IN(in _3)[0] + @IN(in _4)[0];

e open the code editor of the sum function with the five inputgand write the following code in the loop
phase of the default processor:

@OUT(out-1)[0] = @IN(in _1)[0] + @IN(n -2)[0] +
@IN(in _3)[0] + @IN(n _4)[0] + @IN(in _5)[0];

8.4 The complete model

In a real application, our job stops with the SynDEXx’s ad¢igmeof the two controllers on their associated archi-
tectures. Nevertheless, for pedagogic reasons, we willlate the whole system (with the dynamics of the cars)
in the aim to verify that our application does the same job 8wicos.

54

8.4.1 The car dynamics

SynDEXx is only used in discrete time model (not continuone}i and is not able to manage implicit algebraic
loop. That is, in SynDEX, any loop contains at least a dejay Therefore, our application which is a continuous
time dynamic system described in Scicos, must be discrkiizéme to be used in SynDEX.

The differential equatior = u is discretized using the simplest way: the Euler schemeus.elenote by the
step of the discretization ang an arbitrary initial value, the discretized system can bigevwr as:

Xn+1— Xn = Uh (8.2)

Finally, the system is given in Scicos in the figlire] 8.5 andi8 given in SynDEX in the figure_8.6. Notice
that the variabld is stored in the Scicos context, and used in the input of tlre @ad the clock definition. In
SynDEXx,h is defined as parameter in the definition of a gain and the detkition is directly used in the source
code associated with operations.

Horloge

Pas de discretisation i =I 1)

v W—' :E SN A
B

Figure 8.5: An integral discretized in Scicos

pas sommateur

in_1 [out_1

in_1{out_1
in_z

k.

(HER

Figure 8.6: An integral discretized in SynDEXx

Create théntegrale _discrete _sup algorithm ¢f. figure[8.6). Notice thatas is of typegain _def with param-
eterGAIN equal t00.001 , sommateur is of typesommateur2 _def , andretard is of typefloat/delay< ~ {0};1> .

The car dynamics are given with Scicos block diagrams in the'é[8.7 and with SynDEXx operations in the
figure[8.8, where the input (ref) is the acceleration of the car. The first integral gives thees of the car and
the second its position.

Create themecanique _sup algorithm ¢f. figure[8.8). Notice thapuissancemoteur is of typegain _def with
parameteGAIN equal tol whereasdntegralel ~ andintegrale2 are of typentegrale _discrete _sup.

55

Puissance moteur

Position
S iy Gy [S
1/s 1/s Vitesse

Figure 8.7: Car dynamics with Scicos block diagrams (canti#time)

puissancemoteur integralel integraleg

ref in_1 Jout 1 in_Jout in__Jout [p——1qx
=2

L

Figure 8.8: Car dynamics with SynDEXx operations

8.4.2 The cars and their controllers

In the following diagrams (frorh 819 fa 8.112), the blocks (mi®ns) denoted byeca are the car dynamics. Let
us get the controllers of the two cars.

Create thevoiturel _sup andvoiture2 _sup algorithms ¢f. figures[8.ID an@8.12). Notice thatcal and
meca?2 are references toecanique _sup whereasontroll ~ (resp. control2) is a reference teontroleurl _sup (resp.
controleur2 _sup).

8.4.3 The main algorithm

Create the following definitiongi¢finitionName<PARAM>):

e senseur _def<POSI _ARRAY>with one output porbut _1,
e vitesse _def<POSI _ARRAY>with one input portn _1,

e scope _def<POSI _ARRAY>with two input portsn _1 andin _2.

Then createlgomain . Create the reference speed._vit of definitionsenseur _def<0> , the referenceitesse
X1 of definitionvitesse _def<1> , the referencelistance between the two cars of definiticsope _def<2> , the
referencerehiculel of definitionvoiturel _sup and the referenceehicule2 of definitionvoiture2 _sup, connect
them according to the figute 8]13.

8.4.4 Source code associated with the sensor and the actuato

We associat€ source code to each function definition: input and two kinfdsuput.

56

v

v
»—
>

2 [D)——F gr— -l
> [— .

M 1

v E>/C0ntroleur1 ecanique
ref vit| | N

D

Figure 8.9: Scicogx car dynamics and its controller

mecal

I

o

Tl [}
WA
c/’troﬂ

1 [res
e | o]

refvit

Figure 8.10: SynDExoiturel _sup car dynamics and its controller

23%%;*%5

vl
_> .
M 2
Controleur?2 ccanique
x2
v2

Figure 8.11: Scicog>» car dynamics and its controller

57

mecaz

ref|><

N

A/

7
o [|————fouz |
V outyz rh______“

[

Figure 8.12: SynDExoiture2 _sup car dynamics and its controller

ref_vit vehiculel

og_root

Jout_1 wfref [out<]
in=g [outy
WE
veflicu
A1 [outes
invl [outv?

