Plan B: Boxes for networked resources

Francisco J. Ballesteros, Gorka Guardiola Muzquiz,
Katia Leal Algara, Enrique Soriano
Pedro de las Heras Quirds, Eva M. Castro,
Andres Leonardo, and Sergio Arévalo*

Laboratorio de Sistemas
Universidad Rey Juan Carlos
Madrid, Spain.
Is@lsub.org

Abstract

Nowadays computing environments are made of
heterogeneous networked resources, but unlike envi-
ronments used a decade ago, the current environments
are highly dynamic. During a computing session, new
resources are likely to appear and some are likely to go
offline or to move to some other place. The operating
system is supposed to hide most of the complexity of
such environments and make it easy to write applica-
tions using them. However, that is not the case with
our current operating systems. Plan B is a new oper-
ating system that attempts to allow the applications
and their programmers select and use whatever re-
sources are available without forcing them to deal with
the problems created by their dynamic distributed and
heterogeneous environments. It does so by using con-
straints along with a new abstraction used to replace
the traditional file abstraction.

Keywords: Distributed systems, Operating Sys-
tems, Adaptability, Pervasive computing.

1 Introduction

The computing environment used to write this pa-
per is made of three different network technologies
(ethernet, wireless ethernet, and serial links) that in-
terconnect a number of different devices including lap-
tops, hand-held pocket PCs, desktop PCs and a file
server. Some of these machines have large displays,
some do not. The same happens with keyboards, au-
dio devices, disks, and other resources. Furthermore,

*This work financed in part by Spanish MCYT TIC-2001-
1586-C03-01 and URJC PPR-2003-40.

resources available to a human or an application using
the system greatly vary upon time because the devices
can move. Besides, other resources like printers, scan-
ners, etc. should be used or not depending on the
location of the user and their operational status (they
go offline some times).

To pick up an example to illustrate the need of a
new operating system, consider what a user or an ap-
plication® has to do for printing a file when using the
pocket-pc. We would like to be able to say just “copy
this file to a printer” and let the system discover if
there is a printer at hand willing to accept print jobs.
If there are several printers available, we would like the
system to choose any one that understands the format
of the file to be printed. If no printer understands the
file format but there is a program to convert the data
to the printer format, we would like the system to run
that program and then queue the result for printing.
This is not the case with current operating systems.
Furthermore, existing systems are likely to send the
file from the file server to the pocket-pc (which can
be connected through a very slow link) just to send
it again to the printer. This means that once more
the user has to make the job of the operating system
by selecting a machine well-connected to the printer
where to execute the print command.

We believe that we have enough technology to be
able to do all this with just a single command like

cp /this/file /any/printer

but in the operating systems we use it turns out
to be much more complex. This may be a symptom
that existing operating systems are not supplying ap-
propriate services to handle our computing resources.

1In what follows we use the term “user” to refer both to users
and to applications using the system.

To define the problem more clearly, we can say that
existing operating systems are not helping much their
users to select which resources to use. Note that this
problem, which could be named the “resource selec-
tion problem” is different from the problems of both
locating and discovering resources, and is actually a
simplified version of the problem of taking context into
account while considering user requests.

This problem can be seen in plenty of different ex-
amples, whenever the user is selecting a particular re-
source among the ones available in the network. For
example, we would like to say “execute a program”
without taking care of which binaries are available for
the program, which architectures they can execute on,
and which processors of such architectures are avail-
able. Programs like editors would like to ask the oper-
ating system to “save data to a temporary file”, and let
the system discover whether to use a local file system
(if any), or the department’s file server (if available),
or any nearby disk willing to accept requests for tem-
porary storage from our machine (when available). If
we are lucky, our operating system would allow us to
use resources from the network but it would still leave
up to the user the task of selecting which ones to use
even when the choice is obvious.?

A different, but related, problem is that once the
resources are selected, we may change our mind. For
example, many of us have wanted to be able to use
our mouse for a while to help a colleague sitting in
the next desk, instead of having to stand up and use
his/her mouse. We would also like to use a keyboard
from a desktop machine to type on a networked pocket
PC with no keyboard. Although the application con-
sidered has already a mouse or a keyboard to receive
events or characters, we may still want to make it
use different devices for a while. Another instance of
the same problem is that, due to changes in the net-
work, an application using a network connection may
be forced to switch to a different connection to stay
connected (e.g. switching from a tcp stream to an in-
frared connection). We refer to this problem as the
“resource redirection problem”.

The objective of this work is to provide a comput-
ing system where applications could use the plethora
of networked resources without dealing with the com-
plexity of the environment by themselves; more pre-
cisely, to build a system that addresses both the re-
source selection and redirection problems on behalf of
the applications. The system has been built and is

21t is a matter of taste, but for the author this case is when all
machines involved run either Plan 9 or Inferno. Both operating
systems exportall resources to the network using a file interface,
which at least is more than other systems do.

named “Plan B”.

In what follows, section 2 shows the main ideas be-
hind Plan B. Sections 3 and 4 give an overview of the
system and its main elements. Then we show how
such elements are used to address the problems faced
in sections 5 to 7. Sections 8 to 10 discuss how we
address some important issues like heterogeneity, fail-
ures, garbage collection, and protection. Section 11
shows some implementation details. Section 12 dis-
cusses more examples to show how the system works.
Section 13 explains the lessons we learned while build-
ing and using the system. Sections 14 and 15 discuss
related and future work.

