ONERA Ref.: [ELSA/MDEV-06001
elSA Version.Edition : 1.0
Date : Jan 10, 2006

DSNA Design and Implementation Tutorial Page : 1/75

Design and Implementation Tutorial

numl = numerics()

view() [

check () S
cfdl.compute()
cfdl.extract()

K

Quality For the authors For the reviewers ~ Approver
Function Integration manager, Head of design method Quality manager Project head

Name M. Gazaix, A. Gazaix-Jolles A.M. Vuillot L. Cambier

Visa

Software management : ELSA SCM
Applicability date : immediate
Diffusion : see last page

Ref.: [ELSA/MDEV-06001

ONERA

Version.Edition : 1.0 —_—
Date : Jan 10, 2006
Page : 275 DSNA
HISTORY
VZTts_iO” DATE CAUSE and/or NATURE of EVOLUTION
editon

1.0 Jan 10, 2006

Creation from MDEV-03036

ONERA e|SA Ref.: JELSA/MDEV-06001

— Version.Edition : 1.0
Date : Jan 10, 2006
DSNA Design and Implementation Tutorial Page : 3/75
CONTENTS

Contents 3
(1__Introduction| 8
(1.0.1 Document's purpoSe e e e 8

L.02 Confemt e 8

[2 Theoretical background 9
2.1 Overview e e 9
[2.1.1 Numericalformulatian o 9

[2.1.2 Discretizallon e 9

213 MeshandGridls 10

[2.2 Description of the main features available 10
[2.2.1 Space discretizationschefnes 10

[2.2.2 Timeintegratign 11

[2.2.5 Calculationstrateqy 11

[2.2.4 Turbulence modeling o 12

225 Transifioh e 13

[2.2.6 Techniques of convergence acceleration 13

[2.2.7 Rotation frame and ALE technique 13

[2.2.8 Typesofjoinboundary 13

2.3 Notdiscussedinthisdocument, 14
[2.3.1 Chimeratechnigue 14

[2.3.2 Hierarchical Mesh Refinement(HMR) 14

[What is Object-Oriented software? 15
[3.1 Object-Oriented Programming Concépts 15
[3.2 Object, interface, encapsulation. 15
[3.3 Collaboration betweenobjeicts 15
[3.3.1 Messagesandmethpds 16

B _CIash. e 16

ek Loy et elsA _ ONERA
Date : Jan 10, 2006

Page : 4/75 Design and Implementation Tutorial DSNA

[3.6 Andseeotherexamples: 17

4 __General architecture 18

4.1 elsAlibrary and applications 18

[4.1.17 Object-Oriented architecture 18

[4.1.2 elsAinputdata e 18

413 Simulationcontrbl 19

414 Parallelmode 20

[4.1.5 Multdisciplinary Coupling L. 20

[4.1.0 Optimizationmodul®pt| 21

[4.1.7 Access to CFD databases (CGNS,DAMAS) 21

BI8 LOGTI® . . . o ot e e e e 21

[4.1.9 Post-processing 21

5 Kernel design 22

(.1 Classification and Design organization 22

[5.1.1 Namingconvention e 22

0.2 Overviewofthelayeys 22

[0.2.1 Baselayer. 24

[0.2.2 Geometrylayer 24

[0.2.3 Physicalmodellayer 24

[2.2.4 Space Discretizationlayer 0 .. 24

[.2.5 Solverlayer 25

(£.2.6 Factorylayer (el[sAtoplayer) 25

[6 Fld component 26

6.1 Basicnumericalcontainérs 26

6.2 Publicinterfade 26

[6.2.1 Examplesof Fldclientcode 27

[6.2.2 Check of memory access, control of memory initialiazation 28

6.3 PassingfielddatatoForttan. o 28

[6.3.1 FIdArray internal structure 28

[6.3.2 Examples 29

6.3.3 RemarkonFortran convention 30

ONERA e|SA Ref.: JELSA/MDEV-06001

— Version.Edition : 1.0
Date : Jan 10, 2006

DSNA Design and Implementation Tutorial Page : 5/75

[/ Geo component 31
[/.1 Ghostgeometricentities 31
[/.1.1 Ghostcellnumbering 31

[7.1.2 Ghostinterface numbering oL, 31

[7.1.3 Ghostnode (mesh points)ynumbering 31

[/.1.4 Simplifledexample 32

[7.1.5 Identical numbering of cell /interface /npde 32

[[.2 _Address and incrementmethbds 33
[7.2.1 Example: Centered convectivefluxes 35

[/.2.2 Example: Fluxbalance 36

[8 Tur component 37
[8.1 Definition of the publicinterface 37
B2 Classmodel e 37
[6.3 Polymorphism In turbulence modeling 41
8.4 _How to infroduce a new turbulentmodel? 42
B.41 Useofinheritance 42

9 Oper component 44
0.1 OperModule e 44
[9.1.1 OperBase abstractclass. 44

[9.1.2 OperGradclass 45

[9.1.3 Operlferm abstractclass 45

[9.1.4 OperFlux abstractclass, 46

015 OperSouabstractClassS v o v v oo e .. 46

0.2 ExcModule e 46
[9.2.1 Centered convective operators 47

[9.2.2 Dissipative operatarso 47

©.2.3 Upwind convective operatprso 47

9.3 ExdModule e e a7
[9.3.1 Diftusive flux operators for mean flow or turbulent system 48

[9.3.2 Diftusive flux operators with different Kind of gradignts 48

0.4 SouModule 48

Ref.: [ELSA/MDEV-06001 /\ ONERA
Version.Edition : 1.0 eIS
Date : Jan 10, 2006

Page : 6/75 Design and Implementation Tutorial DSNA

9.5 Howtointroduce anewoperatpr? 48
(10 Bnd component 50
(10.1 Boundary treatmemts 50
011 TInfroduction 50
0.1.2 DISCUSSION o o 50
10.1.3 Additionaldetails 51

[10.2 Public interface, class model and polymorphism 52
(10.3 How to Introduce a new boundary conditipn? 55
10.3.1 Useofinheritante 55

(11 Join component 57
11 Definitions. 57
(11.2 Classdiagram e 57
(11.2.1 Bridge designpattern 97
MIZ227J0MNBASE . . . v o o vt et 57
[11.2.3 JoinAdjacent e 58

1.3 Characteristits 58
11.4 Interface e e e e e 58
I1.41 Mainmethods 58

[11.5 Preparation of join for parallelism (JoinParBuifer) 59
[I1.5.1 singletondesignpatiern 59
11.5.2 Mainmethods 59

I1.6 TIME Progress o o v v o e e e e e e e e e e e 59
[11.7 Agt component (Affine Geometry Transformatjon) 59
[11.7.1 Changeofreferenceframe 59
M1.7.2 Example e 60
[11./.3 Geometric transtormations e e e 60
11.7.4 Example 60

[12 Factory component 61
[12.1 Fact component : encapsulating object creationdetails 61.
(12.1.1 Factoryconcept. 61

12.1.2 Factorydesi@in e 63
I y

ONERA e|SA Ref.: JELSA/MDEV-06001

— Version.Edition : 1.0
Date : Jan 10, 2006
DSNA Design and Implementation Tutorial Page : 7/75
[13 Descp Package 68
[13.1 Building Python interface withSWIG 68
MB3II " WRatiSSWIG? o o ot e e e e e e e e 68
(13.1.2 cpp-ikesyntax 68
[13.2 elsAinterface building strategy oo 69
I3.2.1 Technicaldetails 70

Index 72

Ref.: [ELSA/MDEV-06001 ONERA

Version.Edition ; 1.0 —
Date : Jan 10, 2006
Page : 8/75 DSNA

1. INTRODUCTION

1.0.1 Document’s purpose

The intent of this document is to provide developers with design information necessary to con-
tribute to elsA software development. A companion document, "Development Process Tutorial"
(/ELSA/MDEV-03036), provides additional information.

1.0.2 Content

The document starts with a brief summaryasd basic concepts (chapier 2), and of Object-Oriented
design (chapté€r]3).

An overview ofelsA general architecture is given in chagtér 4; theneats? kernel design is pre-
sented in chaptér 5.

Individual modules are described in chapier 6 to 13, with an emphasis over design and implementation
technical choices.

ONERA Ref.: JELSA/MDEV-06001

e Version.Edition : 1.0
Date : Jan 10, 2006
DSNA Page : 9/75

2. THEORETICAL BACKGROUND

elsA is dedicated to numerical simulation sihgle-species laminaor turbulent (including transi-
tion) compressibleflows, on3D (or 2D, or axisymmetricplock-structured grids.

The equations to be solved are tRavier-Stokes(NS) equations, in which turbulence is modelled

via a statistical approach (turbulent fields are decomposed into a sum of mean and fluctuating fields).
By carrying out the averaging operation upon the NS equations, one obtaRetmolds Average
Navier-Stokes(RANS) equations. Finally, these equations are expressed in the génieitshry
Lagrangian-Eulerian (ALE) formulation, so that arbitrary grid motions (rigid system of body, de-
formation) can be taken into account.

A thorough description of the modeling and numerical methods implementdg/Arcan be found in
the Theoretical Manual [[ELSA/STB-97020].

The next section presents briefly the key concepts involved when performing CFD computations with
elsA.

2.1 Overview

2.1.1 Numerical formulation

elsA solves the compressibMavier-Stokes(viscous) ancEuler (viscous effects neglected) equa-

tions in acell-centered finite-volume formulation using space and time discretization. In the cell-
centered approach, unknowns are interpreted as mean cell values. The central assumption in the
numerical formulation used ielsA is the so-called’Principle of Conservation™ This principle
requires that the equations must be writtecamservative form

2.1.2 Discretization

The spatial discretization algorithm governs the computation of flux and source terms:

» Fluxesmust be computed on each cell interface;

» Source terms if any, are computed inside each computational cell.

After space discretization, these equations are translated in simpléd&laates One can argue that

the accurate and efficient computation of fluxes and source terms is the most important part of the
elsA kernel. InelsA, the basic unit where these balances are done is the cell which must be hexaedric
(in 3D).

The spatial discretization leads to an Ordinary Differential Equation (ODE) system which is solved
using a (pseudo)-unsteady time integration solver. This translates ipgeadQ-time loop. Inside
this loop:

Ref.: [ELSA/MDEV-06001 ONERA

Version.Edition ; 1.0 —
Date : Jan 10, 2006
Page : 10/75 DSNA

» fluxes and source terms are computed,;
» boundary conditions are taken into account;
* auxiliary quantities (such as pressure, viscosity, ...) are computed if required;

« timestep can be computed and convergence acceleration techniques may be applied.

In steadysimulations, the loop is iterated until convergence (or maximum number of iterations) is
reached. lrunsteadysimulations, the computation stops when the specified final time is reached.

2.1.3 Mesh and Grids

Mesh generation is essentially outside the aregl©k: meshes, created by an external mesh genera-
tor, are given as inpuelsA uses direct oriented structured meshes. Meshes must be 3D, structured,
hexaedric; they can be multi-zone. In that case, communication between them is done through "join"
boundaries.

Mesh objects are not essential ins&lgA,; instead, from the mesh point coordinatelsA is able to
build grid objects.

The conservative relationships are applied to grid cells. Grid objects are very important, and must be
fully mastered by every application developer. Grids have two essential roles:

1. a grid object provides with the connectivity informatiadogological relations between geo-
metrical entities: cells, interfaces, nodes and edges);

2. a grid object can provide thaetrics: volume of the cells, surface of the cell interfaces.

2.2 Description of the main features available

2.2.1 Space discretization schemes
2.2.1.1 Convective fluxes

Theconvective fluxescan be discretized either bycantered schemavith artificial viscosity, or by
anupwind scheme

» Jameson’scentered scheme with a choice of several artificial dissipation formulations;

» upwind schemesvan Leer, Roe, Coquel-Liou fluxes are available. First order and second
order are available when combined wWNMUSCL extrapolation.

The additional equations arising from turbulence transport equations are, most of the time, solved in
a decoupledway: the convective fluxes of the turbulent system are then discreatized wikkothe
schemen association with thélarten entropic correction.

ONERA Ref.: JELSA/MDEV-06001

e Version.Edition : 1.0
Date : Jan 10, 2006
DSNA Page : 11/75

2.2.1.2 Diffusive fluxes

The discretization of thdiffusive fluxesrequires the evaluation of the flux densities, whose expres-
sion uses thgradients of velocity, temperature and possiblyturbulent quantities.

Gradients can be evaluated either in cell centers, or in interface centers.

2.2.2 Time integration
2.2.2.1 Explicit stage

In theexplicit stage the time integration is based either od-atep Runge-Kuttaalgorithm, or on a
backward-Euler algorithm.

In the case obteady flows time can be considered as an iterative parameter allowing to converge
towards steady solution. If the Runge-Kutta time integration scheme is used, the convective flux is
recomputed for each Runge-Kutta step, whereas the diffusive fluxes, numerical dissipation (if any)
and source terms, are computed only at the first step, in order to save computation time. To accelerate
convergence, the timestep can be a local timestep (different from one cell to another). The CFL
number, introduced to ensure the stability of the numerical scheme, has to be defined by the user.

For unsteady applications time accuracy must be preserved: a global timestep has to be chosen. If
the Runge-Kutta time integration scheme is used, the calculation of the diffusive fluxes, numerical
dissipation and source terms are done at the first and fourth Runge-Kutta steps.

2.2.2.2 Implicit stage

Implicit time integration methods can strongly reduce the total computational time, increasing the
numerical stability of the schemes and thus allowing the use of larger timesteps.

The available implicit methods are:

* Implicit Residual Smoothing (IRS) is used in association with centered Jameson’s scheme,
with Runge-Kutta 4-step algorithm;

e LU or LUSSOR are used with both centered and upwind schemes, with backward-Euler time
integration.

2.2.3 Calculation strategy

The system of mean NS equatiomagan flow) and the system of transport equationgitjulent
guantities) are solved using decoupledalgorithm. One carries out the following stages:

Before entering time loop:

1. initialize theturbulent eddy viscosity;

Ref.: [ELSA/MDEV-06001 ONERA

Version.Edition ; 1.0 —
Date : Jan 10, 2006
Page : 12475 DSNA

then at each iteration:

1. integrate (with turbulent eddy viscosity frozen) themean fieldsystem using either Jameson’s
centered scheme with artificial viscosity or an upwind scheme, associated with a Runge-Kutta
algorithm (or backward-Euler);

2. integrate (with mean field frozen the turbulent system using the upstream space approx-
imation according to Roe with Harten entropic correction, associated with Runge-Kutta (or
backward-Euler) algorithm;

3. update theturbulent eddy viscosity.

2.2.4 Turbulence modeling
2.2.4.1 Modeling assumptions

In elsA, most turbulent models rely on thi&goussinesq hypothesis their common feature is the
use of the eddy viscosity, which can be calculated eithealggbraic turbulence models or using
transport equations.

EARSM models are also available; this class of transport equation models assumes a non-linear
relation between the Reynolds stress tensor and the velocity gradients, in order to provide a better
description of the turbulence anisotropy. They are characterized by an ASM closure instead of the
Boussinesq closure. This closure relation is used to express the Reynolds stress tensor.

Large-eddy simulation (LES), with Smagorinski mode| has also been introduced @&sA. LES
allows the use of coarser meshes, by resolving directly only the largest scales of the flow, while small
scales, referred to as subgrid scales, are represented through a statistical model.

2.2.4.2 Algebraic models

Among the turbulent models based on the Boussinesq hypothesis, the algebraic models are based on
an algebraically defined turbulent viscosity according to a mixing length hypothesis. Their predic-
tive value is limited, but their advantage is robustness and econdiniel-Quemard-Durant and
Baldwin-Lomax models are available.