Figure 8.13: Main algorithm

58

Input

In our Scicos application an input is a square wave generasoa rule, we will simulate a square wave generator
by reading values in a text file (hname# _vitesse.txt). We will use thefopen , thefclose and thefscanf
functions étdio.h library). We will also use assertionssgerth library) to ensure that the opening of a file has
been successful.

For the moment, let suppose that it exists an arraL@&f (the structure returned by tlfwpen function) called
fd _array and a variable calletimer to simulate a pseudo-timer. Our sensor has a parameted eak ARRAYtO
remember the position of tHLE* structure in the array.

Now, open the code editor of thenseur _def sensor and write the following code in the init phase of the
default processor:

timer = 0;
fd _array[@PARAM(POSI _ARRAY)] = fopen("ref _vitesse.txt", "r");
assert(fd _array[@PARAM(POSI _ARRAY)] != NULL);

In the Scicos application, we have defined the clock peridd@tquare wave generator to the value 5 and the
step of discretizatioh to the value 001. Thus we need, in the SynDEX application, to send 500&xtitne same
value. To count, we use the varialiteer . All the 5000-th times, we read a new value in the file.

Write the following code in the loop phase of the default p®sor:

timer = (timer + 1) % 5000;

if (timer == 1)

fscanf(fd _array[@PARAM(POSI _ARRAY)], "%f \n", &data);
@OUT(out_1)[0] = data;

We need to free memory by closing the file. Write the followiragle in the end phase of the default processor:

fclose(fd _array[@PARAM(POSI _ARRAY)]);

Speed output

An output saves in a file the values of the system states. Hwmusptput has a parameter calldSI_ARRAYto
remember the position of the array where the stream has lasex.sOpen the code editor of thiesse _def
actuator and write the following code in the init phase ofdkéult processor:

fd _array|@PARAM(POSI _ARRAY)] = fopen(‘actuator ~ _@TEXT(@PARAM(POSARRAY))", "W");
assert(fd _aray[@PARAM(POSI _ARRAY)] != NULL);

The loop phase, allows to save the values:

fprintffd ~ _array{@PARAM(POSI _ARRAY)], "%E \n", @IN(in _1)[0]);

We need to free the memory by closing the file. Write the foltaycode in the end phase:

fclose(fd _array[@PARAM(POSI _ARRAY)]);

59

Distance output

Contrary to the first type of output, this output has two inpaoitts but thenit andend source codes are identical.
The loop phase differs. Open the code editor ofdtvpe _def actuator and write the following code in the init
phase of the default processor:

forintf(fd ~ _array[@PARAM(POSI _ARRAY)], "%E \n", (@IN(in _1)[0] - @IN(in _2)[0]));
8.4.5 Theexanpl e8_sdc. mix
SynDEXx’s code generation will create tisample8 _sdc.m4x file (as explained ifexample 7):

define('example8 _algomain’,‘algomain’)
define(‘algomain’,‘ifelse(
processorType _processorType _‘ifelse(

MGC,INIT",*",

MGC,'LOOP’,“WARNING: empty code for macro $0 in loop phase
MGC,'END’,“")Y)

define('example8 _controleurl _sup’,‘controleurl _sup’)
define(‘controleurl _sup’,ifelse(

processorType _,processorType _,‘ifelse(

MGC,'INIT’,"”,

MGC,'LOOP’,“WARNING: empty code for macro $0 in loop phase
MGC,'END’,""))))

define('example8 _controleur2 _sup’,'controleur2 _sup’)
define(‘controleur2 _sup’,ifelse(

processorType _processorType _‘ifelse(

MGC,INIT","”,

MGC,'LOOP’,“WARNING: empty code for macro $0 in loop phase
MGC,'END’,“")Y)

define('example8 _gain _def,'gain _def)
define(‘gain _def',ifelse(
processorType _,processorType _‘ifelse(