2 Plan B

The main new idea in Plan B is the introduction of
a new abstraction, the box [3], designed to let the ap-
plication use networked resources in an easy way. But
we believe that its main contribution is not any idea in
particular, but how the combination of its design prin-
ciples makes up an environment that is more simple
to use for today and upcoming computing resources.
These are the principles Plan B is built on:

e All resources (processes, devices, etc.) are per-
ceived as a single abstraction, the boz [3]. Boxes
are typed data containers that are operated us-
ing a copy operation (instead of the traditional
read/write interface used for files) and have con-
straints that determine how they can be used to-
gether. This lets Plan B know which resources
are being requested to be used together (a bi-
nary is copied to a processor, a file to the printer,
etc.) and which constraints must be considered
when using them (binaries must match the pro-
cessor architecture, file formats must match those
understood by the printers, etc.). The box ab-
straction is further discussed in the next section.
Note that traditional read and write operations
can still be performed by copying into or out of on-
demand created boxes that represent the applica-
tion’s memory. This is further illustrated later.

e The system operates on both local and remote
boxes through the same protocol, called Op. Any
server on the network implementing this protocol
can provide boxes (i.e. services) to be used from
a Plan B process.

e Name spaces bind names to boxes. Each applica-
tion has its own name space and can customize
it. Customization is done by defining names for

boxes, as well as the order in which they should
be searched. More than one box may be bound
to the same name.

e Box operations use names instead of descrip-
tors. Therefore, applications keep no connections
to resources, they use the network to send self-
contained requests. This is important to better
tolerate changes in the network.

e Boxes can be advertised to the network as they
become available. Applications can instruct their
name spaces to automatically import (i.e. bind)
new boxes as soon as their advertisements are re-
ceived. Applications use this mechanism to learn
of resource availability and to adapt the name
space to the actual environment.

These principles lead to a simple system with just
14 system calls that includes all the functionality of a
typical operating system. The complete list of system
calls is as follows:

System call | Purpose

cast Defines a type conversion
change Changes the current box name
chinfo Modifies metadata for a box
copy Copies one box to another
delete Deletes a box

dot Retrieves the current box name
forget Forgets about an imported box
import Defines a new name for a box
info Returns metadata for a box
kind Returns the box type/constraints
link Links one box to another

make Makes a box

selectors Returns inner box names
uncast Forgets about a type conversion

Plan B owes much to the design of Plan 9 [14], which
also uses a single abstraction, the file, to export all
resources to the network. But unlike files in Plan 9,
boxes permit Plan B to take over the task of selecting
and combining the resources needed by the user, at
least most of the times.

3 The Box

A box [3] is an abstraction which is meant to re-
place the more traditional file abstraction and tries to
capture enough of high-level data semantics and rela-
tionships to solve the problems faced.

A box contains data and may also contain inner
boxes, leading to a tree structure. Boxes in the tree
are named using path names similar to the ones used
in file systems, with components separated by slashes.
There is no difference between boxes that contain inner
boxes and those that do not. All boxes are operated
with the same set of operations. Most of the Plan B
system calls are just the box operations shown in this
section.

There is no open operation in Plan B. Box opera-
tions use box names, which means that a box name
is likely to be resolved every time a box is used. Al-
though this adds some performance penalty, this is
crucial in that it allows Plan B to decide to which re-
source the name should be resolved on each operation.

The most important operations to handle boxes are
copy and link. The first one conceptually copies data
from a box to another. By supplying copy instead of
read and write, the interface permits the system to be
aware of which two resources are being combined. The
second one, link, is used to tie two boxes together.
Link was introduced because it is a convenient way to
express that a box should be like another one. The im-
plementation of 1link determines that the box linked
is either a reference or a replica of another box. The
exact implementation (reference or replica) of link
depends on the boxes linked. References are useful
to address the resource redirection problem, replicas
are useful to maintain copies of resources at different
locations so that the system could select among them.

The operations are atomic with respect to other
operations on the same box. This means that multiple
operations on the same box do not overlap.

We have seen most of the box interface; other oper-
ations are delete, which removes a box, info, which
retrieves box metadata, chinfo, which updates box
metadata, and selectors, which asks for the names
of inner boxes to a given box. Since their names give
a good approximation to what they do, they are not
discussed on this paper.?

3.1 Box types and constraints

Boxes represent resources, and resources have prop-
erties. To provide for a representation of resource
properties, each box has an associated type and con-
straint set. A box type is defined to Plan B by means
of a string with the type name. A constraint set is
defined by a sequence of values for each property of
interest for the resource. Each value is a string. Val-

ues for different properties are separated by the “!”

3The delete system call may also be used to remove previ-
ously established links.

character. The type and constraint set are specified
together using a string of the form “a/blc!...”. For
example, the box containing a program binary to be
run on a Plan B system on a PC may have the type and
constraints bin!386!wave. In this example the type is
bin (i.e. “binary”) and 386!wave are the constraints.
Here, there are two constraint elements with values
386 and wave. Constraint elements are positional so
that the first value in any constraint set gives a value
for the same constraint. The convention in our system
is that the first constraint refers to the architecture of
the machine and the second refers to a network where
the machine is attached (when the machine is attached
to more than one network, the second constraint refers
to the one used to reach the box).