2.2.4.3 Transport equation models
Many turbulence models with transport equations are availat#tsf Among them:

* one transport quationSpalart-Allmaras model, with DES correction option;
* two transport equations:

— k-1 Smith model;
— k-omegamodel with different options:

ONERA Ref.: JELSA/MDEV-06001

— Version.Edition : 1.0
Date : Jan 10, 2006
DSNA Page : 13/75
* Zheng limitor;

*

cross diffusion term in the omega equation;

SST correction;

different treatments of the wall boundary condition: wall roughness e#2/gxtrap-
olation.

— BSL k-omega Mentermodel with SST correction option;

— low Reynolds k-epsilonJones and Laudner modgigh Reynolds k-epsilonmodel with
SST correction option;

*

*

« four transport equationsnulti scale energy / spectral flux model.

2.2.5 Transition

For all the available turbulence models, transition effects can be included. Transition can be imposed
or calculated; in the latter case, the transitooierion which can bdocal or non local

2.2.6 Techniques of convergence acceleration

» Multigrid technique (V-cycle or W-cycle, cell to cell and node to cell prolongation); presently,
multigrid technique can only be used for the resolution of the mean flow;

» Dual Time Stepping (DTS);

» Low speed preconditionning.

2.2.7 Rotation frame and ALE technique

In some problems, a formulation of the conservative laws in the entrained reference frame can be judi-
cious (existence of a permanent flow in this reference framedlsiy, helicopter and turbomachinery
applications are treated in the relative entrained frame:

* in an absolute velocity formulation for the helicopter applications;

« in a relative velocity formulation for the turbomachinery applications.

2.2.8 Types of join boundary

In elsA, the available types of "join" boundaries are:

* coincident adjacent and partially coincident adjacent boundaries;

 adjacent boundary non coincident line;

no match boundary;

multistage boundary.

Ref.: [ELSA/MDEV-06001 ONERA

Version.Edition ; 1.0 —

Date : Jan 10, 2006
Page : 14/75 DSNA

2.3 Not discussed in this document

2.3.1 Chimera technique

2.3.2 Hierarchical Mesh Refinement (HMR)

ONERA Ref.: JELSA/MDEV-06001

e Version.Edition : 1.0
Date : Jan 10, 2006
DSNA Page : 15/75

3. WHAT IS OBJECT-ORIENTED SOFTWARE?
3.1 Object-Oriented Programming Concepts

If you've never used an object-oriented language before, you need to understand the underlying con-
cepts before you begin writing code. You need to understand what an object is, what a class is, how
objects and classes are related, and how objects communicate by using messages. The next sections
sum up the concepts behind object-oriented programming.

3.2 Object, interface, encapsulation

An objectis a software "bundle” ahethods(behaviour) andattributes (data). At a given time, the
set of all the attribute values is called the objstette.

Everything an object can do is expressed througimtesface. The interface can be seen agrato-
cal.

Providing access to an object only through its interface, while keeping the implementation details
private (implementation masked), is call@aformation hiding, or encapsulation The benefit is

that the private part of an object (both private data and private methods) can be changed at any time
without affecting the other objects that depend on it.

Encapsulation means any kind of hiding:

1. Data hiding: data members (attributes) are kept private.

2. Class hiding: the actual class is hidden behind an abstract class or interface. In fact, polymor-
phism, which allows clients to ignore the true object type, can be viewed as an encapsulation
mechanism.

3. Implementation hiding: clients are only aware of an opaque pointenandle(seeDo not
systematically provide accessor methods

Encapsulation improvasaintenance facilitatesextensibility. Obviously, many examples of encap-
sulation can be found ielsA; see for example section 642,126

3.3 Collaboration between objects

A single object, working isolated from any other objects, is usually not very useful. Instead, an object
usually appears as a component of a larger program that contains many other objects. Through the
collaboration of a large number of (relatively) simple objects, complex behaviour can be achieved.
This collaborative technique greatly facilitdtexibility andinteroperability .

Ref.: [ELSA/MDEV-06001 ONERA

Version.Edition ; 1.0 —
Date : Jan 10, 2006
Page : 16/75 DSNA

3.3.1 Messages and methods

It is sometimes said in the OO community that objects interact and communicate by sending/receiving
messages. In C++, messages correspond closely to (public) methods:

 as seen from the client side, the client sends a message: this means asking to another object to
execute one of its methods;

 as seen from the receiver side, the receiver object executes the corresponding (public) method.

3.3.1.1 Example of collaborative work

A diffusive flux object (the sender) asks a k-I turbulent model object (the receiver) to perform its
methodTurKL::compMut() . Here, themessageorresponds to the method:

FxdFlux::message()

{
turObject -> compMut();

}

3.4 Class

A classis aprototype that defines the attributes and the methods common to all the instances of the class. The individual
instances are called objects. In practice, in C++, a new class is equivalent taygpee factory is used to manifacture
object instances from the class definition.

Note:
The factory itself may be an instance, (usually a unique orsigletor) of a specialized class.

3.5 Inheritance

Object-Oriented programming allows classes to be defined in terms of other classes. For instanterklassherits
from classTurBase . TurKL is asubclassof the base clas§urBase . Similarly, TurBase is thesuperclass(base
class) of all the classes in charge of turbulence modeling.

Inside inheritance tree, methods and data are inherited down through the levels:

« In abstract classes, methods adeclared, but partially (or not) implemented. Abstract classes defingptite-
morphic behaviour: all the derived classes will provide this behaviour.

» Each subclass inherits attributes (state) and methods (behaviour) from the superclass.

— Subclasses can add their own data and methods to data and methods inherited from the superclass.

— Subclasses can override (that is, specialize) virtual inherited methods by providing specialized implementa-
tions for those methods.

ONERA Ref.: JELSA/MDEV-06001

e Version.Edition : 1.0
Date : Jan 10, 2006
DSNA Page : 17175

— When implementing a new specialized subclass, developersgsethe code (the implementation) defined
in superclasses. However, inheritance is really much more powerful than code factoring, which is of course
available in any decent language (C and Fortran, for exemple). With the help of inheritance, developers can
reuse thenterface.

Inheritance greatly simplifies the software extensibility and maintenance tasks. The most important polymorphic hierar-
chies inelsA are:

 Implicit algorithms {hsBase and derived classes).

» Boundary conditionsBndBase and derived classes; sBad componen).

« Turbulence modelslurBase and derived classes; séer component).

» "Operators" (fluxes and source term@perBase and derived classes; s&per componen).

Basically, developing a new implicit algorithm, a new boundary condition, or a new turbulence model, amounts to very
similar tasks:

« Starting from the base class interfapailflic andprotected), the developer must adapt it to his wishes; most
of the time, the interface changes are very limited (usually somme additional private attributes and a few private
implementation methods).

» The developer must implement the abstract method(s) specific to the hierarchy:

compLhs() fortheLhs hierarchy;

compBoundaryValue(...) for the Bnd hierarchy (seddow to introduce a new boundary condi-
tion?);

compMutinModel() for theTur hierarchy (se¢low to introduce a new turbulent model?).

complnterior() for theOperFlux hierarchy.

3.6 And see other examples:

http://www.softwaredesign.com/objects.html

Ref.: [ELSA/MDEV-06001 ONERA

Version.Edition ; 1.0 —
Date : Jan 10, 2006
Page : 18/75 DSNA

4. GENERAL ARCHITECTURE

4.1 elsA library and applications

elsA provides arObject-Oriented (OO) CFD library . together with sstand-alone applicationelsA.x, using Python
as scripting language.

4.1.1 Object-Oriented architecture
elsA design and implementation are based both on Object-Oriented technology:

« elsA design uses the UML (Unified Modeling Language) modeling approach to obtain an accurate decomposition
of the complex CFD problem intgtaticclasses, and to model tdgnamidnteracting objects (instances of classes).

« elsA kernel is implemented in the Object-Oriented language C++. Only the most CPU time-consuming computing
loops are coded in Fortran, without impairing in any way the OO design.

4.1.1.1 elsA extensibility
elsA Object-Oriented architecture improves software extensibility through two basic mechanisms:

» polymorphism: developers can design and implement new features, such as a new turbulence model, a new
boundary condition, a new implicit time integration algorithm,... inimgeependentvay. By this we mean that
code isextendedhrough addition of new files, nobodified thus greatly decreasing integration time, by removing
any conflicts.

» encapsulation Object-Oriented technology encourages a clear distinction between private and public part of a
component. Clients of the component only use the public interface, so they will not be affected by any changes in
the private (implementation) part of the component. This greatly reduce maintenance costs.

4.1.2 elsAinput data
To run a computatiorglsA users must provide:

» geometric data, basically mesh coordinates (and possibly geometric coefficients in chimera);
« topological data: connectivity between blocks;

 physical data, to initialize the time-iterative loop; this physical data may be a constant thermodynamic state, or,
more generally, come from data file (restart file).

« definition of boundary conditions; this may be only a boundary type identifier, or additional data may be needed
(for example transition data can be prescribed in a fully general way with additional files).

4.1.2.1 Definition of mesh points

Mesh generation is not addresseddiyA: users must provide mesh point coordinates, as computed from external tools
such as ICEM-CFD or NUMECA IGG.

'Note however that mesh deformation algorithms are available (ALE, fluid-structure coupling.

ONERA Ref.: JELSA/MDEV-06001

e Version.Edition : 1.0
Date : Jan 10, 2006
DSNA Page : 19/75

A mesh file (binary, or ASCII Tecplot format) must be associated with each block. This greatly simplifies the parallel
treatment, and is inherently scalable to massively parallel computations. To improve ergonomy, it is advised to put all
mesh files in a single directory, and to use a consistent file naming. In that case, users do not have to care about the
potentially large number of files, they are only aware of the directory name, which is just a "super-file".

4.1.2.2 Restartfiles

We use exactly the same mechanism as for mesh files. Again, the individual files associated with each block can be
grouped into a single directory.

4.1.2.3 Boundary information

The generation of the complete boundary definition information can be time consuming and error prone. An automatic
script generator is available to generate this information from ICEM-CFD input. It is often convenient to put boundary
definition in a separate Python script file (module), which is imported by the main (driver) script:

» boundary definition are nearly always kept unchanged,;

» several computations (with different numerical parameters, or Mach number,..shasboundary definition,
thus avoiding potential errors when duplicating boundary data.

4.1.2.4 DAMAS database
A tool using as input a DAMAS database is also available.

Note:
In future releases, it will be optionnaly possible to read mesh coordinates, as well as restart data and boundary
definition data (at least for the "usual" boundary types) directly from a CGNS database.

4.1.3 Simulation control
elsA users control their CFD simulations through the Python scripting interface. This can be done in three ways:

« interactive text mode; this is limited to very basic test cases.

» through a Graphical User Interface (GUI), calleyGelsA, documented in thPyGelsA Graphical User inter-
face User’s Manual (http://elsa.onera.fr/ExternDocs/user/MU-02044.pdf).;

« through a Python script file; this is the preferred way for complex simulations. It is fully described in the elsA
User Reference Manual (http://elsa.onera.fr/elsA/doc/refdoc.html).;

Using Python as the scripting interface greatly reduces the time required to develop and maintain the user interface.
Moreover, Python provides with a high level versatile programming interface, allowing novice as well as expert users to
interact withelsA in an optimized way. Let us give a small (non exhaustive!) list of useful Python features in the context
of CFD simulation:

 Script files can be splitted in several modules, allowimgseof well-tested blocks of settings, thus avoiding many
potential errors.

» Simple Python programming enables basic numerical treatment in pre- or post-processing phase, such as normal-
ization, directly in the script file, thus again avoiding inconsistent data arising from incompatible data coming from
different independent tools.

http://elsa.onera.fr/ExternDocs/user/MU-02044.pdf
http://elsa.onera.fr/elsA/doc/refdoc.html

Ref.: [ELSA/MDEV-06001 ONERA

Version.Edition : 1.0 e
Date : Jan 10, 2006
Page : 20/75 DSNA

» Users can write specific functions, or even Python classes, to automate specific tasks.

« Users can benefit from the large number of additional scientific Python modules available.

4.1.3.1 Default value mechanism

Users are not required to set explicitly all the control data necessary to define completely a simulation. Default parameters
are provided through Python dictionary. The complete set of default parameters can be customized to suit the requirements
specific to a specific user community. Python dictionaries can be modified at any time, thus allowing dynamic site
customization without code recompilation.

4.1.3.2 Connecting Python and C++: Use of SWIG

elsA can be viewed as a standard Python model&i.py : it can beimported as any other Python module. The task
of generating the "glue" code necessary to acces C++ code from the Python interpreter is done automasioaly &y

public domain tool ¢f. [13, p.[69).

4.1.4 Parallel mode

elsA can run in parallel, using MPI communication libramisA uses a coarse-grained parallelization strategy: taking
advantage oklsA multiblock capability, each processor is responsible for the computationsabsetof the blocks
belonging to the configuratiorlsA uses the SPMD (Single Program Multiple Data) paradigm:

« each executable runs exactly the same program, reading the same Python scripting file (Python interpreter is
embedded inside each parallel executable);

» each executable is responsible for local file pre- and post-processing: for example, if block 3 and 5 are allocated
to processor 2, processor 2 is responsible for reading mesh data files corresponding to blocks 3 and 5. This
should avoid bottleneck problems arising from centralized I/O treatment (for example through rank O processor)
in massively parallel computations.

The mapping between blocks and processors can be done either "manually, or wiplithe module. To achieve
acceptable load balancing, splitting the initial configuration in a larger number of blocks may be necessary. This optional
splitting stage can also be done through$péit module.

4.1.5 Multidisciplinary Coupling

Several coupling strategies can be used to coelgle with other computational software. Let us give several examples:

« External coupling, basically through file exchange, valbA used in black box:
— in an optimization chain;
— weak coupling with the boundary layer code COULEUR,;
— weak coupling with NASTRAN (static aeroelastic wing deformation computation).
» Use of a dedicatedoupler, such asCALCIUM or PALM . A small number of "plugging” points have been identi-
fied and implemented insidgsA and tested.

» Modification of the internal algorithmic structure, to obtain full control and efficiency. This has been realized for
complex fully coupled aeroelastic simulations.

 elsA has been coupled with the structural mechanics ¢¢@Q8T , using a proprietary protocol based on CGNS
semantics.

ONERA Ref.: JELSA/MDEV-06001

e Version.Edition : 1.0
Date : Jan 10, 2006
DSNA Page : 21/75

4.1.6 Optimization modul®©pt

The Opt module implements the discrete Adjoint approach. It has been used inside automatic aerodynamic shape opti-
mization process.

4.1.7 Access to CFD databases (CGNS, DAMAS)

indexdatabase (CFD)@database (CFD) To be written

4.1.8 Logfile
For each runelsA generates a log file (standard output), with some basic information:

* elsA version.
« precision (single or double precision)
» compiler options DEBUGor optimized version)

e warning, or errors, if any.

Additionaly, users can augment the log file by a large number of additional output: in fact, most post-processing available
in elsA can be output either to a specific file, or to the log file.

Note:
In parallel mode, to avoid a "scrambled" log file (on some platforms, all the computing processors write in an essen-

tially random order), there is one log file associated with each processor, with some information given only by the
root (rank 0) processor.

4.1.9 Post-processing

4.1.9.1 Restart files can be generated by specifying a directory name.

This directory can then be used as input for a subsequent computaion.

4.1.9.2 Global residuals

With default parameteGLOBAL_RESIDUALset to YES residuals for the complete configuration are automatically
extracted.

4.1.9.3 General post-processing

A very fine control of post-processing is available.

» Localquantities: a wide range of local quantities (Mach, pressure,...) can be extracted.