MGC,'INIT",*",

MGC,'LOOP’,“WARNING: empty code for macro $0 in loop phase
MGC,'END",*"))")

define('example8 _integrale _discrete _sup’,‘integrale _discrete _sup’)
define(‘integrale _discrete _sup’,‘ifelse(

processorType _,processorType _,‘ifelse(

MGC,'INIT",*",

MGC,'LOOP’,“WARNING: empty code for macro $0 in loop phase
MGC,'END’,*"))))

define(‘example8 _scope _def','scope _def’)
define('scope _def',‘ifelse(
processorType _,processorType _‘ifelse(

MGC,'INIT",*",
MGC,'LOOP’,“WARNING: empty code for macro $0 in loop phase
MGC"END,,“”)’)’)

define(‘example8 _senseur _def''senseur _def)

define(‘senseur _def''ifelse(

processorType _,processorType _,‘ifelse(
MGC,'INIT",*",

60

MGC,'LOOP’,“WARNING: empty code for macro $0 in loop phase
MGC,'END’,""))))

define('example8 _sommateur2 _def','sommateur2 _def)
define('sommateur2 _def’‘ifelse(
processorType _processorType _‘ifelse(

MGC,INIT","”,
MGC,'LOOP’,“WARNING: empty code for macro $0 in loop phase
MGC,'END’,“")Y)

define(‘example8 _sommateur4 _def','sommateur4 _def)
define('sommateurd _def,‘ifelse(

processorType _,processorType _‘ifelse(

MGC,'INIT",*",

MGC,'LOOP’,“WARNING: empty code for macro $0 in loop phase
MGC,IENDY#UI)!)Y)

define('example8 _sommateur5 _def','sommateur5 _def)
define('sommateur5 _def’‘ifelse(
processorType _processorType _‘ifelse(

MGC,'INIT",*",

MGC,'LOOP’,“WARNING: empty code for macro $0 in loop phase
MGC,'END",*"))")

define('example8 _vitesse _def’,'vitesse _def)

define(‘'vitesse _def''ifelse(

processorType _,processorType _‘ifelse(

MGC,'INIT",*",

MGC,'LOOP’,“WARNING: empty code for macro $0 in loop phase
MGC,'END’,*"))")

define('example8 _voiturel _sup’,'voiturel _sup’)

define(‘voiturel _sup’,ifelse(

processorType _,processorType _,‘ifelse(

MGC,'INIT",*",

MGC,'LOOP’,“WARNING: empty code for macro $0 in loop phase
MGC,'END’,*"))))

define(‘example8 _voiture2 _sup’,'voiture2 _sup’)

define(‘voiture2 _sup’,ifelse(

processorType _processorType _‘ifelse(

MGC,'INIT",*",

MGC,'LOOP’,“WARNING: empty code for macro $0 in loop phase
MGC,'END",*"))")

8.4.6 To handwrite theexanp! e8. mx file

You will not can use directly the SynDEX’s generateaimple8.mdx generic file because both the creation of local
variable and the call of libraries is missing. After the cageration, you will must handwrite it to obtain the
following code:

define(‘dnldnl’,"// ™)
define(NOTRACEDEF)
define('NBITERATIONS',“20000")

define('BINPWD’, ‘pwd’)
define('RSHELL', ‘ssh’)

define('proc _init _,

61

FILE *d _array[10];
float data;
int timer;)

include('example8 _sdc.m4x’)

divert
divert(-1)
divertdnl

Where the macreroc _init _ allows the local variable declaration to be declared bex#uaserts its source

defined generically with a loop &fBITERATIONS whereNBITERATIONS is initialized with the size of the input file
(ref _vitesse.txt). Finally, the call of libraries is inserted after the ing&uof theexample8 _sdc.m4x file.

8.5 Scicos simulation

Scicos software allows to simulate models in a windafv figure[8.14), where the values of three states are
plotted (ordinate axle) according to the time (abscissa)a¥/e have:

e the square wave generator drawn at the bottom (red);
o the speed of the first car at the top (black);
¢ the distance between the two cars seen in the middle of thefigueen).

Thanks the diagram, the system is stable (plots do not grparentially) and so it works. We do not continue
to ameliorate the controllers job.

150

0.754
0.00
0755

1505y HE e e pi5] T i E]]} pEzs g 7

130515 3 3G p30] p5] 5 TR pi3} pEz) T 7

Figure 8.14: Scope window obtained with the values 0; -5;;050or gains of the(; controller and 4; 4; -4; -4
for the (> controller.