The mechanism used by the kernel to select re-
sources by means of constraints is a constraint reso-
lution algorithm which is inspired by the unification
mechanism of the Prolog programming language. The
algorithm is as follows, although its meaning will be
more clear when we discuss later how Plan B uses it
to select resources.

/* Unifies two sets
¥ of N and M constraints
*/
Unify(setl[1-n], set2[1-m]) {
if for i = 1 to max(n,m)
unifyval(set1[i], set2[i])!=fail
then
return
set of unifyval(setl[i], set2[il)
else
return fail
}
/* Unifies two constraints
*/
Unifyval(vl, v2) {
if vl = nn or v2 = nn
return ""
if vi = u\'/'u
return v2
if v2 = "\)j"
return vi
if vl = v2
return vl
return fail

The algorithm determines if two constraint sets can
be unified or not. If they do, the algorithm returns a
constraint that is the unified version of them, and we
say that the constraints match.

We have to say that the kernel itself does not rely
on which constraints are used. This means that re-
source providers and system users can define any set

of constraints desired. If a new property is considered
of interest, a new position in the constraint set can be
agreed upon to represent that property.

4 Name spaces and resources

The name space glues together the trees in the for-
est of boxes that are of interest for the application,
i.e. the set of resources of interest. Plan B refers to
names that have boxes bound to them as prefizes; the
implementation of the name space is in fact a prefix
table [21]. The name space enables the automatic se-
lection of resources by allowing multiple bindings to
the same name. It also enables adaptation to envi-
ronment changes by allowing automatic bindings of
resources that show up in the network while the ap-
plication runs. The next three sections show how this
is done and how the problems discussed before are
solved.

5 Handling the resource selection and
redirection problems

The lack of open introduces an indirection that per-
mits applications to use different instances of a given
resource at different points in time, depending on re-
source availability. It also permits the application to
be unaware of the actual location of the resource on
the network, and permits changes in the name space
to take immediate effect in all the applications using
the names affected. For example, network connections
in Plan B are handled by using boxes; the box name
“/b/con/nautilus:80” represents a stream connection
to the service named “80” at the machine named “nau-
tilus”. The application resolves the name each time
the connection is used. By using the name space and
binding appropriate resources (e.g. tcp connections
or serial lines) to that name the application can stay
connected despite changes in connectivity.

By using binary operations like copy and link (in-
stead of read and write), the system is aware of which
resources are to be combined. This is quite important
since it permits the system to:

1. Transfer the data from the source to the desti-
nation through the best path available. Unlike
traditional file copying, a copy interface permits
data to go straight from the source to the target
box without placing the client process doing the
copy in the middle of the data path.

2. Select an appropriate pair of resources. This can
be done only if the system knows both the source
and the destination. The mechanism used in Plan
B is the resolution of a set of constraints associ-
ated with each resource and is discussed later.

Regarding the first point, the optimization of the path
used to transfer the data may introduce significant
performance improvements. Since the implementation
of copy asks the destination box to retrieve data from
the source, caching techniques can still be applied to
avoid unnecessary data transfers. When the network
connection between the machine executing the opera-
tion and the rest of the system is poor, the use of copy
can make the difference between being able to perform
the copy and not being able to do it at all.

Regarding the second point, the selection of the re-
sources involved in a system call is performed by unify-
ing constraints on the set of boxes named in the system
call arguments. System calls using a single box (e.g.
info, which retrieves metadata for boxes) unify the
constraints supplied by the user with the constraints
of the boxes with the given name. The first box found
for which the constraints unify is the one used. On
the other hand, system calls using two boxes together
(e.g. copy, which copies a box to another) try to find
a pair of boxes such that: the first one unifies with the
constraints supplied for it by the user; the second one
unifies with the constraints supplied for it by the user;
and the results of both unifications unify.

/blproc /bin
386
ARM p98! ether
386
p95!wave
p98!lwave

Ib Ib chinfg
cp mk mk
sh

p98!ether p95lwave p98lwave

Figure 1: A network with processors and binaries

To show an example, figure 1 depicts a scenario
where three different processors are bound to the name
“/b/proc” and three different boxes containing in-
ner boxes with program binaries are bound to the
name “/bin”. In this example, two boxes exist with
name /bin/1b, one with constraints p98!ether and
the other with constraints p95!wave. The conven-
tion is that the first constraint specifies the architec-
ture of the machine involved and the second speci-
fies the network where the machine is attached at (or
one of them if there are many). In this example, p98
and p95 are two different architectures (i586/PC and
salll0/iPaq). Ether means that the machine is ex-
porting the box through our fast ethernet and wave
means that it is exported through a radio ethernet.

Now consider the system call

make ("/b/proc/1b!\}!ether", "/bin/1b")

which requests the creation of a new box (a new
process) named /b/proc/1b such that its constraints
match with those of a box named /bin/1b and also
match the constraints %!ether. The system searches
the name space for a pair of boxes named /b/proc
(since we are making a box, we search for a container
where to create it) and /bin/1b. It may find first
the processor box bound to /b/proc with constraints
p98!wave. Such constraint set does not unify with
%'ether and therefore the system keeps on search-
ing until it finds the box bound to /b/proc with con-
straints p98!ether. Since that unifies with %!ether
the system has a candidate for /b/proc. The result of
the unification has the constraints p98!ether.