» Globalquantities: global quantities (lift, drag, mass flow, residuals,...) are available, with a simplified syntax when
defined on predefined window families (for example, one family may correspond to the wing, another one to the
fuselage).

Ref.: [ELSA/MDEV-06001 ONERA

Version.Edition ; 1.0 —
Date : Jan 10, 2006
Page : 22175 DSNA

5. KERNEL DESIGN

5.1 Classification and Design organization

CFD concepts can be classified as: geometrical, topological, numerical and physical concepts. In order to solve a CFD
problem, we have defined a limited number of basic classes responsible of the following actions:

1. to take into account the fluid physical properties in the flow;
2. to build and control the numerical space region where the system of equations is solved,;

3. to build the system of equations: compute the terms arising from the spatial discretization (flux, source terms);
controls the application of the boundary conditions;

4. to control the time evolution of the solution.

So, the kernel has been designed as a set of consitathiles (or components). A module igsponsiblefor a set

of well-defined functionalities. Ideally, developers should be able to work inside a module, without having to know the
implementation details of any other modules. Achieving a good decomposition is very important to improve ease of
development and maintenance.

Moreover, this OO model has been split into sub-models with the aim to keep dependencies as local as possible. These
modules are organized intayers in such a way that each layer should only affect the layers above. The goal of this
organization is to achiewmono-directional relationships The advantage is then that the maintenance becomes much
easier, since one layer’s interface affects only the upper layers. Avoiding cyclic dependency greatly simplify test policy.

5.1.1 Naming convention

Each module is identified by a key of 3 to 5 letters, the first one being capitalized. Inside each module, each class name is
then prefixed by the key of the module it belongs to. ExampleKL belongs to th@ur module.

5.2 Overview of the layers

elsA kernel includes about 400 classes grouped in 26 modules specialized for a given CFD task. These modules are further
organized in 6 layers:

* Base

¢ Geometry;,

» Physical mode|

» Space Discretization
» Solver,

» Factory (top level).

ONERA Ref.: JELSA/MDEV-06001

—_ Version.Edition : 1.0

Date : Jan 10, 2006
DSNA Page : 23175

Ref.: [ELSA/MDEV-06001 ONERA

Version.Edition ; 1.0 —
Date : Jan 10, 2006
Page : 24175 DSNA

5.2.1 Base layer
Baselayer gathers allow-level modules, among which tHedd andPcmmodules.

» FId : data storageclasses; these classes encapsulate dynamic memory needed to store any computational data.
Their interface provide with monitoring methods, optimized array-like syntax (muchHBBTRAN 9P and
methods to communicate witFORTRANoutines.Fld classes are built in order to provide the highest efficiency
(both in CPU and memory); a comparable efficiency could not be achived through STL containers.

* Pcm deals withparallel implementation; it "encapsulates” message passing interface (presently, MPI).

5.2.2 Geometry layer
Geometry layer gathers alljeometricalandtopological modules:

» BIk : defines théblock notion. Ablock corresponds to a region of the discretized physical space defined by a
mesh, to which are associated boundary and initial conditions. Blocks are specialized to take into account grid
motion, ALE, chimera and HMR (Hierarchical Mesh Refinement) features. In most simulations, several blocks
are needed.

» Geo: defines the abstraction of tlomputational grid; provides all geometrical ingredients used by a finite
volume formulation:

— Metrics: volume of cells, surface of cell interfaces.

— Topological relationsbetween geometrical entities: cells, interfaces, nodes. Recently, ghost cells have been
introduced in elsA. Thanks to these ghost cells, most indirections have been suppressed in computational
loops, and important improvement in CPU efficiency has been obtained.

« Dtw: gathers albistanceandboundary-layer integral thicknesscomputations.
» Mask: defines concepts used in tB&imera technique

» Join : deals withmulti-block computations. Multi-zone interface connectivity can be 1-to-1 abutting, 1-to-n
abutting, or mismatched abutting.
5.2.3 Physical model layer
It includes two modules:

» Eo0s: computes quantities such pessurgtemperature, laminar viscosity;

e Tur : deals withturbulence modelingandtransition prediction .

5.2.4 Space Discretization layer
This layer is responsible for the computation of the equatoms and of theboundary conditions:

» Oper: each operator class is responsible for the computation of a single term in the CFD equations:

— Fxc : convective fluxes;
— Fxd: diffusive fluxes;

— Sou: source terms.

» Bnd: deals with boundary conditions.

ONERA Ref.: JELSA/MDEV-06001

e Version.Edition : 1.0
Date : Jan 10, 2006
DSNA Page : 25/75

5.2.5 Solver layer
This layer is responsible for:

* Rhs: builds the right hand side of the equation system;

« Lhs: gathers implicit methods; each implicit class has to build and invert the matrix resulting from a specific
linearization of the system of equations;

» Tma time integration module; manages the main iterative (pseudo-)time loop.
It is probably the most complex part of the kernel, since many algorithms have to be taken into account: multi-block,
multigrid, HMR, mesh motion, deformation, ...
5.2.6 Factory layer (elsA top layer)

This layer is responsible of the dynamic creation of all kernel objects:Fdw module implements several object
"factories" tobuild object instances from user input data coming from the Python interface.

Ref.: [ELSA/MDEV-06001 ONERA

Version.Edition ; 1.0 —
Date : Jan 10, 2006
Page : 26/75 DSNA

6. FLD COMPONENT

6.1 Basic numerical containers

Fields are the most basic objects manipulateclsA. They are used as containers for the numerical values (real, integer,
boolean) arising in CFD simulations.

It is useful to distinguish two general types:

* FldArray : stores numeric values, without any location information;

« FldField : stores numeric values defined on a grid. In that case, it can be also very useful to distinguish between:

— values defined at grid nodeBtdNode ;
— values defined at centers of grid celddCell ;

— values defined at centers of grid interfaceklint

So, we usdypedef to express the specificity of each entity; for example:

typedef FldFieldF FldCellF;

This automatically gives important information upon the programmer’s intent, and so facilitates code understand-
ing and maintenance.

These containers must contain homogeneous collection of floats, integers, or booleans. To fulfill this requetefent,
provides different versions &ldArray andFIdField ;the last letter of the class name identifies the contained element

type:

» F stands for Float,
« | stands for Integer,

» B stands for Boolean.

Note:
FIdFieldB is not implemented.

6.2 Public interface

Externally, for application programmers, fields are viewed as two-dimensional structures:

« the first dimension index goes frobnto _size-1 ;
« the second dimension index goes frano _nfld ; if the second dimension i, it can be omitted.
Note:
The conventions used for first and second dimensions are inconsistent (0 instead of 1 for first index). This comes

from historical reasons, and may be changed in future releases (just modify the cOH$MRIELDQ defined in
FldArray.h , and recompile).

The field interface provides all the methods required to do humerical computations:

ONERA Ref.: JELSA/MDEV-06001

e Version.Edition : 1.0
Date : Jan 10, 2006
DSNA Page : 27175

* construction;
« initialization;
« copy of an existing field into a new one;

« addition, subtraction, multiplication.

(SeeFldFieldF doxygen documentation for additional details).

6.2.1 Examples of Fld client code

1. Construction of a field which stores the unknowns of the CFD probtemrou , rov , row, roE):

E_Int nfld = 5;
FldCellF wCons(ncell, nfld);

Construction of a field which stores fluxes:
FldIntF flux(3*ncell, nfld);
2. Construction of a field which stores mesh coordinates:

FldNodeF x(ncell, 3);
FldNodeF y(ncell, 3);
FldNodeF z(ncell, 3);

3. FIdArray orFIdField can be used to store values without geometric links, such as:

FldArrayF TurKO::getModConst() const

{
FIdArrayF modConst (7);
modConst[0] = _kappa;
modConst[1] = _sigmal,;
modConst[2] = _sigmael,;
modConst[3] = _betal,;
modConst[4] = _wsigl;
modConst[5] = _betae;
modConst[6] = _Sr;

}

4. To access individual elements, a syntax similar to Fortran is used:

FldArrayF f(100,2);
(3,2)=3.14159; /I assigns pi to the fourth element of component 2

FIdArrayF g(100);
g[0] = 2.22;

Note:
FIdArray s really an implementation class; it would be probably better to avoid using it directly, BklRgeld
instead (additional memory associated vitdField own attributes is negligible).

Ref.: [ELSA/MDEV-06001 ONERA

Version.Edition ; 1.0 —
Date : Jan 10, 2006
Page : 28175 DSNA

6.2.2 Check of memory access, control of memory initialiazation

FId classes should almost always be preferred to C/C++ arrays (selerafeo FId objects (FIdArray, FldField) to C
arrays), because they provide:

* memory usage check control; DEBUGnode, we can check that access to container elements is valid:

« full control over data initialization; programmers can choose to initialize newly allocated memory with some "bad
value" or, better, witiNan ("Not a number"); this will insure that access to non-initialized memory value can be
trapped.

Subscript index checking and memory initialization control are very helpful to debug newly written code.

6.3 Passing field data to Fortran

In elsA, it is frequenltly necessary to communicate with Fortran 77 subroutine. Fortran 77 only knows scalars and arrays,
and subroutine arguments are always passed by address. This means that we must, in some way, give the address of the
piece of memory which is dynamically allocated b¥ldField field to this subroutine (to know more about that, just

look at the next sectioRIdArray internal structure).

6.3.1 FIdArray internal structure

Internally, aFIdArray object stores its elements in a contiguous piece of memory. This memory is dynamically al-
located. One can sdddArray as a convenient "wrapper" encapsulating raw C pointer-managed memory. Attribute
_data in classFIdArray points to this memory. This one-dimensional arrangement exactly matches the traditional
Fortran or C arrangement.

However, it remains to choose a specific ordering between the two directions. Preseidhy, ithe first index increases

first; this choice corresponds to the Fortran way. Note that, in C++, we can turn to the other ("transpose”) way quite easily:
we would have to modify the implementation of exacthemethod, leaving the class interface strictly unchanged. Instead

of:

inline E_Float
FldArrayF::operator()(E_Int I, E_Int fld) const

{
}

return (_data[l + (fld-1)*_size]);

We would have théransposgor swappedlimplementation:

inline E_Float
FIdArrayF::operator()(E_Int I, E_Int fld) const

{
}

return (_data[fld-1 + I*_nfld]);

When theelsA programmer usesld object, he uses the public class interface, so he doesn’t know how the data are
actually stored and he should not be "disturbed" by any modification of the internal structuré&taf thasses. In Fortran
obviously, it is another matter...

ONERA Ref.: JELSA/MDEV-06001

e Version.Edition : 1.0
Date : Jan 10, 2006
DSNA Page : 29/75

6.3.2 Examples

If called from inside a C++ method, a Fortran subroutine has first to be declared in a prototype, such as

extern "C"

{

void

denconvec_(const E_Int& ncell, const E_Int& neqtot, const E_Int& neq,
const E_Int& ro, const E_Int& rou, const E_Int& roe,
const E_Int& rog, const E_Int& roug, const E_Int& roeg,
const E_Float* consvar, const E_Float* press,
E_Float* fdx, E_Float* fdy, E_Float* fdz);

It is important to note that each argument is passed by address (reference for scalar, pointer for array), not by value (see
Calling Fortran subroutine).

Then, in the C++ method, the Fortran subroutine is called by:

denconvec_(ncell, negTot, nbEqMoyComp,
rho, mom, ene, rhoG, momG, eneG,
wCons.begin(), press.begin(),
fdx.begin(), fdy.begin(), fdz.begin());

The use offdX.begin() allows to point on the begining of the piece of memory where the values of thefdid
are stored. To get this address, it is convenient to use the iterator mechanism whose member fundiegis(re,
end() .

Notation: fdX.begin() stands forfdX.begin(1) (1 is the default value). If it is needed to manipulate the second
field (corresponding to rou) the methbdgin has to be used with the argumentfdX.begin(2)

It is obvious to see that if we change the two-dimensional structure choice (first index increases first), thebaethod
gin() will not provide the same collection of entities. In this case, and if dimensioftsofare:ncell x neq |, values
of fdX will be stored in the following order:

fdX(0,1), fdX(0,2), fdX(0,3),..., fdX(0,neq),
fdX(ncell-1,1), ..., fdX(ncell-1,neq)
instead of:

fdX(0, 1), fdX(1,1),fdX(2,1),..., fdX(ncell-1, 1),

fdX(0,neq),..., fdX(ncell-1,neq)
Finally, in the Fortran subroutine, we find the following implementation:

SUBROUTINE denconvec(ncell, neqtot, neq,
& ro, rou, roe,
& rog, roug, roeg,

!See alsoélIsA Coding Rules”

Ref.: [ELSA/MDEV-06001
Version.Edition : 1.0
Date : Jan 10, 2006

Page : 30/75

& w, p,

& fdx,
IMPLICIT NONE

C_IN
INTEGER_E ncell, neqtot, neq
REAL_E w(0:ncell-1,neqtot)
REAL_E p(O:ncell-1)

C_ouT
REAL_E fdx(0:ncell-1,neq)
REAL_E fdy(0O:ncell-1,neq)
REAL_E fdz(0:ncell-1,neq)

DO icell = 0, ncell-1
roi = ONE / w(icell,rog)

fdx(icell,ro) = w(icell,roug)
fdy(icell,ro) = wo(icell,rovg)
fdz(icell,ro) = wo(icell,rowg)

fdy,

6.3.3 Remark on Fortran convention

fdz)

Conservative Variables
I Pressure

Convective Flux X-Component
Convective Flux Y-Component
Convective Flux Z-Component

ONERA

DSNA

In the example above, the following convention has been followed in the two-dimensional array addressing:

« the first dimension index varies frotto ncell-1 ;

* the second dimension index varies frdnto neq.

This choice has been made here in order to be the same as the C++ choice, but it is not mandatory. We could of course

also write:

REAL_E w(ncell,neqtot)

C_OouT
REAL_E fdx(ncell,neq)
REAL_E fdy(ncell,neq)
REAL_E fdz(ncell,neq)

DO icell = 1, ncell
roi = ONE / wo(icell,rog)

fdx(icell,ro) = wo(icell,roug)
fdy(icell,ro) = wf(icell,rovg)
fdz(icell,ro) = wf(icell,rowg)

ONERA Ref.: JELSA/MDEV-06001

— Version.Edition : 1.0
Date : Jan 10, 2006
DSNA Page : 31/75

7. GEO COMPONENT

GeoGrid objects are widely used in the CFD kernel, because many CFD classes need a poi¢@Grid objects.
GeoGrid is a composition of two classe&eoGridMetrics andGeoConnect . It is responsible for:

* metrics, issued from methods @eoGridMetrics class;

« index counting andposition (connectivity), issued from methods GeoConnect class.

7.1 Ghost geometric entities
The number of ghost entities is controlled through 6 global variables:

GHOST 11 and GHOST 2 in the "I" direction,
GHOST_J1 and GHOST_J2 in the "J" direction,
GHOST_K1 and GHOST_K2 in the "K" direction.

elsA uses the following convention:

7.1.1 Ghost cell numbering

* GHOST _l1ghost cells inMIN , GHOST _I2ghost cells inMAX,
e GHOST_Jlghost cells inIMIN, GHOST_J2ghost cells inIMAX
* GHOST_KZQghost cells irKMIN, GHOST_K2jhost cells irKMAX

7.1.2 Ghost interface numbering

* GHOST_I1ghost interfaces itMIN , GHOST _12-1 ghost interface inMAX,
* GHOST_Jighost interfaces idMIN, GHOST_J2-1 ghost interface idMAX
* GHOST_Kmhost interfaces ikKMIN, GHOST_K2-1ghost interface itk MAX

7.1.3 Ghost node (mesh points) numbering
* GHOST_I1ghost nodes itMIN , GHOST_I2-1 ghost node inMAX,
* GHOST_Jlghost nodes idMIN, GHOST_J2-1 ghost node illMAX
e« GHOST_KIghost nodes itKMIN, GHOST_K2-1ghost node iKMAX

7.1.3.1 Ghost defaultvalues

The default values are:

GHOST_I1 = 2; GHOST_I2 = 2;
GHOST_J1 = 2; GHOST_J2 = 2;
GHOST_K1 = 2; GHOST_K2 = 2;

Ref.: [ELSA/MDEV-06001 ONERA

Version.Edition : 1.0 —

Date : Jan 10, 2006

Page : 32/75 DSNA
Users can change these default values at the beginning of each run by Daki6fdPb::set_ghostcell() (usu-

ally to reduce CPU time on some platforms).