8.6 SynDEx simulation

8.6.1 In the case of a mono-processor architecture
The architecture

In this subsection, we suppose that the architecture iditutesl of an only operator nameabt :

62

e create theJ operator:

— set the durations with

float/delay = 1
gain _def = 1
scope _def = 1
senseur _def = 2

sommateur2 _def = 2
sommateur4 _def = 1
sommateur5 _def = 2

vitesse _def = 1

— choosadnit as code generation phase in which to generate code;
e create thenono architecture:

— add oneJ operator namedbot and define it as main operator,
— define themono architecture as main.

The adequation and the code generation

First, launch the adequation. It modifie@mple8.sdc andexample8.sdx files.

Then, generate the executive and applicative files (seftote / Generate m4x Filek It creategxample8.m4 |
example8.m4x , example8 _sdc.m4x , androotm4 files.
Finally, handwrite thexample8.m4x file as explained ih 8.4.6.

The compilation

First, generate manuallyGNUmakefile containing:

A = example8

M4 = gm4
export ArchiMacros ~ _Path = ../.././macros/archi _libraries
export AlgoMacros _Path = ../.././macros/algo _libraries

export M4PATH = $(ArchiMacros _Path):$(AlgoMacros _Path)

CFLAGS = -DDEBUG
VPATH = $(M4PATH)

.PHONY: all clean

all : $(A).mk $(A).run

clean :

$(RM) $(A).mk * *o *.a *.c actuator *

$(A).mk : $(A).m4 syndex.mdm U.mdm
$(M4) $< >3@

root.libs =
Pllibs =

include $(A).mk

Where:

63

e Ais set with the name of your application (herample8);

¢ the path about the generic *.m4? macro-files are stored iexperted shell variableschiMacros _Path
andAlgoMacros _Path then grouped into a new exported shell variable nam®dTH The separatar means
that am4 macro-file will be search first iarchiMacros _Path and then imligoMacros _Path if is not found;

e a mix of this makefile and the informations stored in file nareadhple8.m4m will create another makefile
calledexample8.mk during the compilation.

Then, copy-paste thef _vitesse.txt file from theExample 8folder to yours.
Then, type the commanyhake in a shell commands interpreter. It creadesator _1, actuator 2, example8.mk
root , root.c , androot.root.o files:

e theactuator _1 file contains the speed of the first car;

e theactuator _2 file contains the distance between the cars.

8.6.2 Inthe case of a bi-processor architecture
The architecture

In this subsection, we suppose that the architecture igitaiesl of two operators nameabt andpcl, of typeu
and linked with a mediunepl of typeTCP.

e create th&@CPmedium:

— set the type wittSAM MultiPoint ,
— set the durations withoat = 1 ;

e modify theU operator: set the gates witikP xandTCP y;

e create thaiProc architecture:

add oneJ operator namedbot and define it as main operator,

add oneJ operator namepkl,

add onerCP medium namecttpl and choose theroadcast option,

links the medium to the gates of the operators,
— define theviProc architecture as main.

The adequation and the code generation

First, launch the adequation. It modifie@mple8.sdc andexample8.sdx files.

Then, generate the executive and applicative files (seftote / Generate m4x Filek It creategxample8.m4 |
example8.m4x , example8 _sdc.m4x , rootm4 , andpcl.m4 files.

Finally, handwrite thexample8.m4x file as explained ih 8.4.6.

The compilation

First, generate manually tlgNUmakefile , theexample8.m4m , and theootmax files:

e theGNUmakefile has to be created as explainedin 8.6.1. Upgrade it so théhthe

$(A).mk : $(A).m4 syndex.md4m U.mim

is changed by:

64

$(A).mk : $(A).m4 syndex.md4m U.m4m $(A).m4m

e create thexample8.m4m file with this line: define(pcl _hostname _', HOSTNAME)dnl whereHOSTNAMIS sub-
stituted with the name of your remote station;

e create theoot.m4x file with this line: include(example8.m4m)

Then, copy-paste thef _vitesse.txt file from theExample 8folder to yours.
Then, type the commanyghake in a shell commands interpreter. It creadesator _1, actuator 2, example8.mk
root ,rootc ,rootrooto ,pcl,pcl.c , andpclpcl.o files:

e theactuator _1 file contains the speed of the first car;

e theactuator _2 file contains the distance between the cars.

8.6.3 Inthe case of a multi-processor architecture

The architecture

contl (1) EEhiiE (U

3
bl

dynal (L) Foot (1) (main)

v 1 y

Figure 8.15: The architecture with 5 operators.