Now the system searches for boxes bound to
/bin/1b such that its constraint set unifies with that
given by the user and also with the result for other
argument (p98'ether). Since the user said nothing
regarding constraints for /bin/1b, the first box found
whose constraints match p98!ether is considered a
candidate for /bin/1b. In fact, there is a /bin/1b
box whose constraints are exactly p98!ether. That is
the one used. In few words, the user asked the system
to create a process to execute a program and the sys-
tem searched for an appropriate processor and binary
program pair.

We also need some means to ask the system to
choose a different resource for a given resource name
and application, i.e. to perform a “resource redirec-
tion”. In Plan B, this operation is 1ink. Consider as
an example the redirection of “standard output” for
a process. In Plan B each process is represented by a
box (e.g. /b/proc/1b) and has an inner box named
iol (e.g. /b/proc/lb/iol). The convention is that
this box is used by the process to serve the same pur-
pose of UNIX’s standard output. A link from a box

to iol would make iol point to such box. The next
time the process copies something to iol data will be
sent to the linked box instead. The code needed for
the application to redirect the output of our example
process is quite simple:

link (/b/term/cons,/b/proc/1b/iol)

Note that the process executing the call might be
at a different machine and that the process involved
(/v/proc/1b) may be already running.

Link also helps to keep multiple resource instances
to let the system choose among them. This leads to the
second meaning of 1ink, namely, to maintain replicas
of resources. A clear example is the design for stor-
age boxes. A storage box is roughly the equivalent of a
traditional file system on secondary storage. A storage
box considers links as a means to replicate data on dif-
ferent storage areas, which is clearly different from the
meaning of links under /b/proc. If the home for user
“nemo” is kept both at his laptop and at his depart-
ment’s file server, it is reasonable to link both boxes
to let the system know. If both instances of “nemo’s”
are bound to the name “/usr/nemo”, any path start-
ing at “/usr/nemo” can be resolved to either of the
instances depending on the state of the environment.
The techniques needed to keep both copies coherent
have been studied by systems like Coda [18].

6 Box conversion

Boxes must be of the same type to be operated (e.g.
copied) together. All Plan B name spaces include a
set of conversion definitions along with the prefix ta-
ble. The converter set is made of entries that specify
a program that converts data of a particular type to a
different type (a null program may be specified to de-
fine subtypes and constraints can be given along with
the program name to constraint where should it exe-
cute). New entries can be added with the cast system
call, and removed later with the uncast system call.
The /b/sys/casts box holds a textual representation
of the conversions defined, to let the user know.

When the name space searches for compatible boxes
it considers the set of conversions defined, and may
cause the execution of the converter program on behalf
of the user.

7 Adapting to changes

The name space can be instructed to pay attention
to announces or advertisements in the network stating

that a particular resource is available. The system call
used is import, usually using the network address any
(which means that we don’t care about the resource
location). For example,

import /b/proc any /proc proc!p98 b

arranges for a new prefix /b/proc to be entered
in the name space below (b) existing ones. Initially,
there is no box bound to that prefix. However, any
box advertised in the network under the name /proc
with a constraint matching proc!p98 will be bound
to the name as soon as the advertisement is received.
Plan B uses an advertisement protocol along with the
Op protocol (which is used to operate on boxes across
the network).

When it is found that an advertised bounded box
is no longer accessible, it is removed from the name
space. Currently, this may only happen after an op-
eration is attempted on the box. Although it has not
been tested yet, constraints could be used to provide
hints about the expected lease time for a new resource
to stay. Besides, the forget system call can be used
to forget about a previously imported box.

8 Heterogeneity

Heterogeneity of architectures and networks is dealt
with by combining several tools:

1. Presenting all resources as a single abstraction
and using conventions to organize the name
spaces. This helps to deal with resources inde-
pendently of their architecture and inner struc-
ture, because at least the interface is always the
same.

2. Using constraints to express restrictions and fea-
tures of the resources. This helps to know which
resources to import to the name space and which
ones can be combined.

3. Using the converter set to automate data transla-
tions between heterogeneous formats.

For example, the standard Plan B graphics device
uses the Plan 9 image format for images. When an
application uses a different format for output images,
a conversion can be defined to let the application use
different output devices. Furthermore, should the pro-
gram used to convert the image format require a fast
CPU, a constraint can be defined to determine if a
/proc box (a processor) is considered as either fast or

slow. Thus when the system tries to execute the con-
verter, it will select a CPU considered as fast. Despite
the simplicity of the constraints mechanism, this ex-
ample illustrates how it can be used to deal with not
so simple problems.

9 System and network failures

Plan B does not try at all to provide fault tolerance,
since we believe that the user of a networked environ-
ment would experiment failures anyway. For example,
a user willing to use a friend’s laptop to execute a
process must be aware that such process could die if
the friend leaves and shuts down the laptop. In Plan
B the user is responsible for calling import, supply-
ing appropriate constraints, to instruct his/her name
space about which kinds of resources are acceptable
and which ones are not.

9.1 Network failures

Using boxes to represent network connections
makes it easier to adapt to network failures. For exam-
ple, a name space may have both a tcp protocol stack
and an infrared protocol stack bound to the name
/b/con, which is the conventional prefix for stream
links. An application may be sending data to ser-
vice 20 at machine nautilus by copying data to a box
named /b/con/nautilus:20. That name is meaning-
ful to both stacks and the first time used would issue a
connection request to the remote machine. If the first
network fails, the second (also bound to /b/con) may
still take over.