7.1.4 Simplified example

|

| | | | |

| | | | |

| | | | |

| | | | |

| | | | |
P F-----1 ------ t----=- o= l------ t---==- F------
b [[[
: ! L ! [n0=18, nf=29]						
:	26 4 2 S5 288 25 7 3	is the correct interval				
! 26 27 28 29 ! .						
L] e -4 25 75 e	o for the computation					
\		of all real values				
[! 1B 1B 2p 2 8 302 !						
:	18 19 20 21 \					
Looooo- F-——-- 56 &7 58 B9—1 - P						
1						
1						
it R fm———— - P m— - T Fomm--
! I I I I I I I
! I I I I I I I
: l l l l l l l
f o ' 1 ' 2 ' 3 ' 4 ' s | & | 7
L L [I L [

Numbering of cells __ real cells humbering
and interfaces
_ real and ghost cells numbering
(GHOSTH = GHOSTI2Z =2 — real and ghost interfaces
GHOSTJ1 = GHOSTJ2 = 2) numbering

7.1.5 Identical numbering of cell / interface / node

The benefit of this choice is that we have a simple relation between cell, interface and node indexes, which enables easy
looping over cells, interfaces or nodes.

DO n=n0cell, nfcell I loop on cells
nil = n I'"i" interface (left)
njl = n + ncell I'"" interface (down)
nkl = n + 2*ncell I "k" interface (back)
ni2 = inccell(1,0,0) ! "i" interface (right

n +
n2 =n + ncell + inccell(0,1,0) ! "j" interface (up)
n + 2*ncell + inccell(0,0,1) ! "k" interface (front)

As a consequence of this choice, we have exactly the same number of cells, nodes, and interface in direction I, J or K (so,
the total number of interfaces is three time the number of cells).

inline E_Int

ONERA Ref.: JELSA/MDEV-06001

e Version.Edition : 1.0
Date : Jan 10, 2006
DSNA Page : 33/75

GeoConnect::getNbCell() const

{
return ((im - 1 + GHOST |1 + GHOST_[2)*

(m - 1 + GHOST_J1 + GHOST_J2)*
(km - 1 + GHOST_K1 + GHOST_K2));
}

inline E_Int
GeoConnect::getNbinti() const

{
return getNbCell();

}

7.2 Address and increment methods

The expression of the address methods is directly issued from the following points:

by convention:

the first "real" (non ghost) cell correspondg191,1) ;

theIlMIN (left) I interface of cell(1,1,1) corrsponds also tf1,1,1) ;
theJMIN (lower) J interface of cef1,1,1) corrsponds also tfl,1,1) ;
the KMIN (back) K interface of cel(1,1,1) corrsponds also tl,1,1)

« ghost geometric entities have to be taken into account; for example, the indices of the two "extreme” cells are:

imn = - GHOST_I1 + 1; imax = im -1 + GHOST_I2;
jmin = - GHOST J1 + 1; jmax = jm -1 + GHOST_J2;
kmin = - GHOST_K1 + 1; kmax = km -1 + GHOST_K2;

+ data are always stored first considering the "i"-direction, then the "j"-direction, and lastly the "k"-direction;

« inthe case of interfaces, we first consider the "i"-interfaces (for "i", then for "j", then for "k"), then the "j"-interfaces
(for "i", "j", "k"), and finally the "k"-interfaces (for "i*, "j", "k");

Address methods dealing with index counting and position, which are available irGgas3onnect , must be used in
all the C++ kernel classes. ith, jm, kmare the number of mesh points in the directions "i*, "j", "k", then the numbering
of cells, nodes, interfaces in the total grid (real + ghost entities) are:

Address methods:
adrCell(i,j,k) =i - 1 + GHOST_I1
+(§ - 1 + GHOST _J1)*(im -1 + GHOST I1 + GHOST_I2)
+(kk - 1 + GHOST_K1)*(im -1 + GHOST I1 + GHOST_12)
*(jm -1 + GHOST_J1 + GHOST_J2)

adrinti(i,j,k) = adrCell(i,j,k)
adrintj(i,j,k) = adrCell(i,j,k) + nCell
adrintk(i,j,k) = adrCell(i,j,k) + 2*nCell
adrNode(i,j,k) = adrCell(i,j,k)

Increment methods:

Ref.: [ELSA/MDEV-06001 ONERA

Version.Edition ; 1.0 —
Date : Jan 10, 2006
Page : 34175 DSNA

incrementCell (i,j,k) = i + j*(im-1+GHOST_I1+GHOST_I2)
+ k*((im-1+GHOST_I1+GHOST_I2)*(jm-
1+GHOST_J1+GHOST _J2))

increment[lJK](i,j,k) = incrementCell(i,j,k)
= incrementNode(i,j,k)

If needed inside Fortran subroutines, the following statement functions have to be used, by including the file
Geo/Grid/GeoAdrF.h"

INTEGER_E idummy, jdummy, kdummy
INTEGER_E im_dummy, jm_dummy, km_dummy
INTEGER_E adrcell, adrcellg, inccellg
INTEGER_E adrnodeg, incnodeg

adrcellg(idummy,jdummy,kdummy, im_dummy, jm_dummy, km_dummy) =
(idummy-1+IFIC1)
+ (jdummy-1+JFIC1)*(im_dummy-1+IFIC1+IFIC2)
+ (kdummy-1+KFIC1)*(im_dummy-1+IFIC1+IFIC2)*
(jim_dummy-1+JFIC1+JFIC2)

Ro Ro Ro Ro

adrnodeg(idummy,jdummy,kdummy, im_dummy, jm_dummy, km_dummy) =
(idummy-1+IFIC1)
+ (jdummy-1+JFIC1)*(im_dummy-1+IFIC1+IFIC2)
+ (kdummy-1+KFIC1)*(im_dummy-1+IFIC1+IFIC2)*
(jm_dummy-1+JFIC1+JFIC2)

Ro Ro Ro Ro

incnodeg(idummy,jdummy,kdummy, im_dummy,jm_dummy,km_dummy)=
idummy
+ jdummy*(im_dummy-1+IFIC1+IFIC2)
+ kdummy*(im_dummy-1+IFIC1+IFIC2)*(jm_dummy-1+JFIC1+JFIC2)

Ro Ro Ro

inccellg(idummy,jdummy,kdummy, im_dummy,jm_dummy,km_dummy)=

& idummy

& + jdummy*(im_dummy-1+IFIC1+IFIC2)

& + kdummy*(im_dummy-1+IFIC1+IFIC2)*(jm_dummy-1+JFIC1+JFIC2)

These methods (address and increment) allow to deal with connectivity between cells and interfaces as it is usual in finite
volume formulation.

Note:
adrcellg (adrnodeg , adrintg) will be renamed agdrcell ~ (respectivelyadrnode , adrint) in future
releases.

ONERA

DSNA

n+imG-1

left cell of interface "n"

h+nCell+imG-1 /

[

n

L+U

n+1

Ref.: [IELSA/MDEV-06001
Version.Edition : 1.0
Date : Jan 10, 2006

Page : 35/75

right cell of interface "n"

numbering of all the cells

n+nCell
interface "min” of
cell !ln!l
numbering of all
imG = im+GHOSTH +GHOSTI2 the interfaces

7.2.1 Example: Centered convective fluxes

In this example, the loop index is an interface index. Cell flux density values are used to compute the flux interface values.

DO n = nOInt, nfint
int = n + incl
flux(int, fid) = 1/2 * [Qx(n,fld)+Qx(n-inc,fld)][*surfx(int,1)
+ [Qy(n,fld)+Qy(n-inc,fld)]*surfy(int,1)
+ [Qz(n,fld)+Qz(n-inc,fld)]*surfz(int,1)
END DO

with:
interfaces "I"

inc im-1+GHOST_I1+GHOST_I2 = inccell(0,1,0, im,jm,km)
incl nCell

interfaces "K"

inc = (im-1+GHOST_I1+GHOST_[2)*(jm-1+GHOST_J1+GHOST_J2)

= incell(0,0,1, im,jm,km)
incl = 2*nCell

Ref.: [ELSA/MDEV-06001

ONERA
Version.Edition : 1.0 e
Date : Jan 10, 2006
Page : 36/75 DSNA

7.2.2 Example: Flux balance

In this example, the loop index is a cell index. Interface flux values are used to compute the cell flux balance values.

n1=1 = inccell(1,0,0, im,jm,km)
2 = im-1+GHOST_[1+GHOST 12 = inccell(0,1,0, im,jm,km)
I3 = 12*(jm-1+GHOST_J1+GHOST _J2) = inccell(0,0,1, im,jm,km)
DO n = nOCell, nfCell

inth = n

int) = n + nCell

intKk = n + 2*nCell

fluxBal(n,nfld) = + flux(intl + I1, fld)
- flux(intl , fld)
+ flux(intd + 12, fld)
- flux(intJ , fid)
+ flux(intk + 13, fld)

- flux(intK , fld)
END DO

ONERA Ref.: JELSA/MDEV-06001

e Version.Edition : 1.0
Date : Jan 10, 2006
DSNA Page : 37/75

8. TUR COMPONENT

8.1 Definition of the public interface

This section details the design of the turbulence models based &otlssinesq hypothesis
The most important design activity is to identify the classes, together withghblic interface. TheUMLclass diagram
is a very useful tool to present:

* classes;

* relations between classes;

* interfaces.

The firstanalysisstage is to identify what actions turbulence models are responsible for. The aim of turbulence models is
to compute:

« turbulent eddy viscosity,
« total stress tensor(viscosity tensor + Reynolds tensor) used in momentum and energy equations;
 possibly othequantities neededor the integration of transport equations (source terms, coefficients for the
computation of the density of the diffusive turbulent fluxes).
Moreover, the design solution must allow associatiotrarisition with any turbulence model.
More precisely, depending on algebraic model or transport equation model, we have to distinguish which computations
have to be made and how they can be made :
« for algebraic models,the computation of the eddy viscosity only requires the knowledge of the conservative vari-
ables and the distance to wall;

« for turbulence models using transport equations, a system of equations must be integrated. Source terms, additional
coefficients needed to compute the diffusive fluxes, and also eddy viscosity have to be computed.

This analysis shows that thmublic methods of the turbulence componeiitterface (Object-Oriented Programming
Concepts) are:

1. compute the eddy viscosity;
2. compute the total stress tensor;
3. apply transition.
Methods 2 and 3 can be defined in the same way whatever turbulence model; conversely, it is clear that the eddy viscosity

implementation depends on the model.

8.2 Class model

Finally, we obtain the followindJMLclass diagram which presentsrae hierarchical structure organization:

» TurBase is the base abstract class; its interface declares:

— thepure virtual methodcompMutinModel() ;

Ref.: [ELSA/MDEV-06001 ONERA

Version.Edition : 1.0 —
Date : Jan 10, 2006
Page : 38/75 DSNA

— theconcrete(non virtual) methoccompMut() ;

— theconcretemethodcompDiffFluxDens_gradCen()

— theconcretemethodapplyTransition() ;

» TurAlg is the base class for algebraic turbulence models; the derived classes provide the eddy viscosity compu-
tation compMutinModel());

e TurTransp is the base class for transport equation turbulence models; the derived classes provide methods to
compute the source terms (methommpSource()), the coefficients needed to compute the turbulent diffusive
fluxes compDifFluxDensCoef()) and the eddy viscositcbmpMutinModel()).

The actual turbulence models correspond to concrete classes. All the concrete classes belongihgr teadingonent

inherit either fromTurAlg or fromTurTransp , depending of their algebraic (or non algebraic) nature.
compMut() ;

TurBase

" { compMuunModsf();;

FxdFlux applyTransition;

compMut() <

[
TurTransp TurAlg
TurKEps TurKL TurSA TurKO TurAlgMichel TurBIx

Oﬁ 1 A |

TurwLe4 TurKOMenter TurkKOavtac TurMTbsl

— - w TurTwolayer

TurASM TurMKFLC2 lﬁ

TurMTsst

ONERA Ref.: JELSA/MDEV-06001
— Version.Edition : 1.0
Date : Jan 10, 2006
DSNA Page : 39/75
TurBase
_elemSysOper : EosElemSysType X
_romtRatiolx : E_Float
prandtTwhb : E_Float
coraputeMNearWall()
==destroy==
~TurBase(} TurTransp
cormpte Wall()
corapute Wall() _useCiradint | E_Bool
corapllut() _coeffllutInit : E_Float —=comment=>
corapCGenTransi() =<destroy= Only the virtnal
isFieldUsed() -~ TurTravspi) ethods are
computeField() corapProdki) displayed
prepareSou) isField[sed()
prepareFud() computeField()
setCellN() prepareSou)
is 45 prepareFad()
compMutlnModel{) peiligmaf)
apply Limitor {) compDifFluxDens Cogfi)
getibEglur() compSiee Turbf)
comp TurBalilawd) compSourcef)
miTranspEal) A
[[[[|
TurKEps TurKL TurMEFLC2 TurS4A TuriWLo4
_ct2 E_Float _e2:E_Float _inif21andf22 : E_Bool _Ct4: E_Float _zhengLimitor : E_Bool
_ctl ' E_Float _bl :E_Flnat corp TurWallLawt) _Ct3: E_Float _8r:E_Float
_Ceps2 E Float _sigmal. : E_Float iniTranspFay() | Ct2:E Float _betae - E_Float
_Cepsl :E Float _sigmal | E Float corapintimlodel() _Ctl:E Float _betal : E Float
_sigraEps : E Float _kappa : E_Float corpSource() _Cvl :E_Float _sigrmael : E_Float
_sigmak E_Float conp T Walll () isFieldUsed(} _Cw3 :E_Float _sigmal | E_Float
_modelersion : ModelVersion) | i TranspEq) compSpecTuhb() _Cwid :E_Float compSpecTwh()
_Gron - E_Float corapMlutintlodel) preparsSoul) _kappa : E_Float ==destroy==
_kappa : E_Float compSpecTmbi) prepareFad() _sigta : E_Float ~TwWLO4()
corap TurWalll awi) corapSouree) coraputeFisld) _Cb2 :E_Float T ranspEql)
iniTranspEg() getSigmal) coraputeFisldl) _Chl :E Float compute Wall()
cornphutlndviodel)) isFieldTsed() zetSigmal) cotnp TarWalll awi) compldutinhlodel()
cormpSpecTurh() prepareSou() ==destroy== iniTranspEq() compSource(}
cormpSource() coruputeField) ~ T FLC20) corpllutintiodel]) isFieldUsed;)
et Sigroal) ==dsstroy=> gethihEqtur) compSpecTuth() conputeField()
isFizldlTsed() ~TwKL{) corpSpecTurbOld() gethbEgtu}
prepateSoul) gethhEqtur(} corpSouree() getSigmal)
prepareFxd() corpSourceCldf)
cormputeField() A FurSARC getSigmal)
<<destroy=> TwKL2 or3 | E_Float isFieldlzed()
~TurKEpsi) _Cr2 E_F]Dat computeWall()
getthEegtun) _o4:E_Float “orl *E Float corputeField()
.'2 _c%:E Float ;nmpSp_ecTu.rh() <=destroy=>
cotapSpecTurh() compSource() ~TurSAL)
TurASM cotapSouree) prepareSon) getlibEgur()
=adestroy=> preparsFyd)
cormpSpecTurh() TuLE) ii‘:;i(;;:i‘o
corpProdi()
< ~TurSARCE
15FieldUsed() I
cormputeField() TwSARCO
preparesou)
prepareFad)
corapIntIntlodel()
==destroy==
~Turk S
s S
coraputeFieldl)