In this subsection, we suppose that the architecture istibatesi of five operators nameabt ,contl , cont2 ,
dynal, anddyna2 , of typeU and linked with a mediurtus of typeTCP.

e create thenuli architecturedf. figure[8.15):

— add oneJ operator namedbot and define it as main operator,
— add oneJ operator namecbntl ,

— add oneJ operator namecbnt2 ,

— add oneJ operator namedynal ,

— add oneJ operator namedyna? ,

— add onerCP medium namedus and choose theroadcast option,

— links the medium to the gates of the operators, except for the& one, linked with itsy gate to the
medium,

— define thenulti architecture as main;
e create operation groups:

— create theg_root operation group, attaaghf _vit , vitesse , anddistance toit,

— create thevg_dynal operation group, from the main mode, in tlegiculel reference attachecal to
it,

— create theg_contl operation group, from the main mode, in tleéiculel reference attactontroll
to it,

65

— create thexg_dyna2 operation group, from the main mode in tvshicule2 reference attachmeca? to
it,

— create theg_cont2 operation group, from the main mode, in tleéicule2 reference attactontrol2
to it;

e create absolute constraints:

constrairog_root onroot

constraimg_contl oncontl ,
constraing_cont2 oncont2 ,
constraing_dynal ondynal,
constraimg_dyna2 ondyna2 .

The adequation and the code generation

First, launch the adequation. It modifie@mple8.sdc andexample8.sdx files.

Then, generate the executive and applicative files (seftode / Generate m4x Filek It creategxample8.m4 |
example8.m4x , example8 _sdc.m4x , root.m4 , contl.m4 , cont2.m4 , dynal.m4 , anddyna2.m4 files.

Finally, handwrite thexamples.m4x file as explained ih 8.4.6.

The compilation

First, generate manually thiakefile.ocaml , theexample8.m4m , theroot.mdx , thecontl.mdx , thecont2.m4x , the
dynal.m4x , and thedyna2.max files:

e copy-paste th&lakefile.ocaml from theExample 8folder to yours;

e create thexample8.m4m file with these lines:

dnl
dnl
dnl
dnl

‘contl _hostname _’, HOSTNAME
‘cont2 _hostname _’, HOSTNAME
‘dynal _hostname _', HOSTNAME
‘dyna2 _hostname _', HOSTNAME

define
define
define
define

,\,-\AA
— — — —

whereHOSTNAMES substituted with the name of your remote station;
e create theootm4x , contl.m4x , cont2.m4x ,dynal.mdx , anddyna2.m4x files with this line:include(example8.m4m)

Then, copy-paste some files from tBrample 8folder to yours:

copy-paste thexample8.ml file.

copy-paste thea_example8.ml file.

copy-paste theot.sh , contl.sh , cont2.sh , dynalsh , anddyna2.sh files;

e copy-paste thesf _vitesse.txt file.

You will probably need to install camlp5 (see&itp://paulllac.inria.fr/ ~ddr/camlps/).

Then, type the commanotkke -f Makefile.ocaml in a shell commands interpreter. It createsnple8.cmi ,
example8.o , pa_example8.cmi , and<processor>.cmi , <processor>.cmx , <processor>.0 , <processor>.opt foreach
processor.

Finally, launch separatly the five script files. At the endhait execution, thectuator _1 andactuator 2 files
are created:

e theactuator _1 file contains the speed of the first car;
e theactuator _2 file contains the distance between the cars.

From the principal window, choodgle / Close In the dialog window, click on th&8avebutton.

66

http://pauillac.inria.fr/~ddr/camlp5/

Chapter 9

Example 9: a multiperiodic application

From the principal window, choodéile / Save asand save your ninth application under a new folder of yout
tutorial folder (e.gmy_example9) with the namesxample9 .

9.1 The main algorithm

compute
in_ Jout i

[]
=
¢

Figure 9.1: Main algorithm of thExample 9

Create the main algorithmasicAlgorithm (cf. figure[9.1) using the librarint for the operationsput<1>
(int/input) andoutput<1> (intloutput). For the operatiomompute , create a function definitiocompute and
create a reference to this definition. Create the depend&ateeen the references. Set the periods to dar ,
8 for compute , and 8 foroutput by selecting each reference and filling #eriod field.

9.2 The main architecture

Open the architectunaonoProc from the libraryu. Define it as main. The durations for tlleoperator are by
default:

intfinput = 3
Implode _int = 1
compute = 1
int/output = 3

67

Implode _int is an internal operation automatically generated by Synikeollect the different data produced
by the different occurences of thwinput ~ operation.

In this case, the system is not schedulable.