One problem that may still happen is that out-
standing messages going through a failing network
would be lost despite the supposed reliability of the
connection. In this case, the protocol used by the ap-
plication over the network link is still required to pro-
vide a means to keep the connection reliable (e.g. by
using serial numbers on requests and/or retrying the
requests). The Op protocol used to perform box oper-
ations does so, which means that applications do not
need to care about this issue when using boxes from
the network. The implementation is greatly simplified
because, if we ignore the possible error status in the
result, box operations are idempotent in most cases.
The lack of a “file offset” concept makes it easier to
achieve this because updates are atomic and refer to
an entire box, not to a part of a box.

9.2 Garbage collection

Box servers are almost stateless because box re-
quests are self-contained. If a client crashes or gets
disconnected from the system, outstanding requests
are completed and the server forgets about that par-
ticular client. However, the client might have created
boxes to be used just during its life (e.g. windows,
temporary storage, etc.) and the server should be able
to delete them when the client can no longer use them
due to a crash or a network disconnection.

In this case, garbage collection is done by means of
a lease permission bit. Clients that create boxes that
should be subject of garbage collection upon client fail-
ure are supposed to set the lease permission bit on such
boxes. Any box with that bit set would be deleted by
the server if the client does not access the box during
an interval of time specified by the server.

Another mechanism useful for garbage collection is
the deldie (delete on die) permission bit. When set,
the box involved is removed by the creator process
while it exits. This helps to delete resources no longer
in use when a process crashes (but the machine where
it runs must be alive and connected to perform the
delete operation on the box).

9.3 Consistency

The link operation leads to data replication when
the resource implementation prefers to do so, for ex-
ample, on storage boxes. This introduces the prob-
lem of maintaining data consistent between the set of
replicas. Since the system is built considering that
disconnections are usual, dealing with consistency is
more complex.

We assume that most of the time, the user es-
tablishes links to replicate coarse grain data like a
set of system binaries, a home box (what would be
a home directory on other systems) and similar re-
sources. Moreover, we assume that users are respon-
sible for establishing a sensible set of links and that
conflicts due to concurrent updates on replicated boxes
are rare. With this set of assumptions, we can borrow
results from systems like Coda [18] to maintain the set
of replicas.

Each server holding a replica accepts updates and is
responsible for propagating them to remaining replicas
as soon as it is feasible. When a conflict is detected, a
text message is sent to the user to notify of the conflict
and permissions are adjusted to avoid further updates.
When the user resolves the conflict, he/she can change
permissions to allow further updates.

10 Protection

Protection is based on authenticated access check-
ing through access control lists. Plan B checks per-
missions each time a box is used, which would prob-
ably not happen on a system using file descriptors.
Each box has a set of permission bits (matching the
operations in the Op protocol) to determine which op-
erations can be performed by the box owner and by
others. There are no user groups in Plan B.

The authentication protocol is left out of the sys-
tem and it is assumed that box clients and servers
will be authenticated before speaking Op. This is the
approach used by Plan 9 [14]. In fact, the current im-
plementation has a very naive authentication protocol
because we plan to borrow such protocol from Plan 9.

Binary box operations like copy and link, that are
performed on the destination node on behalf of the
client issuing the operation, require the destination
node to be able to speak for the client regarding the
operation being performed. This is achieved by issu-
ing one-shot tickets from the client to the node that
performs the operation. Such tickets are used just to
authenticate the user, not to perform access checking
(which is done with access control lists).

Name space
Op mux
Op
Box Box Box
server server server

Figure 2: Overview of the Plan B architecture

11 Implementation

As of today, we have a complete implementation
of Plan B, including a shell and utilities going from
a “list boxes” (1b) program to a graphics program to
set the volume on the current audio box. We rewrote
the utilities from their Plan 9 counterparts to use the
system in a real setting, so we could exercise the sys-
tem. We hope that the examples shown in this paper
will illustrate what we learned using the system. The
implementation, user manual, and system description
are available for download at the Plan B web site [2].

Plan B is just a box multiplexor that allows appli-
cations to build a name space for boxes in the network
and tries to help them to select which of them to use
on each case. The implementation follows the archi-
tecture shown in figure 2. The kernel performs each
system call by resolving the box names involved and is-
suing Op RPCs to perform the appropriate operations
on the boxes selected.

At the beginning of each system call, the kernel
creates a Boxref structure for each box involved.
Boxrefs are handles for local and remote boxes. A
boxref carries the box name and constraints as spec-
ified by the user and keeps track of which part of the
name (and constraints) are resolved and which part is
yet to be resolved. During the system call, the boxref
may point to different boxes while the name space is
being searched for a box that matches the user sup-
plied name and constraints. Once a matching box is
found, the boxref is said to be bound and will not
change any further. Once the system call has com-
pleted, the boxrefs used are destroyed. We found
that this is important to make the system more re-
liable to changes in the environment, since it makes
system calls self-contained. Although it may look in-
efficient, delays introduced are not appreciable for the
Plan B user.