Ref.: [ELSA/MDEV-06001

Version.Edition : 1.0
Date : Jan 10, 2006

Page :

40/75

TurBase

<~

_rmutRatioldx : E_Float
prandtlTwb B _Float

_elemSysOper : EsElemSysType_X

computetearWall()
<destroy=>
~TwBasel)
corputeWall)
computeWall()
coraplvut()
compClenT ramsi()
isFieldUsed()
computeField()
prepareSon()
prepareFad()
setCellN()

s LS

comp Mutinodel)
appiy Limitor)
geihbEgtur)
compTurWalilaw(}
imiTranspEql)

Tur Transy 4_‘
seCradint - E, Bool TwKO
coefilvlutlnit : E_Float
<edestioye> _zhengLimitor : E_Bool
TurTransp() _5r:E _Float
corpProdi) _sigriad : E_Float
sFiskTsed() | bstas - Float
conaputeFieldl) _wsigl | E _Float
prepareSon() _betal :E Float PR
e _sigmael : E._Float Only the virusl
catSigma _sigmal - E_Float e
compDyfFRuxDens Cogfi) _bappa i E Float displayed
compSpecTurb() compSource()
compSourca() ==destiny==
-~ TwlOp)
[P et CelIHT)
compTurWallLaw()
TurK Qaviacl iniTranspEqg()
compnteWall()
_sigralmega : E_Float coraputs Wall()
_tauhlaxl iritor : E_Float corphlutinhodel)
_sstComection : E, Baol sompSpesTuh()
_sigraaD) : E Float oetSigmal)
_sigrakl - E Float isFisldUsed()
_betaDmega - E_Float compteFizld)
_bsta :E. Float eeihibEgturl)
_alphaCimegs - E Float zetllodConst))
indTranspEq) A
corap TuwrWalllawf)
compMutinModelf) [1
corapSpecTurh() TurMThsl TurKQaviac TurKOMenier
conapSourcel)
isFizldlUsed() _wsig2 :E Float ||_omegaWallProlong : E_Bool| |_randelWersion : hiodelVersion|
cormputeFisldf) _betad :E Float || _sstCorection: E Bool _wsigd | E Float
getSigmal) _sigmae2 : E_Float| [popapSpecTuth() | beta2 :E_Float
<=destroy=> _sigmad : E Float compllntInhlodel) _sizoaed 1 E Float
~TuwK Oavtacl() <=destroy=> conaputetTearWall) _sigad : E_Float
gethIodConst() ~ Tl Thal(} coraputeWall) ==destroy=>
campSpecTb() | [computeWall(y -~ Turk COlvlenter()
comp3oure() cormpSoueel) complutInIodel()
& getSigrnal) corupSpecTurh()
gethviodConst() corapSource()
<<destroy== computeFeld()
TuxhliLask Tk Oavtact) gethodConst()
coraputeWall()
==destroy==
-~ Tl Tast()
cornphIutinilodel()

Ref.: JELSA/MDEV-06001

Version.Edition : 1.0

ONERA

Date : Jan 10, 2006

Page :

41/75

DSNA

turbulence models.

algebraic

for the

equations turbulence models, and

transport

the

for

pgmr (g garedard
cfinnsapes {TeaAErFm L~
(e Jaredad AT e
{repopupngacuroa {rapopupn o
'Ol H : wITOUEHOA Wy A - Bpropddy
wold HWE{D e e R (s L T
wold H:EMRAT ol H:WITHOA
wold T 19 Jc b iery 1R
weord g day POl H XA FTETp—
E_uﬁnw q: %w.ﬁ_l _ ool m”u:um_l {ipratgaimdurna
oL H : MERY POl : yRaTdLLge0s OpaspaLsT
ROl FXEM) wmy A gdn _”U_WEH.HL
O] MITISIOSGE | (1Rald 0 lsouiEus TR cefonsapss
TRORE A TS SGe Ol |- ESIUOA | ernan g dunos
iy g EHpERG Jeord g ¢ eddey { Le e duroo
{bgdsues pra
x[gmy, [NINEymY A i
__kuu ppranf

(bgdeuma i

(I MBTREA AR] daoo
b gyied

(o Tdydd
(AP St
[0 it
(pImEes

(g garedand
(mogaredard

Cipratganchiog
Lpes[ipratgst
(st puanyduog
Cimpppchaos

ey aimcdurog
ey aimcdurog
{Jasegmy~
==A01Saps
e g Tea ppaimcunng

fedld o - oo Tiperd
0L F XOTE T
w aclh] sfcurapgscy | Tadosiourae

>

FERFan]

8.3 Polymorphism in turbulence modeling

All the classes deriving from the abstract classBase share its interface, which declares metlvothpMut() .

In elsA, the client classes of the turbulence models are the diffusive flExe3 énd the time integration algorithriiino);

Tur (the provider) andFxd (the client) interact using "messages" as for example:

tur->compMut(...);

is a concrete

is an attribute of typdurBase * belonging to this=xd object. TurBase::compMut()

method which consists of two stages:

where tur

TurBase::compMut()

Ref.: [ELSA/MDEV-06001 ONERA

Version.Edition ; 1.0 —
Date : Jan 10, 2006
Page : 42175 DSNA

compMutinModel();

applyTransition();
If transition has to be taken into account, the methpglyTransition() applies the intermittency function on the
eddy viscosity, in a uniform way for all the models. The metlaggly Transition() is then a concrete method

implemented infurBase . Conversely, computation of the eddy viscosity depends on each particular turbulence model,
and cannot be implemented in tharBase abstract class.

When manipulated in term of this abstract interface define@unBase , the concrete classes have not to be known by
the client classes. Client classes are only aware of abstract class.

Polymorphism allows the correct version cbmpMutinModel() to be called dynamically, without any explicit
"switch" coding by the programmer. In the example discussed in the preceding sectiong—afiffiar interaction
through the methodompMut(), the client manipulates a pointer (or a reference) to an instance of a class derived from
TurBase .

TurBase o ;
FxdFlux E e compMut{) i
public: J— ! '
compMut(); compMut(); = i compMutinModel(); i
4 ! applyTransition(); |
d protected: | !
<> tur applyTransition{) ; S !
— virtual compMutinModel()=0;
Coomphug |
P i
| _tur—>compMut(); ! TurkL
N !
protected:
compMutinModel();

As a consequence, adding a new turbulence model will not modify the code of the client class.

8.4 How to introduce a new turbulent model?

8.4.1 Use of inheritance

Object-Oriented technology greatly facilitates the introduction of a new turbulence model. The developer does not have
to have full knowledge of the whole elsA kernel. Instead, he can focus on a small number of well-defined tasks:

« introduce a new class in the turbulence hierarchy, deriving from a base class:
— deriving fromTurTransp , if it is a new transport equation model;

— deriving fromTurAlg , ifitis an algebraic model,

— or even deriving (specializing) from from an existing "leaf" concrete class, letSaayL , to test some
specializedrurKL variant.

* implement a small number of virtual methods;

« additionaly, to ease implementation, it may be useful to introduce new private methods and/or attributes.

ONERA Ref.: JELSA/MDEV-06001

e Version.Edition : 1.0
Date : Jan 10, 2006
DSNA Page : 43/75

Hence, OO programming provides a simple framework, allowing the programmer to work in a faster and safer way.

It remains to be seen how turbulent objects are created. This is fully discussed in fectiory component

Ref.: [ELSA/MDEV-06001 ONERA

Version.Edition ; 1.0 —
Date : Jan 10, 2006
Page : 44175 DSNA

9. OPER COMPONENT

Operator classes are dedicated to the computation of space discretization terms. Every operator has to Etorpute a
FieldF object defined upon a specific geometric entity (cell or interface). This chapter is dedicated to all operators in
elsA:

Oper: Abstract classes;

» Fxc: Convective fluxes (centered scheme, upwind schemes and artificial dissipation);

Fxd: Diffusive fluxes (laminar, mean flow or turbulent);

» Sou: Source terms (turbulence closure relations, moving frame, dual time stepping method).

9.1 Oper Module

9.1.1 OperBase abstract class
The general operator mechanism is defined in€iderBase class. Important attributes @iperBase are:

* _geoEntity : type of geometric entity where the computation has to be carried out;

e _borderDepth : width of the "border" region. The numerical treatment of an operator is performed on all cells
or interfaces, using the same numerical scheme on all geometric entities. The "interior" region of the operator is
the set of the geometric entities where this "current entity" treatment is directly correct. The "border" region is
the set of geometric entities where a numerical adaptation (correction) has to be made because of the boundary
neighborhood.

» _elemSysOper : identifier of the system of equations.
The other attributes of this abstract class are pointers:

» EosSysEqx _sysEq : current description of the problem;
» EosldealGas = _eos: current equation of state;

» GeoGridBase « _grid : current working computational grid.

An operator has to work on different contexts (different grids, thermodynamic model, ...), so an Oper object cannot be
fully configured at construction time. Instead, when context changes, it must be re-initialized in such a way that it can
work correctly. This is precisely the job &fperBase::prepare() , whose signature is:

virtual void prepare(const EosSysEq&, EosElemSysType,
EosldealGas* eos, const GeoGridBase* grid);

The method implementation is very simple: it reduces to proper (re-)settings of the class pointer attributes.

We must clearly distinguish two different operator subtypes, both inheriting @perBase class:

« OperTerm is responsible for the computation of one 'right hand side’ term;

« Utility operators are used to perform auxiliary computations; they are usually call€peyTerm objects. Up
to now, only two gradient operators have been implemer@gerGrad andOperGradint

ONERA Ref.: JELSA/MDEV-06001

e Version.Edition : 1.0
Date : Jan 10, 2006
DSNA Page : 45/75

9.1.2 OperGrad class

OperGrad andOperGradint inherit from OperBase . OperGrad class provides with the implementation of the
computation of gradients on cell centers, whei®asrGradint provides with the implementation of the computation
of gradients on interface centers. These operatorsotiown the result of their computation:

« They don’t have more attributes th@perBase .

« They only compute gradients with two overloaded versionsoofipute() , whose signature are:

/I compute the gradient of the conservative variables
void compute(FldCellF& fldOut,
const list<BndPhys*>& listBnd,
const list<JoinBase*>& listJoin,
AuxField identOfField = MISC);

and:

/I compute the gradient of non conservative variables (?)
virtual void compute(FldCellF& fldOut,
const list<BndPhys*>& listBnd,
const list<JoinBase*>& listJoin,
const FldCellF& fldin,
AuxField identOfField);

The gradient or flux computation is performed on all cells or interfaces using the same numerical scheme, in the
interior and theborder region. The standard formula may give wrong results (or even produce arithmetic
exception) for the border computation. Sperator objects must collaborate witloundary objects. This
collaboration can take two different forms (called Strategy 1 and Strategy 2, s¢e also 10.1):

» Stategy X computation in two stages: Gradient or flux computation is performed on all cells or interfaces, includ-
ing those from the border region. Then, special formula are used to correct the computation on the border region,
taking into account the boundary treatmedperGrad uses this strategy.

» Strategy 2 computation in only one stage: Ghost cells are filled by boundary objects, before the gradient com-
putation, such that the standard formula will give the correct result. Within this strategy, there is no need to use
special formula to correct the computation on the border re@perGradint uses this strategy.

9.1.3 OperTerm abstract class

Most of the time, an operator needs to compute some auxiliary fields before the final computation of fluxes or source term
(for example, the pressure field has to be computed to complete the centered convective flux computation). So, the stage
"Computation of an OperTerm" is split into two sub-stages:

1. computation of all the required auxiliary fields (by means of the conservative variables),

2. computation of fluxes or source terms (using these auxiliary fields).

Auxiliary fields which have to be computed before flux or source term computation have to be identified. A specific
attribute,OperTerm::_setOfldent , of typelist <AuxField >, is introduced to store auxiliary field identifiers.
The method:

virtual
void computeAllField(const list<BndPhys*>* [istBnd = E_NULLPTR,
const list<JoinBase*>* listJoin = E_NULLPTR);

Ref.: [ELSA/MDEV-06001 ONERA

Version.Edition : 1.0 —_
Date : Jan 10, 2006
Page : 46175 DSNA

calls thecomputeField() method for each auxiliary field registered bgetOfldent . Operators compute each

registered field through a call tmmputeField()

virtual

void computeField(AuxField identOfField,
const list<BndPhys*>* listBnd = E_NULLPTR,
const list<JoinBase*>* listJoin = E_NULLPTR);

computeField() is pure virtual andnust be implemented by concrete operators.

Fluxes or source term computation are not implemented at this level. This is discussed in the next sections.

9.1.4 OperFlux abstract class

OperFlux inherits fromOperTerm . Itimplements the major computational mettomnpute() according to Strategy
1

void OperFlux::compute(FldIntF& fldOut,
const list<BndPhys*>& listBnd,
const list<JoinBase*>* listJoin)

{
compFlux(...);
computeAllBorders(...);

}

This class defines the signature of one of the most important methods of every flux concrete operator:

virtual void compFlux(const FldCellF& fldin,
FldIntF& fldOut) = O;

Knowing the conservative variables on cell centers, this method provides with the flux values on the interfaces (interior
and border region) of the operator.

TheOperFlux class supplies also another important methamnputeAllIBorders() . The goal of this method is to
compute flux values on all interfaces of the border region taking into account the boundary conditions. For every physical
boundary, the following scenario is used:

1. the computation of the vectarbl of conservative variables defined on boundary interfaces is delegated to the
BndPhys x object responsible for the boundary under consideration;

2. wblisthen used to correct the flux computation on the interfaces of the border of the operator. The implementation
of this last stage is dependent on the concrete flux operator under consideration. Generally, it uses modified
formulas issued from the standard treatment.

9.1.5 OperSou abstract class

OperSou is an abstract class for source terms. This class inherits@perTerm class.

9.2 Fxc Module

TheFxc module gathers the concrete centered and upwind convective operators and the artificial dissipation operators.

ONERA Ref.: JELSA/MDEV-06001

e Version.Edition : 1.0
Date : Jan 10, 2006
DSNA Page : 47175

9.2.1 Centered convective operators

In elsA, the centered convective discretization is written as the sum of a simple centered discretization and a numeri-
cal dissipation termFxcCenter class inherits fromOperFlux class, and provides with the implementation of the
convective centered fluxes. ThempFlux() method is implemented iBxcCenter , so that:

« FxcCenter is able to compute the convective centered flux for mean flow or turbulent system,

» FxcCenter is able to compute the convective centered flux according to divergence form or a skew-symmetric
form.

However, sincecomputeOneBorder() is not implemented inFxcCenter , OperFlux::computeOne-
Border() is used.

To perform the flux computation on all interfaces, for the divergence form, flux density evaluated at cell centers is com-
puted. In case of skew symetric form, flux is computed directly on interfaces.

9.2.2 Dissipative operators

In the resolution of the mean flow system, one can choose between scalar artificial dissipation flusxESrstNum-
Diss), or matrix artificial dissipation flux (cladsxcMatNumbDiss). FxcScaNumDiss class defines new implemen-
tations of bothcompFlux() andcomputeOneBorder()

In the resolution of the turbulent systeeisA kernel provides two operators to implement the artificial dissipative term:

» FxcRoeCorr , based oMinMod limiter and Harten’s entropy correction;

* FxcScaNumbDiss is only available for the Spalart-Allmaras turbulent model.