9.3 A mono-phase schedule

9.3.1 Durations

Modify the durations for th& operator:

int/input = 1
Implode _int = 1
compute = 1
int/output = 1

9.3.2 Adequation

| Window Edit

root | 3 [Al

output

H

Figure 9.2: A mono-phase schedule

Launch the adequatio®@equation / Launch Adequation). Display the scheduleddequation / Display
Schedulg (cf. figure[9.2).
Wait operation

Notice the new operation added by SynDR#i() to respect the period of theut operations.

Multiple occurrences

Notice that because of the periods, during a cycle iwat operations are executethplit#l and input#2)
whereas only oneompute and oneputput operations are executed.

Implode operation

Notice the new operation added by SynDHEmxplode _compute) to provide the data from thieput operations to
thecompute one.

68

9.4 A multi-phase schedule

9.4.1 Durations

Modify the durations for th& operator:

int/input = 1
Implode _int = 1
compute = 2
int/output = 1

9.4.2 Adequation

| Window Edit

root | 33-
1] input#i 1
1 walt 2
z X

Wait 4

inputts 9
] Implode_compute
i input# g
1n X

Wait

* 12

1z inputtz 13
13 Implode_compute 14
] /]
~ =

Figure 9.3: A multi-phase schedule

Launch the adequatio®@lequation / Launch Adequation). Display the scheduleddequation / Display
Schedulg§. The computed schedule has two phases: a transitory pfeeafid a permanent phase (greeh) (
figure[9.3).

Transitory phase

The transitory phase is executed only once. It contains teedtcurrence of thaput#l operation, the first
occurrence of thiaput#2 operation, the first occurrence of tihglode _compute operation, and the first occurrence
of thecompute operation. Theompute operation provide data consumed by thput operation schedule at time
9 in the permanent phase.

Permanent phase

The permanent phase is the one that is executed infinitelgortains the second occurrence of tipeit#l
operation (and its following occurrences). It containsfitet occurrence of theutput operation (and its following
occurrences).

	Introduction
	Example 1: algorithm, architecture, and adequation
	The main algorithm
	Definition of a sensor
	Definition of an actuator
	Definition of a function
	Definition of the main algorithm

	An architecture with one operator
	Definition of an operator
	Definition of the main architecture

	An architecture with a SAM point-to-point comunication medium
	Definition of operators
	Definition of a medium
	Definition of the main architecture
	Connections between the operators and the medium

	An architecture with a SAM multipoint medium
	An architecture with a RAM medium
	The adequation
	Without constraint
	With constraints

	Example 2: parameters and hierarchy in algorithm
	Definition of the function A
	Definition of the function B
	Definition of the algorithm with hierarchy

	Example 3: delay in algorithm
	Definition of the operations input, output, and calc
	Definition of the delay
	Definition of the algorithm with delay

	Example 4: repetition and library in algorithm
	An algorithm with repetition without any library
	Definition of the scalar ins and the function mul on scalars
	Definition of the vectors inv and outv
	Definition of the algorithm AlgorithmMain1

	An algorithm with repetition with the int library
	Inclusion of the library int
	Definition of the algorithm AlgorithmMain2

	An algorithm with repetition with the float library
	Inclusion of the library float
	Definition of the function dpacc
	Definition of the function dp
	Definition of the function prodmatvec
	Definition of the algorithm AlgorithmMain3

	Example 5: condition and nested condition in algorithm
	An algorithm with condition
	Sensors x and i, actuator o
	Function switch1
	Algorithm AlgorithmMain1

	An algorithm with nested condition
	Sensors x and i, actuator o
	Function switch2
	Algorithm AlgorithmMain2

	Example 6: algorithm, architecture, adequation, and code generation
	The main algorithm
	The main architecture
	The adequation and the code generation

	Example 7: source code associated with an operation
	Definition of the source code into the code editor window
	To add parameters to an already defined operation
	To edit the code associated with an operation
	To generate m4x files

	Example 8: a complete realistic application from adequation to execution
	The aim of the example
	The model
	The controllers
	Block diagrams of controllers
	Source code associated with the functions

	The complete model
	The car dynamics
	The cars and their controllers
	The main algorithm
	Source code associated with the sensor and the actuator
	The example8_sdc.m4x
	To handwrite the example8.m4x file

	Scicos simulation
	SynDEx simulation
	In the case of a mono-processor architecture
	In the case of a bi-processor architecture
	In the case of a multi-processor architecture

	Example 9: a multiperiodic application
	The main algorithm
	The main architecture
	A mono-phase schedule
	Durations
	Adequation

	A multi-phase schedule
	Durations
	Adequation