While bound, a boxref contains both the address
of the box server and the box name as known by
the server. The format used to store the address is
a string machine:service and corresponds to a name
for a network connection (/b/con/machine:service).
Since this name may also correspond to different net-
work links/protocols depending on the environment
state, the boxref switches to different connections
upon changes in the network (connections are estab-
lished /terminated automatically by the implementa-
tion of the /b/con/ boxes).

The most complex part of the implementation is the
name space, due to the complexities added by the con-
straint and type checking mechanisms. After a series
of changes to our initial implementation of the name
space, the current implementation performs searches
by unifying constraints as said before in this paper.
But the name space semantics was not obvious from
the beginning and it required experience with the sys-
tem to reach a satisfactory implementation state. For
example, the constraints may refer to the box or to its
container depending on the system call (e.g. make),
and the type should be checked or not depending on
the system call (once more, make is creating a box and
therefore the type is specified to determine the type
for the new box, not to do a type check).

Furthermore, since a name space lookup might be
retried several times during the search for boxes with
matching constraints, it is necessary to undo the uni-
fication of constraints before each attempt to find a
matching box. This also happens in Prolog while per-
forming unification of expressions, and that was pre-
cisely the reference used to reach a sensible implemen-
tation.

Binary system calls (those using two box names) re-
solve the names and constraints by following the code
shown below, where nsselect resolves the prefix and
opselect binds the handle to the box. Note that each
call to nsselect selects a different name space entry
where to try the binding. The code shown is a sim-
plified version of the real one, which is 58 lines of C
code.

// finds a pair that can be
// operated.

// Returns the converter to
// be used when needed.

// values for op
enum {COPY, LINK, CONVERT, MAKE};

charx*
can(Boxref* sbp, Boxref* dbp, int op)
{
nsreset (sbp) ;
nsreset (dbp) ;
while(nsselect (sbp)){
if (lopselect(sbp))
continue;
while (nsselect (dbp)){
if (!opselect(dbp))
continue;
if ('unify(sbp, dbp))
continue;
if (same types)
return found;
if (has converter)
return converter;
}
}
error (Nomatch) ;

}

Below the name space stands the Op multi-
plexor. This multiplexor is in charge of implementing
opselect to resolve the suffix of the name not spec-
ified by the name binding (i.e. the part of the name
determined by the box hierarchy in the server). Be-
sides, the Op multiplexor performs the RPC call to
the appropriate box server requesting the execution of
the box operation. Most system calls issue RPCs not

just to perform the operation, but also to learn of the
types and constraints of boxes named by the user.
The current implementation works hosted on top of
Plan 9. The machine dependent part of the kernel uses
Plan 9 processes and files (including network connec-
tions and rio windows) to supply services to the ma-
chine independent part. The current kernel supplies
boxes for processes, files, network connections, mem-
ory, graphics, sound and some other miscellaneous sys-
tem boxes. A shell and several command line pro-
grams have been implemented and used to exercise
the system and gain experience with its interface.
Our experience with the system shows that the per-
formance is reasonable, although no performance tun-
ing has been done yet. Since the merit of any perfor-
mance numbers is of the underlying Plan 9 system, no
measures have been made yet. A native port would be
tried before. Nevertheless, measures made to the /net

Plan B kernel Plan B process Plan B process

ARNYAATES
SVANPAN

Plan 9 kernel

Figure 3: Implementation on top of Plan 9

framework of Plan B show that the overhead of the
name space is 1usecond that corresponds to the lookup
of a name in the prefix table. This overhead remains
almost constant for reasonably sized name spaces, and
has been measured on a 2.4GHz Pentium 4 PC run-
ning Plan B hosted on a Plan 9 system. This is the
price paid for the lack of binding. Of course, every
time a box server fails, there is an overhead for the
detection of the failure and the reconnection to the
new server. This overhead depends on the particu-
lar network protocol used and would be the same for
any other operating system willing to switch from one
server to another.

The approach used to implement Plan B (see fig-
ure 3) on a host environment like Plan 9 is to employ
a separate plan 9 process for the Plan B kernel, and
then one Plan 9 process per each Plan B process. More
precisely, the Plan 9 process used for the Plan B ker-
nel has one thread (one Plan 9 process actually) per
Plan B process. Each thread services system calls for
the corresponding Plan B process. System calls are
made using RPCs through a pipe between the user
and kernel processes.

The source code is 3731 lines of machine dependent

code in C, and 7753 lines of portable code in the same
language. Lines are counted using wc on all C source
files under the /src/b/9 and /src/b/port directories.
This is just a hint of the simplicity of the system but is
not to be taken too literally because we must account
for the fact that Plan 9 processes and other resources
are being used to implement Plan B boxes.

11.1 The Op protocol

The Op protocol leads to stateless box servers and
is simple enough to permit implementations with tiny
memory and processor usage. The protocol defines an
RPC for each box operation as well as two operations
called getmem and putmem. The first one is used to
retrieve memory contents from a box and the second
is used to update memory in the box. Unlike read and
write, they transfer all the box contents since there
are no “file offsets” in Plan B. When the maximum
message size is not enough to perform the transfer of
the box contents, a series of getmem/putmem messages
is sent; the whole series is considered as a single opera-
tion. Note that by avoiding “file offsets” and updating
the entire box contents at a time we reduce the prob-
lems caused by using different replicas of resources as
well as those introduced by the concurrent access from
clients to network resources. A failure in the middle of
a series of putmem RPCs for a single copy is handled
like a crash in the middle of an operation, i.e. servers
should try to keep the old box contents intact until
the series is completed. When this is not feasible due
to the size of the box, the box will be left in an incon-
sistent state (very much like when the system crashes
in the middle of a single putmem).