9.2.3 Upwind convective operators
FxcUpwind inherits fromOperFlux class, and has two important attributes:

* FxcLimiter _limiter : limiter function to complete MUSCL extrapolation for second order schemes;

» FxcConvFunc x _convFunc : the convective function which, given left and right states compute convective
fluxes on interfaces.

The strategy used for the computation is close to StrategyxeUpwind defines a new implementation of them-
pute() method:

1. Primitive variables are computed from conservative variables,

2. Left and right values at the cell boundaries are evaluated, taking into account the boundary condition at each side
of a boundary interface. If necessary (spatial second order accuracy calculations), a linear approximation of the
solution on each cell is used in the projection stage, using slopes and non-linear limiters.

3. Finally, the upwind scheme is applied using the convective function.

9.3 Fxd Module

TheFxd is responsible for diffusive flux computaions. All the classes offtké module inherit fronOperFlux class.

Ref.: [ELSA/MDEV-06001 ONERA

Version.Edition ; 1.0 —
Date : Jan 10, 2006
Page : 48175 DSNA

9.3.1 Diffusive flux operators for mean flow or turbulent system
The classes in charge of diffusive fluxes computation are:
* FxdLaminar orFxdLaminarint : computes the dissipative fluxes for a Navier-Stokes laminar (no turbulence)

problem;

* FxdTurMeanFlow or FxdTurMeanFlowint : computes the dissipative fluxes of the mean flow system for a
Navier-Stokes turbulent problem;

e FxdTurTurbVar or FxdTurTurbVarint : computes the dissipative fluxes of the turbulent variable system
for a Navier-Stokes turbulent problem.

For turbulent problems, the flux density evaluation is delegatdditoobjects. For this purpose, these operators own an
attribute, tur , of typeTurBase x.

9.3.2 Diffusive flux operators with different kind of gradients

The flux density evaluation needs the computation of gradients. All operators Bkthenodule are direct users of the
gradient operators presented above. Two kinds of gradient operators can be used to evaluate the flu@derGiiyd

to compute gradients on cell centersQperGradint object to compute gradients on interface centerslFlux and
FxdFluxint are abstract classes which are respectively us@peirGrad andOperGradint objects.

All of these operators use Strategy 1, and provides with an implementatioongbFlux() and computeOne-
Border()

9.4 Sou Module

All the classes of th&ou Module inherit from theDperSource class.

« SouDts class is responsible for source terms associated with Dual Time Steppis) rhethod. It gives a
specific implementation of theompute() method. Here, no distinction is done between the interior and the
border region.

e SouTransp class is responsible for source terms associated with transport equation of turbulence model. It gives
a new implementation of the compute method, but delegates the computafionTtansp objects.

» SouRelFrameAbs and SouRelFrameRel classes responsible for source term associated with relative frame and
respectively absolute or relative velocity formulation.

9.5 How to introduce a new operator?

The developer does not have to know the whallA kernel. Instead, he can focus on a small number of well-defined
tasks:

« Introduce a new class in tf@per hierarchy, deriving from a base class (for example deriving f@perFlux |,
if it is a new flux operator).

« Define the auxiliary field(s) required, and implement the method to compute it (them).
« Implement a small number of virtual methods:
— compute() ;

— compFlux() ;

ONERA Ref.: JELSA/MDEV-06001

e Version.Edition : 1.0
Date : Jan 10, 2006
DSNA Page : 49/75
— computeOneBorder ;

— computeField() ;

< Additionaly, it may be useful to introduce new private methods and/or attributes.

Ref.: [ELSA/MDEV-06001 ONERA

Version.Edition ; 1.0 —
Date : Jan 10, 2006
Page : 501775 DSNA

10. BND COMPONENT

TheBnd module is dedicated to the treatment of the physical boundary conditions.

The "join" boundaries, associated with the matching of two grids are not considered in this module]dintdompo-
nent.

This chapter is dedicated to two boundary types:

» "Simple" boundary: associated with a single window;
they can express physical properties imposed by underlying physical problem: adiabatic or isotherm wall, symme-
try, inlet, outlet, etc...

» "Global" boundary: associated with a group of windows;
such an object must be able to express the coupling imposed on several grid objects through some constraints.

Presently, different types of global boundaries are implementets/ (imposed flow rate, multistage turboma-
chinery boundary,...).

Boundary objects are heavily used during the iterative loop to implement boundary conditions. They are also useful for
post-processing.

10.1 Boundary treatments

10.1.1 Introduction

Thanks to ghost entities, flux objects compute flux values on all interfaaesing exactly the same numerical scheme,

in theinterior and theborderregion, and without any help of indirection. It could seem obvious that using ghost entities
should allow to take into account boundary conditions without any need of a specific computatiobafdeegion of

a flux operator.

However precautions have to be taken; let us come back to the strategy in the case of a centered flux computation (Strategy
1). In that case, the strategy is made of the three following steps:

« Step 1: ghost cell values are filled by the boundary conditions:

(a) eachboundary condition computes a statebl in the center of the boundary interfaces of the considered
boundary;

(b) this statewbl is extrapolated (zero-ordered) in the cells adjacent to the boundary.

» Step 2: operator performs flux computation in the cells including some ghost cells.
During this phase fluxes on border interfaces are computed, taking into account values in these ghost cells.

» Step 3: border fluxes are corrected; for that, the operator asks for thevsthte each boundary condition; this
state is then used in the border flux computation.

10.1.2 Discussion

The third step of this strategy could appear useless and time consuming.

In fact, for certain flux variant (skew-symetric form convective term), it would be possible to avoid the specific border
flux computation provided that the suitable extrapolation has been made during the ghost cells filling phase. In the case
of skew-symetric convective flux, such a suitable extrapolation should fill the ghost cells with:

lexcept for a few ghost interfaces at the beginning and at the end

ONERA Ref.: JELSA/MDEV-06001

e Version.Edition : 1.0
Date : Jan 10, 2006
DSNA Page : 51/75
2. * wbl - w0

wherewO is the conservative state in the real cell adjacent to the considered boundary.

But several problems could appear:

« values extrapolated in ghost cells are not necessary physically correct (ex: negative values of pressure or tempera-
ture);

« ghost cells filling would depend on the considered flux operator.

In conclusion, this third step allow to control the flux computation on border interfaces, what is fundamental in viscous
computations.

In the following, we will notewCons the object of typd-ldCellF storing the conservative variables in cell centers.
We will discuss the two virtual method®mpBoundaryValues() andcompBoundaryValuesinGhost()

10.1.3 Additional details

In order to perform Step 1, each boundary class has to implement the virtual method:
void compBoundaryValuesinGhost(FIdCellF& wCons);
wherewCons is used both as input and output. This can be considered as a "preparation” stage to the flux computation.

Step 3 consists of two stages:

1. Knowing the conservative variables on all integration grid points (centers of a@lspBoundaryValues()
computeswbl. Each boundary condition has to implement the following method:

void compBoundaryValues(const FldCellF& wCons,
FidIntF& wbl)

2. Immediately after the computation a1, a second stage is performed in order to correct the flux values on the
border interfaces:

void OperFlux::computeOneBorder(const FldCellF& wCons,
BndType bndType,
const GeoWindowStruct& window,
const FldIntF& whb1l,
FldIntF& fldOut)
where:

» wblis given as input to compute "border" fluxes,

« the flux field:fldOut is corrected on the boundary interfaces usirig..

So, whatever the flux values were on the "border" interfaces, these values are replaced by new ones.

Ref.: [ELSA/MDEV-06001 ONERA

Version.Edition ; 1.0 —
Date : Jan 10, 2006
Page : 52175 DSNA

10.2 Public interface, class model and polymorphism

This paragraph is quite similar to subsectidlass modelin chaptefTfur component) describing the design of turbulence
models.

Both cases illustrate the subsectimheritance (in chaptetWhat is Object-Oriented software?) which introduces the
concept of polymorphism and inheritance.

Following the previous sectioBnd concrete classes have the responsability to implement the two methods declared in
the abstract base claBsidPhys by:

virtual void compBoundaryValues(const FldCellF& fld,
FldintF& wbl) = O;

corresponding to the treatment of Step 3, and

virtual void compBoundaryValuesinGhost(FldCellF& fld);

corresponding to the treatment of Step 1.
These two methods define the polymorphic behaviour of the abstracBrid&ys .

BndPhys proposes a default implementation for the second method, which consists of a simple 0-order extrapolation of
wbl in the ghost layer cells.

All the classes deriving froBndPhys implement the first method and, if necessary, the second one.

Finally, we obtain the UML class diagram which presents the traditional tree hierarchical structure organization:

ONERA Ref.: JELSA/MDEV-06001

e Version.Edition : 1.0
Date : Jan 10, 2006
DSNA Page : 53/75

ikt BllimChow | | DR | Bl | | Dot | Dy | | B | | e gl _
Tl ol | | | iyl s
] T] g
hifntne | | | Bism
hisyhj | | hiSugltlSeg | | il
BNl DO | | ooyl | | | iR | | DiSuPedavied Sy
ol | | il | | VRt Vel
iy

!

BodWBedlst

Bnd module contains a fairly important number of classes, each of one dedicated to a specific type of boundary condition.
Let us describe for exampndSubPres class, which deals with a " pressure downstream " subsonic boundary.

This type of boundary condition is associated with the resolution of a system of equations composed of four characteristic
relations and of imposed pressure condition.

Therefore, thdBndSubPres class includes a local implementation of t@mpBoundaryValues() method taking

into account:

« the s-statewbs) given by the methodreateSchemeValues() which computes predicted values (referenced
by "scheme vales" or "s-state" in the Theoretical Manual) of conservative variables on the boundary;

Ref.: [ELSA/MDEV-06001
Version.Edition : 1.0
Date : Jan 10, 2006

Page : 5475

ONERA

DSNA

in fact, vales on the interface are obtained by some kind of extrapolation from the interior of the domain;

« the O-statewb0) given by the methodompLinearisationValues()

which computes values of conserva-

tive variables (referenced by "0-state" in the Theoretical Manual) for linearization of characteristic relations;

these values are often chosen as the scheme values, but the coding of this subroutine allows the use of an other set

of values;

« the imposed boundary pressurgres .

The implementation is then:

void
BndSubPres::compBoundaryValues(const FldCellF& fld,
FldIntF&
{
E_Int intNbB = _window.getNblint();
E_Int nint = _grid.getNbint();
E_Int egNb = whb1.getNfld();

FldintF wbs(intNbB, eqNb);
createSchemeValues(fld, wbs);
FldIntF* wb0 = compLinearisationValues(&wbs);

wbpres_(intNbB, nint,
_window.getIndicBorder().begin(),
egNb,
wb0->begin(), wbs.begin(), wbl.begin(),
_pres->begin(),

wb1)

_grid.getSurf().begin(), _grid.getSurfNorm().begin(),

-_sens, _eos.getGamma());
if (eqNb > 5)

{
for (E_Int eqgind = 6; egind <= eqgNb; eqind++)

{
E_Float* ptwbl = wbl.begin(eqgind);
const E_Float* ptwbs = wbs.begin(eqind);
for (E_Int lint = O; lint < intNbB; lint++)
ptwbl[lint] = ptwbs]lint];

Boundary conditions have several client classes:

« the "right hand side"Rhs) which calls thecompBoundaryValuesinGhost

"preparation” stage to the flux computation;

(FIdCellF& fld

) method as a

* the "operators": fluxesdperFlux class) and gradients which call thempBoundaryValues (const Fld-

CellF&fld , FldIntF& wb1l) method in order to apply the boundary condition on boundary interfaces before

computing fluxes or gradients on "border" interfaces;

» the LUSSOR implicit method, time step computation and artificial dissipation which need the boundary values of
the conservative variables to compute the convective spectral radius.

ONERA Ref.: JELSA/MDEV-06001

e Version.Edition : 1.0
Date : Jan 10, 2006
DSNA Page : 55/75

For exampleOperFlux (the client) andnd (the provider) collaborate to compute fluxes on all the interfaces (see Step
3) in the following way:

void OperFlux::compute(FldIntF& fldOut,
const list<BndPhys*>& listBnd,
const list<JoinBase*>* listJoin)

[...]

/I 1. Compute interior flux values:

/I fldin : conservative variables (in cell centers)

/I fldOut: flux (cell interfaces)

compFlux (fidin, fldOut);

[...]

list<BndPhys*>::const_iterator itr;

for (itr=listBnd.begin();itr'=listBnd.end();itr++)

{
[...]
/l 2.a Compute border conservative variables:
/I (*itr) points to a boundary object
/I wbl stands for the conservative variables on boundary interfaces
(*itr)->compBoundaryValues(fldin, wb1l);
/l 2.b Compute border flux values:
computeOneBorder(fldin, (*itr)->getBndType(),

window, wbl, fldOut);

[...]

OperFlux is here only aware of abstract cldBsdPhys .

But polymorphism allows the correct behaviour of the concrete boundary condition to be taken into account, calling
dynamically the correct version @ompBoundaryValues() for each concrete boundary condition pointed by the
pointer(xitr) of the listlistBnd

10.3 How to introduce a new boundary condition?

10.3.1 Use of inheritance

It may happen that developers will have to add a new boundary treatmerBnsidev01, to Bnd module. This is
basically a simple task:

« The definition of the new class must be written, say in theBite/Phys/BndDev01.h
Starting from an existing "similar” class, this stage should be relatively easy.
In most cases, we only have to adapt the specific attributes of the new class.
Examples of specific attributes:

BndNS::_tWall /I wall temperature

BndTranspir::_viw /[attribute for transpiration condition (Wall)
BndSublnj:;_pa /I imposed boundary quantities
BndSublnj:;_ha /I (total pressure, total enthalpy,

BndSublnj::_do[xyz] // velocity directions)

Ref.: [ELSA/MDEV-06001 ONERA

Version.Edition ; 1.0 —
Date : Jan 10, 2006
Page : 56175 DSNA

» A constructorBndDev01::BndDev0l must also be coded.
The specific attributes of the class must be initialized by the constructor.

A virtual destructor must be coded. In most cases, the new class will not cakktheperator, and the destructor
implementation reduces to:

BndDev01::~BndDev01() {;}

» BndDev01l::compBoundaryValues() must be implemented.

Inside this method, it may be convenient to call a Fortran subroutine to perform the numerical computations for
numerical efficiency.

It may also be useful to introduce private methods to help with the main method coding.
Example:

void BndSubRadEq::compBoundaryValues(...)

{..
compAzimutalAverage(...); /I call of private methods
compPressureDistribution(); I "
wbpres_(...): /I call of FORTRAN subroutine

for (E_Int lint = O; lint < intNbB; lint++)
for (E_Int eqind = 6; eqind <= egNb; eqlnd++)
wb1(lint,eqind) = (*wbs)(lint,eqind); /[wb1l computation
}

When the preceding steps have been completed, it is wise to write a unitary test to check the code correctness (see chapter
Unitary test casesof [ELSA/MDEV-03036).

It remains to be seen how boundary condition objects can be instantiated when needed in integration tests.
This is fully discussed in sectidractory component
However, the new boundary treatment is still not accessible froral#einterpreter.

The procedure to add a new boundary treatment tel# interpreter is fully described in sectipn|12.