12 Other examples

Despite the lack of read and write, applications
can still copy data from their memory to the outside
world and vice-versa. In Plan B each address space is
a box that has inner boxes representing portions of the
application’s memory. For example, the equivalent of
a traditional write would be a copy from a memory
box to some other box, like in

copy ("/vm/0x£1000:0x£2000", "/some/box");

The /vm box synthesizes inner boxes on demand
just for the system call that uses the inner box name.

As a final example, there is a usr box in Plan B
that represents a human user. Among other things, it
contains a set of I/O devices preferred by a user. Con-
ventionally, the shell links its I/O devices to those pre-
ferred by the user who started the shell. Through this

simple mechanism, newly started processes canfollow
the user and use appropriate I/O devices depending
on the state of the human using the system. Further-
more, should the user change his mind, for example,
to borrow a friend’s keyboard for a while to type to
an already started process, all the user has to do is to
link a new set of I/O devices for the involved process.

13 Lessons learned

The constraint mechanism is very powerful when
combined with copy. On its own, constraints seem to
allow the application to select resources given a set of
properties considered. However, by using the system
we found most of the time that the set of properties
desired for a resource depends heavily on the charac-
teristics of another resource (e.g. we don’t know which
/bin/1b binary we want without considering which
processors are available). Therefore, the combination
with copy makes a real difference when compared with
name services that simply resolve a single name given
a set of constraints or properties. We hope that the
examples in the paper had illustrated this, and the
experience of using Plan B.

The lack of connections and file descriptors seems
to make garbage collection harder. However, we found
that this is not exactly true because despite connec-
tions, servers must still use either a leasing mechanism
or a timeout based one to determine if a connection
is just slow or the client at the other end is broken.
Nevertheless, we found that this approach makes the
system more resilient to failures.

Most of the times, we are more worried about per-
formance than we should be. We always thought that
the name space implementation would be the bottle-
neck, but experience said otherwise. Humans using
the system noticed no change when a hardwired im-
plementation that did not use constraints nor searched
the name space multiple times was used instead. The
real performance problem was found in the initial ver-
sion of the Op protocol (not shown in this paper). This
version issued copy requests to the data source and
not to the data destination, which was preventing the
use of data caches to avoid unnecessary data transfers.
A “don’t cache” permission bit was added to permit
the user to request for a box to be transferred on all
requests.

Building a new system by starting with a hosted
version and not a native implementation is a very good
approach. No OS toolkit has been used to implement
Plan B, yet it is benefiting from all sort of facilities
provided by a host system. We saved a huge amount

of time compared to our earlier experience of build-
ing system kernels using a native environment; even
though we built them using facilities supplied by the
OSkit toolkit [7].

14 Related work

Plan 9 [14] is a distributed system that is built by
exporting all resources as files and allowing those files
to be accessed through the network. Plan B borrows
many of the Plan 9 ideas. There are some important
differences though. Unlike Plan 9, Plan B uses boxes
instead of files permitting data to flow without the con-
trolling client intervention. This is important to per-
mit clients with bad connectivity to control the trans-
fer of huge amounts of information. Besides, along
with the box abstraction comes the use of constraints
(to determine box selection according to the expected
usage for the resources), the lack of file descriptors
(providing better tolerance of network failures), and
the ability to listen for new resources in the network
(to adapt to environment changes).

File systems using typed files like that of Nemesis [5]
are obviously ancestors of the box abstraction. They
do not consider how resources are used together in or-
der to help with resource selection. Moreover, since
their operating systems rely on files and file descrip-
tors, they do not provide a means to perform resource
redirection nor to adapt to environment changes.

This applies also to facilities like the BeOS file sys-
tem [11], the Semantic File system [8] and the name
service in Globe [12]. They are able to select resources
that present a set of properties by means of attributes.
However, they consider resources on their own, with-
out paying attention to how are they used together.
Furthermore, such systems do not optimize the paths
used for data transfers and it is not clear how they per-
mit the application to automatically adapt to changes
in the network.

Some systems permit flexible access to network re-
sources, such as Odissey [13] and Khazana [4]. Al-
though some of them consider disconnected operation
and adapt to changes in the connection status of the
client machine, it is not clear how they adapt to other
changes in the network, for example, changes in the
links used by the servers. This is important since mo-
bile devices are likely to be “servers” for I/O devices.

The problem of considering context to improve ap-
plications is addressed by systems like the Context
Toolkit [17] and Gaia [15]. Although some of the prob-
lems raised by the willingness to exploit context infor-
mation during user requests can be addressed by using

constraints, Plan B is not designed as a system for ac-
tive spaces.

Middleware systems like Globe [19] and WebOS [20]
are targeted to solve a different problem. They are
more concerned with scalability and interoperability of
existing systems than they are with rethinking which
services such systems could provide to make things
easier.