ONERA Ref.: JELSA/MDEV-06001

e Version.Edition : 1.0
Date : Jan 10, 2006
DSNA Page : 57/75

11. JOIN COMPONENT

11.1 Definitions

TheJdoin package is responsible for the transfer of data between adjacent grids. Let us introduce some notations:
« thecurrent grid is the grid receiving data;
- theopposite grid is the grid sending data;

 thedepth isthe number of rows of cells to retrieve.

depth
A/"
current block T
opposite block
11.2 Class diagram
11.2.1 Bridge design pattern
JoinBase (&2l | joinBaseP
JoinAdjacentP
JoinMatch JoinMatchP

I I
JoinMatchSeqP | | JoinMatchParP

11.2.2 JoinBase

Abstract class : provides the interface for data transfer services implemented by derived concrete classes.

Ref.: [ELSA/MDEV-06001 ONERA

Version.Edition ; 1.0 —
Date : Jan 10, 2006
Page : 58/75 DSNA

11.2.3 JoinAdjacent

Abstract class that provides common services for matching and near-matching join.

11.3 Characteristics

curcent window w2

IIyJ'Di" 2 opposite window w1

u'l'

o] W

»

loinl current window wl
 ajoin per block face (or sub-face); QppOsite Wi ndow w3l

e sequential - multigrid - parallel;

JoinBaseP |e=50m1ransto | AgtTran

* spatial periodicity through composition:

11.4 Interface

11.4.1 Main methods

» prepare objects before ugg¢pareJoin)

« retrieve values (cell,interface) of the opposite grid and put these values in ghost cells of the curregetgrid (

T T

Values) current grid opposite block

ONERA Ref.: JELSA/MDEV-06001

e Version.Edition : 1.0
Date : Jan 10, 2006
DSNA Page : 59/75

11.5 Preparation of join for parallelism (JoinParBuffer)

11.5.1 singleton design pattern

« allocates memory for a buffer objeckainBufferP);
 prepares the buffer object to send and receive data;

* holds received data until used.

11.5.2 Main methods

1. fill buffers with data to sendpushCellField);
2. send buffers to other processsefdBuffer);
3. get received datagetCellBuffer);

4. delete buffersqlearBuffer).

11.6 Time progress

1. Send and receive conservative variables to and from other proce$swSétOfSolver::fillinGhost-

Cells()).
2. Compute all fields (pressure, spectral radius, gradientd,mpSolverBase::prepareRhs()).
3. Send and receive all fields to and from other procesSoroSetOfSolver::prepareOtherValues()).

4. Compute fluxes (fluxes are computed using Strategy. 210, since ghost cells are filled in). Each grid com-
putes its own fluxes and conservation is ensured since values are equivalent in the twoTgridSolger-
Base::computeRhs()).

11.7 Agt component (Affine Geometry Transformation)

Agt module Provides all services required to compute affine geometric transformation: permutation, translation and
rotation:

» change of reference frame between current and opposite grids;

« periodicity application.

11.7.1 Change of reference frame

 Agtindice is responsible for (integer) indices computations.

» AgtFrame deals with reference frames.

Ref.: [ELSA/MDEV-06001 ONERA

Version.Edition ; 1.0 —

Date : Jan 10, 2006
Page : 60/75 DSNA

11.7.2 Example
Agtindice translation(1,2,3);
AgtFrame(-2,3,1,translation);

(231) —> 0 0 1

-1 0 O

0 1 O
ei =-2-> e_i corresponds to the -O_j axis
e j= 3 -> e corresponds to the O _k axis
e k= 1-> e k corresponds to the O_i axis

11.7.3 Geometric transformations

» AgtCoord manages coordinates (real).

» AgtTransfo provides a matrix transformation (rotation, translation,...).

11.7.4 Example

AgtCoord Point (1.1,2.2,3.3,0.0});
AgtCoord Vector (1.1,2.2,3.3,1.0});

ONERA Ref.: JELSA/MDEV-06001

e Version.Edition : 1.0
Date : Jan 10, 2006
DSNA Page : 61/75

12. FACTORY COMPONENT

12.1 Fact component : encapsulating object creation details

The Fact component is an important architectural component. It is responsible for the dynamic creation of all kernel
objects involved in a CFD simulation. Starting from a description of the simulation expressed tiidesgh objects

(coming from the Python script file), a small numberfa€tory objects are responsible for the instantiation of all the
objects required to run a CFD simulation. Basically, the work is made through simple test sequences based on attributes
of specific description objects: depending upon the attribute values, a kernel object of a specific class is instantiated, and
correctly initialized.

12.1.1 Factory concept

12.1.1.1 "Steady" state

A very significant advantage of OO software is that it is easy to extend through polymorphism: if client code interact
with objects using only base (abstract) class interface, adding a new derived classt@egiire a modification of the
existing code; the compiler takes care of the underlying switches (by calling the oorteat method of the concrete
derived class), and the client code has no knowledge of the actual object types (concrete classes).

12.1.1.2 |Initialization stage

However, of course, there is no magic here: there must be somewhere in the code where specific derived class objects
must be created based on some criteria. So, when the new derived class is introduced in the hierarchy, there must be
some modifications. To keep the advantage of polymorphic extensibility, it is obvious that these modifications must be
encapsulated in a single function (hopefully a small one), or, better, in a single class. If not, for example if clients were
authorized to call derived class constructor directly, we would have simply moved the problem from thisiogdbjets

to the codecreatingthem.

This class, the factoryHactBase or FactTurb in elsA), knowsabout all the different class of the hierarchy, and

also has the information necessary to create the correct type of object. No other parts of the system need to have this
information. A (usually unique) public class method definesitherface?® for creating a family of polymorphic objects.
Because of the unavoidable coupling between the factory and all the classes of the hierarchy, it has to be carefully designed.

This mechanism is used in elsA to instantiate objects corresponding to several important class hienchigsr ,
Fxc, Fxd, Lhs andTmoStage .

12.1.1.3 Creation of objects at runtime: "virtual" constructor

elsA kernel objects are created at runtime, depending of user inputs (through script files or interactive session). Infor-
mation coming from the user must provide (among other thinggpa identifier . This type identifier, which can

itself be an object, helps the factory in creating the appropriate type of object. We may sum up the logic through the
"object-type-object trade:

« the user information is coded in the type identifier object, which can be an integer, a string, ...

« this type identifier is exchanged (through an indirevtion) for the right type;

'For exampleFactTurb::make() for turbulent objects.

Ref.: [ELSA/MDEV-06001 ONERA

Version.Edition ; 1.0 —
Date : Jan 10, 2006
Page : 62/75 DSNA

« finally, one can use this type information to call the correct constructor, and thus to get an object of the desired
type.

In C++, creating objects of polymorphic types at runtime is sometimes called the "virtual constructor” technique. Note
however that there is no virtual-ness here: each object creation is a block of statically bound, rigid (not virtual') code.

12.1.1.4 A (too) simple example: choice of time integration algorithm

At runtime, depending upon the state description objects defining the simulation, the factory may choose to create either
aTmoRKutta object, or aTmoFBEuler object:

/I file Fact/Base/FactProblem.C
TmoStage*
FactBase::createAllTmoStage(TmoPbElem& pbElem,
DesTimelnteg& desTimelnteg)
{ ...
TmoStage* curStage;
if (desTimelnteg->getS(KEY_ODE) == E_BACKWARDEULER)
curStage = createTmoFBEuler();
else if (desTimelnteg->getS(KEY_ODE) == E_RK4)
curStage = createTmoRKutta(desTimelnteg);
else
DefError error(2115); error++; error.raiseError(); // Error

pbElem.setTmoStage(*curStage);

return curStage;

Here the type identifier is a strine(BACKWARDEULERE_RK4). To every concrete class (hefenoFBEuler and
TmoRKutta) is associated a creation functiceréateTmoFBEuler andcreateTmoRKutta), whose main task is

to call the corresponding constructor. Instead of calling directly class constructors, objects are created using these creation
functions. Typically, the creation functions look like

Derived* createXXX(...)
{

return new Derived(...);

}

Note:
This code assumes that covariant type return is supported by the compiler. We can encapsulate this:

#ifdef E_NO_COVARIANT_RETURN
Base* createxXXX(...)

#else

Derived* createXXX(...)

#endif

{

return new Derived(...);

ONERA Ref.: JELSA/MDEV-06001

e Version.Edition : 1.0
Date : Jan 10, 2006
DSNA Page : 63/75

12.1.1.5 Refinement of the Factory design

The previous example works perfectly well, and is probably well adapted when the class hierarchy does not change a lot.
However, the design has some flaws:

« It performs aswitch based on a type tag, with the associated drawbacks: to add a new class, we still have to
modifycode (here, implementation of methoetateTmoStage()), not justadd new code.

« Itintroduces "magic" values directly inside compiled code (here two strieEgBACKWARDEULERJE_RK4).

The following sections discuss several design improvements.

12.1.2 Factory design

To remove these disadvantages, we have implemented a more "advanced" desigBifaf, tBper andTur hierarchy.

The basic idea is to use pointers to functions: the factory keeps a collection of pointers to (creation) functions (with
identical signature), each function being responsible of the creation of objects of a single concrete type. Using free
creation functions (instead of class methods) simplify the pointer to function management. The connexion between type
identifier and pointer to function is implemented through an associative container object, thatis, Bhe map object,

which can be viewed as a dictionary, stores pairkef/(, value), where key is the type identifier and value is the pointer

to creation function.

12.1.2.1 Choice of a unique type for type identifier

We decide to usstring (TbxString) as the type of type identifier; the obvious value associated to the $tame-

Class is of course the string objestring("SomeClass") . Whis this choice, we solve the problem of finding a
unique identifier; Using integers for type identifiers would lead to the difficult problem of finding a unused value for every
new class.

12.1.2.2 Introduction of some typedefs

To simplify notations, we introduce somgpedef ; for exemple, for th&ur andBnd hierarchies:

class FactBase

{

/** Pointer on "Virtual" constructor of the Turbulence model */
typedef TurBase* (*PtrVirtConsTur)(const DesNumSpaceDisc&,
const DesModel&,
const DesBlocké&,
GeoGrid& grid,
vector<GeoWindowStruct*>&,
vector<GeoWindowStruct*>&,
vector<GeoWindowStruct*>&,
vector<FldInt|>&,
E_Float);
/** Pointer on "Virtual" constructor of the BndPhys */
typedef BndPhys* (*PtrVirtConsBnd)(const DesBoundaryé&,
const DesBlock&,
const DesNumerics&,
const EosldealGas&,
TurBase?,

Ref.: [ELSA/MDEV-06001 ONERA

Version.Edition ; 1.0 —
Date : Jan 10, 2006
Page : 64/75 DSNA

const GeoGrid&,
E_Int);

/** Type identifier */

typedef ThxString TurTypeld;

typedef ThxString BndTypeld;

/** map of Tur virtual constructors */
typedef map<TurTypeld, PtrVirtConsTur> DicoTur;
typedef map<BndTypeld, PtrVirtConsBnd> DicoBnd;

The factory owns dictionariesallTurCtor , _allBndCtor ;

static DicoTur _allTurCtor;
static DicoBnd _allBndCtor;

Each entry is gair resulting from the association of a name and a (pointer to) function. To every new turbulence class
or new boundary condition class corresponds a new entry in this dictionary:

(Classld, createClassName)

12.1.2.3 Register a new turbulence model class

The factory isscalablebecause you don't have to modify its code each time you add a new derived class to the system.
FactBase divides responsibility: each new concrete class has to register itself with the factory by cadjisigpr-
Tur() and passing it its type identifier and a pointer to its creation function.

class FactTurb

{

/** Tur objects instantiation method
TurBase* make(const DesNumerics& desNumGlb, DesModel& desModGlb,
DesBlock& desBlock,
const list<DesBoundary*>& listDesBnd,
const list<DesInit*>& listInitBlock,
GeoGrid& grid);

[** registration */
E_Bool registerTur(ThxString name,
PtrVirtConsTur pvc);

FactBase::makeTurb(...) (File FactTurb.C):
{

E_Int turbMod = desModGlb.getl(KEY_TURBMOD);
TbhxString trueName = _db.getTurClassName(turbMod);
turBase = (*(_allTurCtor[trueName]))

(desNSDGIb, desModGlb, desBlock, grid,

ONERA Ref.: JELSA/MDEV-06001

e Version.Edition : 1.0
Date : Jan 10, 2006
DSNA Page : 65/75

vectorWindows, vecWakes, vecWalls, vecTurCriteriaFile,
coeffMutlnit);
if (turBase == E_NULLPTR)
{
DefError error(2180); error++; error.raiseError();
}

}
E_Bool FactTurb::registerTur(TbxString name,

PtrVirtConsTur pvc)
{

_allTurCtor[name] = pvc;

}

The registration itself is performed with startup code (code generated by the compiler to initialize global lndfjeets
enteringmain()):

namespace

{

TurBase*
createTurKL (...)

{

return new TurKL(cutvarl, cutvar2, muRatioMx, prandtlTurb, coeffMutinit,
turcriteria);

}

E_FactTurRegister(TurkKL) // appel de la macro d'ebregistrement

}

where, to ease notation, we have used the macro:

#define E_FactTurRegister(className) \
const E_Bool registered##className = \
FactTurb::instance()->registerTur(TbxString(#className), \
&create##className);

Let us stress again that nowhere in the elsA kernel should the constructorkf. be directly called, except inside
methodcreate TurKL()

Note:
The only exception may arise in unitary test(s) written specially totegkL class.

12.1.2.4 Register a new boundary condition class

The same solution is applied to register a new boundary condition class: each new concrete class has to register itself with
the factory by callingegisterBnd() and passing it its type identifier and a pointer to its creation function.

class FactBase

{

[** registration */
E_Bool registerBnd(TbxString name,
PtrVirtConsBnd pvc);

Ref.: [ELSA/MDEV-06001 ONERA

Version.Edition : 1.0 —_

Date : Jan 10, 2006

Page : 66/75 DSNA
E_Bool FactBase::registerBnd(TbxString name,

PtrVirtConsBnd pvc)

{

_allBndCtor[name] = pvc;
}

The registration itself is performed with startup code

namespace
{
BndPhys*
createBndSubPres(const DesBoundary& desBnd,
const DesBlock& desBlock,
const DesNumerics& desNumGlb,
const EosldealGas& eos,
TurBase* tur,
const GeoGrid& grid,
E_Int level)
{

GeoWindowStruct windowFine = *desBnd.getDesWindow()->getWindow();
GeoWindowStruct wind = windowFine.buildWindowAtLevel(level);

E_Int intNbB = wind.getNbint();

FldintF dataBnd(intNbB);

[--]
if (desBnd.queryF(KEY_PRESSURE))

{
dataBnd = desBnd.getF(KEY_PRESSURE);

o -

nd = new BndSubPres(grid, wind, dataBnd, eos);
o]

—

}
/I Macro (register creation function)
E_FactBndRegister(BndSubPres);

}

where, to ease notation, we have used the macro:

#define E_FactBndRegister(className) \
const E_Bool registered##className = \
FactBase::instance()->registerBnd(TbxString(#className), \
&create##className);

12.1.2.5 Putting everything together

It remains only to specify how user input is translated into type identifier.

« The simplest solution would be to ask the user to give the class name directly.

» Presently, we use a more complex solution, using an indirection, implemented with Python dictionary objects. For
example:

ONERA Ref.: JELSA/MDEV-06001

e Version.Edition : 1.0
Date : Jan 10, 2006
DSNA Page : 67/75
Python API:

DesModel my_model('my_model’)
my_mode.set("turb”, SPALART)

Python User:
my_model = model()
my_model.turb = ’spalart’

Python dictionary ((file EpKernelClassName.py):

dict_tur = {

BALDWIN : "TurBIX",
MICHEL . "TurAlgMichel",
SPALART : "TurSA",

}

Another example concerning the boundary conditions:

Python dictionary ((file EpKernelClassName.py):

dict_bnd = {

"FxcCenter+inactive" : "BndSupOut",
"FxcCenter+outpres” : "BndSubPres",
o}

Note:

User interface manageur hierarchy in a different way thaBnd or Oper hierarchies: in Python-APl, it uses integer
identifiers instead of strings. this non-uniformity should be removed.