Many mechanisms have been built (usually as mid-
dleware) to address the problems we address on this
paper. Resilient overlay networks [1] and Iceberg’s au-
tomatic path creation service [22] describe different
means to let applications switch to different network
links, which is a concrete example of what we named
the resource redirection problem. The Placeless Doc-
uments framework [6] provides a means to select in-
stances of documents in the network and automate
conversions between document format; PAST [16] pro-
vides a file system that supports replication and per-
mits selection of appropriate file replicas. Such mech-
anisms are either designed for a concrete kind of appli-
cation, or supply one of the multiple services that an
operating system is expected to provide. Plan B dif-
fers in that it provides a general purpose environment
to build and execute applications.

Other systems, including Ninja [9] (whose archi-
tecture for services is called SEDA) and One.world
[10] are designed to provide services by interconnect-
ing small special-purpose devices through the internet.
Although Plan B considers that there might be many
small devices exporting services, it has been built as a
general purpose computing environment.

15 Future work

In the near future we will port more applications
from Plan 9 to Plan B, to get a complete develop-
ment environment. By using the system for daily work
its shortcomings and strengths will be better noticed.
Later, a native port to run on Intel based PCs will
follow.

References

[1] D. Andersen, H. Balakrishnan, F. Kaashoek and
R. Morris. Resilient Overlay Networks. In pro-

ceedings of the 2001 Symp. on Operating System
Prin., 2001.

[2]

3]

[7]

(8]

[9]

[10]

[11]
[12]

[13]

Laboratorio de Sistemas. Plan B web site.
At http://plan9.escet.urjc.es/who/nemo/Plan-
B.html, 2001.

F. J. Ballesteros and S. Arevalo. The Box: A
replacement for files. Proceedings of HotOS-VII,
IEEE Hot Topics on On Operating Systems. AZ,
USA. 1999.

J. Carter, A. Ranganathan and S. Susarla. Khaz-
ana. An Infrastructure for Building Distributed
Services. Proceedings of ICDCS’98, 1998.

S. Childs. Filing system interfaces to support dis-
tributed multimedia applications. Fighth ACM
SIGOPS European Workshop Support for Com-
posing Distributed Applications, 1998.

P. Dourish, W. K. Edwards, A. LaMarca, J.
Lamping, K. Petersen, M. Salisbury, D. B. Terry
and J. Thornton. Extending Document Manage-
ment Systems with User-Specific Active Proper-

ties. ACM Transactions on Information Systems
18, 2 (1999).

B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin
and O. Shivers. The Flux OS Toolkit: A Sub-
strate for Kernel and Language Research. Pro-
ceedings of the 16th Symp. on Operating System
Prin., 1997.

D. K. Gifford, P. Jouvelot, M. A. Sheldon and J.
W. O. Jr. Semantic File Systems. Proceedings of
the 13th Symp. on Operating System Prin., 1991.

S. D. Gribble, M. Welsh, R. Behren, E. A. Brewer,
D. E. Culler, N. Borisov, S. E. Czerwinski, R.
Gummadi, J. R. Hill, A. D. Joseph, R. H. Katz,
Z. M. Mao, S. Ross and B. Y. Zhao. The Ninja
architecture for robust Internet-scale systems and
services, Computer Networks. Special issue on
Pervasive Computing. 35, 4 (2000), .

R. Grimm and B. Bershad. Future directions:
System Support for Pervasive Applications. Pro-
ceedings of FuDiCo 2002, June 2002.

B. Inc. The Be Book. California USA. 1997.

I. Kuz, M. Steen and H. J. Sips. The Globe In-
frastructure Directory Service. Computer Com-
munications 25, 9 (June 2002), .

B. Noble, M. Satyanarayanan, D. Narayanan, T.
J.E., J. Flinn and K. Walker. Agile Application-
Aware Adaptation for Mobility. Proceedings of
the 16th ACM Symp. on Operating System Prin.,
1997.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

R. Pike, D. Presotto, K. Thompson and H.
Trickey. Plan 9 from Bell Labs. EUUG Newsletter
10, 3 (Autumn 1990), 2-11.

M. Roman, C. K. Hess, R. Cerqueira, K. Narhst-
edt and R. H. Campbell. Gaia: A middleware
infrastructure to enable active spaces Technical
Report UIUCDCS-R-2002-2265. University of Illi-
nois at Urbana-Champaign, 2002.

A. Rowston and P. Druschel. Storage Manage-
ment and caching in PAST. A large-scale persis-
tent peer-to-peer storage utility. Symp. on Oper-
ating System Prin., 2001.

D. Salber, A. K. Dey and G. D. Abowd The Con-
text Toolkit: Aiding the Development of Context-
Enabled Applications. Proceedings of CHI’99.
ACM Press., 1999.

M. Satyanarayanan. Scalable, Secure, and Highly
Available Distributed File Access. IEEE Com-
puter 23, 5 (May 1990).

M. Steen, P. Homburg and A. S. Tanenbaum
Globe: A Wide-Area Distributed System. IEEE
Concurrency, Jan-Mar 1999.

A. Vahdat, T. Anderson, M. Dahlin, D. Culler,
E. Belani, P. Eastham and C. Yoshikawa WebOS:
Operating System Services For Wide Area Appli-
cations Proceedings of the Seventh Symposium on
High Performance Distributed Computing, 1998.

B. B. Welsh and J. K. Ousterhout Prefix tables:
A Simple Mechanism for Locating Files in a Dis-
tributed System Proceedings of the 6th ICDCS,
1986.

Iceberg Project. Auto-
matic Path Creation Service,
http:/ /iceberg.cs.berkeley.edu/release/ AP C.html.