Ref.: [ELSA/MDEV-06001 ONERA

Version.Edition ; 1.0 —
Date : Jan 10, 2006
Page : 68/75 DSNA

13. DESCP PACKAGE

13.1 Building Python interface with SWIG

The special modulépi provides all the stuff needed to build the Python interfacelsé\. Api is not a standardIsA
module:

« thereis no libraryllbeApi.a orlibeApi.so).
« the local template Makefilélake obj.mk , deals with additional information to control SWIG operation;

 to build Python-elsA interface, SWIG needs spedrakrface files, with . i extension, located in directory
Api/Wrapper

13.1.1 Whatis SWIG?

The output file created by SWIG contains everything that is needed to construct an extension module for the target
scripting language. To build the final extension module, the SWIG output file is compiled and linked witlsghe
libraries to create a shared library, or a statically linked executable (see also /ELSA/MDEV-3036).

13.1.2 cpp-like syntax

Like C, SWIG preprocesses all input files through an enhanced version of the C preprocessor. All standard preprocessor
features are supported including file inclusion, conditional compilation and maSk$Gis a very convenient special
preprocessing symbol defined by SWIG when it is parsing an inpulSilelG(preprocessor symbol)

class DesBase

{

/** */

double getF(const char* key) const;
/** */

int getl(const char* key) const;
/** */

const char* getS(const char* key) const;

#ifndef SWIG
/** */
E_Float getF(const TbxString& key) const;
/** */
E_Int getl(const ThxString& key) const;
/** */
ThxString getS(const ThxString& key) const;
#endif

13.1.2.1 SWIG directives

Most of SWIG's operation is controlled by special directives that are always preceded by a "%" to distinguish them from
normal C declarations. These directives are used to give SWIG hints or to alter SWIG's parsing behavior in some manner.

ONERA Ref.: JELSA/MDEV-06001

— Version.Edition : 1.0
Date : Jan 10, 2006
DSNA Page : 69/75
Wrapper/DesModel.i:

%constant int E_ BALDWIN = DesModel::E_BALDWIN; = 0*

13.1.2.2 SWIG parser limitations

Although SWIG can parse most common C/C++ declarations, it does not provide a complete C/C++ parser implementa-
tion. Most of these limitations pertain to very complicated type declarations and certain advanced C++ features.

In the event of a parsing error, conditional compilation can be used to skip offending code. For ex#ifimolef
SWIG ... some bad declarations ... #endif

Note:
Newer versions of SWIG are able to digest most C++ constructs. Workarounds that have been used in the past to
build the swigged Python-elsA interface are probably useless, and should be removed.

13.2 elsA interface building strategy

This section describes the general approach for buildisg interface with SWIG.

« Identify the functions (i.e. class methods) that you want to wrap. It's probably not necessary to access every
single function. A little forethought can dramatically simplify the resulting scripting language (presently, Python)
interface.

« If you want to access a new C++ class from the scripting interface, create a new interface file (extehsidse

SWIG’s include directive to process an entire C++ source/header file.

File Api/Wrapper/DesCfdPb.i
%module DesCfdPb

%{
#include "DesCfdPb.g"
%}

/* DesCfdPb::Config */

%constant int E_ 1D = DesCfdPb::E_1D; [x =0 *
%constant int E 2D = DesCfdPb::E_2D; =1 %
%constant int E_ 3D = DesCfdPb::E_3D; =2 *

%constant int E_AXI DesCfdPb::E_AXI; [* = 3 */

/* DesCfdPb::Axis */

%constant int E_ X = DesCfdPb::E_X; x =0 *
%constant int E.Y = DesCfdPb::E_Y; =1 *
%constant int E_Z = DesCfdPb:E_Z; =2 *

%include DesBase.g
%include DesCfdPb.g

» Make sure everything in the interface file uses ANSI C++ syntax.

* Eliminate unneeded members of C++ classes (USMWyGsymbol).

Ref.: [ELSA/MDEV-06001 ONERA

Version.Edition ; 1.0 —
Date : Jan 10, 2006
Page : 70175 DSNA

13.2.1 Technical details

13.2.1.1 Static linking

With static linking, you rebuild the scripting language interpreter with extensions. The process involves compiling a short
main program (fileApi/Wrapper/elsA_wrap.C) that adds your customized commands to the language and starts
the interpreter. You then link your program with a library to produce a new scripting language executable.

Although static linking is supported on all platforms, this is not the preferred technique for building scripting language
extensions. In fact, there are very few practical reasons for doing this, we plan to switch to shared libraries instead.

Note:
We still have to take into account platforms that do not provide shared library: NEC SX, Fujitsu VPP.

13.2.1.2 elsA main()

elsA main() is located in file Api/Wrapper/elsA_wrap.C . To build elsA_wrap.C , SWIG uses the file
Api/Wrapper/elsAembed_template.i

int
main(int argc, char **argv)

{

/I print banner (general information)

e_log << E_BANNERSTRING1];

e log << "Size of Float . " << sizeof (E_Float) << " Bytes" << endl;
e log << "Size of Integer : " << sizeof (E_Int) << " Bytes" << endl;
e_log << endl;

/I call Python interpreter
E_Int py _return = Py Main(argc,argv);

#ifdef E_MPI
MPI_Finalize();
#endif
e log << "# elsA : normal run termination (" << py_return << ")" << endl;

}

Modify Api/Wrapper/elsAembed_template.i with great care.

Ref.: JELSA/MDEV-06001

elSA Version.Edition : 1.0

Design and Implementation Tutorial

ONERA

Date : Jan 10, 2006

Page :

71/75

DSNA

Direct access to index’s alphabetical section headings :

o o o o o o o o o o (o o o o o o o o o o (o o o o o o

_ _ NI HIRIENRE LU fpoe) o])
m-“-m_mmmn“nmm-E-mn“nmmnm
_ _ RN NN LELCEE epf epf o)

CALCIUM,
HOST,
PALM, [T6]

swig, [16]

—A—
(link is to index’s alphabetical heading7|
abstract class, [12] [37] 48]

abutting, [20]
addressing function (C++),

addressing function (Fortran),

Adjoint, [17]

adjoint approach (shape optimization),
adrcell, [30]

adressing convention, 29

ALE,

ALE,[H

algebraic turbulence model, [8] [33]

-B-—

(link is to index’s alphabetical heading7|
backward-Euler, [7]

base class, [12]

Base layer, [20]

begin (FId iterator),
BIk,

block, [6} [20]

block splitting, [16]

Bnd (Boundary condition),
border,

boundary,

boundary condition, [6]
boundary condition design, 48]
Boussinesq, [g]

—C -

(link is to index’s alphabetical heading7|
C++,

CALCIUM,

cFD, 4

CFL,[7

CGNS,

chimera, [20]

class,[12]

class ,[14]

compBoundaryValues(),
compBoundaryValuesIinGhost(),
component, [18]

connectivity, [27]

INDEX

convective flux, [6]

coupler, [16]

coupling (external),
coupling (multidisciplinary),
cyclic dependency,

-D-
(link is to index’s alphabetical heading&7|
DAMAS,

decoupled, [6}

default value,

diffusive flux,

divergence form (flux computation),
DTS,

DTS,

DTS (Dual time Stepping), [9]

Dtw, [20]
Dual Time Stepping,

—E -

(link is to index’s alphabetical heading&7|
E_FactTurRegister, [6]]
EARSM,

eddy viscosity,

eIsA.py (Python module),
elsA.py (Python module),
elsA.x,

encapsulation, [1T]

Eos (Equation of State),
explicit,

external coupling,

external coupling (internal),

Y =
(link is to index’s alphabetical heading$§7|
Fact layer,

Fact module, 57|

factory,

factory concept,

Fid, [20]

Fld element access,
Fld numerical values container, [22]
FldArray, [22]

FldCell,

FldField, 22

Fldint, [22]

FldNode,
fluid-structure coupling,
flux,

ONERA Ref.: JELSA/MDEV-06001

e Version.Edition : 1.0
Date : Jan 10, 2006
DSNA Page : 73/75

Fortran argument passing (from C++),
Fxc,

Fxc (Convective Flux),

FxcCenter,

FxcMatNumDiss, [43]

FxcScaNumbDiss,

FxcUpwind,

Fxd, 43|
Fxd (Diffusive flux),
-G -

(link is to index’s alphabetical heading{§7|
Geo,

GeoAdrF.h,

GeoGrid,

Geometry layer,

ghost cell,

ghost geometric entities,

ghost interface,

ghost node,

global quantities (post-processing),
global timestep,

gradient,

grid, [6]

grid cell, [§]

grid interface, [6]

grid motion,

grid node, [6]

GUI,

—H -

(link is to index’s alphabetical heading&7|
handle,

Harten entropic correction,

Harten’s correction, [g]

HMR, [20]

— | =

(link is to index’s alphabetical heading&7|
ICEM-CFD,

implicit algorithm,

inheritance,

inheritance hierarchy,

initial condition, [20]

interactive text mode,

interface,

interior,

IRS implicit time integration algorithm,

- J-
(link is to index’s alphabetical heading{§7|
Jameson’s scheme, [g]

Join,

— K=
(link is to index’s alphabetical heading7]
kernel,

— L=
(link is to index’s alphabetical heading&7|
layer, [18]

LES, [g]

Lhs (Left Hand Side),

load balancing,

local quantities (post-processing),
local timestep,

Low Speed Preconditioning, [9]

LU implicit time integration algorithm,
LUSSOR (implicit), [50]

LUSSOR implicit time integration algorithm,

— M=
(link is to index’s alphabetical heading$7|
map, (59
Mask, [20]

matching join,
mean flow,

memory initialization control,
mesh, [6}

mesh deformation,
messagee,
metrics,

minmaod,

module,

MPI,
multiblock,
Multigrid, [9]

MUSCL, [6]

—N-=
(link is to index’s alphabetical heading$7]
naming convention,
near-matching join,

—0O-
(link is to index’s alphabetical heading7|
object, [11]

object factory,

Object-Oriented (00),

ODE,

Oper,

operator,

OperSou,

Opt (component),

—P-
(link is to index’s alphabetical heading7]

Ref.: [ELSA/MDEV-06001
Version.Edition : 1.0
Date : Jan 10, 2006

Page : 74175
parallel, [20]
parallel (MPI),
Pcm, [20]

physical model layer, [20]
polymorphic behaviour, [12]
polymorphism, [14} [37] [48] [57]
post-processing (boundary),
private,

protected,

protocol,

prototype,

pseudo-time, [5]

public, 12H14]

pure virtual, [42]

PyGelsA,

Python, [14] [15]

(link is to index’s alphabetical heading7|

—R -

(link is to index’s alphabetical heading7|
RANS,

reference frame, [9]

Rhs (Right Hand Side),

Roe’s flux, [6]

Runge-Kutta,

—-S-—

(link is to index’s alphabetical heading7|
scripting interface>(Python),
singleton, [12] [40]

skew-symmetric (flux computation),
slope (MUSCL),

solver layer, 2]

Sou (Source term) , [20]

SouDts,

source term, 5]

SouTransp,

space discretization, [5} [6} [20]
Spalart-Allmaras,

specialize (from a base class),
Spllt (component), @

SPMD,

steady, [6]

subclass, [12]

superclass,

SWIG,

i
(link is to index’s alphabetical heading7|
time discretization, [5]

time integration, [7]

ONERA

DSNA

time loop,
timestep, [6]

Tmo, 27]

transition, [9} [20} [33]
transport equation turbulence model, [8} [33]
Tur, [20]

TurAlg, 34]
turbulence, [20]

turbulence design, 33
turbulence modeling, [g]

TurTransp,

type, [12]
type identifier (Factory),
—U-—

(link is to index’s alphabetical heading&7|

UML, [14, [33] [48]
unsteady, [6]

upwind scheme, [g]

—V -
(link is to index’s alphabetical heading&7|
V_cycle,[9

velocity formulation, [9]

virtual, [12] 57|
virtual (pure),
virtual constructor,

—W-—
(link is to index’s alphabetical heading&7|
W-cycle, [9]

— X —
(link is to index’s alphabetical heading$§7|

—Y =
(link is to index’s alphabetical heading&7|

—7—
(link is to index’s alphabetical heading&7|

ONERA Ref.: JELSA/MDEV-06001

e Version.Edition : 1.0

Date : Jan 10, 2006
DSNA Page : 75/75

DIFFUSION SCHEME

Archives Secrétariat Logiciel

Rédacteurs

DéveloppeurgIsA

END of LIST

	Contents
	Introduction
	Document's purpose
	Content

	Theoretical background
	Overview
	Numerical formulation
	Discretization
	Mesh and Grids

	Description of the main features available
	Space discretization schemes
	Time integration
	Calculation strategy
	Turbulence modeling
	Transition
	Techniques of convergence acceleration
	Rotation frame and ALE technique
	Types of join boundary

	Not discussed in this document
	Chimera technique
	Hierarchical Mesh Refinement (HMR)

	What is Object-Oriented software?
	Object-Oriented Programming Concepts
	Object, interface, encapsulation
	Collaboration between objects
	Messages and methods

	Class
	Inheritance
	And see other examples:

	General architecture
	elsA library and applications
	Object-Oriented architecture
	elsA input data
	Simulation control
	Parallel mode
	Multidisciplinary Coupling
	Optimization module Opt
	Access to CFD databases (CGNS, DAMAS)
	Log file
	Post-processing

	Kernel design
	Classification and Design organization
	Naming convention

	Overview of the layers
	Base layer
	Geometry layer
	Physical model layer
	Space Discretization layer
	Solver layer
	Factory layer (elsA top layer)

	Fld component
	Basic numerical containers
	Public interface
	Examples of Fld client code
	Check of memory access, control of memory initialiazation

	Passing field data to Fortran
	FldArray internal structure
	Examples
	Remark on Fortran convention

	Geo component
	Ghost geometric entities
	Ghost cell numbering
	Ghost interface numbering
	Ghost node (mesh points) numbering
	Simplified example
	Identical numbering of cell / interface / node

	Address and increment methods
	Example: Centered convective fluxes
	Example: Flux balance

	Tur component
	Definition of the public interface
	Class model
	Polymorphism in turbulence modeling
	How to introduce a new turbulent model?
	Use of inheritance

	Oper component
	Oper Module
	OperBase abstract class
	OperGrad class
	OperTerm abstract class
	OperFlux abstract class
	OperSou abstract class

	Fxc Module
	Centered convective operators
	Dissipative operators
	Upwind convective operators

	Fxd Module
	Diffusive flux operators for mean flow or turbulent system
	Diffusive flux operators with different kind of gradients

	Sou Module
	How to introduce a new operator?

	Bnd component
	Boundary treatments
	Introduction
	Discussion
	Additional details

	Public interface, class model and polymorphism
	How to introduce a new boundary condition?
	Use of inheritance

	Join component
	Definitions
	Class diagram
	Bridge design pattern
	JoinBase
	JoinAdjacent

	Characteristics
	Interface
	Main methods

	Preparation of join for parallelism (JoinParBuffer)
	singleton design pattern
	Main methods

	Time progress
	Agt component (Affine Geometry Transformation)
	Change of reference frame
	Example
	Geometric transformations
	Example

	Factory component
	Fact component : encapsulating object creation details
	Factory concept
	Factory design

	Descp Package
	Building Python interface with SWIG
	What is SWIG?
	cpp-like syntax

	elsA interface building strategy
	Technical details

	Index

